WorldWideScience

Sample records for crystallographic twofold axis

  1. Automated crystallographic ligand building using the medial axis transform of an electron-density isosurface.

    Science.gov (United States)

    Aishima, Jun; Russel, Daniel S; Guibas, Leonidas J; Adams, Paul D; Brunger, Axel T

    2005-10-01

    Automatic fitting methods that build molecules into electron-density maps usually fail below 3.5 A resolution. As a first step towards addressing this problem, an algorithm has been developed using an approximation of the medial axis to simplify an electron-density isosurface. This approximation captures the central axis of the isosurface with a graph which is then matched against a graph of the molecular model. One of the first applications of the medial axis to X-ray crystallography is presented here. When applied to ligand fitting, the method performs at least as well as methods based on selecting peaks in electron-density maps. Generalization of the method to recognition of common features across multiple contour levels could lead to powerful automatic fitting methods that perform well even at low resolution.

  2. Orientational acoustic emission induced by electrons moving near a crystallographic axis in tungsten

    International Nuclear Information System (INIS)

    Alejnik, A.N.; Vorob'ev, S.A.; Zabaev, V.N.; Il'in, S.I.; Kalinin, B.N.; Potylitsyn, A.P.

    1988-01-01

    The measurement results of oriented acoustic irradiation of electrons with E 0 =900 MeV energies during their axial (along the direction) motion in tungsten monocrystal of 0.29 mm thickness are presented. The model describing the excitation of elastic waves in crystals as the consequence of the momentum transferred to the crystal by electrons during their motion near the axis is suggested. The model describes quite fully main laws of oriented acoustic irradiation. It permits to receive the information about the potential of the atom chain

  3. Splitting of the spectral radiation density maximum for relativistic positrons moving through a single crystal near the crystallographic axis

    International Nuclear Information System (INIS)

    Adejshvili, D.I.; Anufriev, O.V.; Bochek, G.L.; Vit'ko, V.I.; Kovalenko, G.D.; Nikolajchuk, L.I.; Khizhnyak, N.A.; Shramenko, B.I.

    1986-01-01

    The fast particle radiation is studied on the basis of the periodic potential model which takes into account the discrete structure of atomic strings or planes along the channel direction. Results of the experiments on the linear accelerator on radiation of relativistic 1035 and 1050 MeV positrons in the diamond (axis 110) and silicon (axis 111) single crystals, respectively, are in good agreement with calculated data

  4. Orientation-dependent evolution of the dislocation density in grain populations with different crystallographic orientations relative to the tensile axis in a polycrystalline aggregate of stainless steel

    International Nuclear Information System (INIS)

    Ungár, Tamás; Stoica, Alexandru D.; Tichy, Géza; Wang, Xun-Li

    2014-01-01

    Line profile analysis was carried out on neutron diffraction patterns collected by the energy-dispersive method for an in situ tensile-deformed AISI-316 stainless steel specimen. The experiments were carried out at the VULCAN engineering beam line of the spallation neutron source of the Oak Ridge National Laboratory. Both the dislocation densities and the local stresses in grains oriented with different h k l crystal directions along the tensile axis were determined. The work-hardening equation of Taylor was tested for the h k l-dependent phenomenological constant α. The grain-orientation-dependent α values were directly related to the heterogeneity of dislocation distribution in correlation with previous transmission electron microscopy data

  5. Twofold processing for denoising ultrasound medical images.

    Science.gov (United States)

    Kishore, P V V; Kumar, K V V; Kumar, D Anil; Prasad, M V D; Goutham, E N D; Rahul, R; Krishna, C B S Vamsi; Sandeep, Y

    2015-01-01

    Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India.

  6. Expression, limited proteolysis and preliminary crystallographic analysis of IpaD, a component of the Shigella flexneri type III secretion system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Steven [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Sir William Dunn School of Pathology, University of Oxford (United Kingdom); Roversi, Pietro [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Espina, Marianela [Department of Molecular Biosciences, University of Kansas (United States); Deane, Janet E. [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Birket, Susan; Picking, William D. [Department of Molecular Biosciences, University of Kansas (United States); Blocker, Ariel [Sir William Dunn School of Pathology, University of Oxford (United Kingdom); Picking, Wendy L. [Department of Molecular Biosciences, University of Kansas (United States); Lea, Susan M., E-mail: susan.lea@path.ox.ac.uk [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Sir William Dunn School of Pathology, University of Oxford (United Kingdom)

    2006-09-01

    IpaD, the putative needle-tip protein of the S. flexneri type III secretion system, has been crystallized in a variety of crystal forms using in-drop proteolysis. Native and selenomethionine-labelled data collection and preliminary analyses are reported. IpaD, the putative needle-tip protein of the Shigella flexneri type III secretion system, has been overexpressed and purified. Crystals were grown of the native protein in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 55.9, b = 100.7, c = 112.0 Å, and data were collected to 2.9 Å resolution. Analysis of the native Patterson map revealed a peak at 50% of the origin on the Harker section v = 0.5, suggesting twofold non-crystallographic symmetry parallel to the b crystallographic axis. As attempts to derivatize or grow selenomethionine-labelled protein crystals failed, in-drop proteolysis was used to produce new crystal forms. A trace amount of subtilisin Carlsberg was added to IpaD before sparse-matrix screening, resulting in the production of several new crystal forms. This approach produced SeMet-labelled crystals and diffraction data were collected to 3.2 Å resolution. The SeMet crystals belong to space group C2, with unit-cell parameters a = 139.4, b = 45.0, c = 99.5 Å, β = 107.9°. An anomalous difference Patterson map revealed peaks on the Harker section v = 0, while the self-rotation function indicates the presence of a twofold noncrystallographic symmetry axis, which is consistent with two molecules per asymmetric unit.

  7. Expression, limited proteolysis and preliminary crystallographic analysis of IpaD, a component of the Shigella flexneri type III secretion system

    International Nuclear Information System (INIS)

    Johnson, Steven; Roversi, Pietro; Espina, Marianela; Deane, Janet E.; Birket, Susan; Picking, William D.; Blocker, Ariel; Picking, Wendy L.; Lea, Susan M.

    2006-01-01

    IpaD, the putative needle-tip protein of the S. flexneri type III secretion system, has been crystallized in a variety of crystal forms using in-drop proteolysis. Native and selenomethionine-labelled data collection and preliminary analyses are reported. IpaD, the putative needle-tip protein of the Shigella flexneri type III secretion system, has been overexpressed and purified. Crystals were grown of the native protein in space group P2 1 2 1 2 1 , with unit-cell parameters a = 55.9, b = 100.7, c = 112.0 Å, and data were collected to 2.9 Å resolution. Analysis of the native Patterson map revealed a peak at 50% of the origin on the Harker section v = 0.5, suggesting twofold non-crystallographic symmetry parallel to the b crystallographic axis. As attempts to derivatize or grow selenomethionine-labelled protein crystals failed, in-drop proteolysis was used to produce new crystal forms. A trace amount of subtilisin Carlsberg was added to IpaD before sparse-matrix screening, resulting in the production of several new crystal forms. This approach produced SeMet-labelled crystals and diffraction data were collected to 3.2 Å resolution. The SeMet crystals belong to space group C2, with unit-cell parameters a = 139.4, b = 45.0, c = 99.5 Å, β = 107.9°. An anomalous difference Patterson map revealed peaks on the Harker section v = 0, while the self-rotation function indicates the presence of a twofold noncrystallographic symmetry axis, which is consistent with two molecules per asymmetric unit

  8. Expression, purification, crystallization and preliminary crystallographic analysis of MxiH, a subunit of the Shigella flexneri type III secretion system needle

    International Nuclear Information System (INIS)

    Deane, Janet E.; Cordes, Frank S.; Roversi, Pietro; Johnson, Steven; Kenjale, Roma; Picking, William D.; Picking, Wendy L.; Lea, Susan M.; Blocker, Ariel

    2006-01-01

    A monodisperse truncation mutant of MxiH, the subunit of the S. flexneri type III secretion system needle, has been crystallized. SeMet derivatives and a uranyl derivative have undergone preliminary crystallographic analysis. A monodisperse truncation mutant of MxiH, the subunit of the needle from the Shigella flexneri type III secretion system (TTSS), has been overexpressed and purified. Crystals were grown of native and selenomethionine-labelled MxiH CΔ5 and diffraction data were collected to 1.9 Å resolution. The crystals belong to space group C2, with unit-cell parameters a = 183.4, b = 28.1, c = 27.8 Å, β = 96.5°. An anomalous difference Patterson map calculated with the data from the SeMet-labelled crystals revealed a single peak on the Harker section v = 0. Inspection of a uranyl derivative also revealed one peak in the isomorphous difference Patterson map on the Harker section v = 0. Analysis of the self-rotation function indicates the presence of a twofold non-crystallographic symmetry axis approximately along a. The calculated Matthews coefficient is 1.9 Å 3 Da −1 for two molecules per asymmetric unit, corresponding to a solvent content of 33%

  9. Expression, purification, crystallization and preliminary crystallographic analysis of MxiH, a subunit of the Shigella flexneri type III secretion system needle

    Energy Technology Data Exchange (ETDEWEB)

    Deane, Janet E.; Cordes, Frank S.; Roversi, Pietro [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Johnson, Steven [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Sir William Dunn School of Pathology, University of Oxford (United Kingdom); Kenjale, Roma; Picking, William D.; Picking, Wendy L. [Department of Molecular Biosciences, University of Kansas (United States); Lea, Susan M., E-mail: susan.lea@biop.ox.ac.uk [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Sir William Dunn School of Pathology, University of Oxford (United Kingdom); Blocker, Ariel [Sir William Dunn School of Pathology, University of Oxford (United Kingdom); Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom)

    2006-03-01

    A monodisperse truncation mutant of MxiH, the subunit of the S. flexneri type III secretion system needle, has been crystallized. SeMet derivatives and a uranyl derivative have undergone preliminary crystallographic analysis. A monodisperse truncation mutant of MxiH, the subunit of the needle from the Shigella flexneri type III secretion system (TTSS), has been overexpressed and purified. Crystals were grown of native and selenomethionine-labelled MxiH{sub CΔ5} and diffraction data were collected to 1.9 Å resolution. The crystals belong to space group C2, with unit-cell parameters a = 183.4, b = 28.1, c = 27.8 Å, β = 96.5°. An anomalous difference Patterson map calculated with the data from the SeMet-labelled crystals revealed a single peak on the Harker section v = 0. Inspection of a uranyl derivative also revealed one peak in the isomorphous difference Patterson map on the Harker section v = 0. Analysis of the self-rotation function indicates the presence of a twofold non-crystallographic symmetry axis approximately along a. The calculated Matthews coefficient is 1.9 Å{sup 3} Da{sup −1} for two molecules per asymmetric unit, corresponding to a solvent content of 33%.

  10. Defocus and twofold astigmatism correction in HAADF-STEM

    International Nuclear Information System (INIS)

    Rudnaya, M.E.; Van den Broek, W.; Doornbos, R.M.P.; Mattheij, R.M.M.; Maubach, J.M.L.

    2011-01-01

    A new simultaneous autofocus and twofold astigmatism correction method is proposed for High Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM). The method makes use of a modification of image variance, which has already been used before as an image quality measure for different types of microscopy, but its use is often justified on heuristic grounds. In this paper we show numerically that the variance reaches its maximum at Scherzer defocus and zero astigmatism. In order to find this maximum a simultaneous optimization of three parameters (focus, x- and y-stigmators) is necessary. This is implemented and tested on a FEI Tecnai F20. It successfully finds the optimal defocus and astigmatism with time and accuracy, compared to a human operator. -- Research highlights: → A new simultaneous defocus and astigmatism correction method is proposed. → The method does not depend on the image Fourier transform. → The method does not require amorphous area of the sample. → The method is tested numerically as well, as for the real-world application.

  11. The Crystallographic Information File (CIF

    Directory of Open Access Journals (Sweden)

    I D Brown

    2006-11-01

    Full Text Available The Crystallographic Information File (CIF, owned by the International Union of Crystallography, is a file structure based on tag-value ASCII pairs with tags defined in machine-readable dictionaries. The crystallographic community publishes and archives large quantities of numeric information generated by crystal structure determinations, and CIF's acceptance was assured by its adoption as the submission format for Acta Crystallographica and by the obvious needs of the community. CIF's strength lies in its dictionaries, which define most of the concepts of crystallography; its weakness is the difficulty of writing software that exploits its full potential.

  12. Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry.

    Science.gov (United States)

    Neeman, Lior; Ben-Zvi, Regev; Rechav, Katya; Popovitz-Biro, Ronit; Oron, Dan; Joselevich, Ernesto

    2017-02-08

    The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations.

  13. Crystallographic properties of fertilizer compounds

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, A.W.; Dillard, E.F.; Thrasher, R.D.; Waerstad, K.R.; Hunter, S.R.; Kohler, J.J.; Scheib, R.M.

    1991-02-01

    This bulletin is a compilation of crystallographic data collected at NFERC on 450 fertilizer-related compounds. In TVA's fertilizer R and D program, petrographic examination, XRD, and infrared spectroscopy are combined with conventional chemical analysis methods in identifying the individual compounds that occur in fertilizer materials. This handbook brings together the results of these characterization studies and supplemental crystallographic data from the literature. It is in one-compound-per-page, loose-leaf format, ordered alphabetically by IUPAC name. Indexes provided include IUPAC name, formula, group, alternate formula, synonyms, x-ray data, optical data. Tables are given for solids, compounds in commercial MAP and DAP, and matrix materials in phosphate rock.

  14. Expression, purification, crystallization and preliminary crystallographic analysis of BipD, a component of the Burkholderia pseudomallei type III secretion system

    International Nuclear Information System (INIS)

    Roversi, Pietro; Johnson, Steven; Field, Terry; Deane, Janet E.; Galyov, Edouard E.; Lea, Susan M.

    2006-01-01

    A construct consisting of residues 10–310 of mature BipD, a component of the B. pseudomallei type III secretion system, has been crystallized. Native BipD crystals and SeMet and K 2 PtCl 4 derivative crystals have undergone preliminary crystallographic analysis. A construct consisting of residues 10–310 of BipD, a component of the Burkholderia pseudomallei type III secretion system (T3SS), has been overexpressed as a GST fusion, cleaved from the GST tag and purified. Crystals were grown of native and selenomethionine-labelled BipD. The crystals grow in two different polymorphs from the same condition. The first polymorph belongs to space group C222, with unit-cell parameters a = 103.98, b = 122.79, c = 49.17 Å, a calculated Matthews coefficient of 2.4 Å 3 Da −1 (47% solvent content) and one molecule per asymmetric unit. The second polymorph belongs to space group P2 1 2 1 2, with unit-cell parameters a = 136.47, b = 89.84, c = 50.15 Å, and a calculated Matthews coefficient of 2.3 Å 3 Da −1 (45% solvent content) for two molecules per asymmetric unit (analysis of the self-rotation function indicates the presence of a weak twofold non-crystallographic symmetry axis in this P2 1 2 1 2 form). The native crystals of both forms give diffraction data to 2.7 Å resolution, while the SeMet-labelled P2 1 2 1 2 crystals diffract to 3.3 Å resolution. A K 2 PtCl 4 derivative of the P2 1 2 1 2 form was also obtained and data were collected to 2.7 Å with radiation of wavelength λ = 0.933 Å. The Pt-derivative anomalous difference Patterson map revealed two self-peaks on the Harker sections

  15. Determination of crystallographic and macroscopic orientation of planar structures in TEM

    DEFF Research Database (Denmark)

    Huang, X.; Liu, Q.

    1998-01-01

    With the aid of a double-tilt holder in a transmission electron microscope (TEM), simple methods are described for determination of the crystallographic orientation of a planar structure and for calculation of the macroscopic orientation of the planar structure. The correlation between a planar...... structure and a crystallographic plane can be found by comparing the differences in their trace directions on the projection plane and inclination angles with respect to that plane. The angles between the traces of planar structures and the sample axis measured from the TEM micrographs, which have been...

  16. Expression, purification, crystallization and X-ray crystallographic studies of different redox states of the active site of thioredoxin 1 from the whiteleg shrimp Litopenaeus vannamei

    International Nuclear Information System (INIS)

    Campos-Acevedo, Adam A.; Garcia-Orozco, Karina D.; Sotelo-Mundo, Rogerio R.; Rudiño-Piñera, Enrique

    2013-01-01

    hydrogen bond between the side chain of Asp60 of each monomer and several hydrophobic interactions, with a noncrystallographic twofold axis

  17. Testing the Twofold Multidimensionality of Academic Self-Concept: A Study with Chinese Vocational Students

    Science.gov (United States)

    Yang, Lan; Arens, A. Katrin; Watkins, David A.

    2016-01-01

    In order to extend previous research on the twofold multidimensionality of academic self-concept (i.e. its domain-specific structure and separation into competence and affect components), the present study tests its generalisability among vocational students from mainland China. A Chinese version of self-description questionnaire I was…

  18. Shape effect related to crystallographic orientation of deformation behavior in copper crystals

    International Nuclear Information System (INIS)

    Kim, K.H.; Chang, C.H.; Koo, Y.M.; MacDowell, A.A.

    1999-01-01

    The deformation behavior of pure copper single crystals has been investigated by scanning electron microscopy and synchrotron radiation using the in situ reflection Laue method. Two types of samples with the same orientation of tensile axes, but with different crystallographic orientations in the directions of the width and thickness of the samples, have been studied. They showed different characteristics of deformation behavior, such as the activated slip systems, the movement of the tensile axis, and the mode of fracture

  19. Electron diffraction study of {alpha}-AlMnSi crystals including non-crystallographic axes

    Energy Technology Data Exchange (ETDEWEB)

    Song, G.L.; Bursill, L.A.

    1997-06-01

    The structure of crystalline {alpha}-AlMnSi is examined by electron diffraction. Six distinct zone axes are examined, including both normal crystallographic and non-crystallographic zones axes, allowing the space group symmetry to be studied. Electron diffraction patterns characteristic of Pm3-bar were obtained for thicker specimens. However, for very thin specimens, as used for HRTEM imaging, the electron diffraction patterns were characteristic of Im3-bar space group symmetry. The structural basis of the Pm3-bar to Im3-bar transformation may be understood in terms of an analysis of the icosahedral structural elements located at the corners and body-centers of the cubic unit cell. A method for indexing the non-crystallographic zone axis diffraction patterns is described. An electron diffraction pattern of the 5-fold axis of the quasicrystalline phase i-AlMnSi is also included; this is compared with the experimental results and calculations for the [0{tau}1] axis of Pm3-bar and Im3-bar crystalline phases. 26 refs., 4 tabs., 7 figs.

  20. Generation of Supramolecular Chirality around Twofold Rotational or Helical Axes in Crystalline Assemblies of Achiral Components

    Directory of Open Access Journals (Sweden)

    Mikiji Miyata

    2015-10-01

    Full Text Available A multi-point approximation method clarifies supramolecular chirality of twofold rotational or helical assemblies as well as bundles of the one-dimensional (1D assemblies. While one-point approximation of materials claims no chirality generation of such assemblies, multi-point approximations do claim possible generation in the 1D assemblies of bars and plates. Such chirality derives from deformations toward three-axial directions around the helical axes. The chiral columns are bundled in chiral ways through symmetry operations. The preferable right- or left-handed columns are bundled together to yield chiral crystals with right- or left-handedness, respectively, indicating that twofold helix symmetry operations cause chiral crystals composed of achiral components via a three-stepwise and three-directional process.

  1. Bayesian Predictive Inference of a Proportion Under a Twofold Small-Area Model

    Directory of Open Access Journals (Sweden)

    Nandram Balgobin

    2016-03-01

    Full Text Available We extend the twofold small-area model of Stukel and Rao (1997; 1999 to accommodate binary data. An example is the Third International Mathematics and Science Study (TIMSS, in which pass-fail data for mathematics of students from US schools (clusters are available at the third grade by regions and communities (small areas. We compare the finite population proportions of these small areas. We present a hierarchical Bayesian model in which the firststage binary responses have independent Bernoulli distributions, and each subsequent stage is modeled using a beta distribution, which is parameterized by its mean and a correlation coefficient. This twofold small-area model has an intracluster correlation at the first stage and an intercluster correlation at the second stage. The final-stage mean and all correlations are assumed to be noninformative independent random variables. We show how to infer the finite population proportion of each area. We have applied our models to synthetic TIMSS data to show that the twofold model is preferred over a onefold small-area model that ignores the clustering within areas. We further compare these models using a simulation study, which shows that the intracluster correlation is particularly important.

  2. Calibration of reconstruction parameters in atom probe tomography using a single crystallographic orientation

    International Nuclear Information System (INIS)

    Suram, Santosh K.; Rajan, Krishna

    2013-01-01

    The purpose of this work is to develop a methodology to estimate the APT reconstruction parameters when limited crystallographic information is available. Reliable spatial scaling of APT data currently requires identification of multiple crystallographic poles from the field desorption image for estimating the reconstruction parameters. This requirement limits the capacity of accurately reconstructing APT data for certain complex systems, such as highly alloyed systems and nanostructured materials wherein more than one pole is usually not observed within one grain. To overcome this limitation, we develop a quantitative methodology for calibrating the reconstruction parameters in an APT dataset by ensuring accurate inter-planar spacing and optimizing the curvature correction for the atomic planes corresponding to a single crystallographic orientation. We validate our approach on an aluminum dataset and further illustrate its capabilities by computing geometric reconstruction parameters for W and Al–Mg–Sc datasets. - Highlights: ► Quantitative approach is developed to accurately reconstruct APT data. ► Curvature of atomic planes in APT data is used to calibrate the reconstruction. ► APT reconstruction parameters are determined from a single crystallographic axis. ► Quantitative approach is demonstrated on W, Al and Al–Mg–Sc systems. ► Accurate APT reconstruction of complex materials is now possible

  3. Historical sediment budget and present-day catchment-shoreline coupling at Twofold Bay, southeastern Australia

    Science.gov (United States)

    Tamura, T.; Oliver, T.; Hudson, J.; Woodroffe, C. D.

    2017-12-01

    Considering projected impacts of sea-level rise in the 21st century on sandy shorelines, an understanding of long-term sediment budget for individual beaches or coastal compartments supports assessments of shoreline stability. We examined a low-lying coastal beach-ridge barrier in Twofold Bay using optically stimulated luminescence (OSL) dating , airborne LiDAR, sedimentological analysis and seismic data to assess changes in rates of sediment supply to this shoreline through time. Calculations of barrier volume, Twofold Bay bay-floor sediment volume and estimates of sediment delivery from a proximal river system provide a broad-scale assessment of past-sediment budget. Between ca. 7500 years ago and 1500 years ago, sources of sediment for shoreline progradation at Boydtown were bay-floor sediments either inherited or moved into the embayment during late-stage transgression. Progradation rate between ca. 7500-1500 years ago was 0.16 m/yr with subaerial barrier volume accumulating at 0.46 m3/m/yr. Between ca. 1500 years and present day, the Towamba River to the south has delivered additional sediment to the Boydtown shoreline more than doubling shoreline progradation rate to 0.65 m/yr and subaerial barrier accumulation has risen to 1.83 m3/m/yr. The delivery of fluvial sediment from the Towamba River was restricted to the past ca. 1500 years as prior to this, estuary infilling prevented floods delivering sediments to the bay. This recent historical coupling of river sand supply and shoreline progradation rate implies that anthropogenic modifications to the Towamba River catchment such as river damming, or climatic changes reducing rainfall or runoff, would negatively impact the Boydtown Beach shoreline. Conversely increased rainfall or deforestation may increase sediment discharge due to upstream erosion. The Boydtown shoreline within Twofold Bay may be able to maintain its current position in the coming century if fluvial sediment delivery continues. The fact that

  4. Two-fold Mellin–Barnes transforms of Usyukina–Davydychev functions

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, Bernd A., E-mail: kniehl@desy.de [II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Kondrashuk, Igor [Grupo de Matemática Aplicada, Departamento de Ciencias Básicas, Universidad del Bío-Bío, Campus Fernando May, Casilla 447, Chillán (Chile); Fakultät für Physik, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld (Germany); Notte-Cuello, Eduardo A. [Departamento de Matemáticas, Facultad de Ciencias, Universidad de La Serena, Av. Cisternas 1200, La Serena (Chile); Parra-Ferrada, Ivan [Carrera de Pedagogia en Matemática, Facultad de Educación y Humanidades, Universidad del Bío-Bío, Campus Castilla, Casilla 447, Chillán (Chile); Rojas-Medar, Marko [Grupo de Matemática Aplicada, Departamento de Ciencias Básicas, Universidad del Bío-Bío, Campus Fernando May, Casilla 447, Chillán (Chile)

    2013-11-01

    In our previous paper (Allendes et al., 2013 [10]), we showed that multi-fold Mellin–Barnes (MB) transforms of Usyukina–Davydychev (UD) functions may be reduced to two-fold MB transforms. The MB transforms were written there as polynomials of logarithms of ratios of squares of the external momenta with certain coefficients. We also showed that these coefficients have a combinatoric origin. In this paper, we present an explicit formula for these coefficients. The procedure of recovering the coefficients is based on taking the double-uniform limit in certain series of smooth functions of two variables which is constructed according to a pre-determined iterative way. The result is obtained by using basic methods of mathematical analysis. We observe that the finiteness of the limit of this iterative chain of smooth functions should reflect itself in other mathematical constructions, too, since it is not related in any way to the explicit form of the MB transforms. This finite double-uniform limit is represented in terms of a differential operator with respect to an auxiliary parameter which acts on the integrand of a certain two-fold MB integral. To demonstrate that our result is compatible with original representations of UD functions, we reproduce the integrands of these original integral representations by applying this differential operator to the integrand of the simple integral representation of the scalar triangle four-dimensional integral J(1,1,1−ε)

  5. Two-fold Mellin–Barnes transforms of Usyukina–Davydychev functions

    International Nuclear Information System (INIS)

    Kniehl, Bernd A.; Kondrashuk, Igor; Notte-Cuello, Eduardo A.; Parra-Ferrada, Ivan; Rojas-Medar, Marko

    2013-01-01

    In our previous paper (Allendes et al., 2013 [10]), we showed that multi-fold Mellin–Barnes (MB) transforms of Usyukina–Davydychev (UD) functions may be reduced to two-fold MB transforms. The MB transforms were written there as polynomials of logarithms of ratios of squares of the external momenta with certain coefficients. We also showed that these coefficients have a combinatoric origin. In this paper, we present an explicit formula for these coefficients. The procedure of recovering the coefficients is based on taking the double-uniform limit in certain series of smooth functions of two variables which is constructed according to a pre-determined iterative way. The result is obtained by using basic methods of mathematical analysis. We observe that the finiteness of the limit of this iterative chain of smooth functions should reflect itself in other mathematical constructions, too, since it is not related in any way to the explicit form of the MB transforms. This finite double-uniform limit is represented in terms of a differential operator with respect to an auxiliary parameter which acts on the integrand of a certain two-fold MB integral. To demonstrate that our result is compatible with original representations of UD functions, we reproduce the integrands of these original integral representations by applying this differential operator to the integrand of the simple integral representation of the scalar triangle four-dimensional integral J(1,1,1−ε)

  6. Expression, purification, crystallization and preliminary crystallographic analysis of BipD, a component of the Burkholderia pseudomallei type III secretion system

    Energy Technology Data Exchange (ETDEWEB)

    Roversi, Pietro; Johnson, Steven [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Field, Terry [Division of Microbiology, Institute for Animal Health, Compton Laboratory, Berkshire RG20 7NN (United Kingdom); Deane, Janet E. [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Galyov, Edouard E. [Division of Microbiology, Institute for Animal Health, Compton Laboratory, Berkshire RG20 7NN (United Kingdom); Lea, Susan M., E-mail: susan.lea@biop.ox.ac.uk [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom)

    2006-09-01

    A construct consisting of residues 10–310 of mature BipD, a component of the B. pseudomallei type III secretion system, has been crystallized. Native BipD crystals and SeMet and K{sub 2}PtCl{sub 4} derivative crystals have undergone preliminary crystallographic analysis. A construct consisting of residues 10–310 of BipD, a component of the Burkholderia pseudomallei type III secretion system (T3SS), has been overexpressed as a GST fusion, cleaved from the GST tag and purified. Crystals were grown of native and selenomethionine-labelled BipD. The crystals grow in two different polymorphs from the same condition. The first polymorph belongs to space group C222, with unit-cell parameters a = 103.98, b = 122.79, c = 49.17 Å, a calculated Matthews coefficient of 2.4 Å{sup 3} Da{sup −1} (47% solvent content) and one molecule per asymmetric unit. The second polymorph belongs to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 136.47, b = 89.84, c = 50.15 Å, and a calculated Matthews coefficient of 2.3 Å{sup 3} Da{sup −1} (45% solvent content) for two molecules per asymmetric unit (analysis of the self-rotation function indicates the presence of a weak twofold non-crystallographic symmetry axis in this P2{sub 1}2{sub 1}2 form). The native crystals of both forms give diffraction data to 2.7 Å resolution, while the SeMet-labelled P2{sub 1}2{sub 1}2 crystals diffract to 3.3 Å resolution. A K{sub 2}PtCl{sub 4} derivative of the P2{sub 1}2{sub 1}2 form was also obtained and data were collected to 2.7 Å with radiation of wavelength λ = 0.933 Å. The Pt-derivative anomalous difference Patterson map revealed two self-peaks on the Harker sections.

  7. Auxeticity of Yukawa Systems with Nanolayers in the (111 Crystallographic Plane

    Directory of Open Access Journals (Sweden)

    Paweł M. Pigłowski

    2017-11-01

    Full Text Available Elastic properties of model crystalline systems, in which the particles interact via the hard potential (infinite when any particles overlap and zero otherwise and the hard-core repulsive Yukawa interaction, were determined by Monte Carlo simulations. The influence of structural modifications, in the form of periodic nanolayers being perpendicular to the crystallographic axis [111], on auxetic properties of the crystal was investigated. It has been shown that the hard sphere nanolayers introduced into Yukawa crystals allow one to control the elastic properties of the system. It has been also found that the introduction of the Yukawa monolayers to the hard sphere crystal induces auxeticity in the [ 11 1 ¯ ] [ 112 ] -direction, while maintaining the negative Poisson’s ratio in the [ 110 ] [ 1 1 ¯ 0 ] -direction, thus expanding the partial auxeticity of the system to an additional important crystallographic direction.

  8. Magnetocrystalline two-fold symmetry in CaFe2O4 single crystal

    International Nuclear Information System (INIS)

    Gandhi, Ashish Chhaganlal; Das, Rajasree; Chou, Fang-Cheng; Lin, Jauyn Grace

    2017-01-01

    Understanding of magnetocrystalline anisotropy in CaFe 2 O 4 is a matter of importance for its future applications. A high quality single crystal CaFe 2 O 4 sample is studied by using synchrotron x-ray diffraction, a magnetometer and the electron spin resonance (ESR) technique. A broad feature of the susceptibility curve around room temperature is observed, indicating the development of 1D spin interactions above the on-set of antiferromagnetic transition. The angular dependency of ESR reveals an in-plane two-fold symmetry, suggesting a strong correlation between the room temperature spin structure and magnetocrystalline anisotropy. This finding opens an opportunity for the device utilizing the anisotropy field of CaFe 2 O 4 . (paper)

  9. Magnetocrystalline two-fold symmetry in CaFe2O4 single crystal

    Science.gov (United States)

    Chhaganlal Gandhi, Ashish; Das, Rajasree; Chou, Fang-Cheng; Lin, Jauyn Grace

    2017-05-01

    Understanding of magnetocrystalline anisotropy in CaFe2O4 is a matter of importance for its future applications. A high quality single crystal CaFe2O4 sample is studied by using synchrotron x-ray diffraction, a magnetometer and the electron spin resonance (ESR) technique. A broad feature of the susceptibility curve around room temperature is observed, indicating the development of 1D spin interactions above the on-set of antiferromagnetic transition. The angular dependency of ESR reveals an in-plane two-fold symmetry, suggesting a strong correlation between the room temperature spin structure and magnetocrystalline anisotropy. This finding opens an opportunity for the device utilizing the anisotropy field of CaFe2O4.

  10. Synthesis, structure and magnetic properties of crystallographically aligned CuCr_2Se_4 thin films

    International Nuclear Information System (INIS)

    Esters, Marco; Liebig, Andreas; Ditto, Jeffrey J.; Falmbigl, Matthias; Albrecht, Manfred; Johnson, David C.

    2016-01-01

    We report the low temperature synthesis of highly textured CuCr_2Se_4 thin films using the modulated elemental reactant (MER) method. The structure of CuCr_2Se_4 is determined for the first time in its thin film form and exhibits cell parameters that are smaller than found in bulk CuCr_2Se_4. X-ray diffraction and precession electron diffraction show a strong degree of crystallographic alignment of the crystallites, where the axis is oriented perpendicular to the substrate surface, while being rotationally disordered within the plane. Temperature and field dependent in-plane and out-of-plane magnetization measurements show that the film is ferromagnetic with a Curie temperature of 406 K CuCr_2Se_4 synthesized utilizing the MER method shows stronger magnetic anisotropy (effective anisotropy: 1.82 × 10"6 erg cm"−"3; shape anisotropy: 1.07 × 10"6 erg cm"−"3), with the easy axis lying out of plane, and a larger magnetic moment (6 μ_B/f.u.) than bulk CuCr_2Se_4. - Highlights: • Crystallographically aligned, phase pure CuCr_2Se_4 were synthesized. • The degree of alignment decreases with annealing time. • The films are ferromagnetic with the easy axis along the direction. • The magnetization is larger than bulk CuCr_2Se_4 or other CuCr_2Se_4 films made to date.

  11. The crystallographic growth directions of Sn whiskers

    International Nuclear Information System (INIS)

    Stein, J.; Welzel, U.; Leineweber, A.; Huegel, W.; Mittemeijer, E.J.

    2015-01-01

    The growth directions of 55 Sn whiskers, i.e. the crystallographic orientation parallel to the whisker-growth axes, were determined using (i) a focused ion beam microscope for the determination of the physical growth angles of the whiskers with respect to a specimen (reference) coordinate system and (ii) an electron backscatter detector in a scanning electron microscope for the determination of the crystallographic orientation of the whiskers. The Sn whiskers were found to grow preferentially along low-index directions of the β-Sn crystal structure. The experimental findings of this study (and most of the results presented in the literature as well) were explained by applying, in a modified way, the Hartman–Perdok concept of periodic bond chains, i.e. chains of strong bonds running uninterruptedly through the structure, to the Sn whisker-growth phenomenon

  12. Crystallographic computing system JANA2006: General features

    Czech Academy of Sciences Publication Activity Database

    Petříček, Václav; Dušek, Michal; Palatinus, Lukáš

    2014-01-01

    Roč. 229, č. 5 (2014), s. 345-352 ISSN 0044-2968 R&D Projects: GA ČR(CZ) GAP204/11/0809; GA ČR(CZ) GA14-03276S Grant - others:AV ČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : JANA2006 * aperiodic structures * magnetic structures * crystallographic computing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.310, year: 2014

  13. A preliminary neutron crystallographic study of thaumatin

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Susana C. M. [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); Blakeley, Matthew P. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Leal, Ricardo M. F. [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); ESRF, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble (France); Mitchell, Edward P. [EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); ESRF, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble (France); Forsyth, V. Trevor, E-mail: tforsyth@ill.fr [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom)

    2008-05-01

    Preliminary neutron crystallographic data from the sweet protein thaumatin have been recorded using the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results illustrate the feasibility of a full neutron structural analysis aimed at further understanding the molecular basis of the perception of sweet taste. Such an analysis will exploit the use of perdeuterated thaumatin. A preliminary neutron crystallographic study of the sweet protein thaumatin is presented. Large hydrogenated crystals were prepared in deuterated crystallization buffer using the gel-acupuncture method. Data were collected to a resolution of 2 Å on the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results demonstrate the feasibility of a full neutron crystallographic analysis of this structure aimed at providing relevant information on the location of H atoms, the distribution of charge on the protein surface and localized water in the structure. This information will be of interest for understanding the specificity of thaumatin–receptor interactions and will contribute to further understanding of the molecular mechanisms underlying the perception of taste.

  14. Crystallographic theory of the martensitic transformation

    Directory of Open Access Journals (Sweden)

    Edwar A. Torres-López

    2014-08-01

    Full Text Available The martensitic transformation is one of the most researched topics in the materials science during the 20th century. The second half of this century was mainly remembered by the development of several theories related with the kinetics of phase transformation, the mechanisms involved in the nucleation phenomenon, and the way as the crystallographic change is produced. In this paper are described the fundamental concepts that are defined in the crystallographic framework of the martensitic transformation. The study is focused on the application of the most outstanding crystallographic models: the Bain; the Wechsler, Lieberman & Read; and the Bowles & Mackenzie. The topic is presented based upon the particular features of the martensitic transformation, such as its non-diffusional character, type of interface between parent (austenite and product (martensite phases, the formation of substructural defects, and the shape change; all of these features are mathematically described by equations aimed to predict how the transformation will take place rather than to explain the actual movement of the atoms within the structure. This mathematical development is known as the Phenomenological Theory of Martensite Crystallography (PTMC.

  15. [Crystallographic evaluation of structural changes in water].

    Science.gov (United States)

    Farashchuk, N F; Rakhmanin, Yu A; Savostikova, O N; Telenkova, O G

    2014-01-01

    The study of the structural state of tap water that has been stored for two days in the packaging materials of various type and in different conditions, was performed with the use of crystallographic method for the investigation of liquids based on a special approach for dehydration of the drop, which is a fixed thin "slice" of the examines liquid. Most organized crystallographic pattern was shown to observe in a drop of water after treatment Bioptron lamp (content of liquid-crystal associates (LCA)--6.90 ± 0.23), and stored in a silver vessel (content LCA--6.28 ± 0.17), and the least organized, almost amorphous precipitate is formed in a drop of water stored in plastic containers (content LCA--2.92 ± 0.15%). Basing on the obtained results, it can be concluded that the crystallographic method can be used for the identification of qualitative changes occurring in liquid water under the influence of various physical factors, for the identification of the rationality of the use of hereafter sophisticated quantitative techniques.

  16. Response of Seven Crystallographic Orientations of Sapphire Crystals to Shock Stresses of 16 to 86 GPa

    OpenAIRE

    Kanel, G. I.; Nellis, W. J.; Savinykh, A. S.; Razorenov, S. V.; Rajendran, A. M.

    2009-01-01

    Shock-wave profiles of sapphire (single-crystal Al2O3) with seven crystallographic orientations were measured with time-resolved VISAR interferometry at shock stresses in the range 16 to 86 GPa. Shock propagation was normal to the surface of each cut. The angle between the c-axis of the hexagonal crystal structure and the direction of shock propagation varied from 0 for c-cut up to 90 degrees for m-cut in the basal plane. Based on published shock-induced transparencies, shock-induced optical ...

  17. Conservation Process Model (cpm): a Twofold Scientific Research Scope in the Information Modelling for Cultural Heritage

    Science.gov (United States)

    Fiorani, D.; Acierno, M.

    2017-05-01

    The aim of the present research is to develop an instrument able to adequately support the conservation process by means of a twofold approach, based on both BIM environment and ontology formalisation. Although BIM has been successfully experimented within AEC (Architecture Engineering Construction) field, it has showed many drawbacks for architectural heritage. To cope with unicity and more generally complexity of ancient buildings, applications so far developed have shown to poorly adapt BIM to conservation design with unsatisfactory results (Dore, Murphy 2013; Carrara 2014). In order to combine achievements reached within AEC through BIM environment (design control and management) with an appropriate, semantically enriched and flexible The presented model has at its core a knowledge base developed through information ontologies and oriented around the formalization and computability of all the knowledge necessary for the full comprehension of the object of architectural heritage an its conservation. Such a knowledge representation is worked out upon conceptual categories defined above all within architectural criticism and conservation scope. The present paper aims at further extending the scope of conceptual modelling within cultural heritage conservation already formalized by the model. A special focus is directed on decay analysis and surfaces conservation project.

  18. Two-fold Mellin-Barnes transforms of Usyukina-Davydychev functions

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, Bernd [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kondrashuk, Igor [Univ. del Bio Bio, Chillan (Chile). Dept. de Ciencias Basicas; Bielefeld Univ. (Germany). Fakultaet fuer Physik; Notte-Cuello, Eduardo A. [Univ. de La Serena (Chile). Dept. de Matematicas; Parra-Ferrada, Ivan [Univ. del Bio Bio, Chillan (Chile). Facultad de Educacion y Humanidades; Rojas-Medar, Marko [Univ. del Bio Bio, Chillan (Chile). Dept. de Ciencias Basicas

    2013-04-15

    In our previous paper (Nucl.Phys.B 870 (2013) 243) we showed that multi-fold Mellin-Barnes (MB) transforms of the Usyukina-Davydychev (UD) functions may be reduced to two-fold MB transforms. The MB transforms were written there as polynomials of logarithms of ratios of squares of the external momenta with certain coefficients. We also showed that these coefficients have a combinatoric origin. In this paper we present an explicit formula for these coefficients. The procedure of recovering the coefficients is based on taking the double uni-form limit in certain series of smooth functions of two variables which is constructed according to a pre-determined iterative way. The result is obtained by using basic methods of mathematical analysis. We observe that the finiteness of the limit of this iterative chain of smooth functions should reflect itself in other mathematical constructions, too, since it is not related in any way to the explicit form of the MB transforms.

  19. Two-fold Mellin-Barnes transforms of Usyukina-Davydychev functions

    International Nuclear Information System (INIS)

    Kniehl, Bernd; Kondrashuk, Igor; Bielefeld Univ.; Notte-Cuello, Eduardo A.; Parra-Ferrada, Ivan; Rojas-Medar, Marko

    2013-04-01

    In our previous paper (Nucl.Phys.B 870 (2013) 243) we showed that multi-fold Mellin-Barnes (MB) transforms of the Usyukina-Davydychev (UD) functions may be reduced to two-fold MB transforms. The MB transforms were written there as polynomials of logarithms of ratios of squares of the external momenta with certain coefficients. We also showed that these coefficients have a combinatoric origin. In this paper we present an explicit formula for these coefficients. The procedure of recovering the coefficients is based on taking the double uni-form limit in certain series of smooth functions of two variables which is constructed according to a pre-determined iterative way. The result is obtained by using basic methods of mathematical analysis. We observe that the finiteness of the limit of this iterative chain of smooth functions should reflect itself in other mathematical constructions, too, since it is not related in any way to the explicit form of the MB transforms.

  20. CONSERVATION PROCESS MODEL (CPM: A TWOFOLD SCIENTIFIC RESEARCH SCOPE IN THE INFORMATION MODELLING FOR CULTURAL HERITAGE

    Directory of Open Access Journals (Sweden)

    D. Fiorani

    2017-05-01

    Full Text Available The aim of the present research is to develop an instrument able to adequately support the conservation process by means of a twofold approach, based on both BIM environment and ontology formalisation. Although BIM has been successfully experimented within AEC (Architecture Engineering Construction field, it has showed many drawbacks for architectural heritage. To cope with unicity and more generally complexity of ancient buildings, applications so far developed have shown to poorly adapt BIM to conservation design with unsatisfactory results (Dore, Murphy 2013; Carrara 2014. In order to combine achievements reached within AEC through BIM environment (design control and management with an appropriate, semantically enriched and flexible The presented model has at its core a knowledge base developed through information ontologies and oriented around the formalization and computability of all the knowledge necessary for the full comprehension of the object of architectural heritage an its conservation. Such a knowledge representation is worked out upon conceptual categories defined above all within architectural criticism and conservation scope. The present paper aims at further extending the scope of conceptual modelling within cultural heritage conservation already formalized by the model. A special focus is directed on decay analysis and surfaces conservation project.

  1. World directory of crystallographers and of other scientists employing crystallographic methods

    CERN Document Server

    Filippini, G; Hashizume, H; Torriani, I; Duax, W

    1995-01-01

    The 9th edition of the World Directory of Crystallographers and of Other Scientists Employing Crystallographic Methods, which contains 7907 entries embracing 72 countries, differs considerably from the 8th edition, published in 1990. The content has been updated, and the methods used to acquire the information presented and to produce this new edition of the Directory have involved the latest advances in technology. The Directory is now also available as a regularly updated electronic database, accessible via e-mail, Telnet, Gopher, World-Wide Web, and Mosaic. Full details are given in an Appendix to the printed edition.

  2. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    International Nuclear Information System (INIS)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M.

    2014-01-01

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8

  3. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    Energy Technology Data Exchange (ETDEWEB)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M., E-mail: wilsonjm@mail.med.upenn.edu

    2014-04-15

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8.

  4. The generic unfolding of a codimension-two connection to a two-fold singularity of planar Filippov systems

    Science.gov (United States)

    Novaes, Douglas D.; Teixeira, Marco A.; Zeli, Iris O.

    2018-05-01

    Generic bifurcation theory was classically well developed for smooth differential systems, establishing results for k-parameter families of planar vector fields. In the present study we focus on a qualitative analysis of 2-parameter families, , of planar Filippov systems assuming that Z 0,0 presents a codimension-two minimal set. Such object, named elementary simple two-fold cycle, is characterized by a regular trajectory connecting a visible two-fold singularity to itself, for which the second derivative of the first return map is nonvanishing. We analyzed the codimension-two scenario through the exhibition of its bifurcation diagram.

  5. Silver aggregates and twofold-coordinated tin centers in phosphate glass: A photoluminescence study

    International Nuclear Information System (INIS)

    Jimenez, J.A.; Lysenko, S.; Liu, H.; Fachini, E.; Resto, O.; Cabrera, C.R.

    2009-01-01

    The optical properties of silver species in various oxidation and aggregation states and of tin centers in melt-quenched phosphate glasses have been assessed by optical absorption and photoluminescence (PL) spectroscopy. Glasses containing silver and tin, or either dopant, were studied. Emission and excitation spectra along with time-resolved and temperature-dependent PL measurements were employed in elucidating the different emitting centers observed and investigating on their interactions. In regard to silver, the data suggests the presence of luminescent single Ag + ions, Ag + -Ag + and Ag + -Ag 0 pairs, and nonluminescent Ag nanoparticles (NPs), where Ag + -Ag 0 →Ag + -Ag + energy transfer is indicated. Tin optical centers appear as twofold-coordinated Sn centers displaying PL around 400 nm ascribed to triplet-to-singlet electronic transitions. The optically active silver centers were observed in glasses where 8 mol% of both Ag 2 O and SnO, and 4 mol% of Ag 2 O were added. Heat treatment (HT) of the glass with the high concentration of silver and tin leads to chemical reduction of ionic silver species resulting in a large volume fraction of silver NPs and the vanishing of silver PL features. Further characterization of such heat-treated glass by transmission electron microscopy and X-ray photoelectron spectroscopy appears consistent with silver being present mainly in nonoxidized form after HT. On the other hand, HT of the glass containing only silver results in the quenching of Ag + -Ag 0 pairs emission that is ascribed to nonradiative energy transfer to Ag NPs due to the positioning of the pairs near the surface of NPs during HT. In this context, an important finding is that a faster relaxation was observed for this nanocomposite in relation to a heat-treated glass containing both silver and tin (no silver pairs) as revealed by degenerate four-wave mixing spectroscopy. Such result is attributed to Ag NP→Ag + -Ag 0 plasmon resonance energy transfer. The

  6. Effect of superconductivity on the cubic to tetragonal structural transition due to a two-fold degenerate electronic band

    International Nuclear Information System (INIS)

    Ghatak, S.K.; Khanra, B.C.; Ray, D.K.

    1978-01-01

    The effect of the BCS superconductivity on the cubic to tetragonal structural transition arising from a two-fold degenerate electronic band is investigated within the mean field approximation. The phase diagram of the two transitions is given for a half filled esub(g)-band. Modification of the two transitions when they are close together is also discussed. (author)

  7. The Twofold Multidimensionality of Academic Self-Concept: Domain Specificity and Separation between Competence and Affect Components

    Science.gov (United States)

    Arens, A. Katrin; Yeung, Alexander Seeshing; Craven, Rhonda G.; Hasselhorn, Marcus

    2011-01-01

    Academic self-concept is consistently proven to be multidimensional rather than unidimensional as it is domain specific in nature. However, each specific self-concept domain may be further separated into competence and affect components. This study examines the twofold multidimensionality of academic self-concept (i.e., its domain specificity and…

  8. XTAL system of crystallographic programs: programmer's manual

    International Nuclear Information System (INIS)

    Hall, S.R.; Stewart, J.M.; Norden, A.P.; Munn, R.J.; Freer, S.T.

    1980-02-01

    This document establishes the basis for collaborative writing of transportable computer programs for x-ray crystallography. The concepts and general-purpose utility subroutines described here can be readily adapted to other scientific calculations. The complete system of crystallographic programs and subroutines is called XTAL and replaces the XRAY (6,7,8) system of programs. The coding language for the XTAL system is RATMAC (5). The XTAL system of programs contains routines for controlling execution of application programs. In this sense it forms a suboperating system that presents the same computational environment to the user and programmer irrespective of the operating system in use at a particular installation. These control routines replace all FORTRAN I/O code, supply character reading and writing, supply binary file reading and writing, serve as a support library for applications programs, and provide for interprogram communication

  9. A method of simultaneous no-screen X-ray film taking with direct twofold magnification of hands and feet

    International Nuclear Information System (INIS)

    Zajgner, J.; Szymanska-Prach, H.

    1978-01-01

    The authors propose an original method of X-ray examination of hands and feet which makes possible simultaneous radiography without screen and direct twofold magnified film taking. The method is not connected with the necessity of exposing the patient to an additional dose of X-rays. It has been tried in 20 patients with suspected rheumatoid arthritis. It requires an X-ray tube with 0.3 x 0.3 mm microfocus. (author)

  10. Global crystallographic textures obtained by neutron and synchrotron radiation

    International Nuclear Information System (INIS)

    Brokmeier, Heinz-Guenter

    2006-01-01

    Global crystallographic textures belong to the main characteristic parameters of engineering materials. The global crystallographic texture is always the average texture of a well-defined sample volume which is representative to solve practical engineering problems. Thus a beam having a high penetration power is needed available as neutron or high energetic X-ray radiation. Texture type and texture sharpness are of great importance for materials properties such as the deep drawing behaviour, one of the basic techniques in many industries. Advantages and disadvantages of both radiations make them complementary for measuring crystallographic textures in a wide range of materials

  11. HRTEM study of α-AlMnSi crystals including non-crystallographic projection axes

    International Nuclear Information System (INIS)

    Song, G.L.; Bursill, L.A.

    1997-01-01

    The structure of α-AlMnSi is examined by atomic resolution high-resolution transmission electron microscopy (HRTEM) and computer-based image matching techniques. Six distinct zone axes are examined; including both normal crystallographic and non-crystallographic zones axes of the structural motifs, which have m3-bar 5 icosahedral symmetry. The results provide a sound basis for understanding HRTEM images of the quasicrystalline alloy i-AlMnSi; thus it was examined to what extent the requirements for obtaining so-called structure images of complex alloy structures may be met experimentally and define when the images may be reliably interpreted on the basis of computer simulation and image-matching at about 0.17nm resolution. Most difficulty was experienced in obtaining the experimental images, especially for the non-crystallographic zones, which are very sensitive to slight changes in orientation off the desired zone axis or projection, the rate at which the crystal thickness is increasing (wedge-angle) and the orientation of the surfaces of the specimen. Surface amorphous layers due to oxidation and/or electron-induced irradiation damage also limit the efficiency of the HRTEM analysis. For the thin specimens used for HRTEM, both the electron diffraction patterns and the HRTEM images are characteristic of Im3-bar space group symmetry. It is suggested that this Im3-bar symmetry may be an example of a statistical symmetry, where the local symmetry is close to Pm3-bar but the average symmetry is Im3-bar. The transition from Pm3-bar to Im3-bar may be understood in terms of an analysis of small changes in the outer shells of the large icosahedral structural elements which are located at the corners and body-centers of the cubic unit cell. 21 refs., 3 tabs., 10 figs

  12. HRTEM study of {alpha}-AlMnSi crystals including non-crystallographic projection axes

    Energy Technology Data Exchange (ETDEWEB)

    Song, G.L.; Bursill, L.A.

    1997-06-01

    The structure of {alpha}-AlMnSi is examined by atomic resolution high-resolution transmission electron microscopy (HRTEM) and computer-based image matching techniques. Six distinct zone axes are examined; including both normal crystallographic and non-crystallographic zones axes of the structural motifs, which have m3-bar 5 icosahedral symmetry. The results provide a sound basis for understanding HRTEM images of the quasicrystalline alloy i-AlMnSi; thus it was examined to what extent the requirements for obtaining so-called structure images of complex alloy structures may be met experimentally and define when the images may be reliably interpreted on the basis of computer simulation and image-matching at about 0.17nm resolution. Most difficulty was experienced in obtaining the experimental images, especially for the non-crystallographic zones, which are very sensitive to slight changes in orientation off the desired zone axis or projection, the rate at which the crystal thickness is increasing (wedge-angle) and the orientation of the surfaces of the specimen. Surface amorphous layers due to oxidation and/or electron-induced irradiation damage also limit the efficiency of the HRTEM analysis. For the thin specimens used for HRTEM, both the electron diffraction patterns and the HRTEM images are characteristic of Im3-bar space group symmetry. It is suggested that this Im3-bar symmetry may be an example of a statistical symmetry, where the local symmetry is close to Pm3-bar but the average symmetry is Im3-bar. The transition from Pm3-bar to Im3-bar may be understood in terms of an analysis of small changes in the outer shells of the large icosahedral structural elements which are located at the corners and body-centers of the cubic unit cell. 21 refs., 3 tabs., 10 figs.

  13. Crystallographic orientations in one-directional gray cast solidification

    International Nuclear Information System (INIS)

    Roviglione, A.; Hermida, J.D.

    1991-01-01

    The aim of this work is to determine the crystallographic orientations of austenite and the A laminar graphite and the compact, in one-directionally grown samples to decide upon the validity of the mentioned theory. (Author) [es

  14. A Journey into Reciprocal Space; A crystallographer's perspective

    Science.gov (United States)

    Glazer, A. M.

    2017-10-01

    This book introduces undergraduate and graduate students to a crystallographer's view of real and reciprocal space, a concept that has been of particular use by crystallographers to understand the patterns of spots when x-rays are diffracted by crystals. It then proceeds to develop the concept in a form suitable for physics applications; such as how solid-state physicists use reciprocal space to explain various solid-state properties such as thermal and electrical phenomena.

  15. Crystallographic cut that maximizes of the birefringence in photorefractive crystals

    OpenAIRE

    Rueda-Parada, Jorge Enrique

    2017-01-01

    The electro-optical birefringence effect depends on the crystal type, cut crystal, applied electric field and the incidence direction of light on the principal crystal faces. It is presented a study of maximizing the birefringence in photorefractive crystals of cubic crystallographic symmetry, in terms of these three parameters. General analytical expressions for the birefringence were obtained, from which birefringence can be established for any type of cut. A new crystallographic cut was en...

  16. Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: I, theoretical foundations.

    Science.gov (United States)

    Pezzotti, Giuseppe; Zhu, Wenliang; Boffelli, Marco; Adachi, Tetsuya; Ichioka, Hiroaki; Yamamoto, Toshiro; Marunaka, Yoshinori; Kanamura, Narisato

    2015-05-01

    The Raman spectroscopic method has quantitatively been applied to the analysis of local crystallographic orientation in both single-crystal hydroxyapatite and human teeth. Raman selection rules for all the vibrational modes of the hexagonal structure were expanded into explicit functions of Euler angles in space and six Raman tensor elements (RTE). A theoretical treatment has also been put forward according to the orientation distribution function (ODF) formalism, which allows one to resolve the statistical orientation patterns of the nm-sized hydroxyapatite crystallite comprised in the Raman microprobe. Close-form solutions could be obtained for the Euler angles and their statistical distributions resolved with respect to the direction of the average texture axis. Polarized Raman spectra from single-crystalline hydroxyapatite and textured polycrystalline (teeth enamel) samples were compared, and a validation of the proposed Raman method could be obtained through confirming the agreement between RTE values obtained from different samples.

  17. Group theoretical classification of broken symmetry states of the two-fold degenerate Hubbard model on a triangular lattice

    International Nuclear Information System (INIS)

    Masago, Akira; Suzuki, Naoshi

    2001-01-01

    By a group theoretical procedure we derive the possible spontaneously broken-symmetry states for the two-fold degenerate Hubbard model on a two-dimensional triangular lattice. For ordering wave vectors corresponding to the points Γ and K in the first BZ we find 22 states which include 16 collinear and six non-collinear states. The collinear states include the usual SDW and CDW states which appear also in the single-band Hubbard model. The non-collinear states include exotic ordering states of orbitals and spins as well as the triangular arrangement of spins

  18. Unprecedented twofold intramolecular hydroamination in diam(m)ine-dicarboxylatodichloridoplatinum(IV) complexes - ethane-1,2-diamine vs. ammine ligands.

    Science.gov (United States)

    Reithofer, Michael R; Galanski, Markus; Arion, Vladimir B; Keppler, Bernhard K

    2008-03-07

    Reaction of (OC-6-13)-bis(2Z-3-carboxyacrylato)dichlorido(ethane-1,2-diamine)platinum(IV) and (OC-6-13)-diamminebis(2Z-3-carboxyacrylato)dichloridoplatinum(IV) with propylamine in the presence of 1,1'-carbonyl diimidazole afforded not the expected amides; instead, beside amide formation, a twofold intramolecular attack of the am(m)ine ligand at the C[double bond, length as m-dash]C bonds was observed involving either both (ethane-1,2-diamine) or only one (ammine) coordinated nitrogen atom(s).

  19. Superconductivity with twofold symmetry in Bi2Te3/FeTe0.55Se0.45 heterostructures

    Science.gov (United States)

    Du, Zengyi

    2018-01-01

    Topological superconductors are an interesting and frontier topic in condensed matter physics. In the superconducting state, an order parameter will be established with the basic or subsidiary symmetry of the crystalline lattice. In doped Bi2Se3 or Bi2Te3 with a basic threefold symmetry, it was predicted, however, that bulk superconductivity with order parameters of twofold symmetry may exist because of the presence of odd parity. We report the proximity effect–induced superconductivity in the Bi2Te3 thin film on top of the iron-based superconductor FeTe0.55Se0.45. By using the quasiparticle interference technique, we demonstrate clear evidence of twofold symmetry of the superconducting gap. The gap minimum is along one of the main crystalline axes following the so-called Δ4y notation. This is also accompanied by the elongated vortex shape mapped out by the density of states within the superconducting gap. Our results provide an easily accessible platform for investigating possible topological superconductivity in Bi2Te3/FeTe0.55Se0.45 heterostructures. PMID:29888330

  20. Triple axis spectrometers

    International Nuclear Information System (INIS)

    Clausen, K.N.

    1997-01-01

    Conventional triple-axis neutron spectroscopy was developed by Brockhouse over thirty years ago' and remains today a versatile and powerful tool for probing the dynamics of condensed matter. The original design of the triple axis spectrometer is technically simple and probes momentum and energy space on a point-by-point basis. This ability to systematically probe the scattering function in a way which only requires a few angles to be moved under computer control and where the observed data in general can be analysed using a pencil and graph paper or a simple fitting routine, has been essential for the success of the method. These constraints were quite reasonable at the time the technique was developed. Advances in computer based data acquisition, neutron beam optics, and position sensitive area detectors have been gradually implemented on many triple axis spectrometer spectrometers, but the full potential of this has not been fully exploited yet. Further improvement in terms of efficiency (beyond point by point inspection) and increased sensitivity (use of focusing optics whenever the problem allows it) could easily be up to a factor of 10-20 over present instruments for many problems at a cost which is negligible compared to that of increasing the flux of the source. The real cost will be in complexity - finding the optimal set-up for a given scan and interpreting the data as the they are taken. On-line transformation of the data for an appropriate display in Q, ω space and analysis tools will be equally important for this task, and the success of these new ideas will crucially depend on how well we solve these problems. (author)

  1. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  2. Vertical axis wind turbine

    International Nuclear Information System (INIS)

    Obretenov, V.; Tsalov, T.; Chakarov, T.

    2012-01-01

    In recent years, the interest in wind turbines with vertical axis noticeably increased. They have some important advantages: low cost, relatively simple structure, reliable packaging system of wind aggregate long period during which require no maintenance, low noise, independence of wind direction, etc.. The relatively low efficiency, however, makes them applicable mainly for small facilities. The work presents a methodology and software for approximately aerodynamic design of wind turbines of this type, and also analyzed the possibility of improving the efficiency of their workflow

  3. Complex Structure of the Four-Dimensional Kerr Geometry: Stringy System, Kerr Theorem, and Calabi-Yau Twofold

    Directory of Open Access Journals (Sweden)

    Alexander Burinskii

    2013-01-01

    Full Text Available The 4D Kerr geometry displays many wonderful relations with quantum world and, in particular, with superstring theory. The lightlike structure of fields near the Kerr singular ring is similar to the structure of Sen solution for a closed heterotic string. Another string, open and complex, appears in the complex representation of the Kerr geometry initiated by Newman. Combination of these strings forms a membrane source of the Kerr geometry which is parallel to the structure of M-theory. In this paper we give one more evidence of this relationship, emergence of the Calabi-Yau twofold (K3 surface in twistorial structure of the Kerr geometry as a consequence of the Kerr theorem. Finally, we indicate that the Kerr stringy system may correspond to a complex embedding of the critical N = 2 superstring.

  4. T4 fibrations over Calabi–Yau two-folds and non-Kähler manifolds in string theory

    Directory of Open Access Journals (Sweden)

    Hai Lin

    2016-08-01

    Full Text Available We construct a geometric model of eight-dimensional manifolds and realize them in the context of type II string theory. These eight-manifolds are constructed by non-trivial T4 fibrations over Calabi–Yau two-folds. These give rise to eight-dimensional non-Kähler Hermitian manifolds with SU(4 structure. The eight-manifold is also a circle fibration over a seven-dimensional G2 manifold with skew torsion. The eight-manifolds of this type appear as internal manifolds with SU(4 structure in type IIB string theory with F3 and F7 fluxes. These manifolds have generalized calibrated cycles in the presence of fluxes.

  5. Crystallographic Topology 2: Overview and Work in Progress

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.K.

    1999-08-01

    This overview describes an application of contemporary geometric topology and stochastic process concepts to structural crystallography. In this application, crystallographic groups become orbifolds, crystal structures become Morse functions on orbifolds, and vibrating atoms in a crystal become vector valued Gaussian measures with the Radon-Nikodym property. Intended crystallographic benefits include new methods for visualization of space groups and crystal structures, analysis of the thermal motion patterns seen in ORTEP drawings, and a classification scheme for crystal structures based on their Heegaard splitting properties.

  6. Crystallographic study of one turn of G/C-rich B-DNA.

    Science.gov (United States)

    Heinemann, U; Alings, C

    1989-11-20

    The DNA decamer d(CCAGGCCTGG) has been studied by X-ray crystallography. At a nominal resolution of 1.6 A, the structure was refined to R = 16.9% using stereochemical restraints. The oligodeoxyribonucleotide forms a straight B-DNA double helix with crystallographic dyad symmetry and ten base-pairs per turn. In the crystal lattice, DNA fragments stack end-to-end along the c-axis to form continuous double helices. The overall helical structure and, notably, the groove dimensions of the decamer are more similar to standard, fiber diffraction-determined B-DNA than A-tract DNA. A unique stacking geometry is observed at the CA/TG base-pair step, where an increased rotation about the helix axis and a sliding motion of the base-pairs along their long axes leads to a superposition of the base rings with neighboring carbonyl and amino functions. Three-center (bifurcated) hydrogen bonds are possible at the CC/GG base-pair steps of the decamer. In their common sequence elements, d(CCAGGCCTGG) and the related G.A mismatch decamer d(CCAAGATTGG) show very similar three-dimensional structures, except that d(CCAGGCCTGG) appears to have a less regularly hydrated minor groove. The paucity of minor groove hydration in the center of the decamer may be a general feature of G/C-rich DNA and explain its relative instability in the B-form of DNA.

  7. The effect of plastic strain on the evolution of crystallographic texture in Zircaloy-2

    International Nuclear Information System (INIS)

    Ballinger, R.G.; Lucas, G.E.; Pelloux, R.M.

    1984-01-01

    The evolution of crystallographic texture during plastic deformation was investigated in Zircaloy-2 using X-ray and metallographic techniques. Inverse pole figures, the resolved fraction of basal poles, and the volume fraction of twinned material, were determined as a function of plastic strain for several strain paths and initial textures at 298 K and 623 K. Incremental transverse platic strain ratios (R) were measured as a function of plastic strain. Texture rotation occurs early in the deformation process, after as little as 1.5% plastic strain. For compressive plastic strains, the resolved fraction of basal poles increases in the direction parallel to the strain axis. For tensile plastic strains, the resolved fraction of basal poles decreases in the direction parallel to the strain axis. The rate of change of the resolved fraction of basal poles with plastic strain is a function of the initial resolved fraction of basal poles. The texture rotation can be explained by considering the operating of the principal tensile twinning systems, [10anti 12], . (orig.)

  8. Effect of plastic strain on the evolution of crystallographic texture in Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, R.G. (Massachusetts Inst. of Tech., Cambridge (USA)); Lucas, G.E. (California Univ., Santa Barbara (USA)); Pelloux, R.M. (Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Materials Science and Engineering)

    1984-09-01

    The evolution of crystallographic texture during plastic deformation was investigated in Zircaloy-2 using X-ray and metallographic techniques. Inverse pole figures, the resolved fraction of basal poles, and the volume fraction of twinned material, were determined as a function of plastic strain for several strain paths and initial textures at 298 K and 623 K. Incremental transverse platic strain ratios (R) were measured as a function of plastic strain. Texture rotation occurs early in the deformation process, after as little as 1.5% plastic strain. For compressive plastic strains, the resolved fraction of basal poles increases in the direction parallel to the strain axis. For tensile plastic strains, the resolved fraction of basal poles decreases in the direction parallel to the strain axis. The rate of change of the resolved fraction of basal poles with plastic strain is a function of the initial resolved fraction of basal poles. The texture rotation can be explained by considering the operating of the principal tensile twinning systems, (10anti 12), .

  9. The effect of plastic strain on the evolution of crystallographic texture in Zircaloy-2

    Science.gov (United States)

    Ballinger, R. G.; Lucas, G. E.; Pelloux, R. M.

    1984-09-01

    The evolution of crystallographic texture during plastic deformation was investigated in Zircaloy-2 using X-ray and metallographic techniques. Inverse pole figures, the resolved fraction of basal poles, and the volume fraction of twinned material, were determined as a function of plastic strain for several strain paths and initial textures at 298 K and 623 K. Incremental transverse platic strain ratios ( R) were mesured as a function of plastic strain. Texture rotation occurs early in the deformation process, after as little as 1.5% plastic strain. For compressive plastic strains, the resolved fraction of basal poles increases in the direction parallel to the strain axis. For tensile plastic strains, the resolved fraction of basal poles decreases in the direction parallel to the strain axis. The rate of change of the resolved fraction of basal poles with plastic strain is a function of the initial resolved fraction of basal poles. The texture rotation can be explained by considering the operation of the principal tensile twinning systems, {101¯2}.

  10. X-Ray powder diffractometry, crystallographic phase analysis and ...

    African Journals Online (AJOL)

    Computerized X-Ray diffraction system has been used to determine the composition and lattice parameters of raw and activated kaolinite. The universal diffractometry URD 63 was interfaced with computer via an APX 63 software package for rapid capturing of data on reflected intensity and other crystallographic ...

  11. Analysis of crystallographic preferred orientations of experimentally deformed Black Hills Quartzite

    Science.gov (United States)

    Kilian, Rüdiger; Heilbronner, Renée

    2017-10-01

    The crystallographic preferred orientations (textures) of three samples of Black Hills Quartzite (BHQ) deformed experimentally in the dislocation creep regimes 1, 2 and 3 (according to Hirth and Tullis, 1992) have been analyzed using electron backscatter diffraction (EBSD). All samples were deformed to relatively high strain at temperatures of 850 to 915 °C and are almost completely dynamically recrystallized. A texture transition from peripheral [c] axes in regime 1 to a central [c] maximum in regime 3 is observed. Separate pole figures are calculated for different grain sizes, aspect ratios and long-axis trends of grains, and high and low levels of intragranular deformation intensity as measured by the mean grain kernel average misorientation (gKAM). Misorientation relations are analyzed for grains of different texture components (named Y, B, R and σ grains, with reference to previously published prism, basal, rhomb and σ1 grains). Results show that regimes 1 and 3 correspond to clear end-member textures, with regime 2 being transitional. Texture strength and the development of a central [c]-axis maximum from a girdle distribution depend on deformation intensity at the grain scale and on the contribution of dislocation creep, which increases towards regime 3. Adding to this calculations of resolved shear stresses and misorientation analysis, it becomes clear that the peripheral [c]-axis maximum in regime 1 is not due to deformation by basal a slip. Instead, we interpret the texture transition as a result of different texture forming processes, one being more efficient at high stresses (nucleation or growth of grains with peripheral [c] axes), the other depending on strain (dislocation glide involving prism and rhomb a slip systems), and not as a result of temperature-dependent activity of different slip systems.

  12. Recovery of crystallographic texture in remineralized dental enamel.

    Science.gov (United States)

    Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon

    2014-01-01

    Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain

  13. Recovery of crystallographic texture in remineralized dental enamel.

    Directory of Open Access Journals (Sweden)

    Samera Siddiqui

    Full Text Available Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture and position of the (002 Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected

  14. Synthesis, structure and magnetic properties of crystallographically aligned CuCr{sub 2}Se{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Esters, Marco [Department of Chemistry, University of Oregon, Eugene, OR 97403 (United States); Liebig, Andreas [Institut für Physik, Universität Augsburg, 86159 Augsburg (Germany); Ditto, Jeffrey J.; Falmbigl, Matthias [Department of Chemistry, University of Oregon, Eugene, OR 97403 (United States); Albrecht, Manfred [Institut für Physik, Universität Augsburg, 86159 Augsburg (Germany); Johnson, David C., E-mail: davej@uoregon.edu [Department of Chemistry, University of Oregon, Eugene, OR 97403 (United States)

    2016-06-25

    We report the low temperature synthesis of highly textured CuCr{sub 2}Se{sub 4} thin films using the modulated elemental reactant (MER) method. The structure of CuCr{sub 2}Se{sub 4} is determined for the first time in its thin film form and exhibits cell parameters that are smaller than found in bulk CuCr{sub 2}Se{sub 4}. X-ray diffraction and precession electron diffraction show a strong degree of crystallographic alignment of the crystallites, where the <111> axis is oriented perpendicular to the substrate surface, while being rotationally disordered within the plane. Temperature and field dependent in-plane and out-of-plane magnetization measurements show that the film is ferromagnetic with a Curie temperature of 406 K CuCr{sub 2}Se{sub 4} synthesized utilizing the MER method shows stronger magnetic anisotropy (effective anisotropy: 1.82 × 10{sup 6} erg cm{sup −3}; shape anisotropy: 1.07 × 10{sup 6} erg cm{sup −3}), with the easy axis lying out of plane, and a larger magnetic moment (6 μ{sub B}/f.u.) than bulk CuCr{sub 2}Se{sub 4}. - Highlights: • Crystallographically aligned, phase pure CuCr{sub 2}Se{sub 4} were synthesized. • The degree of alignment decreases with annealing time. • The films are ferromagnetic with the easy axis along the <111> direction. • The magnetization is larger than bulk CuCr{sub 2}Se{sub 4} or other CuCr{sub 2}Se{sub 4} films made to date.

  15. An unprecedented two-fold nested super-polyrotaxane: sulfate-directed hierarchical polythreading assembly of uranyl polyrotaxane moieties

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Lei; Wu, Qun-yan; Yuan, Li-yong; Wang, Lin; An, Shu-wen; Xie, Zhen-ni; Hu, Kong-qiu; Shi, Wei-qun [Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Chai, Zhi-fang [Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); School of Radiological and Interdisciplinary Sciences and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou (China); Burns, Peter C. [Department of Chemistry and Biochemistry, University of Notre Dame, IN (United States)

    2016-08-01

    The hierarchical assembly of well-organized submoieties could lead to more complicated superstructures with intriguing properties. We describe herein an unprecedented polyrotaxane polythreading framework containing a two-fold nested super-polyrotaxane substructure, which was synthesized through a uranyl-directed hierarchical polythreading assembly of one-dimensional polyrotaxane chains and two-dimensional polyrotaxane networks. This special assembly mode actually affords a new way of supramolecular chemistry instead of covalently linked bulky stoppers to construct stable interlocked rotaxane moieties. An investigation of the synthesis condition shows that sulfate can assume a vital role in mediating the formation of different uranyl species, especially the unique trinuclear uranyl moiety [(UO{sub 2}){sub 3}O(OH){sub 2}]{sup 2+}, involving a notable bent [O=U=O] bond with a bond angle of 172.0(9) . Detailed analysis of the coordination features, the thermal stability as well as a fluorescence, and electrochemical characterization demonstrate that the uniqueness of this super-polyrotaxane structure is mainly closely related to the trinuclear uranyl moiety, which is confirmed by quantum chemical calculations. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Overexpression, purification and crystallographic analysis of a unique adenosine kinase from Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yimin; Long, Mary C.; Ranganathan, Senthil; Escuyer, Vincent; Parker, William B.; Li, Rongbao, E-mail: li@sri.org [Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama 35205 (United States)

    2005-06-01

    Adenosine kinase from M. tuberculosis has been overexpressed, purified and crystallized in the presence of adenosine. Structure determination using molecular replacement with diffraction data collected at 2.2 Å reveals a dimeric structure. Adenosine kinase from Mycobacterium tuberculosis is the only prokaryotic adenosine kinase that has been isolated and characterized. The enzyme catalyzes the phosphorylation of adenosine to adenosine monophosphate and is involved in the activation of 2-methyladenosine, a compound that has demonstrated selective activity against M. tuberculosis. The mechanism of action of 2-methyladenosine is likely to be different from those of current tuberculosis treatments and this compound (or other adenosine analogs) may prove to be a novel therapeutic intervention for this disease. The M. tuberculosis adenosine kinase was overexpressed in Escherichia coli and the enzyme was purified with activity comparable to that reported previously. The protein was crystallized in the presence of adenosine using the vapour-diffusion method. The crystals diffracted X-rays to high resolution and a complete data set was collected to 2.2 Å using synchrotron radiation. The crystal belonged to space group P3{sub 1}21, with unit-cell parameters a = 70.2, c = 111.6 Å, and contained a single protein molecule in the asymmetric unit. An initial structural model of the protein was obtained by the molecular-replacement method, which revealed a dimeric structure. The monomers of the dimer were related by twofold crystallographic symmetry. An understanding of how the M. tuberculosis adenosine kinase differs from the human homolog should aid in the design of more potent and selective antimycobacterial agents that are selectively activated by this enzyme.

  17. Overexpression, purification and crystallographic analysis of a unique adenosine kinase from Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Wang, Yimin; Long, Mary C.; Ranganathan, Senthil; Escuyer, Vincent; Parker, William B.; Li, Rongbao

    2005-01-01

    Adenosine kinase from M. tuberculosis has been overexpressed, purified and crystallized in the presence of adenosine. Structure determination using molecular replacement with diffraction data collected at 2.2 Å reveals a dimeric structure. Adenosine kinase from Mycobacterium tuberculosis is the only prokaryotic adenosine kinase that has been isolated and characterized. The enzyme catalyzes the phosphorylation of adenosine to adenosine monophosphate and is involved in the activation of 2-methyladenosine, a compound that has demonstrated selective activity against M. tuberculosis. The mechanism of action of 2-methyladenosine is likely to be different from those of current tuberculosis treatments and this compound (or other adenosine analogs) may prove to be a novel therapeutic intervention for this disease. The M. tuberculosis adenosine kinase was overexpressed in Escherichia coli and the enzyme was purified with activity comparable to that reported previously. The protein was crystallized in the presence of adenosine using the vapour-diffusion method. The crystals diffracted X-rays to high resolution and a complete data set was collected to 2.2 Å using synchrotron radiation. The crystal belonged to space group P3 1 21, with unit-cell parameters a = 70.2, c = 111.6 Å, and contained a single protein molecule in the asymmetric unit. An initial structural model of the protein was obtained by the molecular-replacement method, which revealed a dimeric structure. The monomers of the dimer were related by twofold crystallographic symmetry. An understanding of how the M. tuberculosis adenosine kinase differs from the human homolog should aid in the design of more potent and selective antimycobacterial agents that are selectively activated by this enzyme

  18. Crystallographically-based analysis of the NMR spectra of maghemite

    International Nuclear Information System (INIS)

    Spiers, K.M.; Cashion, J.D.

    2012-01-01

    All possible iron environments with respect to nearest neighbour vacancies in vacancy-ordered and vacancy-disordered maghemite have been evaluated and used as the foundation for a crystallographically-based analysis of the published NMR spectra of maghemite. The spectral components have been assigned to particular configurations and excellent agreement obtained in comparing predicted spectra with published spectra taken in applied magnetic fields. The broadness of the published NMR lines has been explained by calculations of the magnetic dipole fields at the various iron sites and consideration of the supertransferred hyperfine fields. - Highlights: ► Analysis of 57 Fe NMR of maghemite based on vacancy ordering and nearest neighbour vacancies. ► Assignment of NMR spectral components based on crystallographic analysis of unique iron sites. ► Strong agreement between predicted spectra and published spectra taken in applied magnetic fields. ► Maghemite NMR spectral broadening due to various iron sites and supertransferred hyperfine field.

  19. A crystallographic perspective on sharing data and knowledge

    Science.gov (United States)

    Bruno, Ian J.; Groom, Colin R.

    2014-10-01

    The crystallographic community is in many ways an exemplar of the benefits and practices of sharing data. Since the inception of the technique, virtually every published crystal structure has been made available to others. This has been achieved through the establishment of several specialist data centres, including the Cambridge Crystallographic Data Centre, which produces the Cambridge Structural Database. Containing curated structures of small organic molecules, some containing a metal, the database has been produced for almost 50 years. This has required the development of complex informatics tools and an environment allowing expert human curation. As importantly, a financial model has evolved which has, to date, ensured the sustainability of the resource. However, the opportunities afforded by technological changes and changing attitudes to sharing data make it an opportune moment to review current practices.

  20. An alternative to the crystallographic reconstruction of austenite in steels

    International Nuclear Information System (INIS)

    Bernier, Nicolas; Bracke, Lieven; Malet, Loïc; Godet, Stéphane

    2014-01-01

    An alternative crystallographic austenite reconstruction programme written in Matlab is developed by combining the best features of the existing models: the orientation relationship refinement, the local pixel-by-pixel analysis and the nuclei identification and spreading strategy. This programme can be directly applied to experimental electron backscatter diffraction mappings. Its applicability is demonstrated on both quenching and partitioning and as-quenched lath-martensite steels. - Highlights: • An alternative crystallographic austenite reconstruction program is developed. • The method combines a local analysis and a nuclei identification/spreading strategy. • The validity of the calculated orientation relationship is verified on a Q and P steel. • The accuracy of the reconstructed microtexture is investigated on a martensite steel

  1. Automated identification of crystallographic ligands using sparse-density representations

    International Nuclear Information System (INIS)

    Carolan, C. G.; Lamzin, V. S.

    2014-01-01

    A novel procedure for identifying ligands in macromolecular crystallographic electron-density maps is introduced. Density clusters in such maps can be rapidly attributed to one of 82 different ligands in an automated manner. A novel procedure for the automatic identification of ligands in macromolecular crystallographic electron-density maps is introduced. It is based on the sparse parameterization of density clusters and the matching of the pseudo-atomic grids thus created to conformationally variant ligands using mathematical descriptors of molecular shape, size and topology. In large-scale tests on experimental data derived from the Protein Data Bank, the procedure could quickly identify the deposited ligand within the top-ranked compounds from a database of candidates. This indicates the suitability of the method for the identification of binding entities in fragment-based drug screening and in model completion in macromolecular structure determination

  2. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    Directory of Open Access Journals (Sweden)

    Alexandra Henriques

    2014-11-01

    Full Text Available Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 1015 neutrons/cm2. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. The results demonstrate a method by which the effects of radiation on crystallographic structure may be investigated.

  3. Crystallographic data processing for free-electron laser sources

    International Nuclear Information System (INIS)

    White, Thomas A.; Barty, Anton; Stellato, Francesco; Holton, James M.; Kirian, Richard A.; Zatsepin, Nadia A.; Chapman, Henry N.

    2013-01-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam

  4. Crystallographic data processing for free-electron laser sources

    Energy Technology Data Exchange (ETDEWEB)

    White, Thomas A., E-mail: taw@physics.org; Barty, Anton; Stellato, Francesco [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Holton, James M. [University of California, San Francisco, CA 94158 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kirian, Richard A. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Arizona State University, Tempe, AZ 85287 (United States); Zatsepin, Nadia A. [Arizona State University, Tempe, AZ 85287 (United States); Chapman, Henry N. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2013-07-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.

  5. Some non-linear physics in crystallographic structures

    International Nuclear Information System (INIS)

    Aubry, S.

    1977-10-01

    A summary of studies on simple but strongly nonlinear crystallographic models that make use of some methods in stochasticity is presented. Two one-dimensional models are described; one has been studied to understand some aspects of the nonlinear dynamics in crystals when close to the transition temperature, the other is for commensurability and incommensurability problems. Periodic orbits and the dynamics of a one-dimensional coupled double-well chain are considered, along with lattice locking and stochasticity

  6. The crystallographic space groups and Heterotic string theory

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2009-01-01

    While the 17 planar crystallographic groups were shown to correspond to 17 two and three Stein spaces with a total dimension equal to DimE12=5α-bar o ≅685, the present work reveals that the corresponding 219 three dimensional groups leads to a total dimensionality equal to N o ≅8872 which happens to be the exact total number of massless states of the transfinite version of Heterotic super string spectrum.

  7. Towards automated crystallographic structure refinement with phenix.refine

    OpenAIRE

    Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.; Echols, Nathaniel; Headd, Jeffrey J.; Moriarty, Nigel W.; Mustyakimov, Marat; Terwilliger, Thomas C.; Urzhumtsev, Alexandre; Zwart, Peter H.; Adams, Paul D.

    2012-01-01

    phenix.refine is a program within the PHENIX package that supports crystallographic structure refinement against experimental data with a wide range of upper resolution limits using a large repertoire of model parameterizations. It has several automation features and is also highly flexible. Several hundred parameters enable extensive customizations for complex use cases. Multiple user-defined refinement strategies can be applied to specific parts of the model in a single refinement run. An i...

  8. Crystallographically uniform arrays of ordered (In)GaN nanocolumns

    Energy Technology Data Exchange (ETDEWEB)

    Gačević, Ž., E-mail: gacevic@isom.upm.es; Bengoechea-Encabo, A.; Albert, S.; Calleja, E. [ETSIT-ISOM, Universidad Politécnica de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Torres-Pardo, A.; González-Calbet, J. M. [Dept. Química Inorgánica, Universidad Complutense, 28040 Madrid (Spain); CEI Campus Moncloa, UCM-UPM, Madrid (Spain)

    2015-01-21

    In this work, through a comparative study of self-assembled (SA) and selective area grown (SAG) (In)GaN nanocolumn (NC) ensembles, we first give a detailed insight into improved crystallographic uniformity (homogeneity of crystallographic tilts and twists) of the latter ones. The study, performed making use of: reflective high energy electron diffraction, X-ray diffraction and scanning electron microscopy, reveals that unlike their SA counterparts, the ensembles of SAG NCs show single epitaxial relationship to both sapphire(0001) and Si(111) underlying substrates. In the second part of the article, making use of X-ray diffraction, we directly show that the selective area growth leads to improved compositional uniformity of InGaN NC ensembles. This further leads to improved spectral purity of their luminescence, as confirmed by comparative macro-photoluminescence measurements performed on SA and SAG InGaN NC ensembles. An improved crystallographic uniformity of NC ensembles facilitates their integration into optoelectronic devices, whereas their improved compositional uniformity allows for their employment in single-color optoelectronic applications.

  9. Crystallographic features of lath martensite in low-carbon steel

    International Nuclear Information System (INIS)

    Kitahara, Hiromoto; Ueji, Rintaro; Tsuji, Nobuhiro; Minamino, Yoritoshi

    2006-01-01

    Electron backscattering diffraction with field-emission scanning electron microscopy was used to analyze crystallographically the lath martensite structure in a 0.20% carbon steel. The crystallographic features of the lath martensite structure, of the order of the prior austenite grain size or larger, were clarified. Although the orientations of the martensite crystals were scattered around the ideal variant orientations, the martensite in this steel maintained the Kurdjumov-Sachs (K-S) orientation relationship. The procedures of the crystallographic analysis of the martensite (ferrite) phase with the K-S orientation relationship were explained in detail. Variant analysis showed that all 24 possible variants did not necessarily appear within a single prior austenite grain and that all six variants did not necessarily appear within each packet. Specific combinations of two variants appeared within local regions (sub-blocks), indicating a strict rule for variant selection. Prior austenite grain boundaries and most of the packet boundaries were clearly recognized. However, it was difficult to determine the block boundaries within the sub-blocks

  10. Crystallographic deterioration of MOVPE InN during the growth

    International Nuclear Information System (INIS)

    Sugita, K.; Nagai, Y.; Houchin, Y.; Hashimoto, A.; Yamamoto, A.

    2007-01-01

    This paper reports the crystallographic degradation of MOVPE InN during the growth. Using FWHMs of X-ray rocking curve, tilt ((0002)) and twist ((10-10)) angle distributions are evaluated and effects of the major growth parameters, such as growth temperature, growth time and with/without GaN buffer in the degradation, are revealed. With increasing either thickness of grown InN or growth temperature up to 600 C, the tilt angle distribution is markedly increased, indicating the crystallographic degradation of grown films. The use of a GaN buffer reduces such degradation. Since the twist angle distribution is scarcely changed by such growth parameters, the destruction of InN crystals during growth and annealing is concluded to be anisotropic. The trends of the crystallographic degradation revealed here are in good agreement with those for the electrical and optical degradation previously reported. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Crystallographic orientation analysis in HDDR process of anisotropic Nd-Fe-B magnet powders

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, Rina, E-mail: 3ES15002M@s.kyushu-u.ac.jp [Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Science and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga 816-8580 (Japan); Itakura, Masaru [Department of Applied Science for Electronics and Materials, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Katayama, Nobuhiro; Morimoto, Koichiro [R& D Division, Toda Kogyo Corp., 1-4 Meijishinkai, Otake, Hiroshima 739-0652 (Japan)

    2017-07-01

    Highlights: • Over 70% of the Nd{sub 2}Fe{sub 14}B grains after the HDDR process are aligned within 30°. • The c-axis alignment of Nd{sub 2}Fe{sub 14}B slightly deteriorates by the Nd-rich phase formation. • α-Fe grains possess a uniaxial and 〈1 1 3〉 oriented texture in the decomposed stage. • α-Fe is most likely to induce the texture development of recombined Nd{sub 2}Fe{sub 14}B. - Abstract: Microstructural changes and crystallographic orientation information in the hydrogenation-decomposition-desorption-recombination (HDDR) process of Nd-Fe-B alloy were investigated using electron backscatter diffraction (EBSD) and precession electron diffraction (PED) in order to understand the mechanism of anisotropy inducement in the HDDR process. Recombined Nd{sub 2}Fe{sub 14}B grains were found to nucleate at the interfaces between NdH{sub 2} and α-Fe grains and to have a [0 0 1]-oriented texture from the beginning of the recombination reaction. The Fe grains form with alignment of one of the 〈1 1 3〉 directions at decomposed stage. This suggests that α-Fe most likely induces texture development of recombined Nd{sub 2}Fe{sub 14}B.

  12. PRIGo: a new multi-axis goniometer for macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Waltersperger, Sandro; Olieric, Vincent, E-mail: vincent.olieric@psi.ch; Pradervand, Claude [Paul Scherrer Institute, Villigen PSI (Switzerland); Glettig, Wayne [Centre Suisse d’Electronique et Microtechnique SA, Neuchâtel 2002 (Switzerland); Salathe, Marco; Fuchs, Martin R.; Curtin, Adrian; Wang, Xiaoqiang; Ebner, Simon; Panepucci, Ezequiel; Weinert, Tobias [Paul Scherrer Institute, Villigen PSI (Switzerland); Schulze-Briese, Clemens [Dectris Ltd, Baden 5400 (Switzerland); Wang, Meitian, E-mail: vincent.olieric@psi.ch [Paul Scherrer Institute, Villigen PSI (Switzerland)

    2015-05-09

    The design and performance of the new multi-axis goniometer PRIGo developed at the Swiss Light Source at Paul Scherrer Institute is described. The Parallel Robotics Inspired Goniometer (PRIGo) is a novel compact and high-precision goniometer providing an alternative to (mini-)kappa, traditional three-circle goniometers and Eulerian cradles used for sample reorientation in macromolecular crystallography. Based on a combination of serial and parallel kinematics, PRIGo emulates an arc. It is mounted on an air-bearing stage for rotation around ω and consists of four linear positioners working synchronously to achieve x, y, z translations and χ rotation (0–90°), followed by a ϕ stage (0–360°) for rotation around the sample holder axis. Owing to the use of piezo linear positioners and active correction, PRIGo features spheres of confusion of <1 µm, <7 µm and <10 µm for ω, χ and ϕ, respectively, and is therefore very well suited for micro-crystallography. PRIGo enables optimal strategies for both native and experimental phasing crystallographic data collection. Herein, PRIGo hardware and software, its calibration, as well as applications in macromolecular crystallography are described.

  13. Gut Microbiota-brain Axis

    Institute of Scientific and Technical Information of China (English)

    Hong-Xing Wang; Yu-Ping Wang

    2016-01-01

    Objective:To systematically review the updated information about the gut microbiota-brain axis.Data Sources:All articles about gut microbiota-brain axis published up to July 18,2016,were identified through a literature search on PubMed,ScienceDirect,and Web of Science,with the keywords of"gut microbiota","gut-brain axis",and "neuroscience".Study Selection:All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed,with no limitation of study design.Results:It is well-recognized that gut microbiota affects the brain's physiological,behavioral,and cognitive functions although its precise mechanism has not yet been fully understood.Gut microbiota-brain axis may include gut microbiota and their metabolic products,enteric nervous system,sympathetic and parasympathetic branches within the autonomic nervous system,neural-immune system,neuroendocrine system,and central nervous system.Moreover,there may be five communication routes between gut microbiota and brain,including the gut-brain's neural network,neuroendocrine-hypothalamic-pituitary-adrenal axis,gut immune system,some neurotransmitters and neural regulators synthesized by gut bacteria,and barrier paths including intestinal mucosal barrier and blood-brain barrier.The microbiome is used to define the composition and functional characteristics of gut microbiota,and metagenomics is an appropriate technique to characterize gut microbiota.Conclusions:Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain,which may provide a new way to protect the brain in the near future.

  14. The use of Fourier reverse transforms in crystallographic phase refinement

    Energy Technology Data Exchange (ETDEWEB)

    Ringrose, Sharon [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Often a crystallographer obtains an electron density map which shows only part of the structure. In such cases, the phasing of the trial model is poor enough that the electron density map may show peaks in some of the atomic positions, but other atomic positions are not visible. There may also be extraneous peaks present which are not due to atomic positions. A method for determination of crystal structures that have resisted solution through normal crystallographic methods has been developed. PHASER is a series of FORTRAN programs which aids in the structure solution of poorly phased electron density maps by refining the crystallographic phases. It facilitates the refinement of such poorly phased electron density maps for difficult structures which might otherwise not be solvable. The trial model, which serves as the starting point for the phase refinement, may be acquired by several routes such as direct methods or Patterson methods. Modifications are made to the reverse transform process based on several assumptions. First, the starting electron density map is modified based on the fact that physically the electron density map must be non-negative at all points. In practice a small positive cutoff is used. A reverse Fourier transform is computed based on the modified electron density map. Secondly, the authors assume that a better electron density map will result by using the observed magnitudes of the structure factors combined with the phases calculated in the reverse transform. After convergence has been reached, more atomic positions and less extraneous peaks are observed in the refined electron density map. The starting model need not be very large to achieve success with PHASER; successful phase refinement has been achieved with a starting model that consists of only 5% of the total scattering power of the full molecule. The second part of the thesis discusses three crystal structure determinations.

  15. The Almost Periodic Rigidity of Crystallographic Bar-Joint Frameworks

    Directory of Open Access Journals (Sweden)

    Ghada Badri

    2014-04-01

    Full Text Available A crystallographic bar-joint framework, C in Rd, is shown to be almost periodically infinitesimally rigid if and only if it is strictly periodically infinitesimally rigid and the rigid unit mode (RUM spectrum, Ω (C, is a singleton. Moreover, the almost periodic infinitesimal flexes of C are characterised in terms of a matrix-valued function, ΦC(z, on the d-torus, Td, determined by a full rank translation symmetry group and an associated motif of joints and bars.

  16. Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance.

    Science.gov (United States)

    Mourdikoudis, Stefanos; Altantzis, Thomas; Liz-Marzán, Luis M; Bals, Sara; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge

    2016-05-21

    Water-soluble Pt nanoflowers (NFs) were prepared by diethylene glycol-mediated reduction of Pt acetylacetonate (Pt(acac) 2 ) in the presence of polyethylenimine. Advanced electron microscopy analysis showed that the NFs consist of multiple branches with a truncated cubic morphology and different crystallographic orientations. We demonstrate that the nature of the solvent strongly influences the resulting morphology. The catalytic performance of the Pt NFs in 4-nitrophenol reduction was found to be superior to that of other nanoparticle-based catalysts. Additionally, the Pt NFs display good catalytic reusability with no loss of activity after five consecutive cycles.

  17. The role of the crystal rotation axis in experimental three- and four-beam phase determination

    International Nuclear Information System (INIS)

    Post, B.; Gong, P.P.; Kern, L.; Ladell, J.

    1986-01-01

    The geometry of four-beam diffraction and procedures for generating it systematically are described. These utilize relatively simple Renninger-type experimental arrangements. The four reciprocal-lattice points involved in each four-beam interaction are located at the corners of rectangles or symmetrical trapezoids in reciprocal space. One of the sides, or a diagonal, of each such quadrilateral serves as the axis of the azimuthal rotation of the crystal. Experiments designed to compare the relative merits of different types of rotation axes have been carried out. It is found that axes of twofold (or higher) symmetry provide advantages over alternate arrangements for experimental phase determination. Four-beam interations are then generated systematically and in greater abundance than in all other n-beam interations combined (n > 2). Such interactions usually provide stronger phase indications than comparable three-beam interaction. The experiments also showed that, although the phase of an 'invariant' quartet is clearly invariant to the choice of unit-cell origin, it is not necessarily invariant to a change of rotation axis from one two-fold axis to another. (orig.)

  18. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  19. Helical axis stellarator equilibrium model

    International Nuclear Information System (INIS)

    Koniges, A.E.; Johnson, J.L.

    1985-02-01

    An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift

  20. Towards automated crystallographic structure refinement with phenix.refine

    Energy Technology Data Exchange (ETDEWEB)

    Afonine, Pavel V., E-mail: pafonine@lbl.gov; Grosse-Kunstleve, Ralf W.; Echols, Nathaniel; Headd, Jeffrey J.; Moriarty, Nigel W. [Lawrence Berkeley National Laboratory, One Cyclotron Road, MS64R0121, Berkeley, CA 94720 (United States); Mustyakimov, Marat; Terwilliger, Thomas C. [Los Alamos National Laboratory, M888, Los Alamos, NM 87545 (United States); Urzhumtsev, Alexandre [CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch (France); Université Henri Poincaré, Nancy 1, BP 239, 54506 Vandoeuvre-lès-Nancy (France); Zwart, Peter H. [Lawrence Berkeley National Laboratory, One Cyclotron Road, MS64R0121, Berkeley, CA 94720 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, One Cyclotron Road, MS64R0121, Berkeley, CA 94720 (United States); University of California Berkeley, Berkeley, CA 94720 (United States)

    2012-04-01

    phenix.refine is a program within the PHENIX package that supports crystallographic structure refinement against experimental data with a wide range of upper resolution limits using a large repertoire of model parameterizations. This paper presents an overview of the major phenix.refine features, with extensive literature references for readers interested in more detailed discussions of the methods. phenix.refine is a program within the PHENIX package that supports crystallographic structure refinement against experimental data with a wide range of upper resolution limits using a large repertoire of model parameterizations. It has several automation features and is also highly flexible. Several hundred parameters enable extensive customizations for complex use cases. Multiple user-defined refinement strategies can be applied to specific parts of the model in a single refinement run. An intuitive graphical user interface is available to guide novice users and to assist advanced users in managing refinement projects. X-ray or neutron diffraction data can be used separately or jointly in refinement. phenix.refine is tightly integrated into the PHENIX suite, where it serves as a critical component in automated model building, final structure refinement, structure validation and deposition to the wwPDB. This paper presents an overview of the major phenix.refine features, with extensive literature references for readers interested in more detailed discussions of the methods.

  1. Crystallographic investigation of grain selection during initial solidification

    International Nuclear Information System (INIS)

    Esaka, H; Shinozuka, K; Kataoka, Y

    2016-01-01

    Normally, macroscopic solidified structure consists of chill, columnar and equiaxed zones. In a chill zone, many fine grains nucleate on the mold surface and grow their own preferred growth direction. Only a few of them continue to grow because of grain selection. In order to understand the grain selection process, crystallographic investigation has been carried out in the zone of initial solidification in this study. 10 g of Al-6 wt%Si alloy was melted at 850 °C and poured on the thick copper plate. Longitudinal cross section of the solidified shell was observed by a SEM and analyzed by EBSD. The result of EBSD mapping reveals that crystallographic orientation was random in the range of initial solidification. Further, some grains are elongated along their <100> direction. Columnar grains, whose growth directions are almost parallel to the heat flow direction, develop via grain selection. Here, a dendrite whose growth direction is close to the heat flow direction overgrows the other dendrite whose growth direction is far from the heat flow direction. However, sometimes we observed that dendrite, whose zenith angle is large, overgrew the other dendrite. It can be deduced that the time of nucleation on the mold surface is not constant. (paper)

  2. Crystallographic features related to a van der Waals coupling in the layered chalcogenide FePS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, Chisato; Okabe, Momoko; Fukuda, Koichiro [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku Nagoya 466-8555 (Japan); Urushihara, Daisuke; Asaka, Toru, E-mail: asaka.toru@nitech.ac.jp [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku Nagoya 466-8555 (Japan); Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku Nagoya 466-8555 (Japan); Isobe, Masahiko [Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Yamamoto, Kazuo [Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587 (Japan); Matsushita, Yoshitaka [Research Network and Facility Services Division, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)

    2016-10-14

    We investigated the crystallographic structure of FePS{sub 3} with a layered structure using transmission electron microscopy and powder X-ray diffraction. We found that FePS{sub 3} forms a rotational twin structure with the common axis along the c*-axis. The high-resolution transmission electron microscopy images revealed that the twin boundaries were positioned at the van der Waals gaps between the layers. The narrow bands of dark contrast were observed in the bright-field transmission electron microscopy images below the antiferromagnetic transition temperature, T{sub N} ≈ 120 K. Low-temperature X-ray diffraction showed a lattice distortion; the a- and b-axes shortened and lengthened, respectively, as the temperature decreased below T{sub N.} We propose that the narrow bands of dark contrast observed in the bright-field transmission electron microscopy images are caused by the directional lattice distortion with respect to each micro-twin variant in the antiferromagnetic phase.

  3. Crystallographic tilt and in-plane anisotropies of an a-plane InGaN/GaN layered structure grown by MOCVD on r-plane sapphire using a ZnO buffer

    International Nuclear Information System (INIS)

    Liu, H F; Chi, D Z; Liu, W; Guo, S

    2016-01-01

    High-resolution x-ray diffraction (HRXRD) was used to investigate the crystallographic tilts and structural anisotropies in epitaxial nonpolar a-plane InGaN/GaN grown by metal–organic chemical vapor deposition on r-plane sapphire using a ZnO buffer. The substrate had an unintentional miscut of 0.14° towards its [–4 2 2 3] axis. However, HRXRD revealed a tilt of 0.26° (0.20°) between the ZnO (GaN) (11-20) and the Al 2 O 3 (1-102) atomic planes, with the (11-20) axis of ZnO (GaN) tilted towards its c-axis, which has a difference of 163° in azimuth from that of the substrate’s miscut. Excess broadenings in the GaN/ZnO (11-20) rocking curves (RCs) were observed along its c-axis. Specific analyses revealed that partial dislocations and anisotropic in-plane strains, rather than surface-related effects, wafer curvature or stacking faults, are the dominant factors for the structural anisotropy. The orientation of the partial dislocations is most likely affected by the miscut of the substrate, e.g. via tilting of the misfit dislocation gliding planes created during island coalescences. Their Burgers vector components in the growth direction, in turn, gave rise to crystallographic tilts in the same direction as that of the excess RC-broadenings. (paper)

  4. Crystallographic tilt and in-plane anisotropies of an a-plane InGaN/GaN layered structure grown by MOCVD on r-plane sapphire using a ZnO buffer

    Science.gov (United States)

    Liu, H. F.; Liu, W.; Guo, S.; Chi, D. Z.

    2016-03-01

    High-resolution x-ray diffraction (HRXRD) was used to investigate the crystallographic tilts and structural anisotropies in epitaxial nonpolar a-plane InGaN/GaN grown by metal-organic chemical vapor deposition on r-plane sapphire using a ZnO buffer. The substrate had an unintentional miscut of 0.14° towards its [-4 2 2 3] axis. However, HRXRD revealed a tilt of 0.26° (0.20°) between the ZnO (GaN) (11-20) and the Al2O3 (1-102) atomic planes, with the (11-20) axis of ZnO (GaN) tilted towards its c-axis, which has a difference of 163° in azimuth from that of the substrate’s miscut. Excess broadenings in the GaN/ZnO (11-20) rocking curves (RCs) were observed along its c-axis. Specific analyses revealed that partial dislocations and anisotropic in-plane strains, rather than surface-related effects, wafer curvature or stacking faults, are the dominant factors for the structural anisotropy. The orientation of the partial dislocations is most likely affected by the miscut of the substrate, e.g. via tilting of the misfit dislocation gliding planes created during island coalescences. Their Burgers vector components in the growth direction, in turn, gave rise to crystallographic tilts in the same direction as that of the excess RC-broadenings.

  5. Synthesis of c-axis oriented AlN thin films on different substrates: A review

    International Nuclear Information System (INIS)

    Iriarte, G.F.; Rodriguez, J.G.; Calle, F.

    2010-01-01

    Highly c-axis oriented AlN thin films have been deposited by reactive sputtering on different substrates. The crystallographic properties of layered film structures consisting of a piezoelectric layer, aluminum nitride (AlN), synthesized on a variety of substrates, have been examined. Aluminum nitride thin films have been deposited by reactive pulsed-DC magnetron sputtering using an aluminum target in an Ar/N 2 gas mixture. The influence of the most critical deposition parameters on the AlN thin film crystallography has been investigated by means of X-ray diffraction (XRD) analysis of the rocking curve Full-Width at Half Maximum (FWHM) of the AlN-(0 0 0 2) peak. The relationship between the substrate, the synthesis parameters and the crystallographic orientation of the AlN thin films is discussed. A guide is provided showing how to optimize these conditions to obtain highly c-axis oriented AlN thin films on substrates of different nature.

  6. Crystallographically driven magnetic behaviour of arrays of monocrystalline Co nanowires

    KAUST Repository

    Ivanov, Yurii P.

    2014-11-07

    Cobalt nanowires, 40 nm in diameter and several micrometers long, have been grown by controlled electrodeposition into ordered anodic alumina templates. The hcp crystal symmetry is tuned by a suitable choice of the electrolyte pH (between 3.5 and 6.0) during growth. Systematic high resolution transmission electron microscopy imaging and analysis of the electron diffraction patterns reveals a dependence of crystal orientation from electrolyte pH. The tailored modification of the crystalline signature results in the reorientation of the magnetocrystalline anisotropy and increasing experimental coercivity and squareness with decreasing polar angle of the \\'c\\' growth axis. Micromagnetic modeling of the demagnetization process and its angular dependence is in agreement with the experiment and allows us to establish the change in the character of the magnetization reversal: from quasi-curling to vortex domain wall propagation modes when the crystal \\'c\\' axis tilts more than 75° in respect to the nanowire axis.

  7. Crystallographic disorder and magnetism in UPd2-xSn

    International Nuclear Information System (INIS)

    Suellow, S.; Mattheus, C.C.; Becker, B.; Snel, C.E.; Nieuwenhuys, G.J.; Mydosh, J.A.; Schenck, A.

    1997-01-01

    The intermetallic compound UPd 2 Sn has been shown in previous investigations to crystallize in an orthorhombic structure (space group Pnma). No indications for magnetic or superconducting transitions were found. However, if the Pd content is reduced, then, similar to UNi 2 Sn, a structural transition occurs. We prepared UPd 1.85 Sn and found it to crystallize as a Heusler compound in the MnCu 2 Al-structure (space group Fm anti 3m). Now the system undergoes a transition into a disordered magnetic state at T mag ≅ 28 K. Here, we present our measurements of the specific heat, susceptibility and muon relaxation of UPd 1.85 Sn, and discuss the nature of the magnetic state in relation to the crystallographic structure. (orig.)

  8. Ocean acidification reduces the crystallographic control in juvenile mussel shells.

    Science.gov (United States)

    Fitzer, Susan C; Cusack, Maggie; Phoenix, Vernon R; Kamenos, Nicholas A

    2014-10-01

    Global climate change threatens the oceans as anthropogenic carbon dioxide causes ocean acidification and reduced carbonate saturation. Future projections indicate under saturation of aragonite, and potentially calcite, in the oceans by 2100. Calcifying organisms are those most at risk from such ocean acidification, as carbonate is vital in the biomineralisation of their calcium carbonate protective shells. This study highlights the importance of multi-generational studies to investigate how marine organisms can potentially adapt to future projected global climate change. Mytilus edulis is an economically important marine calcifier vulnerable to decreasing carbonate saturation as their shells comprise two calcium carbonate polymorphs: aragonite and calcite. M. edulis specimens were cultured under current and projected pCO2 (380, 550, 750 and 1000μatm), following 6months of experimental culture, adults produced second generation juvenile mussels. Juvenile mussel shells were examined for structural and crystallographic orientation of aragonite and calcite. At 1000μatm pCO2, juvenile mussels spawned and grown under this high pCO2 do not produce aragonite which is more vulnerable to carbonate under-saturation than calcite. Calcite and aragonite were produced at 380, 550 and 750μatm pCO2. Electron back scatter diffraction analyses reveal less constraint in crystallographic orientation with increased pCO2. Shell formation is maintained, although the nacre crystals appear corroded and crystals are not so closely layered together. The differences in ultrastructure and crystallography in shells formed by juveniles spawned from adults in high pCO2 conditions may prove instrumental in their ability to survive ocean acidification. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Transuranic Hybrid Materials: Crystallographic and Computational Metrics of Supramolecular Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Surbella, Robert G. [Department; Ducati, Lucas C. [Department; Pellegrini, Kristi L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; McNamara, Bruce K. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Autschbach, Jochen [Department; Schwantes, Jon M. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Cahill, Christopher L. [Department

    2017-07-26

    A family of twelve supramolecular [AnO2Cl4]2- (An = U, Np, Pu) containing compounds assembled via hydrogen and halogen bonds donated by substituted 4-X-pyridinium cations (X = H, Cl, Br, I) is reported. These materials were prepared from a room-temperature synthesis wherein crystallization of unhydrolyzed and valence pure [An(VI)O2Cl4]2- (An = U, Np, Pu) tectons are the norm. We present a hierarchy of assembly criteria based on crystallographic observations, and subsequently quantify the strengths of the non-covalent interactions using Kohn-Sham density functional calculations. We provide, for the first time, a detailed description of the electrostatic potentials (ESPs) of the actinyl tetrahalide dianions and reconcile crystallographically observed structural motifs and non-covalent interaction (NCI) acceptor-donor pairings. Our findings indicate that the average electrostatic potential across the halogen ligands (the acceptors) changes by only ~2 kJ mol-1 across the AnO22+ series, indicating the magnitude of the potential is independent of the metal center. The role of the cation is therefore critical in directing structural motifs and dictating the resulting hydrogen and halogen bond strengths, the former being stronger due to the positive charge centralized on the pyridyl nitrogen N-H+. Subsequent analyses using the Quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) approaches support this conclusion and highlight the structure directing role of the cations. Whereas one can infer that the 2 Columbic attraction is the driver for assembly, the contribution of the non-covalent interaction is to direct the molecular-level arrangement (or disposition) of the tectons.

  10. The Role of C-axis Polarized Phonons in High Temperature Superconductors

    International Nuclear Information System (INIS)

    Timusk, T.; Homes, C. C.; Reichardt, W.

    1995-01-01

    We report on the optical conductivity of c-axis phonons in YBa 2 Cu 3 O 7-σ as a function of doping and temperature. At room temperature the frequencies and strengths of the modes are in good agreement with results from shell models based on neutron scattering. We discuss the apical oxygen mode which becomes asymmetric in underdoped materials and argue, with Burns, that the Au mode shifts from 570 cm -1 to 610 cm -1 for the two-fold coordinated copper sites in the chain layer in oxygen depleted materials. At low temperature there is a large transfer of c-axis phonon oscillator strength from O(4) apical and O (2, 3,) plane bending modes, to a very broad at 400 cm -1

  11. Structural Variations in β-(BDA-TTP)2FeCl4 at Low Temperature and under Pressure: Charge-Ordered State with a Two-Fold Crystal Structure

    Science.gov (United States)

    Sasamori, Kota; Takahashi, Kazuyuki; Kodama, Takeshi; Fujita, Wataru; Kikuchi, Koichi; Yamada, Jun-ichi

    2013-05-01

    The pressure-induced organic superconductor β-(BDA-TTP)2FeCl4 [BDA-TTP = 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene], which shows a metal--insulator (MI) transition at TMI = 113 K under ambient pressure, has been found by X-ray study to have a two-fold crystal structure along the c-axis in the insulating state at 10 K. In the donor layer, there are four independent BDA-TTP molecules, which are divided into two charge-poor ones and two charge-rich ones on the basis of the folding dihedral angles around the intramolecular sulfur-to-sulfur axes of two outer dithiane rings in BDA-TTP. The charge separation leads to the formation of two types of dimers: a dimer consisting of two charge-poor donors and a dimer consisting of two charge-rich ones. The tight-binding band calculation revealed a band gap of 5.3 meV in the energy dispersion. The MI transition can be therefore accounted for by the charge separation. In addition, we investigated the crystal and electronic structures of β-(BDA-TTP)2FeCl4 at different pressures up to 21 kbar, and found that the application of pressures causes variations in both the conformation of donor molecule and the donor arrangement, which are responsible for almost uniform interaction in the donor stacking and for an increase in bandwidth (W). As a result, the suppression of MI transition and subsequent occurrence of superconductivity in β-(BDA-TTP)2FeCl4 would be observed with increasing pressure.

  12. Synthesis of in-plane aligned a-axis YBa2Cu3O7-δ thin films

    International Nuclear Information System (INIS)

    Young, K.H.; Sun, J.Z.

    1991-01-01

    We report the successful synthesis of superconducting YBa 2 Cu 3 O 7-δ (YBCO) (100) thin films with alignment of the in-plane c axis. These films were grown on single crystal NdGaO 3 (110) substrates. The twofold symmetry of the substrate surface is believed to lead to anisotropic alignment of the in-plane c axis of the epitaxial YBCO (100) film. X-ray diffraction studies indicate that over 80% of the film grew epitaxially with the YBCO [100] perpendicular to the substrate surface, and YBCO [001] aligned along one pseudo-cubic axis of the NdGaO 3 . The superconductivity onset of the film was measured to be 89 K by ac susceptibility

  13. Synthesis, crystallographic and magnetic properties of protactinium pnictides

    International Nuclear Information System (INIS)

    Hery, Yves.

    1979-03-01

    From a theoretical point of view, protactinium lies in a very important place in the periodic system for it seems to be the first element of the actinide series where the 5f state is occupied. We have studied protactinium pnictides, particularly arsenides and antimonides. PaAs 2 , Pa 3 As 4 , PaSb 2 and Pa 3 Sb 4 were synthetized and their crystallographic properties were determined and discussed. We have measured the magnetic susceptibilities of PaC, PaAs 2 and PaSb 2 . Protactinium exhibits a dual character. In its monocarbide, which is a weakly diamagnet, it behaves as a transition element while in the temperature independent paramagnets PaAs 2 and PaSb 2 , it behaves like a 'f' element. This 'f' element character increases with increasing metal-metal distances. Furthermore the radial expansion of the protactinium 5f orbital seems to be more important than the Uranium one, and consequently the corresponding protactinium 5f electrons are less localized. In addition, some protactinium chalcogenides (βPaS 2 , γPaSe 2 and PaOSe) have been identified [fr

  14. Preliminary crystallographic characterization of an RNA helicase from Kunjin virus

    International Nuclear Information System (INIS)

    Mastrangelo, Eloise; Bollati, Michela; Milani, Mario; Brisbarre, Nadège; Lamballerie, Xavier de; Coutard, Bruno; Canard, Bruno; Khromykh, Alexander; Bolognesi, Martino

    2006-01-01

    The C-terminal 440 amino acids of the NS3 protein from Kunjin virus (Flaviviridae) code for a helicase. The protein has been overexpressed and crystallized. Characterization of the isolated monoclinic crystal form and diffraction data (at 3.0 Å resolution) are presented, together with a preliminary molecular-replacement solution. Kunjin virus is a member of the Flavivirus genus and is an Australian variant of West Nile virus. The C-terminal domain of the Kunjin virus NS3 protein displays helicase activity. The protein is thought to separate daughter and template RNA strands, assisting the initiation of replication by unwinding RNA secondary structure in the 3′ nontranslated region. Expression, purification and preliminary crystallographic characterization of the NS3 helicase domain are reported. It is shown that Kunjin virus helicase may adopt a dimeric assembly in absence of nucleic acids, oligomerization being a means to provide the helicases with multiple nucleic acid-binding capability, facilitating translocation along the RNA strands. Kunjin virus NS3 helicase domain is an attractive model for studying the molecular mechanisms of flavivirus replication, while simultaneously providing a new basis for the rational development of anti-flaviviral compounds

  15. Phormidium phycoerythrin forms hexamers in crystals: a crystallographic study

    Science.gov (United States)

    Sonani, Ravi Raghav; Sharma, Mahima; Gupta, Gagan Deep; Kumar, Vinay; Madamwar, Datta

    2015-01-01

    The crystallographic analysis of a marine cyanobacterium (Phormidium sp. A09DM) phycoerythrin (PE) that shows distinct sequence features compared with known PE structures from cyanobacteria and red algae is reported. Phormidium PE was crystallized using the sitting-drop vapour-diffusion method with ammonium sulfate as a precipitant. Diffraction data were collected on the protein crystallography beamline at the Indus-2 synchrotron. The crystals diffracted to about 2.1 Å resolution at 100 K. The crystals, with an apparent hexagonal morphology, belonged to space group P1, with unit-cell parameters a = 108.3, b = 108.4 Å, c = 116.6 Å, α = 78.94, β = 82.50, γ = 60.34°. The molecular-replacement solution confirmed the presence of 12 αβ monomers in the P1 cell. The Phormidium PE elutes as an (αβ)3 trimer of αβ monomers from a molecular-sieve column and exists as [(αβ)3]2 hexamers in the crystal lattice. Unlike red algal PE proteins, the hexamers of Phormidium PE do not form higher-order structures in the crystals. The existence of only one characteristic visual absorption band at 564 nm suggests the presence of phycoerythrobilin chromophores, and the absence of any other types of bilins, in the Phormidium PE assembly. PMID:26249689

  16. Neutron crystallographic studies of amino acids and nucleic acids

    International Nuclear Information System (INIS)

    Kashiwagi, Tatsuki

    2014-01-01

    Neutron crystallographic studies of two representative umami materials were executed utilizing iBLX at MLF/J-PARC. The results of them will be summarized in this report. At first, structure analysis of the alpha form crystal of L-glutamic acid was performed in order to assess the usefulness of neutron crystallography at iBIX to our company's R and D. Neutron crystal structure of it was successfully determined at 0.6 A resolution. All hydrogen atoms were clearly observed. Next, the mixed crystal of disodium Inosine-5'-phosphate (IMP · 2Na) and disodium Guanosine-5'-phosphate (GMP · 2Na) was analyzed by neutron crystallography. Neutron crystal structure of the mixed crystal of IMP and GMP (IM/GMP rate = 1.7) was successfully determined at 0.8 A resolution. In the neutron crystal structure of the mixed crystal, the hydrogen atom bonded to the C2 atom of purine base in IMP and the nitrogen atom bonded to the C2 atom of purine base in GMP were clearly observed in the nuclear density map, structurally demonstrating that this crystal is the mixed crystal. (author)

  17. Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data.

    Science.gov (United States)

    Breen, Andrew J; Babinsky, Katharina; Day, Alec C; Eder, K; Oakman, Connor J; Trimby, Patrick W; Primig, Sophie; Cairney, Julie M; Ringer, Simon P

    2017-04-01

    Correlative microscopy approaches offer synergistic solutions to many research problems. One such combination, that has been studied in limited detail, is the use of atom probe tomography (APT) and transmission Kikuchi diffraction (TKD) on the same tip specimen. By combining these two powerful microscopy techniques, the microstructure of important engineering alloys can be studied in greater detail. For the first time, the accuracy of crystallographic measurements made using APT will be independently verified using TKD. Experimental data from two atom probe tips, one a nanocrystalline Al-0.5Ag alloy specimen collected on a straight flight-path atom probe and the other a high purity Mo specimen collected on a reflectron-fitted instrument, will be compared. We find that the average minimum misorientation angle, calculated from calibrated atom probe reconstructions with two different pole combinations, deviate 0.7° and 1.4°, respectively, from the TKD results. The type of atom probe and experimental conditions appear to have some impact on this accuracy and the reconstruction and measurement procedures are likely to contribute further to degradation in angular resolution. The challenges and implications of this correlative approach will also be discussed.

  18. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    Directory of Open Access Journals (Sweden)

    Emilie Ringe

    2014-11-01

    Full Text Available Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR, the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask `how are nanoshapes created?', `how does the shape relate to the atomic packing and crystallography of the material?', `how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  19. CRYSTMET—The NRCC Metals Crystallographic Data File

    Science.gov (United States)

    Wood, Gordon H.; Rodgers, John R.; Gough, S. Roger; Villars, Pierre

    1996-01-01

    CRYSTMET is a computer-readable database of critically evaluated crystallographic data for metals (including alloys, intermetallics and minerals) accompanied by pertinent chemical, physical and bibliographic information. It currently contains about 60 000 entries and covers the literature exhaustively from 1913. Scientific editing of the abstracted entries, consisting of numerous automated and manual checks, is done to ensure consistency with related, previously published studies, to assign structure types where necessary and to help guarantee the accuracy of the data and related information. Analyses of the entries and their distribution across key journals as a function of time show interesting trends in the complexity of the compounds studied as well as in the elements they contain. Two applications of CRYSTMET are the identification of unknowns and the prediction of properties of materials. CRYSTMET is available either online or via license of a private copy from the Canadian Scientific Numeric Database Service (CAN/SND). The indexed online search and analysis system is easy and economical to use yet fast and powerful. Development of a new system is under way combining the capabilities of ORACLE with the flexibility of a modern interface based on the Netscape browsing tool. PMID:27805157

  20. Brillouin-zone database on the Bilbao Crystallographic Server.

    Science.gov (United States)

    Aroyo, Mois I; Orobengoa, Danel; de la Flor, Gemma; Tasci, Emre S; Perez-Mato, J Manuel; Wondratschek, Hans

    2014-03-01

    The Brillouin-zone database of the Bilbao Crystallographic Server (http://www.cryst.ehu.es) offers k-vector tables and figures which form the background of a classification of the irreducible representations of all 230 space groups. The symmetry properties of the wavevectors are described by the so-called reciprocal-space groups and this classification scheme is compared with the classification of Cracknell et al. [Kronecker Product Tables, Vol. 1, General Introduction and Tables of Irreducible Representations of Space Groups (1979). New York: IFI/Plenum]. The compilation provides a solution to the problems of uniqueness and completeness of space-group representations by specifying the independent parameter ranges of general and special k vectors. Guides to the k-vector tables and figures explain the content and arrangement of the data. Recent improvements and modifications of the Brillouin-zone database, including new tables and figures for the trigonal, hexagonal and monoclinic space groups, are discussed in detail and illustrated by several examples.

  1. Effect of pre-existing crystallographic preferred orientation on the rheology of Carrara marble

    NARCIS (Netherlands)

    de Raadt, W.S.; Burlini, L.; Kunze, K.; Spiers, C.J.

    2014-01-01

    Abstract Localized deformation during high temperature plastic flow is frequently attributed to mechanical weakening caused by grain size reduction and, in some cases, by the development of a crystallographic preferred orientation (CPO). This study aims to investigate experimentally the contribution

  2. Dependence of Crystallographic Orientation on Pitting Corrosion Behavior of Ni-Fe-Cr Alloy 028

    Science.gov (United States)

    Zhang, LiNa; Szpunar, Jerzy A.; Dong, JianXin; Ojo, Olanrewaju A.; Wang, Xu

    2018-03-01

    The influence of crystallographic orientation on the pitting corrosion behavior of Ni-Fe-Cr alloy 028 was studied using a combination of X-ray diffraction (XRD), electron backscatter diffraction (EBSD), potentiodynamic polarization technique, and atomic force microscopy (AFM). The results show that there is anisotropy of pitting corrosion that strongly depends on crystallographic orientation of the surface plane. The distribution of pit density in a standard stereographic triangle indicates that the crystallographic planes close to {100} are more prone to pitting corrosion compared to planes {110} and {111}. The surface energy calculation of (001) and (111) shows that the plane with a high atomic packing density has a low surface energy with concomitant strong resistance to pitting corrosion. A correlation function between crystallographic orientation and pitting corrosion susceptibility suggests a method that not only predicts the pitting resistance of known textured materials, but also could help to improve corrosion resistance by controlling material texture.

  3. The effect of crystallographic orientation on the active corrosion of pure magnesium

    International Nuclear Information System (INIS)

    Liu Ming; Qiu Dong; Zhao Mingchun; Song, Guangling; Atrens, Andrej

    2008-01-01

    An improved method was used to investigate the influence of crystallographic orientation on the corrosion of pure magnesium in 0.1 N HCl. The corrosion depth and orientation of surface features were mapped against crystallographic orientation (obtained by electron backscatter diffraction) for many off-principal magnesium crystals. The grains near (0 0 0 1) orientation are the most corrosion resistant. Most grains exhibited a striated structure of long and narrow hillocks with a unique direction

  4. Anterior fixation of the axis.

    Science.gov (United States)

    Traynelis, Vincent C; Fontes, Ricardo B V

    2010-09-01

    Although anterior fixation of the axis is not commonly performed, plate fixation of C2 is an important technique for treating select upper cervical traumatic injuries and is also useful in the surgical management of spondylosis. To report the technique and outcomes of C2 anterior plate fixation for a series of patients in which the majority presented with symptomatic degenerative spondylosis. Forty-six consecutive patients underwent single or multilevel fusions over a 7-year period; 30 of these had advanced degenerative disease manifested by myelopathy or deformity. Exposure was achieved with rostral extension of the standard anterior cervical exposure via careful soft tissue dissection, mobilization of the superior thyroid artery, and the use of a table-mounted retractor. It was not necessary to remove the submandibular gland, section the digastric muscle, or make additional skin incisions. Screws were placed an average of 4.6 mm (+/- 2.3 mm) from the inferior C2 endplate with a mean sagittal trajectory of 15.7 degrees (+/- 7.6 degrees). Short- and long-term procedure-related mortality was 4.4%, and perioperative morbidity was 8.9%. Patients remained intubated an average of 2.5 days following surgery. Dysphagia was initially reported by 15.2% of patients but resolved by the 8th postoperative week in all patients. Arthrodesis was achieved in all patients available for long-term follow-up. Multilevel fusions were not associated with longer hospitalization or morbidity. Anterior plate fixation of the axis for degenerative disease can be accomplished with acceptable morbidity employing an extension of the standard anterolateral route.

  5. Shape and crystallographic orientation of nanodiamonds for quantum sensing.

    Science.gov (United States)

    Ong, S Y; Chipaux, M; Nagl, A; Schirhagl, R

    2017-05-03

    Nanodiamonds with dimensions down to a few tens of nanometers containing nitrogen-vacancy (NV) color centers have revealed their potential as powerful and versatile quantum sensors with a unique combination of spatial resolution and sensitivity. The NV centers allow transducing physical properties, such as strain, temperature, and electric or magnetic field, to an optical transition that can be detected in the single photon range. For example, this makes it possible to sense a single electron spin or a few nuclear spins by detecting their magnetic resonance. The location and orientation of these defects with respect to the diamond surface play a crucial role in interpreting the data and predicting their sensitivities. Despite its relevance, the geometry of these nanodiamonds has never been thoroughly investigated. Without accurate data, spherical models have been applied to interpret or predict results in the past. With the use of High Resolution Transmission Electron Microscopy (HR-TEM), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), we investigated nanodiamonds with an average hydrodynamic diameter of 25 nm (the most common type for quantum sensing) and found a flake-like geometry, with 23.2 nm and 4.5 nm being the average lateral and vertical dimensions. We have also found evidence for a preferred crystallographic orientation of the main facet in the (110) direction. Furthermore, we discuss the consequences of this difference in geometry on diamond-based applications. Shape not only influences the creation efficiency of nitrogen-vacancy centers and their quantum coherence properties (and thus sensing performance), but also the optical properties of the nanodiamonds, their interaction with living cells, and their surface chemistry.

  6. Deformation-induced crystallographic-preferred orientation of hcp-iron: An experimental study using a deformation-DIA apparatus

    Science.gov (United States)

    Nishihara, Yu; Ohuchi, Tomohiro; Kawazoe, Takaaki; Seto, Yusuke; Maruyama, Genta; Higo, Yuji; Funakoshi, Ken-ichi; Tange, Yoshinori; Irifune, Tetsuo

    2018-05-01

    Shear and uniaxial deformation experiments on hexagonal close-packed iron (hcp-Fe) was conducted using a deformation-DIA apparatus at a pressure of 13-17 GPa and a temperature of 723 K to determine its deformation-induced crystallographic-preferred orientation (CPO). Development of the CPO in the deforming sample is determined in-situ based on two-dimensional X-ray diffraction using monochromatic synchrotron X-rays. In the shear deformation geometry, the and axes gradually align to be sub-parallel to the shear plane normal and shear direction, respectively, from the initial random texture. In the uniaxial compression and tensile geometry, the and axes, respectively, gradually align along the direction of the uniaxial deformation axis. These results suggest that basal slip (0001) is the dominant slip system in hcp-Fe under the studied deformation conditions. The P-wave anisotropy for a shear deformed sample was calculated using elastic constants at the inner core condition by recent ab-initio calculations. Strength of the calculated anisotropy was comparable to or higher than axisymmetric anisotropy in Earth's inner core.

  7. Significance of Dauphiné twins in crystallographic fabrics of quartz tectonites

    Science.gov (United States)

    Eske Sørensen, Bjørn

    2014-05-01

    Dauphine twins are commonly found in quartz tectonites, however their role in deformation processes are not completely understood. This study represents a new attempt to understand the interaction between slip systems and Dauphine twins in deforming quartz-rich rocks at different temperatures. There is no doubt that Dauphine twins are mobilized under stress as this has been shown by experiments for single crystals and in polycrystalline aggregates where distinct crystallographic fabrics develop in previously randomly oriented aggregates related to minimization of elastic energy (Tullis 1972). However in quartz tectonites the Dauphine twin process is a part of interplay between plastic deformation and recovery processes which depends on PT, strain-rate and fluid composition and availability. In quartz tectonites with Y-girdle C-axis (GBM-regime) fabrics Dauphiné twins are abundant, relating different parts of r- and z rhomb "comet" distributions. This is interpreted as completion between prism slip and Dauphiné twinning. Slip rotates grains such that CRSS is low on the prism planes, but then Dauphiné twin boundaries sweeps through the grain back to the orientation giving lower stored elastic energy. The faster recovery at higher temperatures gives subgrain walls slowing down twin movement across the mm-sized grain of the GBM regime. At lower temperatures in the SGR-regime grain-size is reduced and different rotations of the grains are happening due to the domination of rhomb and basal slip. Because recrystallization is effective relative to grain-size the grains are commonly free of internal strain and subgrain walls, allowing the favorably oriented Dauphiné twin member to sweep across the whole grain overwhelming the unfavorably oriented Dauphiné twin member. As a consequence high strain reduces the number of Dauphiné twins and quartz rhomb fabrics appear trigonal, missing the "comet" shape of the GBM regime rhomb fabrics. Since Dauphiné twinning is also

  8. Transcriptome differentiation along the dorso-ventral axis in laser-captured microdissected rat hippocampal granular cell layer

    DEFF Research Database (Denmark)

    Christensen, T.; Bisgaard, C.F.; Nielsen, Henrik Bjørn

    2010-01-01

    Several findings suggest a functional and anatomical differentiation along the dorso-ventral axis of the hippocampus. Lesion studies in rats have indicated that the dorsal hippocampus preferentially plays a role in spatial learning and memory, while the ventral hippocampus is involved in anxiety...... and ventral granular cell layer with a false discovery rate below 5% and with a relative change in gene expression level of 20% or more. From this pool of genes 45 genes were more than two-fold regulated, 13 genes being dorsally enriched and 32 genes being ventrally enriched. Moreover, cluster analysis based...

  9. Crystallization and preliminary crystallographic analysis of Gre2p, an NADP+-dependent alcohol dehydrogenase from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Breicha, Klaus; Müller, Marion; Hummel, Werner; Niefind, Karsten

    2010-01-01

    The alcohol dehydrogenase Gre2p from S. cerevisiae catalyses the stereospecific reduction of a variety of different keto compounds and can therefore be applied as a valuable biocatalyst. The crystallization of the complex of Gre2p with NADP + and its preliminary X-ray analysis are described. Gre2p [Genes de respuesta a estres (stress-response gene)] from Saccharomyces cerevisiae is a monomeric enzyme of 342 amino acids with a molecular weight of 38.1 kDa. The enzyme catalyses both the stereospecific reduction of keto compounds and the oxidation of various hydroxy compounds and alcohols by the simultaneous consumption of the cofactor NADPH and formation of NADP + . Crystals of a Gre2p complex with NADP + were grown using PEG 8000 as a precipitant. They belong to the monoclinic space group P2 1 . The current diffraction resolution is 3.2 Å. In spite of the monomeric nature of Gre2p in solution, packing and self-rotation calculations revealed the existence of two Gre2p protomers per asymmetric unit related by a twofold noncrystallographic axis

  10. Nb2OsB2, with a new twofold superstructure of the U3Si2 type: Synthesis, crystal chemistry and chemical bonding

    International Nuclear Information System (INIS)

    Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P.T.

    2013-01-01

    The new ternary metal-rich boride, Nb 2 OsB 2 , was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U 3 Si 2 -structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B 2 dumbbells with B–B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB–LMTO–ASA), the homoatomic B–B interactions are optimized and very strong, but relatively strong heteroatomic Os–B, Nb–B and Nb–Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride. - Graphical abstract: Nb 2 OsB 2 is, to the best of our knowledge, the first fully characterized phase in the ternary Nb–Os–B system. It crystallizes (space group P4/mnc, 128) with a new twofold superstructure of the U 3 Si 2 structure type (space group P4/mbm, 127), and is therefore the first boride in this structure family crystallizing with a superstructure of the U 3 Si 2 structure type. We show that the distortions leading to this superstructure occurs mainly in the Nb-layer, which tries to accommodate the large osmium atoms. The consequence of this puckering is the building osmium dumbbells instead of chains along [001]. - Highlights: • First compound in the Nb–Os–B system. • New twofold superstructure of U 3 Si 2 structure type. • Puckering of Nb-layer responsible for superstructure occurrence. • Chemical bonding studied by density functional theory

  11. Crossover of the preferred growth orientation of AlN/Si(001) films during off-axis radio frequency sputter growth

    International Nuclear Information System (INIS)

    Jang, H.W.; Kang, H.C.; Noh, D.Y.; Yi, M.S.

    2003-01-01

    We found that the crystallographic orientation of AlN/Si(001) thin films crosses over from the substrate normal towards the direction of incident flux during off-axis radio frequency magnetron sputter growth. At high growth temperatures, the crystalline c-axis orientation is maintained along the substrate normal direction initially, but jumps discontinuously towards the direction of incident flux. In contrast, at low growth temperatures, the c-axis direction shifts continuously towards the incident flux direction and saturates in the middle agreeing with the tangential rule of oblique deposition, i.e., tan β=1/2 tan α, where α and β denote the angles of incident flux and column incline, respectively. Selected area transmission electron diffraction patterns are consistent with the crossover measured by in situ x-ray scattering experiments

  12. Crystallographic contribution to the formation of the columnar grain structure in cobalt films

    International Nuclear Information System (INIS)

    Hara, K.; Itoh, K.; Okamoto, K.; Hashimoto, T.

    1996-01-01

    In order to clarify the crystallographic contribution to the formation of the columnar grain structure, the geometric and crystallographic alignments of columnar grains in cobalt films were investigated on the basis of magnetic and optical measurements. The films were deposited by sputtering at an incidence angle of 45 on glass substrates heated at 332 K. The film thickness ranged from 20 to 850 nm. Above 50 nm the columnar grains align in the direction parallel to the incidence plane and form a two-degree crystallographic orientation. The packing density of columnar grains decreases with increasing thickness when the thickness exceeds 50 nm. From these results we conclude that the crystal habit appearing on column tops induces the two-degree orientation through geometric selection and aligns the selected columnar grains in the parallel direction. (orig.)

  13. Algebraic K-theory of crystallographic groups the three-dimensional splitting case

    CERN Document Server

    Farley, Daniel Scott

    2014-01-01

    The Farrell-Jones isomorphism conjecture in algebraic K-theory offers a description of the algebraic K-theory of a group using a generalized homology theory. In cases where the conjecture is known to be a theorem, it gives a powerful method for computing the lower algebraic K-theory of a group. This book contains a computation of the lower algebraic K-theory of the split three-dimensional crystallographic groups, a geometrically important class of three-dimensional crystallographic group, representing a third of the total number. The book leads the reader through all aspects of the calculation. The first chapters describe the split crystallographic groups and their classifying spaces. Later chapters assemble the techniques that are needed to apply the isomorphism theorem. The result is a useful starting point for researchers who are interested in the computational side of the Farrell-Jones isomorphism conjecture, and a contribution to the growing literature in the field.

  14. Three sets of crystallographic sub-planar structures in quartz formed by tectonic deformation

    Science.gov (United States)

    Derez, Tine; Pennock, Gill; Drury, Martyn; Sintubin, Manuel

    2016-05-01

    In quartz, multiple sets of fine planar deformation microstructures that have specific crystallographic orientations parallel to planes with low Miller-Bravais indices are commonly considered as shock-induced planar deformation features (PDFs) diagnostic of shock metamorphism. Using polarized light microscopy, we demonstrate that up to three sets of tectonically induced sub-planar fine extinction bands (FEBs), sub-parallel to the basal, γ, ω, and π crystallographic planes, are common in vein quartz in low-grade tectonometamorphic settings. We conclude that the observation of multiple (2-3) sets of fine scale, closely spaced, crystallographically controlled, sub-planar microstructures is not sufficient to unambiguously distinguish PDFs from tectonic FEBs.

  15. Crystallographic Analysis of Nucleation at Hardness Indentations in High-Purity Aluminum

    DEFF Research Database (Denmark)

    Xu, Chaoling; Zhang, Yubin; Lin, Fengxiang

    2016-01-01

    Nucleation at Vickers hardness indentations has been studied in high-purity aluminum cold-rolled 12 pct. Electron channeling contrast was used to measure the size of the indentations and to detect nuclei, while electron backscattering diffraction was used to determine crystallographic orientations....... It is found that indentations are preferential nucleation sites. The crystallographic orientations of the deformed grains affect the hardness and the nucleation potentials at the indentations. Higher hardness gives increased nucleation probabilities. Orientation relationships between nuclei developed...... they form. Finally, possible nucleation mechanisms are briefly discussed....

  16. Homological functor of a torsion free crystallographic group of dimension five with a nonabelian point group

    Science.gov (United States)

    Ting, Tan Yee; Idrus, Nor'ashiqin Mohd.; Masri, Rohaidah; Sarmin, Nor Haniza; Hassim, Hazzirah Izzati Mat

    2014-06-01

    Torsion free crystallographic groups, called Bieberbach groups, appear as fundamental groups of compact, connected, flat Riemannian manifolds and have many interesting properties. New properties of the group can be obtained by, not limited to, exploring the groups and by computing their homological functors such as nonabelian tensor squares, the central subgroup of nonabelian tensor squares, the kernel of the mapping of nonabelian tensor squares of a group to the group and many more. In this paper, the homological functor, J(G) of a centerless torsion free crystallographic group of dimension five with a nonabelian point group which is a dihedral point group is computed using commutator calculus.

  17. Identification of some crystallographic features of martensite in steels by microdiffraction

    International Nuclear Information System (INIS)

    Sarikaya, M.; Rao, B.V.N.; Thomas, G.

    1980-03-01

    Considerable attention should be paid to the interpretation of electron diffraction, such as the understanding of the extra reflections and other effects in an SAD pattern obtained from lath martensite by making allowances for spatial resolution limitations in the SAD patterns. These difficulties can be overcome by utilizing the convergent beam electron diffraction (CBED) method which permits the use of different probe sizes to obtain crystallographic information from very small regions. Some crystallographic features of lath martensite in low and medium C steels have been identified and some others verified by using CBED

  18. High resolution neutron diffraction crystallographic investigation of Oxide Dispersion Strengthened steels of interest for fusion technology

    International Nuclear Information System (INIS)

    Coppola, R.; Rodriguez-Carvajal, J.; Wang, M.; Zhang, G.; Zhou, Z.

    2014-01-01

    High resolution neutron diffraction measurements have been carried out to characterize the crystallographic phases present in different Oxide Dispersion Strengthened (ODS) steels of interest for fusion technology. The different lattice structures, Im3m for the ferritic ODS and Fm3m for the austenitic ODS, are resolved showing line anisotropy effects possibly correlated with differences in dislocation densities and texture. Many contributions from minority phases are detected well above the background noise; none of the expected crystallographic phases, such as M 23 C 6 and including Y 2 O 3 , fits them, but the TiN phase is identified in accordance with results of other microstructural techniques

  19. Correlation between Crystallographic and Magnetic Domains at Co/NiO(001) Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ohldag, H.; van der Laan, G.; Arenholz, E.

    2008-12-18

    Using soft x-ray spectromicroscopy we show that NiO(001) exhibits a crystallographic and magnetic domain structure near the surface identical to that of the bulk. Upon Co deposition a perpendicular coupling between the Ni and Co moments is observed that persists even after formation of uncompensated Ni spins at the interface through annealing. The chemical composition at the interface alters its crystallographic structure and leads to a reorientation of the Ni moments from the <112> to the <110> direction. We show that this reorientation is driven by changes in the magnetocrystalline anisotropy rather than exchange coupling mediated by residual uncompensated spins.

  20. The effect of silicon crystallographic orientation on the formation of silicon nanoclusters during anodic electrochemical etching

    International Nuclear Information System (INIS)

    Timokhov, D. F.; Timokhov, F. P.

    2009-01-01

    Possible ways for increasing the photoluminescence quantum yield of porous silicon layers have been investigated. The effect of the anodization parameters on the photoluminescence properties for porous silicon layers formed on silicon substrates with different crystallographic orientations was studied. The average diameters for silicon nanoclusters are calculated from the photoluminescence spectra of porous silicon. The influence of the substrate crystallographic orientation on the photoluminescence quantum yield of porous silicon is revealed. A model explaining the effect of the substrate orientation on the photoluminescence properties for the porous silicon layers formed by anode electrochemical etching is proposed.

  1. Effect of Aluminum Addition on the Evolution of Microstructure, Crystallographic Texture and Mechanical Properties of Single Phase Hexagonal Close Packed Mg-Li Alloys

    Science.gov (United States)

    Bhagat Singh, P.; Sabat, R. K.; Kumaran, S.; Suwas, S.

    2018-02-01

    In the present investigation, an effort has been made to understand the effect of aluminum addition to α Mg-Li alloys. The corresponding composition Mg-4Li- xAl ( x = 0, 2, 4 and 6 wt.%) alloys have been prepared by stir casting route under an argon environment. Extrusion was carried out at 300 °C with the extrusion ratio of 15:1. Significant grain refinement was observed after extrusion. X-ray diffraction-based investigation of the cast and extruded alloys showed the presence of intermetallic compounds such as Mg17Al12 and AlLi in the Al-rich alloys namely, Mg-4Li- xAl ( x = 4 and 6 wt.%). These precipitates were also present in the extruded plus annealed samples, indicating the stability of the precipitates at high temperature. The bulk x-ray texture measurement revealed a crystallographic texture where the c-axis of the h.c.p crystals was perpendicular to the extrusion direction (ED) for extruded sample. A texture transition was observed on annealing. The c-axis was oriented parallel to the ED. Mechanical properties of the cast, extruded and extruded plus annealed material illustrate that the addition of Al led to enhancement in hardness, yield strength and ultimate tensile strength.

  2. Analysis of transitions at two-fold redundant sites in mammalian genomes. Transition redundant approach-to-equilibrium (TREx distance metrics

    Directory of Open Access Journals (Sweden)

    Liberles David A

    2006-03-01

    Full Text Available Abstract Background The exchange of nucleotides at synonymous sites in a gene encoding a protein is believed to have little impact on the fitness of a host organism. This should be especially true for synonymous transitions, where a pyrimidine nucleotide is replaced by another pyrimidine, or a purine is replaced by another purine. This suggests that transition redundant exchange (TREx processes at the third position of conserved two-fold codon systems might offer the best approximation for a neutral molecular clock, serving to examine, within coding regions, theories that require neutrality, determine whether transition rate constants differ within genes in a single lineage, and correlate dates of events recorded in genomes with dates in the geological and paleontological records. To date, TREx analysis of the yeast genome has recognized correlated duplications that established a new metabolic strategies in fungi, and supported analyses of functional change in aromatases in pigs. TREx dating has limitations, however. Multiple transitions at synonymous sites may cause equilibration and loss of information. Further, to be useful to correlate events in the genomic record, different genes within a genome must suffer transitions at similar rates. Results A formalism to analyze divergence at two fold redundant codon systems is presented. This formalism exploits two-state approach-to-equilibrium kinetics from chemistry. This formalism captures, in a single equation, the possibility of multiple substitutions at individual sites, avoiding any need to "correct" for these. The formalism also connects specific rate constants for transitions to specific approximations in an underlying evolutionary model, including assumptions that transition rate constants are invariant at different sites, in different genes, in different lineages, and at different times. Therefore, the formalism supports analyses that evaluate these approximations. Transitions at synonymous

  3. Clinical Validation of a Pixon-Based Reconstruction Method Allowing a Twofold Reduction in Planar Images Time of 111In-Pentetreotide Somatostatin Receptor Scintigraphy

    Directory of Open Access Journals (Sweden)

    Philippe Thuillier

    2017-08-01

    Full Text Available ObjectiveThe objective of this study was to evaluate the diagnostic efficacy of Pixon-based reconstruction method on planar somatostatin receptor scintigraphy (SRS.MethodsAll patients with neuroendocrine tumors (NETs disease who were referred for SRS to our department during 1-year period from January to December 2015 were consecutively included. Three nuclear physicians independently reviewed all the data sets of images which included conventional images (CI; 15 min/view and processed images (PI obtained by reconstructing the first 450 s extracted data using Oncoflash® software package. Image analysis using a 3-point rating scale for abnormal uptake of 111 Indium-DTPA-Phe-octreotide in any lesion or organ was interpreted as positive, uncertain, or negative for the evidence of NET disease. A maximum grade uptake of the radiotracer in the lesion was assessed by the Krenning scale method. The results of image interpretation by the two methods were considered significantly discordant when the difference in organ involvement assessment was negative vs. positive or in lesion uptake was ≥2 grades. Agreement between the results of two methods and by different scan observers was evaluated using Cohen κ coefficients.ResultsThere was no significant (p = 0.403 correlation between data acquisition protocol and quality image. The rates of significant discrepancies for exam interpretation and organs involvement assessment were 2.8 and 2.6%, respectively. Mean κ values revealed a good agreement for concordance between CI and PI interpretation without difference of agreement for inter/intra-observer analysis.ConclusionOur results suggest the feasibility to use a Pixon-based reconstruction method for SRS planar images allowing a twofold reduction of acquisition time and without significant alteration of image quality or on image interpretation.

  4. Measured and modeled evidence for a two-fold increase in water use efficiency at an old-growth forest site in the Pacific Northwest

    Science.gov (United States)

    Jiang, Y.; Rastogi, B.; Kim, J. B.; Voelker, S.; Meinzer, F. C.; Still, C. J.

    2017-12-01

    Water use efficiency (WUE), the ratio of carbon uptake to transpiration, has been widely recognized as an important measure of carbon and water cycling in plants, and is used to track forest ecosystem responses to climate change and rising atmospheric CO2concentrations. In this study we used eddy covariance measurement data and Ecosystem Demography model (ED2) simulations to explore the patterns and physiological and biophysical controls of WUE at Wind River Experimental Forest, an old-growth coniferous forest in the Pacific Northwest. We characterized how observed and simulated WUE vary between wet and dry years, and explored the drivers of the differences in WUE between the wet and dry years. Through this explorative process, we evaluated the utility of various ways that WUE have been computed in literature. Measurement-based and simulated WUE at the old-growth forest increased over twofold from 1998 to 2015. The primary driver of this trend is a decreasing trend in evapotranspiration (ET). There were significant inter-annual variations. For example, during drought years, higher air temperature drove increases in early season ET, thereby depleting soil water and decreasing GPP. Lower GPP in turn resulted in lower WUE. This mechanism might drive changes in future carbon and water budgets under warming climate. Our evaluation of multiple WUE metrics demonstrates that each metric has a distinct sensitivity to climate anomalies, but also indicates a robust increasing trend of WUE. Statistical (multiple linear regression) and machine learning (Random Forest) analyses of flux measurements indicated that atmospheric CO2 concentration, air temperature and radiation were the most important predictors of WUE at monthly, daily and half-hourly time scale, respectively. In contrast, WUE mechanism was stable across all time scales in ED2 simulations: vapor pressure deficit was consistently the most important predictor of WUE at the monthly, daily and half-hourly time scales.

  5. UMAPRM: Uniformly sampling the medial axis

    KAUST Repository

    Yeh, Hsin-Yi Cindy

    2014-05-01

    © 2014 IEEE. Maintaining clearance, or distance from obstacles, is a vital component of successful motion planning algorithms. Maintaining high clearance often creates safer paths for robots. Contemporary sampling-based planning algorithms That utilize The medial axis, or The set of all points equidistant To Two or more obstacles, produce higher clearance paths. However, They are biased heavily Toward certain portions of The medial axis, sometimes ignoring parts critical To planning, e.g., specific Types of narrow passages. We introduce Uniform Medial Axis Probabilistic RoadMap (UMAPRM), a novel planning variant That generates samples uniformly on The medial axis of The free portion of Cspace. We Theoretically analyze The distribution generated by UMAPRM and show its uniformity. Our results show That UMAPRM\\'s distribution of samples along The medial axis is not only uniform but also preferable To other medial axis samplers in certain planning problems. We demonstrate That UMAPRM has negligible computational overhead over other sampling Techniques and can solve problems The others could not, e.g., a bug Trap. Finally, we demonstrate UMAPRM successfully generates higher clearance paths in The examples.

  6. Actuator assembly including a single axis of rotation locking member

    Science.gov (United States)

    Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.

    2009-12-08

    An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.

  7. Crystallographic Investigation of Ag (4 mol%) Doped ZnO (SZO) Thin Films by XRD

    International Nuclear Information System (INIS)

    Lwin Lwin Nwe; Sandar Dwe; Khant Khant Lin; Khin Thuzar; Than Than Win; Ko Ko Kyaw Soe

    2008-03-01

    Silver doped ZnO(SZO) thin films are prepared by sol-based method. The silver dopant concentration is 4 mol % in this case. XRD analysis carried out to determine, crystallographic properties such as lattice parameters and crystallite size of SZO thin films.

  8. Experimental studies on the crystallographic and plastic anisotropies of zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Costa Viana, C.S. da

    1982-01-01

    The crystallographic and plastic anisotropies of a zircaloy-4 tubing using direct pole figures and experimental yield loci are analyzed. Tensile and plane-strain compression tests were used to assess the mecahnical behaviour. The results are discussed with respect to the dimensional stability and mechanical behaviour expected for the tube in its use in the core of pressurized water cooled reactors. (Author) [pt

  9. Axial‐type olivine crystallographic preferred orientations: the effect of strain geometry on mantle texture

    NARCIS (Netherlands)

    Chatzaras, V.; Kruckenberg, Seth C.; Cohen, Shaina M.; Medaris Jr., L. Gordon; Withers, Anthony C.; Bagley, Brian

    The effect of finite strain geometry on crystallographic preferred orientation (CPO) is poorly constrained in the upper mantle. Specifically, the relationship between shape preferred orientation (SPO) and CPO in the mantle rocks remains unclear. We analyzed a suite of 40 spinel peridotite xenoliths

  10. Discovery of novel inhibitors for DHODH via virtual screening and X-ray crystallographic structures

    Energy Technology Data Exchange (ETDEWEB)

    McLean, Larry R.; Zhang, Ying; Degnen, William; Peppard, Jane; Cabel, Dasha; Zou, Chao; Tsay, Joseph T.; Subramaniam, Arun; Vaz, Roy J.; Li, Yi (Sanofi)

    2010-10-28

    Amino-benzoic acid derivatives 1-4 were found to be inhibitors for DHODH by virtual screening, biochemical, and X-ray crystallographic studies. X-ray structures showed that 1 and 2 bind to DHODH as predicted by virtual screening, but 3 and 4 were found to be structurally different from the corresponding compounds initially identified by virtual screening.

  11. Environmental stressors and epigenetic control of the hypothalamic-pituitary-adrenal-axis (HPA-axis)

    OpenAIRE

    Lee, Richard; Sawa, Akira

    2014-01-01

    In this review, we provide a brief summary of several key studies that broaden our understanding of stress and its epigenetic control of the hypothalamic-pituitary-adrenal axis (HPA)-axis function and behavior. Clinical and animal studies suggest a link among exposure to stress, dysregulation of the HPA-axis, and susceptibility to neuropsychiatric illnesses. Recent studies have supported the notion that exposure to glucocorticoids and stress in various forms, duration, and intensity during di...

  12. Dose dependence of tensoresistance for the symmetrical orientation of the deformation axis relatively to all isoenergetic ellipsoids in γ-irradiated (60Co n-Si crystals

    Directory of Open Access Journals (Sweden)

    G.P. Gaidar

    2018-03-01

    Full Text Available The dose dependence of tensoresistance X /0, which was measured at the symmetrical orientation of the deformation axis (compression relatively to all isoenergetic ellipsoids both in the initial and in -irradiated samples, was investigated in n-Si crystals. It has been shown that changing the irradiation doses is accompanied by not only quantitative but also qualitative changes in the functional dependence X /0 = f (Х. Features of tensoresistance in n-Si irradiated samples were found depending on three crystallographic directions, along which the samples were cut out and the mechanical stress Х was applied.

  13. Nitric oxide in the stress axis.

    Science.gov (United States)

    López-Figueroa, M O; Day, H E; Akil, H; Watson, S J

    1998-10-01

    In recent years nitric oxide (NO) has emerged as a unique biological messenger. NO is a highly diffusible gas, synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). Three unique subtypes of NOS have been described, each with a specific distribution profile in the brain and periphery. NOS subtype I is present, among other areas, in the hippocampus, hypothalamus, pituitary and adrenal gland. Together these structures form the limbic-hypothalamic-pituitary-adrenal (LHPA) or stress axis, activation of which is one of the defining features of a stress response. Evidence suggests that NO may modulate the release of the stress hormones ACTH and corticosterone, and NOS activity and transcription is increased in the LHPA axis following various stressful stimuli. Furthermore, following activation of the stress axis, glucocorticoids are thought to down-regulate the transcription and activity of NOS via a feedback mechanism. Taken together, current data indicate a role for NO in the regulation of the LHPA axis, although at present this role is not well defined. It has been suggested that NO may act as a cellular communicator in plasticity and development, to facilitate the activation or the release of other neurotransmitters, to mediate immune responses, and/or as a vasodilator in the regulation of blood flow. In the following review we summarize some of the latest insights into the function of NO, with special attention to its relationship with the LHPA axis.

  14. Neutral axis as damage sensitive feature

    International Nuclear Information System (INIS)

    Sigurdardottir, D H; Glisic, B

    2013-01-01

    Structural health monitoring (SHM) is the process of continuously or periodically measuring structural parameters and the transformation of the collected data into information on real structural conditions. The centroid of stiffness is a universal parameter and its position in a cross-section can be evaluated for any load-carrying beam structure as the position of the neutral axis under conveniently chosen loads. Thus, a change in the position of the neutral axis within a cross-section can indicate a change in the position of the centroid of stiffness, i.e., unusual structural behaviors. This paper proposes a novel monitoring method based on deterministic and probabilistic determination of the position of the neutral axis under conveniently chosen conditions. Therefore, the method proposed in this paper is potentially applicable to a large variety of beam-like structures. Data from two existing structures were used to validate the method and assess its performance: Streicker Bridge at Princeton University and the US202/NJ23 highway overpass in Wayne, NJ. The results show that the neutral axis location is varying even when damage is not present. Reasons for this variation are determined and the accuracy in the evaluation assessed. This paper concludes that the position of the neutral axis can be evaluated with sufficient accuracy using static and dynamic strain measurements performed on appropriate time-scales and indicates its potential to be used as a damage sensitive feature. (paper)

  15. Neutral axis as damage sensitive feature

    Science.gov (United States)

    Sigurdardottir, D. H.; Glisic, B.

    2013-07-01

    Structural health monitoring (SHM) is the process of continuously or periodically measuring structural parameters and the transformation of the collected data into information on real structural conditions. The centroid of stiffness is a universal parameter and its position in a cross-section can be evaluated for any load-carrying beam structure as the position of the neutral axis under conveniently chosen loads. Thus, a change in the position of the neutral axis within a cross-section can indicate a change in the position of the centroid of stiffness, i.e., unusual structural behaviors. This paper proposes a novel monitoring method based on deterministic and probabilistic determination of the position of the neutral axis under conveniently chosen conditions. Therefore, the method proposed in this paper is potentially applicable to a large variety of beam-like structures. Data from two existing structures were used to validate the method and assess its performance: Streicker Bridge at Princeton University and the US202/NJ23 highway overpass in Wayne, NJ. The results show that the neutral axis location is varying even when damage is not present. Reasons for this variation are determined and the accuracy in the evaluation assessed. This paper concludes that the position of the neutral axis can be evaluated with sufficient accuracy using static and dynamic strain measurements performed on appropriate time-scales and indicates its potential to be used as a damage sensitive feature.

  16. Aeroelastically coupled blades for vertical axis wind turbines

    Science.gov (United States)

    Paquette, Joshua; Barone, Matthew F.

    2016-02-23

    Various technologies described herein pertain to a vertical axis wind turbine blade configured to rotate about a rotation axis. The vertical axis wind turbine blade includes at least an attachment segment, a rear swept segment, and optionally, a forward swept segment. The attachment segment is contiguous with the forward swept segment, and the forward swept segment is contiguous with the rear swept segment. The attachment segment includes a first portion of a centroid axis, the forward swept segment includes a second portion of the centroid axis, and the rear swept segment includes a third portion of the centroid axis. The second portion of the centroid axis is angularly displaced ahead of the first portion of the centroid axis and the third portion of the centroid axis is angularly displaced behind the first portion of the centroid axis in the direction of rotation about the rotation axis.

  17. Purification, crystallization and preliminary crystallographic analysis of very-long-chain acyl-CoA dehydrogenase from Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Li, Zhijie; Zhai, Yujia; Fang, Junnan; Zhou, Qiangjun; Geng, Yunqi; Sun, Fei

    2010-01-01

    Very-long-chain acyl-CoA dehydrogenase from Caenorhabditis elegans (cVLCAD) has been crystallized in space group C2 and its X-ray diffraction data set has been collected to 1.6 Å resolution. Unlike other VLCADs that were reported to form dimers, the purified cVLCAD was found as a homotetrameric protein according to static light-scattering measurements. Acyl-CoA dehydrogenase [acyl-CoA:(acceptor) 2,3-oxidoreductase; EC 1.3.99.3] catalyzes the first reaction step in mitochondrial fatty-acid β-oxidation. Here, the very-long-chain acyl-CoA dehydrogenase from Caenorhabditis elegans (cVLCAD) has been cloned and overexpressed in Escherichia coli strain BL21 (DE3). Interestingly, unlike other very-long-chain acyl-CoA dehydrogenases, cVLCAD was found to form a tetramer by size-exclusion chromatography coupled with in-line static light-scattering, refractive-index and ultraviolet measurements. Purified cVLCAD (12 mg ml −1 ) was successfully crystallized by the hanging-drop vapour-diffusion method under conditions containing 100 mM Tris–HCl pH 8.0, 150 mM sodium chloride, 200 mM magnesium formate and 13% PEG 3350. The crystal has a tetragonal form and a complete diffraction data set was collected and processed to 1.8 Å resolution. The crystal belonged to space group C2, with unit-cell parameters a = 138.6, b = 116.7, c = 115.3 Å, α = γ = 90.0, β = 124.0°. A self-rotation function indicated the existence of one noncrystallographic twofold axis. A preliminary molecular-replacement solution further confirmed the presence of two molecules in one asymmetric unit, which yields a Matthews coefficient V M of 2.76 Å 3 Da −1 and a solvent content of 55%

  18. Theoretical tool movement required to diamond turn an off-axis paraboloid on axis

    International Nuclear Information System (INIS)

    Thompson, D.C.

    1976-01-01

    Current techniques for manufacturing off-axis paraboloids are both expensive and insufficiently accurate. An alternative method, turning the workpiece about its axis on a diamond-turning machine, is presented, and the equations describing the necessary tool movement are derived. A discussion of a particular case suggests that the proposed technique is feasible

  19. New Urban Vertical Axis Wind Turbine Design

    Directory of Open Access Journals (Sweden)

    Alexandru-Mihai CISMILIANU

    2015-12-01

    Full Text Available This paper develops a different approach for enhancing the performance of Vertical Axis Wind Turbines for the use in the urban or rural environment and remote isolated residential areas. Recently the vertical axis wind turbines (VAWT have become more attractive due to the major advantages of this type of turbines in comparison to the horizontal axis wind turbines. We aim to enhance the overall performance of the VAWT by adding a second set of blades (3 x 2=6 blades following the rules of biplane airplanes. The model has been made to operate at a maximum power in the range of the TSR between 2 to 2.5. The performances of the VAWT were investigated numerically and experimentally and justify the new proposed design.

  20. RITA: The reinvented triple axis spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mason, T.E. [Toronto Univ., ON (Canada). Dept. of Physics; Clausen, K.N.; Aeppli, G.; McMorrow, D.R.; Kjems, J.K. [Risoe National Lab., Roskilde (Denmark)

    1995-11-01

    Risoe National Laboratory was reported to be in the process of developing a new spectrometer design, RITA, based on the triple axis design. The spectrometer will attempt to incorporate more recent innovations such as multilayer supermirrors and microstrip proportional counters into a rethinking of the triple-axis spectrometer. By optimizing the beam optics, using supermirrors and extending the analyser to map regions of (Q, {omega}) space using an array of independently controllable pyrolytic graphite crystals focussed on an area detector, it was hoped that the efficiency of single-crystal inelastic experiments could be increased by as much as a factor of 20. 7 figs., 20 refs.

  1. Equilibrium studies of helical axis stellarators

    International Nuclear Information System (INIS)

    Hender, T.C.; Carreras, B.A.; Garcia, L.; Harris, J.H.; Rome, J.A.; Cantrell, J.L.; Lynch, V.E.

    1984-01-01

    The equilibrium properties of helical axis stellarators are studied with a 3-D equilibrium code and with an average method (2-D). The helical axis ATF is shown to have a toroidally dominated equilibrium shift and good equilibria up to at least 10% peak beta. Low aspect ratio heliacs, with relatively large toroidal shifts, are shown to have low equilibrium beta limits (approx. 5%). Increasing the aspect ratio and number of field periods proportionally is found to improve the equilibrium beta limit. Alternatively, increasing the number of field periods at fixed aspect ratio which raises and lowers the toroidal shift improves the equilibrium beta limit

  2. Influence of different kinds of rolling on the crystallographic texture and magnetic induction of a NOG 3 wt% Si steel

    Science.gov (United States)

    Silva, J. M.; Baêta Júnior, E. S.; Moraes, N. R. D. C.; Botelho, R. A.; Felix, R. A. C.; Brandao, L.

    2017-01-01

    The purpose of this work was to study the influence of different kinds of rolling on the magnetic properties of NOG steel, an electric steel widely used in electrical motors. These properties are highly correlated with the crystallographic texture of the material, which can be changed by rolling. Three kinds of rolling were examined: conventional rolling, cross-rolling and asymmetrical rolling. The crystallographic texture was determined by X-ray diffraction and the magnetic properties were calculated from a theoretical model that related the magnetic induction to crystallographic texture through the anisotropy energy. The results show that cross-rolling yields higher values of magnetic induction than the other processes.

  3. Triple-axis spectrometer DruechaL

    International Nuclear Information System (INIS)

    Buehrer, W.; Keller, P.

    1996-01-01

    DruechaL is a triple-axis spectrometer located at a cold guide. The characteristics of guide and instrument allow the use of a broad spectral range of neutrons. The resolution in momentum and energy transfer can be tuned to match the experimental requirements by using either collimators or focusing systems (monochromator, antitrumpet, analyser). (author) figs., tabs., refs

  4. Vortex capturing vertical axis wind turbine

    International Nuclear Information System (INIS)

    Zannetti, L; Gallizio, F; Ottino, G

    2007-01-01

    An analytical-numerical study is presented for an innovative lift vertical axis turbine whose blades are designed with vortex trapping cavities that act as passive flow control devices. The unsteady flow field past one-bladed and two-bladed turbines is described by a combined analytical and numerical method based on conformal mapping and on a blob vortex method

  5. The Trading Axis in Irkutsk Downtown

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2016-10-01

    Full Text Available The article reveals a linear concentration of the trading function in the historical center of Irkutsk. It features historical prerequisites and continuation of the tradition in the post-Soviet period, given the conversion of plants and factories. The article analyses the current state and prospects of modernization of the trading axis with its transformation into a modern public space.

  6. Triple-axis spectrometer DruechaL

    Energy Technology Data Exchange (ETDEWEB)

    Buehrer, W; Keller, P [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    DruechaL is a triple-axis spectrometer located at a cold guide. The characteristics of guide and instrument allow the use of a broad spectral range of neutrons. The resolution in momentum and energy transfer can be tuned to match the experimental requirements by using either collimators or focusing systems (monochromator, antitrumpet, analyser). (author) figs., tabs., refs.

  7. Crystallographic texture control helps improve pipeline steel resistance to hydrogen-induced cracking

    Energy Technology Data Exchange (ETDEWEB)

    Caleyo, F; Hallen, J M; Herrera, O; Venegas, V [ESIQIE, Instituto Politecnico Nacional, Mexico, (Mexico); Baudin, T [Universite de Paris Sud, Orsay, (France)

    2010-07-01

    The resistance to HIC of sour service pipeline steels has been improved through several strategies but none have proven to be totally efficient in the preservation of HIC in difficult operating conditions. The crystallographic texture plays a significant role in determining the behavior of HIC in pipeline steels. The present study tried to prove that crystallographic texture control, through warm rolling schedules, helps improve pipeline steel resistance to HIC. Several samples of an API 5L X52 grade pipeline steel were produced using different thermomechanical processes (austenization, controlled rolling and recrystallization). These samples were subjected to cathodic charging. Scanning electron microscopy and automated FEG/EBSD were used to perform metallographic inspections and to collect microstructure data. The results showed that the strong y fiber texture significantly reduces or even prevents the HIC damage. It is possible to improve the HIC resistance of pipeline steels using crystallography texture control and grain boundary engineering.

  8. Microstructure and crystallographic texture of pure titanium parts generated by laser additive manufacturing

    Science.gov (United States)

    Arias-González, Felipe; del Val, Jesús; Comesaña, Rafael; Penide, Joaquín; Lusquiños, Fernando; Quintero, Félix; Riveiro, Antonio; Boutinguiza, Mohamed; Gil, Francisco Javier; Pou, Juan

    2018-01-01

    In this paper, the microstructure and crystallographic texture of pure Ti thin walls generated by Additive Manufacturing based on Laser Cladding (AMLC) are analyzed in depth. From the results obtained, it is possible to better understand the AMLC process of pure titanium. The microstructure observed in the samples consists of large elongated columnar prior β grains which have grown epitaxially from the substrate to the top, in parallel to the building direction. Within the prior β grains, α-Ti lamellae and lamellar colonies are the result of cooling from above the β-transus temperature. This transformation follows the Burgers relationship and the result is a basket-weave microstructure with a strong crystallographic texture. Finally, a thermal treatment is proposed to transform the microstructure of the as-deposited samples into an equiaxed microstructure of α-Ti grains.

  9. The distribution of intervariant crystallographic planes in a lath martensite using five macroscopic parameters

    International Nuclear Information System (INIS)

    Beladi, Hossein; Rohrer, Gregory S.; Rollett, Anthony D.; Tari, Vahid; Hodgson, Peter D.

    2014-01-01

    Electron backscatter diffraction analysis was employed to compute the closest orientation relationship and the distribution of intervariant boundary character in a lath martensitic microstructure. The misorientations were close to the Kurdjumov–Sachs orientation relationship. The intervariant crystallographic plane distribution exhibited a relatively high anisotropy with a tendency for the lath interfaces to terminate on (1 1 0) planes. This results from the crystallographic constraints associated with the shear transformation rather than a low energy interface configuration. The lath martensite habit plane was determined to be mostly (1 1 0) or near (1 1 0). The relative populations of boundaries with [1 1 1] and [1 1 0] misorientations were greater than other high index misorientations, mostly characterized as (1 1 0) symmetric tilt and (1 1 0) twist boundary types, respectively. Analysis with homology metrics of the connectivity in the lath martensitic microstructure revealed the connectivity dominated by population of misorientation angle and boundary plane type

  10. Asymmetric Rolling Process Simulations by Dynamic Explicit Crystallographic Homogenized Finite Element Method

    International Nuclear Information System (INIS)

    Ngoc Tam, Nguyen; Nakamura, Yasunori; Terao, Toshihiro; Kuramae, Hiroyuki; Nakamachi, Eiji; Sakamoto, Hidetoshi; Morimoto, Hideo

    2007-01-01

    Recently, the asymmetric rolling (ASR) has been applied to the material processing of aluminum alloy sheet to control micro-crystal structure and texture in order to improve the mechanical properties. Previously, several studies aimed at high formability sheet generation have been carried out experimentally, but finite element simulations to predict the deformation induced texture evolution of the asymmetrically rolled sheet metals have not been investigated rigorously. In this study, crystallographic homogenized finite element (FE) codes are developed and applied to analyze the asymmetrical rolling processes. The textures of sheet metals were measured by electron back scattering diffraction (EBSD), and compared with FE simulations. The results from the dynamic explicit type Crystallographic homogenization FEM code shows that this type of simulation is a comprehensive tool to predict the plastic induced texture evolution

  11. Preliminary X-ray crystallographic analysis of sulfide:quinone oxidoreductase from Acidithiobacillus ferrooxidans

    International Nuclear Information System (INIS)

    Zhang, Yanfei; Cherney, Maia M.; Solomonson, Matthew; Liu, Jianshe; James, Michael N. G.; Weiner, Joel H.

    2009-01-01

    The sulfide:quinone oxidoreductase from A. ferrooxidans ATCC 23270 was overexpressed in E. coli and purified. Crystallization and preliminarily X-ray crystallographic analysis were performed for the recombinant enzyme. The gene product of open reading frame AFE-1293 from Acidithiobacillus ferrooxidans ATCC 23270 is annotated as encoding a sulfide:quinone oxidoreductase, an enzyme that catalyses electron transfer from sulfide to quinone. Following overexpression in Escherichia coli, the enzyme was purified and crystallized using the hanging-drop vapour-diffusion method. The native crystals belonged to the tetragonal space group P4 2 2 1 2, with unit-cell parameters a = b = 131.7, c = 208.8 Å, and diffracted to 2.3 Å resolution. Preliminary crystallographic analysis indicated the presence of a dimer in the asymmetric unit, with an extreme value of the Matthews coefficient (V M ) of 4.53 Å 3 Da −1 and a solvent content of 72.9%

  12. Comparison of the free volume sizes and shapes determined from crystallographic and PALS data

    Directory of Open Access Journals (Sweden)

    Tydda Maciej

    2015-12-01

    Full Text Available Two different classes of molecular crystals were investigated. The first group was benzenediols, which are characterized by the same chemical composition but a different organization of their crystallographic structures; all of the compounds from this group have only one kind of free volumes. The second class was represented by olanzapine, which has more complex chemical composition and two kinds of free volumes in the structure. The o-Ps lifetime values determined from positron annihilation lifetime spectroscopy (PALS measurements agree quite well with those calculated for sizes found from crystallographic data for benzenediols (agreement within 10% of the lifetime values. For olanzapine, a good agreement is observed in the case of cuboidal free volumes, while for the other kind of void, the agreement is less satisfactory. Positronium diffusion coefficient determined from o-Ps redistribution in olanzapine agrees with these found for polymers.

  13. Surface crystallographic structures of cellulose nanofiber films and overlayers of pentacene

    Science.gov (United States)

    Nakayama, Yasuo; Mori, Toshiaki; Tsuruta, Ryohei; Yamanaka, Soichiro; Yoshida, Koki; Imai, Kento; Koganezawa, Tomoyuki; Hosokai, Takuya

    2018-03-01

    Cellulose nanofibers or nanocellulose is a promising recently developed biomass and biodegradable material used for various applications. In order to utilize this material as a substrate in organic electronic devices, thorough understanding of the crystallographic structures of the surfaces of the nanocellulose composites and of their interfaces with organic semiconductor molecules is essential. In this work, surface crystallographic structures of nanocellulose films (NCFs) and overlayers of pentacene were investigated by two-dimensional grazing-incidence X-ray diffraction. The NCFs are found to crystallize on solid surfaces with the crystal lattice preserving the same structure of the known bulk phase, whereas distortion of interchain packing toward the surface normal direction is suggested. The pentacene overlayers on the NCFs are found to form the thin-film phase with an in-plane mean crystallite size of over 10 nm.

  14. A preliminary neutron crystallographic study of proteinase K at pD 6.5

    Energy Technology Data Exchange (ETDEWEB)

    Gardberg, Anna S [ORNL; Blakeley, Matthew P. [Institut Laue-Langevin (ILL); Myles, Dean A A [ORNL

    2009-01-01

    AbstractA preliminary neutron crystallographic study of the proteolytic enzyme proteinase K is presented. Large hydrogenated crystals were prepared in deuterated crystallization buffer using the vapour-diffusion method. Data were collected to a resolution of 2.3 on the LADI-III diffractometer at the Institut Laue Langevin (ILL) in 2.5 days. The results demonstrate the feasibility of a full neutron crystallographic analysis of this structure aimed at providing relevant information on the location of H atoms, particularly at the active site. This information will contribute to further understanding of the molecular mechanisms underlying proteinase K's catalytic activity and to an enriched understanding of the subtilisin clan of serine proteases.

  15. Reintroducing Electrostatics into Macromolecular Crystallographic Refinement: Application to Neutron Crystallography and DNA Hydration

    OpenAIRE

    Fenn, Timothy D.; Schnieders, Michael J.; Mustyakimov, Marat; Wu, Chuanjie; Langan, Paul; Pande, Vijay S.; Brunger, Axel T.

    2011-01-01

    Most current crystallographic structure refinements augment the diffraction data with a priori information consisting of bond, angle, dihedral, planarity restraints and atomic repulsion based on the Pauli exclusion principle. Yet, electrostatics and van der Waals attraction are physical forces that provide additional a priori information. Here we assess the inclusion of electrostatics for the force field used for all-atom (including hydrogen) joint neutron/X-ray refinement. Two DNA and a prot...

  16. Determination of lower bound crystallographic yield loci of zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Costa Viana, C.S. da

    1980-01-01

    The use of zircaloy-4 tubing in fuel elements of water cooled reactors is discussed with respect to its mechanisms of deformation and also its resulting anisotropic plastic behaviour. A method for obtaining lower bound crystallographic yield loci of α-Zr is presented and applied to individual crystal orientations and to a real texture described by the main components observed on a direct pole figure. (Author) [pt

  17. Microstructure, crystallographic texture and mechanical properties of friction stir welded AA2017A

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.M.Z., E-mail: mohamed_ahmed4@s-petrol.suez.edu.eg [Institute for Microstructural and Mechanical Processing Engineering, University of Sheffield (IMMPETUS), Mappin Street, Sheffield S1 3JD (United Kingdom); Department of Metallurgical and Materials Engineering, Suez Canal University, Suez 43721 (Egypt); Wynne, B.P.; Rainforth, W.M. [Institute for Microstructural and Mechanical Processing Engineering, University of Sheffield (IMMPETUS), Mappin Street, Sheffield S1 3JD (United Kingdom); Threadgill, P.L. [TWI LTD, Granta Park, Great Abington, Cambridge CB21 6AL (United Kingdom)

    2012-02-15

    In this study a thick section (20 mm) friction stir welded AA2017A-T451 has been characterized in terms of microstructure, crystallographic texture and mechanical properties. For microstructural analysis both optical and scanning electron microscopes have been used. A detailed crystallographic texture analysis has been carried out using the electron back scattering diffraction technique. Crystallographic texture has been examined in both shoulder and probe affected regions of the weld NG. An entirely weak texture is observed at the shoulder affected region which is mainly explained by the effect of the sequential multi pass deformation experienced by both tool probe and tool shoulder. The texture in the probe dominated region at the AS side of the weld is relatively weak but still assembles the simple shear texture of FCC metals with B/B{sup Macron} and C components existing across the whole map. However, the texture is stronger at the RS than at the AS of the weld, mainly dominated byB/B{sup Macron} components and with C component almost absent across the map. An alternating bands between (B) components and (B{sup Macron }) component are observed only at the AS side of the weld. - Highlights: Black-Right-Pointing-Pointer Detailed investigation of microstructure and crystallographic texture. Black-Right-Pointing-Pointer The grain size is varied from the top to the bottom of the NG. Black-Right-Pointing-Pointer An entirely weak texture is observed at the shoulder affected region. Black-Right-Pointing-Pointer The texture in the probe affected region is dominated by simple shear texture.

  18. Tungsten heavy metal alloys relations between the crystallographic texture and the internal stress distribution

    International Nuclear Information System (INIS)

    Nicolas, G.; Voltz, M.

    2001-01-01

    Quite often the W-Ni-Fe-Co heavy alloys are subjected to a thermomechanical processing of swaging and aging in order to obtain the highest possible level of resistance. Within the framework of this plastic deformation on cylindrical parts, the swaging leads to the distribution of morphological and crystallographic texture as well as specific internal stresses. The resulting mechanical characteristics are correlated to structural and sub-structural variations. (author)

  19. Origin of intragranular crystallographic misorientations in hot-dip Al-Zn-Si coatings

    International Nuclear Information System (INIS)

    Niederberger, Ch.; Michler, J.; Jacot, A.

    2008-01-01

    The origin of intragranular variations of the crystallographic orientation in hot-dip Al-Zn-Si coatings is discussed based on new experimental results and modelling. The solidification microstructure in as-received 55Al-43.4Zn-1.6Si (in wt.%) coatings deposited on steel plates in an industrial production line was analyzed by electron backscattered diffraction, glow-discharge optical emission spectroscopy and atomic force microscopy (AFM). The results were compared with those obtained in coatings re-solidified under different cooling and mechanical loading conditions. Continuous variations of the crystallographic orientation as large as 35 deg. were observed within individual grains of Al-Zn-Si, consistent with previous studies. However, the mechanisms previously proposed for the origin of intragranular crystallographic misorientations had to be revisited. The new experimental data acquired during this study indicate that the solidification shrinkage accumulating in the area of the grain envelope is the driving force for the formation of intragranular misorientations. The solidification shrinkage leads to the development of tensile stresses in the oxide film covering the coating while it solidifies. Estimations based on AFM profiles and phase field simulations of the dendritic structure indicate that the stresses applied on the dendrite network are sufficient to deform plastically the dendrite arms during solidification

  20. Resolution of a protein sequence ambiguity by X-ray crystallographic and mass spectrometric methods

    International Nuclear Information System (INIS)

    Keefe, L.J.; Lattman, E.E.; Wolkow, C.; Woods, A.; Chevrier, M.; Cotter, R.J.

    1992-01-01

    Ambiguities in amino acid sequences are a potential problem in X-ray crystallographic studies of proteins. Amino acid side chains often cannot be reliably identified from the electron density. Many protein crystal structures that are now being solved are simple variants of a known wild-type structure. Thus, cloning artifacts or other untoward events can readily lead to cases in which the proposed sequence is not correct. An example is presented showing that mass spectrometry provides an excellent tool for analyzing suspected errors. The X-ray crystal structure of an insertion mutant of Staphylococcal nuclease has been solved to 1.67 A resolution and refined to a crystallographic R value of 0.170. A single residue has been inserted in the C-terminal α helix. The inserted amino acid was believed to be an alanine residue, but the final electron density maps strongly indicated that a glycine had been inserted instead. To confirm the observations from the X-ray data, matrix-assisted laser desorption mass spectrometry was employed to verify the glycine insertion. This mass spectrometric technique has sufficient mass accuracy to detect the methyl group that distinguishes glycine from alanine and can be extended to the more common situation in which crystallographic measurements suggest a problem with the sequence, but cannot pinpoint its location or nature. (orig.)

  1. Resolution of a protein sequence ambiguity by X-ray crystallographic and mass spectrometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, L.J.; Lattman, E.E. (Dept. of Biophysics and Biophysical Chemistry, Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)); Wolkow, C.; Woods, A.; Chevrier, M.; Cotter, R.J. (Middle Atlantic Mass Spectrometry Lab., Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States))

    1992-04-01

    Ambiguities in amino acid sequences are a potential problem in X-ray crystallographic studies of proteins. Amino acid side chains often cannot be reliably identified from the electron density. Many protein crystal structures that are now being solved are simple variants of a known wild-type structure. Thus, cloning artifacts or other untoward events can readily lead to cases in which the proposed sequence is not correct. An example is presented showing that mass spectrometry provides an excellent tool for analyzing suspected errors. The X-ray crystal structure of an insertion mutant of Staphylococcal nuclease has been solved to 1.67 A resolution and refined to a crystallographic R value of 0.170. A single residue has been inserted in the C-terminal {alpha} helix. The inserted amino acid was believed to be an alanine residue, but the final electron density maps strongly indicated that a glycine had been inserted instead. To confirm the observations from the X-ray data, matrix-assisted laser desorption mass spectrometry was employed to verify the glycine insertion. This mass spectrometric technique has sufficient mass accuracy to detect the methyl group that distinguishes glycine from alanine and can be extended to the more common situation in which crystallographic measurements suggest a problem with the sequence, but cannot pinpoint its location or nature. (orig.).

  2. Deriving Quantitative Crystallographic Information from the Wavelength-Resolved Neutron Transmission Analysis Performed in Imaging Mode

    Directory of Open Access Journals (Sweden)

    Hirotaka Sato

    2017-12-01

    Full Text Available Current status of Bragg-edge/dip neutron transmission analysis/imaging methods is presented. The method can visualize real-space distributions of bulk crystallographic information in a crystalline material over a large area (~10 cm with high spatial resolution (~100 μm. Furthermore, by using suitable spectrum analysis methods for wavelength-dependent neutron transmission data, quantitative visualization of the crystallographic information can be achieved. For example, crystallographic texture imaging, crystallite size imaging and crystalline phase imaging with texture/extinction corrections are carried out by the Rietveld-type (wide wavelength bandwidth profile fitting analysis code, RITS (Rietveld Imaging of Transmission Spectra. By using the single Bragg-edge analysis mode of RITS, evaluations of crystal lattice plane spacing (d-spacing relating to macro-strain and d-spacing distribution’s FWHM (full width at half maximum relating to micro-strain can be achieved. Macro-strain tomography is performed by a new conceptual CT (computed tomography image reconstruction algorithm, the tensor CT method. Crystalline grains and their orientations are visualized by a fast determination method of grain orientation for Bragg-dip neutron transmission spectrum. In this paper, these imaging examples with the spectrum analysis methods and the reliabilities evaluated by optical/electron microscope and X-ray/neutron diffraction, are presented. In addition, the status at compact accelerator driven pulsed neutron sources is also presented.

  3. Influence of crystallographic orientation on the fracture toughness of strongly textured Ti--6Al--4V

    International Nuclear Information System (INIS)

    Bowen, A.W.

    1978-01-01

    Fracture toughness values for six test piece orientations in a strongly textured 57-mm thick rolled and annealed Ti--6Al--4V bar have been related to their crystallographic orientations. The K/sub Ic/ values, ranging from 46.3 to 93.3 MPa/m, could be divided into two groups. High values (74.7 to 93.3 MPa/m) were obtained when a crystallographic deformation mode ([1010] or [1122] slip) was parallel to the planes of maximum shear stress for plane strain conditions, and the significant fractographic feature for this group was a clearly defined stretch zone. In the second group, where crystallographic deformation modes were not aligned with the planes of maximum shear stress, much lower K/sub Ic/ values were recorded (46.3 to 50.7 MPa/m). In this case there was no stretch zone and, in addition, some test pieces appeared, in effect, to have delaminated in the immediate vicinity of the crack tip. Similar trends were also indicated by the results of Charpy impact tests. The influence of in-plane elastic anisotropy on fracture toughness is discussed, and the importance of test piece geometry highlighted. From the results it could be inferred that high toughness in anisotropic materials is possible only in certain orientations; stretch zone formation and fatigue striation formation are by the same mechanical process; and there will be significantly different critical crack sizes in textured titanium alloy components

  4. Effect of crystallographic texture on the bulk magnetic properties of non-oriented electrical steels

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pampa, E-mail: pampaghosh@gmail.com [Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, Canada H3A 0C5 (Canada); Chromik, Richard R., E-mail: richard.chromik@mcgill.ca [Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, Canada H3A 0C5 (Canada); Vashegi, Babak; Knight, Andrew M. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2V4 (Canada)

    2014-09-01

    Quantitative physical models for non-oriented electrical steels require precise knowledge of chemical and microstructural parameters for the material, with crystallographic texture being one of the most important. Describing the structure–property relationships in these materials is made difficult in that all of the parameters have an effect on magnetic properties. In the present study, a set of non-oriented electrical steel specimens are examined, where chemistry and grain size are kept similar from sample to sample, but texture is varied. A new texture parameter called Magnetic Texture Factor is introduced which is defined as the ratio of the volume fractions of 〈100〉 direction to 〈111〉 direction along magnetization vector. It was found that this Magnetic Texture Factor was a better parameter for identifying trends of magnetic properties with crystallographic texture than the often used Texture Factor, which is described as the ratio of the volume fractions of {100} planes to {111} planes. - Highlights: • Magnetic properties of a set of electrical steels were measured. • The effect of crystallographic texture was isolated from other material parameters. • A new texture factor is introduced called the Magnetic Texture Factor.

  5. Magnetic anisotropy induced by crystallographic orientation and morphological alignment in directionally-solidified eutectic Mn-Sb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Chang-Sheng [School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159 (China); Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Liu, Tie, E-mail: liutie@epm.neu.edu.cn [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Dong, Meng; Wu, Chun; Shao, Jian-Guo; Wang, Qiang [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China)

    2017-02-15

    The influences of the crystallographic orientation and morphological alignment upon the magnetic anisotropic behavior of polycrystalline materials were investigated. Microstructures obtained in eutectic Mn-Sb alloys via directional solidification simultaneously displayed crystallographic orientation and morphological alignment. Both the crystallographic orientation and the morphological alignment were able to induce magnetic anisotropy in the alloys, wherein the influence of the crystallographic orientation and the morphological alignment upon the magnetic anisotropic behavior of the alloys strongly depended upon their directions and exhibited either mutual promotion or competition. These findings may provide useful guidance for the fabrication design of functional magnetic materials. - Highlights: • We study effects of orientation in crystal and morphology on magnetic anisotropy. • Both orientation in crystal and morphology can induce magnetic anisotropy. • Their effects depend on direction and exhibit either mutual promotion or competition.

  6. A comparative crystallographic analysis of the tetragonal-to-monoclinic transformation in the yttria-zirconia system

    Science.gov (United States)

    Navruz, N.

    2008-06-01

    The various requirements for effective transformation toughening cannot be predicted without a detailed understanding of the crystallography of the martensitic transformation. In this connection, a comparative crystallographic analysis for four pairs of lattice-correspondence variants in the yttria-zirconia system has been performed on the basis of infinitesimal-deformation (ID) approach and Wechsler-Lieberman-Read (WLR) crystallographic theory. A comparison of the crystallographic features obtained from these two theories was made. In order to verify the applicability of the two theories to this transformation, the calculated results were also compared with the experimental data available. The present study shows that the predictions of both the ID approach and the WLR crystallographic theory can provide data necessary for the model of transformation toughening and act as a guideline for the experimental work in the yttria-zirconia system.

  7. UARS PEM Level 2 AXIS 2 V001 (UARPE2AXIS2) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The UARS Particle Environment Monitor (PEM) level 2 Atmosphere X-Ray Imaging Spectrometer (AXIS) unit 2 daily product contains the X-ray high-resolution spectral...

  8. UARS PEM Level 2 AXIS 1 V001 (UARPE2AXIS1) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The UARS Particle Environment Monitor (PEM) level 2 Atmosphere X-Ray Imaging Spectrometer (AXIS) unit 1 daily product contains the X-ray high-resolution spectral...

  9. Resolution of a triple axis spectrometer

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Bjerrum Møller, Hans

    1969-01-01

    A new method for obtaining the resolution function for a triple-axis neutron spectrometer is described, involving a combination of direct measurement and analytical calculation. All factors which contribute to the finite resolution of the instrument may be taken into account, and Gaussian...... or experimentally determined probability distributions may be used. The application to the study of the dispersion relation for excitations in a crystal is outlined...

  10. Interplay between tilted and principal axis rotation

    International Nuclear Information System (INIS)

    Datta, Pradip; Roy, Santosh; Chattopadhyay, S.

    2014-01-01

    At IUAC-INGA, our group has studied four neutron rich nuclei of mass-110 region, namely 109,110 Ag and 108,110 Cd. These nuclei provide the unique platform to study the interplay between Tilted and Principal axis rotation since these are moderately deformed and at the same time, shears structures are present at higher spins. The salient features of the high spin behaviors of these nuclei will be discussed which are the signatures of this interplay

  11. Interplay between tilted and principal axis rotation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Pradip [Ananda Mohan College, 102/1 Raja Rammohan Sarani, Kolkata 700 009 (India); Roy, Santosh; Chattopadhyay, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064 (India)

    2014-08-14

    At IUAC-INGA, our group has studied four neutron rich nuclei of mass-110 region, namely {sup 109,110}Ag and {sup 108,110}Cd. These nuclei provide the unique platform to study the interplay between Tilted and Principal axis rotation since these are moderately deformed and at the same time, shears structures are present at higher spins. The salient features of the high spin behaviors of these nuclei will be discussed which are the signatures of this interplay.

  12. Crystallographic orientations and electrical properties of Bi sub 3 sub . sub 4 sub 7 La sub 0. sub 8 sub 5 Ti sub 3 O sub 1 sub 2 thin films on Pt/Ti/SiO sub 2 /Si and Pt/SiO sub 2 /Si substrates

    CERN Document Server

    Ryu, S O; Lee, W J

    2003-01-01

    We report on the crystallization and electrical properties of Bi sub 3 sub . sub 4 sub 7 La sub 0 sub . sub 8 sub 5 Ti sub 3 O sub 1 sub 2 (BLT) thin films for possible ferroelectric non-volatile memory applications. The film properties were found to be strongly dependent on process conditions especially on the intermediate heat treatment conditions. The crystallographic orientation of the films showed sharp changes at the intermediate rapid thermal annealing (RTA) temperature of 450degC. Below 450degC, BLT thin films have (117) orientation while they have preffered c-axis orientation above 450degC. We found that RTA conditions of the first coating layer play a major role in determining the entire crystallographic orientation of the films. The films also showed of ferroelectric hysterisis behavior strongly dependent on RTA treatment. In fact, the remanent polarization of Bi sub 3 sub . sub 4 sub 6 sub 5 La sub 0 sub . sub 8 sub 5 Ti sub 3 O sub 1 sub 2 thin films having (001) preferred crystallographic orient...

  13. Crystallographic Analysis of a Japanese Sword by using Bragg Edge Transmission Spectroscopy

    Science.gov (United States)

    Shiota, Yoshinori; Hasemi, Hiroyuki; Kiyanagi, Yoshiaki

    Neutron imaging using a pulsed neutron source can give crystallographic information over wide area of a sample by analysing position dependent transmission spectra. With the use of a Bragg edge imaging method we non-destructively obtained crystallographic information of a Japanese sword, signed by Bishu Osafune Norimitsu, in order to know position dependent crystallographic characteristics and to check usefulness of the method for the Japanese sword investigation. Strong texture appeared on the back side. On the other hand in the middle area almost isotropic feature appeared and edge side showed feature between them. Rather isotropic area in the centre area gradually reduced from the grip side to the tip side. The crystallite size was smaller near the edge and became larger towards the back side. The smaller crystallite size will be due to quenching around the edge and this trend disappeared in the grip (nakago) area. The larger crystallite size will be due to strong hammering. Coarse grains were also observed directly as transmission images with the use of a high spatial resolution detector. The spatial distribution of the grains was not uniform but the reason have not been understood. Furthermore, a white area around a tip area was proved to be a void by looking at the Brag edge transmission spectra. This void may be formed during forging process of two kinds of steel. It is suggested that consideration on differences in the texture and the crystallite size depending on position will give information to clarify the manufacturing process, and Bragg edge analysis will be a profitable tool for research of Japanese sword.

  14. Development of dynamic explicit crystallographic homogenization finite element analysis code to assess sheet metal formability

    International Nuclear Information System (INIS)

    Nakamura, Yasunori; Tam, Nguyen Ngoc; Ohata, Tomiso; Morita, Kiminori; Nakamachi, Eiji

    2004-01-01

    The crystallographic texture evolution induced by plastic deformation in the sheet metal forming process has a great influence on its formability. In the present study, a dynamic explicit finite element (FE) analysis code is newly developed by introducing a crystallographic homogenization method to estimate the polycrystalline sheet metal formability, such as the extreme thinning and 'earing'. This code can predict the plastic deformation induced texture evolution at the micro scale and the plastic anisotropy at the macro scale, simultaneously. This multi-scale analysis can couple the microscopic crystal plasticity inhomogeneous deformation with the macroscopic continuum deformation. In this homogenization process, the stress at the macro scale is defined by the volume average of those of the corresponding microscopic crystal aggregations in satisfying the equation of motion and compatibility condition in the micro scale 'unit cell', where the periodicity of deformation is satisfied. This homogenization algorithm is implemented in the conventional dynamic explicit finite element code by employing the updated Lagrangian formulation and the rate type elastic/viscoplastic constitutive equation.At first, it has been confirmed through a texture evolution analyses in cases of typical deformation modes that Taylor's 'constant strain homogenization algorithm' yields extreme concentration toward the preferred crystal orientations compared with our homogenization one. Second, we study the plastic anisotropy effects on 'earing' in the hemispherical cup deep drawing process of pure ferrite phase sheet metal. By the comparison of analytical results with those of Taylor's assumption, conclusions are drawn that the present newly developed dynamic explicit crystallographic homogenization FEM shows more reasonable prediction of plastic deformation induced texture evolution and plastic anisotropy at the macro scale

  15. Crystallization and preliminary X-ray crystallographic analysis of the small subunit of the heterodimeric laccase POXA3b from Pleurotus ostreatus

    Science.gov (United States)

    Ferraroni, Marta; Scozzafava, Andrea; Ullah, Sana; Tron, Thierry; Piscitelli, Alessandra; Sannia, Giovanni

    2014-01-01

    Laccases are multicopper oxidases of great biotechnological potential. While laccases are generally monomeric glycoproteins, the white-rot fungus Pleurotus ostreatus produces two closely related heterodimeric isoenzymes composed of a large subunit, homologous to the other fungal laccases, and a small subunit. The sequence of the small subunit does not show significant homology to any other protein or domain of known function and consequently its function is unknown. The highest similarity to proteins of known structure is to a putative enoyl-CoA hydratase/isomerase from Acinetobacter baumannii, which shows an identity of 27.8%. Diffraction-quality crystals of the small subunit of the heterodimeric laccase POXA3b (sPOXA3b) from P. ostreatus were obtained using the sitting-drop vapour-diffusion method at 294 K from a solution consisting of 1.8 M sodium formate, 0.1 M Tris–HCl pH 8.5. The crystals belonged to the tetragonal space group P41212 or P43212, with unit-cell parameters a = 126.6, c = 53.9 Å. The asymmetric unit contains two molecules related by a noncrystallographic twofold axis. A complete data set extending to a maximum resolution of 2.5 Å was collected at 100 K using a wavelength of 1.140 Å. PMID:24419623

  16. Relationship between strain stored by compressive deformation and crystallographic orientation in a pure aluminum

    International Nuclear Information System (INIS)

    Takayama, Y; Watanabe, H; Yoshimura, T

    2015-01-01

    In order to investigate relationship between stored strain and crystallographic orientation, 99.99% purity aluminum cubes were compressed with uniaxial or with plane strain state up to a nominal strain of 30%. The aluminum cubes were examined on the same surface before and after compression by SEM/EBSD technique. Stored strain was estimated by Kernel Average Misorientation (KAM) derived from the EBSD analysis, and Taylor factor (TF) was measured before the compressive deformation. The analysis revealed that KAM value or the stored strain decreases until a certain value of TF and then increases with increment of TF. (paper)

  17. Monte-Carlo simulation of crystallographical pore growth in III-V-semiconductors

    International Nuclear Information System (INIS)

    Leisner, Malte; Carstensen, Juergen; Foell, Helmut

    2011-01-01

    The growth of crystallographical pores in III-V-semiconductors can be understood in the framework of a simple model, which is based on the assumption that the branching of pores is proportional to the current density at the pore tips. The stochastic nature of this model allows its implementation into a three-dimensional Monte-Carlo-simulation of pore growth. The simulation is able to reproduce the experimentally observed crysto pore structures in III-V-semiconductors in full quantitative detail. The different branching probabilities for different semiconductors, as well as doping levels, can be deduced from the specific passivation behavior of the semiconductor-electrolyte-interface at the pore tips.

  18. Theoretical tool movement required to diamond turn an off-axis paraboloid on axis

    International Nuclear Information System (INIS)

    Thompson, D.C.

    1975-01-01

    High-quality, off-axis parabolic reflectors, required by the CTR and laser-fusion programs at Lawrence Livermore Laboratory (LLL) and other ERDA laboratories, are currently manufactured by hand. There are several drawbacks to this method, including lead times of up to a year, costs in excess of dollars 75,000 for a small reflector, and unsatisfactory limits to the tolerances obtainable. This situation has led to a search for cheaper and more accurate methods of manufacturing off-axis paraboloids. An alternative method, turning the workpiece about its axis on a diamond-turning machine, is presented, and the equations describing the necessary tool movement are derived. A discussion of a particular case suggests that the proposed technique is feasible

  19. Crystallographic alignment evolution and magnetic properties of anisotropic Sm{sub 0.6}Pr{sub 0.4}Co{sub 5} nanoflakes prepared by surfactant-assisted ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, M.L.; Wu, Q.; Li, Y.Q.; Liu, W.Q.; Lu, Q.M.; Yue, M., E-mail: yueming@bjut.edu.cn

    2015-08-01

    The microstructure, crystal structure and magnetic properties were studied for Sm{sub 0.6}Pr{sub 0.4}Co{sub 5} nanoflakes prepared by surfactant-assisted high-energy ball milling (SAHEBM). Effect of ball-milling time on the c-axis crystallographic alignment, morphology and magnetic properties of Sm{sub 0.6}Pr{sub 0.4}Co{sub 5} nanoflakes was systematically investigated. With increasing milling time from 1 h to 7 h, the intensity ratio between (002) and (111) reflection peaks indicating degree of c-axis crystal texture of the (Sm, Pr)Co{sub 5} phase increases first, peaks at 3 h, then drops again, revealing that the strongest c-axis crystal texture was obtained in the nanoflakes milled for 3 h. On the other hand, the coercivity (H{sub ci}) of the flakes increases gradually from 1.71 to 14.65 kOe with the increase of ball milling time. As a result, an optimal magnetic properties of M{sub r} of 10.23 kGs, H{sub ci} of 11.45 kOe and (BH){sub max} of 24.40 MGOe was obtained in Sm{sub 0.6}Pr{sub 0.4}Co{sub 5} nanoflakes milled for 3 h, which also displayed a high aspect ratio, small in-plane size, pronounced (001) out-of-plane texture. - Highlights: • Anisotropic Sm{sub 0.6}Pr{sub 0.4}Co{sub 5} nanoflakes with strong c-axis texture were prepared. • Effects of ball-milling time on structure and magnetic properties were studied. • (BH){sub max} value of Sm{sub 0.6}Pr{sub 0.4}Co{sub 5} nanoflakes is larger than that of SmCo{sub 5} nanoflakes.

  20. The Triple Axis and SPINS Spectrometers.

    Science.gov (United States)

    Trevino, S F

    1993-01-01

    In this paper are described the triple axis and spin polarized inelastic neutron scattering (SPINS) spectrometers which are installed at the NIST Cold Neutron Research Facility (CNRF). The general principle of operation of these two instruments is described in sufficient detail to allow the reader to make an informed decision as to their usefulness for his needs. However, it is the intention of the staff at the CNRF to provide the expert resources for their efficient use in any given situation. Thus, this work is not intended as a user manual but rather as a guide into the range of applicability of the two instruments.

  1. Equilibrium calculations for helical axis stellarators

    International Nuclear Information System (INIS)

    Hender, T.C.; Carreras, B.A.

    1984-04-01

    An average method based on a vacuum flux coordinate system is presented. This average method permits the study of helical axis stellarators with toroidally dominated shifts. An ordering is introduced, and to lowest order the toroidally averaged equilibrium equations are reduced to a Grad-Shafranov equation. Also, to lowest order, a Poisson-type equation is obtained for the toroidally varying corrections to the equilibium. By including these corrections, systems that are toroidally dominated, but with significant helical distortion to the equilibrium, may be studied. Numerical solutions of the average method equations are shown to agree well with three-dimensional calculations

  2. Three-axis asymmetric radiation detector system

    Science.gov (United States)

    Martini, Mario Pierangelo; Gedcke, Dale A.; Raudorf, Thomas W.; Sangsingkeow, Pat

    2000-01-01

    A three-axis radiation detection system whose inner and outer electrodes are shaped and positioned so that the shortest path between any point on the inner electrode and the outer electrode is a different length whereby the rise time of a pulse derived from a detected radiation event can uniquely define the azimuthal and radial position of that event, and the outer electrode is divided into a plurality of segments in the longitudinal axial direction for locating the axial location of a radiation detection event occurring in the diode.

  3. Extracellular matrix dynamics during vertebrate axis formation.

    Science.gov (United States)

    Czirók, András; Rongish, Brenda J; Little, Charles D

    2004-04-01

    The first evidence for the dynamics of in vivo extracellular matrix (ECM) pattern formation during embryogenesis is presented below. Fibrillin 2 filaments were tracked for 12 h throughout the avian intraembryonic mesoderm using automated light microscopy and algorithms of our design. The data show that these ECM filaments have a reproducible morphogenic destiny that is characterized by directed transport. Fibrillin 2 particles initially deposited in the segmental plate mesoderm are translocated along an unexpected trajectory where they eventually polymerize into an intricate scaffold of cables parallel to the anterior-posterior axis. The cables coalesce near the midline before the appearance of the next-formed somite. Moreover, the ECM filaments define global tissue movements with high precision because the filaments act as passive motion tracers. Quantification of individual and collective filament "behaviors" establish fate maps, trajectories, and velocities. These data reveal a caudally propagating traveling wave pattern in the morphogenetic movements of early axis formation. We conjecture that within vertebrate embryos, long-range mechanical tension fields are coupled to both large-scale patterning and local organization of the ECM. Thus, physical forces or stress fields are essential requirements for executing an emergent developmental pattern-in this case, paraxial fibrillin cable assembly.

  4. VERITAS: Versatile Triple-Axis Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Il

    2006-04-15

    Korea Atomic Energy Research Institute is planning to build a cold neutron triple-axis spectrometer at HANARO, the 30 MW research reactor. The spectrometer is expected to be completed in 2008 with the following configuration from the upstream to the downstream. Guide Supermirror m = 2, In-pile Straight Section, {approx} 5 m Curved Guide, {approx} 26 m w/ R 1500 m Straight Guide before the Instrument, {approx} 40 m Filters PG and Be Neutron Velocity Selector (Future) Monochromators Vertically Focusing Monochromators PG(002) and Heusler(111) Doubly Focusing Monochromators (Future) Monochromator-Sample Distance 2 m Collimation C1 Soller Collimators, 20', 40' 80'Beam Height at the Sample Table 1.5 m Sample-Analyzer Distance 1.0 m Collimation C2 Soller Collimators, 20', 40', 80' Radial Collimator Analyzers Horizontally Focusing Analyzers w/ Fixed Vertical Focusing PG(002) and Heusler(111) Analyzer-Detector Distance 0.5 m Detectors 5 cm Tube Detector 25 cm wide Position Sensitive Detector Once completed, the neutron flux at sample is expected to surpass that of SPINS at NCNR, making this instrument one of the most powerful 2nd generation cold neutron triple-axis spectrometers in the world.

  5. VERITAS: Versatile Triple-Axis Spectrometer

    International Nuclear Information System (INIS)

    Park, Sung Il

    2006-04-01

    Korea Atomic Energy Research Institute is planning to build a cold neutron triple-axis spectrometer at HANARO, the 30 MW research reactor. The spectrometer is expected to be completed in 2008 with the following configuration from the upstream to the downstream. Guide Supermirror m = 2, In-pile Straight Section, ∼ 5 m Curved Guide, ∼ 26 m w/ R 1500 m Straight Guide before the Instrument, ∼ 40 m Filters PG and Be Neutron Velocity Selector (Future) Monochromators Vertically Focusing Monochromators PG(002) and Heusler(111) Doubly Focusing Monochromators (Future) Monochromator-Sample Distance 2 m Collimation C1 Soller Collimators, 20', 40' 80'Beam Height at the Sample Table 1.5 m Sample-Analyzer Distance 1.0 m Collimation C2 Soller Collimators, 20', 40', 80' Radial Collimator Analyzers Horizontally Focusing Analyzers w/ Fixed Vertical Focusing PG(002) and Heusler(111) Analyzer-Detector Distance 0.5 m Detectors 5 cm Tube Detector 25 cm wide Position Sensitive Detector Once completed, the neutron flux at sample is expected to surpass that of SPINS at NCNR, making this instrument one of the most powerful 2nd generation cold neutron triple-axis spectrometers in the world

  6. Integration of first-principles methods and crystallographic database searches for new ferroelectrics: Strategies and explorations

    International Nuclear Information System (INIS)

    Bennett, Joseph W.; Rabe, Karin M.

    2012-01-01

    In this concept paper, the development of strategies for the integration of first-principles methods with crystallographic database mining for the discovery and design of novel ferroelectric materials is discussed, drawing on the results and experience derived from exploratory investigations on three different systems: (1) the double perovskite Sr(Sb 1/2 Mn 1/2 )O 3 as a candidate semiconducting ferroelectric; (2) polar derivatives of schafarzikite MSb 2 O 4 ; and (3) ferroelectric semiconductors with formula M 2 P 2 (S,Se) 6 . A variety of avenues for further research and investigation are suggested, including automated structure type classification, low-symmetry improper ferroelectrics, and high-throughput first-principles searches for additional representatives of structural families with desirable functional properties. - Graphical abstract: Integration of first-principles methods with crystallographic database mining, for the discovery and design of novel ferroelectric materials, could potentially lead to new classes of multifunctional materials. Highlights: ► Integration of first-principles methods and database mining. ► Minor structural families with desirable functional properties. ► Survey of polar entries in the Inorganic Crystal Structural Database.

  7. Modeling the characteristic etch morphologies along specific crystallographic orientations by anisotropic chemical etching

    Science.gov (United States)

    Li, Kun-Dar; Miao, Jin-Ru

    2018-02-01

    To improve the advanced manufacturing technology for functional materials, a sophisticated control of chemical etching process is highly demanded, especially in the fields of environment and energy related applications. In this study, a phase-field-based model is utilized to investigate the etch morphologies influenced by the crystallographic characters during anisotropic chemical etching. Three types of etching modes are inspected theoretically, including the isotropic, and preferred oriented etchings. Owing to the specific etching behavior along the crystallographic directions, different characteristic surface structures are presented in the simulations, such as the pimple-like, pyramidal hillock and ridge-like morphologies. In addition, the processing parameters affecting the surface morphological formation and evolution are also examined systematically. According to the numerical results, the growth mechanism of surface morphology in a chemical etching is revealed distinctly. While the etching dynamics plays a dominant role on the surface formation, the characteristic surface morphologies corresponding to the preferred etching direction become more apparent. As the atomic diffusion turned into a determinative factor, a smoothened surface would appear, even under the anisotropic etching conditions. These simulation results provide fundamental information to enhance the development and application of anisotropic chemical etching techniques.

  8. Automatic rebuilding and optimization of crystallographic structures in the Protein Data Bank.

    Science.gov (United States)

    Joosten, Robbie P; Joosten, Krista; Cohen, Serge X; Vriend, Gert; Perrakis, Anastassis

    2011-12-15

    Macromolecular crystal structures in the Protein Data Bank (PDB) are a key source of structural insight into biological processes. These structures, some >30 years old, were constructed with methods of their era. With PDB_REDO, we aim to automatically optimize these structures to better fit their corresponding experimental data, passing the benefits of new methods in crystallography on to a wide base of non-crystallographer structure users. We developed new algorithms to allow automatic rebuilding and remodeling of main chain peptide bonds and side chains in crystallographic electron density maps, and incorporated these and further enhancements in the PDB_REDO procedure. Applying the updated PDB_REDO to the oldest, but also to some of the newest models in the PDB, corrects existing modeling errors and brings these models to a higher quality, as judged by standard validation methods. The PDB_REDO database and links to all software are available at http://www.cmbi.ru.nl/pdb_redo. r.joosten@nki.nl; a.perrakis@nki.nl Supplementary data are available at Bioinformatics online.

  9. CRYSNET manual. Informal report. [Hardware and software of crystallographic computing network

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1976-07-01

    This manual describes the hardware and software which together make up the crystallographic computing network (CRYSNET). The manual is intended as a users' guide and also provides general information for persons without any experience with the system. CRYSNET is a network of intelligent remote graphics terminals that are used to communicate with the CDC Cyber 70/76 computing system at the Brookhaven National Laboratory (BNL) Central Scientific Computing Facility. Terminals are in active use by four research groups in the field of crystallography. A protein data bank has been established at BNL to store in machine-readable form atomic coordinates and other crystallographic data for macromolecules. The bank currently includes data for more than 20 proteins. This structural information can be accessed at BNL directly by the CRYSNET graphics terminals. More than two years of experience has been accumulated with CRYSNET. During this period, it has been demonstrated that the terminals, which provide access to a large, fast third-generation computer, plus stand-alone interactive graphics capability, are useful for computations in crystallography, and in a variety of other applications as well. The terminal hardware, the actual operations of the terminals, and the operations of the BNL Central Facility are described in some detail, and documentation of the terminal and central-site software is given. (RWR)

  10. Modeling the characteristic etch morphologies along specific crystallographic orientations by anisotropic chemical etching

    Directory of Open Access Journals (Sweden)

    Kun-Dar Li

    2018-02-01

    Full Text Available To improve the advanced manufacturing technology for functional materials, a sophisticated control of chemical etching process is highly demanded, especially in the fields of environment and energy related applications. In this study, a phase-field-based model is utilized to investigate the etch morphologies influenced by the crystallographic characters during anisotropic chemical etching. Three types of etching modes are inspected theoretically, including the isotropic, and preferred oriented etchings. Owing to the specific etching behavior along the crystallographic directions, different characteristic surface structures are presented in the simulations, such as the pimple-like, pyramidal hillock and ridge-like morphologies. In addition, the processing parameters affecting the surface morphological formation and evolution are also examined systematically. According to the numerical results, the growth mechanism of surface morphology in a chemical etching is revealed distinctly. While the etching dynamics plays a dominant role on the surface formation, the characteristic surface morphologies corresponding to the preferred etching direction become more apparent. As the atomic diffusion turned into a determinative factor, a smoothened surface would appear, even under the anisotropic etching conditions. These simulation results provide fundamental information to enhance the development and application of anisotropic chemical etching techniques.

  11. Development of Microstructure and Crystallographic Texture in a Double-Sided Friction Stir Welded Microalloyed Steel

    Science.gov (United States)

    Rahimi, S.; Wynne, B. P.; Baker, T. N.

    2017-01-01

    The evolution of microstructure and crystallographic texture has been investigated in double-sided friction stir welded microalloyed steel, using electron backscatter diffraction (EBSD). The microstructure analyses show that the center of stirred zone reached a temperature between Ac1 and Ac3 during FSW, resulting in a dual-phase austenitic/ ferritic microstructure. The temperatures in the thermo-mechanically affected zone and the overlapped area between the first and second weld pass did not exceed the Ac1. The shear generated by the rotation probe occurs in austenitic/ferritic phase field where the austenite portion of the microstructure is transformed to a bainitic ferrite, on cooling. Analysis of crystallographic textures with regard to shear flow lines generated by the probe tool shows the dominance of simple shear components across the whole weld. The austenite texture at Ac1 - Ac3 is dominated by the B { {1bar{1}2} }D2 { {11bar{2}} }< 111rangle simple shear texture components. The formation of ultrafine equiaxed ferrite with submicron grain size has been observed in the overlapped area between the first and second weld pass. This is due to continuous dynamic strain-induced recrystallization as a result of simultaneous severe shear deformation and drastic undercooling.

  12. Expression, crystallization and preliminary crystallographic study of GluB from Corynebacterium glutamicum

    International Nuclear Information System (INIS)

    Liu, Qingbo; Li, Defeng; Hu, Yonglin; Wang, Da-Cheng

    2013-01-01

    GluB, a substrate-binding protein from C. glutamicum, was expressed, purified and crystallized, followed by X-ray diffraction data collection and preliminary crystallographic analysis. GluB is a substrate-binding protein (SBP) which participates in the uptake of glutamic acid in Corynebacterium glutamicum, a Gram-positive bacterium. It is part of an ATP-binding cassette (ABC) transporter system. Together with the transmembrane proteins GluC and GluD and the cytoplasmic protein GluA, which couples the hydrolysis of ATP to the translocation of glutamate, they form a highly active glutamate-uptake system. As part of efforts to study the amino-acid metabolism, especially the metabolism of glutamic acid by C. glutamicum, a bacterium that is widely used in the industrial production of glutamic acid, the GluB protein was expressed, purified and crystallized, an X-ray diffraction data set was collected to a resolution of 1.9 Å and preliminary crystallographic analysis was performed. The crystal belonged to space group P3 1 21 or P3 2 21, with unit-cell parameters a = b = 82.50, c = 72.69 Å

  13. On the preferential crystallographic orientation of Au nanoparticles: Effect of electrodeposition time

    International Nuclear Information System (INIS)

    El-Deab, Mohamed S.

    2009-01-01

    The crystallographic orientation of Au nanoparticles electrodeposited at glassy carbon (nano-Au/GC) electrodes (prepared by potential step electrolysis) is markedly influenced by the width of the potential step. The oxygen reduction reaction (ORR) and the reductive desorption of cysteine have been studied on nano-Au/GC electrodes. Furthermore, electron backscatter diffraction (EBSD) technique has been used to probe the crystallographic orientation of the electrodeposited Au nanoparticles. That is, Au nanoparticles prepared in short time (5-60 s) have been found rich in the Au(1 1 1) facet orientation and are characterized by a relatively small particle size (ca. 10-50 nm) as well as high particle density (number of particles per unit area) as revealed by SEM images. Whereas Au nanoparticles prepared by longer electrolysis time (>60 s) are found to be much enriched in the Au(1 0 0) and Au(1 1 0) facets and are characterized by a relatively large particle size (>100 nm). EBSD patterns provided definitive information about the crystal orientations mapping of Au nanoparticles prepared at various deposition times.

  14. Enhancing nanoscale SEM image segmentation and reconstruction with crystallographic orientation data and machine learning

    International Nuclear Information System (INIS)

    Converse, Matthew I.; Fullwood, David T.

    2013-01-01

    Current methods of image segmentation and reconstructions from scanning electron micrographs can be inadequate for resolving nanoscale gaps in composite materials (1–20 nm). Such information is critical to both accurate material characterizations and models of piezoresistive response. The current work proposes the use of crystallographic orientation data and machine learning for enhancing this process. It is first shown how a machine learning algorithm can be used to predict the connectivity of nanoscale grains in a Nickel nanostrand/epoxy composite. This results in 71.9% accuracy for a 2D algorithm and 62.4% accuracy in 3D. Finally, it is demonstrated how these algorithms can be used to predict the location of gaps between distinct nanostrands — gaps which would otherwise not be detected with the sole use of a scanning electron microscope. - Highlights: • A method is proposed for enhancing the segmentation/reconstruction of SEM images. • 3D crystallographic orientation data from a nickel nanocomposite is collected. • A machine learning algorithm is used to detect trends in adjacent grains. • This algorithm is then applied to predict likely regions of nanoscale gaps. • These gaps would otherwise be unresolved with the sole use of an SEM

  15. The crystallographic information file (CIF): A new standard archive file for crystallography

    International Nuclear Information System (INIS)

    Hall, S.R.; Allen, F.H.; Brown, I.D.

    1991-01-01

    The specification of a new standard Crystallographic Information File (CIF) is described. Its development is based on the Self-Defining Text Archieve and Retrieval (STAR) procedure. The CIF is a general, flexible and easily extensible free-format archive file; it is human and machine readable and can be edited by a simple editor. The CIF is designed for the electronic transmission of crystallographic data between individual laboratories, journals and databases: It has been adopted by the International Union of Crystallography as the recommended medium for this purpose. The file consists of data names and data items, together with a loop facility for repeated items. The data names, constructed hierarchically so as to form data categories, are self-descriptive within a 32-character limit. The sorted list of data names, together with their precise definitions, constitutes the CIF dictionary (core version 1991). The CIF core dictionary is presented in full and covers the fundamental and most commonly used data items relevant to crystal structure analysis. The dictionary is also available as an electronic file suitable for CIF computer applications. Future extensions to the dictionary will include data items used in more specialized areas of crystallography. (orig.)

  16. Characterization of Crystallographic Structures Using Bragg-Edge Neutron Imaging at the Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    Gian Song

    2017-12-01

    Full Text Available Over the past decade, wavelength-dependent neutron radiography, also known as Bragg-edge imaging, has been employed as a non-destructive bulk characterization method due to its sensitivity to coherent elastic neutron scattering that is associated with crystalline structures. Several analysis approaches have been developed to quantitatively determine crystalline orientation, lattice strain, and phase distribution. In this study, we report a systematic investigation of the crystal structures of metallic materials (such as selected textureless powder samples and additively manufactured (AM Inconel 718 samples, using Bragg-edge imaging at the Oak Ridge National Laboratory (ORNL Spallation Neutron Source (SNS. Firstly, we have implemented a phenomenological Gaussian-based fitting in a Python-based computer called iBeatles. Secondly, we have developed a model-based approach to analyze Bragg-edge transmission spectra, which allows quantitative determination of the crystallographic attributes. Moreover, neutron diffraction measurements were carried out to validate the Bragg-edge analytical methods. These results demonstrate that the microstructural complexity (in this case, texture plays a key role in determining the crystallographic parameters (lattice constant or interplanar spacing, which implies that the Bragg-edge image analysis methods must be carefully selected based on the material structures.

  17. Multi Scale Finite Element Analyses By Using SEM-EBSD Crystallographic Modeling and Parallel Computing

    International Nuclear Information System (INIS)

    Nakamachi, Eiji

    2005-01-01

    A crystallographic homogenization procedure is introduced to the conventional static-explicit and dynamic-explicit finite element formulation to develop a multi scale - double scale - analysis code to predict the plastic strain induced texture evolution, yield loci and formability of sheet metal. The double-scale structure consists of a crystal aggregation - micro-structure - and a macroscopic elastic plastic continuum. At first, we measure crystal morphologies by using SEM-EBSD apparatus, and define a unit cell of micro structure, which satisfy the periodicity condition in the real scale of polycrystal. Next, this crystallographic homogenization FE code is applied to 3N pure-iron and 'Benchmark' aluminum A6022 polycrystal sheets. It reveals that the initial crystal orientation distribution - the texture - affects very much to a plastic strain induced texture and anisotropic hardening evolutions and sheet deformation. Since, the multi-scale finite element analysis requires a large computation time, a parallel computing technique by using PC cluster is developed for a quick calculation. In this parallelization scheme, a dynamic workload balancing technique is introduced for quick and efficient calculations

  18. Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model

    International Nuclear Information System (INIS)

    Zhang, M.-X.; Kelly, P.M.; Easton, M.A.; Taylor, J.A.

    2005-01-01

    The edge-to-edge matching model for describing the interfacial crystallographic characteristics between two phases that are related by reproducible orientation relationships has been applied to the typical grain refiners in aluminum alloys. Excellent atomic matching between Al 3 Ti nucleating substrates, known to be effective nucleation sites for primary Al, and the Al matrix in both close packed directions and close packed planes containing these directions have been identified. The crystallographic features of the grain refiner and the Al matrix are very consistent with the edge-to-edge matching model. For three other typical grain refiners for Al alloys, TiC (when a = 0.4328 nm), TiB 2 and AlB 2 , the matching only occurs between the close packed directions in both phases and between the second close packed plane of the Al matrix and the second close packed plane of the refiners. According to the model, it is predicted that Al 3 Ti is a more powerful nucleating substrate for Al alloy than TiC, TiB 2 and AlB 2 . This agrees with the previous experimental results. The present work shows that the edge-to-edge matching model has the potential to be a powerful tool in discovering new and more powerful grain refiners for Al alloys

  19. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum

    International Nuclear Information System (INIS)

    Thijs, Lore; Montero Sistiaga, Maria Luz; Wauthle, Ruben; Xie, Qingge; Kruth, Jean-Pierre; Van Humbeeck, Jan

    2013-01-01

    Selective laser melting (SLM) makes use of a high energy density laser beam to melt successive layers of metallic powders in order to create functional parts. The energy density of the laser is high enough to melt refractory metals like Ta and produce mechanically sound parts. Furthermore, the localized heat input causes a strong directional cooling and solidification. Epitaxial growth due to partial remelting of the previous layer, competitive growth mechanism and a specific global direction of heat flow during SLM of Ta result in the formation of long columnar grains with a 〈1 1 1〉 preferential crystal orientation along the building direction. The microstructure was visualized using both optical and scanning electron microscopy equipped with electron backscattered diffraction and the global crystallographic texture was measured using X-ray diffraction. The thermal profile around the melt pool was modeled using a pragmatic model for SLM. Furthermore, rotation of the scanning direction between different layers was seen to promote the competitive growth. As a result, the texture strength increased to as large as 4.7 for rotating the scanning direction 90° every layer. By comparison of the yield strength measured by compression tests in different orientations and the averaged Taylor factor calculated using the viscoplastic self-consistent model, it was found that both the morphological and crystallographic texture observed in SLM Ta contribute to yield strength anisotropy

  20. Crystallization and preliminary X-ray crystallographic studies of DnaJ from Streptococcus pneumoniae

    International Nuclear Information System (INIS)

    Zhao, Shasha; Jin, Li; Niu, Siqiang; Yang, Wei; Zhang, Shaocheng; Guo, Zhen; Zhang, Hongpeng; Huang, Ailong; Yin, Yibing; Wang, Deqiang

    2013-01-01

    DnaJ from Streptococcus pneumoniae (SpDnaJ) is involved in the infectious disease process and is being developed as a potential vaccine to prevent bacterial infection. Here the expression, purification, crystallization and preliminary crystallographic analysis of SpDnaJ are reported. DnaJ, cooperating with DnaK and GrpE, promotes the folding of unfolded hydrophobic polypeptides, dissociates protein complexes and translocates protein across membranes. Additionally, DnaJ from Streptococcus pneumoniae (SpDnaJ) is involved in the infectious disease process and is being developed as a potential vaccine to prevent bacterial infection. Here the expression, purification, crystallization and preliminary crystallographic analysis of SpDnaJ are reported. The crystals belong to space groups I222 or I2 1 2 1 2 1 and the diffraction resolution is 3.0 Å with unit-cell parameters a = 47.68, b = 104.45, c = 234.57 Å. The crystal most likely contains one molecule in the asymmetric unit, with a V M value of 3.24 Å 3 Da −1 and a solvent content of 62.1%

  1. Synthesis and characterization of monomeric manganese(II) and ...

    African Journals Online (AJOL)

    The geometry at the manganese center is seven-coordinate, and is best described as a capped trigonal pyramid with the water molecule forming the cap and the six nitrogen atoms of the tpen ligand occupying the pyramidal sites. The manganese atom and the water molecule lie on a crystallographic twofold axis.

  2. Effects of cytokines on the pituitary-adrenal axis in cancer patients.

    Science.gov (United States)

    Nolten, W E; Goldstein, D; Lindstrom, M; McKenna, M V; Carlson, I H; Trump, D L; Schiller, J; Borden, E C; Ehrlich, E N

    1993-10-01

    Cytokines, which include interferons (IFNs), interleukins (ILs), and tumor necrosis factor (TNF), are immunoregulatory proteins produced by lymphocytes and inflammatory cells. Several cytokines, most noteworthy IFNs and ILs, stimulate glucocorticoid secretion. In this study, the effects of variable doses and repetitive administration of IFNs and TNF on secretion of pituitary hormones and cortisol were measured. Patients were given for a period of 15 days on alternating days injections of IFN-beta (IFN-beta ser), 90 or 450 x 10(6) IU, IFN-gamma, 0.1-100 x 10(6) IU, or TNF 125-275 micrograms/m2. Sixty to 120 min after IFN-beta ser injection median levels of cortisol, adrenocorticotropin (ACTH), prolactin (PRL), and growth hormone (GH) rose two-fold. Urinary free cortisol excretion increased significantly during the day following IFN-beta ser administration. IFN-gamma > or = 30 x 10(6) IU caused a comparable rise in plasma cortisol. TNF induced two- to four-fold increases in ACTH and cortisol. The fact that increased cortisol secretion was associated with a rise in the level of ACTH as well as PRL and GH suggests that the cytokines increased cortisol by stimulating the anterior pituitary. The hormonal response induced by cytokines was unrelated to their pyrogenic effect, undiminished with repetitive treatment, and not dose-dependent above a threshold level. These observations reinforce the concept of a physiologic link between the immune system and the hypothalamic-pituitary-adrenal (HPA) axis.

  3. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ming-Hsien [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua 50544, Taiwan (China); Department of Orthopedic Surgery, Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Pei-Yuan [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua 50544, Taiwan (China); Chen, Wen-Cheng, E-mail: wincheng0925@yahoo.com.tw [Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Hu, Jin-Jia, E-mail: jjhu@mail.ncku.edu.tw [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan (China)

    2014-12-01

    This study evaluated the effectiveness of three calcium phosphate bone graft substitutes with different chemical compositions on spinal fusion using a rat posterolateral lumbar fusion model. Specifically, two recently developed non-dispersive tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cements (CPCs), namely a CPC consisting of equimolar amounts of the two compounds (nd-CPC) and a CPC consisting of a two-fold greater amount of dicalcium phosphate anhydrous (DCP-rich CPC), were compared with a commercial calcium phosphate bone graft (c-CPG) consisting of hydroxyapatite (60%) and β-tricalcium phosphate (40%). Single-level posterolateral lumbar fusion was performed at the L4–L5 vertebrae in fifteen adult rats (n = 5 for each group). Spinal fusion was evaluated with radiographs, manual palpation, mechanical testing, micro-CT, and histology 8 weeks post-surgery. In particular, the crystallographic phases in the three substitutes were identified before and 8 weeks after their implantation. Manual palpation revealed stable constructs in nearly all of the spine specimens. The stiffness and bending load of fused spines in the two CPC groups were comparable to those in the c-CPG group. The radiographs specifically revealed implant resorption and bone remodeling in the DCP-rich CPC group. Analysis of 3D micro-CT images revealed that the bone volume ratio in the DCP-rich CPC group was significantly greater than those in the nd-CPC and c-CPG groups. Histology showed that the DCP-rich CPC group exhibited the highest degree of bone regeneration and osseointegration. Notably, DCP-rich CPC led to a pronounced phase transformation, generating the greatest amount of poorly crystalline apatite among the three groups, which together with adequate resorption may explain the aforementioned positive findings. We therefore conclude that of the bone graft substitutes considered, DCP-rich CPC has the greatest potential to be used in spinal fusion

  4. The Proline Regulatory Axis and Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Phang, James Ming; Liu, Wei; Hancock, Chad; Christian, Kyle J., E-mail: phangj@mail.nih.gov [Metabolism and Cancer Susceptibility Section, Basic Research Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD (United States)

    2012-06-21

    Studies in metabolism and cancer have characterized changes in core pathways involving glucose and glutamine, emphasizing the provision of substrates for building cell mass. But recent findings suggest that pathways previously considered peripheral may play a critical role providing mechanisms for cell regulation. Several of these mechanisms involve the metabolism of non-essential amino acids, for example, the channeling of glycolytic intermediates into the serine pathway for one-carbon transfers. Historically, we proposed that the proline biosynthetic pathway participated in a metabolic interlock with glucose metabolism. The discovery that proline degradation is activated by p53 directed our attention to the initiation of apoptosis by proline oxidase/dehydrogenase. Now, however, we find that the biosynthetic mechanisms and the metabolic interlock may depend on the pathway from glutamine to proline, and it is markedly activated by the oncogene MYC. These findings add a new dimension to the proline regulatory axis in cancer and present attractive potential targets for cancer treatment.

  5. Polarized triple-axis spectrometer TASP

    Energy Technology Data Exchange (ETDEWEB)

    Boeni, P; Keller, P [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    The polarized triple-axis spectrometer TASP at SINQ has been optimized for measuring magnetic cross sections in condensed matter. The neutrons are polarized or analyzed either by means of benders or Heusler monochromators. The beam divergence, i.e. the intensity, and the spectral range of the neutrons is rather large because of the supermirror coatings of the feeding neutron guide. The intensity can be further increased at the sample position by means of a focussing monochromator and a focussing anti-trumpet. The end position of TASP allows the tailoring of the neutron beam already before the monochromator and to scatter neutrons over very wide ranges of angles. (author) 6 figs., 1 tab., 8 refs.

  6. A Portable Single Axis Magnetic Gradiometer

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Petersen, Jan Raagaard; Nielsen, Otto V

    2001-01-01

    not provide vector information about the magnetic field. Secondly, one of the sensors measures the ambient magnetic field and is used to compensate for the main field at both sensors. Several methods have been developed for characterization of the 2 gradiometer, and the calibration of the gradient......The single axis magnetic gradiometer based on two compact detector compensation (CDC) fluxgate ringcore sensors separated 20 cm is described. Despite its high stability and precision better than 1 nT, the calibration procedures are not straightforward. Firstly, the mono-axial measurement does...... measurements is achieved by using a magnetic dipole of strength 2 mAm(2). In a coil facility, the gradient can be determined with an accuracy of 0.3 nT/m(RMS)....

  7. RITA-type triple axis spectrometers

    International Nuclear Information System (INIS)

    Roennow, H.M.

    2001-01-01

    The RITA spectrometer at Risoe National Laboratory was the first to incorporate a complete re-thinking of the neutron-path from source, through detector to analysis. Since then, other RITA-type spectrometers such as SPINS at NIST, RITA-II at PSI have been built, and several new spectrometers around the world are adapting the same philosophy. The main novelty of RITA was the introduction of a single back-end tank featuring both an analyser block with multiple individually turnable analyser blades and a 2D position sensitive detector. Several new triple-axis spectrometers are presently being built at existing and future sources, and almost all of them have learnt from the experience with RITA. (R.P.)

  8. Providing Virtual Execution Environments: A Twofold Illustration

    CERN Document Server

    Grehant, Xavier

    2008-01-01

    Platform virtualization helps solving major grid computing challenges: share resource with flexible, user-controlled and custom execution environments and in the meanwhile, isolate failures and malicious code. Grid resource management tools will evolve to embrace support for virtual resource. We present two open source projects that transparently supply virtual execution environments. Tycoon has been developed at HP Labs to optimise resource usage in creating an economy where users bid to access virtual machines and compete for CPU cycles. SmartDomains provides a peer-to-peer layer that automates virtual machines deployment using a description language and deployment engine from HP Labs. These projects demonstrate both client-server and peer-to-peer approaches to virtual resource management. The first case makes extensive use of virtual machines features for dynamic resource allocation. The second translates virtual machines capabilities into a sophisticated language where resource management components can b...

  9. Analysis and design of a vertical axis wind turbine

    OpenAIRE

    Goyena Iriso, Joseba

    2011-01-01

    The main objective of this project is to design a new vertical axis wind turbine, specifically one Giromill wind turbine. The project development requires performing a previous study of the vertical axis wind turbines currently development. This study has to be performed before starting to design the wind turbine. Other very important aim is the development of a new vertical axis wind turbine. The after analyses that will result in the final design of the wind turbine will b...

  10. Self-starting aerodynamics analysis of vertical axis wind turbine

    OpenAIRE

    Jianyang Zhu; Hailin Huang; Hao Shen

    2015-01-01

    Vertical axis wind turbine is a special type of wind-force electric generator which is capable of working in the complicated wind environment. The self-starting aerodynamics is one of the most important considerations for this kind of turbine. This article aims at providing a systematic synthesis on the self-starting aerodynamic characteristics of vertical axis wind turbine based on the numerical analysis approach. First, the physical model of vertical axis wind turbine and its parameter defi...

  11. Platinum Group Thiophenoxyimine Complexes: Syntheses,Crystallographic and Computational Studies of Structural Properties

    Energy Technology Data Exchange (ETDEWEB)

    Krinsky, Jamin L.; Arnold, John; Bergman, Robert G.

    2006-10-03

    Monomeric thiosalicylaldiminate complexes of rhodium(I) and iridium(I) were prepared by ligand transfer from the homoleptic zinc(II) species. In the presence of strongly donating ligands, the iridium complexes undergo insertion of the metal into the imine carbon-hydrogen bond. Thiophenoxyketimines were prepared by non-templated reaction of o-mercaptoacetophenone with anilines, and were complexed with rhodium(I), iridium(I), nickel(II) and platinum(II). X-ray crystallographic studies showed that while the thiosalicylaldiminate complexes display planar ligand conformations, those of the thiophenoxyketiminates are strongly distorted. Results of a computational study were consistent with a steric-strain interpretation of the difference in preferred ligand geometries.

  12. Purification, identification and preliminary crystallographic studies of Pru du amandin, an allergenic protein from Prunus dulcis

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, Vineet; Sethi, Dhruv K.; Salunke, Dinakar M., E-mail: dinakar@nii.res.in [National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2008-01-01

    The purification, identification, crystallization and preliminary crystallographic studies of an allergy-related protein, Pru du amandin, from P. dulcis nuts are reported. Food allergies appear to be one of the foremost causes of hypersensitivity reactions. Nut allergies account for most food allergies and are often permanent. The 360 kDa hexameric protein Pru du amandin, a known allergen, was purified from almonds (Prunus dulcis) by ammonium sulfate fractionation and ion-exchange chromatography. The protein was identified by a BLAST homology search against the nonredundant sequence database. Pru du amandin belongs to the 11S legumin family of seed storage proteins characterized by the presence of a cupin motif. Crystals were obtained by the hanging-drop vapour-diffusion method. The crystals belong to space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 150.7, c = 164.9 Å.

  13. Recombinant ACHT1 from Arabidopsis thaliana: crystallization and X-ray crystallographic analysis.

    Science.gov (United States)

    Pan, Weimin; Wang, Junchao; Yang, Ye; Liu, Lin; Zhang, Min

    2017-07-01

    Thioredoxins (Trxs) play important roles in chloroplasts by linking photosynthetic light reactions to a series of plastid functions. They execute their function by regulating the oxidation and reduction of disulfide bonds. ACHT1 (atypical cysteine/histidine-rich Trx1) is a thylakoid-associated thioredoxin-type protein found in the Arabidopsis thaliana chloroplast. Recombinant ACHT1 protein was overexpressed in Escherichia coli, purified and crystallized by the vapour-diffusion method. The crystal diffracted to 1.7 Å resolution and a complete X-ray data set was collected. Preliminary crystallographic analysis suggested that the crystals belonged to space group C222 1 , with unit-cell parameters a = 102.7, b = 100.6, c = 92.8 Å.

  14. Hydrogen-induced crack interaction and coalescence: the role of local crystallographic texture

    Energy Technology Data Exchange (ETDEWEB)

    Caleyo, F.; Hallen, J. M.; Venegas, V. [ESIQIE, Instituto Politecnico Nacional, Mexico, (Mexico); Baudin, T. [Universite de Paris Sud, Orsay, (France)

    2010-07-01

    Hydrogen induced cracking (HIC) is a big concern in pipeline industry specialized in sour service. The strategies to improve HIC resistance of pipeline steel have not been completely efficient. This study investigated the role of grain orientation in the interaction and coalescence of non-coplanar HIC cracks through experimental analysis. HIC samples of pipeline steels (API 5L X46 and ASME-A106) were studied using automated electron backscatter diffraction (EBSD) and orientation imaging microscopy (OIM). The results showed that the microtexture can play a significant role in the coalescence of closely spaced non-coplanar HIC cracks. It was also found that the presence of cleavage planes and slip systems correctly oriented to the mixed-mode stresses can activate low-resistance transgranular paths along in which cracks can merge. It is demonstrated that crystallographic texture must be considered in developing predictive models for the study of the stepwise propagation of HIC cracking in pipeline steels.

  15. Crystallization and preliminary crystallographic characterization of the PAS domains of EAG and ELK potassium channels

    International Nuclear Information System (INIS)

    Adaixo, Ricardo; Morais-Cabral, João Henrique

    2010-01-01

    The N-terminal PAS domains from the eukaryotic EAG potassium channels are thought to have a regulatory function. Here the expression, purification, crystallization and preliminary crystallographic characterization of two of these domains are described. Per–Arnt–Sim (PAS) domains are ubiquitous in nature; they are ∼130-amino-acid protein domains that adopt a fairly conserved three-dimensional structure despite their low degree of sequence homology. These domains constitute the N-terminus or, less frequently, the C-terminus of a number of proteins, where they exert regulatory functions. PAS-containing proteins generally display two or more copies of this motif. In this work, the crystallization and preliminary analysis of the PAS domains of two eukaryotic potassium channels from the ether-à-go-go (EAG) family are reported

  16. Expression, crystallization and preliminary crystallographic data analysis of filamin A repeats 14–16

    International Nuclear Information System (INIS)

    Aguda, Adeleke Halilu; Sakwe, Amos Malle; Rask, Lars; Robinson, Robert Charles

    2007-01-01

    The crystallization and crystallographic data analysis of filamin repeats 14–16 are reported. Human filamin A is a 280 kDa protein involved in actin-filament cross-linking. It is structurally divided into an actin-binding headpiece (ABD) and a rod domain containing 24 immunoglobulin-like (Ig) repeats. A fragment of human filamin A (Ig repeats 14–16) was cloned and expressed in Escherichia coli and the purified protein was crystallized in 1.6 M ammonium sulfate, 2% PEG 1000 and 100 mM HEPES pH 7.5. The crystals diffracted to 1.95 Å and belong to space group P2 1 2 1 2 1 , with unit-cell parameters a = 50.63, b = 52.10, c = 98.46 Å, α = β = γ = 90°

  17. Research on the phenomenon of graphitization. Crystallographic study - Study of bromine sorption

    International Nuclear Information System (INIS)

    Maire, Jacques

    1967-01-01

    This research thesis reports the study of the mechanism of graphitization of carbon by using X-ray diffraction analysis and the physical and chemical study of lamellar reactions between carbon and bromine. The author first presents generalities and results of preliminary studies (meaning of graphitization, presentation of the various carbon groups and classes), and then reports the study of the graphitization of compact carbons (soft carbons). More precisely, he reports the crystallographic study of partially graphitized carbons: methods and principles, experimental results and their analysis, discussion of the graphitization mechanism. In the next part, the author reports the study of bromine sorption on carbons: experimental method, isotherms of a natural graphite and of a graphitized carbon, structure of carbon-bromine complexes, isotherms of graphitizable carbons and of all other carbons, distribution of bromine layers in partially graphitized carbons, bromine sorption and Fermi level

  18. The distribution function of crystalline orientation's usefulness in crystallographic texture analysis

    International Nuclear Information System (INIS)

    Hermida, J.D.; Pochettino, A.A.

    1982-01-01

    The theoretical fundaments of the Distribution Function of Crystalline Orientations (DFCO) are described and this method is compared with the usual description of the crystallographic texture by direct pole figures. Such function is applied to the study of a Zry-4 sample obtained from a tube belonging to a CANDU type fuel element. The DFCO is obtained from the pole figures (0002), (101-bar0) and (101-bar1). The results show the existence of six fundamental components of texture, which are enunciated below, in decreasing order of importance: (2-bar115) ; (3-bar128) ; (1-bar013) ; (2-bar114) ; (0001) ; (0001) . A much more complete view of the crystals' orientation state of such sample can be obtained by analyzing the weight and the distribution of the different components. (M.E.L.) [es

  19. Expression, purification, crystallization and preliminary crystallographic analysis of the proliferation-associated protein Ebp1

    International Nuclear Information System (INIS)

    Kowalinski, Eva; Bange, Gert; Wild, Klemens; Sinning, Irmgard

    2007-01-01

    Preliminary X-ray analysis of the proliferation-associated protein Ebp1 from Homo sapiens is provided. ErbB-3-binding protein 1 (Ebp1) is a member of the family of proliferation-associated 2G4 proteins (PA2G4s) and plays a role in cellular growth and differentiation. Ligand-induced activation of the transmembrane receptor ErbB3 leads to dissociation of Ebp1 from the receptor in a phosphorylation-dependent manner. The non-associated protein is involved in transcriptional and translational regulation in the cell. Here, the overexpression, purification, crystallization and preliminary crystallographic studies of Ebp1 from Homo sapiens are reported. Initially observed crystals were improved by serial seeding to single crystals suitable for data collection. The optimized crystals belong to the tetragonal space group P4 1 2 1 2 or P4 3 2 1 2 and diffracted to a resolution of 1.6 Å

  20. Influence of chemical composition in crystallographic texture Fe-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Moura, L.B.; Guimaraes, R.F.

    2010-01-01

    The use of steels with higher contents of Mo in the oil industry has been an alternative to reduce the effect of naphthenic corrosion in refining units. The addition of Mo in Fe-Cr alloys in the same manner that increases resistance to corrosion naphthenic causes some difficulties such as difficulty of forming, welding and embrittlement. In this work, experimental ingots of Fe-Cr-Mo alloys (Cr - 9, 15 and 17%, Mo - 5, 7 and 9%) were melted in vacuum induction furnace and hot and cold rolled in a laboratory rolling mill. The influence of chemical composition on crystallographic texture of samples subjected to the same thermo-mechanical treatment was analyzed by x-ray diffraction. The results indicate that fiber (111) becomes more intense with increasing Mo and/or Cr contents. (author)

  1. Dianthraceno[a,e]pentalenes: Synthesis, crystallographic structures and applications in organic field-effect transistors

    KAUST Repository

    Dai, Gaole

    2015-01-01

    Two soluble and stable dianthraceno[a,e]pentalenes with two (DAP1) and six (DAP2) phenyl substituents were synthesized. Both compounds possess a small energy band gap and show amphoteric redox behaviour due to intramolecular donor-accepter interactions. X-ray crystallographic analysis revealed that DAP2 has a closely packed structure with multi-dimensional [C-H⋯π] interactions although there are no π-π interactions between the dianthraceno[a,e]pentalene cores. As a result, solution-processed field effect transistors based on DAP2 exhibited an average hole mobility of 0.65 cm2 V-1 s-1. Under similar conditions, DAP1 showed an average field effect hole mobility of 0.001 cm2 V-1 s-1. This journal is

  2. Expression, purification and preliminary crystallographic analysis of sucrose phosphate synthase (SPS) from Halothermothrix orenii

    International Nuclear Information System (INIS)

    Huynh, Frederick; Tan, Tien-Chye; Swaminathan, Kunchithapadam; Patel, Bharat K. C.

    2004-01-01

    The first crystallographic study of a sucrose phosphate synthase from H. orenii, an organism that is both thermophilic and halophilic, is reported. The protein crystal diffracts X-rays to 3.01 Å. This is the first report of the crystallization of a sucrose phosphate synthase (SPS; EC 2.4.1.14). It also constitutes the first study of a sucrose phosphate synthase from a non-photosynthetic thermohalophilic anaerobic bacterium, Halothermothrix orenii. The purified recombinant spsA protein has been crystallized in the monoclinic space group C2, with unit-cell parameters a = 154.2, b = 47.9, c = 72.3 Å, β = 103.16°, using the hanging-drop vapour-diffusion method. The crystal diffracts X-rays to a resolution limit of 3.01 Å. Heavy-metal and halide-soaking trials are currently in progress to solve the structure

  3. Automating crystallographic structure solution and refinement of protein–ligand complexes

    International Nuclear Information System (INIS)

    Echols, Nathaniel; Moriarty, Nigel W.; Klei, Herbert E.; Afonine, Pavel V.; Bunkóczi, Gábor; Headd, Jeffrey J.; McCoy, Airlie J.; Oeffner, Robert D.; Read, Randy J.; Terwilliger, Thomas C.; Adams, Paul D.

    2013-01-01

    A software system for automated protein–ligand crystallography has been implemented in the Phenix suite. This significantly reduces the manual effort required in high-throughput crystallographic studies. High-throughput drug-discovery and mechanistic studies often require the determination of multiple related crystal structures that only differ in the bound ligands, point mutations in the protein sequence and minor conformational changes. If performed manually, solution and refinement requires extensive repetition of the same tasks for each structure. To accelerate this process and minimize manual effort, a pipeline encompassing all stages of ligand building and refinement, starting from integrated and scaled diffraction intensities, has been implemented in Phenix. The resulting system is able to successfully solve and refine large collections of structures in parallel without extensive user intervention prior to the final stages of model completion and validation

  4. Influence of crystallographic orientation on the response of copper crystallites to nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Korchuganov, Aleksandr V., E-mail: avkor@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Kryzhevich, Dmitrij S., E-mail: kryzhev@ispms.tsc.ru, E-mail: kost@ispms.tsc.ru; Zolnikov, Konstantin P., E-mail: kryzhev@ispms.tsc.ru, E-mail: kost@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Psakhie, Sergey G., E-mail: sp@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    Molecular dynamics simulation was performed to study the features of nucleation and development of plastic deformation in copper crystallites in nanoindentation with different crystallographic orientations of their loaded surface: (011), (001), and (111). Atomic interaction was described by a potential constructed in terms of the embedded atom method. It is shown that behavior of the crystallite reaction force correlates well with a change in the fraction of atoms involved in local structural rearrangements. The generation of local structural changes decreases the slope of the crystallite reaction force curve or results in an extremum due to internal stress relaxation. Analysis of structural changes in the material being indented demonstrates that the orientation of its loaded surface greatly affects the features of nucleation and development of plastic deformation.

  5. Effects of crystallographic texture on stress-migration resistance in copper thin films

    International Nuclear Information System (INIS)

    Koike, J.; Wada, M.; Sanada, M.; Maruyama, K.

    2002-01-01

    The crystallographic texture of heat-treated Cu thin films and its effects on stress-migration resistance were studied as a function of film thickness within a range of 50-900 nm. All as-deposited films had (111) texture. After heat treatment at 723 K, texture transition from (111) to (100) was observed in films of thickness greater than 300 nm. The (111) texture films after heat treatment showed severe stress migration; in contrast, the (100) texture films showed no noticeable stress migration. The observed stress-migration resistance in the (100) texture films can be attributed to the absence of twins and to lower thermal stress as compared with the (111) texture films

  6. Spectroscopic and crystallographic studies of YAG:Pr4+ single crystals

    International Nuclear Information System (INIS)

    Pawlak, D.; Frukacz, Z.; Mierczyk, Z.; Suchocki, A.; Zachara, J.

    1998-01-01

    Y 3 Al 5 O 12 single crystals doped with praseodymium and magnesium ions have been prepared. The reversible color change of this crystal is observed when annealing in oxidizing or reducing atmospheres. The change is ascribed to the formation of Pr 4+ in the as-grown crystal, caused by the second dopant, Mg 2+ . The absorption spectra of YAG:Pr,Mg in the range 200-1100 nm, as grown and annealed in air and H 2 /N 2 atmosphere, are presented and discussed. Additional broad absorption bands are observed for the as-grown crystals and those annealed in oxidizing atmosphere. Crystallographic investigations of the original crystal and after annealing in a reducing atmosphere as described above, show no distinct structural differences. A redox mechanism is proposed to explain the color change during annealing. (orig.)

  7. Crystallographic and oxidation kinetic study of uranium dioxide by high temperature X-ray diffractometry

    International Nuclear Information System (INIS)

    Teixeira, S.R.

    1981-01-01

    The structural behavior of UO 2 sintered plates was studied as a function of temperature by X-ray diffractometry. All the experiments were carried out under an inert atmosphere with low oxygen content (approximated 140 ppm). The thermal expansion coefficient of UO 2 05 was found to be 10,5 x 10 - 6 0 C - 1 for temperatures above 165 0 C. Structural transformations during oxidation were observed at 170,235 and 275 0 C. The isothermal oxidation of UO 2 to U 3 O 7 follows a parabolic form and the diffusion of oxygen through the product layer U 4 O 9 is the mechanism controlling the oxidation rate. The phases observed were UO 2 (cubic) - U 4 O 9 (cubic) - U 3 O 7 (tetragonal). Activation energies of oxidation were found for different crystallographic planes (hkl). From this one can conclude that there is a preferential occupation of interstitial oxygen within the UO 2 structure. (Author) [pt

  8. Preliminary X-ray crystallographic analysis of the glycosyltransferase from a marine Streptomyces species

    International Nuclear Information System (INIS)

    Gong, Liping; Xiao, Yi; Liu, Qiang; Li, Sumei; Zhang, Changsheng; Liu, Jinsong

    2010-01-01

    The recombinant glycosyltransferase ElaGT from the elaiophylin-producing marine Streptomyces sp. SCSIO 01934 has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 2.9 Å resolution. ElaGT is a glycosyltransferase from a marine Streptomyces species that is involved in the biosynthesis of elaiophylin. Here, the molecular cloning, protein expression and purification, preliminary crystallization and crystallographic characterization of ElaGT are reported. The rod-shaped crystals belonged to space group P2 1 22, with unit-cell parameters a = 66.7, b = 131.7, c = 224.6 Å, α = 90, β = 90, γ = 90°. Data were collected to 2.9 Å resolution. A preliminary molecular-replacement solution implied the presence of two ElaGT molecules in the asymmetric unit

  9. Initial crystallographic studies of a small heat-shock protein from Xylella fastidiosa

    International Nuclear Information System (INIS)

    Tada, Susely F. S.; Saraiva, Antonio Marcos; Lorite, Gabriela S.; Rosselli-Murai, Luciana K.; Pelloso, Alexandre César; Santos, Marcelo Leite dos; Trivella, Daniela B. B.; Cotta, Mônica A.; Souza, Anete Pereira de; Aparicio, Ricardo

    2012-01-01

    Initial crystallographic studies of the X. fastidiosa small heat-shock protein HSP17.9 are reported. The ORF XF2234 in the Xylella fastidiosa genome was identified as encoding a small heat-shock protein of 17.9 kDa (HSP17.9). HSP17.9 was found as one of the proteins that are induced during X. fastidiosa proliferation and infection in citrus culture. Recombinant HSP17.9 was crystallized and surface atomic force microscopy experiments were conducted with the aim of better characterizing the HSP17.9 crystals. X-ray diffraction data were collected at 2.7 Å resolution. The crystal belonged to space group P4 3 22, with unit-cell parameters a = 68.90, b = 68.90, c = 72.51 Å, and is the first small heat-shock protein to crystallize in this space group

  10. Crystallographic considerations of the δ in equilibrium α displacive transformation in plutonium alloys

    International Nuclear Information System (INIS)

    Adler, P.H.; Olson, G.B.

    1986-01-01

    Determination of invariant-plane strain crystallographic solutions for martensitic transformation between the FCC δ and monoclinic α phases in plutonium alloys, using three possible lattice correspondences and 53 possible lattice-invariant shear systems, identifies the most probable δ-α lattice correspondence. The operative lattice-invariant shear systems are predicted by comparison of both shape strain magnitudes and computed interfacial energies. For δ → α transformation twinning on (001) [100]/sub α/ is favored, giving a (.817, .538, .208)/sub δ/ habit and a [.947, .269, .174]/sub δ/ shape strain of magnitude m 1 = .324. The α → δ transformation favors slip on (111) [101]/sub δ/, giving a (.255, .844, .471)/sub α/ habit and [.822, .466, .355]/sub α/ shape strain of magnitude m 1 = .417

  11. Purification, identification and preliminary crystallographic studies of a 2S albumin seed protein from Lens culinaris

    International Nuclear Information System (INIS)

    Gupta, Pankaj; Gaur, Vineet; Salunke, Dinakar M.

    2008-01-01

    A 2S albumin from L. culinaris was purified and crystallized and preliminary crystallographic studies were carried out. Lens culinaris (lentil) is a widely consumed high-protein-content leguminous crop. A 2S albumin protein (26.5 kDa) has been identified using NH 2 -terminal sequencing from a 90% ammonium sulfate saturation fraction of total L. culinaris seed protein extract. The NH 2 -terminal sequence shows very high homology to PA2, an allergy-related protein from Pisum sativum. The 2S albumin protein was purified using a combination of size-exclusion and ion-exchange chromatography. Crystals of the 2S seed albumin obtained using the hanging-drop vapour-diffusion method diffracted to 2.5 Å resolution and were indexed in space group P4 1 (or P4 3 ), with unit-cell parameters a = b = 78.6, c = 135.2 Å

  12. Purification, identification and preliminary crystallographic studies of Pru du amandin, an allergenic protein from Prunus dulcis

    International Nuclear Information System (INIS)

    Gaur, Vineet; Sethi, Dhruv K.; Salunke, Dinakar M.

    2007-01-01

    The purification, identification, crystallization and preliminary crystallographic studies of an allergy-related protein, Pru du amandin, from P. dulcis nuts are reported. Food allergies appear to be one of the foremost causes of hypersensitivity reactions. Nut allergies account for most food allergies and are often permanent. The 360 kDa hexameric protein Pru du amandin, a known allergen, was purified from almonds (Prunus dulcis) by ammonium sulfate fractionation and ion-exchange chromatography. The protein was identified by a BLAST homology search against the nonredundant sequence database. Pru du amandin belongs to the 11S legumin family of seed storage proteins characterized by the presence of a cupin motif. Crystals were obtained by the hanging-drop vapour-diffusion method. The crystals belong to space group P4 1 (or P4 3 ), with unit-cell parameters a = b = 150.7, c = 164.9 Å

  13. Concept of a Programmable Fixture for 3-Axis CNC

    Directory of Open Access Journals (Sweden)

    Ahmad Dalloul

    2017-09-01

    Full Text Available CNC machine is the one of the major reasons for industrial advancement in recent decades for its ability of producing accurate parts. The most commen CNC machines are of 3-axis and adopted widely in the industrial sector. However, for producing more complicated parts 5-axis CNC machines are required. Although the introduction of the 5-axis machine came after the 3-axis CNC machine has established itself and many manufacturers did not make the move toward the newer model and its high pricing compared to the 3-axis model did not help either. In this time the development of a fixture or a platform to help transfer the 3-axis to a 5-axis to some degree. This paper discusses the concept of a programmable fixture that gives 3-axis CNC machine the freedom to act in similar manner as the 5-axis. The paper describes the mechanism with some initial results of the testing. Result showed that the platform moves in translation manner with an average error of 5.58 % and 7.303% average error for rotation movement.

  14. Magnetic and crystallographic properties of HoCo3B2

    International Nuclear Information System (INIS)

    Caspi, E.N.; Dubman, M.; Ettedgui, H.; Shaked, H.; Short, S.; Jorgensen, J.D.

    2005-01-01

    AC-susceptibility measurements for HoCo 3 B 2 show paramagnetism below room temperature and a small, and large anomalies at 150 and 10K, respectively. Neutron powder diffraction measurements show a ferromagnetic order below 10K, where the ferromagnetic Ho and Co sublattices are ferromagnetically coupled. The magnetic axis direction is perpendicular to the c axis. The observed magnitudes of the magnetic moments at 4.5K are 5.08(4) and 0.11(2) μ B for Ho and Co, respectively. No long range magnetic order was detected above 10K

  15. Suicidal behavior on Axis VI: clinical data supporting a sixth Axis for DSM-V.

    Science.gov (United States)

    Van Orden, Kimberly A; Witte, Tracy K; Holm-Denoma, Jill; Gordon, Kathryn H; Joiner, Thomas E

    2011-01-01

    Oquendo and colleagues (Oquendo, Baca-García, Mann, & Giner, 2008; Oquendo & Currier, 2009) recommend that DSM-V emphasize suicide risk assessment on a sixth axis, thereby increasing regularity of suicide risk assessments. We propose that evidence of nonredundancy with Axis V - Global Assessment of Functioning (GAF) is one piece of data that can serve as a starting point for a line of research establishing incremental predictive utility for a separate suicide risk assessment in the DSM framework. A standardized suicide risk assessment protocol, measures of depressive, anxious, and eating disordered symptomatology, as well as an index of comorbidity were administered to a sample of 412 adult outpatients. Our data indicate that data from standardized suicide risk assessments are associated with indices of symptomatology severity as well as comorbidity, controlling for GAF. These results support the nonredundancy of the assessments and suggest the utility of longitudinal investigations of the predictive utility of a sixth DSM axis in the assessment of suicide risk.

  16. Transfer of olivine crystallographic orientation through a cycle of serpentinisation and dehydration

    Science.gov (United States)

    Dunkel, Kristina G.; Austrheim, Håkon; Ildefonse, Benoit; Jamtveit, Bjørn

    2017-08-01

    Our ability to decipher the mechanisms behind metamorphic transformation processes depends in a major way on the extent to which crystallographic and microstructural information is transferred from one stage to another. Within the Leka Ophiolite Complex in the Central Norwegian Caledonides, prograde olivine veins that formed by dehydration of serpentinite veins in dunites exhibit a characteristic distribution of microstructures: The outer part of the veins comprises coarse-grained olivine that forms an unusual, brick-like microstructure. The inner part of the veins, surrounding a central fault, is composed of fine-grained olivine. Where the fault movement included a dilational component, optically clear, equant olivine occurs in the centre. Electron backscatter diffraction mapping reveals that the vein olivine has inherited its crystallographic preferred orientation (CPO) from the olivine in the porphyroclastic host rock; however, misorientation is weaker and associated to different rotation axes. We propose that prograde olivine grew epitaxially on relics of mantle olivine and thereby acquired its CPO. Growth towards pre-existing microfractures along which serpentinisation had occurred led to straight grain boundaries and a brick-like microstructure in the veins. When dehydration embrittlement induced slip, a strong strain localisation on discrete fault planes prevented distortion of the CPO due to cataclastic deformation; grain size reduction did not significantly modify the olivine CPO. This illustrates how a CPO can be preserved though an entire metamorphic cycle, including hydration, dehydration, and deformation processes, and that the CPO and the microstructures (e.g. grain shape) of one phase do not necessarily record the same event.

  17. Crystallization and preliminary crystallographic analysis of l-asparaginase from Erwinia carotovora

    International Nuclear Information System (INIS)

    Wikman, Linnea E. K.; Krasotkina, Julya; Kuchumova, Anastasia; Sokolov, Nikolay N.; Papageorgiou, Anastassios C.

    2005-01-01

    Er. carotovoral-asparaginase, a potential antileukaemic agent, has been crystallized. Crystals diffract to 2.6 Å using a rotating-anode source and belong to space group P2 1 , with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. Bacterial l-asparaginases have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukaemia for over 30 y. However, their use is limited owing to the glutaminase activity of the administered enzymes, which results in serious side effects. In contrast, l-asparaginase from Erwinia carotovora exhibits low glutaminase activity at physiological concentrations of l-asparagine and l-glutamine in the blood. Recombinant Er. carotovoral-asparaginase was crystallized in the presence of l-glutamate by the hanging-drop vapour-diffusion method using 10 mg ml −1 purified enzyme, 16–18%(w/v) PEG 3350 and 0.2 M NaF. X-ray diffraction data were collected to 2.6 Å at 293 K using an in-house rotating-anode generator. The crystals belong to the monoclinic P2 1 space group, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. A molecular-replacement solution has been found and refinement is currently in progress. The crystal structure may provide leads towards protein-engineering efforts aimed at safer asparaginase administration in leukaemia treatment

  18. Macromolecular crystallographic results obtained using a 2048x2048 CCD detector at CHESS

    International Nuclear Information System (INIS)

    Thiel, D.J.; Ealick, S.E.; Tate, M.W.; Gruner, S.M.; Eikenberry, E.F.

    1996-01-01

    We present results of macromolecular crystallographic experiments performed at the Cornell High Energy Synchrotron Source (CHESS) with a new CCD-based detector. This detector, installed in January 1995, complements a 1024x1024 CCD detector that has been in continuous operation at CHESS since December 1993. The new detector is based on a 4-port, 2048x2048 pixel CCD that is directly coupled to a Gd 2 O 2 S:Tb phosphor by a 3:1 tapered fiber optic. The active area of the phosphor is a square 82 mm on an edge. The readout time is 7 seconds. In the standard mode of operation, the pixel size at the active area is 41 μm on the edge leading to the capability of resolving approximately 200 orders of diffraction across the detector face. The detector also operates in a 1024x1024 mode in which the pixel size is electronically increased by a factor of 4 in area resulting in smaller data files and faster detector readout but at the expense of spatial resolution. Most of the data that has been collected by this detector has been collected in this mode. Dozens of data sets have been collected by many experimenters using this detector at CHESS during the four month period from its installation until the start of the six-month down period of the storage ring. The capabilities of the detector will be illustrated with results from various crystallographic measurements including experiments in which the recorded diffraction patterns extend in resolution as far as 1 A. The results demonstrate that this detector is capable of collecting data of quality at least equal to that of imaging plates but, in many circumstances, with much greater beamline efficiency. copyright 1996 American Institute of Physics

  19. Crystallization and preliminary crystallographic analysis of l-asparaginase from Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Linnea E. K. [Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20521 (Finland); Krasotkina, Julya; Kuchumova, Anastasia; Sokolov, Nikolay N. [Institute for Biomedical Chemistry, Russian Academy of Medical Sciences, 559-B, 10 Pogodinskay St, Moscow 119121 (Russian Federation); Papageorgiou, Anastassios C., E-mail: tassos.papageorgiou@btk.fi [Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20521 (Finland)

    2005-04-01

    Er. carotovoral-asparaginase, a potential antileukaemic agent, has been crystallized. Crystals diffract to 2.6 Å using a rotating-anode source and belong to space group P2{sub 1}, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. Bacterial l-asparaginases have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukaemia for over 30 y. However, their use is limited owing to the glutaminase activity of the administered enzymes, which results in serious side effects. In contrast, l-asparaginase from Erwinia carotovora exhibits low glutaminase activity at physiological concentrations of l-asparagine and l-glutamine in the blood. Recombinant Er. carotovoral-asparaginase was crystallized in the presence of l-glutamate by the hanging-drop vapour-diffusion method using 10 mg ml{sup −1} purified enzyme, 16–18%(w/v) PEG 3350 and 0.2 M NaF. X-ray diffraction data were collected to 2.6 Å at 293 K using an in-house rotating-anode generator. The crystals belong to the monoclinic P2{sub 1} space group, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. A molecular-replacement solution has been found and refinement is currently in progress. The crystal structure may provide leads towards protein-engineering efforts aimed at safer asparaginase administration in leukaemia treatment.

  20. Purification, crystallization and preliminary crystallographic analysis of human cystathionine β-synthase

    International Nuclear Information System (INIS)

    Oyenarte, Iker; Majtan, Tomas; Ereño, June; Corral-Rodríguez, María Angeles; Kraus, Jan P.; Martínez-Cruz, Luis Alfonso

    2012-01-01

    This article describes the crystallization and preliminary crystallographic analysis of a protein construct (hCBS 516–525 ) that contains the full-length cystathionine β-synthase from Homo sapiens (hCBS) and just lacks amino-acid residues 516–525. Human cystathionine β-synthase (CBS) is a pyridoxal-5′-phosphate-dependent hemeprotein, whose catalytic activity is regulated by S-adenosylmethionine. CBS catalyzes the β-replacement reaction of homocysteine (Hcy) with serine to yield cystathionine. CBS is a key regulator of plasma levels of the thrombogenic Hcy and deficiency in CBS is the single most common cause of homocystinuria, an inherited metabolic disorder of sulfur amino acids. The properties of CBS enzymes, such as domain organization, oligomerization degree or regulatory mechanisms, are not conserved across the eukaryotes. The current body of knowledge is insufficient to understand these differences and their impact on CBS function and physiology. To overcome this deficiency, we have addressed the crystallization and preliminary crystallographic analysis of a protein construct (hCBS 516–525 ) that contains the full-length CBS from Homo sapiens (hCBS) and just lacks amino-acid residues 516–525, which are located in a disordered loop. The human enzyme yielded crystals belonging to space group I222, with unit-cell parameters a = 124.98, b = 136.33, c = 169.83 Å and diffracting X-rays to a resolution of 3.0 Å. The crystal structure appears to contain two molecules in the asymmetric unit which presumably correspond to a dimeric form of the enzyme

  1. Dependence of Fracture Toughness on Crystallographic Orientation in Single-Crystalline Cubic (β) Silicon Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Pharr, M.; Katoh, Y.; Bei, H.

    2006-01-01

    Along with other desirable properties, the ability of silicon carbide (SiC) to retain high strength after elevated temperature exposures to neutron irradiation renders it potentially applicable in fusion and advanced fission reactors. However, properties of the material such as room temperature fracture toughness must be thoroughly characterized prior to such practical applications. The objective of this work is to investigate the dependence of fracture toughness on crystallographic orientation for single-crystalline β-SiC. X-ray diffraction was first performed on the samples to determine the orientation of the crystal. Nanoindentation was used to determine a hardness of 39.1 and 35.2 GPa and elastic modulus of 474 and 446 GPa for the single-crystalline and polycrystalline samples, respectively. Additionally, crack lengths and indentation diagonals were measured via a Vickers micro-hardness indenter under a load of 100 gf for different crystallographic orientations with indentation diagonals aligned along fundamental cleavage planes. Upon examination of propagation direction of cracks, the cracks usually did not initiate and propagate from the corners of the indentation where the stresses are concentrated but instead from the indentation sides. Such cracks clearly moved along the {1 1 0} family of planes (previously determined to be preferred cleavage plane), demonstrating that the fracture toughness of SiC is comparatively so much lower along this set of planes that the lower energy required to cleave along this plane overpowers the stress-concentration at indentation corners. Additionally, fracture toughness in the <1 1 0> direction was 1.84 MPa·m1/2, lower than the 3.46 MPa·m1/2 measured for polycrystalline SiC (which can serve as an average of a spectrum of orientations), further demonstrating that single-crystalline β-SiC has a strong fracture toughness anisotropy.

  2. Modeling the effects of ion dose and crystallographic symmetry on the morphological evolution of embedded precipitates under thermal annealing

    International Nuclear Information System (INIS)

    Li, Kun-Dar

    2014-01-01

    Highlights: •We model the faceted precipitates formation by post-implantation annealing. •The anisotropic interfacial energy and diffusion kinetics play crucial roles. •The evolutions of faceted precipitates, including Ostwald ripening, are revealed. •The mechanism of the nucleation and growth is based on the atomic diffusion. •The effects of ion dose and crystallographic symmetry are also investigated. -- Abstract: Thermal annealing is one of the most common techniques to synthesize embedded precipitates by ion implantation process. In this study, an anisotropic phase field model is presented to investigate the effects of ion dose and crystallographic symmetry on the morphological formation and evolution of embedded precipitates during post-implantation thermal annealing process. This theoretical model provides an efficient numerical approach to understand the phenomenon of faceted precipitates formation by ion implantation. As a theoretical analysis, the interfacial energy and diffusion kinetics play prominent roles in the mechanism of atomic diffusion for the precipitates formation. With a low ion dose, faceted precipitates are developed by virtue of the anisotropic interfacial energy. As an increase of ion dose, connected precipitates with crystallographic characters on the edge are appeared. For a high ion dose, labyrinth-like nanostructures of precipitates are produced and the characteristic morphology of crystallographic symmetry becomes faint. These simulation results for the morphological evolutions of embedded precipitates by ion implantation are corresponded with many experimental observations in the literatures. The quantitative analyses of the simulations are also well described the consequence of precipitates formation under different conditions

  3. On the retrieval of crystallographic information from atom probe microscopy data via signal mapping from the detector coordinate space.

    Science.gov (United States)

    Wallace, Nathan D; Ceguerra, Anna V; Breen, Andrew J; Ringer, Simon P

    2018-06-01

    Atom probe tomography is a powerful microscopy technique capable of reconstructing the 3D position and chemical identity of millions of atoms within engineering materials, at the atomic level. Crystallographic information contained within the data is particularly valuable for the purposes of reconstruction calibration and grain boundary analysis. Typically, analysing this data is a manual, time-consuming and error prone process. In many cases, the crystallographic signal is so weak that it is difficult to detect at all. In this study, a new automated signal processing methodology is demonstrated. We use the affine properties of the detector coordinate space, or the 'detector stack', as the basis for our calculations. The methodological framework and the visualisation tools are shown to be superior to the standard method of crystallographic pole visualisation directly from field evaporation images and there is no requirement for iterations between a full real-space initial tomographic reconstruction and the detector stack. The mapping approaches are demonstrated for aluminium, tungsten, magnesium and molybdenum. Implications for reconstruction calibration, accuracy of crystallographic measurements, reliability and repeatability are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Oxide nanoparticles in an Al-alloyed oxide dispersion strengthened steel: crystallographic structure and interface with ferrite matrix

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Pantleon, Wolfgang

    2017-01-01

    Oxide nanoparticles are quintessential for ensuring the extraordinary properties of oxide dispersion strengthened (ODS) steels. In this study, the crystallographic structure of oxide nanoparticles, and their interface with the ferritic steel matrix in an Al-alloyed ODS steel, i.e. PM2000, were...

  5. Crystallographic features of the martensitic transformation and their impact on variant organization in the intermetallic compound Ni50Mn38Sb12 studied by SEM/EBSD.

    Science.gov (United States)

    Zhang, Chunyang; Zhang, Yudong; Esling, Claude; Zhao, Xiang; Zuo, Liang

    2017-09-01

    The mechanical and magnetic properties of Ni-Mn-Sb intermetallic compounds are closely related to the martensitic transformation and martensite variant organization. However, studies of these issues are very limited. Thus, a thorough crystallographic investigation of the martensitic transformation orientation relationship (OR), the transformation deformation and their impact on the variant organization of an Ni 50 Mn 38 Sb 12 alloy using scanning electron microscopy/electron backscatter diffraction (SEM/EBSD) was conducted in this work. It is shown that the martensite variants are hierarchically organized into plates, each possessing four distinct twin-related variants, and the plates into plate colonies, each containing four distinct plates delimited by compatible and incompatible plate interfaces. Such a characteristic organization is produced by the martensitic transformation. It is revealed that the transformation obeys the Pitsch relation ({0[Formula: see text]} A // {2[Formula: see text]} M and 〈0[Formula: see text]1〉 A // 〈[Formula: see text]2〉 M ; the subscripts A and M refer to austenite and martensite, respectively). The type I twinning plane K 1 of the intra-plate variants and the compatible plate interface plane correspond to the respective orientation relationship planes {0[Formula: see text]} A and {0[Formula: see text]} A of austenite. The three {0[Formula: see text]} A planes possessed by each pair of compatible plates, one corresponding to the compatible plate interface and the other two to the variants in the two plates, are interrelated by 60° and belong to a single 〈11[Formula: see text]〉 A axis zone. The {0[Formula: see text]} A planes representing the two pairs of compatible plates in each plate colony belong to two 〈11[Formula: see text]〉 A axis zones having one {0[Formula: see text]} A plane in common. This common plane defines the compatible plate interfaces of the two pairs of plates. The transformation strains to form the

  6. Effective solidity in vertical axis wind turbines

    Science.gov (United States)

    Parker, Colin M.; Leftwich, Megan C.

    2016-11-01

    The flow surrounding vertical axis wind turbines (VAWTs) is investigated using particle imaging velocimetry (PIV). This is done in a low-speed wind tunnel with a scale model that closely matches geometric and dynamic properties tip-speed ratio and Reynolds number of a full size turbine. Previous results have shown a strong dependance on the tip-speed ratio on the wake structure of the spinning turbine. However, it is not clear whether this is a speed or solidity effect. To determine this, we have measured the wakes of three turbines with different chord-to-diameter ratios, and a solid cylinder. The flow is visualized at the horizontal mid-plane as well as the vertical mid-plane behind the turbine. The results are both ensemble averaged and phase averaged by syncing the PIV system with the rotation of the turbine. By keeping the Reynolds number constant with both chord and diameter, we can determine how each effects the wake structure. As these parameters are varied there are distinct changes in the mean flow of the wake. Additionally, by looking at the vorticity in the phase averaged profiles we can see structural changes to the overall wake pattern.

  7. Mitochondrial–Lysosomal Axis in Acetaminophen Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Anna Moles

    2018-05-01

    Full Text Available Acetaminophen (APAP toxicity is the most common cause of acute liver failure and a major indication for liver transplantion in the United States and Europe. Although significant progress has been made in understanding the molecular mechanisms underlying APAP hepatotoxicity, there is still an urgent need to find novel and effective therapies against APAP-induced acute liver failure. Hepatic APAP metabolism results in the production of the reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI, which under physiological conditions is cleared by its conjugation with glutathione (GSH to prevent its targeting to mitochondria. APAP overdose or GSH limitation leads to mitochondrial NAPQI-protein adducts formation, resulting in oxidative stress, mitochondrial dysfunction, and necrotic cell death. As mitochondria are a major target of APAP hepatotoxicity, mitochondrial quality control and clearance of dysfunctional mitochondria through mitophagy, emerges as an important strategy to limit oxidative stress and the engagement of molecular events leading to cell death. Recent evidence has indicated a lysosomal–mitochondrial cross-talk that regulates APAP hepatotoxicity. Moreover, as lysosomal function is essential for mitophagy, impairment in the fusion of lysosomes with autophagosomes-containing mitochondria may compromise the clearance of dysfunctional mitochondria, resulting in exacerbated APAP hepatotoxicity. This review centers on the role of mitochondria in APAP hepatotoxicity and how the mitochondrial/lysosomal axis can influence APAP-induced liver failure.

  8. Yaw dynamics of horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.C. (Utah Univ., Salt Lake City, UT (United States))

    1992-05-01

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  9. Six axis force feedback input device

    Science.gov (United States)

    Ohm, Timothy (Inventor)

    1998-01-01

    The present invention is a low friction, low inertia, six-axis force feedback input device comprising an arm with double-jointed, tendon-driven revolute joints, a decoupled tendon-driven wrist, and a base with encoders and motors. The input device functions as a master robot manipulator of a microsurgical teleoperated robot system including a slave robot manipulator coupled to an amplifier chassis, which is coupled to a control chassis, which is coupled to a workstation with a graphical user interface. The amplifier chassis is coupled to the motors of the master robot manipulator and the control chassis is coupled to the encoders of the master robot manipulator. A force feedback can be applied to the input device and can be generated from the slave robot to enable a user to operate the slave robot via the input device without physically viewing the slave robot. Also, the force feedback can be generated from the workstation to represent fictitious forces to constrain the input device's control of the slave robot to be within imaginary predetermined boundaries.

  10. Creating a Multi-axis Machining Postprocessor

    Directory of Open Access Journals (Sweden)

    Petr Vavruška

    2012-01-01

    Full Text Available This paper focuses on the postprocessor creation process. When using standard commercially available postprocessors it is often very difficult to modify its internal source code, and it is a very complex process, in many cases even impossible, to implement the newly-developed functions. It is therefore very important to have a method for creating a postprocessor for any CAM system, which allows CL data (Cutter Location data to be generated to a separate text file. The goal of our work is to verify the proposed method for creating a postprocessor. Postprocessor functions for multi-axis machiningare dealt with in this work. A file with CL data must be translated by the postprocessor into an NC program that has been customized for a specific production machine and its control system. The postprocessor is therefore verified by applications for machining free-form surfaces of complex parts, and by executing the NC programs that are generated on real machine tools. This is also presented here.

  11. Crystallographic orientation study of silicon steels using X-ray diffraction, electrons diffraction and the Etch Pit method

    International Nuclear Information System (INIS)

    Santos, Hamilta de Oliveira

    1999-01-01

    The aim of the present study is the microstructural and crystallographic orientation of Fe-3%Si steel. The silicon steel shows good electrical properties and it is used in the nuclear and electrical power fields. The studied steel was supplied by Cia. Acos Especiais Itabira S/A - ACESITA. The material was received in the hot compressed condition, in one or two passes. The hot compressing temperatures used were 900, 1000 and 1100 deg C with soaking times ranging from 32 to 470 s. The material preferential crystallographic orientation was evaluated in every grain of the samples. The characterization techniques used were: scanning electron microscopy (SEM) using the etch pit method; X ray diffraction using the Laue back-reflection method; orientation imaging microscopy (OIM). Microstructural characterization in terms of grain size measurement and mean number of grains in the sample were also undertaken. The Laue method was found an easy technique to access crystallographic orientation of this work polycrystalline samples 2.5 mm average grain size. This was due to the inability to focus the X-rays on a single grain of the material. The scanning electron microscopy showed microcavities left by the etch pit method, which allowed the observation of the crystallographic orientation of each grain from the samples. No conclusive grain crystallographic orientation was possible to obtain by the OIM technique due to the non-existing rolling direction. A more extensive work with the OIM technique must be undertaken on the Fe-3%Si with oriented grains and non oriented grains. (author)

  12. Distortion definition and correction in off-axis systems

    Science.gov (United States)

    Da Deppo, Vania; Simioni, Emanuele; Naletto, Giampiero; Cremonese, Gabriele

    2015-09-01

    Off-axis optical configurations are becoming more and more used in a variety of applications, in particular they are the most preferred solution for cameras devoted to Solar System planets and small bodies (i.e. asteroids and comets) study. Off-axis designs, being devoid of central obstruction, are able to guarantee better PSF and MTF performance, and thus higher contrast imaging capabilities with respect to classical on-axis designs. In particular they are suitable for observing extended targets with intrinsic low contrast features, or scenes where a high dynamical signal range is present. Classical distortion theory is able to well describe the performance of the on-axis systems, but it has to be adapted for the off-axis case. A proper way to deal with off-axis distortion definition is thus needed together with dedicated techniques to accurately measure and hence remove the distortion effects present in the acquired images. In this paper, a review of the distortion definition for off-axis systems will be given. In particular the method adopted by the authors to deal with the distortion related issues (definition, measure, removal) in some off-axis instruments will be described in detail.

  13. A psychology of the human brain-gut-microbiome axis.

    Science.gov (United States)

    Allen, Andrew P; Dinan, Timothy G; Clarke, Gerard; Cryan, John F

    2017-04-01

    In recent years, we have seen increasing research within neuroscience and biopsychology on the interactions between the brain, the gastrointestinal tract, the bacteria within the gastrointestinal tract, and the bidirectional relationship between these systems: the brain-gut-microbiome axis. Although research has demonstrated that the gut microbiota can impact upon cognition and a variety of stress-related behaviours, including those relevant to anxiety and depression, we still do not know how this occurs. A deeper understanding of how psychological development as well as social and cultural factors impact upon the brain-gut-microbiome axis will contextualise the role of the axis in humans and inform psychological interventions that improve health within the brain-gut-microbiome axis. Interventions ostensibly aimed at ameliorating disorders in one part of the brain-gut-microbiome axis (e.g., psychotherapy for depression) may nonetheless impact upon other parts of the axis (e.g., microbiome composition and function), and functional gastrointestinal disorders such as irritable bowel syndrome represent a disorder of the axis, rather than an isolated problem either of psychology or of gastrointestinal function. The discipline of psychology needs to be cognisant of these interactions and can help to inform the future research agenda in this emerging field of research. In this review, we outline the role psychology has to play in understanding the brain-gut-microbiome axis, with a focus on human psychology and the use of research in laboratory animals to model human psychology.

  14. Late Presentation of a Type III Axis Fracture with Spondyloptosis

    Science.gov (United States)

    Jayakumar, Prakash; Choi, David; Casey, Adrian

    2008-01-01

    A 58-year-old man presented with an undiagnosed Effendi type III classification fracture and spondyloptosis of the axis with remarkably normal neurology. We discuss his surgery 4 years since the initial injury, and the presentation, features and management of fractures of the axis. PMID:18430325

  15. Axis: Generating Explanations at Scale with Learnersourcing and Machine Learning

    Science.gov (United States)

    Williams, Joseph Jay; Kim, Juho; Rafferty, Anna; Heffernan, Neil; Maldonado, Samuel; Gajos, Krzysztof Z.; Lasecki, Walter S.; Heffernan, Neil

    2016-01-01

    While explanations may help people learn by providing information about why an answer is correct, many problems on online platforms lack high-quality explanations. This paper presents AXIS (Adaptive eXplanation Improvement System), a system for obtaining explanations. AXIS asks learners to generate, revise, and evaluate explanations as they solve…

  16. Angular momentum projection of tilted axis rotating states

    Energy Technology Data Exchange (ETDEWEB)

    Oi, M; Onishi, N; Tajima, N [Tokyo Univ. (Japan); Horibata, T

    1998-03-01

    We applied an exact angular momentum projection to three dimensional cranked HFB (3d-CHFB) states. Tilted axis rotating states (TAR) and principal axis rotating states (PAR) are compared. It is shown that TAR is more adequate than PAR for description of the back bending phenomena driven by tilted rotation or wobbling motion. (author)

  17. A psychology of the human brain–gut–microbiome axis

    Science.gov (United States)

    Allen, Andrew P.; Dinan, Timothy G.; Clarke, Gerard

    2017-01-01

    Abstract In recent years, we have seen increasing research within neuroscience and biopsychology on the interactions between the brain, the gastrointestinal tract, the bacteria within the gastrointestinal tract, and the bidirectional relationship between these systems: the brain–gut–microbiome axis. Although research has demonstrated that the gut microbiota can impact upon cognition and a variety of stress‐related behaviours, including those relevant to anxiety and depression, we still do not know how this occurs. A deeper understanding of how psychological development as well as social and cultural factors impact upon the brain–gut–microbiome axis will contextualise the role of the axis in humans and inform psychological interventions that improve health within the brain–gut–microbiome axis. Interventions ostensibly aimed at ameliorating disorders in one part of the brain–gut–microbiome axis (e.g., psychotherapy for depression) may nonetheless impact upon other parts of the axis (e.g., microbiome composition and function), and functional gastrointestinal disorders such as irritable bowel syndrome represent a disorder of the axis, rather than an isolated problem either of psychology or of gastrointestinal function. The discipline of psychology needs to be cognisant of these interactions and can help to inform the future research agenda in this emerging field of research. In this review, we outline the role psychology has to play in understanding the brain–gut–microbiome axis, with a focus on human psychology and the use of research in laboratory animals to model human psychology. PMID:28804508

  18. The Performance Characteristics of a Closed Loop, One Axis ...

    African Journals Online (AJOL)

    This paper presents a closed loop one axis solar tracking device of the polar axis type, which achieves an accurate tracking of the sun with a steady state error of less, than 2%. This prototype uses a photo-sensing system to generate an error signal. This error signal switches on a relay, which actuates an electromechanical ...

  19. Anisotropic perpendicular axis magnetostriction in twinned TbxDy1-xFe1.95

    International Nuclear Information System (INIS)

    Teter, J.P.; Wun-Fogle, M.; Clark, A.E.; Mahoney, K.

    1990-01-01

    The longitudinal magnetostriction (Δl/l) for twinned Tb x Dy 1-x Fe 1.95 material, prepared by the free-standing float-zone method, has been previously measured and found to be very large (2000x10 -6 ) at room temperature. The magnetostrictions for the [111] and [1 bar 10] crystallographic axes perpendicular to the applied stress and magnetic-field [11 bar 2] direction are presented as functions of temperature, applied stress, and applied magnetic field. The temperature range is ±60 degree C centered about the anisotropy compensation temperature of Terfenol-D (+10 degree C). The stress ranges from 2 to 32 MPa and the magnetic field to ±2000 Oe. The temperature dependence of the perpendicular axes magnetostriction is similar to that of the conventional magnetostriction measured parallel to the [11 bar 2] growth axis. Relative values for the saturation magnetostriction exhibit a large anisotropy in the perpendicular direction, ranging from -117% for the [111] to +19% for the [1 bar 10] direction. This ratio stays constant as a function of temperature above the compensation temperature for a given prestress above 8 MPa. The largest absolute value of magnetostriction (2260x10 -6 ) occurs in the [111] direction at 10 degree C at a prestress pressure of 12 MPa. Above this temperature the magnetostriction falls at a rate of -8.5x10 -6 /degree C. The volume magnetostriction is shown to be small and highly sample dependent. All data is consistent with the parent-twin magnetization model and also the magnetostriction values along nonprincipal axes

  20. catena-Poly[manganese(II-(μ2-3,5-di-2-pyridyl-1,2,4-triazolato-μ2-formato

    Directory of Open Access Journals (Sweden)

    Ya-Wen Zhang

    2008-08-01

    Full Text Available Owing to the presence of crystallographic twofold rotation axes (site symmetry 2, Wyckoff letters e and f, the asymmetric unit of the title compound, [Mn(C12H8N5(CHO2]n, contains one-half of an MnII cation, one-half of a bpt anion (Hbpt is 3,5-di-2-pyridyl-4H-1,2,4-triazole and one-half of a formate anion. The bpt and formate ligands occupy the same C2 symmetry, while the MnII ion resides on another crystallographic twofold rotation axis. Each bpt ligand acts as a cis-bis-chelate to ligate two MnII ions into a one-dimensional chain running along the crystallographic 41 screw axis. Adjacent MnII ions are further bridged by a μ2-formate ligand, completing the distorted octahedral coordination geometry of the cation.

  1. The hypothalamo-pituitary-adrenal axis in major affective disorder

    DEFF Research Database (Denmark)

    Christensen, M V; Kessing, L V

    2001-01-01

    disorder. The HPA axis is a complex neuroendocrine network with multiple integrated levels of control, and it is likely that the dysregulation involves abnormalities at several sites within the axis. At present, it is not clear whether the abnormalities are related to the affective episodes only......This paper reviews studies of the hypothalamo-pituitary-adrenal (HPA)-axis activity in patients with affective disorders. It is concluded that, despite methodological drawbacks in most studies, dysregulation of the HPA axis seems to be a consistent finding in a proportion of patients with affective...... or to the disorder itself. There is a need for prospective studies of larger samples of patients to be followed during successive affective episodes with a combination of measurements of the HPA-axis activity and brain imaging....

  2. Shot H3837: Darht's First Dual-Axis Explosive Experiment

    Science.gov (United States)

    Mendez, Jacob; McNeil, Wendy Vogan; Harsh, James; Hull, Lawrence

    2011-06-01

    Test H3837 was the first explosive shot performed in front of both flash x-ray axes at the Los Alamos Dual Axis Radiographic HydroTest (DARHT) facility. Executed in November 2009, the shot was an explosively-driven metal flyer plate in a series of experiments designed to explore equation-of-state properties of shocked materials. Imaging the initial shock wave traveling through the flyer plate, DARHT Axis II captured the range of motion from the shock front emergence in the flyer to breakout at the free surface; the Axis I pulse provided a perpendicular perspective of the shot at a time coinciding with the third pulse of Axis II. Since the days of the Manhattan Project, penetrating radiography with multiple frames from different viewing angles has remained a high-profile goal at the Laboratory. H3837 is merely the beginning of a bright future for two-axis penetrating radiography.

  3. Three-Axis Ground Reaction Force Distribution during Straight Walking.

    Science.gov (United States)

    Hori, Masataka; Nakai, Akihito; Shimoyama, Isao

    2017-10-24

    We measured the three-axis ground reaction force (GRF) distribution during straight walking. Small three-axis force sensors composed of rubber and sensor chips were fabricated and calibrated. After sensor calibration, 16 force sensors were attached to the left shoe. The three-axis force distribution during straight walking was measured, and the local features of the three-axis force under the sole of the shoe were analyzed. The heel area played a role in receiving the braking force, the base area of the fourth and fifth toes applied little vertical or shear force, the base area of the second and third toes generated a portion of the propulsive force and received a large vertical force, and the base area of the big toe helped move the body's center of mass to the other foot. The results demonstrate that measuring the three-axis GRF distribution is useful for a detailed analysis of bipedal locomotion.

  4. Comment on 'Calculated chiral and magneto-electric dichroic signals for copper metaborate (CuB2O4) in an applied magnetic field'

    International Nuclear Information System (INIS)

    Arima, T; Saito, M

    2009-01-01

    Contrary to a claim by Lovesey and Staub (2009 J. Phys.: Condens. Matter 21 142201), a careful treatment of symmetry shows that the application of a magnetic field along a twofold axis can induce the crystallographic chirality in a tetragonal system with the point group 4-bar2m like CuB 2 O 4 . The chirality is reversed by a 90 deg. rotation of the magnetic field around the c axis. (comment)

  5. Theoretical performance of cross-wind axis turbines with results for a catenary vertical axis configuration

    Science.gov (United States)

    Muraca, R. J.; Stephens, M. V.; Dagenhart, J. R.

    1975-01-01

    A general analysis capable of predicting performance characteristics of cross-wind axis turbines was developed, including the effects of airfoil geometry, support struts, blade aspect ratio, windmill solidity, blade interference and curved flow. The results were compared with available wind tunnel results for a catenary blade shape. A theoretical performance curve for an aerodynamically efficient straight blade configuration was also presented. In addition, a linearized analytical solution applicable for straight configurations was developed. A listing of the computer program developed for numerical solutions of the general performance equations is included in the appendix.

  6. Texture change through film thickness and off-axis accommodation of (0 0 2) planes

    International Nuclear Information System (INIS)

    Shetty, A.R.; Karimi, A.

    2011-01-01

    We present our recent experimental results on the formation of off-axis texture and crystallographic tilting of crystallites that take place in thin film of transition metal nitrides. For this purpose, the microstructural development of TiAlN film was studied, specially the change in texture with film thickness. Fiber texture was measured using θ-2θ and pole figure X-ray diffraction (XRD), while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the microstructure and changes in texture with thickness. The sin 2 ψ method was applied to determine the stresses on (1 1 1) and (0 0 2) plane. With deposition parameters chosen, the growth texture mechanism is discussed in three different stages of film growth. Surface energy minimization at low thickness leads to the development of (0 0 2) orientation. On the other hand, the competitive growth promotes the growth of (1 1 1) planes parallel to film surface at higher thickness. However, contrary to the prediction of growth models, the (0 0 2) grains are not completely overlapped by (1 1 1) grains at higher thickness. Rather the (0 0 2) grains still constitute the surface, but are tilted away from the substrate normal showing substantial in-plane alignment to allow the (1 1 1) planes remain parallel to film surface. Intrinsic stress along (1 1 1) and (0 0 2) shows a strong dependence with preferred orientation. The stress level in (0 0 2) grains which was compressive at low thickness changes to tensile at higher thickness. This change in the nature of stress allows the (0 0 2) planes to tilt away in order to promote the growth of 〈1 1 1〉 parallel to film normal and to minimize the overall energy of system due to high compressive stress stored in the (1 1 1) grains. The change in surface morphology with thickness was observed using SEM. An increase in surface roughness with film thickness was observed which indicates the development of (1 1 1) texture parallel to film

  7. Influence of crystallographic texture in X70 pipeline steels on toughness anisotropy and delamination

    Science.gov (United States)

    Al-Jabr, Haytham M.

    The effects of microstructure and crystallographic texture in four commercially-produced API X70 pipeline steels and their relation to planar anisotropy of toughness and delamination were evaluated. The experimental steels were processed through either a hot strip mill, a Steckel mill, or a compact strip mill. Different processing routes were selected to obtain plates with potential variations in the microstructure and anisotropic characteristics. Tensile and Charpy impact testing were used to evaluate the mechanical properties in three orientations: longitudinal (L), transverse (T) and diagonal (D) with respect to the rolling direction to evaluate mechanical property anisotropy. The yield and tensile strengths were higher in the T orientation and toughness was lower in the D orientation for all plates. Delamination was observed in some of the ductile fracture surfaces of the impact samples. To further study the splitting behavior and effects on impact toughness, a modified impact test (MCVN) specimen with side grooves was designed to intensify induced stresses parallel to the notch root and thus facilitate evaluation of delamination. Scanning electron microscopy combined with electron backscattered diffraction (EBSD) were used to evaluate the grain size, microstructural constituents, and crystallographic texture to determine the factors leading to delamination and the anisotropy in toughness. The ferrite grain size is mainly responsible for the differences in DBTTs between the L and T orientations. The higher DBTT in the D orientation observed in pipeline steels is attributed to crystallographic texture. The higher DBTT in the D direction is due to the higher volume fraction of grains having their {100} planes parallel or close to the primary fracture plane for the D orientation. An equation based on a new "brittleness parameter," based on an assessment of grain orientations based on EBSD data, was developed to predict the changes in DBTTs with respect to sample

  8. Effective shunt impedance comparison between s-band standing wave accelerators with on-axis and off-axis couplers

    International Nuclear Information System (INIS)

    Schriber, S.O.; Funk, L.W.; Hutcheon, R.M.

    1976-01-01

    The effective shunt impedances of a side-coupled S-band standing wave accelerating structure and a structure employing on-axis couplers have been compared by measuring the energy of accelerated electrons. Criteria for choosing an on-axis coupled structure compared to side-coupled and ''disk and washer'' accelerating structures are given. (author)

  9. Crystallographic features of poly(vinylidene fluoride) film upon an attractive substrate of KBr.

    Science.gov (United States)

    Huang, Rui; Wang, Gang; Guo, Shuo; Wang, Ke; Fu, Qiang

    2017-10-18

    Among all the polymorphs of poly(vinylidene fluoride) (PVDF), the polar γ-form possesses the highest melting point and electrical breakdown strength as well as the strongest solvent and irradiation resistance, which are beneficial for the durability of PVDF products. Since the γ-form is neither kinetically favorable nor the most thermodynamically stable, it is still difficult to attain the exclusive γ-polymorph, particularly in the case of neat PVDF. In this study, the melt isothermal crystallization of PVDF films was carried out between two KBr wafers. Owing to the characteristics of KBr wafer, including no IR absorbance and high optical transmittance, the crystallographic features originating from the KBr substrate can be conveniently elucidated through the in situ inspected techniques of FTIR and PLM. The KBr wafers significantly accelerated the crystallization kinetics of α-crystals, and then readily triggered the solid-state α- to γ-transformation of the pre-formed α-spherulites, resulting in a 10 μm-thick, neat PVDF film with an absolute crystallinity of 35% and a relative γ fraction as high as 94%. When the film thickness was increased to 40 μm, the crystallization rate of the α-form was still rapid, but the solid-state transformation was not appreciable. These interesting crystallographic phenomena are attributed to the existence of ion-dipole interaction between the -CF 2 or -CH 2 of PVDF chains and the surface of KBr wafer. Unlike most traditional substrate-dominated crystallizations that prevail in a surface epitaxy manner, in which the target films are of ultra-thin thickness (of the order of 10 nm), the ion-dipole interaction promotes the effective thickness to a ten micron level, which enables its production and application at scalable level. Moreover, the triggering of α- to γ-transformation via external fields could be an alternative for achieving the γ-dominant PVDF products, particularly when the introduction of external additives is

  10. Nb{sub 2}OsB{sub 2}, with a new twofold superstructure of the U{sub 3}Si{sub 2} type: Synthesis, crystal chemistry and chemical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P.T., E-mail: boniface.fokwa@ac.rwth-aachen.de

    2013-07-15

    The new ternary metal-rich boride, Nb{sub 2}OsB{sub 2}, was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U{sub 3}Si{sub 2}-structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B{sub 2} dumbbells with B–B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB–LMTO–ASA), the homoatomic B–B interactions are optimized and very strong, but relatively strong heteroatomic Os–B, Nb–B and Nb–Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride. - Graphical abstract: Nb{sub 2}OsB{sub 2} is, to the best of our knowledge, the first fully characterized phase in the ternary Nb–Os–B system. It crystallizes (space group P4/mnc, 128) with a new twofold superstructure of the U{sub 3}Si{sub 2} structure type (space group P4/mbm, 127), and is therefore the first boride in this structure family crystallizing with a superstructure of the U{sub 3}Si{sub 2} structure type. We show that the distortions leading to this superstructure occurs mainly in the Nb-layer, which tries to accommodate the large osmium atoms. The consequence of this puckering is the building osmium dumbbells instead of chains along [001]. - Highlights: • First compound in the Nb–Os–B system. • New twofold superstructure of U{sub 3}Si{sub 2} structure type. • Puckering of Nb-layer responsible for superstructure occurrence. • Chemical bonding studied

  11. Thoughts on the so-called 'radius-capitellum axis'

    International Nuclear Information System (INIS)

    Schild, H.; Mueller, H.A.; Wagner, H.; Baetz, W.; Mainz Univ.

    1982-01-01

    We have studied 438 patients radiologically in order to observe the so-called 'radius-capitellum axis'. In about a quarter of people with normal elbows the axis passes lateral to the middle portion of the capitellum, so that even when there is marked deviation, there is no certainty that the humero-radial joint is abnormal. Deviation of the axis can be caused by changes in the shape of the capitellum or of the radius, or by distension of the capsule of the elbow joint, or by various changes in muscular pull. (orig.) [de

  12. Thoughts on the so-called radius-capitellum axis

    Energy Technology Data Exchange (ETDEWEB)

    Schild, H; Mueller, H A; Wagner, H; Baetz, W

    1982-02-01

    We have studied 438 patients radiologically in order to observe the so-called 'radius-capitellum axis'. In about a quarter of people with normal elbows the axis passes lateral to the middle portion of the capitellum, so that even when there is marked deviation, there is no certainty that the humero-radial joint is abnormal. Deviation of the axis can be caused by changes in the shape of the capitellum or of the radius, or by distension of the capsule of the elbow joint, or by various changes in muscular pull.

  13. [Localization and registration of the hinge axis in black Africans].

    Science.gov (United States)

    Assi, K D; N'Guessan, K S; N'Dindin, C; Bamba, A

    2003-06-01

    The study of the cinematic method using "SAM" and "Quick Axis of FAG" added to mandibular condyle palpation for the hinge axis limited points, show that the Black Africans mandibular condyle rotation axis position is higher (3.5 mm) and backer (2 mm) than the Caucasians. The axial points are located to between 11 and 12 mm in front of the tragus and between 7 and 8 mm below on the perpendicular line to the furrow defining the tragus superior side to the Ectocanthus.

  14. Challenges in quantitative crystallographic characterization of 3D thin films by ACOM-TEM.

    Science.gov (United States)

    Kobler, A; Kübel, C

    2017-02-01

    Automated crystal orientation mapping for transmission electron microscopy (ACOM-TEM) has become an easy to use method for the investigation of crystalline materials and complements other TEM methods by adding local crystallographic information over large areas. It fills the gap between high resolution electron microscopy and electron back scatter diffraction in terms of spatial resolution. Recent investigations showed that spot diffraction ACOM-TEM is a quantitative method with respect to sample parameters like grain size, twin density, orientation density and others. It can even be used in combination with in-situ tensile or thermal testing. However, there are limitations of the current method. In this paper we discuss some of the challenges and discuss solutions, e.g. we present an ambiguity filter that reduces the number of pixels with a '180° ambiguity problem'. For that an ACOM-TEM tilt series of nanocrystalline Pd thin films with overlapping crystallites was acquired and analyzed. Copyright © 2017. Published by Elsevier B.V.

  15. Crystallization and preliminary crystallographic study of carnosinase CN2 from mice

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Tetsuo; Unno, Hideaki; Ujita, Sayuri; Otani, Hiroto; Okumura, Nobuaki; Hashida-Okumura, Akiko; Nagai, Katsuya; Kusunoki, Masami, E-mail: kusunoki@protein.osaka-u.ac.jp [Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2006-10-01

    Mouse carnosinase was crystallized in complex with Zn{sup 2+} or Mn{sup 2+} and the complexes are undergoing structure determination by the MAD method. Mammalian tissues contain several histidine-containing dipeptides, of which l-carnosine is the best characterized and is found in various tissues including the brain and skeletal muscles. However, the mechanism for its biosynthesis and degradation have not yet been fully elucidated. Crystallographic study of carnosinase CN2 from mouse has been undertaken in order to understand its enzymatic mechanism from a structural viewpoint. CN2 was crystallized by the hanging-drop vapour-diffusion technique using PEG 3350 as a precipitant. Crystals were obtained in complex with either Mn{sup 2+} or Zn{sup 2+}. Both crystals of CN2 belong to the monoclinic space group P2{sub 1} and have almost identical unit-cell parameters (a = 54.41, b = 199.77, c = 55.49 Å, β = 118.52° for the Zn{sup 2+} complex crystals). Diffraction data were collected to 1.7 and 2.3 Å for Zn{sup 2+} and Mn{sup 2+} complex crystals, respectively, using synchrotron radiation. Structure determination is ongoing using the multiple-wavelength anomalous diffraction (MAD) method.

  16. Crystallization and preliminary crystallographic study of carnosinase CN2 from mice

    International Nuclear Information System (INIS)

    Yamashita, Tetsuo; Unno, Hideaki; Ujita, Sayuri; Otani, Hiroto; Okumura, Nobuaki; Hashida-Okumura, Akiko; Nagai, Katsuya; Kusunoki, Masami

    2006-01-01

    Mouse carnosinase was crystallized in complex with Zn 2+ or Mn 2+ and the complexes are undergoing structure determination by the MAD method. Mammalian tissues contain several histidine-containing dipeptides, of which l-carnosine is the best characterized and is found in various tissues including the brain and skeletal muscles. However, the mechanism for its biosynthesis and degradation have not yet been fully elucidated. Crystallographic study of carnosinase CN2 from mouse has been undertaken in order to understand its enzymatic mechanism from a structural viewpoint. CN2 was crystallized by the hanging-drop vapour-diffusion technique using PEG 3350 as a precipitant. Crystals were obtained in complex with either Mn 2+ or Zn 2+ . Both crystals of CN2 belong to the monoclinic space group P2 1 and have almost identical unit-cell parameters (a = 54.41, b = 199.77, c = 55.49 Å, β = 118.52° for the Zn 2+ complex crystals). Diffraction data were collected to 1.7 and 2.3 Å for Zn 2+ and Mn 2+ complex crystals, respectively, using synchrotron radiation. Structure determination is ongoing using the multiple-wavelength anomalous diffraction (MAD) method

  17. Challenges in quantitative crystallographic characterization of 3D thin films by ACOM-TEM

    Energy Technology Data Exchange (ETDEWEB)

    Kobler, A. [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen (Germany); Kübel, C., E-mail: christian.kuebel@kit.edu [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen (Germany)

    2017-02-15

    Automated crystal orientation mapping for transmission electron microscopy (ACOM-TEM) has become an easy to use method for the investigation of crystalline materials and complements other TEM methods by adding local crystallographic information over large areas. It fills the gap between high resolution electron microscopy and electron back scatter diffraction in terms of spatial resolution. Recent investigations showed that spot diffraction ACOM-TEM is a quantitative method with respect to sample parameters like grain size, twin density, orientation density and others. It can even be used in combination with in-situ tensile or thermal testing. However, there are limitations of the current method. In this paper we discuss some of the challenges and discuss solutions, e.g. we present an ambiguity filter that reduces the number of pixels with a ‘180° ambiguity problem’. For that an ACOM-TEM tilt series of nanocrystalline Pd thin films with overlapping crystallites was acquired and analyzed. - Highlights: • Tilt series of nanocrystalline Pd thin films. • Quantitative ACOM-TEM data processing, including a rotation map of crystallites. • Noise filter for orientation data: Ambiguity Filter and min. distance filter.

  18. Crystallization, diffraction data collection and preliminary crystallographic analysis of DING protein from Pseudomonas fluorescens

    International Nuclear Information System (INIS)

    Moniot, Sebastien; Elias, Mikael; Kim, Donghyo; Scott, Ken; Chabriere, Eric

    2007-01-01

    Crystallization of DING protein from P. fluorescens is reported. A complete data set was collected to 1.43 Å resolution. PfluDING is a phosphate-binding protein expressed in Pseudomonas fluorescens. This protein is clearly distinct from the bacterial ABC transporter soluble phosphate-binding protein PstS and is more homologous to eukaryotic DING proteins. Interestingly, bacterial DING proteins have only been detected in certain Pseudomonas species. Although DING proteins seem to be ubiquitous in eukaryotes, they are systematically absent from eukaryotic genomic databases and thus are still quite mysterious and poorly characterized. PfluDING displays mitogenic activity towards human cells and binds various ligands such as inorganic phosphate, pyrophosphate, nucleotide triphosphates and cotinine. Here, the crystallization of PfluDING is reported in a monoclinic space group (P2 1 ), with typical unit-cell parameters a = 36.7, b = 123.7, c = 40.8 Å, α = 90, β = 116.7, γ = 90°. Preliminary crystallographic analysis reveals good diffraction quality for these crystals and a 1.43 Å resolution data set has been collected

  19. Contribution to the crystallographic study of the uranium-oxygenated system

    International Nuclear Information System (INIS)

    Perio, P.

    1955-04-01

    Three uranium oxides, UO 2 , U 3 O 8 and UO 3 are known since a long time. The existence of a fourth, U 2 O 5 , is discussed. The mechanisms of decomposition between UO 3 and U 3 O 8 have even some shadow zones. The aim of this report is the study of the phase relations in an uranium - oxygen system, from the metal until UO 3 . We considered, on the one hand, the equilibrium relations, what should result in a diagram of phases in pressures and temperatures, on the other hand, the transformations bringing one oxide to the other, often by a continuous way and through intermediate of metastable phases. The introduction of the temperature and the consideration of the kinetics effects have permitted to raise the ambiguities. We adopted, to facilitate the presentation of the results, a partition a few arbitrary but convenient, in three chapters,: I - experimental Techniques II - Crystallographic species between U and UO 3 . III - Kinetic of oxidisation of UO 2 . (M.B.) [fr

  20. Expression, purification, crystallization and preliminary crystallographic analysis of the proliferation-associated protein Ebp1

    Energy Technology Data Exchange (ETDEWEB)

    Kowalinski, Eva; Bange, Gert; Wild, Klemens; Sinning, Irmgard, E-mail: irmi.sinning@bzh.uni-heidelberg.de [Heidelberg University Biochemistry Center, INF 328, D-69120 Heidelberg (Germany)

    2007-09-01

    Preliminary X-ray analysis of the proliferation-associated protein Ebp1 from Homo sapiens is provided. ErbB-3-binding protein 1 (Ebp1) is a member of the family of proliferation-associated 2G4 proteins (PA2G4s) and plays a role in cellular growth and differentiation. Ligand-induced activation of the transmembrane receptor ErbB3 leads to dissociation of Ebp1 from the receptor in a phosphorylation-dependent manner. The non-associated protein is involved in transcriptional and translational regulation in the cell. Here, the overexpression, purification, crystallization and preliminary crystallographic studies of Ebp1 from Homo sapiens are reported. Initially observed crystals were improved by serial seeding to single crystals suitable for data collection. The optimized crystals belong to the tetragonal space group P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2 and diffracted to a resolution of 1.6 Å.

  1. Purification, crystallization and preliminary X-ray crystallographic analysis of diaminopimelate epimerase from Acinetobacter baumannii

    International Nuclear Information System (INIS)

    Park, Jeong Soon; Lee, Woo Cheol; Song, Jung Hyun; Kim, Seung Il; Lee, Je Chul; Cheong, Chaejoon; Kim, Hye-Yeon

    2012-01-01

    The crystallization and preliminary X-ray crystallographic analysis of diaminopimelate epimerase from A. baumannii are reported. The meso isomer of diaminopimelate (meso-DAP) is a biosynthetic precursor of l-lysine in bacteria and plants, and is a key component of the peptidoglycan layer in the cell walls of Gram-negative and some Gram-positive bacteria. Diaminopimelate epimerase (DapF) is a pyridoxal-5′-phosphate-independent racemase which catalyses the interconversion of (6S,2S)-2,6-diaminopimelic acid (ll-DAP) and meso-DAP. In this study, DapF from Acinetobacter baumannii was overexpressed in Escherichia coli strain SoluBL21, purified and crystallized using a vapour-diffusion method. A native crystal diffracted to a resolution of 1.9 Å and belonged to space group P3 1 or P3 2 , with unit-cell parameters a = b = 74.91, c = 113.35 Å, α = β = 90, γ = 120°. There were two molecules in the asymmetric unit

  2. Purification, crystallization and preliminary crystallographic studies on 2-dehydro-3-deoxygalactarate aldolase from Leptospira interrogans

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xu; Huang, Hua [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Song, Xiaomin [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Wang, Yanli; Xu, Hang [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Teng, Maikun [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Gong, Weimin, E-mail: wgong@sun5.ibp.ac.cn [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2006-12-01

    Preliminary crystallographic studies on 2-dehydro-3-deoxygalactarate aldolase from L. interrogans. 2-Dehydro-3-deoxygalactarate (DDG) aldolase is a member of the class II aldolase family and plays an important role in the pyruvate-metabolism pathway, catalyzing the reversible aldol cleavage of DDG to pyruvate and tartronic semialdehyde. As it is a potential novel antibiotic target, it is necessary to elucidate the catalytic mechanism of DDG aldolase. To determine the crystal structure, crystals of DDG aldolase from Leptospira interrogans were obtained by the hanging-drop vapour-diffusion method. The crystals diffracted to 2.2 Å resolution using a Cu Kα rotating-anode X-ray source. The crystal belonged to space group C2, with unit-cell parameters a = 293.5, b = 125.6, c = 87.6 Å, β = 100.9°. The V{sub M} is calculated to be 2.4 Å{sup 3} Da{sup −1}, assuming there to be 12 protein molecules in the asymmetric unit.

  3. Connection of crystallographic texture with anisotropy of yield strength of titanium alloy sheets

    International Nuclear Information System (INIS)

    Serebryannyj, V.N.; Koknaev, R.G.

    1983-01-01

    Using the programs developed in FORTRAN-4 algorithmic language for the ES-1022 computer the contribution of crystallographic texture to the anisotropy of yield strength in the sheet plane for warm-rolled sheets of α-titanium alloys VT1 and VT5-1, is evaluated. It is established, that experimental and calculation data for the sheet of VT1-0 agree satisfactorily in the angle range phi 40 deg the value anti M (phi) exceeds the experimental values σsub(0.2)(phi./σsub(0.2)(0). The results obtained for the sheet of the VT5-1 alloy show, that calculation and experimental data agree well for narrow angles (phi <= 60 deg) and at wider angles the values anti M(phi) exceed the values σsub(0.2)(phi)/σsub(0.2)(0). Calculation and experimental curves for the VT5-1 alloy on the whole agree better than for the VT1-0 one

  4. Development of triple scale finite element analyses based on crystallographic homogenization methods

    International Nuclear Information System (INIS)

    Nakamachi, Eiji

    2004-01-01

    Crystallographic homogenization procedure is implemented in the piezoelectric and elastic-crystalline plastic finite element (FE) code to assess its macro-continuum properties of piezoelectric ceramics and BCC and FCC sheet metals. Triple scale hierarchical structure consists of an atom cluster, a crystal aggregation and a macro- continuum. In this paper, we focus to discuss a triple scale numerical analysis for piezoelectric material, and apply to assess a macro-continuum material property. At first, we calculate material properties of Perovskite crystal of piezoelectric material, XYO3 (such as BaTiO3 and PbTiO3) by employing ab-initio molecular analysis code CASTEP. Next, measured results of SEM and EBSD observations of crystal orientation distributions, shapes and boundaries of a real material (BaTiO3) are employed to define an inhomogeneity of crystal aggregation, which corresponds to a unit cell of micro-structure, and satisfies the periodicity condition. This procedure is featured as a first scaling up from the molecular to the crystal aggregation. Finally, the conventional homogenization procedure is implemented in FE code to evaluate a macro-continuum property. This final procedure is featured as a second scaling up from the crystal aggregation (unit cell) to macro-continuum. This triple scale analysis is applied to design piezoelectric ceramic and finds an optimum crystal orientation distribution, in which a macroscopic piezoelectric constant d33 has a maximum value

  5. Analysis of elastic strain and crystallographic texture in poled rhombohedral PZT ceramics

    International Nuclear Information System (INIS)

    Hall, D.A.; Steuwer, A.; Cherdhirunkorn, B.; Mori, T.; Withers, P.J.

    2006-01-01

    The elastic strain and crystallographic texture of a rhombohedral lead zirconate titanate ceramic have been characterised in the remanent state, after poling, using high-energy synchrotron X-ray diffraction as a function of the grain orientation ψ relative to the poling direction. It is observed that the (2 0 0) diffraction peak exhibits pronounced shifts as a function of ψ, indicating an elastic lattice strain, while others ({1 1 1}, {1 1 2} and {2 2 0}) show marked changes in intensity as a result of preferred ferroelectric domain orientation. It is shown that the (2 0 0) peak is not affected by the domain switching itself but rather acts like an elastic macrostrain sensor. A simple Eshelby analysis is used to demonstrate that both the elastic strain and texture vary systematically with ψ according to the factor (3cos 2 ψ - 1). This angular dependence is evaluated through micromechanics modelling. The physical meaning of the texture variations with ψ is also discussed

  6. Cloning, expression and preliminary crystallographic analysis of the equine infectious anaemia virus (EIAV) gp45 ectodomain

    International Nuclear Information System (INIS)

    Sun, Pei-Long; Lv, Shu-Xia; Zhou, Jian-Hua; Liu, Xin-Qi

    2011-01-01

    The equine infectious anaemia virus gp45 ectodomain was cloned, expressed and crystallized. Preliminary crystallographic analysis showed that the protein belonged to space group P6 3 and contained one molecule per asymmetric unit. Like human immunodeficiency virus (HIV), equine infectious anaemia virus (EIAV) belongs to the lentivirus genus. The first successful lentiviral vaccine was developed for EIAV. Thus, EIAV may serve as a valuable model for HIV vaccine research. EIAV glycoprotein 45 (gp45) plays a similar role to gp41 in HIV by mediating virus–host membrane fusion. The gp45 ectodomain was constructed according to the structure of HIV gp41, with removal of the disulfide-bond loop region. The protein was expressed in Escherichia coli and crystallized following purification. However, most of the crystals grew as aggregates and could not be used for data collection. By extensively screening hundreds of crystals, a 2.7 Å resolution data set was collected from a single crystal. The crystal belonged to space group P6 3 , with unit-cell parameters a = b = 46.84, c = 101.61 Å, α = β = 90, γ = 120°. Molecular replacement was performed using the coordinates of various lengths of HIV gp41 as search models. A long bent helix was identified and a well defined electron-density map around the long helix was obtained. This primary model provided the starting point for further refinement

  7. Preliminary crystallographic analysis of a possible transcription factor encoded by the mimivirus L544 gene

    International Nuclear Information System (INIS)

    Ciaccafava, Alexandre; Lartigue, Audrey; Mansuelle, Pascal; Jeudy, Sandra; Abergel, Chantal

    2011-01-01

    The mimivirus L544 gene product was expressed in E. coli and crystallized; preliminary phasing of a MAD data set was performed using the selenium signal present in a crystal of recombinant selenomethionine-substituted protein. Mimivirus is the prototype of a new family (the Mimiviridae) of nucleocytoplasmic large DNA viruses (NCLDVs), which already include the Poxviridae, Iridoviridae, Phycodnaviridae and Asfarviridae. Mimivirus specifically replicates in cells from the genus Acanthamoeba. Proteomic analysis of purified mimivirus particles revealed the presence of many subunits of the DNA-directed RNA polymerase II complex. A fully functional pre-transcriptional complex appears to be loaded in the virions, allowing mimivirus to initiate transcription within the host cytoplasm immediately upon infection independently of the host nuclear apparatus. To fully understand this process, a systematic study of mimivirus proteins that are predicted (by bioinformatics) or suspected (by proteomic analysis) to be involved in transcription was initiated by cloning and expressing them in Escherichia coli in order to determine their three-dimensional structures. Here, preliminary crystallographic analysis of the recombinant L544 protein is reported. The crystals belonged to the orthorhombic space group C222 1 with one monomer per asymmetric unit. A MAD data set was used for preliminary phasing using the selenium signal present in a selenomethionine-substituted protein crystal

  8. Thickness dependence of crystallographic and magnetic properties for L10-CoPt thin films

    International Nuclear Information System (INIS)

    Liao, W.M.; Chen, S.K.; Yuan, F.T.; Hsu, C.W.; Lee, H.Y.

    2006-01-01

    Thickness dependence of crystallographic and magnetic properties is investigated from the analyses of the order parameter S, chemically ordered fraction f 0 , and internal stress of the L1 0 Co 49 Pt 51 film. Coercivity H c was increased from 5.1kOe to a maximum value of 13.3kOe as the thickness of the film (δ) was raised from 10nm to 50nm.This is due to the increase of S from 0.30 to 0.64 and the increase of f 0 from 0.52 to 0.75. For thicker samples (δ-bar 50nm), a dramatic drop-off in H c was observed at δ=80nm. The quantity of ordered phase, measured by X-ray diffractometry, is closely related to the H c value of the Co 49 Pt 51 thin film for δ 49 Pt 51 samples is harmful for H c . The decrease in H c can also be partially attributed to the thermal-stress-induced (001) texture

  9. Structure of δ-Bi2O3 from density functional theory: A systematic crystallographic analysis

    International Nuclear Information System (INIS)

    Aidhy, Dilpuneet S.; Sinnott, Susan B.; Wachsman, Eric D.; Phillpot, Simon R.; Nino, Juan C.

    2009-01-01

    A systematic crystallographic analysis of the and vacancy-ordered structure of cubic δ-Bi 2 O 3 obtained from electronic-structure calculations is presented. The ordering of vacancies leads to a doubling of the unit-cell that results in a 2x2x2 fluorite super-structure, with an associated reduction in its space group symmetry from Fm3-barm to Fm3-bar. The Bi atoms present inside the vacancy-ordered oxygen sublattice have equal Bi-O bond lengths, whereas, those present inside the vacancy-ordered oxygen sublattice have three different pairs of Bi-O bond lengths. The specific ionic displacements and electronic charge configurations also depend on the nature of vacancy ordering in the oxygen sub-lattice. - Graphical abstract: 1/8 of a 2x2x2 δ-Bi 2 O 3 superstructure having Fm3-bar space group. Every oxygen (black) has three possible positions, only one of which is filled either by O1 (red) or O 2 (blue).

  10. Preliminary crystallographic analysis of two hypothetical ribose-5-phosphate isomerases from Streptococcus mutans

    International Nuclear Information System (INIS)

    Wang, Chen; Fan, Xuexin; Cao, Xiaofang; Liu, Xiang; Li, Lanfen; Su, Xiaodong

    2012-01-01

    Two hypothetical ribose-5-phosphate isomerases from S. mutans have been produced in E. coli and crystallized. The crystals diffracted to high resolutions suitable for crystallographic analyses. Study of the enzymes from sugar metabolic pathways may provide a better understanding of the pathogenesis of the human oral pathogen Streptococcus mutans. Bioinformatics, biochemical and crystallization methods were used to characterize and understand the function of two putative ribose-5-phosphate isomerases: SMU1234 and SMU2142. The proteins were cloned and constructed with N-terminal His tags. Protein purification was performed by Ni 2+ -chelating and size-exclusion chromatography. The crystals of SUM1234 diffracted to 1.9 Å resolution and belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 48.97, b = 98.27, c = 101.09 Å, α = β = γ = 90°. The optimized SMU2142 crystals diffracted to 2.7 Å resolution and belonged to space group P1, with unit-cell parameters a = 53.7, b = 54.1, c = 86.5 Å, α = 74.2, β = 73.5, γ = 83.7°. Initial phasing of both proteins was attempted by molecular replacement; the structure of SMU1234 could easily be solved, but no useful results were obtained for SMU2142. Therefore, SeMet-labelled SMU2142 will be prepared for phasing

  11. Crystallization and preliminary crystallographic analysis of human LR11 Vps10p domain

    International Nuclear Information System (INIS)

    Nakata, Zenzaburo; Nagae, Masamichi; Yasui, Norihisa; Bujo, Hideaki; Nogi, Terukazu; Takagi, Junichi

    2010-01-01

    LR11/sorLA contains in its extracellular region a large (∼700-residue) Vps10p domain that is implicated in its intracellular protein-trafficking function. Here, the expression, purification, crystallization and preliminary crystallographic characterization of this domain are described. Low-density lipoprotein receptor (LDLR) relative with 11 binding repeats (LR11; also known as sorLA) is genetically associated with late-onset Alzheimer’s disease and is thought to be involved in neurodegenerative processes. LR11 contains a vacuolar protein-sorting 10 protein (Vps10p) domain. As this domain has been implicated in protein–protein interaction in other receptors, its structure and function are of great biological interest. Human LR11 Vps10p domain was expressed in mammalian cells and the purified protein was crystallized using the hanging-drop vapour-diffusion method. Enzymatic deglycosylation of the sample was critical to obtaining diffraction-quality crystals. Deglycosylated LR11 Vps10p-domain crystals belonged to the hexagonal space group P6 1 22. A diffraction data set was collected to 2.4 Å resolution and a clear molecular-replacement solution was obtained

  12. CRYSTALLOGRAPHIC RELATIONS OF CEMENTITE–AUSTENITE–FERRITE IN THE DIFFUSIVE DECOMPOSITION OF AUSTENITE

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Summary. It was made a search for new and more accurate orientation relations between the crystal lattice in the pearlite and bainite austenite decomposition products. Methods. It were used the methods: transmission electron microscopy, the micro-, mathematical matrix and stereographic analysis. The purpose of the research is with theoretical, numerical and experimental methods to set up to a 0.2 degree angular orientation relations between the lattices of ferrite and cementite in the austenite decomposition products in the temperature range 400 ... 700С. Results. It was established a new, refined value for grids in the diffusion decay of γ → α + (α + θ. Practical significance. It was proposed a new oriented dependence and the corresponding double gnomonic projection with poles to planes α and θ phases, which can be used in patterns of crystallographic lattices relations studies at phase transitions, as well as the subsequent modeling of complex physical processes of structure formation in metals and binary systems.

  13. Y-TZP zirconia regeneration firing: Microstructural and crystallographic changes after grinding.

    Science.gov (United States)

    Ryan, Daniel Patrick Obelenis; Fais, Laiza Maria Grassi; Antonio, Selma Gutierrez; Hatanaka, Gabriel Rodrigues; Candido, Lucas Miguel; Pinelli, Ligia Antunes Pereira

    2017-07-26

    This study evaluated microstructural and crystallographic phase changes after grinding (G) and regeneration firing/anneling (R) of Y-TZP ceramics. Thirty five bars (Lava TM and Ice Zirkon) were divided: Y-TZP pre-sintered, control (C), regeneration firing (R), dry grinding (DG), dry grinding+regeneration firing (DGR), wet grinding (WG) and wet grinding+regeneration firing (WGR). Grinding was conducted using a diamond bur and annealing at 1,000°C. The microstructure was analyzed by SEM and the crystalline phases by X-ray diffraction (XRD). XRD showed that pre-sintered specimens contained tetragonal and monoclinic phases, while groups C and R showed tetragonal, cubic and monoclinic phases. After grinding, the cubic phase was eliminated in all groups. Annealing (DGR and WGR) resulted in only tetragonal phase. SEM showed semi-circular cracks after grinding and homogenization of particles after annealing. After grinding, surfaces show tetragonal and monoclinic phases and R can be assumed to be necessary prior to porcelain layering when grinding is performed.

  14. Purification, crystallization and preliminary crystallographic studies on 2-dehydro-3-deoxygalactarate aldolase from Leptospira interrogans

    International Nuclear Information System (INIS)

    Li, Xu; Huang, Hua; Song, Xiaomin; Wang, Yanli; Xu, Hang; Teng, Maikun; Gong, Weimin

    2006-01-01

    Preliminary crystallographic studies on 2-dehydro-3-deoxygalactarate aldolase from L. interrogans. 2-Dehydro-3-deoxygalactarate (DDG) aldolase is a member of the class II aldolase family and plays an important role in the pyruvate-metabolism pathway, catalyzing the reversible aldol cleavage of DDG to pyruvate and tartronic semialdehyde. As it is a potential novel antibiotic target, it is necessary to elucidate the catalytic mechanism of DDG aldolase. To determine the crystal structure, crystals of DDG aldolase from Leptospira interrogans were obtained by the hanging-drop vapour-diffusion method. The crystals diffracted to 2.2 Å resolution using a Cu Kα rotating-anode X-ray source. The crystal belonged to space group C2, with unit-cell parameters a = 293.5, b = 125.6, c = 87.6 Å, β = 100.9°. The V M is calculated to be 2.4 Å 3 Da −1 , assuming there to be 12 protein molecules in the asymmetric unit

  15. Reintroducing electrostatics into macromolecular crystallographic refinement: application to neutron crystallography and DNA hydration.

    Science.gov (United States)

    Fenn, Timothy D; Schnieders, Michael J; Mustyakimov, Marat; Wu, Chuanjie; Langan, Paul; Pande, Vijay S; Brunger, Axel T

    2011-04-13

    Most current crystallographic structure refinements augment the diffraction data with a priori information consisting of bond, angle, dihedral, planarity restraints, and atomic repulsion based on the Pauli exclusion principle. Yet, electrostatics and van der Waals attraction are physical forces that provide additional a priori information. Here, we assess the inclusion of electrostatics for the force field used for all-atom (including hydrogen) joint neutron/X-ray refinement. Two DNA and a protein crystal structure were refined against joint neutron/X-ray diffraction data sets using force fields without electrostatics or with electrostatics. Hydrogen-bond orientation/geometry favors the inclusion of electrostatics. Refinement of Z-DNA with electrostatics leads to a hypothesis for the entropic stabilization of Z-DNA that may partly explain the thermodynamics of converting the B form of DNA to its Z form. Thus, inclusion of electrostatics assists joint neutron/X-ray refinements, especially for placing and orienting hydrogen atoms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Crystallographic Study of U-Th bearing minerals in Tranomaro, Anosy Region-Madagascar

    International Nuclear Information System (INIS)

    Sahoa, F.E.; Rabesiranana, N.; Raoelina Andriambololona; Geckeis, H.; Marquardt, C.; Finck, K.

    2011-01-01

    As an alternative to conventional fossil fuel, there is a renewed interest in the nuclear fuel to support increasing energy demand. New studies are then undertaken to characterize Madagascar U-Th bearing minerals. This is the case for the urano-thorianite bearing pyroxenites in the south East of Madagascar. In this region, several quarries were abandoned, after being mined by the French Atomic Energy Commission (C.E.A) in the fifties and sixties and are now explored by new mining companies. For this purpose, seven U-Th bearing mineral samples from old abandoned uranium quarries in Tranomaro, Amboasary Sud, Madagascar, have been collected. To determine the mineral microstructure, they were investigated for qualitative and quantitative identification of crystalline compounds using X-ray powder diffraction analytical method (XRD). Results showed that the U and Th compounds, as minor elements, are present in various crystalline structures. This is important to understand their environmental behaviours, in terms of crystallographic dispersion of U-Th minerals and their impacts on human health.

  17. Effect of humidity on the hydration behaviour of prazosin hydrochloride polyhydrate: Thermal, sorption and crystallographic study

    International Nuclear Information System (INIS)

    Kumar, Lokesh; Bansal, Arvind K.

    2011-01-01

    Highlights: → Utility of TGA to differentiate between unbound and bound water was demonstrated. → Nature of the lattice arrangement in prazosin hydrochloride polyhydrate was confirmed to be expanded (non-stoichiometric) type hydrate. → Correlation of the DSC, TGA, PXRD and DVS for dehydration of prazosin hydrochloride polyhydrate was delineated. - Abstract: In this study, hydration behaviour of prazosin hydrochloride polyhydrate was assessed using differential scanning calorimetry, thermogravimetric analysis, powder X-ray diffraction and dynamic vapour sorption techniques. Differential scanning calorimetry and thermogravimetric analysis at faster heating rate (20 o C/min) showed single step water loss, attributed to both dihydrate and unbound water. In contrast, thermogravimetric analysis at slower heating rate (1 o C/min) showed unbound and dihydrate lattice water separately, with unbound water being lost initially, followed by loss of dihydrate water. Variable vacuum and variable humidity PXRD study revealed shift in diffraction peaks to higher values on removal of unbound water. Initial PXRD patterns were regained when kept again at ambient conditions. Dynamic vapour sorption depicted type I sorption isotherm with interstitial water, indicating that polyhydrate form show reversible behaviour with change in humidity. Correlation between thermal, sorption and crystallographic data established hydration behaviour to be characteristic of expanded channel type (non-stoichiometric) hydrate.

  18. The elastic strain energy of crystallographic shear planes in reduced tungsten trioxide

    International Nuclear Information System (INIS)

    Iguchi, E.; Tilley, R.J.D.

    1977-01-01

    Calculations of the elastic strain energy due to crystallographic shear (c.s.) planes lying upon 102, 103 and 001 planes in reduced tungsten trioxide crystals have been made. The cases analysed in detail are for both isolated c.s. planes and for pairs of c.s. planes. These results are used to determine the elastic strain energy per unit volume for crystals containing ordered arrays of c.s. planes. It was found that the magnitude of the elastic strain energy was in the sequence 001 < 102 < 103 and that at relatively small inter-c.s. spacings the curves of elastic strain energy against c.s. plane separation take the form of a series of peaks and valleys. These results are compared with experimental observations of c.s. plane spacings in substantially reduced crystals containing quasi-ordered arrays of c.s. planes and with observations of c.s. plane nucleation and growth in both slightly and more appreciably reduced crystals. It was found that the elastic strain energy plays a significant part in controlling the microstructure of c.s. plane arrays in such cases. (author)

  19. Broken symmetry within crystallographic super-spaces: structural and dynamical aspects

    International Nuclear Information System (INIS)

    Mariette, Celine

    2013-01-01

    Aperiodic crystals have the property to possess long range order without translational symmetry. These crystals are described within the formalism of super-space crystallography. In this manuscript, we will focus on symmetry breaking which take place in such crystallographic super-space groups, considering the prototype family of n-alkane/urea. Studies performed by X-ray diffraction using synchrotron sources reveal multiple structural solutions implying or not changes of the dimension of the super-space. Once the characterization of the order parameter and of the symmetry breaking is done, we present the critical pre-transitional phenomena associated to phase transitions of group/subgroup types. Coherent neutron scattering and inelastic X-ray scattering allow a dynamical analysis of different kind of excitations in these materials (phonons, phasons). The inclusion compounds with short guest molecules (alkane C n H 2n+2 , n varying from 7 to 13) show at room temperature unidimensional 'liquid-like' phases. The dynamical disorder along the incommensurate direction of these materials generates new structural solutions at low temperature (inter-modulated monoclinic composite, commensurate lock-in). (author) [fr

  20. Crystallographic insight into the evolutionary origins of xyloglucan endotransglycosylases and endohydrolases.

    Science.gov (United States)

    McGregor, Nicholas; Yin, Victor; Tung, Ching-Chieh; Van Petegem, Filip; Brumer, Harry

    2017-02-01

    The xyloglucan endotransglycosylase/hydrolase (XTH) gene family encodes enzymes of central importance to plant cell wall remodeling. The evolutionary history of plant XTH gene products is incompletely understood vis-à-vis the larger body of bacterial endoglycanases in Glycoside Hydrolase Family 16 (GH16). To provide molecular insight into this issue, high-resolution X-ray crystal structures and detailed enzyme kinetics of an extant transitional plant endoglucanase (EG) were determined. Functionally intermediate between plant XTH gene products and bacterial licheninases of GH16, Vitis vinifera EG16 (VvEG16) effectively catalyzes the hydrolysis of the backbones of two dominant plant cell wall matrix glycans, xyloglucan (XyG) and β(1,3)/β(1,4)-mixed-linkage glucan (MLG). Crystallographic complexes with extended oligosaccharide substrates reveal the structural basis for the accommodation of both unbranched, mixed-linked (MLG) and highly decorated, linear (XyG) polysaccharide chains in a broad, extended active-site cleft. Structural comparison with representative bacterial licheninases, a xyloglucan endotranglycosylase (XET), and a xyloglucan endohydrolase (XEH) outline the functional ramifications of key sequence deletions and insertions across the phylogenetic landscape of GH16. Although the biological role(s) of EG16 orthologs remains to be fully resolved, the present biochemical and tertiary structural characterization provides key insight into plant cell wall enzyme evolution, which will continue to inform genomic analyses and functional studies across species. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  1. Geochemical and Crystallographic Study of Turbo Torquatus (Mollusca: Gastropoda) From Southwestern Australia

    Science.gov (United States)

    Roger, L. M.; George, A. D.; Shaw, J.; Hart, R. D.; Roberts, M. P.; Becker, T.; Evans, N. J.; McDonald, B. J.

    2018-01-01

    Shells of the marine gastropod Turbo torquatus were sampled from three different locations along the Western Australian coastline, namely Marmion Lagoon (31°S), Rottnest Island (32°S), and Hamelin Bay (34°S). Marmion Lagoon and Rottnest Island have similar sea surface temperature ranges that are ˜1°C warmer than Hamelin Bay, with all sites influenced by the warm southward flowing Leeuwin Current. The shells were characterized using crystallographic, spectroscopic, and geochemical analyses. Shell mineral composition varies between the three sites suggesting the influence of sea surface temperature, oxygen consumption, and/or bedrock composition on shell mineralogy and preferential incorporation and/or elemental discrimination of Mg, P, and S. Furthermore, T. torquatus was found to exert control over the incorporation of most, if not all, the elements measured here, suggesting strong biological regulation. At all levels of testing, the concentrations of Li varied significantly, which indicates that this trace element may not be a suitable environmental proxy. Variation in Sr concentration between sites and between specimens reflects combined environmental and biological controls suggesting that Sr/Ca ratios in T. torquatus cannot be used to estimate sea surface temperature without experimentally accounting for metabolic and growth effects. The mineral composition and microstructure of T. torquatus shells may help identify sea surface temperature variations on geological time scales. These findings support the previously hypothesized involvement of an active selective pathway across the calcifying mantle of T. torquatus for most, if not all, the elements measured here.

  2. Crystallographic Structure of Xanthorhodopsin, the Light-Driven Proton Pump With a Dual Chromophore

    International Nuclear Information System (INIS)

    Luecke, H.; Schobert, B.; Stagno, J.; Imasheva, E.S.; Wang, J.M.; Balashov, S.P.; Lanyi, J.K

    2008-01-01

    Homologous to bacteriorhodopsin and even more to proteorhodopsin, xanthorhodopsin is a light-driven proton pump that, in addition to retinal, contains a noncovalently bound carotenoid with a function of a light-harvesting antenna. We determined the structure of this eubacterial membrane protein-carotenoid complex by X-ray diffraction, to 1.9-(angstrom) resolution. Although it contains 7 transmembrane helices like bacteriorhodopsin and archaerhodopsin, the structure of xanthorhodopsin is considerably different from the 2 archaeal proteins. The crystallographic model for this rhodopsin introduces structural motifs for proton transfer during the reaction cycle, particularly for proton release, that are dramatically different from those in other retinal-based transmembrane pumps. Further, it contains a histidine-aspartate complex for regulating the pK a of the primary proton acceptor not present in archaeal pumps but apparently conserved in eubacterial pumps. In addition to aiding elucidation of a more general proton transfer mechanism for light-driven energy transducers, the structure defines also the geometry of the carotenoid and the retinal. The close approach of the 2 polyenes at their ring ends explains why the efficiency of the excited-state energy transfer is as high as ∼45%, and the 46 o angle between them suggests that the chromophore location is a compromise between optimal capture of light of all polarization angles and excited-state energy transfer

  3. Study on Crystallographic Orientation Effect on Surface Generation of Aluminum in Nano-cutting.

    Science.gov (United States)

    Xu, Feifei; Fang, Fengzhou; Zhu, Yuanqing; Zhang, Xiaodong

    2017-12-01

    The material characteristics such as size effect are one of the most important factors that could not be neglected in cutting the material at nanoscale. The effects of anisotropic nature of single crystal materials in nano-cutting are investigated employing the molecular dynamics simulation. Results show that the size effect of the plastic deformation is based on different plastic carriers, such as the twin, stacking faults, and dislocations. The minimum uncut chip thickness is dependent on cutting direction, where even a negative value is obtained when the cutting direction is {110}. It also determines the material deformation and removal mechanism (e.g., shearing, extruding, and rubbing mechanism) with a decrease in uncut chip thickness. When material is deformed by shearing, the primary shearing zone expands from the stagnation point or the tip of stagnation zone. When a material is deformed by extruding and rubbing, the primary deformation zone almost parallels to the cutting direction and expands from the bottom of the cutting edge merging with the tertiary deformation zone. The generated surface quality relates to the crystallographic orientation and the minimum uncut chip thickness. The cutting directions of {110}, {110}, and {111}, whose minimum uncut chip thickness is relatively small, have better surface qualities compared to the other cutting direction.

  4. Rearrangement of crystallographic domains driven by magnetic field in ferromagnetic Ni2MnGa and antiferromagnetic CoO

    International Nuclear Information System (INIS)

    Terai, Tomoyuki; Yasui, Motoyoshi; Yamamoto, Masataka; Kakeshita, Tomoyuki

    2009-01-01

    We have investigated the rearrangement of crystallographic domains (martensite variants) in Ni 2 MnGa ferromagnetic shape memory alloy and CoO antiferromagnetic oxide by applying magnetic field up to 8.0 MA/m. From the result of optical microscope observation of Ni 2 MnGa single crystal, when a magnetic field is applied along [001] p (p represents a parent phase), the rearrangement of crystallographic domains occurs and the single domain state is obtained below T Ms = 202 K. The same rearrangement occurs but partially when a magnetic field is applied along [110] p . On the other hand, when a magnetic field is applied along [111] p , the rearrangement does not occur. In case of the CoO single crystal, when a magnetic field is applied along [001] p below T Ms = 293 K, the rearrangement occurs at 170 K ≤ T ≤ 293 K, but does not occur at T p and [111] p , the rearrangement does not occur below T Ms . In order to explain the rearrangement in the alloy and the oxide, we have evaluated the magnetic shear stress, τ mag , which is derived from the difference in magnetic energy among crystallographic domains and have compared it with the shear stress required for the twinning plane movement, τ req . As a result, we have found that the rearrangement occurs when the value of τ mag is larger than or equal to the value of τ req for the present alloy and oxide.

  5. Influence of different kinds of rolling on the crystallographic texture and magnetic induction of a NOG 3 wt% Si steel

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.M.; Baêta Júnior, E.S.; Moraes, N.R.D.C.; Botelho, R.A. [Department of Mechanical and Materials Engineering, Military Institute of Engineering (IME), Praça General Tibúrcio, 80,Urca, Rio de Janeiro/RJ (Brazil); Felix, R.A.C. [Scientific Instrumentation and Mechanical Technology Laboratory, Brazilian Center for Physics Research (CBPF), Rua Dr. Xavier Sigaud, 150-Urca, Rio de Janeiro-RJ (Brazil); Brandao, L., E-mail: brandao@ime.eb.br [Department of Mechanical and Materials Engineering, Military Institute of Engineering (IME), Praça General Tibúrcio, 80,Urca, Rio de Janeiro/RJ (Brazil)

    2017-01-01

    The purpose of this work was to study the influence of different kinds of rolling on the magnetic properties of NOG steel, an electric steel widely used in electrical motors. These properties are highly correlated with the crystallographic texture of the material, which can be changed by rolling. Three kinds of rolling were examined: conventional rolling, cross-rolling and asymmetrical rolling. The crystallographic texture was determined by X-ray diffraction and the magnetic properties were calculated from a theoretical model that related the magnetic induction to crystallographic texture through the anisotropy energy. The results show that cross-rolling yields higher values of magnetic induction than the other processes. - Highlights: • The B{sub 50} of NOG steels was evaluated via texture for different rolling processes. • On comparison to all processes used, the cross-rolling led to highest average B{sub 50}. • Cross-rolling enhances Goss and γ-fiber after annealing. • The better B{sub 50} values were obtained for symmetrical and cross-rolling processes. • For asymmetric rolling process, cylinder diameter ratio changed slightly the texture.

  6. Structures of endothiapepsin-fragment complexes from crystallographic fragment screening using a novel, diverse and affordable 96-compound fragment library.

    Science.gov (United States)

    Huschmann, Franziska U; Linnik, Janina; Sparta, Karine; Ühlein, Monika; Wang, Xiaojie; Metz, Alexander; Schiebel, Johannes; Heine, Andreas; Klebe, Gerhard; Weiss, Manfred S; Mueller, Uwe

    2016-05-01

    Crystallographic screening of the binding of small organic compounds (termed fragments) to proteins is increasingly important for medicinal chemistry-oriented drug discovery. To enable such experiments in a widespread manner, an affordable 96-compound library has been assembled for fragment screening in both academia and industry. The library is selected from already existing protein-ligand structures and is characterized by a broad ligand diversity, including buffer ingredients, carbohydrates, nucleotides, amino acids, peptide-like fragments and various drug-like organic compounds. When applied to the model protease endothiapepsin in a crystallographic screening experiment, a hit rate of nearly 10% was obtained. In comparison to other fragment libraries and considering that no pre-screening was performed, this hit rate is remarkably high. This demonstrates the general suitability of the selected compounds for an initial fragment-screening campaign. The library composition, experimental considerations and time requirements for a complete crystallographic fragment-screening campaign are discussed as well as the nine fully refined obtained endothiapepsin-fragment structures. While most of the fragments bind close to the catalytic centre of endothiapepsin in poses that have been observed previously, two fragments address new sites on the protein surface. ITC measurements show that the fragments bind to endothiapepsin with millimolar affinity.

  7. Structures of endothiapepsin–fragment complexes from crystallographic fragment screening using a novel, diverse and affordable 96-compound fragment library

    Science.gov (United States)

    Huschmann, Franziska U.; Linnik, Janina; Sparta, Karine; Ühlein, Monika; Wang, Xiaojie; Metz, Alexander; Schiebel, Johannes; Heine, Andreas; Klebe, Gerhard; Weiss, Manfred S.; Mueller, Uwe

    2016-01-01

    Crystallographic screening of the binding of small organic compounds (termed fragments) to proteins is increasingly important for medicinal chemistry-oriented drug discovery. To enable such experiments in a widespread manner, an affordable 96-compound library has been assembled for fragment screening in both academia and industry. The library is selected from already existing protein–ligand structures and is characterized by a broad ligand diversity, including buffer ingredients, carbohydrates, nucleotides, amino acids, peptide-like fragments and various drug-like organic compounds. When applied to the model protease endothiapepsin in a crystallographic screening experiment, a hit rate of nearly 10% was obtained. In comparison to other fragment libraries and considering that no pre-screening was performed, this hit rate is remarkably high. This demonstrates the general suitability of the selected compounds for an initial fragment-screening campaign. The library composition, experimental considerations and time requirements for a complete crystallographic fragment-screening campaign are discussed as well as the nine fully refined obtained endothiapepsin–fragment structures. While most of the fragments bind close to the catalytic centre of endothiapepsin in poses that have been observed previously, two fragments address new sites on the protein surface. ITC measurements show that the fragments bind to endothiapepsin with millimolar affinity. PMID:27139825

  8. Study on the crystallographic orientation relationship and formation mechanism of reversed austenite in economical Cr12 super martensitic stainless steel

    International Nuclear Information System (INIS)

    Ye, Dong; Li, Shaohong; Li, Jun; Jiang, Wen; Su, Jie; Zhao, Kunyu

    2015-01-01

    Effect of carbides and crystallographic orientation relationship on the formation mechanism of reversed austenite of economical Cr12 super martensitic stainless steel (SMSS) has been investigated mainly by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). The results indicate that the M_2_3C_6 precipitation and the formation of the reversed austenite have the interaction effect during tempering process in SMSS. The reversed austenite forms intensively at the sub-block boundary and the lath boundary within a misorientation range of 0–60°. M_2_3C_6 has the same crystallographic orientation relationship with reversed austenite. There are two different kinds of formation modes for reversed austenite. One is a nondiffusional shear reversion; the other is a diffusion transformation. Both are strictly limited by crystallographic orientation relationship. The austenite variants are limited to two kinds within one packet and five kinds within one prior austenite grain. - Highlights: • Reversed austenite forms at martensite boundaries with misorientation of 0–60° • M_2_3C_6 precipitation and reversed austenite formation have the interaction effect. • Two austenite variants with different orientations can be formed inside a packet. • Two reversed austenite formation modes: shear reversion; diffusion transformation

  9. Study on the crystallographic orientation relationship and formation mechanism of reversed austenite in economical Cr12 super martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Dong; Li, Shaohong; Li, Jun; Jiang, Wen [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Su, Jie [Institute for Structural Materials, Central Iron and Steel Research Institute, Beijing 100081 (China); Zhao, Kunyu, E-mail: kyzhaoy@sina.com [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2015-11-15

    Effect of carbides and crystallographic orientation relationship on the formation mechanism of reversed austenite of economical Cr12 super martensitic stainless steel (SMSS) has been investigated mainly by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). The results indicate that the M{sub 23}C{sub 6} precipitation and the formation of the reversed austenite have the interaction effect during tempering process in SMSS. The reversed austenite forms intensively at the sub-block boundary and the lath boundary within a misorientation range of 0–60°. M{sub 23}C{sub 6} has the same crystallographic orientation relationship with reversed austenite. There are two different kinds of formation modes for reversed austenite. One is a nondiffusional shear reversion; the other is a diffusion transformation. Both are strictly limited by crystallographic orientation relationship. The austenite variants are limited to two kinds within one packet and five kinds within one prior austenite grain. - Highlights: • Reversed austenite forms at martensite boundaries with misorientation of 0–60° • M{sub 23}C{sub 6} precipitation and reversed austenite formation have the interaction effect. • Two austenite variants with different orientations can be formed inside a packet. • Two reversed austenite formation modes: shear reversion; diffusion transformation.

  10. Five-parameter crystallographic characteristics of the interfaces formed during ferrite to austenite transformation in a duplex stainless steel

    Science.gov (United States)

    Haghdadi, N.; Cizek, P.; Hodgson, P. D.; Tari, V.; Rohrer, G. S.; Beladi, H.

    2018-05-01

    The crystallography of interfaces in a duplex stainless steel having an equiaxed microstructure produced through the ferrite to austenite diffusive phase transformation has been studied. The five-parameter interface character distribution revealed a high anisotropy in habit planes for the austenite-ferrite and austenite-austenite interfaces for different lattice misorientations. The austenite and ferrite habit planes largely terminated on (1 1 1) and (1 1 0) planes, respectively, for the austenite-ferrite interfaces associated with Kurdjumov-Sachs (K-S) and Nishiyama-Wasserman (N-W) orientation relationships. This was mostly attributed to the crystallographic preference associated with the phase transformation. For the austenite-ferrite interfaces with orientation relationships which are neither K-S nor N-W, both austenite and ferrite habit planes had (1 1 1) orientations. Σ3 twin boundaries comprised the majority of austenite-austenite interfaces, mostly showing a pure twist character and terminating on (1 1 1) planes due to the minimum energy configuration. The second highest populated austenite-austenite boundary was Σ9, which tended to have grain boundary planes in the tilt zone due to the geometrical constraints. Furthermore, the intervariant crystallographic plane distribution associated with the K-S orientation relationship displayed a general tendency for the austenite habit planes to terminate with the (1 1 1) orientation, mainly due to the crystallographic preference associated with the phase transformation.

  11. A Method for Modeling of Floating Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Wang, Kai; Hansen, Martin Otto Laver; Moan, Torgeir

    2013-01-01

    It is of interest to investigate the potential advantages of floating vertical axis wind turbine (FVAWT) due to its economical installation and maintenance. A novel 5MW vertical axis wind turbine concept with a Darrieus rotor mounted on a semi-submersible support structure is proposed in this paper....... In order to assess the technical and economic feasibility of this novel concept, a comprehensive simulation tool for modeling of the floating vertical axis wind turbine is needed. This work presents the development of a coupled method for modeling of the dynamics of a floating vertical axis wind turbine....... This integrated dynamic model takes into account the wind inflow, aerodynamics, hydrodynamics, structural dynamics (wind turbine, floating platform and the mooring lines) and a generator control. This approach calculates dynamic equilibrium at each time step and takes account of the interaction between the rotor...

  12. design and implementation of a microcontroller based dual axis

    African Journals Online (AJOL)

    user

    In this paper, an efficient microcontroller-based dual axis solar radiation tracker which can be used to align a single photovoltaic (PV) ... replaced them with wind turbine generating stations. ... tracker which has both horizontal and vertical axle.

  13. The effects of lateral head tilt on ocular astigmatic axis

    Directory of Open Access Journals (Sweden)

    Hamid Fesharaki

    2014-01-01

    Conclusion: Any minimal angle of head tilt may cause erroneous measurement of astigmatic axis and should be avoided during refraction. One cannot rely on the compensatory function of ocular counter-torsion during the refraction.

  14. Particle orbit analysis for LHD helical axis configurations

    International Nuclear Information System (INIS)

    Guasp, J.; Yamazaki, K.; Motojima, O.

    1993-04-01

    Fast ion orbits for helical magnetic axis configurations in LHD (Large Helical Device) are analyzed and compared with the standard circular axis case. Boundaries between passing and helically trapped particle regions show clear differences: in the non-planar axis case the helically trapped region spreads, near the magnetic axis, over a much wider band across the 90deg pitch angle value and shows a very marked asymmetry. The locally trapped particle region is also wider than in the standard case. The differences in the loss cone boundaries of the two cases are rather small, however, the effects of re-entering criteria are very important in both cases. On the contrary, effects of finite coil size are not significant. (author)

  15. Space/Flight Operable Miniature Six Axis Transducer, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — FUTEK will fully design and manufacture a sensor capable of measuring forces in and about each axis. The unit will measure forces up to 300 Newton's in the principle...

  16. Off-axis vortex breakdown in a shallow whirlpool.

    Science.gov (United States)

    Herrada, Miguel A; Shtern, Vladimir N; López-Herrera, José María

    2013-06-01

    The off-axis emergence of vortex breakdown (VB) is revealed. The steady axisymmetric flow in a vertical sealed cylinder, which is partially filled with water and the rest is filled with air, is driven by the rotating bottom disk. The numerical simulations show that VB can emerge away from the rotation axis, interface, and walls. As the rotation intensifies, VB first develops in the water region. If the water height is less (larger) than nearly one half of the cylinder radius, VB emerges off (on) the axis. As the rotation further increases, the off-axis VB ring touches the interface and then a thin countercirculation layer develops in the air flow above the water VB domain. This two-fluid VB ring shrinks (it even disappears in a very shallow whirlpool) as the interface approaches the bottom disk.

  17. Helical-axis stellarators with noninterlocking planar coils

    International Nuclear Information System (INIS)

    Reiman, A.; Boozer, A.

    1983-08-01

    The properties of helical axis stellarator fields generated by unlinked, planar coils are described. It is shown that such fields can have a magnetic well and large rotational transform, implying large equilibrium and stability beta limits

  18. Helical-axis stellarators with noninterlocking planar coils

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, A.; Boozer, A.

    1983-08-01

    The properties of helical axis stellarator fields generated by unlinked, planar coils are described. It is shown that such fields can have a magnetic well and large rotational transform, implying large equilibrium and stability beta limits.

  19. Design of a Three-Axis Machine Tool Module

    National Research Council Canada - National Science Library

    Childers, Marshal

    2003-01-01

    This report documents the design improvement process of the components in a tool module for a three-axis machine tool, which occurred during the period of March-April 2002 in support of a critical U.S...

  20. Proper time axis of a closed relativistic system

    International Nuclear Information System (INIS)

    Chernikov, N.A.; Fadeev, N.G.; Shavokhina, N.S.

    1997-01-01

    The definition of a proper time axis of a closed relativistic system of colliding particles is given. The solution of the proper time axis problem is presented. If the light velocity c equals the imaginary unit i, then in the case of a plane motion of the system the problem about the proper time axis turns out to be equivalent to the known in engineering mechanics problem about the reduction of any system of forces, applied to a rigid body, to the dynamic screw. In the general case, when c=i, the problem about the proper time axis turns out to be equivalent to the problem about the reduction to the dynamic screw of a system of forces, applied to a rigid body in a four-dimensional Euclidean space

  1. UARS PEM Level 2 AXIS 1 V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The UARS Particle Environment Monitor (PEM) level 2 Atmosphere X-Ray Imaging Spectrometer (AXIS) unit 1 daily product contains the X-ray high-resolution spectral...

  2. UARS PEM Level 2 AXIS 2 V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The UARS Particle Environment Monitor (PEM) level 2 Atmosphere X-Ray Imaging Spectrometer (AXIS) unit 2 daily product contains the X-ray high-resolution spectral...

  3. Dual Axis Controller for Extreme Environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Dual Axis Controller for Extreme Environments (DACEE) addresses a critical need of NASA's future exploration plans to investigate extreme environments within our...

  4. Three-Axis Gasless Sounding Rocket Payload Attitude Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Gas released by current sounding rocket payload attitude control systems (ACS) has the potential to interfere with some types of science instruments. A single-axis...

  5. Microbiota-gut-brain axis and the central nervous system

    OpenAIRE

    Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei

    2017-01-01

    The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated ...

  6. Self-starting aerodynamics analysis of vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Jianyang Zhu

    2015-12-01

    Full Text Available Vertical axis wind turbine is a special type of wind-force electric generator which is capable of working in the complicated wind environment. The self-starting aerodynamics is one of the most important considerations for this kind of turbine. This article aims at providing a systematic synthesis on the self-starting aerodynamic characteristics of vertical axis wind turbine based on the numerical analysis approach. First, the physical model of vertical axis wind turbine and its parameter definitions are presented. Secondary, the interaction model between the vertical axis wind turbine and fluid is developed by using the weak coupling approach; the numerical data of this model are then compared with the wind tunnel experimental data to show its feasibility. Third, the effects of solidity and fixed pitch angle on the self-starting aerodynamic characteristics of the vertical axis wind turbine are analyzed systematically. Finally, the quantification effects of the solidity and fixed pitch angle on the self-starting performance of the turbine can be obtained. The analysis in this study will provide straightforward physical insight into the self-starting aerodynamic characteristics of vertical axis wind turbine.

  7. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  8. Design and optimize of 3-axis filament winding machine

    Science.gov (United States)

    Quanjin, Ma; Rejab, M. R. M.; Idris, M. S.; Bachtiar, B.; Siregar, J. P.; Harith, M. N.

    2017-10-01

    Filament winding technique is developed as the primary process for composite cylindrical structures fabrication at low cost. Fibres are wound on a rotating mandrel by a filament winding machine where resin impregnated fibres pass through a pay-out eye. This paper aims to develop and optimize a 3-axis, lightweight, practical, efficient, portable filament winding machine to satisfy the customer demand, which can fabricate pipes and round shape cylinders with resins. There are 3 main units on the 3-axis filament winding machine, which are the rotary unit, the delivery unit and control system unit. Comparison with previous existing filament winding machines in the factory, it has 3 degrees of freedom and can fabricate more complex shape specimens based on the mandrel shape and particular control system. The machine has been designed and fabricated on 3 axes movements with control system. The x-axis is for movement of the carriage, the y-axis is the rotation of mandrel and the z-axis is the movement of the pay-out eye. Cylindrical specimens with different dimensions and winding angles were produced. 3-axis automated filament winding machine has been successfully designed with simple control system.

  9. Major and minor axis kinematics of 22 ellipticals

    International Nuclear Information System (INIS)

    Franx, M.; Illingworth, G.; Heckman, T.

    1989-01-01

    Rotation curves and velocity dispersion profiles have been determined for the major and the minor axes of 22 elliptical galaxies. Rotation was detected in all but one galaxy, even though the sample was biased toward round ellipticals. Minor axis rotation larger than major axis rotation was measured in two galaxies, NGC 4406 and NGC 7507. Roughly 10 percent of ellipticals may show large minor axis velocities relative to those on the major axis. A simple model is used to derive a rotational axis from the observed minor and major axis velocities to a typical accuracy of 6 deg. The rotational and photometric minor axes aligned to better than 10 deg for 60 percent of the sample, implying that the direction of the angular momentum is related to the orientation of the figure of the galaxy. IC 1459 has a kinematically distinct core with its angular momentum opposite to the angular momentum of the outer parts, and NGC 4406 has a core with its angular momentum perpendicular to that of the outer parts. 46 refs

  10. Optic axis-driven new horizons for hyperbolic metamaterials

    Directory of Open Access Journals (Sweden)

    Boardman Allan D.

    2015-01-01

    Full Text Available The broad assertion here is that the current hyperbolic metamaterial world is only partially served by investigations that incorporate only some limited version of anisotropy. Even modest deviations of the optic axis from the main propagation axis lead to new phase shifts, which not only compete with those created by absorption but end up dominating them. Some progress has been attempted in the literature by introducing the terms “asymmetric hyperbolic media”, but it appears that this kind of asymmetry only involves an optic axis at an angle to the interface of a uniaxial crystal. From a device point of view, many new prospects should appear and the outcomes of the investigations presented here yield a new general theory. It is emphasised that the orientation of the optic axis is a significant determinant in the resulting optical properties. Whereas for conventional anisotropic waveguides homogeneous propagating waves occur over a limited range of angular dispositions of the optic axis it is shown that for a hyperbolic guide a critical angular setting exists, above which the guided waves are always homogeneous. This has significant implications for metawaveguide designs. The resulting structures are more tolerant to optic axis misalignment.

  11. A new technique for quantifying symmetry and opening angles in quartz c-axis pole figures: Implications for interpreting the kinematic and thermal properties of rocks

    Science.gov (United States)

    Hunter, N. J. R.; Weinberg, R. F.; Wilson, C. J. L.; Law, R. D.

    2018-07-01

    Variations in flow kinematics influence the type of crystallographic preferred orientations (CPOs) in plastically deformed quartz, yet we currently lack a robust means of quantifying the diagnostic symmetries that develop in the c-axis (0001) pole figure. In this contribution, we demonstrate how the symmetry of common c-axis topologies may be quantified by analysing the intensity distribution across a line transect of the pole figure margin. A symmetry value (S) measures the relative difference in intensities between marginal girdle maxima in the pole figure, and thus the degree to which the pole figure defines orthorhombic or monoclinic end member symmetries. This provides a semi-quantitative depiction of whether the rocks underwent coaxial or non-coaxial flow, respectively, and may subsequently be used to quantify other topological properties, such as the opening angle of girdle maxima. The open source Matlab® toolbox MTEX is used to quantify pole figure symmetries in quartzite samples from the Main Central Thrust (NW Himalaya) and the Moine Thrust (NW Scotland).

  12. Crystallographic texture and microstructural changes in fusion welds of recrystallized Zry-4 rolled plates

    International Nuclear Information System (INIS)

    Moya Riffo, A.; Vicente Alvarez, M.A.; Santisteban, J.R.; Vizcaino, P.; Limandri, S.; Daymond, M.R.; Kerr, D.; Okasinski, J.; Almer, J.; Vogel, S.C.

    2017-01-01

    This work presents a detailed characterization of the microstructural and crystallographic texture changes observed in the transition region in a weld between two Zircaloy-4 cold rolled and recrystallized plates. The microstructural study was performed by optical microscopy under polarized light and scanning electron microscopy (SEM). Texture changes were characterized at different lengthscales: in the micrometric size, orientation imaging maps (OIM) were constructed by electron backscatter diffraction (EBSD), in the millimetre scale, high energy XRD experiments were done at the Advanced Photon Source (USA) and compared to neutron diffraction texture determinations performed in the HIPPO instrument at Los Alamos National Laboratory. In the heat affected zone (HAZ) we observed the development of Widmanstätten microstructures, typical of the α(hcp) to β(bcc) phase transformation. Associated with these changes a rotation of the c-poles is found in the HAZ and fusion zone. While the base material shows the typical texture of a cold rolled plate, with their c-poles pointing 35° apart from the normal direction of the plate in the normal-transversal line, in the HAZ, c-poles align along the transversal direction of the plate and then re-orient along different directions, all of these changes occurring within a lengthscale in the order of mm. The evolution of texture in this narrow region was captured by both OIM and XRD, and is consistent with previous measurements done by Neutron Diffraction in the HIPPO diffractometer at Los Alamos National Laboratory, USA. The microstructural and texture changes along the HAZ were interpreted as arising due to the effect of differences in the cooling rate and β grain size on the progress of the different α variants during transformation. Fast cooling rates and large β grains are associated to weak variant selection during the β−>α transformation, while slow cooling rates and fine β grains result in strong variant selection.

  13. Microstructure and crystallographic texture evolution during TIG welding of zircaloy-2 material

    International Nuclear Information System (INIS)

    Jha, S.K.; Singh, R.P.; Singh, V.K.; Ramanathan, R.; Samjdar, I.; Srivastava, D.; Tewari, R.; Dey, G.K.

    2005-01-01

    Zirconium and its alloys are extensively used as structural materials in nuclear reactors, because of better neutron economy, good corrosion resistance in water and good mechanical properties at operating temperature. Zircaloy-2 and zircaloy-4 are widely used in both pressurized water reactors (PWR) and boiling water reactors (BWR) as fuel cladding materials and as calandria tube and pressure tube materials in pressurized heavy water reactors (PHWR). The satisfactory performance and the life of the reactor components depend mainly upon their mechanical properties, corrosion properties and dimensional stability in the reactor condition, which are strong function of metallurgical parameters such as microstructure and texture. Therefore, for best performance of the reactor components these parameters are optimized during their fabrication. The microstructure and texture of the zircaloy-2 components are expected to get modified during the welding of the components. In this study the evolution of the microstructure and texture has been investigated as a function of the welding parameters. Heat input was varied the current and welding time. A variety of analytical techniques have been applied for the study on microstructure and texture of the welds. Optical microscopy and electron microscopy were used to evaluate the detailed microstructure. X-ray diffraction (XRD) was used investigate the crystallographic textures among the base metal, heat affected zone and fusion zone. Particular attention was focused on the determination of microtexture in weld by using electron backscatter diffraction (EBSD) technique. After that, an effort was put to compare the results of X-ray macro-texture and EBS-microtexture. (author)

  14. Crystallographic, microstructure and mechanical characteristics of dynamically processed IN718 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.D., E-mail: ads.hpu@gmail.com [Department of Physics, Himachal Pradesh University, Shimla 171005 (India); Sharma, A.K. [Terminal Ballistics Research Laboratory, Chandigarh 160030 (India); Thakur, N. [Department of Physics, Himachal Pradesh University, Shimla 171005 (India)

    2014-06-01

    Highlights: • Measurement of detonation velocity and compaction of powder are achieved together. • A plastic explosive detonation results into dense compacts without grain-growth. • We have studied crystallographic, micromechanical and microstructural features. • The results show no segregation within the compacts. • Density (98%), microhardness (470 ± 3)H{sub v}, microstrain (0.3%), UTS (806 MPa) are obtained. - Abstract: Dynamic consolidation of IN718 superalloy powder without grain-growth and negligible density gradient is accomplished through explosively generated shock wave loading. The compaction of powder and measurement of detonation velocity are achieved successfully in a single-shot experiment by employing instrumented detonics. A plastic explosive having a detonation velocity of the order of 7.1 km/s in a direct proximity with superalloy powder is used for the consolidation process. The compacted specimens are examined for structural, microstructure and mechanical characteristics. X-ray diffraction (XRD) study suggests intact crystalline structure of the compacts. A small micro-strain (0.26%) is observed by using Williamson–Hall method. Wavelength dispersive spectroscopy indicates no segregation within the shock processed superalloy compacted specimens. The monoliths investigated for fractography by using field emission scanning electron microscopy (FE-SEM) show original dendritic structure accompanied by re-solidified molten regions across the interparticle boundaries. Depth-sensing indentations (at 1.96 N) on compacted specimens show excellent micro-hardness of the order of (470 ± 3)H{sub v}. Tensile and compressive strengths of the superalloy monolith are observed to be 806 and 822 MPa, respectively.

  15. Lithium insertion in the two crystallographic forms of the binary-phase Mo15Se19

    Science.gov (United States)

    Tarascon, J. M.; Murphy, D. W.

    1986-02-01

    Compounds which can undergo topotactic insertion of lithium are of potential technological importance in secondary lithium batteries. In this paper we present the chemical and electrochemical insertion of lithium into the binary-phase Mo15Se19, which can exist in two crystallographic forms, denoted AA and BB, when prepared from In3Mo15Se19 and In2Mo15Se19, respectively. We show that both forms can reversibly accommodate up to eight lithium atoms, yielding two new series of compounds of formula LixMo15Se19. This behavior is consistent with the electronic structure of the host material predicted from band-structure calculations. The room-temperature phase diagram of both LixMo15Se19 systems as a function of x has been established using electrochemical test cells (based on Mo15Se19 as the cathode), and in situ x-ray measurements as the cells discharge. Both LixMo15Se19 systems contain three single-phase domains as a function of x: two hexagonal phases and an orthorhombic phase. The nature of the transitions between these single phases and the variation of the lattice parameters within a single-phase domain are reported. While the mechanism of intercalation of lithium is similar for both Mo15Se19 forms, there is a drastic difference in Li intercalation behavior for the parent indium phases In2Mo15Se19 and In3Mo15Se19. We found that In2Mo15Se19 can reversibly incorporate 6.4 lithium atoms while In3Mo15Se19 does not react. This behavior is explained on the basis of structural considerations.

  16. Lithium insertion in the two crystallographic forms of the binary-phase Mo15Se19

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Murphy, D.W.

    1986-01-01

    Compounds which can undergo topotactic insertion of lithium are of potential technological importance in secondary lithium batteries. In this paper we present the chemical and electrochemical insertion of lithium into the binary-phase Mo 15 Se 19 , which can exist in two crystallographic forms, denoted AA and BB, when prepared from In 3 Mo 15 Se 19 and In 2 Mo 15 Se 19 , respectively. We show that both forms can reversibly accommodate up to eight lithium atoms, yielding two new series of compounds of formula Li/sub x/Mo 15 Se 19 . This behavior is consistent with the electronic structure of the host material predicted from band-structure calculations. The room-temperature phase diagram of both Li/sub x/Mo 15 Se 19 systems as a function of x has been established using electrochemical test cells (based on Mo 15 Se 19 as the cathode), and in situ x-ray measurements as the cells discharge. Both Li/sub x/Mo 15 Se 19 systems contain three single-phase domains as a function of x: two hexagonal phases and an orthorhombic phase. The nature of the transitions between these single phases and the variation of the lattice parameters within a single-phase domain are reported. While the mechanism of intercalation of lithium is similar for both Mo 15 Se 19 forms, there is a drastic difference in Li intercalation behavior for the parent indium phases In''Mo 15 Se 19 and In 3 Mo 15 Se 19 . We found that In 2 Mo 15 Se 19 can reversibly incorporate 6.4 lithium atoms while In 3 Mo 15 Se 19 does not react. This behavior is explained on the basis of structural considerations

  17. Crystallographic texture and microstructural changes in fusion welds of recrystallized Zry-4 rolled plates

    Energy Technology Data Exchange (ETDEWEB)

    Moya Riffo, A., E-mail: alvaromoya@cab.cnea.gov.ar [Neutron Physics Department, Centro Atómico Bariloche, CNEA-CONICET (Argentina); Vicente Alvarez, M.A.; Santisteban, J.R. [Neutron Physics Department, Centro Atómico Bariloche, CNEA-CONICET (Argentina); Vizcaino, P. [Zirconium Technology Department, Centro Atómico Ezeiza, CNEA-CONICET (Argentina); Limandri, S. [Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba (Argentina); Daymond, M.R.; Kerr, D. [Dept. Mechanical and Materials Engineering, Queen' s University, Kingston, Ontario (Canada); Okasinski, J.; Almer, J. [Advanced Photon Source, Argonne National Laboratory, Argonne (United States); Vogel, S.C. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM (United States)

    2017-05-15

    This work presents a detailed characterization of the microstructural and crystallographic texture changes observed in the transition region in a weld between two Zircaloy-4 cold rolled and recrystallized plates. The microstructural study was performed by optical microscopy under polarized light and scanning electron microscopy (SEM). Texture changes were characterized at different lengthscales: in the micrometric size, orientation imaging maps (OIM) were constructed by electron backscatter diffraction (EBSD), in the millimetre scale, high energy XRD experiments were done at the Advanced Photon Source (USA) and compared to neutron diffraction texture determinations performed in the HIPPO instrument at Los Alamos National Laboratory. In the heat affected zone (HAZ) we observed the development of Widmanstätten microstructures, typical of the α(hcp) to β(bcc) phase transformation. Associated with these changes a rotation of the c-poles is found in the HAZ and fusion zone. While the base material shows the typical texture of a cold rolled plate, with their c-poles pointing 35° apart from the normal direction of the plate in the normal-transversal line, in the HAZ, c-poles align along the transversal direction of the plate and then re-orient along different directions, all of these changes occurring within a lengthscale in the order of mm. The evolution of texture in this narrow region was captured by both OIM and XRD, and is consistent with previous measurements done by Neutron Diffraction in the HIPPO diffractometer at Los Alamos National Laboratory, USA. The microstructural and texture changes along the HAZ were interpreted as arising due to the effect of differences in the cooling rate and β grain size on the progress of the different α variants during transformation. Fast cooling rates and large β grains are associated to weak variant selection during the β−>α transformation, while slow cooling rates and fine β grains result in strong variant selection.

  18. Structure and function of proteins investigated by crystallographic and spectroscopic time-resolved methods

    Science.gov (United States)

    Purwar, Namrta

    Biomolecules play an essential role in performing the necessary functions for life. The goal of this thesis is to contribute to an understanding of how biological systems work on the molecular level. We used two biological systems, beef liver catalase (BLC) and photoactive yellow protein (PYP). BLC is a metalloprotein that protects living cells from the harmful effects of reactive oxygen species by converting H2O2 into water and oxygen. By binding nitric oxide (NO) to the catalase, a complex was generated that mimics the Cat-H2O2 adduct, a crucial intermediate in the reaction promoted by the catalase. The Cat-NO complex is obtained by using a convenient NO generator (1-(N,N-diethylamino)diazen-1-ium-1,2-diolate). Concentrations up to 100˜200 mM are reached by using a specially designed glass cavity. With this glass apparatus and DEANO, sufficient NO occupation is achieved and structure determination of the catalase with NO bound to the heme iron becomes possible. Structural changes upon NO binding are minute. NO has a slightly bent geometry with respect to the heme normal, which results in a substantial overlap of the NO orbitals with the iron-porphyrin molecular orbitals. From the structure of the iron-NO complex, conclusions on the electronic properties of the heme iron can be drawn that ultimately lead to an insight into the catalytic properties of this enzyme. Enzyme kinetics is affected by additional parameters such as temperature and pH. Additionally, in crystallography, the absorbed X-ray dose may impair protein function. To address the effect of these parameters, we performed time-resolved crystallographic experiments on a model system, PYP. By collecting multiple time-series on PYP at increasing X-ray dose levels, we determined a kinetic dose limit up to which kinetically meaningful X-ray data sets can be collected. From this, we conclude that comprehensive time-series spanning up to 12 orders of magnitude in time can be collected from a single PYP

  19. Design Of Single-Axis And Dual-Axis Solar Tracking Systems Protected Against High Wind Speeds

    Directory of Open Access Journals (Sweden)

    Mai Salaheldin Elsherbiny

    2017-09-01

    Full Text Available Solar energy is rapidly gaining ground as an important mean of expanding renewable energy use. Solar tracking is employed in order to maximize collected solar radiation by a photovoltaic panel. In this paper we present a prototype for Automatic solar tracker that is designed using Arduino UNO with Wind sensor to Cease Wind effect on panels if wind speed exceeds certain threshold. The Proposed solar tracker tracks the location of the sun anywhere in any time by calculating the position of the sun. For producing the maximum amount of solar energy a solar panel must always be perpendicular to the source of light. Because the sun motion plane varies daily and during the day it moves from east to west one needs two axis tracking to follow the suns position. Maximum possible power is collected when two axis tracking is done. However two axis tracking is relatively costly and complex. A compromise between maximum power collection and system simplicity is obtained by single axis tracking where the plane North south axis is fixed while the east west motion is accomplished. This work deals with the design of both single and two axis tracking systems. Automatic trackers is also compared to Fixed one in terms of Energy generated Efficiency Cost and System reliability.

  20. Crystallographic study and self irradiation damage on plutonium at low temperature; Etude cristallographique et effets de l'auto-irradiation sur le plutonium a basse temperature

    Energy Technology Data Exchange (ETDEWEB)

    Solente, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-05-01

    We have studied the variation of the parameters of {alpha} plutonium and aluminium stabilised {delta} alloys at low temperature, in order to verify the existence of an antiferromagnetic transition at low temperature. The effects of {alpha} particles on the length of a polycrystal of {alpha} plutonium at 4,2 deg. K are also presented at 18 deg. K a plutonium shows no crystallographic change from its structure at room temperature. The thermal expansion coefficients along the 3 axis seem to be positive at this temperature. Therefore a magnetic contribution on thermal expansion coefficients must be small. A dilatation anomaly of {delta}Pu has been observed at 100 deg. K, together with an anomaly of the diffraction lines intensity. No sur-structure line has been observed at 20 deg. K. The length of {alpha} plutonium Increases with time at a rate of about 5 x 10{sup -6} per hour when held in liquid helium. This effect is attributed to the creation of Frenkel pairs. (author) [French] On presente une etude cristallographique a basse temperature du plutonium {alpha} et stabilise {delta} par des additions d'aluminium en vue de verifier l'existence d'une transformation antiferromagnetique a basse temperature. L'effet des particules {alpha} a 4,2 deg. K sur la longueur d'un polycristal de plutonium {alpha} a egalement ete etudie. Il a ete determine que le plutonium {alpha} ne mange pas de phase allotropique Jusqu'a 18 deg. K, les coefficients de dilatation des trois axes de la maille semblent rester positifs. Une eventuelle contribution magnetique sur les coefficients de dilatation devrait donc etre faible. Une legere anomalie de dilatation de Pu {delta} a ete observee a 100 deg. K ainsi qu'une anomalie d'intensite des raies de diffraction. Aucune raie de surstructure n'a ete observee. Le plutonium {alpha} s'allonge lorsqu'il est plonge dans l'helium liquide d'un taux de l'ordre de 5 x 10{sup -6}/heure. Cet effet a ete attribuee a la creation de paires de Frenkel. (auteur)

  1. Postnatal development of the atlas and axis: CT study

    International Nuclear Information System (INIS)

    Byun, Sung Su; Kim, Hyung Jin; Lim, Myung Kwan; Kim, Won Hong; Jeon, Yong Sun; Kim, Jeong Ho; Kim, Sung Tae

    2003-01-01

    To evaluate normal postnatal development of the atlas and axis by means of CT scanning. We prospectively analyzed CT scans of the developing atlas and axis of 200 normal children aged less than 14, investigating the CT appearance of these regions with particular attenuation to two synchondroses related to the atlas and four synchondroses and one ossification center related to the axis. Fusion varying was categorized as either low (grade1-5) or high (grade4-5), according to the varying degrees of fusion at each synchondrosis of ossification center. Neurocentral synchondrosis of the atlas was low grade in all children less than five, and high grade in all aged nine or more, while posterior synchondrosis of the atlas was low grade in 97% of children less than three and high grade in 99% aged three or more. As for the axis, neurocentral synchondrosis was low grade in all children less than three, and high grade in 97% of children aged five or more. PS of the axis was low grade in both children less than 6 months, and high grade in all aged two years or more. Dentocentral synchondrosis of the axis was low grade in 93% of children less than three and high grade in 96% of those aged at least five. Intradental axial synchondrosis was high grade in all children. Fusion of the terminal ossicle with the remainder of the dens was low in all children less than five and high in 97% of those aged nine of more. CT can help determine the parameters of normal postnatal development of the atlas and axis. A knowledge of normal ossification patterns of these regions may help provide an understanding of developmental anomalies and also help prevent confusion with fractures

  2. Effects of pH on the crystallographic structure and magnetic properties of electrodeposited cobalt nanowires

    International Nuclear Information System (INIS)

    Zafar, N.; Shamaila, S.; Sharif, R.; Wali, H.; Naseem, S.; Riaz, S.; Khaleeq-ur-Rahman, M.

    2015-01-01

    Anodic aluminum oxide templates with pore diameter of 40 nm and inter pore separation of 100 nm are prepared by two step anodization in 0.3 M oxalic acid solution. These templates are used to fabricate dc-deposited Co nanowires at different pH values of acidic bath. Continuous and densely packed nanowires having length ∼8 µm are observed. The hcp configuration appeared at moderate and high pH whereas both fcc and hcp phases are observed at low pH. However the crystallinity distorted at high pH due to formation of polycrystalline structure of cobalt nanowires. Alignment of easy-axis of nanowires can be tailored by varying pH of solution. - Highlights: • Variation in the structure of dc deposited cobalt nanowires can be obtained by varying pH of acidic bath. • The hcp structure is stable at room temperature with low voltage deposition for electrodeposited Co nanowires. Co with fcc structure, is stable at temperatures above 422 °C or at pH<3 with high potential. • The hcp (100) plane is obtained with pH∼3.5 and (101) is stable at pH∼5.5 due to variation in temperature inside the pores with respect to the pH. • Alignment of easy-axis of nanowires can be tailored by varying pH of solution

  3. Mechanical impedance of the sitting human body in single-axis compared to multi-axis whole-body vibration exposure.

    Science.gov (United States)

    Holmlund, P; Lundström, R

    2001-01-01

    The study was aimed to investigate the mechanical impedance of the sitting human body and to compare data obtained in laboratory single-axis investigations with multi-axis data from in vehicle measurements. The experiments were performed in a laboratory for single-axis measurements. The multi-axis exposure was generated with an eight-seat minibus where the rear seats had been replaced with a rigid one. The subjects in the multi-axis experiment all participated in the single-axis experiments. There are quite a few investigations in the literature describing the human response to single-axis exposure. The response from the human body can be expected to be affected by multi-axis input in a different way than from a single-axis exposure. The present knowledge of the effect of multiple axis exposure is very limited. The measurements were performed using a specially designed force and accelerometer plate. This plate was placed between the subject and the hard seat. Outcome shows a clear difference between mechanical impedance for multi-axis exposure compared to single-axis. This is especially clear in the x-direction where the difference is very large. The conclusion is that it seems unlikely that single-axis mechanical impedance data can be directly transferred to a multi-axis environment. This is due to the force cross-talk between different directions.

  4. Craniospinal axis irradiation: an improved electron technique for irradiation of the spinal axis

    International Nuclear Information System (INIS)

    Chun Li; Vijayakumar, S.; Myrianthopoulos, L.C.; Kuchnir, F.T.; Muller-Runkel, R.

    1994-01-01

    The authors review dosimetric features of craniospinal axis irradiation in the areas of matching cranial and spinal fields, with reference to normal structures within the spinal field. The implications of the use of photon or electron modalities for the spinal port were evaluated. A novel method of matching the cranial photon and the spinal electron fields involving a computer-aided junction design is presented, involving moving the photon beam in three steps to degrade its penumbra to match that of the electron field. Thermoluminescent dosimetry in a Rando phantom and computed tomography-based dose-volume histogram study for an illustrative paediatric case were used to compare dose to normal structures within the spinal field. Results show that the use of electrons for the spinal field leads to better sparing of deep seated normal structures. For bone marrow, the use of a customized bolus for the spinal field results in an improved dose distribution, making electrons potentially superior to photons for radiobiological reasons. (author)

  5. Measurement Axis Searching Model for Terrestrial Laser Scans Registration

    Directory of Open Access Journals (Sweden)

    Shaoxing Hu

    2016-01-01

    Full Text Available Nowadays, terrestrial Lidar scans can cover rather a large area; the point densities are strongly varied because of the line-of-sight measurement principle in potential overlaps with scans taken from different viewpoints. Most of the traditional methods focus on registration algorithm and ignore searching model. Sometimes the traditional methods are directly used to align two point clouds; a large critically unsolved problem of the large biases will be created in areas distant from the overlaps while the local overlaps are often aligned well. So a novel measurement axis searching model (MASM has been proposed in this paper. The method includes four steps: (1 the principal axis fitting, (2 the measurement axis generation, (3 low-high-precision search, and (4 result generation. The principal axis gives an orientation to the point cloud; the search scope is limited by the measurement axis. The point cloud orientation can be adjusted gradually until the achievement of the global optimum using low- and high-precision search. We perform some experiments with simulated point clouds and real terrestrial laser scans. The results of simulated point clouds have shown the processing steps of our method, and the results of real terrestrial laser scans have shown the sensitivity of the approach with respect to the indoor and outdoor scenes.

  6. Ankle-foot orthosis bending axis influences running mechanics.

    Science.gov (United States)

    Russell Esposito, Elizabeth; Ranz, Ellyn C; Schmidtbauer, Kelly A; Neptune, Richard R; Wilken, Jason M

    2017-07-01

    Passive-dynamic ankle-foot orthoses (AFOs) are commonly prescribed to improve locomotion for people with lower limb musculoskeletal weakness. The clinical prescription and design process are typically qualitative and based on observational assessment and experience. Prior work examining the effect of AFO design characteristics generally excludes higher impact activities such as running, providing clinicians and researchers limited information to guide the development of objective prescription guidelines. The proximal location of the bending axis may directly influence energy storage and return and resulting running mechanics. The purpose of this study was to determine if the location of an AFO's bending axis influences running mechanics. Marker and force data were recorded as 12 participants with lower extremity weakness ran overground while wearing a passive-dynamic AFO with posterior struts manufactured with central (middle) and off-centered (high and low) bending axes. Lower extremity joint angles, moments, powers, and ground reaction forces were calculated and compared between limbs and across bending axis conditions. Bending axis produced relatively small but significant changes. Ankle range of motion increased as the bending axis shifted distally (pbenefits during running, although individual preference and physical ability should also be considered. Published by Elsevier B.V.

  7. Role of Met Axis in Head and Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yiru, E-mail: xuyiru@umich.edu; Fisher, Gary J., E-mail: xuyiru@umich.edu [Department of Dermatology, University of Michigan, Ann Arbor, MI 48109 (United States)

    2013-11-26

    Head and neck cancer is the sixth most common type of cancer worldwide. Despite advances in aggressive multidisciplinary treatments, the 5-year survival rate for this dreadful disease is only 50%, mostly due to high rate of recurrence and early involvement of regional lymph nodes and subsequent metastasis. Understanding the molecular mechanisms responsible for invasion and metastasis is one of the most pressing goals in the field of head and neck cancer. Met, also known as hepatocyte growth factor receptor (HGFR), is a member of the receptor protein tyrosine kinase (RPTK) family. There is compelling evidence that Met axis is dysregulated and plays important roles in tumorigenesis, progression, metastasis, angiogenesis, and drug resistance in head and neck cancer. We describe in this review current understanding of Met axis in head and neck cancer biology and development of therapeutic inhibitors targeting Met axis.

  8. Subquadratic medial-axis approximation in $\\mathbb{R}^3$

    Directory of Open Access Journals (Sweden)

    Christian Scheffer

    2015-09-01

    Full Text Available We present an algorithm that approximates the medial axis of a smooth manifold in $\\mathbb{R}^3$ which is given by a sufficiently dense point sample. The resulting, non-discrete approximation is shown to converge to the medial axis as the sampling density approaches infinity. While all previous algorithms guaranteeing convergence have a running time quadratic in the size $n$ of the point sample, we achieve a running time of at most $\\mathcal{O}(n\\log^3 n$. While there is no subquadratic upper bound on the output complexity of previous algorithms for non-discrete medial axis approximation, the output of our algorithm is guaranteed to be of linear size.

  9. Small Vertical Axis Wind Turbines: aerodynamics and starting behavior

    Directory of Open Access Journals (Sweden)

    Horia DUMITRESCU

    2013-12-01

    Full Text Available In urban areas the wind is very turbulent and unstable with fast changes in direction andvelocity. In these environments, the use of small vertical axis wind turbines (VAWT becomesincreasingly attractive due to several advantages over horizontal axis wind turbines (HAWT.However, such designs have received much less attention than the more common propeller-typedesigns and the understanding of same aspects of their operation remains, to this day, incomplete.This is particularly true of their starting characteristics. Indeed, same authors heuristically maintainthat they cannot start without external assistance. This paper reviews the cause of the inability of thelow solidity fixed pitch vertical axis wind turbines to self-start, and investigates the way ofovercoming this draw back.

  10. Off-axis and inline electron holography: Experimental comparison

    International Nuclear Information System (INIS)

    Latychevskaia, Tatiana; Formanek, Petr; Koch, C.T.; Lubk, Axel

    2010-01-01

    Electron holography is a very powerful technique for mapping static electric and magnetic potentials down to atomic resolution. While electron holography is commonly considered synonymous with its off-axis variant in the high energy electron microscopy community, inline electron holography is widely applied in low-energy electron microscopy, where the realization of the off-axis setup is still an experimental challenge. This paper demonstrates that both inline and off-axis holography may be used to recover amplitude and phase shift of the very same object, in our example latex spheres of 90 and 200 nm in diameter, producing very similar results, provided the object does not charge under the electron beam.

  11. Vertical axis wind turbines: a survey and bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Abramovich, H

    1987-01-01

    The stimulus for the development of modern, big wind turbines has been the world-wide oil crisis during the seventies. Although the horizontal axis wind turbines (HAWT) was the most popular type of wind turbine the Darrieus vertical axis wind turbine (VAWT) has been recognized as a machine with competitive economic potential. The state of the art of the VAWT is reviewed. The wind turbine carrying the name of Darrieus was first proposed by the French inventor in 1925. His original patent covered a range of vertical-axis configurations but the term 'Darrieus' is now generally associated with the curved-blade geometry. In 1966 two researchers at the Canadian NRC again raised the idea of both the straight and curved-blade versions of the Darrieus VAWT.

  12. Mineralogical, crystallographic and redox features of the earliest stages of fluid alteration in CM chondrites

    Science.gov (United States)

    Pignatelli, Isabella; Marrocchi, Yves; Mugnaioli, Enrico; Bourdelle, Franck; Gounelle, Matthieu

    2017-07-01

    The CM chondrites represent the largest group of hydrated meteorites and span a wide range of conditions, from less altered (i.e., CM2) down to heavily altered (i.e., CM1). The Paris chondrite is considered the least altered CM and thus enables the earliest stages of aqueous alteration processes to be deciphered. Here, we report results from a nanoscale study of tochilinite/cronstedtite intergrowths (TCIs) in Paris-TCIs being the emblematic secondary mineral assemblages of CM chondrites, formed from the alteration of Fe-Ni metal beads (type-I TCIs) and anhydrous silicates (type-II TCIs). We combined high-resolution transmission electron microscopy, scanning transmission X-ray microscopy and electron diffraction tomography to characterize the crystal structure, crystal chemistry and redox state of TCIs. The data obtained are useful to reconstruct the alteration conditions of Paris and to compare them with those of other meteorites. Our results show that tochilinite in Paris is characterized by a high hydroxide layer content (n = 2.1-2.2) regardless of the silicate precursors. When examined alongside other CMs, it appears that the hydroxide layer and iron contents of tochilinites correlate with the degree of alteration experienced by the chondrites. The Fe3+/ΣFe ratios of TCIs are high: 8-15% in tochilinite, 33-60% in cronstedtite and 70-80% in hydroxides. These observations suggest that alteration of CM chondrites took place under oxidizing conditions that could have been induced by significant H2 release during serpentinization. Similar results were recently reported in CR chondrites (Le Guillou et al., 2015), suggesting that the process(es) controlling the redox state of the secondary mineral assemblages were quite similar in the CM and CR parent bodies despite the different alteration conditions. According to our mineralogical and crystallographic survey, the formation of TCIs in Paris occurred at temperatures lower than 100 °C, under neutral, slightly alkaline

  13. Local dynamics of proteins and DNA evaluated from crystallographic B factors

    International Nuclear Information System (INIS)

    Schneider, Bohdan; Gelly, Jean-Christophe; Brevern, Alexandre G. de; Černý, Jiří

    2014-01-01

    surprising. The features discriminating different types of residues are less pronounced in structures with lower crystallographic resolution. Some of the observed trends are likely to be the consequence of improper refinement protocols that may need to be rectified

  14. Local dynamics of proteins and DNA evaluated from crystallographic B factors

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Bohdan, E-mail: bohdan.schneider@gmail.com [Institute of Biotechnology AS CR, Videnska 1083, 142 20 Prague (Czech Republic); Gelly, Jean-Christophe; Brevern, Alexandre G. de [INSERM, U1134, DSIMB, 75739 Paris (France); Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, 75739 Paris (France); Institut National de la Transfusion Sanguine (INTS), 75739 Paris (France); Laboratoire d’Excellence GR-Ex, 75739 Paris (France); Černý, Jiří [Institute of Biotechnology AS CR, Videnska 1083, 142 20 Prague (Czech Republic)

    2014-09-01

    surprising. The features discriminating different types of residues are less pronounced in structures with lower crystallographic resolution. Some of the observed trends are likely to be the consequence of improper refinement protocols that may need to be rectified.

  15. Comparative study on inorganic composition and crystallographic properties of cortical and cancellous bone.

    Science.gov (United States)

    Wang, Xiao-Yan; Zuo, Yi; Huang, Di; Hou, Xian-Deng; Li, Yu-Bao

    2010-12-01

    To comparatively investigate the inorganic composition and crystallographic properties of cortical and cancellous bone via thermal treatment under 700 °C. Thermogravimetric measurement, infrared spectrometer, X-ray diffraction, chemical analysis and X-ray photo-electron spectrometer were used to test the physical and chemical properties of cortical and cancellous bone at room temperature 250 °C, 450 °C, and 650 °C, respectively. The process of heat treatment induced an extension in the a-lattice parameter and changes of the c-lattice parameter, and an increase in the crystallinity reflecting lattice rearrangement after release of lattice carbonate and possible lattice water. The mineral content in cortical and cancellous bone was 73.2wt% and 71.5wt%, respectively. For cortical bone, the weight loss was 6.7% at the temperature from 60 °C to 250 °C, 17.4% from 250 °C to 450 °C, and 2.7% from 450 °C to 700 °C. While the weight loss for the cancellous bone was 5.8%, 19.9%, and 2.8 % at each temperature range, the Ca/P ratio of cortical bone was 1.69 which is higher than the 1.67 of stoichiometric HA due to the B-type CO₃²⁻ substitution in apatite lattice. The Ca/P ratio of cancellous bone was lower than 1.67, suggesting the presence of more calcium deficient apatite. The collagen fibers of cortical bone were arrayed more orderly than those of cancellous bone, while their mineralized fibers ollkded similar. The minerals in both cortical and cancellous bone are composed of poorly crystallized nano-size apatite crystals with lattice carbonate and possible lattice water. The process of heat treatment induces a change of the lattice parameter, resulting in lattice rearrangement after the release of lattice carbonate and lattice water and causing an increase in crystal size and crystallinity. This finding is helpful for future biomaterial design, preparation and application. Copyright © 2010 The Editorial Board of Biomedical and Environmental Sciences

  16. Evidence for a strong sulfur-aromatic interaction derived from crystallographic data.

    Science.gov (United States)

    Zauhar, R J; Colbert, C L; Morgan, R S; Welsh, W J

    2000-03-01

    We have uncovered new evidence for a significant interaction between divalent sulfur atoms and aromatic rings. Our study involves a statistical analysis of interatomic distances and other geometric descriptors derived from entries in the Cambridge Crystallographic Database (F. H. Allen and O. Kennard, Chem. Design Auto. News, 1993, Vol. 8, pp. 1 and 31-37). A set of descriptors was defined sufficient in number and type so as to elucidate completely the preferred geometry of interaction between six-membered aromatic carbon rings and divalent sulfurs for all crystal structures of nonmetal-bearing organic compounds present in the database. In order to test statistical significance, analogous probability distributions for the interaction of the moiety X-CH(2)-X with aromatic rings were computed, and taken a priori to correspond to the null hypothesis of no significant interaction. Tests of significance were carried our pairwise between probability distributions of sulfur-aromatic interaction descriptors and their CH(2)-aromatic analogues using the Smirnov-Kolmogorov nonparametric test (W. W. Daniel, Applied Nonparametric Statistics, Houghton-Mifflin: Boston, New York, 1978, pp. 276-286), and in all cases significance at the 99% confidence level or better was observed. Local maxima of the probability distributions were used to define a preferred geometry of interaction between the divalent sulfur moiety and the aromatic ring. Molecular mechanics studies were performed in an effort to better understand the physical basis of the interaction. This study confirms observations based on statistics of interaction of amino acids in protein crystal structures (R. S. Morgan, C. E. Tatsch, R. H. Gushard, J. M. McAdon, and P. K. Warme, International Journal of Peptide Protein Research, 1978, Vol. 11, pp. 209-217; R. S. Morgan and J. M. McAdon, International Journal of Peptide Protein Research, 1980, Vol. 15, pp. 177-180; K. S. C. Reid, P. F. Lindley, and J. M. Thornton, FEBS

  17. Cluster Analysis of Time-Dependent Crystallographic Data: Direct Identification of Time-Independent Structural Intermediates

    Science.gov (United States)

    Kostov, Konstantin S.; Moffat, Keith

    2011-01-01

    The initial output of a time-resolved macromolecular crystallography experiment is a time-dependent series of difference electron density maps that displays the time-dependent changes in underlying structure as a reaction progresses. The goal is to interpret such data in terms of a small number of crystallographically refinable, time-independent structures, each associated with a reaction intermediate; to establish the pathways and rate coefficients by which these intermediates interconvert; and thereby to elucidate a chemical kinetic mechanism. One strategy toward achieving this goal is to use cluster analysis, a statistical method that groups objects based on their similarity. If the difference electron density at a particular voxel in the time-dependent difference electron density (TDED) maps is sensitive to the presence of one and only one intermediate, then its temporal evolution will exactly parallel the concentration profile of that intermediate with time. The rationale is therefore to cluster voxels with respect to the shapes of their TDEDs, so that each group or cluster of voxels corresponds to one structural intermediate. Clusters of voxels whose TDEDs reflect the presence of two or more specific intermediates can also be identified. From such groupings one can then infer the number of intermediates, obtain their time-independent difference density characteristics, and refine the structure of each intermediate. We review the principles of cluster analysis and clustering algorithms in a crystallographic context, and describe the application of the method to simulated and experimental time-resolved crystallographic data for the photocycle of photoactive yellow protein. PMID:21244840

  18. Calibration of three-axis magnetometers with differential evolution algorithm

    International Nuclear Information System (INIS)

    Pang, Hongfeng; Zhang, Qi; Wang, Wei; Wang, Junya; Li, Ji; Luo, Shitu; Wan, Chengbiao; Chen, Dixiang; Pan, Mengchun; Luo, Feilu

    2013-01-01

    The accuracy of three-axis magnetometers is influenced by different scale and bias of each axis and nonorthogonality between axes. One limitation of traditional iteration methods is that initial parameters influence the calibration, thus leading to the local optimal or wrong results. In this paper, a new method is proposed to calibrate three-axis magnetometers. To employ this method, a nonmagnetic rotation platform, a proton magnetometer, a DM-050 three-axis magnetometer and the differential evolution (DE) algorithm are used. The performance of this calibration method is analyzed with simulation and experiment. In simulation, the calibration results of DE, unscented Kalman filter (UKF), recursive least squares (RLS) and genetic algorithm (GA) are compared. RMS error using DE is least, which is reduced from 81.233 nT to 1.567 nT. Experimental results show that comparing with UKF, RLS and GA, the DE algorithm has not only the least calibration error but also the best robustness. After calibration, RMS error is reduced from 68.914 nT to 2.919 nT. In addition, the DE algorithm is not sensitive to initial parameters, which is an important advantage compared with traditional iteration algorithms. The proposed algorithm can avoid the troublesome procedure to select suitable initial parameters, thus it can improve the calibration performance of three-axis magnetometers. - Highlights: • The calibration results and robustness of UKF, GA, RLS and DE algorithm are analyzed. • Calibration error of DE is the least in simulation and experiment. • Comparing with traditional calibration algorithms, DE is not sensitive to initial parameters. • It can improve the calibration performance of three-axis magnetometers

  19. Crystallographic analysis of the solid-state dewetting of polycrystalline gold film using automated indexing in a transmission electron microscope

    Directory of Open Access Journals (Sweden)

    S. A. Jang

    2015-12-01

    Full Text Available We analyzed the effect of crystallographic anisotropy on the morphological evolution of a 12-nm-thick gold film during solid-state dewetting at high temperatures using automated indexing tool in a transmission electron microscopy. Dewetting initiated at grain-boundary triple junctions adjacent to large grains resulting from abnormal grain growth driven by (111 texture development. Voids at the junctions developed shapes with faceted edges bounded by low-index crystal planes. The kinetic mobility of the edges varied with the crystal orientation normal to the edges, with a predominance of specific edges with the slowest retraction rates as the annealing time was increased.

  20. Crystallographic analysis of the solid-state dewetting of polycrystalline gold film using automated indexing in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Jang, S. A.; Lee, H. J.; Oh, Y. J., E-mail: yjoh@hanbat.ac.kr [Department of Advanced Materials Science and Engineering, Hanbat National University, 125, Dongseo-daero, Yuseong-gu, Daejeon 305-719 (Korea, Republic of); Thompson, C. V.; Ross, C. A., E-mail: caross@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-12-01

    We analyzed the effect of crystallographic anisotropy on the morphological evolution of a 12-nm-thick gold film during solid-state dewetting at high temperatures using automated indexing tool in a transmission electron microscopy. Dewetting initiated at grain-boundary triple junctions adjacent to large grains resulting from abnormal grain growth driven by (111) texture development. Voids at the junctions developed shapes with faceted edges bounded by low-index crystal planes. The kinetic mobility of the edges varied with the crystal orientation normal to the edges, with a predominance of specific edges with the slowest retraction rates as the annealing time was increased.

  1. Multishell structure formation in Ni nanowire under uniaxial strain along <0 0 1> crystallographic direction: A molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang Li, E-mail: wanglihxf@sdu.edu.c [School of Mechanical and Electrical Engineering, Shandong University at Weihai, 180 Wenhuaxi Road, Weihai 264209 (China); Peng Chuanxiao [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Gong Jianhong [School of Mechanical and Electrical Engineering, Shandong University at Weihai, 180 Wenhuaxi Road, Weihai 264209 (China)

    2010-04-01

    Molecular dynamics simulations based upon embedded-atom-method potential are employed to explore the fracture behavior of Ni nanowire along <0 0 1> crystallographic direction at temperature of 300 K. We find the formation of (5,5) multishell structure (MS), which is transformed from (6,5) MS at the necking region of nanowire under the strain rate of 0.02%ps{sup -1}. A reorientation transformation from <0 0 1> to <1 1 0> is first detected before formation of (6,5) MS. The formed (5,5) MS is more stable and can be tensioned longer as lower strain rate is loaded.

  2. Crystallographic information of intermediate phases in binary Mg–X (X=Sn, Y, Sc, Ag alloys

    Directory of Open Access Journals (Sweden)

    Dongyan Liu

    2015-09-01

    Full Text Available The compositions and structures of thermodynamically stable or metastable precipitations in binary Mg-X (X=Sn, Y, Sc, Ag alloys are predicted using ab-initio evolutionary algorithm. The geometry optimizations of the predicted intermetallic compounds are carried out in the framework of density functional theory (DFT [1]. A complete list of the optimized crystallographic information (in cif format of the predicted intermetallic phases is presented here. The data is related to “Predictions on the compositions, structures, and mechanical properties of intermediate phases in binary Mg–X (X=Sn, Y, Sc, Ag alloys” by Liu et al. [2].

  3. Effect of crystallographic orientation on the anodic formation of nanoscale pores/tubes in TiO 2 films

    Science.gov (United States)

    Kalantar-zadeh, K.; Sadek, A. Z.; Zheng, H.; Partridge, J. G.; McCulloch, D. G.; Li, Y. X.; Yu, X. F.; Wlodarski, W.

    2009-10-01

    Self-organized nanopores and nanotubes have been produced in thin films of titanium (Ti) prepared using filtered cathodic vacuum arc (FCVA), DC- and RF-sputter deposition systems. The anodization process was performed using a neutral electrolyte containing fluoride ions with an applied potential between 2 and 20 V (for clarity the results are only presented for 5 V). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques were used to characterise the films. It was found that the crystallographic orientation of the Ti films played a significant role in determining whether pores or tubes were formed during the anodic etching process.

  4. Effect of substrate crystallographic orientation of garnet-ferrite film properties

    International Nuclear Information System (INIS)

    Burym, Yu.A.; Dubinko, S.V.; Mitsaj, Yu.N.; Borovitskaya, L.N.; Prokopov, A.P.

    1992-01-01

    Samples of garnet-ferrite films with a composition (YbGdPrBi) 3 (FeAlGa) 5 O 12 grown under identical conditions on variously oriented substrates, have been studied. The substrate orientation was changed in such a way that the vector of the substrate normal was in the [110] plane between the [111] and [112] directions. We have found that the substrate misorientation leads to an inclined position of the easy magnetization axis (EMA) and a reduction of the film growth rate. The change of the film physical properties (Faraday rotation, Curie temperature, magnetization) indicates the film composition variation with the substrate orientation change. The temperature dependence of the EMA slope angle in the studied samples is determined by the magnetoelastic contribution to the anisotropy constants. (author)

  5. Research on Parameter Design of Multi - axis Hydrostatic Transmission Vehicle

    Directory of Open Access Journals (Sweden)

    Zhao Liang

    2017-01-01

    Full Text Available In order to obtain reasonable parameters in the design of driving system of multi-axis hydrostatic transmission vehicle, the working principle of single-side drive of hydrostatic transmission vehicle is introduced. The matching and control of engine and hydraulic pump are analyzed. According to the driving equation of vehicle, The driving force required for driving system is determined, and the parameters of hydraulic motor, hydraulic pump, system working pressure and braking system are designed and calculated, which provides the parameter design for driving system of multi-axis hydrostatic transmission Reliable theoretical basis.

  6. Microbiota-gut-brain axis and the central nervous system.

    Science.gov (United States)

    Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei

    2017-08-08

    The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated with various CNS diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and multiple sclerosis. In this paper, we will review the latest advances of studies on the correlation between gut microorganisms and CNS functions & diseases.

  7. Three axis vector atomic magnetometer utilizing polarimetric technique

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India and Homi Bhabha National Institute, Department of Atomic Energy, Mumbai 400094 (India)

    2016-09-15

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity field gradient measurement as required for biomedical application.

  8. Interpretation and quality of the tilted axis cranking approximation

    International Nuclear Information System (INIS)

    Frauendorf, S.; Meng, J.

    1996-06-01

    Comparing with the exact solutions of the model system of one and two particles coupled to an axial rotor, the quality of the semi classical tilted axis cranking approximation is investigated. Extensive comparisons of the energies and M1 and E2 transition probabilities are carried out for the lowest bands. Very good agreement is found, except near band crossings. Various recipes to take into account finite K within the frame of the usual principal axis cranking are included into the comparison. A set of rules is suggested that permits to construct the excited bands from the cranking configurations, avoiding spurious states. (orig.)

  9. Optical Three-Axis Tactile Sensor for Robotic Fingers

    OpenAIRE

    Ohka, Masahiro; Takata, Jumpei; Kobayashi, Hiroaki; Suzuki, Hirofumi; Morisawa, Nobuyuki; Yussof, Hanafiah Bin

    2008-01-01

    A new three-axis tactile sensor to be mounted on multi-fingered hands is developed based on the principle of an optical waveguide-type tactile sensor comprised of an acrylic hemispherical dome, a light source, an array of rubber sensing elements, and a CCD camera. The sensing element of the present tactile sensor includes one columnar feeler and eight conical feelers. A three-axis force applied to the tip of the sensing element is detected by the contact areas of the conical feelers, which ma...

  10. Experimental characterization of individual pitch controlled vertical axis wind turbine

    NARCIS (Netherlands)

    Leblanc, B.P.; Simao Ferreira, C.

    2017-01-01

    Research into the Vertical Axis Wind Turbine (VAWT) has been progressing over the last few years due to
    the large shift in design constraints for large floating offshore wind turbines by leveraging tools and experience
    from research beginning in the 1970s and lasting until the HAWT

  11. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    DEFF Research Database (Denmark)

    Ferreira, C. Simão; Aagaard Madsen, Helge; Barone, M.

    2014-01-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple...

  12. Local charge measurement using off-axis electron holography

    DEFF Research Database (Denmark)

    Beleggia, Marco; Gontard, L.C.; Dunin-Borkowski, R.0E.

    2016-01-01

    A model-independent approach based on Gauss’ theorem for measuring the local charge in a specimen from an electron-optical phase image recorded using off-axis electron holography was recently proposed. Here, we show that such a charge measurement is reliable when it is applied to determine the to...

  13. Tilted axis rotation in odd-odd {sup 164}Tm

    Energy Technology Data Exchange (ETDEWEB)

    Reviol, W.; Riedinger, L.L.; Wang, X.Z.; Zhang, J.Y. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1996-12-31

    Ten band structures are observed in {sup 164}Tm, among them sets of parallel and anti-parallel couplings of the proton and neutron spins. The Tilted Axis Cranking scheme is applied for the first time to an odd-odd nucleus in a prominent region of nuclear deformation.

  14. An improved computer controlled triple-axis neutron spectrometer

    International Nuclear Information System (INIS)

    Cooper, M.J.; Hall, J.W.; Hutchings, M.T.

    1975-07-01

    A description is given of the computer-controlled triple-axis neutron spectrometer installed at the PLUTO reactor at Harwell. The reasons for an nature of recent major improvements are discussed. Following a general description of the spectrometer, details are then given of the new computerised control system, including the functions of the various programs which are now available to the user. (author)

  15. The GH/IGF-1 axis in ageing and longevity

    Science.gov (United States)

    List, Edward O.; Berryman, Darlene E.; Murrey, John W.

    2014-01-01

    Secretion of growth hormone (GH), and consequently that of insulin-like growth factor 1 (IGF-1), declines over time until only low levels can be detected in individuals aged ≥60 years. This phenomenon, which is known as the ‘somatopause’, has led to recombinant human GH being widely promoted and abused as an antiageing drug, despite lack of evidence of efficacy. By contrast, several mutations that decrease the tone of the GH/IGF-1 axis are associated with extended longevity in mice. In humans, corresponding or similar mutations have been identified, but whether these mutations alter longevity has yet to be established. The powerful effect of reduced GH activity on lifespan extension in mice has generated the hypothesis that pharmaceutically inhibiting, rather than increasing, GH action might delay ageing. Moreover, mice as well as humans with reduced activity of the GH/IGF-1 axis are protected from cancer and diabetes mellitus, two major ageing-related morbidities. Here, we review data on mouse strains with alterations in the GH/IGF-1 axis and their effects on lifespan. The outcome of corresponding or similar mutations in humans is described, as well as the potential mechanisms underlying increased longevity and the therapeutic benefits and risks of medical disruption of the GH/IGF-1 axis in humans. PMID:23591370

  16. Lake Malawi cichlid evolution along a benthic/limnetic axis.

    Science.gov (United States)

    Hulsey, C D; Roberts, R J; Loh, Y-H E; Rupp, M F; Streelman, J T

    2013-07-01

    Divergence along a benthic to limnetic habitat axis is ubiquitous in aquatic systems. However, this type of habitat divergence has largely been examined in low diversity, high latitude lake systems. In this study, we examined the importance of benthic and limnetic divergence within the incredibly species-rich radiation of Lake Malawi cichlid fishes. Using novel phylogenetic reconstructions, we provided a series of hypotheses regarding the evolutionary relationships among 24 benthic and limnetic species that suggests divergence along this axis has occurred multiple times within Lake Malawi cichlids. Because pectoral fin morphology is often associated with divergence along this habitat axis in other fish groups, we investigated divergence in pectoral fin muscles in these benthic and limnetic cichlid species. We showed that the eight pectoral fin muscles and fin area generally tended to evolve in a tightly correlated manner in the Lake Malawi cichlids. Additionally, we found that larger pectoral fin muscles are strongly associated with the independent evolution of the benthic feeding habit across this group of fish. Evolutionary specialization along a benthic/limnetic axis has occurred multiple times within this tropical lake radiation and has produced repeated convergent matching between exploitation of water column habitats and locomotory morphology.

  17. The somatotropic axis: Effects on brain and cognitive functions

    NARCIS (Netherlands)

    Quik, E.H.

    2012-01-01

    Both hormones of the somatotropic axis, insulin-like growth factor-1 (IGF-1) and growth hormone (GH) can cross the blood-brain barrier and bind to their receptors in neurons and glia throughout the brain. Features of aging resemble those of GHD and aging is also associated with a decline in the

  18. Locating an axis-parallel rectangle on a Manhattan plane

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Körner, Mark-Christoph

    2014-01-01

    In this paper we consider the problem of locating an axis-parallel rectangle in the plane such that the sum of distances between the rectangle and a finite point set is minimized, where the distance is measured by the Manhattan norm 1. In this way we solve an extension of the Weber problem...

  19. Serotonergic stimulation of the rat hypothalamo-pituitary-adrenal axis

    DEFF Research Database (Denmark)

    Mikkelsen, Jens D; Hay-Schmidt, Anders; Kiss, Alexander

    2004-01-01

    Acute stimulation of the hypothalamo-pituitary-adrenal (HPA) axis by selective serotonin reuptake inhibitors (SSRIs) is mediated by several postsynaptic 5-HT receptor subtypes. Activation of 5-HT(1A) and 5-HT(2A) receptors increases plasma corticosterone levels, and it is likely that these recept...

  20. Off-axis electron holography of ferromagnetic multilayer nanowires

    DEFF Research Database (Denmark)

    Akhtari-Zavareh, Azadeh; Carignan, L. P.; Yelon, A.

    2014-01-01

    with respect to the axis of the wires. In thinner Cu/CoFeB ((multilayer, magnetic field vortices were detected, associated with opposing magnetization in neighbouring layers. The measured crystallinity, compositions, and layer thicknesses of individual NWs were found to be significantly different...

  1. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases.

    Science.gov (United States)

    Quigley, Eamonn M M

    2017-10-17

    The purposes of this review were as follows: first, to provide an overview of the gut microbiota and its interactions with the gut and the central nervous system (the microbiota-gut-brain axis) in health, second, to review the relevance of this axis to the pathogenesis of neurodegenerative diseases, such as Parkinson's disease, and, finally, to assess the potential for microbiota-targeted therapies. Work on animal models has established the microbiota-gut-brain axis as a real phenomenon; to date, the evidence for its operation in man has been limited and has been confronted by considerable logistical challenges. Animal and translational models have incriminated a disturbed gut microbiota in a number of CNS disorders, including Parkinson's disease; data from human studies is scanty. While a theoretical basis can be developed for the use of microbiota-directed therapies in neurodegenerative disorders, support is yet to come from high-quality clinical trials. In theory, a role for the microbiota-gut-brain axis is highly plausible; clinical confirmation is awaited.

  2. On the Turbulent Mixing in Horizontal Axis Wind Turbine Wakes

    NARCIS (Netherlands)

    Lignarolo, L.E.M.

    2016-01-01

    The wake flow of a horizontal axis wind turbine is characterised by lower wind speed and higher turbulence than the free-stream conditions. When clustered in large wind farms, wind turbines regularly operate inside the wake of one or more upstream machines. This is a major cause of energy production

  3. Phytochemicals for taming agitated immune-endocrine-neural axis.

    Science.gov (United States)

    Patel, Seema

    2017-07-01

    Homeostasis of immune-endocrine-neural axis is paramount for human health. If this axis gets agitated due to age, genetic variations, environmental exposures or lifestyle assaults, a cascade of adverse reactions occurs in human body. Cytokines, hormones and neurotransmitters, the effector molecules of this axis behave erratically, leading to a gamut of neural, endocrine, autoimmune, and metabolic diseases. Current panel of drugs can tackle some of them but not in a sustainable, benign way as a myriad of side effects, causal of them have been documented. In this context, phytochemicals, the secondary metabolites of plants seem beneficial. These bioactive constituents encompassing polyphenols, alkaloids, flavonoids, terpenoids, tannins, lignans, stilbenoids (resveratrol), saponins, polysaccharides, glycosides, and lectins etc. have been proven to exert antioxidant, anti-inflammatory, hypolipidemic, hypotensive, antidiabetic, anticancer, immunomodulatory, anti-allergic, analgesic, hepatoprotective, neuroprotective, dermatoprotective, and antimicrobial properties, among a litany of other biological effects. This review presents a holistic perspective of common afflictions resultant of immune-endocrine-neural axis disruption, and the phytochemicals capable of restoring their normalcy and mitigating the ailments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. A four-axis hand controller for helicopter flight control

    Science.gov (United States)

    Demaio, Joe

    1993-01-01

    A proof-of-concept hand controller for controlling lateral and longitudinal cyclic pitch, collective pitch and tail rotor thrust was developed. The purpose of the work was to address problems of operator fatigue, poor proprioceptive feedback and cross-coupling of axes associated with many four-axis controller designs. The present design is an attempt to reduce cross-coupling to a level that can be controlled with breakout force, rather than to eliminate it entirely. The cascaded design placed lateral and longitudinal cyclic in their normal configuration. Tail rotor thrust was placed atop the cyclic controller. A left/right twisting motion with the wrist made the control input. The axis of rotation was canted outboard (clockwise) to minimize cross-coupling with the cyclic pitch axis. The collective control was a twist grip, like a motorcycle throttle. Measurement of the amount of cross-coupling involved in pure, single-axis inputs showed cross coupling under 10 percent of full deflection for all axes. This small amount of cross-coupling could be further reduced with better damping and force gradient control. Fatigue was not found to be a problem, and proprioceptive feedback was adequate for all flight tasks executed.

  5. Nitrate as a probe of cytochrome c surface: crystallographic identification of crucial "hot spots" for protein-protein recognition.

    Science.gov (United States)

    De March, Matteo; Demitri, Nicola; De Zorzi, Rita; Casini, Angela; Gabbiani, Chiara; Guerri, Annalisa; Messori, Luigi; Geremia, Silvano

    2014-06-01

    The electrostatic surface of cytochrome c and its changes with the iron oxidation state are involved in the docking and undocking processes of this protein to its biological partners in the mitochondrial respiratory pathway. To investigate the subtle mechanisms of formation of productive macromolecular complexes and of their breakage following the electron transfer process, the X-ray structures of horse heart ferri-cytochrome c (trigonal form) and ferro-cytochrome c (monoclinic form) were obtained using nitrate ions both as a crystallizing agent and an anionic probe for mapping the electrostatic surface changes. Both crystal forms contain three protein molecules in the asymmetric unit. In addition, a total of 21.5 and 18 crystallographically independent nitrate ions were identified for the trigonal and monoclinic forms, respectively. By matching all the six crystallographically independent protein molecules, 26 different anion-protein interaction sites were identified on the surfaces of cytochrome c, 10 of which were found in both forms, 8 present only in the oxidized and 8 only in the reduced form. The structural analysis of the electron transfer complexes, based on this new information, suggests a specific exit strategy for cytochrome c after formation of productive protein-protein complexes: a directional sliding mechanism for the electron shuttle on the surface of the redox partner is proposed to take place after the electron transfer process has occurred. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Advantages of crystallographic fragment screening: functional and mechanistic insights from a powerful platform for efficient drug discovery.

    Science.gov (United States)

    Patel, Disha; Bauman, Joseph D; Arnold, Eddy

    2014-01-01

    X-ray crystallography has been an under-appreciated screening tool for fragment-based drug discovery due to the perception of low throughput and technical difficulty. Investigators in industry and academia have overcome these challenges by taking advantage of key factors that contribute to a successful crystallographic screening campaign. Efficient cocktail design and soaking methodologies have evolved to maximize throughput while minimizing false positives/negatives. In addition, technical improvements at synchrotron beamlines have dramatically increased data collection rates thus enabling screening on a timescale comparable to other techniques. The combination of available resources and efficient experimental design has resulted in many successful crystallographic screening campaigns. The three-dimensional crystal structure of the bound fragment complexed to its target, a direct result of the screening effort, enables structure-based drug design while revealing insights regarding protein dynamics and function not readily obtained through other experimental approaches. Furthermore, this "chemical interrogation" of the target protein crystals can lead to the identification of useful reagents for improving diffraction resolution or compound solubility. Copyright © 2014. Published by Elsevier Ltd.

  7. Identification of N-ethylmethylamine as a novel scaffold for inhibitors of soluble epoxide hydrolase by crystallographic fragment screening.

    Science.gov (United States)

    Amano, Yasushi; Tanabe, Eiki; Yamaguchi, Tomohiko

    2015-05-15

    Soluble epoxide hydrolase (sEH) is a potential target for the treatment of inflammation and hypertension. X-ray crystallographic fragment screening was used to identify fragment hits and their binding modes. Eight fragment hits were identified via soaking of sEH crystals with fragment cocktails, and the co-crystal structures of these hits were determined via individual soaking. Based on the binding mode, N-ethylmethylamine was identified as a promising scaffold that forms hydrogen bonds with the catalytic residues of sEH, Asp335, Tyr383, and Tyr466. Compounds containing this scaffold were selected from an in-house chemical library and assayed. Although the starting fragment had a weak inhibitory activity (IC50: 800μM), we identified potent inhibitors including 2-({[2-(adamantan-1-yl)ethyl]amino}methyl)phenol exhibiting the highest inhibitory activity (IC50: 0.51μM). This corresponded to a more than 1500-fold increase in inhibitory activity compared to the starting fragment. Co-crystal structures of the hit compounds demonstrate that the binding of N-ethylmethylamine to catalytic residues is similar to that of the starting fragment. We therefore consider crystallographic fragment screening to be appropriate for the identification of weak but promising fragment hits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Advantages of Crystallographic Fragment Screening: Functional and Mechanistic Insights from a Powerful Platform for Efficient Drug Discovery

    Science.gov (United States)

    Patel, Disha; Bauman, Joseph D.; Arnold, Eddy

    2015-01-01

    X-ray crystallography has been an under-appreciated screening tool for fragment-based drug discovery due to the perception of low throughput and technical difficulty. Investigators in industry and academia have overcome these challenges by taking advantage of key factors that contribute to a successful crystallographic screening campaign. Efficient cocktail design and soaking methodologies have evolved to maximize throughput while minimizing false positives/negatives. In addition, technical improvements at synchrotron beamlines have dramatically increased data collection rates thus enabling screening on a timescale comparable to other techniques. The combination of available resources and efficient experimental design has resulted in many successful crystallographic screening campaigns. The three-dimensional crystal structure of the bound fragment complexed to its target, a direct result of the screening effort, enables structure-based drug design while revealing insights regarding protein dynamics and function not readily obtained through other experimental approaches. Furthermore, this “chemical interrogation” of the target protein crystals can lead to the identification of useful reagents for improving diffraction resolution or compound solubility. PMID:25117499

  9. Fundamental piezo-Hall coefficients of single crystal p-type 3C-SiC for arbitrary crystallographic orientation

    Science.gov (United States)

    Qamar, Afzaal; Dao, Dzung Viet; Phan, Hoang-Phuong; Dinh, Toan; Dimitrijev, Sima

    2016-08-01

    Piezo-Hall effect in a single crystal p-type 3C-SiC, grown by LPCVD process, has been characterized for various crystallographic orientations. The quantified values of the piezo-Hall effect in heavily doped p-type 3C-SiC(100) and 3C-SiC(111) for different crystallographic orientations were used to obtain the fundamental piezo-Hall coefficients, P 12 = ( 5.3 ± 0.4 ) × 10 - 11 Pa - 1 , P 11 = ( - 2.6 ± 0.6 ) × 10 - 11 Pa - 1 , and P 44 = ( 11.42 ± 0.6 ) × 10 - 11 Pa - 1 . Unlike the piezoresistive effect, the piezo-Hall effect for (100) and (111) planes is found to be independent of the angle of rotation of the device within the crystal plane. The values of fundamental piezo-Hall coefficients obtained in this study can be used to predict the piezo-Hall coefficients in any crystal orientation which is very important for designing of 3C-SiC Hall sensors to minimize the piezo-Hall effect for stable magnetic field sensitivity.

  10. Purification, crystallization and preliminary crystallographic analysis of the CBS pair of the human metal transporter CNNM4

    International Nuclear Information System (INIS)

    Gómez García, Inmaculada; Oyenarte, Iker; Martínez-Cruz, Luis Alfonso

    2011-01-01

    This work describes the purification and preliminary crystallographic analysis of the CBS-pair regulatory domain of the human ancient domain protein 4 (ACDP4), also known as CNNM4. This work describes the purification and preliminary crystallographic analysis of the CBS-pair regulatory domain of the human ancient domain protein 4 (ACDP4), also known as CNNM4. ACDP proteins represent the least-studied members of the eight different types of magnesium transporters that have been identified in mammals to date. In humans the ACDP family includes four members: CNNM1–4. CNNM1 acts as a cytosolic copper chaperone and has been associated with urofacial syndrome, whereas CNNM2 and CNNM4 have been identified as magnesium transporters. Interestingly, mutations in the CNNM4 gene have clinical consequences that are limited to retinal function and biomineralization and are considered to be the cause of Jalili syndrome, which consists of autosomal recessive cone-rod dystrophy and amelogenesis imperfecta. The truncated protein was overexpressed, purified and crystallized in the orthorhombic space group C222. The crystals diffracted X-rays to 3.6 Å resolution using synchrotron radiation. Matthews volume calculations suggested the presence of two molecules in the asymmetric unit, which were likely to correspond to a CBS module of the CBS pair of CNNM4

  11. Preliminary X-ray crystallographic analysis of the d-xylulose 5-phosphate phosphoketolase from Lactococcus lactis

    International Nuclear Information System (INIS)

    Petrareanu, Georgiana; Balasu, Mihaela C.; Zander, Ulrich; Scheidig, Axel J.; Szedlacsek, Stefan E.

    2010-01-01

    The expression, purification, preliminary crystallization and crystallographic analysis of phosphoketolase from L. lactis ssp. lactis (strain IL 1403) are reported. Phosphoketolases are thiamine diphosphate-dependent enzymes which play a central role in the pentose-phosphate pathway of heterofermentative lactic acid bacteria. They belong to the family of aldehyde-lyases and in the presence of phosphate ion cleave the carbon–carbon bond of the specific substrate d-xylulose 5-phosphate (or d-fructose 6-phosphate) to give acetyl phosphate and d-glyceraldehyde 3-phosphate (or d-erythrose 4-phosphate). Structural information about phosphoketolases is particularly important in order to fully understand their mechanism as well as the steric course of phosphoketolase-catalyzed reactions. Here, the purification, preliminary crystallization and crystallographic characterization of d-xylulose 5-phosphate phosphoketolase from Lactococcus lactis are reported. The presence of thiamine diphosphate during purification was essential for the enzymatic activity of the purified protein. The crystals belonged to the monoclinic space group P2 1 . Diffraction data were obtained to a resolution of 2.2 Å

  12. The manufacturing and metrology of off-axis mirrors

    Science.gov (United States)

    Penzkofer, Karlheinz; Rascher, Rolf; Küpper, Lutz; Liebl, Johannes

    2015-10-01

    Especially in the area of the large mirror manufacturing only a few manufacturers are capable to produce optical surfaces of high quality. Therefore a deterministic process should be developed in the project IFasO. In the field of telescope optics off-axis optical systems are becoming increasingly important. These systems try to avoid an obstructing of the incoming light by moving the secondary mirror out of the primary mirror's optical axis. This advantage leads to an increasing market for this type of optical surface. Until now off-axis mirrors were difficult or almost impossible to produce. With the processes developed in IFasO, high quality mirrors become possible. For this reason, this paper describes the manufacturing of off-axis surfaces and its problems. The mirror production used in the project IFasO is based on the specific design of the CNC center developed by the company Optotech. This center UPG2000 is capable of grinding, polishing, sagitta measurement and interferometric measurement in one mounting of the specimen. Usually a large optics has to be transported during their manufacturing after every individual process step. There is always a risk of damage of the specimen. The exact orientation of the surface relatively to the tool position is also required. This takes a huge amount of time and makes up most of the production time. In this presentation the use of UPG2000 and the next steps within the process development are described. In the current status the manufacturing of large off-axis elements with a PV < λ/10 rms is reproducible.

  13. GRB 170817A: a short GRB seen off-axis

    Science.gov (United States)

    He, Xin-Bo; Tam, Pak-Hin Thomas; Shen, Rong-Feng

    2018-04-01

    The angular distribution of gamma-ray burst (GRB) jets is not yet clear. The observed luminosity of GRB 170817A is the lowest among all known short GRBs, which is best explained by the fact that our line of sight is outside of the jet opening angle, θ obs > θ j , where θ obs is the angle between our line of sight and the jet axis. As inferred by gravitational wave observations, as well as radio and X-ray afterglow modeling of GRB 170817A, it is likely that θ obs ∼ 20° – 28°. In this work, we quantitatively consider two scenarios of angular energy distribution of GRB ejecta: a top-hat jet and a structured jet with a power law index s. For the top-hat jet model, we get a large θ j (e.g., θ j > 10°), a rather high local (i.e., z 7.5 × 104, keV (∼500, keV for a typical short GRB). For the structured jet model, we use θ obs to give limits on s and θj for typical on-axis luminosity of a short GRB (e.g., 1049 erg s‑1 ∼ 1051 erg s‑1), and a low on-axis luminosity case (e.g., 1049 erg s‑1) gives more reasonable values of s. The structured jet model is more feasible for GRB 170817A than the top-hat jet model due to the rather high local short GRB rate, and the extremely high on-axis E peak,0 almost rules out the top-hat jet model. GRB 170817A is likely a low on-axis luminosity GRB (1049 erg s‑1) with a structured jet.

  14. Analytical Aerodynamic Simulation Tools for Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    Deglaire, Paul

    2010-01-01

    Wind power is a renewable energy source that is today the fastest growing solution to reduce CO 2 emissions in the electric energy mix. Upwind horizontal axis wind turbine with three blades has been the preferred technical choice for more than two decades. This horizontal axis concept is today widely leading the market. The current PhD thesis will cover an alternative type of wind turbine with straight blades and rotating along the vertical axis. A brief overview of the main differences between the horizontal and vertical axis concept has been made. However the main focus of this thesis is the aerodynamics of the wind turbine blades. Making aerodynamically efficient turbines starts with efficient blades. Making efficient blades requires a good understanding of the physical phenomena and effective simulations tools to model them. The specific aerodynamics for straight bladed vertical axis turbine flow are reviewed together with the standard aerodynamic simulations tools that have been used in the past by blade and rotor designer. A reasonably fast (regarding computer power) and accurate (regarding comparison with experimental results) simulation method was still lacking in the field prior to the current work. This thesis aims at designing such a method. Analytical methods can be used to model complex flow if the geometry is simple. Therefore, a conformal mapping method is derived to transform any set of section into a set of standard circles. Then analytical procedures are generalized to simulate moving multibody sections in the complex vertical flows and forces experienced by the blades. Finally the fast semi analytical aerodynamic algorithm boosted by fast multipole methods to handle high number of vortices is coupled with a simple structural model of the rotor to investigate potential aeroelastic instabilities. Together with these advanced simulation tools, a standard double multiple streamtube model has been developed and used to design several straight bladed

  15. DARHT Axis-I Diode Simulations II: Geometrical Scaling

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A. Jr. [Los Alamos National Laboratory

    2012-06-14

    Flash radiography of large hydrodynamic experiments driven by high explosives is a venerable diagnostic technique in use at many laboratories. Many of the largest hydrodynamic experiments study mockups of nuclear weapons, and are often called hydrotests for short. The dual-axis radiography for hydrodynamic testing (DARHT) facility uses two electron linear-induction accelerators (LIA) to produce the radiographic source spots for perpendicular views of a hydrotest. The first of these LIAs produces a single pulse, with a fixed {approx}60-ns pulsewidth. The second axis LIA produces as many as four pulses within 1.6-{micro}s, with variable pulsewidths and separation. There are a wide variety of hydrotest geometries, each with a unique radiographic requirement, so there is a need to adjust the radiographic dose for the best images. This can be accomplished on the second axis by simply adjusting the pulsewidths, but is more problematic on the first axis. Changing the beam energy or introducing radiation attenuation also changes the spectrum, which is undesirable. Moreover, using radiation attenuation introduces significant blur, increasing the effective spot size. The dose can also be adjusted by changing the beam kinetic energy. This is a very sensitive method, because the dose scales as the {approx}2.8 power of the energy, but it would require retuning the accelerator. This leaves manipulating the beam current as the best means for adjusting the dose, and one way to do this is to change the size of the cathode. This method has been proposed, and is being tested. This article describes simulations undertaken to develop scaling laws for use as design tools in changing the Axis-1 beam current by changing the cathode size.

  16. Velocity measurement of model vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; McWilliam, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2006-07-01

    An increasingly popular solution to future energy demand is wind energy. Wind turbine designs can be grouped according to their axis of rotation, either horizontal or vertical. Horizontal axis wind turbines have higher power output in a good wind regime than vertical axis turbines and are used in most commercial class designs. Vertical axis Savonius-based wind turbine designs are still widely used in some applications because of their simplistic design and low wind speed performance. There are many design variables that must be considered in order to optimize the power output in a given wind regime in a typical wind turbine design. Using particle image velocimetry, a study of the air flow around five different model vertical axis wind turbines was conducted in a closed loop wind tunnel. A standard Savonius design with two semi-circular blades overlapping, and two variations of this design, a deep blade and a shallow blade design were among the turbine models included in this study. It also evaluated alternate designs that attempt to increase the performance of the standard design by allowing compound blade curvature. Measurements were collected at a constant phase angle and also at random rotor orientations. It was found that evaluation of the flow patterns and measured velocities revealed consistent and stable flow patterns at any given phase angle. Large scale flow structures are evident in all designs such as vortices shed from blade surfaces. An important performance parameter was considered to be the ability of the flow to remain attached to the forward blade and redirect and reorient the flow to the following blade. 6 refs., 18 figs.

  17. Experimental hyperthyroidism and central mediators of stress axis and thyroid axis activity in common carp (Cyprinus carpio L.).

    Science.gov (United States)

    Geven, Edwin J W; Verkaar, Folkert; Flik, Gert; Klaren, Peter H M

    2006-12-01

    The effect of experimental hyperthyroidism, realized by T(4) injection, on central mediators of the hypothalamo-pituitary-interrenal axis (HPI-axis) in common carp (Cyprinus carpio L.) was studied. Our results show that hyperthyroidism evokes a marked 3.2-fold reduction in basal plasma cortisol levels. Corticotropin-releasing hormone-binding protein (CRH-BP) mRNA levels in the hypothalamus, measured by real-time quantitative PCR, were significantly elevated by 40%, but CRH, urotensin-I, prepro-TRH, prohormone convertase-1 (PC1), and POMC mRNA levels were unchanged. In the pituitary pars distalis, PC1, CRH receptor-1, and POMC mRNA levels were unaffected, as was ACTH content. Plasma alpha-MSH concentrations were significantly elevated by 30% in hyperthyroid fish, and this was reflected in PC1 and POMC mRNA levels in pituitary pars intermedia that were increased 1.5- and 2.4-fold respectively. The alpha-MSH content of the pars intermedia was unchanged. Hyperthyroidism has profound effects on the basal levels of a central mediator, i.e., CRH-BP, of HPI-axis function in unstressed carp in vivo, and we conclude that HPI- and hypothalamo-pituitary-thyroid-axis functions are strongly interrelated. We suggest that the changes in plasma cortisol, thyroid hormone, and alpha-MSH levels reflect their concerted actions on energy metabolism.

  18. Expression, purification, crystallization and preliminary crystallographic analysis of chitinase A from Vibrio carchariae

    International Nuclear Information System (INIS)

    Songsiriritthigul, Chomphunuch; Yuvaniyama, Jirundon; Robinson, Robert C.; Vongsuwan, Archara; Suginta, Wipa

    2005-10-01

    Chitinase A of Vibrio carchariae was functionally expressed in Escherichia coli M15 host cells as a C-terminally proteolytic processed fragment using the pQE60 expression vector. The yield of the 63-kDa protein was purified, yielding ∼70 mg per liter of bacterial culture. Crystals of recombinant chitinase A were obtained by the hanging-drop vapor diffusion method in a precipitant containing 10% (v/v) PEG 400, 0.1 M sodium acetate p H 4.6 and 0.125 M CaCl 2 . The crystals belonged to the tetragonal space group P422 with two molecules per asymmetric unit and unit-cell parameters a = b 127.64 Angstrom, and c = 171.42 Angstrom. A complete diffraction data set was collected to 2.14 Angstrom resolution, using a Rigaku/MSC R-AXIS IV ++ detector system mounted on an RU-H3R rotating-anode X-ray generator

  19. Crystallographic and Mössbauer investigations on Np1- xPuxB2

    Science.gov (United States)

    Chipaux, R.; Bonnisseau, D.; Bogé, M.; Larroque, J.

    1988-08-01

    The diborides of neptunium and plutonium and their solid solutions Np 1- xPu xB 2 have been synthesized by direct reaction with a good purity. The lattice parameters follow Vegard's law. The magnetic properties of the samples containing neptunium have been investigated by Mössbauer spectrometry. The isomer shift is almost constant in all compounds (-14.5 (0.2) mm/s resp. to NpAl 2), suggesting tetravalent Np ions. At high temperatures, a large quadrupolar interaction, clearly connected to the crystal structure, is observed in all compounds, decreasing slowly with the neptunium concentration. At low temperature, magnetic patterns appear for x ⩽ 0.5. The magnetic moments are ordered perpendicular to the c-axis and equal to 0.57μ B for x = 0. In Np 0.5Pu 0.5B 2 and, in less degree in Np 0.7Pu 0.3B 2 and Np 0.33Pu 0.67B 2, magnetic fluctuations are detec ted.

  20. Development of triple axis neutron spectrometer (Paper No. 24)

    International Nuclear Information System (INIS)

    Pal, B.C.; Wadhwa, N.R.; Goveas, S.H.

    1987-02-01

    The triple axis neutron spectrometers are the basic instruments intended for use with neutron beams from reactors. Various types of spectrometers, each devoted to different kinds of measurement can be designed and manufactured, once a prototype having all the attributes of a versatile instrument is designed and developed. With the view to achieving self reliance in this field, Central Workshops of Bhabha Atomic Research Centre (BARC), Bombay designed and developed a prototype of triple axis spectrometer meeting the specifications prepared by Nuclear Physics Division of BARC . This spectrometer, with a moving wedge system was successfully manufactured and installed at 'DHRUVA'. Another version of this spectrometer, called the 'Polarised Neutron Spectrometer' was also built and exported to South Korea and installed at Korea Advanced Energy Research Institute, Seoul. This paper deals with basic concept, development of design, engineering of mechanical assemblies, the manufacturing approach and problems encountered during manufacture. (author). 3 figs

  1. Self-assembly of orthogonal three-axis sensors

    International Nuclear Information System (INIS)

    Cho, J. H.; Hu, S.; Gracias, D. H.

    2008-01-01

    Conventional planar microfabrication is widely utilized to construct sensors for the measurement of physical or chemical properties. However, in these devices, the information component measured is typically restricted to only one vectorial axis. Here, we describe a self-assembling strategy that can be utilized to construct three dimensional (3D) cubic devices that facilitate measurement along three axes. This 3D measurement is achieved by arranging sensing elements orthogonally; any sensing element that can be lithographically patterned can be utilized. The 3D arrangement of sensors allows for the measurement of angular and orientation parameters. As an example, we describe a three-axis cantilever based sensor and demonstrate measurement of an evaporated analyte using resonant frequency shifts of cantilevers in each of the x, y, and z axes

  2. Dynamic Compensation for Two-Axis Robot Wrist Force Sensors

    Directory of Open Access Journals (Sweden)

    Junqing Ma

    2013-01-01

    Full Text Available To improve the dynamic characteristic of two-axis force sensors, a dynamic compensation method is proposed. The two-axis force sensor system is assumed to be a first-order system. The operation frequency of the system is expanded by a digital filter with backward difference network. To filter high-frequency noises, a low-pass filter is added after the dynamic compensation network. To avoid overcompensation, parameters of the proposed dynamic compensation method are defined by trial and error. Step response methods are utilized in dynamic calibration experiments. Compared to experiment data without compensation, the response time of the dynamic compensated data is reduced by 30%~40%. Experiments results demonstrate the effectiveness of our method.

  3. Efficiency of the DOMUS 750 vertical-axis wind turbine

    Science.gov (United States)

    Hallock, Kyle; Rasch, Tyler; Ju, Guoqiang; Alonso-Marroquin, Fernando

    2017-06-01

    The aim of this paper is to present some preliminary results on the efficiency of a wind turbine for an off-grid housing unit. To generate power, the unit uses a photovoltaic solar array and a vertical-axis wind turbine (VAWT). The existing VAWT was analysed to improve efficiency and increase power generation. There were found to be two main sources of inefficiency: 1. the 750W DC epicyclic generator performed poorly in low winds, and 2. the turbine blades wobbled, allowing for energy loss due to off-axis rotation. A 12V DC permanent magnet alternator was chosen that met the power requirements of the housing unit and would generate power at lower wind speeds. A support bracket was designed to prevent the turbine blades from wobbling.

  4. Design optimization and analysis of vertical axis wind turbine blade

    International Nuclear Information System (INIS)

    Jarral, A.; Ali, M.; Sahir, M.H.

    2013-01-01

    Wind energy is clean and renwable source of energy and is also the world's fastest growing energy resource. Keeping in view power shortages and growing cost of energy, the low cost wind energy has become a primary solution. It is imperative that economies and individuals begin to conserve energy and focus on the production of energy from renewable sources. Present study describes a wind turbine blade designed with enhanced aerodynamic properties. Vertical axis turbine is chosen because of its easy installment, less noisy and having environmental friendly characteristics. Vertical axis wind turbines are thought to be ideal for installations where wind conditions are not consistent. The presented turbine blade is best suitable for roadsides where the rated speed due to vehicles is most /sup -1/ often 8 ms .To get an optimal shape design symmetrical profile NACA0025 has been considered which is then analyzed for stability and aerodynamic characteristics at optimal conditions using analysis tools ANSYS and CFD tools. (author)

  5. A new vertical axis wind turbine design for urban areas

    Science.gov (United States)

    Frunzulica, Florin; Cismilianu, Alexandru; Boros, Alexandru; Dumitrache, Alexandru; Suatean, Bogdan

    2016-06-01

    In this paper we aim at developing the model of a Vertical Axis Wind Turbine (VAWT) with the short-term goal of physically realising this turbine to operate at a maximmum power of 5 kW. The turbine is designed for household users in the urban or rural areas and remote or isolated residential areas (hardly accsessible). The proposed model has a biplane configuration on each arm of the VAWT (3 × 2 = 6 blades), allowing for increased performance of the turbine at TSR between 2 and 2.5 (urban area operation) compared to the classic vertical axis turbines. Results that validate the proposed configuration as well as passive control methods to increase the performance of the classic VAWTs are presented.

  6. Tuning the DARHT Axis-II linear induction accelerator focusing

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A. [Los Alamos National Laboratory

    2012-04-24

    Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories, and the Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-{mu}s flattop. The Axis-II injector, LIA, kicker, and downstream transport (DST) to the bremsstrahlung converter are described. Adjusting the magnetic focusing and steering elements to optimize the electron-beam transport through an LIA is often called 'tuning.' As in all high-current LIAs, the focusing field is designed to be as close to that of the ideal continuous solenoid as physically possible. In ideal continuous solenoidal transport a smoothly varying beam size can easily be found for which radial forces balance, and the beam is said to be 'matched' to the focusing field. A 'mismatched' beam exhibits unwanted oscillations in size, which are a source of free energy that contributes to emittance growth. This is undesirable, because in the absence of beam-target effects, the radiographic spot size is proportional to the emittance. Tuning the Axis-II LIA is done in two steps. First, the solenoidal focusing elements are set to values designed to provide a matched beam with little or no envelope oscillations, and little or no beam-breakup (BBU) instability growth. Then, steering elements are adjusted to minimize the motion of the centroid of a well-centered beam at the LIA exit. This article only describes the design of the tune for the focusing solenoids. The DARHT Axis-II LIA was required to be re-tuned after installing an

  7. Ground Vibration Attenuation Measurement using Triaxial and Single Axis Accelerometers

    Science.gov (United States)

    Mohammad, A. H.; Yusoff, N. A.; Madun, A.; Tajudin, S. A. A.; Zahari, M. N. H.; Chik, T. N. T.; Rahman, N. A.; Annuar, Y. M. N.

    2018-04-01

    Peak Particle Velocity is one of the important term to show the level of the vibration amplitude especially traveling wave by distance. Vibration measurement using triaxial accelerometer is needed to obtain accurate value of PPV however limited by the size and the available channel of the data acquisition module for detailed measurement. In this paper, an attempt to estimate accurate PPV has been made by using only a triaxial accelerometer together with multiple single axis accelerometer for the ground vibration measurement. A field test was conducted on soft ground using nine single axis accelerometers and a triaxial accelerometer installed at nine receiver location R1 to R9. Based from the obtained result, the method shows convincing similarity between actual PPV with the calculated PPV with error ratio 0.97. With the design method, vibration measurement equipment size can be reduced with fewer channel required.

  8. Vertical-axis turbine/propeller for ship propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Barkla, H.M.

    1984-01-01

    There are so many variables in the design and operating conditions of a vertical-axis turbine/propeller for the propulsion of a ship by wind that a preliminary study is offered, based on two simplified models. Study of a linear motion of blades in air and water shows optimum conditions for blade-speed and blade-incidence. Analysis of the second, cyclical model is simplified by the assumption of constant angles of incidence. While the logical superiority of the vertical-axis system, with its low transmission loss, may not alone give it the advantage over all other systems in upwind and downwind sailing, there are indications that in the beam wind it is in a class of its own; the Voith-Schneider-Type propeller then produces a thrust with a major component to windward, so that the combined unit leaves little or no athwartships force.

  9. APS-U LATTICE DESIGN FOR OFF-AXIS ACCUMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yipeng; Borland, M.; Lindberg, R.; Sajaev, V.

    2017-06-25

    A 67-pm hybrid-seven-bend achromat (H7BA) lattice is being proposed for a future Advanced Photon Source (APS) multi-bend-achromat (MBA) upgrade project. This lattice design pushes for smaller emittance and requires use of a swap-out (on-axis) injection scheme due to limited dynamic acceptance. Alternate lattice design work has also been performed for the APS upgrade to achieve better beam dynamics performance than the nominal APS MBA lattice, in order to allow off-axis accumulation. Two such alternate H7BA lattice designs, which target a still-low emittance of 90 pm, are discussed in detail in this paper. Although the single-particle-dynamics performance is good, simulations of collective effects indicate that surprising difficulty would be expected accumulating high single-bunch charge in this lattice. The brightness of the 90-pm lattice is also a factor of two lower than the 67-pm H7BA lattice.

  10. Axis-switching of a micro-jet

    Science.gov (United States)

    Cabaleiro, Juan Martin; Aider, Jean-Luc

    2014-03-01

    In this study, it is shown that free microjets can undergo complex transitions similar to large-scale free jets despite relatively low Reynolds numbers. Using an original experimental method allowing for the 3D reconstruction of the instantaneous spatial organization of the microjet, the axis-switching of a micro-jet is observed for the first time. This is the first experimental evidence of such complex phenomena for free micro-jets. Combining these experimental results with Direct Numerical Simulations it is shown that the mechanism responsible for the axis-switching is the deformation of a micro-vortex ring due to induction by the corner vortices, as it occurs in large scale non-circular jets.

  11. Averaging scheme for atomic resolution off-axis electron holograms.

    Science.gov (United States)

    Niermann, T; Lehmann, M

    2014-08-01

    All micrographs are limited by shot-noise, which is intrinsic to the detection process of electrons. For beam insensitive specimen this limitation can in principle easily be circumvented by prolonged exposure times. However, in the high-resolution regime several instrumental instabilities limit the applicable exposure time. Particularly in the case of off-axis holography the holograms are highly sensitive to the position and voltage of the electron-optical biprism. We present a novel reconstruction algorithm to average series of off-axis holograms while compensating for specimen drift, biprism drift, drift of biprism voltage, and drift of defocus, which all might cause problematic changes from exposure to exposure. We show an application of the algorithm utilizing also the possibilities of double biprism holography, which results in a high quality exit-wave reconstruction with 75 pm resolution at a very high signal-to-noise ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Development of a Single-Axis Edge Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Hanshaw, R.A.

    2000-02-18

    A SIP (Societe Genevoise d'Instruments de Physique) Trioptic coordinate measuring machine was modified for calibration of high quality single-axis glass standards to an uncertainty of {+-}0.000020 inch. The modification was accomplished through the addition of a frame grabber board, vision software, a high-resolution camera, stepper motors, a two-axis motor controller, and an HP-IB interface card. An existing temperature system (hygrometer, barometer, laser interferometer system, and optics) was retained as part of the system. An existing Hewlett Packard computer was replaced with a personal computer to accommodate the frame grabber board. Each component was integrated into the existing system using Visual Basic. The system was automated for unattended measurements by creating a machine programming language, which is recognized within the main program.

  13. Targeting the gut-liver axis in cirrhosis

    DEFF Research Database (Denmark)

    Madsen, Bjørn S; Havelund, Troels; Krag, Aleksander

    2013-01-01

    The gut-liver axis in cirrhosis and portal hypertension is gaining increasing attention as a key pathophysiological mechanism responsible for progression of liver failure and development of complications such as spontaneous infections and hepatocellular carcinoma. Antibiotics and non-selective β......-blockers (NSBB) intercept this axis and each drug has proven efficacy in clinical trials. A synergistic effect is a hitherto unproven possibility. There is an increasing body of evidence supporting improved outcome with expanded use of NSBB and antibiotic therapy beyond current indications. This review addresses...... the issue of pharmacological treatment of cirrhosis and portal hypertension with antibiotics and NSBB. We discuss their mechanism of action and suggest that combining the two treatment modalities could potentially reduce the risk of complications....

  14. Development of the adrenal axis in the neonatal rat

    Energy Technology Data Exchange (ETDEWEB)

    Guillet, Ronnie [Univ. of Rochester, NY (United States)

    1977-01-01

    Plasma corticosterone and ACTH concentrations were determined in neonatal rats 1, 7, 14, and 21 days old, under a variety of experimental conditions, to obtain more information on the postnatal development of the rat hypothalamo-adrenal (HHA) axis. The results indicate that: (1) there is a diminution followed by an increase in responsiveness of the adrenal gland, but the pituitary response to direct hormonal stimulation is unchanged during the first three postnatal weeks; (2) continued stimulation of the adrenal by ACTH or of the central nervous system (CNS) or hypothalamus by corticosterone is necessary during early postnatal development to allow normal maturation of the HHA axis; and (3) feedback inhibition is operative by birth, at least to a moderate degree. Taken together, the studies suggest that both the adrenal and pituitary glands are potentially functional at birth, but that the hypothalamic and CNS mediators of the stress response are not mature until at least the second or third postnatal week. (ERB)

  15. Application of one-axis sun tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Sefa, Ibrahim; Demirtas, Mehmet; Colak, Ilhami [Gazi University, Faculty of Technical Education, Department of Electrical Education, GEMEC-Gazi Electric Machines and Control Group, Ankara (Turkey)

    2009-11-15

    This paper introduces design and application of a novel one-axis sun tracking system which follows the position of the sun and allows investigating effects of one-axis tracking system on the solar energy in Turkey. The tracking system includes a serial communication interface based on RS 485 to monitor whole processes on a computer screen and to plot data as graphic. In addition, system parameters such as the current, the voltage and the panel position have been observed by means of a microcontroller. The energy collected is measured and compared with a fixed solar system for the same solar panel. The results show that the solar energy collected on the tracking system is considerably much efficient than the fixed system. The tracking system developed in this study provides easy installation, simple mechanism and less maintenance. (author)

  16. Summary of tower designs for large horizontal axis wind turbines

    Science.gov (United States)

    Frederick, G. R.; Savino, J. M.

    1986-01-01

    Towers for large horizontal axis wind turbines, machines with a rotor axis height above 30 meters and rated at more than 500 kW, have varied in configuration, materials of construction, type of construction, height, and stiffness. For example, the U.S. large HAWTs have utilized steel truss type towers and free-standing steel cylindrical towers. In Europe, the trend has been to use only free-standing and guyed cylindrical towers, but both steel and reinforced concrete have been used as materials of construction. These variations in materials of construction and type of construction reflect different engineering approaches to the design of cost effective towers for large HAWTs. Tower designs are the NASA/DOE Mod-5B presently being fabricated. Design goals and requirements that influence tower configuration, height and materials are discussed. In particular, experiences with United States large wind turbine towers are elucidated. Finally, current trends in tower designs for large HAWTs are highlighted.

  17. Application of one-axis sun tracking system

    International Nuclear Information System (INIS)

    Sefa, Ibrahim; Demirtas, Mehmet; Colak, Ilhami

    2009-01-01

    This paper introduces design and application of a novel one-axis sun tracking system which follows the position of the sun and allows investigating effects of one-axis tracking system on the solar energy in Turkey. The tracking system includes a serial communication interface based on RS 485 to monitor whole processes on a computer screen and to plot data as graphic. In addition, system parameters such as the current, the voltage and the panel position have been observed by means of a microcontroller. The energy collected is measured and compared with a fixed solar system for the same solar panel. The results show that the solar energy collected on the tracking system is considerably much efficient than the fixed system. The tracking system developed in this study provides easy installation, simple mechanism and less maintenance.

  18. Device for passive flow control around vertical axis marine turbine

    Science.gov (United States)

    Coşoiu, C. I.; Georgescu, A. M.; Degeratu, M.; Haşegan, L.; Hlevca, D.

    2012-11-01

    The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.

  19. Device for passive flow control around vertical axis marine turbine

    International Nuclear Information System (INIS)

    Coşoiu, C I; Georgescu, A M; Degeratu, M; Haşegan, L; Hlevca, D

    2012-01-01

    The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.

  20. Small-Scale vertical axis wind turbine design

    OpenAIRE

    Castillo Tudela, Javier

    2011-01-01

    The thesis focuses on the design of a small vertical axis wind turbine rotor with solid wood as a construction material. The aerodynamic analysis is performed implementing a momentum based model on a mathematical computer program. A three bladed wind turbine is proposed as candidate for further prototype testing after evaluating the effect of several parameters in turbine efficiency, torque and acceleration. The results obtained indicate that wood is a suitable material for rotor cons...

  1. Gonadal Steroid Hormones and the Hypothalamo-Pituitary-Adrenal Axis

    OpenAIRE

    Handa, Robert J.; Weiser, Michael J.

    2013-01-01

    The hypothalamo-pituitary-adrenal (HPA) axis represents a complex neuroendocrine feedback loop controlling the secretion of adrenal glucocorticoid hormones. Central to its function is the paraventricular nucleus of the hypothalamus (PVN) where neurons expressing corticotropin releasing factor reside. These HPA motor neurons are a primary site of integration leading to graded endocrine responses to physical and psychological stressors. An important regulatory factor that must be considered, pr...

  2. Classification of threespine stickleback along the benthic-limnetic axis

    OpenAIRE

    Willacker, James J.; von Hippel, Frank A.; Wilton, Peter R.; Walton, Kelly M.

    2010-01-01

    Many species of fish display morphological divergence between individuals feeding on macroinvertebrates associated with littoral habitats (benthic morphotypes) and individuals feeding on zooplankton in the limnetic zone (limnetic morphotypes). Threespine stickleback (Gasterosteus aculeatus L.) have diverged along the benthic-limnetic axis into allopatric morphotypes in thousands of populations and into sympatric species pairs in several lakes. However, only a few well known populations have b...

  3. From Bench to Bedside: Translating the Prolactin/Vasoinhibin Axis

    Directory of Open Access Journals (Sweden)

    Jakob Triebel

    2017-12-01

    Full Text Available The prolactin/vasoinhibin axis defines an endocrine system, in which prolactin (PRL and vasoinhibins regulate blood vessel growth and function, the secretion of other hormones, inflammatory and immune processes, coagulation, and behavior. The core element of the PRL/vasoinhibin axis is the generation of vasoinhibins, which consists in the proteolytic cleavage of their precursor molecule PRL. Vasoinhibins can interact with multiple different partners to mediate their effects in various tissues and anatomical compartments, indicating their pleiotropic nature. Based on accumulating knowledge about the PRL/vasoinhibin axis, two clinical trials were initiated, in which vasoinhibin levels are the target of therapeutic interventions. One trial investigates the effect of levosulpiride, a selective dopamine D2-receptor antagonist, on retinal alterations in patients with diabetic macular edema and retinopathy. The rationale of this trial is that the levosulpiride-induced hyperprolactinemia resulting in increased retinal vasoinhibins could lead to beneficiary outcomes in terms of a vasoinhibin-mediated antagonization of diabetes-induced retinal alterations. Another trial investigated the effect of bromocriptine, a dopamine D2-receptor agonist, for the treatment of peripartum cardiomyopathy. The rationale of treatment with bromocriptine is the inhibition of vasoinhibin generation by substrate depletion to prevent detrimental effects on the myocardial microvascularization. The trial demonstrated that bromocriptine treatment was associated with a high rate of left ventricular recovery and low morbidity and mortality. Therapeutic interventions into the PRL/vasoinhibin axis bear the risk of side effects in the areas of blood coagulation, blood pressure, and alterations of the mental state.

  4. Roll-Axis Hydrofluidic Stability Augmentation System Development

    Science.gov (United States)

    1975-09-01

    lifi .1035 SW 30 left for znro time delay - r Ight for other. 17 Preceding page Hank Recordings of the simulated aircraft performance to...DESIGN The analytical effort defined the gains and shaping networks required for the roll-axis damper system for the OH-58A helicopter, and the...Shaping Networks Usually a combination of resistors and capacitors (bellows) is designed to provide the following functions: a) b) 3.1.4 1 Lag

  5. Three-axis orthogonal transceiver coil for eddy current sounding

    Science.gov (United States)

    Sukhanov, D.; Zavyalova, K.; Goncharik, M.

    2017-08-01

    We propose the new structure of three-axis transceiver magnetic-induction coil for eddy current probing. Due to the orientation of the coils, the direct signal from the transmitting coil to the receiving coil is minimized, which provided a high dynamic range. Sensitivity in all directions is provided by combining coils of different orientations. Numerical simulation and experimental studies of such a system have been carried out and confirmed the applicability of the proposed method and the mathematical model.

  6. Inelastic scattering using the three-axis spectrometer technique

    International Nuclear Information System (INIS)

    Currat, R.

    1999-01-01

    The three-axis technique is a basic neutron scattering technique for inelastic work on single-crystal specimens. There is, at the moment, a fair degree of complementarity between TAS instruments on steady-state sources and TOF instruments on steady-state or pulsed sources. The technique is described, the issue of TAS versus TOF method is discussed, and investigations relating to the resolution functions are presented. (K.A.)

  7. Estimation of power in low velocity vertical axis wind turbine

    Science.gov (United States)

    Sampath, S. S.; Shetty, Sawan; Chithirai Pon Selvan, M.

    2015-06-01

    The present work involves in the construction of a vertical axis wind turbine and the determination of power. Various different types of turbine blades are considered and the optimum blade is selected. Mechanical components of the entire setup are built to obtain maximum rotation per minute. The mechanical energy is converted into the electrical energy by coupling coaxially between the shaft and the generator. This setup produces sufficient power for consumption of household purposes which is economic and easily available.

  8. MARRT: Medial Axis biased rapidly-exploring random trees

    KAUST Repository

    Denny, Jory

    2014-05-01

    © 2014 IEEE. Motion planning is a difficult and widely studied problem in robotics. Current research aims not only to find feasible paths, but to ensure paths have certain properties, e.g., shortest or safest paths. This is difficult for current state-of-the-art sampling-based techniques as they typically focus on simply finding any path. Despite this difficulty, sampling-based techniques have shown great success in planning for a wide range of applications. Among such planners, Rapidly-Exploring Random Trees (RRTs) search the planning space by biasing exploration toward unexplored regions. This paper introduces a novel RRT variant, Medial Axis RRT (MARRT), which biases tree exploration to the medial axis of free space by pushing all configurations from expansion steps towards the medial axis. We prove that this biasing increases the tree\\'s clearance from obstacles. Improving obstacle clearance is useful where path safety is important, e.g., path planning for robots performing tasks in close proximity to the elderly. Finally, we experimentally analyze MARRT, emphasizing its ability to effectively map difficult passages while increasing obstacle clearance, and compare it to contemporary RRT techniques.

  9. A New, Adaptable, Optical High-Resolution 3-Axis Sensor

    Directory of Open Access Journals (Sweden)

    Niels Buchhold

    2017-01-01

    Full Text Available This article presents a new optical, multi-functional, high-resolution 3-axis sensor which serves to navigate and can, for example, replace standard joysticks in medical devices such as electric wheelchairs, surgical robots or medical diagnosis devices. A light source, e.g., a laser diode, is affixed to a movable axis and projects a random geometric shape on an image sensor (CMOS or CCD. The downstream microcontroller’s software identifies the geometric shape’s center, distortion and size, and then calculates x, y, and z coordinates, which can be processed in attached devices. Depending on the image sensor in use (e.g., 6.41 megapixels, the 3-axis sensor features a resolution of 1544 digits from right to left and 1038 digits up and down. Through interpolation, these values rise by a factor of 100. A unique feature is the exact reproducibility (deflection to coordinates and its precise ability to return to its neutral position. Moreover, optical signal processing provides a high level of protection against electromagnetic and radio frequency interference. The sensor is adaptive and adjustable to fit a user’s range of motion (stroke and force. This recommendation aims to optimize sensor systems such as joysticks in medical devices in terms of safety, ease of use, and adaptability.

  10. Blade pitch optimization methods for vertical-axis wind turbines

    Science.gov (United States)

    Kozak, Peter

    Vertical-axis wind turbines (VAWTs) offer an inherently simpler design than horizontal-axis machines, while their lower blade speed mitigates safety and noise concerns, potentially allowing for installation closer to populated and ecologically sensitive areas. While VAWTs do offer significant operational advantages, development has been hampered by the difficulty of modeling the aerodynamics involved, further complicated by their rotating geometry. This thesis presents results from a simulation of a baseline VAWT computed using Star-CCM+, a commercial finite-volume (FVM) code. VAWT aerodynamics are shown to be dominated at low tip-speed ratios by dynamic stall phenomena and at high tip-speed ratios by wake-blade interactions. Several optimization techniques have been developed for the adjustment of blade pitch based on finite-volume simulations and streamtube models. The effectiveness of the optimization procedure is evaluated and the basic architecture for a feedback control system is proposed. Implementation of variable blade pitch is shown to increase a baseline turbine's power output between 40%-100%, depending on the optimization technique, improving the turbine's competitiveness when compared with a commercially-available horizontal-axis turbine.

  11. A procedure for denoising dual-axis swallowing accelerometry signals

    International Nuclear Information System (INIS)

    Sejdić, Ervin; Chau, Tom; Steele, Catriona M

    2010-01-01

    Dual-axis swallowing accelerometry is an emerging tool for the assessment of dysphagia (swallowing difficulties). These signals however can be very noisy as a result of physiological and motion artifacts. In this note, we propose a novel scheme for denoising those signals, i.e. a computationally efficient search for the optimal denoising threshold within a reduced wavelet subspace. To determine a viable subspace, the algorithm relies on the minimum value of the estimated upper bound for the reconstruction error. A numerical analysis of the proposed scheme using synthetic test signals demonstrated that the proposed scheme is computationally more efficient than minimum noiseless description length (MNDL)-based denoising. It also yields smaller reconstruction errors than MNDL, SURE and Donoho denoising methods. When applied to dual-axis swallowing accelerometry signals, the proposed scheme exhibits improved performance for dry, wet and wet chin tuck swallows. These results are important for the further development of medical devices based on dual-axis swallowing accelerometry signals. (note)

  12. l=1 helical axis heliotron device in Kyoto university

    International Nuclear Information System (INIS)

    Nagasaki, K.; Sano, F.; Mizuuchi, T.; Hanatani, K.; Okada, H.; Obiki, T.

    1999-01-01

    Helical systems are an attractive candidate for magnetic fusion reactor. Recently, there has been great progress in theoretical research of three dimensional magnetic field structures, resulting in several kinds of confinement optimization being proposed for toroidal magnetic confinement system. For example, some sophisticated ideas have appeared on stage such as quasi-helical symmetry and quasi-isodynamic system. To find experimentally which way is the best Optimisation, a new helical axis heliotron device, so called 'Heliotron J', is under construction in the Institute of Advanced Energy, Kyoto University, Japan. In this conference, the basic concept and the present status will be presented. In the conventional plane axis helical system, it was difficult to have both good particle confinement and good MHD stability simultaneously. The goal of Heliotron J project is to clarify their compatibility in the spatial axis toroidal device. The best way for Optimising the helical magnetic field configuration will be explored by investigating the plasma response to the change in the field components. The main subjects for plasma experiment are: demonstration of the existence of good magnetic flux surfaces, reduction of neoclassical transport in collisionless regime, MHD Stabilisation in high β plasma, controllability of bootstrap current, good confinement of high energy particles

  13. Three-Axis Attitude Estimation Using Rate-Integrating Gyroscopes

    Science.gov (United States)

    Crassidis, John L.; Markley, F. Landis

    2016-01-01

    Traditionally, attitude estimation has been performed using a combination of external attitude sensors and internal three-axis gyroscopes. There are many studies of three-axis attitude estimation using gyros that read angular rates. Rate-integrating gyros measure integrated rates or angular displacements, but three-axis attitude estimation using these types of gyros has not been as fully investigated. This paper derives a Kalman filtering framework for attitude estimation using attitude sensors coupled with rate- integrating gyroscopes. In order to account for correlations introduced by using these gyros, the state vector must be augmented, compared with filters using traditional gyros that read angular rates. Two filters are derived in this paper. The first uses an augmented state-vector form that estimates attitude, gyro biases, and gyro angular displacements. The second ignores correlations, leading to a filter that estimates attitude and gyro biases only. Simulation comparisons are shown for both filters. The work presented in this paper focuses only on attitude estimation using rate-integrating gyros, but it can easily be extended to other applications such as inertial navigation, which estimates attitude and position.

  14. Study of the crystallographic and magnetic properties of cubic manganite spinels NiMn2O4

    International Nuclear Information System (INIS)

    Boucher, B.

    1969-01-01

    We study the variation of the crystallographic properties (inversion degree, position parameters and short range order) of the cubic spinel Mn ν Ni 1-ν [Mn 2ν Ni ν ]O 4 , as a function of the thermal treatment applied to the sample. ν lies between 0. 74 and 0. 93; the slower the sample is cooled the more inverse it is. We show, in a molecular field theory, that a system of three magnetic sublattices can afford a 'star' configuration. We establish the conditions of stability of such a structure and its evolution as a function of temperature is foreseen. Neutron diffraction measurements show that the magnetic structure of NiMn 2 O 4 at 4.2 K is a 'star' configuration and that with increasing temperature it becomes a collinear structure in agreement with the theory. Furthermore, we find an anomaly in the value of specific heat at the transition temperature between 'star' and collinear structures. (author) [fr

  15. Ion beam modification of thermal stress resistance of MgO single crystals with different crystallographic faces

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Otsuka, P.H.; Williams, J.S.; Conway, M.J.

    2000-01-01

    Ion beam modification of thermal shock stress resistance of MgO single crystals with various crystallographic faces is investigated. The most stable crystal faces in terms of stress and damage resistance are established. Ion implantation is shown to reduce the temperature threshold of fracture for all crystal faces tested. The (111) face is demonstrated to be of highest stability compared to (110) and (100) faces in both implanted and unimplanted crystals. At the same time ion implantation substantially increases the microcrack density for all the faces tested and reduces the degree of fracture damage following thermal shock. The theoretical resistance parameters for various crystal faces are calculated using the continuum mechanics approach. The results are discussed on the basis of fracture mechanics principles and the effect of the implantation-induced lattice damage on crack nucleation

  16. Relationship between local deformation behavior and crystallographic features of as-quenched lath martensite during uniaxial tensile deformation

    International Nuclear Information System (INIS)

    Michiuchi, M.; Nambu, S.; Ishimoto, Y.; Inoue, J.; Koseki, T.

    2009-01-01

    Electron backscattering diffraction patterns were used to investigate the relationship between local deformation behavior and the crystallographic features of as-quenched lath martensite of low-carbon steel during uniform elongation in tensile tests. The slip system operating during the deformation up to a strain of 20% was estimated by comparing the crystal rotation of each martensite block after deformation of 20% strain with predictions by the Taylor and Sachs models. The results indicate that the in-lath-plane slip system was preferentially activated compared to the out-of-lath-plane system up to this strain level. Further detailed analysis of crystal rotation at intervals of approximately 5% strain confirmed that the constraint on the operative slip system by the lath structure begins at a strain of 8% and that the local strain hardening of the primary slip systems occurred at approximately 15% strain.

  17. Electrical properties of NiAs-type MnTe films with preferred crystallographic plane of (110)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.; Wang, Z. H., E-mail: zhwang@imr.ac.cn; Zhang, Z. D. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-01-28

    NiAs-type manganese telluride (MnTe) films with preferred crystallographic plane of (110) were prepared on Si/SiO{sub 2} substrates by pulsed laser deposition. X-ray diffraction (XRD) of the films was studied at different temperatures. The XRD peak of MnTe (110) films shifts to higher angle with decreasing temperature, showing the decrease of the lattice parameter. Resistivity of the films was studied in the temperature range of 2–350 K. The bump between 150 and 250 K was observed in the films, which may be related to the special s-d and p-d overlaps induced by the compressed lattice. The magnon drag effect near its Néel temperature T{sub N} and enlarged magnetic-elastic coupling below 100 K were observed and analyzed in details.

  18. Crystallization and preliminary crystallographic studies of a cysteine protease inhibitor from the human nematode parasite Ascaris lumbricoides

    International Nuclear Information System (INIS)

    Liu, Sanling; Dong, Jianmei; Mei, Guoqiang; Liu, Guiyun; Xu, Wei; Su, Zhong; Liu, Jinsong

    2011-01-01

    A recombinant cysteine protease inhibitor from the human nematode parasite A. lumbricoides has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 2.1 Å resolution. The cysteine protease inhibitor from Ascaris lumbricoides, a roundworm that lives in the human intestine, may be involved in the suppression of human immune responses. Here, the molecular cloning, protein expression and purification, preliminary crystallization and crystallographic characterization of the cysteine protease inhibitor from A. lumbricoides are reported. The rod-shaped crystal belonged to space group C2, with unit-cell parameters a = 99.40, b = 37.52, c = 62.92 Å, β = 118.26°. The crystal diffracted to 2.1 Å resolution and contained two molecules in the asymmetric unit

  19. Ion beam modification of thermal stress resistance of MgO single crystals with different crystallographic faces

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Otsuka, P.H.; Jamieson, D.N.; Williams, J.S.; Conway, M.

    1999-01-01

    Ion beam modification of thermal shock stress and damage resistance of MgO single crystals with various crystallographic faces is investigated. The most stable crystal faces in terms of stress and damage resistance are established. Ion implantation is shown to reduce the temperature threshold of fracture for all crystal faces tested. The (111) face is demonstrated to be of highest stability compared to (110) and (100) faces in both implanted and unimplanted crystals. At the same time ion implantation substantially increases the microcrack density for the faces tested and reduces the degree of fracture damage following thermal shock. The microcrack density is found to be highest in the crystals with (110) face in comparison with the (001) and (111) faces. The effect is analysed using fracture mechanics principles and discussed in terms of the implantation-induced lattice damage

  20. Simultaneous incorporation of carbonate and fluoride in synthetic apatites: Effect on crystallographic and physico-chemical properties.

    Science.gov (United States)

    Yao, Fang; LeGeros, John P; LeGeros, Racquel Z

    2009-07-01

    The mineral in bone is an impure hydroxyapatite, with carbonate as the chief minor substituent. Fluoride has been shown to stimulate osteoblastic activity and inhibit osteoclastic resorption in vitro. CO(3)- and F-substituted apatite (CFA) has been considered as potential bone graft material for orthopedic and dental applications. The objective of this study was to determine the effects of simultaneously incorporated CO(3) and F on the crystallographic physico-chemical properties of apatite. The results showed that increasing CO(3) and Na content in apatites with relatively constant F concentration caused a decrease in crystallite size and an increase in the extent of calcium release; increasing F content in apatites with relatively constant CO(3) concentration caused an increase in crystallite size and a decrease in the extent of Ca release. These findings suggest that CFAs as bone graft materials of desired solubility can be prepared by manipulating the relative concentrations of CO(3) and F incorporated in the apatite.

  1. Erbium-ion implantation into various crystallographic cuts of Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nekvindova, P. [Department of Inorganic Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Mackova, A.; Malinsky, P. [Nuclear Physics Institute of the Academy of Sciences of the Czech Republic v.v.i., 250 68 Rez (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske mladeze 8, 400 96 Usti nad Labem (Czech Republic); Cajzl, J.; Svecova, B. [Department of Inorganic Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Oswald, J. [Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Cukrovarnicka 10, 162 53 Prague (Czech Republic); Wilhelm, R.A. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany)

    2015-12-15

    This paper reports on the importance of crystallographic cuts with a different orientation on the luminescent properties and structural changes of Al{sub 2}O{sub 3} implanted with Er{sup +} ions at 190 keV and with a fluence of 1.0 × 10{sup 16} cm{sup −2}. Post-implantation annealing at 1000 °C in oxygen atmosphere was also done. The chemical compositions and erbium concentration-depth profiles of implanted layers were studied by Rutherford Backscattering Spectrometry (RBS) and compared to SRIM simulations. The same value of the maximum erbium concentration (up to 2 at.%) was observed at a depth of about 40 nm for all crystallographic cuts. The structural properties of the prepared layers were characterised by RBS/channelling. The relative amount of disordered atoms of 70–80% was observed in the prepared implanted layers and discussed for various cuts. It has been found that erbium is positioned randomly in the Al{sub 2}O{sub 3} crystalline matrix, and no preferential positions appeared even after the annealing procedure. Erbium luminescence properties were measured in the wavelength range of 1440–1650 nm for all samples. As-implanted Al{sub 2}O{sub 3} samples had a significant luminescence band at 1530 nm. The best luminescence was repeatedly observed in the 〈0 0 0 1〉 cut of Al{sub 2}O{sub 3}. The annealing procedure significantly improved the luminescent properties.

  2. 2,3-Bis(2-chlorobenzylnaphthalene-1,4-dione

    Directory of Open Access Journals (Sweden)

    Seik Weng Ng

    2008-03-01

    Full Text Available The title disubstituted naphthalene-1,4-dione, C24H16Cl2O2, has the two chlorobenzyl substituents related by a non-crystallographic twofold rotation axis, generating a chiral conformation; both enantiomers are present. The two chlorobenzene rings are nearly perpendicular to the fused ring system, making angles of 88.8 (1 and 77.5 (1° with it.

  3. 1,1′-Bicyclohexyl-1,1′-diyl 2,2′-bipyridine-3,3′-dicarboxylate

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2012-06-01

    Full Text Available The title compound, C24H26N2O4, lies about a crystallographic twofold rotation axis. The cyclohexane rings adopts a chair conformation. The two pyridine rings form a dihedral angle of 41.02 (4°. In the crystal, molecules are linked via C—H...O and C—H...N hydrogen bonds into a layer parallel to the bc plane.

  4. Estimation of the crystallographic strain limit during the reversible β ⇄ α″ martensitic transformation in titanium shape memory alloys

    Science.gov (United States)

    Zhukova, Yu. S.; Petrzhik, M. I.; Prokoshkin, S. D.

    2010-11-01

    Three methods are described to calculate the crystallographic strain limit that is determined by the maximum deformation of the crystal lattice in the reversible βbcc ⇄ α″orth martensitic transformation and ensures pseudoelastic deformation accumulation and shape recovery in Ti-Nb-Ta alloys.

  5. Characterization of a defective PbWO4 crystal cut along the a-c crystallographic plane: structural assessment and a novel photoelastic stress analysis

    Science.gov (United States)

    Montalto, L.; Natali, P. P.; Daví, F.; Mengucci., P.; Paone, N.; Rinaldi, D.

    2017-12-01

    Among scintillators, the PWO is one of the most widely used, for instance in CMS calorimeter at CERN and PANDA project. Crystallographic structure and chemical composition as well as residual stress condition, are indicators of homogeneity and good quality of the crystal. In this paper, structural characterization of a defective PbWO4 (PWO) crystal has been performed by X-ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS) and Photoelasticity in the unusual (a, c) crystallographic plane. XRD and EDS analysis have been used to investigate crystallographic orientation and chemical composition, while stress distribution, which indicates macroscopic inhomogeneities and defects, has been obtained by photoelastic approaches, in Conoscopic and Sphenoscopic configuration. Since the sample is cut along the (a, c) crystallographic plane, a new method is proposed for the interpretation of the fringe pattern. The structural analysis has detected odds from the nominal lattice dimension, which can be attributed to the strong presence of Pb and W. A strong inhomogeneity over the crystal sample has been revealed by the photoelastic inspection. The results give reliability to the proposed procedure which is exploitable in crystals with other structures.

  6. Crystallographic dependent in-situ CBr4 selective nano-area etching and local regrowth of InP/InGaAs by MOVPE

    DEFF Research Database (Denmark)

    Kuznetsova, Nadezda; Kulkova, Irina; Semenova, Elizaveta

    2014-01-01

    Selective area etching and growth in the metalorganic vapor phase epitaxy (MOVPE) reactor on nano-scale structures have been examined. Using different mask orientations, crystallographic dependent etching of InP can be observed when carbon tetrabromide (CBr4) is used as an etchant. Scanning...

  7. Crystallographic preferred orientations of exhumed subduction channel rocks from the Eclogite Zone of the Tauern Window (Eastern Alps, Austria), and implications on rock elastic anisotropies at great depths

    Czech Academy of Sciences Publication Activity Database

    Keppler, R.; Ullemeyer, K.; Behrmann, J. H.; Stipp, M.; Kurzawski, R. M.; Lokajíček, Tomáš

    647/648, April (2015), s. 89-104 ISSN 0040-1951 Institutional support: RVO:67985831 Keywords : crystallographic preferred orientation * eclogite Zone * elastic properties * P-wave anisotropy * retrogression of eclogites * subduction channel Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.650, year: 2015

  8. A synthesis, X-ray crystallographic and vibrational studies of guanidinium o-nitrobenzoate hydrate. New NLO crystal in guanidinium nitrobenzoate family

    Science.gov (United States)

    Drozd, Marek; Daszkiewicz, Marek

    2018-06-01

    According to literature data the two crystals are known: guanidinium m-nitrobenzoate and guanidinium p-nitrobenzoate. Both compounds belong to noncetrosymmetric crystallographic systems are consider as second order generators in nonlinear optic (NLO). For each of these crystals the detailed crystallographic, theoretical calculations and vibrational studies were performed. It is interesting that nitrobenzoic acid create tree variety of compounds ((2) ortho-, (3) meta- and (4) para-) what any data for third member of guanidinium nitrobenzoate crystal were not known. The guanidinium o-nitrobenzoate hydrate crystal was synthesized first time. The performed X-ray crystallographic study shown that crystal belongs to space group without macroscopic symmetry center. Additionally, the vibrational spectra (intensities, frequencies and PED analysis) of investigated compound are presented. These results are compared with theoretical calculations for equilibrium geometry and vibrational properties. Furthermore, the results of the theoretical approach include HOMO and LUMO energies and first order hyperpolarizability were obtained, also. On the basis of these data the crystal was classified as second order generator. All obtained results are compared with previous literature data of guanidinium m-nitrobenzoate and guanidinium p-nitrobenzoate compounds. Surprisingly, each of examined crystal belongs to different crystallographic system and shows different vibrational properties.

  9. The Hypothalamic-Pituitary-Adrenal Axis, Obesity, and Chronic Stress Exposure: Sleep and the HPA Axis in Obesity

    OpenAIRE

    Lucassen, Eliane A.; Cizza, Giovanni

    2012-01-01

    Obesity, exposure to stress and inadequate sleep are prevalent phenomena in modern society. In this review we focus on their relationships and critically evaluate causality. In obese individuals, one of the main stress systems, the hypothalamic-pituitary-adrenal axis, is altered, and concentrations of cortisol are elevated in adipose tissue due to elevated local activity of 11β-hydroxysteroid dehydrogenase (HSD) type 1. Short sleep and decreased sleep quality are also associated with obesity....

  10. Automated Slicing for a Multi-Axis Metal Deposition System (Preprint)

    Science.gov (United States)

    2006-09-01

    experimented with different materials like H13 tool steel to build the part. Following the same slicing and scanning toolpath result, there is a geometric...and analysis tool -centroidal axis. Similar to medial axis, it contains geometry and topological information but is significantly computationally...geometry reasoning and analysis tool -centroidal axis. Similar to medial axis, it contains geometry and topological information but is significantly

  11. FAMILY HISTORY STUDY OF THE FAMILIAL COAGGREGATION OF BORDERLINE PERSONALITY DISORDER WITH AXIS I AND NON-BORDERLINE DRAMATIC CLUSTER AXIS II DISORDERS

    OpenAIRE

    Zanarini, Mary C.; Barison, Leah K.; Frankenburg, Frances R.; Reich, D. Bradford; Hudson, James I.

    2009-01-01

    The purpose of this study was to assess the familial coaggregation of borderline personality disorder (BPD) with a full array of axis I disorders and four axis II disorders (antisocial personality disorder, histrionic personality disorder, narcissistic personality disorder, and sadistic personality disorder) in the first-degree relatives of borderline probands and axis II comparison subjects. Four hundred and forty-five inpatients were interviewed about familial psychopathology using the Revi...

  12. Effect of Relative Marker Movement on the Calculation of the Foot Torsion Axis Using a Combined Cardan Angle and Helical Axis Approach

    Directory of Open Access Journals (Sweden)

    Eveline S. Graf

    2012-01-01

    Full Text Available The two main movements occurring between the forefoot and rearfoot segment of a human foot are flexion at the metatarsophalangeal joints and torsion in the midfoot. The location of the torsion axis within the foot is currently unknown. The purpose of this study was to develop a method based on Cardan angles and the finite helical axis approach to calculate the torsion axis without the effect of flexion. As the finite helical axis method is susceptible to error due to noise with small helical rotations, a minimal amount of rotation was defined in order to accurately determine the torsion axis location. Using simulation, the location of the axis based on data containing noise was compared to the axis location of data without noise with a one-sample t-test and Fisher's combined probability score. When using only data with helical rotation of seven degrees or more, the location of the torsion axis based on the data with noise was within 0.2 mm of the reference location. Therefore, the proposed method allowed an accurate calculation of the foot torsion axis location.

  13. Effect of Relative Marker Movement on the Calculation of the Foot Torsion Axis Using a Combined Cardan Angle and Helical Axis Approach

    Science.gov (United States)

    Graf, Eveline S.; Wright, Ian C.; Stefanyshyn, Darren J.

    2012-01-01

    The two main movements occurring between the forefoot and rearfoot segment of a human foot are flexion at the metatarsophalangeal joints and torsion in the midfoot. The location of the torsion axis within the foot is currently unknown. The purpose of this study was to develop a method based on Cardan angles and the finite helical axis approach to calculate the torsion axis without the effect of flexion. As the finite helical axis method is susceptible to error due to noise with small helical rotations, a minimal amount of rotation was defined in order to accurately determine the torsion axis location. Using simulation, the location of the axis based on data containing noise was compared to the axis location of data without noise with a one-sample t-test and Fisher's combined probability score. When using only data with helical rotation of seven degrees or more, the location of the torsion axis based on the data with noise was within 0.2 mm of the reference location. Therefore, the proposed method allowed an accurate calculation of the foot torsion axis location. PMID:22666303

  14. Adversity-driven changes in hypothalamic-pituitary-adrenal axis functioning during adolescence

    NARCIS (Netherlands)

    Laceulle, O.M.; Nederhof, Esther; van Aken, M.A.G.; Ormel, Johan

    2017-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis has been proposed to be a key mechanism underlying the link between adversity and mental health, but longitudinal studies on adversity and HPA-axis functioning are scarce. Here, we studied adversity-driven changes in HPA-axis functioning during

  15. Adolescent Survivors of Hurricane Katrina: A Pilot Study of Hypothalamic-Pituitary-Adrenal Axis Functioning

    Science.gov (United States)

    Pfefferbaum, Betty; Tucker, Phebe; Nitiéma, Pascal

    2015-01-01

    Background: The hypothalamic-pituitary-adrenal (HPA) axis constitutes an important biological component of the stress response commonly studied through the measurement of cortisol. Limited research has examined HPA axis dysregulation in youth exposed to disasters. Objective: This study examined HPA axis activation in adolescent Hurricane Katrina…

  16. Experimentally challenged reactivity of the hypothalamic pituitary adrenal axis in patients with recently diagnosed rheumatoid arthritis

    NARCIS (Netherlands)

    Dekkers, J. C.; Geenen, R.; Godaert, G. L.; Glaudemans, K. A.; Lafeber, F. P.; van Doornen, L. J.; Bijlsma, J. W.

    2001-01-01

    There is evidence that the hypothalamic pituitary adrenal (HPA) axis is subresponsive in patients with rheumatoid arthritis (RA). We assessed HPA axis responses to experimental stressors mimicking daily life challenges in patients with RA to determine whether HPA axis activity is associated with Th1

  17. Multiscale mathematical modeling of the hypothalamo-pituitary-gonadal axis.

    Science.gov (United States)

    Clément, Frédérique

    2016-07-01

    Although the fields of systems and integrative biology are in full expansion, few teams are involved worldwide into the study of reproductive function from the mathematical modeling viewpoint. This may be due to the fact that the reproductive function is not compulsory for individual organism survival, even if it is for species survival. Alternatively, the complexity of reproductive physiology may be discouraging. Indeed, the hypothalamo-pituitary-gonadal (HPG) axis involves not only several organs and tissues but also intricate time (from the neuronal millisecond timescale to circannual rhythmicity) and space (from molecules to organs) scales. Yet, mathematical modeling, and especially multiscale modeling, can renew our approaches of the molecular, cellular, and physiological processes underlying the control of reproductive functions. In turn, the remarkable dynamic features exhibited by the HPG axis raise intriguing and challenging questions to modelers and applied mathematicians. In this article, we draw a panoramic review of some mathematical models designed in the framework of the female HPG, with a special focus on the gonadal and central control of follicular development. On the gonadal side, the modeling of follicular development calls to the generic formalism of structured cell populations, that allows one to make mechanistic links between the control of cell fate (proliferation, differentiation, or apoptosis) and that of the follicle fate (ovulation or degeneration) or to investigate how the functional interactions between the oocyte and its surrounding cells shape the follicle morphogenesis. On the central, mainly hypothalamic side, models based on dynamical systems with multiple timescales allow one to represent within a single framework both the pulsatile and surge patterns of the neurohormone GnRH. Beyond their interest in basic research investigations, mathematical models can also be at the source of useful tools to study the encoding and decoding of

  18. Optical diffraction tomography: accuracy of an off-axis reconstruction

    Science.gov (United States)

    Kostencka, Julianna; Kozacki, Tomasz

    2014-05-01

    Optical diffraction tomography is an increasingly popular method that allows for reconstruction of three-dimensional refractive index distribution of semi-transparent samples using multiple measurements of an optical field transmitted through the sample for various illumination directions. The process of assembly of the angular measurements is usually performed with one of two methods: filtered backprojection (FBPJ) or filtered backpropagation (FBPP) tomographic reconstruction algorithm. The former approach, although conceptually very simple, provides an accurate reconstruction for the object regions located close to the plane of focus. However, since FBPJ ignores diffraction, its use for spatially extended structures is arguable. According to the theory of scattering, more precise restoration of a 3D structure shall be achieved with the FBPP algorithm, which unlike the former approach incorporates diffraction. It is believed that with this method one is allowed to obtain a high accuracy reconstruction in a large measurement volume exceeding depth of focus of an imaging system. However, some studies have suggested that a considerable improvement of the FBPP results can be achieved with prior propagation of the transmitted fields back to the centre of the object. This, supposedly, enables reduction of errors due to approximated diffraction formulas used in FBPP. In our view this finding casts doubt on quality of the FBPP reconstruction in the regions far from the rotation axis. The objective of this paper is to investigate limitation of the FBPP algorithm in terms of an off-axis reconstruction and compare its performance with the FBPJ approach. Moreover, in this work we propose some modifications to the FBPP algorithm that allow for more precise restoration of a sample structure in off-axis locations. The research is based on extensive numerical simulations supported with wave-propagation method.

  19. Gaussian tunneling model of c-axis twist Josephson junctions

    International Nuclear Information System (INIS)

    Bille, A.; Klemm, R.A.; Scharnberg, K.

    2001-01-01

    We calculate the critical current density J c J ((var p hi) 0 ) for Josephson tunneling between identical high-temperature superconductors twisted an angle (var p hi) 0 about the c axis. Regardless of the shape of the two-dimensional Fermi surface and for very general tunneling matrix elements, an order parameter (OP) with general d-wave symmetry leads to J c J (π/4)=0. This general result is inconsistent with the data of Li et al. [Phys. Rev. Lett. 83, 4160 (1999)] on Bi 2 Sr 2 CaCu 2 O 8+δ (Bi2212), which showed J c J to be independent of (var p hi) 0 . If the momentum parallel to the barrier is conserved in the tunneling process, J c J should vary substantially with the twist angle (var p hi) 0 when the tight-binding Fermi surface appropriate for Bi2212 is taken into account, even if the OP is completely isotropic. We quantify the degree of momentum nonconservation necessary to render J c J ((var p hi) 0 ) constant within experimental error for a variety of pair states by interpolating between the coherent and incoherent limits using five specific models to describe the momentum dependence of the tunneling matrix element squared. From the data of Li et al., we conclude that the c-axis tunneling in Bi2212 must be very nearly incoherent, and that the OP must have a nonvanishing Fermi-surface average for T c . We further show that the apparent conventional sum-rule violation observed by Basov et al. [Science 283, 49 (1999)] can be consistent with such strongly incoherent c-axis tunneling.

  20. H I Kinematics along the Minor Axis of M82

    Science.gov (United States)

    Martini, Paul; Leroy, Adam K.; Mangum, Jeffrey G.; Bolatto, Alberto; Keating, Katie M.; Sandstrom, Karin; Walter, Fabian

    2018-03-01

    M82 is one of the best-studied starburst galaxies in the local universe, and is consequently a benchmark for studying star formation feedback at both low and high redshift. We present new VLA H I observations that reveal the cold gas kinematics along the minor axis in unprecedented detail. This includes the detection of H I up to 10 kpc along the minor axis toward the south and beyond 5 kpc to the north. A surprising aspect of these observations is that the line-of-sight H I velocity decreases substantially from about 120 to 50 {km} {{{s}}}-1 from 1.5 to 10 kpc off the midplane. The velocity profile is not consistent with the H I gas cooling from the hot wind. We demonstrate that the velocity decrease is substantially greater than the deceleration expected from gravitational forces alone. If the H I consists of a continuous population of cold clouds, some additional drag force must be present, and the magnitude of the drag force places a joint constraint on the ratio of the ambient medium to the typical cloud size and density. We also show that the H I kinematics are inconsistent with a simple conical outflow centered on the nucleus, but instead require the more widespread launch of the H I over the ∼1 kpc extent of the starburst region. Regardless of the launch mechanism for the H I gas, the observed velocity decrease along the minor axis is sufficiently great that the H I may not escape the halo of M82. The inferred H I outflow rate at 10 kpc off the midplane is much less than 1 {M}ȯ yr‑1.

  1. Active optics: off axis aspherics generation for high contrast imaging

    Science.gov (United States)

    Hugot, E.; Laslandes, M.; Ferrari, M.; Vives, S.; Moindrot, S.; El Hadi, K.; Dohlen, K.

    2017-11-01

    Active Optics methods, based on elasticity theory, allow the aspherisation of optical surfaces by stress polishing but also active aspherisation in situ. Researches in this field will impact the final performance and the final cost of any telescope or instrument. The stress polishing method is well suited for the superpolishing of aspheric components for astronomy. Its principle relies on spherical polishing with a full-sized tool of a warped substrate, which becomes aspherical once unwarped. The main advantage of this technique is the very high optical quality obtained either on form or on high spatial frequency errors. Furthermore, the roughness can be decreased down to a few angstroms, thanks the classical polishing with a large pitch tool, providing a substantial gain on the final scientific performance, for instance on the contrast on coronagraphic images, but also on the polishing time and cost. Stress polishing is based on elasticity theory, and requires an optimised deformation system able to provide the right aspherical form on the optical surface during polishing. The optical quality of the deformation is validated using extensive Finite Element Analysis, allowing an estimation of residuals and an optimisation of the warping harness. We describe here the work realised on stress polishing of toric mirrors for VLT-SPHERE and then our actual work on off axis aspherics (OAA) for the ASPIICS-Proba3 mission for solar coronagraphy. The ASPIICS optical design made by Vives et al is a three mirrors anastigmat including a concave off axis hyperboloid and a convex off axis parabola (OAP). We are developing a prototype in order to demonstrate the feasibility of this type of surface, using a multi-mode warping harness (Lemaitre et al). Furthermore, we present our work on variable OAP, meaning the possibility to adjust the shape of a simple OAP in situ with a minimal number of actuators, typically one actuator per optical mode (Focus, Coma and Astigmatism

  2. Electric power from vertical-axis wind turbines

    Science.gov (United States)

    Touryan, K. J.; Strickland, J. H.; Berg, D. E.

    1987-12-01

    Significant advancements have occurred in vertical axis wind turbine (VAWT) technology for electrical power generation over the last decade; in particular, well-proven aerodynamic and structural analysis codes have been developed for Darrieus-principle wind turbines. Machines of this type have been built by at least three companies, and about 550 units of various designs are currently in service in California wind farms. Attention is presently given to the aerodynamic characteristics, structural dynamics, systems engineering, and energy market-penetration aspects of VAWTs.

  3. A 34-meter VAWT (Vertical Axis Wind Turbine) point design

    Science.gov (United States)

    Ashwill, T. D.; Berg, D. E.; Dodd, H. M.; Rumsey, M. A.; Sutherland, H. J.; Veers, P. S.

    The Wind Energy Division at Sandia National Laboratories recently completed a point design based on the 34-m Vertical Axis Wind Turbine (VAWT) Test Bed. The 34-m Test Bed research machine incorporates several innovations that improve Darrieus technology, including increased energy production, over previous machines. The point design differs minimally from the Test Bed; but by removing research-related items, its estimated cost is substantially reduced. The point design is a first step towards a Test-Bed-based commercial machine that would be competitive with conventional sources of power in the mid-1990s.

  4. Spatial structure of extensive air showers near the axis

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, E N; Gal' perin, M D; Glemba, P Ya [AN SSSR, Moscow. Inst. Yadernykh Issledovanij; Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica)

    1978-07-01

    The spatial structure of the extensive air showers has been investigated. The tests have been staged on the 400 scintillation counter installation. It has been shown, that spatial distribution of the extensive air showers in the vicinity of the axis does not vary in case of the Nsub(e) electron number showers in the 10/sup 5/-10/sup 6/ range. The share of the showers having a clear-cut multicore structure is approximately 3% with Nsub(e) >= 2x10/sup 5/.

  5. Vertical axis wind turbine drive train transient dynamics

    Science.gov (United States)

    Clauss, D. B.; Carne, T. G.

    1982-01-01

    Start up of a vertical axis wind turbine causes transient torque oscillations in the drive train with peak torques which may be over two and one half times the rated torque of the turbine. A computer code, based on a lumped parameter model of the drive train, was developed and tested for the low cost 17 meter turbine; the results show excellent agreement with field data. The code was used to predict the effect of a slip clutch on transient torque oscillations. It was demonstrated that a slip clutch located between the motor and brake can reduce peak torques by thirty eight percent.

  6. Dynamic Analysis of Darrieus Vertical Axis Wind Turbine Rotors

    Science.gov (United States)

    Lobitz, D. W.

    1981-01-01

    The dynamic response characteristics of the vertical axis wind turbine (VAWT) rotor are important factors governing the safety and fatigue life of VAWT systems. The principal problems are the determination of critical rotor speeds (resonances) and the assessment of forced vibration response amplitudes. The solution to these problems is complicated by centrifugal and Coriolis effects which can have substantial influence on rotor resonant frequencies and mode shapes. The primary tools now in use for rotor analysis are described and discussed. These tools include a lumped spring mass model (VAWTDYN) and also finite-element based approaches. The accuracy and completeness of current capabilities are also discussed.

  7. Experimental characterization of vertical-axis wind turbine noise.

    Science.gov (United States)

    Pearson, C E; Graham, W R

    2015-01-01

    Vertical-axis wind turbines are wind-energy generators suitable for use in urban environments. Their associated noise thus needs to be characterized and understood. As a first step, this work investigates the relative importance of harmonic and broadband contributions via model-scale wind-tunnel experiments. Cross-spectra from a pair of flush-mounted wall microphones exhibit both components, but further analysis shows that the broadband dominates at frequencies corresponding to the audible range in full-scale operation. This observation has detrimental implications for noise-prediction reliability and hence also for acoustic design optimization.

  8. Endothelial Activation: The Ang/Tie Axis in Sepsis

    Directory of Open Access Journals (Sweden)

    Aleksandra Leligdowicz

    2018-04-01

    Full Text Available Sepsis, a dysregulated host response to infection that causes life-threatening organ dysfunction, is a highly heterogeneous syndrome with no specific treatment. Although sepsis can be caused by a wide variety of pathogenic organisms, endothelial dysfunction leading to vascular leak is a common mechanism of injury that contributes to the morbidity and mortality associated with the syndrome. Perturbations to the angiopoietin (Ang/Tie2 axis cause endothelial cell activation and contribute to the pathogenesis of sepsis. In this review, we summarize how the Ang/Tie2 pathway is implicated in sepsis and describe its prognostic as well as therapeutic utility in life-threatening infections.

  9. Brake lock mechanism for the two axis pointing system

    Science.gov (United States)

    Posey, Alan; Clark, Mike; Mignosa, Larry

    1991-01-01

    Six months prior to shipment of the Broadband X-ray Telescope to the Kennedy Space Center for flight aboard the Space Shuttle Columbia, a major system failure occurred. During modal survey testing of the telescope's gimbal pointing system, the roll axis brake unexpectedly released. Low level vibration and static preloads present during the modal survey were within the expected flight environment. Brake release during shuttle liftoff or ascent was an unacceptable risk to mission success; thus, a Brake Lock Mechanism (BLM) was developed.

  10. Instability of nuclear wobbling motion and tilted axis rotation

    International Nuclear Information System (INIS)

    Matsuzaki, Masayuki; Ohtsubo, Shin-Ichi

    2004-01-01

    We study a possible correspondence between the softening of the wobbling mode and the 'phase transition' of the one-dimensionally rotating mean field to a three-dimensionally rotating one by comparing the properties of the wobbling mode obtained by the one-dimensional cranking model + random phase approximation with the total Routhian surface obtained by the three-dimensional tilted-axis cranking model. The potential surface for the observed wobbling mode excited on the triaxial superdeformed states in 163 Lu is also analyzed

  11. Design of tracking photovoltaic systems with a single vertical axis

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo, E. [Ciudad Universitaria, Madrid (Spain). Instituto de Energeia Solar; Perez, M. [Pol Industrial La Nava, Naavarrsa (Spain). Alternativas Energeticas Solares; Ezpeleta, A. [Energia Hidroelectrica Navarra, Pamplona (Spain); Acedo, J. [Ingeteam SA, Pamplona (Spain)

    2002-07-01

    Solar tracking is used in large grid-connected photovoltaic plants to maximise solar radiation collection and, hence, to reduce the cost of delivered electricity. In particular, single vertical axis tracking, also called azimuth tracking, allows for energy gains up to 40%, compared with optimally tilted fully static arrays. This paper examines the theoretical aspects associated with the design of azimuth tracking, taking into account shadowing between different trackers and back-tracking features. Then, the practical design of the trackers installed at the 1.4 MW Tudela PV plant is presented and discussed. Finally, this tracking alternative is compared with the more conventional fully stationary approach. (author)

  12. Synchrotron X-ray diffraction using triple-axis spectrometry

    International Nuclear Information System (INIS)

    Als-Nielsen, J.

    1980-12-01

    High resolution X-ray diffraction studies of (i) monolayers of the noble gases Kr and Ar physiosorbed on graphite (ii) smectic A fluctuations in the nematic and the smectic A phases of liquid crystals are described. The apparatus used is a triple axis spectrometer situated at the storage ring DORIS at Hasylab, DESY, Hamburg. A monochromatic, well collimated beam is extracted from the synchrotron radiation spectrum by Bragg reflection from perfect Si or Ge crystals. The direction of the beam scattered from the sample is determined by Bragg reflection from a perfect Si or Ge crystal. High intensities even with resolution extending beyond the wavelength of visible light can be obtained. (Auth.)

  13. On the spin-axis dynamics of a Moonless Earth

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gongjie; Batygin, Konstantin, E-mail: gli@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, The Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-07-20

    The variation of a planet's obliquity is influenced by the existence of satellites with a high mass ratio. For instance, Earth's obliquity is stabilized by the Moon and would undergo chaotic variations in the Moon's absence. In turn, such variations can lead to large-scale changes in the atmospheric circulation, rendering spin-axis dynamics a central issue for understanding climate. The relevant quantity for dynamically forced climate change is the rate of chaotic diffusion. Accordingly, here we re-examine the spin-axis evolution of a Moonless Earth within the context of a simplified perturbative framework. We present analytical estimates of the characteristic Lyapunov coefficient as well as the chaotic diffusion rate and demonstrate that even in absence of the Moon, the stochastic change in Earth's obliquity is sufficiently slow to not preclude long-term habitability. Our calculations are consistent with published numerical experiments and illustrate the putative system's underlying dynamical structure in a simple and intuitive manner.

  14. Wake structure of a single vertical axis wind turbine

    International Nuclear Information System (INIS)

    Posa, Antonio; Parker, Colin M.; Leftwich, Megan C.; Balaras, Elias

    2016-01-01

    Highlights: • The wake structure of an isolated Vertical Axis Wind Turbine is studied by both Particle Imaging Velocimetry and Large Eddy Simulation. • The wake structure is investigated for two values of tip speed ratio, TSR_1=1.35 and TSR_2=2.21. • A displacement of the momentum deficit towards the windward side is verified in the wake. • Higher turbulence and coherence is observed on the leeward side of the wake, due to the upwind stall of the blades. • Coherence in the wake core, associated to the downwind stall, decays quickly downstream. - Abstract: The wake structure behind a vertical axis wind turbine (VAWT) is both measured in a wind tunnel using particle imaging velocimetry (PIV) and computed with large-eddy simulation (LES). Geometric and dynamic conditions are closely matched to typical applications of VAWTs (Re_D ∼ 1.8 × 10"5). The experiments and computations were highly coordinated with continuous two-way feedback to produce the most insightful results. Good qualitative agreement is seen between the computational and experimental results. The dependence of the wake structure on the tip speed ratio, TSR, is investigated, showing higher asymmetry and larger vortices at the lower rotational speed, due to stronger dynamic stall phenomena. Instantaneous, ensemble-averaged and phase-averaged fields are discussed, as well as the dynamics of coherent structures in the rotor region and downstream wake.

  15. Computational analysis of vertical axis wind turbine arrays

    Science.gov (United States)

    Bremseth, J.; Duraisamy, K.

    2016-10-01

    Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.

  16. Application of Circulation Controlled Blades for Vertical Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    Velissarios Kourkoulis

    2013-07-01

    Full Text Available The blades of a vertical axis wind turbine (VAWT rotor see an inconsistent angle of attack through its rotation. Consequently, VAWT blades generally use symmetrical aerofoils with a lower lift-to-drag ratio than cambered aerofoils tailored to maximise horizontal axis wind turbine rotor performance. This paper considers the feasibility of circulation controlled (CC VAWT blades, using a tangential air jet to provide lift and therefore power augmentation. However CC blade sections require a higher trailing-edge thickness than conventional sections giving rise to additional base drag. The choice of design parameters is a compromise between lift augmentation, additional base drag as well as the power required to pump the air jet. Although CC technology has been investigated for many years, particularly for aerospace applications, few researchers have considered VAWT applications. This paper considers the feasibility of the technology, using Computational Fluid Dynamics to evaluate a baseline CC aerofoil with different trailing-edge ellipse shapes. Lift and drag increments due to CC are considered within a momentum based turbine model to determine net power production. The study found that for modest momentum coefficients significant net power augmentation can be achieved with a relatively simple aerofoil geometry if blowing is controlled through the blades rotation.

  17. RF generation in the DARHT Axis-II beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A. Jr. [Los Alamos National Laboratory

    2012-05-03

    We have occasionally observed radio-frequency (RF) electromagnetic signals in the downstream transport (DST) of the second axis linear induction accelerator (LIA) at the dual-axis radiographic hydrodynamic testing (DARHT) facility. We have identified and eliminated some of the sources by eliminating the offending cavities. However, we still observe strong RF in the range 1 GHz t0 2 GHz occurring late in the {approx}2-{micro}s pulse that can be excited or prevented by varying the downstream tune. The narrow frequency width (<0.5%) and near exponential growth at the dominant frequency is indicative of a beam-cavity interaction, and electro-magnetic simulations of cavity structure show a spectrum rich in resonances in the observed frequency range. However, the source of beam produced RF in the cavity resonance frequency range has not been identified, and it has been the subject of much speculation, ranging from beam-plasma or beam-ion instabilities to unstable cavity coupling.

  18. The methods of the LHC magnets' magnetic axis location measurement

    International Nuclear Information System (INIS)

    Bottura, L.; Buzio, M.; Deferne, G.; Sievers, P.; Smirnov, N.; Villar, F.P.; Walckiers, L.

    1999-01-01

    More than 8 thousands LHC magnets of various types will be extensively measured during series magnetic test at both room and superfluid helium temperature. The precise knowledge of the magnetic axis positioning is vital for the alignment of those magnets in the tunnel. The most efficient and cost effective method with rotating pick up coil is chosen currently as a baseline for series measurement. The position of the measuring coil axis herewith is measured with a dedicated optical system. The deflection of the light beam in the air due to temperature gradient either passing through the cold bore when the magnet excited for warm measurement or through the anti-cryostat during cold measurement can reach magnitudes significantly exceeding tolerance and therefore is a critical issue. We present studies of the light deflection in 10 m long dipole at warm and cold and propose means to reduce it. The result of the dipole centring powered in Quadrupole Configured Dipole (QCD) or 'ugly quad' configuration and correlation with centring based on high order harmonics are presented as well. (authors)

  19. Preferred axis of CMB parity asymmetry in the masked maps

    International Nuclear Information System (INIS)

    Cheng, Cheng; Zhao, Wen; Huang, Qing-Guo; Santos, Larissa

    2016-01-01

    Both WMAP and Planck data show a significant odd-multipole preference in the large scales of the cosmic microwave background (CMB) temperature anisotropies. If this pattern originates from cosmological effects, then it can be considered a crucial clue for a violation in the cosmological principle. By defining various direction dependent statistics in the full-sky Planck 2015 maps (see, for instance, Naselsky et al. (2012); W. Zhao (2014)), we found that the CMB parity asymmetry has a preferred direction, which is independent of the choices of the statistics. In particular, this preferred axis is strongly aligned with those in the CMB quadrupole and octopole, as well as that in the CMB kinematic dipole, which hints to their non-cosmological origin. In realistic observations, the foreground residuals are inevitable, and should be properly masked out in order to avoid possible misinterpretation of the results. In this paper, we extend our previous analyses to the masked Planck 2015 data. By defining a similar direction dependent statistic in the masked map, we find a preferred direction of the CMB parity asymmetry, in which the axis also coincides with that found in the full-sky analysis. Therefore, our conclusions on the CMB parity violation and its directional properties are confirmed.

  20. Reframing the Teenage Wasteland: Adolescent Microbiota-Gut-Brain Axis.

    Science.gov (United States)

    McVey Neufeld, Karen-Anne; Luczynski, Pauline; Dinan, Timothy G; Cryan, John F

    2016-04-01

    Human adolescence is arguably one of the most challenging periods of development. The young adult is exposed to a variety of stressors and environmental stimuli on a backdrop of significant physiological change and development, which is especially apparent in the brain. It is therefore unsurprising that many psychiatric disorders are first observable during this time. The human intestine is inhabited by trillions of microorganisms, and evidence from both preclinical and clinical research focusing on the established microbiota-gut-brain axis suggests that the etiology and pathophysiology of psychiatric disorders may be influenced by intestinal dysbiosis. Provocatively, many if not all of the challenges faced by the developing teen have a documented impact on these intestinal commensal microbiota. In this review, we briefly summarize what is known about the developing adolescent brain and intestinal microbiota, discuss recent research investigating the microbiota-gut-brain axis during puberty, and propose that pre- and probiotics may prove useful in both the prevention and treatment of psychiatric disorders specifically benefitting the young adult. © The Author(s) 2016.