WorldWideScience

Sample records for crystallographic twofold axis

  1. Superconductivity with two-fold symmetry in topological superconductor Sr x Bi2Se3

    Science.gov (United States)

    Du, Guan; Li, YuFeng; Schneeloch, J.; Zhong, R. D.; Gu, GenDa; Yang, Huan; Lin, Hai; Wen, Hai-Hu

    2017-03-01

    Topological superconductivity is the quantum condensate of paired electrons with an odd parity of the pairing function. By using a Corbino-shape like electrode configuration, we measure the c-axis resistivity of the recently discovered superconductor Sr x Bi2Se3 with the magnetic field rotating within the basal planes, and find clear evidence of two-fold superconductivity. The Laue diffraction measurements on these samples show that the maximum gap direction is either parallel or perpendicular to the main crystallographic axis. This observation is consistent with the theoretical prediction and strongly suggests that Sr x Bi2Se3 is a topological superconductor.

  2. Effects of Fission-track Angle to Crystallographic C Axis in Apatite on Thermal History%磷灰石裂变径迹与结晶C轴的夹角对模拟热历史的影响

    Institute of Scientific and Technical Information of China (English)

    焦亚先; 邱楠生; 阙永泉

    2013-01-01

    磷灰石裂变径迹退火行为是磷灰石裂变径迹技术模拟热历史的基础,退火程度的不同会导致径迹的长度不同,其中退火的各向异性(与结晶C轴夹角不同退火行为不同)是导致长度差异的重要因素。首先利用C轴投影模型将任意夹角的径迹转化成与C轴平行的径迹,以此消除分布方位的影响,进而探讨实际测量长度相同而分布方位不同的径迹模拟的热历史之间的差异。研究结果表明,磷灰石裂变径迹与结晶 C轴夹角不同揭示的最高古地温之间最大差异为15℃,用来研究剥蚀量和年轻造山带冷却抬升速率引起的最大差异可分别达到430 m及1.5℃/Ma,揭示构造抬升事件的初始抬升时间最大可相差2Ma。因此,在实际模拟热历史时应注意该参数的影响,准确测量磷灰石裂变径迹与结晶C轴的夹角将有助于提高模拟热历史的精度。%Thermal histories modeled from apatite fission-track(FT)data are dependent upon the annealing beha-vior of apatite fission-tracks.It has been confirmed that the rate of fission-track annealing correlates with apatite structure and the annealing rate is faster for fission-tracks with higher angle to crystallographic C axis,so different rates of fission-track annealing will eventually lead to different length distributions.In this study,the apatite fis-sion-track length C axis projection model was used to eliminate the effects of different angles to crystallographic C axis,and then the difference of thermal histories modeled from apatite fission-tracks with the same length and dif-ferent angle to crystallographic C axis was discussed.This paper has showed that the largest difference of the maxi-mum palaeo-geotemperatures among the modeling history is 15 ℃,and the largest difference in the erosion amount,cooling uplift rate and initial uplift time is 430 m and 1.5 ℃/Ma,respectively.And the result reveals that the largest difference

  3. Acanthamoeba polyphaga mimivirus NDK: preliminary crystallographic analysis of the first viral nucleoside diphosphate kinase.

    Science.gov (United States)

    Jeudy, Sandra; Coutard, Bruno; Lebrun, Régine; Abergel, Chantal

    2005-06-01

    The complete sequence of the largest known double-stranded DNA virus, Acanthamoeba polyphaga mimivirus, has recently been determined [Raoult et al. (2004), Science, 306, 1344-1350] and revealed numerous genes not expected to be found in a virus. A comprehensive structural and functional study of these gene products was initiated [Abergel et al. (2005), Acta Cryst. F61, 212-215] both to better understand their role in the virus physiology and to obtain some clues to the origin of DNA viruses. Here, the preliminary crystallographic analysis of the viral nucleoside diphosphate kinase protein is reported. The crystal belongs to the cubic space group P2(1)3, with unit-cell parameter 99.425 A. The self-rotation function confirms that there are two monomers per asymmetric unit related by a twofold non-crystallographic axis and that the unit cell thus contains four biological entities.

  4. Twofold symmetries of the pure gravity action

    Science.gov (United States)

    Cheung, Clifford; Remmen, Grant N.

    2017-01-01

    We recast the action of pure gravity into a form that is invariant under a twofold Lorentz symmetry. To derive this representation, we construct a general parameterization of all theories equivalent to the Einstein-Hilbert action up to a local field redefinition and gauge fixing. We then exploit this freedom to eliminate all interactions except those exhibiting two sets of independently contracted Lorentz indices. The resulting action is local, remarkably simple, and naturally expressed in a field basis analogous to the exponential parameterization of the nonlinear sigma model. The space of twofold Lorentz invariant field redefinitions then generates an infinite class of equivalent representations. By construction, all off-shell Feynman diagrams are twofold Lorentz invariant while all on-shell tree amplitudes are automatically twofold gauge invariant. We extend our results to curved spacetime and calculate the analogue of the Einstein equations. While these twofold invariances are hidden in the canonical approach of graviton perturbation theory, they are naturally expected given the double copy relations for scattering amplitudes in gauge theory and gravity.

  5. Twofold Vlidation of NMET Writing Tests

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>This article takes the validation of NMET writing tests as a point of penetration to examine meticulously and fastidiously whether tests of this kind influence on a national basis can test what it is supposed to test.Here,I shall deal with this issue in a twofold manner,viz.face validity and content validity.Moreover,I also aim to produce findings that could help to guide revisions and promote effectiveness of NMET.After the quantifying and categorizing data collected,I eventually came up with four tables to clearly demonstrate the twofold validity of NMET writing tests.

  6. Acanthamoeba polyphaga mimivirus NDK: preliminary crystallographic analysis of the first viral nucleoside diphosphate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Jeudy, Sandra [Information Génomique et Structurale, CNRS UPR 2589, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20 (France); Coutard, Bruno [Architecture et Fonction des Macromolecules Biologiques, CNRS UMR 6098, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20 (France); Lebrun, Régine [IBSM, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20 (France); Abergel, Chantal, E-mail: chantal.abergel@igs.cnrs-mrs.fr [Information Génomique et Structurale, CNRS UPR 2589, 31 Chemin Joseph Aiguier, 13402 Marseille CEDEX 20 (France)

    2005-06-01

    A. polyphaga mimivirus, the largest known double-stranded DNA virus, is the first virus to exhibit a nucleoside diphosphate kinase gene. The expression and crystallization of the viral NDK are reported. The complete sequence of the largest known double-stranded DNA virus, Acanthamoeba polyphaga mimivirus, has recently been determined [Raoult et al. (2004 ▶), Science, 306, 1344–1350] and revealed numerous genes not expected to be found in a virus. A comprehensive structural and functional study of these gene products was initiated [Abergel et al. (2005 ▶), Acta Cryst. F61, 212–215] both to better understand their role in the virus physiology and to obtain some clues to the origin of DNA viruses. Here, the preliminary crystallographic analysis of the viral nucleoside diphosphate kinase protein is reported. The crystal belongs to the cubic space group P2{sub 1}3, with unit-cell parameter 99.425 Å. The self-rotation function confirms that there are two monomers per asymmetric unit related by a twofold non-crystallographic axis and that the unit cell thus contains four biological entities.

  7. Crystallographic Information Resources

    Science.gov (United States)

    Glasser, Leslie

    2016-01-01

    Crystallographic information provides the fundamental basis for understanding the properties and behavior of materials. This data, such as chemical composition, unit cell dimensions, space group, and atomic positions, derives from the primary literature--that is, from published experimental measurement or theoretical calculation. Although the…

  8. Periodic c-axis modulation and crystallographic Fourier analysis of Bi 2Sr 2Ca nCu n+1O 6+2n+x ( n=0,1) single crystals with excess Bi

    Science.gov (United States)

    Ariosa, D.; Berger, H.; Schmauder, T.; Pavuna, D.; Margaritondo, G.; Christensen, S.; Kelley, R. J.; Onellion, M.

    2001-04-01

    We report on a distortion of Bi 2Sr 2Ca nCu n+1O 6+2n+x ( n=0,1) single crystals, perpendicular to the CuO 2 planes (the c-axis), for non-stoichiometric samples containing an excess of Bi. The distortion involves two parts: (a) symmetric displacements in the SrO and CuO 2 planes along the c-axis, and (b) an antisymmetric longitudinal compressive wave. The latter is revealed by observing odd harmonics in the X-ray diffraction (XRD) data. Such odd harmonics are typically extinguished for the I4/mmm space group of the exact stoichiometric phase. The antisymmetric compressive wave is reported for both BSCCO-2201 and BSCCO-2212 Bi excess samples, as well as for La-doped BSCCO-2201 samples. We have performed XRD model calculations for all samples studied, combined with Fourier analysis of the periodic c-axis modulation. The antisymmetric compressive wave was proven by reconstructing the atomic position profile from the intensity of odd XRD peaks caused by this commensurate modulation. Our results indicate preferential ordered substitution of Bi ions on nominally Sr ion positions. We also discuss implications for oxygen mobility, reversible sample doping, and electronic properties.

  9. Expression, limited proteolysis and preliminary crystallographic analysis of IpaD, a component of the Shigella flexneri type III secretion system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Steven [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Sir William Dunn School of Pathology, University of Oxford (United Kingdom); Roversi, Pietro [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Espina, Marianela [Department of Molecular Biosciences, University of Kansas (United States); Deane, Janet E. [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Birket, Susan; Picking, William D. [Department of Molecular Biosciences, University of Kansas (United States); Blocker, Ariel [Sir William Dunn School of Pathology, University of Oxford (United Kingdom); Picking, Wendy L. [Department of Molecular Biosciences, University of Kansas (United States); Lea, Susan M., E-mail: susan.lea@path.ox.ac.uk [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Sir William Dunn School of Pathology, University of Oxford (United Kingdom)

    2006-09-01

    IpaD, the putative needle-tip protein of the S. flexneri type III secretion system, has been crystallized in a variety of crystal forms using in-drop proteolysis. Native and selenomethionine-labelled data collection and preliminary analyses are reported. IpaD, the putative needle-tip protein of the Shigella flexneri type III secretion system, has been overexpressed and purified. Crystals were grown of the native protein in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 55.9, b = 100.7, c = 112.0 Å, and data were collected to 2.9 Å resolution. Analysis of the native Patterson map revealed a peak at 50% of the origin on the Harker section v = 0.5, suggesting twofold non-crystallographic symmetry parallel to the b crystallographic axis. As attempts to derivatize or grow selenomethionine-labelled protein crystals failed, in-drop proteolysis was used to produce new crystal forms. A trace amount of subtilisin Carlsberg was added to IpaD before sparse-matrix screening, resulting in the production of several new crystal forms. This approach produced SeMet-labelled crystals and diffraction data were collected to 3.2 Å resolution. The SeMet crystals belong to space group C2, with unit-cell parameters a = 139.4, b = 45.0, c = 99.5 Å, β = 107.9°. An anomalous difference Patterson map revealed peaks on the Harker section v = 0, while the self-rotation function indicates the presence of a twofold noncrystallographic symmetry axis, which is consistent with two molecules per asymmetric unit.

  10. Macromolecular crystallographic estructure refinement

    Directory of Open Access Journals (Sweden)

    Afonine, Pavel V.

    2015-04-01

    Full Text Available Model refinement is a key step in crystallographic structure determination that ensures final atomic structure of macromolecule represents measured diffraction data as good as possible. Several decades have been put into developing methods and computational tools to streamline this step. In this manuscript we provide a brief overview of major milestones of crystallographic computing and methods development pertinent to structure refinement.El refinamiento es un paso clave en el proceso de determinación de una estructura cristalográfica al garantizar que la estructura atómica de la macromolécula final represente de la mejor manera posible los datos de difracción. Han hecho falta varias décadas para poder desarrollar nuevos métodos y herramientas computacionales dirigidas a dinamizar esta etapa. En este artículo ofrecemos un breve resumen de los principales hitos en la computación cristalográfica y de los nuevos métodos relevantes para el refinamiento de estructuras.

  11. Crystallographic orientation and concentric layers in spicules of calcareous sponges.

    Science.gov (United States)

    Rossi, André Linhares; Ribeiro, Bárbara; Lemos, Moara; Werckmann, Jacques; Borojevic, Radovan; Fromont, Jane; Klautau, Michelle; Farina, Marcos

    2016-11-01

    In this work, the crystallography of calcareous sponges (Porifera) spicules and the organization pattern of the concentric layers present in their inner structure were investigated in 10 species of the subclass Calcaronea and three species of the subclass Calcinea. Polished spicules had specific concentric patterns that varied depending on the plane in which the spicules were sectioned. A 3D model of the concentric layers was created to interpret these patterns and the biomineralization process of the triactine spicules. The morphology of the spicules was compared with the crystallographic orientation of the calcite crystals by analyzing the Kikuchi diffraction patterns using a scanning electron microscope. Triactine spicules from the subclass Calcinea had actines (rays) elongated in the 〈210〉 direction, which is perpendicular to the c-axis. The scale spicules of the hypercalcified species Murrayona phanolepis presented the c-axis perpendicular to the plane of the scale, which is in accordance with the crystallography of all other Calcinea. The triactine spicules of the calcaronean species had approximately the same crystallographic orientation with the unpaired actine elongated in the ∼[211] direction. Only one Calcaronea species, whose triactine was regular, had a different orientation. Three different crystallographic orientations were found in diactines. Spicules with different morphologies, dimensions and positions in the sponge body had similar crystallographic directions suggesting that the crystallographic orientation of spicules in calcareous sponges is conserved through evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Fuzzy unit commitment solution - A novel twofold simulated annealing approach

    Energy Technology Data Exchange (ETDEWEB)

    Saber, Ahmed Yousuf; Senjyu, Tomonobu; Yona, Atsushi; Urasaki, Naomitsu [Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho Nakagami, Okinawa 903-0213 (Japan); Funabashi, Toshihisa [Meidensha Corporation, Riverside Building 36-2, Tokyo 103-8515 (Japan)

    2007-10-15

    The authors propose a twofold simulated annealing (twofold-SA) method for the optimization of fuzzy unit commitment formulation in this paper. In the proposed method, simulated annealing (SA) and fuzzy logic are combined to obtain SA acceptance probabilities from fuzzy membership degrees. Fuzzy load is calculated from error statistics and an initial solution is generated by a priority list method. The initial solution is decomposed into hourly-schedules and each hourly-schedule is modified by decomposed-SA using a bit flipping operator. Fuzzy membership degrees are the selection attributes of the decomposed-SA. A new solution consists of these hourly-schedules of entire scheduling period after repair, as unit-wise constraints may not be fulfilled at the time of an individual hourly-schedule modification. This helps to detect and modify promising schedules of appropriate hours. In coupling-SA, this new solution is accepted for the next iteration if its cost is less than that of current solution. However, a higher cost new solution is accepted with the temperature dependent total cost membership function. Computation time of the proposed method is also improved by the imprecise tolerance of the fuzzy model. Besides, excess units with the system dependent probability distribution help to handle constraints efficiently and imprecise economic load dispatch (ELD) calculations are modified to save the execution time. The proposed method is tested using standard reported data sets. Numerical results show an improvement in solution cost and time compared to the results obtained from other existing methods. (author)

  13. Phaser crystallographic software.

    Science.gov (United States)

    McCoy, Airlie J; Grosse-Kunstleve, Ralf W; Adams, Paul D; Winn, Martyn D; Storoni, Laurent C; Read, Randy J

    2007-08-01

    Phaser is a program for phasing macromolecular crystal structures by both molecular replacement and experimental phasing methods. The novel phasing algorithms implemented in Phaser have been developed using maximum likelihood and multivariate statistics. For molecular replacement, the new algorithms have proved to be significantly better than traditional methods in discriminating correct solutions from noise, and for single-wavelength anomalous dispersion experimental phasing, the new algorithms, which account for correlations between F(+) and F(-), give better phases (lower mean phase error with respect to the phases given by the refined structure) than those that use mean F and anomalous differences DeltaF. One of the design concepts of Phaser was that it be capable of a high degree of automation. To this end, Phaser (written in C++) can be called directly from Python, although it can also be called using traditional CCP4 keyword-style input. Phaser is a platform for future development of improved phasing methods and their release, including source code, to the crystallographic community.

  14. Sex is always well worth its two-fold cost.

    Directory of Open Access Journals (Sweden)

    Alexander Feigel

    Full Text Available Sex is considered as an evolutionary paradox, since its positive contribution to Darwinian fitness remains unverified for some species. Defenses against unpredictable threats (parasites, fluctuating environment and deleterious mutations are indeed significantly improved by wider genetic variability and by positive epistasis gained by sexual reproduction. The corresponding evolutionary advantages, however, do not overcome universally the barrier of the two-fold cost for sharing half of one's offspring genome with another member of the population. Here we show that sexual reproduction emerges and is maintained even when its Darwinian fitness is twice as low as the fitness of asexuals. We also show that more than two sexes (inheritance of genetic material from three or even more parents are always evolutionary unstable. Our approach generalizes the evolutionary game theory to analyze species whose members are able to sense the sexual state of their conspecifics and to adapt their own sex consequently, either by switching or by taxis towards the highest concentration of the complementary sex. The widespread emergence and maintenance of sex follows therefore from its co-evolution with the even more widespread environmental sensing abilities.

  15. Significant flux trapping in single grain GdBCO bulk superconductor under off-axis field cooled magnetization

    Science.gov (United States)

    Li, Zhi; Ida, Tetsuya; Miki, Motohiro; Teshima, Hidekazu; Morita, Mitsuru; Izumi, Mitsuru

    2017-03-01

    A single grain bulk high-temperature superconductor (HTS) exhibits intensified flux trapping performance upon field cooled magnetization. The world record of trapped flux is 17.6 T achieved by using stacked two-fold GdBCO bulks. However, the majority of magnetization studies focused on the magnetization along the crystallographic c-axis. In the present study, we clarify the flux trapping performance under field cooled magnetization using an off-axis magnetic field with respect to the c-axis. The results show that the trapped flux is almost polarized along the applied field as expected. This tendency remains up to a high off-axis angle θ around 60°. It is worth mentioning that, with θ of 30°, the maximum trapped flux component B // max parallel to the c-axis significantly remains more than 96% of 1.6 T which occurs under on-axis magnetization. Meanwhile, the angular dependence of the c-axis parallel component exhibits that observed flux density is higher than that expected from 1.6 cosθ. In addition, to visualize the flux line upon magnetization at θ of 90°, we successfully demonstrate the continuous flux line trace using steel wires; different trapped flux behaviour appears when applied field penetrates the bulk through the growth sectors centre and along the growth sector boundary, respectively. We interpret these results may come from the microstructure as a result of melt growth. It is highly emphasized that the off-axis magnetization with the finite inclination angle is quite useful for introducing into the design of HTS applications.

  16. Twofold Transition in PT-symmetric Coupled Oscillators

    Science.gov (United States)

    2013-12-26

    2Dipartimento di Matematica e Fisica Ennio De Giorgi, Università del Salento and I. N. F. N. Sezione di Lecce, Via Arnesano, I-73100 Lecce, Italy...supermode, as shown in Fig. 6, instead of two pairs of real frequencies. B. Unbalanced loss and gain Let us consider the general case (2) in which μ = ν...correspond to the eigenfunctions ψm,n(x,y). The eigenfunctions have the general form ψm,n(x,y) = e−(2axy+bx2+cy2)/2Pm,n(x,y), (12) where b = c∗ = 2(a

  17. Crystallographic topology and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.K.; Burnett, M.N. [Oak Ridge National Lab., TN (United States); Dunbar, W.D. [Simon`s Rock Coll., Great Barrington, MA (United States). Div. of Natural Sciences and Mathematics

    1996-10-01

    Geometric topology and structural crystallography concepts are combined to define a new area we call Structural Crystallographic Topology, which may be of interest to both crystallographers and mathematicians. In this paper, we represent crystallographic symmetry groups by orbifolds and crystal structures by Morse - functions. The Morse function uses mildly overlapping Gaussian thermal-motion probability density functions centered on atomic sites to form a critical net with peak, pass, pale, and pit critical points joined into a graph by density gradient-flow separatrices. Critical net crystal structure drawings can be made with the ORTEP-III graphics pro- An orbifold consists of an underlying topological space with an embedded singular set that represents the Wyckoff sites of the crystallographic group. An orbifold for a point group, plane group, or space group is derived by gluing together equivalent edges or faces of a crystallographic asymmetric unit. The critical-net-on-orbifold model incorporates the classical invariant lattice complexes of crystallography and allows concise quotient-space topological illustrations to be drawn without the repetition that is characteristic of normal crystal structure drawings.

  18. CIF (Crystallographic Information File): A Standard for Crystallographic Data Interchange

    Science.gov (United States)

    Brown, I. D.

    1996-01-01

    The Crystallographic Information File (CIF) uses the self-defining STAR file structure. This requires the creation of a dictionary of data names and definitions. A basic dictionary of terms needed to describe the crystal structures of small molecules was approved in 1991 and is currently used for the submission of papers to Acta Crystallographica C. A number of extensions to this dictionary are in preparation. By storing the dictionary itself as a STAR file, the definitions and relationships in the CIF dictionary become computer interpretable. This offers many possibilities for the automatic handling of crystallographic information. PMID:27805170

  19. The birth of the European Crystallographic Committee (ECC) and of the European Crystallographic Meetings (ECMs)

    Science.gov (United States)

    Authier, A.

    2010-01-01

    This article describes the circumstances of the establishment of the European Crystallographic Committee, now the European Crystallographic Association, a regional associate of the IUCr, and of the European Crystallographic Meetings.

  20. The Crystallographic Information File (CIF

    Directory of Open Access Journals (Sweden)

    I D Brown

    2006-11-01

    Full Text Available The Crystallographic Information File (CIF, owned by the International Union of Crystallography, is a file structure based on tag-value ASCII pairs with tags defined in machine-readable dictionaries. The crystallographic community publishes and archives large quantities of numeric information generated by crystal structure determinations, and CIF's acceptance was assured by its adoption as the submission format for Acta Crystallographica and by the obvious needs of the community. CIF's strength lies in its dictionaries, which define most of the concepts of crystallography; its weakness is the difficulty of writing software that exploits its full potential.

  1. Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry.

    Science.gov (United States)

    Neeman, Lior; Ben-Zvi, Regev; Rechav, Katya; Popovitz-Biro, Ronit; Oron, Dan; Joselevich, Ernesto

    2017-02-08

    The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations.

  2. Triboluminescence dominated by crystallographic orientation

    Science.gov (United States)

    Wang, Kuifang; Ma, Liran; Xu, Xuefeng; Wen, Shizhu; Luo, Jianbin

    2016-05-01

    Triboluminescence (TL) is an optical phenomenon that has a long and varied history with broad applications, such as damage detection, X-ray source, and mass health monitoring sensor. So far, the properties and mechanisms of TL remain not completely understood. The TL properties emitted during the sliding contact between Al2O3 and SiO2 surfaces were studied along different crystallographic orientations. In this study, the TL intensity of Al2O3 was significantly enhanced as Al2O3 surface was along a particular crystallographic orientation, which is an unconventional phenomenon. TL enhancement of Al2O3 was not affected by air atmosphere and atomic stocking mode of Al2O3. The enhancement mechanism of Al2O3 may be influenced by the surface state of Al2O3. This work provides a new method to control the intensity of TL and novel ideas to elucidate the TL mechanism.

  3. Crystallographic properties of fertilizer compounds

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, A.W.; Dillard, E.F.; Thrasher, R.D.; Waerstad, K.R.; Hunter, S.R.; Kohler, J.J.; Scheib, R.M.

    1991-02-01

    This bulletin is a compilation of crystallographic data collected at NFERC on 450 fertilizer-related compounds. In TVA's fertilizer R and D program, petrographic examination, XRD, and infrared spectroscopy are combined with conventional chemical analysis methods in identifying the individual compounds that occur in fertilizer materials. This handbook brings together the results of these characterization studies and supplemental crystallographic data from the literature. It is in one-compound-per-page, loose-leaf format, ordered alphabetically by IUPAC name. Indexes provided include IUPAC name, formula, group, alternate formula, synonyms, x-ray data, optical data. Tables are given for solids, compounds in commercial MAP and DAP, and matrix materials in phosphate rock.

  4. Crystallographic Orientation of Cuttlebone Shield Determined by Electron Backscatter Diffraction

    Science.gov (United States)

    Cusack, Maggie; Chung, Peter

    2014-01-01

    In common with many cephalopod mollusks, cuttlefish produce an internal biomineral buoyancy device. This cuttlebone is analogous to a surf board in shape and structure, providing rigidity and a means of controlling buoyancy. The cuttlebone is composed of calcium carbonate in the form of aragonite and comprises an upper dorsal shield and a lower lamellar matrix. The lamellar matrix comprises layers of chambers with highly corrugated walls. The dorsal shield comprises bundles of aragonite needles stacked on top of each other. Electron backscatter diffraction analyses of the dorsal shield reveal that the c-axis of aragonite is parallel with the long axis of the needles in the bundles such that any spread in crystallographic orientation is consistent with the spread in orientation of the fibers as they radiate to form the overall structure of the dorsal shield. This arrangement of c-axis coincident with the long axis of the biomineral structure is similar to the arrangement in corals and in contrast to the situation in the molluskan aragonite nacre of brachiopod calcite where the c-axis is perpendicular to the aragonite tablet or calcite fiber, respectively.

  5. CONSERVATION PROCESS MODEL (CPM): A TWOFOLD SCIENTIFIC RESEARCH SCOPE IN THE INFORMATION MODELLING FOR CULTURAL HERITAGE

    National Research Council Canada - National Science Library

    D. Fiorani; M. Acierno

    2017-01-01

    The aim of the present research is to develop an instrument able to adequately support the conservation process by means of a twofold approach, based on both BIM environment and ontology formalisation...

  6. Internet Based Open Access Crystallographic Databases

    Science.gov (United States)

    Upreti, Girish; Seipel, Bjoern; Harvey, Morgan; Garrick, Will; Moeck, Peter

    2006-05-01

    Two freely accessible crystallographic databases are discussed: the Crystallographic Open Database (COD, http://crystallography.net) which contains over 37,000 crystal structures, and the Nano-Crystallography Database (NCD, http://nanocrystallography.research.pdx.edu) which we recently started to support image-based nanocrystallography and (nano) materials science education. Both databases collect crystallographic relevant information in a standardized format; the Crystallographic Information File (CIF). CIF is the standard file format adopted by the International Union of Crystallography (http://iucr.org) for the archiving and distribution of crystallographic information. A subset of the COD, the Predicted Crystallographic Online Database, allows for 3D structural displays of structural polyhedra and wireframes of approximately 2,600 entries. Since electron microscopist are interested in simple, yet technologically important materials, the crystallographic information for those materials will be included in our database. At our NCD site, entries in the COD and the NCD can be visualized in three dimensions (3D) along with (2D) lattice fringe fingerprints plots. The latter supports the identification of unknown nanocrystal phases from high-resolution transmission electron microscopy (HRTEM) images. Morphological crystal information from the database ``Bestimmungstabellen f"ur Kristalle/ ???????????? ??????????,'' (A.K. Boldyrew and W.W. Doliwo-Dobrowolsky, Zentrales Wissenschaftlichers Institute der Geologie und Sch"urfung, Leningrad/ Moscow, 1937/1939) will also be included in the NCD to support image-based nanocrystallography in 3D.

  7. The New NRL Crystallographic Database

    Science.gov (United States)

    Mehl, Michael; Curtarolo, Stefano; Hicks, David; Toher, Cormac; Levy, Ohad; Hart, Gus

    For many years the Naval Research Laboratory maintained an online graphical database of crystal structures for a wide variety of materials. This database has now been redesigned, updated and integrated with the AFLOW framework for high throughput computational materials discovery (http://materials.duke.edu/aflow.html). For each structure we provide an image showing the atomic positions; the primitive vectors of the lattice and the basis vectors of every atom in the unit cell; the space group and Wyckoff positions; Pearson symbols; common names; and Strukturbericht designations, where available. References for each structure are provided, as well as a Crystallographic Information File (CIF). The database currently includes almost 300 entries and will be continuously updated and expanded. It enables easy search of the various structures based on their underlying symmetries, either by Bravais lattice, Pearson symbol, Strukturbericht designation or commonly used prototypes. The talk will describe the features of the database, and highlight its utility for high throughput computational materials design. Work at NRL is funded by a Contract with the Duke University Department of Mechanical Engineering.

  8. Testing the Twofold Multidimensionality of Academic Self-Concept: A Study with Chinese Vocational Students

    Science.gov (United States)

    Yang, Lan; Arens, A. Katrin; Watkins, David A.

    2016-01-01

    In order to extend previous research on the twofold multidimensionality of academic self-concept (i.e. its domain-specific structure and separation into competence and affect components), the present study tests its generalisability among vocational students from mainland China. A Chinese version of self-description questionnaire I was…

  9. Defining the Crystallographic Fingerprint of Extraterrestrial Treasures

    Science.gov (United States)

    Forman, L. V.; Bland, P. A.; Timms, N. E.; Daly, L.; Benedix, G. K.; Trimby, P. W.

    2016-08-01

    An approach to determine the crystallographic fingerprint of chondritic matrix grains, which is complimentary to the geochemical signature commonly identified to constrain some aspects of the petrogenesis of a sample.

  10. Crystallographic Behavior of Iron Oxide Minerals in the Deformed Iron Formation of Quadrilátero Ferrífero

    Science.gov (United States)

    Duarte Lisboa, Filipe Augusto; Lagoeiro, Leonardo; Martins Graça, Leonardo; Ávila, Carlos Fernando; Ferreira Barbosa, Paola

    2016-04-01

    The Quadrilátero Ferrífero (QF) which is located in Brazil represents a mineral province of great importance for hosting Banded Iron Formation deposits (BIFs). The Alegria mine which belongs to Vale Company is located in the east part of Quadrilátero Ferrífero and it explores iron ore from a region of great structural complexity. A deformed BIF sample that presents a micro-fold on quartz and hematite bands was analyzed through Electron Backscatter Diffraction technique (EBSD) in order to relate the crystallographic orientations with the microstructures along the micro-fold envelop. For the sample orientation the Z-axis is taken parallel to the fold limb, Y-axis is perpendicular to the fold hinge and X-axis perpendicular to the YZ plane. In the limbs hematite grains are mostly stretched whereas at the hinge grains tend to be somewhat equant. On the other hand, quartz grain shapes are invariable along the fold, with a few exceptions in the hinge where grains are slightly elongated. Grains of hematite present a strong c-axis ({0001}) preferred orientation forming a subtle girdle somewhat parallel to the XY plane of the strain ellipsoid determined macroscopically (XY being the foliation plane), and a strong () crystallographic fabric approximately parallel to the Z-axis. Similarly, the poles to the prismatic planes ({m} or {10bar10}) also have a stronger crystallographic fabric parallel to the Z axis. It seems that there are two crossing planes for the orientation of and {m} with the two maxima at the intersection of the two planes. Typical hematite crystallographic fabrics are somewhat distinct, since {c} axis commonly forms a very strong fiber texture parallel to the pole of the foliation. Most studies regard such crystallographic texture as evidence for high activity of {c} slip. The {c} girdles observed here are common for mica grains under rigid body rotation in constriction strain, which mechanism is commonly observed in the hematite grains of the sample. The

  11. Electron diffraction study of {alpha}-AlMnSi crystals including non-crystallographic axes

    Energy Technology Data Exchange (ETDEWEB)

    Song, G.L.; Bursill, L.A.

    1997-06-01

    The structure of crystalline {alpha}-AlMnSi is examined by electron diffraction. Six distinct zone axes are examined, including both normal crystallographic and non-crystallographic zones axes, allowing the space group symmetry to be studied. Electron diffraction patterns characteristic of Pm3-bar were obtained for thicker specimens. However, for very thin specimens, as used for HRTEM imaging, the electron diffraction patterns were characteristic of Im3-bar space group symmetry. The structural basis of the Pm3-bar to Im3-bar transformation may be understood in terms of an analysis of the icosahedral structural elements located at the corners and body-centers of the cubic unit cell. A method for indexing the non-crystallographic zone axis diffraction patterns is described. An electron diffraction pattern of the 5-fold axis of the quasicrystalline phase i-AlMnSi is also included; this is compared with the experimental results and calculations for the [0{tau}1] axis of Pm3-bar and Im3-bar crystalline phases. 26 refs., 4 tabs., 7 figs.

  12. Generation of Supramolecular Chirality around Twofold Rotational or Helical Axes in Crystalline Assemblies of Achiral Components

    Directory of Open Access Journals (Sweden)

    Mikiji Miyata

    2015-10-01

    Full Text Available A multi-point approximation method clarifies supramolecular chirality of twofold rotational or helical assemblies as well as bundles of the one-dimensional (1D assemblies. While one-point approximation of materials claims no chirality generation of such assemblies, multi-point approximations do claim possible generation in the 1D assemblies of bars and plates. Such chirality derives from deformations toward three-axial directions around the helical axes. The chiral columns are bundled in chiral ways through symmetry operations. The preferable right- or left-handed columns are bundled together to yield chiral crystals with right- or left-handedness, respectively, indicating that twofold helix symmetry operations cause chiral crystals composed of achiral components via a three-stepwise and three-directional process.

  13. The two-fold singularity of nonsmooth flows:Leading order dynamics in n-dimensions

    OpenAIRE

    Colombo, Alessandro; Jeffrey, Mike R.

    2013-01-01

    A discontinuity in a system of ordinary differential equations can create allow that slides along the discontinuity locus. Prior to sliding, the flow may have collapsed onto the discontinuity, making the reverse flow non-unique, as happens when dry-friction causes objects to stick. Alternatively, a flow may slide along the discontinuity before escaping it at some indeterminable time, implying non-uniqueness in forward time. At a two-fold singularity these two behaviours are brought together, ...

  14. Bayesian Predictive Inference of a Proportion Under a Twofold Small-Area Model

    Directory of Open Access Journals (Sweden)

    Nandram Balgobin

    2016-03-01

    Full Text Available We extend the twofold small-area model of Stukel and Rao (1997; 1999 to accommodate binary data. An example is the Third International Mathematics and Science Study (TIMSS, in which pass-fail data for mathematics of students from US schools (clusters are available at the third grade by regions and communities (small areas. We compare the finite population proportions of these small areas. We present a hierarchical Bayesian model in which the firststage binary responses have independent Bernoulli distributions, and each subsequent stage is modeled using a beta distribution, which is parameterized by its mean and a correlation coefficient. This twofold small-area model has an intracluster correlation at the first stage and an intercluster correlation at the second stage. The final-stage mean and all correlations are assumed to be noninformative independent random variables. We show how to infer the finite population proportion of each area. We have applied our models to synthetic TIMSS data to show that the twofold model is preferred over a onefold small-area model that ignores the clustering within areas. We further compare these models using a simulation study, which shows that the intracluster correlation is particularly important.

  15. A female-biased sex ratio reduces the twofold cost of sex

    Science.gov (United States)

    Kobayashi, Kazuya; Hasegawa, Eisuke

    2016-04-01

    The evolution of sexual reproduction remains a fascinating enigma in biology. Theoretically, populations of sexual organisms investing half of their resources into producing male offspring that don’t contribute to reproduction should grow at only half the rate of their asexual counterparts. This demographic disadvantage due to male production is known as the twofold cost of sex. However, the question of whether this cost is truly twofold for sexual females remains unanswered. The cost of producing males should decrease when the number of male offspring is reduced. Here, we report a case where the cost of males is actually less than twofold. By measuring the numbers of sexual strain coexisting with asexual strain among thrips, our survey revealed that the sexual strain showed female-biased sex ratios and that the relative frequency of sexual strain is negatively correlated with the proportion of males in the sexual strain. Using computer simulations, we confirmed that a female-biased sex ratio evolves in sexual individuals due to the coexistence of asexual individuals. Our results demonstrate that there is a cost of producing males that depends on the number of males. We therefore conclude that sexual reproduction can evolve with far fewer benefits than previously assumed.

  16. Crystallographic control on the substructure of nacre tablets.

    Science.gov (United States)

    Checa, Antonio G; Mutvei, Harry; Osuna-Mascaró, Antonio J; Bonarski, Jan T; Faryna, Marek; Berent, Katarzyna; Pina, Carlos M; Rousseau, Marthe; Macías-Sánchez, Elena

    2013-09-01

    Nacre tablets of mollusks develop two kinds of features when either the calcium carbonate or the organic portions are removed: (1) parallel lineations (vermiculations) formed by elongated carbonate rods, and (2) hourglass patterns, which appear in high relief when etched or in low relief if bleached. In untreated tablets, SEM and AFM data show that vermiculations correspond to aligned and fused aragonite nanogloblules, which are partly surrounded by thin organic pellicles. EBSD mapping of the surfaces of tablets indicates that the vermiculations are invariably parallel to the crystallographic a-axis of aragonite and that the triangles are aligned with the b-axis and correspond to the advance of the {010} faces during the growth of the tablet. According to our interpretation, the vermiculations appear because organic molecules during growth are expelled from the a-axis, where the Ca-CO3 bonds are the shortest. In this way, the subunits forming nacre merge uninterruptedly, forming chains parallel to the a-axis, whereas the organic molecules are expelled to the sides of these chains. Hourglass patterns would be produced by preferential adsorption of organic molecules along the {010}, as compared to the {100} faces. A model is presented for the nanostructure of nacre tablets. SEM and EBSD data also show the existence within the tablets of nanocrystalline units, which are twinned on {110} with the rest of the tablet. Our study shows that the growth dynamics of nacre tablets (and bioaragonite in general) results from the interaction at two different and mutually related levels: tablets and nanogranules.

  17. Nexus, crystallographic computing all around the world.

    Science.gov (United States)

    Cranswick, Lachlan Michael David; Bisson, William; Cockcroft, Jeremy Karl

    2008-01-01

    Crystallographic Nexus CD-ROMs, containing a range of free crystallographic software for single-crystal and powder diffraction available on the Internet, have been distributed on request since 1996. The free CD is made in the form of a ;virtual Internet' with the main intent of benefiting crystallographers with inadequate Internet access. The IUCr funds an annual/biennial update which is distributed to known previous recipients. Feedback from current recipients indicates the CD is still useful. The most current IUCr-funded CD is being produced by the CCP14 project at University College London and The Royal Institution UK for distribution to the ECM 2007 and AsCA 2007 conferences.

  18. Non-Crystallographic Symmetry in Packing Spaces

    Directory of Open Access Journals (Sweden)

    Valery G. Rau

    2013-01-01

    Full Text Available In the following, isomorphism of an arbitrary finite group of symmetry, non-crystallographic symmetry (quaternion groups, Pauli matrices groups, and other abstract subgroups, in addition to the permutation group, are considered. Application of finite groups of permutations to the packing space determines space tilings by policubes (polyominoes and forms a structure. Such an approach establishes the computer design of abstract groups of symmetry. Every finite discrete model of the real structure is an element of symmetry groups, including non-crystallographic ones. The set packing spaces of the same order N characterizes discrete deformation transformations of the structure.

  19. Soft-wall domain-growth kinetics of twofold-degenerate ordering

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.

    1986-01-01

    The domain growth in a two-dimensional twofold-degenerate system with soft domain walls is shown to obey dynamical scaling. The value of the growth exponent is n≃0.25 which differs from the classical Lifshitz-Allen-Cahn prediction n=(1/2), but accords with recent findings for other growth models ...... with soft walls. The results suggest that domain-wall softness may be more important than the degeneracy of the ground state for a possible universal classification of domain-growth kinetics....

  20. Two-fold Mellin–Barnes transforms of Usyukina–Davydychev functions

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, Bernd A., E-mail: kniehl@desy.de [II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Kondrashuk, Igor [Grupo de Matemática Aplicada, Departamento de Ciencias Básicas, Universidad del Bío-Bío, Campus Fernando May, Casilla 447, Chillán (Chile); Fakultät für Physik, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld (Germany); Notte-Cuello, Eduardo A. [Departamento de Matemáticas, Facultad de Ciencias, Universidad de La Serena, Av. Cisternas 1200, La Serena (Chile); Parra-Ferrada, Ivan [Carrera de Pedagogia en Matemática, Facultad de Educación y Humanidades, Universidad del Bío-Bío, Campus Castilla, Casilla 447, Chillán (Chile); Rojas-Medar, Marko [Grupo de Matemática Aplicada, Departamento de Ciencias Básicas, Universidad del Bío-Bío, Campus Fernando May, Casilla 447, Chillán (Chile)

    2013-11-01

    In our previous paper (Allendes et al., 2013 [10]), we showed that multi-fold Mellin–Barnes (MB) transforms of Usyukina–Davydychev (UD) functions may be reduced to two-fold MB transforms. The MB transforms were written there as polynomials of logarithms of ratios of squares of the external momenta with certain coefficients. We also showed that these coefficients have a combinatoric origin. In this paper, we present an explicit formula for these coefficients. The procedure of recovering the coefficients is based on taking the double-uniform limit in certain series of smooth functions of two variables which is constructed according to a pre-determined iterative way. The result is obtained by using basic methods of mathematical analysis. We observe that the finiteness of the limit of this iterative chain of smooth functions should reflect itself in other mathematical constructions, too, since it is not related in any way to the explicit form of the MB transforms. This finite double-uniform limit is represented in terms of a differential operator with respect to an auxiliary parameter which acts on the integrand of a certain two-fold MB integral. To demonstrate that our result is compatible with original representations of UD functions, we reproduce the integrands of these original integral representations by applying this differential operator to the integrand of the simple integral representation of the scalar triangle four-dimensional integral J(1,1,1−ε)

  1. Determination of crystallographic and macroscopic orientation of planar structures in TEM

    DEFF Research Database (Denmark)

    Huang, X.; Liu, Q.

    1998-01-01

    With the aid of a double-tilt holder in a transmission electron microscope (TEM), simple methods are described for determination of the crystallographic orientation of a planar structure and for calculation of the macroscopic orientation of the planar structure. The correlation between a planar s...... taken at tilted positions, can be transformed to the real macroscopic orientation of the planar structures with estimated error of about +/- 2 degrees. (C) 1998 Elsevier Science B.V. All rights reserved....... structure and a crystallographic plane can be found by comparing the differences in their trace directions on the projection plane and inclination angles with respect to that plane. The angles between the traces of planar structures and the sample axis measured from the TEM micrographs, which have been...

  2. An Efficient Two-Fold Marginalized Bayesian Filter for Multipath Estimation in Satellite Navigation Receivers

    Directory of Open Access Journals (Sweden)

    Robertson Patrick

    2010-01-01

    Full Text Available Multipath is today still one of the most critical problems in satellite navigation, in particular in urban environments, where the received navigation signals can be affected by blockage, shadowing, and multipath reception. Latest multipath mitigation algorithms are based on the concept of sequential Bayesian estimation and improve the receiver performance by exploiting the temporal constraints of the channel dynamics. In this paper, we specifically address the problem of estimating and adjusting the number of multipath replicas that is considered by the receiver algorithm. An efficient implementation via a two-fold marginalized Bayesian filter is presented, in which a particle filter, grid-based filters, and Kalman filters are suitably combined in order to mitigate the multipath channel by efficiently estimating its time-variant parameters in a track-before-detect fashion. Results based on an experimentally derived set of channel data corresponding to a typical urban propagation environment are used to confirm the benefit of our novel approach.

  3. Magnetocrystalline two-fold symmetry in CaFe2O4 single crystal

    Science.gov (United States)

    Chhaganlal Gandhi, Ashish; Das, Rajasree; Chou, Fang-Cheng; Lin, Jauyn Grace

    2017-05-01

    Understanding of magnetocrystalline anisotropy in CaFe2O4 is a matter of importance for its future applications. A high quality single crystal CaFe2O4 sample is studied by using synchrotron x-ray diffraction, a magnetometer and the electron spin resonance (ESR) technique. A broad feature of the susceptibility curve around room temperature is observed, indicating the development of 1D spin interactions above the on-set of antiferromagnetic transition. The angular dependency of ESR reveals an in-plane two-fold symmetry, suggesting a strong correlation between the room temperature spin structure and magnetocrystalline anisotropy. This finding opens an opportunity for the device utilizing the anisotropy field of CaFe2O4.

  4. Complete controllability of finite quantum systems with twofold energy level degeneracy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhedong; Fu, H C, E-mail: hcfu@szu.edu.c [School of Physical Sciences and Technology, Shenzhen University, Shenzhen 518060 (China)

    2010-05-28

    Complete controllability of finite-dimensional quantum systems with energy level degeneracy is investigated using two different approaches. One approach is to apply a weak constant field to eliminate the degeneracy and then control it using techniques developed for non-degenerate quantum systems. Conditions for the elimination of degeneracy are found and the issues of influence of relaxation time of a constant external field on the target state are addressed through the fidelity. Another approach is to control the degenerate system by a single control field directly. It is found that the system with twofold degenerate excited states and non-degenerate ground state is completely controllable except for the two-level system. Conditions of complete controllability are found for both systems with different energy gaps and with equal energy gaps.

  5. An unusual binodal (6,8)-connected 3D supramolecular network with twofold self-penetration

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A dicarboxylate ligand,5-carboxyl-1-carboxymethyl-2-oxidopyridinium (H2L),was utilized to form four complexes with the general formula [M(HL)2(H2O)]·2H2O,M = CuII (1),ZnII (2),MnII (3),CdII (4).The crystals were isomorphous,belonging to the monoclinic C2/c space group.They were constructed from 1D chains and further linked by hydrogen bonds into a novel binodal (6,8)-connected 3D supramolecular network with twofold self-penetration.Photoluminescence studies revealed that complexes 2-4 displayed intense structure-related fluorescent emission bands.

  6. Quantum crystallographic charge density of urea

    Directory of Open Access Journals (Sweden)

    Michael E. Wall

    2016-07-01

    Full Text Available Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the data is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. The results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.

  7. Crystallographic theory of the martensitic transformation

    Directory of Open Access Journals (Sweden)

    Edwar A. Torres-López

    2014-08-01

    Full Text Available The martensitic transformation is one of the most researched topics in the materials science during the 20th century. The second half of this century was mainly remembered by the development of several theories related with the kinetics of phase transformation, the mechanisms involved in the nucleation phenomenon, and the way as the crystallographic change is produced. In this paper are described the fundamental concepts that are defined in the crystallographic framework of the martensitic transformation. The study is focused on the application of the most outstanding crystallographic models: the Bain; the Wechsler, Lieberman & Read; and the Bowles & Mackenzie. The topic is presented based upon the particular features of the martensitic transformation, such as its non-diffusional character, type of interface between parent (austenite and product (martensite phases, the formation of substructural defects, and the shape change; all of these features are mathematically described by equations aimed to predict how the transformation will take place rather than to explain the actual movement of the atoms within the structure. This mathematical development is known as the Phenomenological Theory of Martensite Crystallography (PTMC.

  8. A preliminary neutron crystallographic study of thaumatin

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Susana C. M. [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); Blakeley, Matthew P. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Leal, Ricardo M. F. [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); ESRF, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble (France); Mitchell, Edward P. [EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); ESRF, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble (France); Forsyth, V. Trevor, E-mail: tforsyth@ill.fr [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom)

    2008-05-01

    Preliminary neutron crystallographic data from the sweet protein thaumatin have been recorded using the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results illustrate the feasibility of a full neutron structural analysis aimed at further understanding the molecular basis of the perception of sweet taste. Such an analysis will exploit the use of perdeuterated thaumatin. A preliminary neutron crystallographic study of the sweet protein thaumatin is presented. Large hydrogenated crystals were prepared in deuterated crystallization buffer using the gel-acupuncture method. Data were collected to a resolution of 2 Å on the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results demonstrate the feasibility of a full neutron crystallographic analysis of this structure aimed at providing relevant information on the location of H atoms, the distribution of charge on the protein surface and localized water in the structure. This information will be of interest for understanding the specificity of thaumatin–receptor interactions and will contribute to further understanding of the molecular mechanisms underlying the perception of taste.

  9. Quantum crystallographic charge density of urea.

    Science.gov (United States)

    Wall, Michael E

    2016-07-01

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the data is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. The results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.

  10. Quantum crystallographic charge density of urea

    Science.gov (United States)

    Wall, Michael E.

    2016-01-01

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the data is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. The results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement. PMID:27437111

  11. World directory of crystallographers and of other scientists employing crystallographic methods

    CERN Document Server

    Filippini, G; Hashizume, H; Torriani, I; Duax, W

    1995-01-01

    The 9th edition of the World Directory of Crystallographers and of Other Scientists Employing Crystallographic Methods, which contains 7907 entries embracing 72 countries, differs considerably from the 8th edition, published in 1990. The content has been updated, and the methods used to acquire the information presented and to produce this new edition of the Directory have involved the latest advances in technology. The Directory is now also available as a regularly updated electronic database, accessible via e-mail, Telnet, Gopher, World-Wide Web, and Mosaic. Full details are given in an Appendix to the printed edition.

  12. Two-fold Mellin-Barnes transforms of Usyukina-Davydychev functions

    CERN Document Server

    Kniehl, Bernd; Notte-Cuello, Eduardo A; Ferrada, Ivan Parra; Rojas-Medar, Marko

    2013-01-01

    In our previous paper (Nucl.Phys.B 870 (2013) 243) we showed that multi-fold Mellin-Barnes (MB) transforms of the Usyukina-Davydychev (UD) functions may be reduced to two-fold MB transforms. The MB transforms were written there as polynomials of logarithms of ratios of squares of the external momenta with certain coefficients. We also showed that these coefficients have a combinatoric origin. In this paper we present an explicit formula for these coefficients. The procedure of recovering the coefficients is based on taking the double uni-form limit in certain series of smooth functions of two variables which is constructed according to a pre-determined iterative way. The result is obtained by using basic methods of mathematical analysis. We observe that the finiteness of the limit of this iterative chain of smooth functions should reflect itself in other mathematical constructions, too, since it is not related in any way to the explicit form of the MB transforms.

  13. A Two-folded Impact Analysis of Schema Changes on Database Applications

    Institute of Scientific and Technical Information of China (English)

    Spyridon K.Gardikiotis; Nicos Malevris

    2009-01-01

    Database applications are becoming increasingly popular, mainly due to the advanced data management facilities that the underlying database management system offers compared against traditional legacy software applications. The interaction, however, of such applications with the database system introduces a number of issues, among which, this paper addresses the impact analysis of the changes performed at the database schema level. Our motivation is to provide the software engineers of database applications with automated methods that facilitate major maintenance tasks, such as source code corrections and regression testing, which should be triggered by the occurrence of such changes. The presented impact analysis is thus two-folded: the impact is analysed in terms of both the affected source code statements and the affected test suites concerning the testing of these applications. To achieve the former objective, a program slicing technique is employed, which is based on an extended version of the program dependency graph. The latter objective requires the analysis of test suites generated for database applications, which is accomplished by employing testing techniques tailored for this type of applications. Utilising both the slicing and the testing techniques enhances program comprehension of database applications, while also supporting the development of a number of practical metrics regarding their maintainability against schema changes. To evaluate the feasibility and effectiveness of the presented techniques and metrics, a software tool, called DATA, has been implemented. The experimental results from its usage on the TPC-C case study are reported and analysed.

  14. Two-fold Mellin-Barnes transforms of Usyukina-Davydychev functions

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, Bernd [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kondrashuk, Igor [Univ. del Bio Bio, Chillan (Chile). Dept. de Ciencias Basicas; Bielefeld Univ. (Germany). Fakultaet fuer Physik; Notte-Cuello, Eduardo A. [Univ. de La Serena (Chile). Dept. de Matematicas; Parra-Ferrada, Ivan [Univ. del Bio Bio, Chillan (Chile). Facultad de Educacion y Humanidades; Rojas-Medar, Marko [Univ. del Bio Bio, Chillan (Chile). Dept. de Ciencias Basicas

    2013-04-15

    In our previous paper (Nucl.Phys.B 870 (2013) 243) we showed that multi-fold Mellin-Barnes (MB) transforms of the Usyukina-Davydychev (UD) functions may be reduced to two-fold MB transforms. The MB transforms were written there as polynomials of logarithms of ratios of squares of the external momenta with certain coefficients. We also showed that these coefficients have a combinatoric origin. In this paper we present an explicit formula for these coefficients. The procedure of recovering the coefficients is based on taking the double uni-form limit in certain series of smooth functions of two variables which is constructed according to a pre-determined iterative way. The result is obtained by using basic methods of mathematical analysis. We observe that the finiteness of the limit of this iterative chain of smooth functions should reflect itself in other mathematical constructions, too, since it is not related in any way to the explicit form of the MB transforms.

  15. CONSERVATION PROCESS MODEL (CPM: A TWOFOLD SCIENTIFIC RESEARCH SCOPE IN THE INFORMATION MODELLING FOR CULTURAL HERITAGE

    Directory of Open Access Journals (Sweden)

    D. Fiorani

    2017-05-01

    Full Text Available The aim of the present research is to develop an instrument able to adequately support the conservation process by means of a twofold approach, based on both BIM environment and ontology formalisation. Although BIM has been successfully experimented within AEC (Architecture Engineering Construction field, it has showed many drawbacks for architectural heritage. To cope with unicity and more generally complexity of ancient buildings, applications so far developed have shown to poorly adapt BIM to conservation design with unsatisfactory results (Dore, Murphy 2013; Carrara 2014. In order to combine achievements reached within AEC through BIM environment (design control and management with an appropriate, semantically enriched and flexible The presented model has at its core a knowledge base developed through information ontologies and oriented around the formalization and computability of all the knowledge necessary for the full comprehension of the object of architectural heritage an its conservation. Such a knowledge representation is worked out upon conceptual categories defined above all within architectural criticism and conservation scope. The present paper aims at further extending the scope of conceptual modelling within cultural heritage conservation already formalized by the model. A special focus is directed on decay analysis and surfaces conservation project.

  16. Synthesis, crystal structure, and magnetic properties of a two-fold interpenetrated diamondoid open framework

    Science.gov (United States)

    Wu, Jing-Yun; Cheng, Fu-Yin; Chiang, Ming-Hsi

    2016-10-01

    Self-assembly of an enlarged angular pyridinecarboxylate ligand and cobalt(II) acetate under mild conditions afforded a three-dimensional open-framework coordination polymer, [Co2(μ-H2O)(pyca-43)4]n (1, Hpyca-43=(E)-3-((pyridin-4-yl)methyleneamino)benzoic acid). The molecular structure of 1 has rationalized to be a porous two-fold interpenetrated diamondoid-like network, with dinuclear Co2(μ-H2O)(O2C)4N4 clusters as tetrahedral secondary building units (SBUs), possessing highly solvent accessible volume of approximately 53.0%. Least-squares fit of the magnetic susceptibility data (20-300 K) of 1 yields Curie constant C=6.15 cm3 mol-1 K and Weiss constant θ=-11.6 K. Every Co2 subunit within the network is magnetically insulated to other dimers. The magnetic exchange parameter between Co(II) centers is estimated to -0.72 cm-1, suggesting a weak antiferromagnetic interaction. The gav value of 4.65 from fitting to the Lines model indicates that the decrease of the χMT value upon cooling is dominated by depopulation of the excited Kramer's states to the effective ground singlet. In addition, the thermal stability and adsorption properties of 1 are also reported.

  17. Intense green luminescence associated with two-fold coordinated Si in silica aerogel doped with ?

    Science.gov (United States)

    Li, Y. H.; Mo, C. M.; Yao, L. Z.; Liu, R. C.; Cai, W. L.; Li, X. M.; Wu, Z. Q.; Zhang, L. D.

    1998-02-01

    Amorphous silica aerogels doped with 0953-8984/10/7/013/img11 ions (SADAs) were prepared by the sol-gel route and supercritical drying. The visible luminescence of SADAs was measured and compared with that of porous silicon (PS), pure silica aerogels (PSAs) and silica xerogels doped with 0953-8984/10/7/013/img11 ions (SXDAs). The effect of annealing on the luminescence intensity of SADAs was investigated. Results show that (1) the luminescent intensity of as-prepared SADAs is much higher than that of as-prepared PSAs and SXDAs after annealing at 0953-8984/10/7/013/img13 (2) after annealing at 0953-8984/10/7/013/img14, the visible luminescence of SADAs is further substantially enhanced and becomes much higher than that of PS. However, for PSAs and SXDAs after annealing at 0953-8984/10/7/013/img14 the luminescent intensity is still kept at a very low value in comparison with that of SADAs. The strong visible luminescence appearing in SADAs is ascribed to significant amounts of the twofold coordinated Si (the 0953-8984/10/7/013/img16 (neutral) centre) in SADAs.

  18. Pseudo-unitary dynamics of free relativistic quantum mechanical twofold systems

    Science.gov (United States)

    Cardoso, J. G.

    2012-05-01

    A finite-dimensional pseudo-unitary framework is set up for describing the dynamics of free elementary particles in a purely relativistic quantum mechanical way. States of any individual particles or antiparticles are defined as suitably normalized vectors belonging to the two-complex-dimensional spaces that occur in local orthogonal decompositions of isomorphic copies of Cartan's space. The corresponding dynamical variables thus show up as bounded pseudo-Hermitian operator restrictions that possess real discrete spectra. Any measurement processes have to be performed locally in orthocronous proper Lorentz frames, but typical observational correlations are expressed in terms of symbolic configurations which come from the covariant action on spaces of state vectors of the Poincaré subgroup of an adequate realization of SU(2,2). The overall approach turns out to supply a supposedly natural description of the dynamics of free twofold systems in flat spacetime. One of the main outlooks devised here brings forward the possibility of carrying out methodically the construction of a background to a new relativistic theory of quantum information.

  19. Conservation Process Model (cpm): a Twofold Scientific Research Scope in the Information Modelling for Cultural Heritage

    Science.gov (United States)

    Fiorani, D.; Acierno, M.

    2017-05-01

    The aim of the present research is to develop an instrument able to adequately support the conservation process by means of a twofold approach, based on both BIM environment and ontology formalisation. Although BIM has been successfully experimented within AEC (Architecture Engineering Construction) field, it has showed many drawbacks for architectural heritage. To cope with unicity and more generally complexity of ancient buildings, applications so far developed have shown to poorly adapt BIM to conservation design with unsatisfactory results (Dore, Murphy 2013; Carrara 2014). In order to combine achievements reached within AEC through BIM environment (design control and management) with an appropriate, semantically enriched and flexible The presented model has at its core a knowledge base developed through information ontologies and oriented around the formalization and computability of all the knowledge necessary for the full comprehension of the object of architectural heritage an its conservation. Such a knowledge representation is worked out upon conceptual categories defined above all within architectural criticism and conservation scope. The present paper aims at further extending the scope of conceptual modelling within cultural heritage conservation already formalized by the model. A special focus is directed on decay analysis and surfaces conservation project.

  20. Theory for magnetic linear dichroism of electronic transitions between twofold-degenerate molecular spin levels

    Science.gov (United States)

    Bominaar, Emile L.; Achim, Catalina; Peterson, Jim

    1998-07-01

    Magnetic linear dichroism (MLD) spectroscopy is a relatively new technique which previously has been almost exclusively applied to atoms. These investigations have revealed that the study of MLD, in conjunction with electronic absorption and magnetic circular dichroism (MCD) spectroscopies, provides significant additional information concerning the electronic structure of atoms. More recent measurements have indicated that MLD is also observable from transition ions in inorganic compounds and metalloproteins. While the theory for atomic MLD has been worked out in considerable detail during the last two decades, an MLD theory of practical utility for the analysis of the spectra derived from the majority of paramagnetic molecules is not available. In the present contribution, the MLD of an electric-dipole-allowed transition between twofold-degenerate molecular spin levels is analyzed, assuming nonsaturating conditions. As for atomic systems, it is found that the MLD of a single molecule is dominated by the term G0. However, this term vanishes in the powder average evaluated for a randomly oriented ensemble of molecules, leading to a drastic reduction of the MLD differential absorption for systems with spin S=1/2 compared to that observed for systems with higher ground-state spin. It is found that MLD and MCD spectroscopies on solution samples have complementary spin-state specific sensitivities which suggest that the two methods can be used to selectively probe the individual metal sites in multicenter metalloprotein assemblies.

  1. A twofold quantum delayed-choice experiment in a superconducting circuit.

    Science.gov (United States)

    Liu, Ke; Xu, Yuan; Wang, Weiting; Zheng, Shi-Biao; Roy, Tanay; Kundu, Suman; Chand, Madhavi; Ranadive, Arpit; Vijay, Rajamani; Song, Yipu; Duan, Luming; Sun, Luyan

    2017-05-01

    Wave-particle complementarity lies at the heart of quantum mechanics. To illustrate this mysterious feature, Wheeler proposed the delayed-choice experiment, where a quantum system manifests the wave- or particle-like attribute, depending on the experimental arrangement, which is made after the system has entered the interferometer. In recent quantum delayed-choice experiments, these two complementary behaviors were simultaneously observed with a quantum interferometer in a superposition of being closed and open. We suggest and implement a conceptually different quantum delayed-choice experiment by introducing a which-path detector (WPD) that can simultaneously record and neglect the system's path information, but where the interferometer itself is classical. Our experiment is realized with a superconducting circuit, where a cavity acts as the WPD for an interfering qubit. Using this setup, we implement the first twofold delayed-choice experiment, which demonstrates that the system's behavior depends not only on the measuring device's configuration that can be chosen even after the system has been detected but also on whether we a posteriori erase or mark the which-path information, the latter of which cannot be revealed by previous quantum delayed-choice experiments. Our results represent the first demonstration of both counterintuitive features with the same experimental setup, significantly extending the concept of quantum delayed-choice experiment.

  2. Crystallographic Analysis of Tapering of ADP Crystallites

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    On the basis of crystallographic characteristics of ADP (ammonium dihydrogen phosphate) crystals and the selected growth conditions, the growth habit of ADP crystals was studied. In comparison with pyramidal planes, the growth rate of prismatic faces is slower and more sensitive to the additives and impurities for ADP crystals. When the supersaturation is low, the advance of growth steps on prismatic face can be blocked by ethanol or impurities, the crystal morphology is changed from the tetragonal prism to shuttle (i.e., the tapered shape). The tapering formation of ADP crystallites was structurally studied in a novel view.

  3. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    Energy Technology Data Exchange (ETDEWEB)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M., E-mail: wilsonjm@mail.med.upenn.edu

    2014-04-15

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8.

  4. Orbits of crystallographic embedding of non-crystallographic groups and applications to virology.

    Science.gov (United States)

    Twarock, Reidun; Valiunas, Motiejus; Zappa, Emilio

    2015-11-01

    The architecture of infinite structures with non-crystallographic symmetries can be modelled via aperiodic tilings, but a systematic construction method for finite structures with non-crystallographic symmetry at different radial levels is still lacking. This paper presents a group theoretical method for the construction of finite nested point sets with non-crystallographic symmetry. Akin to the construction of quasicrystals, a non-crystallographic group G is embedded into the point group P of a higher-dimensional lattice and the chains of all G-containing subgroups are constructed. The orbits of lattice points under such subgroups are determined, and it is shown that their projection into a lower-dimensional G-invariant subspace consists of nested point sets with G-symmetry at each radial level. The number of different radial levels is bounded by the index of G in the subgroup of P. In the case of icosahedral symmetry, all subgroup chains are determined explicitly and it is illustrated that these point sets in projection provide blueprints that approximate the organization of simple viral capsids, encoding information on the structural organization of capsid proteins and the genomic material collectively, based on two case studies. Contrary to the affine extensions previously introduced, these orbits endow virus architecture with an underlying finite group structure, which lends itself better to the modelling of dynamic properties than its infinite-dimensional counterpart.

  5. Collaborative annotation of 3D crystallographic models.

    Science.gov (United States)

    Hunter, J; Henderson, M; Khan, I

    2007-01-01

    This paper describes the AnnoCryst system-a tool that was designed to enable authenticated collaborators to share online discussions about 3D crystallographic structures through the asynchronous attachment, storage, and retrieval of annotations. Annotations are personal comments, interpretations, questions, assessments, or references that can be attached to files, data, digital objects, or Web pages. The AnnoCryst system enables annotations to be attached to 3D crystallographic models retrieved from either private local repositories (e.g., Fedora) or public online databases (e.g., Protein Data Bank or Inorganic Crystal Structure Database) via a Web browser. The system uses the Jmol plugin for viewing and manipulating the 3D crystal structures but extends Jmol by providing an additional interface through which annotations can be created, attached, stored, searched, browsed, and retrieved. The annotations are stored on a standardized Web annotation server (Annotea), which has been extended to support 3D macromolecular structures. Finally, the system is embedded within a security framework that is capable of authenticating users and restricting access only to trusted colleagues.

  6. Crystallographic and electronic properties of AlCrN films that absorb visible light

    Science.gov (United States)

    Tatemizo, N.; Imada, S.; Miura, Y.; Nishio, K.; Isshiki, T.

    2017-05-01

    We investigate the crystallographic and electronic properties of wurtzite Cr-doped AlN (AlCrN) films (Cr ≤12.0%) that absorb visible light. We confirmed that the films consist of wurtzite columnar single crystals that are densely packed, c-axis oriented, and exhibit a random rotation along the a-axis in plane by using transmission electron microscopy. The oxidation state of Cr was found to be 3+ using Cr K-edge X-ray absorption near edge structure, which implies that Cr can be a substitute for Al3+ in AlN. The first nearest neighbor distances estimated using Cr K-edge extended X-ray absorption fine structure (EXAFS) were found to be nearly isotropic for incident light with electric fields that are parallel and perpendicular to the plane. The results of ab initio lattice relaxation calculations for the model of wurtzite Al1-xCrxN supercell where Cr replaces Al support the EXAFS results. The calculations for the model showed that additional energy bands are formed in the band gap of AlN, in which the Fermi energy (EF) is present. As expected from the calculation results, the electrical conductivity increases with increase in the Cr concentration, implying that the density of states at EF increases monotonically. From these results, we can conclude that AlCrN films are an intermediate band material with respect to their crystallographic and electric properties.

  7. The Twofold Multidimensionality of Academic Self-Concept: Domain Specificity and Separation between Competence and Affect Components

    Science.gov (United States)

    Arens, A. Katrin; Yeung, Alexander Seeshing; Craven, Rhonda G.; Hasselhorn, Marcus

    2011-01-01

    Academic self-concept is consistently proven to be multidimensional rather than unidimensional as it is domain specific in nature. However, each specific self-concept domain may be further separated into competence and affect components. This study examines the twofold multidimensionality of academic self-concept (i.e., its domain specificity and…

  8. Breaking pseudo-twofold symmetry in the poliovirus 3'-UTR Y-stem by restoring Watson-Crick base pairs

    NARCIS (Netherlands)

    Zoll, G.J.; Tessari, M.; Kuppeveld, F.J.M. van; Melchers, W.J.G.; Heus, H.A.

    2007-01-01

    The previously described NMR structure of a 5'-CU-3'/5'-UU-3' motif, which is highly conserved within the 3'-UTR Y-stem of poliovirus-like enteroviruses, revealed striking regularities of the local helix geometry, thus retaining the pseudo-twofold symmetry of the RNA helix. A mutant virus with both

  9. Breaking pseudo-twofold symmetry in the poliovirus 3'-UTR Y-stem by restoring Watson-Crick base pairs.

    NARCIS (Netherlands)

    Zoll, G.J.; Tessari, M.; Kuppeveld, F.J.M. van; Melchers, W.J.G.; Heus, H.A.

    2007-01-01

    The previously described NMR structure of a 5'-CU-3'/5'-UU-3' motif, which is highly conserved within the 3'-UTR Y-stem of poliovirus-like enteroviruses, revealed striking regularities of the local helix geometry, thus retaining the pseudo-twofold symmetry of the RNA helix. A mutant virus with both

  10. Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in strong decreases in growth rate and in glycolytic flux

    DEFF Research Database (Denmark)

    Andersen, Heidi Winterberg; Solem, Christian; Hammer, Karin;

    2001-01-01

    Two mutant strains of Lactococcus lactis in which the promoter of the las operon, harboring pfk, pyk, and ldh, were replaced by synthetic promoters were constructed. These las mutants had an approximately twofold decrease in the activity of phosphofructokinase, whereas the activities of pyruvate...

  11. Conformation and sequence evidence for two-fold symmetry in left-handed beta-helix fold.

    Science.gov (United States)

    Shen, Xiaojuan

    2011-09-21

    The left-handed beta-helix (LβH) has received interest recently as it folds as a possible solution for the structure of misfolded proteins associated with prion and Huntington's diseases. Through a combination of sequence and structure analysis, we uncover a novel feature that is common to this unique fold: a two-fold symmetry in both sequence and structure, and this feature always coupled with extended loops in the middle of the helix. Since the results reveal a two-fold symmetric pattern both in the sequence and structure, it may indicate that the symmetry in tertiary structure is coded by the symmetry in primary sequence, which agrees with Anfisen's proposal that a protein's amino-acid sequence specify its three-dimensional structure. It may also indicate that LβH adopts a two-fold repeat pattern during the evolution process and symmetry helps maintaining the stability of the helix structure. The two-fold symmetric pattern and extended loops might be important in maintaining stability of helix proteins. This discovery can be useful in understanding the folding mechanisms of this protein fold and provide insights in the relation between sequences and structures.

  12. X-ray crystallographic studies of metalloproteins.

    Science.gov (United States)

    Volbeda, Anne

    2014-01-01

    Many proteins require metals for their physiological function. In combination with spectroscopic characterizations, X-ray crystallography is a very powerful method to correlate the function of protein-bound metal sites with their structure. Due to their special X-ray scattering properties, specific metals may be located in metalloprotein structures and eventually used for phasing the diffracted X-rays by the method of Multi-wavelength Anomalous Dispersion (MAD). How this is done is the principle subject of this chapter. Attention is also given to the crystallographic characterization of different oxidation states of redox active metals and to the complication of structural changes that may be induced by X-ray irradiation of protein crystals.

  13. Calculation of Crystallographic Texture of BCC Steels During Cold Rolling

    Science.gov (United States)

    Das, Arpan

    2017-05-01

    BCC alloys commonly tend to develop strong fibre textures and often represent as isointensity diagrams in φ 1 sections or by fibre diagrams. Alpha fibre in bcc steels is generally characterised by crystallographic axis parallel to the rolling direction. The objective of present research is to correlate carbon content, carbide dispersion, rolling reduction, Euler angles (ϕ) (when φ 1 = 0° and φ 2 = 45° along alpha fibre) and the resulting alpha fibre texture orientation intensity. In the present research, Bayesian neural computation has been employed to correlate these and compare with the existing feed-forward neural network model comprehensively. Excellent match to the measured texture data within the bounding box of texture training data set has been already predicted through the feed-forward neural network model by other researchers. Feed-forward neural network prediction outside the bounds of training texture data showed deviations from the expected values. Currently, Bayesian computation has been similarly applied to confirm that the predictions are reasonable in the context of basic metallurgical principles, and matched better outside the bounds of training texture data set than the reported feed-forward neural network. Bayesian computation puts error bars on predicted values and allows significance of each individual parameters to be estimated. Additionally, it is also possible by Bayesian computation to estimate the isolated influence of particular variable such as carbon concentration, which exactly cannot in practice be varied independently. This shows the ability of the Bayesian neural network to examine the new phenomenon in situations where the data cannot be accessed through experiments.

  14. Single-Axis Accelerometer

    Science.gov (United States)

    Tucker, Dennis Stephen (Inventor); Capo-Lugo, Pedro A. (Inventor)

    2016-01-01

    A single-axis accelerometer includes a housing defining a sleeve. An object/mass is disposed in the sleeve for sliding movement therein in a direction aligned with the sleeve's longitudinal axis. A first piezoelectric strip, attached to a first side of the object and to the housing, is longitudinally aligned with the sleeve's longitudinal axis. The first piezoelectric strip includes a first strip of a piezoelectric material with carbon nanotubes substantially aligned along a length thereof. A second piezoelectric strip, attached to a second side of the object and to the housing, is longitudinally aligned with the sleeve's longitudinal axis. The second piezoelectric strip includes a second strip of the piezoelectric material with carbon nanotubes substantially aligned along a length thereof. A voltage sensor is electrically coupled to at least one of the first and second piezoelectric strips.

  15. Crystallographic orientation dependent etching of graphene layers

    Energy Technology Data Exchange (ETDEWEB)

    Nemes-Incze, Peter; Biro, Laszlo Peter [Research Institute for Technical Physics and Materials Science, PO. Box 49, 1525 Budapest (Hungary); Magda, Gabor [Budapest University of Technology and Economics (BME), PO Box 91, 1521 Budapest (Hungary); Kamaras, Katalin [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, PO Box 49, 1525, Budapest (Hungary)

    2010-04-15

    Graphene has gripped the scientific community ever since its discovery in 2004, with very promising electronic properties and hopes to integrate graphene into nanoelectronic devices. For graphene to make its way into electronic devices, two major obstacles have to be overcome: reproducible preparation of large area graphene samples and patterning techniques to obtain functional components. In this paper we present a graphene etching technique, which is crystallographic orientation selective and allows for the patterning of graphene layers using a chemical reduction process. The process involves the reduction of the SiO{sub 2} support by the carbon in the graphene itself. This reaction only occurs at the sample edges and does not result in the degradation of the graphene crystal lattice itself. However, we have observed evidence of strong hole doping in our etched samples. This etching technique opens up new possibilities in graphene patterning and modification. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Determination of crystallographic intensities from sparse data

    Directory of Open Access Journals (Sweden)

    Kartik Ayyer

    2015-01-01

    Full Text Available X-ray serial microcrystallography involves the collection and merging of frames of diffraction data from randomly oriented protein microcrystals. The number of diffracted X-rays in each frame is limited by radiation damage, and this number decreases with crystal size. The data in the frame are said to be sparse if too few X-rays are collected to determine the orientation of the microcrystal. It is commonly assumed that sparse crystal diffraction frames cannot be merged, thereby setting a lower limit to the size of microcrystals that may be merged with a given source fluence. The EMC algorithm [Loh & Elser (2009, Phys. Rev. E, 80, 026705] has previously been applied to reconstruct structures from sparse noncrystalline data of objects with unknown orientations [Philipp et al. (2012, Opt. Express, 20, 13129–13137; Ayyer et al. (2014, Opt. Express, 22, 2403–2413]. Here, it is shown that sparse data which cannot be oriented on a per-frame basis can be used effectively as crystallographic data. As a proof-of-principle, reconstruction of the three-dimensional diffraction intensity using sparse data frames from a 1.35 kDa molecule crystal is demonstrated. The results suggest that serial microcrystallography is, in principle, not limited by the fluence of the X-ray source, and collection of complete data sets should be feasible at, for instance, storage-ring X-ray sources.

  17. Crystallographic interpretation of Galois symmetries for magnetic pentagonal ring

    Science.gov (United States)

    Milewski, J.; Lulek, T.; Łabuz, M.

    2017-03-01

    Galois symmetry of exact Bethe Ansatz eigenstates for the magnetic pentagonal ring within the XXX model are investigated by a comparison with crystallographic constructions of space groups. It follows that the arithmetic symmetry of Bethe parameters for the interior of the Brillouin zone admits crystallographic interpretation, in terms of the periodic square Z2 ×Z2 , that is the two-dimensional crystal lattice with Born-Karman period two in both directions.

  18. Synthesis of crystallographically oriented olivine aggregates using colloidal processing in a strong magnetic field

    Science.gov (United States)

    Koizumi, Sanae; Suzuki, Tohru S.; Sakka, Yoshio; Yabe, Kosuke; Hiraga, Takehiko

    2016-11-01

    This study develops a fabrication technique to obtain Fe-free and Fe-bearing (Fe:Mg = 1:9) olivine aggregates not only with high density and fine grain size but with crystallographic preferred orientation (CPO). A magnetic field (≤12 T) is applied to synthetic, fine-grained ( 120 nm), olivine particles dispersed in solvent. The alignment of certain crystallographic axes of the particles with respect to a magnetic direction is anticipated due to magnetic anisotropy of olivine. The dispersed particles are gradually consolidated on a porous alumina mold covered with a solid-liquid separation filter during drainage of the solvent. The resultant aligned consolidated aggregate is then isostatically pressed and vacuum sintered. We find that (1) preparation of fully reacted olivine particles, with less propensity to coalesce; (2) preparation of a suspension with highly dispersed particles; and (3) application of a certain strength of the magnetic field are essential to obtain well-sintered and well-aligned aggregates. High density (i.e., olivine aggregates were successfully synthesized with uniaxially aligned a- and c-axes, respectively. Attempts to uniaxially align the magnetization hard axis and to triaxially align Fe-bearing olivine by rotating the suspension in the magnetic field succeeded in obtaining weakly developed CPO aggregates.

  19. Crystallographic and magnetic structures of Pr6Fe13Ge studied by powder neutron diffraction

    Institute of Scientific and Technical Information of China (English)

    Wang Fang-Wei; Zhang Pan-Lin; Shen Bao-Gen; Yan Qi-Wei

    2004-01-01

    Crystallographic and magnetic structures of Pr6Fel3Ge have been investigated by high-resolution powder neutron diffraction in the temperature range of 10-300 K. The magnetic structure consists of ferromagnetic Pr6Fe13 slabs that alternate antiferromagnetically, along c, with the next Pr6Fe13 slab separated by a non-magnetic Ge layer. The magnetic moments lie within the ab-planes. The propagation vector of this structure is k=(001) with respect to the conventional reciprocal lattice of the Ⅰ-centred structure. However, the temperature-dependence of neutron-scattering intensity of the (110) Bragg peak, very similar to the temperature-dependent magnetization measured by SQUID magnetometer,indicates that a small c-axis ferromagnetic component should be added to the above antiferromagnetic model.

  20. Geometry and crystallographic configuration of grain boundaries

    Science.gov (United States)

    Eichler, Jan; Weikusat, Ilka; Kipfstuhl, Sepp; Binder, Tobias

    2015-04-01

    Ice cores provide a unique opportunity to study fundamental mechanisms which control the internal flow of ice sheets. Different kinds of deformation processes acting on the micro-scale are responsible for the viscoplastic behavior on large scale. Careful interpretation of microstructural features such as grain size, shape, lattice orientation and the occurrence of subgrain boundaries can help us to follow these processes and to improve our understanding of ice rheology. Polarized light microscopy experienced a quick development in the last decade. A new generation of automatic fabric analyzers enables to measure c-axis orientations in µm-resolution. This high amount and quality of fabric data motivates to apply digital-image-processing routines (DIP) for the recognition and quantification of microstructural patterns. Here we present a study on grain boundaries based on the acquisition of more than 700 fabric images recorded along the NEEM ice core (Greenland). Geometrical characteristics of grain boundaries are studied as well as their cross-sectional orientations in relation to the c-axis orientations of the corresponding adjacent grains. We could follow the evolution from the initial N-type and P-type low-angle boundaries (Weikusat et al., 2011) to high angle boundaries during rotation recrystallization. In agreement with some previous studies we confirm that the established three-stage-recrystallization model may be an oversimplification. According to our results, rotation recrystallization as well as grain boundary migration are actually present in all depths with varying intensities at NEEM. I. Weikusat, A. Miyamoto, S. H. Faria, S. Kipfstuhl, N. Azuma, and T. Hondoh: Subgrain boundaries in Antarctic ice quantified by X-ray Laue diffraction. J. Glaciol., 57(201):85-94, 2011. doi: 10013/epic.36402.

  1. A two-fold interpenetrated flexible bi-pillared-layer framework of Fe(II) with interesting solvent adsorption property

    Indian Academy of Sciences (India)

    Ritesh Haldar; Tapas Kumar Majia

    2011-11-01

    A two-fold interpenetrated microporous bi-pillared-layer framework of Fe(II), {[Fe(2,6-napdc)(4,4'-bipy)](EtOH)(H2O)} (1) (2,6-napdc =2,6-naphthalenedicarboxylate; 4,4'-bipy=4,4'-bipyridine) composed of mixed ligand system has been synthesized and structurally characterized. The 2,6-napdc linkers form a 2D corrugated sheet of {Fe(2,6-napdc)} by linking the secondary building unit of Fe2(CO2)2 in the plane, which are further connected by double 4,4'-bipy pillars resulting in a bi-pillared-layer type 3D framework. The 3D framework is two-fold interpenetrated and exhibits a 3D channel structure (4.0 × 3.5, 1.5 × 0.5 and 2.2 × 2.1 Å2) occupied by the guest water and ethanol molecules. Framework 1 shows high thermal stability, and the desolvated framework (1′) renders permanent porosity realized by N2 adsorption profile at 77K (BET surface area of ∼ 52 m2 g-1). Moreover, the framework 1′ also uptakes different solvent vapours (water, methanol and ethanol) and their type-I profile suggest strong interaction with pore surfaces and overall hydrophilic nature of the framework. Temperature dependent magnetic measurements suggest overall antiferromagnetic behaviour in compound 1.

  2. Oblique Axis Body Fracture

    DEFF Research Database (Denmark)

    Takai, Hirokazu; Konstantinidis, Lukas; Schmal, Hagen;

    2016-01-01

    was uneventful. Conclusions. Oblique type axis body fractures resemble a highly unstable subtype of Anderson type III fractures with the potential of severe secondary deformity following conservative treatment, irrespective of initial grade of displacement. The authors therefore warrant a high index of suspicion......Purpose. Anderson type III odontoid fractures have traditionally been considered stable and treated conservatively. However, unstable cases with unfavorable results following conservative treatment have been reported. Methods. We present the cases of two patients who sustained minimally displaced...

  3. Crystallographic effects during micromachining — A finite-element model

    Science.gov (United States)

    Song, Shin-Hyung; Choi, Woo Chun

    2015-07-01

    Mechanical micromachining is a powerful and effective way for manufacturing small sized machine parts. Even though the micromachining process is similar to the traditional machining, the material behavior during the process is much different. In particular, many researchers report that the basic mechanics of the work material is affected by microstructures and their crystallographic orientations. For example, crystallographic orientations of the work material have significant influence on force response, chip formation and surface finish. In order to thoroughly understand the effect of crystallographic orientations on the micromachining process, finite-element model (FEM) simulating orthogonal cutting process of single crystallographic material was presented. For modeling the work material, rate sensitive single crystal plasticity of face-centered cubic (FCC) crystal was implemented. For the chip formation during the simulation, element deletion technique was used. The simulation model is developed using ABAQUS/explicit with user material subroutine via user material subroutine (VUMAT). Simulations showed that variation of the specific cutting energy at different crystallographic orientations of work material shows significant anisotropy. The developed FEM model can be a useful prediction tool of micromachining of crystalline materials.

  4. Crystallographic features related to a van der Waals coupling in the layered chalcogenide FePS3

    Science.gov (United States)

    Murayama, Chisato; Okabe, Momoko; Urushihara, Daisuke; Asaka, Toru; Fukuda, Koichiro; Isobe, Masahiko; Yamamoto, Kazuo; Matsushita, Yoshitaka

    2016-10-01

    We investigated the crystallographic structure of FePS3 with a layered structure using transmission electron microscopy and powder X-ray diffraction. We found that FePS3 forms a rotational twin structure with the common axis along the c*-axis. The high-resolution transmission electron microscopy images revealed that the twin boundaries were positioned at the van der Waals gaps between the layers. The narrow bands of dark contrast were observed in the bright-field transmission electron microscopy images below the antiferromagnetic transition temperature, TN ≈ 120 K. Low-temperature X-ray diffraction showed a lattice distortion; the a- and b-axes shortened and lengthened, respectively, as the temperature decreased below TN. We propose that the narrow bands of dark contrast observed in the bright-field transmission electron microscopy images are caused by the directional lattice distortion with respect to each micro-twin variant in the antiferromagnetic phase.

  5. Crystallographic Features and State Stability of the Decagonal Quasicrystal in the Al-Co-Cu Alloy System

    Science.gov (United States)

    Nakayama, Kei; Mizutani, Akito; Koyama, Yasumasa

    2016-11-01

    In the Al-Co-Cu alloy system, both the decagonal quasicrystal with the space group of Poverline{10}m2 and its approximant Al13Co4 phase with monoclinic Cm symmetry are present around 20 at. % Co-10 at. % Cu. In this study, we examined the crystallographic features of prepared Al-(30 - x) at. % Co-x at. % Cu samples mainly by transmission electron microscopy in order to make clear the crystallographic relation between the decagonal quasicrystal and the monoclinic Al13Co4 structure. The results revealed a coexistence state consisting of decagonal quasicrystal and approximant Al13Co4 regions in Al-20 at. % Co-10 at. % Cu alloy samples. With the help of the coexistence state, the orientation relationship was established between the monoclinic Al13Co4 structure and the decagonal quasicrystal. In the determined relationship, the crystallographic axis in the quasicrystal was found to be parallel to the normal direction of the (010)m plane in the Al13Co4 structure, where the subscript m denotes the monoclinic system. Based on data obtained experimentally, the state stability of the decagonal quasicrystal was also examined in terms of the Hume-Rothery (HR) mechanism on the basis of the nearly-free-electron approximation. It was found that a model based on the HR mechanism could explain the crystallographic features such as electron diffraction patterns and atomic arrangements found in the decagonal quasicrystal. In other words, the HR mechanism is most likely appropriate for the stability of the decagonal quasicrystal in the Al-Co-Cu alloy system.

  6. Crystallographic Topology 2: Overview and Work in Progress

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.K.

    1999-08-01

    This overview describes an application of contemporary geometric topology and stochastic process concepts to structural crystallography. In this application, crystallographic groups become orbifolds, crystal structures become Morse functions on orbifolds, and vibrating atoms in a crystal become vector valued Gaussian measures with the Radon-Nikodym property. Intended crystallographic benefits include new methods for visualization of space groups and crystal structures, analysis of the thermal motion patterns seen in ORTEP drawings, and a classification scheme for crystal structures based on their Heegaard splitting properties.

  7. Determination of crystallographic orientation of lead-free piezoelectric (K,Na)NbO{sub 3} epitaxial thin films grown on SrTiO{sub 3} (100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qi; Zhu, Fang-Yuan; Cheng, Li-Qian; Wang, Ke; Li, Jing-Feng, E-mail: jingfeng@mail.tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084 Beijing (China)

    2014-03-10

    Crystallographic structure of sol-gel-processed lead-free (K,Na)NbO{sub 3} (KNN) epitaxial films on [100]-cut SrTiO{sub 3} single-crystalline substrates was investigated for a deeper understanding of its piezoelectric response. Lattice parameter measurement by high-resolution X-ray diffraction and transmission electron microscopy revealed that the orthorhombic KNN films on SrTiO{sub 3} (100) surfaces are [010] oriented (b-axis-oriented) rather than commonly identified c-axis orientation. Based on the crystallographic orientation and corresponding ferroelectric domain structure investigated by piezoresponse force microscopy, the superior piezoelectric property along b-axis of epitaxial KNN films than other orientations can be explained.

  8. Lithium Salt of NH2-substituted Graphene Nanoribbon with Twofold Donor-acceptor Framework: Large Nonlinear Optical Property

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhong-jun; LI Zhi-ru; HUANG Xu-ri; SUN Chia-chung

    2011-01-01

    Based on graphene, a new class of second-order nonlinear optical(NLO) material, the lithium salt of NH2-substituted graphene nanoribbon with the twofold donor(D)/acceptor(A) mode, was reported. Eight stable 2Li-2NH2-GNR lithium salts, especially cis lithium salts, display considerably large ,β0 values. The combination of NH2-substituting and cis Li-doping makes β0 greatly increased from 0(GNR) to 1.2×105-2.9×105 a.u.(cis-2Li2NH2-GNRs). Our largest β0 value(2.9× l05 a.u.) for cis-2Li-1,3-2NH2-AGNR is comparable to the record value of 1.7× l05 a.u. for a long donor-acceptor polyene.

  9. T4 fibrations over Calabi–Yau two-folds and non-Kähler manifolds in string theory

    Directory of Open Access Journals (Sweden)

    Hai Lin

    2016-08-01

    Full Text Available We construct a geometric model of eight-dimensional manifolds and realize them in the context of type II string theory. These eight-manifolds are constructed by non-trivial T4 fibrations over Calabi–Yau two-folds. These give rise to eight-dimensional non-Kähler Hermitian manifolds with SU(4 structure. The eight-manifold is also a circle fibration over a seven-dimensional G2 manifold with skew torsion. The eight-manifolds of this type appear as internal manifolds with SU(4 structure in type IIB string theory with F3 and F7 fluxes. These manifolds have generalized calibrated cycles in the presence of fluxes.

  10. Complex Structure of the Four-Dimensional Kerr Geometry: Stringy System, Kerr Theorem, and Calabi-Yau Twofold

    Directory of Open Access Journals (Sweden)

    Alexander Burinskii

    2013-01-01

    Full Text Available The 4D Kerr geometry displays many wonderful relations with quantum world and, in particular, with superstring theory. The lightlike structure of fields near the Kerr singular ring is similar to the structure of Sen solution for a closed heterotic string. Another string, open and complex, appears in the complex representation of the Kerr geometry initiated by Newman. Combination of these strings forms a membrane source of the Kerr geometry which is parallel to the structure of M-theory. In this paper we give one more evidence of this relationship, emergence of the Calabi-Yau twofold (K3 surface in twistorial structure of the Kerr geometry as a consequence of the Kerr theorem. Finally, we indicate that the Kerr stringy system may correspond to a complex embedding of the critical N = 2 superstring.

  11. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  12. Magnetostructural transition in NdCu{sub 2}. Evidence for an axis conversion like behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Kramp, S.; Doerr, M.; Rotter, M.; Loewenhaupt, M. [Technische Univ. Dresden (Germany). Inst. fuer Angewandte Physik und Didaktik der Physik; Kamp, R. v.d. [Hahn-Meitner-Institut Berlin GmbH (Germany)

    2000-12-01

    The magnetic (H,T)-phase diagram of the orthorhombic compound NdCu{sub 2} was investigated for external magnetic fields up to 15 T parallel to the crystallographic c-direction. Magnetization and magnetostriction measurements reveal an anomalous change of the magnetic properties as well as giant magnetostriction (GMS) and large hysteretic effects. This behaviour is similar to that observed in some other RCu{sub 2} compounds where it has been interpreted as a conversion of the magnetic Ising axis. In contrast to these other RCu{sub 2} compounds, however, the easy axis of magnetization in NdCu{sub 2} is the b-axis. The macroscopic measurements are compared with neutron diffraction experiments which reveal GMS along the b-axis and a new magnetic phase with propagation vector {tau}=(0.7 0 0) in the converted crystal. (orig.)

  13. Changes of structure and crystallographic texture of cladding tubes from austenitic steel under thermal creep testing

    Science.gov (United States)

    Perlovich, Yu; Isaenkova, M.; Fesenko, V.; Dobrokhotov, P.; Tselishchev, A.

    2016-04-01

    The process of changes in structure and crystallographic texture of cladding tubes from austenitic steel ChS68 under thermal creep testing were studied. Testing of tubes was conducted at the temperature 700 oC in the air by their stretching in axial direction under the stress 160 MPa until rupture. By data of phase and texture analysis a number of processes, accompanying plastic deformation of tubes during thermal creep tests at elevated temperature, were identified. The main texture components of original tube, as well as texture components of different parts of the tested tube are {110} and {112}. In the rupture zone the component of the texture of tension with axis along the tube axis becomes stronger. This effect is connected with activation of dislocation slip in the deformed area of tested tube near the new-formed neck. At the same time the character of texture changes in the zone of tube rupture indicates to development of the dynamic recrystallization, conditioned by the total influence of all factors, which control the passage in the tube of thermal creep. In addition, it was revealed the activation of martensitic transformations in the zone of maximal deformation of tube as a result of its creep tests.

  14. Crystal structure refinement a crystallographers guide to SHELXL

    CERN Document Server

    2006-01-01

    A crystallographers guide to SHELXL, covering various aspects of practical crystal structure refinement, from the treatment of hydrogen atoms to the assignment of atom types, and more. After an introduction to SHELXL, a brief survey of crystal structure refinement is provided.

  15. Recovery of crystallographic texture in remineralized dental enamel.

    Science.gov (United States)

    Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon

    2014-01-01

    Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain

  16. Recovery of crystallographic texture in remineralized dental enamel.

    Directory of Open Access Journals (Sweden)

    Samera Siddiqui

    Full Text Available Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture and position of the (002 Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected

  17. The axis of evil

    CERN Document Server

    Land, K; Land, Kate; Magueijo, Joao

    2005-01-01

    We examine previous claims for a preferred axis at $(b,l)\\approx (60,-100)$ in the cosmic radiation anisotropy, by generalizing the concept of multipole planarity to any shape preference (a concept we define mathematically). Contrary to earlier claims, we find that the amount of power concentrated in planar modes for $\\ell=2,3$ is not inconsistent with isotropy and Gaussianity. The multipoles' alignment, however, is indeed anomalous, and extends up to $\\ell=5$ rejecting statistical isotropy with a probability in excess of 99.9%. There is also an uncanny correlation of azimuthal phases between $\\ell=3$ and $\\ell=5$. We are unable to blame these effects on foreground contamination or large-scale systematic errors. We show how this reappraisal may be crucial in identifying the theoretical model behind the anomaly.

  18. Preferred axis in cosmology

    CERN Document Server

    Zhao, Wen

    2016-01-01

    The foundation of modern cosmology relies on the so-called cosmological principle which states an homogeneous and isotropic distribution of matter in the universe on large scales. However, recent observations, such as the temperature anisotropy of the cosmic microwave background (CMB) radiation, the motion of galaxies in the universe, the polarization of quasars and the acceleration of the cosmic expansion, indicate preferred directions in the sky. If these directions have a cosmological origin, the cosmological principle would be violated, and modern cosmology should be reconsidered. In this paper, by considering the preferred axis in the CMB parity violation, we find that it coincides with the preferred axes in CMB quadrupole and CMB octopole, and they all align with the direction of the CMB kinematic dipole. In addition, the preferred directions in the velocity flows, quasar alignment, anisotropy of the cosmic acceleration, the handedness of spiral galaxies, and the angular distribution of the fine-structu...

  19. Oblique Axis Body Fracture

    DEFF Research Database (Denmark)

    Takai, Hirokazu; Konstantinidis, Lukas; Schmal, Hagen

    2016-01-01

    Purpose. Anderson type III odontoid fractures have traditionally been considered stable and treated conservatively. However, unstable cases with unfavorable results following conservative treatment have been reported. Methods. We present the cases of two patients who sustained minimally displaced...... Anderson type III fractures with a characteristic fracture pattern that we refer to as "oblique type axis body fracture." Results. The female patients aged 90 and 72 years, respectively, were both diagnosed with minimally displaced Anderson type III fractures. Both fractures had a characteristic "oblique...... type" fracture pattern. The first patient was treated conservatively with cervical spine immobilization in a semirigid collar. However, gross displacement was noted at the 6-week follow-up visit. The second patient was therefore treated operatively by C1-C3/4 posterior fusion and the course...

  20. 康德论美的双重特性%Kant on the Twofold Logical Peculiarity of Beauty

    Institute of Scientific and Technical Information of China (English)

    王奎

    2015-01-01

    与认识和道德不同,康德认为美具有一种双重的逻辑特性:“好像主观性”和“好像客观性”。一方面美以个人的情感而非概念为基础,不能通过经验归纳或理性演绎而得到证明,因而好像是主观的;另一方面,美同经验判断一样要求人们的普遍同意,好像又是客观的。美的本质体现在主客体之间的这种关系,既不是纯然主观的,也不是客观的,任何将美还原为单纯主观性或客观性的观点都是对康德美学的误读。康德美学的独特性就在于这两种看似矛盾的特性在审美判断中可以共存。%s:In contrast with cognitive and moral judgments,Kant holds that the beauty has a twofold logical peculiarity,namely〞as if subjectivity〞and〞as if objectivity〞.On one hand,grounded on one's own feeling rather than any concept,the judgment of taste cannot be confirmed or disconfirmed through empiri-cal induction or rational deduction,just as if it were subjective.On the other hand,like empirical judg-ments,the beauty requires the assent of everyone,as if it were objective.The beauty is therefore neither purely subjective nor objective,and is best to be described as relation of object to the subject.In this con-text,the view that reduces the beauty to mere subjectivity or objectivity is obviously a misunderstanding of Kant's intentions.It is characteristic of Kant's aesthetics that the twofold seeming paradoxical peculiarity can coexist in a single judgment of taste.

  1. Enhanced ultraviolet emission and its irreversible temperature antiquenching behavior of twofold coordinated silicon centers in silica glass

    Science.gov (United States)

    Nagayoshi, Yu; Uchino, Takashi

    2016-10-01

    It has been well documented that an oxygen divacancy center, or a twofold-coordinated Si center, in silica glass yields a singlet-to-singlet photoluminescence (PL) emission at 4.4 eV with a decay time of ˜4 ns. Although the 4.4-eV PL band is interesting in terms of a deep-ultraviolet light emitter, the emission efficiency has been too low to be considered for a practical application. In this work, we show that a highly luminescent silica glass, with an internal quantum yield of 68% for the 4.4-eV PL band at room temperature, can be prepared when micrometer-sized silica powders are heat treated at ˜1900 °C under inert gas atmosphere by using a high-frequency induction heating unit equipped with a graphite crucible. We also show that the intensity of the 4.4-eV emission in the thus prepared silica glass exhibits an irreversible temperature antiquenching behavior in the temperature region below ˜320 K during heating-cooling cycles. The anomalous temperature dependencies of the 4.4-eV emission can be interpreted in terms of thermally activated trapping-detrapping processes of photoexcited electrons associated with deep trap states.

  2. An unprecedented two-fold nested super-polyrotaxane: sulfate-directed hierarchical polythreading assembly of uranyl polyrotaxane moieties

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Lei; Wu, Qun-yan; Yuan, Li-yong; Wang, Lin; An, Shu-wen; Xie, Zhen-ni; Hu, Kong-qiu; Shi, Wei-qun [Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Chai, Zhi-fang [Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); School of Radiological and Interdisciplinary Sciences and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou (China); Burns, Peter C. [Department of Chemistry and Biochemistry, University of Notre Dame, IN (United States)

    2016-08-01

    The hierarchical assembly of well-organized submoieties could lead to more complicated superstructures with intriguing properties. We describe herein an unprecedented polyrotaxane polythreading framework containing a two-fold nested super-polyrotaxane substructure, which was synthesized through a uranyl-directed hierarchical polythreading assembly of one-dimensional polyrotaxane chains and two-dimensional polyrotaxane networks. This special assembly mode actually affords a new way of supramolecular chemistry instead of covalently linked bulky stoppers to construct stable interlocked rotaxane moieties. An investigation of the synthesis condition shows that sulfate can assume a vital role in mediating the formation of different uranyl species, especially the unique trinuclear uranyl moiety [(UO{sub 2}){sub 3}O(OH){sub 2}]{sup 2+}, involving a notable bent [O=U=O] bond with a bond angle of 172.0(9) . Detailed analysis of the coordination features, the thermal stability as well as a fluorescence, and electrochemical characterization demonstrate that the uniqueness of this super-polyrotaxane structure is mainly closely related to the trinuclear uranyl moiety, which is confirmed by quantum chemical calculations. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Crystallographic data processing for free-electron laser sources

    Energy Technology Data Exchange (ETDEWEB)

    White, Thomas A., E-mail: taw@physics.org; Barty, Anton; Stellato, Francesco [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Holton, James M. [University of California, San Francisco, CA 94158 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kirian, Richard A. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Arizona State University, Tempe, AZ 85287 (United States); Zatsepin, Nadia A. [Arizona State University, Tempe, AZ 85287 (United States); Chapman, Henry N. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2013-07-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.

  4. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    Directory of Open Access Journals (Sweden)

    Alexandra Henriques

    2014-11-01

    Full Text Available Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 1015 neutrons/cm2. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. The results demonstrate a method by which the effects of radiation on crystallographic structure may be investigated.

  5. A crystallographic perspective on sharing data and knowledge.

    Science.gov (United States)

    Bruno, Ian J; Groom, Colin R

    2014-10-01

    The crystallographic community is in many ways an exemplar of the benefits and practices of sharing data. Since the inception of the technique, virtually every published crystal structure has been made available to others. This has been achieved through the establishment of several specialist data centres, including the Cambridge Crystallographic Data Centre, which produces the Cambridge Structural Database. Containing curated structures of small organic molecules, some containing a metal, the database has been produced for almost 50 years. This has required the development of complex informatics tools and an environment allowing expert human curation. As importantly, a financial model has evolved which has, to date, ensured the sustainability of the resource. However, the opportunities afforded by technological changes and changing attitudes to sharing data make it an opportune moment to review current practices.

  6. Recent developments in crystallographic investigation of martensitic transformation

    Institute of Scientific and Technical Information of China (English)

    GU Nanju; DONG Guixia; LIN Xiaoping; WANG Baoqi; MA Xiaoli

    2004-01-01

    The results and new knowledge obtained in recent years by using an atom force microscope (AFM) to investigate the surface relieves and to reveal the lattice deformation characteristics in martensitic transformation (MT) are summarized. All-round analysis and research about crystallography and morphology of MT have been done based on our "displacement vector" theory. New viewpoints that the "invariant-plane-strain" criterion have no universality and that the large rotation of habit-planes takes place in {557} lath and {225} plate martensites are put forward. Thereby, the formation mode of {557} martensite is established, which is in good agreement with the experimental results. Finally, according to the self-accommodation principle between variants crystallographic calculations of twin and multi-variant martensites in shape memory alloys have been carried out. The calculation method greatly simplifies the crystallographic calculation process of phenomenological theory. And the calculated results are in good agreement with experimental ones.

  7. Automated segmentation of the human hippocampus along its longitudinal axis.

    Science.gov (United States)

    Lerma-Usabiaga, Garikoitz; Iglesias, Juan Eugenio; Insausti, Ricardo; Greve, Douglas N; Paz-Alonso, Pedro M

    2016-09-01

    The human hippocampal formation is a crucial brain structure for memory and cognitive function that is closely related to other subcortical and cortical brain regions. Recent neuroimaging studies have revealed differences along the hippocampal longitudinal axis in terms of structure, connectivity, and function, stressing the importance of improving the reliability of the available segmentation methods that are typically used to divide the hippocampus into its anterior and posterior parts. However, current segmentation conventions present two main sources of variability related to manual operations intended to correct in-scanner head position across subjects and the selection of dividing planes along the longitudinal axis. Here, our aim was twofold: (1) to characterize inter- and intra-rater variability associated with these manual operations and compare manual (landmark based) and automatic (percentage based) hippocampal anterior-posterior segmentation procedures; and (2) to propose and test automated rotation methods based on approximating the hippocampal longitudinal axis to a straight line (estimated with principal component analysis, PCA) or a quadratic Bézier curve (fitted with numerical methods); as well as an automated anterior-posterior hippocampal segmentation procedure based on the percentage-based method. Our results reveal that automated rotation and segmentation procedures, used in combination or independently, minimize inconsistencies generated by the accumulation of manual operations while providing higher statistical power to detect well-known effects. A Matlab-based implementation of these procedures is made publicly available to the research community. Hum Brain Mapp 37:3353-3367, 2016. © 2016 Wiley Periodicals, Inc.

  8. Crystallographically uniform arrays of ordered (In)GaN nanocolumns

    Energy Technology Data Exchange (ETDEWEB)

    Gačević, Ž., E-mail: gacevic@isom.upm.es; Bengoechea-Encabo, A.; Albert, S.; Calleja, E. [ETSIT-ISOM, Universidad Politécnica de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Torres-Pardo, A.; González-Calbet, J. M. [Dept. Química Inorgánica, Universidad Complutense, 28040 Madrid (Spain); CEI Campus Moncloa, UCM-UPM, Madrid (Spain)

    2015-01-21

    In this work, through a comparative study of self-assembled (SA) and selective area grown (SAG) (In)GaN nanocolumn (NC) ensembles, we first give a detailed insight into improved crystallographic uniformity (homogeneity of crystallographic tilts and twists) of the latter ones. The study, performed making use of: reflective high energy electron diffraction, X-ray diffraction and scanning electron microscopy, reveals that unlike their SA counterparts, the ensembles of SAG NCs show single epitaxial relationship to both sapphire(0001) and Si(111) underlying substrates. In the second part of the article, making use of X-ray diffraction, we directly show that the selective area growth leads to improved compositional uniformity of InGaN NC ensembles. This further leads to improved spectral purity of their luminescence, as confirmed by comparative macro-photoluminescence measurements performed on SA and SAG InGaN NC ensembles. An improved crystallographic uniformity of NC ensembles facilitates their integration into optoelectronic devices, whereas their improved compositional uniformity allows for their employment in single-color optoelectronic applications.

  9. Crystallographically uniform arrays of ordered (In)GaN nanocolumns

    Science.gov (United States)

    Gačević, Ž.; Bengoechea-Encabo, A.; Albert, S.; Torres-Pardo, A.; González-Calbet, J. M.; Calleja, E.

    2015-01-01

    In this work, through a comparative study of self-assembled (SA) and selective area grown (SAG) (In)GaN nanocolumn (NC) ensembles, we first give a detailed insight into improved crystallographic uniformity (homogeneity of crystallographic tilts and twists) of the latter ones. The study, performed making use of: reflective high energy electron diffraction, X-ray diffraction and scanning electron microscopy, reveals that unlike their SA counterparts, the ensembles of SAG NCs show single epitaxial relationship to both sapphire(0001) and Si(111) underlying substrates. In the second part of the article, making use of X-ray diffraction, we directly show that the selective area growth leads to improved compositional uniformity of InGaN NC ensembles. This further leads to improved spectral purity of their luminescence, as confirmed by comparative macro-photoluminescence measurements performed on SA and SAG InGaN NC ensembles. An improved crystallographic uniformity of NC ensembles facilitates their integration into optoelectronic devices, whereas their improved compositional uniformity allows for their employment in single-color optoelectronic applications.

  10. Gut Microbiota-brain Axis

    OpenAIRE

    2016-01-01

    Objective: To systematically review the updated information about the gut microbiota-brain axis. Data Sources: All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of “gut microbiota”, “gut-brain axis”, and “neuroscience”. Study Selection: All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of s...

  11. Microstructures and crystallographic preferred orientation of anorthosites from Oman ophiolite and the dynamics of melt lenses

    Science.gov (United States)

    Morales, Luiz F. G.; Boudier, FrançOise; Nicolas, Adolphe

    2011-04-01

    Microstructures and crystallographic preferred orientation (CPO) of anorthosite samples interlayered in the upper and lower gabbro sections in the Oman ophiolite were analyzed in this paper. In the anorthosites registering the dynamics of the melt lenses, foliation is flat lying and starts to develop a few meters below the root zone of the sheeted dike complex (RZSDC). Microstructures and CPO of these rocks were developed in response to four different mechanisms: (1) density-controlled settling of plagioclase on the lens floor, (2) deposition of anorthosites related to convection currents, (3) melt compaction, and (4) uncompacted melt accumulation. In these anorthosites, the poles to (010) of plagioclase are parallel to the flow plane of convection, whereas the [100] axes and poles to (001) express the convection flow direction and the axis of convection rolls, respectively. The effect of subsidence of melt lens floor is recorded immediately below the RZSDC and is characterized by the rapid (but progressive) development of dipping foliation and lineation, reflecting the increase of deformation downsection. The degree of foliation and CPO development in the anorthosites is directly related to the distance of the center of the melt lenses before the subsidence starts. Despite the uncertain origin of the anorthosites from the lower gabbro section, all the samples lost the magmatic microstructural characteristics and presently are reequilibrated aggregates. However, they still preserve plagioclase CPO, where some of these patterns present similarities with the anorthosites from the upper gabbro section, but no evidence of intracrystalline deformation under high temperatures.

  12. Crystallization and preliminary crystallographic analysis of Gre2p, an NADP(+)-dependent alcohol dehydrogenase from Saccharomyces cerevisiae.

    Science.gov (United States)

    Breicha, Klaus; Müller, Marion; Hummel, Werner; Niefind, Karsten

    2010-07-01

    Gre2p [Genes de respuesta a estres (stress-response gene)] from Saccharomyces cerevisiae is a monomeric enzyme of 342 amino acids with a molecular weight of 38.1 kDa. The enzyme catalyses both the stereospecific reduction of keto compounds and the oxidation of various hydroxy compounds and alcohols by the simultaneous consumption of the cofactor NADPH and formation of NADP(+). Crystals of a Gre2p complex with NADP(+) were grown using PEG 8000 as a precipitant. They belong to the monoclinic space group P2(1). The current diffraction resolution is 3.2 A. In spite of the monomeric nature of Gre2p in solution, packing and self-rotation calculations revealed the existence of two Gre2p protomers per asymmetric unit related by a twofold noncrystallographic axis.

  13. Crystallographic B factor of critical residues at enzyme active site

    Institute of Scientific and Technical Information of China (English)

    张海龙; 宋时英; 林政炯

    1999-01-01

    Thirty-seven sets of crystallographic enzyme data were selected from Protein Data Bank (PDB, 1995). The average temperature factors (B) of the critical residues at the active site and the whole molecule of those enzymes were calculated respectively. The statistical results showed that the critical residues at the active site of most of the enzymes had lower B factors than did the whole molecules, indicating that in the crystalline state the critical residues at the active site of the natural enzymes possess more stable conformation than do the whole molecules. The flexibility of the active site during the unfolding by denaturing was also discussed.

  14. Study of the crystallographic architecture of corals at the nanoscale by scanning transmission X-ray microscopy and transmission electron microscopy.

    Science.gov (United States)

    Benzerara, Karim; Menguy, Nicolas; Obst, Martin; Stolarski, Jarosław; Mazur, Maciej; Tylisczak, Tolek; Brown, Gordon E; Meibom, Anders

    2011-07-01

    We have investigated the nanotexture and crystallographic orientation of aragonite in a coral skeleton using synchrotron-based scanning transmission X-ray microscopy (STXM) and transmission electron microscopy (TEM). Polarization-dependent STXM imaging at 40-nm spatial resolution was used to obtain an orientation map of the c-axis of aragonite on a focused ion beam milled ultrathin section of a Porites coral. This imaging showed that one of the basic units of coral skeletons, referred to as the center of calcification (COC), consists of a cluster of 100-nm aragonite globules crystallographically aligned over several micrometers with a fan-like distribution and with the properties of single crystals at the mesoscale. The remainder of the skeleton consists of aragonite single-crystal fibers in crystallographic continuity with the nanoglobules comprising the COC. Our observation provides information on the nm-scale processes that led to biomineral formation in this sample. Importantly, the present study illustrates how the methodology described here, which combines HRTEM and polarization-dependent synchrotron-based STXM imaging, offers an interesting new approach for investigating biomineralizing systems at the nm-scale.

  15. PRIGo: a new multi-axis goniometer for macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Waltersperger, Sandro; Olieric, Vincent, E-mail: vincent.olieric@psi.ch; Pradervand, Claude [Paul Scherrer Institute, Villigen PSI (Switzerland); Glettig, Wayne [Centre Suisse d’Electronique et Microtechnique SA, Neuchâtel 2002 (Switzerland); Salathe, Marco; Fuchs, Martin R.; Curtin, Adrian; Wang, Xiaoqiang; Ebner, Simon; Panepucci, Ezequiel; Weinert, Tobias [Paul Scherrer Institute, Villigen PSI (Switzerland); Schulze-Briese, Clemens [Dectris Ltd, Baden 5400 (Switzerland); Wang, Meitian, E-mail: vincent.olieric@psi.ch [Paul Scherrer Institute, Villigen PSI (Switzerland)

    2015-05-09

    The design and performance of the new multi-axis goniometer PRIGo developed at the Swiss Light Source at Paul Scherrer Institute is described. The Parallel Robotics Inspired Goniometer (PRIGo) is a novel compact and high-precision goniometer providing an alternative to (mini-)kappa, traditional three-circle goniometers and Eulerian cradles used for sample reorientation in macromolecular crystallography. Based on a combination of serial and parallel kinematics, PRIGo emulates an arc. It is mounted on an air-bearing stage for rotation around ω and consists of four linear positioners working synchronously to achieve x, y, z translations and χ rotation (0–90°), followed by a ϕ stage (0–360°) for rotation around the sample holder axis. Owing to the use of piezo linear positioners and active correction, PRIGo features spheres of confusion of <1 µm, <7 µm and <10 µm for ω, χ and ϕ, respectively, and is therefore very well suited for micro-crystallography. PRIGo enables optimal strategies for both native and experimental phasing crystallographic data collection. Herein, PRIGo hardware and software, its calibration, as well as applications in macromolecular crystallography are described.

  16. Recrystallization fabrics of sheared quartz veins with a strong pre-existing crystallographic preferred orientation from a seismogenic shear zone

    Science.gov (United States)

    Price, Nancy A.; Song, Won Joon; Johnson, Scott E.; Gerbi, Christopher C.; Beane, Rachel J.; West, David P.

    2016-07-01

    Microstructural investigations were carried out on quartz veins in schist, protomylonite, and mylonite samples from an ancient seismogenic strike-slip shear zone (Sandhill Corner shear zone, Norumbega fault system, Maine, USA). We interpret complexities in the microstructural record to show that: (1) pre-existing crystallographic preferred orientations (CPO) in the host rock may persist in the new CPO patterns of the shear zone and (2) the inner and outer parts of the shear zone followed diverging paths of fabric development. The host rocks bounding the shear zone contain asymmetrically-folded quartz veins with a strong CPO. These veins are increasingly deformed and recrystallized with proximity to the shear zone core. Matrix-accommodated rotation and recrystallization may position an inherited c-axis maximum in an orientation coincident with rhomb or basal slip. This inherited CPO likely persists in the shear zone fabric as a higher concentration of poles in one hemisphere of the c-axis pole figure, leading to asymmetric crossed girdle or paired maxima c-axis patterns about the foliation plane. Three observed quartz grain types indicate a general trend of localization with decreasing temperature: (1) large (> 100 μm), low aspect ratio (<~5) and (2) high aspect ratio (~ 5-20) grains overprinted by (3) smaller (<~80 μm), low aspect ratio (<~4) grains through subgrain rotation-dominated recrystallization. In the outer shear zone, subgrain rotation recrystallization led to a well-developed c-axis crossed girdle pattern. In the inner shear zone, the larger grains are completely overprinted by smaller grains, but the CPO patterns are relatively poorly developed and are associated with distinctively different misorientation angle histogram profiles ("flat" neighbor-pair profile with similar number fraction for angles from 10 to 90°). This may reflect the preferential activation of grain size sensitive deformation processes in the inner-most part of the shear zone

  17. Gut Microbiota-brain Axis

    Institute of Scientific and Technical Information of China (English)

    Hong-Xing Wang; Yu-Ping Wang

    2016-01-01

    Objective:To systematically review the updated information about the gut microbiota-brain axis.Data Sources:All articles about gut microbiota-brain axis published up to July 18,2016,were identified through a literature search on PubMed,ScienceDirect,and Web of Science,with the keywords of"gut microbiota","gut-brain axis",and "neuroscience".Study Selection:All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed,with no limitation of study design.Results:It is well-recognized that gut microbiota affects the brain's physiological,behavioral,and cognitive functions although its precise mechanism has not yet been fully understood.Gut microbiota-brain axis may include gut microbiota and their metabolic products,enteric nervous system,sympathetic and parasympathetic branches within the autonomic nervous system,neural-immune system,neuroendocrine system,and central nervous system.Moreover,there may be five communication routes between gut microbiota and brain,including the gut-brain's neural network,neuroendocrine-hypothalamic-pituitary-adrenal axis,gut immune system,some neurotransmitters and neural regulators synthesized by gut bacteria,and barrier paths including intestinal mucosal barrier and blood-brain barrier.The microbiome is used to define the composition and functional characteristics of gut microbiota,and metagenomics is an appropriate technique to characterize gut microbiota.Conclusions:Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain,which may provide a new way to protect the brain in the near future.

  18. Crystallographic Orientation Effect on Electromigration in Ni-Sn Microbump

    Science.gov (United States)

    Huang, Yi-Ting; Chen, Chih-Hao; Chakroborty, Subhendu; Wu, Albert T.

    2017-09-01

    This article addresses the reliability challenges regarding electromigration in developing three-dimensional integrated circuits (3D-ICs). The line-type sandwich structure of Ni/Sn3.5Ag(15 μm)/Ni was used to simulate microbumps to examine the reliability of electromigration in 3D-IC technology. The solder strip of Ni/Sn3.5Ag(15 μm)/Ni was stressed with a current density of 1.0 × 104 A/cm2 at 150°C. The current stressing enhanced the reaction between the solder and Ni to form Ni3Sn4, which occupied the entire joint and transformed into a Ni/Ni3Sn4/Ni structure when the solder was completely consumed. Electron backscatter diffraction was used to analyze the crystallographic characteristics of Sn and Ni3Sn4 as related to the electromigration effect. The results indicated that the crystallographic orientation of Sn plays a significant role in the Ni/Sn3.5Ag/Ni, whereas the orientation of Ni3Sn4 is the dominant factor of diffusion behavior in the Ni/Ni3Sn4/Ni.

  19. Crystallographic properties of magnetron sputtered barium ferrite films

    Energy Technology Data Exchange (ETDEWEB)

    Capraro, S. [Laboratoire DIOM, University of Saint-Etienne, 23 rue Michelon, 42023 Saint-Etienne Cedex (France)]. E-mail: stephane.capraro@univ-st-etienne.fr; Berre, M. Le [LPM, UMR 5511, INSA Lyon, 7 av. Jean Capelle, 69621 Villeurbanne Cedex (France); Chatelon, J.P. [Laboratoire DIOM, University of Saint-Etienne, 23 rue Michelon, 42023 Saint-Etienne Cedex (France); Bayard, B. [Laboratoire DIOM, University of Saint-Etienne, 23 rue Michelon, 42023 Saint-Etienne Cedex (France); Joisten, H. [CEA-LETI, 17 rue des martyrs, 38041 Grenoble Cedex (France); Canut, C. [LPMCN, University Lyon I, 43 Bvd. du 11 novembre 1918, 69622 Villerbanne, Cedex (France); Barbier, D. [LPM, UMR 5511, INSA Lyon, 7 av. Jean Capelle, 69621 Villeurbanne Cedex (France); Rousseau, J.J. [Laboratoire DIOM, University of Saint-Etienne, 23 rue Michelon, 42023 Saint-Etienne Cedex (France)

    2004-09-15

    The development of devices combining a ferrite with a semiconductor chip is a major focus of current research. Barium hexaferrite (BaFe{sub 12}O{sub 19} or BaM) thick films are deposited here using a RF magnetron sputtering system. Films are amorphous and non magnetic after deposition. Post-deposition thermal annealing is employed to make the films crystallize. The effects of the substrate, thermal annealing process, thickness, substrate temperature on crystallographic properties and stoichiometry are studied using a X-ray diffractometry (XRD) and Rutherford back-scattering (RBS). The in-depth homogeneity of Ba, Fe and O is evaluated by secondary ion mass spectroscopy (SIMS). The study shows a good crystallization of BaM films and there is a preferential orientation among the crystallographic planes (1 0 1), (2 0 0), (2 0 3), (1 0 2), (1 1 0) and (2 0 5) when BaM films are prepared at low RF power and when the substrate is heated. For several elaboration parameters, grains size is in the range of 25 and 40 nm and BaM films are stoichiometric with regard to the target stoichiometry.

  20. Crystallographic Orientation Effect on Electromigration in Ni-Sn Microbump

    Science.gov (United States)

    Huang, Yi-Ting; Chen, Chih-Hao; Chakroborty, Subhendu; Wu, Albert T.

    2017-07-01

    This article addresses the reliability challenges regarding electromigration in developing three-dimensional integrated circuits (3D-ICs). The line-type sandwich structure of Ni/Sn3.5Ag(15 μm)/Ni was used to simulate microbumps to examine the reliability of electromigration in 3D-IC technology. The solder strip of Ni/Sn3.5Ag(15 μm)/Ni was stressed with a current density of 1.0 × 104 A/cm2 at 150°C. The current stressing enhanced the reaction between the solder and Ni to form Ni3Sn4, which occupied the entire joint and transformed into a Ni/Ni3Sn4/Ni structure when the solder was completely consumed. Electron backscatter diffraction was used to analyze the crystallographic characteristics of Sn and Ni3Sn4 as related to the electromigration effect. The results indicated that the crystallographic orientation of Sn plays a significant role in the Ni/Sn3.5Ag/Ni, whereas the orientation of Ni3Sn4 is the dominant factor of diffusion behavior in the Ni/Ni3Sn4/Ni.

  1. Crystallographic alignment of high-density gallium nitride nanowire arrays.

    Science.gov (United States)

    Kuykendall, Tevye; Pauzauskie, Peter J; Zhang, Yanfeng; Goldberger, Joshua; Sirbuly, Donald; Denlinger, Jonathan; Yang, Peidong

    2004-08-01

    Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.

  2. Diffusion-equation method for crystallographic figure of merits.

    Science.gov (United States)

    Markvardsen, Anders J; David, William I F

    2010-09-01

    Global optimization methods play a significant role in crystallography, particularly in structure solution from powder diffraction data. This paper presents the mathematical foundations for a diffusion-equation-based optimization method. The diffusion equation is best known for describing how heat propagates in matter. However, it has also attracted considerable attention as the basis for global optimization of a multimodal function [Piela et al. (1989). J. Phys. Chem. 93, 3339-3346]. The method relies heavily on available analytical solutions for the diffusion equation. Here it is shown that such solutions can be obtained for two important crystallographic figure-of-merit (FOM) functions that fully account for space-group symmetry and allow the diffusion-equation solution to vary depending on whether atomic coordinates are fixed or not. The resulting expression is computationally efficient, taking the same order of floating-point operations to evaluate as the starting FOM function measured in terms of the number of atoms in the asymmetric unit. This opens the possibility of implementing diffusion-equation methods for crystallographic global optimization algorithms such as structure determination from powder diffraction data.

  3. Crystallographic studies of gas sorption in metal–organic frameworks

    Science.gov (United States)

    Carrington, Elliot J.; Vitórica-Yrezábal, Iñigo J.; Brammer, Lee

    2014-01-01

    Metal–organic frameworks (MOFs) are a class of porous crystalline materials of modular design. One of the primary applications of these materials is in the adsorption and separation of gases, with potential benefits to the energy, transport and medical sectors. In situ crystallography of MOFs under gas atmospheres has enabled the behaviour of the frameworks under gas loading to be investigated and has established the precise location of adsorbed gas molecules in a significant number of MOFs. This article reviews progress in such crystallographic studies, which has taken place over the past decade, but has its origins in earlier studies of zeolites, clathrates etc. The review considers studies by single-crystal or powder diffraction using either X-rays or neutrons. Features of MOFs that strongly affect gas sorption behaviour are discussed in the context of in situ crystallographic studies, specifically framework flexibility, and the presence of (organic) functional groups and unsaturated (open) metal sites within pores that can form specific interactions with gas molecules. PMID:24892587

  4. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  5. Gut Microbiota-brain Axis

    Science.gov (United States)

    Wang, Hong-Xing; Wang, Yu-Ping

    2016-01-01

    Objective: To systematically review the updated information about the gut microbiota-brain axis. Data Sources: All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of “gut microbiota”, “gut-brain axis”, and “neuroscience”. Study Selection: All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of study design. Results: It is well-recognized that gut microbiota affects the brain's physiological, behavioral, and cognitive functions although its precise mechanism has not yet been fully understood. Gut microbiota-brain axis may include gut microbiota and their metabolic products, enteric nervous system, sympathetic and parasympathetic branches within the autonomic nervous system, neural-immune system, neuroendocrine system, and central nervous system. Moreover, there may be five communication routes between gut microbiota and brain, including the gut-brain's neural network, neuroendocrine-hypothalamic-pituitary-adrenal axis, gut immune system, some neurotransmitters and neural regulators synthesized by gut bacteria, and barrier paths including intestinal mucosal barrier and blood-brain barrier. The microbiome is used to define the composition and functional characteristics of gut microbiota, and metagenomics is an appropriate technique to characterize gut microbiota. Conclusions: Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain, which may provide a new way to protect the brain in the near future. PMID:27647198

  6. Two-axis angular effector

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, Mark R. (Albuquerque, NM); Robinett, III, Rush D. (Tijeras, NM); Phelan, John R. (Albuquerque, NM); Van Zuiden, Don M. (Albuquerque, NM)

    1997-01-21

    A new class of coplanar two-axis angular effectors. These effectors combine a two-axis rotational joint analogous to a Cardan joint with linear actuators in a manner to produce a wider range of rotational motion about both axes defined by the joint. This new class of effectors also allows design of robotic manipulators having very high strength and efficiency. These effectors are particularly suited for remote operation in unknown surroundings, because of their extraordinary versatility. An immediate application is to the problems which arise in nuclear waste remediation.

  7. Two-axis angular effector

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, M.R.; Robinett, R.D. III; Phelan, J.R.; Zuiden, D.M. Van

    1997-01-21

    A new class of coplanar two-axis angular effectors is described. These effectors combine a two-axis rotational joint analogous to a Cardan joint with linear actuators in a manner to produce a wider range of rotational motion about both axes defined by the joint. This new class of effectors also allows design of robotic manipulators having very high strength and efficiency. These effectors are particularly suited for remote operation in unknown surroundings, because of their extraordinary versatility. An immediate application is to the problems which arise in nuclear waste remediation. 11 figs.

  8. Crystallographically driven magnetic behaviour of arrays of monocrystalline Co nanowires

    KAUST Repository

    Ivanov, Yu P.

    2014-11-07

    Cobalt nanowires, 40 nm in diameter and several micrometers long, have been grown by controlled electrodeposition into ordered anodic alumina templates. The hcp crystal symmetry is tuned by a suitable choice of the electrolyte pH (between 3.5 and 6.0) during growth. Systematic high resolution transmission electron microscopy imaging and analysis of the electron diffraction patterns reveals a dependence of crystal orientation from electrolyte pH. The tailored modification of the crystalline signature results in the reorientation of the magnetocrystalline anisotropy and increasing experimental coercivity and squareness with decreasing polar angle of the \\'c\\' growth axis. Micromagnetic modeling of the demagnetization process and its angular dependence is in agreement with the experiment and allows us to establish the change in the character of the magnetization reversal: from quasi-curling to vortex domain wall propagation modes when the crystal \\'c\\' axis tilts more than 75° in respect to the nanowire axis.

  9. Crystallographic shear mechanisms in Rh one-dimensional oxides

    Science.gov (United States)

    Hernando, María; Boulahya, Khalid; Parras, Marina; González-Calbet, José M.

    2005-02-01

    Electron diffraction and high resolution electron microscopy have been used to characterize two new one-dimensional superstructures in the A sbnd Rh sbnd O system (A = Ca, Sr) related to the 2H-ABO 3-type. They are formed by the intergrowth of n A 3A'BO 6 blocks, showing the Sr 4RhO 6-type, with A 12A' 2B 8O 30 blocks, constituted by two A 3O 9 and two A 3A'O 6 layers alternating in the stacking sequence 1:1, leading to the A 27A' 7B 13O 60 ( n=5) and A 30A' 8B 14O 66 ( n=6) compositions. A crystallographic shear mechanism is proposed to describe the structural relationship between Sr 4RhO 6 (A 3A'BO 6-type) and the new superstructures.

  10. 3D characterization of crystallographic orientation in polycrystals via EBSD

    Institute of Scientific and Technical Information of China (English)

    Stefan ZAEFFERER; Stuart I. WRIGHT

    2007-01-01

    Electron Backscatter Diffraction (EBSD) has been used in conjunction with a Scanning Electron Microscope (SEM) combined with a focused ion beam (FIB) instrument to obtain three dimensional (3D) high resolution characterizations of crystalline microstructures. This work reports on continued development that has proceeded on this technique. The technique is based on automated in-situ serial sectioning using the FIB and characterization of the sections using automated EBSD or orientation imaging microscopy (OIM). The technique extends the powerful features of two dimensional OIM into the third spatial dimension. This allows additional descriptive microstructural parameters to be obtained, for example the morphology and the crystallographic indices of interface planes. This paper provides an overview of the technique and shows results from two different samples: pearlite colonies in a high carbon steel and twin related grain triplets in a NiCo thin film.

  11. Crystallographic texturing in Nb3Sn multifilamentary superconducting composites

    Science.gov (United States)

    Cogan, Stuart F.; Rose, Robert M.

    1980-03-01

    Crystallographic texturing in Nb3Sn composites, fabricated by both the external diffusion and the commercial bronze processes, has been investigated. In the external-diffusion-processed composite the as-drawn texture of the copper matrix contained ca. 55% and 45% ; after recrystallization at 650 °C for 16 h this changed to 70% and 30% . Tin plating and reaction heat treatment for 40 h at 650 °C eliminated most of the texturing. In a commercial bronze-processed composite a or texture was obtained in the as-drawn bronze matrix, and after a reaction heat treatment at 700 °C for 30 h a diffuse texture was developed. In both composites the Nb3Sn reaction layer exhibited no preferred orientation.

  12. Anatomical study of the gastrointestinal tract in free-living axis deer (Axis axis).

    Science.gov (United States)

    Pérez, W; Erdogan, S; Ungerfeld, R

    2015-02-01

    The macroscopic anatomy of the stomach and intestines of adult axis deer (Axis axis), a cervid species considered intermediate/mixed feeder, was observed and recorded. Nine adult wild axis deers of both sexes were used and studied by simple dissection. The ruminal papillae were distributed unevenly in the overall area of the inner surface of rumen and primarily were more large and abundant within the atrium. The ruminal pillars had no papillae. There was an additional ruminal pillar located between the right longitudinal and right coronary ventral pillars connected to the caudal pillar. No dorsal coronary pillars were found, and the ventral coronary pillars are connected. The reticulum was the third compartment in size, and the maximum height of the reticular crests was 1.0 mm. The Cellulae reticuli were not divided and rarely contained secondary crests. There were no Papillae unguiculiformes. The omasum was the smallest gastric compartment. The abomasum had about twelve spiral plicae, and a small pyloric torus was present. The intraruminal papillation was similar to those species that are characterized by a higher proportion of grass in their natural diet. The finding of the small reticular crests is typical for browser ruminants and was coincident with data reported for other deer. The comparative ratio of the small intestine to the large intestine was 1.69, in terms of length measurements in axis deer and appears below of the 'browser range'. We concluded that the gastrointestinal system of axis deer reflected similar morphological characteristics of the both types of ruminants: browser and grazer, and we consider it as an intermediate feeder. © 2014 Blackwell Verlag GmbH.

  13. Ocean acidification reduces the crystallographic control in juvenile mussel shells.

    Science.gov (United States)

    Fitzer, Susan C; Cusack, Maggie; Phoenix, Vernon R; Kamenos, Nicholas A

    2014-10-01

    Global climate change threatens the oceans as anthropogenic carbon dioxide causes ocean acidification and reduced carbonate saturation. Future projections indicate under saturation of aragonite, and potentially calcite, in the oceans by 2100. Calcifying organisms are those most at risk from such ocean acidification, as carbonate is vital in the biomineralisation of their calcium carbonate protective shells. This study highlights the importance of multi-generational studies to investigate how marine organisms can potentially adapt to future projected global climate change. Mytilus edulis is an economically important marine calcifier vulnerable to decreasing carbonate saturation as their shells comprise two calcium carbonate polymorphs: aragonite and calcite. M. edulis specimens were cultured under current and projected pCO2 (380, 550, 750 and 1000μatm), following 6months of experimental culture, adults produced second generation juvenile mussels. Juvenile mussel shells were examined for structural and crystallographic orientation of aragonite and calcite. At 1000μatm pCO2, juvenile mussels spawned and grown under this high pCO2 do not produce aragonite which is more vulnerable to carbonate under-saturation than calcite. Calcite and aragonite were produced at 380, 550 and 750μatm pCO2. Electron back scatter diffraction analyses reveal less constraint in crystallographic orientation with increased pCO2. Shell formation is maintained, although the nacre crystals appear corroded and crystals are not so closely layered together. The differences in ultrastructure and crystallography in shells formed by juveniles spawned from adults in high pCO2 conditions may prove instrumental in their ability to survive ocean acidification. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Transuranic Hybrid Materials: Crystallographic and Computational Metrics of Supramolecular Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Surbella, Robert G. [Department; Ducati, Lucas C. [Department; Pellegrini, Kristi L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; McNamara, Bruce K. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Autschbach, Jochen [Department; Schwantes, Jon M. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Cahill, Christopher L. [Department

    2017-07-26

    A family of twelve supramolecular [AnO2Cl4]2- (An = U, Np, Pu) containing compounds assembled via hydrogen and halogen bonds donated by substituted 4-X-pyridinium cations (X = H, Cl, Br, I) is reported. These materials were prepared from a room-temperature synthesis wherein crystallization of unhydrolyzed and valence pure [An(VI)O2Cl4]2- (An = U, Np, Pu) tectons are the norm. We present a hierarchy of assembly criteria based on crystallographic observations, and subsequently quantify the strengths of the non-covalent interactions using Kohn-Sham density functional calculations. We provide, for the first time, a detailed description of the electrostatic potentials (ESPs) of the actinyl tetrahalide dianions and reconcile crystallographically observed structural motifs and non-covalent interaction (NCI) acceptor-donor pairings. Our findings indicate that the average electrostatic potential across the halogen ligands (the acceptors) changes by only ~2 kJ mol-1 across the AnO22+ series, indicating the magnitude of the potential is independent of the metal center. The role of the cation is therefore critical in directing structural motifs and dictating the resulting hydrogen and halogen bond strengths, the former being stronger due to the positive charge centralized on the pyridyl nitrogen N-H+. Subsequent analyses using the Quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) approaches support this conclusion and highlight the structure directing role of the cations. Whereas one can infer that the 2 Columbic attraction is the driver for assembly, the contribution of the non-covalent interaction is to direct the molecular-level arrangement (or disposition) of the tectons.

  15. Fetal and Neonatal HPA Axis.

    Science.gov (United States)

    Wood, Charles E; Walker, Claire-Dominique

    2015-12-15

    Stress is an integral part of life. Activation of the hypothalamus-pituitary-adrenal (HPA) axis in the adult can be viewed as mostly adaptive to restore homeostasis in the short term. When stress occurs during development, and specifically during periods of vulnerability in maturing systems, it can significantly reprogram function, leading to pathologies in the adult. Thus, it is critical to understand how the HPA axis is regulated during developmental periods and what are the factors contributing to shape its activity and reactivity to environmental stressors. The HPA axis is not a passive system. It can actively participate in critical physiological regulation, inducing parturition in the sheep for instance or being a center stage actor in the preparation of the fetus to aerobic life (lung maturation). It is also a major player in orchestrating mental function, metabolic, and cardiovascular function often reprogrammed by stressors even prior to conception through epigenetic modifications of gametes. In this review, we review the ontogeny of the HPA axis with an emphasis on two species that have been widely studied-sheep and rodents-because they each share many similar regulatory mechanism applicable to our understanding of the human HPA axis. The studies discussed in this review should ultimately inform us about windows of susceptibility in the developing brain and the crucial importance of early preconception, prenatal, and postnatal interventions designed to improve parental competence and offspring outcome. Only through informed studies will our public health system be able to curb the expansion of many stress-related or stress-induced pathologies and forge a better future for upcoming generations.

  16. Neospora caninum is a cause of perinatal mortality in axis deer (Axis axis).

    Science.gov (United States)

    Basso, Walter; Moré, Gastón; Quiroga, Maria Alejandra; Balducchi, Diego; Schares, Gereon; Venturini, Maria Cecilia

    2014-01-31

    Neospora caninum is a worldwide distributed protozoan that may cause neuromuscular disease in dogs and reproductive failure in domestic and wild ruminants. One axis fawn (Axis axis) and four neonates from the same deer herd died at a zoo in Argentina within a four-month period. The fawn presented with dilatation of the anal sphincter at birth and incontinence, developed weakness and ataxia and died at 14 days of age. At necropsy, a mega formation of the distal large intestine was observed. Microscopically, non-suppurative encephalitis, suppurative bronchopneumonia, fibrin necrotic enteritis and degenerative changes in the liver were observed in hematoxilin and eosin-stained tissue sections, and thick-walled N. caninum-like cysts were observed in fresh brain samples. Serologic studies for N. caninum revealed an IFAT titer of 1:6400 in the fawn and 1:25, 1:400, 1:3200 and 1:6400 in the neonates. N. caninum DNA was detected in brain samples from the fawn and from one neonate by PCR, and the parasite was isolated in vitro from the fawn' brain after passage through gerbils (Meriones unguiculatus) and gamma-interferon knock-out mice. N. caninum DNA obtained from the fawn, neonate and isolated parasites showed the same microsatellite pattern. This suggests a common infection source for both animals. The diagnosis of N. caninum infection was confirmed, suggesting its association with perinatal mortality in captive axis deer. To the best of our knowledge, this is the first report of clinical disease associated to N. caninum infection in axis deer and of isolation of the parasite from this wild ruminant species.

  17. The Axis of Evil revisited

    CERN Document Server

    Land, K; Land, Kate; Magueijo, Joao

    2006-01-01

    In light of the three-year data release from WMAP we re-examine the evidence for the ``Axis of Evil''. We discover that previous frequentist methods are not robust with respect to the data-sets available and different treatments of the galactic plane. We identify the cause of the instability and show that this result is not a weakness of the data. This is further confirmed by exhibiting an alternative approach, Bayesian in flavour, and based on a likelihood method and the information criteria. We find strong (and sometimes decisive) evidence for the ``Axis of Evil'' in almost all renditions of the WMAP data. However some significant differences between data-sets remain, and the quantitative aspects of the result depend on the particular information criteria used.

  18. Critique of the two-fold measure of prediction success for ratios: application for the assessment of drug-drug interactions.

    Science.gov (United States)

    Guest, Eleanor J; Aarons, Leon; Houston, J Brian; Rostami-Hodjegan, Amin; Galetin, Aleksandra

    2011-02-01

    Current assessment of drug-drug interaction (DDI) prediction success is based on whether predictions fall within a two-fold range of the observed data. This strategy results in a potential bias toward successful prediction at lower interaction levels [ratio of the area under the concentration-time profile (AUC) in the presence of inhibitor/inducer compared with control is assessment of different DDI prediction algorithms if databases contain large proportion of interactions in this lower range. Therefore, the current study proposes an alternative method to assess prediction success with a variable prediction margin dependent on the particular AUC ratio. The method is applicable for assessment of both induction and inhibition-related algorithms. The inclusion of variability into this predictive measure is also considered using midazolam as a case study. Comparison of the traditional two-fold and the new predictive method was performed on a subset of midazolam DDIs collated from previous databases; in each case, DDIs were predicted using the dynamic model in Simcyp simulator. A 21% reduction in prediction accuracy was evident using the new predictive measure, in particular at the level of no/weak interaction (AUC ratio assessed via the new predictive measure. Thus, the study proposes a more logical method for the assessment of prediction success and its application for induction and inhibition DDIs.

  19. An introduction to the tools hosted in the Bilbao Crystallographic Server

    Directory of Open Access Journals (Sweden)

    Aroyo M.I.

    2012-03-01

    Full Text Available The programs hosted in the Bilbao Crystallographic Server (http://www.cryst.ehu.es are briefly explained along with worked examples on various cases related to different fields of applications. It is our aim to have this text acting as a primer on the various usage of the crystallographic tools in conjunction with each other due to the modular structure of the server. For this reason, diverse topics such as crystallographic groups and their subgroups, pseudosymmetry, extinction conditions, k-vectors and irreducible representations have been discussed in the context.

  20. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    Directory of Open Access Journals (Sweden)

    Emilie Ringe

    2014-11-01

    Full Text Available Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR, the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask `how are nanoshapes created?', `how does the shape relate to the atomic packing and crystallography of the material?', `how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  1. Pulsed neutron spectroscopic imaging for crystallographic texture and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Hirotaka, E-mail: hakuryu@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Kamiyama, Takashi [Graduate School of Engineering, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Iwase, Kenji; Ishigaki, Toru [Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Ibaraki 319-1106 (Japan); Kiyanagi, Yoshiaki [Graduate School of Engineering, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan)

    2011-09-21

    A time-of-flight (TOF) spectroscopic neutron imaging at a pulsed neutron source is expected to be a new material analysis tool because this method can non-destructively investigate the spatial dependence of the crystallographic and metallographic information in a bulk material. For quantitative evaluation of such information, a spectral analysis code for the transmission data is necessary. Therefore, we have developed a Rietveld-like analysis code, RITS. Furthermore, we have applied the RITS code to evaluation of the position dependence of the crystal orientation anisotropy, the preferred orientation and the crystallite size of a welded {alpha}-iron plate, and we successfully obtained the information on the texture and the microstructure. However, the reliability of the values given by the RITS code has not been evaluated yet in detail. For this reason, we compared the parameters provided by the RITS code with the parameters obtained by the neutron TOF powder diffractometry and its Rietveld analysis. Both the RITS code and the Rietveld analysis software indicated values close to each other, but there were systematic differences on the preferred orientation and the crystallite size.

  2. Crystallographic structure of ubiquitin in complex with cadmium ions

    Directory of Open Access Journals (Sweden)

    Cheung Peter

    2009-12-01

    Full Text Available Abstract Background Ubiquitination plays a critical role in regulating many cellular processes, from DNA repair and gene transcription to cell cycle and apoptosis. It is catalyzed by a specific enzymatic cascade ultimately leading to the conjugation of ubiquitin to lysine residues of the target protein that can be the ubiquitin molecule itself and to the formation of poly-ubiquitin chains. Findings We present the crystal structure at 3.0 Å resolution of bovine ubiquitin crystallized in presence of cadmium ions. Two molecules of ubiquitin are present in the asymmetric unit. Interestingly this non-covalent dimeric arrangement brings Lys-6 and Lys-63 of each crystallographically-independent monomer in close contact with the C-terminal ends of the other monomer. Residues Leu-8, Ile-44 and Val-70 that form a hydrophobic patch at the surface of the Ub monomer are trapped at the dimer interface. Conclusions The structural basis for signalling by poly-Ub chains relies on a visualization of conformations of alternatively linked poly-Ub chains. This arrangement of ubiquitin could illustrate how linkages involving Lys-6 or Lys-63 of ubiquitin are produced in the cell. It also details how ubiquitin molecules can specifically chelate cadmium ions.

  3. Cassia grandis Linn. f. seed galactomannan: structural and crystallographical studies.

    Science.gov (United States)

    Joshi, Harsha; Kapoor, Virendra P

    2003-09-01

    Cassia grandis is a small or medium sized tree, found in abundance throughout India. The seeds contain about 50% endosperm gum and possess the characteristics of becoming a potential source of seed gum. The purified polysaccharide has been characterized as a pure galactomannan having a mannose-galactose ratio of 3.15; molecular weight (Mw) 80,200; polydispersity (Mw/Mn), 1.35 and intrinsic viscosity [eta], 848 mL/g. Methylation, periodate oxidation, Smith degradation and 13C NMR studies confirm that the polysaccharide has the basic structure of legume galactomannans consisting of a beta-(1-->4)-linked main mannan backbone to which galactose units are attached at O-6. The orthorhombic lattice constants of the hydrated gum are as follows: a=9.00, b=24.81, c=10.30 A. The crystallographic data establish that the probable space group symmetry of the unit cell is P2(1)2(1)2. The results are in contradiction to earlier reports (Indian J. Chem. 16B (1978) 966; J. Indian Chem. Soc. 55 (1978) 1216) in which a non-galactomannan polysaccharide structure has been assigned having a main chain of (1-->4)-linked galactose and mannose units in the molar ratio 6:3, where 50% of the galactose units branched with two galactose and one mannose through 1-->3 linkage.

  4. Crystallographic analysis of amorphization caused by ion irradiation

    CERN Document Server

    Nakagawa, S T; Ono, T; Hada, Y; Betz, G

    2003-01-01

    Ion irradiation often causes amorphization in a crystal. We have presented a new crystallographic analysis that defines a new type of order parameter, which we call pixel mapping (PM). PM can describe algebraically to what extent and how the crystallinity has changed under ion bombardment. In other words, PM describes the long-range-order (LRO) interactions, based on the crystallography. PM can be effectively used, when it is incorporated in a classical molecular dynamics (MD) calculation. In the case of B ions implanted into a Si crystal, we observed crystal to amorphous (CA) transitions under energetic ion bombardment at low temperature. The PM profiling was more effective to reveal the CA transition than other atomistic methods of analyses as radial distribution function g(r) or vacancy mapping N sub v. PM could distinguish between perfect crystalline states, transition states, and random states. Moreover, PM revealed that the lattice reaction was cooperative even in a mesoscopic volume, e.g. in a cube of ...

  5. Nanocrystalline materials: recent advances in crystallographic characterization techniques.

    Science.gov (United States)

    Ringe, Emilie

    2014-11-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask 'how are nanoshapes created?', 'how does the shape relate to the atomic packing and crystallography of the material?', 'how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  6. Crystallization and preliminary crystallographic analysis of recombinant human galectin-1

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Stacy A. [Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland 4222 (Australia); Scott, Ken [School of Biological Sciences, University of Auckland, Auckland (New Zealand); Blanchard, Helen, E-mail: h.blanchard@griffith.edu.au [Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland 4222 (Australia)

    2007-11-01

    Human galectin-1 has been cloned, expressed in E. coli, purified and crystallized in the presence of both lactose (ligand) and β-mercaptoethanol under six different conditions. The X-ray diffraction data obtained have enabled the assignment of unit-cell parameters for two novel crystal forms of human galectin-1. Galectin-1 is considered to be a regulator protein as it is ubiquitously expressed throughout the adult body and is responsible for a broad range of cellular regulatory functions. Interest in galectin-1 from a drug-design perspective is founded on evidence of its overexpression by many cancers and its immunomodulatory properties. The development of galectin-1-specific inhibitors is a rational approach to the fight against cancer because although galectin-1 induces a plethora of effects, null mice appear normal. X-ray crystallographic structure determination will aid the structure-based design of galectin-1 inhibitors. Here, the crystallization and preliminary diffraction analysis of human galectin-1 crystals generated under six different conditions is reported. X-ray diffraction data enabled the assignment of unit-cell parameters for crystals grown under two conditions, one belongs to a tetragonal crystal system and the other was determined as monoclinic P2{sub 1}, representing two new crystal forms of human galectin-1.

  7. Phormidium phycoerythrin forms hexamers in crystals: a crystallographic study.

    Science.gov (United States)

    Sonani, Ravi Raghav; Sharma, Mahima; Gupta, Gagan Deep; Kumar, Vinay; Madamwar, Datta

    2015-08-01

    The crystallographic analysis of a marine cyanobacterium (Phormidium sp. A09DM) phycoerythrin (PE) that shows distinct sequence features compared with known PE structures from cyanobacteria and red algae is reported. Phormidium PE was crystallized using the sitting-drop vapour-diffusion method with ammonium sulfate as a precipitant. Diffraction data were collected on the protein crystallography beamline at the Indus-2 synchrotron. The crystals diffracted to about 2.1 Å resolution at 100 K. The crystals, with an apparent hexagonal morphology, belonged to space group P1, with unit-cell parameters a = 108.3, b = 108.4 Å, c = 116.6 Å, α = 78.94, β = 82.50, γ = 60.34°. The molecular-replacement solution confirmed the presence of 12 αβ monomers in the P1 cell. The Phormidium PE elutes as an (αβ)3 trimer of αβ monomers from a molecular-sieve column and exists as [(αβ)3]2 hexamers in the crystal lattice. Unlike red algal PE proteins, the hexamers of Phormidium PE do not form higher-order structures in the crystals. The existence of only one characteristic visual absorption band at 564 nm suggests the presence of phycoerythrobilin chromophores, and the absence of any other types of bilins, in the Phormidium PE assembly.

  8. Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data.

    Science.gov (United States)

    Breen, Andrew J; Babinsky, Katharina; Day, Alec C; Eder, K; Oakman, Connor J; Trimby, Patrick W; Primig, Sophie; Cairney, Julie M; Ringer, Simon P

    2017-03-14

    Correlative microscopy approaches offer synergistic solutions to many research problems. One such combination, that has been studied in limited detail, is the use of atom probe tomography (APT) and transmission Kikuchi diffraction (TKD) on the same tip specimen. By combining these two powerful microscopy techniques, the microstructure of important engineering alloys can be studied in greater detail. For the first time, the accuracy of crystallographic measurements made using APT will be independently verified using TKD. Experimental data from two atom probe tips, one a nanocrystalline Al-0.5Ag alloy specimen collected on a straight flight-path atom probe and the other a high purity Mo specimen collected on a reflectron-fitted instrument, will be compared. We find that the average minimum misorientation angle, calculated from calibrated atom probe reconstructions with two different pole combinations, deviate 0.7° and 1.4°, respectively, from the TKD results. The type of atom probe and experimental conditions appear to have some impact on this accuracy and the reconstruction and measurement procedures are likely to contribute further to degradation in angular resolution. The challenges and implications of this correlative approach will also be discussed.

  9. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    Science.gov (United States)

    Ringe, Emilie

    2014-01-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask ‘how are nanoshapes created?’, ‘how does the shape relate to the atomic packing and crystallography of the material?’, ‘how can we control and characterize the external shape and crystal structure of such small nanocrystals?’. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed. PMID:25485133

  10. Crystallographic Fabrics, Grain Boundary Microstructure and Shape Preferred Orientation of Deformed Banded Iron Formations and their Significance for Deformation Interpretation

    Science.gov (United States)

    Ávila, Carlos Fernando; Graça, Leonardo; Lagoeiro, Leonardo; Ferreira, Filippe

    2016-04-01

    The characterization of grain boundaries and shapes along with crystallographic preferred orientations (CPOs) are a key aspect of investigations of rock microstructures for their correlation with deformation mechanisms. Rapid developments have occurred in the studying rock microstructures due to recent improvements in analytical techniques such as Electron Backscatter Diffraction (EBSD). EBSD technique allows quick automated microtextural characteritzation. The deformed banded iron formations (BIFs) occurring in the Quadrilátero Ferrífero (QF) province in Brazil have been studied extensively with EBSD. All studies have focused mainly in CPOs. The general agreement is that dislocation creep was the dominant process of deformation, for the strong c-axis fabric of hematite crystals. This idea is substantiated by viscoplastic self-consistent models for deformation of hematite. However there are limitations to analyzing natural CPOs alone, or those generated by deformation models. The strong c-axis fabric could be taken as equally powerful an evidence for other known deformation mechanisms. Some grain boundary types in BIFs of the QF are irregular and comprise equant grains in granoblastic texture (Figure 1a). CPOs for this kind are strong and consistent with a predominance of dislocation creep. Others are very regular and long parallel to basal planes of hematites forming large elongated crystals (lepidoblastic texture, Figure 1b). Such crystals are called specularite, and their formation has been previously attributed to dislocation creep. This is erroneous because of the high strains which would be required. Their shape must be due to anisotropic grain growth. Other types lie between the above end-textures. Both types of grain shape microstructures have the same core deformation mechanism. Describing their genetic differences is crucial, since specularite owe its shape to anisotropic grain growth. It is not possible yet to confirm that dislocation creep was the

  11. Crystallographic control on early stages of cataclasis in carbonate fault gouges

    Science.gov (United States)

    Demurtas, Matteo; Smith, Steven A. F.; Fondriest, Michele; Spagnuolo, Elena; Di Toro, Giulio

    2017-04-01

    Carbonates are a recurring lithology in most of active seismic areas worldwide, such as the Apennines (Italy). Here, typical fault products are gouges and cataclasites made of mixtures of carbonate minerals (i.e., calcite and dolomite) that occasionally exhibit a foliation. Natural fault gouges often contain minerals with strong anisotropies, such as cleavage surfaces in phyllosilicates and carbonates. Therefore, the understanding of the role of such anisotropies during shearing is important to develop realistic microphysical models of brittle fragmentation and grain size reduction. Here we present results of microstructural and coupled EDS-EBSD (Energy Dispersive Spectroscopy - Electron Backscattered Diffraction) analysis on mixtures (50/50wt%) of calcite-dolomite gouges deformed experimentally in a rotary shear apparatus (SHIVA, INGV-Rome) at room temperature under constant normal stress of 17.5 MPa and slip rates of 30 µm/s to 1 m/s. The EDS-EBSD analysis was focused on the gouge layer underlying the slip zone, which has been previously demonstrated to accommodate low finite shear strain during deformation. At all investigated slip rates, calcite develops a crystallographic preferred orientation (CPO) on the (0001) plane, with the c-axis inclined subparallel to the principal stress and the [-1-120] direction forming a girdle perpendicular to it. Texture strength typically increases with slip rate and appears not to be influenced by the presence of water or foliation development in the gouge during deformation. Misorientation analysis suggests twinning as the principal crystallographic active deformation mechanism. Instead, dolomite grains do not develop a CPO. Microfractures are closely spaced, mainly oriented subparallel to the principal stress and rarely exploit calcite twin planes. The latter typically occur at high angle with respect to fractures, are oriented consistently with the sense of shear and almost orthogonal to the principal stress. Calcite grains

  12. Variations in Reactivity on Different Crystallographic Orientations of Cerium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, David R [ORNL; Albrecht, Peter M [ORNL; Calaza, Florencia C [ORNL

    2013-01-01

    Cerium oxide is a principal component in many heterogeneous catalytic processes. One of its key characteristics is the ability to provide or remove oxygen in chemical reactions. The different crystallographic faces of ceria present significantly different surface structures and compositions that may alter the catalytic reactivity. The structure and composition determine the number of coordination vacancies surrounding surface atoms, the availability of adsorption sites, the spacing between adsorption sites and the ability to remove O from the surface. To investigate the role of surface orientation on reactivity, CeO2 films were grown with two different orientations. CeO2(100) films were grown ex situ by pulsed laser deposition on Nb-doped SrTiO3(100). CeO2(111) films were grown in situ by thermal deposition of Ce metal onto Ru(0001) in an oxygen atmosphere. The chemical reactivity was characterized by the adsorption and decomposition of various molecules such as alcohols, aldehydes and organic acids. In general the CeO2(100) surface was found to be more active, i.e. molecules adsorbed more readily and reacted to form new products, especially on a fully oxidized substrate. However the CeO2(100) surface was less selective with a greater propensity to produce CO, CO2 and water as products. The differences in chemical reactivity are discussed in light of possible structural terminations of the two surfaces. Recently nanocubes and nano-octahedra have been synthesized that display CeO2(100) and CeO2(111) faces, respectively. These nanoparticles enable us to correlate reactions on high surface area model catalysts at atmospheric pressure with model single crystal films in a UHV environment.

  13. Shape and crystallographic orientation of nanodiamonds for quantum sensing.

    Science.gov (United States)

    Ong, S Y; Chipaux, M; Nagl, A; Schirhagl, R

    2017-01-23

    Nanodiamonds with dimensions down to a few tens of nanometers containing nitrogen-vacancy (NV) color centers have revealed their potential as powerful and versatile quantum sensors with a unique combination of spatial resolution and sensitivity. The NV centers allow transducing physical properties, such as strain, temperature, and electric or magnetic field, to an optical transition that can be detected in the single photon range. For example, this makes it possible to sense a single electron spin or a few nuclear spins by detecting their magnetic resonance. The location and orientation of these defects with respect to the diamond surface play a crucial role in interpreting the data and predicting their sensitivities. Despite its relevance, the geometry of these nanodiamonds has never been thoroughly investigated. Without accurate data, spherical models have been applied to interpret or predict results in the past. With the use of High Resolution Transmission Electron Microscopy (HR-TEM), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), we investigated nanodiamonds with an average hydrodynamic diameter of 25 nm (the most common type for quantum sensing) and found a flake-like geometry, with 23.2 nm and 4.5 nm being the average lateral and vertical dimensions. We have also found evidence for a preferred crystallographic orientation of the main facet in the (110) direction. Furthermore, we discuss the consequences of this difference in geometry on diamond-based applications. Shape not only influences the creation efficiency of nitrogen-vacancy centers and their quantum coherence properties (and thus sensing performance), but also the optical properties of the nanodiamonds, their interaction with living cells, and their surface chemistry.

  14. C-axis Resistivity of Superconductive FeSe Single Crystals: Upper Critical Field and its Angular Behavior

    Science.gov (United States)

    Sadakov, A. V.; Romanova, T. A.; Knyazev, D. A.; Chareev, D. A.; Martovitsky, V. P.

    We report out-of-plane magnetotransport ρc(B, T) measurements for a high quality superconducting FeSe single crystals in magnetic fields up to 9 Tesla. Samples, grown from the flux under a permanent gradient of temperature with [001] crystallographic orientation were put in magnetic field parallel to ab-plane. The samples were rotated around c-axis, and its superconducting transitions R(H) were measured for each fixed angle in several temperatures. We show that Hc2 is anisotropic in these relatively small fields, with Hc2||a/Hc2||b being ∼1.2 for T=8.3K.

  15. Energetic, crystallographic and diffusion characteristics of hydrogen isotopes in iron

    Energy Technology Data Exchange (ETDEWEB)

    Sivak, A.B., E-mail: sivak_ab@nrcki.ru [National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., Moscow 123182 (Russian Federation); National Research Tomsk State University, 36, Lenina pr., Tomsk 634050 (Russian Federation); Sivak, P.A., E-mail: sivak_pa@nrcki.ru [National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., Moscow 123182 (Russian Federation); Romanov, V.A., E-mail: romanov-ippe@mail.ru [National Research Tomsk State University, 36, Lenina pr., Tomsk 634050 (Russian Federation); A.I. Leypunski Institute of Physics and Power Engineering (IPPE), 1, Bondarenko pl., Obninsk, Kaluga reg. 249033 (Russian Federation); Chernov, V.M., E-mail: vmchernov@bochvar.ru [National Research Tomsk State University, 36, Lenina pr., Tomsk 634050 (Russian Federation); A.A. Bochvar High-technology Research Institute of Inorganic Materials (JSC “VNIINM”), 5-a, Rogova ul., PoB 369, Moscow 123098 (Russian Federation); National Research Nuclear University “MEPhI”, 31, Kashirskoye sh., Moscow 115409 (Russian Federation)

    2015-06-15

    Highlights: • H isotopes properties in Fe were calculated by molecular statics and dynamics methods. • The binding energies of complexes “H atoms – self-defects” were calculated. • Temperature dependencies of H isotopes diffusivities have parabolic form at T > 250 K. • There is a good agreement between MD and experimental data for protium diffusivity. • H isotopes diffusivities are within 10% at 293 K. Isotope effect increases with temperature. - Abstract: Energetic, crystallographic and diffusion characteristics of various interstitial configurations of H atoms and their complexes with self-point defects (SIA – self-interstitial atom, V – vacancy) in bcc iron have been calculated by molecular statics and molecular dynamics using Fe–H interatomic interaction potential developed by Ramasubramaniam et al. (2009) and modified by the authors of the present work and Fe–Fe matrix potential M07 developed by Malerba et al. (2010). The most energetically favorable configuration of an interstitial H atom is tetrahedral configuration. The energy barrier for H atom migration is 0.04 eV. The highest binding energy of all the considered complexes “vacancy – H atom” and “SIA – H atom” is 0.54 and 0.15 eV, respectively. The binding energy of H atom with edge dislocations in slip systems 〈1 1 1〉{1 1 0}, 〈1 1 1〉{1 1 2}, 〈1 0 0〉{1 0 0}, 〈1 0 0〉{1 1 0} is 0.32, 0.30, 0.45, 0.54 eV, respectively. The binding energy of H atom in VH{sub n} complexes (n = 1 … 15) decreases from 0.54 to 0.35 eV with increasing of n from 1 to 6. At n > 6, it decreases to ∼0.1 eV. The temperature dependences of hydrogen isotopes (P, D, T) diffusivities have been calculated for the temperature range 70–1800 K. Arrhenius-type dependencies describe the calculated data at temperatures T < 100 K. At T > 250 K, the temperature dependencies of the diffusivities D{sup P}, D{sup D}, D{sup T} have a parabolic form. The diffusivities of H isotopes are within 10

  16. Crystallographic transformation of limestone during calcination under CO2.

    Science.gov (United States)

    Valverde, Jose Manuel; Medina, Santiago

    2015-09-14

    The calcination reaction of limestone (CaCO3) to yield lime (CaO) is at the heart of many industrial applications as well as natural processes. In the recently emerged calcium-looping technology, CO2 capture is accomplished by the carbonation of CaO in a gas-solid reactor (carbonator). CaO is derived by the calcination of limestone in a calciner reactor under necessarily high CO2 partial pressure and high temperature. In situ X-ray diffraction (XRD) has been employed in this work to gain further insight into the crystallographic transformation that takes place during the calcination of limestone under CO2, at partial pressures (P) close to the equilibrium pressure (Peq) and at high temperature. Calcination under these conditions becomes extremely slow. The in situ XRD analysis presented here suggests the presence of an intermediate metastable CaO* phase stemming from the parent CaCO3 structure. According to the reaction mechanism proposed elsewhere, the exothermicity of the CaO* → CaO transformation and high values of P/Peq inhibit the nucleation of CaO at high temperatures. The wt% of CaO* remains at a relatively high level during slow calcination. Two diverse stages have been identified in the evolution of CaO crystallite size, L. Initially, L increases with CaCO3 conversion, following a logarithmic law. Slow calcination allows the crystallite size to grow up from a few nanometers at nucleation up to around 100 nm near the end of conversion. Otherwise, quick calcination at relatively lower CO2 concentrations limits CaO crystallite growth. Once calcination reaches an advanced state, the presence of CaO* drops to zero and the rate of increase of the CaO crystallite size is significantly hindered. Arguably, the first stage in CaO crystallite growth is driven by aggregation of the metastable CaO* nanocrystals, due to surface attractive forces, whereas the second one is consistent with sintering of the aggregated CaO crystals, and persists with time after full

  17. Antenna Axis Offset Estimation from VLBI

    Science.gov (United States)

    Kurdubov, Sergey; Skurikhina, Elena

    2010-01-01

    The antenna axis offsets were estimated from global solutions and single sessions. We have built a set of global solutions from R1 and R4 sessions and from the sets of sessions between SVETLOE repairs. We compared our estimates with local survey data for the stations of the QUASAR network. Svetloe station axis offset values have changed after repairs. For non-global networks, the axis offset value of a single station can significantly affect the EOP estimations.

  18. A numerical method of tracing a vortical axis along local topological axis line

    Science.gov (United States)

    Nakayama, Katsuyuki; Hasegawa, Hideki

    2016-06-01

    A new numerical method is presented to trace or identify a vortical axis in flow, which is based on Galilean invariant flow topology. We focus on the local flow topology specified by the eigenvalues and eigenvectors of the velocity gradient tensor, and extract the axis component from its flow trajectory. Eigen-vortical-axis line is defined from the eigenvector of the real eigenvalue of the velocity gradient tensor where the tensor has the conjugate complex eigenvalues. This numerical method integrates the eigen-vortical-axis line and traces a vortical axis in terms of the invariant flow topology, which enables to investigate the feature of the topology-based vortical axis.

  19. Principles of the prolactin/vasoinhibin axis.

    Science.gov (United States)

    Triebel, Jakob; Bertsch, Thomas; Bollheimer, Cornelius; Rios-Barrera, Daniel; Pearce, Christy F; Hüfner, Michael; Martínez de la Escalera, Gonzalo; Clapp, Carmen

    2015-11-15

    The hormonal family of vasoinhibins, which derive from the anterior pituitary hormone prolactin, are known for their inhibiting effects on blood vessel growth, vasopermeability, and vasodilation. As pleiotropic hormones, vasoinhibins act in multiple target organs and tissues. The generation, secretion, and regulation of vasoinhibins are embedded into the organizational principle of an axis, which integrates the hypothalamus, the pituitary, and the target tissue microenvironment. This axis is designated as the prolactin/vasoinhibin axis. Disturbances of the prolactin/vasoinhibin axis are associated with the pathogenesis of retinal and cardiac diseases and with diseases occurring during pregnancy. New phylogenetical, physiological, and clinical implications are discussed.

  20. Acute injuries of the axis vertebra

    Energy Technology Data Exchange (ETDEWEB)

    Burke, J.T. (United General Hospital, Sedro Woolley, WA (USA)); Harris, J.H. (Texas Univ., Houston, TX (USA). Dept. of Radiology)

    1989-08-01

    A retrospective analysis of 165 patients admitted to Hermann Hospital with acute injuries of the axis vertebra revealed 68 (41%) dens fractures, 62 (38%) cases of traumatic spondylolisthesis ('hangman's' fracture), 21 (13%) extension teardrop fractures, 10 (6%) hyperextension dislocations, and 2 (1.0%) fractures each of the laminae and spinous processes. Of the axis injuries 31 (18%) were limited to the axis body alone. Of these, 21 (61%) were hyperextension teardrop fractures and 10 (32%) were hyperextension dislocations. Axis injuries were associated with acute injuries of other cervical vertebrae in 14 (8%) of the patients. (orig./GDG).

  1. A News Recommendation Method Based on Two-Fold Clustering%基于二次聚类的新闻推荐方法

    Institute of Scientific and Technical Information of China (English)

    古万荣; 董守斌; 何锦潮; 曾之肇

    2014-01-01

    Due to fast update of news , the clustering-based preprocessing is usually needed when the news is recom-mended to users .However , some traditional clustering methods are too complicated while others rely on iterative ini -tial value , none of which can be accurately and effectively applied to news recommendation .Considering the above issues, we propose a news recommendation method based on two-fold clustering.In this method, a density clustering of random sample data is conducted .Based on the cluster number and initial cluster center of the density clustering , a fast two-fold clustering of all the news to be recommended is performed .Then, the news recommendation is realized by combining such factors as fashionability and popularity .The proposed method can cluster relevant news without too much computation cost , and it can calculate parameters by means of parameter estimation .Experimental results show that the proposed method is superior to other news recommendation methods in terms of diversity and accuracy .%由于新闻更新快,对用户进行新闻推荐往往需要进行聚类预处理,而传统方法要么复杂度过高,要么依赖于迭代初值,都不能准确而高效地应用于新闻推荐中。针对以上问题,文中提出了一个基于二次聚类的新闻推荐方法,对随机抽样数据进行密度聚类,基于该样本密度聚类的簇数和初始簇心进行所有待推荐新闻的二次快速聚类,并结合时新性、新闻热度等因素实现新闻推荐。文中方法可以将相关新闻聚集在一起,同时又不导致过高的运算开销,并通过参数估计方法计算各因素参数。实验结果表明,与其他新闻推荐方法相比,文中方法具有较好的推荐多样性和推荐准确度。

  2. A log-likelihood-gain intensity target for crystallographic phasing that accounts for experimental error.

    Science.gov (United States)

    Read, Randy J; McCoy, Airlie J

    2016-03-01

    The crystallographic diffraction experiment measures Bragg intensities; crystallographic electron-density maps and other crystallographic calculations in phasing require structure-factor amplitudes. If data were measured with no errors, the structure-factor amplitudes would be trivially proportional to the square roots of the intensities. When the experimental errors are large, and especially when random errors yield negative net intensities, the conversion of intensities and their error estimates into amplitudes and associated error estimates becomes nontrivial. Although this problem has been addressed intermittently in the history of crystallographic phasing, current approaches to accounting for experimental errors in macromolecular crystallography have numerous significant defects. These have been addressed with the formulation of LLGI, a log-likelihood-gain function in terms of the Bragg intensities and their associated experimental error estimates. LLGI has the correct asymptotic behaviour for data with large experimental error, appropriately downweighting these reflections without introducing bias. LLGI abrogates the need for the conversion of intensity data to amplitudes, which is usually performed with the French and Wilson method [French & Wilson (1978), Acta Cryst. A35, 517-525], wherever likelihood target functions are required. It has general applicability for a wide variety of algorithms in macromolecular crystallography, including scaling, characterizing anisotropy and translational noncrystallographic symmetry, detecting outliers, experimental phasing, molecular replacement and refinement. Because it is impossible to reliably recover the original intensity data from amplitudes, it is suggested that crystallographers should always deposit the intensity data in the Protein Data Bank.

  3. Magnetic anisotropy induced by crystallographic orientation and morphological alignment in directionally-solidified eutectic Mn-Sb alloy

    Science.gov (United States)

    Lou, Chang-Sheng; Liu, Tie; Dong, Meng; Wu, Chun; Shao, Jian-Guo; Wang, Qiang

    2017-02-01

    The influences of the crystallographic orientation and morphological alignment upon the magnetic anisotropic behavior of polycrystalline materials were investigated. Microstructures obtained in eutectic Mn-Sb alloys via directional solidification simultaneously displayed crystallographic orientation and morphological alignment. Both the crystallographic orientation and the morphological alignment were able to induce magnetic anisotropy in the alloys, wherein the influence of the crystallographic orientation and the morphological alignment upon the magnetic anisotropic behavior of the alloys strongly depended upon their directions and exhibited either mutual promotion or competition. These findings may provide useful guidance for the fabrication design of functional magnetic materials.

  4. Doppler broadening measurements of positron annihilation in single crystalline Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} high T{sub c} superconductor along two different crystallographic directions

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, Mahuya [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Sarkar, A. [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Department of Physics, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700009 (India); Chattapadhayay, S. [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Sanyal, D. [Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700064 (India)]. E-mail: dirtha@veccal.ernet.in; Chakrabarti, A. [Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700064 (India)

    2004-11-15

    Doppler broadening of the electron positron annihilation {gamma}-radiation spectra of single crystalline Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} high T{sub c} superconducting sample along the two different crystallographic orientations (c-axis and a-b-plane) have been analyzed by constructing ratio-curves with the reference spectra of defect free 99.9999% pure Al and Cu, respectively. The results indicate that the momentum component (p{sub L}) of the 2p electrons of oxygen ions and the 3d electrons of the Cu ions is relatively more towards the c-axis than the a-b-plane.

  5. The Long-term Risk of Upper-extremity Lymphedema is Two-fold Higher in Breast Cancer Patients than in Melanoma Patients

    Science.gov (United States)

    Voss, Rachel K.; Cromwell, Kate D.; Chiang, Yi-Ju; Armer, Jane M.; Ross, Merrick I.; Lee, Jeffrey E.; Gershenwald, Jeffrey E.; Stewart, Bob R.; Shaitelman, Simona F.; Cormier, Janice N.

    2015-01-01

    Background and Objectives We assessed the cumulative incidence, symptoms, and risk factors for upper-extremity lymphedema in breast cancer and melanoma patients undergoing sentinel lymph node biopsy or axillary lymph node dissection. Methods Patients were recruited preoperatively (time 0) and assessed at 6, 12, and 18 months postoperatively. Limb volume change (LVC) was measured by perometry. Lymphedema was categorized as none, mild (LVC 5–9.9%), or moderate/severe (LVC≥10%). Symptoms were assessed with a validated lymphedema instrument. Longitudinal logistic regression analyses were conducted to identify risk factors associated with moderate/severe lymphedema. Results Among 205 breast cancer and 144 melanoma patients, the cumulative incidence of moderate/severe lymphedema at 18 months was 36.5% and 35.0, respectively. However, in adjusted analyses, factors associated with moderate/severe lymphedema were breast cancer (OR 2.0, p=0.03), body mass index ≥30 kg/m2 (OR 1.6, p=0.04), greater number of lymph nodes removed (OR 1.05, pLymphedema incidence increased over time in both cohorts. However, the adjusted risk of moderate/severe lymphedema was two-fold higher in breast cancer patients. These results may be attributed to surgical treatment of the primary tumor in the breast and more frequent use of radiation. PMID:26477877

  6. Innovative Design of Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad

    2013-01-01

    The wind turbines can be classified as: i) Horizontal axis wind turbines (HAWT), and ii) Vertical axis wind turbines (VAWT). The HAWT is fully developed and the size is growing higher. Whereas, the VAWT is not developed because of the less efficiency and vibration issues of big structure. However...

  7. Experimental and Theoretical Investigation of Crystallographic Orientation Dependence of Nanoscratching of Single Crystalline Copper

    Science.gov (United States)

    Geng, Yanquan; Zhang, Junjie; Yan, Yongda; Yu, Bowen; Geng, Lin; Sun, Tao

    2015-01-01

    In the present work, we perform experiments and molecular dynamics simulations to elucidate the underlying deformation mechanisms of single crystalline copper under the load-controlled multi-passes nanoscratching using a triangular pyramidal probe. The correlation of microscopic deformation behavior of the material with macroscopically-observed machining results is revealed. Moreover, the influence of crystallographic orientation on the nanoscratching of single crystalline copper is examined. Our simulation results indicate that the plastic deformation of single crystalline Cu under the nanoscratching is exclusively governed by dislocation mechanisms. However, there is no glissile dislocation structure formed due to the probe oscillation under the load-controlled mode. Both experiments and MD simulations demonstrate that the machined surface morphologies in terms of groove depth and surface pile-up exhibit strong crystallographic orientation dependence, because of different geometries of activated slip planes cutting with free surfaces and strain hardening abilities associated with different crystallographic orientations. PMID:26147506

  8. Experimental and Theoretical Investigation of Crystallographic Orientation Dependence of Nanoscratching of Single Crystalline Copper.

    Directory of Open Access Journals (Sweden)

    Yanquan Geng

    Full Text Available In the present work, we perform experiments and molecular dynamics simulations to elucidate the underlying deformation mechanisms of single crystalline copper under the load-controlled multi-passes nanoscratching using a triangular pyramidal probe. The correlation of microscopic deformation behavior of the material with macroscopically-observed machining results is revealed. Moreover, the influence of crystallographic orientation on the nanoscratching of single crystalline copper is examined. Our simulation results indicate that the plastic deformation of single crystalline Cu under the nanoscratching is exclusively governed by dislocation mechanisms. However, there is no glissile dislocation structure formed due to the probe oscillation under the load-controlled mode. Both experiments and MD simulations demonstrate that the machined surface morphologies in terms of groove depth and surface pile-up exhibit strong crystallographic orientation dependence, because of different geometries of activated slip planes cutting with free surfaces and strain hardening abilities associated with different crystallographic orientations.

  9. Evolution of the preferred crystallographic orientation across the thickness of nickel electrodeposits

    DEFF Research Database (Denmark)

    Alimadadi, Hossein; da Silva Fanta, Alice Bastos; Somers, Marcel A. J.;

    Numerous industrial applications of nickel electrodeposits, like for example as microcomponents, essentially depend on their preferred crystallographic orientation. As a function of the electrodeposition conditions, the microstructure can be tailored with respect to the size, shape...... for such advanced investigations. The present work reports on the evolution of the preferred crystallographic orientation on the example of various fiber textured nickel electrodeposits. Tailored electrodeposition provided nickel deposits with different fibre textures being , , and ... and crystallographic orientation of grains. Thorough microstructure characterization, however, is not straightforward, because the microstructure of electrodeposits often changes across the thickness of the deposits and numerous twin orientations even with nano-size dimensions can evolve during growth of the deposits...

  10. Advanced yield strength of interconnector ribbon for photovoltaic module using crystallographic texture control

    Science.gov (United States)

    Kang, Byungjun; Park, Nochang; Tark, Sung Ju; Oh, Won Wook; Park, Sungeun; Kim, Young Do; Lee, Hae-Seok; Kim, Donghwan

    2014-03-01

    This paper reports a study on reducing the yield strength of Cu ribbon wire used for Si solar cell interconnections in solar panels. Low yield strength Cu core should be used as the interconnector ribbon to minimize the fracture of Si solar cells during the tabbing process. We lowered the yield strength of Cu ribbon by controlling the crystallographic texture without increasing the annealing time and temperature. The crystallographic texture was controlled by lubrication in a cold rolling process. The crystallographic texture was observed by scanning electron microscopy with electron back scattered diffraction. A tensile test was performed for the comparison of the mechanical properties of Cu with and without lubrication. The average yield strength was 91.2 MPa with lubrication whereas the yield strength was 99.6 MPa without lubrication. The lower value of the lubricated samples seemed to be caused by the higher cube texture intensity than that of the samples without lubrication.

  11. The Ultrasonic Measurement of Crystallographic Orientation for Imaging Anisotropic Components with 2d Arrays

    Science.gov (United States)

    Lane, C. J. L.; Dunhill, A. K.; Drinkwater, B. W.; Wilcox, P. D.

    2011-06-01

    Single crystal components are used widely in the gas-turbine industry. However, these components are elastically anisotropic which causes difficulties when performing NDE inspections with ultrasound. Recently an ultrasonic algorithm for a 2D array has been corrected to perform the reliable volumetric inspection of single crystals. For the algorithm to be implemented the crystallographic orientation of the components must be known. This paper, therefore, develops and reviews crystallographic orientation methods using 2D ultrasonic arrays. The methods under examination are based on the anisotropic propagation of surface and bulk waves and an image-based orientation method is also considered.

  12. Elasto-Plastic Behavior of High RRR Niobium: Effects of Crystallographic Texture, Microstructure and Hydrogen Concentration

    Energy Technology Data Exchange (ETDEWEB)

    G.R. Myneni; S.R. Agnew

    2002-11-01

    Conventional assessments of the mechanical properties of polycrystalline high RRR niobium via tensile testing have revealed unusually low apparent Young's moduli and yield strength in annealed samples. These observations motivated the current investigation of a variety of possible contributors: crystallographic texture, grain size, and impurity concentration. It is shown that the crystallographic textures of a single lot of niobium are essentially unchanged by post-recrystallization anneals at temperatures up to 800 C. Ultrasonic measurements reveal that the elastic response is not degraded by annealing. Rather, the material's extremely low yield point gives the impression of a low elastic modulus during tensile testing.

  13. Identification of Kinematic Errors of Five-axis Machine Tool Trunnion Axis from Finished Test Piece

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ya; FU Jianzhong; CHEN Zichen

    2014-01-01

    Compared with the traditional non-cutting measurement, machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users. However, measurement and calculation of the machining tests in the literature are quite difficult and time-consuming. A new method of the machining tests for the trunnion axis of five-axis machine tool is proposed. Firstly, a simple mathematical model of the cradle-type five-axis machine tool was established by optimizing the coordinate system settings based on robot kinematics. Then, the machining tests based on error-sensitive directions were proposed to identify the kinematic errors of the trunnion axis of cradle-type five-axis machine tool. By adopting the error-sensitive vectors in the matrix calculation, the functional relationship equations between the machining errors of the test piece in the error-sensitive directions and the kinematic errors of C-axis and A-axis of five-axis machine tool rotary table was established based on the model of the kinematic errors. According to our previous work, the kinematic errors of C-axis can be treated as the known quantities, and the kinematic errors of A-axis can be obtained from the equations. This method was tested in Mikron UCP600 vertical machining center. The machining errors in the error-sensitive directions can be obtained by CMM inspection from the finished test piece to identify the kinematic errors of five-axis machine tool trunnion axis. Experimental results demonstrated that the proposed method can reduce the complexity, cost, and the time consumed substantially, and has a wider applicability. This paper proposes a new method of the machining tests for the trunnion axis of five-axis machine tool.

  14. Analysis of transitions at two-fold redundant sites in mammalian genomes. Transition redundant approach-to-equilibrium (TREx distance metrics

    Directory of Open Access Journals (Sweden)

    Liberles David A

    2006-03-01

    Full Text Available Abstract Background The exchange of nucleotides at synonymous sites in a gene encoding a protein is believed to have little impact on the fitness of a host organism. This should be especially true for synonymous transitions, where a pyrimidine nucleotide is replaced by another pyrimidine, or a purine is replaced by another purine. This suggests that transition redundant exchange (TREx processes at the third position of conserved two-fold codon systems might offer the best approximation for a neutral molecular clock, serving to examine, within coding regions, theories that require neutrality, determine whether transition rate constants differ within genes in a single lineage, and correlate dates of events recorded in genomes with dates in the geological and paleontological records. To date, TREx analysis of the yeast genome has recognized correlated duplications that established a new metabolic strategies in fungi, and supported analyses of functional change in aromatases in pigs. TREx dating has limitations, however. Multiple transitions at synonymous sites may cause equilibration and loss of information. Further, to be useful to correlate events in the genomic record, different genes within a genome must suffer transitions at similar rates. Results A formalism to analyze divergence at two fold redundant codon systems is presented. This formalism exploits two-state approach-to-equilibrium kinetics from chemistry. This formalism captures, in a single equation, the possibility of multiple substitutions at individual sites, avoiding any need to "correct" for these. The formalism also connects specific rate constants for transitions to specific approximations in an underlying evolutionary model, including assumptions that transition rate constants are invariant at different sites, in different genes, in different lineages, and at different times. Therefore, the formalism supports analyses that evaluate these approximations. Transitions at synonymous

  15. Crystallographic preferred orientation and deformation of deep Earth minerals

    Science.gov (United States)

    Kaercher, Pamela Michelle

    This thesis aims to provide further insight into crystallographic preferred orientation (CPO) and deformation mechanisms active at high pressure. Preferred orientation of iron-rich magnesiowustite (Mg,Fe)O, a major mantle mineral phase, stishovite (SiO2), the high pressure polymorph of quartz that is likely present in the lower crust and mantle, and in NaMgF3 + NaCl, an analog system to lower mantle minerals MgSiO3 + MgO, have been examined with synchrotron X-ray diffraction while at high pressure in either a diamond anvil cell or a multianvil press. Magnesiowustite, (Mg0.08Fe0.88)O, and wustite, Fe0.94O, were compressed up to 37 GPa at ambient temperature in diamond anvil cells (DAC) at the Advanced Light Source (ALS). X-ray diffraction patterns were taken in situ in radial geometry in order to study the evolution of CPO through the cubic-to-rhombohedral phase transition. Under uniaxial stress in the DAC, cubic texture developed (i.e. {100} c planes aligned perpendicular to the compression direction). Variant selection of preferred orientation was observed immediately following the transition to the rhombohedral phase. Upon decompression in the DAC, FeO reverted back to cubic symmetry and the cubic texture reappeared, demonstrating that the transition is reversible and has texture memory. The crystal structure of the high pressure SiO2 polymorph stishovite has been studied in detail, but little is known about texture development during deformation, which provides information for understanding subduction of quartz-bearing crustal rocks into the mantle. Radial DAC experiments were done at the ALS and the Advanced Photon Source (APS) while collecting X-ray diffraction patterns in radial geometry to examine in situ development of CPO. Starting pressure in the sample chamber was still in the quartz stability field, and compression of quartz produced a weak texture, likely due to Dauphine twinning. Following compression of quartz into the stishovite stability field

  16. Bis(4H-1,2,4-triazol-3-yldisulfane

    Directory of Open Access Journals (Sweden)

    Dongsheng Liu

    2008-01-01

    Full Text Available The title compound, C4H4N6S2, was synthesized by the reaction of 3-mercapto-1H-1,2,4-triazole with sodium hydroxide in ethanol. The molecule possesses a crystallographically imposed twofold axis. Intermolecular N—H...N hydrogen bonds link the molecules into chains along the c axis.

  17. Dual Axis Light Sensor for Tracking Sun

    Science.gov (United States)

    Shibata, Miki; Tambo, Toyokazu

    We have developed convenient light sensors to control a platform of solar cell panel. Dual axis light sensor in the present paper has structure of 5 PD (photodiode) light sensor which is composed of 5 photodiodes attached on a frustum of pyramid(1). Light source can be captured in front of the sensor by rotating the X and Y axis as decreasing the output deviation between two pairs of outside photodiodes. We here report the mechanism of sun tacking using the dual axis 5 PD light sensor and the fundamental results performed in the dark room.

  18. Crystallographic Analysis of Nucleation at Hardness Indentations in High-Purity Aluminum

    DEFF Research Database (Denmark)

    Xu, Chaoling; Zhang, Yubin; Lin, Fengxiang

    2016-01-01

    Nucleation at Vickers hardness indentations has been studied in high-purity aluminum cold-rolled 12 pct. Electron channeling contrast was used to measure the size of the indentations and to detect nuclei, while electron backscattering diffraction was used to determine crystallographic orientations...

  19. Interpretation of quantitative crystallographic texture in copper electrodeposits on amorphous substrates

    DEFF Research Database (Denmark)

    Pantleon, Karen; Jensen, Jens Arne Dahl; Somers, Marcel A. J.

    2004-01-01

    Crystallographic texture and morphology in Cu electrodeposits was studied in relation to the current density and the content of the organic levelling additive 3-mercapto-1-propanesulfonate. The substrate onto which Cu was electrodeposited consisted of amorphous Ni-P in order to allow substrate...

  20. Crystallographic structural organization of human rhinovirus serotype 16, 14, 3, 2 and 1A

    Science.gov (United States)

    Janner, A.

    2006-07-01

    The capsid of the icosahedral virion is encapsulated between two polyhedra scaled according to the golden mean, each being composed of an icosahedron and a dodecahedron. Structural units of the coat proteins are enclosed into forms whose projections along the icosahedral symmetry axes obey the crystallographic law of rational indices.

  1. Axis of Zodiacal light Near Tropic Cancer

    CERN Document Server

    Nawar, S; Mikhail, J S; Morcos, A B; Ibrahim, Alhassan I

    2014-01-01

    The axis of zodiacal lights have been obtained in blue and yellow colors using photoelectric observations of zodiacal light. These observations have been carried out at Abu Simbel Site in Egypt, in October 1975. This site lies too near to the tropic of Cancer, at which the axis of the zodiacal light cone perpendiculars to the horizon. The results show that the plane of the zodiacal light is inclined to the normal by 1.59 degrees in blue color and 1.18 degrees in yellow color. This means that there is a slight variation in zodiacal light axis with wavelength, and the axis almost coincide with the ecliptic. The present results for blue color can be considered as the first one in the world near the tropic of Cancer.

  2. Electrical-Discharge Machining With Additional Axis

    Science.gov (United States)

    Malinzak, Roger M.; Booth, Gary N.

    1991-01-01

    Proposed electrical-discharge-machining (EDM) apparatus uses moveable vertical wire as electrode. Wire positionable horizontally along one axis as it slides vertically past workpiece. Workpiece indexed in rotation about horizontal axis. Because of symmetry of parts, process used to make two such parts at a time by defining boundary between them. Advantages: cost of material reduced, imparts less residual stress to workpiece, and less time spent machining each part when parts produced in such symmetrical pairs.

  3. UMAPRM: Uniformly sampling the medial axis

    KAUST Repository

    Yeh, Hsin-Yi Cindy

    2014-05-01

    © 2014 IEEE. Maintaining clearance, or distance from obstacles, is a vital component of successful motion planning algorithms. Maintaining high clearance often creates safer paths for robots. Contemporary sampling-based planning algorithms That utilize The medial axis, or The set of all points equidistant To Two or more obstacles, produce higher clearance paths. However, They are biased heavily Toward certain portions of The medial axis, sometimes ignoring parts critical To planning, e.g., specific Types of narrow passages. We introduce Uniform Medial Axis Probabilistic RoadMap (UMAPRM), a novel planning variant That generates samples uniformly on The medial axis of The free portion of Cspace. We Theoretically analyze The distribution generated by UMAPRM and show its uniformity. Our results show That UMAPRM\\'s distribution of samples along The medial axis is not only uniform but also preferable To other medial axis samplers in certain planning problems. We demonstrate That UMAPRM has negligible computational overhead over other sampling Techniques and can solve problems The others could not, e.g., a bug Trap. Finally, we demonstrate UMAPRM successfully generates higher clearance paths in The examples.

  4. Axis Offset Estimation of VLBI Telescopes

    Science.gov (United States)

    Krásná, Hana; Nickola, Marisa; Böhm, Johannes

    2014-12-01

    Axis offset models have to be applied for VLBI telescopes with pointing axes which do not intersect. In this work, we estimated the axis offsets for VLBI antennas in a global adjustment of suitable IVS 24-hour sessions (1984.0-2014.0) with the Vienna VLBI Software (VieVS). In particular, we focused on the two radio telescopes of the Hartebeesthoek Radio Astronomy Observatory (HartRAO) in South Africa. For the older 26-m telescope we compared the estimated axis offset values before (6699.2 ± 0.5 mm) and after (6707.3 ± 0.8 mm) the bearing repair in 2010. A comparison with axis offset estimates from other geodetic techniques, such as GNSS or conventional local survey, was made. The estimated axis offset for the newer 15-m telescope (1495.0 ± 3.4 mm) agrees with the estimated value from the GPS survey in 2007. Furthermore, we assessed the influence of differences in the axis offsets on the estimated geodetic parameters, such as station coordinates or Earth Orientation Parameters.

  5. Sex differences in the HPA axis.

    Science.gov (United States)

    Goel, Nirupa; Workman, Joanna L; Lee, Tiffany T; Innala, Leyla; Viau, Victor

    2014-07-01

    The hypothalamic-pituitary-adrenal (HPA) axis is a major component of the systems that respond to stress, by coordinating the neuroendocrine and autonomic responses. Tightly controlled regulation of HPA responses is critical for maintaining mental and physical health, as hyper- and hypo-activity have been linked to disease states. A long history of research has revealed sex differences in numerous components of the HPA stress system and its responses, which may partially form the basis for sex disparities in disease development. Despite this, many studies use male subjects exclusively, while fewer reports involve females or provide direct sex comparisons. The purpose of this article is to present sex comparisons in the functional and molecular aspects of the HPA axis, through various phases of activity, including basal, acute stress, and chronic stress conditions. The HPA axis in females initiates more rapidly and produces a greater output of stress hormones. This review focuses on the interactions between the gonadal hormone system and the HPA axis as the key mediators of these sex differences, whereby androgens increase and estrogens decrease HPA activity in adulthood. In addition to the effects of gonadal hormones on the adult response, morphological impacts of hormone exposure during development are also involved in mediating sex differences. Additional systems impinging on the HPA axis that contribute to sex differences include the monoamine neurotransmitters norepinephrine and serotonin. Diverse signals originating from the brain and periphery are integrated to determine the level of HPA axis activity, and these signals are, in many cases, sex-specific.

  6. Actuator assembly including a single axis of rotation locking member

    Science.gov (United States)

    Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.

    2009-12-08

    An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.

  7. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model.

    Science.gov (United States)

    Hu, Ming-Hsien; Lee, Pei-Yuan; Chen, Wen-Cheng; Hu, Jin-Jia

    2014-12-01

    This study evaluated the effectiveness of three calcium phosphate bone graft substitutes with different chemical compositions on spinal fusion using a rat posterolateral lumbar fusion model. Specifically, two recently developed non-dispersive tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cements (CPCs), namely a CPC consisting of equimolar amounts of the two compounds (nd-CPC) and a CPC consisting of a two-fold greater amount of dicalcium phosphate anhydrous (DCP-rich CPC), were compared with a commercial calcium phosphate bone graft (c-CPG) consisting of hydroxyapatite (60%) and β-tricalcium phosphate (40%). Single-level posterolateral lumbar fusion was performed at the L4-L5 vertebrae in fifteen adult rats (n=5 for each group). Spinal fusion was evaluated with radiographs, manual palpation, mechanical testing, micro-CT, and histology 8 weeks post-surgery. In particular, the crystallographic phases in the three substitutes were identified before and 8 weeks after their implantation. Manual palpation revealed stable constructs in nearly all of the spine specimens. The stiffness and bending load of fused spines in the two CPC groups were comparable to those in the c-CPG group. The radiographs specifically revealed implant resorption and bone remodeling in the DCP-rich CPC group. Analysis of 3D micro-CT images revealed that the bone volume ratio in the DCP-rich CPC group was significantly greater than those in the nd-CPC and c-CPG groups. Histology showed that the DCP-rich CPC group exhibited the highest degree of bone regeneration and osseointegration. Notably, DCP-rich CPC led to a pronounced phase transformation, generating the greatest amount of poorly crystalline apatite among the three groups, which together with adequate resorption may explain the aforementioned positive findings. We therefore conclude that of the bone graft substitutes considered, DCP-rich CPC has the greatest potential to be used in spinal fusion.

  8. POGAL B-Axis Motor Test

    Energy Technology Data Exchange (ETDEWEB)

    Hale, L C; Wulff, T A

    2004-06-28

    The Aerotech model S-180-69-A, a brushless DC motor of slotless design, was selected as the B-axis drive for the Precision Optical Grinder and Lathe (POGAL). It is common knowledge that a slotless motor will have effectively no magnetic cogging and much less torque ripple than a traditional slot-type motor. It is logical to believe that the radial and axial forces generated between the rotor and stator would also be smaller for a slotless design. This is important when a frameless motor is directly coupled to the axis, as these forces directly influence the axis and affect its error motion. It is the purpose of this test to determine the radial and axial forces generated by the Aerotech motor and to estimate their effect on the error motion of the axis using a mathematical model of the hydrostatic bearing being designed for POGAL. The test results combined with a mathematical model of the POGAL B axis indicate that the directly coupled Aerotech motor will be quite acceptable. In the radial direction, the residual motor force, after subtracting out the one-cycle force, could cause sub nanometer level error motion at the tool point. The axial direction is not in a sensitive direction for turning.

  9. Aeroelastically coupled blades for vertical axis wind turbines

    Science.gov (United States)

    Paquette, Joshua; Barone, Matthew F.

    2016-02-23

    Various technologies described herein pertain to a vertical axis wind turbine blade configured to rotate about a rotation axis. The vertical axis wind turbine blade includes at least an attachment segment, a rear swept segment, and optionally, a forward swept segment. The attachment segment is contiguous with the forward swept segment, and the forward swept segment is contiguous with the rear swept segment. The attachment segment includes a first portion of a centroid axis, the forward swept segment includes a second portion of the centroid axis, and the rear swept segment includes a third portion of the centroid axis. The second portion of the centroid axis is angularly displaced ahead of the first portion of the centroid axis and the third portion of the centroid axis is angularly displaced behind the first portion of the centroid axis in the direction of rotation about the rotation axis.

  10. Diffuser Augmented Horizontal Axis Tidal Current Turbines

    Directory of Open Access Journals (Sweden)

    Nasir Mehmood

    2012-09-01

    Full Text Available The renewal energy technologies are increasingly popular to ensure future energy sustenance and address environmental issues. The tides are enormous and consistent untapped resource of renewable energy. The growing interest in exploring tidal energy has compelling reasons such as security and diversity of supply, intermittent but predictable and limited social and environmental impacts. The tidal energy industry is undergoing an increasing shift towards diffuser augmented turbines. The reason is the higher power output of diffuser augmented turbines compared to conventional open turbines. The purpose of this study is to present a comprehensive review of diffuser augmented horizontal axis tidal current turbines. The components, relative advantages, limitations and design parameters of diffuser augmented horizontal axis tidal current turbines are presented in detail. CFD simulation of NACA 0016 airfoil is carried out to explore its potential for designing a diffuser. The core issues associated with diffuser augmented horizontal axis tidal current turbines are also discussed.

  11. Modular off-axis solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Plesniak, Adam P; Hall, John C

    2015-01-27

    A solar concentrator including a housing defining a vertical axis and including a receiving wall connected to a reflecting wall to define an internal volume and an opening into the internal volume, wherein the reflecting wall defines at least one primary optical element, and wherein at least a portion of the reflecting wall includes a layer of reflective material, the housing further including a cover connected to the receiving wall and the reflecting wall to seal the opening, and at least one receiver mounted on the receiving wall such that a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, the receiver including at least one photovoltaic cell.

  12. Oxytocin and hypothalamo-pituitary- adrenal axis

    Directory of Open Access Journals (Sweden)

    Berrak Ç. Yeğen

    2010-05-01

    Full Text Available BSTRACT: Upon exposure to different types of stressors, neuroendocrine and behavioral responses that include the activation of the hypothalamus-pituitary-adrenal (HPA axis are given to allow the individuals to cope with stress conditions. It was proven that oxytocin, anonapeptide released from the posterior pituitary, has behavioral and stress-attenuating effects by dampening HPA activity. On the other hand, the neuropeptide was also shown to exert anti-inflammatory effects through the modulation of immune and inflammatory processes in several experimental models of tissue injury. The findings of recent studies suggest that the anti-inflammatory effect of oxytocin depends on its role on HPA axis activity and subsequent release of cortisol. Thus, oxytocin seems to restrain the activity within the HPA-axis, which becomes overactive during many inflammatory processes

  13. ELONGATED ODONTOID PROCESS OF AXIS VERTEBRA

    Directory of Open Access Journals (Sweden)

    Prathap Kumar J,

    2014-09-01

    Full Text Available Introduction: Odontoid process is a bony projection of axis around which the atlas rotates. It measures 1 to 1.25 cms in length and projects upwards from the body of Axis. An elongated odontoid process may narrow the foramen magnum causing compressive neurological symptoms. It can cause cervical stiffness, serious restrictions of neck movement, and even a bone-derived torticollis. Observation: During routine osteology classes, we encountered an Axis vertebra with an elongated odontoid process. The measurements of the elongated odontoid process were taken using digital Vernier slide calipers. Conclusion: Elongated odontoid process can be mistaken for fracture of dens in radiological images; hence the knowledge of elongated odontoid process is useful for the radiologists, neurosurgeons and orthopaedicians for accurate diagnosis and treatment involving cranio-vertebral junctions.

  14. New Urban Vertical Axis Wind Turbine Design

    Directory of Open Access Journals (Sweden)

    Alexandru-Mihai CISMILIANU

    2015-12-01

    Full Text Available This paper develops a different approach for enhancing the performance of Vertical Axis Wind Turbines for the use in the urban or rural environment and remote isolated residential areas. Recently the vertical axis wind turbines (VAWT have become more attractive due to the major advantages of this type of turbines in comparison to the horizontal axis wind turbines. We aim to enhance the overall performance of the VAWT by adding a second set of blades (3 x 2=6 blades following the rules of biplane airplanes. The model has been made to operate at a maximum power in the range of the TSR between 2 to 2.5. The performances of the VAWT were investigated numerically and experimentally and justify the new proposed design.

  15. A users guide to HPA axis research.

    Science.gov (United States)

    Spencer, Robert L; Deak, Terrence

    2016-11-18

    Glucocorticoid hormones (cortisol and corticosterone - CORT) are the effector hormones of the hypothalamic-pituitary-adrenal (HPA) axis neuroendocrine system. CORT is a systemic intercellular signal whose level predictably varies with time of day and dynamically increases with environmental and psychological stressors. This hormonal signal is utilized by virtually every cell and physiological system of the body to optimize performance according to circadian, environmental and physiological demands. Disturbances in normal HPA axis activity profiles are associated with a wide variety of physiological and mental health disorders. Despite numerous studies to date that have identified molecular, cellular and systems-level glucocorticoid actions, new glucocorticoid actions and clinical status associations continue to be revealed at a brisk pace in the scientific literature. However, the breadth of investigators working in this area poses distinct challenges in ensuring common practices across investigators, and a full appreciation for the complexity of a system that is often reduced to a single dependent measure. This Users Guide is intended to provide a fundamental overview of conceptual, technical and practical knowledge that will assist individuals who engage in and evaluate HPA axis research. We begin with examination of the anatomical and hormonal components of the HPA axis and their physiological range of operation. We then examine strategies and best practices for systematic manipulation and accurate measurement of HPA axis activity. We feature use of experimental methods that will assist with better understanding of CORT's physiological actions, especially as those actions impact subsequent brain function. This research approach is instrumental for determining the mechanisms by which alterations of HPA axis function may contribute to pathophysiology.

  16. The relation between microstructure and crystallographic orientation in rolled copper and brass

    DEFF Research Database (Denmark)

    Christoffersen, H.; Leffers, Torben

    2002-01-01

    The relation between microstructure and crystallographic orientation is investigated in rolled copper and brass. For the two main types of microstructure in copper (the high wall density and the low wall density structure) there is a certain relation: theorientations corresponding to a specific...... type tend to cluster in certain regions of orientation space. However, the clustering is not very pronounced (there is a lot of overlap), and it cannot be related to any model. There is also a certain grain-sizeeffect: the average grain with high wall density structure is larger than the average grain...... with low wall density structure. For a third type of microstructure (to be described) there is a very clear relation to the crystallographic orientation. For brassthe distinction is between grains with and grains without deformation twins. There is a clear trend for the grains with twins to cluster...

  17. The X-ray system of crystallographic programs for any computer having a PIDGIN FORTRAN compiler

    Science.gov (United States)

    Stewart, J. M.; Kruger, G. J.; Ammon, H. L.; Dickinson, C.; Hall, S. R.

    1972-01-01

    A manual is presented for the use of a library of crystallographic programs. This library, called the X-ray system, is designed to carry out the calculations required to solve the structure of crystals by diffraction techniques. It has been implemented at the University of Maryland on the Univac 1108. It has, however, been developed and run on a variety of machines under various operating systems. It is considered to be an essentially machine independent library of applications programs. The report includes definition of crystallographic computing terms, program descriptions, with some text to show their application to specific crystal problems, detailed card input descriptions, mass storage file structure and some example run streams.

  18. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC.

    Science.gov (United States)

    Liu, Jin-Xun; Su, Hai-Yan; Sun, Da-Peng; Zhang, Bing-Yan; Li, Wei-Xue

    2013-11-06

    Identifying the structure sensitivity of catalysts in reactions, such as Fischer-Tropsch synthesis from CO and H2 over cobalt catalysts, is an important yet challenging issue in heterogeneous catalysis. Based on a first-principles kinetic study, we find for the first time that CO activation on hexagonal close-packed (HCP) Co not only has much higher intrinsic activity than that of face centered-cubic (FCC) Co but also prefers a different reaction route, i.e., direct dissociation with HCP Co but H-assisted dissociation on the FCC Co. The origin is identified from the formation of various denser yet favorable active sites on HCP Co not available for FCC Co, due to their distinct crystallographic structure and morphology. The great dependence of the activity on the crystallographic structure and morphology of the catalysts revealed here may open a new avenue for better, stable catalysts with maximum mass-specific reactivity.

  19. Novel Kac-Moody-type affine extensions of non-crystallographic Coxeter groups

    CERN Document Server

    Dechant, Pierre-Philippe; Twarock, Reidun

    2011-01-01

    Motivated by recent results in mathematical virology, we present novel asymmetric Z[tau]-integer-valued affine extensions of the non-crystallographic Coxeter groups H_2, H_3 and H_4 derived in a Kac-Moody-type formalism. In particular, we show that the affine reflection planes which extend the Coxeter group H_3 generate (twist) translations along 2-, 3- and 5-fold axes of icosahedral symmetry and classify these translations in terms of Fibonacci recursion relations, thus providing a framework to explain results of Keef et al and Wardman at the group level. Finally, we extend this classification to the case of the non-crystallographic Coxeter groups H_2 and H_4. These results should have applications in physics (quasicrystals), biology (viruses) and chemistry (fullerenes).

  20. Preferred crystallographic orientation in the ice I ← II transformation and the flow of ice II

    Science.gov (United States)

    Bennett, K.; Wenk, H.-R.; Durham, W.B.; Stern, L.A.; Kirby, S.H.

    1997-01-01

    The preferred crystallographic orientation developed during the ice I ← II transformation and during the plastic flow of ice II was measured in polycrystalline deuterium oxide (D2O) specimens using low-temperature neutron diffraction. Samples partially transformed from ice I to II under a non-hydrostatic stress developed a preferred crystallographic orientation in the ice II. Samples of pure ice II transformed from ice I under a hydrostatic stress and then when compressed axially, developed a strong preferred orientation of compression axes parallel to (1010). A match to the observed preferred orientation using the viscoplastic self-consistent theory was obtained only when (1010) [0001] was taken as the predominant slip system in ice II.

  1. Mineralogical, crystallographic and morphological characteristics of natural kaolins from the Ivory Coast (West Africa)

    Science.gov (United States)

    Sei, J.; Morato, F.; Kra, G.; Staunton, S.; Quiquampoix, H.; Jumas, J. C.; Olivier-Fourcade, J.

    2006-10-01

    Thirteen clay samples from four deposits in the Ivory Coast (West Africa) were studied using X-ray diffraction, thermogravimetric analysis and chemical analysis. Mineralogical, crystallographic and morphological characteristics of these samples are given. Kaolinite is the principal mineral but other minerals are present in small quantities: illite, quartz, anatase and iron oxides (oxides and oxyhydroxides). The crystallographic, morphological and surface characteristics are influenced by the presence of these impurities. In particular, the presence of iron oxides was associated with reduced structural ordering and thermal stability of kaolinite and increased specific surface area. These clays could be used in the ceramics industry to make tiles and bricks, and also in agronomy as supports for chemical fertilizers or for environmental protection by immobilising potentially toxic waste products.

  2. Crystallographic Analysis of Nucleation at Hardness Indentations in High-Purity Aluminum

    Science.gov (United States)

    Xu, Chaoling; Zhang, Yubin; Lin, Fengxiang; Wu, Guilin; Liu, Qing; Juul Jensen, Dorte

    2016-12-01

    Nucleation at Vickers hardness indentations has been studied in high-purity aluminum cold-rolled 12 pct. Electron channeling contrast was used to measure the size of the indentations and to detect nuclei, while electron backscattering diffraction was used to determine crystallographic orientations. It is found that indentations are preferential nucleation sites. The crystallographic orientations of the deformed grains affect the hardness and the nucleation potentials at the indentations. Higher hardness gives increased nucleation probabilities. Orientation relationships between nuclei developed at different indentations within one original grain are analyzed and it is found that the orientation distribution of the nuclei is far from random. It is suggested that it relates to the orientations present near the indentation tips which in turn depend on the orientation of the selected grain in which they form. Finally, possible nucleation mechanisms are briefly discussed.

  3. Expression, purification and preliminary crystallographic characterization of FlhF from Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Bange, Gert; Petzold, Georg; Wild, Klemens; Sinning, Irmgard, E-mail: irmi.sinning@bzh.uni-heidelberg.de [Heidelberg University Biochemistry Centre (BZH), INF 328, 69120 Heidelberg (Germany)

    2007-05-01

    Preliminary crystallographic data are reported for the third SRP GTPase FlhF from Bacillus subtilis. The Gram-positive bacterium Bacillus subtilis contains three proteins belonging to the signal recognition particle (SRP) type GTPase family. The well characterized signal sequence-binding protein SRP54 and the SRP receptor protein FtsY are universally conserved components of the SRP system of protein transport. The third member, FlhF, has been implicated in the placement and assembly of polar flagella. This article describes the overexpression and preliminary X-ray crystallographic analysis of an FlhF fragment that corresponds to the well characterized GTPase domains in SRP54 and FtsY. Three crystal forms are reported with either GDP or GMPPNP and diffract to a resolution of about 3 Å.

  4. Crystallographic orientation and induced potential effects in photoelectron emission from metal surfaces by ultrashort laser pulses

    CERN Document Server

    Rubiano, C A Rios; Mitnik, D M; Silkin, V M; Gravielle, M S

    2016-01-01

    The influence of the crystallographic orientation of a typical metal surface, like aluminum, on electron emission spectra produced by grazing incidence of ultrashort laser pulses is investigated by using the band-structure-based-Volkov (BSB-V) approximation. The present version of the BSB-V approach includes not only a realistic description of the surface interaction, accounting for band structure effects, but also effects due to the induced potential that originates from the collective response of valence-band electrons to the external electromagnetic field. The model is applied to evaluate differential electron emission probabilities from the valence band of Al(100) and Al(111). For both crystallographic orientations, the contribution of partially occupied surface electronic states and the influence of the induced potential are separately analyzed as a function of the laser carrier frequency. We found that the induced potential strongly affects photoelectron emission distributions, opening a window to scrut...

  5. Crystallographic similarity between the lath martensite and lower bainite in medium-carbon alloy steels

    Institute of Scientific and Technical Information of China (English)

    LIU Jiangwen; LUO Chengping; WU Dongxiao

    2005-01-01

    Progress in the crystallography of lath martensitic and lower bainitic transformations is briefly reviewed, followed by a presentation of the experimentally measured crystallographic characteristics of both lath martensite and lower bainite formed in mediumcarbon steels containing Si, Mn and Mo. It is found that the bainite plates relate to each other by a relative rotation of 54.7°or 60°about the normal to their common close-packed planes {110} b, which ensures a pseudo- {112}b twin relationship between two adjacent plates,and that all bainite variants formed in a single packet keep a unique G-T orientation relationship with the austenite matrix. These two types of OR of lower bainite are similar to that of the lath martensite, respectively. Furthermore, the measured habit planes of both the lower bainite and lath martensite are all {335} f type, which can verify the crystallographic similarity between the lath martensite and lower bainite.

  6. Microstructure, crystallographic texture and mechanical properties of friction stir welded AA2017A

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.M.Z., E-mail: mohamed_ahmed4@s-petrol.suez.edu.eg [Institute for Microstructural and Mechanical Processing Engineering, University of Sheffield (IMMPETUS), Mappin Street, Sheffield S1 3JD (United Kingdom); Department of Metallurgical and Materials Engineering, Suez Canal University, Suez 43721 (Egypt); Wynne, B.P.; Rainforth, W.M. [Institute for Microstructural and Mechanical Processing Engineering, University of Sheffield (IMMPETUS), Mappin Street, Sheffield S1 3JD (United Kingdom); Threadgill, P.L. [TWI LTD, Granta Park, Great Abington, Cambridge CB21 6AL (United Kingdom)

    2012-02-15

    In this study a thick section (20 mm) friction stir welded AA2017A-T451 has been characterized in terms of microstructure, crystallographic texture and mechanical properties. For microstructural analysis both optical and scanning electron microscopes have been used. A detailed crystallographic texture analysis has been carried out using the electron back scattering diffraction technique. Crystallographic texture has been examined in both shoulder and probe affected regions of the weld NG. An entirely weak texture is observed at the shoulder affected region which is mainly explained by the effect of the sequential multi pass deformation experienced by both tool probe and tool shoulder. The texture in the probe dominated region at the AS side of the weld is relatively weak but still assembles the simple shear texture of FCC metals with B/B{sup Macron} and C components existing across the whole map. However, the texture is stronger at the RS than at the AS of the weld, mainly dominated byB/B{sup Macron} components and with C component almost absent across the map. An alternating bands between (B) components and (B{sup Macron }) component are observed only at the AS side of the weld. - Highlights: Black-Right-Pointing-Pointer Detailed investigation of microstructure and crystallographic texture. Black-Right-Pointing-Pointer The grain size is varied from the top to the bottom of the NG. Black-Right-Pointing-Pointer An entirely weak texture is observed at the shoulder affected region. Black-Right-Pointing-Pointer The texture in the probe affected region is dominated by simple shear texture.

  7. Crystallographic orientation-dependent pattern replication in direct imprint of aluminum nanostructures

    OpenAIRE

    2015-01-01

    In the present work, we perform molecular dynamics simulations corroborated by experimental validations to elucidate the underlying deformation mechanisms of single-crystalline aluminum under direct imprint using a rigid silicon master. We investigate the influence of crystallographic orientation on the microscopic deformation behavior of the substrate materials and its correlation with the macroscopic pattern replications. Furthermore, the surface mechanical properties of the patterned struc...

  8. Experimental and Theoretical Investigation of Crystallographic Orientation Dependence of Nanoscratching of Single Crystalline Copper

    OpenAIRE

    2015-01-01

    In the present work, we perform experiments and molecular dynamics simulations to elucidate the underlying deformation mechanisms of single crystalline copper under the load-controlled multi-passes nanoscratching using a triangular pyramidal probe. The correlation of microscopic deformation behavior of the material with macroscopically-observed machining results is revealed. Moreover, the influence of crystallographic orientation on the nanoscratching of single crystalline copper is examined....

  9. Crystallographic mechanism of inverse twinning in ordered β′-CuZn alloy

    Institute of Scientific and Technical Information of China (English)

    毛卫民

    2000-01-01

    The basic process of mechanical twinning in β’-CuZn phase, as an example of B2 structured metals, has been analyzed under the rolling stresses. The behavior of inverse twinning in B2 structured metals is discussed in terms of mechanics and crystallographic stability. It is shown that the inverse twinning could remain the B2 structure, and the resulting strains will have the lowest resistance during the rolling deformation of the polycrystalline.

  10. Crystallographic mechanism of inverse twinning in ordered β'-CuZn alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The basic process of mechanical twinning in β'-CuZn phase, as an example of B2 structured metals, has been analyzed under the rolling stresses. The behavior of inverse twinning in B2 structured metals is discussed in terms of mechanics and crystallographic stability. It is shown that the inverse twinning could remain the B2 structure, and the resulting strains will have the lowest resistance during the rolling deformation of the polycrystalline.

  11. Crystallization and preliminary crystallographic characterization of an SH3 domain from the IB1 scaffold protein

    DEFF Research Database (Denmark)

    Dar, Imran; Bonny, Christophe; Pedersen, Jan Torleif

    2003-01-01

    with unmodified protein and deliberately oxidized protein have led to different crystal forms. X-ray data have been collected to 3.0 A resolution from a crystal form with rectangular prism morphology. These crystals are orthorhombic (P2(1)2(1)2(1)), with unit-cell parameters a = 45.9, b = 57.0, c = 145.5 A....... These are the first crystallographic data on a scaffold molecule such as IB1 to be reported....

  12. Keep it together: restraints in crystallographic refinement of macromolecule–ligand complexes

    Science.gov (United States)

    Steiner, Roberto A.; Tucker, Julie A.

    2017-01-01

    A short introduction is provided to the concept of restraints in macromolecular crystallographic refinement. A typical ligand restraint-generation process is then described, covering types of input, the methodology and the mechanics behind the software in general terms, how this has evolved over recent years and what to look for in the output. Finally, the currently available restraint-generation software is compared, concluding with some thoughts for the future. PMID:28177305

  13. Affine extensions of non-crystallographic Coxeter groups induced by projection

    Science.gov (United States)

    Dechant, Pierre-Philippe; BÅ`hm, Céline; Twarock, Reidun

    2013-09-01

    In this paper, we show that affine extensions of non-crystallographic Coxeter groups can be derived via Coxeter-Dynkin diagram foldings and projections of affine extended versions of the root systems E8, D6, and A4. We show that the induced affine extensions of the non-crystallographic groups H4, H3, and H2 correspond to a distinguished subset of those considered in [P.-P. Dechant, C. Bœhm, and R. Twarock, J. Phys. A: Math. Theor. 45, 285202 (2012)]. This class of extensions was motivated by physical applications in icosahedral systems in biology (viruses), physics (quasicrystals), and chemistry (fullerenes). By connecting these here to extensions of E8, D6, and A4, we place them into the broader context of crystallographic lattices such as E8, suggesting their potential for applications in high energy physics, integrable systems, and modular form theory. By inverting the projection, we make the case for admitting different number fields in the Cartan matrix, which could open up enticing possibilities in hyperbolic geometry and rational conformal field theory.

  14. Rapid Creation of Three-Dimensional, Tactile Models from Crystallographic Data

    Directory of Open Access Journals (Sweden)

    Nathan B. Fisher

    2016-01-01

    Full Text Available A method for the conversion of crystallographic information framework (CIF files to stereo lithographic data files suitable for printing on three-dimensional printers is presented. Crystallographic information framework or CIF files are capable of being manipulated in virtual space by a variety of computer programs, but their visual representations are limited to the two-dimensional surface of the computer screen. Tactile molecular models that demonstrate critical ideas, such as symmetry elements, play a critical role in enabling new students to fully visualize crystallographic concepts. In the past five years, major developments in three-dimensional printing has lowered the cost and complexity of these systems to a level where three-dimensional molecular models may be easily created provided that the data exists in a suitable format. Herein a method is described for the conversion of CIF file data using existing free software that allows for the rapid creation of inexpensive molecular models. This approach has numerous potential applications in basic research, education, visualization, and crystallography.

  15. DRIVE AND CONTROL OF VIRTUAL-AXIS NC MACHINE TOOLS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The structure features and driving modes of virtual-axis NC machine tools are studied.Accor- ding to different application requirements,the three-axis control method,the five-axis control method and the six-freedom control method are put forward.These results lay a foundation for the product development of the virtual-axis NC machine tools.

  16. Triple-axis spectrometer DruechaL

    Energy Technology Data Exchange (ETDEWEB)

    Buehrer, W.; Keller, P. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    DruechaL is a triple-axis spectrometer located at a cold guide. The characteristics of guide and instrument allow the use of a broad spectral range of neutrons. The resolution in momentum and energy transfer can be tuned to match the experimental requirements by using either collimators or focusing systems (monochromator, antitrumpet, analyser). (author) figs., tabs., refs.

  17. Resolution of a triple axis spectrometer

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Bjerrum Møller, Hans

    1969-01-01

    A new method for obtaining the resolution function for a triple-axis neutron spectrometer is described, involving a combination of direct measurement and analytical calculation. All factors which contribute to the finite resolution of the instrument may be taken into account, and Gaussian...

  18. A Portable Single Axis Magnetic Gradiometer

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Petersen, Jan Raagaard; Nielsen, Otto V

    2001-01-01

    The single axis magnetic gradiometer based on two compact detector compensation (CDC) fluxgate ringcore sensors separated 20 cm is described. Despite its high stability and precision better than 1 nT, the calibration procedures are not straightforward. Firstly, the mono-axial measurement does not...

  19. Tennis Rackets and the Parallel Axis Theorem

    Science.gov (United States)

    Christie, Derek

    2014-01-01

    This simple experiment uses an unusual graph straightening exercise to confirm the parallel axis theorem for an irregular object. Along the way, it estimates experimental values for g and the moment of inertia of a tennis racket. We use Excel to find a 95% confidence interval for the true values.

  20. The Trading Axis in Irkutsk Downtown

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2016-10-01

    Full Text Available The article reveals a linear concentration of the trading function in the historical center of Irkutsk. It features historical prerequisites and continuation of the tradition in the post-Soviet period, given the conversion of plants and factories. The article analyses the current state and prospects of modernization of the trading axis with its transformation into a modern public space.

  1. Crystallographic groups and topology in Escher. (Spanish:Grupos cristalográficos y topología en Escher).

    OpenAIRE

    Montesinos Amilibia, José María

    2010-01-01

    In the late 19th century Fedorov, Schoenflies, and Barlow classified the seventeen wallpaper groups (two-dimensional crystallographic groups, five of them direct movements and twelve of them inverse movements) and the 320 three-dimensional crystallographic groups. In order to get the lists of groups, they all used the same geometric strategy: to combine all possible movements and study them case by case. Later on, Zassenhaus developed a purely algebraic algorithm which allowed him to u...

  2. ICl-mediated intramolecular twofold iodoarylation of diynes and diynyl diethers and amines: synthesis of bis(2H-hydronaphthalene and chromene) and 2H-quinoline bearing an alkenyl iodide moiety.

    Science.gov (United States)

    Mo, Juntae; Choi, Wonseok; Min, Jiae; Kim, Cheol-Eui; Eom, Dahan; Kim, Sung Hong; Lee, Phil Ho

    2013-11-15

    Electrophilic intramolecular twofold iodoarylation was developed from the reaction of diynes and diynyl diethers and amines with iodine monochloride under mild conditions, which produced bis(2H-hydronaphthalene and chromene) and 2H-quinoline bearing an alkenyl iodide moiety in good to excellent yields. These compounds underwent Pd-catalyzed cross-coupling reactions with arylboronic acid and indium tris(arylthiolate) to produce the functionalized styrene derivatives.

  3. Mortality of a captive axis deer (Axis axis) and a llama (Lama glama) due to ingestion of Wedelia glauca.

    Science.gov (United States)

    Giannitti, Federico; Margineda, Carlos A; Cid, María S; Diab, Santiago S; Weber, Natalia; Rodríguez, Alejandro; Campero, Carlos M; Odriozola, Ernesto R

    2012-11-01

    The current study describes a naturally occurring cluster of cases of Wedelia glauca intoxication. Seven of 14 axis deer (Axis axis) and 1 of 8 llamas (Lama glama) in a zoo of Buenos Aires province, Argentina, died suddenly after ingestion of a new batch of alfalfa (Medicago sativa) hay bales contaminated with the hepatotoxic plant W. glauca. Necropsies of 1 deer and 1 llama were performed. Pathological findings in both animals included severe diffuse acute centrilobular hepatocellular necrosis and hemorrhage, and clear yellowish translucent gelatinous edema on the wall of the gall bladder and the serosa of the choledochoduodenal junction. Fragments of W. glauca plants were identified in the hay based on the botanical characteristics of the leaves. Samples of gastric contents were examined by microhistological analysis, which identified epidermal fragments of W. glauca based on the presence of characteristic uniseriate glandular hairs (trichomes), confirming recent ingestion of W. glauca in both cases. The fragments were quantified and represented 5% of all examined vegetal fragments in the deer and 10% in the llama.

  4. Two-axis joint assembly and method

    Science.gov (United States)

    Le, Thang D. (Inventor); Lewis, James L. (Inventor); Carroll, Monty B. (Inventor)

    2010-01-01

    In an embodiment, a two-axis joint that utilizes planar reactions to handle moments applied to the side of the joint thereby allowing the device to remain low profile and compact with minimal intrusion to the mounting surface of the two-axis joint. To handle larger moments, the diameter of the planar member can be increased without increasing the overall height of the joint assembly thereby retaining the low profile thereof. Upper and lower antifriction bearings may be positioned within a housing engage the planar member to reduce rotational friction. The upper and lower bearings and a hub which supports the planar member transfer forces produced by moments applied to the side of the joint so as to spread the forces over the area of the housing.

  5. Determining the Stellar Spin Axis Orientation

    Science.gov (United States)

    Lesage, Anna-Lea; Wiedemann, Gunter

    2015-01-01

    We present an observing method that permits the determination of the absolute stellar spin axis position angle based on spectro-astrometric observations for slowly-rotating late-type stars. This method is complementary to current interferometric observations that determine the orientation of stellar spin axis for early-type fast-rotating stars. Spectro-astrometry enables us to study phenomena below the diffraction limit, at the milli-arcsecond scale. It relies on the wavelength dependent variations of the centroid position of a structured source in a long-slit spectrum. A rotating star has a slight tilt in its spectral lines, which induces a displacement of the photocentre's position. By monitoring the amplitude of the displacement for varying slit orientations, we can infer the absolute position angle of the stellar spin axis. Finally, we present first observational results on Aldebaran obtained with the Thüringer Landesternwarte high resolution spectrograph. We were able to retrieve Aldebaran's position angle with less than 10° errors.

  6. Crystallization and preliminary X-ray crystallographic analysis of the small subunit of the heterodimeric laccase POXA3b from Pleurotus ostreatus.

    Science.gov (United States)

    Ferraroni, Marta; Scozzafava, Andrea; Ullah, Sana; Tron, Thierry; Piscitelli, Alessandra; Sannia, Giovanni

    2014-01-01

    Laccases are multicopper oxidases of great biotechnological potential. While laccases are generally monomeric glycoproteins, the white-rot fungus Pleurotus ostreatus produces two closely related heterodimeric isoenzymes composed of a large subunit, homologous to the other fungal laccases, and a small subunit. The sequence of the small subunit does not show significant homology to any other protein or domain of known function and consequently its function is unknown. The highest similarity to proteins of known structure is to a putative enoyl-CoA hydratase/isomerase from Acinetobacter baumannii, which shows an identity of 27.8%. Diffraction-quality crystals of the small subunit of the heterodimeric laccase POXA3b (sPOXA3b) from P. ostreatus were obtained using the sitting-drop vapour-diffusion method at 294 K from a solution consisting of 1.8 M sodium formate, 0.1 M Tris-HCl pH 8.5. The crystals belonged to the tetragonal space group P4(1)2(1)2 or P4(3)2(1)2, with unit-cell parameters a = 126.6, c = 53.9 Å. The asymmetric unit contains two molecules related by a noncrystallographic twofold axis. A complete data set extending to a maximum resolution of 2.5 Å was collected at 100 K using a wavelength of 1.140 Å.

  7. Neuroanatomy and physiology of the avian hypothalamic/pituitary axis: clinical aspects.

    Science.gov (United States)

    Ritchie, Midge

    2014-01-01

    This article describes the anatomy of the avian hypothalamic/pituitary axis, the hypothalamic-pituitary-thyroid axis, the hypothalamic-pituitary-adrenal axis, the hypothalamic-pituitary-gonadal axis, the somatotrophic axis, and neurohypophysis.

  8. Self-assembled ultra-nanocrystalline silicon films with preferred crystallographic orientation for solar cell applications

    Science.gov (United States)

    Banerjee, Amit; Das, Debajyoti

    2015-03-01

    Using low-pressure planar inductively coupled plasma CVD at 87% H2-dilution to the SiH4 plasma, nc-Si:H films are prepared that possess preferential growth along crystallographic orientation with I220/I111 > 1.2, bonded H-content of ∼5.5 at.%, a low microstructure factor of ∼0.56, along with a reasonably high σD ∼ 5.2 × 10-4 S cm-1, ΔE ∼ 143 meV and σPh ∼ 1.4 × 10-3 S cm-1. The growth of the nc-Si:H network has been optimized to a moderately high nanocrystallinity (∼68%), with an average grain size of ∼8 nm. The overall network comprises a significant fraction of ultra-nanocrystalline component, Xunc/Xnc ∼ 0.47, which are dominantly inhabited by the thermodynamically preferred crystallographic orientation that provides convenient electrical transport perpendicular to the film surface and subsequently could facilitate photovoltaic performance. The cross-sectional view of the fracture surface demonstrates columnar structures, closely correlated to the favored growth of the nanocrystallites along crystallographic orientation that retains direction perpendicular to the substrate surface. The underlying phenomena could be demonstrated as a consequence of preferential growth induced by high atomic H density present in the planar inductively coupled SiH4 plasma obtained via much lower H2-dilution compared to that realized in conventional capacitively coupled plasma-CVD. The nc-Si:H films with precise material properties as well as the allied low-pressure ICP-CVD growth process could be of significant use in further progress of nc-Si solar cells.

  9. Trapping of Oxygen Vacancies at Crystallographic Shear Planes in Acceptor-Doped Pb-Based Ferroelectrics.

    Science.gov (United States)

    Batuk, Dmitry; Batuk, Maria; Tsirlin, Alexander A; Hadermann, Joke; Abakumov, Artem M

    2015-12-01

    The defect chemistry of the ferroelectric material PbTiO3 after doping with Fe(III) acceptor ions is reported. Using advanced transmission electron microscopy and powder X-ray and neutron diffraction, we demonstrate that even at concentrations as low as circa 1.7% (material composition approximately ABO2.95), the oxygen vacancies are trapped into extended planar defects, specifically crystallographic shear planes. We investigate the evolution of these defects upon doping and unravel their detailed atomic structure using the formalism of superspace crystallography, thus unveiling their role in nonstoichiometry in the Pb-based perovskites.

  10. Crystallographic dependence of photocatalytic activity of WO3 thin films prepared by molecular beam epitaxy.

    Science.gov (United States)

    Li, Guoqiang; Varga, Tamas; Yan, Pengfei; Wang, Zhiguo; Wang, Chongmin; Chambers, Scott A; Du, Yingge

    2015-06-21

    We investigated the impact of crystallographic orientation on the photocatalytic activity of single crystalline WO3 thin films prepared by molecular beam epitaxy on the photodegradation of rhodamine B (RhB). A clear effect is observed, with (111) being the most reactive surface, followed by (110) and (001). Photoreactivity is directly correlated with the surface free energy determined by density functional theory calculations. The RhB photodegradation mechanism is found to involve hydroxyl radicals in solution formed from photo-generated holes and differs from previous studies performed on nanoparticles and composites.

  11. Regularities of crystallographic texture formation in cladding tubes from Zr-based alloys during their production

    Science.gov (United States)

    Isaenkova, M.; Perlovich, Yu; Fesenko, V.

    2016-04-01

    This paper summarizes researches of the authors, which are directed on the development of the methodological basis of X-ray studies in the materials science of zirconium and on the systematization of new experimental results obtained using developed methods. The paper describes regularities of the formation of the crystallographic texture and the substructure inhomogeneity of cladding tubes from zirconium alloys at various stages of their manufacturing, i.e. during hot and cold deformation, recrystallization, phase transformations and interactions of the above processes.

  12. (Fundamental studies of new magnetic heterostructures: Their growth, crystallographic structure, magnetic and electronic properties)

    Energy Technology Data Exchange (ETDEWEB)

    Onellion, M. (Wisconsin Univ., Madison, WI (USA). Dept. of Physics); Dowben, P.A. (Syracuse Univ., NY (USA). Dept. of Physics)

    1990-01-01

    As part of our request for renewal of our grant, we include this progress report on the significant results obtained under grant number FG02-89ER45319, Fundamental Studies of New Magnetic Heterostructures: Their Growth, Crystallographic Structure, Magnetic and Electronic Properties,'' since the inception of the grant. The results include the scientific accomplishments, the instrumentation developed, and the technological applications of our work. Each area is discussed separately and an initial summary of all areas is provided before the detailed discussion.

  13. Use of Bayesian Inference in Crystallographic Structure Refinement via Full Diffraction Profile Analysis

    Science.gov (United States)

    Fancher, Chris M.; Han, Zhen; Levin, Igor; Page, Katharine; Reich, Brian J.; Smith, Ralph C.; Wilson, Alyson G.; Jones, Jacob L.

    2016-01-01

    A Bayesian inference method for refining crystallographic structures is presented. The distribution of model parameters is stochastically sampled using Markov chain Monte Carlo. Posterior probability distributions are constructed for all model parameters to properly quantify uncertainty by appropriately modeling the heteroskedasticity and correlation of the error structure. The proposed method is demonstrated by analyzing a National Institute of Standards and Technology silicon standard reference material. The results obtained by Bayesian inference are compared with those determined by Rietveld refinement. Posterior probability distributions of model parameters provide both estimates and uncertainties. The new method better estimates the true uncertainties in the model as compared to the Rietveld method. PMID:27550221

  14. Morphological and crystallographic evolution of bainite transformation in Fe-0.15C binary alloy.

    Science.gov (United States)

    Zhang, Di; Terasaki, Hidenori; Komizo, Yuichi

    2010-01-01

    In this article, an in situ observation method, combining laser scanning confocal microscopy and electron backscattering diffraction, was used to investigate the morphological and crystallographic evolution of bainite transformation in a Fe-0.15C binary alloy. The nucleation at a grain boundary and inclusions, sympathetic nucleation, and impingement event of bainitic ferrite were directly shown in real time. The variant evolution during bainite transformation and misorientation between bainitic ferrites were clarified. Strong variant selection was observed during sympathetic nucleation. (c) 2009 Wiley-Liss, Inc.

  15. An integrated MEMS piezoresistive tri-axis accelerometer

    Science.gov (United States)

    Yongping, Zhang; Changde, He; Jiaqi, Yu; Chunhui, Du; Juanting, Zhang; Xiujian, Chou; Wendong, Zhang

    2013-10-01

    An integrated MEMS accelerometer has been designed and fabricated. The device, which is based on the piezoresistive effect, accomplishes the detection of three components of acceleration by using piezoresistors to compose three Wheatstone bridges that are sensitive to the only given orientation. The fabrication of the accelerometer is described, and the theory behind its operation developed. Experimental results on sensitivity, cross-axis-coupling degree, and linearity are presented. The sensitivity of X, Y and Z were 5.49 mV/g, 5.12 mV/g and 4.82 mV/g, respectively; the nonlinearity of X, Y and Z were 0.01%, 0.04% and 0.01%, respectively; the cross-axis-coupling factor of X axis to Y axis and Z axis are 0.119% and 2.26% the cross-axis-coupling factor of Y axis to X axis and Z axis are 0.157% and 4.12% the cross-axis-coupling factor of Z axis to X axis and Y axis are 0.511% and 0.938%. The measured performance indexes attain accurate vector-detection in practical applications, and even at a navigation level. In conclusion, the accelerometer is a highly integrated sensor.

  16. Cross-axis adaptation of torsional components in the yaw-axis vestibulo-ocular reflex

    Science.gov (United States)

    Trillenberg, P.; Shelhamer, M.; Roberts, D. C.; Zee, D. S.

    2003-01-01

    The three pairs of semicircular canals within the labyrinth are not perfectly aligned with the pulling directions of the six extraocular muscles. Therefore, for a given head movement, the vestibulo-ocular reflex (VOR) depends upon central neural mechanisms that couple the canals to the muscles with the appropriate functional gains in order to generate a response that rotates the eye the correct amount and around the correct axis. A consequence of these neural connections is a cross-axis adaptive capability, which can be stimulated experimentally when head rotation is around one axis and visual motion about another. From this visual-vestibular conflict the brain infers that the slow-phase eye movement is rotating around the wrong axis. We explored the capability of human cross-axis adaptation, using a short-term training paradigm, to determine if torsional eye movements could be elicited by yaw (horizontal) head rotation (where torsion is normally inappropriate). We applied yaw sinusoidal head rotation (+/-10 degrees, 0.33 Hz) and measured eye movement responses in the dark, and before and after adaptation. The adaptation paradigm lasted 45-60 min, and consisted of the identical head motion, coupled with a moving visual scene that required one of several types of eye movements: (1) torsion alone (-Roll); (2) horizontal/torsional, head right/CW torsion (Yaw-Roll); (3) horizontal/torsional, head right/CCW torsion (Yaw+Roll); (4) horizontal, vertical, torsional combined (Yaw+Pitch-Roll); and (5) horizontal and vertical together (Yaw+Pitch). The largest and most significant changes in torsional amplitude occurred in the Yaw-Roll and Yaw+Roll conditions. We conclude that short-term, cross-axis adaptation of torsion is possible but constrained by the complexity of the adaptation task: smaller torsional components are produced if more than one cross-coupling component is required. In contrast, vertical cross-axis components can be easily trained to occur with yaw head

  17. Crystallographic orientations and electrical properties of Bi sub 3 sub . sub 4 sub 7 La sub 0. sub 8 sub 5 Ti sub 3 O sub 1 sub 2 thin films on Pt/Ti/SiO sub 2 /Si and Pt/SiO sub 2 /Si substrates

    CERN Document Server

    Ryu, S O; Lee, W J

    2003-01-01

    We report on the crystallization and electrical properties of Bi sub 3 sub . sub 4 sub 7 La sub 0 sub . sub 8 sub 5 Ti sub 3 O sub 1 sub 2 (BLT) thin films for possible ferroelectric non-volatile memory applications. The film properties were found to be strongly dependent on process conditions especially on the intermediate heat treatment conditions. The crystallographic orientation of the films showed sharp changes at the intermediate rapid thermal annealing (RTA) temperature of 450degC. Below 450degC, BLT thin films have (117) orientation while they have preffered c-axis orientation above 450degC. We found that RTA conditions of the first coating layer play a major role in determining the entire crystallographic orientation of the films. The films also showed of ferroelectric hysterisis behavior strongly dependent on RTA treatment. In fact, the remanent polarization of Bi sub 3 sub . sub 4 sub 6 sub 5 La sub 0 sub . sub 8 sub 5 Ti sub 3 O sub 1 sub 2 thin films having (001) preferred crystallographic orient...

  18. The optical axis optimization in measurement of decentration of lens

    Science.gov (United States)

    Wang, Yajing; Yang, Lin; Wang, Chunyu

    2013-09-01

    Measure of optical decentration plays an important role in inspection, installation and adjustment of optical system. This article describes optical measurement principle of decentration, analyzes the reason of the decentration measurement accuracy, and indicates the necessity of optimizing the optical axis. Finally, because of the error of the decentration optical axis fitting. A new method of optical axis optimization is put forward here. A mathematical model to find the best optical axis is established, which improved the optical performance of the system.

  19. Magnetic transition temperatures follow crystallographic symmetry in samarium under high-pressures and low-temperatures

    Science.gov (United States)

    Johnson, Craig R.; Tsoi, Georgiy M.; Vohra, Yogesh K.

    2017-02-01

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm  →  dhcp  →  fcc/dist.fcc  →  hP3 structure sequence at high-pressures and low-temperatures.

  20. Erbium-ion implantation into various crystallographic cuts of Al2O3

    Science.gov (United States)

    Nekvindova, P.; Mackova, A.; Malinsky, P.; Cajzl, J.; Svecova, B.; Oswald, J.; Wilhelm, R. A.

    2015-12-01

    This paper reports on the importance of crystallographic cuts with a different orientation on the luminescent properties and structural changes of Al2O3 implanted with Er+ ions at 190 keV and with a fluence of 1.0 × 1016 cm-2. Post-implantation annealing at 1000 °C in oxygen atmosphere was also done. The chemical compositions and erbium concentration-depth profiles of implanted layers were studied by Rutherford Backscattering Spectrometry (RBS) and compared to SRIM simulations. The same value of the maximum erbium concentration (up to 2 at.%) was observed at a depth of about 40 nm for all crystallographic cuts. The structural properties of the prepared layers were characterised by RBS/channelling. The relative amount of disordered atoms of 70-80% was observed in the prepared implanted layers and discussed for various cuts. It has been found that erbium is positioned randomly in the Al2O3 crystalline matrix, and no preferential positions appeared even after the annealing procedure. Erbium luminescence properties were measured in the wavelength range of 1440-1650 nm for all samples. As-implanted Al2O3 samples had a significant luminescence band at 1530 nm. The best luminescence was repeatedly observed in the cut of Al2O3. The annealing procedure significantly improved the luminescent properties.

  1. Crystallographic structure of Ni-Co coating on the affinity adsorption of histidine-tagged protein.

    Science.gov (United States)

    Chang, Yaw-Jen; Chen, Sheng-Zheng; Ho, Ching-Yuan

    2015-04-01

    The principle of immobilized metal affinity chromatography (IMAC) has been recently implemented for protein microarrays for the study of protein abundance and function. Ni-Co film fabricated by electrodeposition is a novel microarray surface in an alloy type for immobilizing histidine-tagged proteins based on IMAC. In this paper, the effects of crystallographic structures and surface properties of Ni-Co coatings, with and without the annealing process, on the immobilization of histidine-tagged proteins were systematically investigated. The experimental results reveal that the stronger hcp texture, due to a higher Co content, results in better affinity adsorption for histidine-tagged biotin. Nevertheless, the allotropic phase transformation from hcp to fcc, due to the annealing process, leads to the decrease of affinity adsorption. The wettability property and the surface roughness of Ni-Co coating are, however, not important factors. Obviously, the crystallographic structure of Ni-Co coating is the dominant factor for the specific affinity adsorption of histidine-tagged protein.

  2. Crystallographic superstructure in R2PdSi3 compounds (R=heavy rare earth)

    Science.gov (United States)

    Tang, Fei; Frontzek, Matthias; Dshemuchadse, Julia; Leisegang, Tilmann; Zschornak, Matthias; Mietrach, Robert; Hoffmann, Jens-Uwe; Löser, Wolfgang; Gemming, Sibylle; Meyer, Dirk C.; Loewenhaupt, Michael

    2011-09-01

    The R2PdSi3 intermetallic compounds have been reported to crystallize in a hexagonal AlB2-derived structure, with the rare earth atoms on the Al sites and Pd and Si atoms randomly distributed on the B sites. However, the intricate magnetic properties observed in the series of compounds have always suggested complications to the assumed structure. To clarify the situation, x-ray and neutron diffraction measurements were performed on the heavy rare earth compounds with R=Gd, Tb, Dy, Ho, Er, Tm, which revealed the existence of a crystallographic superstructure. The superstructure features a doubled unit cell in the hexagonal basal plane and an octuplication along the perpendicular c direction with respect to the primitive cell. No structural transition was observed between 300 and 1.5 K. Extended x-ray absorption fine structure (EXAFS) analysis as well as density functional theory (DFT) calculations were utilized to investigate the local environments of the respective atoms. In this paper the various experimental results will be presented and it will be shown that the superstructure is mainly due to the Pd-Si order on the B sites. A structure model will be proposed to fully describe the superstructure of Pd-Si order in R2PdSi3. The connection between the crystallographic superstructure and the magnetic properties will be discussed in the framework of the presented model.

  3. Reaction temperature variations on the crystallographic state of spinel cobalt aluminate.

    Science.gov (United States)

    Taguchi, Minori; Nakane, Takayuki; Hashi, Kenjiro; Ohki, Shinobu; Shimizu, Tadashi; Sakka, Yoshio; Matsushita, Akiyuki; Abe, Hiroya; Funazukuri, Toshitaka; Naka, Takashi

    2013-05-21

    In this study, we report a rapid and simple technique for obtaining cobalt aluminate having a spinel structure. The products were prepared from a hydroxide precursor synthesized by coprecipitation of cobalt (Co(2+)) and aluminum (Al(3+)) nitrates with an alkaline solution. The chosen precursor enabled low temperature fabrication of cobalt aluminate with a spinel structure by sintering it for 2 hours at low temperatures (>400 °C). Crystallographic and thermal analyses suggest that the low-temperature-sintered products contain Co(3+) ions stabilized by chemisorbed water and/or hydroxide groups, which was not observed for products sintered at temperatures higher than 1000 °C. The color of the products turned from clear blue (Thenard's blue) to dark green when sintering temperatures were below 1000 °C. Magnetic quantities, Curie constants, and Weiss temperatures show a strong dependence on the sintering temperature. These findings suggest that there are mixed valent states, i.e. Co(2+) and Co(3+), and unique cation distributions at the different crystallographic sites in the spinel structure, especially in the products sintered at lower temperatures.

  4. Determination of precise crystallographic directions for mask alignment in wet bulk micromachining for MEMS

    Science.gov (United States)

    Singh, Sajal Sagar; Pal, Prem; Pandey, Ashok Kumar; Xing, Yan; Sato, Kazuo

    2016-12-01

    In wet bulk micromachining, the etching characteristics are orientation dependent. As a result, prolonged etching of mask openings of any geometric shape on both Si{100} and Si{110} wafers results in a structure defined by the slowest etching planes. In order to fabricate microstructures with high dimensional accuracy, it is vital to align the mask edges along the crystal directions comprising of these slowest etching planes. Thus, precise alignment of mask edges is important in micro/nano fabrication. As a result, the determination of accurate crystal directions is of utmost importance and is in fact the first step to ensure dimensionally accurate microstructures for improved performance. In this review article, we have presented a comprehensive analysis of different techniques to precisely determine the crystallographic directions. We have covered various techniques proposed in the span of more than two decades to determine the crystallographic directions on both Si{100} and Si{110} wafers. Apart from a detailed discussion of each technique along with their design and implementation, we have provided a critical analysis of the associated constraints, benefits and shortcomings. We have also summed up the critical aspects of each technique and presented in a tabular format for easy reference for readers. This review article comprises of an exhaustive discussion and is a handy reference for researchers who are new in the field of wet anisotropic etching or who want to get abreast with the techniques of determination of crystal directions.

  5. Conformation-changing aggregation in hydroxyacetone: a combined low-temperature FTIR, jet, and crystallographic study.

    Science.gov (United States)

    Sharma, Archna; Reva, Igor; Fausto, Rui; Hesse, Susanne; Xue, Zhifeng; Suhm, Martin A; Nayak, Susanta K; Sathishkumar, Ranganthan; Pal, Rumpa; Row, Tayur N Guru

    2011-12-21

    Aggregation in hydroxyacetone (HA) is studied using low-temperature FTIR, supersonic jet expansion, and X-ray crystallographic (in situ cryocrystallization) techniques. Along with quantum chemical methods (MP2 and DFT), the experiments unravel the conformational preferences of HA upon aggregation to dimers and oligomers. The O-H···O═C intramolecular hydrogen bond present in the gas-phase monomer partially opens upon aggregation in supersonic expansions, giving rise to intermolecular cooperatively enhanced O-H···O-H hydrogen bonds in competition with isolated O-H···O═C hydrogen bonds. On the other hand, low-temperature IR studies on the neat solid and X-ray crystallographic data reveal that HA undergoes profound conformational changes upon crystallization, with the HOCC dihedral angle changing from ~0° in the gas phase to ~180° in the crystalline phase, hence giving rise to a completely new conformation. These conclusions are supported by theoretical calculations performed on the geometry derived from the crystalline phase. © 2011 American Chemical Society

  6. The fourth crystallographic closest packing unveiled in the gold nanocluster crystal

    Science.gov (United States)

    Gan, Zibao; Chen, Jishi; Wang, Juan; Wang, Chengming; Li, Man-Bo; Yao, Chuanhao; Zhuang, Shengli; Xu, An; Li, Lingling; Wu, Zhikun

    2017-03-01

    Metal nanoclusters have recently attracted extensive interest not only for fundamental scientific research, but also for practical applications. For fundamental scientific research, it is of major importance to explore the internal structure and crystallographic arrangement. Herein, we synthesize a gold nanocluster whose composition is determined to be Au60S6(SCH2Ph)36 by using electrospray ionization mass spectrometry and single crystal X-ray crystallography (SCXC). SCXC also reveals that Au60S6(SCH2Ph)36 consists of a fcc-like Au20 kernel protected by a pair of giant Au20S3(SCH2Ph)18 staple motifs, which contain 6 tetrahedral-coordinate μ4-S atoms not previously reported in the Au-S interface. Importantly, the fourth crystallographic closest-packed pattern, termed 6H left-handed helical (6HLH) arrangement, which results in the distinct loss of solid photoluminescence of amorphous Au60S6(SCH2Ph)36, is found in the crystals of Au60S6(SCH2Ph)36. The solvent-polarity-dependent solution photoluminescence is also demonstrated. Overall, this work provides important insights about the structure, Au-S bonding and solid photoluminescence of gold nanoclusters.

  7. Evaluating Free Energies of Binding and Conservation of Crystallographic Waters Using SZMAP.

    Science.gov (United States)

    Bayden, Alexander S; Moustakas, Demetri T; Joseph-McCarthy, Diane; Lamb, Michelle L

    2015-08-24

    The SZMAP method computes binding free energies and the corresponding thermodynamic components for water molecules in the binding site of a protein structure [ SZMAP, 1.0.0 ; OpenEye Scientific Software Inc. : Santa Fe, NM, USA , 2011 ]. In this work, the ability of SZMAP to predict water structure and thermodynamic stability is examined for the X-ray crystal structures of a series of protein-ligand complexes. SZMAP results correlate with higher-level replica exchange thermodynamic integration double decoupling calculations of the absolute free energy of bound waters in the test set complexes. In addition, SZMAP calculations show good agreement with experimental data in terms of water conservation (across multiple crystal structures) and B-factors over a subset of the test set. In particular, the SZMAP neutral entropy difference term calculated at crystallographic water positions within each of the complex structures correlates well with whether that crystallographic water is conserved or displaceable. Furthermore, the calculated entropy of the water probe relative to the continuum shows a significant degree of correlation with the B-factors associated with the oxygen atoms of the water molecules. Taken together, these results indicate that SZMAP is capable of quantitatively predicting water positions and their energetics and is potentially a useful tool for determining which waters to attempt to displace, maintain, or build in through water-mediated interactions when evolving a lead series during a drug discovery program.

  8. Development of Microstructure and Crystallographic Texture in a Double-Sided Friction Stir Welded Microalloyed Steel

    Science.gov (United States)

    Rahimi, S.; Wynne, B. P.; Baker, T. N.

    2017-01-01

    The evolution of microstructure and crystallographic texture has been investigated in double-sided friction stir welded microalloyed steel, using electron backscatter diffraction (EBSD). The microstructure analyses show that the center of stirred zone reached a temperature between Ac1 and Ac3 during FSW, resulting in a dual-phase austenitic/ ferritic microstructure. The temperatures in the thermo-mechanically affected zone and the overlapped area between the first and second weld pass did not exceed the Ac1. The shear generated by the rotation probe occurs in austenitic/ferritic phase field where the austenite portion of the microstructure is transformed to a bainitic ferrite, on cooling. Analysis of crystallographic textures with regard to shear flow lines generated by the probe tool shows the dominance of simple shear components across the whole weld. The austenite texture at Ac1 - Ac3 is dominated by the B { {1bar{1}2} }stirred zone and the ferrites in the thermo-mechanically affected zones and the overlapped area underwent shear deformation with textures dominated by the D1 { {bar{1}bar{1}2} }weld pass. This is due to continuous dynamic strain-induced recrystallization as a result of simultaneous severe shear deformation and drastic undercooling.

  9. Enhancing nanoscale SEM image segmentation and reconstruction with crystallographic orientation data and machine learning

    Energy Technology Data Exchange (ETDEWEB)

    Converse, Matthew I., E-mail: mconverse85@yahoo.com; Fullwood, David T.

    2013-09-15

    Current methods of image segmentation and reconstructions from scanning electron micrographs can be inadequate for resolving nanoscale gaps in composite materials (1–20 nm). Such information is critical to both accurate material characterizations and models of piezoresistive response. The current work proposes the use of crystallographic orientation data and machine learning for enhancing this process. It is first shown how a machine learning algorithm can be used to predict the connectivity of nanoscale grains in a Nickel nanostrand/epoxy composite. This results in 71.9% accuracy for a 2D algorithm and 62.4% accuracy in 3D. Finally, it is demonstrated how these algorithms can be used to predict the location of gaps between distinct nanostrands — gaps which would otherwise not be detected with the sole use of a scanning electron microscope. - Highlights: • A method is proposed for enhancing the segmentation/reconstruction of SEM images. • 3D crystallographic orientation data from a nickel nanocomposite is collected. • A machine learning algorithm is used to detect trends in adjacent grains. • This algorithm is then applied to predict likely regions of nanoscale gaps. • These gaps would otherwise be unresolved with the sole use of an SEM.

  10. CRYSNET manual. Informal report. [Hardware and software of crystallographic computing network

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1976-07-01

    This manual describes the hardware and software which together make up the crystallographic computing network (CRYSNET). The manual is intended as a users' guide and also provides general information for persons without any experience with the system. CRYSNET is a network of intelligent remote graphics terminals that are used to communicate with the CDC Cyber 70/76 computing system at the Brookhaven National Laboratory (BNL) Central Scientific Computing Facility. Terminals are in active use by four research groups in the field of crystallography. A protein data bank has been established at BNL to store in machine-readable form atomic coordinates and other crystallographic data for macromolecules. The bank currently includes data for more than 20 proteins. This structural information can be accessed at BNL directly by the CRYSNET graphics terminals. More than two years of experience has been accumulated with CRYSNET. During this period, it has been demonstrated that the terminals, which provide access to a large, fast third-generation computer, plus stand-alone interactive graphics capability, are useful for computations in crystallography, and in a variety of other applications as well. The terminal hardware, the actual operations of the terminals, and the operations of the BNL Central Facility are described in some detail, and documentation of the terminal and central-site software is given. (RWR)

  11. The Structural Biology Center 19ID undulator beamline: facility specifications and protein crystallographic results.

    Science.gov (United States)

    Rosenbaum, Gerd; Alkire, Randy W; Evans, Gwyndaf; Rotella, Frank J; Lazarski, Krzystof; Zhang, Rong Guang; Ginell, Stephan L; Duke, Norma; Naday, Istvan; Lazarz, Jack; Molitsky, Michael J; Keefe, Lisa; Gonczy, John; Rock, Larry; Sanishvili, Ruslan; Walsh, Martin A; Westbrook, Edwin; Joachimiak, Andrzej

    2006-01-01

    The 19ID undulator beamline of the Structure Biology Center has been designed and built to take full advantage of the high flux, brilliance and quality of X-ray beams delivered by the Advanced Photon Source. The beamline optics are capable of delivering monochromatic X-rays with photon energies from 3.5 to 20 keV (3.5-0.6 A wavelength) with fluxes up to 8-18 x 10(12) photons s(-1) (depending on photon energy) onto cryogenically cooled crystal samples. The size of the beam (full width at half-maximum) at the sample position can be varied from 2.2 mm x 1.0 mm (horizontal x vertical, unfocused) to 0.083 mm x 0.020 mm in its fully focused configuration. Specimen-to-detector distances of between 100 mm and 1500 mm can be used. The high flexibility, inherent in the design of the optics, coupled with a kappa-geometry goniometer and beamline control software allows optimal strategies to be adopted in protein crystallographic experiments, thus maximizing the chances of their success. A large-area mosaic 3 x 3 CCD detector allows high-quality diffraction data to be measured rapidly to the crystal diffraction limits. The beamline layout and the X-ray optical and endstation components are described in detail, and the results of representative crystallographic experiments are presented.

  12. Mode decomposition based on crystallographic symmetry in the band-unfolding method

    Science.gov (United States)

    Ikeda, Yuji; Carreras, Abel; Seko, Atsuto; Togo, Atsushi; Tanaka, Isao

    2017-01-01

    The band-unfolding method is widely used to calculate the effective band structures of a disordered system from its supercell model. The unfolded band structures show the crystallographic symmetry of the underlying structure, where the difference of chemical components and the local atomic relaxation are ignored. However, it has still been difficult to decompose the unfolded band structures into the modes based on the crystallographic symmetry of the underlying structure, and therefore detailed analyses of the unfolded band structures have been restricted. In this study, a procedure to decompose the unfolded band structures according to the small representations (SRs) of the little groups is developed. The decomposition is performed using the projection operators for SRs derived from the group representation theory. The current method is employed to investigate the phonon band structure of disordered face-centered-cubic Cu0.75Au0.25 , which has large variations of atomic masses and force constants among the atomic sites due to the chemical disorder. In the unfolded phonon band structure, several peculiar behaviors such as discontinuous and split branches are found in the decomposed modes corresponding to specific SRs. They are found to occur because different combinations of the chemical elements contribute to different regions of frequency.

  13. Micromachined dual input axis rate gyroscope

    Science.gov (United States)

    Juneau, Thor Nelson

    The need for inexpensive yet reliable angular rate sensors in fields ranging from automotive to consumer electronics has motivated prolific micromachined rate gyroscope research. The vast majority of research has focused on single input axis rate gyroscopes based upon either translational resonance, such as tuning forks, or structural mode resonance, such as vibrating rings. However, this work presents a novel, contrasting approach based on angular resonance of a rotating rigid rotor suspended by torsional springs. The inherent symmetry of the circular design allows angular rate measurement about two axes simultaneously, hence the name micromachined dual-axis rate gyroscope. The underlying theory of operation, mechanical structure design optimization, electrical interface circuitry, and signal processing are described in detail. Several operational versions were fabricated using two different fully integrated surface micromachining processes as proof of concept. The heart of the dual-axis rate gyroscope is a ˜2 mum thick polysilicon disk or rotor suspended above the substrate by a four beam suspension. When this rotor in driven into angular oscillation about the axis perpendicular to the substrate, a rotation rate about the two axes parallel to the substrate invokes an out of plane rotor tilting motion due to Coriolis acceleration. This tilting motion is capacitively measured and on board integrated signal processing provides two output voltages proportional to angular rate input about the two axes parallel to the substrate. The design process begins with the derivation of gyroscopic dynamics. The equations suggest that tuning sense mode frequencies to the drive oscillation frequency can vastly increase mechanical sensitivity. Hence the supporting four beam suspension is designed such that electrostatic tuning can match modes despite process variations. The electrostatic tuning range is limited only by rotor collapse to the substrate when tuning-voltage induced

  14. Segmental patterning of the vertebrate embryonic axis.

    Science.gov (United States)

    Dequéant, Mary-Lee; Pourquié, Olivier

    2008-05-01

    The body axis of vertebrates is composed of a serial repetition of similar anatomical modules that are called segments or metameres. This particular mode of organization is especially conspicuous at the level of the periodic arrangement of vertebrae in the spine. The segmental pattern is established during embryogenesis when the somites--the embryonic segments of vertebrates--are rhythmically produced from the paraxial mesoderm. This process involves the segmentation clock, which is a travelling oscillator that interacts with a maturation wave called the wavefront to produce the periodic series of somites. Here, we review our current understanding of the segmentation process in vertebrates.

  15. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ming-Hsien [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua 50544, Taiwan (China); Department of Orthopedic Surgery, Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Pei-Yuan [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua 50544, Taiwan (China); Chen, Wen-Cheng, E-mail: wincheng0925@yahoo.com.tw [Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Hu, Jin-Jia, E-mail: jjhu@mail.ncku.edu.tw [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan (China)

    2014-12-01

    This study evaluated the effectiveness of three calcium phosphate bone graft substitutes with different chemical compositions on spinal fusion using a rat posterolateral lumbar fusion model. Specifically, two recently developed non-dispersive tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cements (CPCs), namely a CPC consisting of equimolar amounts of the two compounds (nd-CPC) and a CPC consisting of a two-fold greater amount of dicalcium phosphate anhydrous (DCP-rich CPC), were compared with a commercial calcium phosphate bone graft (c-CPG) consisting of hydroxyapatite (60%) and β-tricalcium phosphate (40%). Single-level posterolateral lumbar fusion was performed at the L4–L5 vertebrae in fifteen adult rats (n = 5 for each group). Spinal fusion was evaluated with radiographs, manual palpation, mechanical testing, micro-CT, and histology 8 weeks post-surgery. In particular, the crystallographic phases in the three substitutes were identified before and 8 weeks after their implantation. Manual palpation revealed stable constructs in nearly all of the spine specimens. The stiffness and bending load of fused spines in the two CPC groups were comparable to those in the c-CPG group. The radiographs specifically revealed implant resorption and bone remodeling in the DCP-rich CPC group. Analysis of 3D micro-CT images revealed that the bone volume ratio in the DCP-rich CPC group was significantly greater than those in the nd-CPC and c-CPG groups. Histology showed that the DCP-rich CPC group exhibited the highest degree of bone regeneration and osseointegration. Notably, DCP-rich CPC led to a pronounced phase transformation, generating the greatest amount of poorly crystalline apatite among the three groups, which together with adequate resorption may explain the aforementioned positive findings. We therefore conclude that of the bone graft substitutes considered, DCP-rich CPC has the greatest potential to be used in spinal fusion

  16. VERITAS: Versatile Triple-Axis Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Il

    2006-04-15

    Korea Atomic Energy Research Institute is planning to build a cold neutron triple-axis spectrometer at HANARO, the 30 MW research reactor. The spectrometer is expected to be completed in 2008 with the following configuration from the upstream to the downstream. Guide Supermirror m = 2, In-pile Straight Section, {approx} 5 m Curved Guide, {approx} 26 m w/ R 1500 m Straight Guide before the Instrument, {approx} 40 m Filters PG and Be Neutron Velocity Selector (Future) Monochromators Vertically Focusing Monochromators PG(002) and Heusler(111) Doubly Focusing Monochromators (Future) Monochromator-Sample Distance 2 m Collimation C1 Soller Collimators, 20', 40' 80'Beam Height at the Sample Table 1.5 m Sample-Analyzer Distance 1.0 m Collimation C2 Soller Collimators, 20', 40', 80' Radial Collimator Analyzers Horizontally Focusing Analyzers w/ Fixed Vertical Focusing PG(002) and Heusler(111) Analyzer-Detector Distance 0.5 m Detectors 5 cm Tube Detector 25 cm wide Position Sensitive Detector Once completed, the neutron flux at sample is expected to surpass that of SPINS at NCNR, making this instrument one of the most powerful 2nd generation cold neutron triple-axis spectrometers in the world.

  17. Rapid 2-axis scanning lidar prototype

    Science.gov (United States)

    Hartsell, Daryl; LaRocque, Paul E.; Tripp, Jeffrey

    2016-10-01

    The rapid 2-axis scanning lidar prototype was developed to demonstrate high-precision single-pixel linear-mode lidar performance. The lidar system is a combined integration of components from various commercial products allowing for future customization and performance enhancements. The intent of the prototype scanner is to demonstrate current stateof- the-art high-speed linear scanning technologies. The system consists of two pieces: the sensor head and control unit. The senor head can be installed up to 4 m from the control box and houses the lidar scanning components and a small RGB camera. The control unit houses the power supplies and ranging electronics necessary for operating the electronics housed inside the sensor head. This paper will discuss the benefits of a 2-axis scanning linear-mode lidar system, such as range performance and a userselectable FOV. Other features include real-time processing of 3D image frames consisting of up to 200,000 points per frame.

  18. Model for performance prediction in multi-axis machining

    CERN Document Server

    Lavernhe, Sylvain; Lartigue, Claire; 10.1007/s00170-007-1001-4

    2009-01-01

    This paper deals with a predictive model of kinematical performance in 5-axis milling within the context of High Speed Machining. Indeed, 5-axis high speed milling makes it possible to improve quality and productivity thanks to the degrees of freedom brought by the tool axis orientation. The tool axis orientation can be set efficiently in terms of productivity by considering kinematical constraints resulting from the set machine-tool/NC unit. Capacities of each axis as well as some NC unit functions can be expressed as limiting constraints. The proposed model relies on each axis displacement in the joint space of the machine-tool and predicts the most limiting axis for each trajectory segment. Thus, the calculation of the tool feedrate can be performed highlighting zones for which the programmed feedrate is not reached. This constitutes an indicator for trajectory optimization. The efficiency of the model is illustrated through examples. Finally, the model could be used for optimizing process planning.

  19. Bromido(2,4,6-trimethylphenylmercury(II

    Directory of Open Access Journals (Sweden)

    Frank Meyer-Wegner

    2012-04-01

    Full Text Available Molecules of the title compound, [HgBr(C9H11], are located on a crystallographic twofold rotation axis. Due to the molecular symmetry, the HgII atom is linearly coordinated by the ipso-C of the mesityl group and the Br atom. In the crystal, molecules lie in planes parallel to (001.

  20. Effect of crystallographic orientation on hillock formation in thermally cycled large grain tin films

    Science.gov (United States)

    Koppes, John Patrick

    Tin whiskers and hillocks grow spontaneously from the surfaces of polycrystalline Sn films at room temperature. Whiskers can grow long enough to cause short circuits in electronic devices. We hypothesized that the anisotropies of the crystal structure lead to locally high strain energies that are relieved by the growth of whiskers and hillocks. This research studies hillock formations on large grain Sn-alloy films relative to the crystallographic orientations of the adjacent grains. Large grain films were produced by solidifying 96.5wt% Sn - 3wt% Ag - 0.5wt% Cu solder alloy on a Cu substrate. These surface defects (hillocks) grew predominately at grain boundaries during thermal cycling. The formation of the surface defects between two grains created a pseudo-bi-crystal sample geometry, making it ideal for studying surface defects relative to the local crystallographic orientations and the grains' corresponding anisotropic properties. The crystallographic orientations of the grains were studied with Electron Backscatter Diffraction (EBSD) and Laue micro-diffraction at the Lawrence Berkeley National Laboratory Advanced Light Source. Local orientation studies of the surface defects and the surrounding grains indicated that the surface defects nucleated and grew with low dislocation densities. In addition, the linear surface defect densities along the grain boundaries were measured and observed to change as a function of orientation. The change in linear defect density with respect to orientation was due, in part, to the anisotropy of the coefficient of thermal expansion of β-Sn. In addition, it was important to account for elastic anisotropies. The elastic stresses, strains, and strain energy densities of the microstructures were determined with Object Oriented Finite element analysis. The simulations indicated that during thermal cycling the local stresses exceeded the yield strength. As a result, the highest linear defect densities did not occur at orientations

  1. The peculiarities of the crystallographics modification of a tissues from corpse during putrefactive corpse transformation

    Directory of Open Access Journals (Sweden)

    Fedorova Е.А.

    2013-12-01

    Full Text Available Background. The crystallographic method was used to study the extracts of organs and blood in forensic medicine is not developed yet. However, it is fairly easy to use and does not require additional special equipment, so there is quite promising. Objective. The aim of research are became basis of possibility and effectively to use by thezygraphy method for medico-legal definition of prescription of approach of death by tissue of a corpse during its putrefaction. Methods. Thezygraphy method is used a modification of crystallogramms during dynamics postmortem period for medico-legal definition of prescription of approach of death. Sectional material consisted of the corpses of people who died from violent and nonviolent death in the age range from 18 to 92 years. All the bodies after death were preserved in the same temperature conditions. The tissues from various internal organs: brain, heart, lungs, kidneys, liver, spleen and blood from 30 cadavers were the object of sectional study. There for 939 biological objects were investigated. Results. The article deals with generalization the crystallography (thezigraphy observation of crystallogramms from different tissues extract and blood depending on the different cause of violent and nonviolent death. The main purpose is to identify common crystallogramms features of the extracts of internal organs taken during putrefactive corpse transformation of people who died from various kinds of death. It has been proved that: 1.The typical сrystallogramms were formed from various tissue extracts: blood, brain, heart, lungs, liver, kidneys, spleen in first day after of approach of death, depending on the cause of deaths. 2. In the dynamics of postmortem period and putrefactive transformation of the corpses (first week the dynamic changes occur in crystallographic patterns obtained from extracts of the internal organs, and they can be used to establish the approach of death. Conclusion. The thezygraphy

  2. Comparison of 4 cm Z-axis and 16 cm Z-axis multidetector CT perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Page, Mark; Nandurkar, Dee; Crossett, Marcus Peter; Stuckey, Stephen L.; Lau, Kenneth P.; Kenning, Nicholas; Troupis, John M. [Monash Medical Centre, Department of Diagnostic Imaging, Southern Health Network, Clayton, Victoria (Australia)

    2010-06-15

    The aim of the study was to compare 4 cm with 16 cm Z-axis coverage in the assessment of brain CT perfusion (CTP) using. 320 slice multidetector CT A retrospective non-randomised review of CTP performed on MD320 CT between September 2008 and January 2009 was undertaken. Two experienced readers reviewed the studies along with the 4 cm and 16 cm Z-axis CTP image data set. The outcome parameters assessed were the extent of the original finding, any additional findings and a change of diagnosis. 14 out of 27 patients were found to have abnormal CTP (mean age 58.1 years, 9 male). The 16 cm Z-axis increased the accuracy of the infarct core in 78% and ischaemic penumbra quantification in 100% of the cases. It also diagnosed additional infarcts in the same vascular territory in 28% of cases and in a different vascular territory in 14%. The increased field of view with MD320 better defines the true extent of the infarct core and ischaemic penumbra. It also identified other areas of infarction that were not identified on the 4 cm Z-axis. (orig.)

  3. Purification, identification and preliminary crystallographic studies of Pru du amandin, an allergenic protein from Prunus dulcis

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, Vineet; Sethi, Dhruv K.; Salunke, Dinakar M., E-mail: dinakar@nii.res.in [National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2008-01-01

    The purification, identification, crystallization and preliminary crystallographic studies of an allergy-related protein, Pru du amandin, from P. dulcis nuts are reported. Food allergies appear to be one of the foremost causes of hypersensitivity reactions. Nut allergies account for most food allergies and are often permanent. The 360 kDa hexameric protein Pru du amandin, a known allergen, was purified from almonds (Prunus dulcis) by ammonium sulfate fractionation and ion-exchange chromatography. The protein was identified by a BLAST homology search against the nonredundant sequence database. Pru du amandin belongs to the 11S legumin family of seed storage proteins characterized by the presence of a cupin motif. Crystals were obtained by the hanging-drop vapour-diffusion method. The crystals belong to space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 150.7, c = 164.9 Å.

  4. Paramagnetic and crystallographic effects of low temperature ashing on human bone and tooth enamel.

    Science.gov (United States)

    Tochon-Danguy, H J; Very, J M; Geoffroy, M; Baud, C A

    1978-02-28

    Low temperature ashing by excited gas (LTA) causes crystallographic and paramagnetic alterations of the human bone and tooth enamel mineral. On the one hand, LTA induces variations of the alpha lattice parameter. These variations depend upon the nature of the gas used, but are little affected by its degree of excitation. Trapping of gas molecules in the crystal structure is demonstrated. On the other hand, LTA produces two preponderant paramagnetic centers in bone and enamel samples at 20 degrees C. Their inorganic origin clearly indicated. One of the two radicals has been identified as O3- (g1 = 2.002, g2 = 2.010, g3 = 2.016) and the other as (CO3-3 (parallel = 1.996, g = perpendicular 2.003). Variations of the alpha lattice parameter and trapping of paramagnetic gas species do not seem to be directly related.

  5. Radiation of high-energy electrons near crystallographic axes and planes of a diamond crystal

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, R.O.; Avakyan, E.O.; Avetisyan, A.E.

    1986-05-01

    The paper is devoted to the experimental study of high-energy electrons interaction with diamond crystals of different thicknesses at small incident angles with respect to crystallographic axes and planes. The effect of the so-called channeling phenomenon on the process of electron radiation in a crystal is studied. Results of the measurements of 4.5. GeV electrons radiation spectra at incident angles approximately O are given. For comparison, we have also presented the spectrum of the radiation on an amorphous target /sup 12/C of similar thickness. Results indicate that the low-energy part of spectra greatly surpass the amorphous spectrum with a pronounced peak structure, with peak widths being noticeably wider in the case of axial channeling than in the planar case. Spectra are measured by a No.I(Tl) total absorption detector. The experiment is performed on the Yerevan electron synchrotron beam with small angular divergence.

  6. Platinum Group Thiophenoxyimine Complexes: Syntheses,Crystallographic and Computational Studies of Structural Properties

    Energy Technology Data Exchange (ETDEWEB)

    Krinsky, Jamin L.; Arnold, John; Bergman, Robert G.

    2006-10-03

    Monomeric thiosalicylaldiminate complexes of rhodium(I) and iridium(I) were prepared by ligand transfer from the homoleptic zinc(II) species. In the presence of strongly donating ligands, the iridium complexes undergo insertion of the metal into the imine carbon-hydrogen bond. Thiophenoxyketimines were prepared by non-templated reaction of o-mercaptoacetophenone with anilines, and were complexed with rhodium(I), iridium(I), nickel(II) and platinum(II). X-ray crystallographic studies showed that while the thiosalicylaldiminate complexes display planar ligand conformations, those of the thiophenoxyketiminates are strongly distorted. Results of a computational study were consistent with a steric-strain interpretation of the difference in preferred ligand geometries.

  7. Processing and crystallographic structure of non-equilibrium Si-doped HfO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Dong; Fancher, Chris M.; Esteves, Giovanni; Jones, Jacob L., E-mail: jacobjones@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Zhao, Lili [School of Information Science and Technology, Northwest University, Xi' an 710127 (China)

    2015-06-28

    Si-doped HfO{sub 2} was confirmed to exist as a non-equilibrium state. The crystallographic structures of Si-doped HfO{sub 2} were studied using high-resolution synchrotron X-ray diffraction and the Rietveld refinement method. Incorporation of Si into HfO{sub 2} and diffusion of Si out of (Hf,Si)O{sub 2} were determined as a function of calcination temperature. Higher thermal energy input at elevated calcination temperatures resulted in the formation of HfSiO{sub 4}, which is the expected major secondary phase in Si-doped HfO{sub 2}. The effect of SiO{sub 2} particle size (nano- and micron-sized) on the formation of Si-doped HfO{sub 2} was also determined. Nano-crystalline SiO{sub 2} was found to incorporate into HfO{sub 2} more readily.

  8. Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector.

    Science.gov (United States)

    Baker, Jessy L; Jimison, Leslie H; Mannsfeld, Stefan; Volkman, Steven; Yin, Shong; Subramanian, Vivek; Salleo, Alberto; Alivisatos, A Paul; Toney, Michael F

    2010-06-01

    As thin films become increasingly popular (for solar cells, LEDs, microelectronics, batteries), quantitative morphological and crystallographic information is needed to predict and optimize the film's electrical, optical, and mechanical properties. This quantification can be obtained quickly and easily with X-ray diffraction using an area detector in two sample geometries. In this paper, we describe a methodology for constructing complete pole figures for thin films with fiber texture (isotropic in-plane orientation). We demonstrate this technique on semicrystalline polymer films, self-assembled nanoparticle semiconductor films, and randomly packed metallic nanoparticle films. This method can be immediately implemented to help understand the relationship between film processing and microstructure, enabling the development of better and less expensive electronic and optoelectronic devices.

  9. Maximum a posteriori estimation of crystallographic phases in X-ray diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gürsoy, Doǧa; Bicer, Tekin; Almer, Jonathan D.; Kettimuthu, Rajkumar; Stock, Stuart; De Carlo, Francesco

    2015-06-13

    A maximum a posteriori approach is proposed for X-ray diffraction tomography for reconstructing three-dimensional spatial distribution of crystallographic phases and orientations of polycrystalline materials. The approach maximizes the a posteriori density which includes a Poisson log-likelihood and an a priori term that reinforces expected solution properties such as smoothness or local continuity. The reconstruction method is validated with experimental data acquired from a section of the spinous process of a porcine vertebra collected at the 1-ID-C beamline of the Advanced Photon Source, at Argonne National Laboratory. The reconstruction results show significant improvement in the reduction of aliasing and streaking artefacts, and improved robustness to noise and undersampling compared to conventional analytical inversion approaches. The approach has the potential to reduce data acquisition times, and significantly improve beamtime efficiency.

  10. Ge/SrTiO{sub 3}(001): Correlation between interface chemistry and crystallographic orientation

    Energy Technology Data Exchange (ETDEWEB)

    Gobaut, B.; Penuelas, J.; Grenet, G.; Ferrah, D.; Benamrouche, A.; Chettaoui, A.; Robach, Y.; Botella, C.; Saint-Girons, G. [Universite de Lyon, Institut des Nanotechnologies de Lyon, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); El Kazzi, M.; Silly, M. G.; Sirotti, F. [Synchrotron SOLEIL (TEMPO beamline), l' Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette (France)

    2012-11-01

    In this work, the desorption of a submonolayer deposit of Ge on SrTiO{sub 3}(001) is studied by reflection high energy electron diffraction. The results are compared to those of a previous experiment done using soft x-ray photoelectron spectroscopy. Combining these techniques allows for correlating interface chemistry and crystal orientation, and for bringing clarifying elements concerning the competition between (111) and (001) crystal orientation typical for the semiconductor/perovskite epitaxial systems. Despite poor interface matching, (111)-oriented islands are stabilized at the expense of (001)-oriented islands due to the relatively low energy of their free facets. Such 'surface energy driven' crystallographic orientation of the deposit is enhanced by the low adhesion energy characteristic of the Ge/SrTiO{sub 3} system.

  11. Dianthraceno[a,e]pentalenes: Synthesis, crystallographic structures and applications in organic field-effect transistors

    KAUST Repository

    Dai, Gaole

    2015-01-01

    Two soluble and stable dianthraceno[a,e]pentalenes with two (DAP1) and six (DAP2) phenyl substituents were synthesized. Both compounds possess a small energy band gap and show amphoteric redox behaviour due to intramolecular donor-accepter interactions. X-ray crystallographic analysis revealed that DAP2 has a closely packed structure with multi-dimensional [C-H⋯π] interactions although there are no π-π interactions between the dianthraceno[a,e]pentalene cores. As a result, solution-processed field effect transistors based on DAP2 exhibited an average hole mobility of 0.65 cm2 V-1 s-1. Under similar conditions, DAP1 showed an average field effect hole mobility of 0.001 cm2 V-1 s-1. This journal is

  12. Preliminary crystallographic data for the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from brewers' yeast.

    Science.gov (United States)

    Dyda, F; Furey, W; Swaminathan, S; Sax, M; Farrenkopf, B; Jordan, F

    1990-10-15

    Single crystals of the thiamin diphosphate (the vitamin B1 coenzyme)-dependent enzyme pyruvate decarboxylase (EC 4.1.1.1) from brewers' yeast have been grown using polyethylene glycol as a precipitating agent. Crystals of the homotetrameric version alpha 4 of the holoenzyme are triclinic, space group P1, with cell constants a = 81.0, b = 82.4, c = 116.6 A, alpha = 69.5 beta = 72.6, gamma = 62.4 degrees. The crystals are reasonably stable in a rotating anode x-ray beam and diffract to at least 2.5 A resolution. The Vm value of 2.55 A/dalton is consistent with a unit cell containing four subunits with mass of approximately 60 kDa each. Rotation function results with native data indicate strong non-crystallographic 222 symmetry relating the four identical subunits, thus density averaging methods are likely to play a role in the structure determination.

  13. Crystallographic analysis of CVD films using x-ray polychromatic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lavelle, B. [CNRS, Toulouse (France). Centre d`Elaboration de Materiaux et d`Etudes Structurales; Brissonneau, L.; Baggot, E.; Vahlas, C. [INPT-CNRS, Toulouse (France). Lab. Materiaux et Interfaces

    1998-12-31

    The Energy Dispersive X-ray Diffractometry (EDXD) technique was tested for in-situ crystallographic characterization of nickel films processed by chemical vapor deposition (CVD). The diffracted beam at low Bragg angle was analyzed in energy by a solid state detector. A nickel reference sample was used to face the problems of EDXD background signal and uncertainty of sample location. The relative accuracy on lattice parameters measurements is 1.5.10{sup {minus}3}, to be compared to 0.5.10{sup {minus}3} for classical (monochromatic) X-ray diffraction. Texture measurements yields results in agreement with those obtained form recent texture goniometer. Finally, an estimation of the thickness was obtained from the intensity of nickel fluorescence peak. In view of the obtained results, EDXD appears to be a promising technique for in-situ studies. Although less powerful compared to the synchrotron facility, it is more flexible and can be applied at lower cost.

  14. Lytic polysaccharide monooxygenases: a crystallographer's view on a new class of biomass-degrading enzymes

    Directory of Open Access Journals (Sweden)

    Kristian E. H. Frandsen

    2016-11-01

    Full Text Available Lytic polysaccharide monooxygenases (LPMOs are a new class of microbial copper enzymes involved in the degradation of recalcitrant polysaccharides. They have only been discovered and characterized in the last 5–10 years and have stimulated strong interest both in biotechnology and in bioinorganic chemistry. In biotechnology, the hope is that these enzymes will finally help to make enzymatic biomass conversion, especially of lignocellulosic plant waste, economically attractive. Here, the role of LPMOs is likely to be in attacking bonds that are not accessible to other enzymes. LPMOs have attracted enormous interest since their discovery. The emphasis in this review is on the past and present contribution of crystallographic studies as a guide to functional understanding, with a final look towards the future.

  15. Preparation, crystallization and preliminary crystallographic analysis of old yellow enzyme from Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Shigeru [Maruwa Foods Co. Ltd, Tsutsui-cho 170-1, Yamatokoriyama, Nara 639-1123 (Japan); Tokuoka, Keiji [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 (Japan); Uchiyama, Nahoko [Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka 565-0874 (Japan); Okamoto, Naoki; Okano, Yousuke; Matsumura, Hiroyoshi [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 (Japan); Inaka, Koji [Maruwa Foods Co. Ltd, Tsutsui-cho 170-1, Yamatokoriyama, Nara 639-1123 (Japan); Urade, Yoshihiro [Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka 565-0874 (Japan); Inoue, Tsuyoshi, E-mail: inouet@chem.eng.osaka-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 (Japan); Maruwa Foods Co. Ltd, Tsutsui-cho 170-1, Yamatokoriyama, Nara 639-1123 (Japan)

    2007-10-01

    Old yellow enzyme from Trypanosoma cruzi, has been crystallized using the hanging-drop vapour-diffusion method. Old yellow enzyme (OYE) is an NADPH oxidoreductase that contains a flavin mononucleotide as a prosthetic group. The OYE from Trypanosoma cruzi, which produces prostaglandin F{sub 2α}, a potent mediator of various physiological and pathological processes, from prostaglandin H2. The protein was recombinantly expressed and purified from Escherichia coli and was crystallized using the hanging-drop vapour-diffusion method. The crystal belongs to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 56.3, b = 78.8, c = 78.8 Å, β = 93.4° and two molecules per asymmetric unit. The crystals were suitable for X-ray crystallographic studies and diffracted to 1.70 Å resolution. A Patterson search method is in progress using the structure of OYE from Pseudomonas putida as a starting model.

  16. Polarized triple-axis spectrometer TASP

    Energy Technology Data Exchange (ETDEWEB)

    Boeni, P.; Keller, P. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    The polarized triple-axis spectrometer TASP at SINQ has been optimized for measuring magnetic cross sections in condensed matter. The neutrons are polarized or analyzed either by means of benders or Heusler monochromators. The beam divergence, i.e. the intensity, and the spectral range of the neutrons is rather large because of the supermirror coatings of the feeding neutron guide. The intensity can be further increased at the sample position by means of a focussing monochromator and a focussing anti-trumpet. The end position of TASP allows the tailoring of the neutron beam already before the monochromator and to scatter neutrons over very wide ranges of angles. (author) 6 figs., 1 tab., 8 refs.

  17. Five-axis rough machining for impellers

    Institute of Scientific and Technical Information of China (English)

    Ruolong QI; Weijun LIU; Hongyou BIAN; Lun LI

    2009-01-01

    The most important components used in aero-space, ships, and automobiles are designed with free form surfaces. An impeller is one of the most important components that is difficult to machine because of its twisted blades. Rough machining is recognized as the most crucial procedure influencing machining efficiency and is critical for the finishing process. An integrated rough machining course with detailed algorithms is presented in this paper. An algorithm for determining the minimum distance between two surfaces is applied to estimate the tool size. The space between two blades that will be cleared from the roughcast is divided to generate CC points. The tool axis vector is confirmed based on flank milling using a simple method that could eliminate global interference between the tool and the blades. The result proves that the machining methodology presented in this paper is useful and successful.

  18. Transfer of olivine crystallographic orientation through a cycle of serpentinisation and dehydration

    Science.gov (United States)

    Dunkel, Kristina G.; Austrheim, Håkon; Ildefonse, Benoit; Jamtveit, Bjørn

    2017-08-01

    Our ability to decipher the mechanisms behind metamorphic transformation processes depends in a major way on the extent to which crystallographic and microstructural information is transferred from one stage to another. Within the Leka Ophiolite Complex in the Central Norwegian Caledonides, prograde olivine veins that formed by dehydration of serpentinite veins in dunites exhibit a characteristic distribution of microstructures: The outer part of the veins comprises coarse-grained olivine that forms an unusual, brick-like microstructure. The inner part of the veins, surrounding a central fault, is composed of fine-grained olivine. Where the fault movement included a dilational component, optically clear, equant olivine occurs in the centre. Electron backscatter diffraction mapping reveals that the vein olivine has inherited its crystallographic preferred orientation (CPO) from the olivine in the porphyroclastic host rock; however, misorientation is weaker and associated to different rotation axes. We propose that prograde olivine grew epitaxially on relics of mantle olivine and thereby acquired its CPO. Growth towards pre-existing microfractures along which serpentinisation had occurred led to straight grain boundaries and a brick-like microstructure in the veins. When dehydration embrittlement induced slip, a strong strain localisation on discrete fault planes prevented distortion of the CPO due to cataclastic deformation; grain size reduction did not significantly modify the olivine CPO. This illustrates how a CPO can be preserved though an entire metamorphic cycle, including hydration, dehydration, and deformation processes, and that the CPO and the microstructures (e.g. grain shape) of one phase do not necessarily record the same event.

  19. Crystallization and preliminary crystallographic analysis of l-asparaginase from Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Linnea E. K. [Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20521 (Finland); Krasotkina, Julya; Kuchumova, Anastasia; Sokolov, Nikolay N. [Institute for Biomedical Chemistry, Russian Academy of Medical Sciences, 559-B, 10 Pogodinskay St, Moscow 119121 (Russian Federation); Papageorgiou, Anastassios C., E-mail: tassos.papageorgiou@btk.fi [Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20521 (Finland)

    2005-04-01

    Er. carotovoral-asparaginase, a potential antileukaemic agent, has been crystallized. Crystals diffract to 2.6 Å using a rotating-anode source and belong to space group P2{sub 1}, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. Bacterial l-asparaginases have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukaemia for over 30 y. However, their use is limited owing to the glutaminase activity of the administered enzymes, which results in serious side effects. In contrast, l-asparaginase from Erwinia carotovora exhibits low glutaminase activity at physiological concentrations of l-asparagine and l-glutamine in the blood. Recombinant Er. carotovoral-asparaginase was crystallized in the presence of l-glutamate by the hanging-drop vapour-diffusion method using 10 mg ml{sup −1} purified enzyme, 16–18%(w/v) PEG 3350 and 0.2 M NaF. X-ray diffraction data were collected to 2.6 Å at 293 K using an in-house rotating-anode generator. The crystals belong to the monoclinic P2{sub 1} space group, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. A molecular-replacement solution has been found and refinement is currently in progress. The crystal structure may provide leads towards protein-engineering efforts aimed at safer asparaginase administration in leukaemia treatment.

  20. Beyond Sovereignty: The Twofold Subversion of "Bildung"

    Science.gov (United States)

    Reichenbach, Roland

    2003-01-01

    Few concepts in the German tradition of human studies--the so-called "Geisteswissenschaften"--have had the capacity to birth such intense expectations and hopes as the concept of "Bildung". There is general agreement that the concept of "Bildung" includes both an objective and a subjective component. The first refers to "culture" in its broadest…

  1. Providing Virtual Execution Environments: A Twofold Illustration

    CERN Document Server

    Grehant, Xavier

    2008-01-01

    Platform virtualization helps solving major grid computing challenges: share resource with flexible, user-controlled and custom execution environments and in the meanwhile, isolate failures and malicious code. Grid resource management tools will evolve to embrace support for virtual resource. We present two open source projects that transparently supply virtual execution environments. Tycoon has been developed at HP Labs to optimise resource usage in creating an economy where users bid to access virtual machines and compete for CPU cycles. SmartDomains provides a peer-to-peer layer that automates virtual machines deployment using a description language and deployment engine from HP Labs. These projects demonstrate both client-server and peer-to-peer approaches to virtual resource management. The first case makes extensive use of virtual machines features for dynamic resource allocation. The second translates virtual machines capabilities into a sophisticated language where resource management components can b...

  2. The effect of crystallographic texture on stress-induced martensitic transformation in NiTi: A computational analysis.

    Science.gov (United States)

    Weafer, F M; Guo, Y; Bruzzi, M S

    2016-01-01

    NiTi׳s superelasticity is exploited in a number of biomedical devices, in particular self-expanding endovascular stents. These stents are often laser-cut from textured micro-tubing; texture is the distribution of crystallographic grain orientations in a polycrystalline material which has been experimentally shown to have a marked influence on mechanical properties. This study offers a computational examination into the effect of texture on the stress-induced martensite transformation (SIMT) in a micro-dogbone NiTi specimen subject to tensile loading. Finite Element Analysis (FEA) is employed to simulate the transformational behaviour of the specimen on a micro-scale level. To represent a realistic grain structure in the FEA model, grains present in a 200µm×290µm test site located at the centre edge of the specimen were identified using Scanning Electron Microscopy (SEM). Grains are assumed to have homogenous behaviour with properties varying according to their crystallographic orientation to the loading direction. Required material properties were extracted from uniaxial stress-strain curves of single crystals for each crystallographic orientation for input into the in-built UMAT/Nitinol. The orientation of each grain in the test site was identified using Electron Back-Scatter Diffraction (EBSD) techniques. In this way, a quantitative explanation is offered to the effect of crystallographic texture on SIMT. Finally, the evolution of grains in the specimen, during the transformation process, was experimentally investigated by means of an in-situ SEM tensile test.

  3. Coherent off-axis undulator radiation from short electron bunches

    Directory of Open Access Journals (Sweden)

    C. P. Neuman

    2000-03-01

    Full Text Available The nature of off-axis undulator radiation is discussed. Of particular interest is coherent off-axis radiation, where the wavelengths of emission are longer than the electron bunch length. We show how this off-axis radiation may be used to measure relative electron bunch lengths. The theory is presented, and calculated spectra are presented in a number of cases of interest.

  4. A comparison of on-axis and off-axis heliostat alignment strategies

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.A.

    1996-03-01

    Heliostat installation and alignment costs will be an important element in future solar power tower projects. The predicted annual performances of on- and-off axis strategies are compared for 95 m{sup 2} flat-glass heliostats and an external, molten-salt receiver. Actual approaches to heliostat alignment that have been used in the past are briefly discussed, and relative strengths and limitations are noted. The optimal approach can vary with the application.

  5. Growth Hormone-Insulin-Like Growth Factor Axis, Thyroid Axis, Prolactin, and Exercise.

    Science.gov (United States)

    Hackney, Anthony C; Davis, Hope C; Lane, Amy R

    2016-01-01

    This chapter addresses what is known about the endocrine system components growth hormone (GH)-insulin-like growth factor (IGF) axis, thyroid axis, and prolactin relative to exercise and exercise training. Each one of these hormone axes contributes to the maintenance of homeostasis in the body through impact on a multitude of physiological systems. The homeostatic disruption of exercise causes differing responses in each hormone axis. GH levels increase with sufficient stimulation, and IGFs are released in response to GH from the anterior pituitary providing multiple roles including anabolic properties. Changes in the thyroid hormones T3 and T4 vary greatly with exercise, from increases/decreases to no change in levels across different exercise types, intensities and durations. These ambiguous findings could be due to numerous confounding factors (e.g. nutrition status) within the research. Prolactin increases proportionally to the intensity of the exercise. The magnitude may be augmented with extended durations; conflicting findings have been reported with resistance training. While the responses to exercise vary, it appears there may be overall adaptive and regenerative impacts on the body into recovery by these hormones through immune and tissue inflammatory responses/mediations. Nonetheless, well-designed exercise research studies are still needed on each of these hormones, especially thyroid hormones and prolactin.

  6. Neuroactive steroids and stress axis regulation: Pregnancy and beyond.

    Science.gov (United States)

    Brunton, Paula J

    2016-06-01

    The hypothalamo-pituitary-adrenal (HPA) axis plays a critical role in regulating responses to stress and long term dysregulation of the HPA axis is associated with higher rates of mood disorders. There are circumstances where the HPA axis is more or less responsive to stress. For example, during late pregnancy ACTH and corticosterone responses to stress are markedly suppressed, whereas in offspring born to mothers that experienced repeated stress during pregnancy, the HPA axis is hyper-responsive to stress. Neuroactive steroids such as allopregnanolone, tetrahydrodeoxycorticosterone (THDOC) and androstanediol can modulate HPA axis activity and concentrations of some neuroactive steroids in the brain are altered during pregnancy and following stress. Thus, here altered neurosteroidogenesis is proposed as a mechanism that could underpin the dynamic changes in HPA axis regulation typically observed in late pregnant and in prenatally stressed individuals. In support of this hypothesis, evidence in rats demonstrates that elevated levels of allopregnanolone in pregnancy induce a central inhibitory opioid mechanism that serves to minimize stress-induced HPA axis activity. Conversely, in prenatally stressed rodents, where HPA axis stress responses are enhanced, evidence indicates the capacity of the brain for neurosteroidogenesis is reduced. Understanding the mechanisms involved in adaptations in HPA axis regulation may provide insights for manipulating stress sensitivity and for developing therapies for stress-related disorders in humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The multi-axis vibration environment and man.

    Science.gov (United States)

    Lovesey, E J

    1970-12-01

    Many investigations into the effects of vibration on man have been performed since Mallock's first study of London Underground vibrations in 1902. The vibration research has tended to be confined to the vertical (heave) axis, yet recent experiments have indicated that low frequency vibration along the lateral (sway) axis has a greater adverse effect upon comfort and performance. Measurements of the vibration environments in current forms of transport including motor vehicles, hovercraft and aircraft etc have shown that appreciable quantities of vibration along all three axes exist. Further vibration research should consider the effects of multi-axis vibrations upon man rather than limit tests to single axis vibration.

  8. Rotation Axis Variation Due To Spin Orbit Resonance

    CERN Document Server

    Gallavotti, G

    1993-01-01

    Abstract: rotation axis variation due to spin orbit resonance: conference report; keywords: planetary precession, rigid body, chaos, KAM, Arnold diffusion, averaging, celestial mechanics, classical mechanics, large deviations

  9. Creating a Multi-axis Machining Postprocessor

    Directory of Open Access Journals (Sweden)

    Petr Vavruška

    2012-01-01

    Full Text Available This paper focuses on the postprocessor creation process. When using standard commercially available postprocessors it is often very difficult to modify its internal source code, and it is a very complex process, in many cases even impossible, to implement the newly-developed functions. It is therefore very important to have a method for creating a postprocessor for any CAM system, which allows CL data (Cutter Location data to be generated to a separate text file. The goal of our work is to verify the proposed method for creating a postprocessor. Postprocessor functions for multi-axis machiningare dealt with in this work. A file with CL data must be translated by the postprocessor into an NC program that has been customized for a specific production machine and its control system. The postprocessor is therefore verified by applications for machining free-form surfaces of complex parts, and by executing the NC programs that are generated on real machine tools. This is also presented here.

  10. Circadian genes, the stress axis, and alcoholism.

    Science.gov (United States)

    Sarkar, Dipak K

    2012-01-01

    The body's internal system to control the daily rhythm of the body's functions (i.e., the circadian system), the body's stress response, and the body's neurobiology are highly interconnected. Thus, the rhythm of the circadian system impacts alcohol use patterns; at the same time, alcohol drinking also can alter circadian functions. The sensitivity of the circadian system to alcohol may result from alcohol's effects on the expression of several of the clock genes that regulate circadian function. The stress response system involves the hypothalamus and pituitary gland in the brain and the adrenal glands, as well as the hormones they secrete, including corticotrophin-releasing hormone, adrenocorticotrophic hormone, and glucocorticoids. It is controlled by brain-signaling molecules, including endogenous opioids such as β-endorphin. Alcohol consumption influences the activity of this system and vice versa. Finally, interactions exist between the circadian system, the hypothalamic-pituitary-adrenal axis, and alcohol consumption. Thus, it seems that certain clock genes may control functions of the stress response system and that these interactions are affected by alcohol.

  11. Yaw dynamics of horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.C. (Utah Univ., Salt Lake City, UT (United States))

    1992-05-01

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  12. On-Axis Digital Moire Optoelectronic Telemetrology

    Science.gov (United States)

    Meilan, Pablo F.; Laquidara, Aníbal P.; Bava, José A.; Garavaglia, Mario

    2008-04-01

    In previous papers [2,3,4,5] we introduced an operation based on digital moiré pattern processing to measure the distance to an object and its size. The method uses a sequence of digital photographic operations to capture two pictures of the scene with the CCD camera placed at two near and well defined positions along the optical axis of the camera. The distance ΔL between both camera positions is of the order of 1-10% of the distance L from the camera to the selected object in the scene. The teleoperation process algoritm requires to introduce ΔL to determine the distance L. Now we will report a simple and powerful optical system: an optical delay line with an optical path equal to 1.5 m, introduced in the line of sight from the camera to the selected object in the scene. With this optical system it is possible to capture the observed object at distances L and L+ΔL simultaneously in the same picture. The uncertainty in measuring L is of the order of 1%.

  13. Gut/brain axis and the microbiota.

    Science.gov (United States)

    Mayer, Emeran A; Tillisch, Kirsten; Gupta, Arpana

    2015-03-02

    Tremendous progress has been made in characterizing the bidirectional interactions between the central nervous system, the enteric nervous system, and the gastrointestinal tract. A series of provocative preclinical studies have suggested a prominent role for the gut microbiota in these gut-brain interactions. Based on studies using rodents raised in a germ-free environment, the gut microbiota appears to influence the development of emotional behavior, stress- and pain-modulation systems, and brain neurotransmitter systems. Additionally, microbiota perturbations by probiotics and antibiotics exert modulatory effects on some of these measures in adult animals. Current evidence suggests that multiple mechanisms, including endocrine and neurocrine pathways, may be involved in gut microbiota-to-brain signaling and that the brain can in turn alter microbial composition and behavior via the autonomic nervous system. Limited information is available on how these findings may translate to healthy humans or to disease states involving the brain or the gut/brain axis. Future research needs to focus on confirming that the rodent findings are translatable to human physiology and to diseases such as irritable bowel syndrome, autism, anxiety, depression, and Parkinson's disease.

  14. Effective solidity in vertical axis wind turbines

    Science.gov (United States)

    Parker, Colin M.; Leftwich, Megan C.

    2016-11-01

    The flow surrounding vertical axis wind turbines (VAWTs) is investigated using particle imaging velocimetry (PIV). This is done in a low-speed wind tunnel with a scale model that closely matches geometric and dynamic properties tip-speed ratio and Reynolds number of a full size turbine. Previous results have shown a strong dependance on the tip-speed ratio on the wake structure of the spinning turbine. However, it is not clear whether this is a speed or solidity effect. To determine this, we have measured the wakes of three turbines with different chord-to-diameter ratios, and a solid cylinder. The flow is visualized at the horizontal mid-plane as well as the vertical mid-plane behind the turbine. The results are both ensemble averaged and phase averaged by syncing the PIV system with the rotation of the turbine. By keeping the Reynolds number constant with both chord and diameter, we can determine how each effects the wake structure. As these parameters are varied there are distinct changes in the mean flow of the wake. Additionally, by looking at the vorticity in the phase averaged profiles we can see structural changes to the overall wake pattern.

  15. Effect of crystallographic texture and dislocation hardening on limit strain in sheet metal forming

    Science.gov (United States)

    Wen, Xiyu

    2000-10-01

    In the metal industry, sheet metals are widely used to produce packaging materials for consumer goods, for structures such as automobilse, and for building construction and transportation. The desired shape of the products is imparted by plastic deformation in either the cold or hot state. Traditionally, the prediction of the forming limit of sheet metals is based on tensile tests, simulation tests and continuum mathematical models. Continuum models used in the prediction of the plastic behavior of sheet metals are based on average values of mechanical properties such as elongation, yield strength, work hardening and work-hardening rate, which are usually derived from tensile tests. Although attempts have been made to abandon the phenomenological description of the yield function by applying the theory of crystal plasticity to calculate the yield surface of texture polycrystals and hence the limit strains, only the average properties of the microstructure (e.g., the crystallographic texture of the bulk sheet) have been taken into account. So far, there has been no model for the prediction of the strain path and the limit strain of sheet metals that takes into account the effect of individual grain orientation and the dislocation property. In this thesis, different approaches in the study of plastic deformation are reviewed from the view-point of both macroplasticity and microplasticity. Instead of relying on a unique flow rule to describe the stress and strain relationship, the role of work hardening in the instability process of sheet metal and hence the flow localization phenomenon is explored from a study of the changes in the orientation of the constituent crystallites and from the changes in the dislocation density associated with different grain orientations during the course of large biaxial deformation. The changes in the crystallographic textures of an aluminium sheet sample deformed under various stress states from plane-strain tension to equi

  16. Crystal growth and first crystallographic characterization of mixed uranium(IV)-plutonium(III) oxalates.

    Science.gov (United States)

    Tamain, Christelle; Arab Chapelet, Bénédicte; Rivenet, Murielle; Abraham, Francis; Caraballo, Richard; Grandjean, Stéphane

    2013-05-06

    The mixed-actinide uranium(IV)-plutonium(III) oxalate single crystals (NH4)0.5[Pu(III)0.5U(IV)0.5(C2O4)2·H2O]·nH2O (1) and (NH4)2.7Pu(III)0.7U(IV)1.3(C2O4)5·nH2O (2) have been prepared by the diffusion of different ions through membranes separating compartments of a triple cell. UV-vis, Raman, and thermal ionization mass spectrometry analyses demonstrate the presence of both uranium and plutonium metal cations with conservation of the initial oxidation state, U(IV) and Pu(III), and the formation of mixed-valence, mixed-actinide oxalate compounds. The structure of 1 and an average structure of 2 were determined by single-crystal X-ray diffraction and were solved by direct methods and Fourier difference techniques. Compounds 1 and 2 are the first mixed uranium(IV)-plutonium(III) compounds to be structurally characterized by single-crystal X-ray diffraction. The structure of 1, space group P4/n, a = 8.8558(3) Å, b = 7.8963(2) Å, Z = 2, consists of layers formed by four-membered rings of the two actinide metals occupying the same crystallographic site connected through oxalate ions. The actinide atoms are nine-coordinated by oxygen atoms from four bidentate oxalate ligands and one water molecule, which alternates up and down the layer. The single-charged cations and nonbonded water molecules are disordered in the same crystallographic site. For compound 2, an average structure has been determined in space group P6/mmm with a = 11.158(2) Å and c = 6.400(1) Å. The honeycomb-like framework [Pu(III)0.7U(IV)1.3(C2O4)5](2.7-) results from a three-dimensional arrangement of mixed (U0.65Pu0.35)O10 polyhedra connected by five bis-bidentate μ(2)-oxalate ions in a trigonal-bipyramidal configuration.

  17. Spin-stabilized magnetic levitation without vertical axis of rotation

    Science.gov (United States)

    Romero, Louis [Albuquerque, NM; Christenson, Todd [Albuquerque, NM; Aaronson, Gene [Albuquerque, NM

    2009-06-09

    The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.

  18. Sequence-dependent rotation axis changes in tennis.

    Science.gov (United States)

    Hansen, Clint; Martin, Caroline; Rezzoug, Nasser; Gorce, Philippe; Bideau, Benoit; Isableu, Brice

    2017-09-01

    The purpose of this study was to evaluate the role of rotation axes during a tennis serve. A motion capture system was used to evaluate the contribution of the potential axes of rotation (minimum inertia axis, shoulder-centre of mass axis and the shoulder-elbow axis) during the four discrete tennis serve phases (loading, cocking, acceleration and follow through). Ten ranked athletes (International Tennis Number 1-3) repeatedly performed a flat service aiming at a target on the other side of the net. The four serve phases are distinct and thus, each movement phase seems to be organised around specific rotation axes. The results showed that the limbs' rotational axis does not necessarily coincide with the minimum inertia axis across the cocking phase of the tennis serve. Even though individual serving strategies were exposed, all participants showed an effect due to the cocking phase and changed the rotation axis during the task. Taken together, the results showed that despite inter-individual differences, nine out of 10 participants changed the rotation axis towards the minimum inertia and/or the mass axis in an endeavour to maximise external rotation of the shoulder to optimally prepare for the acceleration phase.

  19. Wind rotor with vertical axis. Vindrotor med vertikal axel

    Energy Technology Data Exchange (ETDEWEB)

    Colling, J.; Sjoenell, B.

    1987-06-15

    This rotor is of dual type i.e. a paddle wheel shaped rotor close to the vertical axis and a second rotor consisting of vertical blades with wing profile and attached to radial spokes which are fixed to the axis together with the paddle wheel rotor. (L.F.).

  20. Divide and conquer: Segmentation and patterning of the anteroposterior axis

    NARCIS (Netherlands)

    Peres, João Nuno Borges Baptista

    2005-01-01

    The formation of the anteroposterior (AP) axis is one of the key events that occur during embryogenesis. Here we investigate the dual processes of patterning and segmentation of the AP axis. To study the role of Hox genes in AP patterning, we decided to analyse the function of the PG1 (paralogous

  1. Axis: Generating Explanations at Scale with Learnersourcing and Machine Learning

    Science.gov (United States)

    Williams, Joseph Jay; Kim, Juho; Rafferty, Anna; Heffernan, Neil; Maldonado, Samuel; Gajos, Krzysztof Z.; Lasecki, Walter S.; Heffernan, Neil

    2016-01-01

    While explanations may help people learn by providing information about why an answer is correct, many problems on online platforms lack high-quality explanations. This paper presents AXIS (Adaptive eXplanation Improvement System), a system for obtaining explanations. AXIS asks learners to generate, revise, and evaluate explanations as they solve…

  2. Verticality Perception During Off-Vertical Axis Rotation

    NARCIS (Netherlands)

    Vingerhoets, R.A.A.; Gisbergen, J.A.M. van; Medendorp, W.P.

    2007-01-01

    During prolonged rotation about a tilted yaw axis, often referred to as off-vertical axis rotation (OVAR), a percept of being translated along a conical path slowly emerges as the sense of rotation subsides. Recently, we found that these perceptual changes are consistent with a canal-otolith interac

  3. Verticality perception during off-vertical axis rotation

    NARCIS (Netherlands)

    Vingerhoets, R.A.A.; Gisbergen, J.A.M. van; Medendorp, W.P.

    2007-01-01

    During prolonged rotation about a tilted yaw axis, often referred to as off-vertical axis rotation (OVAR), a percept of being translated along a conical path slowly emerges as the sense of rotation subsides. Recently, we found that these perceptual changes are consistent with a canal-otolith interac

  4. Angular momentum projection of tilted axis rotating states

    Energy Technology Data Exchange (ETDEWEB)

    Oi, M.; Onishi, N.; Tajima, N. [Tokyo Univ. (Japan); Horibata, T.

    1998-03-01

    We applied an exact angular momentum projection to three dimensional cranked HFB (3d-CHFB) states. Tilted axis rotating states (TAR) and principal axis rotating states (PAR) are compared. It is shown that TAR is more adequate than PAR for description of the back bending phenomena driven by tilted rotation or wobbling motion. (author)

  5. Turbulence in vertical axis wind turbine canopies

    Science.gov (United States)

    Kinzel, Matthias; Araya, Daniel B.; Dabiri, John O.

    2015-11-01

    Experimental results from three different full scale arrays of vertical-axis wind turbines (VAWTs) under natural wind conditions are presented. The wind velocities throughout the turbine arrays are measured using a portable meteorological tower with seven, vertically staggered, three-component ultrasonic anemometers. The power output of each turbine is recorded simultaneously. The comparison between the horizontal and vertical energy transport for the different turbine array sizes shows the importance of vertical transport for large array configurations. Quadrant-hole analysis is employed to gain a better understanding of the vertical energy transport at the top of the VAWT arrays. The results show a striking similarity between the flows in the VAWT arrays and the adjustment region of canopies. Namely, an increase in ejections and sweeps and decrease in inward and outward interactions occur inside the turbine array. Ejections are the strongest contributor, which is in agreement with the literature on evolving and sparse canopy flows. The influence of the turbine array size on the power output of the downstream turbines is examined by comparing a streamwise row of four single turbines with square arrays of nine turbine pairs. The results suggest that a new boundary layer forms on top of the larger turbine arrays as the flow adjusts to the new roughness length. This increases the turbulent energy transport over the whole planform area of the turbine array. By contrast, for the four single turbines, the vertical energy transport due to turbulent fluctuations is only increased in the near wake of the turbines. These findings add to the knowledge of energy transport in turbine arrays and therefore the optimization of the turbine spacing in wind farms.

  6. (2,3,5,10,12,13,15,20-Octaphenylporphinatocopper(II 1,1,2,2-tetrachloroethane solvate

    Directory of Open Access Journals (Sweden)

    Babu Varghese

    2008-02-01

    Full Text Available The title complex, [Cu(C68H44N4]·C2H2Cl4, exhibits nearly square-planar geometry around the CuII centre and the macrocyclic ring is almost planar. The porphyrin molecule has an approximate non-crystallographic inversion centre (Ci, and a non-crystallographic twofold rotation axis (C2 within the CuII–porphyrin ring plane. Further, it has non-crystallographic twofold rotation axis and mirror plane (Cs symmetry perpendicular to the molecular plane. The molecular packing of the complexes and the solvent molecules shows weak intermolecular C—H...π, C—H...Cl and C—H...N interactions, forming a clathrate-like structure.

  7. catena-Poly[manganese(II-(μ2-3,5-di-2-pyridyl-1,2,4-triazolato-μ2-formato

    Directory of Open Access Journals (Sweden)

    Ya-Wen Zhang

    2008-08-01

    Full Text Available Owing to the presence of crystallographic twofold rotation axes (site symmetry 2, Wyckoff letters e and f, the asymmetric unit of the title compound, [Mn(C12H8N5(CHO2]n, contains one-half of an MnII cation, one-half of a bpt anion (Hbpt is 3,5-di-2-pyridyl-4H-1,2,4-triazole and one-half of a formate anion. The bpt and formate ligands occupy the same C2 symmetry, while the MnII ion resides on another crystallographic twofold rotation axis. Each bpt ligand acts as a cis-bis-chelate to ligate two MnII ions into a one-dimensional chain running along the crystallographic 41 screw axis. Adjacent MnII ions are further bridged by a μ2-formate ligand, completing the distorted octahedral coordination geometry of the cation.

  8. Shot H3837: Darht's First Dual-Axis Explosive Experiment

    Science.gov (United States)

    Mendez, Jacob; McNeil, Wendy Vogan; Harsh, James; Hull, Lawrence

    2011-06-01

    Test H3837 was the first explosive shot performed in front of both flash x-ray axes at the Los Alamos Dual Axis Radiographic HydroTest (DARHT) facility. Executed in November 2009, the shot was an explosively-driven metal flyer plate in a series of experiments designed to explore equation-of-state properties of shocked materials. Imaging the initial shock wave traveling through the flyer plate, DARHT Axis II captured the range of motion from the shock front emergence in the flyer to breakout at the free surface; the Axis I pulse provided a perpendicular perspective of the shot at a time coinciding with the third pulse of Axis II. Since the days of the Manhattan Project, penetrating radiography with multiple frames from different viewing angles has remained a high-profile goal at the Laboratory. H3837 is merely the beginning of a bright future for two-axis penetrating radiography.

  9. DARHT status and preparations for dual-axis hydrotesting (u)

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, David W [Los Alamos National Laboratory

    2010-01-01

    The status of the DARHT facility, including a history of events that have taken place since the end of the DARHT Second Axis Refurbishment Project, is discussed. Technical and operational enhancements that have been made will be addressed, and recent technical challenges, such as the RF noise in the kicker region, are discussed. Historical data on reliability of the second axis is discussed, as well as operational changes made to enhance reliability. In addition, the path forward for integrating the second axis into overall DARHT operations in preparation for a hydrotest is addressed. Timing integration tests are accompanied by a series of tests to evaluate neutron contamination and cross-axis scatter, with attempts being made to provide adequate shielding to minimize the effects of neutrons and cross-beam scatter. The discussion includes results of the testing performed to-date, and concludes with a discussion of the path forward for dual-axis hydrotesting at DARHT.

  10. ACCURATE MEASUREMENT OF ROTA-RY MACHINE AXIS CENTER TRACE

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Four methods aiming at measuring rotary machine axis center trace are discussed in detail.The comparative analysis is made on some aspects such as measurement accuracy, on-machine characteristics, feasibility, practical operation convenience and the integrity of measurement information.In order to simplify measurement, the axis profile error is ignored in traditional condition, while the measurement accuracy will be reduced.The 3-point method that the axis profile error is firstly separated has better real time character, at the same time, not only the axis motion error but also the axis profile error can be measured.All of those information can be used to diagnose the fault origin.The analysis result is proved to be correct by the experiment.

  11. Crystallographic orientation and electrode nature are key factors for electric current generation by Geobacter sulfurreducens.

    Science.gov (United States)

    Maestro, Beatriz; Ortiz, Juan M; Schrott, Germán; Busalmen, Juan P; Climent, Víctor; Feliu, Juan M

    2014-08-01

    We have investigated the influence of electrode material and crystallographic structure on electron transfer and biofilm formation of Geobacter sulfurreducens. Single-crystal gold-Au(110), Au(111), Au(210)-and platinum-Pt(100), Pt(110), Pt(111), Pt(210)-electrodes were tested and compared to graphite rods. G. sulfurreducens electrochemically interacts with all these materials with different attachment kinetics and final current production, although redox species involved in the electron transfer to the anode are virtually the same in all cases. Initial bacterial colonization was fastest on graphite up to the monolayer level, whereas gold electrodes led to higher final current densities. Crystal geometry was shown to have an important influence, with Au(210) sustaining a current density of up to 1442±101μAcm(-2) at the steady state, over Au(111) with 961±94μAcm(-2) and Au(110) with 944±89μAcm(-2). On the other hand, the platinum electrodes displayed the lowest performances, including Pt(210). Our results indicate that both crystal geometry and electrode material are key parameters for the efficient interaction of bacteria with the substrate and should be considered for the design of novel materials and microbial devices to optimize energy production.

  12. Synthetic, crystallographic, and computational study of copper(II) complexes of ethylenediaminetetracarboxylate ligands.

    Science.gov (United States)

    Matović, Zoran D; Miletić, Vesna D; Ćendić, Marina; Meetsma, Auke; van Koningsbruggen, Petra J; Deeth, Robert J

    2013-02-04

    Copper(II) complexes of hexadentate ethylenediaminetetracarboxylic acid type ligands H(4)eda3p and H(4)eddadp (H(4)eda3p = ethylenediamine-N-acetic-N,N',N'-tri-3-propionic acid; H(4)eddadp = ethylenediamine-N,N'-diacetic-N,N'-di-3-propionic acid) have been prepared. An octahedral trans(O(6)) geometry (two propionate ligands coordinated in axial positions) has been established crystallographically for the Ba[Cu(eda3p)]·8H(2)O compound, while Ba[Cu(eddadp)]·8H(2)O is proposed to adopt a trans(O(5)) geometry (two axial acetates) on the basis of density functional theory calculations and comparisons of IR and UV-vis spectral data. Experimental and computed structural data correlating similar copper(II) chelate complexes have been used to better understand the isomerism and departure from regular octahedral geometry within the series. The in-plane O-Cu-N chelate angles show the smallest deviation from the ideal octahedral value of 90°, and hence the lowest strain, for the eddadp complex with two equatorial β-propionate rings. A linear dependence between tetragonality and the number of five-membered rings has been established. A natural bonding orbital analysis of the series of complexes is also presented.

  13. On elliptic Calogero-Moser systems for complex crystallographic reflection groups

    CERN Document Server

    Etingof, Pavel; Ma, Xiaoguang; Veselov, Alexander

    2010-01-01

    To every irreducible finite crystallographic reflection group (i.e., an irreducible finite reflection group G acting faithfully on an abelian variety X), we attach a family of classical and quantum integrable systems on X (with meromorphic coefficients). These families are parametrized by G-invariant functions of pairs (T,s), where T is a hypertorus in X (of codimension 1), and s in G is a reflection acting trivially on T. If G is a real reflection group, these families reduce to the known generalizations of elliptic Calogero-Moser systems, but in the non-real case they appear to be new. We give two constructions of the integrals of these systems - an explicit construction as limits of classical Calogero-Moser Hamiltonians of elliptic Dunkl operators as the dynamical parameter goes to 0 (implementing an idea of arXiv:hep-th/9403178), and a geometric construction as global sections of sheaves of elliptic Cherednik algebras for the critical value of the twisting parameter. We also prove algebraic integrability ...

  14. Surface energy-mediated construction of anisotropic semiconductor wires with selective crystallographic polarity

    Science.gov (United States)

    Sohn, Jung Inn; Hong, Woong-Ki; Lee, Sunghoon; Lee, Sanghyo; Ku, Jiyeon; Park, Young Jun; Hong, Jinpyo; Hwang, Sungwoo; Park, Kyung Ho; Warner, Jamie H.; Cha, Seungnam; Kim, Jong Min

    2014-07-01

    ZnO is a wide band-gap semiconductor with piezoelectric properties suitable for opto-electronics, sensors, and as an electrode material. Controlling the shape and crystallography of any semiconducting nanomaterial is a key step towards extending their use in applications. Whilst anisotropic ZnO wires have been routinely fabricated, precise control over the specific surface facets and tailoring of polar and non-polar growth directions still requires significant refinement. Manipulating the surface energy of crystal facets is a generic approach for the rational design and growth of one-dimensional (1D) building blocks. Although the surface energy is one basic factor for governing crystal nucleation and growth of anisotropic 1D structures, structural control based on surface energy minimization has not been yet demonstrated. Here, we report an electronic configuration scheme to rationally modulate surface electrostatic energies for crystallographic-selective growth of ZnO wires. The facets and orientations of ZnO wires are transformed between hexagonal and rectangular/diamond cross-sections with polar and non-polar growth directions, exhibiting different optical and piezoelectrical properties. Our novel synthetic route for ZnO wire fabrication provides new opportunities for future opto-electronics, piezoelectronics, and electronics, with new topological properties.

  15. Expression, purification, crystallization and preliminary crystallographic analysis of the proliferation-associated protein Ebp1

    Energy Technology Data Exchange (ETDEWEB)

    Kowalinski, Eva; Bange, Gert; Wild, Klemens; Sinning, Irmgard, E-mail: irmi.sinning@bzh.uni-heidelberg.de [Heidelberg University Biochemistry Center, INF 328, D-69120 Heidelberg (Germany)

    2007-09-01

    Preliminary X-ray analysis of the proliferation-associated protein Ebp1 from Homo sapiens is provided. ErbB-3-binding protein 1 (Ebp1) is a member of the family of proliferation-associated 2G4 proteins (PA2G4s) and plays a role in cellular growth and differentiation. Ligand-induced activation of the transmembrane receptor ErbB3 leads to dissociation of Ebp1 from the receptor in a phosphorylation-dependent manner. The non-associated protein is involved in transcriptional and translational regulation in the cell. Here, the overexpression, purification, crystallization and preliminary crystallographic studies of Ebp1 from Homo sapiens are reported. Initially observed crystals were improved by serial seeding to single crystals suitable for data collection. The optimized crystals belong to the tetragonal space group P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2 and diffracted to a resolution of 1.6 Å.

  16. Protein structure prediction provides comparable performance to crystallographic structures in docking-based virtual screening.

    Science.gov (United States)

    Du, Hongying; Brender, Jeffrey R; Zhang, Jian; Zhang, Yang

    2015-01-01

    Structure based virtual screening has largely been limited to protein targets for which either an experimental structure is available or a strongly homologous template exists so that a high-resolution model can be constructed. The performance of state of the art protein structure predictions in virtual screening in systems where only weakly homologous templates are available is largely untested. Using the challenging DUD database of structural decoys, we show here that even using templates with only weak sequence homology (identity) structural models can be constructed by I-TASSER which achieve comparable enrichment rates to using the experimental bound crystal structure in the majority of the cases studied. For 65% of the targets, the I-TASSER models, which are constructed essentially in the apo conformations, reached 70% of the virtual screening performance of using the holo-crystal structures. A correlation was observed between the success of I-TASSER in modeling the global fold and local structures in the binding pockets of the proteins versus the relative success in virtual screening. The virtual screening performance can be further improved by the recognition of chemical features of the ligand compounds. These results suggest that the combination of structure-based docking and advanced protein structure modeling methods should be a valuable approach to the large-scale drug screening and discovery studies, especially for the proteins lacking crystallographic structures.

  17. Crystallographic and Computational Analyses of AUUCU Repeating RNA That Causes Spinocerebellar Ataxia Type 10 (SCA10).

    Science.gov (United States)

    Park, HaJeung; González, Àlex L; Yildirim, Ilyas; Tran, Tuan; Lohman, Jeremy R; Fang, Pengfei; Guo, Min; Disney, Matthew D

    2015-06-23

    Spinocerebellar ataxia type 10 (SCA10) is caused by a pentanucleotide repeat expansion of r(AUUCU) within intron 9 of the ATXN10 pre-mRNA. The RNA causes disease by a gain-of-function mechanism in which it inactivates proteins involved in RNA biogenesis. Spectroscopic studies showed that r(AUUCU) repeats form a hairpin structure; however, there were no high-resolution structural models prior to this work. Herein, we report the first crystal structure of model r(AUUCU) repeats refined to 2.8 Å and analysis of the structure via molecular dynamics simulations. The r(AUUCU) tracts adopt an overall A-form geometry in which 3 × 3 nucleotide (5')UCU(3')/(3')UCU(5') internal loops are closed by AU pairs. Helical parameters of the refined structure as well as the corresponding electron density map on the crystallographic model reflect dynamic features of the internal loop. The computational analyses captured dynamic motion of the loop closing pairs, which can form single-stranded conformations with relatively low energies. Overall, the results presented here suggest the possibility for r(AUUCU) repeats to form metastable A-from structures, which can rearrange into single-stranded conformations and attract proteins such as heterogeneous nuclear ribonucleoprotein K (hnRNP K). The information presented here may aid in the rational design of therapeutics targeting this RNA.

  18. Scattering of slow ions by various crystallographic planes of tungsten single crystals

    CERN Document Server

    Ermolov, S N; Kortenraad, R; Must, B; Shtinov, E D; Brongersma, K K

    2002-01-01

    The dependence of low-energy ion scattering signal intensity on single crystal surface orientation is investigated, and it is shown that this dependence is not necessarily in direct proportion to atomic density in the uppermost atomic layer. On the basis of comparison of signals from various crystallographic planes of a high purity W single crystal a conclusion is made that the ions scattered from more deep atomic layers contribute considerably to the signal measured for the surface with an open structure. It is shown that reference specimens with a known surface density are needed for quantitative analysis of surface composition by the method of low-energy ion scattering. The best reference specimens are well-oriented single crystals with close-packed planes at the surface, since in this case the low-energy ion scattering signal is proportional to atomic density of the uppermost atomic layer. It single crystals with open surface structure are used as reference specimens the contribution of deeper atomic laye...

  19. CRYSTALLOGRAPHIC RELATIONS OF CEMENTITE–AUSTENITE–FERRITE IN THE DIFFUSIVE DECOMPOSITION OF AUSTENITE

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Summary. It was made a search for new and more accurate orientation relations between the crystal lattice in the pearlite and bainite austenite decomposition products. Methods. It were used the methods: transmission electron microscopy, the micro-, mathematical matrix and stereographic analysis. The purpose of the research is with theoretical, numerical and experimental methods to set up to a 0.2 degree angular orientation relations between the lattices of ferrite and cementite in the austenite decomposition products in the temperature range 400 ... 700С. Results. It was established a new, refined value for grids in the diffusion decay of γ → α + (α + θ. Practical significance. It was proposed a new oriented dependence and the corresponding double gnomonic projection with poles to planes α and θ phases, which can be used in patterns of crystallographic lattices relations studies at phase transitions, as well as the subsequent modeling of complex physical processes of structure formation in metals and binary systems.

  20. Reintroducing electrostatics into macromolecular crystallographic refinement: application to neutron crystallography and DNA hydration.

    Science.gov (United States)

    Fenn, Timothy D; Schnieders, Michael J; Mustyakimov, Marat; Wu, Chuanjie; Langan, Paul; Pande, Vijay S; Brunger, Axel T

    2011-04-13

    Most current crystallographic structure refinements augment the diffraction data with a priori information consisting of bond, angle, dihedral, planarity restraints, and atomic repulsion based on the Pauli exclusion principle. Yet, electrostatics and van der Waals attraction are physical forces that provide additional a priori information. Here, we assess the inclusion of electrostatics for the force field used for all-atom (including hydrogen) joint neutron/X-ray refinement. Two DNA and a protein crystal structure were refined against joint neutron/X-ray diffraction data sets using force fields without electrostatics or with electrostatics. Hydrogen-bond orientation/geometry favors the inclusion of electrostatics. Refinement of Z-DNA with electrostatics leads to a hypothesis for the entropic stabilization of Z-DNA that may partly explain the thermodynamics of converting the B form of DNA to its Z form. Thus, inclusion of electrostatics assists joint neutron/X-ray refinements, especially for placing and orienting hydrogen atoms.

  1. Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination.

    Science.gov (United States)

    Wlodawer, Alexander; Minor, Wladek; Dauter, Zbigniew; Jaskolski, Mariusz

    2013-11-01

    The number of macromolecular structures deposited in the Protein Data Bank now approaches 100,000, with the vast majority of them determined by crystallographic methods. Thousands of papers describing such structures have been published in the scientific literature, and 20 Nobel Prizes in chemistry or medicine have been awarded for discoveries based on macromolecular crystallography. New hardware and software tools have made crystallography appear to be an almost routine (but still far from being analytical) technique and many structures are now being determined by scientists with very limited experience in the practical aspects of the field. However, this apparent ease is sometimes illusory and proper procedures need to be followed to maintain high standards of structure quality. In addition, many noncrystallographers may have problems with the critical evaluation and interpretation of structural results published in the scientific literature. The present review provides an outline of the technical aspects of crystallography for less experienced practitioners, as well as information that might be useful for users of macromolecular structures, aiming to show them how to interpret (but not overinterpret) the information present in the coordinate files and in their description. A discussion of the extent of information that can be gleaned from the atomic coordinates of structures solved at different resolution is provided, as well as problems and pitfalls encountered in structure determination and interpretation.

  2. A new systematic framework for crystallographic analysis of atom probe data

    Energy Technology Data Exchange (ETDEWEB)

    Araullo-Peters, Vicente J., E-mail: vicente.araullopeters@gmail.com [Australian Centre for Microscopy and Microanalysis, University of Sydney (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney (Australia); Breen, Andrew; Ceguerra, Anna V. [Australian Centre for Microscopy and Microanalysis, University of Sydney (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney (Australia); Gault, Baptiste [Department of Materials, University of Oxford, Parks Road, Oxford (United Kingdom); Ringer, Simon P.; Cairney, Julie M. [Australian Centre for Microscopy and Microanalysis, University of Sydney (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney (Australia)

    2015-07-15

    In this article, after a brief introduction to the principles behind atom probe crystallography, we introduce methods for unambiguously determining the presence of crystal planes within atom probe datasets, as well as their characteristics: location; orientation and interplanar spacing. These methods, which we refer to as plane orientation extraction (POE) and local crystallography mapping (LCM) make use of real-space data and allow for systematic analyses. We present here application of POE and LCM to datasets of pure Al, industrial aluminium alloys and doped-silicon. Data was collected both in DC voltage mode and laser-assisted mode (in the latter of which extracting crystallographic information is known to be more difficult due to distortions). The nature of the atomic planes in both datasets was extracted and analysed. - Highlights: • A new analysis method was designed that determines if reconstructed planes are present in atom probe data. • The location, orientation, and planar spacing of these planes are obtained. • This method was applied to simulated, aluminium alloy and silicon data where the extent of planes was shown to vary considerably. • This method can be used to examine atom probe reconstruction quality.

  3. Purification and crystallographic analysis of a FAD-dependent halogenase from Streptomyces sp. JCM9888.

    Science.gov (United States)

    Zhao, Yanqun; Yan, Baohua; Yang, Ting; Jiang, Jian; Wei, Heng; Zhu, Xiaofeng

    2015-08-01

    A new FAD (flavin adenine dinucleotide)-dependent halogenase HalY from Streptomyces sp. JCM9888 was reported to be involved in the regioselective halogenation of adenine. HalY is a variant B FAD-dependent halogenase that is most similar to the halogenase PltA involved in pyoluteorin biosynthesis. This study reports the overexpression and purification of HalY with an N-terminal hexahistidine tag, followed by crystallization experiments and X-ray crystallographic analysis. HalY was purified as a monomer in solution and crystallized to give X-ray diffraction to a resolution of 1.7 Å. The crystal belonged to the monoclinic space group P21, with unit-cell parameters a = 41.4, b = 113.4, c = 47.6 Å, α = γ = 90, β = 107.4°, and contained one monomer of HalY in the asymmetric unit, with a calculated Matthews coefficient of 2.3 Å(3) Da(-1) and a solvent content of 46%. The structure of the halogenase CndH was used as a search model in molecular replacement to obtain the initial model of HalY. Manual model building and structure refinement of HalY are in progress.

  4. Properties and crystallization phenomena in Li2Si2O5-Ca5(PO43F and Li2Si2O5-Sr5(PO43F glass-ceramics via twofold internal crystallization

    Directory of Open Access Journals (Sweden)

    Markus eRampf

    2015-09-01

    Full Text Available The combination of specific mechanical, esthetic and chemical properties is decisive for the application of materials in prosthodontics. Controlled twofold crystallization provides a powerful tool to produce special property combinations for glass-ceramic materials. The present study outlines the potential of precipitating Ca5(PO43F as well as Sr5(PO43F as minor crystal phases in Li2Si2O5 glass-ceramics. Base glasses with different contents of CaO/SrO, P2O5 and F- were prepared within the glasses of the SiO2-Li2O-K2O-CaO/SrO-Al2O3-P2O5 system. Preliminary studies of nucleation by means of XRD and SEM of the nucleated base glasses revealed X-ray amorphous phase separation phenomena. Qualitative and quantitative crystal phase analyses after crystallization were conducted using XRD in combination with Rietveld refinement. As a main result, a direct proportional relationship between the content of apatite-forming components in the base glasses and the content of apatite in the glass ceramics was established. The microstructures of the glass-ceramics were investigated using SEM. Microstructural and mechanical properties were found to be dominated by Li2Si2O5 crystals and quite independent of the content of the apatite present in the glass-ceramics. Biaxial strengths of up to 540 MPa were detected. Ca5(PO43F and Sr5(PO43F influence the translucency of the glass-ceramics and hence, help to precisely tailor the properties of Li2Si2O5 glass-ceramics. The authors conclude that the twofold crystallization of Li2Si2O5-Ca5(PO43F or Li2Si2O5-Sr5(PO43F glass-ceramics involves independent solid state reactions which can be controlled via the chemical composition of the base glasses. The influence of the minor apatite phase on the optical properties helps to achieve new combinations of features of the glass-ceramics and hence, displays new potential for dental applications.

  5. Properties and Crystallization Phenomena in Li2Si2O5-Ca5(PO4)3F and Li2Si2O5-Sr5(PO4)3F Glass-Ceramics Via Twofold Internal Crystallization.

    Science.gov (United States)

    Rampf, Markus; Dittmer, Marc; Ritzberger, Christian; Schweiger, Marcel; Höland, Wolfram

    2015-01-01

    The combination of specific mechanical, esthetic, and chemical properties is decisive for the application of materials in prosthodontics. Controlled twofold crystallization provides a powerful tool to produce special property combinations for glass-ceramic materials. The present study outlines the potential of precipitating Ca5(PO4)3F as well as Sr5(PO4)3F as minor crystal phases in Li2Si2O5 glass-ceramics. Base glasses with different contents of CaO/SrO, P2O5, and F(-) were prepared within the glasses of the SiO2-Li2O-K2O-CaO/SrO-Al2O3-P2O5-F system. Preliminary studies of nucleation by means of XRD and scanning electron microscopy (SEM) of the nucleated base glasses revealed X-ray amorphous phase separation phenomena. Qualitative and quantitative crystal phase analyses after crystallization were conducted using XRD in combination with Rietveld refinement. As a main result, a direct proportional relationship between the content of apatite-forming components in the base glasses and the content of apatite in the glass-ceramics was established. The microstructures of the glass-ceramics were investigated using SEM. Microstructural and mechanical properties were found to be dominated by Li2Si2O5 crystals and quite independent of the content of the apatite present in the glass-ceramics. Biaxial strengths of up to 540 MPa were detected. Ca5(PO4)3F and Sr5(PO4)3F influence the translucency of the glass-ceramics and, hence, help to precisely tailor the properties of Li2Si2O5 glass-ceramics. The authors conclude that the twofold crystallization of Li2Si2O5-Ca5(PO4)3F or Li2Si2O5-Sr5(PO4)3F glass-ceramics involves independent solid-state reactions, which can be controlled via the chemical composition of the base glasses. The influence of the minor apatite phase on the optical properties helps to achieve new combinations of features of the glass-ceramics and, hence, displays new potential for dental applications.

  6. Crystallographic analysis of TPP riboswitch binding by small-molecule ligands discovered through fragment-based drug discovery approaches.

    Science.gov (United States)

    Warner, Katherine Deigan; Ferré-D'Amaré, Adrian R

    2014-01-01

    Riboswitches are structured mRNA elements that regulate gene expression in response to metabolite or second-messenger binding and are promising targets for drug discovery. Fragment-based drug discovery methods have identified weakly binding small molecule "fragments" that bind a thiamine pyrophosphate (TPP) riboswitch. However, these fragments require substantial chemical elaboration into more potent, drug-like molecules. Structure determination of the fragments bound to the riboswitch is the necessary next step. In this chapter, we describe the methods for co-crystallization and structure determination of fragment-bound TPP riboswitch structures. We focus on considerations for screening crystallization conditions across multiple crystal forms and provide guidance for building the fragment into the refined crystallographic model. These methods are broadly applicable for crystallographic analyses of any small molecules that bind structured RNAs.

  7. Glassy Carbon Electrode-Supported Au Nanoparticles for the Glucose Electrooxidation: On the Role of Crystallographic Orientation

    Directory of Open Access Journals (Sweden)

    M. Guerra-Balcázar

    2012-01-01

    Full Text Available Glucose electrooxidation in alkaline solution was examined using glassy carbon electrodes modified with Au nanoparticles. Au nanoparticles were prepared following the two-phase protocol and characterized by transmission electron microscopy (TEM, UV-Vis spectroscopy, X-ray diffraction spectroscopy (XRD, and cyclic voltammetry (CV. It was found that, under the study conditions, it is possible to obtain nanoparticles between 1 and 5 nm; also it was found that the crystallographic orientation is strongly influenced by the ratio metal/thiol and to a lesser extent by the synthesis temperature. The voltammetric response for the electrocatalytic oxidation of glucose at carbon Au nanoparticle-modified electrode shows an increasing activity with nanoparticles size. Electroactivity and possibly selectivity are found to be nanoparticles' crystallographic orientation dependent. Classical electrochemical analysis shows that glucose electrooxidation is a diffusion-controlled process followed by a homogenous reaction.

  8. The fcc-bcc crystallographic orientation relationship in AlxCoCrFeNi high-entropy alloys

    NARCIS (Netherlands)

    Rao, J. C.; Ocelik, V.; Vainchtein, D.; Tang, Z.; Liaw, P. K.; De Hosson, J. Th. M.

    2016-01-01

    This paper concentrates on the crystallographic-orientation relationship between the various phases in the Al-Co-Cr-Fe-Ni high-entropy alloys. Two types of orientation relationships of bcc phases (some with ordered B2 structures) and fcc matrix were observed in Al0.5CoCrFeNi and Al0.7CoCrFeNi alloys

  9. Self-Assembled Monolayers: Star-Shaped Crystallographic Cracking of Localized Nanoporous Defects (Adv. Mater. 33/2015).

    Science.gov (United States)

    Renner, Frank Uwe; Ankah, Genesis Ngwa; Bashir, Asif; Ma, Duancheng; Biedermann, P Ulrich; Shrestha, Buddha Ratna; Nellessen, Monika; Khorashadizadeh, Anahita; Losada-Pérez, Patricia; Duarte, Maria Jazmin; Raabe, Dierk; Valtiner, Markus

    2015-09-02

    On page 4877, F. U. Renner, A. Bashir, M. Valtiner, and co-workers describe a star-like dealloying corrosion morphology that appears during the localized attack of smooth well-prepared Cu-Au surfaces. The surfaces are initially protected by thiol or selenol inhibitior films. Localized dealloying of Cu-Au produces nanoporous gold under stress and crystallographic cracks - thereby opening a new approach combining surface science with nanoscale mechanical testing.

  10. A numerical investigation of grain shape and crystallographic texture effects on the plastic strain localization in friction stir weld zones

    Science.gov (United States)

    Romanova, V.; Balokhonov, R.; Batukhtina, E.; Shakhidjanov, V.

    2015-10-01

    Crystal plasticity approaches were adopted to build models accounting for the microstructure and texture observed in different friction stir weld zones. To this end, a numerical investigation of crystallographic texture and grain shape effects on the plastic strain localization in a friction stir weld of an aluminum-base alloy was performed. The presence of texture was found to give rise to pronounced mesoscale plastic strain localization.

  11. AxiSketcher: Interactive Nonlinear Axis Mapping of Visualizations through User Drawings.

    Science.gov (United States)

    Kwon, Bum Chul; Kim, Hannah; Wall, Emily; Choo, Jaegul; Park, Haesun; Endert, Alex

    2017-01-01

    Visual analytics techniques help users explore high-dimensional data. However, it is often challenging for users to express their domain knowledge in order to steer the underlying data model, especially when they have little attribute-level knowledge. Furthermore, users' complex, high-level domain knowledge, compared to low-level attributes, posits even greater challenges. To overcome these challenges, we introduce a technique to interpret a user's drawings with an interactive, nonlinear axis mapping approach called AxiSketcher. This technique enables users to impose their domain knowledge on a visualization by allowing interaction with data entries rather than with data attributes. The proposed interaction is performed through directly sketching lines over the visualization. Using this technique, users can draw lines over selected data points, and the system forms the axes that represent a nonlinear, weighted combination of multidimensional attributes. In this paper, we describe our techniques in three areas: 1) the design space of sketching methods for eliciting users' nonlinear domain knowledge; 2) the underlying model that translates users' input, extracts patterns behind the selected data points, and results in nonlinear axes reflecting users' complex intent; and 3) the interactive visualization for viewing, assessing, and reconstructing the newly formed, nonlinear axes.

  12. Transverse beam motion on the second axis of the dual axis radiographic hydrodynamic test facility

    Energy Technology Data Exchange (ETDEWEB)

    Caporaso, G J; Chen, Y J; Fawley, W M; Paul, A C

    1999-03-23

    The accelerator on the second-axis of the Dual-Axis Radiographic Hydrodynamic Test (DARHT-II) facility will generate a 20 MeV, 2-4 kA, 2 µs long electron beam with an energy variation {<=} ± 0.5%. Four short current pulses with various lengths will be selected out of this 2 µs long current pulse and delivered to an x-ray converter target. The DARHT-II radiographic resolution requires these electron pulses to be focused to sub-millimeter spots on Bremsstrahlung targets with peak-to-peak transverse beam motion less than a few hundred microns. We have modeled the transverse beam motion, including the beam breakup instability, corkscrew motion, transverse resistive wall instability and beam induced transverse deflection in the kicker system, from the DARHT-II injector exit to the x-ray converter target. Simulations show that the transverse motion at the x-ray converters satisfies the DARHT-II radiographic requirements.

  13. Recombinant production, crystallization and X-ray crystallographic structure determination of the peptidyl-tRNA hydrolase of Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Ronny C.; McFeeters, Hana; Coates, Leighton; McFeeters, Robert L.

    2014-10-15

    The peptidyl-tRNA hydrolase enzyme from the pathogenic bacterium Pseudomonas aeruginosa (Pth; EC 3.1.1.29) has been cloned, expressed in Escherichia coli and crystallized for X-ray structural analysis. Suitable crystals were grown using the sitting-drop vapour-diffusion method after one week of incubation against a reservoir solution consisting of 20% polyethylene glycol 4000, 100 mM Tris pH 7.5, 10%(v/v) isopropyl alcohol. The crystals were used to obtain the three-dimensional structure of the native protein at 1.77 Å resolution. The structure was determined by molecular replacement of the crystallographic data processed in space group P6122 with unit-cell parameters a = b = 63.62,c = 155.20 Å, α = β = 90, γ = 120°. The asymmetric unit of the crystallographic lattice was composed of a single copy of the enzyme molecule with a 43% solvent fraction, corresponding to a Matthews coefficient of 2.43 Å3 Da-1. The crystallographic structure reported here will serve as the foundation for future structure-guided efforts towards the development of novel small-molecule inhibitors specific to bacterial Pths.

  14. Coupled Crystal Plasticity-Phase Field Fracture Simulation Study on Damage Evolution Around a Void: Pore Shape Versus Crystallographic Orientation

    Science.gov (United States)

    Diehl, Martin; Wicke, Marcel; Shanthraj, Pratheek; Roters, Franz; Brueckner-Foit, Angelika; Raabe, Dierk

    2017-03-01

    Various mechanisms such as anisotropic plastic flow, damage nucleation, and crack propagation govern the overall mechanical response of structural materials. Understanding how these mechanisms interact, i.e. if they amplify mutually or compete with each other, is an essential prerequisite for the design of improved alloys. This study shows—by using the free and open source software DAMASK (the Düsseldorf Advanced Material Simulation Kit)—how the coupling of crystal plasticity and phase field fracture methods can increase the understanding of the complex interplay between crystallographic orientation and the geometry of a void. To this end, crack initiation and propagation around an experimentally obtained pore with complex shape is investigated and compared to the situation of a simplified spherical void. Three different crystallographic orientations of the aluminum matrix hosting the defects are considered. It is shown that crack initiation and propagation depend in a non-trivial way on crystallographic orientation and its associated plastic behavior as well as on the shape of the pore.

  15. The effect of magnetic annealing on crystallographic texture and magnetic properties of Fe-2.6% Si

    Energy Technology Data Exchange (ETDEWEB)

    Salih, M.Z., E-mail: mohammedzs2007@hotmail.com [Institut für Werkstoffkunde und Werkstofftechnik, TU Clausthal, Agricolastraße 6, D-38678 Clausthal-Zellerfeld (Germany); Uhlarz, M. [Dresden High Magnetic Field Laboratory (HLD), Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden (Germany); Pyczak, F. [Instiute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht (Germany); Brokmeier, H.-G. [Institut für Werkstoffkunde und Werkstofftechnik, TU Clausthal, Agricolastraße 6, D-38678 Clausthal-Zellerfeld (Germany); Instiute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht (Germany); Weidenfeller, B. [Institut für Elektrochemie, Abteilung für Materialwissenschaft, Arnold-Sommerfeld-Straße 6, D-38678 Clausthal-Zellerfeld (Germany); Al-hamdany, N. [Institut für Werkstoffkunde und Werkstofftechnik, TU Clausthal, Agricolastraße 6, D-38678 Clausthal-Zellerfeld (Germany); Gan, W.M. [Instiute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht (Germany); Zhong, Z.Y. [Institut für Werkstoffkunde und Werkstofftechnik, TU Clausthal, Agricolastraße 6, D-38678 Clausthal-Zellerfeld (Germany); Schell, N. [Instiute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht (Germany)

    2015-05-01

    The effect of magnetic annealing on crystallographic texture, microstructure, defects density and magnetic properties of a Fe-2.6% Si steel has been analyzed. After two stage cold rolling (75% and 60% cold rolled) with intermediate annealing process at (600 °C/1 h) the sample annealed at 600 °C for one hour during which different magnetic field of 0, 7 and 14 T were applied has been investigated. The effect of defects density after cold rolling process on the recrystallization texture and magnetic properties was characterized. Heat treatments under a high external field of 14 T show a drastic improvement of the magnetic properties such as significantly increased permeability. Neutron diffraction measurements were preferred for measurement of the bulk sample texture so that sufficient grain statistics were obtained. Because of its small wavelength (0.05–0.2 Å) Synchrotron diffraction with high photon energy was used to evaluate the defects density by a modified Williamson–Hall plot. - Highlights: • We show the effect of the magnetic annealing after intermediate cold rolling on the crystallographic texture and magnetic properties. • Due the coarse grained we used Neutron diffraction for texture measurement. • We used hysteresis recorder to measure the magnetic properties. • The magnetic annealing leads to drastic improvements of the magnetic properties such as significantly increased permeability. • We show the effect of defect density on the crystallographic texture and magnetic properties.

  16. On the problems of describing joint axis alignment.

    Science.gov (United States)

    Ball, Kevin A; Greiner, Thomas M

    2008-01-01

    Each three-dimensional joint possesses at least one potentially oblique axis of rotation. Several systems are used to express joint axis alignment. One system, designated the plane projection (PP) method, describes angles based on orthogonal projections onto two, of the three, anatomical planes. Alternatively, a joint axis may be described in two different ways using two sequential Cardan angle rotations. These expression systems all lay claim to similar descriptive labels, such as deviation and elevation. Difficulties arise as researchers use these various methods to compare their own data to the results of others. A joint axis alignment, described as 27 degrees deviation and 41 degrees elevation in PP, differs by as much as 6 degrees when expressed as Cardan angles. Differences among expression systems increase as the joint axis alignment becomes more oblique -- eventually differing by as much as 75 degrees . This paper explores implications for this lack of congruence among the joint axis expression systems. Effective steps in dealing with these issues begin with recognizing the existence and extent of the problem. The paper provides a common set of algorithms to illustrate and alleviate the possible problems associated with the exchange of joint axis alignment data.

  17. Childhood stressful events, HPA axis and anxiety disorders.

    Science.gov (United States)

    Faravelli, Carlo; Lo Sauro, Carolina; Godini, Lucia; Lelli, Lorenzo; Benni, Laura; Pietrini, Francesco; Lazzeretti, Lisa; Talamba, Gabriela Alina; Fioravanti, Giulia; Ricca, Valdo

    2012-02-22

    Anxiety disorders are among the most common of all mental disorders and their pathogenesis is a major topic in psychiatry, both for prevention and treatment. Early stressful life events and alterations of hypothalamic pituitary adrenal (HPA) axis function seem to have a significant role in the onset of anxiety. Existing data appear to support the mediating effect of the HPA axis between childhood traumata and posttraumatic stress disorder. Findings on the HPA axis activity at baseline and after stimuli in panic disordered patients are inconclusive, even if stressful life events may have a triggering function in the development of this disorder. Data on the relationship between stress, HPA axis functioning and obsessive-compulsive disorder (OCD) are scarce and discordant, but an increased activity of the HPA axis is reported in OCD patients. Moreover, normal basal cortisol levels and hyper-responsiveness of the adrenal cortex during a psychosocial stressor are observed in social phobics. Finally, abnormal HPA axis activity has also been observed in generalized anxiety disordered patients. While several hypothesis have attempted to explain these findings over time, currently the most widely accepted theory is that early stressful life events may provoke alterations of the stress response and thus of the HPA axis, that can endure during adulthood, predisposing individuals to develop psychopathology. All theories are reviewed and the authors conclude that childhood life events and HPA abnormalities may be specifically and transnosographically related to all anxiety disorders, as well as, more broadly, to all psychiatric disorders.

  18. Off-axis illumination direct-to-digital holography

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Clarence E.; Price, Jeffery R.; Voelkl, Edgar; Hanson, Gregory R.

    2004-06-08

    Systems and methods are described for off-axis illumination direct-to-digital holography. A method of recording an off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis, includes: reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object at an angle with respect to an optical axis defined by a focusing lens; focusing the reference beam and the object beam at a focal plane of a digital recorder to form the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digitally recording the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; Fourier analyzing the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes by transforming axes of the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined as an angle between the reference beam and the object beam; applying a digital filter to cut off signals around an original origin; and then performing an inverse Fourier transform.

  19. Microstructures and Crystallographic Misorientation in Experimentally Deformed Natural Quartz Single Crystals

    Science.gov (United States)

    Thust, Anja; Heilbronner, Renée.; Stünitz, Holger

    2010-05-01

    lamellae with a high optical relief appear in the usual sub-basal orientation; often they are associated with 'fluid inclusions trails', cracks or en echelon arrays. In ⊥{m} orientation, conjugate misorientation bands sub-parallel to the prism planes can be observed. The barreled shape of the samples can be explained by prism glide. Unfortunately, since prism glide does not affect the c-axis orientation it cannot be recognized on a c-axis orientation image. Nevertheless, changes in the c-axis orientation are observed locally, indicating either the activity of an additional slip system or a different deformation process (not specified yet). In O+ orientation, we observe the formation of internally kinked shear bands. They are up to 100 μm wide and oriented at α 90° w/r to the host c-axis, slightly oblique to the sense of shear. The width of the kinked domains is 20-40 μm and the average misorientation (β) is 5° . The dispersion of c-axis orientation with synthetic rotation of the c-axis is evidence of basal glide. References: Kronenberg, A.K. & Tullis, J. (1984): Flow strength of quartz aggregates: grain size and pressure effects due to hydrolytic weakening. JGR Vol. 89, 4281-4281.

  20. Thoughts on the so-called radius-capitellum axis

    Energy Technology Data Exchange (ETDEWEB)

    Schild, H.; Mueller, H.A.; Wagner, H.; Baetz, W.

    1982-02-01

    We have studied 438 patients radiologically in order to observe the so-called 'radius-capitellum axis'. In about a quarter of people with normal elbows the axis passes lateral to the middle portion of the capitellum, so that even when there is marked deviation, there is no certainty that the humero-radial joint is abnormal. Deviation of the axis can be caused by changes in the shape of the capitellum or of the radius, or by distension of the capsule of the elbow joint, or by various changes in muscular pull.

  1. Research of the micromechanical three-axis accelerometer

    Science.gov (United States)

    Konoplev, B.; Lysenko, I.; Ryndin, E.; Ezhova, O.; Bondarev, F.

    2016-12-01

    In the report the linear acceleration sensor design with three axis of sensitivity is researched. Parameterized geometry and finite element model for modal analysis are developed in the ANSYS program. Behavioral description of the study design is developed with language VHDL-AMS to simulate the sensor operation under the influence of linear acceleration along three axis of sensitivity. On the basis of research results three-axis device sensitivity, cross-sensitivity, duration transients are specified. As part of the work the experimental sensor prototypes are fabricated.

  2. Phosphate tungsten bronze series: crystallographic and structural properties of low-dimensional conductors.

    Science.gov (United States)

    Roussel, P; Pérez, O; Labbé, P

    2001-10-01

    Phosphate tungsten bronzes have been shown to be conductors of low dimensionality. A review of the crystallographic and structural properties of this huge series of compounds is given here, corresponding to the present knowledge of the different X-ray studies and electron microscopy investigations. Three main families are described, monophosphate tungsten bronzes, Ax(PO2)4(WO3)2m, either with pentagonal tunnels (MPTBp) or with hexagonal tunnels (MPTBh), and diphosphate tungsten bronzes, Ax(P2O4)2(WO3)2m, mainly with hexagonal tunnels (DPTBh). The general aspect of these crystal structures may be described as a building of polyhedra sharing oxygen corners made of regular stacking of WO3-type slabs with a thickness function of m, joined by slices of tetrahedral PO4 phosphate or P2O7 diphosphate groups. The relations of the different slabs with respect to the basic perovskite structure are mentioned. The structural description is focused on the tilt phenomenon of the WO6 octahedra inside a slab of WO3-type. In this respect, a comparison with the different phases of the WO3 crystal structures is established. The various modes of tilting and the different possible connections between two adjacent WO3-type slabs involve a great variety of structures with different symmetries, as well as the existence of numerous twins in MPTBp's. Several phase transitions, with the appearance of diffuse scattering and modulation phenomena, were analysed by X-ray scattering measurements and through the temperature dependence of various physical properties for the MPTBp's. The role of the W displacements within the WO3-type slabs, in two modulated structures (m = 4 and m = 10), already solved, is discussed. Finally, the complexity of the structural aspects of DPTBh's is explained on the basis of the average structures which are the only ones solved.

  3. Identifying unknown nanocrystals by fringe fingerprinting in two dimensions and free-access crystallographic databases

    Science.gov (United States)

    Moeck, Peter; Čertik, Ondřej; Seipel, Bjoern; Groebner, Rebecca; Noice, Lori; Upreti, Girish; Fraundorf, Philip; Erni, Rolf; Browning, Nigel D.; Kiesow, Andreas; Jolivet, Jean-Pierre

    2005-11-01

    New needs to determine the crystallography of nanocrystals arise with the advent of science and engineering on the nanometer scale. Direct space high-resolution phase-contrast transmission electron microscopy (HRTEM) and atomic resolution Z-contrast scanning TEM (Z-STEM), when combined with tools for image-based nanocrystallography possess the capacity to meet these needs. This paper introduces such a tool, i.e. fringe fingerprinting in two dimensions (2D), for the identification of unknown nanocrystal phases and compares this method briefly to qualitative standard powder X-ray diffractometry (i.e. spatial frequency fingerprinting). Free-access crystallographic databases are also discussed because the whole fingerprinting concept is only viable if there are comprehensive databases to support the identification of an unknown nanocrystal phase. This discussion provides the rationale for our ongoing development of a dedicated free-access Nano-Crystallography Database (NCD) that contains comprehensive information on both nanocrystal structures and morphologies. The current status of the NCD project and plans for its future developments are briefly outlined. Although feasible in contemporary HRTEMs and Z-STEMs, fringe fingerprinting in 2D (and image-based nanocrystallography in general) will become much more viable with the increased availability of aberration-corrected transmission electron microscopes. When the image acquisition and interpretation are, in addition, automated in such microscopes, fringe fingerprinting in 2D will be able to compete with powder X-ray diffraction for the identification of unknown nanocrystal phases on a routine basis. Since it possesses a range of advantages over powder X-ray diffractometry, e.g., fringe fingerprint plots contain much more information for the identification of an unknown crystal phase, fringe fingerprinting in 2D may then capture a significant part of the nanocrystal metrology market.

  4. Crystallographic texture and microstructural changes in fusion welds of recrystallized Zry-4 rolled plates

    Science.gov (United States)

    Moya Riffo, A.; Vicente Alvarez, M. A.; Santisteban, J. R.; Vizcaino, P.; Limandri, S.; Daymond, M. R.; Kerr, D.; Okasinski, J.; Almer, J.; Vogel, S. C.

    2017-05-01

    This work presents a detailed characterization of the microstructural and crystallographic texture changes observed in the transition region in a weld between two Zircaloy-4 cold rolled and recrystallized plates. The microstructural study was performed by optical microscopy under polarized light and scanning electron microscopy (SEM). Texture changes were characterized at different lengthscales: in the micrometric size, orientation imaging maps (OIM) were constructed by electron backscatter diffraction (EBSD), in the millimetre scale, high energy XRD experiments were done at the Advanced Photon Source (USA) and compared to neutron diffraction texture determinations performed in the HIPPO instrument at Los Alamos National Laboratory. In the heat affected zone (HAZ) we observed the development of Widmanstätten microstructures, typical of the α(hcp) to β(bcc) phase transformation. Associated with these changes a rotation of the c-poles is found in the HAZ and fusion zone. While the base material shows the typical texture of a cold rolled plate, with their c-poles pointing 35° apart from the normal direction of the plate in the normal-transversal line, in the HAZ, c-poles align along the transversal direction of the plate and then re-orient along different directions, all of these changes occurring within a lengthscale in the order of mm. The evolution of texture in this narrow region was captured by both OIM and XRD, and is consistent with previous measurements done by Neutron Diffraction in the HIPPO diffractometer at Los Alamos National Laboratory, USA. The microstructural and texture changes along the HAZ were interpreted as arising due to the effect of differences in the cooling rate and β grain size on the progress of the different α variants during transformation. Fast cooling rates and large β grains are associated to weak variant selection during the β->α transformation, while slow cooling rates and fine β grains result in strong variant selection.

  5. Identification of succinic semialdehyde reductases from Geobacter: expression,purification, crystallization, preliminary functional, and crystallographic analysis

    Institute of Scientific and Technical Information of China (English)

    Yanfeng Zhang; Xiaoli Gao; Yi Zheng; R. Michae; Garavito

    2011-01-01

    Succinic semialdehyde reductase (SSAR) is an important enzyme involved in γ-aminobutyrate (GABA) metabolism.By converting succinic semialdehyde (SSA) to γ-hydroxybutyrate (GHB),the SSAR facilitates an alternative pathway for GABA degradation.In this study,we identified SSARs from Geobacter sulfurreducens and Geobacter metallireducens (GsSSAR and GmSSAR,respectively).The enzymes were over-expressed in Escherichia coil and purified to near homogeneity.Both GsSSAR and GmSSAR showed the activity of reducing SSA using nicotinamide adenine dinucleotide phosphate as a co-factor.The oligomeric sizes of GsSSAR and GmSSAR,as determined by analytical size exclusion chromatography,suggest that the enzymes presumably exist as tetramers in solution.The recombinant GsSSAR and GmSSAR crystallized in the presence of NADP+,and the resulting crystals diffracted to 1.89 (A) (GsSSAR) and 2.25 (A)(GmSSAR) resolution.The GsSSAR and GmSSAR crystals belong to the space groups P21221 (a =99.61 (A),b =147.49 (A),c =182.47 A) and P1 (a =75.97 (A) b =79.14 (A) c =95.47 (A),α =82.15°,β =88.80°,γ=87.66°),respectively.Preliminary crystallographic data analysis suggests the presence of eight protein monomers in the asymmetric units for both GsSSAR and GmSSAR.

  6. High-temperature in situ crystallographic observation of reversible gas sorption in impermeable organic cages.

    Science.gov (United States)

    Baek, Seung Bin; Moon, Dohyun; Graf, Robert; Cho, Woo Jong; Park, Sung Woo; Yoon, Tae-Ung; Cho, Seung Joo; Hwang, In-Chul; Bae, Youn-Sang; Spiess, Hans W; Lee, Hee Cheon; Kim, Kwang S

    2015-11-17

    Crystallographic observation of adsorbed gas molecules is a highly difficult task due to their rapid motion. Here, we report the in situ single-crystal and synchrotron powder X-ray observations of reversible CO2 sorption processes in an apparently nonporous organic crystal under varying pressures at high temperatures. The host material is formed by hydrogen bond network between 1,3,5-tris-(4-carboxyphenyl)benzene (H3BTB) and N,N-dimethylformamide (DMF) and by π-π stacking between the H3BTB moieties. The material can be viewed as a well-ordered array of cages, which are tight packed with each other so that the cages are inaccessible from outside. Thus, the host is practically nonporous. Despite the absence of permanent pathways connecting the empty cages, they are permeable to CO2 at high temperatures due to thermally activated molecular gating, and the weakly confined CO2 molecules in the cages allow direct detection by in situ single-crystal X-ray diffraction at 323 K. Variable-temperature in situ synchrotron powder X-ray diffraction studies also show that the CO2 sorption is reversible and driven by temperature increase. Solid-state magic angle spinning NMR defines the interactions of CO2 with the organic framework and dynamic motion of CO2 in cages. The reversible sorption is attributed to the dynamic motion of the DMF molecules combined with the axial motions/angular fluctuations of CO2 (a series of transient opening/closing of compartments enabling CO2 molecule passage), as revealed from NMR and simulations. This temperature-driven transient molecular gating can store gaseous molecules in ordered arrays toward unique collective properties and release them for ready use.

  7. Identification of succinic semialdehyde reductases from Geobacter: expression, purification, crystallization, preliminary functional, and crystallographic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanfeng; Gao, Xiaoli; Zheng, Yi; Garavito, R. Michael (MSU)

    2012-04-30

    Succinic semialdehyde reductase (SSAR) is an important enzyme involved in {gamma}-aminobutyrate (GABA) metabolism. By converting succinic semialdehyde (SSA) to {gamma}-hydroxybutyrate (GHB), the SSAR facilitates an alternative pathway for GABA degradation. In this study, we identified SSARs from Geobacter sulfurreducens and Geobacter metallireducens (GsSSAR and GmSSAR, respectively). The enzymes were over-expressed in Escherichia coli and purified to near homogeneity. Both GsSSAR and GmSSAR showed the activity of reducing SSA using nicotinamide adenine dinucleotide phosphate as a co-factor. The oligomeric sizes of GsSSAR and GmSSAR, as determined by analytical size exclusion chromatography, suggest that the enzymes presumably exist as tetramers in solution. The recombinant GsSSAR and GmSSAR crystallized in the presence of NADP{sup +}, and the resulting crystals diffracted to 1.89 {angstrom} (GsSSAR) and 2.25 {angstrom} (GmSSAR) resolution. The GsSSAR and GmSSAR crystals belong to the space groups P2{sub 1}22{sub 1} (a = 99.61 {angstrom}, b = 147.49 {angstrom}, c = 182.47 {angstrom}) and P1 (a = 75.97 {angstrom}, b = 79.14 {angstrom}, c = 95.47 {angstrom}, {alpha} = 82.15{sup o}, {beta} = 88.80{sup o}, {gamma} = 87.66{sup o}), respectively. Preliminary crystallographic data analysis suggests the presence of eight protein monomers in the asymmetric units for both GsSSAR and GmSSAR.

  8. Functional analysis of hyperthermophilic endocellulase from Pyrococcus horikoshii by crystallographic snapshots.

    Science.gov (United States)

    Kim, Han-Woo; Ishikawa, Kazuhiko

    2011-07-15

    A hyperthermophilic membrane-related β-1,4-endoglucanase (family 5, cellulase) of the archaeon Pyrococcus horikoshii was found to be capable of hydrolysing cellulose at high temperatures. The hyperthermophilic cellulase has promise for applications in biomass utilization. To clarify its detailed function, we determined the crystal structures of mutants of the enzyme in complex with either the substrate or product ligands. We were able to resolve different kinds of complex structures at 1.65-2.01 Å (1 Å=0.1 nm). The structural analysis of various mutant enzymes yielded a sequence of crystallographic snapshots, which could be used to explain the catalytic process of the enzyme. The substrate position is fixed by the alignment of one cellobiose unit between the two aromatic amino acid residues at subsites +1 and +2. During the enzyme reaction, the glucose structure of cellulose substrates is distorted at subsite -1, and the β-1,4-glucoside bond between glucose moieties is twisted between subsites -1 and +1. Subsite -2 specifically recognizes the glucose residue, but recognition by subsites +1 and +2 is loose during the enzyme reaction. This type of recognition is important for creation of the distorted boat form of the substrate at subsite -1. A rare enzyme-substrate complex was observed within the low-activity mutant Y299F, which suggested the existence of a trapped ligand structure before the formation by covalent bonding of the proposed intermediate structure. Analysis of the enzyme-substrate structure suggested that an incoming water molecule, essential for hydrolysis during the retention process, might be introduced to the cleavage position after the cellobiose product at subsites +1 and +2 was released from the active site.

  9. Crystallographic, microstructure and mechanical characteristics of dynamically processed IN718 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.D., E-mail: ads.hpu@gmail.com [Department of Physics, Himachal Pradesh University, Shimla 171005 (India); Sharma, A.K. [Terminal Ballistics Research Laboratory, Chandigarh 160030 (India); Thakur, N. [Department of Physics, Himachal Pradesh University, Shimla 171005 (India)

    2014-06-01

    Highlights: • Measurement of detonation velocity and compaction of powder are achieved together. • A plastic explosive detonation results into dense compacts without grain-growth. • We have studied crystallographic, micromechanical and microstructural features. • The results show no segregation within the compacts. • Density (98%), microhardness (470 ± 3)H{sub v}, microstrain (0.3%), UTS (806 MPa) are obtained. - Abstract: Dynamic consolidation of IN718 superalloy powder without grain-growth and negligible density gradient is accomplished through explosively generated shock wave loading. The compaction of powder and measurement of detonation velocity are achieved successfully in a single-shot experiment by employing instrumented detonics. A plastic explosive having a detonation velocity of the order of 7.1 km/s in a direct proximity with superalloy powder is used for the consolidation process. The compacted specimens are examined for structural, microstructure and mechanical characteristics. X-ray diffraction (XRD) study suggests intact crystalline structure of the compacts. A small micro-strain (0.26%) is observed by using Williamson–Hall method. Wavelength dispersive spectroscopy indicates no segregation within the shock processed superalloy compacted specimens. The monoliths investigated for fractography by using field emission scanning electron microscopy (FE-SEM) show original dendritic structure accompanied by re-solidified molten regions across the interparticle boundaries. Depth-sensing indentations (at 1.96 N) on compacted specimens show excellent micro-hardness of the order of (470 ± 3)H{sub v}. Tensile and compressive strengths of the superalloy monolith are observed to be 806 and 822 MPa, respectively.

  10. Crystallographic texture and microstructural changes in fusion welds of recrystallized Zry-4 rolled plates

    Energy Technology Data Exchange (ETDEWEB)

    Riffo, A. Moya; Alvarez, M.A.Vicente; Santisteban, J R; Vizcaino, P; Limandri, S.; Daymond, M. R.; Kerr, D.; Vogel, S C; Almer, J.; Okasinski, J.

    2017-02-08

    This study presents a detailed characterization of the microstructural and crystallographic texture changes observed in the transition region in a weld between two Zircaloy-4 cold rolled and recrystallized plates. The microstructural study was performed by optical microscopy under polarized light and scanning electron microscopy (SEM). Texture changes were characterized at different lengthscales: in the micrometric size, orientation imaging maps (OIM) were constructed by electron backscatter diffraction (EBSD), in the millimetre scale, high energy XRD experiments were done at the Advanced Photon Source (USA) and compared to neutron diffraction texture determinations performed in the HIPPO instrument at Los Alamos National Laboratory. In the heat affected zone (HAZ) we observed the development of Widmanstätten microstructures, typical of the α(hcp) to β(bcc) phase transformation. Associated with these changes a rotation of the c-poles is found in the HAZ and fusion zone. While the base material shows the typical texture of a cold rolled plate, with their c-poles pointing 35° apart from the normal direction of the plate in the normal-transversal line, in the HAZ, c-poles align along the transversal direction of the plate and then re-orient along different directions, all of these changes occurring within a lengthscale in the order of mm. The evolution of texture in this narrow region was captured by both OIM and XRD, and is consistent with previous measurements done by Neutron Diffraction in the HIPPO diffractometer at Los Alamos National Laboratory, USA. The microstructural and texture changes along the HAZ were interpreted as arising due to the effect of differences in the cooling rate and β grain size on the progress of the different α variants during transformation. Fast cooling rates and large β grains are associated to weak variant selection during the β–>α transformation, while slow cooling rates and fine β grains result in strong

  11. Structure and function of proteins investigated by crystallographic and spectroscopic time-resolved methods

    Science.gov (United States)

    Purwar, Namrta

    Biomolecules play an essential role in performing the necessary functions for life. The goal of this thesis is to contribute to an understanding of how biological systems work on the molecular level. We used two biological systems, beef liver catalase (BLC) and photoactive yellow protein (PYP). BLC is a metalloprotein that protects living cells from the harmful effects of reactive oxygen species by converting H2O2 into water and oxygen. By binding nitric oxide (NO) to the catalase, a complex was generated that mimics the Cat-H2O2 adduct, a crucial intermediate in the reaction promoted by the catalase. The Cat-NO complex is obtained by using a convenient NO generator (1-(N,N-diethylamino)diazen-1-ium-1,2-diolate). Concentrations up to 100˜200 mM are reached by using a specially designed glass cavity. With this glass apparatus and DEANO, sufficient NO occupation is achieved and structure determination of the catalase with NO bound to the heme iron becomes possible. Structural changes upon NO binding are minute. NO has a slightly bent geometry with respect to the heme normal, which results in a substantial overlap of the NO orbitals with the iron-porphyrin molecular orbitals. From the structure of the iron-NO complex, conclusions on the electronic properties of the heme iron can be drawn that ultimately lead to an insight into the catalytic properties of this enzyme. Enzyme kinetics is affected by additional parameters such as temperature and pH. Additionally, in crystallography, the absorbed X-ray dose may impair protein function. To address the effect of these parameters, we performed time-resolved crystallographic experiments on a model system, PYP. By collecting multiple time-series on PYP at increasing X-ray dose levels, we determined a kinetic dose limit up to which kinetically meaningful X-ray data sets can be collected. From this, we conclude that comprehensive time-series spanning up to 12 orders of magnitude in time can be collected from a single PYP

  12. Off-axis dose distribution for rectangle proton beam

    Institute of Scientific and Technical Information of China (English)

    Gou Cheng-Jun; Luo Zheng-Ming; Huang Chu-Ye; Feng Xiao-Ning; Wu Zhang-Wen

    2008-01-01

    This paper modifies an analytical algorithm originally developed for electron dose calculations to evaluate the off-axis dose distribution of rectangle proton beam. This spatial distribution could be described by Fermi-Eyges theory since a proton undergoes small-angle scattering when it passes through medium. Predictions of the algorithm for relative off-axis dose distribution by a 6 cm 6 cm initial monoenergetic proton beam are compared with the results from the published Monte Carlo simulations. The excellent levcl of agreement between the results of these two methods of dose calculation (< 2%) demonstrates that the off-axis dose distribution from rectangle proton beam may be computed with high accuracy using this algorithm. The results also prompts the necessity to consider the off-axis distribution when the proton is applied to clinical radiotherapy since the penumbra is significant at the distal of its range (about 0.6 cm at the Bragg-peak depth).

  13. Space/Flight Operable Miniature Six Axis Transducer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FUTEK will fully design and manufacture a sensor capable of measuring forces in and about each axis. The unit will measure forces up to 300 Newton's in the principle...

  14. The effects of lateral head tilt on ocular astigmatic axis

    Directory of Open Access Journals (Sweden)

    Hamid Fesharaki

    2014-01-01

    Conclusion: Any minimal angle of head tilt may cause erroneous measurement of astigmatic axis and should be avoided during refraction. One cannot rely on the compensatory function of ocular counter-torsion during the refraction.

  15. Determination of Elastic Twist in Horizontal Axis Wind Turbines (HAWTs)

    Energy Technology Data Exchange (ETDEWEB)

    Stoddard, F.; Nelson, V.; Starcher, K.; Andrews, B.

    2006-06-01

    This report presents the results of a project at the Alternative Energy Institute (AEI) which measured and calculated the elastic twist of three representative composite horizontal-axis blades: Carter 300, Gougeon ESI 54, and UTRC 8 kW.

  16. A Method for Modeling of Floating Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Wang, Kai; Hansen, Martin Otto Laver; Moan, Torgeir

    2013-01-01

    . In order to assess the technical and economic feasibility of this novel concept, a comprehensive simulation tool for modeling of the floating vertical axis wind turbine is needed. This work presents the development of a coupled method for modeling of the dynamics of a floating vertical axis wind turbine......It is of interest to investigate the potential advantages of floating vertical axis wind turbine (FVAWT) due to its economical installation and maintenance. A novel 5MW vertical axis wind turbine concept with a Darrieus rotor mounted on a semi-submersible support structure is proposed in this paper....... This integrated dynamic model takes into account the wind inflow, aerodynamics, hydrodynamics, structural dynamics (wind turbine, floating platform and the mooring lines) and a generator control. This approach calculates dynamic equilibrium at each time step and takes account of the interaction between the rotor...

  17. design and implementation of a microcontroller based dual axis ...

    African Journals Online (AJOL)

    user

    DESIGN AND IMPLEMENTATION OF A MICROCONTROLLER BASED. DUAL AXIS .... Output mechanical transducer (Servo Motor). 2.1 Power .... Fig 5: Servo Motor Algorithm. Figure 6: .... Optimization and Performance Evaluation of a Single.

  18. The infrared bands Pechan prism axis parallel detection method

    Science.gov (United States)

    Qiang, Hua; Ji, Ming; He, Yu-lan; Wang, Nan-xi; Chang, Wei-jun; Wang, Ling; Liu, Li

    2017-02-01

    In this paper, we put forward a new method to adjust the air gap of the total reflection air gap of the infrared Pechan prism. The adjustment of the air gap in the air gap of the Pechan prism directly affects the parallelism of the optical axis, so as to affect the consistency of the optical axis of the infrared system. The method solves the contradiction between the total reflection and the high transmission of the infrared wave band, and promotes the engineering of the infrared wave band. This paper puts forward the method of adjusting and controlling, which can ensure the full reflection and high penetration of the light, and also can accurately measure the optical axis of the optical axis of the different Pechan prism, and can achieve the precision of the level of the sec. For Pechan prism used in the infrared band image de rotation, make the product to realize miniaturization, lightweight plays an important significance.

  19. Asteroid spin-axis longitudes from the Lowell Observatory database

    CERN Document Server

    Bowell, E; Wasserman, L H; Muinonen, K; Penttilä, A; Trilling, D E

    2013-01-01

    By analyzing brightness variation with ecliptic longitude and using the Lowell Observatory photometric database, we estimate spin-axis longitudes for more than 350 000 asteroids. Hitherto, spin-axis longitude estimates have been made for fewer than 200 asteroids. We investigate longitude distributions in different dynamical groups and asteroid families. We show that asteroid spin-axis longitudes are not isotropically distributed as previously considered. We find that the spin-axis longitude distribution for main-belt asteroids is clearly non-random, with an excess of longitudes from the interval 30{\\deg}-110{\\deg} and a paucity between 120{\\deg}-180{\\deg}. The explanation of the non-isotropic distribution is unknown at this point. Further studies have to be conducted to determine if the shape of the distribution can be explained by observational bias, selection effects, a real physical process or other mechanism.

  20. Circular Interpolation Algorithms of 5-Axis Simultaneous CNC System

    Institute of Scientific and Technical Information of China (English)

    ZHENG Kuijing; SHANG Bo

    2006-01-01

    Spatial circular arc can be machined conveniently by a 5-axis NC machine tool. Based on the data sampling method, circular interpolation in two-dimensional plane is discussed briefly. The key is to solve the problem of circular center expressed in the workpiece coordinate system by means of the transformation matrix. Circular interpolation in three-dimensional space is analyzed in detail. The method of undetermined coefficient is used to solve the center of the spatial circle and the method of coordinate transformation is used to transform the spatial circle into the XY_plane. Circular arc in three-dimensional space can be machined by the positional 5-axis machining and the conical surface can be machined by the continuous 5-axis machining. The velocity control is presented to avoid the feedrate fluctuation. The interpolation algorithms are tested by a simulation example and the interpolation algorithms are proved feasible. The algorithms are applied to the 5-axis CNC system software.

  1. Effects of pH on the crystallographic structure and magnetic properties of electrodeposited cobalt nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, N. [Department of Physics, University of Engineering and Technology, Lahore 54890 (Pakistan); Shamaila, S., E-mail: drshamaila.uet@gmail.com [Department of Physics, University of Engineering and Technology, Lahore 54890 (Pakistan); Sharif, R.; Wali, H. [Department of Physics, University of Engineering and Technology, Lahore 54890 (Pakistan); Naseem, S.; Riaz, S. [Centre for Solid state Physics, University of the Punjab, Lahore (Pakistan); Khaleeq-ur-Rahman, M. [Department of Physics, University of Engineering and Technology, Lahore 54890 (Pakistan)

    2015-03-01

    Anodic aluminum oxide templates with pore diameter of 40 nm and inter pore separation of 100 nm are prepared by two step anodization in 0.3 M oxalic acid solution. These templates are used to fabricate dc-deposited Co nanowires at different pH values of acidic bath. Continuous and densely packed nanowires having length ∼8 µm are observed. The hcp configuration appeared at moderate and high pH whereas both fcc and hcp phases are observed at low pH. However the crystallinity distorted at high pH due to formation of polycrystalline structure of cobalt nanowires. Alignment of easy-axis of nanowires can be tailored by varying pH of solution. - Highlights: • Variation in the structure of dc deposited cobalt nanowires can be obtained by varying pH of acidic bath. • The hcp structure is stable at room temperature with low voltage deposition for electrodeposited Co nanowires. Co with fcc structure, is stable at temperatures above 422 °C or at pH<3 with high potential. • The hcp (100) plane is obtained with pH∼3.5 and (101) is stable at pH∼5.5 due to variation in temperature inside the pores with respect to the pH. • Alignment of easy-axis of nanowires can be tailored by varying pH of solution.

  2. Early programming of the IGF-I axis

    DEFF Research Database (Denmark)

    Larnkjær, Anni; Ingstrup, Helga Kristensen; Schack-Nielsen, Lene

    2009-01-01

    -I production. Conversely, studies suggest that later in childhood, those breastfed are taller and have higher IGF-I levels. Therefore, it has been suggested that the IGF-I axis may be programmed by diet during infancy. The association between IGF-I in infancy and later life is not known. OBJECTIVE: To examine......=-0.26, P=0.043, and n=109). CONCLUSION: The results support the hypothesis that the IGF-I axis can be programmed early in life....

  3. Performance Characterization of a Three-Axis Hall Effect Thruster

    Science.gov (United States)

    2010-12-01

    here represents the first efforts to operate and quantify the performance of a three-axis Hall effect thruster. This thruster is based on the Busek BHT ...thruster were developed and thrust and current density measurements were performed and compared with the baseline BHT -200. The three-axis thruster was...efficiencies than the BHT -200. Beam current density measurements conducted using a guarded Faraday probe showed significant differences in plume divergence

  4. Traumatic Spondylolisthesis of the Axis Vertebra in Adults

    OpenAIRE

    Schleicher, Philipp; Scholz, Matti; Pingel, Andreas; Kandziora, Frank

    2015-01-01

    Study Design Narrative review. Objective To elucidate the current concepts in diagnosis and treatment of traumatic spondylolisthesis of the axis. Methods Literature review using PubMed, Google Scholar, and Cochrane databases. Results The traumatic spondylolisthesis of the axis accounts to 5% of all cervical spine injuries and is defined by a bilateral separation of the C2 vertebral body from the neural arch. The precise location of the fracture line may vary widely. For understanding the path...

  5. Improved Controller for a Three-Axis Piezoelectric Stage

    Science.gov (United States)

    Rao, Shanti; Palmer, Dean

    2009-01-01

    An improved closed-loop controller has been built for a three-axis piezoelectric positioning stage. The stage can be any of a number of commercially available or custom-made units that are used for precise three-axis positioning of optics in astronomical instruments and could be used for precise positioning in diverse fields of endeavor that include adaptive optics, fabrication of semiconductors, and nanotechnology.

  6. The reno-pineal axis: A novel role for melatonin

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2012-01-01

    Full Text Available The pineal gland is a tiny endocrine gland whose physiologic role has been the focus of much research and much more speculation over the past century. This mini-review discusses recent findings which correlate melatonin and renal physiology, and postulates the presence of a "reno-pineal axis." Drawing lessons from comparative endocrinology, while quoting human data, it advocates the need to study the "reno-pineal axis" in greater detail.

  7. DARHT Axis-I Diode Simulations II: Geometric Scaling

    OpenAIRE

    Ekdahl, Carl

    2017-01-01

    The dual-axis radiography for hydrodynamic testing (DARHT) facility at Los Alamos National Laboratory uses two electron linear-induction accelerators (LIA) to produce the source spots for perpendicular flash radiographs of a dynamic experiment.Manipulating the beam current is a means for adjusting the dose, and one way to do this is to change the size of the cathode. This article describes simulations undertaken to develop scaling laws for use as design tools in changing the Axis-1 beam curre...

  8. Application of Circulation Controlled Blades for Vertical Axis Wind Turbines

    OpenAIRE

    Shires, A.; Kourkoulis, V

    2013-01-01

    The blades of a vertical axis wind turbine (VAWT) rotor see an inconsistent angle of attack through its rotation. Consequently, VAWT blades generally use symmetrical aerofoils with a lower lift-to-drag ratio than cambered aerofoils tailored to maximise horizontal axis wind turbine rotor performance. This paper considers the feasibility of circulation controlled (CC) VAWT blades, using a tangential air jet to provide lift and therefore power augmentation. However CC blade sections require a hi...

  9. Optic axis-driven new horizons for hyperbolic metamaterials

    Directory of Open Access Journals (Sweden)

    Boardman Allan D.

    2015-01-01

    Full Text Available The broad assertion here is that the current hyperbolic metamaterial world is only partially served by investigations that incorporate only some limited version of anisotropy. Even modest deviations of the optic axis from the main propagation axis lead to new phase shifts, which not only compete with those created by absorption but end up dominating them. Some progress has been attempted in the literature by introducing the terms “asymmetric hyperbolic media”, but it appears that this kind of asymmetry only involves an optic axis at an angle to the interface of a uniaxial crystal. From a device point of view, many new prospects should appear and the outcomes of the investigations presented here yield a new general theory. It is emphasised that the orientation of the optic axis is a significant determinant in the resulting optical properties. Whereas for conventional anisotropic waveguides homogeneous propagating waves occur over a limited range of angular dispositions of the optic axis it is shown that for a hyperbolic guide a critical angular setting exists, above which the guided waves are always homogeneous. This has significant implications for metawaveguide designs. The resulting structures are more tolerant to optic axis misalignment.

  10. Space camera optical axis pointing precision measurement system

    Science.gov (United States)

    Chen, Gang; Meng, Fanbo; Yang, Zijun; Guo, Yubo; Ye, Dong

    2016-01-01

    In order to realize the space camera which on satellite optical axis pointing precision measurement, a monocular vision measurement system based on object-image conjugate is established. In this system the algorithms such as object-image conjugate vision models and point by point calibration method are applied and have been verified. First, the space camera axis controller projects a laser beam to the standard screen for simulating the space camera's optical axis. The laser beam form a target point and has been captured by monocular vision camera. Then the two-dimensional coordinates of the target points on the screen are calculated by a new vision measurement model which based on a looking-up and matching table, the table has been generated by object-image conjugate algorithm through point by point calibration. Finally, compare the calculation of coordinates offered by measurement system with the theory of coordinate offered by optical axis controller, the optical axis pointing precision can be evaluated. Experimental results indicate that the absolute precision of measurement system up to 0.15mm in 2m×2m FOV. This measurement system overcome the nonlinear distortion near the edge of the FOV and can meet the requirement of space camera's optical axis high precision measurement and evaluation.

  11. Off-Axis Aspheric Surfacing Using Sub-Aperture Tools

    Science.gov (United States)

    Feng, Yunpeng; Qiao, Xiaoyan; Cheng, Haobo; Tam, Hon-Yuen

    2013-10-01

    The off-axis aspheric surface used in modern optical systems widely can obtain nearly perfect quality, realize both small packet-size and low-mass, and avoid the central obscuration. But it is difficult to fabricate because of asymmetry. There are some key technologies during the testing and fabrication of off-axis asphere. In this article, we proposed a method of the best fit sphere based on non-negative minimized removal criterion. And a measured data fitting algorithm was presented to estimate the geometry parameters of off-axis aspheric surface. Then an off-axis mirror was fabricated, and the interferometrically measured data was corrected to eliminate the distortion introduced by null compensator in every run. Finally, the surface error of off-axis mirror reduced to pv = 0.372λ, rms = 0.046λ, the surface roughness reached 0.72 nm. These methods mentioned in the article are suitable for off-axis aspheric optics.

  12. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  13. Crystallographic and magnetic properties of Cu{sub 2}U-type hexaferrite

    Energy Technology Data Exchange (ETDEWEB)

    Kamishima, K., E-mail: kamisima@fms.saitama-u.ac.jp [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Saitama 338-8570 (Japan); Tajima, R.; Watanabe, K.; Kakizaki, K.; Fujimori, A.; Sakai, M. [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Saitama 338-8570 (Japan); Watanabe, K. [Global Research Cluster, Collaboration Promotion Unit, RIKEN, 2-1 Wako, Saitama 351-0198 (Japan); Abe, H. [Advanced Electronic Materials Center, National Institute of Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2015-02-01

    We have investigated the synthesis conditions, and the magnetic properties of the Cu{sub 2}U-type hexagonal ferrite, Ba{sub 4}Cu{sub 2}Fe{sub 36}O{sub 60}. The Cu{sub 2}U-type hexaferrite was synthesized at the sintering temperature of 1050 °C with the initial composition of Ba{sub 4.4}Cu{sub 2}Fe{sub 37.6}O{sub 62.8} (Cu{sub 2}U+0.2T-block). The saturation magnetizations at 300 K and 5 K are 46.8 A m{sup 2}/kg and 65.0 A m{sup 2}/kg, respectively. The Curie temperature is 420 °C which is lower than that of the M-type ferrite (450 °C) but higher than that of the Cu{sub 2}Y-type ferrite (320 °C). The amount of the nonmagnetic impurity in this sample is estimated to be about 10 wt% by the electron probe micro analysis. We estimated the expected saturation magnetization to be 65.2 A m{sup 2}/kg, by assuming the model of a Néel-type ferrimagnetic structure and the reduction of magnetization by the 10 wt% nonmagnetic impurity. This is consistent with the observed magnetization of 65.0 A m{sup 2}/kg at 5 K. - Highlights: • We have synthesized the crystallographic single-phase Cu{sub 2}U-type hexagonal ferrite. • M{sub S} is found to be 46.8 A·m{sup 2}/kg at 300 K and 65.0 A·m{sup 2}/kg at 5 K. • T{sub C} is 420°C. It is lower than T{sub C}{sup M-type} (450°C) but higher than T{sub C}{sup Cu2Y-type} (320°C). • The estimated saturation magnetization is consistent with experimental M{sub S} at 5 K.

  14. Crystallographic Characteristic of Intermetallic Compounds in Al-Si-Mg Casting Alloys Using Electron Backscatter Diffraction

    Institute of Scientific and Technical Information of China (English)

    ZOU Yongzhi; XU Zhengbing; HE Juan; ZENG Jianmin

    2010-01-01

    The Al-Si-Mg alloy which can be strengthened by heat treatment is widely applied to the key components of aerospace and aeronautics. Iron-rich intermetallic compounds are well known to be strongly influential on mechanical properties in Al-Si-Mg alloys. But intermetallic compounds in cast Al-Si-Mg alloy intermetallics are often misidentified in previous metallurgical studies. It was described as many different compounds, such as AlFeSi, Al8Fe2Si, Al5(Fe, Mn)3Si2 and so on. For the purpose of solving this problem, the intermetallic compounds in cast Al-Si alloys containing 0.5% Mg were investigated in this study. The iron-rich compounds in Al-Si-Mg casting alloys were characterized by optical microscope(OM), scanning electron microscope(SEM), energy dispersive X-ray spectrometer(EDS), electron backscatter diffraction(EBSD) and X-ray powder diffraction(XRD). The electron backscatter diffraction patterns were used to assess the crystallographic characteristics of intermetallic compounds. The compound which contains Fe/Mg-rich particles with coarse morphologies was Al8FeMg3Si6 in the alloy by using EBSD. The compound belongs to hexagonal system, space group P2m, with the lattice parameter a=0.662 nm, c=0.792 nm. The β-phase is indexed as tetragonal Al3FeSi2, space group I4/mcm, a=0.607 nm and c=0.950 nm. The XRD data indicate that Al8FeMg3Si6 and Al3FeSi2 are present in the microstructure of Al-7Si-Mg alloy, which confirms the identification result of EBSD. The present study identified the iron-rich compound in Al-Si-Mg alloy, which provides a reliable method to identify the intermetallic compounds in short time in Al-Si-Mg alloy. Study results are helpful for identification of complex compounds in alloys.

  15. Hematite and Goethite (U-Th)/He/Ne ages interpretation using crystallographic data and diffusion parameters

    Science.gov (United States)

    Gautheron, Cécile; Balout, Hilal; Roques, Jérôme; Allard, Thierry; Morin, Guillaume; Tassan-Got, Laurent

    2016-04-01

    incorporated in this code in order to reproduce realistic crystallographic structure. Balout, H., Roques, J., Gautheron, C., Tassan-Got, L., Mbongo-Djimbi, D., submitted a. Helium diffusion in pure hematite (α-Fe2O3) for thermochronometric applications: a theoretical multi-scale study. Balout, H., Roques, J., Gautheron, C., Tassan-Got, L., submitted b. Computational investigation of the interstitial neon diffusion in pure hematite, α-Fe2O3. Gautheron, C., Tassan-Got, L., 2010. A Monte Carlo approach of diffusion applied to noble gas/helium thermochronology. Chemical Geology, 273: 212-224.

  16. In situ monitoring of crystallographic changes in Pd induced by diffusion of D

    Science.gov (United States)

    Skelton, E. F.; Hagans, P. L.; Qadri, S. B.; Dominguez, D. D.; Ehrlich, A. C.; Hu, J. Z.

    1998-12-01

    Crystallographic changes in a palladium wire cathode were monitored in situ, as deuterium was electrochemically deposited on the surface and diffused radially into the wire. Initially, the wire was pure Pd. A constant electrolysis current density of 1 mA/cm2 was maintained and D slowly diffused into the wire. As the D concentration increased, the wire transformed from pure Pd, to the α phase, and finally into the β phase. This reversible phase transformation begins on the surface and progresses radially inward. During the experiment, x-ray-diffraction data were collected from a volume element of about 180 pl. This volume element was systematically moved in 50-μm steps from the edge to the center of a 1.0 mm diameter Pd wire. Throughout the course of the experiment, the bulk value of x in PdDx, as determined from simultaneous measurements of the electrical resistivity, increased from 0 to ~0.72. For each setting of the volume element, a monotonic increase in the volume of the α phase was observed, until the material entered the two-phase region. Once the β phase appeared, the volumes of both phases decreased slightly with continued loading. The integrated intensities of diffraction peaks from each phase were used in conjunction with the known phase diagram to estimate the rate of compositional change within the volume element. The diffusion rate for the solute atoms was estimated to be 57+/-8 nm/s, based on the temporal and spatial dependence of the integrated intensities of the diffraction peaks from each phase. These data also were used to evaluate the time dependence of the concentration of the solute atoms ∂c/∂t and their diffusivity D. The value of ∂c/∂t increased linearly from 6.2×10-5 s-1 at the surface, to 7.6×10-5 s-1 midway into the wire. D was computed to be (3.1+/-1.0)×10-11 m2/s when the transition began at r=250 μm 2 ks later it had decreased to (2.1+/-0.3)×10-11 m2/s. This may be due to the fact that the volume of the β lattice also

  17. Local dynamics of proteins and DNA evaluated from crystallographic B factors

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Bohdan, E-mail: bohdan.schneider@gmail.com [Institute of Biotechnology AS CR, Videnska 1083, 142 20 Prague (Czech Republic); Gelly, Jean-Christophe; Brevern, Alexandre G. de [INSERM, U1134, DSIMB, 75739 Paris (France); Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, 75739 Paris (France); Institut National de la Transfusion Sanguine (INTS), 75739 Paris (France); Laboratoire d’Excellence GR-Ex, 75739 Paris (France); Černý, Jiří [Institute of Biotechnology AS CR, Videnska 1083, 142 20 Prague (Czech Republic)

    2014-09-01

    surprising. The features discriminating different types of residues are less pronounced in structures with lower crystallographic resolution. Some of the observed trends are likely to be the consequence of improper refinement protocols that may need to be rectified.

  18. Mineralogical, crystallographic and redox features of the earliest stages of fluid alteration in CM chondrites

    Science.gov (United States)

    Pignatelli, Isabella; Marrocchi, Yves; Mugnaioli, Enrico; Bourdelle, Franck; Gounelle, Matthieu

    2017-07-01

    The CM chondrites represent the largest group of hydrated meteorites and span a wide range of conditions, from less altered (i.e., CM2) down to heavily altered (i.e., CM1). The Paris chondrite is considered the least altered CM and thus enables the earliest stages of aqueous alteration processes to be deciphered. Here, we report results from a nanoscale study of tochilinite/cronstedtite intergrowths (TCIs) in Paris-TCIs being the emblematic secondary mineral assemblages of CM chondrites, formed from the alteration of Fe-Ni metal beads (type-I TCIs) and anhydrous silicates (type-II TCIs). We combined high-resolution transmission electron microscopy, scanning transmission X-ray microscopy and electron diffraction tomography to characterize the crystal structure, crystal chemistry and redox state of TCIs. The data obtained are useful to reconstruct the alteration conditions of Paris and to compare them with those of other meteorites. Our results show that tochilinite in Paris is characterized by a high hydroxide layer content (n = 2.1-2.2) regardless of the silicate precursors. When examined alongside other CMs, it appears that the hydroxide layer and iron contents of tochilinites correlate with the degree of alteration experienced by the chondrites. The Fe3+/ΣFe ratios of TCIs are high: 8-15% in tochilinite, 33-60% in cronstedtite and 70-80% in hydroxides. These observations suggest that alteration of CM chondrites took place under oxidizing conditions that could have been induced by significant H2 release during serpentinization. Similar results were recently reported in CR chondrites (Le Guillou et al., 2015), suggesting that the process(es) controlling the redox state of the secondary mineral assemblages were quite similar in the CM and CR parent bodies despite the different alteration conditions. According to our mineralogical and crystallographic survey, the formation of TCIs in Paris occurred at temperatures lower than 100 °C, under neutral, slightly alkaline

  19. Crystallographically Oriented Cobalt Chromium Tantalum Thin-Film Media for High Areal Density Recording.

    Science.gov (United States)

    Deng, Youping

    In order to develop the techniques for increasing recording areal density, microstructural, magnetic and recording properties of crystallographically-oriented CoCrTa thin-films were investigated. The oriented films included bi-crystal and quad-crystal CoCrTa thin films, which were prepared by sputtering on (100) and (110) single crystal Cr substrates, respectively. A theoretical model was developed to calculate the in-plane torque curves of the oriented films. Based on this model, experimental investigations were conducted on the quad-crystal CoCrTa films. It was found that, by fitting the measured in-plane torque curves of the quad -crystal CoCrTa film, it was possible to determine the magnetocrystalline anisotropy constants (K_{rm u1 } and K_{rm u2}) of the CoCrTa film. The torque curves of quad -crystal films were also found to be indicative of the grain isolation and could be used to optimize the sputtering conditions. Substrate bias changed the film composition and lowered M_{rm s} and K_{rm u1}, while improving grain isolation. A more realistic micromagnetic model, which used the measured values of M_ {rm s} and K_{ rm u1} and took the film's grain-cluster microstructure into account, was developed for the bi-crystal films. The simulation results fitted well with the experimental data. A low-speed contact-recording spin-stand, which utilized a magnetoresistive head, was set up for recording studies on the oriented thin-film media and an isotropic thin-film medium prepared on a NiP/Al substrate. The readback signal from the MR head appeared to have some correlation with the medium anisotropy. The recorded patterns were imaged by magnetic force microscopy. It was found that erased bands formed on the quad-crystal and isotropic thin -film media. On the bi-crystal thin-film media, however, clear erased bands were not observed possibly due to the large head-disk distance.

  20. Ultrasound-guided internal jugular vein access: Comparison between short axis and long axis techniques

    Directory of Open Access Journals (Sweden)

    Tarek F Tammam

    2013-01-01

    Full Text Available The use of real-time ultrasound (US is advantageous in the insertion of central venous catheters (CVCs in adults, especially in whom difficulties are anticipated for various reasons. The aim of the present study was to compare two different real-time 2-dimensional US-guided techniques [short axis view/out-of-plane approach (SAX OOP approach versus long axis view/in-plane approach (LAX IP approach] for internal jugular vein (IJV cannulation. In this prospective study, 90 critical care and hemodialysis patients were assigned for insertion of CVCs using either the real-time US-guided (SAX OOP approach or LAX IP approach or landmark technique (control group. Failed catheter placement, risk of complications from placement, failure on first attempt at placement, number of attempts until successful catheterization, time to successful catheterization, incidence of central line-associated blood stream infection (CLA-BSI and demographics of each patient were recorded. There were no significant differences in patient′s demographic characteristics, side of cannulation (right or left or presence of risk factors for difficult venous cannulation between the three groups of patients. Cannulation of the IJV was achieved in all patients by using US (SAX OOP and LAX IP approaches and in 27 of the patients (90% by using the landmark technique (P = 0.045. Average access time (skin to vein and number of attempts were comparable between the SAX OOP and the LAX IP approaches while significantly reduced in both US groups of patients compared with the landmark group (P <0.001. In the landmark group, puncture of the carotid artery occurred in 16.7% of the patients, hematoma in 23.3% of the patients, pneumothorax in 3.3% of the patients and CLA-BSI in 20% of the patients, which were all significantly increased compared with the US group (P <0.05. The findings of this study suggest that the SAX OOP and LAX IP approaches were comparable for cannulation of IJV in critical

  1. Cluster Analysis of Time-Dependent Crystallographic Data: Direct Identification of Time-Independent Structural Intermediates

    Science.gov (United States)

    Kostov, Konstantin S.; Moffat, Keith

    2011-01-01

    The initial output of a time-resolved macromolecular crystallography experiment is a time-dependent series of difference electron density maps that displays the time-dependent changes in underlying structure as a reaction progresses. The goal is to interpret such data in terms of a small number of crystallographically refinable, time-independent structures, each associated with a reaction intermediate; to establish the pathways and rate coefficients by which these intermediates interconvert; and thereby to elucidate a chemical kinetic mechanism. One strategy toward achieving this goal is to use cluster analysis, a statistical method that groups objects based on their similarity. If the difference electron density at a particular voxel in the time-dependent difference electron density (TDED) maps is sensitive to the presence of one and only one intermediate, then its temporal evolution will exactly parallel the concentration profile of that intermediate with time. The rationale is therefore to cluster voxels with respect to the shapes of their TDEDs, so that each group or cluster of voxels corresponds to one structural intermediate. Clusters of voxels whose TDEDs reflect the presence of two or more specific intermediates can also be identified. From such groupings one can then infer the number of intermediates, obtain their time-independent difference density characteristics, and refine the structure of each intermediate. We review the principles of cluster analysis and clustering algorithms in a crystallographic context, and describe the application of the method to simulated and experimental time-resolved crystallographic data for the photocycle of photoactive yellow protein. PMID:21244840

  2. Dissolution of quartz in aqueous basic solution, 106-236 C - Surface kinetics of 'perfect' crystallographic faces

    Science.gov (United States)

    Gratz, Andrew J.; Bird, Peter; Quiro, Glenn B.

    1990-01-01

    A highly accurate method, called the negative crystal method, for determining the rate of dissolution on specific crystallographic faces of crystals was developed, in which the dissolution rates of nominally perfect crystal faces are obtained by measuring the size of individual negative crystals during a sequence of dissolution steps. The method was applied to determine the apparent activation energy and rate constants for the dissolution of quartz in 0.01 M KOH solutions at temperatures from 106 to 236 C. Also investigated were the effects of hydroxyl activity and ionic strength. The apparent activation energies for the dissolution of the prism and of the rhomb were determined.

  3. phenix.model_vs_data: a high-level tool for the calculation of crystallographic model and data statistics.

    Science.gov (United States)

    Afonine, Pavel V; Grosse-Kunstleve, Ralf W; Chen, Vincent B; Headd, Jeffrey J; Moriarty, Nigel W; Richardson, Jane S; Richardson, David C; Urzhumtsev, Alexandre; Zwart, Peter H; Adams, Paul D

    2010-08-01

    phenix.model_vs_data is a high-level command-line tool for the computation of crystallographic model and data statistics, and the evaluation of the fit of the model to data. Analysis of all Protein Data Bank structures that have experimental data available shows that in most cases the reported statistics, in particular R factors, can be reproduced within a few percentage points. However, there are a number of outliers where the recomputed R values are significantly different from those originally reported. The reasons for these discrepancies are discussed.

  4. Crystallization and preliminary crystallographic studies of a cysteine protease inhibitor from the human nematode parasite Ascaris lumbricoides.

    Science.gov (United States)

    Liu, Sanling; Dong, Jianmei; Mei, Guoqiang; Liu, Guiyun; Xu, Wei; Su, Zhong; Liu, Jinsong

    2011-02-01

    The cysteine protease inhibitor from Ascaris lumbricoides, a roundworm that lives in the human intestine, may be involved in the suppression of human immune responses. Here, the molecular cloning, protein expression and purification, preliminary crystallization and crystallographic characterization of the cysteine protease inhibitor from A. lumbricoides are reported. The rod-shaped crystal belonged to space group C2, with unit-cell parameters a = 99.40, b = 37.52, c = 62.92 Å, β = 118.26°. The crystal diffracted to 2.1 Å resolution and contained two molecules in the asymmetric unit.

  5. Crystallographic analysis of the solid-state dewetting of polycrystalline gold film using automated indexing in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Jang, S. A.; Lee, H. J.; Oh, Y. J., E-mail: yjoh@hanbat.ac.kr [Department of Advanced Materials Science and Engineering, Hanbat National University, 125, Dongseo-daero, Yuseong-gu, Daejeon 305-719 (Korea, Republic of); Thompson, C. V.; Ross, C. A., E-mail: caross@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-12-01

    We analyzed the effect of crystallographic anisotropy on the morphological evolution of a 12-nm-thick gold film during solid-state dewetting at high temperatures using automated indexing tool in a transmission electron microscopy. Dewetting initiated at grain-boundary triple junctions adjacent to large grains resulting from abnormal grain growth driven by (111) texture development. Voids at the junctions developed shapes with faceted edges bounded by low-index crystal planes. The kinetic mobility of the edges varied with the crystal orientation normal to the edges, with a predominance of specific edges with the slowest retraction rates as the annealing time was increased.

  6. Novel GaN-based vertical heterostructure field effect transistor structures using crystallographic KOH etching and overgrowth

    Science.gov (United States)

    Qian, H.; Lee, K. B.; Vajargah, S. Hosseini; Novikov, S. V.; Guiney, I.; Zaidi, Z. H.; Jiang, S.; Wallis, D. J.; Foxon, C. T.; Humphreys, C. J.; Houston, P. A.

    2017-02-01

    A novel V-groove vertical heterostructure field effect transistor structure is proposed using semi-polar (11-22) GaN. A crystallographic potassium hydroxide self-limiting wet etching technique was developed to enable a damage-free V-groove etching process. An AlGaN/GaN HFET structure was successfully regrown by molecular beam epitaxy on the V-groove surface. A smooth AlGaN/GaN interface was achieved which is an essential requirement for the formation of a high mobility channel.

  7. Crystallographic information of intermediate phases in binary Mg–X (X=Sn, Y, Sc, Ag alloys

    Directory of Open Access Journals (Sweden)

    Dongyan Liu

    2015-09-01

    Full Text Available The compositions and structures of thermodynamically stable or metastable precipitations in binary Mg-X (X=Sn, Y, Sc, Ag alloys are predicted using ab-initio evolutionary algorithm. The geometry optimizations of the predicted intermetallic compounds are carried out in the framework of density functional theory (DFT [1]. A complete list of the optimized crystallographic information (in cif format of the predicted intermetallic phases is presented here. The data is related to “Predictions on the compositions, structures, and mechanical properties of intermediate phases in binary Mg–X (X=Sn, Y, Sc, Ag alloys” by Liu et al. [2].

  8. Alignment method of off-axis RC reflective optical system

    Science.gov (United States)

    Xue-min, Zhang; Xing, Song; Zhi-jun, Zhang; Hou, Xiao-hua

    2016-10-01

    Off-axis optical system has a wide application in space optics and remote detective area. The high surface shape accuracy can be ensured with the development of advanced manufacture technique. So the only condition which limits the wide application of off-axis optical system is how to realize the precise alignment of it. Based on a RC reflective optical system whose diameter is 400mm, the alignment method which combines the high resolution initial placement and computer-aided alignment is introduced. By designing a system which can measure the off-axis fabrication and off-axis angle precisely, the high resolution initial placement of off-axis mirror can be ensured with a measurement accuracy of +/-0.05mm and +/-10". The good initial placement can give a good initial state, so the computer-aided model can be converged well. The experiment shows that a system which has a good initial placement could have a good wave aberration of 0.04λ after three times iteration adjustment.

  9. Mifepristone Accelerates HPA Axis Recovery in Secondary Adrenal Insufficiency.

    Science.gov (United States)

    Cohan, Pejman

    2016-01-01

    Context. Transient secondary adrenal insufficiency (SAI) is an expected complication following successful adenomectomy of ACTH-secreting pituitary adenomas or unilateral adrenalectomy for cortisol-secreting adrenal adenomas. To date, no pharmacological therapy has been shown to hasten recovery of the hypothalamic-pituitary-adrenal (HPA) axis in this clinical scenario. Case Description. A 33-year-old woman underwent uncomplicated unilateral adrenalectomy for a 3.7 cm cortisol-secreting adrenal adenoma. Postoperatively, she developed SAI and was placed on hydrocortisone 15 mg/day, given in divided doses. In the ensuing six years, the patient's HPA axis failed to recover and she remained corticosteroid-dependent. Quarterly biochemical testing (after withholding hydrocortisone for 18 hours) consistently yielded undetectable serum cortisol and subnormal plasma ACTH levels. While she was on hydrocortisone 15 mg/day, mifepristone was initiated and gradually titrated to a maintenance dose of 600 mg/day after 5 months. Rapid recovery of the HPA axis was subsequently noted with ACTH rising into the supranormal range at 4 months followed by a subsequent rise in cortisol levels into the normal range. After 6 months, the dose of hydrocortisone and mifepristone was lowered and both were ultimately stopped after 8 months. The HPA axis remains normal after an additional 16 months of follow-up. Conclusion. Mifepristone successfully restored the HPA axis in a woman with prolonged secondary adrenal insufficiency (SAI) after adrenalectomy for Cushing's syndrome (CS).

  10. Measurement Axis Searching Model for Terrestrial Laser Scans Registration

    Directory of Open Access Journals (Sweden)

    Shaoxing Hu

    2016-01-01

    Full Text Available Nowadays, terrestrial Lidar scans can cover rather a large area; the point densities are strongly varied because of the line-of-sight measurement principle in potential overlaps with scans taken from different viewpoints. Most of the traditional methods focus on registration algorithm and ignore searching model. Sometimes the traditional methods are directly used to align two point clouds; a large critically unsolved problem of the large biases will be created in areas distant from the overlaps while the local overlaps are often aligned well. So a novel measurement axis searching model (MASM has been proposed in this paper. The method includes four steps: (1 the principal axis fitting, (2 the measurement axis generation, (3 low-high-precision search, and (4 result generation. The principal axis gives an orientation to the point cloud; the search scope is limited by the measurement axis. The point cloud orientation can be adjusted gradually until the achievement of the global optimum using low- and high-precision search. We perform some experiments with simulated point clouds and real terrestrial laser scans. The results of simulated point clouds have shown the processing steps of our method, and the results of real terrestrial laser scans have shown the sensitivity of the approach with respect to the indoor and outdoor scenes.

  11. Magnetic axis alignment and the Poisson alignment reference system

    Science.gov (United States)

    Griffith, Lee V.; Schenz, Richard F.; Sommargren, Gary E.

    1989-01-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This paper begins with a review of the motivation for developing an alignment system that will assure better than 100 micrometer accuracy in the alignment of the magnetic axis throughout an FEL. The paper describes techniques for identifying the magnetic axis of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development and use of the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. An error budget shows that the Poisson alignment reference system will make it possible to meet the alignment tolerances for an FEL.

  12. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension.

    Directory of Open Access Journals (Sweden)

    Matthew J Anderson

    2016-05-01

    Full Text Available During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM. Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3

  13. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension.

    Science.gov (United States)

    Anderson, Matthew J; Schimmang, Thomas; Lewandoski, Mark

    2016-05-01

    During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is

  14. Crystallographic Analysis of Martensite in 0.2C-2.0Mn-1.5Si-0.6Cr Steel using EBSD

    Institute of Scientific and Technical Information of China (English)

    Pasi P. Suikkanen; Cyril Cayron; Anthony J. DeArdo; L Pentti Karjalainen

    2011-01-01

    The crystallography of martensite formed in 0.2C-2.0Mn-1,5Si-0.6Cr steel was studied using the electron backscattered diffraction (EBSD) technique. The results showed that the observed orientation relationship (OR) was closer to that of Nishiyama-Wassermann (N-W) than Kurdjumov-Sachs. The martensite consisted of parallel laths forming morphological packets. Typically, there were three different lath orientations in a morphological packet consisting of three specific N-W OR variants sharing the same {111} austenite plane. A packet of martensite laths with a common {111} austenite plane was termed a crystallographic packet. Generally, the crystallographic packet size corresponded to the morphological packet size, but occasionally the morphological packet was found to consist of two or more crystallographic packets. Therefore, the crystallographic packet size appeared to be finer than the morphological packet size. The relative orientation between the variants in crystallographic packets was found to be near 60°〈110〉, which explains the strong peak observed near 60° in the grain boundary misorientation distribution. Martensite also contained a high fraction of boundaries with a misorientation in the range 2.5-8°. Typically these boundaries were found to be located inside the martensite laths forming sub-laths.

  15. Chronic Lyme disease and the 'Axis of Evil'.

    Science.gov (United States)

    Stricker, Raphael B; Johnson, Lorraine

    2008-12-01

    Lyme disease is a controversial illness, and the existence of chronic Lyme disease induced by persistent infection with the Lyme spirochete, Borrelia burgdorferi, is the subject of continued debate. A recent publication defined the 'Axis of Evil' in this controversy as physicians who treat patients with needlessly prolonged courses of antibiotics, 'specialty laboratories' that perform 'inaccurate' Lyme testing and the internet, which promotes 'Lyme hysteria'. We examine the 'Axis of Evil' components in the context of diagnostic and therapeutic challenges for Lyme disease patients and their physicians, and we present an evidence-based refutation to this misguided view. Despite its virulent nature, the 'Axis of Evil' perspective is a useful starting point to resolve the controversy over Lyme disease.

  16. Dual axis operation of a micromachined rate gyroscope

    Energy Technology Data Exchange (ETDEWEB)

    Juneau, T. [BSAC, Berkeley, CA (United States); Pisano, A.P. [Univ. California, Berkeley, CA (United States). Dept. of Mechanical Engineering; Smith, J. [Sandia National Lab., Albuquerque, NM (United States)

    1997-04-01

    Since micromachining technology has raised the prospect of fabricating high performance sensors without the associated high cost and large size, many researchers have investigated micromachined rate gyroscopes. The vast majority of research has focused on single input axis rate gyroscopes, but this paper presents work on a dual input axis micromachined rate gyroscope. The key to successful simultaneous dual axis operation is the quad symmetry of the circular oscillating rotor design. Untuned gyroscopes with mismatched modes yielded random walk as low as 10{degrees}/{radical}hour with cross sensitivity ranging from 6% to 16%. Mode frequency matching via electrostatic tuning allowed performance better than 2{degrees}/{radical}hour, but at the expense of excessive cross sensitivity.

  17. The microbiota-gut-brain axis in functional gastrointestinal disorders

    Science.gov (United States)

    De Palma, Giada; Collins, Stephen M; Bercik, Premysl

    2014-01-01

    Functional gastrointestinal disorders (FGIDs) are highly prevalent and pose a significant burden on health care and society, and impact patients’ quality of life. FGIDs comprise a heterogeneous group of disorders, with unclear underlying pathophysiology. They are considered to result from the interaction of altered gut physiology and psychological factors via the gut-brain axis, where brain and gut symptoms are reciprocally influencing each other’s expression. Intestinal microbiota, as a part of the gut-brain axis, plays a central role in FGIDs. Patients with Irritable Bowel Syndrome, a prototype of FGIDs, display altered composition of the gut microbiota compared with healthy controls and benefit, at the gastrointestinal and psychological levels, from the use of probiotics and antibiotics. This review aims to recapitulate the available literature on FGIDs and microbiota-gut-brain axis. PMID:24921926

  18. Helly-type Theorems for Hollow Axis-aligned Boxes

    CERN Document Server

    Swanepoel, Konrad J

    2009-01-01

    A hollow axis-aligned box is the boundary of the cartesian product of $d$ compact intervals in R^d. We show that for d\\geq 3, if any 2^d of a collection of hollow axis-aligned boxes have non-empty intersection, then the whole collection has non-empty intersection; and if any 5 of a collection of hollow axis-aligned rectangles in R^2 have non-empty intersection, then the whole collection has non-empty intersection. The values 2^d for d\\geq 3 and 5 for d=2 are the best possible in general. We also characterize the collections of hollow boxes which would be counterexamples if 2^d were lowered to 2^d-1, and 5 to 4, respectively.

  19. Chandra X-ray Observatory Optical Axis and Aimpoint

    Science.gov (United States)

    Zhao, Ping

    2016-01-01

    Chandra X-ray Observatory revolutionized the X-ray astronomy as being the first, and so far the only, X-ray telescope achieving sub-arcsecond resolution. Chandra comprises of three principal elements: the High Resolution Mirror Assembly (HRMA), Pointing Control and Aspect Determination (PCAD) system, and the Science Instrument Module (SIM). To achieve and retain the unprecedented imaging quality, it is critical that these three principal elements stay rigid and stable for the entire life time of the Chandra operation. Tracking the Chandra optical axis and aimpoint with respect to detector positions is the most relevant measurement for understanding telescope stability. The study shows that both the optical axis and the aimpoint has been drifting since Chandra launch. I will discuss the telescope focal-point, optical axis, aimpoint, their positiondrifts during the mission, the impact to Chandra operations, and the permanent default aimpoint, to be implemented in Chandra cycle 18.

  20. The microbiota-gut-brain axis in functional gastrointestinal disorders.

    Science.gov (United States)

    De Palma, Giada; Collins, Stephen M; Bercik, Premysl

    2014-01-01

    Functional gastrointestinal disorders (FGIDs) are highly prevalent and pose a significant burden on health care and society, and impact patients' quality of life. FGIDs comprise a heterogeneous group of disorders, with unclear underlying pathophysiology. They are considered to result from the interaction of altered gut physiology and psychological factors via the gut-brain axis, where brain and gut symptoms are reciprocally influencing each other's expression. Intestinal microbiota, as a part of the gut-brain axis, plays a central role in FGIDs. Patients with Irritable Bowel Syndrome, a prototype of FGIDs, display altered composition of the gut microbiota compared with healthy controls and benefit, at the gastrointestinal and psychological levels, from the use of probiotics and antibiotics. This review aims to recapitulate the available literature on FGIDs and microbiota-gut-brain axis.

  1. Microscope system with on axis programmable Fourier transform filtering

    Science.gov (United States)

    Martínez, José Luis; García-Martínez, Pascuala; Moreno, Ignacio

    2017-02-01

    We propose an on-axis microscope optical system to implement programmable optical Fourier transform image processing operations, taking advantage of phase and polarization modulation of a liquid crystal on silicon (LCOS) display. We use a Hamamatsu spatial light modulator (SLM), free of flickering, which therefore can be tuned to fully eliminate the zero order component of the encoded diffractive filter. This allows the realization of filtering operation on axis (as opposed to other systems in the literature that require operating off axis), therefore making use of the full space bandwidth provided by the SLM. The system is first demonstrated by implementing different optical processing operations based on phase-only blazed gratings such as phase contrast, band-pass filtering, or additive and substractive imaging. Then, a simple Differential interference contrast (DIC) imaging is obtained changing to a polarization modulation scheme, achieved simply by selecting a different incident state of polarization on the incident beam.

  2. Method of making a modular off-axis solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Plesniak, Adam P.; Hall, John C.

    2017-05-23

    A method of making a solar concentrator may include forming a receiving wall having an elongated wall, a first side wall and a second side wall; attaching the first side wall and the second side wall to a reflecting wall to form a housing having an internal volume with an opening; forming a lip on the receiving wall and the reflecting wall; attaching a cover to the receiving wall and the reflecting wall at the lip to seal the opening into the internal volume, thereby creating a rigid structure; and mounting at least one receiver having at least one photovoltaic cell on the elongated wall to receive solar radiation entering the housing and reflected by the receiving wall, the receiver having an axis parallel with a surface normal of the photovoltaic cell, such that the axis is disposed at a non-zero angle relative to the vertical axis of the opening.

  3. Targeting the HER-kinase axis in cancer.

    Science.gov (United States)

    Gross, Mitchell E; Shazer, Ronald L; Agus, David B

    2004-02-01

    The human epidermal growth factor receptor (HER) family of receptor tyrosine kinases controls critical pathways involved in the differentiation, growth, division, and motility of normal epithelial cells. Most human solid tumors are of epithelial origin. The process of malignant transformation and progression in many cancers may depend on activation of ligands and receptors that function as part of the HER-kinase pathway. This signaling axis has earned increased attention because of the development of antibodies and small-molecule tyrosine kinase inhibitors that specifically target components of the HER-kinase axis for cancer therapy. This review focuses on the basic biology underlying HER-kinase pathway activation and the current state of development for agents that target this axis. In particular, the importance of pan-HER inhibitors is discussed.

  4. Complete Tri-Axis Magnetometer Calibration with a Gyro Auxiliary.

    Science.gov (United States)

    Yang, Deng; You, Zheng; Li, Bin; Duan, Wenrui; Yuan, Binwen

    2017-05-26

    Magnetometers combined with inertial sensors are widely used for orientation estimation, and calibrations are necessary to achieve high accuracy. This paper presents a complete tri-axis magnetometer calibration algorithm with a gyro auxiliary. The magnetic distortions and sensor errors, including the misalignment error between the magnetometer and assembled platform, are compensated after calibration. With the gyro auxiliary, the magnetometer linear interpolation outputs are calculated, and the error parameters are evaluated under linear operations of magnetometer interpolation outputs. The simulation and experiment are performed to illustrate the efficiency of the algorithm. After calibration, the heading errors calculated by magnetometers are reduced to 0.5° (1σ). This calibration algorithm can also be applied to tri-axis accelerometers whose error model is similar to tri-axis magnetometers.

  5. Three-axis force actuator for a magnetic bearing

    Science.gov (United States)

    Gondhalekar, Vijay (Inventor)

    1998-01-01

    This invention features a three-axis force actuator that axially, radially and rotatably supports a bearing member for frictionless rotation about an axis of rotation generally coincident with a Z-axis. Also featured is a magnetic bearing having such an actuator. The actuator includes an inner member, a magnetic member and a pole assembly having a ring member and four pole extending therefrom. The poles are equi-angular spaced from each other and radially spaced about the Z-axis. The inner member extends along the Z-axis and is a highly magnetic permeable material. The magnetic member is formed about the inner member outer surface, extends along the Z-axis and is configured so one magnetic pole polarity is located at its outer surface and the other polarity pole is located at its inner surface. Preferably, the magnetic member is a radially magnetized permanent magnet. The inner surface of the ring member is magnetically coupled to the magnetic member and a face of each pole is coupled to the bearing member. The magnetic member, the pole assembly, the inner member and the bearing member cooperate to generate a magnetic field that radially and rotatably supports a rotating member secured to the bearing member. The actuator further includes a plurality of electromagnetic coils. Preferably, a coil is formed about each pole and at least 2 coils are formed about the inner member. When energized, the electromagnetic coils generate a modulated magnetic field that stabilizes the rotating member in the desired operational position.

  6. Development of olivine crystallographic preferred orientation in response to strain-induced fabric geometry

    Science.gov (United States)

    Chatzaras, Vasileios; Kruckenberg, Seth C.; Cohen, Shaina M.; Medaris, L. Gordon, Jr.; Withers, Anthony C.; Bagley, Brian

    2016-04-01

    The effect of finite strain ellipsoid geometry on crystallographic preferred orientation (CPO) is well known for crustal minerals (e.g., quartz, calcite, biotite, and hornblende). In the upper mantle, however, it remains poorly constrained how strain and fabric may affect olivine CPO. We present data from a suite of 40 spinel peridotite xenoliths from Marie Byrd Land (west Antarctica), which support an interpretation that fabric geometry rather than deformation conditions control the development of olivine CPO. We use X-ray computed tomography (XRCT) to quantitatively determine spinel fabric (orientation and geometry). Olivine CPOs, determined by Electron Backscattered Diffraction (EBSD), are plotted with respect to the XRCT-derived spinel foliation and lineation; this approach allows for the accurate, and unbiased, identification of CPO symmetries and types in mantle xenoliths. The combined XRCT and EBSD data show that the xenoliths are characterized by a range of fabric geometries (from oblate to prolate) and olivine CPO patterns; we recognize the A-type, axial-[010], axial-[100], and B-type patterns. The mantle xenoliths equilibrated at temperatures 779-1198 oC, as determined by 2-Px geothermometry. Using a geotherm consistent with the stability of spinel in all xenoliths, the range of equilibration temperatures occurs at depths between 39 and 72 km. Olivine recrystallized grain size piezometry reveals differential stresses ranging 2-60 MPa. Analysis of low-angle misorientation axes show a wide range in the distribution of rotation axes, with dominant {0kl}[100] slip. We use Fourier Transform Infrared (FTIR) spectroscopy to estimate the water content in the xenolith with the B-type CPO pattern. FTIR analysis shows that the equilibrium H concentration in olivine is low (4-13 ppm H2O). Combining these data, we observe that olivine CPO symmetry is controlled neither by the deformation conditions (stress, temperature, pressure, water content) for the range of

  7. Chemical, crystallographic and stable isotopic properties of alunite and jarosite from acid-Hypersaline Australian lakes

    Science.gov (United States)

    Alpers, C.N.; Rye, R.O.; Nordstrom, D.K.; White, L.D.; King, B.-S.

    1992-01-01

    Chemical, crystallographic and isotopic analyses were made on samples containing alunite and jarosite from the sediments of four acid, hypersaline lakes in southeastern and southwestern Australia. The alunite and jarosite are K-rich with relatively low Na contents based on chemical analysis and determination of unit cell dimensions by powder X-ray diffraction. Correcting the chemical analyses of fine-grained mineral concentrates from Lake Tyrrell, Victoria, for the presence of halite, silica and poorly crystalline aluminosilicates, the following formulas indicate best estimates for solid-solution compositions: for alunite, K0.87Na0.04(H3O)0.09(Al 0.92Fe0.08)3(SO4)2(OH) 6 and for jarosite, K0.89Na0.07(H3O)0.04(Fe 0.80Al0.20)3(SO4)2(OH) 6. The ??D-values of alunite are notably larger than those for jarosite from Lake Tyrrell and it appears that the minerals have closely approached hydrogen isotope equilibrium with the acidic regional groundwaters. The ??D results are consistent with a fractionation ???60-70??? between alunite and jarosite observed in other areas. However, interpretation of ??D results is complicated by large variability in fluid ??DH2O from evaporation, mixing and possible ion hydration effects in the brine. ??D-values of water derived from jarosite by step-wise heating tend to be smaller at 250??C, at which temperature hydronium and other non-hydroxyl water is liberated, than at 550??C, where water is derived from the hydroxyl site, but the differences are not sufficiently different to invalidate measurements of total ??D obtained by conventional, single-step heating methods. ??34S-values for alunite and jarosite from the four lakes (+19.7 to +21.2??? CDT) and for aqueous sulfate from Lake Tyrrell (+18.3 to +19.8???) are close to the values for modern evaporites (+21.5 ??0.3???) and seawater (+20??0.5???) and are probably typical of seawater-derived aerosols in arid coastal environments. ??34-S-values slightly smaller than that for seawater may

  8. Use of multiple picosecond high-mass molecular dynamics simulations to predict crystallographic B-factors of folded globular proteins.

    Science.gov (United States)

    Pang, Yuan-Ping

    2016-09-01

    Predicting crystallographic B-factors of a protein from a conventional molecular dynamics simulation is challenging, in part because the B-factors calculated through sampling the atomic positional fluctuations in a picosecond molecular dynamics simulation are unreliable, and the sampling of a longer simulation yields overly large root mean square deviations between calculated and experimental B-factors. This article reports improved B-factor prediction achieved by sampling the atomic positional fluctuations in multiple picosecond molecular dynamics simulations that use uniformly increased atomic masses by 100-fold to increase time resolution. Using the third immunoglobulin-binding domain of protein G, bovine pancreatic trypsin inhibitor, ubiquitin, and lysozyme as model systems, the B-factor root mean square deviations (mean ± standard error) of these proteins were 3.1 ± 0.2-9 ± 1 Å(2) for Cα and 7.3 ± 0.9-9.6 ± 0.2 Å(2) for Cγ, when the sampling was done for each of these proteins over 20 distinct, independent, and 50-picosecond high-mass molecular dynamics simulations with AMBER forcefield FF12MC or FF14SB. These results suggest that sampling the atomic positional fluctuations in multiple picosecond high-mass molecular dynamics simulations may be conducive to a priori prediction of crystallographic B-factors of a folded globular protein.

  9. Development of (1 0 0) crystallographic texture in magnetostrictive Fe-Ga wires using a modified Taylor wire method

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, S P; Quigley, P E; Avery, K J [Defence R and D Canada-Atlantic, 9 Grove Street, Dartmouth, NS, B2Y 3Z7 (Canada); Hatchard, T D; Flynn, S E; Dunlap, R A, E-mail: shannonfarrell@drdc-rddc.gc.c [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, B3H 3J5 (Canada)

    2009-07-07

    Magnetostrictive Fe-Ga wires 1-3 mm in diameter have been prepared using an innovative cost-effective approach-based on the Taylor wire method-that couples the advantages of high-temperature directional solidification and selective grain growth. Strict control of drawing processes has been shown to enable the introduction of desirable texture that is critical for achieving large magnetostriction in these polycrystalline Fe-Ga alloys. The procedure for fabricating highly textured (1 0 0) magnetostrictive wires is discussed and the wires are evaluated in terms of microstructure and crystallographic texture. Magnetostriction measurements, in the absence of pre-stress and stress-annealing treatments, indicated a maximum magnetostriction of approx170 ppm in a saturation field less than 60 mT. A mechanism for texture evolution is proposed. It is speculated that the resultant (1 0 0) texture of the Fe-Ga wires is due to directional solidification and abnormal grain growth resulting from surface effects. The unique properties of wires made with the Taylor-based approach coupled with the low fabrication cost make this an attractive approach for the production of Fe-Ga wire with a specific crystallographic texture.

  10. Computer Controlled Polishing of the Off-axis Aspheric Mirrors

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the manufacturing and testing procedures to make large off-axis aspherical mirrors are presented. The difficulties in polishing and testing for both circular-aperture and rectangular-aperture mirrors are previewed, and a possible solution is given. The two mirrors have been polished by means of CCOS, and the final accuracy is 25nm rms for 770mm×210mm rectangular mirror and 20nm rms for φ600mm circular mirror. These results just meet the optical tolerances specified by the designer, and the manufacturing and testing procedures presented here show good ability to make the large off-axis aspherical mirrors.

  11. A three-axis ultrasensitive accelerometer for space

    Science.gov (United States)

    Bernard, A.

    A three-axis ultrasensitive accelerometer ASTRE (Accelerometre Spatial Triaxial Electrostatique) is a simplified version of the GRADIO accelerometer designed for the ARISTOTELES mission, which operates by measuring the force provided by a three-axis electrostatic suspension of the proof-mass. It covers the g-spectrum from 10 exp -8 to 10 exp -4 in the frequency range dc to 5 Hz. A dedicated test bench was developed in order to preserve the accelerometer from the seismic noise. The paper presents the performance parameters of the ASTRE accelerometer and some of the design schemes.

  12. Three axis vector atomic magnetometer utilizing polarimetric technique.

    Science.gov (United States)

    Pradhan, Swarupananda

    2016-09-01

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity field gradient measurement as required for biomedical application.

  13. Three axis vector atomic magnetometer utilizing polarimetric technique

    CERN Document Server

    Pradhan, Swarupananda

    2016-01-01

    The three axis magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only reflected signal from the polarimeter, thus can be easily expanded to make spatial array of detectors or / and high sensitivity field gradient measurement as required for biomedical application.

  14. Efficient Path Query and Reasoning Method Based on Rare Axis

    Institute of Scientific and Technical Information of China (English)

    姜洋; 冯志勇; 王鑫马晓宁

    2015-01-01

    A new concept of rare axis based on statistical facts is proposed, and an evaluation algorithm is designed thereafter. For the nested regular expressions containing rare axes, the proposed algorithm can reduce its evaluation complexity from polynomial time to nearly linear time. The distributed technique is also employed to construct the navigation axis indexes for resource description framework (RDF) graph data. Experiment results in DrugBank and BioGRID show that this method can improve the query efficiency significantly while ensuring the accuracy and meet the query requirements on Web-scale RDF graph data.

  15. Fast satellite prediction for four-axis telescopes

    Institute of Scientific and Technical Information of China (English)

    林钦畅

    1996-01-01

    The features of the method are as follows: Adopting an optimum average small arc to four-axis prediction,the azimuth and altitude of the tracking axis need not be adjusted during the same observation procedure.The prediction has been used for three different types of telescopes for many years and all demands of users have been satisfied.In this method,the prediction contents were more than others.Separating the unknowns,the actual equations for operation were concise,and the needed machine time was much less,even for the prediction of multistation.

  16. Development of methodology for horizontal axis wind turbine dynamic analysis

    Science.gov (United States)

    Dugundji, J.

    1982-01-01

    Horizontal axis wind turbine dynamics were studied. The following findings are summarized: (1) review of the MOSTAS computer programs for dynamic analysis of horizontal axis wind turbines; (2) review of various analysis methods for rotating systems with periodic coefficients; (3) review of structural dynamics analysis tools for large wind turbine; (4) experiments for yaw characteristics of a rotating rotor; (5) development of a finite element model for rotors; (6) development of simple models for aeroelastics; and (7) development of simple models for stability and response of wind turbines on flexible towers.

  17. Three axis vector atomic magnetometer utilizing polarimetric technique

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India and Homi Bhabha National Institute, Department of Atomic Energy, Mumbai 400094 (India)

    2016-09-15

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity field gradient measurement as required for biomedical application.

  18. Research on electromechanical resonance of two-axis tracking system

    Science.gov (United States)

    Zhao, Zhi-ming; Xue, Ying-jie; Zeng, Shu-qin; Li, Zhi-guo

    2017-02-01

    The multi-axes synchronous system about the spatial two-axis turntable is the key equipment for semi-physical simulation and test in aerospace. In this paper, the whole structure design of the turntable is created by using Solidworks, then putting the three-dimensional solid model into ANSYS to build the finite element model. The software ANSYS is used to do the simulation about the static and dynamic analysis of two-axis turntable. Based on the modal analysis, we can forecast the inherent frequencies and the mode of vibration during the launch conditions which is very important to the design and safety of the structure.

  19. Fast and accurate measurement of on-axis gain and on-axis polarization at a finite distance

    DEFF Research Database (Denmark)

    Pivnenko, S.; Breinbjerg, O.

    2013-01-01

    In this paper, a technique for fast and accurate measurement of on-axis gain and on-axis polarization characteristics of antennas, such as Standard Gain Horns, compact range feed horns, and near-field probes, is described. The proposed gain determination procedure is a modification of the far-field...... orientations versus a polarization calibrated probe. A complete set of measurements for one AUT takes less than two hours. The measurement uncertainty for the gain is comparable to the one obtained with the near-field substitution technique and typically does not exceed 0.1 dB (1 sigma)....

  20. Thermally induced reversible easy axis rotations in permalloy thin films

    NARCIS (Netherlands)

    Horsthuis, Winfried H.G.; Eijkel, Kees J.M.; Ridder, de René M.; Leeuwis, Henk

    1988-01-01

    The thermal stability of the easy axis orientation in thin Permalloy films was studied. This orientation was measured by two methods, i.e. the magneto-optic Kerr effect and a novel measurement scheme based on magnetoresistive effects. It appeared that even for small temperature changes rotations of

  1. The gut microbiome, probiotics, bile acids axis, and human health.

    Science.gov (United States)

    Jones, Mitchell Lawrence; Tomaro-Duchesneau, Catherine; Prakash, Satya

    2014-06-01

    The human gut microbiome produces potent ligands to bile acid receptors, and probiotics could act as therapeutics of bile acid dysmetabolism. A recent study in Cell Reports demonstrates that probiotic VSL#3 affects bile acid deconjugation and excretion, as well as the gut-liver FXR-FGF15 axis.

  2. Stereo PIV Experiments on Horizontal Axis Wind Turbine Rotor Model

    NARCIS (Netherlands)

    Akay, B.; Micallef, D.; Ferreira, C.S.; Van Bussel, G.J.W.

    2011-01-01

    This paper sets out to describe the measurements and computations to construct three components of velocity field around the blade. The primary aim of the measurements was to gain insight into the physics of the flow field produced by a horizontal axis wind turbine-HAWT blade. Stereo Particle Image

  3. All-optical, Three-axis Fiber Laser Magnetometer

    Science.gov (United States)

    2012-04-16

    E-1 1.  INTRODUCTION ...achieved with other magnetic field sensing technologies such as those based on flux gates and fiber optic magnetostrictive sensors. The deployed...ALL-OPTICAL, THREE-AXIS FIBER LASER MAGNETOMETER 1. INTRODUCTION This report describes the development of an undersea fiber optic magnetometer

  4. Genetic disorders in the growth hormone - IGF-I Axis

    NARCIS (Netherlands)

    Walenkamp, Maria Josephina Elisabeth

    2007-01-01

    Growth is a complex process, regulated by multiple external and internal factors. Deviation from the normal growth pattern can be one of the first manifestations of an underlying disorder, disrupting the normal growth process. The growth hormone – IGF-I axis plays a key role in regulating this growt

  5. Targeting the gut-liver axis in cirrhosis

    DEFF Research Database (Denmark)

    Madsen, Bjørn S; Havelund, Troels; Krag, Aleksander

    2013-01-01

    The gut-liver axis in cirrhosis and portal hypertension is gaining increasing attention as a key pathophysiological mechanism responsible for progression of liver failure and development of complications such as spontaneous infections and hepatocellular carcinoma. Antibiotics and non-selective β-...

  6. On lifting line analysis of horizontal axis windturbines

    Science.gov (United States)

    Politis, G. K.; Loukakis, T. A.

    A convergent iteration scheme for lifting line performance analysis of horizontal axis windturbines is presented. Lifting line correction factors are introduced and compared with those of Prandtl and Goldstein. Lifting line and strip theory formulations are applied for the calculation of performance for two windturbines. Differences of engineering importance are shown to exist in the prediction of the Power coefficient.

  7. A novel dual-axis reconstruction algorithm for electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Jenna; Midgley, Paul [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom)

    2006-02-22

    A new algorithm for computing electron microscopy tomograms which combines iterative methods with dual-axis geometry is presented. Initial modelling using test data shows several improvements over both the weighted back-projection (WBP) and Simultaneous Iterative Reconstruction Technique (SIRT) method, and, with increased stability and tomogram fidelity under high-noise conditions.

  8. Brain-gut-microbiota axis in Parkinson's disease.

    Science.gov (United States)

    Mulak, Agata; Bonaz, Bruno

    2015-10-07

    Parkinson's disease (PD) is characterized by alpha-synucleinopathy that affects all levels of the brain-gut axis including the central, autonomic, and enteric nervous systems. Recently, it has been recognized that the brain-gut axis interactions are significantly modulated by the gut microbiota via immunological, neuroendocrine, and direct neural mechanisms. Dysregulation of the brain-gut-microbiota axis in PD may be associated with gastrointestinal manifestations frequently preceding motor symptoms, as well as with the pathogenesis of PD itself, supporting the hypothesis that the pathological process is spread from the gut to the brain. Excessive stimulation of the innate immune system resulting from gut dysbiosis and/or small intestinal bacterial overgrowth and increased intestinal permeability may induce systemic inflammation, while activation of enteric neurons and enteric glial cells may contribute to the initiation of alpha-synuclein misfolding. Additionally, the adaptive immune system may be disturbed by bacterial proteins cross-reacting with human antigens. A better understanding of the brain-gut-microbiota axis interactions should bring a new insight in the pathophysiology of PD and permit an earlier diagnosis with a focus on peripheral biomarkers within the enteric nervous system. Novel therapeutic options aimed at modifying the gut microbiota composition and enhancing the intestinal epithelial barrier integrity in PD patients could influence the initial step of the following cascade of neurodegeneration in PD.

  9. Stereo PIV Experiments on Horizontal Axis Wind Turbine Rotor Model

    NARCIS (Netherlands)

    Akay, B.; Micallef, D.; Ferreira, C.S.; Van Bussel, G.J.W.

    2011-01-01

    This paper sets out to describe the measurements and computations to construct three components of velocity field around the blade. The primary aim of the measurements was to gain insight into the physics of the flow field produced by a horizontal axis wind turbine-HAWT blade. Stereo Particle Image

  10. Tilted axis rotation in odd-odd {sup 164}Tm

    Energy Technology Data Exchange (ETDEWEB)

    Reviol, W.; Riedinger, L.L.; Wang, X.Z.; Zhang, J.Y. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1996-12-31

    Ten band structures are observed in {sup 164}Tm, among them sets of parallel and anti-parallel couplings of the proton and neutron spins. The Tilted Axis Cranking scheme is applied for the first time to an odd-odd nucleus in a prominent region of nuclear deformation.

  11. Microbiota regulation of the Mammalian gut-brain axis.

    Science.gov (United States)

    Burokas, Aurelijus; Moloney, Rachel D; Dinan, Timothy G; Cryan, John F

    2015-01-01

    The realization that the microbiota-gut-brain axis plays a critical role in health and disease has emerged over the past decade. The brain-gut axis is a bidirectional communication system between the central nervous system (CNS) and the gastrointestinal tract. Regulation of the microbiota-brain-gut axis is essential for maintaining homeostasis, including that of the CNS. The routes of this communication are not fully elucidated but include neural, humoral, immune, and metabolic pathways. A number of approaches have been used to interrogate this axis including the use of germ-free animals, probiotic agents, antibiotics, or animals exposed to pathogenic bacterial infections. Together, it is clear that the gut microbiota can be a key regulator of mood, cognition, pain, and obesity. Understanding microbiota-brain interactions is an exciting area of research which may contribute new insights into individual variations in cognition, personality, mood, sleep, and eating behavior, and how they contribute to a range of neuropsychiatric diseases ranging from affective disorders to autism and schizophrenia. Finally, the concept of psychobiotics, bacterial-based interventions with mental health benefit, is also emerging.

  12. Alfven eigenmode structure during off-axis neutral beam injection

    NARCIS (Netherlands)

    Tobias, B.; Bass, E. M.; Classen, I.G.J.; Domier, C.W.; Grierson, B. A.; Heidbrink, W. W.; N C Luhmann Jr.,; Nazikian, R.; Park, H. K.; Spong, D. A.; VanZeeland, M. A.

    2012-01-01

    The spatial structure of Alfven eigenmodes on the DIII-D tokamak is compared for contrasting fast ion deposition profiles resulting from on- and off-axis neutral beam injection (NBI). In both cases, poloidal mode rotation and eigenmode twist, or radial phase variation, are correlated with the direct

  13. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    NARCIS (Netherlands)

    Simao Ferreira, C.J.; Aagaard Madsen, H.; Barone, M.; Roscher, B.; Deglaire, P.; Arduin, I.

    2014-01-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple s

  14. On the Turbulent Mixing in Horizontal Axis Wind Turbine Wakes

    NARCIS (Netherlands)

    Lignarolo, L.E.M.

    2016-01-01

    The wake flow of a horizontal axis wind turbine is characterised by lower wind speed and higher turbulence than the free-stream conditions. When clustered in large wind farms, wind turbines regularly operate inside the wake of one or more upstream machines. This is a major cause of energy production

  15. The Advanced X-ray Imaging Satellite (AXIS)

    Science.gov (United States)

    Reynolds, Christopher S.; Mushotzky, Richard

    2017-08-01

    The Advanced X-ray Imaging Satellite (AXIS) will follow in the footsteps of the spectacularly successful Chandra X-ray Observatory with similar or higher angular resolution and an order of magnitude more collecting area in the 0.3-10keV band. These capabilities will enable major advances in many of the most active areas of astrophysics, including (i) mapping event horizon scale structure in AGN accretion disks and the determination of supermassive black hole (SMBH) spins through monitoring of gravitationally-microlensed quasars; (ii) dramatically deepening our understanding of AGN feedback in galaxies and galaxy clusters out to high-z through the direct imaging of AGN winds and the interaction of jets with the hot interstellar/intracluster medium; (iii) understanding the fueling of AGN by probing hot flows inside of the SMBH sphere of influence; (iv) obtaining geometric distance measurements using dust scattering halos. With a nominal 2028 launch, AXIS will be enormously synergistic with LSST, ALMA, WFIRST and ATHENA, and will be a valuable precursor to Lynx. AXIS is enabled by breakthroughs in the construction of light-weight X-ray optics from mono-crystalline silicon blocks, building on recent developments in the semiconductor industry. Here, we describe the straw-man concept for AXIS, some of the high profile science that this observatory will address, and how you can become involved.

  16. On the Turbulent Mixing in Horizontal Axis Wind Turbine Wakes

    NARCIS (Netherlands)

    Lignarolo, L.E.M.

    2016-01-01

    The wake flow of a horizontal axis wind turbine is characterised by lower wind speed and higher turbulence than the free-stream conditions. When clustered in large wind farms, wind turbines regularly operate inside the wake of one or more upstream machines. This is a major cause of energy production

  17. The microbiome‐gut‐brain axis: from bowel to behavior

    National Research Council Canada - National Science Library

    Cryan, J. F; O’Mahony, S. M

    2011-01-01

    ... microbiome greatly impacts on gut‐brain communication leading to the coining of the phrase the brain‐gut enteric microbiota axis (illustrated in Fig. 1 ). The exact mechanisms governing such communication are unclear and most studies to date focus on the impact of altered signaling from the brain to the gut. Recent emerging studies are investigating t...

  18. Transport Phenomena of Off-Axis Sputtering Deposition

    Science.gov (United States)

    Zhu, S.; Su, C. H.; Lehoczky, S. L.; Zhang, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Various high quality epitaxial films, especially oxides, have been synthesized using off-axis sputtering deposition. In this presentation, we report the experiment results of ZnO films grown by the off-axis sputtering deposition. Films were synthesized in temperatures ranged from room temperature to 600 C, and pressures from 5 mTorr to 150 mTorr. Film growth rate was measured by surface profilometer, ellipsometer, and wavelength dispersive spectrometry. Due to the collisions between the sputtered species and the residue gases, the kinetic energy of species was reduced and the transport of depositing species changed from a ballistic movement for low pressure to a diffuse drift for high pressure in which the transport species were almost thermalized. The measurements show an increase of growth rates along the gravity vector when the Knodson (Knudsen??) number of transport species is less than 0.05, which suggests that gravity affected the transport characterization in off-axis sputtering deposition. Because the product of pressure (p) and travel distance (d) of sputtered species, p exceeds several mTorr-cm during film deposition, the classical simulations for sputtering process in high vacuum system may not be applied. Based on these experimental measurements, a transport process of the off-axis sputtering deposition is proposed. Several methods including the Monte Carlo method and gravity-driven flow dynamics simulation will be discussed.

  19. Serotonergic stimulation of the rat hypothalamo-pituitary-adrenal axis

    DEFF Research Database (Denmark)

    Mikkelsen, Jens D; Hay-Schmidt, Anders; Kiss, Alexander

    2004-01-01

    Acute stimulation of the hypothalamo-pituitary-adrenal (HPA) axis by selective serotonin reuptake inhibitors (SSRIs) is mediated by several postsynaptic 5-HT receptor subtypes. Activation of 5-HT(1A) and 5-HT(2A) receptors increases plasma corticosterone levels, and it is likely that these recept...

  20. Vertical-axis wind turbines -- The current status of an old technology

    Energy Technology Data Exchange (ETDEWEB)

    Berg, D.E.

    1996-12-31

    Vertical-axis wind turbine technology is not well understood, even though the earliest wind machines rotated about a vertical axis. The operating environment of a vertical-axis wind turbine is quite complex, but detailed analysis capabilities have been developed and verified over the last 30 years. Although vertical-axis technology has not been widely commercialized, it exhibits both advantages and disadvantages compared to horizontal-axis technology, and in some applications, it appears to offer significant advantages.

  1. DARHT Axis-I Diode Simulations II: Geometrical Scaling

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A. Jr. [Los Alamos National Laboratory

    2012-06-14

    Flash radiography of large hydrodynamic experiments driven by high explosives is a venerable diagnostic technique in use at many laboratories. Many of the largest hydrodynamic experiments study mockups of nuclear weapons, and are often called hydrotests for short. The dual-axis radiography for hydrodynamic testing (DARHT) facility uses two electron linear-induction accelerators (LIA) to produce the radiographic source spots for perpendicular views of a hydrotest. The first of these LIAs produces a single pulse, with a fixed {approx}60-ns pulsewidth. The second axis LIA produces as many as four pulses within 1.6-{micro}s, with variable pulsewidths and separation. There are a wide variety of hydrotest geometries, each with a unique radiographic requirement, so there is a need to adjust the radiographic dose for the best images. This can be accomplished on the second axis by simply adjusting the pulsewidths, but is more problematic on the first axis. Changing the beam energy or introducing radiation attenuation also changes the spectrum, which is undesirable. Moreover, using radiation attenuation introduces significant blur, increasing the effective spot size. The dose can also be adjusted by changing the beam kinetic energy. This is a very sensitive method, because the dose scales as the {approx}2.8 power of the energy, but it would require retuning the accelerator. This leaves manipulating the beam current as the best means for adjusting the dose, and one way to do this is to change the size of the cathode. This method has been proposed, and is being tested. This article describes simulations undertaken to develop scaling laws for use as design tools in changing the Axis-1 beam current by changing the cathode size.

  2. The manufacturing and metrology of off-axis mirrors

    Science.gov (United States)

    Penzkofer, Karlheinz; Rascher, Rolf; Küpper, Lutz; Liebl, Johannes

    2015-10-01

    Especially in the area of the large mirror manufacturing only a few manufacturers are capable to produce optical surfaces of high quality. Therefore a deterministic process should be developed in the project IFasO. In the field of telescope optics off-axis optical systems are becoming increasingly important. These systems try to avoid an obstructing of the incoming light by moving the secondary mirror out of the primary mirror's optical axis. This advantage leads to an increasing market for this type of optical surface. Until now off-axis mirrors were difficult or almost impossible to produce. With the processes developed in IFasO, high quality mirrors become possible. For this reason, this paper describes the manufacturing of off-axis surfaces and its problems. The mirror production used in the project IFasO is based on the specific design of the CNC center developed by the company Optotech. This center UPG2000 is capable of grinding, polishing, sagitta measurement and interferometric measurement in one mounting of the specimen. Usually a large optics has to be transported during their manufacturing after every individual process step. There is always a risk of damage of the specimen. The exact orientation of the surface relatively to the tool position is also required. This takes a huge amount of time and makes up most of the production time. In this presentation the use of UPG2000 and the next steps within the process development are described. In the current status the manufacturing of large off-axis elements with a PV < λ/10 rms is reproducible.

  3. Comparative transcriptomic analysis of developing cotton cotyledons and embryo axis.

    Directory of Open Access Journals (Sweden)

    Xiaoming Jiao

    Full Text Available BACKGROUND: As a by product of higher value cotton fibre, cotton seed has been increasingly recognised to have excellent potential as a source of additional food, feed, biofuel stock and even a renewable platform for the production of many diverse biological molecules for agriculture and industrial enterprises. The large size difference between cotyledon and embryo axis that make up a cotton seed results in the under-representation of embryo axis gene transcript levels in whole seed embryo samples. Therefore, the determination of gene transcript levels in the cotyledons and embryo axes separately should lead to a better understanding of metabolism in these two developmentally diverse tissues. RESULTS: A comparative study of transcriptome changes between cotton developing cotyledon and embryo axis has been carried out. 17,384 unigenes (20.74% of all the unigenes were differentially expressed in the two adjacent embryo tissues, and among them, 7,727 unigenes (44.45% were down-regulated and 9,657 unigenes (55.55% were up-regulated in cotyledon. CONCLUSIONS: Our study has provided a comprehensive dataset that documents the dynamics of the transcriptome at the mid-maturity of cotton seed development and in discrete seed tissues, including embryo axis and cotyledon tissues. The results showed that cotton seed is subject to many transcriptome variations in these two tissue types and the differential gene expression between cotton embryo axis and cotyledon uncovered in our study should provide an important starting point for understanding how gene activity is coordinated during seed development to make a seed. Further, the identification of genes involved in rapid metabolite accumulation stage of seed development will extend our understanding of the complex molecular and cellular events in these developmental processes and provide a foundation for future studies on the metabolism, embryo differentiation of cotton and other dicot oilseed crops.

  4. Velocity measurement of model vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; McWilliam, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2006-07-01

    An increasingly popular solution to future energy demand is wind energy. Wind turbine designs can be grouped according to their axis of rotation, either horizontal or vertical. Horizontal axis wind turbines have higher power output in a good wind regime than vertical axis turbines and are used in most commercial class designs. Vertical axis Savonius-based wind turbine designs are still widely used in some applications because of their simplistic design and low wind speed performance. There are many design variables that must be considered in order to optimize the power output in a given wind regime in a typical wind turbine design. Using particle image velocimetry, a study of the air flow around five different model vertical axis wind turbines was conducted in a closed loop wind tunnel. A standard Savonius design with two semi-circular blades overlapping, and two variations of this design, a deep blade and a shallow blade design were among the turbine models included in this study. It also evaluated alternate designs that attempt to increase the performance of the standard design by allowing compound blade curvature. Measurements were collected at a constant phase angle and also at random rotor orientations. It was found that evaluation of the flow patterns and measured velocities revealed consistent and stable flow patterns at any given phase angle. Large scale flow structures are evident in all designs such as vortices shed from blade surfaces. An important performance parameter was considered to be the ability of the flow to remain attached to the forward blade and redirect and reorient the flow to the following blade. 6 refs., 18 figs.

  5. Purification, crystallization and preliminary crystallographic studies of a Kunitz-type proteinase inhibitor from tamarind (Tamarindus indica) seeds.

    Science.gov (United States)

    Patil, Dipak N; Chaudhry, Anshul; Sharma, Ashwani K; Tomar, Shailly; Kumar, Pravindra

    2009-07-01

    A Kunitz-type proteinase inhibitor has been purified from tamarind (Tamarindus indica) seeds. SDS-PAGE analysis of a purified sample showed a homogeneous band corresponding to a molecular weight of 21 kDa. The protein was identified as a Kunitz-type proteinase inhibitor based on N-terminal amino-acid sequence analysis. It was crystallized by the vapour-diffusion method using PEG 6000. The crystals belonged to the orthorhombic space group C222(1), with unit-cell parameters a = 37.2, b = 77.1, c = 129.1 A. Diffraction data were collected to a resolution of 2.7 A. Preliminary crystallographic analysis indicated the presence of one proteinase inhibitor molecule in the asymmetric unit, with a solvent content of 44%.

  6. Expression, purification and preliminary crystallographic analysis of a haem-utilizing protein, HutX, from Vibrio cholerae

    Science.gov (United States)

    Su, Tiantian; Chi, Kaikai; Wang, Kang; Guo, Liming; Huang, Yan

    2015-01-01

    Vibrio cholerae, the causative agent of cholera, has developed a variety of mechanisms to obtain the limited-availability iron from human hosts. One important method for iron acquisition is through haem-uptake systems. Although the transport of haem has been widely studied, the fate of haem once it enters the cytoplasm remains an open question. Here, preliminary X-ray crystallographic analysis was performed on HutX, a member of the conserved haem-utilization operon from V. cholerae strain N16961. The crystals of HutX were found to belong to the orthorhombic space group C2221, with unit-cell parameters a = 50.1, b = 169.0, c = 81.8 Å. There are two protein molecules in the asymmetric unit, with a corresponding Matthews coefficient V M of 2.06 Å3 Da−1 and a solvent content of 40.28%. PMID:25664785

  7. Coupling of bias-induced crystallographic shear planes with charged domain walls in ferroelectric oxide thin films

    Science.gov (United States)

    Han, Myung-Geun; Garlow, Joseph A.; Bugnet, Matthieu; Divilov, Simon; Marshall, Matthew S. J.; Wu, Lijun; Dawber, Matthew; Fernandez-Serra, Marivi; Botton, Gianluigi A.; Cheong, Sang-Wook; Walker, Frederick J.; Ahn, Charles H.; Zhu, Yimei

    2016-09-01

    Polar discontinuity at interfaces plays deterministic roles in charge transport, magnetism, and even superconductivity of functional oxides. To date, most polar discontinuity problems have been explored in heterointerfaces between two dissimilar materials. Here, we show that charged domain walls (CDWs) in epitaxial thin films of ferroelectric PbZ r0.2T i0.8O3 are strongly coupled to polar interfaces through the formation of 1/2 {h 0 l } - type crystallographic shear planes (CSPs). Using atomic resolution imaging and spectroscopy we illustrate that the CSPs consist of both conservative and nonconservative segments when coupled to the CDWs where necessary compensating charges for stabilizing the CDWs are associated with vacancies at the CSPs. The CDW/CSP coupling yields an atomically narrow domain wall, consisting of a single atomic layer of oxygen. This study shows that the CDW/CSP coupling is a fascinating venue to develop emergent material properties.

  8. Mechanical Properties, Microstructure and Crystallographic Texture of Magnesium AZ91-D Alloy Welded by Friction Stir Welding (FSW)

    Science.gov (United States)

    Kouadri-Henni, A.; Barrallier, L.

    2014-10-01

    The objective of the study was to characterize the properties of a magnesium alloy welded by friction stir welding. The results led to a better understanding of the relationship between this process and the microstructure and anisotropic properties of alloy materials. Welding principally leads to a large reduction in grain size in welded zones due to the phenomenon of dynamic recrystallization. The most remarkable observation was that crystallographic textures appeared from a base metal without texture in two zones: the thermo-mechanically affected and stir-welded zones. The latter zone has the peculiarity of possessing a marked texture with two components on the basal plane and the pyramidal plane. These characteristics disappeared in the thermo-mechanically affected zone (TMAZ), which had only one component following the basal plane. These modifications have been explained by the nature of the plastic deformation in these zones, which occurs at a moderate temperature in the TMAZ and high temperature in the SWZ.

  9. Identification, SAR studies, and X-ray co-crystallographic analysis of a novel furanopyrimidine aurora kinase A inhibitor.

    Science.gov (United States)

    Coumar, Mohane Selvaraj; Tsai, Ming-Tsung; Chu, Chang-Ying; Uang, Biing-Jiun; Lin, Wen-Hsing; Chang, Chun-Yu; Chang, Teng-Yuan; Leou, Jiun-Shyang; Teng, Chi-Huang; Wu, Jian-Sung; Fang, Ming-Yu; Chen, Chun-Hwa; Hsu, John T-A; Wu, Su-Ying; Chao, Yu-Sheng; Hsieh, Hsing-Pang

    2010-02-01

    Herein we reveal a simple method for the identification of novel Aurora kinase A inhibitors through substructure searching of an in-house compound library to select compounds for testing. A hydrazone fragment conferring Aurora kinase activity and heterocyclic rings most frequently reported in kinase inhibitors were used as substructure queries to filter the in-house compound library collection prior to testing. Five new series of Aurora kinase inhibitors were identified through this strategy, with IC(50) values ranging from approximately 300 nM to approximately 15 microM, by testing only 133 compounds from a database of approximately 125,000 compounds. Structure-activity relationship studies and X-ray co-crystallographic analysis of the most potent compound, a furanopyrimidine derivative with an IC(50) value of 309 nM toward Aurora kinase A, were carried out. The knowledge gained through these studies could help in the future design of potent Aurora kinase inhibitors.

  10. Discovery of Pyrrolopyridine−Pyridone Based Inhibitors of Met Kinase: Synthesis, X-ray Crystallographic Analysis, and Biological Activities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Soon; Zhang, Liping; Schmidt, Robert; Cai, Zhen-Wei; Wei, Donna; Williams, David K.; Lombardo, Louis J.; Trainor, George L.; Xie, Dianlin; Zhang, Yaquan; An, Yongmi; Sack, John S.; Tokarski, John S.; Darienzo, Celia; Kamath, Amrita; Marathe, Punit; Zhang, Yueping; Lippy, Jonathan; Jeyaseelan, Sr., Robert; Wautlet, Barri; Henley, Benjamin; Gullo-Brown, Johnni; Manne, Veeraswamy; Hunt, John T.; Fargnoli, Joseph; Borzilleri, Robert M. (BMS)

    2008-10-02

    Conformationally constrained 2-pyridone analogue 2 is a potent Met kinase inhibitor with an IC50 value of 1.8 nM. Further SAR of the 2-pyridone based inhibitors of Met kinase led to potent 4-pyridone and pyridine N-oxide inhibitors such as 3 and 4. The X-ray crystallographic data of the inhibitor 2 bound to the ATP binding site of Met kinase protein provided insight into the binding modes of these inhibitors, and the SAR of this series of analogues was rationalized. Many of these analogues showed potent antiproliferative activities against the Met dependent GTL-16 gastric carcinoma cell line. Compound 2 also inhibited Flt-3 and VEGFR-2 kinases with IC{sub 50} values of 4 and 27 nM, respectively. It possesses a favorable pharmacokinetic profile in mice and demonstrates significant in vivo antitumor activity in the GTL-16 human gastric carcinoma xenograft model.

  11. Crystallographic and functional analyses of J-domain of JAC1 essential for chloroplast photorelocation movement in Arabidopsis thaliana.

    Science.gov (United States)

    Takano, Akira; Suetsugu, Noriyuki; Wada, Masamitsu; Kohda, Daisuke

    2010-08-01

    An auxilin-like J-domain-containing protein, JAC1, is necessary for chloroplast movement in Arabidopsis thaliana, to capture photosynthetic light efficiently under weak light conditions. Here, we performed crystallographic and functional analyses of the J-domain of JAC1. The crystal structure of the J-domain is quite similar to that of bovine auxilin, and possesses a similar positively charged surface, which probably forms the interface with the Hsp70 chaperone. The mutation of the highly conserved HPD motif of the JAC1 J-domain abrogated the chloroplast photorelocation response. These results suggest that the requirement of JAC1 in chloroplast photorelocation movement is attributable to the J-domain's cochaperone activity.

  12. The Effect of Excess Carbon on the Crystallographic, Microstructural, and Mechanical Properties of CVD Silicon Carbide Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Marzik, J V; Croft, W J; Staples, R J; MoberlyChan, W J

    2006-12-05

    Silicon carbide (SiC) fibers made by chemical vapor deposition (CVD) are of interest for organic, ceramic, and metal matrix composite materials due their high strength, high elastic modulus, and retention of mechanical properties at elevated processing and operating temperatures. The properties of SCS-6{trademark} silicon carbide fibers, which are made by a commercial process and consist largely of stoichiometric SiC, were compared with an experimental carbon-rich CVD SiC fiber, to which excess carbon was added during the CVD process. The concentration, homogeneity, and distribution of carbon were measured using energy dispersive x-ray spectroscopy (SEM/EDS). The effect of excess carbon on the tensile strength, elastic modulus, and the crystallographic and microstructural properties of CVD silicon carbide fibers was investigated using tensile testing, x-ray diffraction, scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

  13. Angular distribution of the emission from ultrarelativistic electrons moving near crystallographic axes in diamond and tungsten crystals

    Energy Technology Data Exchange (ETDEWEB)

    Aleinik, A.N.; Vorobev, S.A.; Kalinin, B.N.; Kurkov, A.A.; Potylitsyn, A.P.

    1986-07-01

    Data on the angular distribution of the emission from ultrarelativistic electrons moving near crystallographic axes in diamond and tungsten crystals are reviewed. A graph is presented of the orientational dependence of soft gamma rays measured by a thin-walled ionization chamber sensitive to gamma rays with energies greater than 0.3 MeV and a radiative loss measured by a total-absorption Gauss quantometer with a threshold of about 5 MeV at an angle to the primary electron-beam direction of motion. It is concluded that knowledge of the scattering processes of ultrarelativistic electrons near crytal axes makes it easier to choose the optimum type and thickness of a crystal to achieve the maximum yield of gamma radiation into a given solid angle. 8 references.

  14. Crystallographic investigation of aluminium nitride thin films on stainless steel foil for highly efficient piezoelectric vibration energy harvesters

    Science.gov (United States)

    Moriwaki, N.; Minh, L. V.; Ohigashi, R.; Shimada, O.; Kitayoshi, H.; Kuwano, H.

    2016-11-01

    This study reports piezoelectric properties and crystallographic microstructures of aluminium nitride (AlN, wurtzite structure) thin films on 50 μm thick stainless steel foil. The transverse piezoelectric coefficient d31f and e31f of 10 pm thick AlN films were estimated as -1.42 ± 0.08 μm/V and -0.48 ± 0.03 C/m2 from a tip displacement of the piezoelectric cantilevers. Dielectric constant s33 was measured as 10.5 ± 1.0. An electron beam diffraction pattern by a high-resolution transmission electron microscope and x-ray diffraction pattern showed that abundance ratio of the orientation such as , and of AlN crystal on stainless steel foils increased with increasing thickness.

  15. Electrical properties of NiAs-type MnTe films with preferred crystallographic plane of (110)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.; Wang, Z. H., E-mail: zhwang@imr.ac.cn; Zhang, Z. D. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-01-28

    NiAs-type manganese telluride (MnTe) films with preferred crystallographic plane of (110) were prepared on Si/SiO{sub 2} substrates by pulsed laser deposition. X-ray diffraction (XRD) of the films was studied at different temperatures. The XRD peak of MnTe (110) films shifts to higher angle with decreasing temperature, showing the decrease of the lattice parameter. Resistivity of the films was studied in the temperature range of 2–350 K. The bump between 150 and 250 K was observed in the films, which may be related to the special s-d and p-d overlaps induced by the compressed lattice. The magnon drag effect near its Néel temperature T{sub N} and enlarged magnetic-elastic coupling below 100 K were observed and analyzed in details.

  16. Synthesis, crystallographic characterization and electrochemical property of a copper(II) complex of the anticancer agent elesclomol.

    Science.gov (United States)

    Vo, Nha Huu; Xia, Zhiqiang; Hanko, Jason; Yun, Tong; Bloom, Steve; Shen, Jianhua; Koya, Keizo; Sun, Lijun; Chen, Shoujun

    2014-01-01

    Elesclomol is a novel anticancer agent that has been evaluated in a number of late stage clinical trials. A new and convenient synthesis of elesclomol and its copper complex is described. X-ray crystallographic characterization and the electrochemical properties of the elesclomol copper(II) complex are discussed. The copper(II) cation is coordinated in a highly distorted square-planar geometry to each of the sulphur and amide nitrogen atoms of elesclomol. Electrochemical measurements demonstrate that the complex undergoes a reversible one-electron reduction at biologically accessible potentials. In contrast the free elesclomol is found electrochemically inactive. This evidence is in strong support of the mechanism of action we proposed for the anticancer activity of elesclomol.

  17. Crystallographic origin of perpendicular magnetic anisotropy in CoPt film: polarized x-ray absorption study

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, K [National University of Singapore; Chen, J [National University of Singapore; Liu, T [Oak Ridge National Laboratory (ORNL); Sun, C [Singapore Synchrotron Light Source; Chow, G [National University of Singapore

    2009-01-01

    Crystallographic structure, growth induced miscibility gap and strain in Ta/Co100 xPtx (0 x 43 at%)/Ru/Ta/glass films deposited at ambient temperature were investigated using polarized x-ray absorption spectroscopy to clarify the origin of observed perpendicular magnetic anisotropy (PMA) in Co72Pt28 film. Extended x-ray absorption fine structure spectroscopy data at Co K-edge showed that Co has a similar local atomic environment and averaged interatomic distance in the in-plane and out-of-plane polarization geometries for Co72Pt28, ruling out the contribution of magneto-elastic anisotropy and growth induced structural anisotropy as the origin of PMA. A large PMA in Co72Pt28 film was attributed to the preferred hexagonal close-packed stacking as observed using the x-ray absorption near-edge structure spectroscopy.

  18. Formation of Fast-Spread Ocean Crust : Crystallographic Preferred Orientations From a Reference Lower Crust Section in the Oman Ophiolite

    Science.gov (United States)

    Ildefonse, B.; Mueller, T.; Mock, D.; Koepke, J.

    2016-12-01

    About 20 years ago, two competing models were proposed for the formation of the lower, gabbroic crust at fast-spreading ridges. The lower crust is either formed by downward flow of mushy material from the shallow axial melt lens (gabbro glacier), or by sill intrusions (sheeted sills). To further test these end-member models, we characterized the vertical distribution of Crystallographic Preferred Orientations (CPO) in Wadi Gideah gabbro section (Sumail ophiolite, Sultanate Oman), using the Electron Backscattered Diffraction (EBSD) technique. CPO were measured on 67 gabbro samples, documenting a 5 km thick section, with an average interval of 80 m between samples. EBSD data sets were processed using MTEX, a free Matlab toolbox. Average misorientation in grains (angle between each pixel orientation and mean orientation of the grain) is very low ( 0.25°). This is consistent with magmatic flow in these rocks, and the paucity of crystal-plastic overprint. The strength (J index) of plagioclase CPO increases down-section, with a more pronounced variability in the layered gabbros. For clinopyroxene, the difference between upper (foliated) and lower (layered) gabbros is stronger, with low J in upper gabbros, and higher and more variable J in lower gabbros. In upper gabbros the symmetry of plagioclase and clinopyroxene CPO progressively evolves downward to progressively more oblate. Continuing down-section, the trend reverses, with progressively more prolate CPO in lower gabbros. The crystallographic fabric variability in the lower crust section calls for distinct formation mechanisms in the upper and lower gabbros. It is consistent with a hybrid model for crustal formation (Boudier et al., 1996, doi:10.1016/0012-821X(96)00167-7). The genesis of the upper foliated gabbro can be at least partly explained by the gabbro glacier model, while the continuous emplacement of sheeted sills at various depths is a more plausible model for the lower layered gabbro section.

  19. Erbium-ion implantation into various crystallographic cuts of Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nekvindova, P. [Department of Inorganic Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Mackova, A.; Malinsky, P. [Nuclear Physics Institute of the Academy of Sciences of the Czech Republic v.v.i., 250 68 Rez (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske mladeze 8, 400 96 Usti nad Labem (Czech Republic); Cajzl, J.; Svecova, B. [Department of Inorganic Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Oswald, J. [Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Cukrovarnicka 10, 162 53 Prague (Czech Republic); Wilhelm, R.A. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany)

    2015-12-15

    This paper reports on the importance of crystallographic cuts with a different orientation on the luminescent properties and structural changes of Al{sub 2}O{sub 3} implanted with Er{sup +} ions at 190 keV and with a fluence of 1.0 × 10{sup 16} cm{sup −2}. Post-implantation annealing at 1000 °C in oxygen atmosphere was also done. The chemical compositions and erbium concentration-depth profiles of implanted layers were studied by Rutherford Backscattering Spectrometry (RBS) and compared to SRIM simulations. The same value of the maximum erbium concentration (up to 2 at.%) was observed at a depth of about 40 nm for all crystallographic cuts. The structural properties of the prepared layers were characterised by RBS/channelling. The relative amount of disordered atoms of 70–80% was observed in the prepared implanted layers and discussed for various cuts. It has been found that erbium is positioned randomly in the Al{sub 2}O{sub 3} crystalline matrix, and no preferential positions appeared even after the annealing procedure. Erbium luminescence properties were measured in the wavelength range of 1440–1650 nm for all samples. As-implanted Al{sub 2}O{sub 3} samples had a significant luminescence band at 1530 nm. The best luminescence was repeatedly observed in the 〈0 0 0 1〉 cut of Al{sub 2}O{sub 3}. The annealing procedure significantly improved the luminescent properties.

  20. A binding hotspot in Trypanosoma cruzi histidyl-tRNA synthetase revealed by fragment-based crystallographic cocktail screens.

    Science.gov (United States)

    Koh, Cho Yeow; Siddaramaiah, Latha Kallur; Ranade, Ranae M; Nguyen, Jasmine; Jian, Tengyue; Zhang, Zhongsheng; Gillespie, J Robert; Buckner, Frederick S; Verlinde, Christophe L M J; Fan, Erkang; Hol, Wim G J

    2015-08-01

    American trypanosomiasis, commonly known as Chagas disease, is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. The chronic form of the infection often causes debilitating morbidity and mortality. However, the current treatment for the disease is typically inadequate owing to drug toxicity and poor efficacy, necessitating a continual effort to discover and develop new antiparasitic therapeutic agents. The structure of T. cruzi histidyl-tRNA synthetase (HisRS), a validated drug target, has previously been reported. Based on this structure and those of human cytosolic HisRS, opportunities for the development of specific inhibitors were identified. Here, efforts are reported to identify small molecules that bind to T. cruzi HisRS through fragment-based crystallographic screening in order to arrive at chemical starting points for the development of specific inhibitors. T. cruzi HisRS was soaked into 68 different cocktails from the Medical Structural Genomics of Pathogenic Protozoa (MSGPP) fragment library and diffraction data were collected to identify bound fragments after soaking. A total of 15 fragments were identified, all bound to the same site on the protein, revealing a fragment-binding hotspot adjacent to the ATP-binding pocket. On the basis of the initial hits, the design of reactive fragments targeting the hotspot which would be simultaneously covalently linked to a cysteine residue present only in trypanosomatid HisRS was initiated. Inhibition of T. cruzi HisRS was observed with the resultant reactive fragments and the anticipated binding mode was confirmed crystallographically. These results form a platform for the development of future generations of selective inhibitors for trypanosomatid HisRS.

  1. Similar quartz crystallographic textures in rocks of continental earth's crust (by neutron diffraction data): II. Quartz textures in monophase rocks

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, A. N., E-mail: nikitin@nf.jinr.ru; Ivankina, T. I. [Joint Institute for Nuclear Research (Russian Federation); Ullemeyer, K. [Universitaet Kiel, Institut fuer Geowissenschaften (Germany); Vasin, R. N. [Joint Institute for Nuclear Research (Russian Federation)

    2008-09-15

    The types of quartz textures found in a large collection of multiphase rocks from different regions of the earth are analyzed. Crystallographic textures of granulite, amphibolite, slate, and gneiss samples are measured, classified, and compared with the similar textures of monomineral rocks.

  2. Software developments in automated structure solution and crystallographic studies of the Sso10a2 and human C1 inhibitor protein

    NARCIS (Netherlands)

    Waterreus, Willem-Jan

    2013-01-01

    CRANK is a suite that links different macromolecular X-ray crystallographic programs to solve macromolecular crystal structures automatically from experimental phasing data. In chapter 2, several new algorithms implemented within CRANK increase the robustness and speed of the structure solution proc

  3. Crystallographic dependent in-situ CBr4 selective nano-area etching and local regrowth of InP/InGaAs by MOVPE

    DEFF Research Database (Denmark)

    Kuznetsova, Nadezda; Kulkova, Irina; Semenova, Elizaveta;

    2014-01-01

    Selective area etching and growth in the metalorganic vapor phase epitaxy (MOVPE) reactor on nano-scale structures have been examined. Using different mask orientations, crystallographic dependent etching of InP can be observed when carbon tetrabromide (CBr4) is used as an etchant. Scanning Elect...

  4. Crystallographic Analysis of Isothermally Transformed Bainite in 0.2C-2.0Mn-1.5Si-0.6Cr Steel Using EBSD

    Institute of Scientific and Technical Information of China (English)

    Pasi P.Suikkanen; Cyril Cayron; Anthony J.DeArdo; L.Pentti Karjalainen

    2013-01-01

    The crystallography of bainite,transformed isothermally at 450 ℃ in 0.2C-2.0Mn-1.5Si-O.6Cr steel,was investigated by electron backscatter diffraction (EBSD) analysis.The orientation relationship (OR) was found to be closer to Nishiyama-Wassermann (N-W) than Kurdjumov-Sachs orientation relationship.Bainite microstructure consisted of parallel laths forming a morphological packet structure.Typically,there were three different lath orientations in a morphological packet.These orientations were dictated by a three specific N-W OR variants sharing the same {111} austenite plane.A packet of bainite laths with common {111}austenite plane was termed as crystallographic packet.Generally,the crystallographic packet size corresponded to the morphological packet size.Locally,crystallographic packets with only two dominant orientations were observed.This indicates strong local variant selection during isothermal bainite transformation.The relative orientation between the variants in crystallographic packets was found to be near 60°/<110>.This appears to explain the strong peak observed in the grain boundary misorientation distribution near 60°.Bainite also contained pronounced fraction of boundaries with their misorientation in the range of 2.5°-8° with quite widely dispersed rotation angles.Spatially these boundaries were found to locate inside the bainite laths,forming lath-like sub-grains.

  5. Thermodynamics of Condensed Phases: Formula Unit Volume, "V[subscript m]", and the Determination of the Number of Formula Units, "Z", in a Crystallographic Unit Cell

    Science.gov (United States)

    Glasser, Leslie

    2011-01-01

    Formula unit (or molecular) volume, "V[subscript m]", is related to many thermodynamic and physical properties of materials, so that knowledge of "V[subscript m]" is useful in prediction of such properties for known and even hypothetical materials. The symbol "Z" represents the number of formula units in a crystallographic unit cell; "Z" thus…

  6. Jet maximization, axis minimization, and stable cone finding

    Science.gov (United States)

    Thaler, Jesse

    2015-10-01

    Jet finding is a type of optimization problem, where hadrons from a high-energy collision event are grouped into jets based on a clustering criterion. As three interesting examples, one can form a jet cluster that (i) optimizes the overall jet four-vector, (ii) optimizes the jet axis, or (iii) aligns the jet axis with the jet four-vector. In this paper, we show that these three approaches to jet finding, despite being philosophically quite different, can be regarded as descendants of a mother optimization problem. For the special case of finding a single cone jet of fixed opening angle, the three approaches are genuinely identical when defined appropriately, and the result is a stable cone jet with the largest value of a quantity J . This relationship is only approximate for cone jets in the rapidity-azimuth plane, as used at the Large Hadron Collider, though the differences are mild for small radius jets.

  7. Symmetry axis based object recognition under translation, rotation and scaling.

    Science.gov (United States)

    Hyder, Mashud; Islam, Md Monirul; Akhand, M A H; Murase, Kazuyuki

    2009-02-01

    This paper presents a new approach, known as symmetry axis based feature extraction and recognition (SAFER), for recognizing objects under translation, rotation and scaling. Unlike most previous invariant object recognition (IOR) systems, SAFER puts emphasis on both simplicity and accuracy of the recognition system. To achieve simplicity, it uses simple formulae for extracting invariant features from an object. The scheme used in feature extraction is based on the axis of symmetry and angles of concentric circles drawn around the object. SAFER divides the extracted features into a number of groups based on their similarity. To improve the recognition performance, SAFER uses a number of neural networks (NNs) instead of single NN are used for training and recognition of extracted features. The new approach, SAFER, has been tested on two of real world problems i.e., English characters with two different fonts and images of different shapes. The experimental results show that SAFER can produce good recognition performance in comparison with other algorithms.

  8. APS-U LATTICE DESIGN FOR OFF-AXIS ACCUMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yipeng; Borland, M.; Lindberg, R.; Sajaev, V.

    2017-06-25

    A 67-pm hybrid-seven-bend achromat (H7BA) lattice is being proposed for a future Advanced Photon Source (APS) multi-bend-achromat (MBA) upgrade project. This lattice design pushes for smaller emittance and requires use of a swap-out (on-axis) injection scheme due to limited dynamic acceptance. Alternate lattice design work has also been performed for the APS upgrade to achieve better beam dynamics performance than the nominal APS MBA lattice, in order to allow off-axis accumulation. Two such alternate H7BA lattice designs, which target a still-low emittance of 90 pm, are discussed in detail in this paper. Although the single-particle-dynamics performance is good, simulations of collective effects indicate that surprising difficulty would be expected accumulating high single-bunch charge in this lattice. The brightness of the 90-pm lattice is also a factor of two lower than the 67-pm H7BA lattice.

  9. Electrostatic levitation under the single-axis feedback control condition

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An electrostatic levitator with a single-axis feedback control system was developed on the basis of electric field analysis and optimum design for levitation electrodes. In order to realize the stable levitation of various types of materials such as metals, inorganic materials and polymers, we made both experimental and theoretical investigations to solve the four key problems of electric field optimization, sample position detecting, sample charging control and levitation voltage minimization. Under the capacitive induction charging condition, a sample with the size of 2.6–4.5 mm usually bears positive charges amounting to 10-9 Coulomb. Because the single-axis feedback control system responds quickly, it takes the levitated sample only 0.1 s from leaving the bottom electrode until attaining a stable levitation in the upright direction. The levitated sample displays satisfactory levitation stability in both the upright and the horizontal directions owing to the constraining force produced by spherical electrodes.

  10. Effects of structure flexibility on horizontal axis wind turbine performances

    Science.gov (United States)

    Coiro, D. P.; Daniele, E.; Scherillo, F.

    2013-10-01

    This work illustrates the effects of flexibility of rotor blades and turbine tower on the performances of an horizontal axis wind turbine (HAWT) designed by our ADAG research group, by means of several example applied on a recent project for a active pitch controlled upwind 60 kW HAWT. The influence of structural flexibility for blade only, tower only and blade coupled with tower configuration is investigated using an aero-elastic computer-aided engineering (CAE) tool for horizontal axis wind turbines named FAST developed at National Renewable Energy Laboratory (NREL) of USA. For unsteady inflow conditions in front of the isolated HAWT the performances in rigid and flexible operation mode are computed and compared in order to illustrate the limitation included within a classical rigid body approach to wind turbine simulation.

  11. Locating an axis-parallel rectangle on a Manhattan plane

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Körner, Mark-Christoph

    2014-01-01

    In this paper we consider the problem of locating an axis-parallel rectangle in the plane such that the sum of distances between the rectangle and a finite point set is minimized, where the distance is measured by the Manhattan norm 1. In this way we solve an extension of the Weber problem to ext...... to extensive facility location. As......In this paper we consider the problem of locating an axis-parallel rectangle in the plane such that the sum of distances between the rectangle and a finite point set is minimized, where the distance is measured by the Manhattan norm 1. In this way we solve an extension of the Weber problem...

  12. Psychiatric Axis I Comorbidities among Patients with Gender Dysphoria

    Directory of Open Access Journals (Sweden)

    Azadeh Mazaheri Meybodi

    2014-01-01

    Full Text Available Objectives. Cooccurring psychiatric disorders influence the outcome and prognosis of gender dysphoria. The aim of this study is to assess psychiatric comorbidities in a group of patients. Methods. Eighty-three patients requesting sex reassignment surgery (SRS were recruited and assessed through the Persian Structured Clinical Interview for DSM-IV Axis I disorders (SCID-I. Results. Fifty-seven (62.7% patients had at least one psychiatric comorbidity. Major depressive disorder (33.7%, specific phobia (20.5%, and adjustment disorder (15.7% were the three most prevalent disorders. Conclusion. Consistent with most earlier researches, the majority of patients with gender dysphoria had psychiatric Axis I comorbidity.

  13. Downwind rotor horizontal axis wind turbine noise prediction

    Science.gov (United States)

    Metzger, F. B.; Klatte, R. J.

    1981-01-01

    NASA and industry are currently cooperating in the conduct of extensive experimental and analytical studies to understand and predict the noise of large, horizontal axis wind turbines. This effort consists of (1) obtaining high quality noise data under well controlled and documented test conditions, (2) establishing the annoyance criteria for impulse noise of the type generated by horizontal axis wind turbines with rotors downwind of the support tower, (3) defining the wake characteristics downwind of the axial location of the plane of rotation, (4) comparing predictions with measurements made by use of wake data, and (5) comparing predictions with annoyance criteria. The status of work by Hamilton Standard in the above areas which was done in support of the cooperative NASA and industry studies is briefly summarized.

  14. Tuning the DARHT Axis-II linear induction accelerator focusing

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A. [Los Alamos National Laboratory

    2012-04-24

    Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories, and the Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-{mu}s flattop. The Axis-II injector, LIA, kicker, and downstream transport (DST) to the bremsstrahlung converter are described. Adjusting the magnetic focusing and steering elements to optimize the electron-beam transport through an LIA is often called 'tuning.' As in all high-current LIAs, the focusing field is designed to be as close to that of the ideal continuous solenoid as physically possible. In ideal continuous solenoidal transport a smoothly varying beam size can easily be found for which radial forces balance, and the beam is said to be 'matched' to the focusing field. A 'mismatched' beam exhibits unwanted oscillations in size, which are a source of free energy that contributes to emittance growth. This is undesirable, because in the absence of beam-target effects, the radiographic spot size is proportional to the emittance. Tuning the Axis-II LIA is done in two steps. First, the solenoidal focusing elements are set to values designed to provide a matched beam with little or no envelope oscillations, and little or no beam-breakup (BBU) instability growth. Then, steering elements are adjusted to minimize the motion of the centroid of a well-centered beam at the LIA exit. This article only describes the design of the tune for the focusing solenoids. The DARHT Axis-II LIA was required to be re-tuned after installing an

  15. Off-Axis Nulling Transfer Function Measurement: A First Assessment

    Science.gov (United States)

    Vedova, G. Dalla; Menut, J.-L.; Millour, F.; Petrov, R.; Cassaing, F.; Danchi, W. C.; Jacquinod, S.; Lhome, E.; Lopez, B.; Lozi, J.; hide

    2013-01-01

    We want to study a polychromatic inverse problem method with nulling interferometers to obtain information on the structures of the exozodiacal light. For this reason, during the first semester of 2013, thanks to the support of the consortium PERSEE, we launched a campaign of laboratory measurements with the nulling interferometric test bench PERSEE, operating with 9 spectral channels between J and K bands. Our objective is to characterise the transfer function, i.e. the map of the null as a function of wavelength for an off-axis source, the null being optimised on the central source or on the source photocenter. We were able to reach on-axis null depths better than 10(exp -4). This work is part of a broader project aiming at creating a simulator of a nulling interferometer in which typical noises of a real instrument are introduced. We present here our first results.

  16. Development of the adrenal axis in the neonatal rat

    Energy Technology Data Exchange (ETDEWEB)

    Guillet, Ronnie [Univ. of Rochester, NY (United States)

    1977-01-01

    Plasma corticosterone and ACTH concentrations were determined in neonatal rats 1, 7, 14, and 21 days old, under a variety of experimental conditions, to obtain more information on the postnatal development of the rat hypothalamo-adrenal (HHA) axis. The results indicate that: (1) there is a diminution followed by an increase in responsiveness of the adrenal gland, but the pituitary response to direct hormonal stimulation is unchanged during the first three postnatal weeks; (2) continued stimulation of the adrenal by ACTH or of the central nervous system (CNS) or hypothalamus by corticosterone is necessary during early postnatal development to allow normal maturation of the HHA axis; and (3) feedback inhibition is operative by birth, at least to a moderate degree. Taken together, the studies suggest that both the adrenal and pituitary glands are potentially functional at birth, but that the hypothalamic and CNS mediators of the stress response are not mature until at least the second or third postnatal week. (ERB)

  17. Shape and Spin Axis Model for 53 Kalypso

    Science.gov (United States)

    Franco, Lorenzo; Pilcher, Frederick; Pray, Donald P.; Maurice, Andejean

    2016-07-01

    We present shape and spin axis model for main-belt asteroid 53 Kalypso. The model was achieved with the lightcurve inversion process, using combined dense photometric data acquired from six apparitions between 1979-2012 and sparse data from USNO Flagstaff. Analysis of the resulting data found a sidereal period P = 9.035058 ± 0.000008 hours and two mirrored pole solutions at (168°, 12°) and (349°, 8°), with an error of ± 5 degrees.

  18. Spin Squeezing of One-Axis Twisting Model

    Science.gov (United States)

    Li, Song-Song

    2017-09-01

    We investigate spin squeezing of the one-axis twisting model. By using short-time approximation solutions of the angular momentum operators, we analytically and numerically calculate the spin squeezing parameter. It is shown that smaller linear interaction can produce a stronger spin squeezing and maintain a longer time interval. It is also shown that the stronger spin squeezing can be achieved by increasing the number of particles.

  19. Discrete Scale Axis Representations for 3D Geometry

    OpenAIRE

    Miklos, Balint; Giesen, Joachim; Pauly, Mark

    2010-01-01

    This paper addresses the fundamental problem of computing stable medial representations of 3D shapes. We propose a spatially adaptive classification of geometric features that yields a robust algorithm for generating medial representations at different levels of abstraction. The recently introduced continuous scale axis transform serves as the mathematical foundation of our algorithm. We show how geometric and topological properties of the continuous setting carry over to discrete shape repre...

  20. Intestinal barrier function and the brain-gut axis.

    Science.gov (United States)

    Alonso, Carmen; Vicario, María; Pigrau, Marc; Lobo, Beatriz; Santos, Javier

    2014-01-01

    The luminal-mucosal interface of the intestinal tract is the first relevant location where microorganism-derived antigens and all other potentially immunogenic particles face the scrutiny of the powerful mammalian immune system. Upon regular functioning conditions, the intestinal barrier is able to effectively prevent most environmental and external antigens to interact openly with the numerous and versatile elements that compose the mucosal-associated immune system. This evolutionary super system is capable of processing an astonishing amount of antigens and non-immunogenic particles, approximately 100 tons in one individual lifetime, only considering food-derived components. Most important, to develop oral tolerance and proper active immune responses needed to prevent disease and inflammation, this giant immunogenic load has to be managed in a way that physiological inflammatory balance is constantly preserved. Adequate functioning of the intestinal barrier involves local and distant regulatory networks integrating the so-called brain-gut axis. Along this complex axis both brain and gut structures participate in the processing and execution of response signals to external and internal changes coming from the digestive tract, using multidirectional pathways to communicate. Dysfunction of brain-gut axis facilitates malfunctioning of the intestinal barrier, and vice versa, increasing the risk of uncontrolled immunological reactions that may trigger mucosal and brain low-grade inflammation, a putative first step to the initiation of more permanent gut disorders. In this chapter, we describe the structure, function and interactions of intestinal barrier, microbiota and brain-gut axis in both healthy and pathological conditions.

  1. Neuropeptides and the microbiota-gut-brain axis.

    Science.gov (United States)

    Holzer, Peter; Farzi, Aitak

    2014-01-01

    Neuropeptides are important mediators both within the nervous system and between neurons and other cell types. Neuropeptides such as substance P, calcitonin gene-related peptide and neuropeptide Y (NPY), vasoactive intestinal polypeptide, somatostatin and corticotropin-releasing factor are also likely to play a role in the bidirectional gut-brain communication. In this capacity they may influence the activity of the gastrointestinal microbiota and its interaction with the gut-brain axis. Current efforts in elucidating the implication of neuropeptides in the microbiota-gut-brain axis address four information carriers from the gut to the brain (vagal and spinal afferent neurons; immune mediators such as cytokines; gut hormones; gut microbiota-derived signalling molecules) and four information carriers from the central nervous system to the gut (sympathetic efferent neurons; parasympathetic efferent neurons; neuroendocrine factors involving the adrenal medulla; neuroendocrine factors involving the adrenal cortex). Apart from operating as neurotransmitters, many biologically active peptides also function as gut hormones. Given that neuropeptides and gut hormones target the same cell membrane receptors (typically G protein-coupled receptors), the two messenger roles often converge in the same or similar biological implications. This is exemplified by NPY and peptide YY (PYY), two members of the PP-fold peptide family. While PYY is almost exclusively expressed by enteroendocrine cells, NPY is found at all levels of the gut-brain and brain-gut axis. The function of PYY-releasing enteroendocrine cells is directly influenced by short chain fatty acids generated by the intestinal microbiota from indigestible fibre, while NPY may control the impact of the gut microbiota on inflammatory processes, pain, brain function and behaviour. Although the impact of neuropeptides on the interaction between the gut microbiota and brain awaits to be analysed, biologically active peptides

  2. Three-Axis Motion Compensated Crane Head Control

    OpenAIRE

    Henriksen, Vegard Wie; Røine, Audun Gerhardsen

    2016-01-01

    Offshore operations can be harsh and demanding and set personnel and equipment at risk. Ships will be exposed to the environmental forces of wind, waves and current, which will influence offshore crane operations considerably. This thesis addresses the use of a crane head, a Three Axis Compensator (TAC), constructed as a Delta parallel robot, to compensate for the motions of the ship in three axes. This type of robot has a rigid and accurate structure, and because of its highly nonlinear natu...

  3. Semiactive Vibration Control for Horizontal Axis Washing Machine

    Directory of Open Access Journals (Sweden)

    Barış Can Yalçın

    2015-01-01

    Full Text Available A semiactive vibration control method is developed to cope with the dynamic stability problem of a horizontal axis washing machine. This method is based on adjusting the maximum force values produced by the semiactive suspension elements considering a washing machine’s vibration data (three axis angular position and three axis angular acceleration values in time. Before actuation signals are received by the step motors of the friction dampers, vibration data are evaluated, and then, the step motors start to narrow or expand the radius of bracelets located on the dampers. This changes the damping properties of the damper in the suspension system, and thus, the semiactive suspension system absorbs unwanted vibrations and contributes to the dynamic stability of the washing machine. To evaluate the vibration data, the angular position and angular acceleration values in three axes are defined in a function, and the maximum forces produced by semiactive suspension elements are calculated according to the gradient of this function. The relation between the dynamic stability and the walking stability is also investigated. A motion (gyroscope and accelerometer sensor is installed on the top-front panel of the washing machine because a mathematical model of a horizontal axis washing machine suggests that the walking behavior starts around this location under some assumptions, and therefore, calculating the vibrations occurring there is crucial. Semiactive damping elements are located under the left and right sides of the tub. The proposed method is tested during the spinning cycle of washing machine operation, increasing gradually from 200 rpm to 900 rpm, which produces the most challenging vibration patterns for dynamic stability. Moreover, the sound power levels produced by the washing machine are measured to evaluate the noise performance of the washing machine while the semiactive suspension system is controlled. The effectiveness of the

  4. Spherical polarimetry on the three-axis spectrometer IN22

    Energy Technology Data Exchange (ETDEWEB)

    Regnault, L.P.; Geffray, B.; Fouilloux, P.; Longuet, B.; Mantegezza, F.; Tasset, F.; Lelievre-Berna, E.; Bourgeat-Lami, E.; Thomas, M.; Gibert, Y

    2003-07-01

    The existence at the ILL of three-axis spectrometers (TAS) offering high flux of polarized neutrons in the thermal range ('CRG' IN22 and IN20B) has open a new field of investigation of magnetic and lattice excitation spectra. In this paper, we will show recent technical developments concerning the installation and the optimization of the spherical neutron polarization analysis on TAS IN22.

  5. Gut-Brain Axis in Gastric Mucosal Damage and Protection

    Science.gov (United States)

    Sgambato, Dolores; Capuano, Annalisa; Sullo, Maria Giuseppa; Miranda, Agnese; Federico, Alessandro; Romano, Marco

    2016-01-01

    Abstract: Background The gut-brain axis plays a potential role in numerous physiological and pathological conditions. Several substances link stomach with central nervous system. In particular, hypothalamo-pituitary-adrenocortical axis, thyrotropin-releasing factor-containing nerve fibers and capsaicin-sensitive nerves are principal mediators of the harmful and protective central nervous system-mediated effects on gastric mucosa. Also, existing evidence indicates that nitric oxide, prostaglandins and calcitonin gene-related peptide play a role as final effectors of gastric protection. Methods We undertook a structured search of bibliographic databases for peer-reviewed research literature with the aim of focusing on the role of gut-brain axis in gastric damage and protection. In particular, we examined manuscripts dealing with the role of steroids, thyrotropin-releasing hormone, prostaglandins, melatonin, hydrogen sulfide and peptides influencing food intake (i.e. leptin, cholecystokinin, peptide YY, central glucagon–like peptide-1, and ghrelin). Also, the role of GABAergic and glutamatergic pathways in gastric mucosal protection have been examined. Results We found and reviewed 61 peer-reviewed papers dealing with the major aspects related to the role of gut brain axis in gastric mucosal damage and protection. Conclusions A dense neuronal network links stomach with central nervous system and a number of neurotransmitters and peptides functionally and anatomically related to central nervous system play a major role in contributing to gastric mucosal integrity. Exploiting the mechanisms underlying the connection between brain and gut may lead to a better understanding of the pathophysiology of gastric mucosal injury and to an improvement in the prevention and, eventually, management of gastric damage. PMID:26903151

  6. Plasma Transport at Magnetic Axis in Toroidal Confinement System

    Institute of Scientific and Technical Information of China (English)

    WANGZhongtian

    2001-01-01

    The particle orbits which intersect the magnetic axis behave differently from banana ones, referred to as potato orbits. The potential importance on tokamak transport is emphasized by Politzer, Lin, Tang, and Lee,and Shaing, Hazeltine, and Zarnstoff. However, there are many problems in the lasttwo papers. For example, the Eq. (48) in Ref. [5] should satisfy the orbit constraint which guarantees single value of the function go, that is, solubility condition, and Eq. (8) in Ref. [6] has the same problem.

  7. Super Earth Explorer: Coronagraphic Off-Axis Space Telescope

    CERN Document Server

    Schneider, J; Mawet, D; Baudoz, P; Beuzit, J L; Doyon, R; Marley, M; Stam, D; Tinetti, G; Traub, W; Trauger, J; Aylward, A; Cho, J Y K; Keller, C U; Udry, S

    2008-01-01

    The Super-Earth Explorer is an Off-Axis Space Telescope (SEE-COAST) designed for high contrast imaging. Its scientific objective is to make the physico-chemical characterization of exoplanets possibly down to 2 Earth radii >. For that purpose it will analyze the spectral and polarimetric properties of the parent starlight reflected by the planets, in the wavelength range 400-1250 nm

  8. MARRT: Medial Axis biased rapidly-exploring random trees

    KAUST Repository

    Denny, Jory

    2014-05-01

    © 2014 IEEE. Motion planning is a difficult and widely studied problem in robotics. Current research aims not only to find feasible paths, but to ensure paths have certain properties, e.g., shortest or safest paths. This is difficult for current state-of-the-art sampling-based techniques as they typically focus on simply finding any path. Despite this difficulty, sampling-based techniques have shown great success in planning for a wide range of applications. Among such planners, Rapidly-Exploring Random Trees (RRTs) search the planning space by biasing exploration toward unexplored regions. This paper introduces a novel RRT variant, Medial Axis RRT (MARRT), which biases tree exploration to the medial axis of free space by pushing all configurations from expansion steps towards the medial axis. We prove that this biasing increases the tree\\'s clearance from obstacles. Improving obstacle clearance is useful where path safety is important, e.g., path planning for robots performing tasks in close proximity to the elderly. Finally, we experimentally analyze MARRT, emphasizing its ability to effectively map difficult passages while increasing obstacle clearance, and compare it to contemporary RRT techniques.

  9. Vasoactive intestinal peptide signaling axis in human leukemia

    Institute of Scientific and Technical Information of China (English)

    Glenn; Paul; Dorsam; Keith; Benton; Jarrett; Failing; Sandeep; Batra

    2011-01-01

    The vasoactive intestinal peptide (VIP) signaling axis constitutes a master "communication coordinator" between cells of the nervous and immune systems.To date,VIP and its two main receptors expressed in T lymphocytes,vasoactive intestinal peptide receptor (VPAC)1 and VPAC2,mediate critical cellular functions regulating adaptive immunity,including arresting CD4 T cells in G 1 of the cell cycle,protection from apoptosis and a potent chemotactic recruiter of T cells to the mucosa associated lymphoid compartment of the gastrointestinal tissues.Since the discovery of VIP in 1970,followed by the cloning of VPAC1 and VPAC2 in the early 1990s,this signaling axis has been associated with common human cancers,including leukemia.This review highlights the present day knowledge of the VIP ligand and its receptor expression profile in T cell leukemia and cell lines.Also,there will be a discussion describing how the anti-leukemic DNA binding transcription factor,Ikaros,regulates VIP receptor expression in primary human CD4 T lymphocytes and T cell lymphoblastic cell lines (e.g.Hut-78).Lastly,future goals will be mentioned that are expected to uncover the role of how the VIP signaling axis contributes to human leukemogenesis,and to establish whether the VIP receptor signature expressed by leukemic blasts can provide therapeutic and/or diagnostic information.

  10. A New, Adaptable, Optical High-Resolution 3-Axis Sensor

    Directory of Open Access Journals (Sweden)

    Niels Buchhold

    2017-01-01

    Full Text Available This article presents a new optical, multi-functional, high-resolution 3-axis sensor which serves to navigate and can, for example, replace standard joysticks in medical devices such as electric wheelchairs, surgical robots or medical diagnosis devices. A light source, e.g., a laser diode, is affixed to a movable axis and projects a random geometric shape on an image sensor (CMOS or CCD. The downstream microcontroller’s software identifies the geometric shape’s center, distortion and size, and then calculates x, y, and z coordinates, which can be processed in attached devices. Depending on the image sensor in use (e.g., 6.41 megapixels, the 3-axis sensor features a resolution of 1544 digits from right to left and 1038 digits up and down. Through interpolation, these values rise by a factor of 100. A unique feature is the exact reproducibility (deflection to coordinates and its precise ability to return to its neutral position. Moreover, optical signal processing provides a high level of protection against electromagnetic and radio frequency interference. The sensor is adaptive and adjustable to fit a user’s range of motion (stroke and force. This recommendation aims to optimize sensor systems such as joysticks in medical devices in terms of safety, ease of use, and adaptability.

  11. A Dual-Axis Electrostatically Driven MEMS Microgripper

    Directory of Open Access Journals (Sweden)

    Yukun Jia

    2014-11-01

    Full Text Available This paper presents the design of a new monolithic two- axis electrostatically actuated MEMS microgripper with integrated capacitive position and force sensors working at the micro-scale level. Each of the two jaws of the micro‐ gripper possesses two degrees-of-freedom (DOF and is capable of positioning in both x-and y-axes. Unlike existing works, where one gripper arm is actuated and other one is sensed, both arms of the proposed microgripper are actuated and sensed independently. A sensing scheme is constructed to provide the position and force signals in the noncontact and contact phases, respectively. By applying a 120V driving voltage, the jaw can provide 70 μm x-axis and 18 μm y-axis displacements with the force of 190 μN. By this design, the real-time position and grasping force information can be obtained in the dual sensing mode. Both analytical calculation and finite-element analysis (FEA were performed to verify the performance of the proposed design. A scaled-up prototype is designed, fabricated and tested through the experiment to verify the structure design of the microgripper.

  12. Blade pitch optimization methods for vertical-axis wind turbines

    Science.gov (United States)

    Kozak, Peter

    Vertical-axis wind turbines (VAWTs) offer an inherently simpler design than horizontal-axis machines, while their lower blade speed mitigates safety and noise concerns, potentially allowing for installation closer to populated and ecologically sensitive areas. While VAWTs do offer significant operational advantages, development has been hampered by the difficulty of modeling the aerodynamics involved, further complicated by their rotating geometry. This thesis presents results from a simulation of a baseline VAWT computed using Star-CCM+, a commercial finite-volume (FVM) code. VAWT aerodynamics are shown to be dominated at low tip-speed ratios by dynamic stall phenomena and at high tip-speed ratios by wake-blade interactions. Several optimization techniques have been developed for the adjustment of blade pitch based on finite-volume simulations and streamtube models. The effectiveness of the optimization procedure is evaluated and the basic architecture for a feedback control system is proposed. Implementation of variable blade pitch is shown to increase a baseline turbine's power output between 40%-100%, depending on the optimization technique, improving the turbine's competitiveness when compared with a commercially-available horizontal-axis turbine.

  13. A Two-Axis Goniometric Sensor for Tracking Finger Motion.

    Science.gov (United States)

    Wang, Lefan; Meydan, Turgut; Williams, Paul Ieuan

    2017-04-05

    The study of finger kinematics has developed into an important research area. Various hand tracking systems are currently available; however, they all have limited functionality. Generally, the most commonly adopted sensors are limited to measurements with one degree of freedom, i.e., flexion/extension of fingers. More advanced measurements including finger abduction, adduction, and circumduction are much more difficult to achieve. To overcome these limitations, we propose a two-axis 3D printed optical sensor with a compact configuration for tracking finger motion. Based on Malus' law, this sensor detects the angular changes by analyzing the attenuation of light transmitted through polarizing film. The sensor consists of two orthogonal axes each containing two pathways. The two readings from each axis are fused using a weighted average approach, enabling a measurement range up to 180 ∘ and an improvement in sensitivity. The sensor demonstrates high accuracy (±0.3 ∘ ), high repeatability, and low hysteresis error. Attaching the sensor to the index finger's metacarpophalangeal joint, real-time movements consisting of flexion/extension, abduction/adduction and circumduction have been successfully recorded. The proposed two-axis sensor has demonstrated its capability for measuring finger movements with two degrees of freedom and can be potentially used to monitor other types of body motion.

  14. A New, Adaptable, Optical High-Resolution 3-Axis Sensor.

    Science.gov (United States)

    Buchhold, Niels; Baumgartner, Christian

    2017-01-27

    This article presents a new optical, multi-functional, high-resolution 3-axis sensor which serves to navigate and can, for example, replace standard joysticks in medical devices such as electric wheelchairs, surgical robots or medical diagnosis devices. A light source, e.g., a laser diode, is affixed to a movable axis and projects a random geometric shape on an image sensor (CMOS or CCD). The downstream microcontroller's software identifies the geometric shape's center, distortion and size, and then calculates x, y, and z coordinates, which can be processed in attached devices. Depending on the image sensor in use (e.g., 6.41 megapixels), the 3-axis sensor features a resolution of 1544 digits from right to left and 1038 digits up and down. Through interpolation, these values rise by a factor of 100. A unique feature is the exact reproducibility (deflection to coordinates) and its precise ability to return to its neutral position. Moreover, optical signal processing provides a high level of protection against electromagnetic and radio frequency interference. The sensor is adaptive and adjustable to fit a user's range of motion (stroke and force). This recommendation aims to optimize sensor systems such as joysticks in medical devices in terms of safety, ease of use, and adaptability.

  15. A New, Adaptable, Optical High-Resolution 3-Axis Sensor

    Science.gov (United States)

    Buchhold, Niels; Baumgartner, Christian

    2017-01-01

    This article presents a new optical, multi-functional, high-resolution 3-axis sensor which serves to navigate and can, for example, replace standard joysticks in medical devices such as electric wheelchairs, surgical robots or medical diagnosis devices. A light source, e.g., a laser diode, is affixed to a movable axis and projects a random geometric shape on an image sensor (CMOS or CCD). The downstream microcontroller’s software identifies the geometric shape’s center, distortion and size, and then calculates x, y, and z coordinates, which can be processed in attached devices. Depending on the image sensor in use (e.g., 6.41 megapixels), the 3-axis sensor features a resolution of 1544 digits from right to left and 1038 digits up and down. Through interpolation, these values rise by a factor of 100. A unique feature is the exact reproducibility (deflection to coordinates) and its precise ability to return to its neutral position. Moreover, optical signal processing provides a high level of protection against electromagnetic and radio frequency interference. The sensor is adaptive and adjustable to fit a user’s range of motion (stroke and force). This recommendation aims to optimize sensor systems such as joysticks in medical devices in terms of safety, ease of use, and adaptability. PMID:28134824

  16. Glycation & the RAGE axis: targeting signal transduction through DIAPH1.

    Science.gov (United States)

    Shekhtman, Alexander; Ramasamy, Ravichandran; Schmidt, Ann Marie

    2017-02-01

    The consequences of chronic disease are vast and unremitting; hence, understanding the pathogenic mechanisms mediating such disorders holds promise to identify therapeutics and diminish the consequences. The ligands of the receptor for advanced glycation end products (RAGE) accumulate in chronic diseases, particularly those characterized by inflammation and metabolic dysfunction. Although first discovered and reported as a receptor for advanced glycation end products (AGEs), the expansion of the repertoire of RAGE ligands implicates the receptor in diverse milieus, such as autoimmunity, chronic inflammation, obesity, diabetes, and neurodegeneration. Areas covered: This review summarizes current knowledge regarding the ligand families of RAGE and data from human subjects and animal models on the role of the RAGE axis in chronic diseases. The recent discovery that the cytoplasmic domain of RAGE binds to the formin homology 1 (FH1) domain, DIAPH1, and that this interaction is essential for RAGE ligand-stimulated signal transduction, is discussed. Finally, we review therapeutic opportunities targeting the RAGE axis as a means to mitigate chronic diseases. Expert commentary: With the aging of the population and the epidemic of cardiometabolic disease, therapeutic strategies to target molecular pathways that contribute to the sequelae of these chronic diseases are urgently needed. In this review, we propose that the ligand/RAGE axis and its signaling nexus is a key factor in the pathogenesis of chronic disease and that therapeutic interruption of this pathway may improve quality and duration of life.

  17. Noise estimation for off-axis electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Röder, Falk, E-mail: Falk.Roeder@Triebenberg.de [Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Lubk, Axel; Wolf, Daniel [Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Niermann, Tore [Institut für Optik und Atomare Physik, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany)

    2014-09-15

    Off-axis electron holography provides access to the phase of the elastically scattered wave in a transmission electron microscope at scales ranging from several hundreds of nanometres down to 0.1 nm. In many cases the reconstructed phase shift is directly proportional to projected electric and magnetic potentials rendering electron holography a useful and established characterisation method for materials science. However, quantitative interpretation of experimental phase shifts requires quantitative knowledge about the noise, which has been previously established for some limiting cases only. Here, we present a general noise transfer formalism for off-axis electron holography allowing to compute the covariance (noise) of reconstructed amplitude and phase from characteristic detector functions and general properties of the reconstruction process. Experimentally, we verify the presented noise transfer formulas for two different cameras with and without objects within the errors given by the experimental noise determination. - Highlights: • We derive a general noise transfer for the off-axis holographic reconstruction. • Noise transfer formulas given by F. Lenz are included as a special case. • We estimate the covariance of a hologram using the noise spread function. • We experimentally verify the derived noise transfer formulas.

  18. CMB Maximum Temperature Asymmetry Axis: Alignment with Other Cosmic Asymmetries

    CERN Document Server

    Mariano, Antonio

    2012-01-01

    We use a global pixel based estimator to identify the axis of the residual Maximum Temperature Asymmetry (MTA) (after the dipole subtraction) of the WMAP 7 year Internal Linear Combination (ILC) CMB temperature sky map. The estimator is based on considering the temperature differences between opposite pixels in the sky at various angular resolutions (4 degrees-15 degrees and selecting the axis that maximizes this difference. We consider three large scale Healpix resolutions (N_{side}=16 (3.7 degrees), N_{side}=8 (7.3 degrees) and N_{side}=4 (14.7 degrees)). We compare the direction and magnitude of this asymmetry with three other cosmic asymmetry axes (\\alpha dipole, Dark Energy Dipole and Dark Flow) and find that the four asymmetry axes are abnormally close to each other. We compare the observed MTA axis with the corresponding MTA axes of 10^4 Gaussian isotropic simulated ILC maps (based on LCDM). The fraction of simulated ILC maps that reproduces the observed magnitude of the MTA asymmetry and alignment wit...

  19. Precise Determination of the Crystallographic Orientations in Single ZnS Nanowires by Second-Harmonic Generation Microscopy

    CERN Document Server

    Hongbo, Hu; Hua, Long; Weiwei, Liu; Bing, Wang; Peixiang, Lu

    2015-01-01

    We report on the systematical study of the second-harmonic generation (SHG) in single zinc sulfide nanowires (ZnS NWs). The high quality ZnS NWs with round cross-section were fabricated by chemical vapor deposition method. The transmission electron microscopy images show that the actual growth-axis has a deviation angle of 0o~20o with the preferential growth direction [120], which leads to the various polarization-dependent SHG response patterns in different individual ZnS NWs. The SHG response is quite sensitive to the orientations of c-axis as well as the (100) and (010) crystal-axis of ZnS NWs, thus all the three crystal-axis orientations of ZnS NWs are precisely determined by the SHG method. A high SHG conversion efficiency of 7*10^(-6) is obtained in single ZnS NWs, which shows potential applications in nanoscale ultraviolet light source, nonlinear optical microscopy and nanophotonic devices.

  20. Endomorphins and activation of the hypothalamo-pituitary-adrenal axis.

    Science.gov (United States)

    Coventry, T L; Jessop, D S; Finn, D P; Crabb, M D; Kinoshita, H; Harbuz, M S

    2001-04-01

    Endomorphin (EM)-1 and EM-2 are opioid tetrapeptides recently located in the central nervous system and immune tissues with high selectivity and affinity for the mu-opioid receptor. Intracerebroventricular (i.c.v.) administration of morphine stimulates the hypothalamo-pituitary-adrenal (HPA) axis. The present study investigated the effect of centrally administered EM-1 and EM-2 on HPA axis activation. Rats received a single i.c.v. injection of either EM-1 (0.1, 1.0, 10 microg), EM-2 (10 microg), morphine (10 microg), or vehicle (0.9% saline). Blood samples for plasma corticosterone determinations were taken immediately prior to i.c.v. administration and at various time points up to 4 h post-injection. Trunk blood, brains and pituitaries were collected at 4 h. Intracerebroventricular morphine increased plasma corticosterone levels within 30 min, whereas EM-1 and EM-2 were without effect. In addition, pre-treatment of i.c.v. EM-1 did not block the rise in corticosterone after morphine. Corticotrophin-releasing factor (CRF) mRNA and arginine vasopressin (AVP) mRNA in the paraventricular nucleus (PVN) and POMC mRNA in the anterior pituitary were found to be unaffected by either morphine or endomorphins. Since release of other opioids are elevated in response to acute stress, we exposed rats to a range of stressors to determine whether plasma EM-1 and EM-2 can be stimulated by HPA axis activation. Plasma corticosterone, ACTH and beta-endorphin were elevated following acute restraint stress, but concentrations of plasma EM-1-immunoreactivity (ir) and EM-2-ir did not change significantly. Corticosterone, ACTH and beta-endorphin were further elevated in adjuvant-induced arthritis (AA) rats by a single injection of lipopolysaccharide (LPS), but not by restraint stress. In conclusion, neither EM-1 or EM-2 appear to influence the regulation of the HPA axis. These data suggest that endomorphins may be acting on a different subset of the mu-opioid receptor than morphine. The