WorldWideScience

Sample records for crystallographic inversion symmetry

  1. Non-Crystallographic Symmetry in Packing Spaces

    Directory of Open Access Journals (Sweden)

    Valery G. Rau

    2013-01-01

    Full Text Available In the following, isomorphism of an arbitrary finite group of symmetry, non-crystallographic symmetry (quaternion groups, Pauli matrices groups, and other abstract subgroups, in addition to the permutation group, are considered. Application of finite groups of permutations to the packing space determines space tilings by policubes (polyominoes and forms a structure. Such an approach establishes the computer design of abstract groups of symmetry. Every finite discrete model of the real structure is an element of symmetry groups, including non-crystallographic ones. The set packing spaces of the same order N characterizes discrete deformation transformations of the structure.

  2. Givental graphs and inversion symmetry

    CERN Document Server

    Dunin-Barkowski, P; Spitz, L

    2012-01-01

    Inversion symmetry is a very non-trivial discrete symmetry of Frobenius manifolds. It was obtained by Dubrovin from one of the elementary Schlesinger transformations of a special ODE associated to Frobenius manifold. In this paper, we review the Givental group action on Frobenius manifolds in terms of Feynman graphs and then we obtain an interpretation of the inversion symmetry in terms of the action of the Givental group. We also consider the implication of this interpretation of the inversion symmetry for the Schlesinger transformations and for the Hamiltonians of the associated principle hierarchy.

  3. Crystallographic interpretation of Galois symmetries for magnetic pentagonal ring

    Science.gov (United States)

    Milewski, J.; Lulek, T.; Łabuz, M.

    2017-03-01

    Galois symmetry of exact Bethe Ansatz eigenstates for the magnetic pentagonal ring within the XXX model are investigated by a comparison with crystallographic constructions of space groups. It follows that the arithmetic symmetry of Bethe parameters for the interior of the Brillouin zone admits crystallographic interpretation, in terms of the periodic square Z2 ×Z2 , that is the two-dimensional crystal lattice with Born-Karman period two in both directions.

  4. Inverse semigroups the theory of partial symmetries

    CERN Document Server

    Lawson, Mark V

    1998-01-01

    Symmetry is one of the most important organising principles in the natural sciences. The mathematical theory of symmetry has long been associated with group theory, but it is a basic premise of this book that there are aspects of symmetry which are more faithfully represented by a generalization of groups called inverse semigroups. The theory of inverse semigroups is described from its origins in the foundations of differential geometry through to its most recent applications in combinatorial group theory, and the theory tilings.

  5. QCD-instantons and conformal inversion symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Klammer, D.

    2006-07-15

    Instantons are an essential and non-perturbative part of Quantum Chromodynamics, the theory of strong interactions. One of the most relevant quantities in the instanton calculus is the instanton-size distribution, which can be described on the one hand within the framework of instanton perturbation theory and on the other hand investigated numerically by means of lattice computations. A rapid onset of a drastic discrepancy between these respective results indicates that the underlying physics is not yet well understood. In this work we investigate the appealing possibility of a symmetry under conformal inversion of space-time leading to this deviation. The motivation being that the lattice data seem to be invariant under an inversion of the instanton size. Since the instanton solution of a given size turns into an anti-instanton solution having an inverted size under conformal inversion of space-time, we ask in a first investigation, whether this property is transferred to the quantum level. In order to introduce a new scale, which is indicated by the lattice data and corresponds to the average instanton size as inversion radius, we project the instanton calculus onto the four-dimensional surface of a five-dimensional sphere via stereographic projection. The radius of this sphere is associated with the average instanton size. The result for the instanton size-distribution projected onto the sphere agrees surprisingly well with the lattice data at qualitative level. The resulting symmetry under an inversion of the instanton size is almost perfect. (orig.)

  6. Quantized Response and Topological Magnetic Insulators with Inversion Symmetry

    NARCIS (Netherlands)

    Turner, A.M.; Zhang, Y.; Mong, R.S.K.; Vishwanath, A.

    2012-01-01

    We study three-dimensional insulators with inversion symmetry in which other point group symmetries, such as time reversal, are generically absent. We find that certain information about such materials’ behavior is determined by just the eigenvalues under inversion symmetry of occupied states at

  7. Quantized Response and Topological Magnetic Insulators with Inversion Symmetry

    NARCIS (Netherlands)

    Turner, A.M.; Zhang, Y.; Mong, R.S.K.; Vishwanath, A.

    2012-01-01

    We study three-dimensional insulators with inversion symmetry in which other point group symmetries, such as time reversal, are generically absent. We find that certain information about such materials’ behavior is determined by just the eigenvalues under inversion symmetry of occupied states at tim

  8. The analysis of crystallographic symmetry types in finite groups

    Science.gov (United States)

    Sani, Atikah Mohd; Sarmin, Nor Haniza; Adam, Nooraishikin; Zamri, Siti Norziahidayu Amzee

    2014-06-01

    Undeniably, it is human nature to prefer objects which are considered beautiful. Most consider beautiful as perfection, hence they try to create objects which are perfectly balance in shape and patterns. This creates a whole different kind of art, the kind that requires an object to be symmetrical. This leads to the study of symmetrical objects and pattern. Even mathematicians and ethnomathematicians are very interested with the essence of symmetry. One of these studies were conducted on the Malay traditional triaxial weaving culture. The patterns derived from this technique are symmetrical and this allows for further research. In this paper, the 17 symmetry types in a plane, known as the wallpaper groups, are studied and discussed. The wallpaper groups will then be applied to the triaxial patterns of food cover in Malaysia.

  9. Inverse Symmetry Breaking and the Exact Renormalization Group

    CERN Document Server

    Pietroni, M; Tetradis, N

    1997-01-01

    We discuss the question of inverse symmetry breaking at non-zero temperature using the exact renormalization group. We study a two-scalar theory and concentrate on the nature of the phase transition during which the symmetry is broken. We also examine the persistence of symmetry breaking at temperatures higher than the critical one.

  10. Crystallographic mechanism of inverse twinning in ordered β′-CuZn alloy

    Institute of Scientific and Technical Information of China (English)

    毛卫民

    2000-01-01

    The basic process of mechanical twinning in β’-CuZn phase, as an example of B2 structured metals, has been analyzed under the rolling stresses. The behavior of inverse twinning in B2 structured metals is discussed in terms of mechanics and crystallographic stability. It is shown that the inverse twinning could remain the B2 structure, and the resulting strains will have the lowest resistance during the rolling deformation of the polycrystalline.

  11. Crystallographic mechanism of inverse twinning in ordered β'-CuZn alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The basic process of mechanical twinning in β'-CuZn phase, as an example of B2 structured metals, has been analyzed under the rolling stresses. The behavior of inverse twinning in B2 structured metals is discussed in terms of mechanics and crystallographic stability. It is shown that the inverse twinning could remain the B2 structure, and the resulting strains will have the lowest resistance during the rolling deformation of the polycrystalline.

  12. Mode decomposition based on crystallographic symmetry in the band-unfolding method

    Science.gov (United States)

    Ikeda, Yuji; Carreras, Abel; Seko, Atsuto; Togo, Atsushi; Tanaka, Isao

    2017-01-01

    The band-unfolding method is widely used to calculate the effective band structures of a disordered system from its supercell model. The unfolded band structures show the crystallographic symmetry of the underlying structure, where the difference of chemical components and the local atomic relaxation are ignored. However, it has still been difficult to decompose the unfolded band structures into the modes based on the crystallographic symmetry of the underlying structure, and therefore detailed analyses of the unfolded band structures have been restricted. In this study, a procedure to decompose the unfolded band structures according to the small representations (SRs) of the little groups is developed. The decomposition is performed using the projection operators for SRs derived from the group representation theory. The current method is employed to investigate the phonon band structure of disordered face-centered-cubic Cu0.75Au0.25 , which has large variations of atomic masses and force constants among the atomic sites due to the chemical disorder. In the unfolded phonon band structure, several peculiar behaviors such as discontinuous and split branches are found in the decomposed modes corresponding to specific SRs. They are found to occur because different combinations of the chemical elements contribute to different regions of frequency.

  13. Magnetic transition temperatures follow crystallographic symmetry in samarium under high-pressures and low-temperatures

    Science.gov (United States)

    Johnson, Craig R.; Tsoi, Georgiy M.; Vohra, Yogesh K.

    2017-02-01

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm  →  dhcp  →  fcc/dist.fcc  →  hP3 structure sequence at high-pressures and low-temperatures.

  14. Adiabatic approximation for the Rabi model with broken inversion symmetry

    Science.gov (United States)

    Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi

    2017-01-01

    We study the properties and behavior of the Rabi model with broken inversion symmetry. Using an adiabatic approximation approach, we explore the high-frequency qubit and oscillator regimes, and obtain analytical solutions for the qubit-oscillator system. We demonstrate that, due to broken inversion symmetry, the positions of two potentials and zero-point energies in the oscillators become asymmetric and have a quadratic dependence on the mean dipole moments within the high-frequency oscillator regime. Furthermore, we find that there is a critical point above which the qubit-oscillator system becomes unstable, and the position of this critical point has a quadratic dependence on the mean dipole moments within the high-frequency qubit regime. Finally, we verify this critical point based on the method of semiclassical approximation.

  15. Learning from data to design functional materials without inversion symmetry

    Science.gov (United States)

    Balachandran, Prasanna V.; Young, Joshua; Lookman, Turab; Rondinelli, James M.

    2017-02-01

    Accelerating the search for functional materials is a challenging problem. Here we develop an informatics-guided ab initio approach to accelerate the design and discovery of noncentrosymmetric materials. The workflow integrates group theory, informatics and density-functional theory to uncover design guidelines for predicting noncentrosymmetric compounds, which we apply to layered Ruddlesden-Popper oxides. Group theory identifies how configurations of oxygen octahedral rotation patterns, ordered cation arrangements and their interplay break inversion symmetry, while informatics tools learn from available data to select candidate compositions that fulfil the group-theoretical postulates. Our key outcome is the identification of 242 compositions after screening ~3,200 that show potential for noncentrosymmetric structures, a 25-fold increase in the projected number of known noncentrosymmetric Ruddlesden-Popper oxides. We validate our predictions for 19 compounds using phonon calculations, among which 17 have noncentrosymmetric ground states including two potential multiferroics. Our approach enables rational design of materials with targeted crystal symmetries and functionalities.

  16. Weyl semimetal from spontaneous inversion symmetry breaking in pyrochlore oxides

    Science.gov (United States)

    Bzdušek, Tomáš; Rüegg, Andreas; Sigrist, Manfred

    2015-04-01

    We study the electronic properties of strongly spin-orbit coupled electrons on the elastic pyrochlore lattice. Akin to the Peierls transition in one-dimensional systems, the coupling of the lattice to the electronic degrees of freedom can stabilize a spontaneous deformation of the crystal. This deformation corresponds to a breathing mode, which breaks the inversion symmetry. We find that for intermediate values of the staggered strain, the inversion-symmetry broken phase realizes a topological Weyl semimetal. In the temperature-elasticity phase diagram, the Weyl semimetal shows a reentrant phase behavior: it can be reached from a symmetric phase realized both at higher and at lower temperatures. The symmetric phase is a Dirac semimetal, which is protected by the nonsymmorphic space group of the pyrochlore lattice. Beyond a critical value of the staggered strain, the symmetry-broken phase is a fully gapped trivial insulator. The surface states of the Weyl semimetal form open Fermi arcs and we observe that their connectivity depends on the termination of the crystal. In particular, for the {111 } films, the semiclassical closed electronic orbits of the surface states in a magnetic field cross the bulk either twice, four, six, or twelve times. We demonstrate how one can tune the number of bulk crossings through a Lifshitz-like transition of the Fermi arcs, which we call Weyl-Lifshitz transition, by applying a surface potential. Our results offer a route to a topological Weyl semimetal in nonmagnetic materials and might be relevant for pyrochlore oxides with heavy transition-metal ions such as alloys of iridates.

  17. Metallic magnets without inversion symmetry and antiferromagnetic quantum critical points

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, I.A.

    2006-07-01

    This thesis focusses on two classes of systems that exhibit non-Fermi liquid behaviour in experiments: we investigated aspects of chiral ferromagnets and of antiferromagnetic metals close to a quantum critical point. In chiral ferromagnets, the absence of inversion symmetry makes spin-orbit coupling possible, which leads to a helical modulation of the ferromagnetically ordered state. We studied the motion of electrons in the magnetically ordered state of a metal without inversion symmetry by calculating their generic band-structure. We found that spin-orbit coupling, although weak, has a profound effect on the shape of the Fermi surface: On a large portion of the Fermi surface the electron motion parallel to the helix practically stops. Signatures of this effect can be expected to show up in measurements of the anomalous Hall effect. Recent neutron scattering experiments uncovered the existence of a peculiar kind of partial order in a region of the phase diagram adjacent to the ordered state of the chiral ferromagnet MnSi. Starting from the premise that this partially ordered state is a thermodynamically distinct phase, we investigated an extended Ginzburg-Landau theory for chiral ferromagnets. In a certain parameter regime of the Ginzburg-Landau theory we identified crystalline phases that are reminiscent of the so-called blue phases in liquid crystals. Many antiferromagnetic heavy-fermion systems can be tuned into a regime where they exhibit non-Fermi liquid exponents in the temperature dependence of thermodynamic quantities such as the specific heat capacity; this behaviour could be due to a quantum critical point. If the quantum critical behaviour is field-induced, the external field does not only suppress antiferromagnetism but also induces spin precession and thereby influences the dynamics of the order parameter. We investigated the quantum critical behavior of clean antiferromagnetic metals subject to a static, spatially uniform external magnetic field. We

  18. Prediction of molecular crystal structures by a crystallographic QM/MM model with full space-group symmetry.

    Science.gov (United States)

    Mörschel, Philipp; Schmidt, Martin U

    2015-01-01

    A crystallographic quantum-mechanical/molecular-mechanical model (c-QM/MM model) with full space-group symmetry has been developed for molecular crystals. The lattice energy was calculated by quantum-mechanical methods for short-range interactions and force-field methods for long-range interactions. The quantum-mechanical calculations covered the interactions within the molecule and the interactions of a reference molecule with each of the surrounding 12-15 molecules. The interactions with all other molecules were treated by force-field methods. In each optimization step the energies in the QM and MM shells were calculated separately as single-point energies; after adding both energy contributions, the crystal structure (including the lattice parameters) was optimized accordingly. The space-group symmetry was maintained throughout. Crystal structures with more than one molecule per asymmetric unit, e.g. structures with Z' = 2, hydrates and solvates, have been optimized as well. Test calculations with different quantum-mechanical methods on nine small organic molecules revealed that the density functional theory methods with dispersion correction using the B97-D functional with 6-31G* basis set in combination with the DREIDING force field reproduced the experimental crystal structures with good accuracy. Subsequently the c-QM/MM method was applied to nine compounds from the CCDC blind tests resulting in good energy rankings and excellent geometric accuracies.

  19. Friedberg-Lee symmetry and tribimaximal neutrino mixing in the inverse seesaw mechanism

    Science.gov (United States)

    Chan, Aik Hui; Low, Hwee Boon; Xing, Zhi-Zhong

    2009-10-01

    The inverse seesaw mechanism with three pairs of gauge-singlet neutrinos offers a natural interpretation of the tiny masses of three active neutrinos at the TeV scale. We combine this picture with the newly proposed Friedberg-Lee (FL) symmetry in order to understand the observed pattern of neutrino mixing. We show that the FL symmetry requires only two pairs of the gauge-singlet neutrinos to be massive, implying that one active neutrino must be massless. We propose a phenomenological ansatz with broken FL symmetry and exact μ-τ symmetry in the gauge-singlet neutrino sector, and obtain the tribimaximal neutrino mixing pattern by means of the inverse seesaw relation. We demonstrate that nonunitary corrections to this result can possibly reach the percent level, and a soft breaking of μ-τ symmetry can give rise to CP violation in such a TeV-scale seesaw scenario.

  20. Friedberg-Lee symmetry and tri-bimaximal neutrino mixing in the inverse seesaw mechanism

    CERN Document Server

    Chan, Aik Hui; Xing, Zhi-zhong

    2009-01-01

    The inverse seesaw mechanism with three pairs of gauge-singlet neutrinos offers a natural interpretation of the tiny masses of three active neutrinos at the TeV scale. We combine this picture with the newly-proposed Friedberg-Lee (FL) symmetry in order to understand the observed pattern of neutrino mixing. We show that the FL symmetry requires only two pairs of the gauge-singlet neutrinos to be massive, implying that one active neutrino must be massless. We propose a phenomenological ansatz with broken FL symmetry and exact \\mu-\\tau symmetry in the gauge-singlet neutrino sector and obtain the tri-bimaximal neutrino mixing pattern by means of the inverse seesaw relation. We demonstrate that non-unitary corrections to this result are possible to reach the percent level and a soft breaking of \\mu-\\tau symmetry can give rise to CP violation in such a TeV-scale seesaw scenario.

  1. Breaking inversion symmetry induces excitonic peak in optical absorption of topological semimetal

    Science.gov (United States)

    Dadsetani, Mehrdad; Ebrahimian, Ali

    2017-01-01

    In this work we present ab initio study on linear optical properties of Dirac and Weyl semimetals and tried to find the consequences of inversion symmetry breaking in the optical properties of topological semimetal. The real and imaginary part of dielectric function in addition to energy loss spectra of topological semimetal with and without inversion symmetry have been calculated within Random phase approximation (RPA) then the electron-hole interaction is included by solving the Bethe-Salpeter Equation (BSE) for the electron-hole Green's function. We find that the lack of inversion symmetry and spin-orbit interaction increases the density of states at Fermi level, giving rise to excitonic peak in optical absorption of topological semimetal. It is remarkable that the excitonic effects in high energy range of the spectrum are stronger than in the lower one. To explore the breaking of inversion symmetry related optical properties, we have investigated the optical properties of Dirac semimetals Na3Bi and BaPt and compared them to corresponding ones in Weyl semimetals NbP and Na3Bi0.75Sb0.25. Our calculations show that NbP, which lacks inversion symmetry, has high energy exciton at 10 and 10.8 eV. In contrast with Na3Bi, electron-hole interactions give rise to several weak peaks at different energy in the optical absorption of Na3Bi0.75Sb0.25 while its red shift is less pronounced.

  2. Classification of Topological Insulators with Time-Reversal and Inversion Symmetry*

    Institute of Scientific and Technical Information of China (English)

    LIU Lan-Feng; CHEN Bo-Lun; KOU Su-Peng

    2011-01-01

    In this paper, we find that topological insulators with time-reversal symmetry and inversion symmetry featuring two-dimensional quantum spin Hall (QSH) state can be divided into 16 c/asses, which are characterized by four Z2 topological variables ζk = O,1 at four points with high symmetry in the Brillouin zone. We obtain the corresponding edge states for each one of these sixteen classes of QSHs. In addition, it is predicted that massless fermionic excitations appear at the quantum phase transition between different QSH states. In the end, we also briefly discuss the threedimensional case.

  3. Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids

    CERN Document Server

    Słomka, Jonasz

    2016-01-01

    Classical turbulence theory assumes that energy transport in a 3D turbulent flow proceeds through a Richardson cascade whereby larger vortices successively decay into smaller ones. By contrast, an additional inverse cascade characterized by vortex-mergers exists in 2D fluids and gases, with profound implications for meteorological flows and fluid mixing. The possibility of a helicity-driven inverse cascade in 3D fluids had been rejected in the 1970s based on equilibrium-thermodynamic arguments. Recently, however, it was proposed that certain symmetry breaking processes could potentially trigger a 3D inverse cascade, but no physical system exhibiting this phenomenon has been identified to date. Here, we present direct analytical and numerical evidence for the existence of a robust inverse energy cascade in an experimentally validated 3D active fluid model, describing microbial suspension flows that spontaneously break mirror-symmetry. We show analytically that self-organized scale selection, a generic feature ...

  4. Probing maximal zero textures with broken cyclic symmetry in inverse seesaw

    Science.gov (United States)

    Samanta, Rome; Ghosal, Ambar

    2016-10-01

    Within the framework of inverse seesaw mechanism we investigate neutrino mass matrices invariant under cyclic symmetry (Z3) with maximal zero texture (6 zero textures). We explore two different approaches to obtain the cyclic symmetry invariant form of the constituent matrices. In the first one we consider explicit cyclic symmetry in the neutrino sector of the Lagrangian which dictates the emerged effective neutrino mass matrix (mν) to be symmetry invariant and hence leads to a degeneracy in masses. We then consider explicit breaking of the symmetry through a dimensionless parameter ɛ‧ to remove the degeneracy. It is seen that the method doesn't support the current neutrino oscillation global fit data even after considering the correction from cyclic symmetry invariant charged lepton mass matrix (ml) unless the breaking parameter is too large. In the second method, we assume the same forms of the neutrino mass matrices, however, symmetry is broken in the charged lepton sector. All the structures of the mass matrices are now dictated by an effective residual symmetry of some larger symmetry group in the Lagrangian. For illustration, we exemplify a toy model based on softly broken A4 symmetry group which leads to one of the combinations of ml, mD, MRS and μ to generate effective mν. All the emerged mass matrices predict a constraint range of the CP violating phases and atmospheric mixing angle along with an inverted hierarchical structure of the neutrino masses. Further, significant predictions on ββ 0 ν decay parameter |m11 | and the sum of the three light neutrino masses (Σimi) are also obtained.

  5. The Genetic Codes: Mathematical Formulae and an Inverse Symmetry-Information Relationship

    Directory of Open Access Journals (Sweden)

    Tidjani Négadi

    2016-12-01

    Full Text Available First, mathematical formulae faithfully describing the distributions of amino acids and codons and reproducing the degeneracies in the various known genetic codes, including the standard genetic code, are constructed, by hand. Second, we summarize another mathematical approach relying on the use of q-deformations to describe these same genetic codes, and add a new application not considered before. Third, by considering these same genetic codes, we find, qualitatively, that an inverse symmetry-information relationship exists.

  6. The Inverse Seesaw in Conformal Electro-Weak Symmetry Breaking and Phenomenological Consequences

    CERN Document Server

    Humbert, Pascal; Smirnov, Juri

    2015-01-01

    We study the inverse seesaw mechanism for neutrino masses and phenomenological consequences in the context of conformal electro-weak symmetry breaking. The main difference to the usual case is that all explicit fermion mass terms including Majorana masses for neutrinos are forbidden. All fermion mass terms arise therefore from vacuum expectation values of suitable scalars times some Yukawa couplings. This leads to interesting consequences for model building, neutrino mass phenomenology and the Dark Matter abundance. In the context of the inverse seesaw we find a favoured scenario with heavy pseudo-Dirac sterile neutrinos at the TeV scale, which in the conformal framework conspire with the electro-weak scale to generate keV scale warm Dark Matter. The mass scale relations provide naturally the correct relic abundance due to a freeze-in mechanism. We demonstrate also how conformal symmetry decouples the right-handed neutrino mass scale and effective lepton number violation. We find that lepton flavour violating...

  7. Astrophysical Constraints on the scale of Left-Right Symmetry in Inverse Seesaw Models

    CERN Document Server

    Borah, Debasish

    2012-01-01

    We revisit the recently studied supersymmetric gauged inverse seesaw model \\cite{An:2011uq} to incorporate astrophysical constraints on lightest supersymmetric particle (LSP) lifetime such that LSP constitutes the dark matter of the Universe. The authors in \\cite{An:2011uq} considered light sneutrino LSP that can play the role of inelastic dark matter (iDM) such that desired iDM mass splitting and tiny Majorana masses of neutrinos can have a common origin. Here we point out that due to spontaneous R-parity $(R_p = (-1)^{3(B-L)+2s})$ breaking in such generic supersymmetric gauged inverse seesaw models, LSP can not be perfectly stable but decays to standard model particles after non-renormalizable operators allowed by the gauge symmetry are introduced. We show that strong astrophysical constraints on LSP lifetime makes sneutrino dark matter more natural than standard neutralino dark matter. We also show that long-livedness of sneutrino dark matter constrains the left right symmetry breaking scale $M_R < 10^4...

  8. A crystallographic study of human NONO (p54(nrb)): overcoming pathological problems with purification, data collection and noncrystallographic symmetry.

    Science.gov (United States)

    Knott, Gavin J; Panjikar, Santosh; Thorn, Andrea; Fox, Archa H; Conte, Maria R; Lee, Mihwa; Bond, Charles S

    2016-06-01

    Non-POU domain-containing octamer-binding protein (NONO, a.k.a. p54(nrb)) is a central player in nuclear gene regulation with rapidly emerging medical significance. NONO is a member of the highly conserved Drosophila behaviour/human splicing (DBHS) protein family, a dynamic family of obligatory dimeric nuclear regulatory mediators. However, work with the NONO homodimer has been limited by rapid irreversible sample aggregation. Here, it is reported that L-proline stabilizes purified NONO homodimers, enabling good-quality solution small-angle X-ray structure determination and crystallization. NONO crystallized in the apparent space group P21 with a unique axis (b) of 408.9 Å and with evidence of twinning, as indicated by the cumulative intensity distribution L statistic, suggesting the possibility of space group P1. Structure solution by molecular replacement shows a superhelical arrangement of six NONO homodimers (or 12 in P1) oriented parallel to the long axis, resulting in extensive noncrystallographic symmetry. Further analysis revealed that the crystal was not twinned, but the collected data suffered from highly overlapping reflections that obscured the L-test. Optimized data collection on a new crystal using higher energy X-rays, a smaller beam width and an increased sample-to-detector distance produced non-overlapping reflections to 2.6 Å resolution. The steps taken to analyse and overcome this series of practical difficulties and to produce a biologically informative structure are discussed.

  9. Inverse cascade and symmetry breaking in rapidly-rotating Boussinesq convection

    CERN Document Server

    Favier, B; Proctor, M R E

    2014-01-01

    In this paper we present numerical simulations of rapidly-rotating Rayleigh-B\\'enard convection in the Boussinesq approximation with stress-free boundary conditions. At moderately low Rossby number and large Rayleigh number, we show that a large-scale depth-invariant flow is formed, reminiscent of the condensate state observed in two-dimensional flows. We show that the large-scale circulation shares many similarities with the so-called vortex, or slow-mode, of forced rotating turbulence. Our investigations show that at a fixed rotation rate the large-scale vortex is only observed for a finite range of Rayleigh numbers, as the quasi-two-dimensional nature of the flow disappears at very high Rayleigh numbers. We observe slow vortex merging events and find a non-local inverse cascade of energy in addition to the regular direct cascade associated with fast small-scale turbulent motions. Finally, we show that cyclonic structures are dominant in the small-scale turbulent flow and this symmetry breaking persists in ...

  10. Inversion symmetry breaking of atomic bound states in strong and short laser fields

    CERN Document Server

    Stooß, Veit; Ott, Christian; Blättermann, Alexander; Ding, Thomas; Pfeifer, Thomas

    2015-01-01

    In any atomic species, the spherically symmetric potential originating from the charged nucleus results in fundamental symmetry properties governing the structure of atomic states and transition rules between them. If atoms are exposed to external electric fields, these properties are modified giving rise to energy shifts such as the AC Stark-effect in varying fields and, contrary to this in a constant (DC) electric field for high enough field strengths, the breaking of the atomic symmetry which causes fundamental changes in the atom's properties. This has already been observed for atomic Rydberg states with high principal quantum numbers. Here, we report on the observation of symmetry breaking effects in Helium atoms for states with principal quantum number n=2 utilizing strong visible laser fields. These findings were enabled by temporally resolving the dynamics better than the sub-optical cycle of the applied laser field, utilizing the method of attosecond transient absorption spectroscopy (ATAS). We ident...

  11. Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride

    Science.gov (United States)

    Wang, Eryin; Lu, Xiaobo; Ding, Shijie; Yao, Wei; Yan, Mingzhe; Wan, Guoliang; Deng, Ke; Wang, Shuopei; Chen, Guorui; Ma, Liguo; Jung, Jeil; Fedorov, Alexei V.; Zhang, Yuanbo; Zhang, Guangyu; Zhou, Shuyun

    2016-12-01

    Graphene/hexagonal boron nitride (h-BN) has emerged as a model van der Waals heterostructure as the superlattice potential, which is induced by lattice mismatch and crystal orientation, gives rise to various novel quantum phenomena, such as the self-similar Hofstadter butterfly states. Although the newly generated second-generation Dirac cones (SDCs) are believed to be crucial for understanding such intriguing phenomena, fundamental knowledge of SDCs, such as locations and dispersion, and the effect of inversion symmetry breaking on the gap opening, still remains highly debated due to the lack of direct experimental results. Here we report direct experimental results on the dispersion of SDCs in 0°-aligned graphene/h-BN heterostructures using angle-resolved photoemission spectroscopy. Our data unambiguously reveal SDCs at the corners of the superlattice Brillouin zone, and at only one of the two superlattice valleys. Moreover, gaps of approximately 100 meV and approximately 160 meV are observed at the SDCs and the original graphene Dirac cone, respectively. Our work highlights the important role of a strong inversion-symmetry-breaking perturbation potential in the physics of graphene/h-BN, and fills critical knowledge gaps in the band structure engineering of Dirac fermions by a superlattice potential.

  12. Valley currents and nonlocal resistances of graphene nanostructures with broken inversion symmetry from the perspective of scattering theory

    Science.gov (United States)

    Kirczenow, George

    2015-09-01

    Valley currents and nonlocal resistances of graphene nanostructures with broken inversion symmetry are considered theoretically in the linear response regime. Scattering state wave functions of electrons entering the nanostructure from the contacts represented by groups of ideal leads are calculated by solving the Lippmann-Schwinger equation and are projected onto the valley state subspaces to obtain the valley velocity fields and total valley currents in the nanostructures. In the tunneling regime when the Fermi energy is in the spectral gap around the Dirac point energy, inversion symmetry breaking is found to result in strong enhancement of the nonlocal four-terminal Büttiker-Landauer resistance and in valley currents several times stronger than the conventional electric current. These strong valley currents are the direct result of the injection of electrons from a contact into the graphene in the tunneling regime. They are chiral and occur near contacts from which electrons are injected into the nanostructure whether or not a net electric current flows through the contact. It is also pointed out that enhanced nonlocal resistances in the linear response regime are not a signature of valley currents arising from the combined effect of the electric field and Berry curvature on the velocities of electrons.

  13. Inverse problem of Mei symmetry for a general holonomic system%一般完整系统Mei对称性的逆问题∗

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Inverse problems in dynamics are the basic problems in astronautics, rocket dynamics, and motion planning theory, etc. Mei symmetry is a kind of new symmetry where the dynamical function in differential equations of motion still satisfies the equation’s primary form under infinitesimal transformations of the group. Mei symmetry and its inverse problem of dynamics for a general holonomic system in generalized coordinates are studied. Firstly, the direct problem of dynamics of the system is proposed and solved. Introducing a one-parameter infinitesimal transformation group with respect to time and coordinates, the infinitesimal generator vector and its first prolonged vector are obtained. Based on the discussion of the differential equations of motion for a general holonomic system determined by n generalized coordinates, their Lagrangian and non-potential generalized forces are made to have an infinitesimal transformation, the definition of Mei symmetry about differential equation of motion for the system is then provided. Ignoring the high-order terms in the infinitesimal transformation, the determining equation of Mei symmetry is given. With the aid of a structure equation which the gauge function satisfies, the system’s corresponding conserved quantities are derived. Secondly, the inverse problem for the Mei symmetry of the system is studied. The formulation of the inverse problem of Mei symmetry is that we use the known conserved quantity to seek the corresponding Mei symmetry. The method is: considering a given integral as a Noether conserved quantity obtained by Mei symmetry, the generators of the infinitesimal transformations can be obtained by the inverse Noether theorem. Then the question whether the obtained generators are Mei symmetrical or not is verified by the determining equation, and the effect of generators’ changes on the symmetries is discussed. It has been shown from the studies that the changes of the generators have no effect on the

  14. Effect of inversion symmetry on the incommensurate order in multiferroic RMn2O5 ( R=rare earth)

    Science.gov (United States)

    Harris, A. B.; Kenzelmann, M.; Aharony, Amnon; Entin-Wohlman, O.

    2008-07-01

    Starting from the irreducible representations of the group of the wave vector, we construct the spin-wave functions consistent with inversion symmetry, neglected in the usual representation analysis. We obtain the relation between the basis functions of different members of the star of the wave vector. We introduce order parameters and determine their transformation properties under the operations of the space group of the paramagnetic crystal. The results are applied to construct terms in the magnetoelectric interaction, which are quadratic and quartic in the magnetic order parameters. The higher-order magnetoelectric interactions can in principle induce components of the spontaneous polarization, which are not allowed by the lowest-order magnetoelectric interaction. We also obtain the relation between the spin-wave functions of the incommensurate phase and those of the commensurate phase, which lead to analogous relations between the order parameters of these two phases.

  15. Inversion symmetry breaking by oxygen octahedral rotations in the Ruddlesden-Popper NaRTiO4 family.

    Science.gov (United States)

    Akamatsu, Hirofumi; Fujita, Koji; Kuge, Toshihiro; Sen Gupta, Arnab; Togo, Atsushi; Lei, Shiming; Xue, Fei; Stone, Greg; Rondinelli, James M; Chen, Long-Qing; Tanaka, Isao; Gopalan, Venkatraman; Tanaka, Katsuhisa

    2014-05-01

    Rotations of oxygen octahedra are ubiquitous, but they cannot break inversion symmetry in simple perovskites. However, in a layered oxide structure, this is possible, as we demonstrate here in A-site ordered Ruddlesden-Popper NaRTiO4 (R denotes rare-earth metal), previously believed to be centric. By revisiting this series via synchrotron x-ray diffraction, optical second-harmonic generation, piezoresponse force microscopy, and first-principles phonon calculations, we find that the low-temperature phase belongs to the acentric space group P42(1)m, which is piezoelectric and nonpolar. The mechanism underlying this large new family of acentric layered oxides is prevalent, and could lead to many more families of acentric oxides.

  16. Optically probed symmetry breaking in the chiral magnet Cu2OSeO3

    NARCIS (Netherlands)

    Versteeg, R. B.; Vergara, I.; Schaefer, S. D.; Bischoff, D.; Aqeel, A.; Palstra, T. T. M.; Grueninger, M.; van Loosdrecht, P. H. M.

    2016-01-01

    We report on the linear optical properties of the chiral magnet Cu2OSeO3, specifically associated with the absence of inversion symmetry, the chiral crystallographic structure, and magnetic order. Through spectroscopic ellipsometry, we observe local crystal-field excitations below the charge-transfe

  17. Electric-Field Switchable Second-Harmonic Generation in Bilayer MoS2 by Inversion Symmetry Breaking.

    Science.gov (United States)

    Klein, J; Wierzbowski, J; Steinhoff, A; Florian, M; Rösner, M; Heimbach, F; Müller, K; Jahnke, F; Wehling, T O; Finley, J J; Kaniber, M

    2017-01-11

    We demonstrate pronounced electric-field-induced second-harmonic generation in naturally inversion symmetric 2H stacked bilayer MoS2 embedded into microcapacitor devices. By applying strong external electric field perturbations (|F| = ±2.6 MV cm(-1)) perpendicular to the basal plane of the crystal, we control the inversion symmetry breaking and, hereby, tune the nonlinear conversion efficiency. Strong tunability of the nonlinear response is observed throughout the energy range (Eω ∼ 1.25-1.47 eV) probed by measuring the second-harmonic response at E2ω, spectrally detuned from both the A- and B-exciton resonances. A 60-fold enhancement of the second-order nonlinear signal is obtained for emission at E2ω = 2.49 eV, energetically detuned by ΔE = E2ω - EC = -0.26 eV from the C-resonance (EC = 2.75 eV). The pronounced spectral dependence of the electric-field-induced second-harmonic generation signal reflects the bandstructure and wave function admixture and exhibits particularly strong tunability below the C-resonance, in good agreement with density functional theory calculations. Moreover, we show that the field-induced second-harmonic generation relies on the interlayer coupling in the bilayer. Our findings strongly suggest that the strong tunability of the electric-field-induced second-harmonic generation signal in bilayer transition metal dichalcogenides may find applications in miniaturized electrically switchable nonlinear devices.

  18. Neutrino phenomenology and scalar Dark Matter with A4 flavor symmetry in Inverse and type II seesaw

    Science.gov (United States)

    Mukherjee, Ananya; Das, Mrinal Kumar

    2016-12-01

    We present a TeV scale seesaw mechanism for exploring the dark matter and neutrino phenomenology in the light of recent neutrino and cosmology data. A different realization of the Inverse seesaw (ISS) mechanism with A4 flavor symmetry is being implemented as a leading contribution to the light neutrino mass matrix which usually gives rise to vanishing reactor mixing angle θ13. Using a non-diagonal form of Dirac neutrino mass matrix and 3σ values of mass square differences we parameterize the neutrino mass matrix in terms of Dirac Yukawa coupling "y". We then use type II seesaw as a perturbation which turns out to be active to have a non-vanishing reactor mixing angle without much disturbing the other neutrino oscillation parameters. Then we constrain a common parameter space satisfying the non-zero θ13, Yukawa coupling and the relic abundance of dark matter. Contributions of neutrinoless double beta decay are also included for standard as well as non-standard interaction. This study may have relevance in future neutrino and Dark Matter experiments.

  19. Crystallographic topology and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.K.; Burnett, M.N. [Oak Ridge National Lab., TN (United States); Dunbar, W.D. [Simon`s Rock Coll., Great Barrington, MA (United States). Div. of Natural Sciences and Mathematics

    1996-10-01

    Geometric topology and structural crystallography concepts are combined to define a new area we call Structural Crystallographic Topology, which may be of interest to both crystallographers and mathematicians. In this paper, we represent crystallographic symmetry groups by orbifolds and crystal structures by Morse - functions. The Morse function uses mildly overlapping Gaussian thermal-motion probability density functions centered on atomic sites to form a critical net with peak, pass, pale, and pit critical points joined into a graph by density gradient-flow separatrices. Critical net crystal structure drawings can be made with the ORTEP-III graphics pro- An orbifold consists of an underlying topological space with an embedded singular set that represents the Wyckoff sites of the crystallographic group. An orbifold for a point group, plane group, or space group is derived by gluing together equivalent edges or faces of a crystallographic asymmetric unit. The critical-net-on-orbifold model incorporates the classical invariant lattice complexes of crystallography and allows concise quotient-space topological illustrations to be drawn without the repetition that is characteristic of normal crystal structure drawings.

  20. Infrared and Raman studies of {alpha}-(BEDT-TTF){sub 2}MHg(SCN){sub 4} with M=NH{sub 4} and K at low temperature: Breaking of inversion symmetry due to charge-ordering fluctuation

    Energy Technology Data Exchange (ETDEWEB)

    Hiejima, T., E-mail: hiejima@nano.t-kougei.ac.j [Department of Nanochemistry, Faculty of Engineering, Tokyo Polytechnic University, 1583, Iiyama, Atsugi (Japan); Yamada, S. [Department of Nanochemistry, Faculty of Engineering, Tokyo Polytechnic University, 1583, Iiyama, Atsugi (Japan); Uruichi, M.; Yakushi, K. [Institute for Molecular Science, National Institutes of Natural Science, 38, Nichigo-naka, Myodaiji, Okazaki (Japan)

    2010-06-01

    The infrared and Raman spectra were measured on the edge plane of the single crystals of quasi-two-dimensional organic conductors {alpha}-(BEDT-TTF){sub 2}MHg(SCN){sub 4}(M=NH{sub 4} and K) to look for experimental evidence for the charge-ordering fluctuation. In the optical conductivity spectra for K-salt, four charge sensitive {nu}{sub 27} modes, three of which are infrared active when inversion symmetry exists, were found at around 200 K. From the simple symmetry consideration, the finding of four {nu}{sub 27} modes gives evidence for the breaking of inversion symmetry, which is probably associated to charge-ordering fluctuation. In contrast, NH{sub 4}-salt was found to keep the inversion symmetry down to 7.3 K.

  1. Inverse Amplitude Method for Perturbative Electroweak Symmetry Breaking Sector: The Singlet Higgs Portal as a Study Case

    CERN Document Server

    Corbett, Tyler; Gonzalez-Garcia, M C

    2015-01-01

    We explore the use of the Inverse Amplitude Method for unitarization of scattering amplitudes to derive the existence and properties of possible new heavy states associated with perturbative extensions of the electroweak breaking sector of the Standard Model starting from the low energy effective theory. We use a toy effective theory generated by integrating out a heavy singlet scalar and compare the pole mass and width of the unitarized amplitudes with those of the original model. Our results show that the Inverse Amplitude Method reproduces correctly the singlet mass up to factors of O(1-3), but its width is overestimated.

  2. Orbits of crystallographic embedding of non-crystallographic groups and applications to virology.

    Science.gov (United States)

    Twarock, Reidun; Valiunas, Motiejus; Zappa, Emilio

    2015-11-01

    The architecture of infinite structures with non-crystallographic symmetries can be modelled via aperiodic tilings, but a systematic construction method for finite structures with non-crystallographic symmetry at different radial levels is still lacking. This paper presents a group theoretical method for the construction of finite nested point sets with non-crystallographic symmetry. Akin to the construction of quasicrystals, a non-crystallographic group G is embedded into the point group P of a higher-dimensional lattice and the chains of all G-containing subgroups are constructed. The orbits of lattice points under such subgroups are determined, and it is shown that their projection into a lower-dimensional G-invariant subspace consists of nested point sets with G-symmetry at each radial level. The number of different radial levels is bounded by the index of G in the subgroup of P. In the case of icosahedral symmetry, all subgroup chains are determined explicitly and it is illustrated that these point sets in projection provide blueprints that approximate the organization of simple viral capsids, encoding information on the structural organization of capsid proteins and the genomic material collectively, based on two case studies. Contrary to the affine extensions previously introduced, these orbits endow virus architecture with an underlying finite group structure, which lends itself better to the modelling of dynamic properties than its infinite-dimensional counterpart.

  3. Symmetries, Symmetry Breaking, Gauge Symmetries

    CERN Document Server

    Strocchi, Franco

    2015-01-01

    The concepts of symmetry, symmetry breaking and gauge symmetries are discussed, their operational meaning being displayed by the observables {\\em and} the (physical) states. For infinitely extended systems the states fall into physically disjoint {\\em phases} characterized by their behavior at infinity or boundary conditions, encoded in the ground state, which provide the cause of symmetry breaking without contradicting Curie Principle. Global gauge symmetries, not seen by the observables, are nevertheless displayed by detectable properties of the states (superselected quantum numbers and parastatistics). Local gauge symmetries are not seen also by the physical states; they appear only in non-positive representations of field algebras. Their role at the Lagrangian level is merely to ensure the validity on the physical states of local Gauss laws, obeyed by the currents which generate the corresponding global gauge symmetries; they are responsible for most distinctive physical properties of gauge quantum field ...

  4. Symmetry and Condensed Matter Physics

    Science.gov (United States)

    El-Batanouny, M.; Wooten, F.

    2008-03-01

    Preface; 1. Symmetry and physics; 2. Symmetry and group theory; 3. Group representations: concepts; 4. Group representations: formalism and methodology; 5. Dixon's method for computing group characters; 6. Group action and symmetry projection operators; 7. Construction of the irreducible representations; 8. Product groups and product representations; 9. Induced representations; 10. Crystallographic symmetry and space-groups; 11. Space groups: Irreps; 12. Time-reversal symmetry: color groups and the Onsager relations; 13. Tensors and tensor fields; 14. Electronic properties of solids; 15. Dynamical properties of molecules, solids and surfaces; 16. Experimental measurements and selection rules; 17. Landau's theory of phase transitions; 18. Incommensurate systems and quasi-crystals; References; Bibliography; Index.

  5. Vector chirality for effective total momentum Jeff in a nonfrustrated Mott insulator: Effects of strong spin-orbit coupling and broken inversion symmetry

    Science.gov (United States)

    Arakawa, Naoya

    2016-11-01

    I propose the emergence of the spin-orbital-coupled vector chirality in a nonfrustrated Mott insulator with the strong spin-orbit coupling due to a b -plane's inversion-symmetry (IS) breaking. I derive the superexchange interactions for a t2 g-orbital Hubbard model on a square lattice with the strong spin-orbit coupling and the IS-breaking-induced hopping integrals, and explain the microscopic origins of the Dzyaloshinsky-Moriya (DM) -type and the Kitaev-type interactions. Then, by adopting the mean-field approximation to a minimal model including only the Heisenberg-type and the DM-type nearest-neighbor interactions, I show that the IS breaking causes the spin-orbital-coupled chirality as a result of stabilizing the screw state. I also highlight the limit of the hard-pseudospin approximation in discussing the stability of the screw states in the presence of both the DM-type and the Kitaev-type interactions, and discuss its meaning. I finally discuss the effects of tetragonal crystal field and Jeff=3/2 states, and the application to the iridates near the [001 ] surface of Sr2IrO4 and the interface between Sr2IrO4 and Sr3Ir2O7 .

  6. Probing of inversion symmetry site in Eu{sup 3+}-doped GdPO{sub 4} by luminescence study: Concentration and annealing effect

    Energy Technology Data Exchange (ETDEWEB)

    Yaiphaba, N. [Department of Chemistry, Manipur University, Canchipur, Imphal 795 003, Manipur (India); Ningthoujam, R.S., E-mail: rsn@barc.gov.i [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Shanta Singh, N. [Department of Physics, Manipur University, Canchipur, Imphal 795 003, Manipur (India); Vatsa, R.K., E-mail: rkvatsa@barc.gov.i [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Rajmuhon Singh, N., E-mail: rajmuhon@yahoo.co.i [Department of Chemistry, Manipur University, Canchipur, Imphal 795 003, Manipur (India)

    2010-01-15

    Eu{sup 3+}-doped gadolinium orthophosphate (GdPO{sub 4}) (Eu{sup 3+} at%=0, 2, 5, 7, 10, 15, 20 and 30) nanoparticles have been prepared by ethylene glycol route and subsequently heated at 500 and 900 deg. C. The crystallite size increases with increasing heat-treatment temperature. Luminescence study shows that magnetic dipole transition ({sup 5}D{sub 0}->{sup 7}F{sub 1}) is prominent over the electric dipole transition ({sup 5}D{sub 0}->{sup 7}F{sub 2}), which has been attributed to occupancy of inversion symmetry site by more Eu{sup 3+} ions in Eu{sup 3+}-doped GdPO{sub 4}. The luminescence intensity is enhanced as heat-treatment temperature increases from 500 to 900 deg. C due to the improved crystallinity. Optimum luminescence is observed for 5-7 at% Eu{sup 3+} in GdPO{sub 4} nanoparticles. Above this concentration, luminescence intensity decreases due to concentration quenching effect. This is supported by lifetime study.

  7. INVERSION SYMMETRY, ARCHITECTURE AND DISPERSITY, AND THEIR EFFECTS ON THERMODYNAMICS IN BULK AND CONFINED REGIONS: FROM RANDOMLY BRANCHED POLYMERS TO LINEAR CHAINS, STARS AND DENDRIMERS

    Directory of Open Access Journals (Sweden)

    P.D.Gujrati

    2002-01-01

    Full Text Available Theoretical evidence is presented in this review that architectural aspects can play an important role, not only in the bulk but also in confined geometries by using our recursive lattice theory, which is equally applicable to fixed architectures (regularly branched polymers, stars, dendrimers, brushes, linear chains, etc. and variable architectures, i.e. randomly branched structures. Linear chains possess an inversion symmetry (IS of a magnetic system (see text, whose presence or absence determines the bulk phase diagram. Fixed architectures possess the IS and yield a standard bulk phase diagram in which there exists a theta point at which two critical lines C and C' meet and the second virial coefficient A2 vanishes. The critical line C appears only for infinitely large polymers, and an order parameter is identified for this criticality. The critical line C' exists for polymers of all sizes and represents phase separation criticality. Variable architectures, which do not possess the IS, give rise to a topologically different phase diagram with no theta point in general. In confined regions next to surfaces, it is not the IS but branching and monodispersity, which becomes important in the surface regions. We show that branching plays no important role for polydisperse systems, but become important for monodisperse systems. Stars and linear chains behave differently near a surface.

  8. Invariants of broken discrete symmetries

    CERN Document Server

    Kalozoumis, P; Diakonos, F K; Schmelcher, P

    2014-01-01

    The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying in particular to acoustic, optical and matter waves. Nonvanishing values of the invariant currents provide a systematic pathway to the breaking of discrete global symmetries.

  9. Crystallographic Information Resources

    Science.gov (United States)

    Glasser, Leslie

    2016-01-01

    Crystallographic information provides the fundamental basis for understanding the properties and behavior of materials. This data, such as chemical composition, unit cell dimensions, space group, and atomic positions, derives from the primary literature--that is, from published experimental measurement or theoretical calculation. Although the…

  10. Invariants of broken discrete symmetries

    OpenAIRE

    Kalozoumis, P.; Morfonios, C.; Diakonos, F. K.; Schmelcher, P.

    2014-01-01

    The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying in particular to acoustic, optical and matter waves. Nonvanishing values of the invariant currents provide a systematic ...

  11. The New NRL Crystallographic Database

    Science.gov (United States)

    Mehl, Michael; Curtarolo, Stefano; Hicks, David; Toher, Cormac; Levy, Ohad; Hart, Gus

    For many years the Naval Research Laboratory maintained an online graphical database of crystal structures for a wide variety of materials. This database has now been redesigned, updated and integrated with the AFLOW framework for high throughput computational materials discovery (http://materials.duke.edu/aflow.html). For each structure we provide an image showing the atomic positions; the primitive vectors of the lattice and the basis vectors of every atom in the unit cell; the space group and Wyckoff positions; Pearson symbols; common names; and Strukturbericht designations, where available. References for each structure are provided, as well as a Crystallographic Information File (CIF). The database currently includes almost 300 entries and will be continuously updated and expanded. It enables easy search of the various structures based on their underlying symmetries, either by Bravais lattice, Pearson symbol, Strukturbericht designation or commonly used prototypes. The talk will describe the features of the database, and highlight its utility for high throughput computational materials design. Work at NRL is funded by a Contract with the Duke University Department of Mechanical Engineering.

  12. Matrix Representation of Symmetry Operators in Elementary Crystallography

    Science.gov (United States)

    Cody, R. D.

    1972-01-01

    Presents the derivation of rotation and reflection matrix representation of symmetry operators as used in the initial discussion of crystal symmetry in elementary mineralogy at Iowa State University. Includes references and an appended list of matrix representations of the important crystallographic symmetry operators, excluding the trigonal and…

  13. Macromolecular crystallographic estructure refinement

    Directory of Open Access Journals (Sweden)

    Afonine, Pavel V.

    2015-04-01

    Full Text Available Model refinement is a key step in crystallographic structure determination that ensures final atomic structure of macromolecule represents measured diffraction data as good as possible. Several decades have been put into developing methods and computational tools to streamline this step. In this manuscript we provide a brief overview of major milestones of crystallographic computing and methods development pertinent to structure refinement.El refinamiento es un paso clave en el proceso de determinación de una estructura cristalográfica al garantizar que la estructura atómica de la macromolécula final represente de la mejor manera posible los datos de difracción. Han hecho falta varias décadas para poder desarrollar nuevos métodos y herramientas computacionales dirigidas a dinamizar esta etapa. En este artículo ofrecemos un breve resumen de los principales hitos en la computación cristalográfica y de los nuevos métodos relevantes para el refinamiento de estructuras.

  14. Invariants of Broken Discrete Symmetries

    Science.gov (United States)

    Kalozoumis, P. A.; Morfonios, C.; Diakonos, F. K.; Schmelcher, P.

    2014-08-01

    The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries in one dimension are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying, in particular, to acoustic, optical, and matter waves. Nonvanishing values of the invariant currents provide a systematic pathway to the breaking of discrete global symmetries.

  15. Painlevé property, symmetries and symmetry reductions of the coupled Burgers system

    Institute of Scientific and Technical Information of China (English)

    Lian Zeng-Ju; Chen Li-Li; Lou Sen-Yue

    2005-01-01

    The Painlevé property, inverse recursion operator, infinite number of symmetries and Lie symmetry reductions of the coupled Burgers equation are given explicitly. Three sets of infinitely many symmetries of the considered model are obtained by acting the recursion operator and the inverse recursion operator on the trivial symmetries such as the identity transformation, the space translation and the scaling transformation respectively. These symmetries constitute an infinite dimensional Lie algebra while its finite dimensional Lie point symmetry subalgebra is used to find possible symmetry reductions and then the group invariant solutions.

  16. Inversion symmetry and local vs. dispersive interactions in the nucleation of hydrogen bonded cyclic n-mer and tape of imidazolecarboxamidines

    OpenAIRE

    Long, Sihui; Muthusamy, Venkatraj; Willis, Peter G; Parkin, Sean; Cammers, Arthur

    2008-01-01

    Substitutional changes to imidazolecarboxamidine that preserved intermolecular hydrogen bonding in the solid state were used to study the relationship between packing and the hydrogen bond motif. Various motifs competed, but the most common imidazolecarboxamidine crystalline phase was a C i symmetric dimer that established inversion centers by associating enantiomeric tautomers. Counter to intuition, the calculated gas-phase energies per molecule of the solid state atomic coordinates of th...

  17. Phaser crystallographic software.

    Science.gov (United States)

    McCoy, Airlie J; Grosse-Kunstleve, Ralf W; Adams, Paul D; Winn, Martyn D; Storoni, Laurent C; Read, Randy J

    2007-08-01

    Phaser is a program for phasing macromolecular crystal structures by both molecular replacement and experimental phasing methods. The novel phasing algorithms implemented in Phaser have been developed using maximum likelihood and multivariate statistics. For molecular replacement, the new algorithms have proved to be significantly better than traditional methods in discriminating correct solutions from noise, and for single-wavelength anomalous dispersion experimental phasing, the new algorithms, which account for correlations between F(+) and F(-), give better phases (lower mean phase error with respect to the phases given by the refined structure) than those that use mean F and anomalous differences DeltaF. One of the design concepts of Phaser was that it be capable of a high degree of automation. To this end, Phaser (written in C++) can be called directly from Python, although it can also be called using traditional CCP4 keyword-style input. Phaser is a platform for future development of improved phasing methods and their release, including source code, to the crystallographic community.

  18. Ubiquitous symmetries

    Science.gov (United States)

    Nucci, M. C.

    2016-09-01

    We review some of our recent work devoted to the problem of quantization with preservation of Noether symmetries, finding hidden linearity in superintegrable systems, and showing that nonlocal symmetries are in fact local. In particular, we derive the Schrödinger equation for the isochronous Calogero goldfish model using its relation to Darwin equation. We prove the linearity of a classical superintegrable system on a plane of nonconstant curvature. We find the Lie point symmetries that correspond to the nonlocal symmetries (also reinterpreted as λ-symmetries) of the Riccati chain.

  19. Symmetry in crystallography understanding the international tables

    CERN Document Server

    Radaelli, Paolo G

    2011-01-01

    A fresh approach to teaching crystallographic symmetry. Rather than being swamped by heavy algebraic notation, the reader is taken through a series of simple and beautiful examples from the visual arts, and taught how to analyse them employing the 'pictorial' diagrams used in the international tables of crystallography.

  20. Symmetry Non-restoration at High Temperature

    CERN Document Server

    Rius, N

    1998-01-01

    We discuss the (non)-restoration of global and local symmetries at high temperature. First, we analyze a two-scalar model with $Z_2 \\times Z_2$ symmetry using the exact renormalization group. We conclude that inverse symmetry breaking is possible in this kind of models within the perturbative regime. Regarding local symmetries, we consider the $SU(2) \\otimes U(1)$ gauge symmetry and focus on the case of a strongly interacting scalar sector. Employing a model-independent chiral Lagrangian we find indications of symmetry restoration.

  1. CIF (Crystallographic Information File): A Standard for Crystallographic Data Interchange

    Science.gov (United States)

    Brown, I. D.

    1996-01-01

    The Crystallographic Information File (CIF) uses the self-defining STAR file structure. This requires the creation of a dictionary of data names and definitions. A basic dictionary of terms needed to describe the crystal structures of small molecules was approved in 1991 and is currently used for the submission of papers to Acta Crystallographica C. A number of extensions to this dictionary are in preparation. By storing the dictionary itself as a STAR file, the definitions and relationships in the CIF dictionary become computer interpretable. This offers many possibilities for the automatic handling of crystallographic information. PMID:27805170

  2. The birth of the European Crystallographic Committee (ECC) and of the European Crystallographic Meetings (ECMs)

    Science.gov (United States)

    Authier, A.

    2010-01-01

    This article describes the circumstances of the establishment of the European Crystallographic Committee, now the European Crystallographic Association, a regional associate of the IUCr, and of the European Crystallographic Meetings.

  3. Inversion symmetry and local vs. dispersive interactions in the nucleation of hydrogen bonded cyclic n-mer and tape of imidazolecarboxamidines

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available Substitutional changes to imidazolecarboxamidine that preserved intermolecular hydrogen bonding in the solid state were used to study the relationship between packing and the hydrogen bond motif. Various motifs competed, but the most common imidazolecarboxamidine crystalline phase was a Ci symmetric dimer that established inversion centers by associating enantiomeric tautomers. Counter to intuition, the calculated gas-phase energies per molecule of the solid state atomic coordinates of the Ci dimer motifs were higher than those of the C1 dimer, trimer, tetramer and tape motifs, while the packing densities of Ci dimers were found to be higher. This result was interpreted as an enhanced ability of the Ci dimers to pack. If other motifs competed, the hydrogen bonds and conformations should be lower in energy than the Ci dimer. The results detail the effect of packing on the conformation in these molecules. The results are interpreted as a rough measure of the energetic compromise between packing and the energies related to the coordinates involving one dihedral angle and hydrogen bonding. The results establish a connection between solution and solid phase conformation.

  4. The Crystallographic Information File (CIF

    Directory of Open Access Journals (Sweden)

    I D Brown

    2006-11-01

    Full Text Available The Crystallographic Information File (CIF, owned by the International Union of Crystallography, is a file structure based on tag-value ASCII pairs with tags defined in machine-readable dictionaries. The crystallographic community publishes and archives large quantities of numeric information generated by crystal structure determinations, and CIF's acceptance was assured by its adoption as the submission format for Acta Crystallographica and by the obvious needs of the community. CIF's strength lies in its dictionaries, which define most of the concepts of crystallography; its weakness is the difficulty of writing software that exploits its full potential.

  5. Symmetries from the solution manifold

    Science.gov (United States)

    Aldaya, Víctor; Guerrero, Julio; Lopez-Ruiz, Francisco F.; Cossío, Francisco

    2015-07-01

    We face a revision of the role of symmetries of a physical system aiming at characterizing the corresponding Solution Manifold (SM) by means of Noether invariants as a preliminary step towards a proper, non-canonical, quantization. To this end, "point symmetries" of the Lagrangian are generally not enough, and we must resort to the more general concept of contact symmetries. They are defined in terms of the Poincaré-Cartan form, which allows us, in turn, to find the symplectic structure on the SM, through some sort of Hamilton-Jacobi (HJ) transformation. These basic symmetries are realized as Hamiltonian vector fields, associated with (coordinate) functions on the SM, lifted back to the Evolution Manifold through the inverse of this HJ mapping, that constitutes an inverse of the Noether Theorem. The specific examples of a particle moving on S3, at the mechanical level, and nonlinear SU(2)-sigma model in field theory are sketched.

  6. Crystallographic structural organization of human rhinovirus serotype 16, 14, 3, 2 and 1A

    Science.gov (United States)

    Janner, A.

    2006-07-01

    The capsid of the icosahedral virion is encapsulated between two polyhedra scaled according to the golden mean, each being composed of an icosahedron and a dodecahedron. Structural units of the coat proteins are enclosed into forms whose projections along the icosahedral symmetry axes obey the crystallographic law of rational indices.

  7. UV completion without symmetry restoration

    CERN Document Server

    Endlich, Solomon; Penco, Riccardo

    2013-01-01

    We show that it is not possible to UV-complete certain low-energy effective theories with spontaneously broken space-time symmetries by embedding them into linear sigma models, that is, by adding "radial" modes and restoring the broken symmetries. When such a UV completion is not possible, one can still raise the cutoff up to arbitrarily higher energies by adding fields that transform non-linearly under the broken symmetries, that is, new Goldstone bosons. However, this (partial) UV completion does not necessarily restore any of the broken symmetries. We illustrate this point by considering a concrete example in which a combination of space-time and internal symmetries is broken down to a diagonal subgroup. Along the way, we clarify a recently proposed interpretation of inverse Higgs constraints as gauge-fixing conditions.

  8. Mirror symmetry

    CERN Document Server

    Voisin, Claire

    1999-01-01

    This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...

  9. Quantum Symmetry

    CERN Document Server

    Häring, Reto Andreas

    1993-01-01

    The representations of the observable algebra of a low dimensional quantum field theory form the objects of a braided tensor category. The search for gauge symmetry in the theory amounts to finding an algebra which has the same representation category. In this paper we try to establish that every quantum field theory satisfying some basic axioms posseses a weak quasi Hopf algebra as gauge symmetry. The first step is to construct a functor from the representation category to the category of finite dimensional vector spaces. Given such a functor we can use a generalized reconstruction theorem to find the symmetry algebra. It is shown how this symmetry algebra is used to build a gauge covariant field algebra and we investigate the question why this generality is necessary.

  10. Triboluminescence dominated by crystallographic orientation

    Science.gov (United States)

    Wang, Kuifang; Ma, Liran; Xu, Xuefeng; Wen, Shizhu; Luo, Jianbin

    2016-05-01

    Triboluminescence (TL) is an optical phenomenon that has a long and varied history with broad applications, such as damage detection, X-ray source, and mass health monitoring sensor. So far, the properties and mechanisms of TL remain not completely understood. The TL properties emitted during the sliding contact between Al2O3 and SiO2 surfaces were studied along different crystallographic orientations. In this study, the TL intensity of Al2O3 was significantly enhanced as Al2O3 surface was along a particular crystallographic orientation, which is an unconventional phenomenon. TL enhancement of Al2O3 was not affected by air atmosphere and atomic stocking mode of Al2O3. The enhancement mechanism of Al2O3 may be influenced by the surface state of Al2O3. This work provides a new method to control the intensity of TL and novel ideas to elucidate the TL mechanism.

  11. Crystallographic properties of fertilizer compounds

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, A.W.; Dillard, E.F.; Thrasher, R.D.; Waerstad, K.R.; Hunter, S.R.; Kohler, J.J.; Scheib, R.M.

    1991-02-01

    This bulletin is a compilation of crystallographic data collected at NFERC on 450 fertilizer-related compounds. In TVA's fertilizer R and D program, petrographic examination, XRD, and infrared spectroscopy are combined with conventional chemical analysis methods in identifying the individual compounds that occur in fertilizer materials. This handbook brings together the results of these characterization studies and supplemental crystallographic data from the literature. It is in one-compound-per-page, loose-leaf format, ordered alphabetically by IUPAC name. Indexes provided include IUPAC name, formula, group, alternate formula, synonyms, x-ray data, optical data. Tables are given for solids, compounds in commercial MAP and DAP, and matrix materials in phosphate rock.

  12. Symmetry of tetrahydroxycalix[4]arenes

    Directory of Open Access Journals (Sweden)

    M. GHORBANI

    2006-10-01

    Full Text Available Graph theory provides an elegant and natural representation of molecular symmetry and the resulting group expressed in terms of permutations is isomorphic to the permutation-inversion group of Longuet-Higgins. In this paper, using the group theory package GAP, the character table and the automorphism group of the Euclidean graph of tetrahydroxycalix[4]arenes were computed.

  13. Structural symmetries of the 112-type iron-based superconductor (Ca1-xLax)FeAs2 studied using nonlinear and ultrafast optics

    Science.gov (United States)

    Harter, John; Chu, Hao; Jiang, Shan; Ni, Ni; Hsieh, David

    The crystal structure of the newly discovered 112-type iron-based superconductors contains symmetry-breaking arsenic chains, avoiding the need for local probes or uniaxial strain in order to study the ubiquitous electronic nematic state that exists in the vicinity of magnetic order in the iron pnictides. In addition, the 112-type materials are the first known high-temperature superconductors without a center of inversion, with interesting ramifications for Cooper pairing in the superconducting state. We present details of the structure of 112-type (Ca1-xLax)FeAs2 using rotational anisotropy second harmonic generation and pump-probe transient reflectivity experiments. These all-optical techniques are complimentary to conventional diffraction measurements and enable a precise determination of crystallographic symmetries. Our measurements highlight the novel structural properties of the 112-type materials.

  14. Inverse Symmetric Inflationary Attractors

    CERN Document Server

    Odintsov, S D

    2016-01-01

    We present a class of inflationary potentials which are invariant under a special symmetry, which depends on the parameters of the models. As we show, in certain limiting cases, the inverse symmetric potentials are qualitatively similar to the $\\alpha$-attractors models, since the resulting observational indices are identical. However, there are some quantitative differences which we discuss in some detail. As we show, some inverse symmetric models always yield results compatible with observations, but this strongly depends on the asymptotic form of the potential at large $e$-folding numbers. In fact when the limiting functional form is identical to the one corresponding to the $\\alpha$-attractors models, the compatibility with the observations is guaranteed. Also we find the relation of the inverse symmetric models with the Starobinsky model and we highlight the differences. In addition, an alternative inverse symmetric model is studied and as we show, not all the inverse symmetric models are viable. Moreove...

  15. Inherited Symmetry

    Science.gov (United States)

    Attanucci, Frank J.; Losse, John

    2008-01-01

    In a first calculus course, it is not unusual for students to encounter the theorems which state: If f is an even (odd) differentiable function, then its derivative is odd (even). In our paper, we prove some theorems which show how the symmetry of a continuous function f with respect to (i) the vertical line: x = a or (ii) with respect to the…

  16. Recursion Operator and Local and Nonlocal Symmetries of a New Modified KdV Equation

    Directory of Open Access Journals (Sweden)

    Qian Suping

    2013-01-01

    Full Text Available The recursion operator of a new modified KdV equation and its inverse are explicitly given. Acting the recursion operator and its inverse on the trivial symmetry 0 related to the identity transformation, the infinitely many local and nonlocal symmetries are obtained. Using a closed finite dimensional symmetry algebra with both local and nonlocal symmetries of the original model, some symmetry reductions and exact solutions are found.

  17. Symmetry, Symmetry Breaking and Topology

    Directory of Open Access Journals (Sweden)

    Siddhartha Sen

    2010-07-01

    Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.

  18. Analyses of the ``allowed'' inversion barriers of H2O and NH3: Incompleteness of the Woodward-Hoffmann HOMO-LUMO symmetry ideas due to neglect of molecular orbital terms

    Science.gov (United States)

    Edmiston, C.; Jarvie, J.; Bartleson, J.

    1986-06-01

    Walsh's rules correctly attribute the ``bent'' structures of H2O and NH3 to the occupation of the 1πz→3a1 HOMO not occupied in linear BeH2 and planar BH3. In Walsh's molecular orbital (MO) diagram E(3a1) decreases sharply with bending angle S. This has always been attributed incorrectly to changes in the 3a1 MO, mainly due to symmetry-allowed mixing with the LUMO, 4a*1. The forbidden bending of BeH2 and BH3 has been similarly ``explained.'' Using large-basis-set self-consistent field molecular orbital (SCF MO) ψs, we show that the integral Hellmann-Feynman theorem ΔEIHF≂ΔESCF much better than does the analogous second-order perturbation theory λE''(SE'=0 and λ=S2/2, ΔH≂SH'+λH''). ΔEIHF=++ΔNR≂Σni2Δ EIHFi+ΔNR, Δψ˜=(ψ/η)-ψ0, η=, ΔEIHFi=+, Δφ˜i=(φi/ηi)-φ0i, ηi=, ΔNA=ΔH-ΔNR. Both theories show a large negative term and small z> HOMO-UMO mixing term, which is positive in ΔEIHF. The HOMO-LUMO mixing term is small even when 3σ*g is optimized for the excited state. The ΔEIHFis and λE`is give the usual Walsh diagrams for bending of H2O and NH3, with or without MO partitioning of the nuclear repulsion change (ΔNR). However ``decoupling'' of the φ'is in ψ' makes the λE`is unreliable. The term acts to create a large allowed barrier to inversion for H2O and CH4, but a strong ΔNR nearly destroys an otherwise large barrier for NH3. acts to bend the linear H2O, planar NH3, and planar CH4, with HOMO-LUMO mixing being ``antibending.'' We show that understanding of MO correlation diagrams demands consideration of the ``static'' terms as well as the OMO-UMO mixing terms, which has not been appreciated by earlier workers so far as we are aware.

  19. Breaking Symmetries

    Directory of Open Access Journals (Sweden)

    Kirstin Peters

    2010-11-01

    Full Text Available A well-known result by Palamidessi tells us that πmix (the π-calculus with mixed choice is more expressive than πsep (its subset with only separate choice. The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla offered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of incestual processes (mixed choices that include both enabled senders and receivers for the same channel when running two copies in parallel. In both proofs, the role of breaking (initial symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result - based on a proper formalization of what it means to break symmetries without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reasonable encoding from πmix into πsep. We indicate how the respective proofs can be adapted and exhibit the consequences of varying notions of uniformity and reasonableness. In each case, the ability to break initial symmetries turns out to be essential.

  20. Crystallographic groups and topology in Escher. (Spanish:Grupos cristalográficos y topología en Escher).

    OpenAIRE

    Montesinos Amilibia, José María

    2010-01-01

    In the late 19th century Fedorov, Schoenflies, and Barlow classified the seventeen wallpaper groups (two-dimensional crystallographic groups, five of them direct movements and twelve of them inverse movements) and the 320 three-dimensional crystallographic groups. In order to get the lists of groups, they all used the same geometric strategy: to combine all possible movements and study them case by case. Later on, Zassenhaus developed a purely algebraic algorithm which allowed him to u...

  1. Symmetry Analysis of Thermoelectric Energy Converters with Inhomogeneous Legs

    Science.gov (United States)

    Korzhuev, M. A.

    2010-09-01

    Symmetry analysis has been applied to thermoelectric energy converters [thermoelectric generators (TEG), coolers (TEC), and heaters (TEH)] with inhomogeneous legs. The features of the crystallographic symmetry of thermoelectric materials and the symmetry of legs, thermocouples, and modules are studied. The effect of symmetry on the figure of merit Z of thermoelectric energy converters is considered. A general rule for proper placement of legs in thermoelectric converters is developed. A modified tetratomic classification for thermoelectric energy converters with inhomogeneous legs (TEGa, TEGb, TEC, and TEH) is proposed. An increase in Z for thermoelectric energy converters with inhomogeneous legs is due to the bulk thermoelectric effect. An increase in Z gives the reduction of irreversible processes in the modules (Joule heating and thermal conductivity), accompanying breaking of the symmetry of the legs. It is found that violations of the symmetry requirements can lead to significant energy losses in converters.

  2. Hidden symmetries in jammed systems

    Science.gov (United States)

    Morse, Peter K.; Corwin, Eric I.

    2016-07-01

    There are deep, but hidden, geometric structures within jammed systems, associated with hidden symmetries. These can be revealed by repeated transformations under which these structures lead to fixed points. These geometric structures can be found in the Voronoi tesselation of space defined by the packing. In this paper we examine two iterative processes: maximum inscribed sphere (MIS) inversion and a real-space coarsening scheme. Under repeated iterations of the MIS inversion process we find invariant systems in which every particle is equal to the maximum inscribed sphere within its Voronoi cell. Using a real-space coarsening scheme we reveal behavior in geometric order parameters which is length-scale invariant.

  3. Breaking Symmetries

    CERN Document Server

    Peters, Kirstin

    2010-01-01

    A well-known result by Palamidessi tells us that {\\pi}mix (the {\\pi}-calculus with mixed choice) is more expressive than {\\pi}sep (its subset with only separate choice). The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla of- fered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of "incestual" processes (mixed choices that include both enabled senders and receivers for the same channel) when running two copies in parallel. In both proofs, the role of breaking (ini- tial) symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result-based on a proper formalization of what it means to break symmetries-without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reason- able encoding from {\\pi}mix i...

  4. Breaking Symmetries

    CERN Document Server

    Peters, Kirstin; 10.4204/EPTCS.41.10

    2010-01-01

    A well-known result by Palamidessi tells us that \\pimix (the \\pi-calculus with mixed choice) is more expressive than \\pisep (its subset with only separate choice). The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla offered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of incestual processes (mixed choices that include both enabled senders and receivers for the same channel) when running two copies in parallel. In both proofs, the role of breaking (initial) symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result - based on a proper formalization of what it means to break symmetries without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reasonable encoding from \\pimix into \\pisep. We...

  5. A log-likelihood-gain intensity target for crystallographic phasing that accounts for experimental error.

    Science.gov (United States)

    Read, Randy J; McCoy, Airlie J

    2016-03-01

    The crystallographic diffraction experiment measures Bragg intensities; crystallographic electron-density maps and other crystallographic calculations in phasing require structure-factor amplitudes. If data were measured with no errors, the structure-factor amplitudes would be trivially proportional to the square roots of the intensities. When the experimental errors are large, and especially when random errors yield negative net intensities, the conversion of intensities and their error estimates into amplitudes and associated error estimates becomes nontrivial. Although this problem has been addressed intermittently in the history of crystallographic phasing, current approaches to accounting for experimental errors in macromolecular crystallography have numerous significant defects. These have been addressed with the formulation of LLGI, a log-likelihood-gain function in terms of the Bragg intensities and their associated experimental error estimates. LLGI has the correct asymptotic behaviour for data with large experimental error, appropriately downweighting these reflections without introducing bias. LLGI abrogates the need for the conversion of intensity data to amplitudes, which is usually performed with the French and Wilson method [French & Wilson (1978), Acta Cryst. A35, 517-525], wherever likelihood target functions are required. It has general applicability for a wide variety of algorithms in macromolecular crystallography, including scaling, characterizing anisotropy and translational noncrystallographic symmetry, detecting outliers, experimental phasing, molecular replacement and refinement. Because it is impossible to reliably recover the original intensity data from amplitudes, it is suggested that crystallographers should always deposit the intensity data in the Protein Data Bank.

  6. Internet Based Open Access Crystallographic Databases

    Science.gov (United States)

    Upreti, Girish; Seipel, Bjoern; Harvey, Morgan; Garrick, Will; Moeck, Peter

    2006-05-01

    Two freely accessible crystallographic databases are discussed: the Crystallographic Open Database (COD, http://crystallography.net) which contains over 37,000 crystal structures, and the Nano-Crystallography Database (NCD, http://nanocrystallography.research.pdx.edu) which we recently started to support image-based nanocrystallography and (nano) materials science education. Both databases collect crystallographic relevant information in a standardized format; the Crystallographic Information File (CIF). CIF is the standard file format adopted by the International Union of Crystallography (http://iucr.org) for the archiving and distribution of crystallographic information. A subset of the COD, the Predicted Crystallographic Online Database, allows for 3D structural displays of structural polyhedra and wireframes of approximately 2,600 entries. Since electron microscopist are interested in simple, yet technologically important materials, the crystallographic information for those materials will be included in our database. At our NCD site, entries in the COD and the NCD can be visualized in three dimensions (3D) along with (2D) lattice fringe fingerprints plots. The latter supports the identification of unknown nanocrystal phases from high-resolution transmission electron microscopy (HRTEM) images. Morphological crystal information from the database ``Bestimmungstabellen f"ur Kristalle/ ???????????? ??????????,'' (A.K. Boldyrew and W.W. Doliwo-Dobrowolsky, Zentrales Wissenschaftlichers Institute der Geologie und Sch"urfung, Leningrad/ Moscow, 1937/1939) will also be included in the NCD to support image-based nanocrystallography in 3D.

  7. Diffusion-equation method for crystallographic figure of merits.

    Science.gov (United States)

    Markvardsen, Anders J; David, William I F

    2010-09-01

    Global optimization methods play a significant role in crystallography, particularly in structure solution from powder diffraction data. This paper presents the mathematical foundations for a diffusion-equation-based optimization method. The diffusion equation is best known for describing how heat propagates in matter. However, it has also attracted considerable attention as the basis for global optimization of a multimodal function [Piela et al. (1989). J. Phys. Chem. 93, 3339-3346]. The method relies heavily on available analytical solutions for the diffusion equation. Here it is shown that such solutions can be obtained for two important crystallographic figure-of-merit (FOM) functions that fully account for space-group symmetry and allow the diffusion-equation solution to vary depending on whether atomic coordinates are fixed or not. The resulting expression is computationally efficient, taking the same order of floating-point operations to evaluate as the starting FOM function measured in terms of the number of atoms in the asymmetric unit. This opens the possibility of implementing diffusion-equation methods for crystallographic global optimization algorithms such as structure determination from powder diffraction data.

  8. Optical chirality in gyrotropic media: symmetry approach

    Science.gov (United States)

    Proskurin, Igor; Ovchinnikov, Alexander S.; Nosov, Pavel; Kishine, Jun-ichiro

    2017-06-01

    We discuss optical chirality in different types of gyrotropic media. Our analysis is based on the formalism of nongeometric symmetries of Maxwell’s equations in vacuum generalized to material media with given constituent relations. This approach enables us to directly derive conservation laws related to nongeometric symmetries. For isotropic chiral media, we demonstrate that like a free electromagnetic field, both duality and helicity generators belong to the basis set of nongeometric symmetries that guarantees the conservation of optical chirality. In gyrotropic crystals, which exhibit natural optical activity, the situation is quite different from the case of isotropic media. For light propagating along a certain crystallographic direction, there arises two distinct cases: (1) the duality is broken but the helicity is preserved, or (2) only the duality symmetry survives. We show that the existence of one of these symmetries (duality or helicity) is enough to define optical chirality. In addition, we present examples of low-symmetry media, where optical chirality cannot be defined.

  9. Symmetries in Non-Linear Mechanics

    CERN Document Server

    Aldaya, Victor; López-Ruiz, Francisco F; Cossío, Francisco

    2014-01-01

    In this paper we exploit the use of symmetries of a physical system so as to characterize the corresponding solution manifold by means of Noether invariants. This constitutes a necessary preliminary step towards the correct quantisation in non-linear cases, where the success of Canonical Quantisation is not guaranteed in general. To achieve this task "point symmetries" of the Lagrangian are generally not enough, and the notion of contact transformations is in order. The use of the Poincar\\'e-Cartan form permits finding both the symplectic structure on the solution manifold, through the Hamilton-Jacobi transformation, and the required symmetries, realized as Hamiltonian vector fields, associated with functions on the solution manifold (thus constituting an inverse of the Noether Theorem), lifted back to the evolution space through the inverse of this Hamilton-Jacobi mapping. In this framework, solutions and symmetries are somehow identified and this correspondence is also kept at a perturbative level. We prese...

  10. Defining the Crystallographic Fingerprint of Extraterrestrial Treasures

    Science.gov (United States)

    Forman, L. V.; Bland, P. A.; Timms, N. E.; Daly, L.; Benedix, G. K.; Trimby, P. W.

    2016-08-01

    An approach to determine the crystallographic fingerprint of chondritic matrix grains, which is complimentary to the geochemical signature commonly identified to constrain some aspects of the petrogenesis of a sample.

  11. CP and other Symmetries of Symmetries

    CERN Document Server

    Trautner, Andreas

    2016-01-01

    Outer automorphisms of symmetries ("symmetries of symmetries") in relativistic quantum field theories are studied, including charge conjugation (C), space-reflection (P) , and time-reversal (T) transformations. The group theory of outer automorphisms is pedagogically introduced and it is shown that CP transformations are special outer automorphisms of the global, local, and space-time symmetries of a theory. It is shown that certain discrete groups allow for a group theoretical prediction of parameter independent CP violating complex phases with fixed geometrical values. The remainder of this thesis pioneers the study of outer automorphisms which are not related to C, P, or T. It is shown how outer automorphisms, in general, relate symmetry invariants and, in theories with spontaneous symmetry breaking, imply relations between different vacuum expectation values. Thereby, outer automorphisms can give rise to emergent symmetries. An example model with a discrete symmetry and three copies of the Standard Model ...

  12. Some symmetries in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Henley, E.M.

    1981-09-01

    Internal and space-time symmetries are discussed in this group of lectures. The first of the lectures deals with an internal symmetry, or rather two related symmetries called charge independence and charge symmetry. The next two discuss space-time symmetries which also hold approximately, but are broken only by the weak forces; that is, these symmetries hold for both the hadronic and electromagnetic forces. (GHT)

  13. Symmetry and symmetry breaking in particle physics

    OpenAIRE

    Tsou, ST

    1998-01-01

    Symmetry, in particular gauge symmetry, is a fundamental principle in theoretical physics. It is intimately connected to the geometry of fibre bundles. A refinement to the gauge principle, known as ``spontaneous symmetry breaking'', leads to one of the most successful theories in modern particle physics. In this short talk, I shall try to give a taste of this beautiful and exciting concept.

  14. Identification of inversion domains in KTiOPO{sub 4}via resonant X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fabrizi, Federica, E-mail: federica.fabrizi@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE (United Kingdom); Thomas, Pamela A. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Nisbet, Gareth; Collins, Stephen P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE (United Kingdom)

    2015-05-14

    The identification and high-resolution mapping of the absolute crystallographic structure in multi-domain ferroelectric KTiOPO{sub 4} is achieved through a novel synchrotron X-ray diffraction method. On a single Bragg reflection, the intensity ratio in resonant diffraction below and above the Ti absorption K edge demonstrates a domain contrast up to a factor of ∼270, thus implementing a non-contact, non-destructive imaging technique with micrometre spatial resolution, applicable to samples of arbitrarily large dimensions. A novel method is presented for the identification of the absolute crystallographic structure in multi-domain polar materials such as ferroelectric KTiOPO{sub 4}. Resonant (or ‘anomalous’) X-ray diffraction spectra collected across the absorption K edge of Ti (4.966 keV) on a single Bragg reflection demonstrate a huge intensity ratio above and below the edge, providing a polar domain contrast of ∼270. This allows one to map the spatial domain distribution in a periodically inverted sample, with a resolution of ∼1 µm achieved with a microfocused beam. This non-contact, non-destructive technique is well suited for samples of large dimensions (in contrast with traditional resonant X-ray methods based on diffraction from Friedel pairs), and its potential is particularly relevant in the context of physical phenomena connected with an absence of inversion symmetry, which require characterization of the underlying absolute atomic structure (such as in the case of magnetoelectric coupling and multiferroics)

  15. Bloch wave symmetries in electron diffraction: applications to Friedels law, Gjonnes-Moodie lines and refraction at interfaces.

    Science.gov (United States)

    Valset, K; Tafto, J

    2011-06-01

    We classify the point symmetries at the different points in the Brillouin zone for the 17 two-dimensional space groups and the symmetries of the Bloch waves for the 10 two-dimensional crystallographic point groups. Simple examples involving breakdown of Friedels law, Gjonnes-Moodie lines, and reflection and refraction at interfaces are presented.

  16. Inversion in Mathematical Thinking and Learning

    Science.gov (United States)

    Greer, Brian

    2012-01-01

    Inversion is a fundamental relational building block both within mathematics as the study of structures and within people's physical and social experience, linked to many other key elements such as equilibrium, invariance, reversal, compensation, symmetry, and balance. Within purely formal arithmetic, the inverse relationships between addition and…

  17. Symmetry in chemistry

    CERN Document Server

    Jaffé, Hans H

    1977-01-01

    This book, devoted exclusively to symmetry in chemistry and developed in an essentially nonmathematical way, is a must for students and researchers. Topics include symmetry elements and operations, multiple symmetry operations, multiplication tables and point groups, group theory applications, and crystal symmetry. Extensive appendices provide useful tables.

  18. Lattice Regularization and Symmetries

    CERN Document Server

    Hasenfratz, Peter; Von Allmen, R; Allmen, Reto von; Hasenfratz, Peter; Niedermayer, Ferenc

    2006-01-01

    Finding the relation between the symmetry transformations in the continuum and on the lattice might be a nontrivial task as illustrated by the history of chiral symmetry. Lattice actions induced by a renormalization group procedure inherit all symmetries of the continuum theory. We give a general procedure which gives the corresponding symmetry transformations on the lattice.

  19. Deriving diffeomorphism symmetry

    CERN Document Server

    Kleppe, Astri

    2014-01-01

    In an earlier article, we have "derived" space, as a part of the Random Dynamics project. In order to get locality we need to obtain reparametrization symmetry, or equivalently, diffeomorphism symmetry. There we sketched a procedure for how to get locality by first obtaining reparametrization symmetry, or equivalently, diffeomorphism symmetry. This is the object of the present article.

  20. Electron diffraction study of {alpha}-AlMnSi crystals including non-crystallographic axes

    Energy Technology Data Exchange (ETDEWEB)

    Song, G.L.; Bursill, L.A.

    1997-06-01

    The structure of crystalline {alpha}-AlMnSi is examined by electron diffraction. Six distinct zone axes are examined, including both normal crystallographic and non-crystallographic zones axes, allowing the space group symmetry to be studied. Electron diffraction patterns characteristic of Pm3-bar were obtained for thicker specimens. However, for very thin specimens, as used for HRTEM imaging, the electron diffraction patterns were characteristic of Im3-bar space group symmetry. The structural basis of the Pm3-bar to Im3-bar transformation may be understood in terms of an analysis of the icosahedral structural elements located at the corners and body-centers of the cubic unit cell. A method for indexing the non-crystallographic zone axis diffraction patterns is described. An electron diffraction pattern of the 5-fold axis of the quasicrystalline phase i-AlMnSi is also included; this is compared with the experimental results and calculations for the [0{tau}1] axis of Pm3-bar and Im3-bar crystalline phases. 26 refs., 4 tabs., 7 figs.

  1. 时域反相对称与扩频技术的混合技术研究%Hybrid Technology of Time Domain Phase-inversion Symmetry and Spread Spectrum

    Institute of Scientific and Technical Information of China (English)

    冯德武; 谭旭

    2011-01-01

    According to the relativity of noise in time domain and the antinoise principle of time domain phase-inversion symme-tric method, a novel spread spectrum communication method is proposed in combination with phase-inversion symmetric method and spread spectrum communication. The simulation and experimental verification indicate that the time domain phase-inversion symmetric and spread spectrum system can get higher output SNR, and under the same transmission conditions, capability of phase-inversion symmetric spread spectrum technology is superior to the general spread spectrum technology.%根据噪声在时域上的相关性以及反相对称法的抗噪原理,将反相对称法与扩频通信相结合,提出了一种新的扩频通信方法.通过仿真和实验验证表明,时域反相对称扩频技术能使系统获得较高的输出信噪比,且在相同的传输条件下,反相对称扩频技术的性能优于一般的扩频技术.

  2. Symmetries in Nuclei

    CERN Document Server

    Van Isacker, P

    2010-01-01

    The use of dynamical symmetries or spectrum generating algebras for the solution of the nuclear many-body problem is reviewed. General notions of symmetry and dynamical symmetry in quantum mechanics are introduced and illustrated with simple examples such as the SO(4) symmetry of the hydrogen atom and the isospin symmetry in nuclei. Two nuclear models, the shell model and the interacting boson model, are reviewed with particular emphasis on their use of group-theoretical techniques.

  3. Nexus, crystallographic computing all around the world.

    Science.gov (United States)

    Cranswick, Lachlan Michael David; Bisson, William; Cockcroft, Jeremy Karl

    2008-01-01

    Crystallographic Nexus CD-ROMs, containing a range of free crystallographic software for single-crystal and powder diffraction available on the Internet, have been distributed on request since 1996. The free CD is made in the form of a ;virtual Internet' with the main intent of benefiting crystallographers with inadequate Internet access. The IUCr funds an annual/biennial update which is distributed to known previous recipients. Feedback from current recipients indicates the CD is still useful. The most current IUCr-funded CD is being produced by the CCP14 project at University College London and The Royal Institution UK for distribution to the ECM 2007 and AsCA 2007 conferences.

  4. Energy Spectrum Symmetry of Heisenberg Model in Fock Space

    Institute of Scientific and Technical Information of China (English)

    WANG An-Min; ZHU Ren-Gui

    2006-01-01

    @@ We extend the BCS paring model with equally spaced energy levels to a general one-dimensional spin-l/2 Heisenberg model. The two well-known symmetries of the Heisenberg model, i.e. permutational and spin-inversion symmetries, no longer exist. However, when jointing these two operations together, we find a new symmetry of energy spectrum between its subspace n and subspace L - n of the Fock space. A rigorous proof is presented.

  5. Symmetries and Similarity Reductions of Nonlinear Diffusion Equation

    Institute of Scientific and Technical Information of China (English)

    LI Hui-Jun; RUAN Hang-Yu

    2004-01-01

    The inverse recursion operator, three new sets of symmetries, and infinite-dimensional Lie algebras for the nonlinear diffusion equation are given. Some nonlocal symmetries related to eigenvectors of the recursion operator Ф with the eigenvalue λi are also obtained with the help of the recursion operator Фi = Ф - λi. Using a part of these symmetries we get twelve types of nontrivial new similarity reduction.

  6. Symmetries and Similarity Reductions of Nonlinear Diffusion Equation

    Institute of Scientific and Technical Information of China (English)

    LIHui-Jun; RUANHang-Yu

    2004-01-01

    The inverse recursion operator, three new sets of symmetries, and infinite-dimensional Lie algebras for the nonlinear diffusion equation are given. Some nonlocal symmetries related to eigenvectors of the recursion operator with the eigenvalue λi are also obtained with the help of the recursion operator φi=φ-λi. Using a part of these symmetries we get twelve types of nontrivial new similarity reduction.

  7. Novel Kac-Moody-type affine extensions of non-crystallographic Coxeter groups

    CERN Document Server

    Dechant, Pierre-Philippe; Twarock, Reidun

    2011-01-01

    Motivated by recent results in mathematical virology, we present novel asymmetric Z[tau]-integer-valued affine extensions of the non-crystallographic Coxeter groups H_2, H_3 and H_4 derived in a Kac-Moody-type formalism. In particular, we show that the affine reflection planes which extend the Coxeter group H_3 generate (twist) translations along 2-, 3- and 5-fold axes of icosahedral symmetry and classify these translations in terms of Fibonacci recursion relations, thus providing a framework to explain results of Keef et al and Wardman at the group level. Finally, we extend this classification to the case of the non-crystallographic Coxeter groups H_2 and H_4. These results should have applications in physics (quasicrystals), biology (viruses) and chemistry (fullerenes).

  8. The symmetry of man.

    Science.gov (United States)

    Ermolenko, Alexander E; Perepada, Elena A

    2007-01-01

    The paper contains a description of basic regularities in the manifestation of symmetry of human structural organization and its ontogenetic and phylogenetic development. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant. The symmetry of the chromosome, of the embrio at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described. An hypothesis is postulated that the two-plane symmetry is formed by two mechanisms: a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and, b) genetic mechanisms of the development of chromosomes having two-plane symmetry.

  9. Symmetries in Physics

    Science.gov (United States)

    Brading, Katherine; Castellani, Elena

    2010-01-01

    Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.

  10. Approximate flavor symmetries

    OpenAIRE

    Rašin, Andrija

    1994-01-01

    We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.

  11. The Symmetry Principle

    Directory of Open Access Journals (Sweden)

    Joe Rosen

    2005-12-01

    Full Text Available Abstract: The symmetry principle is described in this paper. The full details are given in the book: J. Rosen, Symmetry in Science: An Introduction to the General Theory (Springer-Verlag, New York, 1995.

  12. Origin of family symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Ratz, Michael [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-04-15

    Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.

  13. Neutrinos and flavor symmetries

    Science.gov (United States)

    Tanimoto, Morimitsu

    2015-07-01

    We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ13 and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ13 is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.

  14. Neutrinos and flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Tanimoto, Morimitsu

    2015-07-15

    We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ{sub 13} and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ{sub 13} is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.

  15. Inverse Limits

    CERN Document Server

    Ingram, WT

    2012-01-01

    Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The book begins with an introduction through inverse limits on [0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete the book. Although it is not a book on dynamics, the influen

  16. Polynomial Graphs and Symmetry

    Science.gov (United States)

    Goehle, Geoff; Kobayashi, Mitsuo

    2013-01-01

    Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…

  17. Polynomial Graphs and Symmetry

    Science.gov (United States)

    Goehle, Geoff; Kobayashi, Mitsuo

    2013-01-01

    Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…

  18. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  19. Single photon induced symmetry breaking of H2 dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.; Fernandez, J.; Havermeier, T.; Foucar, L.; Weber, Th; Kreidi, K.; Schoffler, M.; Schmidt, L.; Jahnke, T.; Landers, A.L.; Jagutzki, O.; Czasch, A.; Benis, E.; Osipov, T.; Belkacem, A.; Prior,M.H.; Schmidt-Bocking, H.; Cocke, C.L.; Dorner, R.

    2006-12-06

    H{sub 2}, the smallest and most abundant molecule in the universe, has a perfectly symmetric ground state. What does it take to break this symmetry? Here we show that the inversion symmetry can be broken by absorption of a linearly polarized photon, which itself has inversion symmetry. In particular, the emission of a photoelectron with subsequent dissociation of the remaining H{sub 2}{sup +} fragment shows no symmetry with respect to the ionic H+ and neutral H atomic fragments. This result is the consequence of the entanglement between symmetric and antisymmetric H{sub 2}{sup +} states resulting from autoionization. The mechanisms behind this symmetry breaking are general for all molecules.

  20. W-symmetry

    CERN Document Server

    Bouwknegt, P G

    1995-01-01

    W-symmetry is an extension of conformal symmetry in two dimensions. Since its introduction in 1985, W-symmetry has become one of the central notions in the study of two-dimensional conformal field theory. The mathematical structures that underlie W-symmetry are so-called W-algebras, which are higher-spin extensions of the Virasoro algebra. This book contains a collection of papers on W-symmetry, covering the period from 1985 through 1993. Its main focus is the construction of W-algebras and their representation theory. A recurrent theme is the intimate connection between W-algebras and affine

  1. Cassia grandis Linn. f. seed galactomannan: structural and crystallographical studies.

    Science.gov (United States)

    Joshi, Harsha; Kapoor, Virendra P

    2003-09-01

    Cassia grandis is a small or medium sized tree, found in abundance throughout India. The seeds contain about 50% endosperm gum and possess the characteristics of becoming a potential source of seed gum. The purified polysaccharide has been characterized as a pure galactomannan having a mannose-galactose ratio of 3.15; molecular weight (Mw) 80,200; polydispersity (Mw/Mn), 1.35 and intrinsic viscosity [eta], 848 mL/g. Methylation, periodate oxidation, Smith degradation and 13C NMR studies confirm that the polysaccharide has the basic structure of legume galactomannans consisting of a beta-(1-->4)-linked main mannan backbone to which galactose units are attached at O-6. The orthorhombic lattice constants of the hydrated gum are as follows: a=9.00, b=24.81, c=10.30 A. The crystallographic data establish that the probable space group symmetry of the unit cell is P2(1)2(1)2. The results are in contradiction to earlier reports (Indian J. Chem. 16B (1978) 966; J. Indian Chem. Soc. 55 (1978) 1216) in which a non-galactomannan polysaccharide structure has been assigned having a main chain of (1-->4)-linked galactose and mannose units in the molar ratio 6:3, where 50% of the galactose units branched with two galactose and one mannose through 1-->3 linkage.

  2. Quantum crystallographic charge density of urea

    Directory of Open Access Journals (Sweden)

    Michael E. Wall

    2016-07-01

    Full Text Available Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the data is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. The results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.

  3. Crystallographic theory of the martensitic transformation

    Directory of Open Access Journals (Sweden)

    Edwar A. Torres-López

    2014-08-01

    Full Text Available The martensitic transformation is one of the most researched topics in the materials science during the 20th century. The second half of this century was mainly remembered by the development of several theories related with the kinetics of phase transformation, the mechanisms involved in the nucleation phenomenon, and the way as the crystallographic change is produced. In this paper are described the fundamental concepts that are defined in the crystallographic framework of the martensitic transformation. The study is focused on the application of the most outstanding crystallographic models: the Bain; the Wechsler, Lieberman & Read; and the Bowles & Mackenzie. The topic is presented based upon the particular features of the martensitic transformation, such as its non-diffusional character, type of interface between parent (austenite and product (martensite phases, the formation of substructural defects, and the shape change; all of these features are mathematically described by equations aimed to predict how the transformation will take place rather than to explain the actual movement of the atoms within the structure. This mathematical development is known as the Phenomenological Theory of Martensite Crystallography (PTMC.

  4. A preliminary neutron crystallographic study of thaumatin

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Susana C. M. [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); Blakeley, Matthew P. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Leal, Ricardo M. F. [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); ESRF, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble (France); Mitchell, Edward P. [EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); ESRF, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble (France); Forsyth, V. Trevor, E-mail: tforsyth@ill.fr [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom)

    2008-05-01

    Preliminary neutron crystallographic data from the sweet protein thaumatin have been recorded using the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results illustrate the feasibility of a full neutron structural analysis aimed at further understanding the molecular basis of the perception of sweet taste. Such an analysis will exploit the use of perdeuterated thaumatin. A preliminary neutron crystallographic study of the sweet protein thaumatin is presented. Large hydrogenated crystals were prepared in deuterated crystallization buffer using the gel-acupuncture method. Data were collected to a resolution of 2 Å on the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results demonstrate the feasibility of a full neutron crystallographic analysis of this structure aimed at providing relevant information on the location of H atoms, the distribution of charge on the protein surface and localized water in the structure. This information will be of interest for understanding the specificity of thaumatin–receptor interactions and will contribute to further understanding of the molecular mechanisms underlying the perception of taste.

  5. Quantum crystallographic charge density of urea.

    Science.gov (United States)

    Wall, Michael E

    2016-07-01

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the data is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. The results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.

  6. Quantum crystallographic charge density of urea

    Science.gov (United States)

    Wall, Michael E.

    2016-01-01

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the data is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. The results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement. PMID:27437111

  7. Rapid Creation of Three-Dimensional, Tactile Models from Crystallographic Data

    Directory of Open Access Journals (Sweden)

    Nathan B. Fisher

    2016-01-01

    Full Text Available A method for the conversion of crystallographic information framework (CIF files to stereo lithographic data files suitable for printing on three-dimensional printers is presented. Crystallographic information framework or CIF files are capable of being manipulated in virtual space by a variety of computer programs, but their visual representations are limited to the two-dimensional surface of the computer screen. Tactile molecular models that demonstrate critical ideas, such as symmetry elements, play a critical role in enabling new students to fully visualize crystallographic concepts. In the past five years, major developments in three-dimensional printing has lowered the cost and complexity of these systems to a level where three-dimensional molecular models may be easily created provided that the data exists in a suitable format. Herein a method is described for the conversion of CIF file data using existing free software that allows for the rapid creation of inexpensive molecular models. This approach has numerous potential applications in basic research, education, visualization, and crystallography.

  8. Inversion-symmetric topological insulators

    Science.gov (United States)

    Hughes, Taylor L.; Prodan, Emil; Bernevig, B. Andrei

    2011-06-01

    We analyze translationally invariant insulators with inversion symmetry that fall outside the current established classification of topological insulators. These insulators exhibit no edge or surface modes in the energy spectrum and hence they are not edge metals when the Fermi level is in the bulk gap. However, they do exhibit protected modes in the entanglement spectrum localized on the cut between two entangled regions. Their entanglement entropy cannot be made to vanish adiabatically, and hence the insulators can be called topological. There is a direct connection between the inversion eigenvalues of the Hamiltonian band structure and the midgap states in the entanglement spectrum. The classification of protected entanglement levels is given by an integer N, which is the difference between the negative inversion eigenvalues at inversion symmetric points in the Brillouin zone, taken in sets of 2. When the Hamiltonian describes a Chern insulator or a nontrivial time-reversal invariant topological insulator, the entirety of the entanglement spectrum exhibits spectral flow. If the Chern number is zero for the former, or time reversal is broken in the latter, the entanglement spectrum does not have spectral flow, but, depending on the inversion eigenvalues, can still exhibit protected midgap bands similar to impurity bands in normal semiconductors. Although spectral flow is broken (implying the absence of real edge or surface modes in the original Hamiltonian), the midgap entanglement bands cannot be adiabatically removed, and the insulator is “topological.” We analyze the linear response of these insulators and provide proofs and examples of when the inversion eigenvalues determine a nontrivial charge polarization, a quantum Hall effect, an anisotropic three-dimensional (3D) quantum Hall effect, or a magnetoelectric polarization. In one dimension, we establish a link between the product of the inversion eigenvalues of all occupied bands at all inversion

  9. ON THE NOETHER SYMMETRY AND LIE SYMMETRY OF MECHANICAL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    梅凤翔; 郑改华

    2002-01-01

    The Noether symmetry is an invariance of Hamilton action under infinitesimal transformations of time and the coordinates. The Lie symmetry is an invariance of the differential equations of motion under the transformations. In this paper, the relation between these two symmetries is proved definitely and firstly for mechanical systems. The results indicate that all the Noether symmetries are Lie symmetries for Lagrangian systems meanwhile a Noether symmetry is a Lie symmetry for the general holonomic or nonholonomic systems provided that some conditions hold.

  10. World directory of crystallographers and of other scientists employing crystallographic methods

    CERN Document Server

    Filippini, G; Hashizume, H; Torriani, I; Duax, W

    1995-01-01

    The 9th edition of the World Directory of Crystallographers and of Other Scientists Employing Crystallographic Methods, which contains 7907 entries embracing 72 countries, differs considerably from the 8th edition, published in 1990. The content has been updated, and the methods used to acquire the information presented and to produce this new edition of the Directory have involved the latest advances in technology. The Directory is now also available as a regularly updated electronic database, accessible via e-mail, Telnet, Gopher, World-Wide Web, and Mosaic. Full details are given in an Appendix to the printed edition.

  11. From physical symmetries to emergent gauge symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Barceló, Carlos [Instituto de Astrofísica de Andalucía (IAA-CSIC),Glorieta de la Astronomía, 18008 Granada (Spain); Carballo-Rubio, Raúl [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Laboratory for Quantum Gravity & Strings,Department of Mathematics & Applied Mathematics, University of Cape Town,Private Bag, Rondebosch 7701 (South Africa); Di Filippo, Francesco [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Dipartamento di Scienze Fisiche “E.R. Caianiello”, Università di Salerno,I-84081 Fisciano (Italy); Garay, Luis J. [Departamento de Física Teórica II, Universidad Complutense de Madrid, 28040 Madrid (Spain); Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121, 28006 Madrid (Spain)

    2016-10-17

    Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.

  12. From physical symmetries to emergent gauge symmetries

    Science.gov (United States)

    Barceló, Carlos; Carballo-Rubio, Raúl; Di Filippo, Francesco; Garay, Luis J.

    2016-10-01

    Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.

  13. From physical symmetries to emergent gauge symmetries

    CERN Document Server

    Barceló, Carlos; Di Filippo, Francesco; Garay, Luis J

    2016-01-01

    Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent grav...

  14. Optimization leads to symmetry

    Institute of Scientific and Technical Information of China (English)

    Chenghong WANG; Yuqian GUO; Daizhan CHENG

    2004-01-01

    The science of complexity studies the behavior and properties of complex systems in nature and human society.Particular interest has been put on their certain simple common properties.Symmetry is one of such properties.Symmetric phenomena can be found in many complex systems.The purpose of this paper is to reveal the internal reason of the symmetry.Using some physical systems and geometric objects,the paper shows that many symmetries are caused by optimization under certain criteria.It has also been revealed that an evolutional process may lead to symmetry.

  15. Approximate and renormgroup symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling

    2009-07-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  16. Symmetries in atmospheric sciences

    CERN Document Server

    Bihlo, Alexander

    2009-01-01

    Selected applications of symmetry methods in the atmospheric sciences are reviewed briefly. In particular, focus is put on the utilisation of the classical Lie symmetry approach to derive classes of exact solutions from atmospheric models. This is illustrated with the barotropic vorticity equation. Moreover, the possibility for construction of partially-invariant solutions is discussed for this model. A further point is a discussion of using symmetries for relating different classes of differential equations. This is illustrated with the spherical and the potential vorticity equation. Finally, discrete symmetries are used to derive the minimal finite-mode version of the vorticity equation first discussed by E. Lorenz (1960) in a sound mathematical fashion.

  17. Inverse disjuncties

    NARCIS (Netherlands)

    Malepaard, J.

    2007-01-01

    Balansschikkingen (of negatief gebonden of-constructies) zijn volgens de in dit artikel ontwikkelde hypothese inverse disjuncties (id's). Het zijn tweeledige zinnen waarvan het eerste lid een verplichte negatieve of minimaliserende constituent bevat en het tweede lid met of begint. Evenals

  18. Crystallographic Analysis of Tapering of ADP Crystallites

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    On the basis of crystallographic characteristics of ADP (ammonium dihydrogen phosphate) crystals and the selected growth conditions, the growth habit of ADP crystals was studied. In comparison with pyramidal planes, the growth rate of prismatic faces is slower and more sensitive to the additives and impurities for ADP crystals. When the supersaturation is low, the advance of growth steps on prismatic face can be blocked by ethanol or impurities, the crystal morphology is changed from the tetragonal prism to shuttle (i.e., the tapered shape). The tapering formation of ADP crystallites was structurally studied in a novel view.

  19. Symmetry and Interculturality

    Science.gov (United States)

    Marchis, Iuliana

    2009-01-01

    Symmetry is one of the fundamental concepts in Geometry. It is a Mathematical concept, which can be very well connected with Art and Ethnography. The aim of the article is to show how to link the geometrical concept symmetry with interculturality. For this mosaics from different countries are used.

  20. Symmetry Festival 2016

    CERN Document Server

    2016-01-01

    The Symmetry Festival is a science and art program series, the most important periodic event (see its history) to bring together scientists, artists, educators and practitioners interested in symmetry (its roots, what is behind, applications, etc.), or in the consequences of its absence.

  1. Symmetries in Optimal Control

    NARCIS (Netherlands)

    Schaft, A.J. van der

    1987-01-01

    It is argued that the existence of symmetries may simplify, as in classical mechanics, the solution of optimal control problems. A procedure for obtaining symmetries for the optimal Hamiltonian resulting from the Maximum Principle is given; this avoids the actual calculation of the optimal

  2. Collaborative annotation of 3D crystallographic models.

    Science.gov (United States)

    Hunter, J; Henderson, M; Khan, I

    2007-01-01

    This paper describes the AnnoCryst system-a tool that was designed to enable authenticated collaborators to share online discussions about 3D crystallographic structures through the asynchronous attachment, storage, and retrieval of annotations. Annotations are personal comments, interpretations, questions, assessments, or references that can be attached to files, data, digital objects, or Web pages. The AnnoCryst system enables annotations to be attached to 3D crystallographic models retrieved from either private local repositories (e.g., Fedora) or public online databases (e.g., Protein Data Bank or Inorganic Crystal Structure Database) via a Web browser. The system uses the Jmol plugin for viewing and manipulating the 3D crystal structures but extends Jmol by providing an additional interface through which annotations can be created, attached, stored, searched, browsed, and retrieved. The annotations are stored on a standardized Web annotation server (Annotea), which has been extended to support 3D macromolecular structures. Finally, the system is embedded within a security framework that is capable of authenticating users and restricting access only to trusted colleagues.

  3. Lectures on Yangian Symmetry

    CERN Document Server

    Loebbert, Florian

    2016-01-01

    In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfeld's original motivation to construct solutions to the quantum Yang-Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang-Mills theory and indicate its impact on the dila...

  4. Spontaneous Symmetry Probing

    CERN Document Server

    Nicolis, Alberto

    2011-01-01

    For relativistic quantum field theories, we consider Lorentz breaking, spatially homogeneous field configurations or states that evolve in time along a symmetry direction. We dub this situation "spontaneous symmetry probing" (SSP). We mainly focus on internal symmetries, i.e. on symmetries that commute with the Poincare group. We prove that the fluctuations around SSP states have a Lagrangian that is explicitly time independent, and we provide the field space parameterization that makes this manifest. We show that there is always a gapless Goldstone excitation that perturbs the system in the direction of motion in field space. Perhaps more interestingly, we show that if such a direction is part of a non-Abelian group of symmetries, the Goldstone bosons associated with spontaneously broken generators that do not commute with the SSP one acquire a gap, proportional to the SSP state's "speed". We outline possible applications of this formalism to inflationary cosmology.

  5. Partial Dynamical Symmetry as an Intermediate Symmetry Structure

    CERN Document Server

    Leviatan, A

    2003-01-01

    We introduce the notion of a partial dynamical symmetry for which a prescribed symmetry is neither exact nor completely broken. We survey the different types of partial dynamical symmetries and present empirical examples in each category.

  6. Symmetry of the polarizability tensors for molecules with D 5h and I h symmetry

    Science.gov (United States)

    Ramaniah, Lavanya M.; Nair, Selvakumar V.; Rustagi, Kailash C.

    1993-02-01

    We present the spatial symmetry relations between the components of the linear and nonlinear electric dipolar polarizability tensors for the symmetry groups of C 60 and C 70 molecules viz., I h and D 5h. We show that the first hyperpolarizability β of C 7 0 vanishes although the molecule is not inversion symmetric. The second hyperpolarizability γ for C 60 has the same structure as that for an isotropic system. Based on these results, optical harmonic generation measurements to study the inter-molecular bonding in C 60 and C 70 crystals are suggested.

  7. Mei Symmetry and Lie Symmetry of Relativistic Hamiltonian System

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-Hui; YAN Xiang-Hong; LI Hong; CHEN Pei-Sheng

    2004-01-01

    The Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are studied. The definition and criterion of the Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are given. The relationship between them is found. The conserved quantities which the Mei symmetry and the Lie symmetry lead to are obtained.An example is given to illustrate the application of the result.

  8. Vector magneto-optical sensor based on transparent magnetic films with cubic crystallographic symmetry

    Science.gov (United States)

    Rogachev, A. E.; Vetoshko, P. M.; Gusev, N. A.; Kozhaev, M. A.; Prokopov, A. R.; Popov, V. V.; Dodonov, D. V.; Shumilov, A. G.; Shaposhnikov, A. N.; Berzhansky, V. N.; Zvezdin, A. K.; Belotelov, V. I.

    2016-10-01

    The concept of vector magneto-optical magnetometry is proposed and experimentally demonstrated. The key element of the vector magnetometer is a transparent high Faraday activity magnetic film with a cubic crystal lattice. Magnetocrystalline anisotropy of the film leads to the three dimensional trajectory of the film magnetization when the magnetization is rotated by the control magnetic field. It makes the magnetization sensitive to all three components of the external magnetic field. This field can be found from the harmonic composition of the Faraday rotation dependence on the azimuth angle of the control magnetic field. The demonstrated vector magnetometer is promising for mapping and visualization of ultra small magnetic fields.

  9. SYMMETRIES AND CONSERVED QUANTITIES FOR SYSTEMS OF GENERALIZED CLASSICAL MECHANICS

    Institute of Scientific and Technical Information of China (English)

    Zhang Yi; Shang Mei; Mei Feng-xiang

    2000-01-01

    In this paper, the symmetries and the conserved quantities for systemsof generalized classical mechanics are studied. First, the generalizedNoether's theorem and the generalized Noether's inverse theorem of thesystems are given, which are based upon the invariant properties of thecanonical action with respect to the action of the infinitesimaltransformation of r-parameter finite group of transformation; second,the Lie symmetries and conserved quantities of the systems are studiedin accordance with the Lie's theory of the invariance of differentialequations under the transformation of infinitesimal groups; and finally,the inner connection between the two kinds of symmetries of systems isdiscussed.

  10. Symmetry classification of time-fractional diffusion equation

    Science.gov (United States)

    Naeem, I.; Khan, M. D.

    2017-01-01

    In this article, a new approach is proposed to construct the symmetry groups for a class of fractional differential equations which are expressed in the modified Riemann-Liouville fractional derivative. We perform a complete group classification of a nonlinear fractional diffusion equation which arises in fractals, acoustics, control theory, signal processing and many other applications. Introducing the suitable transformations, the fractional derivatives are converted to integer order derivatives and in consequence the nonlinear fractional diffusion equation transforms to a partial differential equation (PDE). Then the Lie symmetries are computed for resulting PDE and using inverse transformations, we derive the symmetries for fractional diffusion equation. All cases are discussed in detail and results for symmetry properties are compared for different values of α. This study provides a new way of computing symmetries for a class of fractional differential equations.

  11. Partial Dynamical Symmetries

    CERN Document Server

    Leviatan, A

    2010-01-01

    This overview focuses on the notion of partial dynamical symmetry (PDS), for which a prescribed symmetry is obeyed by a subset of solvable eigenstates, but is not shared by the Hamiltonian. General algorithms are presented to identify interactions, of a given order, with such intermediate-symmetry structure. Explicit bosonic and fermionic Hamiltonians with PDS are constructed in the framework of models based on spectrum generating algebras. PDSs of various types are shown to be relevant to nuclear spectroscopy, quantum phase transitions and systems with mixed chaotic and regular dynamics.

  12. Physics from symmetry

    CERN Document Server

    Schwichtenberg, Jakob

    2015-01-01

    This is a textbook that derives the fundamental theories of physics from symmetry.   It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations.

  13. Filter back—projection technique applied to Abel inversion

    Institute of Scientific and Technical Information of China (English)

    JiangShano-En; LiuZhong-Li; 等

    1997-01-01

    The inverse Abel transform is applicable to optically thin plasma with cylindrical symmetry,which is often encountered in plasma physics and inertial(or magnetic)confinemant fusion.The filter back-projection technique is modified,and then a new method of inverse Abel transform is presented.

  14. X-ray crystallographic studies of metalloproteins.

    Science.gov (United States)

    Volbeda, Anne

    2014-01-01

    Many proteins require metals for their physiological function. In combination with spectroscopic characterizations, X-ray crystallography is a very powerful method to correlate the function of protein-bound metal sites with their structure. Due to their special X-ray scattering properties, specific metals may be located in metalloprotein structures and eventually used for phasing the diffracted X-rays by the method of Multi-wavelength Anomalous Dispersion (MAD). How this is done is the principle subject of this chapter. Attention is also given to the crystallographic characterization of different oxidation states of redox active metals and to the complication of structural changes that may be induced by X-ray irradiation of protein crystals.

  15. Animal Gaits and Symmetry

    Science.gov (United States)

    Golubitsky, Martin

    2012-04-01

    Many gaits of four-legged animals are described by symmetry. For example, when a horse paces it moves both left legs in unison and then both right legs and so on. The motion is described by two symmetries: Interchange front and back legs, and swap left and right legs with a half-period phase shift. Biologists postulate the existence of a central pattern generator (CPG) in the neuronal system that sends periodic signals to the legs. CPGs can be thought of as electrical circuits that produce periodic signals and can be modeled by systems with symmetry. In this lecture we discuss animal gaits; use gait symmetries to construct a simplest CPG architecture that naturally produces quadrupedal gait rhythms; and make several testable predictions about gaits.

  16. Dynamical spacetime symmetry

    CERN Document Server

    Lovelady, Benjamin C

    2015-01-01

    According to the Coleman-Mandula theorem, any gauge theory of gravity combined with an internal symmetry based on a Lie group must take the form of a direct product in order to be consistent with basic assumptions of quantum field theory. However, we show that an alternative gauging of a simple group can lead dynamically to a spacetime with compact internal symmetry. The biconformal gauging of the conformal symmetry of n-dim Euclidean space doubles the dimension to give a symplectic manifold. Examining one of the Lagrangian submanifolds in the flat case, we find that in addition to the expected SO(n) connection and curvature, the solder form necessarily becomes Lorentzian. General coordinate invariance gives rise to an SO(n-1,1) connection on the spacetime. The principal fiber bundle character of the original SO(n) guarantees that the two symmetries enter as a direct product, in agreement with the Coleman-Mandula theorem.

  17. Gauge symmetry from decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Wetterich, C., E-mail: c.wetterich@thphys.uni-heidelberg.de

    2017-02-15

    Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  18. Gauge symmetry from decoupling

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-02-01

    Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  19. CPT Symmetry Without Hermiticity

    CERN Document Server

    Mannheim, Philip D

    2016-01-01

    In the literature the $CPT$ theorem has only been established for Hamiltonians that are Hermitian. Here we extend the $CPT$ theorem to quantum field theories with non-Hermitian Hamiltonians. Our derivation is a quite minimal one as it requires only the time independent evolution of scalar products and invariance under complex Lorentz transformations. The first of these requirements does not force the Hamiltonian to be Hermitian. Rather, it forces its eigenvalues to either be real or to appear in complex conjugate pairs, forces the eigenvectors of such conjugate pairs to be conjugates of each other, and forces the Hamiltonian to admit of an antilinear symmetry. The latter requirement then forces this antilinear symmetry to be $CPT$, with Hermiticity of a Hamiltonian thus only being a sufficient condition for $CPT$ symmetry and not a necessary one. $CPT$ symmetry thus has primacy over Hermiticity, and it rather than Hermiticity should be taken as a guiding principle for constructing quantum theories. With confo...

  20. Gauge symmetry from decoupling

    Science.gov (United States)

    Wetterich, C.

    2017-02-01

    Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang-Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  1. Dynamical spacetime symmetry

    Science.gov (United States)

    Lovelady, Benjamin C.; Wheeler, James T.

    2016-04-01

    According to the Coleman-Mandula theorem, any gauge theory of gravity combined with an internal symmetry based on a Lie group must take the form of a direct product in order to be consistent with basic assumptions of quantum field theory. However, we show that an alternative gauging of a simple group can lead dynamically to a spacetime with compact internal symmetry. The biconformal gauging of the conformal symmetry of n-dimensional Euclidean space doubles the dimension to give a symplectic manifold. Examining one of the Lagrangian submanifolds in the flat case, we find that in addition to the expected S O (n ) connection and curvature, the solder form necessarily becomes Lorentzian. General coordinate invariance gives rise to an S O (n -1 ,1 ) connection on the spacetime. The principal fiber bundle character of the original S O (n ) guarantees that the two symmetries enter as a direct product, in agreement with the Coleman-Mandula theorem.

  2. Superconductivity and symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Sarasua, L.G., E-mail: sarasua@fisica.edu.uy [Instituto de Fisica, Facultad de Ciencias, Universidad de la Republica, Montevideo (Uruguay)

    2012-02-15

    In the present work we consider the relation between superconductivity and spontaneous gauge symmetry breaking (SGBS). We show that ODLRO does not require in principle SBGS, even in the presence of particle number fluctuations, by examining exact solutions of a fermionic pairing model. The criteria become equivalent if a symmetry breaking field is allowed, which can be attributed to the interaction with the environment. However, superconducting states without SBGS are not forbidden.

  3. Quantum Spectral Symmetries

    Science.gov (United States)

    Hamhalter, Jan; Turilova, Ekaterina

    2017-02-01

    Quantum symmetries of spectral lattices are studied. Basic properties of spectral order on A W ∗-algebras are summarized. Connection between projection and spectral automorphisms is clarified by showing that, under mild conditions, any spectral automorphism is a composition of function calculus and Jordan ∗-automorphism. Complete description of quantum spectral symmetries on Type I and Type II A W ∗-factors are completely described.

  4. Dihedral flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Alexander Simon

    2009-06-10

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  5. The nuclear symmetry energy

    Science.gov (United States)

    Baldo, M.; Burgio, G. F.

    2016-11-01

    The nuclear symmetry energy characterizes the variation of the binding energy as the neutron to proton ratio of a nuclear system is varied. This is one of the most important features of nuclear physics in general, since it is just related to the two component nature of the nuclear systems. As such it is one of the most relevant physical parameters that affect the physics of many phenomena and nuclear processes. This review paper presents a survey of the role and relevance of the nuclear symmetry energy in different fields of research and of the accuracy of its determination from the phenomenology and from the microscopic many-body theory. In recent years, a great interest was devoted not only to the Nuclear Matter symmetry energy at saturation density but also to its whole density dependence, which is an essential ingredient for our understanding of many phenomena. We analyze the nuclear symmetry energy in different realms of nuclear physics and astrophysics. In particular we consider the nuclear symmetry energy in relation to nuclear structure, astrophysics of Neutron Stars and supernovae, and heavy ion collision experiments, trying to elucidate the connections of these different fields on the basis of the symmetry energy peculiarities. The interplay between experimental and observational data and theoretical developments is stressed. The expected future developments and improvements are schematically addressed, together with most demanded experimental and theoretical advances for the next few years.

  6. Elastic interaction of point defects in crystals with cubic symmetry

    Science.gov (United States)

    Kuz'michev, S. V.; Kukushkin, S. A.; Osipov, A. V.

    2013-07-01

    The energy of elastic mechanical interaction between point defects in cubic crystals is analyzed numerically. The finite-element complex ANSYS is used to investigate the character of interaction between point defects depending on their location along the crystallographic directions , , and on the distance from the free boundary of the crystal. The numerical results are compared with the results of analytic computations of the energy of interaction between two point defects in an infinite anisotropic medium with cubic symmetry. The interaction between compressible and incompressible defects of general type is studied. Conditions for onset of elastic attraction between the defects, which leads to general relaxation of the crystal elastic energy, are obtained.

  7. Identification of inversion domains in KTiOPO4 via resonant X-ray diffraction.

    Science.gov (United States)

    Fabrizi, Federica; Thomas, Pamela A; Nisbet, Gareth; Collins, Stephen P

    2015-07-01

    A novel method is presented for the identification of the absolute crystallographic structure in multi-domain polar materials such as ferroelectric KTiOPO4. Resonant (or 'anomalous') X-ray diffraction spectra collected across the absorption K edge of Ti (4.966 keV) on a single Bragg reflection demonstrate a huge intensity ratio above and below the edge, providing a polar domain contrast of ∼270. This allows one to map the spatial domain distribution in a periodically inverted sample, with a resolution of ∼1 µm achieved with a microfocused beam. This non-contact, non-destructive technique is well suited for samples of large dimensions (in contrast with traditional resonant X-ray methods based on diffraction from Friedel pairs), and its potential is particularly relevant in the context of physical phenomena connected with an absence of inversion symmetry, which require characterization of the underlying absolute atomic structure (such as in the case of magnetoelectric coupling and multiferroics).

  8. A joint inversion for shear velocity and anisotropy: the Woodlark Rift, Papua New Guinea

    Science.gov (United States)

    Eilon, Zachary; Abers, Geoffrey A.; Gaherty, James B.

    2016-08-01

    Trade-offs between velocity and anisotropy heterogeneity complicate the interpretation of differential traveltime data and have the potential to bias isotropic tomographic models. By constructing a simple parametrisation to describe an elastic tensor with hexagonal symmetry, we find analytic solutions to the Christoffel equations in terms of fast and slow horizontal velocities that allow us to simultaneously invert differential traveltime data and splitting data from teleseismic S arrivals to recover 3-D velocity and anisotropy structure. This technique provides a constraint on the depth-extent of shallow anisotropy, otherwise absent from interpretations based on SKS splitting alone. This approach is well suited to the young Woodlark Rift, where previous studies have found strong velocity variation and substantial SKS splitting in a continental rift with relatively simple geometry. This study images a low-velocity rift axis with ≤4 per cent spreading-parallel anisotropy at 50-100 km depth that separates regions of pre-existing lithospheric fabric, indicating the synchronous development of extensional crystallographic preferred orientation and lithospheric thinning. A high-velocity slab fragment north of the rift axis is associated with strike-parallel anisotropic fast axes, similar to that seen in the shallow mantle of some subduction zones. In addition to the insights provided by the anisotropy structure, the improvement in fit to the differential traveltime data demonstrates the merit to a joint inversion that accounts for anisotropy.

  9. Group Parametrized Tunneling and Local Symmetry Conditions

    Science.gov (United States)

    Harter, William; Mitchell, Justin

    2010-06-01

    Recently, Hougen showed an ad hoc symmetry-based parameterization scheme for analyzing tunneling dynamics and high resolution spectra of fluxional molecular structure similar to S-parameter analysis of superfine structure in SF_6 or NH_3 maser inversion dynamics by Feynman et.al. The problem is that ad hoc parametrization, like path integration in general, can lead to logjams of parameters or ``paths'' with no way to pick out the relevant ones. We show a way to identify and use relevant parameters for a tunneling Hamiltonian H having global G-symmetry-defined bases by first expressing H as a linear combination bar γ ^i {bar g}_i of operators in dual symmetry group bar G. The coefficients bar γ ^i are parameters that define a complete set of allowed paths for any H with G-symmetry and are related thru spectral decomposition of G to eigensolutions of H. Quantum G vs.bar G duality generalizes lab -vs. -body and state -vs. -particle. The number of relevant bar γ ^i-parameters is reduced if a system tends to stick in states of a local symmetry subgroup LsubsetG so the H spectrum forms level clusters labeled by induced representations d(ℓ)(L)\\uparrowG. A cluster-(ℓ) has one E(epsilon)-level labeled by G species (epsilon) for each L species (ℓ) in Depsilon(G)downarrowL by Frobenius reciprocity. Then we apply local symmetry conditions to each irrep Depsilon(bar γ ^i {bar g}_i) that has already been reduced with respect to local symmetry L. This amounts to setting each off-diagonal component Dj,kepsilon(H) to zero. Local symmetry conditions may tell which bar γ ^i-parameters are redundant or zero and directly determine d(ℓ)\\uparrowG tunneling matrix eigenvalues that give E(epsilon)-levels as well as eigenvectors. Otherwise one may need to choose a particular localizing subgroup chain LsubsetL_1subsetL_2...G and further reduce the number of path parameters to facilitate spectral fitting. J.T. Hougen, 2009 MSS RJ01, {J Mol Spect 123, 197 (1987) W.G. Harter and

  10. Integrated optical Dirac physics via inversion symmetry breaking

    Science.gov (United States)

    Collins, Matthew J.; Zhang, Fan; Bojko, Richard; Chrostowski, Lukas; Rechtsman, Mikael C.

    2016-12-01

    Graphene and boron nitride are two-dimensional materials whose atoms are arranged in a honeycomb lattice. Their unique properties arise because their electrons behave like relativistic particles (without and with mass, respectively)—namely, they obey the Dirac equation. Here, we use a photonic analog of boron nitride to observe Dirac physics in a silicon integrated optical platform. This will allow for photonic applications of Dirac dispersions (gapped and ungapped) to be realized in an on-chip, integrated nanophotonic platform.

  11. Local particle-ghost symmetry

    CERN Document Server

    Kawamura, Yoshiharu

    2015-01-01

    We study the quantization of systems with local particle-ghost symmetries. The systems contain ordinary particles including gauge bosons and their counterparts obeying different statistics. The particle-ghost symmetry is a kind of fermionic symmetry, different from the space-time supersymmetry and the BRST symmetry. Subsidiary conditions on states guarantee the unitarity of systems.

  12. Mirror Symmetry of Matter and Antimatter

    Science.gov (United States)

    Close, Robert

    2010-03-01

    Physical processes involving weak interactions have mirror images which can be mimicked in the natural universe only by exchanging matter and antimatter. This experimental observation is easily explained by the hypothesis that spatial inversion exchanges matter and antimatter. Yet according to conventional theory, the parity operator P does not exchange matter and antimatter but instead yields phenomena which have never been observed. We examine the conventional derivation of the Dirac parity operator and find that it is based on the speculative assumption that the unit imaginary is always a true scalar rather than a pseudoscalar. This assumption incorrectly requires that the matrix 0̂ preserve its sign under spatial inversion. This requirement results in a mixed-parity vector space defined relative to velocity, which is otherwise isomorphic to the spatial axes. We derive a new spatial inversion operator M (for mirroring) by requiring that for any set of orthogonal basis vectors, all three must have the same parity. A pseudoscalar unit imaginary is defined in terms of Dirac matrices. The M operator is a symmetry of the Dirac equation. It exchanges positive and negative energy eigenfunctions, consistent with all experimental evidence of mirror symmetry between matter and antimatter. This result provides a simple reason for the apparent absence in nature of mirror-like phenomena, such as right-handed neutrinos, which do not exchange matter and antimatter.

  13. Preliminary crystallographic data for the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from brewers' yeast.

    Science.gov (United States)

    Dyda, F; Furey, W; Swaminathan, S; Sax, M; Farrenkopf, B; Jordan, F

    1990-10-15

    Single crystals of the thiamin diphosphate (the vitamin B1 coenzyme)-dependent enzyme pyruvate decarboxylase (EC 4.1.1.1) from brewers' yeast have been grown using polyethylene glycol as a precipitating agent. Crystals of the homotetrameric version alpha 4 of the holoenzyme are triclinic, space group P1, with cell constants a = 81.0, b = 82.4, c = 116.6 A, alpha = 69.5 beta = 72.6, gamma = 62.4 degrees. The crystals are reasonably stable in a rotating anode x-ray beam and diffract to at least 2.5 A resolution. The Vm value of 2.55 A/dalton is consistent with a unit cell containing four subunits with mass of approximately 60 kDa each. Rotation function results with native data indicate strong non-crystallographic 222 symmetry relating the four identical subunits, thus density averaging methods are likely to play a role in the structure determination.

  14. The Nuclear Symmetry Energy

    CERN Document Server

    Baldo, M

    2016-01-01

    The nuclear symmetry energy characterizes the variation of the binding energy as the neutron to proton ratio of a nuclear system is varied. This is one of the most important features of nuclear physics in general, since it is just related to the two component nature of the nuclear systems. As such it is one of the most relevant physical parameters that affect the physics of many phenomena and nuclear processes. This review paper presents a survey of the role and relevance of the nuclear symmetry energy in different fields of research and of the accuracy of its determination from the phenomenology and from the microscopic many-body theory. In recent years, a great interest was devoted not only to the Nuclear Matter symmetry energy at saturation density but also to its whole density dependence, which is an essential ingredient for our understanding of many phenomena. We analyze the nuclear symmetry energy in different realms of nuclear physics and astrophysics. In particular we consider the nuclear symmetry ene...

  15. Lectures on Yangian symmetry

    Science.gov (United States)

    Loebbert, Florian

    2016-08-01

    In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfel’d's original motivation to construct solutions to the quantum Yang-Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang-Mills theory and indicate its impact on the dilatation operator and tree-level scattering amplitudes. These lectures are illustrated by several examples, in particular the two-dimensional chiral Gross-Neveu model, the Heisenberg spin chain and { N }=4 superconformal Yang-Mills theory in four dimensions.

  16. Universal 23 symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Joshipura, A.S. [Physical Research Laboratory, Navarangpura, Ahmedabad (India)

    2008-01-15

    The possible maximal mixing seen in the oscillations of atmospheric neutrinos has led to the postulate of {mu}-{tau} symmetry, which interchanges {nu}{sub {mu}} and {nu}{sub {tau}}. We argue that such a symmetry need not be special to neutrinos but can be extended to all fermions. The assumption that all fermion mass matrices are approximately invariant under the interchange of the second and the third generation fields is shown to be phenomenologically viable and has interesting consequences. In the quark sector, the smallness of V{sub ub} and V{sub cb} can be consequences of this approximate 2-3 symmetry. The same approximate symmetry can simultaneously lead to a large atmospheric mixing angle and can describe the leptonic mixing quite well. We identify two generic scenarios leading to this. One is based on the conventional type-I seesaw mechanism and the other follows from the type-II seesaw model. The latter requires a quasi-degenerate neutrino spectrum for obtaining large atmospheric neutrino mixing in the presence of an approximate {mu}-{tau} symmetry. (orig.)

  17. Momentum-dependent symmetries and non-Noether conserved quantities for nonholonomic nonconservative Hamilton canonical systems

    Institute of Scientific and Technical Information of China (English)

    Fu Jing-Li; Chen Li-Qun; Chen Xian-Wei

    2006-01-01

    This paper investigates the momentum-dependent symmetries for nonholonomic nonconservative Hamilton canonical systems. The definition and determining equations of the momentum-dependent symmetries are presented, based on the invariance of differential equations under infinitesimal transformations with respect to the generalized coordinates and generalized momentums. The structure equation and the non-Noether conserved quantities of the systems are obtained. The inverse issues associated with the momentum-dependent symmetries are discussed. Finally, an example is discussed to further illustrate the applications.

  18. Dynamic Paper Constructions for Easier Visualization of Molecular Symmetry

    Science.gov (United States)

    Sein, Lawrence T., Jr.

    2010-01-01

    A system for construction of simple poster-board models is described. The models dynamically demonstrate the symmetry operations of proper rotation, improper rotation, reflection, and inversion for the chemically important point groups D[subscript 3h], D[subscript 4h], D[subscript 5h], D[subscript 6h], T[subscript d], and O[subscript h]. The…

  19. Hidden symmetry of the quantum Calogero-Moser system

    DEFF Research Database (Denmark)

    Kuzentsov, Vadim b

    1996-01-01

    The hidden symmetry of the quantum Calogero-Moser system with an inverse-square potential is algebraically demonstrated making use of Dunkl's operators. We find the underlying algebra explaining the super-integrability phenomenon for this system. Applications to related multi-variable Bessel...

  20. Dynamic Paper Constructions for Easier Visualization of Molecular Symmetry

    Science.gov (United States)

    Sein, Lawrence T., Jr.

    2010-01-01

    A system for construction of simple poster-board models is described. The models dynamically demonstrate the symmetry operations of proper rotation, improper rotation, reflection, and inversion for the chemically important point groups D[subscript 3h], D[subscript 4h], D[subscript 5h], D[subscript 6h], T[subscript d], and O[subscript h]. The…

  1. Symmetry breaking in non conservative systems

    CERN Document Server

    Martínez-Pérez, N E

    2016-01-01

    We apply Noether's theorem to show how the invariances of conservative systems are broken for nonconservative systems, in the variational formulation of Galley. This formulation considers a conservative action, extended by the inclusion of a time reversed sector and a nonconservative generalized potential. We assume that this potential is invariant under the symmetries of the initial conservative system. The breaking occurs because the time reversed sector requires inverse symmetry transformations, under which the nonconservative potential is not invariant. The resulting violation of the conservation laws is consistent with the equations of motion. We generalize this formulation for fermionic and sypersymmetric systems. In the case of a supersymmetric oscillator, the effect of damping is that the bosonic and fermionic components become different frequencies. Considering that initially the nonconservative action is invariant under supersymmetry, and that the breaking is associated to an instability, this resul...

  2. Crystallographic orientation dependent etching of graphene layers

    Energy Technology Data Exchange (ETDEWEB)

    Nemes-Incze, Peter; Biro, Laszlo Peter [Research Institute for Technical Physics and Materials Science, PO. Box 49, 1525 Budapest (Hungary); Magda, Gabor [Budapest University of Technology and Economics (BME), PO Box 91, 1521 Budapest (Hungary); Kamaras, Katalin [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, PO Box 49, 1525, Budapest (Hungary)

    2010-04-15

    Graphene has gripped the scientific community ever since its discovery in 2004, with very promising electronic properties and hopes to integrate graphene into nanoelectronic devices. For graphene to make its way into electronic devices, two major obstacles have to be overcome: reproducible preparation of large area graphene samples and patterning techniques to obtain functional components. In this paper we present a graphene etching technique, which is crystallographic orientation selective and allows for the patterning of graphene layers using a chemical reduction process. The process involves the reduction of the SiO{sub 2} support by the carbon in the graphene itself. This reaction only occurs at the sample edges and does not result in the degradation of the graphene crystal lattice itself. However, we have observed evidence of strong hole doping in our etched samples. This etching technique opens up new possibilities in graphene patterning and modification. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Determination of crystallographic intensities from sparse data

    Directory of Open Access Journals (Sweden)

    Kartik Ayyer

    2015-01-01

    Full Text Available X-ray serial microcrystallography involves the collection and merging of frames of diffraction data from randomly oriented protein microcrystals. The number of diffracted X-rays in each frame is limited by radiation damage, and this number decreases with crystal size. The data in the frame are said to be sparse if too few X-rays are collected to determine the orientation of the microcrystal. It is commonly assumed that sparse crystal diffraction frames cannot be merged, thereby setting a lower limit to the size of microcrystals that may be merged with a given source fluence. The EMC algorithm [Loh & Elser (2009, Phys. Rev. E, 80, 026705] has previously been applied to reconstruct structures from sparse noncrystalline data of objects with unknown orientations [Philipp et al. (2012, Opt. Express, 20, 13129–13137; Ayyer et al. (2014, Opt. Express, 22, 2403–2413]. Here, it is shown that sparse data which cannot be oriented on a per-frame basis can be used effectively as crystallographic data. As a proof-of-principle, reconstruction of the three-dimensional diffraction intensity using sparse data frames from a 1.35 kDa molecule crystal is demonstrated. The results suggest that serial microcrystallography is, in principle, not limited by the fluence of the X-ray source, and collection of complete data sets should be feasible at, for instance, storage-ring X-ray sources.

  4. Rigidity and symmetry

    CERN Document Server

    Weiss, Asia; Whiteley, Walter

    2014-01-01

    This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures, and to explore the interaction of geometry, algebra, and combinatorics. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme.  Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology.  The volume will also be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and gradu...

  5. Seeing Science through Symmetry

    Science.gov (United States)

    Gould, L. I.

    Seeing Through Symmetry is a course that introduces non-science majors to the pervasive influence of symmetry in science. The concept of symmetry is usedboth as a link between subjects (such as physics, biology, mathematics, music, poetry, and art) and as a method within a subject. This is done through the development and use of interactive multimedia learning environments to stimulate learning. Computer-based labs enable the student to further explore the concept by being gently led from the arts to science. This talk is an update that includes some of the latest changes to the course. Explanations are given on methodology and how a variety of interactive multimedia tools contribute to both the lecture and lab portion of the course (created in 1991 and taught almost every semester since then, including one in Sweden).

  6. Binary Tetrahedral Flavor Symmetry

    CERN Document Server

    Eby, David A

    2013-01-01

    A study of the T' Model and its variants utilizing Binary Tetrahedral Flavor Symmetry. We begin with a description of the historical context and motivations for this theory, together with some conceptual background for added clarity, and an account of our theory's inception in previous works. Our model endeavors to bridge two categories of particles, leptons and quarks, a unification made possible by the inclusion of additional Higgs particles, shared between the two fermion sectors and creating a single coherent system. This is achieved through the use of the Binary Tetrahedral symmetry group and an investigation of the Tribimaximal symmetry evidenced by neutrinos. Our work details perturbations and extensions of this T' Model as we apply our framework to neutrino mixing, quark mixing, unification, and dark matter. Where possible, we evaluate model predictions against experimental results and find excellent matching with the atmospheric and reactor neutrino mixing angles, an accurate prediction of the Cabibb...

  7. Segmentation Using Symmetry Deviation

    DEFF Research Database (Denmark)

    Hollensen, Christian; Højgaard, L.; Specht, L.

    2011-01-01

    and evaluate the method. The method uses deformable registration on computed tomography(CT) to find anatomical symmetry deviations of Head & Neck squamous cell carcinoma and combining it with positron emission tomography (PET) images. The method allows the use anatomical and symmetrical information of CT scans...... to improve automatic delineations. Materials: PET/CT scans from 30 patients were used for this study, 20 without cancer in hypopharyngeal volume and 10 with hypharyngeal carcinoma. An head and neck atlas was created from the 20 normal patients. The atlas was created using affine and non-rigid registration...... of the CT-scans into a single atlas. Afterwards the standard deviation of anatomical symmetry for the 20 normal patients was evaluated using non-rigid registration and registered onto the atlas to create an atlas for normal anatomical symmetry deviation. The same non-rigid registration was used on the 10...

  8. Leadership, power and symmetry

    DEFF Research Database (Denmark)

    Spaten, Ole Michael

    2016-01-01

    Research publications concerning managers who coach their own employees are barely visible despite its wide- spread use in enterprises (McCarthy & Milner, 2013; Gregory & Levy, 2011; Crabb, 2011). This article focuses on leadership, power and moments of symmetry in the coaching relationship...... session. Thereafter we executed qualitative interviews with both managers and employees. Subsequently, a Thematic Analysis resulted in several themes, including power and moments of symmetry in the coaching relationship. One main conclusion is that the most fruitful coaching was obtained when the coachee...... experienced moments of symmetry and that necessary and sufficient conditions to bring forth such moments include a strong working alliance and the coach being aware of the power at play....

  9. Electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Chanowitz, M.S.

    1990-09-01

    The Higgs mechanism is reviewed in its most general form, requiring the existence of a new symmetry-breaking force and associated particles, which need not however be Higgs bosons. The first lecture reviews the essential elements of the Higgs mechanism, which suffice to establish low energy theorems for the scattering of longitudinally polarized W and Z gauge bosons. An upper bound on the scale of the symmetry-breaking physics then follows from the low energy theorems and partial wave unitarity. The second lecture reviews particular models, with and without Higgs bosons, paying special attention to how the general features discussed in lecture 1 are realized in each model. The third lecture focuses on the experimental signals of strong WW scattering that can be observed at the SSC above 1 TeV in the WW subenergy, which will allow direct measurement of the strength of the symmetry-breaking force. 52 refs., 10 figs.

  10. Symmetry energy and density

    CERN Document Server

    Trautmann, Wolfgang; Russotto, Paolo

    2016-01-01

    The nuclear equation-of-state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. In particular, the equation-of-state of asymmetric matter and the symmetry energy representing the difference between the energy densities of neutron matter and of symmetric nuclear matter are not sufficiently well constrained at present. The density dependence of the symmetry energy is conventionally expressed in the form of the slope parameter L describing the derivative with respect to density of the symmetry energy at saturation. Results deduced from nuclear structure and heavy-ion reaction data are distributed around a mean value L=60 MeV. Recent studies have more thoroughly investigated the density range that a particular observable is predominantly sensitive to. Two thirds of the saturation density is a value typical for the information contained in nuclear-structure data. Higher values exceeding saturation have been shown to be probed with meson production and collective ...

  11. Gravitation and Duality Symmetry

    CERN Document Server

    D'Andrade, V C; Pereira, J G

    2005-01-01

    By generalizing the Hodge dual operator to the case of soldered bundles, and working in the context of the teleparallel equivalent of general relativity, an analysis of the duality symmetry in gravitation is performed. Although the basic conclusion is that, at least in the general case, gravitation does not present duality symmetry, there is a particular theory in which this symmetry is present. This theory is a self dual (or anti-self dual) teleparallel gravity in which, owing to the fact that it does not contribute to the gravitational interaction of fermions, the purely tensor part of torsion is assumed to vanish. The corresponding fermionic gravitational interaction is found to be chiral. Since duality is intimately related to renormalizability, this theory will probably be much more amenable to renormalization than teleparallel gravity or general relativity. Although obtained in the context of teleparallel gravity, these results must also be true for general relativity.

  12. Flavour from accidental symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, Luca [SISSA/ISAS and INFN, I-34013 Trieste (Italy); King, Stephen F. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Romanino, Andrea [SISSA/ISAS and INFN, I-34013 Trieste (Italy)

    2006-11-15

    We consider a new approach to fermion masses and mixings in which no special 'horizontal' dynamics is invoked to account for the hierarchical pattern of charged fermion masses and for the peculiar features of neutrino masses. The hierarchy follows from the vertical, family-independent structure of the model, in particular from the breaking pattern of the Pati-Salam group. The lightness of the first two fermion families can be related to two family symmetries emerging in this context as accidental symmetries.

  13. Symmetry, structure, and spacetime

    CERN Document Server

    Rickles, Dean

    2007-01-01

    In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational

  14. Weakly broken galileon symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Pirtskhalava, David [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Santoni, Luca; Trincherini, Enrico [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); INFN, Sezione di Pisa, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Vernizzi, Filippo [Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, Gif-sur-Yvette cédex, F-91191 (France)

    2015-09-01

    Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.

  15. Baryons and Chiral Symmetry

    CERN Document Server

    Liu, Keh-Fei

    2016-01-01

    The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.

  16. Deformed discrete symmetries

    Science.gov (United States)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2016-09-01

    We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.

  17. Topological inverse semigroups

    Institute of Scientific and Technical Information of China (English)

    ZHU Yongwen

    2004-01-01

    That the projective limit of any projective system of compact inverse semigroups is also a compact inverse semigroup,the injective limit of any injective system of inverse semigroups is also an inverse semigroup, and that a compact inverse semigroup is topologically isomorphic to a strict projective limit of compact metric inverse semigroups are proved. It is also demonstrated that Horn (S,T) is a topological inverse semigroup provided that S or T is a topological inverse semigroup with some other conditions. Being proved by means of the combination of topological semigroup theory with inverse semigroup theory,all these results generalize the corresponding ones related to topological semigroups or topological groups.

  18. Symmetry based assembly of a 2 dimensional protein lattice

    Energy Technology Data Exchange (ETDEWEB)

    Poulos, Sandra; Agah, Sayeh; Jallah, Nikardi; Faham, Salem; van Raaij, Mark J.

    2017-04-18

    The design of proteins that self-assemble into higher order architectures is of great interest due to their potential application in nanotechnology. Specifically, the self-assembly of proteins into ordered lattices is of special interest to the field of structural biology. Here we designed a 2 dimensional (2D) protein lattice using a fusion of a tandem repeat of three TelSAM domains (TTT) to the Ferric uptake regulator (FUR) domain. We determined the structure of the designed (TTT-FUR) fusion protein to 2.3 Å by X-ray crystallographic methods. In agreement with the design, a 2D lattice composed of TelSAM fibers interdigitated by the FUR domain was observed. As expected, the fusion of a tandem repeat of three TelSAM domains formed 21 screw axis, and the self-assembly of the ordered oligomer was under pH control. We demonstrated that the fusion of TTT to a domain having a 2-fold symmetry, such as the FUR domain, can produce an ordered 2D lattice. The TTT-FUR system combines features from the rotational symmetry matching approach with the oligomer driven crystallization method. This TTT-FUR fusion was amenable to X-ray crystallographic methods, and is a promising crystallization chaperone.

  19. Symmetry based assembly of a 2 dimensional protein lattice.

    Science.gov (United States)

    Poulos, Sandra; Agah, Sayeh; Jallah, Nikardi; Faham, Salem

    2017-01-01

    The design of proteins that self-assemble into higher order architectures is of great interest due to their potential application in nanotechnology. Specifically, the self-assembly of proteins into ordered lattices is of special interest to the field of structural biology. Here we designed a 2 dimensional (2D) protein lattice using a fusion of a tandem repeat of three TelSAM domains (TTT) to the Ferric uptake regulator (FUR) domain. We determined the structure of the designed (TTT-FUR) fusion protein to 2.3 Å by X-ray crystallographic methods. In agreement with the design, a 2D lattice composed of TelSAM fibers interdigitated by the FUR domain was observed. As expected, the fusion of a tandem repeat of three TelSAM domains formed 21 screw axis, and the self-assembly of the ordered oligomer was under pH control. We demonstrated that the fusion of TTT to a domain having a 2-fold symmetry, such as the FUR domain, can produce an ordered 2D lattice. The TTT-FUR system combines features from the rotational symmetry matching approach with the oligomer driven crystallization method. This TTT-FUR fusion was amenable to X-ray crystallographic methods, and is a promising crystallization chaperone.

  20. The nuclear symmetry energy

    NARCIS (Netherlands)

    Dieperink, AEL; van Neck, D; Suzuki, T; Otsuka, T; Ichimura, M

    2005-01-01

    The role of isospin asymmetry in nuclei and neutron stars is discussed, with an emphasis on the density dependence of the nuclear symmetry energy. Results obtained with the self-consistent Green function method are presented and compared with various other theoretical predictions. Implications for t

  1. Quantum entanglement and symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Chruscinski, D; Kossakowski, A [Institute of Physics, Nicolaus Copernicus University, Grudziadzka 5/7, 87-100 Torun (Poland)

    2007-11-15

    One of the main problem in Quantum Information Theory is to test whether a given state of a composite quantum system is entangled or separable. It turns out that within a class of states invariant under the action of the symmetry group this problem considerably simplifies. We analyze multipartite invariant states and the corresponding symmetric quantum channels.

  2. Quantum entanglement and symmetry

    Science.gov (United States)

    Chruściński, D.; Kossakowski, A.

    2007-11-01

    One of the main problem in Quantum Information Theory is to test whether a given state of a composite quantum system is entangled or separable. It turns out that within a class of states invariant under the action of the symmetry group this problem considerably simplifies. We analyze multipartite invariant states and the corresponding symmetric quantum channels.

  3. Broken symmetry makes helium

    CERN Multimedia

    Gray, P L

    2003-01-01

    "The subatomic pion particle breaks the charge symmetry rule that governs both fusion and decay. In experiments performed at the Indiana University Cyclotron Laboratory, physicists forced heavy hydrogen (1 proton + 1 neutron) to fuse into helium in a controlled, measurable environment" (1 paragraph).

  4. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P.Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also underst...

  5. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also unders...

  6. Horror Vacui Symmetry.

    Science.gov (United States)

    Crumpecker, Cheryl

    2003-01-01

    Describes an art lesson used with children in the third grade to help them learn about symmetry, as well as encouraging them to draw larger than usual. Explains that students learn about the belief called "Horror Vacui" of the Northwest American Indian tribes and create their interpretation of this belief. (CMK)

  7. Gauging without Initial Symmetry

    CERN Document Server

    Kotov, Alexei

    2016-01-01

    The gauge principle is at the heart of a good part of fundamental physics: Starting with a group G of so-called rigid symmetries of a functional defined over space-time Sigma, the original functional is extended appropriately by additional Lie(G)-valued 1-form gauge fields so as to lift the symmetry to Maps(Sigma,G). Physically relevant quantities are then to be obtained as the quotient of the solutions to the Euler-Lagrange equations by these gauge symmetries. In this article we show that one can construct a gauge theory for a standard sigma model in arbitrary space-time dimensions where the target metric is not invariant with respect to any rigid symmetry group, but satisfies a much weaker condition: It is sufficient to find a collection of vector fields v_a on the target M satisfying the extended Killing equation v_{a(i;j)}=0 for some connection acting on the index a. For regular foliations this is equivalent to merely requiring the distribution orthogonal to the leaves to be invariant with respect to leaf...

  8. The politics of symmetry

    NARCIS (Netherlands)

    Pels, D.L.

    1996-01-01

    While symmetry and impartiality have become ruling principles in S&TS, defining its core ideal of a 'value-free relativism', their philosophical anchorage has attracted much less discussion than the issue or:how far their jurisdiction can be extended or generalized. This paper seeks to argue that sy

  9. Applications of chiral symmetry

    CERN Document Server

    Pisarski, R D

    1995-01-01

    I discuss several topics in the applications of chiral symmetry at nonzero temperature, including: where the rho goes, disoriented chiral condensates, and the phase diagram for QCD with 2+1 flavors. (Based upon talks presented at the "Workshop on Finite Temperature QCD", Wuhan, P.R.C., April, 1994.)

  10. Testing for central symmetry

    NARCIS (Netherlands)

    Einmahl, John; Gan, Zhuojiong

    2016-01-01

    Omnibus tests for central symmetry of a bivariate probability distribution are proposed. The test statistics compare empirical measures of opposite regions. Under rather weak conditions, we establish the asymptotic distribution of the test statistics under the null hypothesis; it follows that they a

  11. Symmetries of hadrons after unbreaking the chiral symmetry

    CERN Document Server

    Glozman, L Ya; Schröck, M

    2012-01-01

    We study hadron correlators upon artificial restoration of the spontaneously broken chiral symmetry. In a dynamical lattice simulation we remove the lowest lying eigenmodes of the Dirac operator from the valence quark propagators and study evolution of the hadron masses obtained. All mesons and baryons in our study, except for a pion, survive unbreaking the chiral symmetry and their exponential decay signals become essentially better. From the analysis of the observed spectroscopic patterns we conclude that confinement still persists while the chiral symmetry is restored. All hadrons fall into different chiral multiplets. The broken U(1)_A symmetry does not get restored upon unbreaking the chiral symmetry. We also observe signals of some higher symmetry that includes chiral symmetry as a subgroup. Finally, from comparison of the \\Delta - N splitting before and after unbreaking of the chiral symmetry we conclude that both the color-magnetic and the flavor-spin quark-quark interactions are of equal importance.

  12. On the notion of gauge symmetries of generic Lagrangian field theory

    CERN Document Server

    Giachetta, G; Sardanashvily, G

    2008-01-01

    Treating gauge theories in a general setting, one meets the following problems: (i) any Lagrangian possesses gauge symmetries which therefore should be separated into the trivial and non-trivial ones, (ii) there is no intrinsic definition of higher-stage gauge symmetries, (iii) gauge and higher-stage gauge symmetries need not form an algebra. We define gauge symmetries as those associated to the Noether identities. Generic Lagrangian theory of even and odd fields on an arbitrary smooth manifold is considered. Under certain conditions, its non-trivial Noether and higher-stage Noether identities are well defined by constructing the antifield Koszul--Tate complex. The inverse second Noether theorem associates to this complex the cochain sequence of ghosts whose ascent operator provides all non-trivial gauge and higher-stage gauge symmetries of Lagrangian theory. This ascent operator, called the gauge operator, is not nilpotent, unless gauge symmetries are abelian. We replace a condition that gauge symmetries for...

  13. On Symmetries in Optimal Control

    OpenAIRE

    van der Schaft, A. J.

    1986-01-01

    We discuss the use of symmetries in solving optimal control problems. In particular a procedure for obtaining symmetries is given which can be performed before the actual calculation of the optimal control and optimal Hamiltonian.

  14. On Symmetries in Optimal Control

    NARCIS (Netherlands)

    Schaft, A.J. van der

    1986-01-01

    We discuss the use of symmetries in solving optimal control problems. In particular a procedure for obtaining symmetries is given which can be performed before the actual calculation of the optimal control and optimal Hamiltonian.

  15. A relativistic symmetry in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ginocchio, J N [MS B283, Theoretical Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545 (Mexico)

    2007-11-15

    We review some of the empirical and theoretical evidence supporting pseudospin symmetry in nuclei as a relativistic symmetry. We review the case that the eigenfunctions of realistic relativistic nuclear mean fields approximately conserve pseudospin symmetry in nuclei. We discuss the implications of pseudospin symmetry for magnetic dipole transitions and Gamow-Teller transitions between states in pseudospin doublets. We explore a more fundamental rationale for pseudospin symmetry in terms of quantum chromodynamics (QCD), the basic theory of the strong interactions. We show that pseudospin symmetry in nuclei implies spin symmetry for an anti-nucleon in a nuclear environment. We also discuss the future and what role pseudospin symmetry may be expected to play in an effective field theory of nucleons.

  16. Symmetry of “Twins”

    OpenAIRE

    Vladan Nikolić; Ljiljana Radović; Biserka Marković

    2015-01-01

    The idea of construction of twin buildings is as old as architecture itself, and yet there is hardly any study emphasizing their specificity. Most frequently there are two objects or elements in an architectural composition of “twins” in which there may be various symmetry relations, mostly bilateral symmetries. The classification of “twins” symmetry in this paper is based on the existence of bilateral symmetry, in terms of the perception of an observer. The classification includes both, 2D a...

  17. Dynamical Symmetries in Classical Mechanics

    Science.gov (United States)

    Boozer, A. D.

    2012-01-01

    We show how symmetries of a classical dynamical system can be described in terms of operators that act on the state space for the system. We illustrate our results by considering a number of possible symmetries that a classical dynamical system might have, and for each symmetry we give examples of dynamical systems that do and do not possess that…

  18. Scattering matrices with block symmetries

    OpenAIRE

    Życzkowski, Karol

    1997-01-01

    Scattering matrices with block symmetry, which corresponds to scattering process on cavities with geometrical symmetry, are analyzed. The distribution of transmission coefficient is computed for different number of channels in the case of a system with or without the time reversal invariance. An interpolating formula for the case of gradual time reversal symmetry breaking is proposed.

  19. Emergence of Symmetries from Entanglement

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Maximal Entanglement appears to be a key ingredient for the emergence of symmetries. We first illustrate this phenomenon using two examples: the emergence of conformal symmetry in condensed matter systems and  the relation of tensor networks to holography. We further present a Principle of Maximal Entanglement that seems to dictate to a large extend the structure of gauge symmetry.

  20. Probing symmetry and symmetry breaking in resonant soft-x-ray fluorescence spectra of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Glans, P.; Gunnelin, K.; Guo, J. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Conventional non-resonant soft X-ray emission brings about information about electronic structure through its symmetry and polarization selectivity, the character of which is governed by simple dipole rules. For centro-symmetric molecules with the emitting atom at the inversion center these rules lead to selective emission through the required parity change. For the more common classes of molecules which have lower symmetry or for systems with degenerate core orbitals (delocalized over identical sites), it is merely the local symmetry selectivity that provides a probe of the local atomic orbital contribution to the molecular orbital. For instance, in X-ray spectra of first row species the intensities essentially map the p-density at each particular atomic site, and, in a molecular orbital picture, the contribution of the local p-type atomic orbitals in the LCAO description of the molecular orbitals. The situation is different for resonant X-ray fluorescence spectra. Here strict parity and symmetry selectivity gives rise to a strong frequency dependence for all molecules with an element of symmetry. In addition to symmetry selectivity the strong frequency dependence of resonant X-ray emission is caused by the interplay between the shape of a narrow X-ray excitation energy function and the lifetime and vibrational broadenings of the resonantly excited core states. This interplay leads to various observable effects, such as linear dispersion, resonance narrowing and emission line (Stokes) doubling. Also from the point of view of polarization selectivity, the resonantly excited X-ray spectra are much more informative than the corresponding non-resonant spectra. Examples are presented for nitrogen, oxygen, and carbon dioxide molecules.

  1. Crystallographic Features and State Stability of the Decagonal Quasicrystal in the Al-Co-Cu Alloy System

    Science.gov (United States)

    Nakayama, Kei; Mizutani, Akito; Koyama, Yasumasa

    2016-11-01

    In the Al-Co-Cu alloy system, both the decagonal quasicrystal with the space group of Poverline{10}m2 and its approximant Al13Co4 phase with monoclinic Cm symmetry are present around 20 at. % Co-10 at. % Cu. In this study, we examined the crystallographic features of prepared Al-(30 - x) at. % Co-x at. % Cu samples mainly by transmission electron microscopy in order to make clear the crystallographic relation between the decagonal quasicrystal and the monoclinic Al13Co4 structure. The results revealed a coexistence state consisting of decagonal quasicrystal and approximant Al13Co4 regions in Al-20 at. % Co-10 at. % Cu alloy samples. With the help of the coexistence state, the orientation relationship was established between the monoclinic Al13Co4 structure and the decagonal quasicrystal. In the determined relationship, the crystallographic axis in the quasicrystal was found to be parallel to the normal direction of the (010)m plane in the Al13Co4 structure, where the subscript m denotes the monoclinic system. Based on data obtained experimentally, the state stability of the decagonal quasicrystal was also examined in terms of the Hume-Rothery (HR) mechanism on the basis of the nearly-free-electron approximation. It was found that a model based on the HR mechanism could explain the crystallographic features such as electron diffraction patterns and atomic arrangements found in the decagonal quasicrystal. In other words, the HR mechanism is most likely appropriate for the stability of the decagonal quasicrystal in the Al-Co-Cu alloy system.

  2. Leadership, power and symmetry

    DEFF Research Database (Denmark)

    Spaten, Ole Michael

    2016-01-01

    regarding managers coaching their employees and it is asked; what contributes to coaching of high quality when one reflects on the power aspect as being immanent? Fourteen middle managers coached five of their employees, and all members of each party wrote down cues and experiences immediately after each......Research publications concerning managers who coach their own employees are barely visible despite its wide- spread use in enterprises (McCarthy & Milner, 2013; Gregory & Levy, 2011; Crabb, 2011). This article focuses on leadership, power and moments of symmetry in the coaching relationship...... session. Thereafter we executed qualitative interviews with both managers and employees. Subsequently, a Thematic Analysis resulted in several themes, including power and moments of symmetry in the coaching relationship. One main conclusion is that the most fruitful coaching was obtained when the coachee...

  3. Asymmetry, Symmetry and Beauty

    Directory of Open Access Journals (Sweden)

    Abbe R. Kopra

    2010-07-01

    Full Text Available Asymmetry and symmetry coexist in natural and human processes.  The vital role of symmetry in art has been well demonstrated. This article highlights the complementary role of asymmetry. Further we show that the interaction of asymmetric action (recursion and symmetric opposition (sinusoidal waves are instrumental in generating creative features (relatively low entropy, temporal complexity, novelty (less recurrence in the data than in randomized copies and complex frequency composition. These features define Bios, a pattern found in musical compositions and in poetry, except for recurrence instead of novelty. Bios is a common pattern in many natural and human processes (quantum processes, the expansion of the universe, gravitational waves, cosmic microwave background radiation, DNA, physiological processes, animal and human populations, and economic time series. The reduction in entropy is significant, as it reveals creativity and contradicts the standard claim of unavoidable decay towards disorder. Artistic creations capture fundamental features of the world.

  4. Exposing local symmetries in distorted driven lattices via time-averaged invariants

    Science.gov (United States)

    Wulf, T.; Morfonios, C. V.; Diakonos, F. K.; Schmelcher, P.

    2016-05-01

    Time-averaged two-point currents are derived and shown to be spatially invariant within domains of local translation or inversion symmetry for arbitrary time-periodic quantum systems in one dimension. These currents are shown to provide a valuable tool for detecting deformations of a spatial symmetry in static and driven lattices. In the static case the invariance of the two-point currents is related to the presence of time-reversal invariance and/or probability current conservation. The obtained insights into the wave functions are further exploited for a symmetry-based convergence check which is applicable for globally broken but locally retained potential symmetries.

  5. Exposing local symmetries in distorted driven lattices via time-averaged invariants.

    Science.gov (United States)

    Wulf, T; Morfonios, C V; Diakonos, F K; Schmelcher, P

    2016-05-01

    Time-averaged two-point currents are derived and shown to be spatially invariant within domains of local translation or inversion symmetry for arbitrary time-periodic quantum systems in one dimension. These currents are shown to provide a valuable tool for detecting deformations of a spatial symmetry in static and driven lattices. In the static case the invariance of the two-point currents is related to the presence of time-reversal invariance and/or probability current conservation. The obtained insights into the wave functions are further exploited for a symmetry-based convergence check which is applicable for globally broken but locally retained potential symmetries.

  6. Study of the Lie symmetries of a relativistic variable mass system

    Institute of Scientific and Technical Information of China (English)

    方建会

    2002-01-01

    The differential equations of motion of a relativistic variable mass system are given. By using the invariance of the differential equations under the infinitesimal transformations of groups, the determining equations and the restriction equations of the Lie symmetries of a relativistic variable mass system are built, and the structure equation and the conserved quantity of the Lie symmetries are obtained. Then the inverse problem of the Lie symmetries is studied. The corresponding Lie symmetries are found according to a known conserved quantity. An example is given to illustrate the application of the result.

  7. Symmetry rules How science and nature are founded on symmetry

    CERN Document Server

    Rosen, Joe

    2008-01-01

    When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. In fact, modern theoretical physics suggests that symmetry is a, if not the, foundational principle of nature. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. It is shown that the Universe cannot possess exact symmetry, which is a principle of fundamental significance. Curie's principle - which states that the symmetry of the effect is at least that of the cause - features prominently. An introduction to group theory, the mathematical language of symmetry, is included. This book will convince all interested readers of the importance of symmetry in science. Furthermore, it will serve as valuable background reading for all students in the physical sciences.

  8. Local Rotational Symmetries.

    Science.gov (United States)

    1985-08-01

    way to choose among them. Spirals can occur in natural figures, e.g. a spiralled tail or a coil of rope or vine tendril, and in line drawings. Since...generated and removes it and all regions similar to it from the list of regions. The end result is a pruned list of distinct optimal regions. 4.7...that, at least to a first approximation, the potential symmetry regions pruned by the locality restriction are not perceptually salient. For example

  9. Symmetry and quantum mechanics

    CERN Document Server

    Corry, Scott

    2016-01-01

    This book offers an introduction to quantum mechanics for professionals, students, and others in the field of mathematics who have a minimal background in physics with an understanding of linear algebra and group theory. It covers such topics as Lie groups, algebras and their representations, and analysis (Hilbert space, distributions, the spectral Theorem, and the Stone-Von Neumann Theorem). The book emphasizes the role of symmetry and is useful to physicists as it provides a mathematical introduction to the topic.

  10. Symmetry issue in Galileons

    CERN Document Server

    Momeni, Davood

    2014-01-01

    The symmetry issue for Galileons has been studied. In particular we address scaling (conformal) and Noether symmetrized Galileons. We have been proven a series of theorems about the form of Noether conserved charge (current) for irregular (not quadratic) dynamical systems. Special attentions have been made on Galileons. We have been proven that for Galileons always is possible to find a way to "symmetrized" Galileo's field .

  11. Invisibility and PT symmetry

    OpenAIRE

    MOSTAFAZADEH, Ali

    2013-01-01

    PHYSICAL REVIEW A 87, 012103 (2013) Invisibility and PT symmetry Ali Mostafazadeh* Department of Mathematics, Koc¸ University, Sarıyer 34450, Istanbul, Turkey (Received 9 July 2012; published 3 January 2013) For a general complex scattering potential defined on a real line, we show that the equations governing invisibility of the potential are invariant under the combined action of parity and time-reversal (PT ) transformation. We determine the PT -symmetric as well as no...

  12. Symmetry in music

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, O F, E-mail: o.f.herrero@hotmail.co [Conservatorio Superior de Musica ' Eduardo Martinez Torner' Corrada del Obispo s/n 33003 - Oviedo - Asturias (Spain)

    2010-06-01

    Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.

  13. Maximum a posteriori estimation of crystallographic phases in X-ray diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gürsoy, Doǧa; Bicer, Tekin; Almer, Jonathan D.; Kettimuthu, Rajkumar; Stock, Stuart; De Carlo, Francesco

    2015-06-13

    A maximum a posteriori approach is proposed for X-ray diffraction tomography for reconstructing three-dimensional spatial distribution of crystallographic phases and orientations of polycrystalline materials. The approach maximizes the a posteriori density which includes a Poisson log-likelihood and an a priori term that reinforces expected solution properties such as smoothness or local continuity. The reconstruction method is validated with experimental data acquired from a section of the spinous process of a porcine vertebra collected at the 1-ID-C beamline of the Advanced Photon Source, at Argonne National Laboratory. The reconstruction results show significant improvement in the reduction of aliasing and streaking artefacts, and improved robustness to noise and undersampling compared to conventional analytical inversion approaches. The approach has the potential to reduce data acquisition times, and significantly improve beamtime efficiency.

  14. Crystallographic effects during micromachining — A finite-element model

    Science.gov (United States)

    Song, Shin-Hyung; Choi, Woo Chun

    2015-07-01

    Mechanical micromachining is a powerful and effective way for manufacturing small sized machine parts. Even though the micromachining process is similar to the traditional machining, the material behavior during the process is much different. In particular, many researchers report that the basic mechanics of the work material is affected by microstructures and their crystallographic orientations. For example, crystallographic orientations of the work material have significant influence on force response, chip formation and surface finish. In order to thoroughly understand the effect of crystallographic orientations on the micromachining process, finite-element model (FEM) simulating orthogonal cutting process of single crystallographic material was presented. For modeling the work material, rate sensitive single crystal plasticity of face-centered cubic (FCC) crystal was implemented. For the chip formation during the simulation, element deletion technique was used. The simulation model is developed using ABAQUS/explicit with user material subroutine via user material subroutine (VUMAT). Simulations showed that variation of the specific cutting energy at different crystallographic orientations of work material shows significant anisotropy. The developed FEM model can be a useful prediction tool of micromachining of crystalline materials.

  15. Crystallographic orientation and concentric layers in spicules of calcareous sponges.

    Science.gov (United States)

    Rossi, André Linhares; Ribeiro, Bárbara; Lemos, Moara; Werckmann, Jacques; Borojevic, Radovan; Fromont, Jane; Klautau, Michelle; Farina, Marcos

    2016-11-01

    In this work, the crystallography of calcareous sponges (Porifera) spicules and the organization pattern of the concentric layers present in their inner structure were investigated in 10 species of the subclass Calcaronea and three species of the subclass Calcinea. Polished spicules had specific concentric patterns that varied depending on the plane in which the spicules were sectioned. A 3D model of the concentric layers was created to interpret these patterns and the biomineralization process of the triactine spicules. The morphology of the spicules was compared with the crystallographic orientation of the calcite crystals by analyzing the Kikuchi diffraction patterns using a scanning electron microscope. Triactine spicules from the subclass Calcinea had actines (rays) elongated in the 〈210〉 direction, which is perpendicular to the c-axis. The scale spicules of the hypercalcified species Murrayona phanolepis presented the c-axis perpendicular to the plane of the scale, which is in accordance with the crystallography of all other Calcinea. The triactine spicules of the calcaronean species had approximately the same crystallographic orientation with the unpaired actine elongated in the ∼[211] direction. Only one Calcaronea species, whose triactine was regular, had a different orientation. Three different crystallographic orientations were found in diactines. Spicules with different morphologies, dimensions and positions in the sponge body had similar crystallographic directions suggesting that the crystallographic orientation of spicules in calcareous sponges is conserved through evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Majorana neutrino masses from anomalous U(1) symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Leontaris, G.K. [Theoretical Physics Division, University of Ioannina, GR-45110 Ioannina (Greece)]. E-mail: leonta@artemis1.physics.uoi.gr; Rizos, J. [Theoretical Physics Division, University of Ioannina, GR-45110 Ioannina (Greece); Psallidas, A. [Theoretical Physics Division, University of Ioannina, GR-45110 Ioannina (Greece)

    2004-09-09

    We explore the possibility of interpreting the solar and atmospheric neutrino data within the context of the Minimal Supersymmetric Standard Model augmented by a single U(1) anomalous family symmetry spontaneously broken by non-zero vacuum expectation values of a pair of singlet fields. The symmetry retains a dimension-five operator which provides Majorana masses for left-handed neutrino states. Assuming symmetric lepton mass matrices, the model predicts inverse hierarchical neutrino mass spectrum, {theta}13=0 and large mixing while at the same time it provides acceptable mass matrices for the charged fermions.

  17. Noether symmetry approach in f(R)-tachyon model

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Mubasher, E-mail: mjamil@camp.nust.edu.pk [Center for Advanced Mathematics and Physics (CAMP), National University of Sciences and Technology (NUST), H-12, Islamabad (Pakistan); Mahomed, F.M., E-mail: Fazal.Mahomed@wits.ac.za [Centre for Differential Equations, Continuum Mechanics and Applications, School of Computational and Applied Mathematics, University of the Witwatersrand, Wits 2050 (South Africa); Momeni, D., E-mail: d.momeni@yahoo.com [Department of Physics, Faculty of Sciences, Tarbiat Moa' llem University, Tehran (Iran, Islamic Republic of)

    2011-08-26

    In this Letter by utilizing the Noether symmetry approach in cosmology, we attempt to find the tachyon potential via the application of this kind of symmetry to a flat Friedmann-Robertson-Walker (FRW) metric. We reduce the system of equations to simpler ones and obtain the general class of the tachyon's potential function and f(R) functions. We have found that the Noether symmetric model results in a power law f(R) and an inverse fourth power potential for the tachyonic field. Further we investigate numerically the cosmological evolution of our model and show explicitly the behavior of the equation of state crossing the cosmological constant boundary.

  18. Symmetry of “Twins”

    Directory of Open Access Journals (Sweden)

    Vladan Nikolić

    2015-02-01

    Full Text Available The idea of construction of twin buildings is as old as architecture itself, and yet there is hardly any study emphasizing their specificity. Most frequently there are two objects or elements in an architectural composition of “twins” in which there may be various symmetry relations, mostly bilateral symmetries. The classification of “twins” symmetry in this paper is based on the existence of bilateral symmetry, in terms of the perception of an observer. The classification includes both, 2D and 3D perception analyses. We start analyzing a pair of twin buildings with projection of the architectural composition elements in 2D picture plane (plane of the composition and we distinguish four 2D keyframe cases based on the relation between the bilateral symmetry of the twin composition and the bilateral symmetry of each element. In 3D perception for each 2D keyframe case there are two sub-variants, with and without a symmetry plane parallel to the picture plane. The bilateral symmetry is dominant if the corresponding symmetry plane is orthogonal to the picture plane. The essence of the complete classification is relation between the bilateral (dominant symmetry of the architectural composition and the bilateral symmetry of each element of that composition.

  19. Insulators and metals with topological order and discrete symmetry breaking

    Science.gov (United States)

    Chatterjee, Shubhayu; Sachdev, Subir

    2017-05-01

    Numerous experiments have reported discrete symmetry breaking in the high-temperature pseudogap phase of the hole-doped cuprates, including breaking of one or more of lattice rotation, inversion, and time-reversal symmetries. In the absence of translational symmetry breaking or topological order, these conventional order parameters cannot explain the gap in the charged fermion excitation spectrum in the antinodal region. Zhao et al. [L. Zhao, D. H. Torchinsky, H. Chu, V. Ivanov, R. Lifshitz, R. Flint, T. Qi, G. Cao, and D. Hsieh, Nat. Phys. 12, 32 (2016), 10.1038/nphys3517] and Jeong et al. [J. Jeong, Y. Sidis, A. Louat, V. Brouet, and P. Bourges, Nat. Commun. 8, 15119 (2017), 10.1038/ncomms15119] have also reported inversion and time-reversal symmetry breaking in insulating Sr2IrO4 similar to that in the metallic cuprates, but coexisting with Néel order. We extend an earlier theory of topological order in insulators and metals, in which the topological order combines naturally with the breaking of these conventional discrete symmetries. We find translationally invariant states with topological order coexisting with both Ising-nematic order and spontaneous charge currents. The link between the discrete broken symmetries and the topological-order-induced pseudogap explains why the broken symmetries do not survive in the confining phases without a pseudogap at large doping. Our theory also connects to the O(3) nonlinear sigma model and CP1 descriptions of quantum fluctuations of the Néel order. In this framework, the optimal doping criticality of the cuprates is primarily associated with the loss of topological order.

  20. Locally Inverse Semigroups with Inverse Transversals

    Institute of Scientific and Technical Information of China (English)

    SHAO Yong; ZHAO Xian Zhong

    2009-01-01

    Let S be a locally inverse semigroup with an inverse transversal S°. In this paper, we construct an amenable partial order on S by an R-cone. Conversely, every amenable partial order on S can be constructed in this way. We give some properties of a locally inverse semigroup with a Clifford transversal. In particular, if S is a locally inverse semigroup with a Clifford transversal, then there is an order-preserving bijection from the set of all amenable partial orders on S to the set of all R-cones of S.

  1. Crystallographic Topology 2: Overview and Work in Progress

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.K.

    1999-08-01

    This overview describes an application of contemporary geometric topology and stochastic process concepts to structural crystallography. In this application, crystallographic groups become orbifolds, crystal structures become Morse functions on orbifolds, and vibrating atoms in a crystal become vector valued Gaussian measures with the Radon-Nikodym property. Intended crystallographic benefits include new methods for visualization of space groups and crystal structures, analysis of the thermal motion patterns seen in ORTEP drawings, and a classification scheme for crystal structures based on their Heegaard splitting properties.

  2. Groups and symmetry

    CERN Document Server

    Farmer, David W

    1995-01-01

    In most mathematics textbooks, the most exciting part of mathematics-the process of invention and discovery-is completely hidden from the reader. The aim of Groups and Symmetry is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: Its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you. Suitable for a one-semester course at the beginning undergraduate level, there are no prerequ

  3. Symmetry implies independence

    CERN Document Server

    Renner, R

    2007-01-01

    Given a quantum system consisting of many parts, we show that symmetry of the system's state, i.e., invariance under swappings of the subsystems, implies that almost all of its parts are virtually identical and independent of each other. This result generalises de Finetti's classical representation theorem for infinitely exchangeable sequences of random variables as well as its quantum-mechanical analogue. It has applications in various areas of physics as well as information theory and cryptography. For example, in experimental physics, one typically collects data by running a certain experiment many times, assuming that the individual runs are mutually independent. Our result can be used to justify this assumption.

  4. Geometry and symmetry

    CERN Document Server

    Yale, Paul B

    2012-01-01

    This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi

  5. Mirror symmetry II

    CERN Document Server

    Greene, Brian R

    1997-01-01

    Mirror symmetry has undergone dramatic progress during the last five years. Tremendous insight has been gained on a number of key issues. This volume surveys these results. Some of the contributions in this work have appeared elsewhere, while others were written specifically for this collection. The areas covered are organized into 4 sections, and each presents papers by both physicists and mathematicians. This volume collects the most important developments that have taken place in mathematical physics since 1991. It is an essential reference tool for both mathematics and physics libraries and for students of physics and mathematics.

  6. The Emergence of Topological Nodal Points in Photonic Crystal with Mirror Symmetry

    CERN Document Server

    He, Wen-Yu

    2014-01-01

    We show that topological nodal points can emerge in photonic crystal possessing mirror symmetry. The mechanism of generating topological nodal points is discussed in a two-dimensional photonic square lattice, in which four topological nodal points split out naturally after the touching of two bands with different parity. The emergence of such nodal points, characterized by vortex structure in momentum space, is attributed to the unavoidable band crossing protected by mirror symmetry. The topological nodes can be unbuckled through breaking the mirror symmetry and a photonic Chern insulator can be achieved through time reversal symmetry breaking. The joint effect of breaking time reversal symmetry and breaking inversion symmetry is further found to strengthen the finite size effect, providing ways to engineer helical edge states.

  7. Application of symmetry operation measures in structural inorganic chemistry.

    Science.gov (United States)

    Echeverría, Jorge; Alvarez, Santiago

    2008-12-01

    This paper presents an application of the recently proposed symmetry operation measures to the determination of the effective symmetry point group of coordination polyhedra in inorganic solids. Several structure types based on octahedra are found to present distinct distortion patterns each, not strictly attached to the crystallographic site symmetry. These include the (NH4)2[CuCl4], CdI2 (brucite), FeS2 (pyrite), TiO2 (rutile), CaCl2, GdFeO3, PbTiO3,LiNbO3, BiI3, CrCl3, Al2O3, and NiWO4 structures. It is shown that a similar analysis can be applied to the Bailar and tetragonal Jahn-Teller distortions of molecular transition metal complexes, as well as to solids based on tetrahedra, such as the ZnCl2, FeS, BeCl2, SiS2, and KFeS2 structure types.

  8. Bootstrap Dynamical Symmetry Breaking

    Directory of Open Access Journals (Sweden)

    Wei-Shu Hou

    2013-01-01

    Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700  GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.

  9. Galactic oscillator symmetry

    Science.gov (United States)

    Rosensteel, George

    1995-01-01

    Riemann ellipsoids model rotating galaxies when the galactic velocity field is a linear function of the Cartesian coordinates of the galactic masses. In nuclear physics, the kinetic energy in the linear velocity field approximation is known as the collective kinetic energy. But, the linear approximation neglects intrinsic degrees of freedom associated with nonlinear velocity fields. To remove this limitation, the theory of symplectic dynamical symmetry is developed for classical systems. A classical phase space for a self-gravitating symplectic system is a co-adjoint orbit of the noncompact group SP(3,R). The degenerate co-adjoint orbit is the 12 dimensional homogeneous space Sp(3,R)/U(3), where the maximal compact subgroup U(3) is the symmetry group of the harmonic oscillator. The Hamiltonian equations of motion on each orbit form a Lax system X = (X,F), where X and F are elements of the symplectic Lie algebra. The elements of the matrix X are the generators of the symplectic Lie algebra, viz., the one-body collective quadratic functions of the positions and momenta of the galactic masses. The matrix F is composed from the self-gravitating potential energy, the angular velocity, and the hydostatic pressure. Solutions to the hamiltonian dynamical system on Sp(3,R)/U(3) are given by symplectic isospectral deformations. The Casimirs of Sp(3,R), equal to the traces of powers of X, are conserved quantities.

  10. Applications of chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.

  11. Symmetry in Complex Networks

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2011-01-01

    Full Text Available In this paper, we analyze a few interrelated concepts about graphs, such as their degree, entropy, or their symmetry/asymmetry levels. These concepts prove useful in the study of different types of Systems, and particularly, in the analysis of Complex Networks. A System can be defined as any set of components functioning together as a whole. A systemic point of view allows us to isolate a part of the world, and so, we can focus on those aspects that interact more closely than others. Network Science analyzes the interconnections among diverse networks from different domains: physics, engineering, biology, semantics, and so on. Current developments in the quantitative analysis of Complex Networks, based on graph theory, have been rapidly translated to studies of brain network organization. The brain's systems have complex network features—such as the small-world topology, highly connected hubs and modularity. These networks are not random. The topology of many different networks shows striking similarities, such as the scale-free structure, with the degree distribution following a Power Law. How can very different systems have the same underlying topological features? Modeling and characterizing these networks, looking for their governing laws, are the current lines of research. So, we will dedicate this Special Issue paper to show measures of symmetry in Complex Networks, and highlight their close relation with measures of information and entropy.

  12. From symmetry to particles

    Energy Technology Data Exchange (ETDEWEB)

    El Naschie, M.S. [King Abdul Aziz City of Science and Technology, Riyadh (Saudi Arabia)

    2007-04-15

    The notion of a particle-like state emerging from a symmetry breaking is given five corresponding pictures. We start from a geometrical picture in two dimensions involving a modular curve constructed using 336 triangles. The same number of building blocks is found again, this time as 336 contact points in the ten dimensional space of super string theory in the context of the largest kissing number of lattice sphere packing. The next corresponding representation is an abstract one pertinent to the order of the simple linear Lie group SL(2, n) in seven dimensions (n = 7) which leads to 336 symmetries. Subsequently a tensorial picture is given using the Riemannian tensor of relativity theory but this time in an eight dimensional space (n = 8) for which the number of independent components is again 336. Finally we use a physical string theory related picture in the 12 dimensions of F theory to find 336 moduli space dimensions representing the instanton cells of our theory. It is evident that the five preceding pictures are ten fold interconnected and exchangeable. This additional mental freedom does not only enhance the feeling of understanding, but also facilitates the easy recognition of complex mathematical relations and its connection to the physical concepts.

  13. SYMMETRY IN WORLD TRADE NETWORK

    Institute of Scientific and Technical Information of China (English)

    Hui WANG; Guangle YAN; Yanghua XIAO

    2009-01-01

    Symmetry of the world trade network provides a novel perspective to understand the world-wide trading system. However, symmetry in the world trade network (WTN) has been rarely studied so far. In this paper, the authors systematically explore the symmetry in WTN. The authors construct WTN in 2005 and explore the size and structure of its automorphism group, through which the authors find that WTN is symmetric, particularly, locally symmetric to a certain degree. Furthermore, the authors work out the symmetric motifs of WTN and investigate the structure and function of the symmetric motifs, coming to the conclusion that local symmetry will have great effect on the stability of the WTN and that continuous symmetry-breakings will generate complexity and diversity of the trade network. Finally, utilizing the local symmetry of the network, the authors work out the quotient of WTN, which is the structural skeleton dominating stability and evolution of WTN.

  14. In search of symmetry lost

    CERN Multimedia

    Wilczek, Frank

    2004-01-01

    Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world (8 pages) Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world. The discrepancy is ascribed to a pervasive symmetry-breaking field, which fills all space uniformly, rendering the Universe a sort of exotic superconductor. So far, the evidence for these bold ideas is indirect. But soon the theory will undergo a critical test depending on whether the quanta of this symmetry-breaking field, the so-called Higgs particles, are produced at the Large Hadron Collider (due to begin operation in 2007).

  15. Symmetry of crystals and molecules

    CERN Document Server

    Ladd, Mark

    2014-01-01

    This book successfully combines a thorough treatment of molecular and crystalline symmetry with a simple and informal writing style. By means of familiar examples the author helps to provide the reader with those conceptual tools necessary for the development of a clear understanding of what are often regarded as 'difficult' topics. Christopher Hammond, University of Leeds This book should tell you everything you need to know about crystal and molecular symmetry. Ladd adopts an integrated approach so that the relationships between crystal symmetry, molecular symmetry and features of chemical interest are maintained and reinforced. The theoretical aspects of bonding and symmetry are also well represented, as are symmetry-dependent physical properties and the applications of group theory. The comprehensive coverage will make this book a valuable resource for a broad range of readers.

  16. Symmetry breaking. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Strocchi, F. [Scuola Normale Superiore, Classe di Scienze, Pisa (Italy)

    2008-07-01

    This new edition of Prof. Strocchi's well received primer on rigorous aspects of symmetry breaking presents a more detailed and thorough discussion of the mechanism of symmetry breaking in classical field theory in relation with the Noether theorem. Moreover, the link between symmetry breaking without massless Goldstone bosons in Coulomb systems and in gauge theories is made more explicit in terms of the delocalized Coulomb dynamics. Furthermore, the chapter on the Higgs mechanism has been significantly expanded with a non-perturbative treatment of the Higgs phenomenon, at the basis of the standard model of particle physics, in the local and in the Coulomb gauges. Last but not least, a subject index has been added and a number of misprints have been corrected. From the reviews of the first edition: The notion of spontaneous symmetry breaking has proven extremely valuable, the problem is that most derivations are perturbative and heuristic. Yet mathematically precise versions do exist, but are not widely known. It is precisely the aim of his book to correct this unbalance. - It is remarkable to see how much material can actually be presented in a rigorous way (incidentally, many of the results presented are due to Strocchi himself), yet this is largely ignored, the original heuristic derivations being, as a rule, more popular. - At each step he strongly emphasizes the physical meaning and motivation of the various notions introduced, a book that fills a conspicuous gap in the literature, and does it rather well. It could also be a good basis for a graduate course in mathematical physics. It can be recommended to physicists as well and, of course, for physics/mathematics libraries. J.-P. Antoine, Physicalia 28/2, 2006 Strocchi's main emphasis is on the fact that the loss of symmetric behaviour requires both the non-symmetric ground states and the infinite extension of the system. It is written in a pleasant style at a level suitable for graduate students in

  17. Exact Dynamical and Partial Symmetries

    CERN Document Server

    Leviatan, A

    2010-01-01

    We discuss a hierarchy of broken symmetries with special emphasis on partial dynamical symmetries (PDS). The latter correspond to a situation in which a non-invariant Hamiltonian accommodates a subset of solvable eigenstates with good symmetry, while other eigenstates are mixed. We present an algorithm for constructing Hamiltonians with this property and demonstrate the relevance of the PDS notion to nuclear spectroscopy, to quantum phase transitions and to mixed systems with coexisting regularity and chaos.

  18. Exact dynamical and partial symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A, E-mail: ami@phys.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    2011-03-01

    We discuss a hierarchy of broken symmetries with special emphasis on partial dynamical symmetries (PDS). The latter correspond to a situation in which a non-invariant Hamiltonian accommodates a subset of solvable eigenstates with good symmetry, while other eigenstates are mixed. We present an algorithm for constructing Hamiltonians with this property and demonstrate the relevance of the PDS notion to nuclear spectroscopy, to quantum phase transitions and to mixed systems with coexisting regularity and chaos.

  19. Physical Theories with Average Symmetry

    OpenAIRE

    Alamino, Roberto C.

    2013-01-01

    This Letter probes the existence of physical laws invariant only in average when subjected to some transformation. The concept of a symmetry transformation is broadened to include corruption by random noise and average symmetry is introduced by considering functions which are invariant only in average under these transformations. It is then shown that actions with average symmetry obey a modified version of Noether's Theorem with dissipative currents. The relation of this with possible violat...

  20. Complete symmetry characterization in collisions involving four identical atoms

    Science.gov (United States)

    Douguet, Nicolas; Assemat, Elie; Kokoouline, Viatcheslav

    2016-10-01

    We discuss symmetry properties of a quantum system comprised of four identical atoms in different large-distance molecular configurations and derive general selection rules with possible nuclei exchange after a four-atom collision, e.g. a molecular reaction. We focus on the following important collisional processes: (1) two bound diatomic molecules, (2) a bound triatomic molecule and a free atom, and (3) a bound diatomic molecule and two free atoms. The approach employed to treat this problem is based on analyzing eigenspaces of the large-distance Hamiltonians and the corresponding constants of motion. The symmetry is then studied by decomposing a given eigenspace of the large-distance Hamiltonian in irreducible representations of the complete nuclear permutation inversion group G48 of four identical nuclei appropriate for short distances using appropriate symmetry subgroups. The final results provide selection rules for collisions of four identical atoms.

  1. Symmetry group analysis of an ideal plastic flow

    CERN Document Server

    Lamothe, Vincent

    2011-01-01

    In this paper, we study the Lie point symmetry group of a system describing an ideal plastic plane flow in two dimensions in order to find analytical solutions. The infinitesimal generators that span the Lie algebra for this system are obtained. We completely classify the subalgebras of up to codimension two in conjugacy classes under the action of the symmetry group. Based on invariant forms, we use Ansatzes to compute symmetry reductions in such a way that the obtained solutions cover simultaneously many invariant and partially invariant solutions. We calculate solutions of the algebraic, trigonometric, inverse trigonometric and elliptic type. Some solutions depending on one or two arbitrary functions of one variable have also been found. In some cases, the shape of a potentially feasible extrusion die corresponding to the solution is deduced. These tools could be used to thin, curve, undulate or shape a ring in an ideal plastic material.

  2. $\\mathcal{PT}$-Symmetry-Breaking Chaos in Optomechanics

    CERN Document Server

    Lü, Xin-You; Ma, Jin-Yong; Wu, Ying

    2015-01-01

    We demonstrate a $\\mathcal{PT}$-symmetry-breaking chaos in optomechanical system (OMS), which features an ultralow driving threshold. In principle, this chaos will emerge once a driving laser is applied to the cavity mode and lasts for a period of time. The driving strength is inversely proportional to the starting time of chaos. This originally comes from the dynamical enhancement of nonlinearity by field localization in $\\mathcal{PT}$-symmetry-breaking phase ($\\mathcal{PT}$BP). Moreover, this chaos is switchable by tuning the system parameters so that a $\\mathcal{PT}$-symmetry phase transition occurs. This work may fundamentally broaden the regimes of cavity optomechanics and nonlinear optics. It offers the prospect of exploring ultralow-power-laser triggered chaos and its potential applications in secret communication.

  3. Massive photons from Super and Lorentz symmetry breaking

    CERN Document Server

    Bonetti, Luca; Helayël-Neto, José A; Spallicci, Alessandro D A M

    2016-01-01

    In the context of Standard Model Extensions (SMEs), we analyse four general classes of Super Symmetry (SuSy) and Lorentz Symmetry (LoSy) breaking, leading to {observable} imprints at our energy scales. The photon dispersion relations show a non-Maxwellian behaviour for the CPT (Charge-Parity-Time reversal symmetry) odd and even sectors. The group velocities exhibit also a directional dependence with respect to the breaking background vector (odd CPT) or tensor (even CPT). In the former sector, the group velocity may decay following an inverse squared frequency behaviour. Thus, we extract a massive and gauge invariant Carroll-Field-Jackiw photon term in the Lagrangian and show that the mass is proportional to the breaking vector. The latter is estimated by ground measurements and leads to a photon mass upper limit of $10^{-19}$ eV or $2 \\times 10^{-55}$ kg and thereby to a potentially measurable delay at low radio frequencies.

  4. Physical Theories with Average Symmetry

    CERN Document Server

    Alamino, Roberto C

    2013-01-01

    This Letter probes the existence of physical laws invariant only in average when subjected to some transformation. The concept of a symmetry transformation is broadened to include corruption by random noise and average symmetry is introduced by considering functions which are invariant only in average under these transformations. It is then shown that actions with average symmetry obey a modified version of Noether's Theorem with dissipative currents. The relation of this with possible violations of physical symmetries, as for instance Lorentz invariance in some quantum gravity theories, is briefly commented.

  5. The conservation of orbital symmetry

    CERN Document Server

    Woodward, R B

    2013-01-01

    The Conservation of Orbital Symmetry examines the principle of conservation of orbital symmetry and its use. The central content of the principle was that reactions occur readily when there is congruence between orbital symmetry characteristics of reactants and products, and only with difficulty when that congruence does not obtain-or to put it more succinctly, orbital symmetry is conserved in concerted reaction. This principle is expected to endure, whatever the language in which it may be couched, or whatever greater precision may be developed in its application and extension. The book ope

  6. Toric Symmetry of CP^3

    CERN Document Server

    Karp, Dagan; Riggins, Paul; Whitcher, Ursula

    2011-01-01

    We exhaustively analyze the toric symmetries of CP^3 and its toric blowups. Our motivation is to study toric symmetry as a computational technique in Gromov-Witten theory and Donaldson-Thomas theory. We identify all nontrivial toric symmetries. The induced nontrivial isomorphisms lift and provide new symmetries at the level of Gromov-Witten Theory and Donaldson-Thomas Theory. The polytopes of the toric varieties in question include the permutohedron, the cyclohedron, the associahedron, and in fact all graph associahedra, among others.

  7. Leptogenesis and residual CP symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Peng; Ding, Gui-Jun [Department of Modern Physics, University of Science and Technology of China,Hefei, Anhui 230026 (China); King, Stephen F. [Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom)

    2016-03-31

    We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z{sub 2} in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S{sub 4} flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.

  8. Symmetry fractionalization and twist defects

    Science.gov (United States)

    Tarantino, Nicolas; Lindner, Netanel H.; Fidkowski, Lukasz

    2016-03-01

    Topological order in two-dimensions can be described in terms of deconfined quasiparticle excitations—anyons—and their braiding statistics. However, it has recently been realized that this data does not completely describe the situation in the presence of an unbroken global symmetry. In this case, there can be multiple distinct quantum phases with the same anyons and statistics, but with different patterns of symmetry fractionalization—termed symmetry enriched topological order. When the global symmetry group G, which we take to be discrete, does not change topological superselection sectors—i.e. does not change one type of anyon into a different type of anyon—one can imagine a local version of the action of G around each anyon. This leads to projective representations and a group cohomology description of symmetry fractionalization, with the second cohomology group {H}2(G,{{ A }}{{abelian}}) being the relevant group. In this paper, we treat the general case of a symmetry group G possibly permuting anyon types. We show that despite the lack of a local action of G, one can still make sense of a so-called twisted group cohomology description of symmetry fractionalization, and show how this data is encoded in the associativity of fusion rules of the extrinsic ‘twist’ defects of the symmetry. Furthermore, building on work of Hermele (2014 Phys. Rev. B 90 184418), we construct a wide class of exactly-solvable models which exhibit this twisted symmetry fractionalization, and connect them to our formal framework.

  9. Crystal structure refinement a crystallographers guide to SHELXL

    CERN Document Server

    2006-01-01

    A crystallographers guide to SHELXL, covering various aspects of practical crystal structure refinement, from the treatment of hydrogen atoms to the assignment of atom types, and more. After an introduction to SHELXL, a brief survey of crystal structure refinement is provided.

  10. Canonical symmetry properties of the constrained singular generalized mechanical system

    Institute of Scientific and Technical Information of China (English)

    李爱民; 江金环; 李子平

    2003-01-01

    Based on generalized Apell-Chetaev constraint conditions and to take the inherent constrains for singular Lagrangian into account, the generalized canonical equations for a general mechanical system with a singular higher-order Lagrangian and subsidiary constrains are formulated. The canonical symmetries in phase space for such a system are studied and Noether theorem and its inversion theorem in the generalized canonical formalism have been established.

  11. Canonical symmetry properties of the constrained singular generalized mechanical system

    Institute of Scientific and Technical Information of China (English)

    LiAi-Min; JiangJin-Huan; LiZi-Ping

    2003-01-01

    Based on generalized Apell-Chetaev constraint conditions and to take the inherent constrains for singular Lagrangian into account,the generalized canonical equations for a general mechanical system with a singular higher-order Lagrangian and subsidiary constrains are formulated. The canonical symmetries in phase space for such a system are studied and Noether theorem and its inversion theorem in the generalized canonical formalism have been established.

  12. Recovery of crystallographic texture in remineralized dental enamel.

    Science.gov (United States)

    Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon

    2014-01-01

    Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain

  13. Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry.

    Science.gov (United States)

    Neeman, Lior; Ben-Zvi, Regev; Rechav, Katya; Popovitz-Biro, Ronit; Oron, Dan; Joselevich, Ernesto

    2017-02-08

    The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations.

  14. Recovery of crystallographic texture in remineralized dental enamel.

    Directory of Open Access Journals (Sweden)

    Samera Siddiqui

    Full Text Available Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture and position of the (002 Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected

  15. Symmetry reduction related with nonlocal symmetry for Gardner equation

    Science.gov (United States)

    Ren, Bo

    2017-01-01

    Based on the truncated Painlevé method or the Möbious (conformal) invariant form, the nonlocal symmetry for the (1+1)-dimensional Gardner equation is derived. The nonlocal symmetry can be localized to the Lie point symmetry by introducing one new dependent variable. Thanks to the localization procedure, the finite symmetry transformations are obtained by solving the initial value problem of the prolonged systems. Furthermore, by using the symmetry reduction method to the enlarged systems, many explicit interaction solutions among different types of solutions such as solitary waves, rational solutions, Painlevé II solutions are given. Especially, some special concrete soliton-cnoidal interaction solutions are analyzed both in analytical and graphical ways.

  16. Bosonization and Mirror Symmetry

    CERN Document Server

    Kachru, Shamit; Torroba, Gonzalo; Wang, Huajia

    2016-01-01

    We study bosonization in 2+1 dimensions using mirror symmetry, a duality that relates pairs of supersymmetric theories. Upon breaking supersymmetry in a controlled way, we dynamically obtain the bosonization duality that equates the theory of a free Dirac fermion to QED3 with a single scalar boson. This duality may be used to demonstrate the bosonization duality relating an $O(2)$-symmetric Wilson-Fisher fixed point to QED3 with a single Dirac fermion, Peskin-Dasgupta-Halperin duality, and the recently conjectured duality relating the theory of a free Dirac fermion to fermionic QED3 with a single flavor. Chern-Simons and BF couplings for both dynamical and background gauge fields play a central role in our approach. In the course of our study, we describe a chiral mirror pair that may be viewed as the minimal supersymmetric generalization of the two bosonization dualities.

  17. Quantum mechanics symmetries

    CERN Document Server

    Greiner, Walter

    1989-01-01

    "Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...

  18. Gauged Flavor Symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Heeck, Julian

    2013-04-15

    Augmenting the Standard Model by three right-handed neutrinos allows for an anomaly-free gauge group extension G{sub max}=U(1){sub B−L}×U(1){sub L{sub e−L{sub μ}}}×U(1){sub L{sub μ−L{sub τ}}}. Simple U(1) subgroups of G{sub max} can be used to impose structure on the righthanded neutrino mass matrix, which then propagates to the active neutrino mass matrix via the seesaw mechanism. We show how this framework can be used to gauge the approximate lepton-number symmetries behind the normal, inverted, and quasidegenerate neutrino mass spectrum, and also how to generate texture-zeros and vanishing minors in the neutrino mass matrix, leading to testable relations among mixing parameters.

  19. Bosonization and mirror symmetry

    Science.gov (United States)

    Kachru, Shamit; Mulligan, Michael; Torroba, Gonzalo; Wang, Huajia

    2016-10-01

    We study bosonization in 2 +1 dimensions using mirror symmetry, a duality that relates pairs of supersymmetric theories. Upon breaking supersymmetry in a controlled way, we dynamically obtain the bosonization duality that equates the theory of a free Dirac fermion to QED3 with a single scalar boson. This duality may be used to demonstrate the bosonization duality relating an O (2 )-symmetric Wilson-Fisher fixed point to QED3 with a single Dirac fermion, Peskin-Dasgupta-Halperin duality, and the recently conjectured duality relating the theory of a free Dirac fermion to fermionic QED3 with a single flavor. Chern-Simons and BF couplings for both dynamical and background gauge fields play a central role in our approach. In the course of our study, we describe a "chiral" mirror pair that may be viewed as the minimal supersymmetric generalization of the two bosonization dualities.

  20. Inverse anticipating chaos synchronization.

    Science.gov (United States)

    Shahverdiev, E M; Sivaprakasam, S; Shore, K A

    2002-07-01

    We derive conditions for achieving inverse anticipating synchronization where a driven time-delay chaotic system synchronizes to the inverse future state of the driver. The significance of inverse anticipating chaos in delineating synchronization regimes in time-delay systems is elucidated. The concept is extended to cascaded time-delay systems.

  1. Locative Inversion in Cantonese.

    Science.gov (United States)

    Mok, Sui-Sang

    This study investigates the phenomenon of "Locative Inversion" in Cantonese. The term "Locative Inversion" indicates that the locative phrase (LP) syntactic process in Cantonese and the appears at the sentence-initial position and its logical subject occurs postverbally. It is demonstrated that this Locative Inversion is a…

  2. Classical and quantum motion in an inverse square potential

    Energy Technology Data Exchange (ETDEWEB)

    Avila-Aoki, M. [Centro Universitario Valle de Chalco, Universidad Autonoma del Estado de Mexico, Valle de Chalco, CP 56615, Estado de Mexico (Mexico)], E-mail: manvlk@yahoo.com; Cisneros, C. [Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 6-96, CP 62131, Cuernavaca, Morelos (Mexico)], E-mail: carmen@ce.fis.unam.mx; Martinez-y-Romero, R.P. [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Apartado Postal 21-267, CP 04000, Coyoacan DF (Mexico)], E-mail: rodolfo@dirac.fciencias.unam.mx; Nunez-Yepez, H.N. [Departamento Fisica, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, CP 09340, Iztapalapa DF (Mexico)], E-mail: nyhn@xanum.uam.mx; Salas-Brito, A.L. [Laboratorio de Sistemas Dinamicos, Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-Azcapotzalco, Apartado Postal 21-267, CP 04000, Coyoacan DF (Mexico)], E-mail: asb@correo.azc.uam.mx

    2009-01-19

    Classical motion in an inverse square potential is shown to be equivalent to free motion on a hyperbola. The existence of a classical splitting between the q>0 and q<0 regions of motion is demonstrated. We show that this last property may be regarded as the classical counterpart of the superselection rule occurring in the corresponding quantum problem. We solve the quantum problem in momentum space finding that there is no way of quantizing its energy but that the eigenfunctions suffice to describe the single renormalized bound state of the system. The dynamical symmetry of the classical problem is found to be O(1,1). Both this symmetry and the symmetry of inversion through the origin are found to be broken.

  3. Probing IrTe2 crystal symmetry by polarized Raman scattering

    Science.gov (United States)

    Lazarević, N.; Bozin, E. S.; Šćepanović, M.; Opačić, M.; Lei, Hechang; Petrovic, C.; Popović, Z. V.

    2014-06-01

    Polarized Raman scattering measurements on IrTe2 single crystals carried out over the 15-640 K temperature range, and across the structural phase transition, reveal different insights regarding the crystal symmetry. In the high temperature regime three Raman active modes are observed at all of the studied temperatures above the structural phase transition, rather than two as predicted by the factor group analysis for the assumed P3¯m1 symmetry. This indicates that the actual symmetry of the high temperature phase is lower than previously thought. The observation of an additional Eg mode at high temperature can be explained by doubling of the original trigonal unit cell along the c axis and within the P3¯c1 symmetry. In the low temperature regime (below 245 K) the other Raman modes appear as a consequence of the symmetry lowering phase transition and the corresponding increase of the primitive cell. All of the modes observed below the phase transition temperature can be assigned within the monoclinic crystal symmetry. The temperature dependence of the Raman active phonons in both phases is mainly driven by anharmonicity effects. The results call for reconsideration of the crystallographic phases of IrTe2.

  4. Symmetry Breaking by Nonstationay Optimisation

    NARCIS (Netherlands)

    Prestwich, S.; Hnich, B.; Rossi, R.; Tarim, S.A.

    2008-01-01

    We describe a new partial symmetry breaking method that can be used to break arbitrary variable/value symmetries in combination with depth first search, static value ordering and dynamic variable ordering. The main novelty of the method is a new dominance detection technique based on local search in

  5. Lie Symmetries of Ishimori Equation

    Institute of Scientific and Technical Information of China (English)

    SONG Xu-Xia

    2013-01-01

    The Ishimori equation is one of the most important (2+1)-dimensional integrable models,which is an integrable generalization of (1+1)-dimensional classical continuous Heisenberg ferromagnetic spin equations.Based on importance of Lie symmetries in analysis of differential equations,in this paper,we derive Lie symmetries for the Ishimori equation by Hirota's direct method.

  6. Hole localization and symmetry breaking

    NARCIS (Netherlands)

    Broer, R; Nieuwpoort, W.C.

    1999-01-01

    A brief overview is presented of some theoretical work on the symmetry breaking of electronic wavefunctions that followed the early work on Bagus and Schaefer who observed that a considerable lower SCF energy could be obtained for an ionized state of the O2 molecule with a 1s hole if the symmetry re

  7. Symmetry Breaking by Nonstationay Optimisation

    NARCIS (Netherlands)

    Prestwich, S.; Hnich, B.; Rossi, R.; Tarim, S.A.

    2008-01-01

    We describe a new partial symmetry breaking method that can be used to break arbitrary variable/value symmetries in combination with depth first search, static value ordering and dynamic variable ordering. The main novelty of the method is a new dominance detection technique based on local search in

  8. Asymptotic Symmetries from finite boxes

    CERN Document Server

    Andrade, Tomas

    2015-01-01

    It is natural to regulate an infinite-sized system by imposing a boundary condition at finite distance, placing the system in a "box." This breaks symmetries, though the breaking is small when the box is large. One should thus be able to obtain the asymptotic symmetries of the infinite system by studying regulated systems. We provide concrete examples in the context of Einstein-Hilbert gravity (with negative or zero cosmological constant) by showing in 4 or more dimensions how the Anti-de Sitter and Poincar\\'e asymptotic symmetries can be extracted from gravity in a spherical box with Dirichlet boundary conditions. In 2+1 dimensions we obtain the full double-Virasoro algebra of asymptotic symmetries for AdS$_3$ and, correspondingly, the full Bondi-Metzner-Sachs (BMS) algebra for asymptotically flat space. In higher dimensions, a related approach may continue to be useful for constructing a good asymptotically flat phase space with BMS asymptotic symmetries.

  9. Discrete symmetries in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Schieren, Roland

    2010-12-02

    The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)

  10. Shape analysis with subspace symmetries

    KAUST Repository

    Berner, Alexander

    2011-04-01

    We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace symmetries based on detecting linearly correlated correspondences among graphs of invariant features. We evaluate our technique on various data sets. We show that for models with pronounced surface features, subspace symmetries can be found fully automatically. For complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense correspondences that can subsequently be used in various applications, such as model repair and denoising. © 2010 The Author(s).

  11. Perturbation to Symmetries and Adiabatic Invariants of Nonholonomic System in Terms of Quasi-coordinates

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on the theory of Lie symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic system in terms of quasi-coordinates are studied. The perturbation to symmetries for the nonholonomic system in terms of quasi-coordinates under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the forms of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.

  12. Perturbation to Symmetries and Adiabatic Invariants of Nonholonomic Dynamical System of Relative Motion

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiang-Wei; WANG Ming-Quan; WANG Xin-Min

    2005-01-01

    Based on the theory of symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic dynamical system of relative motion are studied. The perturbation to symmetries for the nonholonomic dynamical system of relative motion under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the form of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.

  13. Pattern recognition using inverse resonance filtration

    CERN Document Server

    Sofina, Olga; Kvetnyy, Roman

    2010-01-01

    An approach to textures pattern recognition based on inverse resonance filtration (IRF) is considered. A set of principal resonance harmonics of textured image signal fluctuations eigen harmonic decomposition (EHD) is used for the IRF design. It was shown that EHD is invariant to textured image linear shift. The recognition of texture is made by transfer of its signal into unstructured signal which simple statistical parameters can be used for texture pattern recognition. Anomalous variations of this signal point on foreign objects. Two methods of 2D EHD parameters estimation are considered with the account of texture signal breaks presence. The first method is based on the linear symmetry model that is not sensitive to signal phase jumps. The condition of characteristic polynomial symmetry provides the model stationarity and periodicity. Second method is based on the eigenvalues problem of matrices pencil projection into principal vectors space of singular values decomposition (SVD) of 2D correlation matrix....

  14. Mei Symmetry and Lie Symmetry of the Rotational Relativistic Variable Mass System

    Institute of Scientific and Technical Information of China (English)

    FANGJian-Hui

    2003-01-01

    The Mei symmetry and the Lie symmetry of a rotational relativistic variable mass system are studied. The definitions and criteria of the Mei symmetry and the Lie symmetry of the rotational relativistic variable mass system are given. The relation between the Mei symmetry and the Lie symmetry is found. The conserved quantities which the Mei symmetry and the Lie symmetry lead to are obtained. An example is given to illustrate the application of the result.

  15. Gravitation and Gauge Symmetries

    CERN Document Server

    Stewart, J

    2002-01-01

    The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...

  16. Symmetries in nuclear structure

    CERN Document Server

    Allaart, K; Dieperink, A

    1983-01-01

    The 1982 summer school on nuclear physics, organized by the Nuclear Physics Division of the Netherlands' Physical Society, was the fifth in a series that started in 1963. The number of students attending has always been about one hundred, coming from about thirty countries. The theme of this year's school was symmetry in nuclear physics. This book covers the material presented by the enthusi­ astic speakers, who were invited to lecture on this subject. We think they have succeeded in presenting us with clear and thorough introductory talks at graduate or higher level. The time schedule of the school and the location allowed the participants to make many informal contacts during many social activities, ranging from billiards to surf board sailing. We hope and expect that the combination of a relaxed atmosphere during part of the time and hard work during most of the time, has furthered the interest in, and understanding of, nuclear physics. The organization of the summer school was made possible by substantia...

  17. Crystallographic data processing for free-electron laser sources

    Energy Technology Data Exchange (ETDEWEB)

    White, Thomas A., E-mail: taw@physics.org; Barty, Anton; Stellato, Francesco [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Holton, James M. [University of California, San Francisco, CA 94158 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kirian, Richard A. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Arizona State University, Tempe, AZ 85287 (United States); Zatsepin, Nadia A. [Arizona State University, Tempe, AZ 85287 (United States); Chapman, Henry N. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2013-07-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.

  18. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    Directory of Open Access Journals (Sweden)

    Alexandra Henriques

    2014-11-01

    Full Text Available Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 1015 neutrons/cm2. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. The results demonstrate a method by which the effects of radiation on crystallographic structure may be investigated.

  19. A crystallographic perspective on sharing data and knowledge.

    Science.gov (United States)

    Bruno, Ian J; Groom, Colin R

    2014-10-01

    The crystallographic community is in many ways an exemplar of the benefits and practices of sharing data. Since the inception of the technique, virtually every published crystal structure has been made available to others. This has been achieved through the establishment of several specialist data centres, including the Cambridge Crystallographic Data Centre, which produces the Cambridge Structural Database. Containing curated structures of small organic molecules, some containing a metal, the database has been produced for almost 50 years. This has required the development of complex informatics tools and an environment allowing expert human curation. As importantly, a financial model has evolved which has, to date, ensured the sustainability of the resource. However, the opportunities afforded by technological changes and changing attitudes to sharing data make it an opportune moment to review current practices.

  20. Recent developments in crystallographic investigation of martensitic transformation

    Institute of Scientific and Technical Information of China (English)

    GU Nanju; DONG Guixia; LIN Xiaoping; WANG Baoqi; MA Xiaoli

    2004-01-01

    The results and new knowledge obtained in recent years by using an atom force microscope (AFM) to investigate the surface relieves and to reveal the lattice deformation characteristics in martensitic transformation (MT) are summarized. All-round analysis and research about crystallography and morphology of MT have been done based on our "displacement vector" theory. New viewpoints that the "invariant-plane-strain" criterion have no universality and that the large rotation of habit-planes takes place in {557} lath and {225} plate martensites are put forward. Thereby, the formation mode of {557} martensite is established, which is in good agreement with the experimental results. Finally, according to the self-accommodation principle between variants crystallographic calculations of twin and multi-variant martensites in shape memory alloys have been carried out. The calculation method greatly simplifies the crystallographic calculation process of phenomenological theory. And the calculated results are in good agreement with experimental ones.

  1. O'Hanlon actions by Noether symmetry

    OpenAIRE

    Darabi, F.

    2015-01-01

    By using the conformal symmetry between Brans-Dicke action with $\\omega=-\\frac{3}{2}$ and O'Hanlon action, we seek the O'Hanlon actions in Einstein frame respecting the Noether symmetry. Since the Noether symmetry is preserved under conformal transformations, the existence of Noether symmetry in the Brans-Dicke action asserts the Noether symmetry in O'Hanlon action in Einstein frame. Therefore, the potentials respecting Noether symmetry in Brans-Dicke action give the corresponding potentials ...

  2. Residual Weyl symmetry out of conformal geometry and its BRST structure

    Science.gov (United States)

    François, J.; Lazzarini, S.; Masson, T.

    2015-09-01

    The conformal structure of second order in m-dimensions together with the so-called (normal) conformal Cartan connection, is considered as a framework for gauge theories. The dressing field scheme presented in a previous work amounts to a decoupling of both the inversion and the Lorentz symmetries such that the residual gauge symmetry is the Weyl symmetry. On the one hand, it provides straightforwardly the Riemannian parametrization of the normal conformal Cartan connection and its curvature. On the other hand, it also provides the finite transformation laws under the Weyl rescaling of the various geometric objects involved. Subsequently, the dressing field method is shown to fit the BRST differential algebra treatment of infinitesimal gauge symmetry. The dressed ghost field encoding the residual Weyl symmetry is presented. The related so-called algebraic connection supplies relevant combinations found in the literature in the algebraic study of the Weyl anomaly.

  3. Residual Weyl symmetry out of conformal geometry and its BRS structure

    CERN Document Server

    François, Jordan; Masson, Thierry

    2015-01-01

    The conformal structure of second order in $m$-dimensions together with the so-called (normal) conformal Cartan connection, is considered as a framework for gauge theories. The dressing field scheme presented in a previous work amounts to a decoupling of both the inversion and the Lorentz symmetries such that the residual gauge symmetry is the Weyl symmetry. On the one hand, it provides straightforwardly the Riemannian parametrization of the normal conformal Cartan connection and its curvature. On the other hand, it also provides the finite transformation laws under the Weyl rescaling of the various geometric objects involved. Subsequently, the dressing field method is shown to fit the BRS differential algebra treatment of infinitesimal gauge symmetry. The dressed ghost field encoding the residual Weyl symmetry is presented. The related so-called algebraic connection supplies relevant combinations found in the literature in the algebraic study of the Weyl anomaly.

  4. Symmetry Analysis of Spin-Dependent Electric Dipole and Its Application to Magnetoelectric Effects

    Science.gov (United States)

    Matsumoto, Masashige; Chimata, Kosuke; Koga, Mikito

    2017-03-01

    Spin-dependent electric dipole operators are investigated group-theoretically for the emergence of an electric dipole induced by a single spin or by two spins, where the spin dependences are completely classified up to the quadratic order. For a single spin, a product of spin operators behaves as an even-parity electric quadrupole operator, which differs from an odd-parity electric dipole. The lack of the inversion symmetry allows the even- and odd-parity mixing, which leads to the electric dipole described by the electric quadruple operators. Point-group tables are given for classification of the possible spin-dependent electric dipoles and for the qualitative analysis of multiferroic properties, such as an emergent electric dipole moment coexisting with a magnetic moment, electromagnon excitation, and directional dichroism. The results can be applied to a magnetic ion in crystals or embedded in molecules at a site without the inversion symmetry. In the presence of an inversion symmetry, the electric dipole does not appear for a single spin. This is not the case for the electric dipole induced by two spins with antisymmetric spin dependence, which is known as vector spin chirality, in the presence of the inversion center between the two spins. In the absence of the inversion center, symmetric spin-dependent electric dipoles are also relevant. The detailed analysis of various symmetries of two-spin states is applied to spin dimer systems and the related multiferroic properties.

  5. Crystallographically uniform arrays of ordered (In)GaN nanocolumns

    Energy Technology Data Exchange (ETDEWEB)

    Gačević, Ž., E-mail: gacevic@isom.upm.es; Bengoechea-Encabo, A.; Albert, S.; Calleja, E. [ETSIT-ISOM, Universidad Politécnica de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Torres-Pardo, A.; González-Calbet, J. M. [Dept. Química Inorgánica, Universidad Complutense, 28040 Madrid (Spain); CEI Campus Moncloa, UCM-UPM, Madrid (Spain)

    2015-01-21

    In this work, through a comparative study of self-assembled (SA) and selective area grown (SAG) (In)GaN nanocolumn (NC) ensembles, we first give a detailed insight into improved crystallographic uniformity (homogeneity of crystallographic tilts and twists) of the latter ones. The study, performed making use of: reflective high energy electron diffraction, X-ray diffraction and scanning electron microscopy, reveals that unlike their SA counterparts, the ensembles of SAG NCs show single epitaxial relationship to both sapphire(0001) and Si(111) underlying substrates. In the second part of the article, making use of X-ray diffraction, we directly show that the selective area growth leads to improved compositional uniformity of InGaN NC ensembles. This further leads to improved spectral purity of their luminescence, as confirmed by comparative macro-photoluminescence measurements performed on SA and SAG InGaN NC ensembles. An improved crystallographic uniformity of NC ensembles facilitates their integration into optoelectronic devices, whereas their improved compositional uniformity allows for their employment in single-color optoelectronic applications.

  6. Crystallographically uniform arrays of ordered (In)GaN nanocolumns

    Science.gov (United States)

    Gačević, Ž.; Bengoechea-Encabo, A.; Albert, S.; Torres-Pardo, A.; González-Calbet, J. M.; Calleja, E.

    2015-01-01

    In this work, through a comparative study of self-assembled (SA) and selective area grown (SAG) (In)GaN nanocolumn (NC) ensembles, we first give a detailed insight into improved crystallographic uniformity (homogeneity of crystallographic tilts and twists) of the latter ones. The study, performed making use of: reflective high energy electron diffraction, X-ray diffraction and scanning electron microscopy, reveals that unlike their SA counterparts, the ensembles of SAG NCs show single epitaxial relationship to both sapphire(0001) and Si(111) underlying substrates. In the second part of the article, making use of X-ray diffraction, we directly show that the selective area growth leads to improved compositional uniformity of InGaN NC ensembles. This further leads to improved spectral purity of their luminescence, as confirmed by comparative macro-photoluminescence measurements performed on SA and SAG InGaN NC ensembles. An improved crystallographic uniformity of NC ensembles facilitates their integration into optoelectronic devices, whereas their improved compositional uniformity allows for their employment in single-color optoelectronic applications.

  7. Spectral theorem and partial symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Gozdz, A. [University of Maria Curie-Sklodowska, Department of Mathematical Physics, Institute of Physics (Poland); Gozdz, M. [University of Maria Curie-Sklodowska, Department of Complex Systems and Neurodynamics, Institute of Informatics (Poland)

    2012-10-15

    A novel method of the decompositon of a quantum system's Hamiltonian is presented. In this approach the criterion of the decomposition is determined by the symmetries possessed by the sub-Hamiltonians. This procedure is rather generic and independent of the actual global symmetry, or the lack of it, of the full Hamilton operator. A detailed investigation of the time evolution of the various sub-Hamiltonians, therefore the change in time of the symmetry of the physical object, is presented for the case of a vibrator-plus-rotor model. Analytical results are illustrated by direct numerical calculations.

  8. Astroparticle tests of Lorentz symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Jorge [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-07-01

    Lorentz symmetry is a cornerstone of modern physics. As the spacetime symmetry of special relativity, Lorentz invariance is a basic component of the standard model of particle physics and general relativity, which to date constitute our most successful descriptions of nature. Deviations from exact symmetry would radically change our view of the universe and current experiments allow us to test the validity of this assumption. In this talk, I describe effects of Lorentz violation in cosmic rays and gamma rays that can be studied in current observatories.

  9. Symmetry protected single photon subradiance

    CERN Document Server

    Cai, Han; Svidzinsky, Anatoly A; Zhu, Shi-Yao; Scully, Marlan O

    2016-01-01

    We study the protection of subradiant states by the symmetry of the atomic distributions in the Dicke limit, in which collective Lamb shift cannot be neglected. We find that anti-symmetric states are subradiant states for distribution with reflection symmetry. These states can be prepared by anti-symmetric optical modes and converted to superradiant states by properly tailored 2\\pipulses. Continuous symmetry can also be used to achieve subradiance. This study is relevant to the problem of robust quantum memory with long storage time and fast readout.

  10. Direct Waveform Inversion by Iterative Inverse Propagation

    CERN Document Server

    Schlottmann, R B

    2009-01-01

    Seismic waves are the most sensitive probe of the Earth's interior we have. With the dense data sets available in exploration, images of subsurface structures can be obtained through processes such as migration. Unfortunately, relating these surface recordings to actual Earth properties is non-trivial. Tomographic techniques use only a small amount of the information contained in the full seismogram and result in relatively low resolution images. Other methods use a larger amount of the seismogram but are based on either linearization of the problem, an expensive statistical search over a limited range of models, or both. We present the development of a new approach to full waveform inversion, i.e., inversion which uses the complete seismogram. This new method, which falls under the general category of inverse scattering, is based on a highly non-linear Fredholm integral equation relating the Earth structure to itself and to the recorded seismograms. An iterative solution to this equation is proposed. The res...

  11. Symmetry versus Asymmetry in the Molecules of Life: Homomeric Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Biserka Kojić-Prodić

    2010-04-01

    Full Text Available The essay is dedicated to the relation of symmetry and asymmetry-chirality in Nature. The Introduction defines symmetry and its impact on basic definitions in science and human activities. The following section Chirality of molecules reveals breifly development of notion of chirality and its significance in living organisms and science. Homochirality is a characteristic hallmark of life and its significance is presented in the section Homochirality of Life. Proteins, important constituents of living cells performing versatile functions are chiral macromolecules composed of L-amino acids. In particular, the protein assemblies are of a great importance in functions of a cell. Therefore, they have attracted researches to examine them from different points of view. Among proteins of known three-dimensional structures about 50–80% of them exist as homomeric protein complexes. Protein monomers lack any intrinsic, underlying symmetry, i.e. enantiomorphic protein molecules involve left-handed amino acids but their asymmetry does not appear to extend to the level of quaternary structures (homomeric complexes as observed by Chothia in 1991. In the section Homomeric assemblies we performed our analysis of very special cases of homomers revealing non-crystallographic symmetry in crystals. Homochiral proteins can crystallize only in enantiomorphic space groups. Among 230 existing space groups 65 are enantiomorphic containing limited symmetry elements that are rotation and screw-rotation axes. Any axis of rotation symmetry of a crystal lattice must be two-fold, three-fold, four-fold, or six-fold. Five-fold, seven-fold, and higher-fold rotation symmetry axes are incompatible with the symmetry under spatial displacement of the three-dimensional crystal lattice.

  12. Inverse Kinematics using Quaternions

    DEFF Research Database (Denmark)

    Henriksen, Knud; Erleben, Kenny; Engell-Nørregård, Morten

    In this project I describe the status of inverse kinematics research, with the focus firmly on the methods that solve the core problem. An overview of the different methods are presented Three common methods used in inverse kinematics computation have been chosen as subject for closer inspection....... suite, developed in this project and in [4]. Source code developed for this project includes the CCD method , improvements on the BFGS method and Jacobian inverse originally developed in [4]....

  13. Crystallographic preferred orientation and deformation of deep Earth minerals

    Science.gov (United States)

    Kaercher, Pamela Michelle

    This thesis aims to provide further insight into crystallographic preferred orientation (CPO) and deformation mechanisms active at high pressure. Preferred orientation of iron-rich magnesiowustite (Mg,Fe)O, a major mantle mineral phase, stishovite (SiO2), the high pressure polymorph of quartz that is likely present in the lower crust and mantle, and in NaMgF3 + NaCl, an analog system to lower mantle minerals MgSiO3 + MgO, have been examined with synchrotron X-ray diffraction while at high pressure in either a diamond anvil cell or a multianvil press. Magnesiowustite, (Mg0.08Fe0.88)O, and wustite, Fe0.94O, were compressed up to 37 GPa at ambient temperature in diamond anvil cells (DAC) at the Advanced Light Source (ALS). X-ray diffraction patterns were taken in situ in radial geometry in order to study the evolution of CPO through the cubic-to-rhombohedral phase transition. Under uniaxial stress in the DAC, cubic texture developed (i.e. {100} c planes aligned perpendicular to the compression direction). Variant selection of preferred orientation was observed immediately following the transition to the rhombohedral phase. Upon decompression in the DAC, FeO reverted back to cubic symmetry and the cubic texture reappeared, demonstrating that the transition is reversible and has texture memory. The crystal structure of the high pressure SiO2 polymorph stishovite has been studied in detail, but little is known about texture development during deformation, which provides information for understanding subduction of quartz-bearing crustal rocks into the mantle. Radial DAC experiments were done at the ALS and the Advanced Photon Source (APS) while collecting X-ray diffraction patterns in radial geometry to examine in situ development of CPO. Starting pressure in the sample chamber was still in the quartz stability field, and compression of quartz produced a weak texture, likely due to Dauphine twinning. Following compression of quartz into the stishovite stability field

  14. Inverse periodic shadowing properties

    CERN Document Server

    Osipov, Alexey V

    2011-01-01

    We consider inverse periodic shadowing properties of discrete dynamical systems generated by diffeomorphisms of closed smooth manifolds. We show that the $C^1$-interior of the set of all diffeomorphisms having so-called inverse periodic shadowing property coincides with the set of $\\Omega$-stable diffeomorphisms. The equivalence of Lipschitz inverse periodic shadowing property and hyperbolicity of the closure of all periodic points is proved. Besides, we prove that the set of all diffeomorphisms that have Lipschitz inverse periodic shadowing property and whose periodic points are dense in the nonwandering set coincides with the set of Axiom A diffeomorphisms.

  15. The Limits of Custodial Symmetry

    CERN Document Server

    Chivukula, R Sekhar; Foadi, Roshan; Simmons, Elizabeth H

    2010-01-01

    We introduce a toy model implementing the proposal of using a custodial symmetry to protect the Z b_L bbar_L coupling from large corrections. This "doublet-extended standard model" adds a weak doublet of fermions (including a heavy partner of the top quark) to the particle content of the standard model in order to implement an O(4) x U(1)_X = SU(2)_L x SU(2)_R x P_LR x U(1)_X symmetry in the top-quark mass generating sector. This symmetry is softly broken to the gauged SU(2)_L x U(1)_Y electroweak symmetry by a Dirac mass M for the new doublet; adjusting the value of M allows us to explore the range of possibilities between the O(4)-symmetric (M to 0) and standard-model-like (M to infinity) limits.

  16. The Limits of Custodial Symmetry

    CERN Document Server

    Chivukula, R Sekhar; Foadi, Roshan; Simmons, Elizabeth H

    2010-01-01

    We introduce a toy model implementing the proposal of using a custodial symmetry to protect the Zbb coupling from large corrections. This "doublet-extended standard model" adds a weak doublet of fermions (including a heavy partner of the top quark) to the particle content of the standard model in order to implement an O(4) x U(1)_X = SU(2)_L x SU(2)_R x P_{LR} x U(1)_X symmetry that protects the Zbb coupling. This symmetry is softly broken to the gauged SU(2)_L x U(1)_Y electroweak symmetry by a Dirac mass M for the new doublet; adjusting the value of M allows us to explore the range of possibilities between the O(4)-symmetric (M to 0) and standard-model-like (M to infinity) limits.

  17. External symmetry in general relativity

    CERN Document Server

    Cotaescu, I I

    2000-01-01

    We propose a generalization of the isometry transformations to the geometric context of the field theories with spin where the local frames are explicitly involved. We define the external symmetry transformations as isometries combined with suitable tetrad gauge transformations and we show that these form a group which is locally isomorphic with the isometry one. We point out that the symmetry transformations that leave invariant the equations of the fields with spin have generators with specific spin terms which represent new physical observables. The examples we present are the generators of the central symmetry and those of the maximal symmetries of the de Sitter and anti-de Sitter spacetimes derived in different tetrad gauge fixings. Pacs: 04.20.Cv, 04.62.+v, 11.30.-j

  18. Symmetry via Lie algebra cohomology

    CERN Document Server

    Eastwood, Michael

    2010-01-01

    The Killing operator on a Riemannian manifold is a linear differential operator on vector fields whose kernel provides the infinitesimal Riemannian symmetries. The Killing operator is best understood in terms of its prolongation, which entails some simple tensor identities. These simple identities can be viewed as arising from the identification of certain Lie algebra cohomologies. The point is that this case provides a model for more complicated operators similarly concerned with symmetry.

  19. Dynamical (Super)Symmetry Breaking

    CERN Document Server

    Murayama, H

    2001-01-01

    Dynamical Symmetry Breaking (DSB) is a concept theorists rely on very often in the discussions of strong dynamics, model building, and hierarchy problems. In this talk, I will discuss why this is such a permeating concept among theorists and how they are used in understanding physics. I also briefly review recent progress in using dynamical symmetry breaking to construct models of supersymmetry breaking and fermion masses.

  20. Discrete R Symmetries and Anomalies

    OpenAIRE

    Michael Dine(Santa Cruz Institute for Particle Physics and Department of Physics, Santa Cruz CA 95064, U.S.A.); Angelo Monteux(Santa Cruz Institute for Particle Physics, University of California Santa Cruz, 1156 High Street, Santa Cruz, U.S.A.)

    2012-01-01

    We comment on aspects of discrete anomaly conditions focussing particularly on $R$ symmetries. We review the Green-Schwarz cancellation of discrete anomalies, providing a heuristic explanation why, in the heterotic string, only the "model-independent dilaton" transforms non-linearly under discrete symmetries; this argument suggests that, in other theories, multiple fields might play a role in anomaly cancellations, further weakening any anomaly constraints at low energies. We provide examples...

  1. Sensitive Probe for Symmetry Potential

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Ye; XIAO Guo-Qing; GUO Wen-Jun; REN ZhongZhou; ZUO Wei; LEE Xi-Guo

    2007-01-01

    Based on both very obvious isospin effect of the neutron-proton number ratio of nucleon emissions (n/p)nucl on symmetry potential and (n/p)nucl's sensitive dependence on symmetry potential in the nuclear reactions induced by halo-neutron projectiles, compared to the same mass stable projectile, probing symmetry potential is investigated within the isospin-dependent quantum molecular dynamics with isospin and momentum-dependent interactions for different symmetry potentials U1sym and U2sym. It is found that the neutron-halo projectile induces very obvious increase of (n/p)nucl and strengthens the dependence of (n/p)nucl on the symmetry potential for all the beam energies and impact parameters, compared to the same mass stable projectile under the same incident channel condition. Therefore (n/p)nucl induced by the neutron-halo projectile is a more favourable probe than the normal neutron-rich and neutron-poor projectiles for extracting the symmetry potential.

  2. Leptogenesis and residual CP symmetry

    CERN Document Server

    Chen, Peng; King, Stephen F

    2016-01-01

    We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved $Z_2$ in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the $R$-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example,...

  3. Symmetry analysis of the behavior of the family R6M23 compounds upon hydrogenation

    Science.gov (United States)

    Kuna, Agnieszka; Sikora, Wiesława

    2011-06-01

    Symmetry analysis was applied in this work to discuss the behavior of the family R6M23 compounds upon hydrogenation (deuteration), where different structural transformations and magnetic properties, depending on the type of R and M atoms and hydrogen (deuterium) concentrations, have been found. The crystallographic structure of these compounds is described by the Fm3m space group and contain 116 atoms per unit cell occupying the positions 24e(R), 4b, 24d, 32f1 and 32f2(M). Additionally in the elementary cell, there could be up to 100 atoms of hydrogen (or deuterium) occupying the interstitial positions 4a, 32f3, 96j1 and 96k1. The symmetry analysis in the frame of the theory of space groups and their representation gives the opportunity to find all possible transformations from high symmetry parent structure to the structures with symmetry belonging to one of its subgroups. For a given transformation it indicates possible displacements of atoms from initial positions in the parent structure, ordering of hydrogen over interstitial sites and also ordering of magnetic moments, described by the smallest possible number of free parameters. The analysis was carried out by means of the MODY computer program for vectors k = (0; 0; 0) and k = (0; 0; 1) describing the changes of translational symmetry and all positions occupied by the R, M and D atoms.

  4. A reciprocal space approach for locating symmetry elements in Patterson superposition maps

    Energy Technology Data Exchange (ETDEWEB)

    Hendrixson, T.

    1990-09-21

    A method for determining the location and possible existence of symmetry elements in Patterson superposition maps has been developed. A comparison of the original superposition map and a superposition map operated on by the symmetry element gives possible translations to the location of the symmetry element. A reciprocal space approach using structure factor-like quantities obtained from the Fourier transform of the superposition function is then used to determine the best'' location of the symmetry element. Constraints based upon the space group requirements are also used as a check on the locations. The locations of the symmetry elements are used to modify the Fourier transform coefficients of the superposition function to give an approximation of the structure factors, which are then refined using the EG relation. The analysis of several compounds using this method is presented. Reciprocal space techniques for locating multiple images in the superposition function are also presented, along with methods to remove the effect of multiple images in the Fourier transform coefficients of the superposition map. In addition, crystallographic studies of the extended chain structure of (NHC{sub 5}H{sub 5})SbI{sub 4} and of the twinning method of the orthorhombic form of the high-{Tc} superconductor YBa{sub 2}Cu{sub 3}O{sub 7-x} are presented. 54 refs.

  5. Mei Symmetry and Lie Symmetry of the Rotational Relativistic Variable Mass System

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-Hui

    2003-01-01

    The Mei symmetry and the Lie symmetry of a rotational relativistic variable masssystem are studied. Thedefinitions and criteria of the Mei symmetry and the Lie symmetry of the rotational relativistic variable mass system aregiven. The relation between the Mei symmetry and the Lie symmetry is found. The conserved quantities which the Meisymmetry and the Lie symmetry lead to are obtained. An example is given to illustrate the application of the result.

  6. Dynamical inverse problems

    CERN Document Server

    Gladwell, Graham ML

    2011-01-01

    The papers in this volume present an overview of the general aspects and practical applications of dynamic inverse methods, through the interaction of several topics, ranging from classical and advanced inverse problems in vibration, isospectral systems, dynamic methods for structural identification, active vibration control and damage detection, imaging shear stiffness in biological tissues, wave propagation, to computational and experimental aspects relevant for engineering problems.

  7. A Finite Abelian Group of Two-Letter Inversions

    Directory of Open Access Journals (Sweden)

    Sherwin E. Balbuena

    2015-11-01

    Full Text Available In abstract algebra, the study of concrete groups is fundamentally important to beginners. Most commonly used groups as examples are integer addition modulo n, real number addition and multiplication, permutation groups, and groups of symmetry. The last two examples are finite non-abelian groups and can be investigated with the aid of concrete representations. This study presents a finite abelian group of inversions of two letter symbols with vertical and horizontal axes of symmetry and whose binary operation is established through motions like alternation, rotation, reflection, and a combination of two or all motions.

  8. 0-Semidistributive Inverse Semigroups

    Institute of Scientific and Technical Information of China (English)

    田振际

    2004-01-01

    @@ For an inverse semigroup S, the set L(S) of all inverse subsemigroups (including the empty set) of S forms a lattice with respect to intersection denoted as usual by ∩ and union, where the union is the inverse subsemigroup generated by inverse subsemigroups A, B of S. The set LF(S) of all full inverse subsemigroups of S forms a complete sublattice of L(S), with Es as zero element (Es is the set of all idempotent of S)(see [3,5,6]). Note, that if S a group, then LF(S)=L(S), its lattice of all subgroups of S. If S = G0 is a group with adjoined zero, then clearly LF(S) ≌ L(G).

  9. SASS: a symmetry adapted stochastic search algorithm exploiting site symmetry.

    Science.gov (United States)

    Wheeler, Steven E; Schleyer, Paul V R; Schaefer, Henry F

    2007-03-14

    A simple symmetry adapted search algorithm (SASS) exploiting point group symmetry increases the efficiency of systematic explorations of complex quantum mechanical potential energy surfaces. In contrast to previously described stochastic approaches, which do not employ symmetry, candidate structures are generated within simple point groups, such as C2, Cs, and C2v. This facilitates efficient sampling of the 3N-6 Pople's dimensional configuration space and increases the speed and effectiveness of quantum chemical geometry optimizations. Pople's concept of framework groups [J. Am. Chem. Soc. 102, 4615 (1980)] is used to partition the configuration space into structures spanning all possible distributions of sets of symmetry equivalent atoms. This provides an efficient means of computing all structures of a given symmetry with minimum redundancy. This approach also is advantageous for generating initial structures for global optimizations via genetic algorithm and other stochastic global search techniques. Application of the SASS method is illustrated by locating 14 low-lying stationary points on the cc-pwCVDZ ROCCSD(T) potential energy surface of Li5H2. The global minimum structure is identified, along with many unique, nonintuitive, energetically favorable isomers.

  10. Test of Pseudospin Symmetry in Deformed Nuclei

    CERN Document Server

    Ginocchio, J N; Meng, J; Zhou, S G; Zhou, Shan-Gui

    2004-01-01

    Pseudospin symmetry is a relativistic symmetry of the Dirac Hamiltonian with scalar and vector mean fields equal and opposite in sign. This symmetry imposes constraints on the Dirac eigenfunctions. We examine extensively the Dirac eigenfunctions of realistic relativistic mean field calculations of deformed nuclei to determine if these eigenfunctions satisfy these pseudospin symmetry constraints.

  11. Symmetry and group theory in chemistry

    CERN Document Server

    Ladd, M

    1998-01-01

    A comprehensive discussion of group theory in the context of molecular and crystal symmetry, this book covers both point-group and space-group symmetries.Provides a comprehensive discussion of group theory in the context of molecular and crystal symmetryCovers both point-group and space-group symmetriesIncludes tutorial solutions

  12. Generalised CP and $\\Delta (96)$ Family Symmetry

    CERN Document Server

    Ding, Gui-Jun

    2014-01-01

    We perform a comprehensive study of the $\\Delta (96)$ family symmetry combined with the generalised CP symmetry $H_{\\rm{CP}}$. We investigate the lepton mixing parameters which can be obtained from the original symmetry $\\Delta (96)\\rtimes H_{\\rm{CP}}$ breaking to different remnant symmetries in the neutrino and charged lepton sectors, namely $G_{\

  13. Comparing dualities and gauge symmetries

    Science.gov (United States)

    De Haro, Sebastian; Teh, Nicholas; Butterfield, Jeremy N.

    2017-08-01

    We discuss some aspects of the relation between dualities and gauge symmetries. Both of these ideas are of course multi-faceted, and we confine ourselves to making two points. Both points are about dualities in string theory, and both have the 'flavour' that two dual theories are 'closer in content' than you might think. For both points, we adopt a simple conception of a duality as an 'isomorphism' between theories: more precisely, as appropriate bijections between the two theories' sets of states and sets of quantities. The first point (Section 3) is that this conception of duality meshes with two dual theories being 'gauge related' in the general philosophical sense of being physically equivalent. For a string duality, such as T-duality and gauge/gravity duality, this means taking such features as the radius of a compact dimension, and the dimensionality of spacetime, to be 'gauge'. The second point (Sections 4-6) is much more specific. We give a result about gauge/gravity duality that shows its relation to gauge symmetries (in the physical sense of symmetry transformations that are spacetime-dependent) to be subtler than you might expect. For gauge theories, you might expect that the duality bijections relate only gauge-invariant quantities and states, in the sense that gauge symmetries in one theory will be unrelated to any symmetries in the other theory. This may be so in general; and indeed, it is suggested by discussions of Polchinski and Horowitz. But we show that in gauge/gravity duality, each of a certain class of gauge symmetries in the gravity/bulk theory, viz. diffeomorphisms, is related by the duality to a position-dependent symmetry of the gauge/boundary theory.

  14. Symmetry Breaking for Answer Set Programming

    CERN Document Server

    Drescher, Christian

    2010-01-01

    In the context of answer set programming, this work investigates symmetry detection and symmetry breaking to eliminate symmetric parts of the search space and, thereby, simplify the solution process. We contribute a reduction of symmetry detection to a graph automorphism problem which allows to extract symmetries of a logic program from the symmetries of the constructed coloured graph. We also propose an encoding of symmetry-breaking constraints in terms of permutation cycles and use only generators in this process which implicitly represent symmetries and always with exponential compression. These ideas are formulated as preprocessing and implemented in a completely automated flow that first detects symmetries from a given answer set program, adds symmetry-breaking constraints, and can be applied to any existing answer set solver. We demonstrate computational impact on benchmarks versus direct application of the solver. Furthermore, we explore symmetry breaking for answer set programming in two domains: firs...

  15. Complete theory of symmetry-based indicators of band topology.

    Science.gov (United States)

    Po, Hoi Chun; Vishwanath, Ashvin; Watanabe, Haruki

    2017-06-30

    The interplay between symmetry and topology leads to a rich variety of electronic topological phases, protecting states such as the topological insulators and Dirac semimetals. Previous results, like the Fu-Kane parity criterion for inversion-symmetric topological insulators, demonstrate that symmetry labels can sometimes unambiguously indicate underlying band topology. Here we develop a systematic approach to expose all such symmetry-based indicators of band topology in all the 230 space groups. This is achieved by first developing an efficient way to represent band structures in terms of elementary basis states, and then isolating the topological ones by removing the subset of atomic insulators, defined by the existence of localized symmetric Wannier functions. Aside from encompassing all earlier results on such indicators, including in particular the notion of filling-enforced quantum band insulators, our theory identifies symmetry settings with previously hidden forms of band topology, and can be applied to the search for topological materials.Understanding the role of topology in determining electronic structure can lead to the discovery, or appreciation, of materials with exotic properties such as protected surface states. Here, the authors present a framework for identifying topologically distinct band-structures for all 3D space groups.

  16. Parity-time symmetry broken by point-group symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar; Garcia, Javier [INIFTA (UNLP, CCT La Plata-CONICET), División Química Teórica, Blvd. 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)

    2014-04-15

    We discuss a parity-time (PT) symmetric Hamiltonian with complex eigenvalues. It is based on the dimensionless Schrödinger equation for a particle in a square box with the PT-symmetric potential V(x, y) = iaxy. Perturbation theory clearly shows that some of the eigenvalues are complex for sufficiently small values of |a|. Point-group symmetry proves useful to guess if some of the eigenvalues may already be complex for all values of the coupling constant. We confirm those conclusions by means of an accurate numerical calculation based on the diagonalization method. On the other hand, the Schrödinger equation with the potential V(x, y) = iaxy{sup 2} exhibits real eigenvalues for sufficiently small values of |a|. Point group symmetry suggests that PT-symmetry may be broken in the former case and unbroken in the latter one.

  17. Floppy Molecules with Internal Rotation and Inversion

    Science.gov (United States)

    Kreglewski, Marek

    2016-06-01

    There are different ways to analyze rovibrational structure of molecules having several large amplitude motions of different type, like internal rotation and inversion or ring-puckering. In my research group we have developed and used methods starting from potential surfaces for large amplitude motions but also applied purely effective Hamiltonians, where tunneling splittings were key parameters. Whatever is the method the following problems must be solved when addressing a rovibrational problem with large amplitude vibrations: 1) a definition of the permutation-inversion molecular symmetry group, 2) a choice of the internal coordinates and their transformation in the symmetry group, 3) derivation of the Hamiltonian in chosen coordinates, 4) calculation of the Hamiltonian matrix elements in a symmetrized basis set. These points will be discussed. The advantage of methods which start from the geometry and potential surface for large amplitude vibrations give much clearer picture of internal dynamics of molecules but generally the fit to experimental data is much poorer. The fitting procedure is strongly non-linear and the iteration procedure much longer. The effective Hamiltonians the fit is generally much better since almost all optimized parameters are linear but the parameters have no clear physical meaning. This method is very useful in the assignment of experimental spectra. Results of the application of both method to methylamine and hydrazine will be presented.

  18. Topological Nonsymmorphic Metals from Band Inversion

    Science.gov (United States)

    Muechler, Lukas; Alexandradinata, A.; Neupert, Titus; Car, Roberto

    2016-10-01

    We expand the phase diagram of two-dimensional, nonsymmorphic crystals at integer fillings that do not guarantee gaplessness. In addition to the trivial, gapped phase that is expected, we find that band inversion leads to a class of topological, gapless phases. These topological phases are exemplified by the monolayers of M Te2 (M =W ,Mo ) if spin-orbit coupling is neglected. We characterize the Dirac band touching of these topological metals by the Wilson loop of the non-Abelian Berry gauge field. Furthermore, we develop a criterion for the proximity of these topological metals to 2D and 3D Z2 topological insulators when spin-orbit coupling is included; our criterion is based on nonsymmorphic symmetry eigenvalues, and may be used to identify topological materials without inversion symmetry. An additional feature of the Dirac cone in monolayer M Te2 is that it tilts over in a Lifshitz transition to produce electron and hole pockets—a type-II Dirac cone. These pockets, together with the pseudospin structure of the Dirac electrons, suggest a unified, topological explanation for the recently reported, nonsaturating magnetoresistance in WTe2 , as well as its circular dichroism in photoemission. We complement our analysis and first-principles band structure calculations with an ab-initio-derived tight-binding model for the WTe2 monolayer.

  19. Topological Nonsymmorphic Metals from Band Inversion

    Directory of Open Access Journals (Sweden)

    Lukas Muechler

    2016-12-01

    Full Text Available We expand the phase diagram of two-dimensional, nonsymmorphic crystals at integer fillings that do not guarantee gaplessness. In addition to the trivial, gapped phase that is expected, we find that band inversion leads to a class of topological, gapless phases. These topological phases are exemplified by the monolayers of MTe_{2} (M=W,Mo if spin-orbit coupling is neglected. We characterize the Dirac band touching of these topological metals by the Wilson loop of the non-Abelian Berry gauge field. Furthermore, we develop a criterion for the proximity of these topological metals to 2D and 3D Z_{2} topological insulators when spin-orbit coupling is included; our criterion is based on nonsymmorphic symmetry eigenvalues, and may be used to identify topological materials without inversion symmetry. An additional feature of the Dirac cone in monolayer MTe_{2} is that it tilts over in a Lifshitz transition to produce electron and hole pockets—a type-II Dirac cone. These pockets, together with the pseudospin structure of the Dirac electrons, suggest a unified, topological explanation for the recently reported, nonsaturating magnetoresistance in WTe_{2}, as well as its circular dichroism in photoemission. We complement our analysis and first-principles band structure calculations with an ab-initio-derived tight-binding model for the WTe_{2} monolayer.

  20. Crystallographic B factor of critical residues at enzyme active site

    Institute of Scientific and Technical Information of China (English)

    张海龙; 宋时英; 林政炯

    1999-01-01

    Thirty-seven sets of crystallographic enzyme data were selected from Protein Data Bank (PDB, 1995). The average temperature factors (B) of the critical residues at the active site and the whole molecule of those enzymes were calculated respectively. The statistical results showed that the critical residues at the active site of most of the enzymes had lower B factors than did the whole molecules, indicating that in the crystalline state the critical residues at the active site of the natural enzymes possess more stable conformation than do the whole molecules. The flexibility of the active site during the unfolding by denaturing was also discussed.

  1. Inverse problem in Parker's dynamo

    CERN Document Server

    Reshetnyak, M Yu

    2015-01-01

    The inverse solution of the 1D Parker dynamo equations is considered. The method is based on minimization of the cost-function, which characterize deviation of the model solution properties from the desired ones. The output is the latitude distribution of the magnetic field generation sources: the $\\alpha$- and $\\omega$-effects. Minimization is made using the Monte-Carlo method. The details of the method, as well as some applications, which can be interesting for the broad dynamo community, are considered: conditions when the invisible for the observer at the surface of the planet toroidal part of the magnetic field is much larger than the poloidal counterpart. It is shown that at some particular distributions of $\\alpha$ and $\\omega$ the well-known thesis that sign of the dynamo-number defines equatorial symmetry of the magnetic field to the equator plane, is violated. It is also demonstrated in what circumstances magnetic field in the both hemispheres have different properties, and simple physical explanati...

  2. Gauge symmetry enhancement in Hamiltonian formalism

    CERN Document Server

    Hong, S T; Lee, T H; Oh, P; Oh, Phillial

    2003-01-01

    We study the Hamiltonian structure of the gauge symmetry enhancement in the enlarged CP(N) model coupled with U(2) chern-Simons term, which contains a free parameter governing explicit symmetry breaking and symmetry enhancement. After giving a general discussion of the geometry of constrained phase space suitable for the symmetry enhancement, we explicitly perform the Dirac analysis of out model and compute the Dirac brackets for the symmetry enhanced and broken cases. We also discuss some related issues.

  3. Localization of Nonlocal Symmetries and Symmetry Reductions of Burgers Equation

    Science.gov (United States)

    Wu, Jian-Wen; Lou, Sen-Yue; Yu, Jun

    2017-05-01

    The nonlocal symmetries of the Burgers equation are explicitly given by the truncated Painlevé method. The auto-Bäcklund transformation and group invariant solutions are obtained via the localization procedure for the nonlocal residual symmetries. Furthermore, the interaction solutions of the solition-Kummer waves and the solition-Airy waves are obtained. Supported by the Global Change Research Program China under Grant No. 2015CB953904, the National Natural Science Foundations of China under Grant Nos. 11435005, 11175092, and 11205092, Shanghai Knowledge Service Platform for Trustworthy Internet of Things under Grant No. ZF1213, and K. C. Wong Magna Fund in Ningbo University

  4. Big break for charge symmetry

    CERN Document Server

    Miller, G A

    2003-01-01

    Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...

  5. Symmetry Guide to Ferroaxial Transitions

    Science.gov (United States)

    Hlinka, J.; Privratska, J.; Ondrejkovic, P.; Janovec, V.

    2016-04-01

    The 212 species of the structural phase transitions with a macroscopic symmetry breaking are inspected with respect to the occurrence of the ferroaxial order parameter, the electric toroidal moment. In total, 124 ferroaxial species are found, some of them being also fully ferroelectric (62) or fully ferroelastic ones (61). This ensures a possibility of electrical or mechanical switching of ferroaxial domains. Moreover, there are 12 ferroaxial species that are neither ferroelectric nor ferroelastic. For each species, we have also explicitly worked out a canonical form for a set of representative equilibrium property tensors of polar and axial nature in both high-symmetry and low-symmetry phases. This information was gathered into the set of 212 mutually different symbolic matrices, expressing graphically the presence of nonzero independent tensorial components and the symmetry-imposed links between them, for both phases simultaneously. Symmetry analysis reveals the ferroaxiality in several currently debated materials, such as VO2 , LuFe2 O4 , and URu2 Si2 .

  6. Curling Liquid Crystal Microswimmers: A Cascade of Spontaneous Symmetry Breaking

    Science.gov (United States)

    Krüger, Carsten; Klös, Gunnar; Bahr, Christian; Maass, Corinna C.

    2016-07-01

    We report curling self-propulsion in aqueous emulsions of common mesogenic compounds. Nematic liquid crystal droplets self-propel in a surfactant solution with concentrations above the critical micelle concentration while undergoing micellar solubilization [Herminghaus et al., Soft Matter 10, 7008 (2014)]. We analyzed trajectories both in a Hele-Shaw geometry and in a 3D setup at variable buoyancy. The coupling between the nematic director field and the convective flow inside the droplet leads to a second symmetry breaking which gives rise to curling motion in 2D. This is demonstrated through a reversible transition to nonhelical persistent swimming by heating to the isotropic phase. Furthermore, autochemotaxis can spontaneously break the inversion symmetry, leading to helical trajectories in 3D.

  7. Orbital engineering in symmetry-breaking polar heterostructures.

    Science.gov (United States)

    Disa, Ankit S; Kumah, Divine P; Malashevich, Andrei; Chen, Hanghui; Arena, Dario A; Specht, Eliot D; Ismail-Beigi, Sohrab; Walker, F J; Ahn, Charles H

    2015-01-16

    We experimentally demonstrate a novel approach to substantially modify orbital occupations and symmetries in electronically correlated oxides. In contrast to methods using strain or confinement, this orbital tuning is achieved by exploiting charge transfer and inversion symmetry breaking using atomically layered heterostructures. We illustrate the technique in the LaTiO_{3}-LaNiO_{3}-LaAlO_{3} system; a combination of x-ray absorption spectroscopy and ab initio theory reveals electron transfer and concomitant polar fields, resulting in a ∼50% change in the occupation of Ni d orbitals. This change is sufficiently large to remove the orbital degeneracy of bulk LaNiO_{3} and creates an electronic configuration approaching a single-band Fermi surface. Furthermore, we theoretically show that such three-component heterostructuring is robust and tunable by choice of insulator in the heterostructure, providing a general method for engineering orbital configurations and designing novel electronic systems.

  8. Caenorhabditis elegans centriolar protein SAS-6 forms a spiral that is consistent with imparting a ninefold symmetry.

    Science.gov (United States)

    Hilbert, Manuel; Erat, Michèle C; Hachet, Virginie; Guichard, Paul; Blank, Iris D; Flückiger, Isabelle; Slater, Leanne; Lowe, Edward D; Hatzopoulos, Georgios N; Steinmetz, Michel O; Gönczy, Pierre; Vakonakis, Ioannis

    2013-07-09

    Centrioles are evolutionary conserved organelles that give rise to cilia and flagella as well as centrosomes. Centrioles display a characteristic ninefold symmetry imposed by the spindle assembly abnormal protein 6 (SAS-6) family. SAS-6 from Chlamydomonas reinhardtii and Danio rerio was shown to form ninefold symmetric, ring-shaped oligomers in vitro that were similar to the cartwheels observed in vivo during early steps of centriole assembly in most species. Here, we report crystallographic and EM analyses showing that, instead, Caenorhabotis elegans SAS-6 self-assembles into a spiral arrangement. Remarkably, we find that this spiral arrangement is also consistent with ninefold symmetry, suggesting that two distinct SAS-6 oligomerization architectures can direct the same output symmetry. Sequence analysis suggests that SAS-6 spirals are restricted to specific nematodes. This oligomeric arrangement may provide a structural basis for the presence of a central tube instead of a cartwheel during centriole assembly in these species.

  9. Heisenberg symmetry and hypermultiplet manifolds

    CERN Document Server

    Antoniadis, Ignatios; Petropoulos, P Marios; Siampos, Konstantinos

    2015-01-01

    We study the emergence of Heisenberg (Bianchi II) algebra in hyper-K\\"ahler and quaternionic spaces. This is motivated by the r\\^ole these spaces with this symmetry play in $\\mathcal{N}=2$ hypermultiplet scalar manifolds. We show how to construct related pairs of hyper-K\\"ahler and quaternionic spaces under general symmetry assumptions, the former being a zooming-in limit of the latter at vanishing cosmological constant. We further apply this method for the two hyper-K\\"ahler spaces with Heisenberg algebra, which is reduced to $U(1)\\times U(1)$ at the quaternionic level. We also show that no quaternionic spaces exist with a strict Heisenberg symmetry -- as opposed to $\\text{Heisenberg} \\ltimes U(1)$. We finally discuss the realization of the latter by gauging appropriate $Sp(2,4)$ generators in $\\mathcal{N}=2$ conformal supergravity.

  10. Symmetry and Asymmetry Level Measures

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2010-04-01

    Full Text Available Usually, Symmetry and Asymmetry are considered as two opposite sides of a coin: an object is either totally symmetric, or totally asymmetric, relative to pattern objects. Intermediate situations of partial symmetry or partial asymmetry are not considered. But this dichotomy on the classification lacks of a necessary and realistic gradation. For this reason, it is convenient to introduce "shade regions", modulating the degree of Symmetry (a fuzzy concept. Here, we will analyze the Asymmetry problem by successive attempts of description and by the introduction of the Asymmetry Level Function, as a new Normal Fuzzy Measure. Our results (both Theorems and Corollaries suppose to be some new and original contributions to such very active and interesting field of research. Previously, we proceed to the analysis of the state of art.

  11. Gribov problem and BRST symmetry

    CERN Document Server

    Fujikawa, K

    1995-01-01

    After a brief historical comment on the study of BRS(or BRST) symmetry , we discuss the quantization of gauge theories with Gribov copies. A path integral with BRST symmetry can be formulated by summing the Gribov-type copies in a very specific way if the functional correspondence between \\tau and the gauge parameter \\omega defined by \\tau (x) = f( A_{\\mu}^{\\omega}(x)) is ``globally single valued'', where f( A_{\\mu}^{\\omega}(x)) = 0 specifies the gauge condition. As an example of the theory which satisfies this criterion, we comment on a soluble gauge model with Gribov-type copies recently analyzed by Friedberg, Lee, Pang and Ren. We also comment on a possible connection of the dynamical instability of BRST symmetry with the Gribov problem on the basis of an index notion.

  12. Hidden Symmetries of Stochastic Models

    Directory of Open Access Journals (Sweden)

    Boyka Aneva

    2007-05-01

    Full Text Available In the matrix product states approach to $n$ species diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra determined by the dynamics of the process. The quadratic algebra defines a noncommutative space with a $SU_q(n$ quantum group action as its symmetry. Boundary processes amount to the appearance of parameter dependent linear terms in the algebraic relations and lead to a reduction of the $SU_q(n$ symmetry. We argue that the boundary operators of the asymmetric simple exclusion process generate a tridiagonal algebra whose irriducible representations are expressed in terms of the Askey-Wilson polynomials. The Askey-Wilson algebra arises as a symmetry of the boundary problem and allows to solve the model exactly.

  13. Heisenberg symmetry and hypermultiplet manifolds

    Directory of Open Access Journals (Sweden)

    Ignatios Antoniadis

    2016-04-01

    Full Text Available We study the emergence of Heisenberg (Bianchi II algebra in hyper-Kähler and quaternionic spaces. This is motivated by the rôle these spaces with this symmetry play in N=2 hypermultiplet scalar manifolds. We show how to construct related pairs of hyper-Kähler and quaternionic spaces under general symmetry assumptions, the former being a zooming-in limit of the latter at vanishing scalar curvature. We further apply this method for the two hyper-Kähler spaces with Heisenberg algebra, which is reduced to U(1×U(1 at the quaternionic level. We also show that no quaternionic spaces exist with a strict Heisenberg symmetry – as opposed to Heisenberg⋉U(1. We finally discuss the realization of the latter by gauging appropriate Sp(2,4 generators in N=2 conformal supergravity.

  14. An Introduction to Emergent Symmetries

    CERN Document Server

    Gomes, Pedro R S

    2015-01-01

    These are intended to be introductory notes on emergent symmetries, i.e., symmetries which manifest themselves in specific sectors of energy in many systems. The emphasis is on the physical aspects rather than computation methods. We include some elementary background material and proceed to our discussion by examining several interesting problems in field theory, statistical mechanics and condensed matter. These problems illustrate how some important symmetries, such as Lorentz invariance and supersymmetry, usually believed to be fundamental, can arise naturally in low-energy regimes of systems involving a large number of degrees of freedom. The aim is to discuss how these examples could help us to face other complex and fundamental problems.

  15. Crystallographic Orientation Effect on Electromigration in Ni-Sn Microbump

    Science.gov (United States)

    Huang, Yi-Ting; Chen, Chih-Hao; Chakroborty, Subhendu; Wu, Albert T.

    2017-09-01

    This article addresses the reliability challenges regarding electromigration in developing three-dimensional integrated circuits (3D-ICs). The line-type sandwich structure of Ni/Sn3.5Ag(15 μm)/Ni was used to simulate microbumps to examine the reliability of electromigration in 3D-IC technology. The solder strip of Ni/Sn3.5Ag(15 μm)/Ni was stressed with a current density of 1.0 × 104 A/cm2 at 150°C. The current stressing enhanced the reaction between the solder and Ni to form Ni3Sn4, which occupied the entire joint and transformed into a Ni/Ni3Sn4/Ni structure when the solder was completely consumed. Electron backscatter diffraction was used to analyze the crystallographic characteristics of Sn and Ni3Sn4 as related to the electromigration effect. The results indicated that the crystallographic orientation of Sn plays a significant role in the Ni/Sn3.5Ag/Ni, whereas the orientation of Ni3Sn4 is the dominant factor of diffusion behavior in the Ni/Ni3Sn4/Ni.

  16. Crystallographic properties of magnetron sputtered barium ferrite films

    Energy Technology Data Exchange (ETDEWEB)

    Capraro, S. [Laboratoire DIOM, University of Saint-Etienne, 23 rue Michelon, 42023 Saint-Etienne Cedex (France)]. E-mail: stephane.capraro@univ-st-etienne.fr; Berre, M. Le [LPM, UMR 5511, INSA Lyon, 7 av. Jean Capelle, 69621 Villeurbanne Cedex (France); Chatelon, J.P. [Laboratoire DIOM, University of Saint-Etienne, 23 rue Michelon, 42023 Saint-Etienne Cedex (France); Bayard, B. [Laboratoire DIOM, University of Saint-Etienne, 23 rue Michelon, 42023 Saint-Etienne Cedex (France); Joisten, H. [CEA-LETI, 17 rue des martyrs, 38041 Grenoble Cedex (France); Canut, C. [LPMCN, University Lyon I, 43 Bvd. du 11 novembre 1918, 69622 Villerbanne, Cedex (France); Barbier, D. [LPM, UMR 5511, INSA Lyon, 7 av. Jean Capelle, 69621 Villeurbanne Cedex (France); Rousseau, J.J. [Laboratoire DIOM, University of Saint-Etienne, 23 rue Michelon, 42023 Saint-Etienne Cedex (France)

    2004-09-15

    The development of devices combining a ferrite with a semiconductor chip is a major focus of current research. Barium hexaferrite (BaFe{sub 12}O{sub 19} or BaM) thick films are deposited here using a RF magnetron sputtering system. Films are amorphous and non magnetic after deposition. Post-deposition thermal annealing is employed to make the films crystallize. The effects of the substrate, thermal annealing process, thickness, substrate temperature on crystallographic properties and stoichiometry are studied using a X-ray diffractometry (XRD) and Rutherford back-scattering (RBS). The in-depth homogeneity of Ba, Fe and O is evaluated by secondary ion mass spectroscopy (SIMS). The study shows a good crystallization of BaM films and there is a preferential orientation among the crystallographic planes (1 0 1), (2 0 0), (2 0 3), (1 0 2), (1 1 0) and (2 0 5) when BaM films are prepared at low RF power and when the substrate is heated. For several elaboration parameters, grains size is in the range of 25 and 40 nm and BaM films are stoichiometric with regard to the target stoichiometry.

  17. Crystallographic Orientation Effect on Electromigration in Ni-Sn Microbump

    Science.gov (United States)

    Huang, Yi-Ting; Chen, Chih-Hao; Chakroborty, Subhendu; Wu, Albert T.

    2017-07-01

    This article addresses the reliability challenges regarding electromigration in developing three-dimensional integrated circuits (3D-ICs). The line-type sandwich structure of Ni/Sn3.5Ag(15 μm)/Ni was used to simulate microbumps to examine the reliability of electromigration in 3D-IC technology. The solder strip of Ni/Sn3.5Ag(15 μm)/Ni was stressed with a current density of 1.0 × 104 A/cm2 at 150°C. The current stressing enhanced the reaction between the solder and Ni to form Ni3Sn4, which occupied the entire joint and transformed into a Ni/Ni3Sn4/Ni structure when the solder was completely consumed. Electron backscatter diffraction was used to analyze the crystallographic characteristics of Sn and Ni3Sn4 as related to the electromigration effect. The results indicated that the crystallographic orientation of Sn plays a significant role in the Ni/Sn3.5Ag/Ni, whereas the orientation of Ni3Sn4 is the dominant factor of diffusion behavior in the Ni/Ni3Sn4/Ni.

  18. Crystallographic alignment of high-density gallium nitride nanowire arrays.

    Science.gov (United States)

    Kuykendall, Tevye; Pauzauskie, Peter J; Zhang, Yanfeng; Goldberger, Joshua; Sirbuly, Donald; Denlinger, Jonathan; Yang, Peidong

    2004-08-01

    Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.

  19. Crystallographic studies of gas sorption in metal–organic frameworks

    Science.gov (United States)

    Carrington, Elliot J.; Vitórica-Yrezábal, Iñigo J.; Brammer, Lee

    2014-01-01

    Metal–organic frameworks (MOFs) are a class of porous crystalline materials of modular design. One of the primary applications of these materials is in the adsorption and separation of gases, with potential benefits to the energy, transport and medical sectors. In situ crystallography of MOFs under gas atmospheres has enabled the behaviour of the frameworks under gas loading to be investigated and has established the precise location of adsorbed gas molecules in a significant number of MOFs. This article reviews progress in such crystallographic studies, which has taken place over the past decade, but has its origins in earlier studies of zeolites, clathrates etc. The review considers studies by single-crystal or powder diffraction using either X-rays or neutrons. Features of MOFs that strongly affect gas sorption behaviour are discussed in the context of in situ crystallographic studies, specifically framework flexibility, and the presence of (organic) functional groups and unsaturated (open) metal sites within pores that can form specific interactions with gas molecules. PMID:24892587

  20. Mathieu Moonshine and Symmetry Surfing

    CERN Document Server

    Gaberdiel, Matthias R; Paul, Hynek

    2016-01-01

    Mathieu Moonshine, the observation that the Fourier coefficients of the elliptic genus on K3 can be interpreted as dimensions of representations of the Mathieu group M24, has been proven abstractly, but a conceptual understanding in terms of a representation of the Mathieu group on the BPS states, is missing. Some time ago, Taormina and Wendland showed that such an action can be naturally defined on the lowest non-trivial BPS states, using the idea of `symmetry surfing', i.e., by combining the symmetries of different K3 sigma models. In this paper we find non-trivial evidence that this construction can be generalized to all BPS states.

  1. Cosmological Reflection of Particle Symmetry

    Directory of Open Access Journals (Sweden)

    Maxim Khlopov

    2016-08-01

    Full Text Available The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetry and the mechanisms of its breaking are the subject of the present review.

  2. Symposium Symmetries in Science XIII

    CERN Document Server

    Gruber, Bruno J; Yoshinaga, Naotaka; Symmetries in Science XI

    2005-01-01

    This book is a collection of reviews and essays about the recent developments in the area of Symmetries and applications of Group Theory. Contributions have been written mostly at the graduate level but some are accessible to advanced undergraduates. The book is of interest to a wide audience and covers a broad range of topics with a strong degree of thematical unity. The book is part of a Series of books on Symmetries in Science and may be compared to the published Proceedings of the Colloquia on Group Theoretical Methods in Physics. Here, however, prevails a distinguished character for presenting extended reviews on present applications to Science, not restricted to Theoretical Physics.

  3. Symmetry of intramolecular quantum dynamics

    CERN Document Server

    Burenin, Alexander V

    2012-01-01

    The main goal of this book is to give a systematic description of intramolecular quantum dynamics on the basis of only the symmetry principles. In this respect, the book has no analogs in the world literature. The obtained models lead to a simple, purely algebraic, scheme of calculation and are rigorous in the sense that their correctness is limited only to the correct choice of symmetry of the internal dynamics. The book is basically intended for scientists working in the field of molecular spectroscopy, quantum and structural chemistry.

  4. Quantum Symmetries and Exceptional Collections

    Science.gov (United States)

    Karp, Robert L.

    2011-01-01

    We study the interplay between discrete quantum symmetries at certain points in the moduli space of Calabi-Yau compactifications, and the associated identities that the geometric realization of D-brane monodromies must satisfy. We show that in a wide class of examples, both local and compact, the monodromy identities in question always follow from a single mathematical statement. One of the simplest examples is the {{mathbb Z}_5} symmetry at the Gepner point of the quintic, and the associated D-brane monodromy identity.

  5. Quantum symmetries and exceptional collections

    CERN Document Server

    Karp, Robert L

    2008-01-01

    We study the interplay between discrete quantum symmetries at certain points in the moduli space of Calabi-Yau compactifications, and the associated identities that the geometric realization of D-brane monodromies must satisfy. We show that in a wide class of examples, both local and compact, the monodromy identities in question always follow from a single mathematical statement. One of the simplest examples is the Z_5 symmetry at the Gepner point of the quintic, and the associated D-brane monodromy identity.

  6. Theta functions and mirror symmetry

    CERN Document Server

    Gross, Mark

    2012-01-01

    This is a survey covering aspects of varied work of the authors with Mohammed Abouzaid, Paul Hacking, and Sean Keel. While theta functions are traditionally canonical sections of ample line bundles on abelian varieties, we motivate, using mirror symmetry, the idea that theta functions exist in much greater generality. This suggestion originates with the work of the late Andrei Tyurin. We outline how to construct theta functions on the degenerations of varieties constructed in previous work of the authors, and then explain applications of this construction to homological mirror symmetry and constructions of broad classes of mirror varieties.

  7. On Generalized Inverse Transversals

    Institute of Scientific and Technical Information of China (English)

    Rong Hua ZHANG; Shou Feng WANG

    2008-01-01

    Let S be a regular semigroup,S° an inverse subsemigroup of S.S° is called a generalized inverse transversal of S,if V(x) ∩N S°≠φ.In this paper,some properties of this kind of semigroups are discussed.In particular,a construction theorem is obtained which contains some recent results in the literature as its special cases.

  8. The inverse electroencephalography pipeline

    Science.gov (United States)

    Weinstein, David Michael

    The inverse electroencephalography (EEG) problem is defined as determining which regions of the brain are active based on remote measurements recorded with scalp EEG electrodes. An accurate solution to this problem would benefit both fundamental neuroscience research and clinical neuroscience applications. However, constructing accurate patient-specific inverse EEG solutions requires complex modeling, simulation, and visualization algorithms, and to date only a few systems have been developed that provide such capabilities. In this dissertation, a computational system for generating and investigating patient-specific inverse EEG solutions is introduced, and the requirements for each stage of this Inverse EEG Pipeline are defined and discussed. While the requirements of many of the stages are satisfied with existing algorithms, others have motivated research into novel modeling and simulation methods. The principal technical results of this work include novel surface-based volume modeling techniques, an efficient construction for the EEG lead field, and the Open Source release of the Inverse EEG Pipeline software for use by the bioelectric field research community. In this work, the Inverse EEG Pipeline is applied to three research problems in neurology: comparing focal and distributed source imaging algorithms; separating measurements into independent activation components for multifocal epilepsy; and localizing the cortical activity that produces the P300 effect in schizophrenia.

  9. Generalized emissivity inverse problem.

    Science.gov (United States)

    Ming, DengMing; Wen, Tao; Dai, XianXi; Dai, JiXin; Evenson, William E

    2002-04-01

    Inverse problems have recently drawn considerable attention from the physics community due to of potential widespread applications [K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd ed. (Springer Verlag, Berlin, 1989)]. An inverse emissivity problem that determines the emissivity g(nu) from measurements of only the total radiated power J(T) has recently been studied [Tao Wen, DengMing Ming, Xianxi Dai, Jixin Dai, and William E. Evenson, Phys. Rev. E 63, 045601(R) (2001)]. In this paper, a new type of generalized emissivity and transmissivity inverse (GETI) problem is proposed. The present problem differs from our previous work on inverse problems by allowing the unknown (emissivity) function g(nu) to be temperature dependent as well as frequency dependent. Based on published experimental information, we have developed an exact solution formula for this GETI problem. A universal function set suggested for numerical calculation is shown to be robust, making this inversion method practical and convenient for realistic calculations.

  10. Axion Like Particles and the Inverse Seesaw Mechanism

    CERN Document Server

    Carvajal, C D R; Nishi, C C; Sánchez-Vega, B L

    2015-01-01

    Light pseudoscalars known as axion like particles (ALPs) may be behind physical phenomena like the Universe transparency to ultra-energetic photons, the soft $\\gamma$-ray excess from the Coma cluster, and the 3.5 keV line. We explore the connection of these particles with the inverse seesaw (ISS) mechanism for neutrino mass generation. We propose a very restrictive setting where the scalar field hosting the ALP is also responsible for generating the ISS mass scales through its vacuum expectation value on gravity induced nonrenormalizable operators. A discrete gauge symmetry protects the theory from the appearance of overly strong gravitational effects and discrete anomaly cancellation imposes strong constraints on the order of the group. The anomalous U$(1)$ symmetry leading to the ALP is an extended lepton number and the protective discrete symmetry can be always chosen as a subgroup of a combination of the lepton number and the baryon number.

  11. Phosphate tungsten bronze series: crystallographic and structural properties of low-dimensional conductors.

    Science.gov (United States)

    Roussel, P; Pérez, O; Labbé, P

    2001-10-01

    Phosphate tungsten bronzes have been shown to be conductors of low dimensionality. A review of the crystallographic and structural properties of this huge series of compounds is given here, corresponding to the present knowledge of the different X-ray studies and electron microscopy investigations. Three main families are described, monophosphate tungsten bronzes, Ax(PO2)4(WO3)2m, either with pentagonal tunnels (MPTBp) or with hexagonal tunnels (MPTBh), and diphosphate tungsten bronzes, Ax(P2O4)2(WO3)2m, mainly with hexagonal tunnels (DPTBh). The general aspect of these crystal structures may be described as a building of polyhedra sharing oxygen corners made of regular stacking of WO3-type slabs with a thickness function of m, joined by slices of tetrahedral PO4 phosphate or P2O7 diphosphate groups. The relations of the different slabs with respect to the basic perovskite structure are mentioned. The structural description is focused on the tilt phenomenon of the WO6 octahedra inside a slab of WO3-type. In this respect, a comparison with the different phases of the WO3 crystal structures is established. The various modes of tilting and the different possible connections between two adjacent WO3-type slabs involve a great variety of structures with different symmetries, as well as the existence of numerous twins in MPTBp's. Several phase transitions, with the appearance of diffuse scattering and modulation phenomena, were analysed by X-ray scattering measurements and through the temperature dependence of various physical properties for the MPTBp's. The role of the W displacements within the WO3-type slabs, in two modulated structures (m = 4 and m = 10), already solved, is discussed. Finally, the complexity of the structural aspects of DPTBh's is explained on the basis of the average structures which are the only ones solved.

  12. Unified Mathematical Framework for Slicing and Symmetry Reduction over Event Structures

    Directory of Open Access Journals (Sweden)

    Xinyan Gao

    2014-01-01

    Full Text Available Nonclassical slicing and symmetry reduction can act as efficient structural abstract methods for pruning state space when dealing with verification problems. In this paper, we mainly address theoretical and algorithmic aspects for nonclassical slicing and symmetry reduction over prime event structures. We propose sliced and symmetric quotient reduction models of event structures and present their corresponding algorithms. To construct the underlying foundation of the proposed methodologies, we introduce strong and weak conflict concepts and a pair of mutually inverse operators and extend permutation group based symmetry notion of event structures. We have established a unified mathematical framework for slicing and symmetry reduction, and further investigated the translation, isomorphism, and equivalence relationship and other related basic facts from a theoretical point of view. The framework may provide useful guidance and theoretical exploration for overcoming verification challenges. This paper also demonstrates their practical applications by two cases.

  13. Current of population inversion between two coupled lasers

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, S.T.

    1975-01-01

    The idea of appropriate currents between two coupled systems which in the stationary state of broken symmetry have off-diagonal long-range order is presented and applied to lasers. A model representing two p-n junction lasers which are allowed to exchange their electron-hole pairs across a potential barrier is discussed. The current of population inversion between two lasers and the difference of the intensities of radiation emitted by them in a stationary state is calculated.

  14. Charge symmetry at the partonic level

    Energy Technology Data Exchange (ETDEWEB)

    Londergan, J. T.; Peng, J. C.; Thomas, A. W.

    2010-07-01

    This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.

  15. A model of intrinsic symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Li [Research Center for Quantum Manipulation, Department of Physics, Fudan University, Shanghai 200433 (China); Li, Sheng [Department of Physics, Zhejiang Normal University, Zhejiang 310004 (China); George, Thomas F., E-mail: tfgeorge@umsl.edu [Office of the Chancellor and Center for Nanoscience, Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121 (United States); Department of Physics and Astronomy, University of Missouri-St. Louis, St. Louis, MO 63121 (United States); Sun, Xin, E-mail: xin_sun@fudan.edu.cn [Research Center for Quantum Manipulation, Department of Physics, Fudan University, Shanghai 200433 (China)

    2013-11-01

    Different from the symmetry breaking associated with a phase transition, which occurs when the controlling parameter is manipulated across a critical point, the symmetry breaking presented in this Letter does not need parameter manipulation. Instead, the system itself suddenly undergoes symmetry breaking at a certain time during its evolution, which is intrinsic symmetry breaking. Through a polymer model, it is revealed that the origin of the intrinsic symmetry breaking is nonlinearity, which produces instability at the instance when the evolution crosses an inflexion point, where this instability breaks the original symmetry.

  16. Neutrino masses and deviation from tribimaximal mixing in Δ (27 ) model with inverse seesaw mechanism

    Science.gov (United States)

    Abbas, Mohammed; Khalil, Shaaban; Rashed, Ahmed; Sil, Arunansu

    2016-01-01

    We propose a scheme, based on Δ (27 ) flavor symmetry and supplemented by other discrete symmetries and the inverse seesaw mechanism, where both the light neutrino masses and the deviation from tribimaximal mixing matrix can be linked to the source of lepton number violation. The hierarchies of the charged leptons are explained. We find that the quark masses including their hierarchies and the mixing can also be constructed in a similar way.

  17. Partial Dynamical Symmetries in Nuclei

    CERN Document Server

    Leviatan, A

    2000-01-01

    Partial dynamical symmetries (PDS) are shown to be relevant to the interpretation of the $K=0_2$ band and to the occurrence of F-spin multiplets of ground and scissors bands in deformed nuclei. Hamiltonians with bosonic and fermionic PDS are presented.

  18. Symmetry-protected topological entanglement

    Science.gov (United States)

    Marvian, Iman

    2017-01-01

    We propose an order parameter for the symmetry-protected topological (SPT) phases which are protected by Abelian on-site symmetries. This order parameter, called the SPT entanglement, is defined as the entanglement between A and B , two distant regions of the system, given that the total charge (associated with the symmetry) in a third region C is measured and known, where C is a connected region surrounded by A , B , and the boundaries of the system. In the case of one-dimensional systems we prove that in the limit where A and B are large and far from each other compared to the correlation length, the SPT entanglement remains constant throughout a SPT phase, and furthermore, it is zero for the trivial phase while it is nonzero for all the nontrivial phases. Moreover, we show that the SPT entanglement is invariant under the low-depth quantum circuits which respect the symmetry, and hence it remains constant throughout a SPT phase in the higher dimensions as well. Also, we show that there is an intriguing connection between SPT entanglement and the Fourier transform of the string order parameters, which are the traditional tool for detecting SPT phases. This leads to an algorithm for extracting the relevant information about the SPT phase of the system from the string order parameters. Finally, we discuss implications of our results in the context of measurement-based quantum computation.

  19. Symmetry structure and phase transitions

    Indian Academy of Sciences (India)

    Ashok Goyal; Meenu Dahiya; Deepak Chandra

    2003-05-01

    We study chiral symmetry structure at finite density and temperature in the presence of external magnetic field and gravity, a situation relevant in the early Universe and in the core of compact stars. We then investigate the dynamical evolution of phase transition in the expanding early Universe and possible formation of quark nuggets and their survival.

  20. Quantitative Analysis of Face Symmetry.

    Science.gov (United States)

    Tamir, Abraham

    2015-06-01

    The major objective of this article was to report quantitatively the degree of human face symmetry for reported images taken from the Internet. From the original image of a certain person that appears in the center of each triplet, 2 symmetric combinations were constructed that are based on the left part of the image and its mirror image (left-left) and on the right part of the image and its mirror image (right-right). By applying a computer software that enables to determine length, surface area, and perimeter of any geometric shape, the following measurements were obtained for each triplet: face perimeter and area; distance between the pupils; mouth length; its perimeter and area; nose length and face length, usually below the ears; as well as the area and perimeter of the pupils. Then, for each of the above measurements, the value C, which characterizes the degree of symmetry of the real image with respect to the combinations right-right and left-left, was calculated. C appears on the right-hand side below each image. A high value of C indicates a low symmetry, and as the value is decreasing, the symmetry is increasing. The magnitude on the left relates to the pupils and compares the difference between the area and perimeter of the 2 pupils. The major conclusion arrived at here is that the human face is asymmetric to some degree; the degree of asymmetry is reported quantitatively under each portrait.

  1. Strong coupling electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.

  2. (Hybrid) Baryons Symmetries and Masses

    CERN Document Server

    Page, P R

    1999-01-01

    We construct (hybrid) baryons in the flux-tube model of Isgur and Paton. In the limit of adiabatic quark motion, we build proper eigenstates of orbital angular momentum and construct the flavour, spin and J^P of hybrid baryons from the symmetries of the system. The lowest mass hybrid baryon is estimated at approximately 2 GeV.

  3. Dark Energy and Spacetime Symmetry

    Directory of Open Access Journals (Sweden)

    Irina Dymnikova

    2017-03-01

    Full Text Available The Petrov classification of stress-energy tensors provides a model-independent definition of a vacuum by the algebraic structure of its stress-energy tensor and implies the existence of vacua whose symmetry is reduced as compared with the maximally symmetric de Sitter vacuum associated with the Einstein cosmological term. This allows to describe a vacuum in general setting by dynamical vacuum dark fluid, presented by a variable cosmological term with the reduced symmetry which makes vacuum fluid essentially anisotropic and allows it to be evolving and clustering. The relevant solutions to the Einstein equations describe regular cosmological models with time-evolving and spatially inhomogeneous vacuum dark energy, and compact vacuum objects generically related to a dark energy: regular black holes, their remnants and self-gravitating vacuum solitons with de Sitter vacuum interiors—which can be responsible for observational effects typically related to a dark matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy and to breaking of space-time symmetry. In the cosmological context spacetime symmetry provides a mechanism for relaxing cosmological constant to a needed non-zero value.

  4. Turning Students into Symmetry Detectives

    Science.gov (United States)

    Wilders, Richard; VanOyen, Lawrence

    2011-01-01

    Exploring mathematical symmetry is one way of increasing students' understanding of art. By asking students to search designs and become pattern detectives, teachers can potentially increase their appreciation of art while reinforcing their perception of the use of math in their day-to-day lives. This article shows teachers how they can interest…

  5. Hidden Local Symmetry and Beyond

    CERN Document Server

    Yamawaki, Koichi

    2016-01-01

    Gerry Brown was a godfather of our hidden local symmetry (HLS) for the vector meson from the birth of the theory throughout his life. The HLS is originated from very nature of the nonlinear realization of the symmetry G based on the manifold G/H, and thus is universal to any physics based on the nonlinear realization. Here I focus on the Higgs Lagrangian of the Standard Model (SM), which is shown to be equivalent to the nonlinear sigma model based on G/H= SU(2)_L x SU(2)_R/SU(2)_V with additional symmetry, the nonlinearly realized scale symmetry. Then the SM does have a dynamical gauge boson of the SU(2)_V HLS, "SM rho meson", in addition to the Higgs as a pseudo dilaton as well as the NG bosons to be absorbed into the W and Z. Based on the recent work done with S. Matsuzaki and H. Ohki, I discuss a novel possibility that the SM rho meson acquires kinetic term by the SM dynamics itself, which then stabilizes the skyrmion dormant in the SM as a viable candidate for the dark matter, what we call "Dark SM skyrmi...

  6. Symmetry violation in weak decays

    NARCIS (Netherlands)

    Vos, Kimberley Keri

    2016-01-01

    Our current knowledge of particle physics is described by the Standard Model (SM). This model, however, leaves important observations unexplained. To answer these outstanding questions, as of yet, unknown physics is required. In the search for new physics, symmetries and their breaking play a guidin

  7. Hidden local symmetry and beyond

    Science.gov (United States)

    Yamawaki, Koichi

    Gerry Brown was a godfather of our hidden local symmetry (HLS) for the vector meson from the birth of the theory throughout his life. The HLS is originated from very nature of the nonlinear realization of the symmetry G based on the manifold G/H, and thus is universal to any physics based on the nonlinear realization. Here, I focus on the Higgs Lagrangian of the Standard Model (SM), which is shown to be equivalent to the nonlinear sigma model based on G/H = SU(2)L × SU(2)R/SU(2)V with additional symmetry, the nonlinearly-realized scale symmetry. Then, the SM does have a dynamical gauge boson of the SU(2)V HLS, "SM ρ meson", in addition to the Higgs as a pseudo-dilaton as well as the NG bosons to be absorbed in to the W and Z. Based on the recent work done with Matsuzaki and Ohki, I discuss a novel possibility that the SM ρ meson acquires kinetic term by the SM dynamics itself, which then stabilizes the skyrmion dormant in the SM as a viable candidate for the dark matter, what we call "dark SM skyrmion (DSMS)".

  8. Formation of Fast-Spread Ocean Crust : Crystallographic Preferred Orientations From a Reference Lower Crust Section in the Oman Ophiolite

    Science.gov (United States)

    Ildefonse, B.; Mueller, T.; Mock, D.; Koepke, J.

    2016-12-01

    About 20 years ago, two competing models were proposed for the formation of the lower, gabbroic crust at fast-spreading ridges. The lower crust is either formed by downward flow of mushy material from the shallow axial melt lens (gabbro glacier), or by sill intrusions (sheeted sills). To further test these end-member models, we characterized the vertical distribution of Crystallographic Preferred Orientations (CPO) in Wadi Gideah gabbro section (Sumail ophiolite, Sultanate Oman), using the Electron Backscattered Diffraction (EBSD) technique. CPO were measured on 67 gabbro samples, documenting a 5 km thick section, with an average interval of 80 m between samples. EBSD data sets were processed using MTEX, a free Matlab toolbox. Average misorientation in grains (angle between each pixel orientation and mean orientation of the grain) is very low ( 0.25°). This is consistent with magmatic flow in these rocks, and the paucity of crystal-plastic overprint. The strength (J index) of plagioclase CPO increases down-section, with a more pronounced variability in the layered gabbros. For clinopyroxene, the difference between upper (foliated) and lower (layered) gabbros is stronger, with low J in upper gabbros, and higher and more variable J in lower gabbros. In upper gabbros the symmetry of plagioclase and clinopyroxene CPO progressively evolves downward to progressively more oblate. Continuing down-section, the trend reverses, with progressively more prolate CPO in lower gabbros. The crystallographic fabric variability in the lower crust section calls for distinct formation mechanisms in the upper and lower gabbros. It is consistent with a hybrid model for crustal formation (Boudier et al., 1996, doi:10.1016/0012-821X(96)00167-7). The genesis of the upper foliated gabbro can be at least partly explained by the gabbro glacier model, while the continuous emplacement of sheeted sills at various depths is a more plausible model for the lower layered gabbro section.

  9. Crystallographic shear mechanisms in Rh one-dimensional oxides

    Science.gov (United States)

    Hernando, María; Boulahya, Khalid; Parras, Marina; González-Calbet, José M.

    2005-02-01

    Electron diffraction and high resolution electron microscopy have been used to characterize two new one-dimensional superstructures in the A sbnd Rh sbnd O system (A = Ca, Sr) related to the 2H-ABO 3-type. They are formed by the intergrowth of n A 3A'BO 6 blocks, showing the Sr 4RhO 6-type, with A 12A' 2B 8O 30 blocks, constituted by two A 3O 9 and two A 3A'O 6 layers alternating in the stacking sequence 1:1, leading to the A 27A' 7B 13O 60 ( n=5) and A 30A' 8B 14O 66 ( n=6) compositions. A crystallographic shear mechanism is proposed to describe the structural relationship between Sr 4RhO 6 (A 3A'BO 6-type) and the new superstructures.

  10. 3D characterization of crystallographic orientation in polycrystals via EBSD

    Institute of Scientific and Technical Information of China (English)

    Stefan ZAEFFERER; Stuart I. WRIGHT

    2007-01-01

    Electron Backscatter Diffraction (EBSD) has been used in conjunction with a Scanning Electron Microscope (SEM) combined with a focused ion beam (FIB) instrument to obtain three dimensional (3D) high resolution characterizations of crystalline microstructures. This work reports on continued development that has proceeded on this technique. The technique is based on automated in-situ serial sectioning using the FIB and characterization of the sections using automated EBSD or orientation imaging microscopy (OIM). The technique extends the powerful features of two dimensional OIM into the third spatial dimension. This allows additional descriptive microstructural parameters to be obtained, for example the morphology and the crystallographic indices of interface planes. This paper provides an overview of the technique and shows results from two different samples: pearlite colonies in a high carbon steel and twin related grain triplets in a NiCo thin film.

  11. Crystallographic texturing in Nb3Sn multifilamentary superconducting composites

    Science.gov (United States)

    Cogan, Stuart F.; Rose, Robert M.

    1980-03-01

    Crystallographic texturing in Nb3Sn composites, fabricated by both the external diffusion and the commercial bronze processes, has been investigated. In the external-diffusion-processed composite the as-drawn texture of the copper matrix contained ca. 55% and 45% ; after recrystallization at 650 °C for 16 h this changed to 70% and 30% . Tin plating and reaction heat treatment for 40 h at 650 °C eliminated most of the texturing. In a commercial bronze-processed composite a or texture was obtained in the as-drawn bronze matrix, and after a reaction heat treatment at 700 °C for 30 h a diffuse texture was developed. In both composites the Nb3Sn reaction layer exhibited no preferred orientation.

  12. Pseudospin symmetry as an accidental symmetry in the relativistic framework

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, S.; Niembro, R. [Universidad de Cantabria, Departamento de Fisica Moderna, Santander (Spain); Lopez-Quelle, M. [Universidad de Cantabria, Departamento de Fisica Aplicada, Santander (Spain); Savushkin, L.N. [St. Petersburg University for Telecommunications, Department of Physics, St. Petersburg (Russian Federation)

    2008-08-15

    We analyse the arguments used in the relativistic context to base the quasi-degeneracy of pseudospin doublets (PSDs) observed in atomic nuclei on the smallness of the single-particle central potential ({sigma}{sub S}+{sigma}{sub 0}), discussing, especially, the implications of the results obtained in the limit {sigma}{sub S}+{sigma}{sub 0}=0. We study also the transition from a relativistic model, where {sigma}{sub S}+{sigma}{sub 0} is a harmonic-oscillator potential and exhibits degenerate PSDs, to a more realistic one with broken pseudospin symmetry. We examine, in particular, the effect of the corresponding pseudospin symmetry-breaking term on the Dirac spinors of the PSDs. An extension of the Nilsson model to the relativistic case is also considered. (orig.)

  13. Notes on generalized global symmetries in QFT

    CERN Document Server

    Sharpe, E

    2015-01-01

    It was recently argued that quantum field theories possess one-form and higher-form symmetries, labelled `generalized global symmetries.' In this paper, we describe how those higher-form symmetries can be understood mathematically as special cases of more general 2-groups and higher groups, and discuss examples of quantum field theories admitting actions of more general higher groups than merely one-form and higher-form symmetries. We discuss analogues of topological defects for some of these higher symmetry groups, relating some of them to ordinary topological defects. We also discuss topological defects in cases in which the moduli `space' (technically, a stack) admits an action of a higher symmetry group. Finally, we outline a proposal for how certain anomalies might potentially be understood as describing a transmutation of an ordinary group symmetry of the classical theory into a 2-group or higher group symmetry of the quantum theory, which we link to WZW models and bosonization.

  14. Inflation, Symmetry, and B-Modes

    CERN Document Server

    Hertzberg, Mark P

    2014-01-01

    We examine the role of using symmetry and effective field theory in inflationary model building. We describe the standard formulation of starting with an approximate shift symmetry for a scalar field, and then introducing corrections systematically in order to maintain control over the inflationary potential. We find that this leads to models in good agreement with recent data. On the other hand, there are attempts in the literature to deviate from this paradigm by envoking other symmetries and corrections. In particular: in a suite of recent papers, several authors have made the claim that standard Einstein gravity with a cosmological constant and a massless scalar carries conformal symmetry. They further claim that such a theory carries another hidden symmetry; a global SO(1,1) symmetry. By deforming around the global SO(1,1) symmetry, they are able to produce a range of inflationary models with asymptotically flat potentials, whose flatness is claimed to be protected by these symmetries. These models tend ...

  15. Noether gauge symmetry approach in quintom cosmology

    CERN Document Server

    Aslam, Adnan; Momeni, Davood; Myrzakulov, Ratbay; Rashid, Muneer Ahmad; Raza, Muhammad

    2013-01-01

    In literature usual point like symmetries of the Lagrangian have been introduced to study the symmetries and the structure of the fields. This kind of Noether symmetry is a subclass of a more general family of symmetries, called Noether Gauge Symmetries (NGS). Motivated by this mathematical tool, in this article, we discuss the generalized Noether symmetry of Quintom model of dark energy, which is a two component fluid model of quintessence and phantom fields. Our model is a generalization of the Noether symmetries of a single and multiple components which have been investigated in detail before. We found the general form of the quintom potential in which the whole dynamical system has a point like symmetry. We investigated different possible solutions of the system for diverse family of gauge function. Specially, we discovered two family of potentials, one corresponds to a free quintessence (phantom) and the second is in the form of quadratic interaction between two components. These two families of potentia...

  16. Ocean acidification reduces the crystallographic control in juvenile mussel shells.

    Science.gov (United States)

    Fitzer, Susan C; Cusack, Maggie; Phoenix, Vernon R; Kamenos, Nicholas A

    2014-10-01

    Global climate change threatens the oceans as anthropogenic carbon dioxide causes ocean acidification and reduced carbonate saturation. Future projections indicate under saturation of aragonite, and potentially calcite, in the oceans by 2100. Calcifying organisms are those most at risk from such ocean acidification, as carbonate is vital in the biomineralisation of their calcium carbonate protective shells. This study highlights the importance of multi-generational studies to investigate how marine organisms can potentially adapt to future projected global climate change. Mytilus edulis is an economically important marine calcifier vulnerable to decreasing carbonate saturation as their shells comprise two calcium carbonate polymorphs: aragonite and calcite. M. edulis specimens were cultured under current and projected pCO2 (380, 550, 750 and 1000μatm), following 6months of experimental culture, adults produced second generation juvenile mussels. Juvenile mussel shells were examined for structural and crystallographic orientation of aragonite and calcite. At 1000μatm pCO2, juvenile mussels spawned and grown under this high pCO2 do not produce aragonite which is more vulnerable to carbonate under-saturation than calcite. Calcite and aragonite were produced at 380, 550 and 750μatm pCO2. Electron back scatter diffraction analyses reveal less constraint in crystallographic orientation with increased pCO2. Shell formation is maintained, although the nacre crystals appear corroded and crystals are not so closely layered together. The differences in ultrastructure and crystallography in shells formed by juveniles spawned from adults in high pCO2 conditions may prove instrumental in their ability to survive ocean acidification. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Transuranic Hybrid Materials: Crystallographic and Computational Metrics of Supramolecular Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Surbella, Robert G. [Department; Ducati, Lucas C. [Department; Pellegrini, Kristi L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; McNamara, Bruce K. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Autschbach, Jochen [Department; Schwantes, Jon M. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Cahill, Christopher L. [Department

    2017-07-26

    A family of twelve supramolecular [AnO2Cl4]2- (An = U, Np, Pu) containing compounds assembled via hydrogen and halogen bonds donated by substituted 4-X-pyridinium cations (X = H, Cl, Br, I) is reported. These materials were prepared from a room-temperature synthesis wherein crystallization of unhydrolyzed and valence pure [An(VI)O2Cl4]2- (An = U, Np, Pu) tectons are the norm. We present a hierarchy of assembly criteria based on crystallographic observations, and subsequently quantify the strengths of the non-covalent interactions using Kohn-Sham density functional calculations. We provide, for the first time, a detailed description of the electrostatic potentials (ESPs) of the actinyl tetrahalide dianions and reconcile crystallographically observed structural motifs and non-covalent interaction (NCI) acceptor-donor pairings. Our findings indicate that the average electrostatic potential across the halogen ligands (the acceptors) changes by only ~2 kJ mol-1 across the AnO22+ series, indicating the magnitude of the potential is independent of the metal center. The role of the cation is therefore critical in directing structural motifs and dictating the resulting hydrogen and halogen bond strengths, the former being stronger due to the positive charge centralized on the pyridyl nitrogen N-H+. Subsequent analyses using the Quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) approaches support this conclusion and highlight the structure directing role of the cations. Whereas one can infer that the 2 Columbic attraction is the driver for assembly, the contribution of the non-covalent interaction is to direct the molecular-level arrangement (or disposition) of the tectons.

  18. Sharp spatially constrained inversion

    DEFF Research Database (Denmark)

    Vignoli, Giulio G.; Fiandaca, Gianluca G.; Christiansen, Anders Vest C A.V.C.;

    2013-01-01

    We present sharp reconstruction of multi-layer models using a spatially constrained inversion with minimum gradient support regularization. In particular, its application to airborne electromagnetic data is discussed. Airborne surveys produce extremely large datasets, traditionally inverted...... by using smoothly varying 1D models. Smoothness is a result of the regularization constraints applied to address the inversion ill-posedness. The standard Occam-type regularized multi-layer inversion produces results where boundaries between layers are smeared. The sharp regularization overcomes......, the results are compatible with the data and, at the same time, favor sharp transitions. The focusing strategy can also be used to constrain the 1D solutions laterally, guaranteeing that lateral sharp transitions are retrieved without losing resolution. By means of real and synthetic datasets, sharp...

  19. Approximate Flavor Symmetry in Supersymmetric Model

    OpenAIRE

    Tao, Zhijian

    1998-01-01

    We investigate the maximal approximate flavor symmetry in the framework of generic minimal supersymmetric standard model. We consider the low energy effective theory of the flavor physics with all the possible operators included. Spontaneous flavor symmetry breaking leads to the approximate flavor symmetry in Yukawa sector and the supersymmetry breaking sector. Fermion mass and mixing hierachies are the results of the hierachy of the flavor symmetry breaking. It is found that in this theory i...

  20. Horizontal Symmetry: Bottom Up and Top Down

    CERN Document Server

    Lam, C S

    2011-01-01

    A group-theoretical connection between horizontal symmetry $\\G$ and fermion mixing is established, and applied to neutrino mixing. The group-theoretical approach is consistent with a dynamical theory based on $U(1)\\times \\G$, but the dynamical theory can be used to pick out the most stable mixing that purely group-theoretical considerations cannot. A symmetry common to leptons and quarks is also discussed. This higher symmetry picks $A_4$ over $S_4$ to be the preferred symmetry for leptons.

  1. Partial Dynamical Symmetry in Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E

    2003-06-02

    Partial dynamical symmetry (PDS) extends and complements the concepts of exact and dynamical symmetry. It allows one to remove undesired constraints from an algebraic theory, while preserving some of the useful aspects of a dynamical symmetry, and to study the effects of symmetry breaking in a controlled manner. An example of a PDS in an interacting fermion system is presented. The associated PDS Hamiltonians are closely related with a realistic quadrupole-quadrupole interaction and provide new insights into this important interaction.

  2. Limits to Nonlinear Inversion

    DEFF Research Database (Denmark)

    Mosegaard, Klaus

    2012-01-01

    For non-linear inverse problems, the mathematical structure of the mapping from model parameters to data is usually unknown or partly unknown. Absence of information about the mathematical structure of this function prevents us from presenting an analytical solution, so our solution depends on our......-heuristics are inefficient for large-scale, non-linear inverse problems, and that the 'no-free-lunch' theorem holds. We discuss typical objections to the relevance of this theorem. A consequence of the no-free-lunch theorem is that algorithms adapted to the mathematical structure of the problem perform more efficiently than...

  3. 'Inverse' temporomandibular joint dislocation.

    Science.gov (United States)

    Alemán Navas, R M; Martínez Mendoza, M G

    2011-08-01

    Temporomandibular joint (TMJ) dislocation can be classified into four groups (anterior, posterior, lateral, and superior) depending on the direction of displacement and the location of the condylar head. All the groups are rare except for anterior dislocation. 'Inverse' TMJ dislocation is a bilateral anterior and superior dislocation with impaction of the mandible over the maxilla; to the authors' knowledge only two cases have previously been reported in the literature. Inverse TMJ dislocation has unique clinical and radiographic findings, which are described for this case. Copyright © 2011 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Symmetries in multi-Higgs-doublet models

    CERN Document Server

    Ivanov, I P

    2012-01-01

    We report the recent progress in understanding of symmetries which can be implemented in the scalar sector of electroweak symmetry breaking models with several Higgs doublets. In particular we present the list of finite reparametrization symmetry groups which can appear in the three-Higgs-doublet models.

  5. Generalized Partial Dynamical Symmetry in Nuclei

    CERN Document Server

    Leviatan, A

    2002-01-01

    We introduce the notion of a generalized partial dynamical symmetry for which part of the eigenstates have part of the dynamical symmetry. This general concept is illustrated with the example of Hamiltonians with a partial dynamical O(6) symmetry in the framework of the interacting boson model. The resulting spectrum and electromagnetic transitions are compared with empirical data in $^{162}$Dy.

  6. Generalized partial dynamical symmetry in nuclei.

    Science.gov (United States)

    Leviatan, A; Isacker, P Van

    2002-11-25

    We introduce the notion of a generalized partial dynamical-symmetry for which part of the eigenstates have part of the dynamical symmetry. This general concept is illustrated with the example of Hamiltonians with a partial dynamical O(6) symmetry in the framework of the interacting boson model. The resulting spectrum and electromagnetic transitions are compared with empirical data in 162Dy.

  7. Partial Dynamical Symmetry in Deformed Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    1996-07-01

    We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei. {copyright} {ital 1996 The American Physical Society.}

  8. Partial dynamical symmetry in deformed nuclei

    CERN Document Server

    Leviatan, A

    1996-01-01

    We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei.

  9. Simultaneous occurrence of distinct symmetries in nuclei

    CERN Document Server

    Leviatan, A

    2015-01-01

    We show that distinct emergent symmetries, such as partial dynamical symmetry and quasi dynamical symmetry, can occur simultaneously in the same or different eigenstates of the Hamiltonian. Implications for nuclear spectroscopy in the rare-earth region and for first-order quantum phase transitions between spherical and deformed shapes, are considered.

  10. General Formalism for the BRST Symmetry

    Institute of Scientific and Technical Information of China (English)

    Suhail Ahmad

    2013-01-01

    In this paper we will discuss Faddeev-Popov method for gauge theories with a general form of gauge symmetry in an abstract way.We will then develope a general formalism for dealing with the BRST symmetry.This formalism will make it possible to analyse the BRST symmetry for any theory.

  11. Parameter Symmetry of the Interacting Boson Model

    CERN Document Server

    Shirokov, A M; Smirnov, Yu F; Shirokov, Andrey M.; Smirnov, Yu. F.

    1998-01-01

    We discuss the symmetry of the parameter space of the interacting boson model (IBM). It is shown that for any set of the IBM Hamiltonian parameters (with the only exception of the U(5) dynamical symmetry limit) one can always find another set that generates the equivalent spectrum. We discuss the origin of the symmetry and its relevance for physical applications.

  12. Noether symmetries and duality transformations in cosmology

    Science.gov (United States)

    Paliathanasis, Andronikos; Capozziello, Salvatore

    2016-09-01

    We discuss the relation between Noether (point) symmetries and discrete symmetries for a class of minisuperspace cosmological models. We show that when a Noether symmetry exists for the gravitational Lagrangian, then there exists a coordinate system in which a reversal symmetry exists. Moreover, as far as concerns, the scale-factor duality symmetry of the dilaton field, we show that it is related to the existence of a Noether symmetry for the field equations, and the reversal symmetry in the normal coordinates of the symmetry vector becomes scale-factor duality symmetry in the original coordinates. In particular, the same point symmetry as also the same reversal symmetry exists for the Brans-Dicke scalar field with linear potential while now the discrete symmetry in the original coordinates of the system depends on the Brans-Dicke parameter and it is a scale-factor duality when ωBD = 1. Furthermore, in the context of the O’Hanlon theory for f(R)-gravity, it is possible to show how a duality transformation in the minisuperspace can be used to relate different gravitational models.

  13. Symmetries of the dissipative Hofstadter model

    CERN Document Server

    Freed, D E

    1993-01-01

    The dissipative Hofstadter model, which describes a particle in 2-D subject to a periodic potential, uniform magnetic field, and dissipation, is also related to open string boundary states. This model exhibits an SL(2,Z) duality symmetry and hidden reparametrization invariance symmetries. These symmetries are useful for finding exact solutions for correlation functions.

  14. Symmetry and electromagnetism. Simetria y electromagnetismo

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes Cobas, L.E.; Font Hernandez, R.

    1993-01-01

    An analytical treatment of electrostatic and magnetostatic field symmetry, as a function of charge and current distribution symmetry, is proposed. The Newmann Principle, related to the cause-effect symmetry relation, is presented and applied to the characterization of simple configurations. (Author) 5 refs.

  15. Symmetry Breaking for Black-Scholes Equations

    Institute of Scientific and Technical Information of China (English)

    YANG Xuan-Liu; ZHANG Shun-Li; QU Chang-Zheng

    2007-01-01

    Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.

  16. Neutrino mass, mixing and discrete symmetries

    CERN Document Server

    Smirnov, Alexei Y

    2013-01-01

    Status of the discrete symmetry approach to explanation of the lepton masses and mixing is summarized in view of recent experimental results, in particular, establishing relatively large 1-3 mixing. The lepton mixing can originate from breaking of discrete flavor symmetry $G_f$ to different residual symmetries $G_{\\ell}$ and $G_\

  17. Prediction of human eye fixations using symmetry

    NARCIS (Netherlands)

    Kootstra, Gert; Schomaker, Lambert

    2009-01-01

    Humans are very sensitive to symmetry in visual patterns. Reaction time experiments show that symmetry is detected and recognized very rapidly. This suggests that symmetry is a highly salient feature. Existing computational models of saliency, however, have mainly focused on contrast as a measure of

  18. Exact Chiral Symmetry on the Lattice

    CERN Document Server

    Neuberger, H

    2001-01-01

    Developments during the last eight years have refuted the folklore that chiral symmetries cannot be preserved on the lattice. The mechanism that permits chiral symmetry to coexist with the lattice is quite general and may work in Nature as well. The reconciliation between chiral symmetry and the lattice is likely to revolutionize the field of numerical QCD.

  19. Gravitating fluids with Lie symmetries

    CERN Document Server

    Msomi, A M; Maharaj, S D

    2010-01-01

    We analyse the underlying nonlinear partial differential equation which arises in the study of gravitating flat fluid plates of embedding class one. Our interest in this equation lies in discussing new solutions that can be found by means of Lie point symmetries. The method utilised reduces the partial differential equation to an ordinary differential equation according to the Lie symmetry admitted. We show that a class of solutions found previously can be characterised by a particular Lie generator. Several new families of solutions are found explicitly. In particular we find the relevant ordinary differential equation for all one-dimensional optimal subgroups; in several cases the ordinary differential equation can be solved in general. We are in a position to characterise particular solutions with a linear barotropic equation of state.

  20. Critical Point Symmetries in Nuclei

    CERN Document Server

    Bonatsos, D; Petrellis, D; Terziev, P A; Yigitoglu, I; Bonatsos, Dennis

    2006-01-01

    Critical Point Symmetries (CPS) appear in regions of the nuclear chart where a rapid change from one symmetry to another is observed. The first CPSs, introduced by F. Iachello, were E(5), which corresponds to the transition from vibrational [U(5)] to gamma-unstable [O(6)] behaviour, and X(5), which represents the change from vibrational [U(5)] to prolate axially deformed [SU(3)] shapes. These CPSs have been obtained as special solutions of the Bohr collective Hamiltonian. More recent special solutions of the same Hamiltonian, to be described here, include Z(5) and Z(4), which correspond to maximally triaxial shapes (the latter with ``frozen'' gamma=30 degrees), as well as X(3), which corresponds to prolate shapes with ``frozen'' gamma=0. CPSs have the advantage of providing predictions which are parameter free (up to overall scale factors) and compare well to experiment. However, their mathematical structure [with the exception of E(5)] needs to be clarified.

  1. CP symmetry in optical systems

    CERN Document Server

    Dana, Brenda; Malomed, Boris A

    2015-01-01

    We introduce a model of a dual-core optical waveguide with opposite signs of the group-velocity-dispersion (GVD) in the two cores, and a phase-velocity mismatch between them. The coupler is embedded into an active host medium, which provides for the linear coupling of a gain-loss type between the two cores. The same system can be derived, without phenomenological assumptions, by considering the three-wave propagation in a medium with the quadratic nonlinearity, provided that the depletion of the second-harmonic pump is negligible. This linear system offers an optical realization of the charge-parity ($\\mathcal{CP}$) symmetry, while the addition of the intra-core cubic nonlinearity breaks the symmetry. By means of direct simulations and analytical approximations, it is demonstrated that the linear system generates expanding Gaussian states, while the nonlinear one gives rise to broad oscillating solitons, as well as a general family of stable stationary gap solitons.

  2. Superconformal Symmetry, NMSSM, and Inflation

    CERN Document Server

    Ferrara, Sergio; Linde, Andrei; Marrani, Alessio; Van Proeyen, Antoine

    2011-01-01

    We identify a particularly simple class of supergravity models describing superconformal coupling of matter to supergravity. In these models, which we call the canonical superconformal supergravity (CSS) models, the kinetic terms in the Jordan frame are canonical, and the scalar potential is the same as in the global theory. The pure supergravity part of the total action has a local Poincare supersymmetry, whereas the chiral and vector multiplets coupled to supergravity have a larger local superconformal symmetry. The scale-free globally supersymmetric theories, such as the NMSSM with a scale-invariant superpotential, can be naturally embedded into this class of theories. After the supergravity embedding, the Jordan frame scalar potential of such theories remains scale free; it is quartic, it contains no mass terms, no nonrenormalizable terms, no cosmological constant. The local superconformal symmetry can be broken by additional terms, which, in the small field limit, are suppressed by the gravitational coup...

  3. Symmetry breaking around a wormhole

    Science.gov (United States)

    Choudhury, A. L.

    1996-11-01

    We have modified the extended version Coule and Maeda's version (D. H. Coule and Kei-ichi Maeda, Class.Quant.Grav.7,995(1990)) of the Gidding-Strominger model (S. B. Giddings and A. Strominger, Nucl.Phys. B307, 854(l988)) of the euclidean gravitational field interacting with axion. The new model has R-symmetry in contrast to the previous model. At the lowest perturbation case the model retains a wormhole solution. We assume that the scalar expands adiabatically and satisfies ideal gas law in a crude first approximation. Under the Higg's mechanism the symmetry can be broken at the tree approximation. This mechanism, we hope, can be used to introduce the degeneracy of quark masses.

  4. Flavor Symmetries in Extra Dimensions

    CERN Document Server

    Aranda, A; Aranda, Alfredo

    2002-01-01

    We present a model of flavor based on a discrete local symmetry that reproduces all fermion masses and mixing angles both in the quark and lepton sectors. The particle content of the model is that of the standard model plus an additional flavon field. All the fields propagate in a fifth universal extra dimension and the flavor scale is associated with the cutoff of the 5D theory which is $\\sim 10$ TeV. The Yukawa matrices as well as the Majorana mass matrix for the neutrinos are generated by higher dimension operators involving the flavon field. When the flavon field acquires a vacuum expectation value it breaks the flavor symmetry and thus generates the Yukawa couplings. The model is consistent with the nearly bimaximal solution to the solar and atmospheric neutrino deficits.

  5. Symmetry realization of texture zeros

    Energy Technology Data Exchange (ETDEWEB)

    Grimus, W. [Institut fuer Theoretische Physik, Universitaet Wien, Boltzmanngasse 5, 1090, Wien (Austria); Joshipura, A.S. [Physical Research Laboratory, 380009, Ahmedabad (India); Lavoura, L. [Centro de Fisica das Interaccoes Fundamentais, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, 1049-001, Lisboa (Portugal); Tanimoto, M. [Department of Physics, Niigata University, Ikarashi 2-8050, 950-2181, Niigata (Japan)

    2004-08-01

    We show that it is possible to enforce texture zeros in arbitrary entries of the fermion mass matrices by means of Abelian symmetries; in this way, many popular mass-matrix textures find a symmetry justification. We propose two alternative methods which allow one to place zeros in any number of elements of the mass matrices that one wants. They are applicable simultaneously in the quark and lepton sectors. They are also applicable in grand unified theories. The number of scalar fields required by our methods may be large; still, in many interesting cases this number can be reduced considerably. The larger the desired number of texture zeros is, the simpler are the models which reproduce the texture. (orig.)

  6. Symmetry realization of texture zeros

    CERN Document Server

    Grimus, Walter; Lavoura, L; Tanimoto, M

    2004-01-01

    We show that it is possible to enforce texture zeros in arbitrary entries of the fermion mass matrices by means of Abelian symmetries; in this way, many popular mass-matrix textures find a symmetry justification. We propose two alternative methods which allow to place zeros in any number of elements of the mass matrices that one wants. They are applicable simultaneously in the quark and lepton sectors. They are also applicable in Grand Unified Theories. The number of scalar fields required by our methods may be large; still, in many interesting cases this number can be reduced considerably. The larger the desired number of texture zeros is, the simpler are the models which reproduce the texture.

  7. Dark Matter and Global Symmetries

    CERN Document Server

    Mambrini, Yann; Queiroz, Farinaldo S

    2015-01-01

    General considerations in general relativity and quantum mechanics rule out global symmetries in the context of any consistent theory of quantum gravity. Motivated by this, we derive stringent and robust bounds from gamma-ray, X-ray, cosmic ray, neutrino and CMB data on models that invoke global symmetries to stabilize the dark matter particle. Under realistic assumptions we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime. We then specialize our analysis and apply our bounds to specific models such as the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Saw models. In the supplemental material we derive robust, updated model-independent limits on the dark matter lifetime.

  8. Lepton mixing and discrete symmetries

    Science.gov (United States)

    Hernandez, D.; Smirnov, A. Yu.

    2012-09-01

    The pattern of lepton mixing can emerge from breaking a flavor symmetry in different ways in the neutrino and charged lepton Yukawa sectors. In this framework, we derive the model-independent conditions imposed on the mixing matrix by the structure of discrete groups of the von Dyck type which include A4, S4, and A5. We show that, in general, these conditions lead to at least two equations for the mixing parameters (angles and CP phase δ). These constraints, which correspond to unbroken residual symmetries, are consistent with nonzero 13 mixing and deviations from maximal 2-3 mixing. For the simplest case, which leads to an S4 model and reproduces the allowed values of the mixing angles, we predict δ=(90°-120°).

  9. Cosmological Reflection of Particle Symmetry

    OpenAIRE

    Maxim Khlopov

    2016-01-01

    The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetr...

  10. Explaining quantum spontaneous symmetry breaking

    Science.gov (United States)

    Liu, Chuang; Emch, Gérard G.

    Two accounts of quantum symmetry breaking (SSB) in the algebraic approach are compared: the representational and the decompositional account. The latter account is argued to be superior for understanding quantum SSB. Two exactly solvable models are given as applications of our account: the Weiss-Heisenberg model for ferromagnetism and the BCS model for superconductivity. Finally, the decompositional account is shown to be more conducive to the causal explanation of quantum SSB.

  11. Symmetries in Lagrangian Field Theory

    Science.gov (United States)

    Búa, Lucia; Bucataru, Ioan; León, Manuel de; Salgado, Modesto; Vilariño, Silvia

    2015-06-01

    By generalising the cosymplectic setting for time-dependent Lagrangian mechanics, we propose a geometric framework for the Lagrangian formulation of classical field theories with a Lagrangian depending on the independent variables. For that purpose we consider the first-order jet bundles J1π of a fiber bundle π : E → ℝk where ℝk is the space of independent variables. Generalized symmetries of the Lagrangian are introduced and the corresponding Noether theorem is proved.

  12. Symmetries of partial differential equations

    OpenAIRE

    Gaussier, Hervé; Merker, Joël

    2004-01-01

    We establish a link between the study of completely integrable systems of partial differential equations and the study of generic submanifolds in C^n. Using the recent developments of Cauchy-Riemann geometry we provide the set of symmetries of such a system with a Lie group structure. Finally we determine the precise upper bound of the dimension of this Lie group for some specific systems of partial differential equations.

  13. Models of electroweak symmetry breaking

    CERN Document Server

    Pomarol, Alex

    2015-01-01

    This chapter present models of electroweak symmetry breaking arising from strongly interacting sectors, including both Higgsless models and mechanisms involving a composite Higgs. These scenarios have also been investigated in the framework of five-dimensional warped models that, according to the AdS/CFT correspondence, have a four-dimensional holographic interpretation in terms of strongly coupled field theories. We explore the implications of these models at the LHC.

  14. Dirac neutrinos from flavor symmetry

    CERN Document Server

    Aranda, Alfredo; Morisi, S; Peinado, E; Valle, J W F

    2013-01-01

    We present a model where Majorana neutrino mass terms are forbidden by the flavor symmetry group Delta(27). Neutrinos are Dirac fermions and their masses arise in the same way as that of the charged fermions, due to very small Yukawa couplings. The model fits current neutrino oscillation data and correlates the octant of the atmospheric angle with the magnitude of the lightest neutrino mass, with maximal mixing excluded for any neutrino mass

  15. Geometric symmetries in light nuclei

    CERN Document Server

    Bijker, Roelof

    2016-01-01

    The algebraic cluster model is is applied to study cluster states in the nuclei 12C and 16O. The observed level sequences can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the alpha-particles, i.e. an equilateral triangle for 12C, and a regular tetrahedron for 16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of alpha-particles.

  16. Measuring Complexity through Average Symmetry

    OpenAIRE

    Alamino, Roberto C.

    2015-01-01

    This work introduces a complexity measure which addresses some conflicting issues between existing ones by using a new principle - measuring the average amount of symmetry broken by an object. It attributes low (although different) complexity to either deterministic or random homogeneous densities and higher complexity to the intermediate cases. This new measure is easily computable, breaks the coarse graining paradigm and can be straightforwardly generalised, including to continuous cases an...

  17. Beyond the standard gauging: gauge symmetries of Dirac sigma models

    Science.gov (United States)

    Chatzistavrakidis, Athanasios; Deser, Andreas; Jonke, Larisa; Strobl, Thomas

    2016-08-01

    In this paper we study the general conditions that have to be met for a gauged extension of a two-dimensional bosonic σ-model to exist. In an inversion of the usual approach of identifying a global symmetry and then promoting it to a local one, we focus directly on the gauge symmetries of the theory. This allows for action functionals which are gauge invariant for rather general background fields in the sense that their invariance conditions are milder than the usual case. In particular, the vector fields that control the gauging need not be Killing. The relaxation of isometry for the background fields is controlled by two connections on a Lie algebroid L in which the gauge fields take values, in a generalization of the common Lie-algebraic picture. Here we show that these connections can always be determined when L is a Dirac structure in the H-twisted Courant algebroid. This also leads us to a derivation of the general form for the gauge symmetries of a wide class of two-dimensional topological field theories called Dirac σ-models, which interpolate between the G/G Wess-Zumino-Witten model and the (Wess-Zumino-term twisted) Poisson sigma model.

  18. Hidden symmetries of the Higgs oscillator and the conformal algebra

    Science.gov (United States)

    Evnin, Oleg; Nivesvivat, Rongvoram

    2017-01-01

    We give a solution to the long-standing problem of constructing the generators of hidden symmetries of the quantum Higgs oscillator, a particle on a d-sphere moving in a central potential varying as the inverse cosine-squared of the polar angle. This superintegrable system is known to possess a rich algebraic structure, including a hidden SU(d) symmetry that can be deduced from classical conserved quantities and degeneracies of the quantum spectrum. The quantum generators of this SU(d) have not been constructed thus far, except at d  =  2, and naive quantization of classical conserved quantities leads to deformed Lie algebras with quadratic terms in the commutation relations. The nonlocal generators we obtain here satisfy the standard su(d) Lie algebra, and their construction relies on a recently discovered realization of the conformal algebra, which contains a complete set of raising and lowering operators for the Higgs oscillator. This operator structure has emerged from a relation between the Higgs oscillator Schrödinger equation and the Klein-Gordon equation in Anti-de Sitter spacetime. From such a point-of-view, constructing the hidden symmetry generators reduces to manipulations within the abstract conformal algebra so(d, 2).

  19. Beyond the standard gauging: gauge symmetries of Dirac Sigma Models

    CERN Document Server

    Chatzistavrakidis, Athanasios; Jonke, Larisa; Strobl, Thomas

    2016-01-01

    In this paper we study the general conditions that have to be met for a gauged extension of a two-dimensional bosonic sigma-model to exist. In an inversion of the usual approach of identifying a global symmetry and then promoting it to a local one, we focus directly on the gauge symmetries of the theory. This allows for action functionals which are gauge invariant for rather general background fields in the sense that their invariance conditions are milder than the usual case. In particular, the vector fields that control the gauging need not be Killing. The relaxation of isometry for the background fields is controlled by two connections on a Lie algebroid L in which the gauge fields take values, in a generalization of the common Lie-algebraic picture. Here we show that these connections can always be determined when L is a Dirac structure in the H-twisted Courant algebroid. This also leads us to a derivation of the general form for the gauge symmetries of a wide class of two-dimensional topological field th...

  20. Effective photon mass by Super and Lorentz symmetry breaking

    Science.gov (United States)

    Bonetti, Luca; dos Santos Filho, Luís R.; Helayël-Neto, José A.; Spallicci, Alessandro D. A. M.

    2017-01-01

    In the context of Standard Model Extensions (SMEs), we analyse four general classes of Super Symmetry (SuSy) and Lorentz Symmetry (LoSy) breaking, leading to observable imprints at our energy scales. The photon dispersion relations show a non-Maxwellian behaviour for the CPT (Charge-Parity-Time reversal symmetry) odd and even sectors. The group velocities exhibit also a directional dependence with respect to the breaking background vector (odd CPT) or tensor (even CPT). In the former sector, the group velocity may decay following an inverse squared frequency behaviour. Thus, we extract a massive Carroll-Field-Jackiw photon term in the Lagrangian and show that the effective mass is proportional to the breaking vector and moderately dependent on the direction of observation. The breaking vector absolute value is estimated by ground measurements and leads to a photon mass upper limit of 10-19 eV or 2 ×10-55 kg, and thereby to a potentially measurable delay at low radio frequencies.

  1. Effective photon mass by Super and Lorentz symmetry breaking

    Directory of Open Access Journals (Sweden)

    Luca Bonetti

    2017-01-01

    Full Text Available In the context of Standard Model Extensions (SMEs, we analyse four general classes of Super Symmetry (SuSy and Lorentz Symmetry (LoSy breaking, leading to observable imprints at our energy scales. The photon dispersion relations show a non-Maxwellian behaviour for the CPT (Charge-Parity-Time reversal symmetry odd and even sectors. The group velocities exhibit also a directional dependence with respect to the breaking background vector (odd CPT or tensor (even CPT. In the former sector, the group velocity may decay following an inverse squared frequency behaviour. Thus, we extract a massive Carroll–Field–Jackiw photon term in the Lagrangian and show that the effective mass is proportional to the breaking vector and moderately dependent on the direction of observation. The breaking vector absolute value is estimated by ground measurements and leads to a photon mass upper limit of 10−19 eV or 2×10−55 kg, and thereby to a potentially measurable delay at low radio frequencies.

  2. Dark matter and global symmetries

    Science.gov (United States)

    Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.

    2016-09-01

    General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i) global symmetries are broken at the Planck scale, that (ii) the non-renormalizable operators mediating dark matter decay have O (1) couplings, that (iii) the dark matter is a singlet field, and that (iv) the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime.

  3. Locative Inversion in English

    NARCIS (Netherlands)

    Broekhuis, H.

    2005-01-01

    This article aims at reformulating in more current terms Hoekstra and Mulder’s (1990) analysis of the Locative Inversion (LI) construction. The new proposal is crucially based on the assumption that Small Clause (SC) predicates agree with their external argument in phi-features, which may be morphol

  4. Bayesian seismic AVO inversion

    Energy Technology Data Exchange (ETDEWEB)

    Buland, Arild

    2002-07-01

    A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P-wave velocity, S-wave velocity and density. Distributions for other elastic parameters can also be assessed, for example acoustic impedance, shear impedance and P-wave to S-wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance, hence exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3-D dataset from the Sleipner Field. The results show good agreement with well logs but the uncertainty is high. The stochastic model includes uncertainties of both the elastic parameters, the wavelet and the seismic and well log data. The posterior distribution is explored by Markov chain Monte Carlo simulation using the Gibbs sampler algorithm. The inversion algorithm has been tested on a seismic line from the Heidrun Field with two wells located on the line. The uncertainty of the estimated wavelet is low. In the Heidrun examples the effect of including uncertainty of the wavelet and the noise level was marginal with respect to the AVO inversion results. We have developed a 3-D linearized AVO inversion method with spatially coupled model parameters where the objective is to obtain posterior distributions for P-wave velocity, S

  5. Calculation of the inverse data space via sparse inversion

    KAUST Repository

    Saragiotis, Christos

    2011-01-01

    The inverse data space provides a natural separation of primaries and surface-related multiples, as the surface multiples map onto the area around the origin while the primaries map elsewhere. However, the calculation of the inverse data is far from trivial as theory requires infinite time and offset recording. Furthermore regularization issues arise during inversion. We perform the inversion by minimizing the least-squares norm of the misfit function by constraining the $ell_1$ norm of the solution, being the inverse data space. In this way a sparse inversion approach is obtained. We show results on field data with an application to surface multiple removal.

  6. Assessing symmetry of financial returns series

    CERN Document Server

    Coronel-Brizio, H F; Rodriguez-Achach, M

    2007-01-01

    Testing symmetry of a probability distribution is a common question arising from applications in several fields. Particularly, in the study of observables used in the analysis of stock market index variations, the question of symmetry has not been fully investigated by means of statistical procedures. In this work a distribution-free test statistic Tn for testing symmetry, derived by Einmahl and McKeague, based on the empirical likelihood approach, is used to address the study of symmetry of financial returns. The asymptotic points of the test statistic Tn are also calculated and a procedure for assessing symmetry for the analysis of the returns of stock market indices is presented.

  7. Automatic CP invariance and flavor symmetry

    CERN Document Server

    Dutta, G; Dutta, Gautam; Joshipura, Anjan S

    1996-01-01

    The approximate conservation of CP can be naturally understood if it arises as an automatic symmetry of the renormalizable Lagrangian. We present a specific realistic example with this feature. In this example, the global Peccei-Quinn symmetry and gauge symmetries of the model make the renormalizable Lagrangian CP invariant but allow non zero hierarchical masses and mixing among the three generations. The left-right and a horizontal U(1)_H symmetry is imposed to achieve this. The non-renormalizable interactions invariant under these symmetries violate CP whose magnitude can be in the experimentally required range if U(1)_H is broken at very high, typically, near the grand unification scale.

  8. Neutrino masses and spontaneously broken flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Staudt, Christian

    2014-06-16

    We study the phenomenology of supersymmetric flavor models. We show how the predictions of models based on spontaneously broken non-Abelian discrete flavor symmetries are altered when we include so-called Kaehler corrections. Furthermore, we discuss anomaly-free discrete R symmetries which are compatible with SU(5) unification. We find a set of symmetries compatible with suppressed Dirac neutrino masses and a unique symmetry consistent with the Weinberg operator. We also study a pseudo-anomalous U(1){sub R} symmetry which explains the fermion mass hierarchies and, when amended with additional singlet fields, ameliorates the fine-tuning problem.

  9. Inverse magnetic catalysis in dense holographic matter

    CERN Document Server

    Preis, Florian; Schmitt, Andreas

    2010-01-01

    We study the chiral phase transition in a magnetic field at finite temperature and chemical potential within the Sakai-Sugimoto model, a holographic top-down approach to (large-N_c) QCD. We consider the limit of a small separation of the flavor D8-branes, which corresponds to a dual field theory comparable to a Nambu-Jona Lasinio (NJL) model. Mapping out the surface of the chiral phase transition in the parameter space of magnetic field strength, quark chemical potential, and temperature, we find that for small temperatures the addition of a magnetic field decreases the critical chemical potential for chiral symmetry restoration - in contrast to the case of vanishing chemical potential where, in accordance with the familiar phenomenon of magnetic catalysis, the magnetic field favors the chirally broken phase. This "inverse magnetic catalysis" (IMC) appears to be associated with a previously found magnetic phase transition within the chirally symmetric phase that shows an intriguing similarity to a transition ...

  10. Pseudo waveform inversion

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Soo; Park, Keun Pil [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of); Suh, Jung Hee; Hyun, Byung Koo; Shin, Sung Ryul [Seoul National University, Seoul (Korea, Republic of)

    1995-12-01

    The seismic reflection exploration technique which is one of the geophysical methods for oil exploration became effectively to image the subsurface structure with rapid development of computer. However, the imagining of subsurface based on the conventional data processing is almost impossible to obtain the information on physical properties of the subsurface such as velocity and density. Since seismic data are implicitly function of velocities of subsurface, it is necessary to develop the inversion method that can delineate the velocity structure using seismic topography and waveform inversion. As a tool to perform seismic inversion, seismic forward modeling program using ray tracing should be developed. In this study, we have developed the algorithm that calculate the travel time of the complex geologic structure using shooting ray tracing by subdividing the geologic model into blocky structure having the constant velocity. With the travel time calculation, the partial derivatives of travel time can be calculated efficiently without difficulties. Since the current ray tracing technique has a limitation to calculate the travel times for extremely complex geologic model, our aim in the future is to develop the powerful ray tracer using the finite element technique. After applying the pseudo waveform inversion to the seismic data of Korea offshore, we can obtain the subsurface velocity model and use the result in bring up the quality of the seismic data processing. If conventional seismic data processing and seismic interpretation are linked with this inversion technique, the high quality of seismic data processing can be expected to image the structure of the subsurface. Future research area is to develop the powerful ray tracer of ray tracing which can calculate the travel times for the extremely complex geologic model. (author). 39 refs., 32 figs., 2 tabs.

  11. Full Waveform Inversion for Reservoir Characterization - A Synthetic Study

    KAUST Repository

    Zabihi Naeini, E.

    2017-05-26

    Most current reservoir-characterization workflows are based on classic amplitude-variation-with-offset (AVO) inversion techniques. Although these methods have generally served us well over the years, here we examine full-waveform inversion (FWI) as an alternative tool for higher-resolution reservoir characterization. An important step in developing reservoir-oriented FWI is the implementation of facies-based rock physics constraints adapted from the classic methods. We show that such constraints can be incorporated into FWI by adding appropriately designed regularization terms to the objective function. The advantages of the proposed algorithm are demonstrated on both isotropic and VTI (transversely isotropic with a vertical symmetry axis) models with pronounced lateral and vertical heterogeneity. The inversion results are explained using the theoretical radiation patterns produced by perturbations in the medium parameters.

  12. Symmetries, Integrals and Solutions of Ordinary Differential Equations of Maximal Symmetry

    Indian Academy of Sciences (India)

    P G L Leach; R R Warne; N Caister; V Naicker; N Euler

    2010-02-01

    Second-and third-order scalar ordinary differential equations of maximal symmetry in the traditional sense of point, respectively contact, symmetry are examined for the mappings they produce in solutions and fundamental first integrals. The properties of the `exceptional symmetries’, i.e. those not considered to be generic to scalar equations of maximal symmetry, can be recast into a form which is applicable to all such equations of maximal symmetry. Some properties of these symmetries are demonstrated.

  13. Mei Symmetry and Noether Symmetry of the Relativistic Variable Mass System

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-Hui

    2004-01-01

    The definition and criterion of the Mei symmetry of a relativistic variable mass system are given. The relation between the Mei symmetry and the Noether symmetry of the system is found under infinitesimal transformations of groups. The conserved quantities to which the Mei symmetry and Noether symmetry of the system lead are obtained.An example is given to illustrate the application of the result.

  14. The Symmetry of Optical Field in Photonic Crystal Fibre with Trigonal Symmetry

    Directory of Open Access Journals (Sweden)

    Ivan Turek

    2006-01-01

    Full Text Available Some photographs of intensity of optical field of a photonic crystal fibre are presented in the contribution. Presented photographs document that the symmetry of photonic crystal creating the cladding of fibre is manifested in the symmetry of distribution of the optical field intensity. In case when more modes are excited in the fibre the symmetry of the generated field can be different as the symmetry of the eventual modes. How the symmetry may be changed is illustrated by amodel example.

  15. Velocity-dependent symmetries and conserved quantities of the constrained dynamical systems

    Institute of Scientific and Technical Information of China (English)

    Fu Jing-Li; Chen Li-Qun; Yang Xiao-Dong

    2004-01-01

    In this paper, we have exterided the theorem of the velocity-dependent symmetries to nonholonomic dynamical systems. Based on the infinitesimal transformations with respect to the coordinates, we establish the determining equations and restrictive equation of the velocity-dependent system before the structure equation is obtained. The direct and the inverse issues of the velocity-dependent symmetries for the nonholonomic dynamical system is studied and the non-Noether type conserved quantity is found as the result. Finally, we give an example to illustrate the conclusion.

  16. Neutrino Oscillation, Finite Self-Mass and General Yang-Mills Symmetry

    CERN Document Server

    Hsu, Jong-Ping

    2016-01-01

    The conservation of lepton number is assumed to be associated with a general Yang-Mills symmetry. New transformations involve (Lorentz) vector gauge functions and characteristic phase functions, and they form a group. General Yang-Mills fields are associated with new fourth-order equations and linear potentials. Lepton self-masses turn out to be finite and proportional to the inverse of lepton masses, which implies that neutrinos should have non-zero masses. Thus, general Yang-Mills symmetry could provide an understanding of neutrino oscillations and suggests that neutrinos with masses and very weak leptonic force may play a role in dark matter.

  17. Generalization of Friedberg-Lee symmetry

    Science.gov (United States)

    Huang, Chao-Shang; Li, Tianjun; Liao, Wei; Zhu, Shou-Hua

    2008-07-01

    We study the possible origin of Friedberg-Lee symmetry. First, we propose the generalized Friedberg-Lee symmetry in the potential by including the scalar fields in the field transformations, which can be broken down to the Friedberg-Lee symmetry spontaneously. We show that the generalized Friedberg-Lee symmetry allows a typical form of Yukawa couplings, and the realistic neutrino masses and mixings can be generated via the seesaw mechanism. If the right-handed neutrinos transform nontrivially under the generalized Friedberg-Lee symmetry, we can have the testable TeV scale seesaw mechanism. Second, we present two models with the SO(3)×U(1) global flavor symmetry in the lepton sector. After the flavor symmetry breaking, we can obtain the charged lepton masses, and explain the neutrino masses and mixings via the seesaw mechanism. Interestingly, the complete neutrino mass matrices are similar to those of the above models with generalized Friedberg-Lee symmetry. So the Friedberg-Lee symmetry is the residual symmetry in the neutrino mass matrix after the SO(3)×U(1) flavor symmetry breaking.

  18. Brain Activity in Response to Visual Symmetry

    Directory of Open Access Journals (Sweden)

    Marco Bertamini

    2014-12-01

    Full Text Available A number of studies have explored visual symmetry processing by measuring event related potentials and neural oscillatory activity. There is a sustained posterior negativity (SPN related to the presence of symmetry. There is also functional magnetic resonance imaging (MRI activity in extrastriate visual areas and in the lateral occipital complex. We summarise the evidence by answering six questions. (1 Is there an automatic and sustained response to symmetry in visual areas? Answer: Yes, and this suggests automatic processing of symmetry. (2 Which brain areas are involved in symmetry perception? Answer: There is an extended network from extrastriate areas to higher areas. (3 Is reflection special? Answer: Reflection is the optimal stimulus for a more general regularity-sensitive network. (4 Is the response to symmetry independent of view angle? Answer: When people classify patterns as symmetrical or random, the response to symmetry is view-invariant. When people attend to other dimensions, the network responds to residual regularity in the image. (5 How are brain rhythms in the two hemispheres altered during symmetry perception? Answer: Symmetry processing (rather than presence produces more alpha desynchronization in the right posterior regions. Finally, (6 does symmetry processing produce positive affect? Answer: Not in the strongest sense, but behavioural measures reveal implicit positive evaluation of abstract symmetry.

  19. Axial symmetry and conformal Killing vectors

    CERN Document Server

    Mars, M; Mars, Marc; Senovilla, Jose M.M.

    1993-01-01

    Axisymmetric spacetimes with a conformal symmetry are studied and it is shown that, if there is no further conformal symmetry, the axial Killing vector and the conformal Killing vector must commute. As a direct consequence, in conformally stationary and axisymmetric spacetimes, no restriction is made by assuming that the axial symmetry and the conformal timelike symmetry commute. Furthermore, we prove that in axisymmetric spacetimes with another symmetry (such as stationary and axisymmetric or cylindrically symmetric spacetimes) and a conformal symmetry, the commutator of the axial Killing vector with the two others mush vanish or else the symmetry is larger than that originally considered. The results are completely general and do not depend on Einstein's equations or any particular matter content.

  20. Symmetries of Ginsparg-Wilson Chiral Fermions

    CERN Document Server

    Mandula, Jeffrey E

    2009-01-01

    The group structure of the variant chiral symmetry discovered by Luscher in the Ginsparg-Wilson description of lattice chiral fermions is analyzed. It is shown that the group contains an infinite number of linearly independent symmetry generators, and the Lie algebra is given explicitly. CP is an automorphism of this extended chiral group, and the CP transformation properties of the symmetry generators are found. The group has an infinite-parameter subgroup, and the factor group whose elements are its cosets is isomorphic to the continuum chiral symmetry group. Features of the currents associated with these symmetries are discussed, including the fact that some different, non-commuting symmetry generators lead to the same Noether current. These are universal features of lattice chiral fermions based on the Ginsparg-Wilson relation; they occur in the overlap, domain-wall, and perfect-action formulations. In a solvable example - free overlap fermions - these non-canonical elements of lattice chiral symmetry are...

  1. Symmetries of Massive and Massless Neutrinos

    CERN Document Server

    Kim, Y S

    2016-01-01

    Wigner's little groups are subgroups of the Lorentz group dictating the internal space-time symmetries of massive and massless particles. These little groups are like O(3) and E(2) for massive and massless particles respectively. While the geometry of the O(3) symmetry is familiar to us, the geometry of the flat plane cannot explain the E(2)-like symmetry for massless particles. However, the geometry of a circular cylinder can explain the symmetry with the helicity and gauge degrees of freedom. It is shown further that the symmetry of the massless particle can be obtained as a zero-mass limit of O(3)-like symmetry for massive particles. It is shown further that the polarization of massless neutrinos is a consequence of gauge invariance, while the symmetry of massive neutrinos is still like O(3).

  2. Faddeev-Jackiw approach to hidden symmetries

    CERN Document Server

    Wotzasek, C

    1994-01-01

    The study of hidden symmetries within Dirac's formalism does not possess a systematic procedure due to the lack of first-class constraints to act as symmetry generators. On the other hand, in the Faddeev-Jackiw approach, gauge and reparametrization symmetries are generated by the null eigenvectors of the sympletic matrix and not by constraints, suggesting the possibility of dealing systematically with hidden symmetries through this formalism. It is shown in this paper that indeed hidden symmetries of noninvariant or gauge fixed systems are equally well described by null eigenvectors of the sympletic matrix, just as the explicit invariances. The Faddeev-Jackiw approach therefore provide a systematic algorithm for treating all sorts of symmetries in an unified way. This technique is illustrated here by the SL(2,R) Kac-Moody current algebra of the 2-D induced gravity proposed by Polyakov, which is a hidden symmetry in the canonical approach of constrained systems via Dirac's method, after conformal and reparamet...

  3. Symmetry constraints on many-body localization

    Science.gov (United States)

    Potter, Andrew C.; Vasseur, Romain

    2016-12-01

    We derive general constraints on the existence of many-body localized (MBL) phases in the presence of global symmetries, and show that MBL is not possible with symmetry groups that protect multiplets (e.g., all non-Abelian symmetry groups). Based on simple representation theoretic considerations, we derive general Mermin-Wagner-type principles governing the possible alternative fates of nonequilibrium dynamics in isolated, strongly disordered quantum systems. Our results rule out the existence of MBL symmetry-protected topological phases with non-Abelian symmetry groups, as well as time-reversal symmetry-protected electronic topological insulators, and in fact all fermion topological insulators and superconductors in the 10-fold way classification. Moreover, extending our arguments to systems with intrinsic topological order, we rule out MBL phases with non-Abelian anyons as well as certain classes of symmetry-enriched topological orders.

  4. Crystallographic and magnetostriction properties of Fe and FeB-alloy thin films formed on MgO(100 single-crystal substrates

    Directory of Open Access Journals (Sweden)

    Ohtake M.

    2013-01-01

    Full Text Available Fe(100bcc single-crystal film, Fe-B amorphous film, and Fe-B film consisting of a mixture of epitaxial bcc(100 crystal and amorphous are prepared on MgO(100 single-crystal substrates. The influence of crystallographic property on the magnetostriction behavior under rotating magnetic fields is investigated. The output waveform of magnetostriction is sinusoidal for the amorphous film, whereas that of single-crystal film shows a triangle shape. 90° magnetic domain walls are observed for the single-crystal Fe film and the film shows a four-fold symmetry in in-plane magnetic anisotropy. The observation of triangle waveforms is related to the domain wall motion in magnetically unsaturated Fe(100bcc film under rotating magnetic fields. A distortion from triangle wave is observed for the Fe-B film consisting of a mixture of bcc-crystal and amorphous. The magnetostriction behavior is influenced by the magnetization structure.

  5. An introduction to the tools hosted in the Bilbao Crystallographic Server

    Directory of Open Access Journals (Sweden)

    Aroyo M.I.

    2012-03-01

    Full Text Available The programs hosted in the Bilbao Crystallographic Server (http://www.cryst.ehu.es are briefly explained along with worked examples on various cases related to different fields of applications. It is our aim to have this text acting as a primer on the various usage of the crystallographic tools in conjunction with each other due to the modular structure of the server. For this reason, diverse topics such as crystallographic groups and their subgroups, pseudosymmetry, extinction conditions, k-vectors and irreducible representations have been discussed in the context.

  6. On the Physical Reasons for the Extension of Symmetry Groups in Molecular Spectroscopy

    Directory of Open Access Journals (Sweden)

    Carlo di Lauro

    2010-02-01

    Full Text Available Several situations of general interest, in which the symmetry groups usually applied to spectroscopy problems need to be extended, are reviewed. It is emphasized that any symmetry group of geometrical operations to be used in Molecular Spectroscopy should be extended for completeness by considering the time reversal operator, as far as the Hamiltonian is invariant with respect to the inversion of the direction of motion. This can explain the degeneracy of pairs of vibrational and rotational states spanning the so-called separably degenerate irreducible representations, in symmetric tops of low symmetry, and Kramers degeneracy in odd electron molecules in the absence of magnetic fields. An extension with account of time reversal is also useful to determine relative phase conventions on vibration-rotation wavefunctions, which render all vibration-rotation matrix elements real. An extension of a molecular symmetry group may be required for molecules which can attain different geometries by large amplitude periodical motions, if such motions are hindered and are not completely free. Special cases involving the internal rotation are discussed in detail. It is observed that the symmetry classification of vibrational modes involving displacements normal to the internal rotation axis is not univocal, but can be done in several ways, which actually correspond to different conventions on the separation of vibration and internal rotation in the adopted basis functions. The symmetry species of the separate vibrational and torsional factors of these functions depend on the adopted convention.

  7. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    Directory of Open Access Journals (Sweden)

    Emilie Ringe

    2014-11-01

    Full Text Available Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR, the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask `how are nanoshapes created?', `how does the shape relate to the atomic packing and crystallography of the material?', `how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  8. Pulsed neutron spectroscopic imaging for crystallographic texture and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Hirotaka, E-mail: hakuryu@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Kamiyama, Takashi [Graduate School of Engineering, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Iwase, Kenji; Ishigaki, Toru [Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Ibaraki 319-1106 (Japan); Kiyanagi, Yoshiaki [Graduate School of Engineering, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan)

    2011-09-21

    A time-of-flight (TOF) spectroscopic neutron imaging at a pulsed neutron source is expected to be a new material analysis tool because this method can non-destructively investigate the spatial dependence of the crystallographic and metallographic information in a bulk material. For quantitative evaluation of such information, a spectral analysis code for the transmission data is necessary. Therefore, we have developed a Rietveld-like analysis code, RITS. Furthermore, we have applied the RITS code to evaluation of the position dependence of the crystal orientation anisotropy, the preferred orientation and the crystallite size of a welded {alpha}-iron plate, and we successfully obtained the information on the texture and the microstructure. However, the reliability of the values given by the RITS code has not been evaluated yet in detail. For this reason, we compared the parameters provided by the RITS code with the parameters obtained by the neutron TOF powder diffractometry and its Rietveld analysis. Both the RITS code and the Rietveld analysis software indicated values close to each other, but there were systematic differences on the preferred orientation and the crystallite size.

  9. Crystallographic structure of ubiquitin in complex with cadmium ions

    Directory of Open Access Journals (Sweden)

    Cheung Peter

    2009-12-01

    Full Text Available Abstract Background Ubiquitination plays a critical role in regulating many cellular processes, from DNA repair and gene transcription to cell cycle and apoptosis. It is catalyzed by a specific enzymatic cascade ultimately leading to the conjugation of ubiquitin to lysine residues of the target protein that can be the ubiquitin molecule itself and to the formation of poly-ubiquitin chains. Findings We present the crystal structure at 3.0 Å resolution of bovine ubiquitin crystallized in presence of cadmium ions. Two molecules of ubiquitin are present in the asymmetric unit. Interestingly this non-covalent dimeric arrangement brings Lys-6 and Lys-63 of each crystallographically-independent monomer in close contact with the C-terminal ends of the other monomer. Residues Leu-8, Ile-44 and Val-70 that form a hydrophobic patch at the surface of the Ub monomer are trapped at the dimer interface. Conclusions The structural basis for signalling by poly-Ub chains relies on a visualization of conformations of alternatively linked poly-Ub chains. This arrangement of ubiquitin could illustrate how linkages involving Lys-6 or Lys-63 of ubiquitin are produced in the cell. It also details how ubiquitin molecules can specifically chelate cadmium ions.

  10. Crystallographic analysis of amorphization caused by ion irradiation

    CERN Document Server

    Nakagawa, S T; Ono, T; Hada, Y; Betz, G

    2003-01-01

    Ion irradiation often causes amorphization in a crystal. We have presented a new crystallographic analysis that defines a new type of order parameter, which we call pixel mapping (PM). PM can describe algebraically to what extent and how the crystallinity has changed under ion bombardment. In other words, PM describes the long-range-order (LRO) interactions, based on the crystallography. PM can be effectively used, when it is incorporated in a classical molecular dynamics (MD) calculation. In the case of B ions implanted into a Si crystal, we observed crystal to amorphous (CA) transitions under energetic ion bombardment at low temperature. The PM profiling was more effective to reveal the CA transition than other atomistic methods of analyses as radial distribution function g(r) or vacancy mapping N sub v. PM could distinguish between perfect crystalline states, transition states, and random states. Moreover, PM revealed that the lattice reaction was cooperative even in a mesoscopic volume, e.g. in a cube of ...

  11. Crystallographic Orientation of Cuttlebone Shield Determined by Electron Backscatter Diffraction

    Science.gov (United States)

    Cusack, Maggie; Chung, Peter

    2014-01-01

    In common with many cephalopod mollusks, cuttlefish produce an internal biomineral buoyancy device. This cuttlebone is analogous to a surf board in shape and structure, providing rigidity and a means of controlling buoyancy. The cuttlebone is composed of calcium carbonate in the form of aragonite and comprises an upper dorsal shield and a lower lamellar matrix. The lamellar matrix comprises layers of chambers with highly corrugated walls. The dorsal shield comprises bundles of aragonite needles stacked on top of each other. Electron backscatter diffraction analyses of the dorsal shield reveal that the c-axis of aragonite is parallel with the long axis of the needles in the bundles such that any spread in crystallographic orientation is consistent with the spread in orientation of the fibers as they radiate to form the overall structure of the dorsal shield. This arrangement of c-axis coincident with the long axis of the biomineral structure is similar to the arrangement in corals and in contrast to the situation in the molluskan aragonite nacre of brachiopod calcite where the c-axis is perpendicular to the aragonite tablet or calcite fiber, respectively.

  12. Nanocrystalline materials: recent advances in crystallographic characterization techniques.

    Science.gov (United States)

    Ringe, Emilie

    2014-11-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask 'how are nanoshapes created?', 'how does the shape relate to the atomic packing and crystallography of the material?', 'how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  13. Crystallization and preliminary crystallographic analysis of recombinant human galectin-1

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Stacy A. [Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland 4222 (Australia); Scott, Ken [School of Biological Sciences, University of Auckland, Auckland (New Zealand); Blanchard, Helen, E-mail: h.blanchard@griffith.edu.au [Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland 4222 (Australia)

    2007-11-01

    Human galectin-1 has been cloned, expressed in E. coli, purified and crystallized in the presence of both lactose (ligand) and β-mercaptoethanol under six different conditions. The X-ray diffraction data obtained have enabled the assignment of unit-cell parameters for two novel crystal forms of human galectin-1. Galectin-1 is considered to be a regulator protein as it is ubiquitously expressed throughout the adult body and is responsible for a broad range of cellular regulatory functions. Interest in galectin-1 from a drug-design perspective is founded on evidence of its overexpression by many cancers and its immunomodulatory properties. The development of galectin-1-specific inhibitors is a rational approach to the fight against cancer because although galectin-1 induces a plethora of effects, null mice appear normal. X-ray crystallographic structure determination will aid the structure-based design of galectin-1 inhibitors. Here, the crystallization and preliminary diffraction analysis of human galectin-1 crystals generated under six different conditions is reported. X-ray diffraction data enabled the assignment of unit-cell parameters for crystals grown under two conditions, one belongs to a tetragonal crystal system and the other was determined as monoclinic P2{sub 1}, representing two new crystal forms of human galectin-1.

  14. Phormidium phycoerythrin forms hexamers in crystals: a crystallographic study.

    Science.gov (United States)

    Sonani, Ravi Raghav; Sharma, Mahima; Gupta, Gagan Deep; Kumar, Vinay; Madamwar, Datta

    2015-08-01

    The crystallographic analysis of a marine cyanobacterium (Phormidium sp. A09DM) phycoerythrin (PE) that shows distinct sequence features compared with known PE structures from cyanobacteria and red algae is reported. Phormidium PE was crystallized using the sitting-drop vapour-diffusion method with ammonium sulfate as a precipitant. Diffraction data were collected on the protein crystallography beamline at the Indus-2 synchrotron. The crystals diffracted to about 2.1 Å resolution at 100 K. The crystals, with an apparent hexagonal morphology, belonged to space group P1, with unit-cell parameters a = 108.3, b = 108.4 Å, c = 116.6 Å, α = 78.94, β = 82.50, γ = 60.34°. The molecular-replacement solution confirmed the presence of 12 αβ monomers in the P1 cell. The Phormidium PE elutes as an (αβ)3 trimer of αβ monomers from a molecular-sieve column and exists as [(αβ)3]2 hexamers in the crystal lattice. Unlike red algal PE proteins, the hexamers of Phormidium PE do not form higher-order structures in the crystals. The existence of only one characteristic visual absorption band at 564 nm suggests the presence of phycoerythrobilin chromophores, and the absence of any other types of bilins, in the Phormidium PE assembly.

  15. Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data.

    Science.gov (United States)

    Breen, Andrew J; Babinsky, Katharina; Day, Alec C; Eder, K; Oakman, Connor J; Trimby, Patrick W; Primig, Sophie; Cairney, Julie M; Ringer, Simon P

    2017-03-14

    Correlative microscopy approaches offer synergistic solutions to many research problems. One such combination, that has been studied in limited detail, is the use of atom probe tomography (APT) and transmission Kikuchi diffraction (TKD) on the same tip specimen. By combining these two powerful microscopy techniques, the microstructure of important engineering alloys can be studied in greater detail. For the first time, the accuracy of crystallographic measurements made using APT will be independently verified using TKD. Experimental data from two atom probe tips, one a nanocrystalline Al-0.5Ag alloy specimen collected on a straight flight-path atom probe and the other a high purity Mo specimen collected on a reflectron-fitted instrument, will be compared. We find that the average minimum misorientation angle, calculated from calibrated atom probe reconstructions with two different pole combinations, deviate 0.7° and 1.4°, respectively, from the TKD results. The type of atom probe and experimental conditions appear to have some impact on this accuracy and the reconstruction and measurement procedures are likely to contribute further to degradation in angular resolution. The challenges and implications of this correlative approach will also be discussed.

  16. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    Science.gov (United States)

    Ringe, Emilie

    2014-01-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask ‘how are nanoshapes created?’, ‘how does the shape relate to the atomic packing and crystallography of the material?’, ‘how can we control and characterize the external shape and crystal structure of such small nanocrystals?’. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed. PMID:25485133

  17. Reduced Bayesian Inversion

    OpenAIRE

    Himpe, Christian; Ohlberger, Mario

    2014-01-01

    Bayesian inversion of models with large state and parameter spaces proves to be computationally complex. A combined state and parameter reduction can significantly decrease the computational time and cost required for the parameter estimation. The presented technique is based on the well-known balanced truncation approach. Classically, the balancing of the controllability and observability gramians allows a truncation of discardable states. Here the underlying model, being a linear or nonline...

  18. The Fukushima Inverse Problem

    OpenAIRE

    Martinez-Camara, Marta; Dokmanic, Ivan; Ranieri, Juri; Scheibler, Robin; Vetterli, Martin; STOHL Andreas

    2013-01-01

    Knowing what amount of radioactive material was released from Fukushima in March 2011 and at what time instants is crucial to assess the risk, the pollution, and to understand the scope of the consequences. Moreover, it could be used in forward simulations to obtain accurate maps of deposition. But these data are often not publicly available. We propose to estimate the emission waveforms by solving an inverse problem. Previous approaches have relied on a detailed expert guess of how the relea...

  19. Generalization of Friedberg-Lee Symmetry

    CERN Document Server

    Huang, Chao-Shang; Liao, Wei; Zhu, Shou-Hua

    2008-01-01

    We study the possible origin of Friedberg-Lee symmetry. First, we propose the generalized Friedberg-Lee symmetry in the potential by including the scalar fields in the field transformations, which can be broken down to the FL symmetry spontaneously. We show that the generalized Friedberg-Lee symmetry allows a typical form of Yukawa couplings, and the realistic neutrino masses and mixings can be generated via see-saw mechanism. If the right-handed neutrinos transform non-trivially under the generalized Friedberg-Lee symmetry, we can have the testable TeV scale see-saw mechanism. Second, we present two models with the $SO(3)\\times U(1)$ global flavour symmetry in the lepton sector. After the flavour symmetry breaking, we can obtain the charged lepton masses, and explain the neutrino masses and mixings via see-saw mechanism. Interestingly, the complete neutrino mass matrices are similar to those of the above models with generalized Friedberg-Lee symmetry. So the Friedberg-Lee symmetry is the residual symmetry in...

  20. Expression, limited proteolysis and preliminary crystallographic analysis of IpaD, a component of the Shigella flexneri type III secretion system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Steven [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Sir William Dunn School of Pathology, University of Oxford (United Kingdom); Roversi, Pietro [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Espina, Marianela [Department of Molecular Biosciences, University of Kansas (United States); Deane, Janet E. [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Birket, Susan; Picking, William D. [Department of Molecular Biosciences, University of Kansas (United States); Blocker, Ariel [Sir William Dunn School of Pathology, University of Oxford (United Kingdom); Picking, Wendy L. [Department of Molecular Biosciences, University of Kansas (United States); Lea, Susan M., E-mail: susan.lea@path.ox.ac.uk [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Sir William Dunn School of Pathology, University of Oxford (United Kingdom)

    2006-09-01

    IpaD, the putative needle-tip protein of the S. flexneri type III secretion system, has been crystallized in a variety of crystal forms using in-drop proteolysis. Native and selenomethionine-labelled data collection and preliminary analyses are reported. IpaD, the putative needle-tip protein of the Shigella flexneri type III secretion system, has been overexpressed and purified. Crystals were grown of the native protein in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 55.9, b = 100.7, c = 112.0 Å, and data were collected to 2.9 Å resolution. Analysis of the native Patterson map revealed a peak at 50% of the origin on the Harker section v = 0.5, suggesting twofold non-crystallographic symmetry parallel to the b crystallographic axis. As attempts to derivatize or grow selenomethionine-labelled protein crystals failed, in-drop proteolysis was used to produce new crystal forms. A trace amount of subtilisin Carlsberg was added to IpaD before sparse-matrix screening, resulting in the production of several new crystal forms. This approach produced SeMet-labelled crystals and diffraction data were collected to 3.2 Å resolution. The SeMet crystals belong to space group C2, with unit-cell parameters a = 139.4, b = 45.0, c = 99.5 Å, β = 107.9°. An anomalous difference Patterson map revealed peaks on the Harker section v = 0, while the self-rotation function indicates the presence of a twofold noncrystallographic symmetry axis, which is consistent with two molecules per asymmetric unit.

  1. Cation distribution and crystallographic characterization of the spinel oxides MgCr{sub x}Fe{sub 2−x}O{sub 4} by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, A.K.M., E-mail: zakaria6403@yahoo.com [Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Dhaka (Bangladesh); Nesa, Faizun [Department of Natural Science, Daffodil International University, Dhaka (Bangladesh); Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh); Saeed Khan, M.A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh); Datta, T.K.; Aktar, Sanjida; Liba, Samia Islam; Hossain, Shahzad; Das, A.K.; Kamal, I.; Yunus, S.M. [Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Dhaka (Bangladesh); Eriksson, S.-G. [Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg (Sweden)

    2015-06-05

    Highlights: • MgCr{sub x}Fe{sub 2−x}O{sub 4} ferrites crystallize at 1300 °C and possess cubic symmetry. • Cation distribution and crystallographic parameters have been determined precisely. • Cell parameter decreases with increasing Cr content in the system. • Ferrimagnetic ordering was found at room temperature for all the samples. - Abstract: The spinel system MgCr{sub x}Fe{sub 2−x}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) has been prepared by solid state sintering method in air at 1573 K. X-ray and neutron powder diffraction experiments have been performed on the samples at room temperature for structural characterization. Rietveld refinement of the neutron diffraction data reveals that all the samples of the series possess cubic symmetry corresponding to the space group F d-3m. The distribution of the three cations Mg, Fe and Cr over the two sublattices and other crystallographic parameters has been determined precisely. The results reveal that Cr has been substituted for Fe selectively. Cr ions invariably occupy the octahedral (B) site for all values of x. Mg and Fe ions are distributed over both A and B sites for all x values. With increasing x the occupation of Mg increases in the A site and decreases in the B site for all the samples, while the Fe ions gradually decreases in both the sites for all values of x. The lattice constant decreases with increasing Cr content in the system. The magnetic structure at room temperature was ferrimagnetic for all the samples.

  2. Relativistic RPA in axial symmetry

    CERN Document Server

    Arteaga, D Pena; 10.1103/PhysRevC.77.034317

    2009-01-01

    Covariant density functional theory, in the framework of self-consistent Relativistic Mean Field (RMF) and Relativistic Random Phase approximation (RPA), is for the first time applied to axially deformed nuclei. The fully self-consistent RMF+RRPA equations are posed for the case of axial symmetry and non-linear energy functionals, and solved with the help of a new parallel code. Formal properties of RPA theory are studied and special care is taken in order to validate the proper decoupling of spurious modes and their influence on the physical response. Sample applications to the magnetic and electric dipole transitions in $^{20}$Ne are presented and analyzed.

  3. Symmetry in the Basic Sciences

    Science.gov (United States)

    1989-04-01

    that a nonprimitive, or centered, cell is obtained. In the triclinic system no symmetry restrictions occur, so a primitive cell can always be chosen. In...point (1/2, 1/2, 0) is a lattice point, and the unit cell defined by (1, 0, 0), (0, 1, 0), and (0, 0, 1) is not primitive. A primitive cell may be...in a primitive cell . The C centered unit cell has two lattice points in a plane shared by one other cell, in addition to the eight points at the

  4. Geometric Baryogenesis from Shift Symmetry.

    Science.gov (United States)

    De Simone, Andrea; Kobayashi, Takeshi; Liberati, Stefano

    2017-03-31

    We present a new scenario for generating the baryon asymmetry of the Universe that is induced by a Nambu-Goldstone (NG) boson. The shift symmetry naturally controls the operators in the theory while allowing the NG boson to couple to the spacetime geometry as well as to the baryons. The cosmological background thus sources a coherent motion of the NG boson, which leads to baryogenesis. Good candidates of the baryon-generating NG boson are the QCD axion and axionlike fields. In these cases, the axion induces baryogenesis in the early Universe and can also serve as dark matter in the late Universe.

  5. Symmetry properties of subdivision graphs

    OpenAIRE

    Daneshkhah, Ashraf; Devillers, Alice; Praeger, Cheryl E.

    2010-01-01

    The subdivision graph $S(\\Sigma)$ of a graph $\\Sigma$ is obtained from $\\Sigma$ by `adding a vertex' in the middle of every edge of $\\Si$. Various symmetry properties of $\\S(\\Sigma)$ are studied. We prove that, for a connected graph $\\Sigma$, $S(\\Sigma)$ is locally $s$-arc transitive if and only if $\\Sigma$ is $\\lceil\\frac{s+1}{2}\\rceil$-arc transitive. The diameter of $S(\\Sigma)$ is $2d+\\delta$, where $\\Sigma$ has diameter $d$ and $0\\leqslant \\delta\\leqslant 2$, and local $s$-distance transi...

  6. Crossing symmetry in Alpha space

    CERN Document Server

    CERN. Geneva

    2017-01-01

    The conformal bootstrap program aims to catalog all conformal field theories (second-order phase transitions) in D dimensions. Despite its ambitious scope much progress has been made over the past decade, e.g. in computing critical exponents for the 3D O(N) models to high precision. At this stage, analytic methods to explore the CFT landscape are not as well developed. In this talk I will describe a new mathematical framework for the bootstrap known as "alpha space", which reduces crossing symmetry to a set of integral equations. Based on arXiv:1702.08471 (with Balt van Rees) and arXiv:1703.08159.

  7. Killing Symmetry on Finsler Manifold

    CERN Document Server

    Ootsuka, Takayoshi; Ishida, Muneyuki

    2016-01-01

    Killing vector fields $K$ are defined on Finsler manifold. The Killing symmetry is reformulated simply as $\\delta K^\\flat =0$ by using the Killing non-linear 1-form $K^\\flat$ and the spray operator $\\delta$ with the Finsler non-linear connection. $K^\\flat$ is related to the generalization of Killing tensors on Finsler manifold, and the condition $\\delta K^\\flat =0$ gives an analytical method of finding higher derivative conserved quantities, which may be called hidden conserved quantities. We show two examples: the Carter constant on Kerr spacetime and the Runge-Lentz vectors in Newtonian gravity.

  8. History of electroweak symmetry breaking

    CERN Document Server

    Kibble, T W B

    2015-01-01

    In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012.

  9. [Total inversion of the uterus].

    Science.gov (United States)

    Novachkov, V; Baltadzhieva, B; Ilieva, A; Rachev, E

    2008-01-01

    Non puerperal inversion of the uterus is very uncommon. Patients may present with pelvic pain, vaginal bleeding or hemodynamic shock. We report a fifty five old woman with uterus inversion second stage.

  10. Patterning hierarchy in direct and inverse opal crystals.

    Science.gov (United States)

    Mishchenko, Lidiya; Hatton, Benjamin; Kolle, Mathias; Aizenberg, Joanna

    2012-06-25

    Biological strategies for bottom-up synthesis of inorganic crystalline and amorphous materials within topographic templates have recently become an attractive approach for fabricating complex synthetic structures. Inspired by these strategies, herein the synthesis of multi-layered, hierarchical inverse colloidal crystal films formed directly on topographically patterned substrates via evaporative deposition, or "co-assembly", of polymeric spheres with a silicate sol-gel precursor solution and subsequent removal of the colloidal template, is described. The response of this growing composite colloid-silica system to artificially imposed 3D spatial constraints of various geometries is systematically studied, and compared with that of direct colloidal crystal assembly on the same template. Substrates designed with arrays of rectangular, triangular, and hexagonal prisms and cylinders are shown to control crystallographic domain nucleation and orientation of the direct and inverse opals. With this bottom-up topographical approach, it is demonstrated that the system can be manipulated to either form large patterned single crystals, or crystals with a fine-tuned extent of disorder, and to nucleate distinct colloidal domains of a defined size, location, and orientation in a wide range of length-scales. The resulting ordered, quasi-ordered, and disordered colloidal crystal films show distinct optical properties. Therefore, this method provides a means of controlling bottom-up synthesis of complex, hierarchical direct and inverse opal structures designed for altering optical properties and increased functionality. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Jets or vortices - what flows are generated by an inverse turbulent cascade?

    CERN Document Server

    Frishman, Anna; Falkovich, Gregory

    2016-01-01

    An inverse cascade - energy transfer to progressively larger scales - is a salient feature of two-dimensional turbulence. If the cascade reaches the system scale, it creates a coherent flow expected to have the largest available scale and conform with the symmetries of the domain. In a doubly periodic rectangle, the mean flow with zero total momentum was therefore believed to be unidirectional, with two jets along the short side; while for an aspect ratio close to unity, a vortex dipole was expected. Using direct numerical simulations, we show that in fact neither the box symmetry is respected nor the largest scale is realized: the flow is never purely unidirectional since the inverse cascade produces coherent vortices, whose number and relative motion are determined by the aspect ratio. This spontaneous symmetry breaking is closely related to the hierarchy of averaging times. Long-time averaging restores translational invariance due to vortex wandering along one direction, and gives jets whose profile, howev...

  12. Unbroken B–L symmetry

    Directory of Open Access Journals (Sweden)

    Julian Heeck

    2014-12-01

    Full Text Available The difference between baryon number B and lepton number L is the only anomaly-free global symmetry of the Standard Model, easily promoted to a local symmetry by introducing three right-handed neutrinos, which automatically make neutrinos massive. The non-observation of any (B–L-violating processes leads us to scrutinize the case of unbroken gauged B–L; besides Dirac neutrinos, the model contains only three parameters, the gauge coupling strength g′, the Stückelberg mass MZ′, and the kinetic mixing angle χ. The new force could manifest itself at any scale, and we collect and derive bounds on g′ over the entire testable range MZ′=0–1013 eV, also of interest for the more popular case of spontaneously broken B–L or other new light forces. We show in particular that successful Big Bang nucleosynthesis provides strong bounds for masses 10 eV

  13. Unbroken B-L Symmetry

    CERN Document Server

    Heeck, Julian

    2014-01-01

    The difference between baryon number B and lepton number L is the only anomaly-free global symmetry of the Standard Model, easily promoted to a local symmetry by introducing three right-handed neutrinos, which automatically make neutrinos massive. The non-observation of any (B-L)-violating processes leads us to scrutinize the case of unbroken gauged B-L; besides Dirac neutrinos, the model contains only three parameters, the gauge coupling strength g', the Stueckelberg mass $M_{Z'}$, and the kinetic mixing angle $\\chi$. The new force could manifest itself at any scale, and we collect and derive bounds on g' over the entire testable range $M_{Z'}$ = 0 - $10^{13}$ eV, also of interest for the more popular case of spontaneously broken B-L or other new light forces. We show in particular that successful Big Bang nucleosynthesis provides strong bounds for masses 10 eV < $M_{Z'}$ < 10 GeV due to resonant enhancement of the rate $\\overline{f} f \\leftrightarrow \\overline{\

  14. Introduction to Electroweak Symmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Dawson,S.

    2008-10-02

    The Standard Model (SM) is the backbone of elementary particle physics-not only does it provide a consistent framework for studying the interactions of quark and leptons, but it also gives predictions which have been extensively tested experimentally. In these notes, I review the electroweak sector of the Standard Model, discuss the calculation of electroweak radiative corrections to observables, and summarize the status of SM Higgs boson searches. Despite the impressive experimental successes, however, the electroweak theory is not completely satisfactory and the mechanism of electroweak symmetry breaking is untested. I will discuss the logic behind the oft-repeated statement: 'There must be new physics at the TeV scale'. These lectures reflect my strongly held belief that upcoming results from the LHC will fundamentally change our understanding of electroweak symmetry breaking. In these lectures, I review the status of the electroweak sector of the Standard Model, with an emphasis on the importance of radiative corrections and searches for the Standard Model Higgs boson. A discussion of the special role of the TeV energy scale in electroweak physics is included.

  15. Chiral symmetry breaking and monopoles

    CERN Document Server

    Di Giacomo, Adriano; Pucci, Fabrizio

    2015-01-01

    To understand the relation between the chiral symmetry breaking and monopoles, the chiral condensate which is the order parameter of the chiral symmetry breaking is calculated in the $\\overline{\\mbox{MS}}$ scheme at 2 [GeV]. First, we add one pair of monopoles, varying the monopole charges $m_{c}$ from zero to four, to SU(3) quenched configurations by a monopole creation operator. The low-lying eigenvalues of the Overlap Dirac operator are computed from the gauge links of the normal configurations and the configurations with additional monopoles. Next, we compare the distributions of the nearest-neighbor spacing of the low-lying eigenvalues with the prediction of the random matrix theory. The low-lying eigenvalues not depending on the scale parameter $\\Sigma$ are compared to the prediction of the random matrix theory. The results show the consistency with the random matrix theory. Thus, the additional monopoles do not affect the low-lying eigenvalues. Moreover, we discover that the additional monopoles increa...

  16. Extreme lattices: symmetries and decorrelation

    Science.gov (United States)

    Andreanov, A.; Scardicchio, A.; Torquato, S.

    2016-11-01

    We study statistical and structural properties of extreme lattices, which are the local minima in the density landscape of lattice sphere packings in d-dimensional Euclidean space {{{R}}d} . Specifically, we ascertain statistics of the densities and kissing numbers as well as the numbers of distinct symmetries of the packings for dimensions 8 through 13 using the stochastic Voronoi algorithm. The extreme lattices in a fixed dimension of space d (d≥slant 8 ) are dominated by typical lattices that have similar packing properties, such as packing densities and kissing numbers, while the best and the worst packers are in the long tails of the distribution of the extreme lattices. We also study the validity of the recently proposed decorrelation principle, which has important implications for sphere packings in general. The degree to which extreme-lattice packings decorrelate as well as how decorrelation is related to the packing density and symmetry of the lattices as the space dimension increases is also investigated. We find that the extreme lattices decorrelate with increasing dimension, while the least symmetric lattices decorrelate faster.

  17. Inducing and detecting collective population inversions of M\\"ossbauer nuclei

    CERN Document Server

    Heeg, K P; Evers, J

    2016-01-01

    Up to now, experiments involving M\\"ossbauer nuclei driven by x-rays have been restricted to the low-excitation regime. Here, a setup is proposed which promises significant excitation, ideally exceeding full inversion of the nuclear ensemble, at x-ray light sources under construction. We further introduce a method to experimentally verify such inversions, in which population inversions manifest themselves in symmetry flips of suitably recorded spectra. It neither requires per-shot spectra of the incoming x-ray pulses, nor absolute measurements of the scattered light intensity.

  18. Emergence of Long-Range Order in BaTiO3 from Local Symmetry-Breaking Distortions

    Science.gov (United States)

    Senn, M. S.; Keen, D. A.; Lucas, T. C. A.; Hriljac, J. A.; Goodwin, A. L.

    2016-05-01

    By using a symmetry motivated basis to evaluate local distortions against pair distribution function data, we show without prior bias, that the off-center Ti displacements in the archetypal ferroelectric BaTiO3 are zone centered and rhombohedral-like across its known ferroelectric and paraelectric phases. We construct a simple Monte Carlo model that captures our main experimental findings and demonstrate how the rich crystallographic phase diagram of BaTiO3 emerges from correlations of local symmetry-breaking distortions alone. Our results strongly support the order-disorder picture for these phase transitions, but can also be reconciled with the soft-mode theory of BaTiO3 that is supported by some spectroscopic techniques.

  19. Symmetry energy of dilute warm nuclear matter.

    Science.gov (United States)

    Natowitz, J B; Röpke, G; Typel, S; Blaschke, D; Bonasera, A; Hagel, K; Klähn, T; Kowalski, S; Qin, L; Shlomo, S; Wada, R; Wolter, H H

    2010-05-21

    The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of exotic nuclei, heavy-ion collisions, and astrophysical phenomena. New data from heavy-ion collisions can be used to extract the free symmetry energy and the internal symmetry energy at subsaturation densities and temperatures below 10 MeV. Conventional theoretical calculations of the symmetry energy based on mean-field approaches fail to give the correct low-temperature, low-density limit that is governed by correlations, in particular, by the appearance of bound states. A recently developed quantum-statistical approach that takes the formation of clusters into account predicts symmetry energies that are in very good agreement with the experimental data. A consistent description of the symmetry energy is given that joins the correct low-density limit with quasiparticle approaches valid near the saturation density.

  20. Local discrete symmetries from superstring derived models

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, A.E.

    1996-10-01

    Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model the author illustrates how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations.