WorldWideScience

Sample records for crystalline porous zno

  1. Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs)

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fanli, E-mail: flmeng@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Hou, Nannan [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China); Ge, Sheng [Department of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000 (China); Sun, Bai [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Jin, Zhen, E-mail: zjin@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Shen, Wei; Kong, Lingtao; Guo, Zheng [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Sun, Yufeng, E-mail: sunyufeng118@126.com [Department of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000 (China); Wu, Hao; Wang, Chen [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Li, Minqiang [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-03-25

    Highlights: • Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets were synthesized. • The flower-like hierarchical structured ZnO exhibited higher response and shorter response and recovery times. • The sensing mechanism of the flower-like hierarchical has been systematically analyzed. - Abstract: Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets (FHPSCZNs) were synthesized by a one-pot wet-chemical method followed by an annealing treatment, which combined the advantages between flower-like hierarchical structure and porous single-crystalline structure. XRD, SEM and HRTEM were used to characterize the synthesized FHPSCZN samples. The sensing properties of the FHPSCZN sensor were also investigated by comparing with ZnO powder sensor, which exhibited higher response and shorter response and recovery times. The sensing mechanism of the FHPSCZN sensor has been further analyzed from the aspects of electronic transport and gas diffusion.

  2. Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs)

    International Nuclear Information System (INIS)

    Meng, Fanli; Hou, Nannan; Ge, Sheng; Sun, Bai; Jin, Zhen; Shen, Wei; Kong, Lingtao; Guo, Zheng; Sun, Yufeng; Wu, Hao; Wang, Chen; Li, Minqiang

    2015-01-01

    Highlights: • Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets were synthesized. • The flower-like hierarchical structured ZnO exhibited higher response and shorter response and recovery times. • The sensing mechanism of the flower-like hierarchical has been systematically analyzed. - Abstract: Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets (FHPSCZNs) were synthesized by a one-pot wet-chemical method followed by an annealing treatment, which combined the advantages between flower-like hierarchical structure and porous single-crystalline structure. XRD, SEM and HRTEM were used to characterize the synthesized FHPSCZN samples. The sensing properties of the FHPSCZN sensor were also investigated by comparing with ZnO powder sensor, which exhibited higher response and shorter response and recovery times. The sensing mechanism of the FHPSCZN sensor has been further analyzed from the aspects of electronic transport and gas diffusion

  3. The structural properties of flower-like ZnO nanostructures on porous silicon

    Science.gov (United States)

    Eswar, Kevin Alvin; Suhaimi, Mohd Husairi Fadzillah; Guliling, Muliyadi; Mohamad, Maryam; Khusaimi, Zuraida; Rusop, M.; Abdullah, Saifollah

    2018-05-01

    The flower-like zinc oxide (ZnO) were successfully synthesized on porous silicon (PSi) via hydrothermal method. The characteristic of ZnO nanostructures was investigated using field emission scanning microscopy (FESEM) and X-ray diffraction (X-Ray). The FESEM images show the flower-like ZnO nanostructures composed ZnO nanoparticles. The X-ray diffraction shows that strong intensity of (100), (002) and (101) peaks. The structural analysis revealed that the peaks angles were shifted due to the stress or imperfection of the crystalline of ZnO nanostructures. The crystalline sizes in range of 42.60 to 54.09 nm were produced.

  4. Controlled Synthesis of Hierarchically Assembled Porous ZnO Microspheres with Enhanced Gas-Sensing Properties

    Directory of Open Access Journals (Sweden)

    Shengsheng You

    2015-01-01

    Full Text Available The ZnO microspheres constructed by porous nanosheets were successfully synthesized by calcinating zinc hydroxide carbonate (ZHC microspheres obtained by a sample hydrothermal method. The samples were characterized in detail with scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and thermogravimetric and differential scanning calorimetry (TG-DSC. The results indicated that the prepared ZnO microspheres were well crystalline with wurtzite hexagonal phase. The effects of reaction time, temperature, the amount of trisodium citrate, and urea on the morphology of ZnO microspheres were studied. The formation mechanism of porous ZnO microspheres was discussed. Furthermore, the gas-sensing properties for detection of organic gas of the prepared porous ZnO microspheres were investigated. The results indicated that the prepared porous ZnO microspheres exhibited high gas-sensing properties for detection of ethanol gas.

  5. Trimethylamine Sensors Based on Au-Modified Hierarchical Porous Single-Crystalline ZnO Nanosheets

    Directory of Open Access Journals (Sweden)

    Fanli Meng

    2017-06-01

    Full Text Available It is of great significance for dynamic monitoring of foods in storage or during the transportation process through on-line detecting trimethylamine (TMA. Here, TMA were sensitively detected by Au-modified hierarchical porous single-crystalline ZnO nanosheets (HPSCZNs-based sensors. The HPSCZNs were synthesized through a one-pot wet-chemical method followed by an annealing treatment. Polyethyleneimine (PEI was used to modify the surface of the HPSCZNs, and then the PEI-modified samples were mixed with Au nanoparticles (NPs sol solution. Electrostatic interactions drive Au nanoparticles loading onto the surface of the HPSCZNs. The Au-modified HPSCZNs were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM and energy dispersive spectrum (EDS, respectively. The results show that Au-modified HPSCZNs-based sensors exhibit a high response to TMA. The linear range is from 10 to 300 ppb; while the detection limit is 10 ppb, which is the lowest value to our knowledge.

  6. Trimethylamine Sensors Based on Au-Modified Hierarchical Porous Single-Crystalline ZnO Nanosheets.

    Science.gov (United States)

    Meng, Fanli; Zheng, Hanxiong; Sun, Yufeng; Li, Minqiang; Liu, Jinhuai

    2017-06-22

    It is of great significance for dynamic monitoring of foods in storage or during the transportation process through on-line detecting trimethylamine (TMA). Here, TMA were sensitively detected by Au-modified hierarchical porous single-crystalline ZnO nanosheets (HPSCZNs)-based sensors. The HPSCZNs were synthesized through a one-pot wet-chemical method followed by an annealing treatment. Polyethyleneimine (PEI) was used to modify the surface of the HPSCZNs, and then the PEI-modified samples were mixed with Au nanoparticles (NPs) sol solution. Electrostatic interactions drive Au nanoparticles loading onto the surface of the HPSCZNs. The Au-modified HPSCZNs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectrum (EDS), respectively. The results show that Au-modified HPSCZNs-based sensors exhibit a high response to TMA. The linear range is from 10 to 300 ppb; while the detection limit is 10 ppb, which is the lowest value to our knowledge.

  7. Microstructures and photocatalytic properties of porous ZnO films synthesized by chemical bath deposition method

    International Nuclear Information System (INIS)

    Wang Huihu; Dong, Shijie; Chang Ying; Zhou Xiaoping; Hu Xinbin

    2012-01-01

    Different porous ZnO film structures on the surface of alumina substrates were prepared through a simple chemical bath deposition method in the methanolic zinc acetate solution. The surface morphology and phase structure of porous ZnO film were determined by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Both initial zinc acetate concentration and sintering temperature have great impact on the final film structures. With the increase of initial zinc acetate concentration, the porous structures can be finely tuned from circular nest like assemblies composed film into successive nest like film, and finally to globular aggregates composed film. By increasing the sintering temperature, the porous structure of successive nest like film can be further controlled. Furthermore, the crystallinity of photocatalysts also can be greatly improved. The photodegradation results of Methyl Orange revealed that porous ZnO film with successive nest like structure sintered at 500 °C exhibited the highest photocatalytic activity under UV illumination.

  8. Facile fabrication of porous ZnO by thermal treatment of zeolitic imidazolate framework-8 and its photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Du, Y. [College of Environment, Jiangsu Key Laboratory of Industrial Water-Conservation and Emission Reduction, Nanjing University of Technology, Nanjing 210009 (China); Chen, R.Z., E-mail: rizhichen@163.com [State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Key Laboratory of Industrial Water-Conservation and Emission Reduction, Nanjing University of Technology, Nanjing 210009 (China); Yao, J.F. [Department of Chemical Engineering, Monash University, Clayton, Vic 3800 (Australia); Wang, H.T., E-mail: huanting.wang@monash.edu [Department of Chemical Engineering, Monash University, Clayton, Vic 3800 (Australia)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Porous ZnO powders can be obtained by thermal decomposition of ZIF-8. Black-Right-Pointing-Pointer The morphology, structure and performance of porous ZnO can be controlled. Black-Right-Pointing-Pointer ZnO-500-5 exhibits efficient photocatalytic activity for the degradation of MB. - Abstract: In this work, porous ZnO photocatalysts were attempted to be prepared by a facile method, i.e. the thermal treatment of zeolitic imidazolate framework-8, and then characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectroscopy and nitrogen adsorption-desorption. It was found that the calcination temperature and time significantly influenced the morphology, composition and pore structure of ZnO. The photocatalytic activities of as-prepared ZnO powders were evaluated in the degradation of methylene blue (MB) under UV light in comparison with commercial anatase TiO{sub 2} and Degussa P25 TiO{sub 2}. The surface area and crystallinity of porous ZnO obviously affected the photocatalytic activity of ZnO. The ZnO prepared at 500 Degree-Sign C for 5 h (ZnO-500-5) showed the highest photocatalytic activity, which was higher than that of the commercial anatase TiO{sub 2} and lower than that of Degussa P25 TiO{sub 2}.

  9. Morphology development and oriented growth of single crystalline ZnO nanorod

    International Nuclear Information System (INIS)

    Wu Lili; Wu Youshi; Lue Wei; Wei Huiying; Shi Yuanchang

    2005-01-01

    Single crystalline ZnO nanorods were achieved by the assembly of nanocrystallines in tens of nanometer under hydrothermal conditions with the assistance of surfactant cetyltrimethylammonium bromide (CTAB). The obtained nanorod has rough surface as a result of oriented attachment growth. Transmission electron microscope (TEM) images showed the morphology evolution of the nanorod at different reaction time. Defects were observed and porous structure was left after the assembly of hundreds of nanocrystalline building blocks. Effect of pH condition on the morphology of the nanorod was also investigated

  10. Hierarchical porous ZnO microflowers with ultra-high ethanol gas-sensing at low concentration

    Science.gov (United States)

    Song, Liming; Yue, He; Li, Haiying; Liu, Li; Li, Yu; Du, Liting; Duan, Haojie; Klyui, N. I.

    2018-05-01

    Hierarchical porous and non-porous ZnO microflowers have been successfully fabricated by hydrothermal method. Their crystal structure, morphology and gas-sensing properties were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical gas sensing intelligent analysis system (CGS). Compared with hierarchical non-porous ZnO microflowers, hierarchical porous ZnO microflowers exhibited ultra-high sensitivity with 50 ppm ethanol at 260 °C and the response is 110, which is 1.8 times higher than that of non-porous ZnO microflowers. Moreover, the lowest concentration limit of hierarchical porous ZnO microflowers (non-porous ZnO microflowers) to ethanol is 0.1 (1) ppm, the response value is 1.6 (1).

  11. Nanostructured porous ZnO film with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Wang Lina; Zheng Yingying; Li Xiaoyun; Dong Wenjun; Tang Weihua; Chen Benyong; Li Chaorong; Li Xiao; Zhang Tierui

    2011-01-01

    Well-defined ZnO nanostructured films have been fabricated directly on Zn foil via hydrothermal synthesis. During the fabrication of the ZnO nanostructured films, the Zn foil serves as the Zn source and also the substrate. Porous nanosheet-based, nanotube-based and nanoflower-based ZnO films can all be easily prepared by adjusting the alkali type, reaction time and reaction temperature. The composition, morphology and structure of ZnO films are characterized by X-ray diffraction, scanning electron microscope and high-resolution transmission electron microscope. The porous ZnO nanosheet-based film exhibits enhanced photocatalytic activity in the degradation of Rhodamine B under UV light irradiation. This can be attributed to the high surface area of the ZnO nanosheet and the large percentage of the exposed [001] facet. Moreover, the self-supporting, recyclable and stable ZnO photocatalytic film can be readily recovered and potentially applied for pollution disposal.

  12. The optical properties of ZnO films grown on porous Si templates

    International Nuclear Information System (INIS)

    Liu, Y L; Liu, Y C; Yang, H; Wang, W B; Ma, J G; Zhang, J Y; Lu, Y M; Shen, D Z; Fan, X W

    2003-01-01

    ZnO films were electrodeposited on porous silicon templates with different porosities. The photoluminescence (PL) spectra of the samples before and after deposition of ZnO were measured to study the effect of template porosity on the luminescence properties of ZnO/porous Si composites. As-prepared porous Si (PS) templates emit strong red light. The red PL peak of porous Si after deposition of ZnO shows an obvious blueshift, and the trend of blueshift increases with an increase in template porosity. A green emission at about 550 nm was also observed when the porosity of template increases, which is ascribed to the deep-level emission band of ZnO. A model-based band diagram of the ZnO/porous Si composite is suggested to interpret the properties of the composite

  13. Significant room-temperature ferromagnetism in porous ZnO films: The role of oxygen vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xue; Liu, Huiyuan [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China); Sun, Huiyuan, E-mail: huiyuansun@126.com [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China); Liu, Lihu; Jia, Xiaoxuan [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China)

    2015-10-15

    Graphical abstract: - Highlights: • Porous ZnO films were deposited on porous anodic alumina substrates. • Significant ferromagnetism (FM) has been observed in porous ZnO films (110 emu/cm{sup 3}). • The strong magnetic anisotropy was observed in the porous ZnO films. • The origin of FM is attributed to the oxygen vacancy with a local magnetic moment. - Abstract: Pure porous ZnO films were prepared by direct current reactive magnetron sputtering on porous anodic alumina substrates. Remarkably large room-temperature ferromagnetism was observed in the films. The highest saturation moment along the out-of-plane direction was about 110 emu/cm{sup 3}. Experimental and theoretical results suggested that the oxygen vacancies and the unique porous structure of the films are responsible for the large ferromagnetism. There are two modes of coupling between oxygen vacancies in the porous ZnO films: (i) exchange interactions directly between the oxygen vacancies and (ii) with the mediation of conduction electrons. In addition, it was found that the magnetic moment of ZnO films can be changed by tuning the concentration of oxygen vacancies. These observations may be useful in the development of ZnO-based spintronics devices.

  14. Room-temperature deposition of crystalline patterned ZnO films by confined dewetting lithography

    International Nuclear Information System (INIS)

    Sepulveda-Guzman, S.; Reeja-Jayan, B.; De la Rosa, E.; Ortiz-Mendez, U.; Reyes-Betanzo, C.; Cruz-Silva, R.; Jose-Yacaman, M.

    2010-01-01

    In this work patterned ZnO films were prepared at room-temperature by deposition of ∼5 nm size ZnO nanoparticles using confined dewetting lithography, a process which induces their assembly, by drying a drop of ZnO colloidal dispersion between a floating template and the substrate. Crystalline ZnO nanoparticles exhibit a strong visible (525 nm) light emission upon UV excitation (λ = 350 nm). The resulting films were characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM). The method described herein presents a simple and low cost method to prepare crystalline ZnO films with geometric patterns without additional annealing. Such transparent conducting films are attractive for applications like light emitting diodes (LEDs). As the process is carried out at room temperature, the patterned crystalline ZnO films can even be deposited on flexible substrates.

  15. Room-temperature deposition of crystalline patterned ZnO films by confined dewetting lithography

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda-Guzman, S., E-mail: selene.sepulvedagz@uanl.edu.mx [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia. UANL, PIIT Monterrey, CP 66629, Apodaca NL (Mexico); Reeja-Jayan, B. [Texas Materials Institute, University of Texas at Austin, Austin, TX 78712 (United States); De la Rosa, E. [Centro de Investigacion en Optica, Loma del Bosque 115 Col. Lomas del Campestre C.P. 37150 Leon, Gto. Mexico (Mexico); Ortiz-Mendez, U. [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia. UANL, PIIT Monterrey, CP 66629, Apodaca NL (Mexico); Reyes-Betanzo, C. [Instituto Nacional de Astrofisica Optica y Electronica, Calle Luis Enrique Erro No. 1, Santa Maria Tonanzintla, Puebla. Apdo. Postal 51 y 216, C.P. 72000 Puebla (Mexico); Cruz-Silva, R. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, UAEM. Av. Universidad 1001, Col. Chamilpa, CP 62210 Cuernavaca, Mor. (Mexico); Jose-Yacaman, M. [Physics and Astronomy Department University of Texas at San Antonio 1604 campus San Antonio, TX 78249 (United States)

    2010-03-15

    In this work patterned ZnO films were prepared at room-temperature by deposition of {approx}5 nm size ZnO nanoparticles using confined dewetting lithography, a process which induces their assembly, by drying a drop of ZnO colloidal dispersion between a floating template and the substrate. Crystalline ZnO nanoparticles exhibit a strong visible (525 nm) light emission upon UV excitation ({lambda} = 350 nm). The resulting films were characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM). The method described herein presents a simple and low cost method to prepare crystalline ZnO films with geometric patterns without additional annealing. Such transparent conducting films are attractive for applications like light emitting diodes (LEDs). As the process is carried out at room temperature, the patterned crystalline ZnO films can even be deposited on flexible substrates.

  16. Green method for producing hierarchically assembled pristine porous ZnO nanoparticles with narrow particle size distribution

    International Nuclear Information System (INIS)

    Escobedo-Morales, A.; Téllez-Flores, D.; Ruiz Peralta, Ma. de Lourdes; Garcia-Serrano, J.; Herrera-González, Ana M.; Rubio-Rosas, E.; Sánchez-Mora, E.; Olivares Xometl, O.

    2015-01-01

    A green method for producing pristine porous ZnO nanoparticles with narrow particle size distribution is reported. This method consists in synthesizing ZnO 2 nanopowders via a hydrothermal route using cheap and non-toxic reagents, and its subsequent thermal decomposition at low temperature under a non-protective atmosphere (air). The morphology, structural and optical properties of the obtained porous ZnO nanoparticles were studied by means of powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and nitrogen adsorption–desorption measurements. It was found that after thermal decomposition of the ZnO 2 powders, pristine ZnO nanoparticles are obtained. These particles are round-shaped with narrow size distribution. A further analysis of the obtained ZnO nanoparticles reveals that they are hierarchical self-assemblies of primary ZnO particles. The agglomeration of these primary particles at the very early stage of the thermal decomposition of ZnO 2 powders provides to the resulting ZnO nanoparticles a porous nature. The possibility of using the synthesized porous ZnO nanoparticles as photocatalysts has been evaluated on the degradation of rhodamine B dye. - Highlights: • A green synthesis method for obtaining porous ZnO nanoparticles is reported. • The obtained ZnO nanoparticles have narrow particle size distribution. • This method allows obtaining pristine ZnO nanoparticles avoiding unintentional doping. • A growth mechanism for the obtained porous ZnO nanoparticles is proposed

  17. ZnO Coatings with Controlled Pore Size, Crystallinity and Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Roman SCHMACK

    2016-05-01

    Full Text Available Zinc oxide is a wide bandgap semiconductor with unique optical, electrical and catalytic properties. Many of its practical applications rely on the materials pore structure, crystallinity and electrical conductivity. We report a synthesis method for ZnO films with ordered mesopore structure and tuneable crystallinity and electrical conductivity. The synthesis relies on dip-coating of solutions containing micelles of an amphiphilic block copolymer and complexes of Zn2+ ions with aliphatic ligands. A subsequent calcination at 400°C removes the template and induces crystallization of the pore walls. The pore structure is controlled by the template polymer, whereas the aliphatic ligands control the crystallinity of the pore walls. Complexes with a higher thermal stability result in ZnO films with a higher content of residual carbon, smaller ZnO crystals and therefore lower electrical conductivity. The paper discusses the ability of different types of ligands to assist in the synthesis of mesoporous ZnO and relates the structure and thermal stability of the precursor complexes to the crystallinity and electrical conductivity of the zinc oxide.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.8634

  18. Green method for producing hierarchically assembled pristine porous ZnO nanoparticles with narrow particle size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo-Morales, A., E-mail: alejandro.escobedo@correo.buap.mx [Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico); Téllez-Flores, D.; Ruiz Peralta, Ma. de Lourdes [Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico); Garcia-Serrano, J.; Herrera-González, Ana M. [Centro de Investigaciones en Materiales y Metalurgia, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca Tulancingo Km 4.5, Pachuca, Hidalgo (Mexico); Rubio-Rosas, E. [Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico); Sánchez-Mora, E. [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, 72570 Puebla, Pue. (Mexico); Olivares Xometl, O. [Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico)

    2015-02-01

    A green method for producing pristine porous ZnO nanoparticles with narrow particle size distribution is reported. This method consists in synthesizing ZnO{sub 2} nanopowders via a hydrothermal route using cheap and non-toxic reagents, and its subsequent thermal decomposition at low temperature under a non-protective atmosphere (air). The morphology, structural and optical properties of the obtained porous ZnO nanoparticles were studied by means of powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and nitrogen adsorption–desorption measurements. It was found that after thermal decomposition of the ZnO{sub 2} powders, pristine ZnO nanoparticles are obtained. These particles are round-shaped with narrow size distribution. A further analysis of the obtained ZnO nanoparticles reveals that they are hierarchical self-assemblies of primary ZnO particles. The agglomeration of these primary particles at the very early stage of the thermal decomposition of ZnO{sub 2} powders provides to the resulting ZnO nanoparticles a porous nature. The possibility of using the synthesized porous ZnO nanoparticles as photocatalysts has been evaluated on the degradation of rhodamine B dye. - Highlights: • A green synthesis method for obtaining porous ZnO nanoparticles is reported. • The obtained ZnO nanoparticles have narrow particle size distribution. • This method allows obtaining pristine ZnO nanoparticles avoiding unintentional doping. • A growth mechanism for the obtained porous ZnO nanoparticles is proposed.

  19. Porous nanostructured ZnO films deposited by picosecond laser ablation

    International Nuclear Information System (INIS)

    Sima, Cornelia; Grigoriu, Constantin; Besleaga, Cristina; Mitran, Tudor; Ion, Lucian; Antohe, Stefan

    2012-01-01

    Highlights: ► We deposite porous nanostructured ZnO films by picoseconds laser ablation (PLA). ► We examine changes of the films structure on the experimental parameter deposition. ► We demonstrate PLA capability to produce ZnO nanostructured films free of particulates. - Abstract: Porous nanostructured polycrystalline ZnO films, free of large particulates, were deposited by picosecond laser ablation. Using a Zn target, zinc oxide films were deposited on indium tin oxide (ITO) substrates using a picosecond Nd:YVO 4 laser (8 ps, 50 kHz, 532 nm, 0.17 J/cm 2 ) in an oxygen atmosphere at room temperature (RT). The morpho-structural characteristics of ZnO films deposited at different oxygen pressures (150–900 mTorr) and gas flow rates (0.25 and 10 sccm) were studied. The post-deposition influence of annealing (250–550 °C) in oxygen on the film characteristics was also investigated. At RT, a mixture of Zn and ZnO formed. At substrate temperatures above 350 °C, the films were completely oxidized, containing a ZnO wurtzite phase with crystallite sizes of 12.2–40.1 nm. At pressures of up to 450 mTorr, the porous films consisted of well-distinguished primary nanoparticles with average sizes of 45–58 nm, while at higher pressures, larger clusters (3.1–14.7 μm) were dominant, leading to thicker films; higher flow rates favored clustering.

  20. ZnO nanocoral reef grown on porous silicon substrates without catalyst

    International Nuclear Information System (INIS)

    Abdulgafour, H.I.; Yam, F.K.; Hassan, Z.; AL-Heuseen, K.; Jawad, M.J.

    2011-01-01

    Research highlights: → Porous silicon (PS) technology is utilized to grow coral reef-like ZnO nanostructures on the surface of Si substrates. → Flower-like aligned ZnO nanorods are fabricated directly onto the silicon substrates through zinc powder evaporation using a simple thermal evaporation method without a catalyst for comparison. → The PL spectra show that for ZnO nanocoral reefs the UV emission shifts slightly towards lower frequency. → This non-catalyst growth technique on the rough surface of substrates may have potential applications in the fabrication of nanoelectronic and nanooptical devices. - Abstract: Porous silicon (PS) technology is utilized to grow coral reef-like ZnO nanostructures on the surface of Si substrates with rough morphology. Flower-like aligned ZnO nanorods are also fabricated directly onto the silicon substrates through zinc powder evaporation using a simple thermal evaporation method without a catalyst for comparison. The characteristics of these nanostructures are investigated using field-emission scanning electron microscopy, grazing-angle X-ray diffraction (XRD), and photoluminescence (PL) measurements of structures grown on both Si and porous Si substrates. The texture coefficient obtained from the XRD spectra indicates that the coral reef-like nanostructures are highly oriented on the porous silicon substrate with decreasing nanorods length and diameter from 800-900 nm to 3.5-5.5 μm and from 217-229 nm to 0.6-0.7 μm, respectively. The PL spectra show that for ZnO nanocoral reefs the UV emission shifts slightly towards lower frequency and the intensity increase with the improvement of ZnO crystallization. This non-catalyst growth technique on the rough surface of substrates may have potential applications in the fabrication of nanoelectronic and nanooptical devices.

  1. ZnO nanocoral reef grown on porous silicon substrates without catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Abdulgafour, H.I., E-mail: hind_alshaikh@yahoo.com [School of Physics, University Sains Malaysia 11800 Penang (Malaysia); Yam, F.K.; Hassan, Z.; AL-Heuseen, K.; Jawad, M.J. [School of Physics, University Sains Malaysia 11800 Penang (Malaysia)

    2011-05-05

    Research highlights: > Porous silicon (PS) technology is utilized to grow coral reef-like ZnO nanostructures on the surface of Si substrates. > Flower-like aligned ZnO nanorods are fabricated directly onto the silicon substrates through zinc powder evaporation using a simple thermal evaporation method without a catalyst for comparison. > The PL spectra show that for ZnO nanocoral reefs the UV emission shifts slightly towards lower frequency. > This non-catalyst growth technique on the rough surface of substrates may have potential applications in the fabrication of nanoelectronic and nanooptical devices. - Abstract: Porous silicon (PS) technology is utilized to grow coral reef-like ZnO nanostructures on the surface of Si substrates with rough morphology. Flower-like aligned ZnO nanorods are also fabricated directly onto the silicon substrates through zinc powder evaporation using a simple thermal evaporation method without a catalyst for comparison. The characteristics of these nanostructures are investigated using field-emission scanning electron microscopy, grazing-angle X-ray diffraction (XRD), and photoluminescence (PL) measurements of structures grown on both Si and porous Si substrates. The texture coefficient obtained from the XRD spectra indicates that the coral reef-like nanostructures are highly oriented on the porous silicon substrate with decreasing nanorods length and diameter from 800-900 nm to 3.5-5.5 {mu}m and from 217-229 nm to 0.6-0.7 {mu}m, respectively. The PL spectra show that for ZnO nanocoral reefs the UV emission shifts slightly towards lower frequency and the intensity increase with the improvement of ZnO crystallization. This non-catalyst growth technique on the rough surface of substrates may have potential applications in the fabrication of nanoelectronic and nanooptical devices.

  2. Constructing MnO{sub 2}/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Weiwei [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); Liu, Tiangui, E-mail: tianguiliu@gmail.com [College of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); Cao, Shiyi; Wang, Chen [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); Chen, Chuansheng, E-mail: 1666423158@qq.com [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China)

    2016-07-15

    In order to improve the photocatalytic and antibacterial activity of ZnO nanorods, ZnO nanorods decorated with MnO{sub 2} nanoparticles (MnO{sub 2}/ZnO nanorod hybrids) were prepared by using microwave assisted coprecipitation method under the influence of hydrogen peroxide, and the structure, photocatalytic activity and antibacterial property of the products were studied. Experimental results indicated that MnO{sub 2} nanoparticles are decorated on the surface of single crystalline ZnO nanorods. Moreover, the resultant MnO{sub 2}/ZnO nanorod hybrids have been proven to possess good photocatalytic and antibacterial activity, which their degradated efficiency for Rhodamin B (RhB) is twice as the pure ZnO nanorods. Enhancement for photocatalytic and antibacterial activity is mainly attributed to the low band gap energy and excellent electrochemical properties of MnO{sub 2} nanoparticles. - Graphical abstract: The MnO{sub 2}/single crystalline ZnO nanorods hybrids, which MnO{sub 2} nanoparticles are loaded on the surface of ZnO nanorods, were prepared by the step-by-step precipitation method under the assistance of ammonia and hydrogen peroxide. Display Omitted - Highlights: • MnO{sub 2}/ZnO nanorod hybrids were prepared by the step-by-step assembly method. • Single crystalline ZnO nanorods can be decorated by MnO{sub 2} nanoparticles. • MnO{sub 2}/ZnO nanorod hybrids possess good photocatalytic and antibacterial activity. • MnO{sub 2} can improve the photocatalytic activity of ZnO nanorods under visible light.

  3. Sensitization of nano-porous ZnO photo-anode by a conjugated conducting polymer

    Energy Technology Data Exchange (ETDEWEB)

    Sirimanne, P.M. [Nano-Science Laboratory, Institute of Fundamental Studies, Hantana Road, Kandy (Sri Lanka); Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Premalal, E.V.A. [Nano-Science Laboratory, Institute of Fundamental Studies, Hantana Road, Kandy (Sri Lanka); Minoura, H. [Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan)

    2011-01-15

    Hybrid ZnO films are prepared via one-step electrochemical process. Extraction of organic component from hybrid films results tiny wires like ZnO columns perpendicular to the substrate. Visible light sensitive-conjugated polymer poly(2-methoxy-5-[2 ethylhexyloxy]-1-4-phenylenevinylene, MEH-PPV) was embedded in highly porous ZnO ceramic by a solvent vaporization technique. An attempt was made to fabricate polymer sensitized photovoltaic cell by coupling polymer embedded ZnO electrodes with an electrolyte. Maximum photovoltage of 490 mV is observed for the cell with the configuration of ZnO vertical stroke MEH-PPV vertical stroke I{sup -}/I{sub 3}{sup -} cell. (author)

  4. P-type single-crystalline ZnO films obtained by (N,O) dual implantation through dynamic annealing process

    Science.gov (United States)

    Zhang, Zhiyuan; Huang, Jingyun; Chen, Shanshan; Pan, Xinhua; Chen, Lingxiang; Ye, Zhizhen

    2016-12-01

    Single-crystalline ZnO films were grown on a-plane sapphire substrates by plasma-assisted molecular beam epitaxy technique. The films have been implanted with fixed fluence of 120 keV N and 130 keV O ions at 460 °C. Hall measurements show that the dually-implanted single-crystalline ZnO films exhibit p-type characteristics with hole concentration in the range of 2.1 × 1018-1.1 × 1019 cm-3, hole mobilities between 1.6 and 1.9 cm2 V-1 s-1, and resistivities in the range of 0.353-1.555 Ω cm. The ZnO films exhibit (002) (c-plane) orientation as identified by the X-ray diffraction pattern. It is confirmed that N ions were effectively implanted by SIMS results. Raman spectra, polarized Raman spectra, and X-ray photoelectron spectroscopy results reflect that the concentration of oxygen vacancies is reduced, which is attributed to O ion implantation. It is concluded that N and O implantation and dynamic annealing play a critical role in forming p-type single-crystalline ZnO films.

  5. Positron annihilation lifetime and photoluminescence studies on single crystalline ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, A [Department of Physics, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700 009 (India); Chakrabarti, Mahuya [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Ray, S K [Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur (India); Bhowmick, D; Sanyal, D, E-mail: dirtha@vecc.gov.in [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700064 (India)

    2011-04-20

    The room temperature positron annihilation lifetime for single crystalline ZnO has been measured as 164 {+-} 1 ps. The single component lifetime value is very close to but higher than the theoretically predicted value of {approx} 154 ps. Photoluminescence study (at 10 K) indicates the presence of hydrogen and other defects, mainly acceptor related, in the crystal. Defects related to a lower open volume than zinc vacancies, presumably a complex with two hydrogen atoms, are the major trapping sites in the sample. The bulk positron lifetime in ZnO is expected to be a little less than 164 ps.

  6. Positron annihilation lifetime and photoluminescence studies on single crystalline ZnO

    Science.gov (United States)

    Sarkar, A.; Chakrabarti, Mahuya; Ray, S. K.; Bhowmick, D.; Sanyal, D.

    2011-04-01

    The room temperature positron annihilation lifetime for single crystalline ZnO has been measured as 164 ± 1 ps. The single component lifetime value is very close to but higher than the theoretically predicted value of ~ 154 ps. Photoluminescence study (at 10 K) indicates the presence of hydrogen and other defects, mainly acceptor related, in the crystal. Defects related to a lower open volume than zinc vacancies, presumably a complex with two hydrogen atoms, are the major trapping sites in the sample. The bulk positron lifetime in ZnO is expected to be a little less than 164 ps.

  7. Positron annihilation lifetime and photoluminescence studies on single crystalline ZnO

    International Nuclear Information System (INIS)

    Sarkar, A; Chakrabarti, Mahuya; Ray, S K; Bhowmick, D; Sanyal, D

    2011-01-01

    The room temperature positron annihilation lifetime for single crystalline ZnO has been measured as 164 ± 1 ps. The single component lifetime value is very close to but higher than the theoretically predicted value of ∼ 154 ps. Photoluminescence study (at 10 K) indicates the presence of hydrogen and other defects, mainly acceptor related, in the crystal. Defects related to a lower open volume than zinc vacancies, presumably a complex with two hydrogen atoms, are the major trapping sites in the sample. The bulk positron lifetime in ZnO is expected to be a little less than 164 ps.

  8. Detailed microstructure analysis of as-deposited and etched porous ZnO films

    International Nuclear Information System (INIS)

    Shang, Congcong; Thimont, Yohann; Barnabé, Antoine; Presmanes, Lionel; Pasquet, Isabelle; Tailhades, Philippe

    2015-01-01

    Graphical abstract: - Highlights: • Porous ZnO thin films were deposited by rf magnetron sputtering. • Surface enhancement factors were deduced from geometrical considerations. • Enlargement of the inter-grain spaces have been achieved by HCl chemical etching. • Microstructural parameters were deduced from SEM, AFM and optical measurements. - Abstract: ZnO nanostructured materials in thin film forms are of particular interest for photovoltaic or photocatalysis processes but they suffer from a lack of simple methods for optimizing their microstructure. We have demonstrated that microporous ZnO thin films with optimized inter grain accessibility can be produce by radio frequency magnetron sputtering process and chemical etching with 2.75 mM HCl solution for different duration. The as-deposited ZnO thin films were first characterized in terms of structure, grain size, inter grain space, open cavity depth and total thickness of the film by XRD, AFM, SEM, profilometry and optical measurements. A specific attention was dedicated to the determination of the surface enhancement factor (SEF) by using basic geometrical considerations and images treatments. In addition, the porous fraction and its distribution in the thickness have been estimated thanks to the optical simulation of the experimental UV–Visible–IR spectrums using the Bruggeman dielectric model and cross section SEM images analysis respectively. This study showed that the microstructure of the as-deposited films consists of a dense layer covered by a porous upper layer developing a SEF of 12–13 m 2 m −2 . This two layers architecture is not modified by the etching process. The etching process only affects the upper porous layer in which the overall porosity and the inter-grain space increase with the etching duration. Column diameter and total film thickness decrease at the same time when the films are soaked in the HCl bath. The microporous structure obtained after the etching process could

  9. Vertically aligned ZnO nanorods on porous silicon substrates: Effect of growth time

    Directory of Open Access Journals (Sweden)

    R. Shabannia

    2015-04-01

    Full Text Available Vertically aligned ZnO nanorods were successfully grown on porous silicon (PS substrates by chemical bath deposition at a low temperature. X-ray diffraction, field-emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, and photoluminescence (PL analyses were carried out to investigate the effect of growth duration (2 h to 8 h on the optical and structural properties of the aligned ZnO nanorods. Strong and sharp ZnO (0 0 2 peaks of the ZnO nanorods proved that the aligned ZnO nanorods were preferentially fabricated along the c-axis of the hexagonal wurtzite structure. FESEM images demonstrated that the ZnO nanorod arrays were well aligned along the c-axis and perpendicular to the PS substrates regardless of the growth duration. The TEM image showed that the top surfaces of the ZnO nanorods were round with a smooth curvature. PL spectra demonstrated that the ZnO nanorods grown for 5 h exhibited the sharpest and most intense PL peaks within the ultraviolet range among all samples.

  10. Controllable synthesis of mesoporous multi-shelled ZnO microspheres as efficient photocatalysts for NO oxidation

    Science.gov (United States)

    Chen, Xiaolang; Zhang, Huiqiang; Zhang, Dieqing; Miao, Yingchun; Li, Guisheng

    2018-03-01

    The successful application of hierarchically porous structure in environmental treatment has provided new insights for solving environmental problems. Hierarchically structured semiconductor materials were considered as promising photocatalysts for NO oxidation in gas phase. Multi-shelled ZnO microspheres (MMSZ) were controllably shaped with hierarchically porous structures via a facile hydrothermal route using amino acid (N-Acetyl-D-Proline) as template and post-calcination treatment. Symmetric Ostwald ripening was used to explain the morphological evolution of hierarchical nanostructure. MMSZ was proved highly efficient for oxidizing NO (400 ppb) in gas phase under UV light irradiation with a much higher photocatalytic removal rate (77.3%) than that of the as-obtained ZnO crystals with other hierachically porous structures, owing to its higher photocurrent intensity. Such greatly enhanced photocatalytic activity can be assigned to the enhanced crystallinity of ZnO, mesopores and unique multi-shelled structure. Enhanced crystallinity promotes photogenerated charges under light irradiation. Mesoporous porosity can ensure enough light scattering between the shells. Multi-shelled structure endows ZnO with higher specific surface area and high frequency of multiple light reflection, resulting in more exposed active sites, higher light utilization efficiency, and fast separation efficiency of photogenerated charge carriers. The experimental results demonstrated that the photogenerated holes (h+) are the main active species. Hierarchically structured ZnO is not only contributed to directly use solar energy to solving various problems caused by atmospheric pollution, but also has potential applications in energy converse and storage including solar cells, lithium batteries, water-splitting, etc.

  11. Single crystalline ZnO nanorods grown by a simple hydrothermal process

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.Z., E-mail: lzpei1977@163.com [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Lab of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhao, H.S. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Lab of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Tan, W. [Henkel Huawei Electronics Co. Ltd., Lian' yungang, Jiangsu 222006 (China); Yu, H.Y. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Lab of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Chen, Y.W. [Department of Materials Science, Fudan University, Shanghai 200433 (China); Zhang Qianfeng [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Lab of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China)

    2009-09-15

    Single crystalline ZnO nanorods with wurtzite structure have been prepared by a simple hydrothermal process. The microstructure and composition of the products were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, energy dispersive X-ray spectrum (EDS) and Raman spectrum. The nanorods have diameters ranging from 100 nm to 800 nm and length of longer than 10 {mu}m. Raman peak at 437.8 cm{sup -1} displays the characteristic peak of wurtzite ZnO. Photoluminescence (PL) spectrum shows a blue light emission at 441 nm, which is related to radiative recombination of photo-generated holes with singularly ionized oxygen vacancies.

  12. Single crystalline ZnO nanorods grown by a simple hydrothermal process

    International Nuclear Information System (INIS)

    Pei, L.Z.; Zhao, H.S.; Tan, W.; Yu, H.Y.; Chen, Y.W.; Zhang Qianfeng

    2009-01-01

    Single crystalline ZnO nanorods with wurtzite structure have been prepared by a simple hydrothermal process. The microstructure and composition of the products were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, energy dispersive X-ray spectrum (EDS) and Raman spectrum. The nanorods have diameters ranging from 100 nm to 800 nm and length of longer than 10 μm. Raman peak at 437.8 cm -1 displays the characteristic peak of wurtzite ZnO. Photoluminescence (PL) spectrum shows a blue light emission at 441 nm, which is related to radiative recombination of photo-generated holes with singularly ionized oxygen vacancies.

  13. Design of Highly Sensitive C2H5OH Sensors Using Self-Assembled ZnO Nanostructures

    Directory of Open Access Journals (Sweden)

    Jong-Heun Lee

    2011-10-01

    Full Text Available Various ZnO nanostructures such as porous nanorods and two hierarchical structures consisting of porous nanosheets or crystalline nanorods were prepared by the reaction of mixtures of oleic-acid-dissolved ethanol solutions and aqueous dissolved Zn-precursor solutions in the presence of NaOH. All three ZnO nanostructures showed sensitive and selective detection of C2H5OH. In particular, ultra-high responses (Ra/Rg = ~1,200, Ra: resistance in air, Rg: resistance in gas to 100 ppm C2H5OH was attained using porous nanorods and hierarchical structures assembled from porous nanosheets, which is one of the highest values reported in the literature. The gas response and linearity of gas sensors were discussed in relation to the size, surface area, and porosity of the nanostructures.

  14. P-type single-crystalline ZnO films obtained by (Na,N) dual implantation through dynamic annealing process

    Science.gov (United States)

    Zhang, Zhiyuan; Huang, Jingyun; Chen, Shanshan; Pan, Xinhua; Chen, Lingxiang; Ye, Zhizhen

    2018-02-01

    Single-crystalline ZnO films were grown by plasma-assisted molecular beam epitaxy technique on c-plane sapphire substrates. The films have been implanted with fixed fluence of 130 keV Na and 90 keV N ions at 460 °C. It is observed that dually-implanted single crystalline ZnO films exhibit p-type characteristics with hole concentration in the range of 1.24 × 1016-1.34 × 1017 cm-3, hole mobilities between 0.65 and 8.37 cm2 V-1 s-1, and resistivities in the range of 53.3-80.7 Ω cm by Hall-effect measurements. There are no other secondary phase appearing, with (0 0 2) (c-plane) orientation after ion implantation as identified by the X-ray diffraction pattern. It is obtained that Na and N ions were successfully implanted and activated as acceptors measured by XPS and SIMS results. Also compared to other similar studies, lower amount of Na and N ions make p-type characteristics excellent as others deposited by traditional techniques. It is concluded that Na and N ion implantation and dynamic annealing are essential in forming p-type single-crystalline ZnO films.

  15. Annealing Heat Treatment of ZnO Nanoparticles Grown on Porous Si Substrate Using Spin-Coating Method

    Directory of Open Access Journals (Sweden)

    K. A. Eswar

    2014-01-01

    Full Text Available ZnO nanoparticles were successfully deposited on porous silicon (PSi substrate using spin-coating method. In order to prepare PSi, electrochemical etching was employed to modify the Si surface. Zinc acetate dihydrate was used as a starting material in ZnO sol-gel solution preparation. The postannealing treatments were investigated on morphologies and photoluminescence (PL properties of the ZnO thin films. Field emission scanning electron microscopy (FESEM results indicate that the thin films composed by ZnO nanoparticles were distributed uniformly on PSi. The average sizes of ZnO nanoparticle increase with increasing annealing temperature. Atomic force microscopic (AFM analysis reveals that ZnO thin films annealed at 500°C had the smoothest surface. PL spectra show two peaks that completely correspond to nanostructured ZnO and PSi. These findings indicate that the ZnO nanostructures grown on PSi are promising for application as light emitting devices.

  16. Characterization of ZnO thin films grown on different p-Si substrate elaborated by solgel spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Chebil, W., E-mail: Chbil.widad@live.fr [Laboratoire Physico-chimie des Matériaux, Unité de Service Commun de Recherche “High resolution X-ray diffractometer”, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019 Monastir (Tunisia); Fouzri, A. [Laboratoire Physico-chimie des Matériaux, Unité de Service Commun de Recherche “High resolution X-ray diffractometer”, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019 Monastir (Tunisia); Institut Supérieur des Sciences Appliquées et de Technologie de Sousse, Université de Sousse (Tunisia); Fargi, A. [Laboratoire de Microélectronique et Instrumentation, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l’environnement, 5019 Monastir (Tunisia); Azeza, B.; Zaaboub, Z. [Laboratoire Micro-Optoélectroniques et Nanostructures, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l' environnement, 5019 Monastir (Tunisia); and others

    2015-10-15

    Highlights: • High quality ZnO thin films grown on different p-Si substrates were successful obtained by sol–gel process. • PL measurement revealed that ZnO thin film grown on porous Si has the better optical quality. • I–V characteristics for all heterojunctions exhibit successful diode formation. • The diode ZnO/PSi shows a better photovoltaic effect under illumination with a maximum {sub Voc} of 0.2 V. - Abstract: In this study, ZnO thin films are deposited by sol–gel technique on p-type crystalline silicon (Si) with [100] orientation, etched silicon and porous silicon. The structural analyses showed that the obtained thin films were polycrystalline with a hexagonal wurtzite structure and preferentially oriented along the c-axis direction. Morphological study revealed the presence of rounded and facetted grains irregularly distributed on the surface of all samples. PL spectra at room temperature revealed that ZnO thin film grown on porous Si has a strong UV emission with low defects in the visible region comparing with ZnO grown on plat Si and etched Si surface. The heterojunction parameters were evaluated from the (I–V) under dark and illumination at room temperature. The ideality factor, barrier height and series resistance of heterojunction grown on different p-Si substrates are determined by using different methods. Best electrical properties are obtained for ZnO layer deposited on porous silicon.

  17. Mango core inner shell membrane template-directed synthesis of porous ZnO films and their application for enzymatic glucose biosensor

    Science.gov (United States)

    Zhou, Yu; Wang, Lei; Ye, Zhizhen; Zhao, Minggang; Cai, Hui; Huang, Jingyun

    2013-11-01

    Micro/nano-porous ZnO films were synthesized through a simple biotemplate-directed method using mango core inner shell membranes as templates. The achieved ZnO films with wrinkles on the surface are combined of large holes and small pores in the bulk. High specific surface area, numerous microspaces, and small channels for fluid circulation provided by this unique structure along with the good biocompatibility and electron communication features of ZnO material make the product an ideal platform for the immobilization of enzymes The fabricated glucose biosensor based on the porous ZnO films exhibits good selective detection ability of analyte with good stability, high sensitivity of 50.58 μA cm-2 mM-1 and a wide linear range of 0.2-5.6 mM along with a low detection limit of 10 μM.

  18. Electrochemical and hydrothermal deposition of ZnO on silicon: from continuous films to nanocrystals

    International Nuclear Information System (INIS)

    Balucani, M.; Nenzi, P.; Chubenko, E.; Klyshko, A.; Bondarenko, V.

    2011-01-01

    This article presents the study of the electrochemical deposition of zinc oxide from the non-aqueous solution based on dimethyl sulfoxide and zinc chloride into the porous silicon matrix. The features of the deposition process depending on the thickness of the porous silicon layer are presented. It is shown that after deposition process the porous silicon matrix is filled with zinc oxide nanocrystals with a diameter of 10–50 nm. The electrochemically deposited zinc oxide layers on top of porous silicon are shown to have a crystalline structure. It is also shown that zinc oxide crystals formed by hydrothermal method on the surface of electrochemically deposited zinc oxide film demonstrate ultra-violet luminescence. The effect of the porous silicon layer thickness on the morphology of the zinc oxide is shown. The structures obtained demonstrated two luminescence bands peaking at the 375 and 600 nm wavelengths. Possible applications of ZnO nanostructures, porous and continuous polycrystalline ZnO films such as gas sensors, light-emitting diodes, photovoltaic devices, and nanopiezo energy generators are considered. Aspects of integration with conventional silicon technology are also discussed.

  19. Highly doped ZnO films deposited by spray-pyrolysis. Design parameters for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Garcés, F.A., E-mail: felipe.garces@santafe-conicet.gov.ar [Instituto de Física del Litoral (UNL-CONICET), Güemes 3450, Santa Fe S3000GLN (Argentina); Budini, N. [Instituto de Física del Litoral (UNL-CONICET), Güemes 3450, Santa Fe S3000GLN (Argentina); Schmidt, J.A.; Arce, R.D. [Instituto de Física del Litoral (UNL-CONICET), Güemes 3450, Santa Fe S3000GLN (Argentina); Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, Santa Fe S3000AOM (Argentina)

    2016-04-30

    Synthesis and preparation of ZnO films are relevant subjects for obtaining transparent and conducting layers with interesting applications in optoelectronics and photovoltaics. Optimization of parameters such as dopant type and concentration, deposition time and substrate temperature is important for obtaining ZnO layers with optimal properties. In this work we present a study about the induced effects of deposition time on optical and electrical properties of ZnO thin films. These films were deposited by spray pyrolysis of a suitable Zn precursor, obtained through the sol–gel method. The deposition time has direct incidence on internal stress in the crystal structure, generating defects that may affect transparency and electrical transport into the layers. We performed mosaicity measurements, through X-ray diffraction, and used it as a tool to get an insight on structural characteristics and homogeneity of ZnO layers. Also, through this technique, we analyzed thickness and doping effects on crystallinity and carrier transport properties. - Highlights: • Al-doped ZnO films with high conductivity and moderate Hall mobility were obtained. • Mosaicity between crystalline domains increased with film thickness. • Lattice parameters a and c diminished linearly as a function of Al concentration. • First steps for developing porous silicon/doped ZnO heterojunctions were presented.

  20. Highly doped ZnO films deposited by spray-pyrolysis. Design parameters for optoelectronic applications

    International Nuclear Information System (INIS)

    Garcés, F.A.; Budini, N.; Schmidt, J.A.; Arce, R.D.

    2016-01-01

    Synthesis and preparation of ZnO films are relevant subjects for obtaining transparent and conducting layers with interesting applications in optoelectronics and photovoltaics. Optimization of parameters such as dopant type and concentration, deposition time and substrate temperature is important for obtaining ZnO layers with optimal properties. In this work we present a study about the induced effects of deposition time on optical and electrical properties of ZnO thin films. These films were deposited by spray pyrolysis of a suitable Zn precursor, obtained through the sol–gel method. The deposition time has direct incidence on internal stress in the crystal structure, generating defects that may affect transparency and electrical transport into the layers. We performed mosaicity measurements, through X-ray diffraction, and used it as a tool to get an insight on structural characteristics and homogeneity of ZnO layers. Also, through this technique, we analyzed thickness and doping effects on crystallinity and carrier transport properties. - Highlights: • Al-doped ZnO films with high conductivity and moderate Hall mobility were obtained. • Mosaicity between crystalline domains increased with film thickness. • Lattice parameters a and c diminished linearly as a function of Al concentration. • First steps for developing porous silicon/doped ZnO heterojunctions were presented.

  1. Studies on the adsorption of RuN{sub 3} dye on sheet-like nanostructured porous ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rong; Pan, Jie; Briggs, Evan P.; Thrash, Marvin; Kerr, Lei L. [Department of Paper and Chemical Engineering, Miami University, Oxford, OH 45056 (United States)

    2008-04-15

    The interface between the ZnO and dye directly impacts the dye-sensitized solar cell (DSSC) performance. Nanostructured porous ZnO film was developed by a simple chemical solution process. Scanning electron microscope (SEM) images demonstrated the uniform ZnO films with sheet-like nanostructure. Adsorption studies indicated that the maximum adsorption capacity of RuN{sub 3} dye on the surface of ZnO films was approximately 0.016 mmol RuN{sub 3}/g ZnO films. Adsorption studies were conducted at 25 and 40 C. The results showed that the dye adsorption was significantly influenced by temperatures. Moreover, the problem of the dye aggregation on the ZnO surface was reduced at higher adsorption temperatures. The adsorption chemistry was studied with Raman spectroscopy. (author)

  2. Electrospinning direct synthesis of magnetic ZnFe{sub 2}O{sub 4}/ZnO multi-porous nanotubes with enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunlei [College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Tan, Xing [College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Yan, Juntao, E-mail: yanjuntaonihao@163.com [College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Chai, Bo [College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Li, Jianfen, E-mail: lijfen@163.com [College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Chen, Shizhong [College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023 (China)

    2017-02-28

    Highlights: • ZnFe2O4/ZnO heterojunctions are firstly fabricated by electrospinning method. • ZnFe{sub 2}O{sub 4}/ZnO heterojunctions possess multi-porous nanotube structure. • ZnFe{sub 2}O{sub 4}/ZnO heterojunctions can significantly enhance photocatalytic activity. - Abstract: Magnetic ZnFe{sub 2}O{sub 4}/ZnO (ZFO/ZnO) multi-porous nanotubes have been first fabricated via a facile electrospinning and subsequent calcination process. A series of ZFO/ZnO photocatalysts with different ZFO molar content and morphologies are also obtained by varying the molar ratio of Zn/Fe metal salt and its dosage. The morphology, composition, crystal structure and specific surface area of achieved photocatalysts are systematically examined. TEM images demonstrate ZFO/ZnO-3 multi-porous nanotubes possess perfect 1D nanotube profile with hierarchical pores. HRTEM images confirm the formation of ZFO/ZnO heterojunctions. DRS spectra show that ZFO/ZnO-3 multi-porous nanotubes exhibit an enhanced absorption both in UV and visible-light region. PL spectra and photocurrent responses of ZFO/ZnO-3 multi-porous nanotube demonstrated that the photogenerated electrons and holes are effectively separated. Above all, ZFO/ZnO-3 multi-porous nanotubes photocatalysts with a larger specific surface area of 57.79 m{sup 2} g{sup −1} exhibit the best photocatalytic efficiency of 99% after 150 min under the solar irradiation for the decolorization of RhB. Moreover, ZFO/ZnO photocatalysts not only possess magnetic separation property, but also keep a relatively high photocatalytic efficiency even after four cycles, which is beneficial for practical application. In addition, both the formation and potential photocatalytic mechanisms of ZFO/ZnO-3 multi-porous nanotubes are proposed in detail.

  3. Hexagonal ZnO porous plates prepared from microwave synthesized layered zinc hydroxide sulphate via thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Machovsky, Michal, E-mail: machovsky@ft.utb.cz [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, Nam. T.G. Masaryka 275, 762 72 Zlin (Czech Republic); Kuritka, Ivo, E-mail: ivo@kuritka.net [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, Nam. T.G. Masaryka 275, 762 72 Zlin (Czech Republic); Sedlak, Jakub, E-mail: j1sedlak@ft.utb.cz [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, Nam. T.G. Masaryka 275, 762 72 Zlin (Czech Republic); Pastorek, Miroslav, E-mail: pastorek@ft.utb.cz [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nam. T.G. Masaryka 275, 762 72 Zlin (Czech Republic)

    2013-10-15

    Graphical abstract: - Highlights: • Zinc hydroxy sulphate was synthesized in 3 min via microwave hydrothermal route. • Zinc hydroxy sulphate was converted into mesh like porous ZnO by calcining at 900°. • The process of transformation is topotactic. - Abstract: Layered zinc hydroxide sulphate (ZHS) was prepared by microwave-assisted hydrothermal precipitation of zinc sulphate monohydrate with hexamethylenetetramine. Under ambient conditions, the structure of ZHS determined by X-ray diffraction (XRD) was found to be a mixture of zinc hydroxide sulphate pentahydrate Zn{sub 4}SO{sub 4}(OH){sub 6}·5H{sub 2}O and tetrahydrate Zn{sub 4}SO{sub 4}(OH){sub 6}·4H{sub 2}O. Fourier transform infrared (FTIR) spectroscopy was used for characterization of the prepared materials. Based on the interpretation of ZHS's thermal decomposition profile obtained by thermogravimetric analysis, ZnO of high purity was prepared by calcination at 900 °C for 2 h. The structure of the resulting ZnO was confirmed by the XRD. The morphology examination by scanning electron microscopy revealed a porous mesh-like ZnO structure developed from the ZHS precursor at the expense of mass removal due to the release of water and sulphate during the calcination.

  4. Mango core inner shell membrane template-directed synthesis of porous ZnO films and their application for enzymatic glucose biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yu; Wang, Lei [Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 (China); Ye, Zhizhen [Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 (China); Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University (China); Zhao, Minggang; Cai, Hui [Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 (China); Huang, Jingyun, E-mail: huangjy@zju.edu.cn [Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 (China); Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University (China)

    2013-11-15

    Micro/nano-porous ZnO films were synthesized through a simple biotemplate-directed method using mango core inner shell membranes as templates. The achieved ZnO films with wrinkles on the surface are combined of large holes and small pores in the bulk. High specific surface area, numerous microspaces, and small channels for fluid circulation provided by this unique structure along with the good biocompatibility and electron communication features of ZnO material make the product an ideal platform for the immobilization of enzymes The fabricated glucose biosensor based on the porous ZnO films exhibits good selective detection ability of analyte with good stability, high sensitivity of 50.58 μA cm{sup −2} mM{sup −1} and a wide linear range of 0.2–5.6 mM along with a low detection limit of 10 μM.

  5. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    International Nuclear Information System (INIS)

    Kunj, Saurabh; Sreenivas, K.

    2016-01-01

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O_2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  6. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    Science.gov (United States)

    Kunj, Saurabh; Sreenivas, K.

    2016-05-01

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  7. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Kunj, Saurabh; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi 110007 INDIA (India)

    2016-05-06

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O{sub 2}) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  8. Electrochemistry of porous and crystalline silicon electrodes in methylviologen solutions

    NARCIS (Netherlands)

    Kooij, Ernst S.; Despo, R.W.; Mulders, F.P.J.; Kelly, J.J.

    1996-01-01

    From measurements using stationary and rotating disc and ring-disc electrodes, it is concluded that the reduction reactions of the divalent methylviologen cation MV2+ (to MV+· and MV0) proceed via the conduction band of both porous and crystalline silicon. The product of the second reduction step

  9. Initial transport and retention behaviors of ZnO nanoparticles in quartz sand porous media coated with Escherichia coli biofilm

    International Nuclear Information System (INIS)

    Jiang, Xujia; Wang, Xueting; Tong, Meiping; Kim, Hyunjung

    2013-01-01

    The significance of biofilm on the transport and deposition behaviors of ZnO nanoparticles were examined under a series of environmentally relevant ionic strength at two fluid velocities of 4 m-d −1 and 8 m-d −1 . Biofilm enhanced nanoparticles retention in porous media under all examined conditions. The greater deposition was also observed in extracellular polymeric substances (EPS) coated surfaces by employment of quartz microbalance with dissipation (QCM-D) system. Derjaguin–Landau–Verwey–Overbeek (DLVO) failed to interpret more ZnO nanoparticles deposition on biofilm (EPS) coated silica surfaces. Chemical interaction and physical morphology of biofilm contributed to this greater deposition (retention). Biofilm affected the spacial distribution of retained ZnO nanoparticles as well. Relatively steeper slope of retained profiles were observed in the presence of biofilm, corresponding to the greater deviation from colloid filtration theory (CFT). Pore space constriction via biofilm induced more nanoparticle trapped in the column inlet, leading to greater deviations (σln k f ) from the CFT. Highlights: ► Biofilm reduced the mobility of ZnO nanoparticles in column. ► DLVO and non-DLVO interactions contributed the more nanoparticles deposition. ► Biofilm also affected the spacial distribution of ZnO nanoparticles in column. ► Greater deviation from classic filtration theory was observed with biofilm. ► Physical structure of biofilm induced greater deviation from log-linear prediction. -- Biofilm enhanced ZnO nanoparticle deposition and altered spacial distribution in porous media

  10. Shape-dependent plasma-catalytic activity of ZnO nanomaterials coated on porous ceramic membrane for oxidation of butane.

    Science.gov (United States)

    Sanjeeva Gandhi, M; Mok, Young Sun

    2014-12-01

    In order to explore the effects of the shape of ZnO nanomaterials on the plasma-catalytic decomposition of butane and the distribution of byproducts, three types of ZnO nanomaterials (nanoparticles (NPs), nanorods (NRs) and nanowires (NWs)) were prepared and coated on multi-channel porous alumina ceramic membrane. The structures and morphologies of the nanomaterials were confirmed by X-ray diffraction method and scanning electron microscopy. The observed catalytic activity of ZnO in the oxidative decomposition of butane was strongly shape-dependent. It was found that the ZnO NWs exhibited higher catalytic activity than the other nanomaterials and could completely oxidize butane into carbon oxides (COx). When using the bare or ZnO NPs-coated ceramic membrane, several unwanted partial oxidation and decomposition products like acetaldehyde, acetylene, methane and propane were identified during the decomposition of butane. When the ZnO NWs- or ZnO NRs-coated membrane was used, however, the formation of such unwanted byproducts except methane was completely avoided, and full conversion into COx was achieved. Better carbon balance and COx selectivity were obtained with the ZnO NWs and NRs than with the NPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. In-situ ellipsometric characterization of the growth of porous anisotropic nanocrystalline ZnO layers

    Energy Technology Data Exchange (ETDEWEB)

    Laha, P., E-mail: plaha@vub.ac.be; Terryn, H.; Ustarroz, J., E-mail: justarro@vub.ac.be [Research Group Electrochemical and Surface Engineering (SURF), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Brussels (Belgium); Nazarkin, M. Y., E-mail: mikleo@mail.ru; Gavrilov, S. A. [Department of Materials of Functional Electronics (MFE), National Research University of Electronic Technology, Bld. 5, Pas. 4806, Zelenograd, Moscow 124498 (Russian Federation); Volkova, A. V.; Simunin, M. M. [Department of Quantum Physics and Nanoelectronics (QPN), National Research University of Electronic Technology, Bld. 5, Pas. 4806, Zelenograd, Moscow 124498 (Russian Federation)

    2015-03-09

    ZnO films have increasingly been in the spotlight due to their largely varied electro-physical and optical properties. For several applications, porous anisotropic nanocrystalline layers are especially interesting. To study the growth kinetics of such films during different fabrication processes, a powerful non-destructive in-situ technique is required. In this work, both ex-situ and in-situ spectroscopic ellipsometry are used along with advanced modelling techniques that are able to take both the anisotropy and the porosity of the films into account. Scanning electron microscopy, along with nitrogen absorption methods for measuring porosity, validated the ellipsometric data and proposed model. The film, grown by chemical bath deposition, was monitored from around 700 to 1800 nm in thickness. This same principle can now be used to monitor any other porous and/or anisotropic structure in an effective in-situ manner, e.g., growth of porous anodic aluminium oxides, nano-porous silica films, etc.

  12. Suppression of the green photoluminescence band in ZnO embedded into porous opal by spray pyrolysis

    International Nuclear Information System (INIS)

    Abrarov, S.M.; Yuldashev, Sh.U.; Lee, S.B.; Kang, T.W.

    2004-01-01

    The photoluminescence (PL) and transmittance characteristics of the zinc oxide embedded into voids of FCC sub-micron packed silicon dioxide spheres by using technologically simple and inexpensive spray pyrolysis are reported. The uniform formation of ZnO nanocrystalline particles inside of the porous opal takes place after deposition in aqueous solution with zinc nitrite hexahydride precursor followed by thermal annealing. The decrease of green PL is observed due to the inhibition of spontaneous emission through oxygen vacancies in ZnO. The strong red shift of the transmittance characteristics signifies the essential filling of voids in the opal matrix

  13. Synthesis and characterization of porous structured ZnO thin film for dye sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Marimuthu, T.; Anandhan, N., E-mail: anandhan-kn@rediffmail.com; Mummoorthi, M. [School of Physics, Alagappa University, Karaikudi – 630 003 (India); Dharuman, V. [Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi – 630 003 (India)

    2016-05-23

    Zinc oxide (ZnO) and zinc oxide/eosin yellow (ZnO/EY) thin films were potentiostatically deposited onto fluorine doped tin oxide (FTO) glass substrate. Effect of eosin yellow dye on structural, morphological and optical properties was studied. X-ray diffraction patterns, micro Raman spectra and photoluminescence (PL) spectra reveal hexagonal wurtzite structure with less atomic defects in 101 plane orientation of the ZnO/EY film. Scanning electron microscopy (SEM) images show flower for ZnO and porous like structure for ZnO/EY thin film, respectively. DSSC was constructed and evaluated by measuring the current density verses voltage curve.

  14. In-Vitro Enzymatic Degradation of γ-irradiated Porous Chitosan Scaffold: Crystallinity and degree of deacetylation

    International Nuclear Information System (INIS)

    Ismail Zainol; Azreena Mastor; Suhaida Md Ghani; Ahmad Fuad Yahya; Hazizan Md Akil

    2009-01-01

    Full text: Enzymatic degradation behavior of porous chitosan membrane was carried out in vitro by using enzymatic hydrolysis of chitosan in lysozyme solution. Chitosan was first modified by reducing its molecular weight by gamma (γ) radiation in the solid state. The chitosan powder was irradiated with gamma Co 60 source with various doses of 10, 25, 50 and 100 kGy. The molecular weight of irradiated chitosan was measured using visco metric method. The modified chitosan was transform into a porous membrane by lyophilization method. Degree of deacetylation (DD) and crystallinity of samples were measured using FTIR and XRD respectively on both gamma irradiated and enzymatic degradation samples. The results suggested that the irradiated chitosan become less crystalline without changes in DD. The enzymatic degradation of chitosan however shows an increment in DD and crystallinity. (author)

  15. Solvent-assisted microstructural evolution and enhanced performance of porous ZnO films for plastic dye-sensitized solar cells

    Science.gov (United States)

    Ohashi, Hitomi; Hagiwara, Manabu; Fujihara, Shinobu

    2017-02-01

    A low-temperature process for fabricating porous ZnO films on plastic, indium tin oxide-coated polyethylene naphthalate substrates is developed for their use in dye-sensitized solar cells. A special attention is paid to modification of microscopic morphologies for enhancing interparticle connection. ZnO films having two kinds of macroscopic morphologies (flower-like particles and densely packed nanoparticles) are fabricated at temperatures below the heatproof temperature of the substrate, and subsequently immersed in mixed solvents composed of water and ethanol at 90 °C. The immersion leads to the growth of constituting ZnO particles and also the evolution of interparticle connection, depending on solvent compositions. The cell performance is largely improved especially in a short-circuit current density and a power conversion efficiency. The immersion effect is more remarkable for the cell using the densely packed ZnO film, with a 62% increase in the current density and an 84% increase in the conversion efficiency. In consequence, our plastic N719-sensitized ZnO cell shows the conversion efficiency as high as 4.1%.

  16. Synthesis of High Crystalline Al-Doped ZnO Nanopowders from Al2O3 and ZnO by Radio-Frequency Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Min-Kyeong Song

    2015-01-01

    Full Text Available High crystalline Al-doped ZnO (AZO nanopowders were prepared by in-flight treatment of ZnO and Al2O3 in Radio-Frequency (RF thermal plasma. Micron-sized (~1 μm ZnO and Al2O3 powders were mixed at Al/Zn ratios of 3.3 and 6.7 at.% and then injected into the RF thermal plasma torch along the centerline at a feeding rate of 6.6 g/min. The RF thermal plasma torch system was operated at the plate power level of ~140 kVA to evaporate the mixture oxides and the resultant vapor species were condensed into solid particles by the high flow rate of quenching gas (~7000 slpm. The FE-SEM images of the as-treated powders showed that the multipod shaped and the whisker type nanoparticles were mainly synthesized. In addition, these nanocrystalline structures were confirmed as the single phase AZO nanopowders with the hexagonal wurtzite ZnO structure by the XRD patterns and FE-TEM results with the SAED image. However, the composition changes of 0.3 and 1.0 at.% were checked for the as-synthesized AZO nanopowders at Al/Zn ratios of 3.3 and 6.7 at.%, respectively, by the XRF data, which can require the adjustment of Al/Zn in the mixture precursors for the applications of high Al doping concentrations.

  17. Photo-EMF Sensitivity of Porous Silicon Thin Layer–Crystalline Silicon Heterojunction to Ammonia Adsorption

    Directory of Open Access Journals (Sweden)

    Kae Dal Kwack

    2011-01-01

    Full Text Available A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light.

  18. Photo-EMF sensitivity of porous silicon thin layer-crystalline silicon heterojunction to ammonia adsorption.

    Science.gov (United States)

    Vashpanov, Yuriy; Jung, Jae Il; Kwack, Kae Dal

    2011-01-01

    A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light.

  19. Photo-EMF Sensitivity of Porous Silicon Thin Layer–Crystalline Silicon Heterojunction to Ammonia Adsorption

    Science.gov (United States)

    Vashpanov, Yuriy; Jung, Jae Il; Kwack, Kae Dal

    2011-01-01

    A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light. PMID:22319353

  20. Nanomechanical properties of thick porous silicon layers grown on p- and p+-type bulk crystalline Si

    International Nuclear Information System (INIS)

    Charitidis, C.A.; Skarmoutsou, A.; Nassiopoulou, A.G.; Dragoneas, A.

    2011-01-01

    Highlights: → The nanomechanical properties of bulk crystalline Si. → The nanomechanical properties of porous Si. → The elastic-plastic deformation of porous Si compared to bulk crystalline quantified by nanoindentation data analysis. - Abstract: The nanomechanical properties and the nanoscale deformation of thick porous Si (PSi) layers of two different morphologies, grown electrochemically on p-type and p+-type Si wafers were investigated by the depth-sensing nanoindentation technique over a small range of loads using a Berkovich indenter and were compared with those of bulk crystalline Si. The microstructure of the thick PSi layers was characterized by field emission scanning electron microscopy. PSi layers on p+-type Si show an anisotropic mesoporous structure with straight vertical pores of diameter in the range of 30-50 nm, while those on p-type Si show a sponge like mesoporous structure. The effect of the microstructure on the mechanical properties of the layers is discussed. It is shown that the hardness and Young's modulus of the PSi layers exhibit a strong dependence on their microstructure. In particular, PSi layers with the anisotropic straight vertical pores show higher hardness and elastic modulus values than sponge-like layers. However, sponge-like PSi layers reveal less plastic deformation and higher wear resistance compared with layers with straight vertical pores.

  1. Infrared reflectance studies of hillock-like porous zinc oxide thin films

    International Nuclear Information System (INIS)

    Ching, C.G.; Lee, S.C.; Ng, S.S.; Hassan, Z.; Abu Hassan, H.

    2013-01-01

    We investigated the infrared (IR) reflectance characteristics of hillock-like porous zinc oxide (ZnO) thin films on silicon substrates. The IR reflectance spectra of the porous samples exhibited an extra resonance hump in the reststrahlen region of ZnO compared with the as-grown sample. Oscillation fringes with different behaviors were also observed in the non-reststrahlen region of ZnO. Standard multilayer optic technique was used with the effective medium theory to analyze the observations. Results showed that the porous ZnO layer consisted of several sublayers with different porosities and thicknesses. These findings were confirmed by scanning electron microscopy measurements. - Highlights: • Multilayer porous assumption qualitatively increased the overall spectra fitting. • IR reflectance is a sensitive method to probe the multilayer porous structure. • Hillock-like porous ZnO thin films fabricated using electrochemical etching method. • The thickness and porosity of the samples were determined. • Formation of extra resonance hump was due to splitting of reststrahlen band

  2. Unveiling the Formation Pathway of Single Crystalline Porous Silicon Nanowires

    Science.gov (United States)

    Zhong, Xing; Qu, Yongquan; Lin, Yung-Chen; Liao, Lei; Duan, Xiangfeng

    2011-01-01

    Porous silicon nanowire is emerging as an interesting material system due to its unique combination of structural, chemical, electronic, and optical properties. To fully understand their formation mechanism is of great importance for controlling the fundamental physical properties and enabling potential applications. Here we present a systematic study to elucidate the mechanism responsible for the formation of porous silicon nanowires in a two-step silver-assisted electroless chemical etching method. It is shown that silicon nanowire arrays with various porosities can be prepared by varying multiple experimental parameters such as the resistivity of the starting silicon wafer, the concentration of oxidant (H2O2) and the amount of silver catalyst. Our study shows a consistent trend that the porosity increases with the increasing wafer conductivity (dopant concentration) and oxidant (H2O2) concentration. We further demonstrate that silver ions, formed by the oxidation of silver, can diffuse upwards and re-nucleate on the sidewalls of nanowires to initiate new etching pathways to produce porous structure. The elucidation of this fundamental formation mechanism opens a rational pathway to the production of wafer-scale single crystalline porous silicon nanowires with tunable surface areas ranging from 370 m2·g−1 to 30 m2·g−1, and can enable exciting opportunities in catalysis, energy harvesting, conversion, storage, as well as biomedical imaging and therapy. PMID:21244020

  3. Oxygen reduction at electrodeposited ZnO layers in alkaline solution

    International Nuclear Information System (INIS)

    Prestat, M.; Vucko, F.; Lescop, B.; Rioual, S.; Peltier, F.; Thierry, D.

    2016-01-01

    Zinc oxide (ZnO) layers were electrodeposited from an aqueous nitrate bath at 62 °C on copper substrates. At −0.9 V (vs. saturated calomel reference electrode), the growth rate is 600 nm min −1 . In the early stages of the deposition, the layers are porous. At longer deposition times, the surface becomes dense and rough. The wurtzite crystalline structure is confirmed by XRD measurements and the chemical composition of the ZnO surface was assessed by EDX and XPS. The oxygen reduction reaction (ORR) was investigated at room temperature in a 10 −3 M KOH solution with KCl as supporting electrolyte. The ORR onset potential is found to be much larger than that of platinum taken as reference electrocatalyst. Rotating ring-disk electrode experiments evidence a negligible production of hydrogen peroxide as intermediate product of the reaction. The latter follows thus a direct four-electron pathway at pH ∼11.

  4. Crystalline nanostructured Cu doped ZnO thin films grown at room temperature by pulsed laser deposition technique and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Drmosh, Qasem A. [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Rao, Saleem G.; Yamani, Zain H. [Laser Research Group, Department of Physics, Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gondal, Mohammed A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Department of Physics, Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2013-04-01

    We report structural and optical properties of Cu doped ZnO (ZnO:Cu) thin films deposited on glass substrate at room temperature by pulsed laser deposition (PLD) method without pre and post annealing contrary to all previous reports. For preparation of (ZnO:Cu) composites pure Zn and Cu targets in special geometrical arrangements were exposed to 248 nm radiations generated by KrF exciter laser. The laser energy was 200 mJ with 10 Hz frequency and 20 ns pulse width. The effect of Cu concentration on crystal structure, morphology, and optical properties were investigated by XRD, FESEM and photoluminescence spectrometer respectively. A systematic shift in ZnO (0 0 2) peak with Cu concentration observed in XRD spectra demonstrated that Cu ion has been incorporated in ZnO lattice. Uniform film with narrow size range grains were observed in FESEM images. The photoluminescence (PL) spectra measured at room temperature revealed a systematic red shift in ZnO emission peak and decrease in the band gap with the increase in Cu concentration. These results entail that PLD technique can be realized to deposit high quality crystalline ZnO and ZnO:Cu thin films without pre and post heat treatment which is normally practiced worldwide for such structures.

  5. Experimental evidence for self-assembly of CeO2 particles in solution: Formation of single-crystalline porous CeO2 nanocrystals

    DEFF Research Database (Denmark)

    Tan, Hui Ru; Tan, Joyce Pei Ying; Boothroyd, Chris

    2012-01-01

    Single-crystalline porous CeO2 nanocrystals, with sizes of ∼20 nm and pore diameters of 1-2 nm, were synthesized successfully using a hydrothermal method. Using electron tomography, we imaged the three-dimensional structure of the pores in the nanocrystals and found that the oriented aggregation ...... energy-loss spectroscopy. The oxygen vacancies might play an important role in oxygen diffusion in the crystals and the catalytic activities of single-crystalline porous CeO 2 structures. © 2011 American Chemical Society....

  6. Metal Chloride Induced Formation of Porous Polyhydroxybutyrate (PHB) Films: Morphology, Thermal Properties and Crystallinity

    Science.gov (United States)

    Tan, W. L.; Yaakob, N. N.; Zainal Abidin, A.; Abu Bakar, M.; Abu Bakar, N. H. H.

    2016-06-01

    Polyhydroxybutyrate (PHB) films with highly porous structures were synthesized using a one phase system comprising of metal chloride/methanol/PHB/chloroform (MCl2/CH3OH/PHB/CHCl3). SEM analyses confirmed that the MCl2 (where M = Cu2+ or Ni2+) induced porous structures with pore sizes ranging from 0.3 - 2.0 μm. The average pore size increased with the increasing MCl2 content. There existed weak physical interactions between the PHB chains and MCl2 as revealed by FTIR and NMR spectroscopies. The residue of MCl2 in the porous PHB film does not exert significant influence on the thermal stability of PHB. Nevertheless, the crystallinity of the prepared film is enhanced, as MCl2 acts as the nucleation sites to promote the growth of spherullites.

  7. An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film.

    Science.gov (United States)

    Yebo, Nebiyu A; Lommens, Petra; Hens, Zeger; Baets, Roel

    2010-05-24

    Optical structures fabricated on silicon-on-insulator technology provide a convenient platform for the implementation of highly compact, versatile and low cost devices. In this work, we demonstrate the promise of this technology for integrated low power and low cost optical gas sensing. A room temperature ethanol vapor sensor is demonstrated using a ZnO nanoparticle film as a coating on an SOI micro-ring resonator of 5 microm in radius. The local coating on the ring resonators is prepared from colloidal suspensions of ZnO nanoparticles of around 3 nm diameter. The porous nature of the coating provides a large surface area for gas adsorption. The ZnO refractive index change upon vapor adsorption shifts the microring resonance through evanescent field interaction. Ethanol vapor concentrations down to 100 ppm are detected with this sensing configuration and a detection limit below 25 ppm is estimated.

  8. Mechanically flexible optically transparent porous mono-crystalline silicon substrate

    KAUST Repository

    Rojas, Jhonathan Prieto; Syed, Ahad A.; Hussain, Muhammad Mustafa

    2012-01-01

    For the first time, we present a simple process to fabricate a thin (≥5μm), mechanically flexible, optically transparent, porous mono-crystalline silicon substrate. Relying only on reactive ion etching steps, we are able to controllably peel off a thin layer of the original substrate. This scheme is cost favorable as it uses a low-cost silicon <100> wafer and furthermore it has the potential for recycling the remaining part of the wafer that otherwise would be lost and wasted during conventional back-grinding process. Due to its porosity, it shows see-through transparency and potential for flexible membrane applications, neural probing and such. Our process can offer flexible, transparent silicon from post high-thermal budget processed device wafer to retain the high performance electronics on flexible substrates. © 2012 IEEE.

  9. Improved luminescence intensity and stability of thermal annealed ZnO incorporated Alq3 composite films.

    Science.gov (United States)

    Cuba, M; Muralidharan, G

    2015-11-01

    The 30 wt% of ZnO (weight percentage of ZnO has been optimised) incorporated tris- (8-hydroxyquinoline)aluminum (Alq3) has been synthesised and coated on to glass substrates using dip coating method. The structural and optical properties of the Alq3/ZnO composite film after thermal annealing from 50 to 300 °C insteps 50° has been studied and reported. XRD pattern reveals the presence of crystalline ZnO in all the annealed films. The films annealed above 150 °C reveal the presence of crystalline Alq3 along with crystalline ZnO. The FTIR spectra confirm the presence of hydroxyquinoline and ZnO vibration in all the annealed composite films. The composite films annealed above 150 °C show a partial sublimation and degradation of hydroxyquinoline compounds. The ZnO incorporated composite films (Alq3/ZnO) exhibit two emission peaks, one corresponding to ZnO at 487 nm and another at 513 nm due to Alq3. The films annealed at 200 °C exhibit maximum photoluminescence (PL) intensity than pristine film at 513 nm when excited at 390 nm.

  10. A carbon nanotube-based transparent conductive substrate for flexible ZnO dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Du, Juan; Bittner, Florian [Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3a, 30167 Hannover (Germany); Hecht, David S.; Ladous, Corinne [Unidym, 1244 Reamwood Avenue, Sunnyvale, CA (United States); Ellinger, Jan [Tesa SE, Quickbornstr. 24, 20253 Hamburg (Germany); Oekermann, Torsten, E-mail: torstensan@t-online.de [Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3a, 30167 Hannover (Germany); Wark, Michael, E-mail: michael.wark@techem.ruhr-uni-bochum.de [Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3a, 30167 Hannover (Germany); Laboratory of Industrial Chemistry, Ruhr University Bochum, Universitaetsstr. 150, 44801 Bochum (Germany)

    2013-03-01

    A transparent carbon nanotube (CNT)-coated polyethylenterephthalat film was used as conducting substrate for the photoanode of a flexible ZnO-based dye-sensitized solar cell (DSSC). The porous ZnO films were fabricated by an electrochemical deposition method at low temperature. Electrochemical impedance spectroscopy revealed that the CNT/ZnO interface adds to the overall impedance of the cell, leading to a higher series resistance compared to DSSCs based on substrates employing a transparent conducting oxide. Nevertheless, an overall conversion efficiency of 2.5% was obtained with porous ZnO films electrodeposited on the CNT substrate for 60 min. Thicker films led to an increased loss by recombination, which could not be compensated by faster electron transport due to the decrease of the light intensity inside the ZnO film with increasing distance from the back contact. - Highlights: ► ZnO was electrochemically deposited on carbon nanotube (CNT) coated polymer. ► Highly porous ZnO was obtained at temperatures not exceeding 70 °C. ► The porous ZnO was tested as photoanode in dye-sensitized solar cells. ► Conversion efficiency of 2.5% was found on the high resistance CNT substrates. ► Barriers formed at the CNT–ZnO interface are determined by impedance spectroscopy.

  11. A carbon nanotube-based transparent conductive substrate for flexible ZnO dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Du, Juan; Bittner, Florian; Hecht, David S.; Ladous, Corinne; Ellinger, Jan; Oekermann, Torsten; Wark, Michael

    2013-01-01

    A transparent carbon nanotube (CNT)-coated polyethylenterephthalat film was used as conducting substrate for the photoanode of a flexible ZnO-based dye-sensitized solar cell (DSSC). The porous ZnO films were fabricated by an electrochemical deposition method at low temperature. Electrochemical impedance spectroscopy revealed that the CNT/ZnO interface adds to the overall impedance of the cell, leading to a higher series resistance compared to DSSCs based on substrates employing a transparent conducting oxide. Nevertheless, an overall conversion efficiency of 2.5% was obtained with porous ZnO films electrodeposited on the CNT substrate for 60 min. Thicker films led to an increased loss by recombination, which could not be compensated by faster electron transport due to the decrease of the light intensity inside the ZnO film with increasing distance from the back contact. - Highlights: ► ZnO was electrochemically deposited on carbon nanotube (CNT) coated polymer. ► Highly porous ZnO was obtained at temperatures not exceeding 70 °C. ► The porous ZnO was tested as photoanode in dye-sensitized solar cells. ► Conversion efficiency of 2.5% was found on the high resistance CNT substrates. ► Barriers formed at the CNT–ZnO interface are determined by impedance spectroscopy

  12. Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al2O3 on Li ion battery electrodes

    International Nuclear Information System (INIS)

    Sharma, Kashish; Routkevitch, Dmitri; Varaksa, Natalia; George, Steven M.

    2016-01-01

    Spatial atomic layer deposition (S-ALD) was examined on flexible porous substrates utilizing a rotating cylinder reactor to perform the S-ALD. S-ALD was first explored on flexible polyethylene terephthalate polymer substrates to obtain S-ALD growth rates on flat surfaces. ZnO ALD with diethylzinc and ozone as the reactants at 50 °C was the model S-ALD system. ZnO S-ALD was then performed on nanoporous flexible anodic aluminum oxide (AAO) films. ZnO S-ALD in porous substrates depends on the pore diameter, pore aspect ratio, and reactant exposure time that define the gas transport. To evaluate these parameters, the Zn coverage profiles in the pores of the AAO films were measured using energy dispersive spectroscopy (EDS). EDS measurements were conducted for different reaction conditions and AAO pore geometries. Substrate speeds and reactant pulse durations were defined by rotating cylinder rates of 10, 100, and 200 revolutions per minute (RPM). AAO pore diameters of 10, 25, 50, and 100 nm were utilized with a pore length of 25 μm. Uniform Zn coverage profiles were obtained at 10 RPM and pore diameters of 100 nm. The Zn coverage was less uniform at higher RPM values and smaller pore diameters. These results indicate that S-ALD into porous substrates is feasible under certain reaction conditions. S-ALD was then performed on porous Li ion battery electrodes to test S-ALD on a technologically important porous substrate. Li 0.20 Mn 0.54 Ni 0.13 Co 0.13 O 2 electrodes on flexible metal foil were coated with Al 2 O 3 using 2–5 Al 2 O 3 ALD cycles. The Al 2 O 3 ALD was performed in the S-ALD reactor at a rotating cylinder rate of 10 RPM using trimethylaluminum and ozone as the reactants at 50 °C. The capacity of the electrodes was then tested versus number of charge–discharge cycles. These measurements revealed that the Al 2 O 3 S-ALD coating on the electrodes enhanced the capacity stability. This S-ALD process could be extended to roll-to-roll operation for

  13. Effective electron collection in highly (110)-oriented ZnO porous nanosheet framework photoanode

    International Nuclear Information System (INIS)

    Wang Xiangyan; Tian Zhipeng; Yu Tao; Tian Hanmin; Zhang Jiyuan; Yuan Shikui; Zhang Xiaobo; Li Zhaosheng; Zou Zhigang

    2010-01-01

    A highly (110)-oriented ZnO porous nanosheet framework is designed as the photoanode in photoelectrochemical systems, by virtue of its anisotropic electronic properties. It can be facilely prepared in large scale via a hydrothermal method. X-ray diffraction (XRD) analyses show that the orientation index of the (110) diffraction plane is 3.54, indicating the films possess (110) preferred orientation. Field-emission scanning electron microscope (FE-SEM) images exhibit that most of the nanosheets stand nearly perpendicularly on the substrate. The {002} lattice planes work just like conducting wires and induce the electrons to transport to the substrate. Chronoamperometry measurement demonstrates an effective electron collection. When the nanostructured photoanode is introduced to dye-sensitized solar cells, a conversion efficiency of 3.7% is obtained. The photoanode also has potential application in the other photoelectrochemical systems, such as photocatalytical splitting of water.

  14. Anodized ZnO nanostructures for photoelectrochemical water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Mao-Chia [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China); Wang, TsingHai [Department of Biomedical Engineering and Environment Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, Bin-Jui [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China); Lin, Jing-Chie, E-mail: jclin4046@gmail.com [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China); Wu, Ching-Chen [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan (China)

    2016-01-01

    Highlights: • ZnO nanostructures were synthesized by electrochemical anodic process. • The parameter of ZnO nanostructure was anodic potential. • The model of growth of ZnO nanostructure was investigated. - Abstract: Zinc oxide (ZnO) nanostructures were fabricated on the polished zinc foil by anodic deposition in an alkaline solution containing 1.0 M NaOH and 0.25 M Zn(NO{sub 3}){sub 2}. Potentiostatic anodization was conducted at two potentials (−0.7 V in the passive region and −1.0 V in the active region vs. SCE) which are higher than the open circuit potential (−1.03 V vs. SCE) and as-obtained ZnO nanostrcutures were investigated focusing on their structural, optical, electrical and photoelectrochemical (PEC) characteristics. All samples were confirmed ZnO by X-ray photoelectron spectroscopy and Raman spectra. Observations in the SEM images clearly showed that ZnO nanostructures prepared at −0.7 V vs. SCE were composed of nanowires at while those obtained at −1.0 V vs. SCE possessed nanosheets morphology. Result from transmission electron microscope and X-ray diffraction patterns suggested that the ZnO nanowires belonged to single crystalline with a preferred orientation of (0 0 2) whereas the ZnO nanosheets were polycrystalline. Following PEC experiments indicated that ZnO nanowires had higher photocurrent density of 0.32 mA/cm{sup 2} at 0.5 V vs. SCE under 100 mW/cm{sup 2} illumination. This value was about 1.9 times higher than that of ZnO nanosheets. Observed higher photocurrent was likely due to the single crystalline, preferred (0 0 2) orientation, higher carrier concentration and lower charge transfer resistance.

  15. Hybrid ZnO:polymer bulk heterojunction solar cells from a ZnO precursor

    NARCIS (Netherlands)

    Beek, W.J.E.; Slooff, L.H.; Wienk, M.M.; Kroon, J.M.; Janssen, R.A.J.; Kafafi, Z.H.

    2005-01-01

    We describe a simple and new method to create hybrid bulk heterojunction solar cells consisting of ZnO and conjugated polymers. A gel-forming ZnO precursor, blended with conjugated polymers, is converted into crystalline ZnO at temperatures as low as 110 °C. In-situ formation of ZnO in MDMO-PPV

  16. Wafer-Scale High-Throughput Ordered Growth of Vertically Aligned ZnO Nanowire Arrays

    KAUST Repository

    Wei, Yaguang; Wu, Wenzhuo; Guo, Rui; Yuan, Dajun; Das, Suman; Wang, Zhong Lin

    2010-01-01

    -synthesized morphology. The development of textured ZnO seed layers for replacing single crystalline GaN and ZnO substrates extends the large-scale fabrication of vertically aligned ZnO NW arrays on substrates of other materials, such as polymers, Si, and glass

  17. Starch assisted growth of dumbbell-shaped ZnO microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Baranwal, V., E-mail: vikasphy@gmail.com [Nanotechnology Application Centre, University of Allahabad, Allahabad 21002 (India); Zahra, Abeer [Department of Physics, Integral University, Lucknow 226026 (India); Singh, Prashant K.; Pandey, Avinash C. [Nanotechnology Application Centre, University of Allahabad, Allahabad 21002 (India)

    2015-10-15

    We present an experimental study on evolution of dumbbell-shaped ZnO microstructures. Structure, shape, size and optical properties were monitored by means of scanning electron microscopy, x-ray diffraction, and photoluminescence spectroscopy, respectively. Our results show that a crystalline phase of ZnO is formed. A uniform distribution of randomly oriented dumbbell-shaped ZnO microstructures is observed. Near band edge as well as deep level visible emissions confirmed that there are intrinsic defects present in the system. Emissions extending from UV region to visible region show that these microstructures are good quality optical material which can be used in photocatalytic field. - Highlights: • Dumbbell-shaped ZnO micro-rods were synthesized by starch assisted hydrothermal process. • Micro-rods were of crystalline nature, confirmed by x-ray diffraction. • UV-emission as well as deep level visible emissions were observed. • Broad absorption band is observed which can be utilized in photocatalytic field.

  18. Growth of vertically aligned ZnO nanorods using textured ZnO films

    Directory of Open Access Journals (Sweden)

    Meléndrez Manuel

    2011-01-01

    Full Text Available Abstract A hydrothermal method to grow vertical-aligned ZnO nanorod arrays on ZnO films obtained by atomic layer deposition (ALD is presented. The growth of ZnO nanorods is studied as function of the crystallographic orientation of the ZnO films deposited on silicon (100 substrates. Different thicknesses of ZnO films around 40 to 180 nm were obtained and characterized before carrying out the growth process by hydrothermal methods. A textured ZnO layer with preferential direction in the normal c-axes is formed on substrates by the decomposition of diethylzinc to provide nucleation sites for vertical nanorod growth. Crystallographic orientation of the ZnO nanorods and ZnO-ALD films was determined by X-ray diffraction analysis. Composition, morphologies, length, size, and diameter of the nanorods were studied using a scanning electron microscope and energy dispersed x-ray spectroscopy analyses. In this work, it is demonstrated that crystallinity of the ZnO-ALD films plays an important role in the vertical-aligned ZnO nanorod growth. The nanorod arrays synthesized in solution had a diameter, length, density, and orientation desirable for a potential application as photosensitive materials in the manufacture of semiconductor-polymer solar cells. PACS 61.46.Hk, Nanocrystals; 61.46.Km, Structure of nanowires and nanorods; 81.07.Gf, Nanowires; 81.15.Gh, Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.

  19. Surface potential driven dissolution phenomena of [0 0 0 1]-oriented ZnO nanorods grown from ZnO and Pt seed layers

    Science.gov (United States)

    Seo, Youngmi; Kim, Jung Hyeun

    2011-06-01

    Highly oriented ZnO nanorods are synthesized hydrothermally on ZnO and Pt seed layers, and they are dissolved in KOH solution. The rods grown on ZnO seed layer show uniform dissolution, but those grown on Pt seed layer are rod-selectively dissolved. The ZnO nanorods from both seed layers show the same crystalline structure through XRD and Raman spectrometer data. However, the surface potential analysis reveals big difference for ZnO and Pt seed cases. The surface potential distribution is very uniform for the ZnO seed case, but it is much fluctuated on the Pt seed case. It suggests that the rod-selective dissolution phenomena on Pt seed case are likely due to the surface energy difference.

  20. Optical and structural properties of porous zinc oxide fabricated via electrochemical etching method

    International Nuclear Information System (INIS)

    Ching, C.G.; Lee, S.C.; Ooi, P.K.; Ng, S.S.; Hassan, Z.; Hassan, H. Abu; Abdullah, M.J.

    2013-01-01

    Highlights: • Hillock like porous structure zinc oxide was obtained via electrochemical etching. • Anisotropic dominance etching process by KOH etchant. • Reststrahlen features are sensitive to multilayer porous structure. • Determination of porosity from IR reflectance spectrum. -- Abstract: We investigated the optical and structural properties of porous zinc oxide (ZnO) thin film fabricated by ultraviolet light-assisted electrochemical etching. This fabrication process used 10 wt% potassium hydroxide solution as an electrolyte. Hillock-like porous ZnO films were successfully fabricated according to the field emission scanning electron microscopy results. The cross-sectional study of the sample indicated that anisotropic-dominated etching process occurred. However, the atomic force microscopic results showed an increase in surface roughness of the sample after electrochemical etching. A resonance hump induced by the porous structure was observed in the infrared reflectance spectrum. Using theoretical modeling technique, ZnO porosification was verified, and the porosity of the sample was determined

  1. H{sub 2}O{sub 2}-molecular beam epitaxy of high quality ZnO

    Energy Technology Data Exchange (ETDEWEB)

    El Shaer, A.; Bakin, A.; Che Mofor, A.; Kreye, M.; Waag, A. [Technical University Braunschweig, Institute of Semiconductor Technology, Braunschweig (Germany); Blaesing, J.; Krost, A. [Otto-von-Guericke-University, Institute of Experimental Physics, Magdeburg (Germany); Stoimenos, J. [Aristotele University, Physics Department, Thessaloniki (Greece); Pecz, B. [Hungarian Academy of Sciences, Research Institute for Technical Physics and Materials Science, P.O. Box 49, Budapest (Hungary)

    2007-07-15

    We have studied the growth and characterization of ZnO epilayers on (0001)-sapphire by H{sub 2}O{sub 2}-molecular beam epitaxy (MBE). A high temperature (HT) MgO buffer followed by a low-temperature ZnO buffer was introduced in order to accommodate the lattice mismatch between ZnO and sapphire. The surface morphology of the samples was studied using atomic force microscopy (AFM), and scanning electron microscopy (SEM). The crystalline quality of the layers was investigated by employing high resolution X-ray diffractometry (HRXRD) and high resolution transmission electron microscopy (HRTEM). The electrical properties of the grown ZnO layers were studied by Hall-effect measurements in a standard van der Pauw configuration. The measured surface roughness for the best layers is as low as 0.26 nm rms. HRXRD measurements of the obtained ZnO layers show excellent quality of the single crystalline ZnO heteroepitaxially grown on (0001)-sapphire with a HT MgO buffer layers. The influence of the growth conditions on the crystalline quality is discussed. The FWHM of the HRXRD (0002) rocking curves measured for the 2-inch ZnO-on-sapphire is as low as 27 arcsec with a very high lateral homogeneity across the whole 2-inch ZnO epilayers. The results indicate that H{sub 2}O{sub 2}-MBE is a suitable technique to fabricate ZnO epilayers of very high quality. (orig.)

  2. Hydrothermal growth and characterizations of dandelion-like ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Rohidas B., E-mail: rb_kale@yahoo.co.in [Department of Physics, The Institute of Science, Madam Cama Road, Mumbai 400 032, (M.S.) (India); Lu, Shih-Yuan, E-mail: sylu@nthu.edu.tw [Department of Chemical Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2013-12-05

    Highlights: •The simple, low cost, environmental benign hydrothermal method has been used to synthesize ZnO nanostructure. •The SEM images reveal the interesting 3D dandelion-like morphology of synthesized ZnO nanostructure. The SAED pattern and HRTEM study confirms that the ZnO nanorods are single crystalline. •Change in experimental conditions dramatically changes the morphologies of the synthesized ZnO. •The room temperature PL study reveals strong band edge emission along with much weaker defect related blue emission. •The reaction and growth mechanism of ZnO nanostructure is also discussed. -- Abstract: Three dimensional (3D) ZnO nanostructures have been synthesized by using a facile low-cost hydrothermal method under mild conditions. Aqueous alkaline ammonia solution of Zn(CH{sub 3}COO){sub 2} is used to grow 3D ZnO nanostructures. The X-ray diffraction (XRD) study reveals the well crystallized hexagonal structure of ZnO. SEM observations depict that the ZnO product grows in the form of nanorods united together to form 3D dandelion-like nanostructures. The elemental analysis using EDAX technique confirms the stoichiometry of the ZnO nanorods. The product exhibits special optical properties with red-shifts in optical absorption peak (376 nm) as compared with those of conventional ZnO nanorods. PL spectra show emission peak (396 nm) at the near band-edge and peak (464 nm) originated from defects states that are produced during the hydrothermal growth. TEM and SAED results reveal single crystalline structure of the synthesized product. The reaction and growth mechanisms on the morphological evolution of the ZnO nanostructures are discussed. The morphology of ZnO product is investigated by varying the reaction time, temperature, and type of complexing reagent.

  3. Morphological transition of ZnO nanostructures influenced by magnesium doping

    International Nuclear Information System (INIS)

    Premkumar, T.; Zhou, Y.S.; Gao, Y.; Baskar, K.; Jiang, L.; Lu, Y.F.

    2012-01-01

    Wurtzite zinc oxide (ZnO) nanochains have been synthesized through high-pressure pulsed laser deposition. The chain-like ZnO nanostructures were obtained from magnesium (Mg) doped ZnO targets, whereas vertically aligned nanorods were obtained from primitive ZnO targets. The Mg doping has influenced the morphological transition of ZnO nanostructures from nanorods to nanochains. The field emission scanning electron microscope images revealed the growth of beaded ZnO nanochains. The ZnO nanochains of different diameters 40 and 120 nm were obtained. The corresponding micro-Raman spectra showed strong E 2H mode of ZnO, which confirmed the good crystallinity of the nanochains. In addition to near band edge emission at 3.28 eV, ZnO nanochains show broad deep level emission at 2.42 eV than that of ZnO nanorods.

  4. Synthesis, characterization and photocatalysis enhancement of Eu2O3-ZnO mixed oxide nanoparticles

    Science.gov (United States)

    Mohamed, W. S.; Abu-Dief, Ahmed M.

    2018-05-01

    Pure ZnO nanoparticles (NPs) and mixed Eu2O3 and ZnO NPs with different Eu2O3 ratios (5%, 10%, and 15%) were synthesized by a precipitation method under optimum conditions. The synthesized samples were characterized by means of X-ray diffraction, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and UV-vis diffuse reflectance spectroscopy. The as-synthesized ZnO NPs exhibit high phase purity and a highly crystalline wurtzite ZnO structure. The mixed Eu2O3 and ZnO NPs exhibit a Eu2O3 zinc blend phase in addition to the wurtzite phase of pure ZnO, confirming the high purity and good crystallinity of the as-synthesized samples. The high-purity formation of ZnO and Eu2O3 phases was confirmed by FTIR and Raman spectra. Microstructural analysis by SEM and TEM confirmed the sphere-like morphology with different particle sizes (29-40 nm) of the as-synthesized samples. The photocatalytic activities of pure ZnO NPs and mixed Eu2O3 and ZnO NPs for the degradation of methylene blue were evaluated under ultraviolet (UV) irradiation. The results show that Eu2O3 plays an important role in the enhancement of the photocatalytic properties of ZnO NPs. We found that mixed 5% Eu2O3 and ZnO NPs exhibit the highest photocatalytic activity (degradation efficiency of 96.5% after 180 min of UV irradiation) as compared with pure ZnO NPs (degradation efficiency of 80.3% after 180 min of UV irradiation). The increased photocatalytic activity of the optimum mixed Eu2O3 and ZnO NPs is due to the high crystallinity, high surface area with small particle size, and narrow energy gap.

  5. Ultra-high sensitive hydrazine chemical sensor based on low-temperature grown ZnO nanoparticles

    International Nuclear Information System (INIS)

    Mehta, S.K.; Singh, Kulvinder; Umar, Ahmad; Chaudhary, G.R.; Singh, Sukhjinder

    2012-01-01

    Graphical abstract: Systematic representation of the fabricated amperometric hydrazine chemical sensor based on ZnO NPs/Au modified electrode. Highlights: ► Synthesis of well-crystalline ZnO NPs has been achieved in aqueous solution. ► ZnO NPs act as efficient electron mediators for hydrazine sensor. ► Extremely high sensitivity and low-detection limit have been obtained. - Abstract: Using well-crystalline ZnO nanoparticles (NPs), an ultra high sensitive hydrazine amperometric sensor has been fabricated and reported in this paper. The ZnO NPs have been synthesized by very simple aqueous solution process at 90 °C and characterized in detail in terms of their morphological, compositional, structural and optical properties. The detailed investigations reveal that the synthesized products are well-crystalline NPs, possessing wurtzite hexagonal phase and exhibit good optical properties. The fabricated amperometric hydrazine sensor exhibits ultra-high sensitivity of ∼97.133 μA cm −2 μM −1 and very low-detection limit of 147.54 nM. To the best of our knowledge, this is the first report in which an ultra-high sensitivity and low-detection limit have been obtained for the hydrazine chemical sensor based on ZnO nanostructures.

  6. Crystallinity improvement of ZnO nanorods by optimization of low-cost electrodeposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Özdal, Teoman, E-mail: teomanozdal@hotmail.com; Taktakoğlu, Renna; Özdamar, Havva; Esen, Mehmet; Takçı, Deniz Kadir; Kavak, Hamide

    2015-10-01

    Extremely low-cost electrodeposition technique was developed to deposit ZnO nanorods. The growth process was performed using standard DC power supply, milliammeter and two-electrode electrochemical cell. The deposition was carried out on indium tin oxide (ITO) coated glass substrates by changing deposition parameters such as cathodic deposition current and time, solution molarity and temperature. The parameters varied to obtain optimum transparent semiconductor material for optoelectronic applications. Structural characterizations by X-ray diffraction (XRD) indicate the formation of polycrystalline phase ZnO with strong c-axis orientation and were sensitive to deposition temperatures and molarity as well. Average optical transmittance for the best two ZnO nanorod series was around 60% and 42%, respectively. The optical energy band gap of the ZnO nanorods decreased from 3.24 eV to 3.21 eV as the deposition time increased. All the nanorods were n-type with a high carrier concentration of 1 × 10{sup 20} cm{sup −3} and low 1–2 × 10{sup −3} Ωcm resistivity. - Highlights: • n-Type ZnO nanorods were electrochemically deposited employing standard DC power supply and milliammeter. • ZnO nanorods show very good polycrystalline and electrical properties consistent with the literature. • ZnO nanorod structures are hexagonal wurtzite and highly oriented along the c-axis perpendicular to the substrates. • Produced ZnO nanorod structures show good transparent conductive oxide properties.

  7. Ultrafast photodynamics of the indoline dye D149 adsorbed to porous ZnO in dye-sensitized solar cells.

    Science.gov (United States)

    Rohwer, Egmont; Richter, Christoph; Heming, Nadine; Strauch, Kerstin; Litwinski, Christian; Nyokong, Tebello; Schlettwein, Derck; Schwoerer, Heinrich

    2013-01-14

    We investigate the ultrafast dynamics of the photoinduced electron transfer between surface-adsorbed indoline D149 dye and porous ZnO as used in the working electrodes of dye-sensitized solar cells. Transient absorption spectroscopy was conducted on the dye in solution, on solid state samples and for the latter in contact to a I(-)/I(3)(-) redox electrolyte typical for dye-sensitized solar cells to elucidate the effect of each component in the observed dynamics. D149 in a solution of 1:1 acetonitrile and tert-butyl alcohol shows excited-state lifetimes of 300±50 ps. This signature is severely quenched when D149 is adsorbed to ZnO, with the fastest component of the decay trace measured at 150±20 fs due to the charge-transfer mechanism. Absorption bands of the oxidized dye molecule were investigated to determine regeneration times which are in excess of 1 ns. The addition of the redox electrolyte to the system results in faster regeneration times, of the order of 1 ns. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Growth of compact arrays of optical quality single crystalline ZnO

    Indian Academy of Sciences (India)

    We report the synthesis and optical properties of compact and aligned ZnO nanorod arrays (dia, ∼ 50–200 nm) grown on a glass substrate with varying seed particle density. The suspension of ZnO nanoparticles (size, ∼ 15 nm) of various concentrations are used as seed layer for the growth of nanorod arrays via ...

  9. Formation of different micro-morphologies from VO2 and ZnO crystallization using macro-porous silicon substrates

    Science.gov (United States)

    Salazar-Kuri, U.; Antúnez, E. E.; Estevez, J. O.; Olive-Méndez, Sion F.; Silva-González, N. R.; Agarwal, V.

    2017-05-01

    Square-shaped macropores produced by electrochemical anodization of n- and p-type Si wafers have been used as centers of nucleation to crystallize VO2 and ZnO. Substrate roughness dependent formation of different morphologies is revealed in the form of squared particles, spheres, bars and ribbons in the case of VO2 and hexagonal piles and spheres in the case of ZnO, have been observed.The presence of nano-/micro-metric crystals was studied through field emission scanning electron microscopy and energy dispersive X-ray spectroscopy mapping. Crystal structure of metal oxides was confirmed by micro-Raman spectroscopy. The growth of the different morphologies has been explained in terms of the surface free energy of a bare Si/SiO2 substrate and its modification originated from the roughness of the surface and of the walls of the porous substrates. This energy plays a crucial role on the minimization of the required energy to induce heterogeneous nucleation and crystal growth. Present work strengthens and provides an experimental evidence of roughness dependent metal oxide crystal growth with well-defined habits from pore corners and rough sides of the pore walls, similar to already reported protein crystals.

  10. Synthesis of ordered large-scale ZnO nanopore arrays

    International Nuclear Information System (INIS)

    Ding, G.Q.; Shen, W.Z.; Zheng, M.J.; Fan, D.H.

    2006-01-01

    An effective approach is demonstrated for growing ordered large-scale ZnO nanopore arrays through radio-frequency magnetron sputtering deposition on porous alumina membranes (PAMs). The realization of highly ordered hexagonal ZnO nanopore arrays benefits from the unique properties of ZnO (hexagonal structure, polar surfaces, and preferable growth directions) and PAMs (controllable hexagonal nanopores and localized negative charges). Further evidence has been shown through the effects of nanorod size and thermal treatment of PAMs on the yielded morphology of ZnO nanopore arrays. This approach opens the possibility of creating regular semiconducting nanopore arrays for the application of filters, sensors, and templates

  11. Characteristics of strontium-doped ZnO films on love wave filter applications

    International Nuclear Information System (INIS)

    Water, Walter; Yan, Y.-S.

    2007-01-01

    The effect of dopant concentrations in strontium-doped ZnO films on Love wave filter characteristics was investigated. Strontium-doped ZnO films with a c-axis preferred orientation were grown on ST-cut quartz by radio frequency magnetron sputtering. The crystalline structures and surface morphology of films were studied by X-ray diffraction, scanning electron microscopy and atomic force microscopy. The electromechanical coupling coefficient, dielectric constant, and temperature coefficient of frequency of filters were then determined using a network analyzer. A uniform crystalline structure and smooth surface of the ZnO films were obtained at the 1-2 mol% strontium dopant level. The electromechanical coupling coefficient of the 1 mol% strontium-doped ZnO film reaches a maximum of 0.61%, and the temperature coefficient of frequency declines to + 12.87 ppm/deg. C at a 1.5 mol% strontium dopant level

  12. Fabrication and thermal oxidation of ZnO nano fibers prepared via electro spinning technique

    International Nuclear Information System (INIS)

    Baek, Jeongha; Park, Juyun; Kim, Don; Kang, Yongcheol; Koh, Sungwi; Kang, Jisoo

    2012-01-01

    Materials on the scale of nano scale have widely been used as research topics because of their interesting characteristics and aspects they bring into the field. Out of the many metal oxides, zinc oxide (ZnO) was chosen to be fabricated as nano fibers using the electro spinning method for potential uses of solar cells and sensors. After ZnO nano fibers were obtained, calcination temperature effects on the ZnO nano fibers were studied and reported here. The results of scanning electron microscopy (SEM) revealed that the aggregation of the ZnO nano fibers progressed by calcination. X-ray diffraction (XRD) study showed the hcp ZnO structure was enhanced by calcination at 873 and 1173 K. Transmission electron microscopy (TEM) confirmed the crystallinity of the calcined ZnO nano fibers. X-ray photoelectron spectroscopy (XPS) verified the thermal oxidation of Zn species by calcination in the nano fibers. These techniques have helped US deduce the facts that the diameter of ZnO increases as the calcination temperature was raised; the process of calcination affects the crystallinity of ZnO nano fibers, and the thermal oxidation of Zn species was observed as the calcination temperature was raised

  13. NANO CRYSTALLINE ZnO CATALYZED ONE POT THREE ...

    African Journals Online (AJOL)

    advances in nanoscience and nanotechnology have led to new research interests in using nanometer-sized particles as .... dichloromethane and then filtered to separate the nano ZnO catalyst. ..... 104, 4063. 31. Matsubara, K.; Fons, P.; Iwata, K.; Yamada, A.; Sakurai, K.; Tampo, N.; Niki, S. Thin Solid. Films 2003, 431, 369.

  14. Photoactivity of N-doped ZnO nanoparticles in oxidative and reductive reactions

    Science.gov (United States)

    Oliveira, Jéssica A.; Nogueira, André E.; Gonçalves, Maria C. P.; Paris, Elaine C.; Ribeiro, Caue; Poirier, Gael Y.; Giraldi, Tania R.

    2018-03-01

    N-doped ZnO is a prospective material for photocatalytic reactions. However, only oxidative paths are well investigated in the literature. This paper describes a comparative study about ZnO and ZnO:N potential for oxidative and reductive reactions, probed by rhodamine B dye photodegradation and CO2 photoreduction. The materials were prepared by the polymeric precursor method, using urea as a nitrogen source, and different heat treatments were used to observe their effects on surface decontamination, crystallinity, particle sizes and shapes, and photocatalytic performance. ZnO and ZnO:N presented a wurtzite crystalline structure and nanometric-scale particles. Samples submitted to higher temperatures showed lower specific surface areas, but higher crystallinity and lower contents of species adsorbed on their surfaces. On the other hand, the photocatalysts annealed in shorter times presented smaller crystallite sizes and lower crystallinity. These factors influenced the photoactivity in both conditions, i.e., oxidation and reduction reactions, under the ultraviolet and visible light, indicating that structural factors influenced the adequate charge separation and consequent photocatalytic activity since the as-synthesized samples were versatile photocatalysts in both redox reactions.

  15. Crystallinity Improvement of ZnO Thin Film on Different Buffer Layers Grown by MBE

    Directory of Open Access Journals (Sweden)

    Shao-Ying Ting

    2012-01-01

    Full Text Available The material and optical properties of ZnO thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the ZnO layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality ZnO thin film growth. A GaN buffer layer slightly increased the quality of the ZnO thin film, but the threading dislocations still stretched along the c-axis of the GaN layer. The use of MgO as the buffer layer decreased the surface roughness of the ZnO thin film by 58.8% due to the suppression of surface cracks through strain transfer of the sample. From deep level emission and rocking curve measurements it was found that the threading dislocations play a more important role than oxygen vacancies for high-quality ZnO thin film growth.

  16. Mn{sup 2+} ions distribution in doped sol–gel deposited ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Stefan, Mariana, E-mail: mstefan@infim.ro [National Institute of Materials Physics, P.O. Box MG-7, 077125 Magurele (Romania); Ghica, Daniela; Nistor, Sergiu V.; Maraloiu, Adrian V. [National Institute of Materials Physics, P.O. Box MG-7, 077125 Magurele (Romania); Plugaru, Rodica [National Institute for R & D in Microtechnologies (IMT), Erou Iancu Nicolae Str. 126A, 077190 Bucharest (Romania)

    2017-02-28

    Highlights: • Several Mn{sup 2+} centers observed by EPR in sol–gel ZnO films. • Mn{sup 2+} ions localized at Zn{sup 2+} sites in ZnO grains and disordered ZnO phase. • Sixfold coordinated Mn{sup 2+} ions localized in inter-grain region. • Aggregated Mn in insular-like regions between ZnO grains in the ZnO:5%Mn film. • Aggregated Mn phase presence and distribution observed by EPR and EDX-STEM. - Abstract: The localization and distribution of the Mn{sup 2+} ions in two sol–gel deposited ZnO films doped with different manganese concentrations were investigated by electron paramagnetic resonance spectroscopy and analytical transmission electron microscopy. In the lightly doped sample the Mn{sup 2+} ions are mainly localized substitutionally at isolated tetrahedrally coordinated Zn{sup 2+} sites in both crystalline ZnO nanograins (34%) and surrounding disordered ZnO (52%). In the highly doped ZnO film, a much smaller proportion of manganese substitutes Zn{sup 2+} in the crystalline and disordered ZnO (10%). The main amount (85%) of manganese aggregates in a secondary phase as an insular-like distribution between the ZnO nanograins. The remaining Mn{sup 2+} ions (14% and 5% at low and high doping levels, respectively) are localized at isolated, six-fold coordinated sites, very likely in the disordered intergrain region. Annealing at 600 °C induced changes in the Mn{sup 2+} ions distribution, reflecting the increase of the ZnO crystallization degree, better observed in the lightly doped sample.

  17. Room-temperature ferromagnetic properties of Cu-doped ZnO rod ...

    Indian Academy of Sciences (India)

    We have investigated properties of the Cu-doped ZnO crystalline film synthesized by the hydrothermal method. X-ray diffraction and X-ray ... DMSs are semiconducting alloys whose lattice is made up in part of substitutional magnetic ... investigate Cu-doped ZnO system (Hou et al 2007a, b), as. Cu is a potential magnetic ion ...

  18. Preparation of binder-free porous ultrathin Ni(OH)2 nanoleafs using ZnO as pore forming agent displaying both high mass loading and excellent electrochemical energy storage performance

    International Nuclear Information System (INIS)

    Xu, Panpan; Miao, Chenxu; Cheng, Kui; Ye, Ke; Yin, Jinling; Cao, Dianxue; Wang, Guiling; Zhang, Xianfa

    2016-01-01

    Highlights: • Porous Ni(OH) 2 nanoleaf is prepared by using ZnO as pore forming agent. • The mass loading of active material on binder-free Ni(OH) 2 /NF electrode is as high as 10 mg. • The porous Ni(OH) 2 /NF electrode displays high specific capacitance of 1142C g −1 . - Abstract: Ni(OH) 2 has been reported widely as one of the most promising supercapactior electrode materials due to its high specific capacitance, yet which were only based on low mass loading. Thus, it is desirable to promote supercapacitor performance for high mass loading Ni(OH) 2 through optimizing microstructure. In this work, we first prepared crossed ultrathin Ni(OH) 2 /ZnO nanoleafs directly grown on nickel foam via hydrothermal method, and then we produced pores on the nanoleafs by dissolving ZnO in alkaline solution. Definitely, this unique structure design for high mass loading binder-free Ni(OH) 2 electrode could benefit the penetration of electrolyte and the transportation of electrons, efficiently improving the supercapacitor performance. The obtained porous Ni(OH) 2 /NF electrode exhibits a mass specific capacity of 1142C g −1 based on 10 mg active materials, equating to a areal specific capaciy of 11.4C cm −2 , and pleasant cycling stability with retention of 85% of initial capacity after 10000 charge-discharge cycles. The fabricated asymmetric device shows a high energy density of 42 Wh kg −1 (4.73 mWh cm −3 ) at power density of 105 W kg −1 (17 mW cm −3 ). These results demonstrate the optimized structure makes the high mass loading binder-free Ni(OH) 2 /NF electrode could also display excellent supercapacitor performance.

  19. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuping; Li, Chengchen [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Chen, Mingming, E-mail: andychain@live.cn [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Yu, Xiao; Chang, Yunwei [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Chen, Anqi [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); Zhu, Hai, E-mail: zhuhai5@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); Tang, Zikang, E-mail: zktang@umac.mo [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); The Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau (China)

    2016-12-09

    In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future. - Highlights: • High-quality aligned ZnO nanowires were obtained via modified chemical vapor deposition under atmospheric pressure. • The semi-open quartz tube plays very important roles in growing ZnO nanowires. • The transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber.

  20. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition

    International Nuclear Information System (INIS)

    Zhao, Yuping; Li, Chengchen; Chen, Mingming; Yu, Xiao; Chang, Yunwei; Chen, Anqi; Zhu, Hai; Tang, Zikang

    2016-01-01

    In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future. - Highlights: • High-quality aligned ZnO nanowires were obtained via modified chemical vapor deposition under atmospheric pressure. • The semi-open quartz tube plays very important roles in growing ZnO nanowires. • The transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber.

  1. Morphological and Relative Humidity Sensing Properties of Pure ZnO Nanomaterial

    Directory of Open Access Journals (Sweden)

    N. K. Pandey

    2010-11-01

    Full Text Available In this paper we report the resistive type humidity sensing properties of pure ZnO nanomaterial prepared by solid-state reaction method. Pellets of pure ZnO nanocrystalline powder have been made with 10 weight % of glass powder at pressure of 260 MPa by hydraulic press machine for 3 hours. These pellets have been sintered at temperatures 200 °C - 500 °C in an electric muffle furnace for 3 hours at heating rate of 5°C/min. After sintering, these pellets have been exposed to humidity in a specially designed humidity chamber at room temperature. It has been observed that as relative humidity increases, resistance of the pellets decreases for entire range of humidity i.e. 10 % to 90 %. The sensing element of ZnO shows best results with sensitivity of 11.13 MΩ/%RH for the annealing temperature of 400 °C. This sensing element manifests lower hysteresis, less effect of aging and high reproducibility for annealing temperature 400 °C. SEM micrographs show that the sensing elements manifest porous structure with a network of pores that are expected to provide sites for humidity adsorption. The average grain size calculated from SEM micrograph is 236 nm. XRD pattern shows peaks of hexagonal zincite. As calculated from Scherer’s formula, the average crystalline size for this sensing element is 59.4 nm. For this sensing element, the values of activation energy from the Arrhenius plot is 0.041 eV for temperature range 200 °C - 400 °C and 0.393 eV for temperature range 400 °C - 500 °C. The adsorption of water molecules on the surface takes place via a dissociative chemisorption process leading to release of electrons. ZnO has electron vacancy. Hence, because of this reaction, the electrons are accumulated at the ZnO surface and consequently, the resistance of the sensing element decreases with increase in relative humidity.

  2. Non-oxidic nanoscale composites: single-crystalline titanium carbide nanocubes in hierarchical porous carbon monoliths.

    Science.gov (United States)

    Sonnenburg, Kirstin; Smarsly, Bernd M; Brezesinski, Torsten

    2009-05-07

    We report the preparation of nanoscale carbon-titanium carbide composites with carbide contents of up to 80 wt%. The synthesis yields single-crystalline TiC nanocubes 20-30 nm in diameter embedded in a hierarchical porous carbon matrix. These composites were generated in the form of cylindrical monoliths but can be produced in various shapes using modern sol-gel and nanocasting methods in conjunction with carbothermal reduction. The monolithic material is characterized by a combination of microscopy, diffraction and physisorption. Overall, the results presented in this work represent a concrete design template for the synthesis of non-oxidic nanoscale composites with high surface areas.

  3. Photoluminescence of ZnO thin films deposited at various substrate temperatures

    International Nuclear Information System (INIS)

    Kao, Kuo-Sheng; Shih, Wei-Che; Ye, Wei-Tsuen; Cheng, Da-Long

    2016-01-01

    This study investigated surface acoustic wave devices with an Al/ZnO/Si structure for use in ultraviolet sensors. ZnO thin films were fabricated using a reactive radio frequency magnetron sputtering system. The substrate temperature of ZnO thin films can be varied to obtain highly crystalline properties. The surface morphologies and c-axis preferred orientation of the ZnO thin films were determined using scanning electron microscopy and X-ray diffraction. In addition, bright-field images of ZnO crystallization were investigated using a transmission electron microscope. From photoluminescence analysis, four peaks were obtained at 377.8, 384.9, 391.4, and 403.4 nm. Interdigital transducers of an aluminum electrode were fabricated on the ZnO/Si structure by using a direct current sputtering system and photolithography, combined with the lift-off method, thereby obtaining a surface acoustic wave device. Finally, frequency responses were measured using a network analyzer, and an illuminating test was adopted for the ultraviolet sensor, using a wavelength of 355 nm from a light-emitting diode. The sensitivities of the ultraviolet sensor were also discussed. - Highlights: • The ZnO/Si SAW devices exhibit the Rayleigh and Sezawa modes. • The crystalline of ZnO affects the EHP recombination and generation. • The PL spectrum of ZnO shows Gaussian fitting distributions. • The CTD_U_V is influenced by SAW types and ZnO film characteristics.

  4. Photoluminescence of ZnO thin films deposited at various substrate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Kuo-Sheng [Department of Computer and Communication, SHU-TE University, Kaohsiung, Taiwan (China); Shih, Wei-Che [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Ye, Wei-Tsuen [Department of Computer and Communication, SHU-TE University, Kaohsiung, Taiwan (China); Cheng, Da-Long, E-mail: dlcheng@stu.edu.tw [Department of Computer and Communication, SHU-TE University, Kaohsiung, Taiwan (China)

    2016-04-30

    This study investigated surface acoustic wave devices with an Al/ZnO/Si structure for use in ultraviolet sensors. ZnO thin films were fabricated using a reactive radio frequency magnetron sputtering system. The substrate temperature of ZnO thin films can be varied to obtain highly crystalline properties. The surface morphologies and c-axis preferred orientation of the ZnO thin films were determined using scanning electron microscopy and X-ray diffraction. In addition, bright-field images of ZnO crystallization were investigated using a transmission electron microscope. From photoluminescence analysis, four peaks were obtained at 377.8, 384.9, 391.4, and 403.4 nm. Interdigital transducers of an aluminum electrode were fabricated on the ZnO/Si structure by using a direct current sputtering system and photolithography, combined with the lift-off method, thereby obtaining a surface acoustic wave device. Finally, frequency responses were measured using a network analyzer, and an illuminating test was adopted for the ultraviolet sensor, using a wavelength of 355 nm from a light-emitting diode. The sensitivities of the ultraviolet sensor were also discussed. - Highlights: • The ZnO/Si SAW devices exhibit the Rayleigh and Sezawa modes. • The crystalline of ZnO affects the EHP recombination and generation. • The PL spectrum of ZnO shows Gaussian fitting distributions. • The CTD{sub UV} is influenced by SAW types and ZnO film characteristics.

  5. Hierarchical ZnO microspheres built by sheet-like network: Large-scale synthesis and structurally enhanced catalytic performances

    International Nuclear Information System (INIS)

    Zhu Guoxing; Liu Yuanjun; Ji Zhenyuan; Bai Song; Shen Xiaoping; Xu Zheng

    2012-01-01

    Highlights: ► Hierarchical ZnO microspheres were prepared through a facile precursor procedure in the absence of self-assembled templates, organic additives, or matrices. ► The building blocks of microspheres, sheet-like ZnO networks, are porous mesocrystal terminated with (0 1 −1 0) crystal planes. ► The hierarchical ZnO microsphere catalyst exhibits structure-induced enhancement of catalytic performance and a strong durability. - Abstract: Large-scale novel hierarchical ZnO microspheres were fabricated by a facile precursor procedure in the absence of self-assembled templates, organic additives, or matrices. A field emission scanning electron microscopy (FESEM) image reveals that the ZnO microspheres with diameter of 5–18 μm are built by sheet-like ZnO networks with average thickness of 40 nm and length of several microns. High resolution transmission electron microscopy (HRTEM) image indicates that the building blocks, sheet-like ZnO networks, are porous mesocrystal terminated with {0 1 −1 0} crystal planes. A potential application of the ZnO microspheres as a catalyst in the synthesis of 5-substituted 1H-tetrazoles was investigated. It was found that the hierarchical ZnO microsphere catalyst exhibits structure-induced enhancement of catalytic performance and a strong durability.

  6. Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, M. Shaheer; Khan, M. Alam; Yang, O-Bong [School of Semiconductor and Chemical Engineering, Center for Advanced Radiation Technology, Jeon-Ju (Korea); New and Renewable Energy Center, Chonbuk National University, Jeon-Ju (Korea); Jeon, Myung Seok [Photocatalysis and Photoelectrochemistry Research Center, Korea Institute of Energy Research (KIER), Daejon 305-343 (Korea)

    2008-11-15

    In this work, the morphology of ZnO materials could be controlled by changing the capping agent at constant alkali solution in hydrothermal process. ZnO nanomaterials with the structure of flowers, sheet-spheres and plates were obtained with the capping agent of ammonia, citric acid and oxalic acid, respectively. Thus prepared ZnO nanomaterials were characterized and applied as the photo-anode materials for dye-sensitized solar cell. All synthesized ZnO nanomaterials possessed high crystalline wurtzite structures grown in the (001) direction with the size of 2-4{mu}m, which consist of ZnO units around 20-400 nm. Among them, Sheet-sphere ZnO showed the highest crystallinity, surface area and uniform film morphology, resulting in the significantly improved PV performance with the overall conversion efficiency of 2.61% in dye-sensitized solar cell (DSSC) fabricated with sheet-sphere ZnO. It is notable that the ZnO materials with sphere structure may be the optimal photo-anode material among various ZnO nanomaterials for DSSC. (author)

  7. Resistive Switching Characteristics in Electrochemically Synthesized ZnO Films

    Directory of Open Access Journals (Sweden)

    Shuhan Jing

    2015-04-01

    Full Text Available The semiconductor industry has long been seeking a new kind of non-volatile memory technology with high-density, high-speed, and low-power consumption. This study demonstrated the electrochemical synthesis of ZnO films without adding any soft or hard templates. The effect of deposition temperatures on crystal structure, surface morphology and resistive switching characteristics were investigated. Our findings reveal that the crystallinity, surface morphology and resistive switching characteristics of ZnO thin films can be well tuned by controlling deposition temperature. A conducting filament based model is proposed to explain the switching mechanism in ZnO thin films.

  8. Structural and photoluminescence characterization of vertically aligned multiwalled carbon nanotubes coated with ZnO by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ouldhamadouche, N. [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere BP 32229 44322 Nantes cedex 3 (France); Laboratoire de Physique des Materiaux, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El Alla. 16111, Bab Ezzouaur (Algeria); Achour, A., E-mail: a_aminph@yahoo.fr [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere BP 32229 44322 Nantes cedex 3 (France); Musa, I.; Ait Aissa, K.; Massuyeau, F.; Jouan, P.Y. [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere BP 32229 44322 Nantes cedex 3 (France); Kechouane, M. [Laboratoire de Physique des Materiaux, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El Alla. 16111, Bab Ezzouaur (Algeria); Le Brizoual, L.; Faulques, E.; Barreau, N.; Djouadi, M.A. [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere BP 32229 44322 Nantes cedex 3 (France)

    2012-05-01

    Zinc oxide (ZnO) nanostructures are very attractive in various optoelectronic applications such as light emitting devices. A fabrication process of these ZnO nanostructures which gives a good crystalline quality and being compatible with that of micro-fabrication has significant importance for practical application. In this work ZnO films with different thicknesses were deposited by RF-sputtering on vertically aligned multiwalled carbon nanotube (MWCNTs) template in order to obtain ZnO nanorods. The obtained hybrid structures (ZnO/MWCNTs) were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and time resolved photoluminescence spectroscopy (PL). Results show that the ZnO/MWCNTs have a nanorod structure like morphology with a good crystalline quality of the deposited ZnO on the MWCNTs. PL measurements reveal an enhancement of the band edge signal of ZnO/MWCNTs which is three times of magnitude higher compared to the ZnO film deposited on silicon. Moreover, the intensity enhancement varies as function of the ZnO thickness. Such hybrid structures are promising for optoelectronic application, such as blue-violet sources.

  9. Highlights from the Faraday Discussion on New Directions in Porous Crystalline Materials, Edinburgh, UK, June 2017.

    Science.gov (United States)

    Addicoat, Matthew A; Bennett, Thomas D; Stassen, Ivo

    2017-09-28

    A lively discussion on new directions in porous crystalline materials took place in June 2017, with the beautiful city of Edinburgh as a backdrop, in the context of the unique Faraday Discussions format. Here, 5 minute presentations were given on papers which had been submitted in advance of the conference, with copious time allocated for in-depth discussion of the work presented. Prof. Mircea Dincă (MIT), chair of the scientific committee, opened the conference by welcoming the many different nationalities attending, and outlining the format of discussions.

  10. Photocatalytic properties of hierarchical ZnO flowers synthesized by a sucrose-assisted hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Lv Wei [Key Laboratory of Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025 (China); Wei Bo [Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150080 (China); Xu Lingling, E-mail: xulingling_hit@163.com [Key Laboratory of Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025 (China) and Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150080 (China); Zhao Yan, E-mail: zhaoyan516@126.com [Department of Physics, Northeast Forestry University, Harbin 150040 (China); Gao Hong; Liu Jia [Key Laboratory of Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Hierarchical ZnO flowers were synthesized via a sucrose-assisted urea hydrothermal method. Black-Right-Pointing-Pointer The sucrose added ZnO flowers showed improved activity mainly due to the improved crystallinity. Black-Right-Pointing-Pointer The effect of sucrose content was studied and optimized. - Abstract: In this work, hierarchical ZnO flowers were synthesized via a sucrose-assisted urea hydrothermal method. The thermogravimetric analysis/differential thermal analysis (TGA-DTA) and Fourier transform infrared spectra (FTIR) showed that sucrose acted as a complexing agent in the synthesis process and assisted combustion during annealing. Photocatalytic activity was evaluated using the degradation of organic dye methyl orange. The sucrose added ZnO flowers showed improved activity, which was mainly attributed to the better crystallinity as confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The effect of sucrose amount on photocatalytic activity was also studied.

  11. Room temperature growth of ZnO nanorods by hydrothermal synthesis

    Science.gov (United States)

    Tateyama, Hiroki; Zhang, Qiyan; Ichikawa, Yo

    2018-05-01

    The effect of seed layer morphology on ZnO nanorod growth at room temperature was studied via hydrothermal synthesis on seed layers with different thicknesses and further annealed at different temperatures. The change in the thickness and annealing temperature enabled us to control over a diameter of ZnO nanorods which are attributed to the changing of crystallinity and roughness of the seed layers.

  12. UV-Enhanced Ethanol Sensing Properties of RF Magnetron-Sputtered ZnO Film.

    Science.gov (United States)

    Huang, Jinyu; Du, Yu; Wang, Quan; Zhang, Hao; Geng, Youfu; Li, Xuejin; Tian, Xiaoqing

    2017-12-26

    ZnO film was deposited by the magnetron sputtering method. The thickness of ZnO film is approximately 2 μm. The influence of UV light illumination on C₂H₅OH sensing properties of ZnO film was investigated. Gas sensing results revealed that the UV-illuminated ZnO film displays excellent C₂H₅OH characteristics in terms of high sensitivity, excellent selectivity, rapid response/recovery, and low detection limit down to 0.1 ppm. The excellent sensing performance of the sensor with UV activation could be attributed to the photocatalytic oxidation of ethanol on the surface of the ZnO film, the planar film structure with high utilizing efficiency of UV light, high electron mobility, and a good surface/volume ratio of of ZnO film with a relatively rough and porous surface.

  13. Structural and morphological characterizations of ZnO films grown on GaAs substrates by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Agouram, S.; Zuniga Perez, J.; Munoz-Sanjose, V. [Universitat de Valencia, Departamento de Fisica Aplicada y Electromagnetismo, Burjassot (Spain)

    2007-07-15

    ZnO films were grown on GaAs(100), GaAs(111)A and GaAs(111)B substrates by metal organic chemical vapour deposition (MOCVD). Diethylzinc (DEZn) and tertiarybutanol (t-butanol) were used as Zn and O precursors, respectively. The influence of the growth temperature and GaAs substrate orientation on the crystalline orientation and morphology of the ZnO grown films has been analysed. Crystallinity of grown films was studied by X-ray diffraction (XRD); thickness and morphology of ZnO films were investigated by scanning electron microscopy (SEM). SEM results reveal significant differences between morphologies depending on growth temperature but not significant differences were detected on the texture of grown films. (orig.)

  14. ZnO doped SnO2 nanoparticles heterojunction photo-catalyst for environmental remediation

    International Nuclear Information System (INIS)

    Lamba, Randeep; Umar, Ahmad; Mehta, S.K.; Kansal, Sushil Kumar

    2015-01-01

    ZnO doped SnO 2 nanoparticles were synthesized by facile and simple hydrothermal technique and used as an effective photocatalyst for the photocatalytic degradation of harmful and toxic organic dye. The prepared nanoparticles were characterized in detail using different techniques for morphological, structural and optical properties. The characterization results revealed that the synthesized nanoparticles possess both crystal phases of tetragonal rutile phase of pure SnO 2 and wurtzite hexagonal phase of ZnO. In addition, the nanoparticles were synthesized in very high quantity with good crystallinity. The photocatalytic activity of prepared nanoparticles was evaluated by the photocatalytic degradation of methylene blue (MB) dye. Detailed photocatalytic experiments based on the effects of irradiation time, catalyst dose and pH were performed and presented in this paper. The detailed photocatalytic experiments revealed that the synthesized ZnO doped SnO 2 nanoparticles heterojunction photocatalyst exhibit best photocatalytic performance when the catalyst dose was 0.25 g/L and pH = 10. ZnO doped SnO 2 nanoparticles heterojunction photocatalyst was also compared with commercially available TiO 2 (PC-50), TiO 2 (PC-500) and SnO 2 and interestingly ZnO doped SnO 2 nanoparticles exhibited superior photocatalytic performance. The presented work demonstrates that the prepared ZnO doped SnO 2 nanoparticles are promising material for the photocatalytic degradation of organic dyes and toxic chemicals. - Highlights: • Synthesis of well-crystalline ZnO-doped SnO 2 nanoparticles. • Excellent morphological, crystalline and photoluminescent properties. • Efficient environmental remediation using ZnO-doped SnO 2 nanoparticles.

  15. Synthesis and optical study of heat-treated ZnO nanopowder for ...

    Indian Academy of Sciences (India)

    In this research article synthesis of ZnO nanopowder is presented by a ... samples in terms of crystalline structure, optical properties and perhaps most ... C for different times (4, 6, 8, 10 and. 12 h). ... were performed by θ/2θ scans in the 2θ angular range of 20–95 .... pure and good quality single-phase wurtzite ZnO nano-.

  16. High quality ZnO layers with adjustable refractive indices for integrated optics applications

    NARCIS (Netherlands)

    Heideman, Rene; Lambeck, Paul; Gardeniers, Johannes G.E.

    1995-01-01

    Thin (approx. 1 μm) crystalline ZnO films with a good optical quality and a good (0002) texture are grown under two considerably different process parameter sets using a r.f. planar magnetron sputtering unit. The optical parameters of the two corresponding ZnO layers are distinctly different: high

  17. Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lanlan; Li, Renjie; Fan, Ke [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Peng, Tianyou [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University, Beijing 100871 (China)

    2010-05-15

    Dye-sensitized solar cells (DSSCs) were fabricated by using porous ZnO electrodes derived from home-made ZnO nanoparticles. Electrochemical impedance spectra and open-circuit photovoltage decay curves measurements were performed to investigate the photoelectrochemical characteristics of ZnO films annealed at different temperatures. The experimental results indicate that the effects of the bulk traps and the surface states within the ZnO films on the recombination processes of the photoinjected electrons in DSSCs depend on the annealing temperature. The DSSC based on the ZnO electrode annealed at 400 C exhibits an optimal energy conversion efficiency of 3.92% under the illumination of one sun simulated sunlight because the farthest decrease in the effects of both bulk traps and surface states at this film can maintain a lower charge recombination probability. This result indicates that the ZnO film electrode has promising application in the field of DSSCs, and the optimization of porous film fabrication condition is efficient for the improvement of ZnO-based DSSC's performances. (author)

  18. Piezoelectricity and charge trapping in ZnO and Co-doped ZnO thin films

    Directory of Open Access Journals (Sweden)

    Domenico D’Agostino

    2017-05-01

    Full Text Available Piezoelectricity and charge storage of undoped and Co-doped ZnO thin films were investigated by means of PiezoResponse Force Microscopy and Kelvin Probe Force Microscopy. We found that Co-doped ZnO exhibits a large piezoelectric response, with the mean value of piezoelectric matrix element d33 slightly lower than in the undoped sample. Moreover, we demonstrate that Co-doping affects the homogeneity of the piezoelectric response, probably as a consequence of the lower crystalline degree exhibited by the doped samples. We also investigate the nature of the interface between a metal electrode, made up of the PtIr AFM tip, and the films as well as the phenomenon of charge storage. We find Schottky contacts in both cases, with a barrier value higher in PtIr/ZnO than in PtIr/Co-doped ZnO, indicating an increase in the work function due to Co-doping.

  19. Formation Process of Eosin Y-Adsorbing ZnO Particles by Electroless Deposition and Their Photoelectric Conversion Properties.

    Science.gov (United States)

    Nagaya, Satoshi; Nishikiori, Hiromasa; Mizusaki, Hideaki; Wagata, Hajime; Teshima, Katsuya

    2015-06-03

    The thin films consisting of crystalline ZnO particles were prepared on fluorine-doped tin oxide electrodes by electroless deposition. The particles were deposited from an aqueous solution containing zinc nitrate, dimethyamine-borane, and eosin Y at 328 K. As the Pd particles were adsorbed on the substrate, not only the eosin Y monomer but also the dimer and debrominated species were rapidly adsorbed on the spherical ZnO particles, which were aggregated and formed secondary particles. On the other hand, in the absence of the Pd particles, the monomer was adsorbed on the flake-shaped ZnO particles, which vertically grew on the substrate surface and had a high crystallinity. The photoelectric conversion efficiency was higher for the ZnO electrodes containing a higher amount of the monomer during light irradiation.

  20. Investigation on structural aspects of ZnO nano-crystal using radio-active ion beam and PAC

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Bichitra Nandi, E-mail: bichitra.ganguly@saha.ac.in [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Dutta, Sreetama; Roy, Soma [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Röder, Jens [Physics Department, ISOLDE/CERN, Geneva (Switzerland); Physical Chemistry, RWTH-Aachen, Aachen (Germany); Johnston, Karl [Physics Department, ISOLDE/CERN, Geneva (Switzerland); Experimental Physics, University of the Saarland, Saarbrücken (Germany); Martin, Manfred [Physical Chemistry, RWTH-Aachen, Aachen (Germany)

    2015-11-01

    Nano-crystalline ZnO has been studied with perturbed angular correlation using {sup 111m}Cd, implanted at ISOLDE/CERN and X-ray diffraction using Rietveld analysis. The data show a gradual increase in the crystal size and stress for a sample annealed at 600 °C, and reaching nearly properties of standard ZnO with tempering at 1000 °C. The perturbed angular correlation data show a broad frequency distribution at low annealing temperatures and small particle sizes, whereas at high annealing temperature and larger crystal sizes, results similar to bulk ZnO have been obtained. The ZnO nano-crystalline samples were initially prepared through a wet chemical route, have been examined by Fourier Transform Infrared Spectroscopy (FT-IR) and chemical purity has been confirmed with Energy Dispersive X-ray (EDAX) analysis as well as Transmission Electron Microscopy (TEM).

  1. Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide

    Science.gov (United States)

    Ha, Nguyen Hai; Thinh, Dao Duc; Huong, Nguyen Thanh; Phuong, Nguyen Huy; Thach, Phan Duy; Hong, Hoang Si

    2018-03-01

    Zinc oxide (ZnO) nanoparticles loaded onto 3D reduced graphene oxide (3D-RGO) for carbon monoxide (CO) sensing were synthesized using hydrothermal method. The highly porous ZnO/3D-RGO configuration was stable without collapsing and was deposited on the micro-heater of the CO gas sensor. The resulting CO gas sensor displayed high sensitivity, fast response/recovery, and good linearity. The sensor achieved a response value of 85.2% for 1000 ppm CO at a working temperature of 200 °C. The response and recovery times of the sensor were 7 and 9 s for 1000 ppm CO at 200 °C. Similarly, the response value, response time, and recovery time of the sensor at room temperature were 27.5%, 14 s, and 15 s, respectively. The sensor demonstrated a distinct response to various CO concentrations in the range of 1-1000 ppm and good selectivity toward CO gas. In addition, the sensor exhibited good repeatability in multi-cycle and long-term stability.

  2. Structural, optical and magnetic characterization of Ru doped ZnO nanorods

    International Nuclear Information System (INIS)

    Kumar, Sanjeev; Kaur, Palvinder; Chen, C.L.; Thangavel, R.; Dong, C.L.; Ho, Y.K.; Lee, J.F.; Chan, T.S.; Chen, T.K.; Mok, B.H.; Rao, S.M.; Wu, M.K.

    2014-01-01

    Graphical abstract: Ruthenium (Ru = 0%, 1% and 2%) doped nano-crystalline zinc oxide (ZnO) nanorods were synthesized by using well-known sol–gel technique. X-ray diffraction (XRD) results show that Ru (0%, 1% and 2%) doped ZnO nanorods crystallized in the wurtzite structure having space group C 3v (P6 3 mc). Williamson and Hall plot reveal that in the nanoscale dimensions, incorporation of Ru induced the tensile strain in ZnO host matrix. Photoluminescence (PL) and Raman studies of Ru doped ZnO nanorods show the formation of singly ionized oxygen vacancies which may account for the observed room temperature ferromagnetism (RTFM) in 2% Ru doped ZnO. X-ray absorption spectroscopy (XAS) reveals that Ru replace the Zn atoms in the host lattice and maintain the crystal symmetry with slightly lattice distortion. Highlights: • Ru doped ZnO nanorods crystallized in the wurtzite structure having space group C 3v (P6 3 mc). • PL and Raman studies show the formation of singly ionized oxygen vacancies in 2% Ru doped ZnO. • XAS reveals that Ru replace the Zn atoms in the host lattice with slightly lattice distortion. • Doping of Ru in ZnO nanostructures gives rise to RTFM ordering. -- Abstract: Ruthenium (Ru = 0%, 1% and 2%) doped nano-crystalline zinc oxide (ZnO) nanorods were synthesized by using well-known sol–gel technique. X-ray diffraction (XRD) results show that Ru (0%, 1% and 2%) doped ZnO nanorods crystallized in the wurtzite structure having space group C 3v (P6 3 mc). Williamson and Hall plot reveal that in the nanoscale dimensions, incorporation of Ru induced the tensile strain in ZnO host matrix. Photoluminescence (PL) and Raman studies of Ru doped ZnO nanorods show the formation of singly ionized oxygen vacancies which may account for the observed room temperature ferromagnetism (RTFM) in 2% Ru doped ZnO. X-ray absorption spectroscopy (XAS) reveals that Ru replace the Zn atoms in the host lattice and maintain the crystal symmetry with slightly lattice

  3. An original way to obtain porous Zn(1–xMgxO thin films by spray pyrolysis technique

    Directory of Open Access Journals (Sweden)

    Abdelhakim Mahdjoub

    2017-04-01

    Full Text Available Zn(1–xMgxO thin films with various concentrations of magnesium were deposited using the spray pyrolysis method. The transmittance spectra recorded for all films exhibit maxima exceeding 90%. The band gap energy of the films with wurtzite structure increases from 3.22 up to 3.60 eV by incorporating Mg into ZnO. However, when the atomic ratio of Mg exceeded 0.4, a second crystalline phase (assigned to cubic MgO became discernable in XRD patterns, a compressive strain was observed in the wurtzite lattice, and crystallite sizes decreased significantly. In accordance with these observations, finer grains with a pronounced columnar growth were observed in 3D AFM representations and the surface roughness decreases significantly. Finally, selective etching in water yields to porous films with a great surface-to-volume ratio, a lower refractive index and a better light transmission. These porous films with tunable band gap seem to be excellent candidates to various interesting applications.

  4. Structural, magnetic and optical properties of ZnO nanostructures converted from ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Prayas Chandra; Ghosh, Surajit; Srivastava, P.C., E-mail: pcsrivastava50@gmail.com

    2016-09-15

    Graphical abstract: The phase conversion of ZnS to highly crystalline hexagonal ZnO was done by heat treatment. - Highlights: • Phase change of cubic ZnS to hexagonal ZnO via heat treatment. • Band gap was found to decrease with increasing calcinations temperature. • ZnO samples have higher magnetic moment than ZnS. • Blocking Temperature of the samples is well above room temperature. • Maximum negative%MR with saturation value ∼38% was found for sample calcined at 600° C. - Abstract: The present work concentrates on the synthesis of cubic ZnS and hexagonal ZnO semiconducting nanoparticle from same precursor via co-precipitation method. The phase conversion of ZnS to highly crystalline hexagonal ZnO was done by heat treatment. From the analysis of influence of calcination temperature on the structural, optical and vibrational properties of the samples, an optimum temperature was found for the total conversion of ZnS nanoparticles to ZnO. Role of quantum confinement due to finite size is evident from the blue shift of the fundamental absorption in UV–vis spectra only in the ZnS nanoparticles. The semiconducting nature of the prepared samples is confirmed from the UV–vis, PL study and transport study. From the magnetic and transport studies, pure ZnO phase was found to be more prone to magnetic field.

  5. Water-assisted nitrogen mediated crystallisation of ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Muydinov, R. [Technical University Berlin, Institute of Semiconducting- and High-Frequency Technologies, Einsteinufer 25, 10587 Berlin (Germany); Steigert, A. [Helmholtz-Zentrum Berlin, Institute of Heterogeneous Material Systems, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Schönau, S.; Ruske, F. [Helmholtz-Zentrum Berlin, Institute of Silicon Photovoltaics, Kekuléstraße 5, 12489 Berlin (Germany); Kraehnert, R.; Eckhardt, B. [Technical University Berlin, Institute of Technical Chemistry, Straße des 17. Juni 124, 10623 Berlin (Germany); Lauermann, I. [Helmholtz-Zentrum Berlin, Institute of Heterogeneous Material Systems, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Szyszka, B. [Technical University Berlin, Institute of Semiconducting- and High-Frequency Technologies, Einsteinufer 25, 10587 Berlin (Germany)

    2015-09-01

    Nitrogen mediated crystallisation (NMC) being performed in oxygen atmosphere at T ≥ 600 °C is an effective approach to obtain very well (00l)-textured ZnO films. A use of NMC-seed layers remarkably improves electrical transport properties of subsequently deposited ZnO:Al contacts. In this work, crystallisation of quasi-amorphous, nitrogen doped ZnO seed layers has been performed using water vapours at overpressure and temperatures around 100 °C. This approach allows employment of soda-lime float-glass or temperature sensitive film stacks as a substrate. We propose here possible mechanism of water-assisted NMC and grope for optimised crystallisation conditions on the basis of optical, microscopic, and textural investigation. Low temperature water-assisted crystallisation of 20 nm thick ZnO layers was compared with high temperature annealing methods in terms of composition, microstructure and crystallinity. Electrical properties such as electron Hall mobility (μ{sub e}), concentration of free electrons (N{sub e}) and sheet resistance (R{sub sh}) have been evaluated and compared for functional ZnO:Al films obtained on glass and on differently crystallised NMC-seed layers. It was found that the crystallised with water assistance at low temperature ZnO seed layers provide comparable improvement in crystallinity and electrical properties of subsequently grown functional ZnO:Al films with respect to the ones crystallised at high temperature. Use of optimised water-assisted crystallisation of seed layers has allowed decreasing R{sub sh} of thin (130–270 nm) functional ZnO:Al films twice compared to the glass substrate. Both provide this effect: increase in μ{sub e} and increase of N{sub e}. - Highlights: • Amorphous ZnO:N films can be crystallised in autoclave at temperatures around 100 °C. • Such water-assisted crystallisation provides well-crystalline ZnO seed layers. • Use of these seed layers resulted in stress-free ZnO:Al contacts with twice lower R

  6. Trioctylphosphine-assisted morphology control of ZnO nanoparticles

    Science.gov (United States)

    Hong, Yun-Kun; Cho, GeonHee; Park, YoonSu; Oh, Soong Ju; Ha, Don-Hyung

    2018-06-01

    This study investigates the morphological change in colloidal ZnO nanoparticles (NPs) synthesized with trioctylphosphine (TOP). The addition of TOP to the synthesis causes an evolution in the shape of ZnO NPs to tadpole-like particles from quasi-spherical particles at 300 °C. The total length of the tadpole-like ZnO NPs can be modified by controlling the molar ratio of TOP to oleylamine (OLAM). The tadpole-like particles are elongated as the concentration of TOP increased but decreased when the addition of TOP is excessive. These tadpole-like ZnO NPs transform to quasi-spherical NPs regardless of the amount of TOP at a reaction time of 3 h at 300 °C. At 200 °C, the effect of TOP on the ZnO NP synthesis differs from that at 300 °C. The ZnO NPs synthesized by controlling the molar ratios of surfactant ligands (TOP:OLAM = 2:100 and 70:100) at 200 °C share similar amorphous structures, while a crystalline ZnO phase is formed when the reaction time is 3 h. X-ray photoelectron spectroscopy analysis shows that TOP influences the oxidation of ZnO and suggests that a combination of OLAM and TOP plays a role in controlling the shape of ZnO NPs. These results provide critical insights to the utilization of TOP for a shape controlling ligand in ZnO NPs and suggest a new route to design oxide NPs.

  7. Synthesis of 1D, 2D, and 3D ZnO Polycrystalline Nanostructures Using the Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Yung-Kuan Tseng

    2012-01-01

    Full Text Available This study employed various polyol solvents to synthesize zinc oxide polycrystalline nanostructures in the form of fibers (1D, rhombic flakes (2D, and spheres (3D. The synthetic process primarily involved the use of zinc acetate dihydrate in polyol solutions, which were used to derive precursors of zinc alkoxides. Following hydrolysis at 160°C, the zinc alkoxide particles self-assembled into polycrystalline nanostructures with different morphologies. Following calcination at 500°C for 1 h, polycrystalline ZnO with good crystallinity was obtained. FE-SEM explored variations in surface morphology; XRD was used to analyze the crystalline structures and crystallinity of the products, which were confirmed as ZnO wurtzite structures. FE-TEM verified that the ZnO nanostructures were polycrystalline. Furthermore, we employed TGA/DSC to observe the phase transition. According to the results of property analyses, we proposed models of the relevant formation mechanisms. Finally, various ZnO structures were applied in the degradation of methylene blue to compare their photocatalytic efficiency.

  8. Annealing effects of ZnO nanorods on dye-sensitized solar cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jooyoung; Lee, Juneyoung [Department of Chemical and Biomolecular Engineering, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul 120-749 (Korea, Republic of); Lim, Sangwoo, E-mail: swlim@yonsei.ac.k [Department of Chemical and Biomolecular Engineering, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul 120-749 (Korea, Republic of)

    2010-06-01

    Dye-sensitized solar cells (DSSCs) were fabricated using ZnO nanorod arrays vertically grown on fluorine-doped tin oxide (FTO) glass using a low-temperature hydrothermal method. When the ZnO seed layer was annealed, greater DSSC efficiency was obtained. This may be attributed to the improvement of adhesion between the FTO and the seed layer and the corresponding effective growth of the ZnO nanorods. The DSSCs fabricated using ZnO nanorods which underwent annealing were more efficient than those that did not undergo annealing. The ZnO nanorods which were annealed in N{sub 2}/H{sub 2} or O{sub 2} had increased dye loadings due to higher OH concentrations on the hydrophilic surface, which contributed to the improved DSSC efficiency. The fill factor increased after the annealing of the ZnO nanorods, potentially due to the improved crystallinity of the ZnO nanorods. In this study, annealing of both the seed layer and the ZnO nanorods resulted in the greatest DSSC efficiency.

  9. Exciton luminescence characteristic of ZnO. Ga scintillator for neutron detection

    International Nuclear Information System (INIS)

    Kinoshita, A.; Fujiwara, A.; Koyama, S.; Takei, Y.; Nanto, H.; Katagiri, Masaki

    2008-01-01

    ZnO family phosphors as novel phosphor materials for neutron detector have prepared using Spark Plasma Sintering method. The optical properties of ZnO phosphor prepared are investigated. The following results were obtained. Two dominant PL emission peaks at 395 nm and 495 nm were observed. The lifetime of the PL emission peak at 395 nm (UV emission band) is about 20 ns, which is suitable for neutron detection. The Ga (30 mol%)-doped ZnO phosphor exhibited an intense UV emission band without the visible emission band. The Ga-doped ZnO phosphor can be prepared at the atmospheric pressure of about 8 Pa using SPS method. It was found that the PL intensity of UV emission band is increased with improving the crystallinity of the ZnO phosphor. (author)

  10. Effect for hydrogen, nitrogen, phosphorous, and argon ions irradiation on ZnO NWs

    International Nuclear Information System (INIS)

    Ishaq, A.; Usman, M.; Dee, C. F.; Khurram, A. A.; Yan, L.; Zhou, X. T.; Nadeem, A.; Naseem, S.; Rafique, H. M.; Majlis, B. Y.

    2013-01-01

    Zinc oxide (ZnO) nanowires (NWs) are exposed to energetic proton (H + ), nitrogen (N + ), phosphorus (P + ), and argon (Ar + ) ions to understand the radiation hardness and structural changes induced by these irradiations. High-resolution transmission electron microscopy is utilized to see the irradiation effects in NWs. Multiple doses and energies of radiation at different temperatures are used for different set of samples. The study reveals that wurtzite (crystalline)-structured ZnO NWs experience amorphization, degradation, and morphological changes after the irradiation. At room temperature, deterioration of the crystalline structure is observed under high fluence of H + , N + , and P + ions. While for ZnO NWs, bombarded by Ar + and P + ions, nano-holes are produced. The ZnO NWs surfaces also show corrugated morphology full of nano-humps when irradiated by Ar + ions at 400 °C. The corrugated surface could serve as tight-holding interface when interconnecting it with other NWs/nanotubes. These nano-humps may have the function of increasing the surface for surface-oriented sensing applications in the future.

  11. Effect for hydrogen, nitrogen, phosphorous, and argon ions irradiation on ZnO NWs

    Energy Technology Data Exchange (ETDEWEB)

    Ishaq, A., E-mail: ishaq_ah@yahoo.com; Usman, M. [National Centre for Physics, Quaid-i-Azam University, Experimental Physics Labs (Pakistan); Dee, C. F. [Universiti Kebangsaan Malaysia (UKM), Institute of Microengineering and Nanoelectronics (IMEN) (Malaysia); Khurram, A. A. [National Centre for Physics, Quaid-i-Azam University, Experimental Physics Labs (Pakistan); Yan, L., E-mail: yanlong@sinap.ac.cn; Zhou, X. T. [Chinese Academy of Sciences, Shanghai Institute of Applied Physics (China); Nadeem, A.; Naseem, S. [University of the Punjab, Centre of Excellence in Solid State Physics (Pakistan); Rafique, H. M. [University of the Punjab, Department of Physics (Pakistan); Majlis, B. Y. [Universiti Kebangsaan Malaysia (UKM), Institute of Microengineering and Nanoelectronics (IMEN) (Malaysia)

    2013-04-15

    Zinc oxide (ZnO) nanowires (NWs) are exposed to energetic proton (H{sup +}), nitrogen (N{sup +}), phosphorus (P{sup +}), and argon (Ar{sup +}) ions to understand the radiation hardness and structural changes induced by these irradiations. High-resolution transmission electron microscopy is utilized to see the irradiation effects in NWs. Multiple doses and energies of radiation at different temperatures are used for different set of samples. The study reveals that wurtzite (crystalline)-structured ZnO NWs experience amorphization, degradation, and morphological changes after the irradiation. At room temperature, deterioration of the crystalline structure is observed under high fluence of H{sup +}, N{sup +}, and P{sup +} ions. While for ZnO NWs, bombarded by Ar{sup +} and P{sup +} ions, nano-holes are produced. The ZnO NWs surfaces also show corrugated morphology full of nano-humps when irradiated by Ar{sup +} ions at 400 Degree-Sign C. The corrugated surface could serve as tight-holding interface when interconnecting it with other NWs/nanotubes. These nano-humps may have the function of increasing the surface for surface-oriented sensing applications in the future.

  12. Hydrothermal growth of upright-standing ZnO sheet microcrystals

    International Nuclear Information System (INIS)

    Shi, Ruixia; Yang, Ping; Dong, Xiaobin; Jia, Changchao; Li, Jia

    2014-01-01

    Highlights: • Upright-standing ZnO sheet microcrystals were hydrothermally fabricated. • The ZnO sheets were prepared with sodium oxalate at 70 °C without any surfactant. • The preferable adsorption of oxalate anions causes the formation of ZnO sheet. • The continuous growth in six directions leads to the formation of hexagonal sheets. - Abstract: Large-scale upright-standing ZnO sheet microcrystals were fabricated on Zn substrate using sodium oxalate as structure-directing agent by a hydrothermal method at low temperature (70 °C) without any surfactant. The sheets are about 3–5 μm in dimension and 100–300 nm in thickness. The strong and narrow diffraction peaks of ZnO indicate that the sample has a good crystallinity and size. The morphology of sheet-like ZnO varied with the concentrations of sodium oxalate and reaction time. The sheet-like ZnO would transform into rod-like ones when sodium oxalate was substituted by equivalent sodium acetate. The formation of sheet-like ZnO is attributed to the preferable adsorption of oxalate anions on (0 0 0 1) face of ZnO, which inhibits the intrinsic growth of ZnO. Additionally, the continuous growth in six (0 1 −1 0) directions that have the lowest surface energy leads to the formation of hexagonal sheets

  13. Effect of growth interruption on the crystalline quality and electrical properties of Ga-doped ZnO thin film deposited on quartz substrate by magnetron sputtering

    International Nuclear Information System (INIS)

    Lee, Geun-Hyoung

    2013-01-01

    Ga-doped ZnO(GZO) thin films were deposited on the quartz substrate by magnetron sputtering system with growth interruption technique. As the number of interruptions and interruption time increased, the carrier concentration and Hall mobility in GZO films significantly increased. As a result, the resistivity of GZO films decreased. The optical transmittance of GZO films also increased with the number of interruption and interruption time. The transmittance showed over 90% in visual region. Atomic force microscopy measurement showed that the film surface became smoother with an increase of the number of interruption. In addition, the crystalline quality and electrical properties of GZO films were more improved when the growth interruption was employed with a temperature gradient. - Highlights: • Ga-doped ZnO thin films were deposited with growth interruption technique. • The crystallinity of the films was improved with the number of interruptions. • The crystallinity of the films was improved as the interruption time increased. • The growth interruption with a temperature gradient more improved the film quality

  14. Reticular Chemistry for the Highly Connected Porous Crystalline Frameworks and Their Potential Applications

    KAUST Repository

    Chen, Zhijie

    2018-03-31

    Control at the molecular level over porous solid-state materials is of prime importance for fine-tuning the local structures, as well as the resultant properties. Traditional porous solid-state materials such as zeolite and activated carbon are the benchmarks in the current market with vital applications in sorption and heterogeneous catalysis. However, the adjustments of pore size and geometry of those materials, which are essential for the broader aspect of modern prominent applications, remain challenging. Reticular chemistry has emerged as a dominant tool toward the ‘designed syntheses’ of porous crystalline frameworks (e.g. metal-organic frameworks (MOFs)) with a specific pore system. This dissertation illustrates the power of reticular chemistry and its use in the directional assembly of highly coordinated MOF materials, as well as their potential applications such as gas storage, natural gas upgrading, and light hydrocarbon separation. Highly connected minimal edge-transitive derived and related nets, obtained via the deconstruction of nodes of the edge-transitive nets, are suitable blueprints and can potentially be deployed in the future ‘designed syntheses’ of MOFs. The further employment of the conceptual net-coded building units (e.g. highly connected MBBs and edge-transitive SBLs) in the practical reticular synthesis results in the rational design and construction of functional MOF platforms like shp-, alb-, kce-, kex- and eea- MOFs. In addition, the isoreticular synthesis of Al-cea-MOF-2 with functionalized pendant acid moieties inside pore channels in comparison to the parent Al-cea-MOF-1 led to enhanced light hydrocarbons separation performance. Moreover, controlling the molecular defects in Zr-fum-fcu-MOFs resulted in the development of an ultramicroporous adsorbent with an engineered aperture size for the highly efficient separation of butane/iso-butane.

  15. Molecular Design for Preparation of Hexagonal-Ordered Porous Films Based on Side-chain Type Liquid-Crystalline Star Polymer.

    Science.gov (United States)

    Naka, Yumiko; Takayama, Hiromu; Koyama, Teruhisa; Le, Khoa V; Sasaki, Takeo

    2018-05-02

    Fabrication of regularly porous films by the breath-figure method has attracted much attention. The simple, low-cost technique uses the condensation of water droplets to produce these structures, but the phenomenon itself is complex, requiring control over many interacting parameters that change throughout the process. Developing a unified understanding for the molecular design of polymers to prepare ordered porous films is challenging, but required for further advancements. In this article, the effects of the chemical structure of polymers in the breath-figure technique were systematically explored using side-chain type liquid-crystalline (LC) star polymers. The formation of porous films was affected by the structure of the polymers. Although the entire film surface of poly(11-[4-(4-cyanobiphenyl)oxy]undecyl methacrylate) (P11CB) had a hexagonal ordered porous structure over a certain Mn value, regularly arranged holes did not easily form in poly(methyl methacrylate) (PMMA), even though the main chain of PMMA is similar to that of P11CB. Comparing P11CB and poly(11-[(1,1'-biphenyl)-4-yloxy]undecyl methacrylate) (P11B) (P11CB without cyano groups) showed that the local polar groups in hydrophobic polymers promoted the formation of ordered porous films. No holes formed in poly(4-cyanobiphenyl methacrylate) (P0CB) (P11CB without alkyl spacers) films due to its hydrophilicity. The introduction of alkyl chains in P0CB allowed the preparation of honeycomb-structured films by increasing the internal tension. However, alkyl chains in the side chain alone did not result in a porous structure, as in the case of poly(11-[(1,1'-biphenyl)-4-yloxy]undecyl methacrylate) (P11). Aromatic rings are also required to increase the Tg and improve film formability. In the present study, suitable molecular designs of polymers were found, specifically hydrophobic polymers with local polar groups, to form a regularly porous structure. Development of clear guidelines for the molecular

  16. Surface roughness of sputtered ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y S [Department of Materials Science and Engineering, National Dong Hwa University, 1, Sec. 2, Da Hsueh Rd. Shou-Feng, Hualien, Taiwan (China); Hsu, K C [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao-Tung University, Hsinchu, Taiwan (China); Huang, Y M [Institute of Electronics Engineering, Southern Taiwan University of Technology, 1 Nan-Tai Street, Taiwan (China)

    2006-09-01

    ZnO films are grown on Si and glass substrates by radio-frequency (RF) magnetron sputtering. The crystalline structures are investigated by x-ray diffraction (XRD). Moreover, the roughness characteristics of the films are examined by atomic force microscopy (AFM) and field-emission scanning electron microscopy (FE-SEM). All films exhibit strong (002) preferential orientation. The influence of the RF power and target-to-substrate distance (D{sub ts}) on the properties of ZnO is studied. Under the optimized conditions of the RF power and D{sub ts}, root-mean-square (RMS) surface roughnesses of <0.8 nm are achieved.

  17. Surface roughness of sputtered ZnO films

    International Nuclear Information System (INIS)

    Lin, Y S; Hsu, K C; Huang, Y M

    2006-01-01

    ZnO films are grown on Si and glass substrates by radio-frequency (RF) magnetron sputtering. The crystalline structures are investigated by x-ray diffraction (XRD). Moreover, the roughness characteristics of the films are examined by atomic force microscopy (AFM) and field-emission scanning electron microscopy (FE-SEM). All films exhibit strong (002) preferential orientation. The influence of the RF power and target-to-substrate distance (D ts ) on the properties of ZnO is studied. Under the optimized conditions of the RF power and D ts , root-mean-square (RMS) surface roughnesses of <0.8 nm are achieved

  18. Photocatalytic efficiency of reusable ZnO thin films deposited by sputtering technique

    International Nuclear Information System (INIS)

    Ahumada-Lazo, R.; Torres-Martínez, L.M.; Ruíz-Gómez, M.A.; Vega-Becerra, O.E.

    2014-01-01

    Graphical abstract: - Highlights: • Decolorization of Orange G dye using highly c-axis-oriented ZnO thin films. • The flake-shaped film shows superior and stable photoactivity at a wide range of pH. • The highest photodecolorization was achieved at pH of 7. • The exposure of (101) and (100) facets enhanced the photoactivity. • ZnO thin films exhibit a promising performance as recyclable photocatalysts. - Abstract: The photocatalytic activity of ZnO thin films with different physicochemical characteristics deposited by RF magnetron sputtering on glass substrate was tested for the decolorization of orange G dye aqueous solution (OG). The crystalline phase, surface morphology, surface roughness and the optical properties of these ZnO films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV–visible spectroscopy (UV–Vis), respectively. The dye photodecolorization process was studied at acid, neutral and basic pH media under UV irradiation of 365 nm. Results showed that ZnO films grow with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a (002) preferential crystalline orientation. A clear relationship between surface morphology and photocatalytic activity was observed for ZnO films. Additionally, the recycling photocatalytic abilities of the films were also evaluated. A promising photocatalytic performance has been found with a very low variation of the decolorization degree after five consecutive cycles at a wide range of pH media

  19. Photocatalytic efficiency of reusable ZnO thin films deposited by sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Ahumada-Lazo, R.; Torres-Martínez, L.M. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450, México (Mexico); Ruíz-Gómez, M.A. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450, México (Mexico); Departmento de Física Aplicada, CINVESTAV-IPN, Antigua Carretera a Progreso km 6, Mérida, Yucatán 97310, México (Mexico); Vega-Becerra, O.E. [Centro de Investigación en Materiales Avanzados S.C, Alianza norte 202, Parque de Investigación e Innovación Tecnológica, C.P. 66600 Apodaca Nuevo León, México (Mexico); and others

    2014-12-15

    Graphical abstract: - Highlights: • Decolorization of Orange G dye using highly c-axis-oriented ZnO thin films. • The flake-shaped film shows superior and stable photoactivity at a wide range of pH. • The highest photodecolorization was achieved at pH of 7. • The exposure of (101) and (100) facets enhanced the photoactivity. • ZnO thin films exhibit a promising performance as recyclable photocatalysts. - Abstract: The photocatalytic activity of ZnO thin films with different physicochemical characteristics deposited by RF magnetron sputtering on glass substrate was tested for the decolorization of orange G dye aqueous solution (OG). The crystalline phase, surface morphology, surface roughness and the optical properties of these ZnO films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV–visible spectroscopy (UV–Vis), respectively. The dye photodecolorization process was studied at acid, neutral and basic pH media under UV irradiation of 365 nm. Results showed that ZnO films grow with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a (002) preferential crystalline orientation. A clear relationship between surface morphology and photocatalytic activity was observed for ZnO films. Additionally, the recycling photocatalytic abilities of the films were also evaluated. A promising photocatalytic performance has been found with a very low variation of the decolorization degree after five consecutive cycles at a wide range of pH media.

  20. Magnetic and optical properties of Mn-doped ZnO vertically aligned nanorods synthesized by hydrothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Panda, J.; Sasmal, I.; Nath, T. K., E-mail: tnath@phy.iitkgp.ernet.in, E-mail: tapnath@gmail.com [Department of Physics, Indian Institute Technology Kharagpur, West Bengal, 721302 (India)

    2016-03-15

    In this paper we have reported the synthesis of high quality vertically aligned undoped and Mn-doped ZnO single crystalline nanorods arrays on Si (100) substrates using two steps process, namely, initial slow seed layer formation followed by solution growth employing wet chemical hydrothermal method. The shapes of the as grown single crystalline nanorods are hexagonal. The diameter and length of the as grown undoped ZnO nanorods varies in the range of 80-150 nm and 1.0 - 1.4 μm, respectively. Along with the lattice parameters of the hexagonal crystal structure, the diameter and length of Mn doped ZnO nanorods are found to increase slightly as compared to the undoped ZnO nanorods. The X-ray photoelectron spectroscopy confirms the presence of Mn atoms in Mn{sup 2+} state in the single crystalline ZnO nanorods. The recorded photoluminescence spectrum contains two emissions peaks having UV exciton emissions along with a green-yellow emission. The green-yellow emissions provide the evidence of singly ionized oxygen vacancies. The magnetic field dependent magnetization measurements [M (H)] and zero field cooled (ZFC) and field cooled (FC) magnetization [M(T)] measurements have been carried out at different isothermal conditions in the temperature range of 5-300 K. The Mn doped ZnO nanorods clearly show room temperature ferromagnetic ordering near room temperature down to 5 K. The observed magnetization may be attributed to the long range ferromagnetic interaction between bound magnetic polarons led by singly charged oxygen vacancies.

  1. Cycling behaviour of sponge-like nanostructured ZnO as thin-film Li-ion battery anodes

    International Nuclear Information System (INIS)

    Garino, Nadia; Lamberti, Andrea; Gazia, Rossana; Chiodoni, Angelica; Gerbaldi, Claudio

    2014-01-01

    Highlights: • Zn is thermally oxidized in ambient air to obtain sponge-like ZnO film. • Polycrystalline, transparent, porous thin film is obtained. • Film exhibits stabile specific capacity (∼300 mAh g −1 ) after prolonged cycling. • Sponge-like ZnO film shows promising prospects as Li-ion battery anode. - Abstract: Single phase wurtzitic porous ZnO thin films are obtained by a simple two-step method, involving the sputtering deposition of a sponge-like metallic Zn layer, followed by a moderately low temperature treatment for the complete zinc oxidation. Thanks to its 3D nanostructuration, the superimposition of small branches able to grow in length almost isotropically and forming a complex topography, sponge-like ZnO can combine the fast transport properties of one dimensional material and the high surface area usually provided by nanocrystalline electrodes. When galvanostatically tested in lithium cell, after the initial decay, it can provide an almost stable specific capacity higher than 50 μAh cm −2 after prolonged cycling at estimated 0.7 C, with very high Coulombic efficiency

  2. Cycling behaviour of sponge-like nanostructured ZnO as thin-film Li-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Garino, Nadia, E-mail: nadia.garino@iit.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Lamberti, Andrea; Gazia, Rossana; Chiodoni, Angelica [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Gerbaldi, Claudio, E-mail: claudio.gerbaldi@polito.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); GAME Lab, Department of Applied Science and Technology – DISAT, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy)

    2014-12-05

    Highlights: • Zn is thermally oxidized in ambient air to obtain sponge-like ZnO film. • Polycrystalline, transparent, porous thin film is obtained. • Film exhibits stabile specific capacity (∼300 mAh g{sup −1}) after prolonged cycling. • Sponge-like ZnO film shows promising prospects as Li-ion battery anode. - Abstract: Single phase wurtzitic porous ZnO thin films are obtained by a simple two-step method, involving the sputtering deposition of a sponge-like metallic Zn layer, followed by a moderately low temperature treatment for the complete zinc oxidation. Thanks to its 3D nanostructuration, the superimposition of small branches able to grow in length almost isotropically and forming a complex topography, sponge-like ZnO can combine the fast transport properties of one dimensional material and the high surface area usually provided by nanocrystalline electrodes. When galvanostatically tested in lithium cell, after the initial decay, it can provide an almost stable specific capacity higher than 50 μAh cm{sup −2} after prolonged cycling at estimated 0.7 C, with very high Coulombic efficiency.

  3. Rectifying Behavior of Aligned ZnO Nano rods on Mg0.3Zn0.7O Thin Film Template

    International Nuclear Information System (INIS)

    Salina Muhamad; Suriani Abu Bakar; Mohamad Hafiz Mamat; Rafidah Ahmad; Mohamad Rusop

    2011-01-01

    Rectifying behavior more than 3 orders of aligned zinc oxide (ZnO) nano rods grown on Mg 0.3 Zn 0.7 O thin film template using chemical bath deposition method was observed, giving a barrier height of 0.75 eV, and the ideality factor achieved was almost 6, which was analyzed using thermionic emission theory. Field emission scanning electron microscope (FESEM) images revealed that the grown ZnO was in hexagonal shape, uniformly distributed and in vertically aligned form. The crystallinity of the sample being studied using X-ray diffraction (XRD), where the highest peak was found at (002) phase, confirming that high crystallinity of ZnO was attained. The effect of metal/semiconductor junction between metal and aligned ZnO nano rods was discussed in further details. (author)

  4. Realizing a facile and environmental-friendly fabrication of high-performance multi-crystalline silicon solar cells by employing ZnO nanostructures and an Al2O3 passivation layer

    Science.gov (United States)

    Chen, Hong-Yan; Lu, Hong-Liang; Sun, Long; Ren, Qing-Hua; Zhang, Hao; Ji, Xin-Ming; Liu, Wen-Jun; Ding, Shi-Jin; Yang, Xiao-Feng; Zhang, David Wei

    2016-01-01

    Nowadays, the multi-crystalline silicon (mc-Si) solar cells dominate the photovoltaic industry. However, the current acid etching method on mc-Si surface used by firms can hardly suppress the average reflectance value below 25% in the visible light spectrum. Meanwhile, the nitric acid and the hydrofluoric contained in the etching solution is both environmental unfriendly and highly toxic to human. Here, a mc-Si solar cell based on ZnO nanostructures and an Al2O3 spacer layer is demonstrated. The eco-friendly fabrication is realized by low temperature atomic layer deposition of Al2O3 layer as well as ZnO seed layer. Moreover, the ZnO nanostructures are prepared by nontoxic and low cost hydro-thermal growth process. Results show that the best passivation quality of the n+ -type mc-Si surface can be achieved by balancing the Si dangling bond saturation level and the negative charge concentration in the Al2O3 film. Moreover, the average reflectance on cell surface can be suppressed to 8.2% in 400–900 nm range by controlling the thickness of ZnO seed layer. With these two combined refinements, a maximum solar cell efficiency of 15.8% is obtained eventually. This work offer a facile way to realize the environmental friendly fabrication of high performance mc-Si solar cells. PMID:27924911

  5. Piezoelectric Response Evaluation of ZnO Thin Film Prepared by RF Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Cheng Da-Long

    2017-01-01

    Full Text Available The most important parameter of piezoelectric materials is piezoelectric coefficient (d33. In this study, the piezoelectric ZnO thin films were deposited on the SiNx/Si substrate. The 4 inches substrate is diced into 8 cm× 8 cm piece. During the deposition process, a zinc target (99.999 wt% of 2 inches diameter was used. The vertical distance between the target and the substrate holder was fixed at 5 cm. The piezoelectric response of zinc oxide (ZnO thin films were obtained by using a direct measurement system. The system adopts a mini impact tip to generate an impulsive force and read out the piezoelectric signals immediately. Experimentally, a servo motor is used to produce a fixed quantity of force, for giving an impact against to the piezoelectric film. The ZnO thin films were deposited using the reactive radio frequency (RF magnetron sputtering method. The electric charges should be generated because of the material’s extrusion. This phenomenon was investigated through the oscilloscope by one shot trigger. It was apparent that all ZnO films exhibit piezoelectric responses evaluated by our measurement system, however, its exhibit a significant discrepancy. The piezoelectric responses of ZnO thin film at various deposition positions were measured and the crystal structures of the sputtering pressure were also discussed. The crystalline characteristics of ZnO thin films are investigated through the XRD and SEM. The results show the ZnO thin film exhibits good crystalline pattern and surface morphology with controlled sputtering condition. The ZnO thin films sputtered using 2 inches target present various piezoelectric responses. With the exactly related position, a best piezoelectric response of ZnO thin film can be achieved.

  6. Synthesis, structural and optical properties of ZnO spindle/reduced graphene oxide composites with enhanced photocatalytic activity under visible light irradiation

    Science.gov (United States)

    Prabhu, S.; Pudukudy, M.; Sohila, S.; Harish, S.; Navaneethan, M.; Navaneethan, D.; Ramesh, R.; Hayakawa, Y.

    2018-05-01

    In the present work, spindle-shaped ZnO and reduced graphene oxide sheets were successfully synthesized by a hydrothermal method and then ZnO/r-GO composite was prepared by a direct solution mixing method. Various characterization results confirmed the interior and surface decoration of spindle-shaped ZnO on the reduced graphene oxide sheets. The phase formation, crystalline structure, morphology, surface states and optical properties were characterized using Powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR) and UV-Vis spectroscopy. The X-ray diffraction analysis showed the formation of the hexagonal wurtzite crystalline structure of ZnO with high crystalline quality. The band gap of the ZnO/r-GO composite was found to be low (3.03eV) compared to the band gap of spindle shaped ZnO (3.13 eV), as calculated from optical studies. The spindle-like morphology of the single crystalline ZnO was clearly shown in the electron microscopic images. The chemical bonding and surface states of the samples were studied using XPS measurement. Moreover, a possible growth mechanism for the ZnO spindle was proposed. The catalytic activity of the as-synthesized samples was evaluated for the photodegradation of methylene blue under visible light irradiation. Among the synthesized samples, the ZnO/r-GO composite showed higher degradation efficiency of 93% and successfully reused for four consecutive run without any activity loss.

  7. ZnO: Hydroquinone superlattice structures fabricated by atomic/molecular layer deposition

    International Nuclear Information System (INIS)

    Tynell, Tommi; Karppinen, Maarit

    2014-01-01

    Here we employ atomic layer deposition in combination with molecular layer deposition to deposit crystalline thin films of ZnO interspersed with single layers of hydroquinone in an effort to create hybrid inorganic–organic superlattice structures. The ratio of the ZnO and hydroquinone deposition cycles is varied between 199:1 and 1:1, and the structure of the resultant thin films is verified with X-ray diffraction and reflectivity techniques. Clear evidence of the formation of a superlattice-type structure is observed in the X-ray reflectivity patterns and the presence of organic bonds in the films corresponding to the structure of hydroquinone is confirmed with Fourier transform infrared spectroscopy measurements. We anticipate that hybrid superlattice structures such as the ones described in this work have the potential to be of great importance for future applications where the precise control of different inorganic and organic layers in hybrid superlattice materials is required. - Highlights: • Inorganic–organic superlattices can be made by atomic/molecular layer deposition. • This is demonstrated here for ZnO and hydroquinone (HQ). • The ratio of the ZnO and HQ layers is varied between 199:1 and 14:1. • The resultant thin films are crystalline

  8. ZnO: Hydroquinone superlattice structures fabricated by atomic/molecular layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tynell, Tommi; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi

    2014-01-31

    Here we employ atomic layer deposition in combination with molecular layer deposition to deposit crystalline thin films of ZnO interspersed with single layers of hydroquinone in an effort to create hybrid inorganic–organic superlattice structures. The ratio of the ZnO and hydroquinone deposition cycles is varied between 199:1 and 1:1, and the structure of the resultant thin films is verified with X-ray diffraction and reflectivity techniques. Clear evidence of the formation of a superlattice-type structure is observed in the X-ray reflectivity patterns and the presence of organic bonds in the films corresponding to the structure of hydroquinone is confirmed with Fourier transform infrared spectroscopy measurements. We anticipate that hybrid superlattice structures such as the ones described in this work have the potential to be of great importance for future applications where the precise control of different inorganic and organic layers in hybrid superlattice materials is required. - Highlights: • Inorganic–organic superlattices can be made by atomic/molecular layer deposition. • This is demonstrated here for ZnO and hydroquinone (HQ). • The ratio of the ZnO and HQ layers is varied between 199:1 and 14:1. • The resultant thin films are crystalline.

  9. Neutron scintillator using Ga-doped ZnO phosphor with high detection efficiency

    International Nuclear Information System (INIS)

    Koyama, Shin; Kinoshita, Atsushi; Fujiwara, Akihiko; Kobayashi, Haruki; Takei, Yoshinori; Nanto, Hidehito; Katagiri, Masaki

    2009-01-01

    Zinc Oxide (ZnO) family phosphors as phosphor for neutron detector have prepared using Spark Plasma Sintering (SPS) method. The optical properties of ZnO phosphor prepared are investigated. The following results were obtained. Two dominant photoluminescence (PL) emission peaks at 395 nm and 495 nm were observed. The lifetime of the PL emission peak at 395 nm (UV emission band) is about 20 ns, which is suitable for neutron detection. The Ga (30 mol%)-doped ZnO phosphor exhibited an intense UV emission band without the visible emission band. The Ga-doped ZnO phosphor can be prepared at the atmospheric pressure of about 8 Pa using SPS method. It was found that the PL intensity of UV emission band is increased with improving the crystallinity of the ZnO phosphor. (author)

  10. Ag-Modified In2O3/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2015-08-01

    Full Text Available Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10–30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitivity. Consequently, the HCHO gas-sensing performance of the Ag-modified In2O3/ZnO bundles have been tested, with the formaldehyde-detection limit of 100 ppb (parts per billion and the response and recover times as short as 6 s and 3 s, respectively, at 300 °C and the detection limit of 100 ppb, response time of 12 s and recover times of 6 s at 100 °C. The HCHO sensing detect limitation matches the health standard limitation on the concentration of formaldehyde for indoor air. Moreover, the strategy to synthesize the nanobundles is just two-step heating and easy to scale up. Therefore, the Ag-modified In2O3/ZnO bundles are ready for industrialization and practical applications.

  11. Ag-Modified In2O3/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance

    Science.gov (United States)

    Fang, Fang; Bai, Lu; Song, Dongsheng; Yang, Hongping; Sun, Xiaoming; Sun, Hongyu; Zhu, Jing

    2015-01-01

    Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10–30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitivity. Consequently, the HCHO gas-sensing performance of the Ag-modified In2O3/ZnO bundles have been tested, with the formaldehyde-detection limit of 100 ppb (parts per billion) and the response and recover times as short as 6 s and 3 s, respectively, at 300 °C and the detection limit of 100 ppb, response time of 12 s and recover times of 6 s at 100 °C. The HCHO sensing detect limitation matches the health standard limitation on the concentration of formaldehyde for indoor air. Moreover, the strategy to synthesize the nanobundles is just two-step heating and easy to scale up. Therefore, the Ag-modified In2O3/ZnO bundles are ready for industrialization and practical applications. PMID:26287205

  12. Enhanced ultraviolet photo-response in Dy doped ZnO thin film

    Science.gov (United States)

    Kumar, Pawan; Singh, Ranveer; Pandey, Praveen C.

    2018-02-01

    In the present work, a Dy doped ZnO thin film deposited by the spin coating method has been studied for its potential application in a ZnO based UV detector. The investigations on the structural property and surface morphology of the thin film ensure that the prepared samples are crystalline and exhibit a hexagonal crystal structure of ZnO. A small change in crystallite size has been observed due to Dy doping in ZnO. AFM analysis ascertains the grain growth and smooth surface of the thin films. The Dy doped ZnO thin film exhibits a significant enhancement in UV region absorption as compared to the pure ZnO thin film, which suggests that Dy doped ZnO can be used as a UV detector. Under UV irradiation of wavelength 325 nm, the photocurrent value of Dy doped ZnO is 105.54 μA at 4.5 V, which is 31 times greater than that of the un-doped ZnO thin film (3.39 μA). The calculated value of responsivity is found to increase significantly due to the incorporation of Dy in the ZnO lattice. The observed higher value of photocurrent and responsivity could be attributed to the substitution of Dy in the ZnO lattice, which enhances the conductivity, electron mobility, and defects in ZnO and benefits the UV sensing property.

  13. Controllable synthesis of periodic flower-like ZnO nanostructures on Si subwavelength grating structures

    International Nuclear Information System (INIS)

    Ko, Yeong Hwan; Leem, Jung Woo; Yu, Jae Su

    2011-01-01

    We report on the periodic well-defined flower-like zinc oxide (ZnO) nanostructures (NSs) self-assembled through a simple hydrothermal method using silicon (Si) subwavelength grating (SWG) structures. The Si SWGs serve as building blocks for constructing a two-dimensional (2D) periodic architecture to integrate the one-dimensional (1D) ZnO NSs. Various controlled morphologies of ZnO NSs with high crystallinity are obtained by changing the growth conditions. For 1D ZnO NSs integrated on periodic hexagonal Si SWG structures, the reflection characteristics are investigated in comparison with the conventional ZnO nanorod (NR) arrays. For a three-dimensional (3D) flower-like ZnO NS on Si SWGs, a relatively low total reflectance of < 8% at wavelengths of 300-1050 nm is achieved compared to the ZnO NRs on Si substrate.

  14. ZnO nanostructures induced by microwave plasma

    Directory of Open Access Journals (Sweden)

    Khaled A. Elsayed

    2015-07-01

    Full Text Available Microwave induced hydrogen plasma is used to fabricate ZnO thin films at low ambient gas pressure and controlled oxygen content in the gas mixture. The emission spectra have been observed. Optical emission spectroscopy was used to identify the chemical reaction mechanism. Structural quality of the so-obtained nanoparticles was studied by X-ray diffraction (XRD and high resolution scanning electron microscopy (SEM. SEM results showed that nanorods were formed in the process, and XRD results along with nanorod dimensions obtained from SEM are consistent with the formation of single and poly-crystalline ZnO nanorods. The alignment of these nanorods with respect to the substrates depends on the lattice mismatch between ZnO and the glass substrate. The minimum crystallite grain size as obtained from the SEM measurements was ∼24 nm and the average diameter is 70 nm with a length of 1–2 μm. The deposited ZnO thin films have a wide energy band gap that equals ∼3 eV.

  15. CBE growth of high-quality ZnO epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    El-Shaer, A.; Bakin, A.; Mofor, A.C.; Kreye, M.; Waag, A. [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Blaesing, J.; Krost, A. [Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg (Germany); Stoimenos, J. [Physics Department, Aristotele University, Univ. Campus, 54006 Thessaloniki (Greece); Pecz, B. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, P.O. Box 49, 1525 Budapest (Hungary); Heuken, M. [Aixtron AG, Kackertstr. 15-17, 52072 Aachen (Germany)

    2006-03-15

    Further improvements on the recently reported novel approach to zinc oxide Chemical Beam Epitaxy (CBE) are presented. Hydrogen peroxide is employed as a very efficient novel oxidant. ZnO layers with a thickness from 100 nm to 600 nm were grown on c-sapphire using a MgO buffer. PL-mapping as well as conductivity mapping shows a good uniformity across the 2 inch ZnO-on-sapphire epiwafers. The measured surface roughness for the best layers is as low as 0.26 nm. HRXRD measurements of the obtained ZnO layers show excellent quality of the single crystalline ZnO. The FWHM of the HRXRD (0002) rocking curves measured for the 2 inch ZnO-on-sapphire wafers is as low as 27 arcsec with a very high lateral homogeneity across the whole wafer. Plane view HRTEM observations reveal the very good quality of the ZnO films. The results indicate that CBE is a suitable technique to fabricate ZnO of very high structural quality, which can eventually be used as an alternative to bulk ZnO substrates. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Porous organic cages

    Science.gov (United States)

    Tozawa, Tomokazu; Jones, James T. A.; Swamy, Shashikala I.; Jiang, Shan; Adams, Dave J.; Shakespeare, Stephen; Clowes, Rob; Bradshaw, Darren; Hasell, Tom; Chong, Samantha Y.; Tang, Chiu; Thompson, Stephen; Parker, Julia; Trewin, Abbie; Bacsa, John; Slawin, Alexandra M. Z.; Steiner, Alexander; Cooper, Andrew I.

    2009-12-01

    Porous materials are important in a wide range of applications including molecular separations and catalysis. We demonstrate that covalently bonded organic cages can assemble into crystalline microporous materials. The porosity is prefabricated and intrinsic to the molecular cage structure, as opposed to being formed by non-covalent self-assembly of non-porous sub-units. The three-dimensional connectivity between the cage windows is controlled by varying the chemical functionality such that either non-porous or permanently porous assemblies can be produced. Surface areas and gas uptakes for the latter exceed comparable molecular solids. One of the cages can be converted by recrystallization to produce either porous or non-porous polymorphs with apparent Brunauer-Emmett-Teller surface areas of 550 and 23m2g-1, respectively. These results suggest design principles for responsive porous organic solids and for the modular construction of extended materials from prefabricated molecular pores.

  17. Defect studies of ZnO films prepared by pulsed laser deposition on various substrates

    International Nuclear Information System (INIS)

    Melikhova, O; Čížek, J; Procházka, I; Kužel, R; Novotný, M; Bulír, J; Lancok, J; Anwand, W; Brauer, G; Connolly, J; McCarthy, E; Krishnamurthy, S; Mosnier, J-P

    2013-01-01

    ZnO thin films deposited on various substrates were characterized by slow positron implantation spectroscopy (SPIS) combined with X-ray diffraction (XRD). All films studied exhibit wurtzite structure and crystallite size 20–100 nm. The mosaic spread of crystallites is relatively small for the films grown on single crystalline substrates while it is substantial for the film grown on amorphous substrate. SPIS investigations revealed that ZnO films deposited on single crystalline substrates exhibit significantly higher density of defects than the film deposited on amorphous substrate. This is most probably due to a higher density of misfit dislocations, which compensate for the lattice mismatch between the film and the substrate.

  18. Transport and structural characterization of solution-processable doped ZnO nanowires

    KAUST Repository

    Noriega, Rodrigo

    2009-08-18

    The use of ZnO nanowires has become a widespread topic of interest in optoelectronics. In order to correctly assess the quality, functionality, and possible applications of such nanostructures it is important to accurately understand their electrical and optical properties. Aluminum- and gallium-doped crystalline ZnO nanowires were synthesized using a low-temperature solution-based process, achieving dopant densities of the order of 1020 cm-3. A non-contact optical technique, photothermal deflection spectroscopy, is used to characterize ensembles of ZnO nanowires. By modeling the free charge carrier absorption as a Drude metal, we are able to calculate the free carrier density and mobility. Determining the location of the dopant atoms in the ZnO lattice is important to determine the doping mechanisms of the ZnO nanowires. Solid-state NMR is used to distinguish between coordination environments of the dopant atoms.

  19. Selective growth of ZnO thin film nanostructures: Structure, morphology and tunable optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Krishnakanth, Katturi Naga; Sunandana, C. S. [School of Physics, University of Hyderabad, Hyderabad-50046 (India); Rajesh, Desapogu, E-mail: rajesh.esapogu@gmail.com, E-mail: mperd@nus.edu.sg [School of Physics, University of Hyderabad, Hyderabad-50046 (India); Dept. of Mechanical Engineering, National University of Singapore (Singapore)

    2016-05-23

    The ZnO nanostructures (spherical, rod shape) have been successfully fabricated via a thermal evaporation followed by dip coating method. The pure, doped ZnO thin films were characterized by X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM) and UV-Vis spectroscopy, respectively. A possible growth mechanism of the spherical, rod shape ZnO nanostructures are discussed. XRD patterns revealed that all films consist of pure ZnO phase and were well crystallized with preferential orientation towards (002) direction. Doping by PVA, PVA+Cu has effective role in the enhancement of the crystalline quality and increases in the band gap.

  20. Well-crystalline porous ZnO-SnO2 nanosheets: an effective visible-light driven photocatalyst and highly sensitive smart sensor material.

    Science.gov (United States)

    Lamba, Randeep; Umar, Ahmad; Mehta, S K; Kansal, Sushil Kumar

    2015-01-01

    This work demonstrates the synthesis and characterization of porous ZnO-SnO2 nanosheets prepared by the simple and facile hydrothermal method at low-temperature. The prepared nanosheets were characterized by several techniques which revealed the well-crystallinity, porous and well-defined nanosheet morphology for the prepared material. The synthesized porous ZnO-SnO2 nanosheets were used as an efficient photocatalyst for the photocatalytic degradation of highly hazardous dye, i.e., direct blue 15 (DB 15), under visible-light irradiation. The excellent photocatalytic degradation of prepared material towards DB 15 dye could be ascribed to the formation of ZnO-SnO2 heterojunction which effectively separates the photogenerated electron-hole pairs and possess high surface area. Further, the prepared porous ZnO-SnO2 nanosheets were utilized to fabricate a robust chemical sensor to detect 4-nitrophenol in aqueous medium. The fabricated sensor exhibited extremely high sensitivity of ~ 1285.76 µA/mmol L(-1)cm(-2) and an experimental detection limit of 0.078 mmol L(-1) with a linear dynamic range of 0.078-1.25 mmol L(-1). The obtained results confirmed that the prepared porous ZnO-SnO2 nanosheets are potential material for the removal of organic pollutants under visible light irradiation and efficient chemical sensing applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Radio-frequency magnetron sputtering and wet thermal oxidation of ZnO thin film

    International Nuclear Information System (INIS)

    Liu, H. F.; Chua, S. J.; Hu, G. X.; Gong, H.; Xiang, N.

    2007-01-01

    The authors studied the growth and wet thermal oxidation (WTO) of ZnO thin films using a radio-frequency magnetron sputtering technique. X-ray diffraction reveals a preferred orientation of [1010]ZnO(0002)//[1120]Al 2 O 3 (0002) coexisted with a small amount of ZnO (1011) and ZnO (1013) crystals on the Al 2 O 3 (0001) substrate. The ZnO (1011) and ZnO (1013) crystals, as well as the in-plane preferred orientation, are absent from the growth of ZnO on the GaAs(001) substrate. WTO at 550 deg. C improves the crystalline and the photoluminescence more significantly than annealing in air, N 2 and O 2 ambient; it also tends to convert the crystal from ZnO (1011) and ZnO (1013) to ZnO (0002). The evolution of the photoluminescence upon WTO and annealing reveals that the green and orange emissions, centered at 520 and 650 nm, are likely originated from oxygen vacancies and oxygen interstitials, respectively; while the 420 nm emission, which is very sensitive to the postgrowth thermal processing regardless of the substrate and the ambient gas, is likely originated from the surface-state related defects

  2. Porous carbon-coated ZnO nanoparticles derived from low carbon content formic acid-based Zn(II) metal-organic frameworks towards long cycle lithium-ion anode material

    International Nuclear Information System (INIS)

    Gao, Song; Fan, Ruiqing; Li, Bingjiang; Qiang, Liangsheng; Yang, Yulin

    2016-01-01

    Graphical abstract: The nanocomposites constructed from Zn-based MOFs exhibit low carbon content with super-high rate capability and long cycling life. - Highlights: • Novel ZnO@porous carbon matrix nanocomposites are constructed by pyrolysis of Zn-based MOFs. • The nanocomposites constructed with Zn-based MOFs show low carbon content. • The constructed nanocomposites exhibit high energy density, super-high rate capability and long cycling life. - Abstract: Single-C formic acid-based metal-organic frameworks (MOFs) are used to construct novel ZnO@porous carbon matrix nanocomposites by controlled pyrolysis. In the constructed nanocomposites, the porous carbon matrices act as a confined support to prevent agglomeration of the ZnO nanoparticles and create a rapid electron conductive network. Meanwhile, the well-defined, continuous porous structured MOFs provide a large specific surface area, which increases the contact of electrolyte-electrode and improves the penetration of electrolyte. Especially, the reasonable choice of formic acid-based MOFs construct the low carbon content composite, which contribute to the high energy density and long cycle life. The constructed nanocomposites show stable, ultrahigh rate lithium ion storage properties of 650 mAh g −1 at charge/discharge rate of 1 C even after 200 cycles.

  3. Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application

    International Nuclear Information System (INIS)

    Jia, Qianqian; Ji, Huiming; Zhang, Ying; Chen, Yalu; Sun, Xiaohong; Jin, Zhengguo

    2014-01-01

    Highlights: • ZnO spheres fabricated via solvothermal method are with (0 0 2) polar facet exposed. • Response time of ZnO sensor for detecting 100 ppm acetone is as short as 3 s. • R a /R g toward 100 ppm acetone is 33 when operated at 230 °C. • ZnO sensor exhibits good selectivity against other toxic gases and water vapor. • Porous structure and exposure of polar facet contribute to good sensing properties. - Abstract: Hierarchical nanostructured ZnO dandelion-like spheres were synthesized via solvothermal reaction at 200 °C for 4 h. The products were pure hexagonal ZnO with large exposure of (0 0 2) polar facet. Side-heating gas sensor based on hierarchical ZnO spheres was prepared to evaluate the acetone gas sensing properties. The detection limit to acetone for the ZnO sensor is 0.25 ppm. The response (R a /R g ) toward 100 ppm acetone was 33 operated at 230 °C and the response time was as short as 3 s. The sensor exhibited remarkable acetone selectivity with negligible response toward other hazardous gases and water vapor. The high proportion of electron depletion region and oxygen vacancies contributed to high gas response sensitivity. The hollow and porous structure of dandelion-like ZnO spheres facilitated the diffusion of gas molecules, leading to a rapid response speed. The largely exposed (0 0 2) polar facets could adsorb acetone gas molecules easily and efficiently, resulting in a rapid response speed and good selectivity of hierarchical ZnO spheres gas sensor at low operating temperature

  4. Synthesis, characterization and optical properties of sheet-like ZnO

    International Nuclear Information System (INIS)

    Liu, Changzhen; Meng, Dawei; Wu, Xiuling; Wang, Yongqian; Yu, Xiaohong; Zhang, Zhengjie; Liu, Xiaoyang

    2011-01-01

    Highlights: → Sheet-like ZnO with regular hexagon shape was synthesized with a two-step method. → Sheet-like ZnO predecessor was synthesized at low temperature in open system. → The diameter and thickness of ZnO sheet can be controlled conveniently. → This low-cost and environmentally benign approach is controllable and reproducible. → Sheet-like ZnO may have potential application in optical and electrical devices. -- Abstract: Sheet-like ZnO with regular hexagon shape and uniform diameter has been successfully synthesized through a two-step method without any metal catalyst. First, the sheet-like ZnO precursor was synthesized in a weak alkaline carbamide environment with stirring in a constant temperature water-bath by the homogeneous precipitation method, then sheet-like ZnO was obtained by calcining at 600 o C for 2 h. The structures and optical properties of sheet-like ZnO have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) and UV-vis-NIR spectrophotometer. The results reveal that the product is highly crystalline with hexagonal wurtzite phase and has appearance of hexagon at (0 0 0 1) plane. The HRTEM images confirm that the individual sheet-like ZnO is single crystal. The PL spectrum exhibits a narrow ultraviolet emission at 397 nm and a broad visible emission centering at 502 nm. The band gap of sheet-like ZnO is about 3.15 eV.

  5. Morphological, structural and optical properties of ZnO thin films deposited by dip coating method

    Energy Technology Data Exchange (ETDEWEB)

    Marouf, Sara; Beniaiche, Abdelkrim; Guessas, Hocine, E-mail: aziziamor@yahoo.fr [Laboratoire des Systemes Photoniques et Optiques Non Lineaires, Institut d' Optique et Mecanique de Precision, Universite Ferhat Abbas-Setif 1, Setif (Algeria); Azizi, Amor [Laboratoire de Chimie, Ingenierie Moleculaire et Nanostructures, Universite Ferhat Abbas-Setif 1, Setif (Algeria)

    2017-01-15

    Zinc oxide (ZnO) thin films were deposited on glass substrate by dip coating technique. The effects of sol aging time on the deposition of ZnO films was studied by using the field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and optical transmission techniques. The morphology of the films strongly depends on preparation route and deposition technique. It is noteworthy that films deposited from the freshly prepared solution feature indistinct characteristics; had relatively poor crystalline quality and low optical transmittance in the visible region. The increase in sol aging time resulted in a gradual improvement in crystallinity (in terms of peak sharpness and peak intensity) of the hexagonal phase for all diffraction peaks. Effect of sol aging on optical transparency is quite obvious through increased transmission with prolonged sol aging time. Interestingly, 72-168 h sol aging time was found to be optimal to achieve smooth surface morphology, good crystallinity and high optical transmittance which were attributed to an ideal stability of solution. These findings present a better-defined and more versatile procedure for production of clean ZnO sols of readily adjustable nanocrystalline size. (author)

  6. Effects of Chromium Dopant on Ultraviolet Photoresponsivity of ZnO Nanorods

    Science.gov (United States)

    Mokhtari, S.; Safa, S.; Khayatian, A.; Azimirad, R.

    2017-07-01

    Structural and optical properties of bare ZnO nanorods, ZnO-encapsulated ZnO nanorods, and Cr-doped ZnO-encapsulated ZnO nanorods have been investigated. Encapsulated ZnO nanorods were grown using a simple two-stage method in which ZnO nanorods were first grown on a glass substrate directly from a hydrothermal bath, then encapsulated with a thin layer of Cr-doped ZnO by dip coating. Comparative study of x-ray diffraction patterns showed that Cr was successfully incorporated into the shell layer of ZnO nanorods. Moreover, energy-dispersive x-ray spectroscopy confirmed presence of Cr in this sample. It was observed that the thickness of the shell layer around the core of the ZnO nanorods was at least about 20 nm. Transmission electron microscopy of bare ZnO nanorods revealed single-crystalline structure. Based on optical results, both the encapsulation process and addition of Cr dopant decreased the optical bandgap of the samples. Indeed, the optical bandgap values of Cr-doped ZnO-encapsulated ZnO nanorods, ZnO-encapsulated ZnO nanorods, and bare ZnO nanorods were 2.89 eV, 3.15 eV, and 3.34 eV, respectively. The ultraviolet (UV) parameters demonstrated that incorporation of Cr dopant into the shell layer of ZnO nanorods considerably facilitated formation and transportation of photogenerated carriers, optimizing their performance as a practical UV detector. As a result, the photocurrent of the Cr-doped ZnO-encapsulated ZnO nanorods was the highest (0.6 mA), compared with ZnO-encapsulated ZnO nanorods and bare ZnO nanorods (0.21 mA and 0.06 mA, respectively).

  7. CdTe deposition by successive ionic layer adsorption and reaction (SILAR) technique onto ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Raul; Delamoreanu, Alexandru; Saidi, Bilel; Ivanova, Valentina [CEA, LETI, MINATEC Campus, 17 Rue des Martyrs, 38054, Grenoble (France); Levy-Clement, Claude [CNRS, Institut de Chimie et des Materiaux de Paris-Est, 94320, Thiais (France)

    2014-09-15

    In this study is reported CdTe deposition by Successive Ionic Layer Adsorption and reaction (SILAR) at room temperature onto ZnO nanowires (NWs). The as-deposited CdTe layer exhibits poor crystalline quality and not well defined optical transition which is probably result of its amorphous nature. The implementation of an annealing step and chemical treatment by CdCl{sub 2} to the classical SILAR technique improved significantly the CdTe film quality. The XRD analysis showed that the as treated layers are crystallized in the cubic zinc blende structure. The full coverage of ZnO nanowires and thickness of the CdTe shell, composed of small crystallites, was confirmed by STEM and TEM analysis. The layer thickness could be controlled by the number of SILAR cycles. The sharper optical transitions for the annealed and CdCl{sub 2} treated heterostructures additionally proves the enhancement of the layer crystalline quality. For comparison CdTe was also deposited by close space sublimation (CSS) method onto ZnO nanowires. It is shown that the SILAR deposited CdTe exhibits equal crystalline and optical properties to that prepared by CSS. These results demonstrate that SILAR technique is more suitable for conformal thin film deposition on nanostructures. CdTe extremely thin film deposited by SILAR method onto ZnO nanowire. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. CdTe deposition by successive ionic layer adsorption and reaction (SILAR) technique onto ZnO nanowires

    International Nuclear Information System (INIS)

    Salazar, Raul; Delamoreanu, Alexandru; Saidi, Bilel; Ivanova, Valentina; Levy-Clement, Claude

    2014-01-01

    In this study is reported CdTe deposition by Successive Ionic Layer Adsorption and reaction (SILAR) at room temperature onto ZnO nanowires (NWs). The as-deposited CdTe layer exhibits poor crystalline quality and not well defined optical transition which is probably result of its amorphous nature. The implementation of an annealing step and chemical treatment by CdCl 2 to the classical SILAR technique improved significantly the CdTe film quality. The XRD analysis showed that the as treated layers are crystallized in the cubic zinc blende structure. The full coverage of ZnO nanowires and thickness of the CdTe shell, composed of small crystallites, was confirmed by STEM and TEM analysis. The layer thickness could be controlled by the number of SILAR cycles. The sharper optical transitions for the annealed and CdCl 2 treated heterostructures additionally proves the enhancement of the layer crystalline quality. For comparison CdTe was also deposited by close space sublimation (CSS) method onto ZnO nanowires. It is shown that the SILAR deposited CdTe exhibits equal crystalline and optical properties to that prepared by CSS. These results demonstrate that SILAR technique is more suitable for conformal thin film deposition on nanostructures. CdTe extremely thin film deposited by SILAR method onto ZnO nanowire. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Effect of the pillar ligand on preventing agglomeration of ZnO nanoparticles prepared from Zn(II metal-organic frameworks

    Directory of Open Access Journals (Sweden)

    Maryam Moeinian

    2016-01-01

    Full Text Available Metal-Organic Frameworks (MOFs represent a new class of highly porous materials. On this regard,  two nano porous metal-organic frameworks of [Zn2(1,4-bdc2(H2O2∙(DMF2]n (1 and [Zn2(1,4-bdc2(dabco]·4DMF·1⁄2H2O (2, (1,4-bdc = benzene-1,4-dicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]octane and DMF = N,N-dimethylformamide were synthesized and characterized. They were used for preparation of ZnO nanomaterials. With calcination of 1, agglomerated ZnO nanoparticles could be fabricated, but by the same process on 2, the tendency of ZnO nanoparticles to agglomeration was decreased. In addition, the ZnO nanoparticles prepared from compound 2 had smaller diameter than those obtained from compound 1. In fact, the role of organic dabco ligands in 2 is similar to the role of polymeric stabilizers in formation of nanoparticles. Finally, considering the various applications of ZnO nanomaterials such as light-emitting diodes, photodetectors, photodiodes, gas sensors and dye-sensitized solar cells (DSSCs, it seems that preparation of ZnO nanomaterials from their MOFs could be one of the simple and effective methods which may be applied for preparation of them.

  10. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications

    Science.gov (United States)

    Giri, Pushpa; Chakrabarti, P.

    2016-05-01

    Zinc Oxide (ZnO) thin films have been grown on p-silicon (Si) substrate using magnesium doped ZnO (Mg: ZnO) buffer layer by radio-frequency (RF) sputtering method. In this paper, we have optimized the concentration of Mg (0-5 atomic percent (at. %)) ZnO buffer layer to examine its effect on ZnO thin film based devices for electronic and optoelectronic applications. The crystalline nature, morphology and topography of the surface of the thin film have been characterized. The optical as well as electrical properties of the active ZnO film can be tailored by varying the concentration of Mg in the buffer layer. The crystallite size in the active ZnO thin film was found to increase with the Mg concentration in the buffer layer in the range of 0-3 at. % and subsequently decrease with increasing Mg atom concentration in the ZnO. The same was verified by the surface morphology and topography studies carried out with scanning electron microscope (SEM) and atomic electron microscopy (AFM) respectively. The reflectance in the visible region was measured to be less than 80% and found to decrease with increase in Mg concentration from 0 to 3 at. % in the buffer region. The optical bandgap was initially found to increase from 3.02 eV to 3.74 eV by increasing the Mg content from 0 to 3 at. % but subsequently decreases and drops down to 3.43 eV for a concentration of 5 at. %. The study of an Au:Pd/ZnO Schottky diode reveals that for optimum doping of the buffer layer the device exhibits superior rectifying behavior. The barrier height, ideality factor, rectification ratio, reverse saturation current and series resistance of the Schottky diode were extracted from the measured current voltage (I-V) characteristics.

  11. Heterometallic metal-organic framework-templated synthesis of porous Co3O4/ZnO nanocage catalysts for the carbonylation of glycerol

    Science.gov (United States)

    Lü, Yinyun; Jiang, Yating; Zhou, Qi; Li, Yunmei; Chen, Luning; Kuang, Qin; Xie, Zhaoxiong; Zheng, Lansun

    2017-12-01

    The efficient synthesis of glycerol carbonate (GLC) has recently received great attention due to its significance in reducing excess glycerol in biodiesel production as well as its promising applications in several industrial fields. However, the achievement of high conversion and high selectivity of GLC from glycerol in heterogeneous catalytic processes remains a challenge due to the absence of high-performance solid catalysts. Herein, highly porous nanocage catalysts composed of well-mixed Co3O4 and ZnO nanocrystals were successfully fabricated via a facile heterometallic metal-organic framework (MOF)-templated synthetic route. Benefiting from a high porosity and the synergistic effect between Co3O4 and ZnO, the as-prepared composite catalysts exhibited a significantly enhanced production efficiency of GLC in the carbonylation reaction of glycerol with urea compared to the single-component counterparts. The yield of GLC over the Co50Zn50-350 catalyst reached 85.2%, with 93.3% conversion and near 91% GLC selectivity, and this catalytic performance was superior to that over most heterogeneous catalysts. More importantly, the proposed templated synthetic strategy of heterometallic MOFs facilitates the regulation of catalyst composition and surface structure and can therefore be potentially extended in the tailoring of other metal oxide composite catalysts.

  12. Zn nanoparticle formation in FIB irradiated single crystal ZnO

    Science.gov (United States)

    Pea, M.; Barucca, G.; Notargiacomo, A.; Di Gaspare, L.; Mussi, V.

    2018-03-01

    We report on the formation of Zn nanoparticles induced by Ga+ focused ion beam on single crystal ZnO. The irradiated materials have been studied as a function of the ion dose by means of atomic force microscopy, scanning electron microscopy, Raman spectroscopy and transmission electron microscopy, evidencing the presence of Zn nanoparticles with size of the order of 5-30 nm. The nanoparticles are found to be embedded in a shallow amorphous ZnO matrix few tens of nanometers thick. Results reveal that ion beam induced Zn clustering occurs producing crystalline particles with the same hexagonal lattice and orientation of the substrate, and could explain the alteration of optical and electrical properties found for FIB fabricated and processed ZnO based devices.

  13. Appraisal on Textured Grain Growth and Photoconductivity of ZnO Thin Film SILAR

    Directory of Open Access Journals (Sweden)

    Deepu Thomas

    2014-01-01

    Full Text Available ZnO thin films were prepared by successive ionic layer adsorption reaction (SILAR method. The textured grain growth along c-axis in pure ZnO thin films and doped with Sn was studied. The structural analysis of the thin films was done by X-ray diffraction and surface morphology by scanning electron microscopy. Textured grain growth of the samples was measured by comparing the peak intensities. Textured grain growth and photo current in ZnO thin films were found to be enhanced by doping with Sn. ZnO thin film having good crystallinity with preferential (002 orientation is a semiconductor with photonic properties of potential benefit to biophotonics. From energy dispersive X-ray analysis, it is inferred that oxygen vacancy creation is responsible for the enhanced textured grain growth in ZnO thin films.

  14. Development of ZnO based charged particle monitor for processing facility

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kawaguchi, Noriaki; Fujimoto, Yutaka

    2011-01-01

    In the present paper, we describe the development of an α-ray imaging detector based on a ZnO single crystalline scintillator and a position-sensitive photomultiplier tube (PSPMT). The ZnO crystal was grown by the hydrothermal synthesis method with 2-in.-φ in diameter. The ZnO specimen was polished but to be 0.5 mm in thickness. After optically coupling with PSPMT, the crystal was irradiated with, 241 Am α-ray for evaluation of both spatial resolution and pulse height spectrum. Using the charge center of the gravity method, two-dimensional α-ray images were successfully obtained. The efficiency of the energy window in terms of imaging quality was also examined. (author)

  15. Improvement of the crystallinity and photocatalytic property of zinc oxide as calcination product of Zn–Al layered double hydroxide

    International Nuclear Information System (INIS)

    Ahmed, Abdullah Ahmed Ali; Talib, Zainal Abidin; Hussein, Mohd Zobir bin; Zakaria, Azmi

    2012-01-01

    Highlights: ► ZnO phase and ZnAl 2 O 4 spinel can be formed as Zn–Al–NO 3 –LDH calcination products. ► The crystallinity of ZnO phase increased with an increase of calcination temperature. ► The optical band gaps of ZnO were improved with an increase in temperature. ► The oxygen vacancies in ZnO and ZnAl 2 O 4 generated the ESR signals. - Abstract: Zinc oxide with different degrees of crystallinity can be formed as Zn–Al-layered double hydroxide (Zn–Al–NO 3 –LDH) calcination products. ZnAl 2 O 4 spinel is also formed in a range of calcination temperatures from 600 to 1000 °C from the LDH. X-ray diffraction patterns showed that the crystallinity of the ZnO phase increased as calcination temperatures increased. The LDH structure was fully collapsed at and above 400 °C. The photocatalytic activity was determined by UV–VIS–NIR diffuse reflectance spectroscopy. The band gap of the calcined samples increased as the calcination temperature increased. Electron spin resonance (ESR) spectra of the fresh and calcined LDH at room temperature demonstrated that oxygen vacancies in the ZnO and ZnAl 2 O 4 were responsible for the generation of ESR signals. One BET specific surface area increased from 1 m 2 /g for the LDH to a maximum at 400 °C (43 m 2 /g) and decreased thereafter down to 6 m 2 /g at 1000 °C.

  16. Direct Heteroepitaxial Growth of ZnO over GaN Crystal in Aqueous Solution

    Science.gov (United States)

    Hamada, Takahiro; Ito, Akihiro; Nagao, Nobuaki; Suzuki, Nobuyasu; Fujii, Eiji; Tsujimura, Ayumu

    2013-04-01

    We report on the structural and electrical properties of ZnO films grown on surface-treated GaN/Al2O3 substrates by chemical bath deposition. X-ray diffraction analysis indicated that the ZnO films had a single-crystalline wurtzite structure with c-axis orientation. The ZnO film exhibited n-type conduction with a carrier concentration of 6.9 ×1018 cm-3, an electron mobility of 41 cm2/(V.s), and a resistivity of 2.2 ×10-2 Ω.cm. A low specific contact resistivity of 4.3 ×10-3 Ω.cm2 was obtained at the ZnO/n-GaN interface. Additionally, the ZnO film exhibited high transparency in the visible and infrared region.

  17. The effects of addition of citric acid on the morphologies of ZnO nanorods

    International Nuclear Information System (INIS)

    Yang Zao; Liu Quanhui; Yang Lei

    2007-01-01

    ZnO nanorods of 25-100 nm in diameter and 0.2-1 μm in length were fabricated through citric acid assisted annealing process. The microstructure of ZnO nanorods was characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy and field-emission scanning electron microscopy, respectively. As a result, it was found that ZnO nanorods were single crystalline and pure. The effects of the growth conditions such as addition of citric acid, annealing temperature on the morphologies of ZnO nanostructures have also been investigated. At the given temperature the length decreased but the diameter increased with addition of the mass of citric acid. With the rising of the calcining heat, the shape of ZnO changed from rod to granule for a given amount of citric acid. Finally, the mechanism for citric acid assisted annealing synthesis of the ZnO nanostructure is discussed

  18. Synthesis of vertical arrays of ultra long ZnO nanowires on noncrystalline substrates

    International Nuclear Information System (INIS)

    Kwon, Bong Jun; Lee, Kyung Moon; Shin, Hae-Young; Kim, Jinwoong; Liu, Jinzhang; Yoon, Seokhyun; Lee, Soonil; Ahn, Y.H.; Park, Ji-Yong

    2012-01-01

    Highlights: ► Arrays of vertical ultra-long ZnO nanowires with lengths upto 300 μm. ► Controls of lengths and diameters of vertical arrays of ZnO nanowires on SiO 2 substrates. ► Luminescent and electrical properties of ZnO nanowires prepared with different growth conditions. - Abstract: Vertically aligned arrays of ultralong ZnO nanowires were synthesized on SiO 2 substrates with carbothermal vapor phase transport method with Au seeding layer. High density of vertically aligned ZnO nanowires with lengths from a few to ∼300 μm could be grown by controlling growth conditions. Supply of high concentration of Zn vapor and control of the ratio between Zn vapor and oxygen are found to have the most significant effects on the growth of long ZnO nanowires in the vapor–solid growth mechanism. The nanowires are of high crystalline quality as confirmed by various structural, compositional, and luminescent measurements. Luminescent and electrical properties of ZnO nanowires with different growth conditions were also investigated.

  19. Comparison on electrically pumped random laser actions of hydrothermal and sputtered ZnO films

    International Nuclear Information System (INIS)

    Wang, Canxing; Jiang, Haotian; Li, Yunpeng; Ma, Xiangyang; Yang, Deren

    2013-01-01

    Random lasing (RL) in polycrystalline ZnO films is an intriguing research subject. Here, we have comparatively investigated electrically pumped RL behaviors of two metal-insulator-semiconductor structured devices using the hydrothermal and sputtered ZnO films as the semiconductor components, i.e., the light-emitting layers, respectively. It is demonstrated that the device using the hydrothermal ZnO film exhibits smaller threshold current and larger output optical power of the electrically pumped RL. The morphological characterization shows that the hydrothermal ZnO film is somewhat porous and is much rougher than the sputtered one, suggesting that in the former stronger multiple light scattering can occur. Moreover, the photoluminescence characterization indicates that there are fewer defects in the hydrothermal ZnO film than in the sputtered one, which means that the photons can pick up larger optical gain through stimulated emission in the hydrothermal ZnO film. Therefore, it is believed that the stronger multiple light scattering and larger optical gain contribute to the improved performance of the electrically pumped RL from the device using the hydrothermal ZnO film

  20. Dependence of the microstructural properties of ZnO particles on their synthesis

    International Nuclear Information System (INIS)

    Music, Svetozar; Saric, Ankica; Popovic, Stanko

    2008-01-01

    The influence of experimental conditions on the precipitation of ZnO particles and their microstructural properties has been investigated using X-ray powder diffraction, Fourier transform infrared spectroscopy and thermal field emission scanning electron microscopy. Mixing of ZnCl 2 or Zn(ac) 2 solution with Na 2 CO 3 solution of proper concentrations yielded aggregates of fine Zn 5 (CO 3 ) 2 (OH) 6 particles, which were converted to nanosize ZnO particles at 300 deg. C. The size of these ZnO particles increased to around 100 nm upon heating at 600 deg. C, whereas a small fraction of them turned out in the form of aggregates. The obtained ZnO particles assumed a pseudospherical shape; however, their basic structure was based on the hexagonal space group. Precipitation of Zn 2+ ions in decomposing HMTA at 90 deg. C yielded ZnO particles around micron range. Crystalline Zn(OH) 2 was not detected in the precipitates. ZnO particles obtained by this method were strongly elongated in the direction of the crystallographic c-axis

  1. Implementation of ZnO/ZnMgO strained-layer superlattice for ZnO heteroepitaxial growth on sapphire

    Science.gov (United States)

    Petukhov, Vladimir; Bakin, Andrey; Tsiaoussis, Ioannis; Rothman, Johan; Ivanov, Sergey; Stoemenos, John; Waag, Andreas

    2011-05-01

    The main challenge in fabrication of ZnO-based devices is the absence of reliable p-type material. This is mostly caused by insufficient crystalline quality of the material and not well-enough-developed native point defect control of ZnO. At present high-quality ZnO wafers are still expensive and ZnO heteroepitaxial layers on sapphire are the most reasonable alternative to homoepitaxial layers. But it is still necessary to improve the crystalline quality of the heteroepitaxial layers. One of the approaches to reduce defect density in heteroepitaxial layers is to introduce a strained-layer superlattice (SL) that could stop dislocation propagation from the substrate-layer interface. In the present paper we have employed fifteen periods of a highly strained SL structure. The structure was grown on a conventional double buffer layer comprising of high-temperature MgO/low-temperature ZnO on sapphire. The influence of the SLs on the properties of the heteroepitaxial ZnO layers is investigated. Electrical measurements of the structure with SL revealed very high values of the carrier mobility up to 210 cm2/Vs at room temperature. Structural characterization of the obtained samples showed that the dislocation density in the following ZnO layer was not reduced. The high mobility signal appears to come from the SL structure or the SL/ZnO interface.

  2. Amorphous Pd-assisted H 2 detection of ZnO nanorod gas sensor with enhanced sensitivity and stability

    KAUST Repository

    Kim, Hyeonghun

    2018-02-05

    For monitoring H2 concentrations in air, diverse resistive gas sensors have been demonstrated. In particular, Pd-decorated metal oxides have shown remarkable selectivity and sensing response for H2 detection. In this work, H2 sensing behavior of amorphous Pd layer covering ZnO nanorods (am-Pd/ZnO NRs) is investigated. This is the first report on the enhanced gas sensing performance attained by using an amorphous metal layer. The amorphous Pd layer is generated by reduction reaction with a strong reducing agent (NaBH4), and it covers the ZnO nanorods completely with a thickness of 2 ∼ 5 nm. For comparison, crystalline Pd nanoparticles-decorated ZnO nanorods (c-Pd/ZnO NRs) are produced using a milder reducing agent like hydrazine. Comparing the c-Pd/ZnO NRs sensor and other previously reported hydrogen sensors based on the crystalline Pd and metal oxides, the am-Pd/ZnO NRs sensor exhibits a remarkable sensing response (12,400% at 2% H2). The enhancement is attributed to complete cover of the amorphous Pd layer on the ZnO NRs, inducing larger interfaces between the Pd and ZnO. In addition, the amorphous Pd layer prevents surface contamination of the ZnO NRs. Therefore, the am-Pd/ZnO NRs sensor maintains initial sensing performance even after 5 months.

  3. Amorphous Pd-assisted H 2 detection of ZnO nanorod gas sensor with enhanced sensitivity and stability

    KAUST Repository

    Kim, Hyeonghun; Pak, Yusin; Jeong, Yeonggyo; Kim, Woochul; Kim, Jeongnam; Jung, Gun Young

    2018-01-01

    For monitoring H2 concentrations in air, diverse resistive gas sensors have been demonstrated. In particular, Pd-decorated metal oxides have shown remarkable selectivity and sensing response for H2 detection. In this work, H2 sensing behavior of amorphous Pd layer covering ZnO nanorods (am-Pd/ZnO NRs) is investigated. This is the first report on the enhanced gas sensing performance attained by using an amorphous metal layer. The amorphous Pd layer is generated by reduction reaction with a strong reducing agent (NaBH4), and it covers the ZnO nanorods completely with a thickness of 2 ∼ 5 nm. For comparison, crystalline Pd nanoparticles-decorated ZnO nanorods (c-Pd/ZnO NRs) are produced using a milder reducing agent like hydrazine. Comparing the c-Pd/ZnO NRs sensor and other previously reported hydrogen sensors based on the crystalline Pd and metal oxides, the am-Pd/ZnO NRs sensor exhibits a remarkable sensing response (12,400% at 2% H2). The enhancement is attributed to complete cover of the amorphous Pd layer on the ZnO NRs, inducing larger interfaces between the Pd and ZnO. In addition, the amorphous Pd layer prevents surface contamination of the ZnO NRs. Therefore, the am-Pd/ZnO NRs sensor maintains initial sensing performance even after 5 months.

  4. Implanted ZnO thin films: Microstructure, electrical and electronic properties

    International Nuclear Information System (INIS)

    Lee, J.; Metson, J.; Evans, P.J.; Kinsey, R.; Bhattacharyya, D.

    2007-01-01

    Magnetron sputtered polycrystalline ZnO thin films were implanted using Al, Ag, Sn, Sb and codoped with TiN in order to improve the conductivity and to attempt to achieve p-type behaviour. Structural and electrical properties of the implanted ZnO thin films were examined with X-ray diffractometry (XRD), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), atomic force microscopy (AFM) and conductivity measurements. Depth profiles of the implanted elements varied with the implant species. Implantation causes a partial amorphisation of the crystalline structure and decreases the effective grain size of the films. One of the findings is the improvement, as a consequence of implantation, in the conductivity of initially poorly conductive samples. Heavy doping may help for the conversion of conduction type of ZnO thin films. Annealing in vacuum mitigated structural damage and stress caused by implantation, and improved the conductivity of the implanted ZnO thin films

  5. Synthesis of ZnO nanorod–nanosheet composite via facile hydrothermal method and their photocatalytic activities under visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Wai Kian [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Abdul Razak, Khairunisak; Lockman, Zainovia [School of Materials and Mineral Resources, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Kawamura, Go; Muto, Hiroyuki [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Matsuda, Atsunori, E-mail: matsuda@ee.tut.ac.jp [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan)

    2014-03-15

    ZnO composite films consisting of ZnO nanorods and nanosheets were prepared by low-temperature hydrothermal processing at 80 °C on seeded glass substrates. The seed layer was coated on glass substrates by sol–gel dip-coating and pre-heated at 300 °C for 10 min prior to hydrothermal growth. The size of the grain formed after pre-heat treatment was ∼40 nm. A preferred orientation seed layer at the c-axis was obtained, which promoted vertical growth of the ZnO nanorod arrays and formation of the ZnO nanosheets. X-ray diffraction patterns and high-resolution transmission electron microscope (HR-TEM) images confirmed that the ZnO nanorods and nanosheets consist of single crystalline and polycrystalline structures, respectively. Room temperature photoluminescence spectra of the ZnO nanorod–nanosheet composite films exhibited band-edge ultraviolet (UV) and visible emission (blue and green) indicating the formation of ZnO crystals with good crystallinity and are supported by Raman scattering results. The formation of one-dimensional (1D) ZnO nanorod arrays and two-dimensional (2D) ZnO nanosheet films using seeded substrates in a single low-temperature hydrothermal step would be beneficial for realization of device applications that utilize substrates with limited temperature stability. The ZnO nanorods and nanosheets composite structure demonstrated higher photocatalytic activity during degradation of aqueous methylene blue under visible-light irradiation. -- Graphical abstract: Schematic illustration of ZnO nanorod–nanosheet composite structure formation by hydrothermal at low-temperature of 80 °C against time. Highlights: • Novel simultaneous formation of ZnO nanorods and nanosheets composite structure. • Facile single hydrothermal step formation at low-temperature. • Photoluminescence showed ultraviolet and visible emission. • Feasible application on substrates with low temperature stability. • Improved photocatalytic activity under visible

  6. A hydroxylamine electrochemical sensor based on electrodeposition of porous ZnO nanofilms onto carbon nanotubes films modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Cuihong; Wang Guangfeng; Liu Min; Feng Yuehua; Zhang Zhidan [College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Beijing East Road No. 1, Anhui Normal University, Anhui, Wuhu 241000 (China); Fang Bin, E-mail: binfang_47@yahoo.com.c [College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Beijing East Road No. 1, Anhui Normal University, Anhui, Wuhu 241000 (China)

    2010-03-01

    A novel route (electrodeposition) for the fabrication of porous ZnO nanofilms attached multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrodes (GCEs) was proposed. The morphological characterization of ZnO/MWCNT films was examined by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The performances of the ZnO/MWCNTs/GCE were characterized with cyclic voltammetry (CV), Nyquist plot (EIS) and typical amperometric response (i-t). The potential utility of electrodes constructed was demonstrated by applying them to the analytical determination of hydroxylamine concentration. An optimized limit of detection of 0.12 muM was obtained at a signal-to-noise ratio of 3 and with a fast response time (within 3 s). Additionally, the ZnO/MWCNTs/GCE exhibited a wide linear range from 0.4 to 1.9 x 10{sup 4} muM and higher sensitivity. The ease of fabrication, high stability, and low cost of the modified electrode are the promising features of the proposed sensor.

  7. Optimized adsorption of sulfonated phthalocyanines on ZnO electrodes and their characterization in dye- sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Falgenhauer, Jane; Loewenstein, Thomas; Schlettwein, Derck [Institute of Applied Physics, Justus-Liebig-University Giessen (Germany)

    2010-07-01

    Phthalocyanines belong to the most stable industrial dyes and show some of the highest molar extinction coefficients in the visible range. ZnO is known as a wide band gap semiconductor material which can be conveniently prepared as a porous electrode from solution-based processes. Sulfonated phthalocyanines were adsorbed at such electrodeposited porous ZnO thin films to work as a photosensitizer in a dye sensitized solar cell (DSSC). The adsorption solution of the phthalocyanine was modified in its composition and by adding different detergents in different concentrations. The adsorption solutions and the sensitized ZnO films were investigated by UV/Vis spectroscopy to characterize the aggregation of the dye molecules. Most of the detergents used could minimize the aggregation of the dye molecules in the adsorption solution without hindering the adsorption of the phthalocyanine on the ZnO surface. The photoelectrochemical characteristics of the resulting test cells were determined using a standard liquid electrolyte. The efficiency of the cells did not reach the expected level and reasons for this are discussed based on film morphology, amount of adsorbed dye molecules, competition by detergent adsorption, the optical absorbance of the dyes in the film and aggregate formation.

  8. Size dependent emission stimulation in ZnO nanosheets

    International Nuclear Information System (INIS)

    Torchynska, T.V.; El Filali, B.

    2014-01-01

    Photoluminescence (PL), X ray diffraction (XRD) and Raman scattering have been studied in crystalline ZnO nanosheets (NSs) of different sizes, estimated by scanning electronic microscopy (SEM). ZnO NSs with the size from the range of 60–600 nm were created by the electrochemical (anodization) method and followed thermal annealing at 400 °C for 2 h in ambient air. XRD study confirms the wurtzite structure of ZnO NSs and has revealed that the lattice parameters increase monotonically with decreasing NS sizes. Simultaneously the intensity of a set of Raman peaks increases and Raman peaks shift into the low energy range. The surface phonon has been detected in smallest size ZnO NSs. Two types of PL bands deal with a set of phonon replicas of free excitons and the defect related emission have been detected in ZnO NSs. The intensity enhancement of exciton- and defect-related PL bands with decreasing ZnO NS sizes has been detected. The intensity stimulation of exciton-related PL bands is attributed to the realization of the week confinement and the exciton-light coupling with the formation of polariton in small size ZnO NSs of 67–170 nm. The intensity rising of defect-related PL bands is attributed to the concentration enlargement of surface defects when the surface to volume ration increases at decreasing ZnO NS sizes. Numerical simulations of radiative lifetimes and exciton radiative recombination rates in ZnO NSs for different emission wavelengths have been done using the exciton-light coupling model. Then the experimental and numerically simulated PL results have been compared and discussed. - Highlights: • Optical and structural investigations of the ZnO nanosheets with the sizes 60–600 nm. • The enlargement of interplanar distances in the wurtzite ZnO crystal lattice is detected. • The change of optic phonon energy and surface phonon appearing are reveled. • ZnO emission stimulation at the week confinement and electron-light coupling with the

  9. Room temperature synthesis and optical properties of small diameter (5 nm) ZnO nanorod arrays.

    Science.gov (United States)

    Cho, Seungho; Jang, Ji-Wook; Lee, Jae Sung; Lee, Kun-Hong

    2010-10-01

    We report a simple wet-chemical synthesis of ∼5 nm diameter ZnO nanorod arrays at room temperature (20 °C) and normal atmospheric pressure (1 atm) and their optical properties. They were single crystalline in nature, and grew in the [001] direction. These small diameter ZnO nanorod arrays can also be synthesized at 0 °C. Control experiments were also conducted. On the basis of the results, we propose a mechanism for the spontaneous growth of the small diameter ZnO structures. The optical properties of the 5 nm diameter ZnO nanorod arrays synthesized using this method were probed by UV-Visible diffuse reflectance spectroscopy. A clear blue-shift, relative to the absorption band from 50 nm diameter ZnO nanorod arrays, was attributed to the quantum confinement effects caused by the small nanocrystal size in the 5 nm diameter ZnO nanorods.

  10. Ultra-long Zn{sub 2}SnO{sub 4}-ZnO microwires based gas sensor for hydrogen detection

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hong [School of Resources and Civil Engineering, Northeastern University, Shenyang 110819 (China); Xu, Shucong [School of Material Science & Engineering, Shandong University, Jinan 250061 (China); Cao, Xianmin; Liu, Daoxi; Yin, Yaoyu; Hao, Haiyong; Wei, Dezhou [School of Resources and Civil Engineering, Northeastern University, Shenyang 110819 (China); Shen, Yanbai, E-mail: shenyanbai@mail.neu.edu.cn [School of Resources and Civil Engineering, Northeastern University, Shenyang 110819 (China)

    2017-04-01

    Highlights: • Ultra-long Zn{sub 2}SnO{sub 4}-ZnO microwires with excellent crystallinity and high yield were obtained. • The maximal length-to-diameter ratio of Zn{sub 2}SnO{sub 4}-ZnO microwires is approximately 1500. • Ultra-long Zn{sub 2}SnO{sub 4}-ZnO microwires show outstanding H{sub 2} sensing properties. - Abstract: Ultra-long Zn{sub 2}SnO{sub 4}-ZnO microwires were synthesized by thermal evaporation of the mixture of SnO{sub 2}, ZnO and C powders. Microstructural characterization by means of X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy showed that Zn{sub 2}SnO{sub 4}-ZnO microwires with excellent crystallinity were 2.8–3.2 μm in diameter and 4.0–4.2 mm in length. The maximal length-to-diameter ratio of Zn{sub 2}SnO{sub 4}-ZnO microwires is approximately 1500. H{sub 2} sensing properties showed that Zn{sub 2}SnO{sub 4}-ZnO microwires exhibited not only excellent reversibility to H{sub 2}, but also a good linear relationship between the sensor response and H{sub 2} concentration. The response time and recovery time decreased as the operating temperature increased. The highest sensor response of 9.6 to 1000 ppm H{sub 2} was achieved at an operating temperature of 300 °C. The electron depletion theory was used for explaining H{sub 2} sensing mechanism by the chemical adsorption and reaction of H{sub 2} molecules on the surface of Zn{sub 2}SnO{sub 4}-ZnO microwires.

  11. The crystallization and physical properties of Al-doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.J. [Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Fang, T.H. [Institute of Mechanical and Electromechanical Engineering, National Formosa University, Yunlin 632, Taiwan (China); Hung, F.Y. [Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)], E-mail: fyhung@mail.mse.ncku.edu.tw; Ji, L.W. [Institute of Mechanical and Electromechanical Engineering, National Formosa University, Yunlin 632, Taiwan (China); Chang, S.J.; Young, S.J. [Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Hsiao, Y.J. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2008-07-15

    Un-doped Al (0-9 at.%) nanoparticles and doped ZnO powders were prepared by the sol-gel method. The nanoparticles were heated at 700-800 deg. C for 1 h in air and then analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). The results of un-doped (ZnO) and Al-doped ZnO (AZO) nanoparticles were also compared to investigate the structural characteristics and physical properties. XRD patterns of AZO powders were similar to those of ZnO powders, indicating that micro-Al ions were substituted for Zn atoms and there were no variations in the structure of the ZnO nanoparticles. From the XRD and SEM data, the grain size of the AZO nanoparticles increased from 34.41 to 40.14 nm when the annealing temperature was increased. The Raman intensity of the AZO nanoparticles (Al = 5 at.%) increased when the annealing temperature was increased. Increasing the degree of crystalline not only reduced the residual stress, but also improved the physical properties of the nanoparticles.

  12. The crystallization and physical properties of Al-doped ZnO nanoparticles

    International Nuclear Information System (INIS)

    Chen, K.J.; Fang, T.H.; Hung, F.Y.; Ji, L.W.; Chang, S.J.; Young, S.J.; Hsiao, Y.J.

    2008-01-01

    Un-doped Al (0-9 at.%) nanoparticles and doped ZnO powders were prepared by the sol-gel method. The nanoparticles were heated at 700-800 deg. C for 1 h in air and then analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). The results of un-doped (ZnO) and Al-doped ZnO (AZO) nanoparticles were also compared to investigate the structural characteristics and physical properties. XRD patterns of AZO powders were similar to those of ZnO powders, indicating that micro-Al ions were substituted for Zn atoms and there were no variations in the structure of the ZnO nanoparticles. From the XRD and SEM data, the grain size of the AZO nanoparticles increased from 34.41 to 40.14 nm when the annealing temperature was increased. The Raman intensity of the AZO nanoparticles (Al = 5 at.%) increased when the annealing temperature was increased. Increasing the degree of crystalline not only reduced the residual stress, but also improved the physical properties of the nanoparticles

  13. Variation in Structural and Optical Properties of Al Doped ZnO Nanoparticles Synthesized by Sol-gel Process

    Directory of Open Access Journals (Sweden)

    Vanaja Aravapalli

    2017-04-01

    Full Text Available This article focuses on analyzing structural and optical properties of Al doped ZnO (AZO synthesized with two different precursors aluminum chloride and aluminum nitrate. The nanoparticles were successfully fabricated and characterized at room temperature by sol-gel process. The objective of improving properties of ZnO nanoparticles by introducing dopants was successful with formation of nanoparticles having different crystalline sizes, optical absorption and luminescence properties. The two different sources influenced properties of ZnO. The particles with less crystalline size obtained from aluminum nitrate. Change in morphology from spherical to bar like morphology proved from SEM spectra. Presence of functional groups predicted from FTIR spectra. PL spectra proved UV emission and visible emission for AZO nanoparticles synthesized using dopant sources aluminum chloride and aluminum nitrate respectively. The obtained properties prove successful utilization of AZO nanoparticles as building materials in fabrication of optoelectronic devices.

  14. Ultraviolet photosensors fabricated with Ag nanowires coated with ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guan-Hung [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Hong, Franklin Chau-Nan, E-mail: hong@mail.ncku.edu.tw [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan (China); NCKU Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-11-03

    We have developed a simple low temperature process to coat zinc oxide (ZnO) nanoparticles (NPs) on Ag nanowires (NWs) with well-controlled morphology. Triethanolamine (TEA) was employed to react with zinc acetate (Zn(CH{sub 3}COO){sub 2}) forming ZnO NPs. TEA was also found to enhance the nucleation and binding of ZnO NPs on the Ag nanowire surfaces facilitating a complete coverage of Ag nanowire surfaces with ZnO NPs. The effects of the process parameters including reaction time and reaction temperature were studied. The surfaces of 60 nm diameter Ag NWs could be completely covered with ZnO NPs with the final diameters of Ag-NWs@ZnO (core–shell NWs) turning into the range from 100 nm to 450 nm. The Ag-NWs@ZnO was characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray mapping analysis, X-ray diffraction, and photoluminescence spectra. Finally, ultraviolet (UV) photosensors were fabricated using Ag-NWs@ZnO. They were found to improve photosensitivity with greatly enhanced fast response by reducing the recovery time by 2 orders, in comparison with the UV-sensors using single-crystalline ZnO NWs. - Highlights: • Solution process to coat ZnO nanoparticles on Ag nanowires has been developed. • Ultraviolet photosensing of ZnO nanoparticles coated on the Ag nanowires was found. • High defect concentration of ZnO nanoparticles enhanced the photosensing properties.

  15. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    Science.gov (United States)

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-02-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA.

  16. Function of NaOH hydrolysis in electrospinning ZnO nanofibers via using polylactide as templates

    International Nuclear Information System (INIS)

    Liu, Mengzhu; Wang, Yongpeng; Cheng, Zhiqiang; Song, Lihua; Zhang, Mingyue; Hu, Meijuan; Li, Junfeng

    2014-01-01

    Graphical abstract: - Highlights: • PLA was used as templates to electrospin ZnO nanofibers for the first time. • Without NaOH hydrolysis, only ZnO film was prepared. • Under function of NaOH, ZnO nanofibers were obtained. • The function of NaOH was discussed. • ZnO nanofibers showed much higher photocatalytical efficiency than ZnO film. - Abstract: Mixture of polylactide (8 wt%), zinc acetate (6 wt%) and hexafluoroisopropanol was first used as electrospinning solution to fabricate ZnO nanofibers. Unfortunately, after direct calcination of the precursor polylactide/zinc acetate nanofibers, only ZnO film was prepared. Surprisingly, when the precursor fibers were pre-hydrolyzed with NaOH, ZnO nanofibers with diameter of 678 nm were obtained. The mechanism analysis showed that the preserve of fiber structure was attributed to the formation of zinc polylactic acid in the process of hydrolyzation. After characterized by scanning electron microscope and transmission electron microscope, the ZnO film was found to be an aggregation of irregular nanoparticles and the ZnO nanofiber was a necklace-like arrangement of cylindrical grains. X-ray diffraction and photoluminescence measurements indicated that the crystalline quality of the ZnO nanofibers was higher than the film. Furthermore, photocatalytic performance of the ZnO samples was investigated. Comparing with ZnO film, ZnO nanofibers exhibited much higher activity

  17. Porous Silicon Nanowires

    Science.gov (United States)

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-01-01

    In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999

  18. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation

    Science.gov (United States)

    Matinise, N.; Fuku, X. G.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M.

    2017-06-01

    The research work involves the development of better and reliable method for the bio-fabrication of Zinc oxide nanoparticles through green method using Moringa Oleifera extract as an effective chelating agent. The electrochemical activity, crystalline structure, morphology, isothermal behavior, chemical composition and optical properties of ZnO nanoparticles were studied using various characterization techniques i.e. Cyclic voltammetry (CV), X-ray powder diffraction (XRD), High resolution transmission electron microscopy (HRTEM), Selected area electron diffraction (SEAD), Differential scanning calorimetry/thermogravimetric analysis (DSC/TGA), Fourier Transform Infrared analysis (FTIR) and Ultraviolet spectroscopy studies (UV-vis). The electrochemical analysis proved that the ZnO nano has high electrochemical activity without any modifications and therefore are considered as a potential candidate in electrochemical applications. The XRD pattern confirmed the crystallinity and pure phase of the sample. DSC/TGA analysis of ZnO sample (before anneal) revealed three endothermic peaks around 140.8 °C, 223.7 °C and 389.5 °C. These endothermic peaks are attributed to the loss of volatile surfactant, conversion of zinc hydroxide to zinc oxide nanoparticles and transformation of zinc oxide into zinc nanoparticles. Mechanisms of formation of the ZnO nanoparticles via the chemical reaction of the Zinc nitrate precursor with the bioactive compounds of the Moringa oleifera are proposed for each of the major family compounds: Vitamins, Flavonoids, and Phenolic acids.

  19. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation

    International Nuclear Information System (INIS)

    Matinise, N.; Fuku, X.G.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M.

    2017-01-01

    Highlights: • Biosynthesis of ZnO nanoparticlesl by green process using Moringa Oliefera extract. • Electrochemical studies were confirmed by cyclic and Square wave voltammetry. • XRD, HRTEM, TGA/DSC, FTIR were used to characterized the nanoparticles. - Abstract: The research work involves the development of better and reliable method for the bio-fabrication of Zinc oxide nanoparticles through green method using Moringa Oleifera extract as an effective chelating agent. The electrochemical activity, crystalline structure, morphology, isothermal behavior, chemical composition and optical properties of ZnO nanoparticles were studied using various characterization techniques i.e. Cyclic voltammetry (CV), X-ray powder diffraction (XRD), High resolution transmission electron microscopy (HRTEM), Selected area electron diffraction (SEAD), Differential scanning calorimetry/thermogravimetric analysis (DSC/TGA), Fourier Transform Infrared analysis (FTIR) and Ultraviolet spectroscopy studies (UV–vis). The electrochemical analysis proved that the ZnO nano has high electrochemical activity without any modifications and therefore are considered as a potential candidate in electrochemical applications. The XRD pattern confirmed the crystallinity and pure phase of the sample. DSC/TGA analysis of ZnO sample (before anneal) revealed three endothermic peaks around 140.8 °C, 223.7 °C and 389.5 °C. These endothermic peaks are attributed to the loss of volatile surfactant, conversion of zinc hydroxide to zinc oxide nanoparticles and transformation of zinc oxide into zinc nanoparticles. Mechanisms of formation of the ZnO nanoparticles via the chemical reaction of the Zinc nitrate precursor with the bioactive compounds of the Moringa oleifera are proposed for each of the major family compounds: Vitamins, Flavonoids, and Phenolic acids.

  20. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation

    Energy Technology Data Exchange (ETDEWEB)

    Matinise, N., E-mail: nmatinise@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanoscience-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Western Cape (South Africa); Fuku, X.G., E-mail: fuku@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanoscience-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Western Cape (South Africa); Kaviyarasu, K., E-mail: kasinathankariyarasu@gmail.com [UNESCO-UNISA Africa Chair in Nanoscience-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Western Cape (South Africa); Mayedwa, N., E-mail: nmyedi@gmail.com [UNESCO-UNISA Africa Chair in Nanoscience-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Western Cape (South Africa); Maaza, M., E-mail: maaza@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanoscience-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Western Cape (South Africa)

    2017-06-01

    Highlights: • Biosynthesis of ZnO nanoparticlesl by green process using Moringa Oliefera extract. • Electrochemical studies were confirmed by cyclic and Square wave voltammetry. • XRD, HRTEM, TGA/DSC, FTIR were used to characterized the nanoparticles. - Abstract: The research work involves the development of better and reliable method for the bio-fabrication of Zinc oxide nanoparticles through green method using Moringa Oleifera extract as an effective chelating agent. The electrochemical activity, crystalline structure, morphology, isothermal behavior, chemical composition and optical properties of ZnO nanoparticles were studied using various characterization techniques i.e. Cyclic voltammetry (CV), X-ray powder diffraction (XRD), High resolution transmission electron microscopy (HRTEM), Selected area electron diffraction (SEAD), Differential scanning calorimetry/thermogravimetric analysis (DSC/TGA), Fourier Transform Infrared analysis (FTIR) and Ultraviolet spectroscopy studies (UV–vis). The electrochemical analysis proved that the ZnO nano has high electrochemical activity without any modifications and therefore are considered as a potential candidate in electrochemical applications. The XRD pattern confirmed the crystallinity and pure phase of the sample. DSC/TGA analysis of ZnO sample (before anneal) revealed three endothermic peaks around 140.8 °C, 223.7 °C and 389.5 °C. These endothermic peaks are attributed to the loss of volatile surfactant, conversion of zinc hydroxide to zinc oxide nanoparticles and transformation of zinc oxide into zinc nanoparticles. Mechanisms of formation of the ZnO nanoparticles via the chemical reaction of the Zinc nitrate precursor with the bioactive compounds of the Moringa oleifera are proposed for each of the major family compounds: Vitamins, Flavonoids, and Phenolic acids.

  1. Wafer-Scale High-Throughput Ordered Growth of Vertically Aligned ZnO Nanowire Arrays

    KAUST Repository

    Wei, Yaguang

    2010-09-08

    This article presents an effective approach for patterned growth of vertically aligned ZnO nanowire (NW) arrays with high throughput and low cost at wafer scale without using cleanroom technology. Periodic hole patterns are generated using laser interference lithography on substrates coated with the photoresist SU-8. ZnO NWs are selectively grown through the holes via a low-temperature hydrothermal method without using a catalyst and with a superior control over orientation, location/density, and as-synthesized morphology. The development of textured ZnO seed layers for replacing single crystalline GaN and ZnO substrates extends the large-scale fabrication of vertically aligned ZnO NW arrays on substrates of other materials, such as polymers, Si, and glass. This combined approach demonstrates a novel method of manufacturing large-scale patterned one-dimensional nanostructures on various substrates for applications in energy harvesting, sensing, optoelectronics, and electronic devices. © 2010 American Chemical Society.

  2. Porous Zinc Oxide Thin Films: Synthesis Approaches and Applications

    Directory of Open Access Journals (Sweden)

    Marco Laurenti

    2018-02-01

    Full Text Available Zinc oxide (ZnO thin films have been widely investigated due to their multifunctional properties, i.e., catalytic, semiconducting and optical. They have found practical use in a wide number of application fields. However, the presence of a compact micro/nanostructure has often limited the resulting material properties. Moreover, with the advent of low-dimensional ZnO nanostructures featuring unique physical and chemical properties, the interest in studying ZnO thin films diminished more and more. Therefore, the possibility to combine at the same time the advantages of thin-film based synthesis technologies together with a high surface area and a porous structure might represent a powerful solution to prepare ZnO thin films with unprecedented physical and chemical characteristics that may find use in novel application fields. Within this scope, this review offers an overview on the most successful synthesis methods that are able to produce ZnO thin films with both framework and textural porosities. Moreover, we discuss the related applications, mainly focused on photocatalytic degradation of dyes, gas sensor fabrication and photoanodes for dye-sensitized solar cells.

  3. General Theory of Absorption in Porous Materials: Restricted Multilayer Theory.

    Science.gov (United States)

    Aduenko, Alexander A; Murray, Andy; Mendoza-Cortes, Jose L

    2018-04-18

    In this article, we present an approach for the generalization of adsorption of light gases in porous materials. This new theory goes beyond Langmuir and Brunauer-Emmett-Teller theories, which are the standard approaches that have a limited application to crystalline porous materials by their unphysical assumptions on the amount of possible adsorption layers. The derivation of a more general equation for any crystalline porous framework is presented, restricted multilayer theory. Our approach allows the determination of gas uptake considering only geometrical constraints of the porous framework and the interaction energy of the guest molecule with the framework. On the basis of this theory, we calculated optimal values for the adsorption enthalpy at different temperatures and pressures. We also present the use of this theory to determine the optimal linker length for a topologically equivalent framework series. We validate this theoretical approach by applying it to metal-organic frameworks (MOFs) and show that it reproduces the experimental results for seven different reported materials. We obtained the universal equation for the optimal linker length, given the topology of a porous framework. This work applied the general equation to MOFs and H 2 to create energy-storage materials; however, this theory can be applied to other crystalline porous materials and light gases, which opens the possibility of designing the next generations of energy-storage materials by first considering only the geometrical constraints of the porous materials.

  4. Paramagnetism and antiferromagnetic interactions in single-phase Fe-implanted ZnO

    CERN Document Server

    Pereira, Lino Miguel da Costa; Correia, João Guilherme; Van Bael, M J; Temst, Kristiaan; Vantomme, André; Araújo, João Pedro

    2013-01-01

    As the intrinsic origin of the high temperature ferromagnetism often observed in wide-gap dilute magnetic semiconductors becomes increasingly debated, there is a growing need for comprehensive studies on the single-phase region of the phase diagram of these materials. Here we report on the magnetic and structural properties of Fe-doped ZnO prepared by ion implantation of ZnO single crystals. A detailed structural characterization shows that the Fe impurities substitute for Zn in ZnO in a wurtzite Zn$_{1−x}$Fe$_{x}$O phase which is coherent with the ZnO host. In addition, the density of beam-induced defects is progressively decreased by thermal annealing up to 900$^{\\circ}$C, from highly disordered after implantation to highly crystalline upon subsequent annealing. Based on a detailed analysis of the magnetometry data, we demonstrate that isolated Fe impurities occupying Zn substitutional sites behave as localized paramagnetic moments down to 2$^{\\circ}$K, irrespective of the Fe concentration and the density...

  5. ZnO nanoparticles obtained by ball milling technique: Structural, micro-structure, optical and photo-catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Balamurugan, S., E-mail: scandium.chemistry@gmail.com; Joy, Josny; Godwin, M. Anto; Selvamani, S.; Raja, T. S. Gokul [Advanced Nanomaterials Research Laboratory, Department of Nanotechnology, Noorul Islam Centre for Higher Education, Thuckalay, Kumaracoil - 629 180 (India)

    2016-05-23

    The ZnO nanoparticles were obtained by ball milling of commercial grade ZnO powder at 250 rpm for 20 h and studied their structural, micro-structure, optical and photo-catalytic properties. Due to ball milling significant decrease in lattice parameters and average crystalline size is noticed for the as-milled ZnO nano powder. The HRSEM images of the as-milled powder consist of agglomerated fine spherical nanoparticles in the range of ~10-20 nm. The room temperature PL spectrum of as-milled ZnO nano powder excited under 320 nm reveals two emission bands at ~406 nm (violet emission) and ~639 nm (green emission). Interestingly about 98 % of photo degradation of methylene (MB) by the ZnO catalyst is achieved at 100 minutes of solar light irradiation.

  6. Electrodeposition of ZnO nano-wires lattices with a controlled morphology; Electrodepot de reseaux de nanofils de ZnO a morphologie controlee

    Energy Technology Data Exchange (ETDEWEB)

    Elias, J.; Tena-Zaera, R.; Katty, A.; Levy-Clement, C. [Centre National de la Recherche Scientifique (CNRS), Lab. de Chimie Metallurgique des Terres Rares, UPR 209, 94 - Thiais (France)

    2006-07-01

    In this work, it is shown that the electrodeposition is a changeable low cost method which allows, according to the synthesis conditions, to obtain not only plane thin layers of ZnO but different nano-structures too. In a first part, are presented the formation conditions of a compact thin layer of nanocrystalline ZnO electrodeposited on a conducing glass substrate. This layer plays a buffer layer role for the deposition of a lattice of ZnO nano-wires. The step of nano-wires nucleation is not only determined by the electrochemical parameters but by the properties of the buffer layer too as the grain sizes and its thickness. In this context, the use of an electrodeposition method in two steps allows to control the nano-wires length and diameter and their density. The morphology and the structural and optical properties of these nano-structures have been analyzed by different techniques as the scanning and transmission electron microscopy, the X-ray diffraction and the optical spectroscopy. These studies show that ZnO nano-structures are formed of monocrystalline ZnO nano-wires, presenting a great developed surface and a great optical transparency in the visible. These properties make ZnO a good material for the development of nano-structured photovoltaic cells as the extremely thin absorber cells (PV ETA) or those with dye (DSSC) which are generally prepared with porous polycrystalline TiO{sub 2}. Its replacement by a lattice of monocrystalline ZnO nano-wires allows to reduce considerably the number of grain boundaries and in consequence to improve the transport of the electrons. The results are then promising for the PV ETA cells with ZnO nano-wires. (O.M.)

  7. Transient behaviors of ZnO thin films on a transparent, flexible polyethylene terephthalate substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Jun [Department of Nano-Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-701 (Korea, Republic of); Lee, Ho Seok [Department of Materials Science and Engineering, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Noh, Jin-Seo, E-mail: jinseonoh@gachon.ac.kr [Department of Nano-Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-701 (Korea, Republic of)

    2016-03-31

    Thickness-dependent electrical, structural, and optical properties of zinc oxide (ZnO) thin films on polyethylene terephthalate (PET) substrates have been investigated in the very thin thickness range of 20 to 120 nm. In this thickness range, the electrical resistance of ZnO film increased with an increase in film thickness. This unusual transition behavior was explained in terms of structural evolution from Zn-phase-incorporating non-crystalline ZnO to hexagonal-structured ZnO. A critical thickness for the full development of hexagonal ZnO crystal was estimated at approximately 80 nm in this study. ZnO thin films on PET substrates exhibit a high optical transmittance of > 70% and good endurance to bending cycles over the measured thickness range. The results of this study indicate that a trade-off should be sought between structural, electrical, optical, and mechanical properties for practical applications of very thin ZnO films on organic substrates. - Highlights: • Very thin ZnO films were sputter-deposited on the PET substrate. • The ZnO film resistance increases with an increase in film thickness until saturation. • Hexagonal crystal structures gradually develop with increasing film thickness. • A Zn phase appears in a 20-nm-thick ZnO film. • ZnO films show high optical transmittance of > 80% and good endurance to bending.

  8. Transient behaviors of ZnO thin films on a transparent, flexible polyethylene terephthalate substrate

    International Nuclear Information System (INIS)

    Kim, Yong Jun; Lee, Ho Seok; Noh, Jin-Seo

    2016-01-01

    Thickness-dependent electrical, structural, and optical properties of zinc oxide (ZnO) thin films on polyethylene terephthalate (PET) substrates have been investigated in the very thin thickness range of 20 to 120 nm. In this thickness range, the electrical resistance of ZnO film increased with an increase in film thickness. This unusual transition behavior was explained in terms of structural evolution from Zn-phase-incorporating non-crystalline ZnO to hexagonal-structured ZnO. A critical thickness for the full development of hexagonal ZnO crystal was estimated at approximately 80 nm in this study. ZnO thin films on PET substrates exhibit a high optical transmittance of > 70% and good endurance to bending cycles over the measured thickness range. The results of this study indicate that a trade-off should be sought between structural, electrical, optical, and mechanical properties for practical applications of very thin ZnO films on organic substrates. - Highlights: • Very thin ZnO films were sputter-deposited on the PET substrate. • The ZnO film resistance increases with an increase in film thickness until saturation. • Hexagonal crystal structures gradually develop with increasing film thickness. • A Zn phase appears in a 20-nm-thick ZnO film. • ZnO films show high optical transmittance of > 80% and good endurance to bending.

  9. Facile synthesis of one dimensional ZnO nanostructures for DSSC applications

    International Nuclear Information System (INIS)

    Marimuthu, T.; Anandhan, N.

    2016-01-01

    Development of zinc oxide (ZnO) nanostructure based third generation dye sensitized solar cell is interesting compared to conventional silicon solar cells. ZnO nanostructured thin films were electrochemically deposited onto fluorine doped tin oxide (FTO) glass substrate. The effect of ethylene-diamine-tetra-acetic acid (EDTA) on structural, morphological and optical properties is investigated using X-ray diffraction (XRD) meter, field emission scanning electron microscope (FE-SEM) and micro Raman spectroscopy. XRD patterns reveal that the prepared nanostructures are hexagonal wutrzite structures with (101) plane orientation, the nanostructure prepared using EDTA exhibits better crystallinity. FE-SEM images illustrate that the morphological changes are observed from nanorod structure to cauliflower like structure as EDTA is added. Micro Raman spectra predict that cauliflower like structure possesses a higher crystalline nature with less atomic defects compared to nanorod structures. Dye sensitized solar cell (DSSC) is constructed for the optimized cauliflower structure, and open circuit voltage, short circuit density, fill factor and efficiency are estimated from the J-V curve.

  10. Facile synthesis of one dimensional ZnO nanostructures for DSSC applications

    Energy Technology Data Exchange (ETDEWEB)

    Marimuthu, T.; Anandhan, N., E-mail: anandhan-kn@rediffmail.com [Advanced Materials and Thin Film Physics Lab, School of Physics, Alagappa University, Karaikudi – 630 003, India. (India)

    2016-05-06

    Development of zinc oxide (ZnO) nanostructure based third generation dye sensitized solar cell is interesting compared to conventional silicon solar cells. ZnO nanostructured thin films were electrochemically deposited onto fluorine doped tin oxide (FTO) glass substrate. The effect of ethylene-diamine-tetra-acetic acid (EDTA) on structural, morphological and optical properties is investigated using X-ray diffraction (XRD) meter, field emission scanning electron microscope (FE-SEM) and micro Raman spectroscopy. XRD patterns reveal that the prepared nanostructures are hexagonal wutrzite structures with (101) plane orientation, the nanostructure prepared using EDTA exhibits better crystallinity. FE-SEM images illustrate that the morphological changes are observed from nanorod structure to cauliflower like structure as EDTA is added. Micro Raman spectra predict that cauliflower like structure possesses a higher crystalline nature with less atomic defects compared to nanorod structures. Dye sensitized solar cell (DSSC) is constructed for the optimized cauliflower structure, and open circuit voltage, short circuit density, fill factor and efficiency are estimated from the J-V curve.

  11. Photoelectrochemical characterization of the role of organic sensitizers adsorbed on nanostructured ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Hastall, Andreas; Loewenstein, Thomas; Schlettwein, Derck [Institut fuer Angewandte Physik, Justus-Liebig-Universitaet Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany)

    2008-07-01

    Porous sensitized ZnO is a promising material for application as electrode in dye-sensitized solar cells (DSSC) to utilize the intense absorption of organic sensitizers in the visible spectral range. Electrochemical deposition of ZnO from aqueous solutions is a low temperature process (<150 C) which allows the use of various substrates. The process can be performed at low energy input and cost and is therefore promising short pay-back times and high net energy gains. The role of the adsorbed sensitizer dye and resulting charge carrier generation, collection, but also recombination in the interface of ZnO/sensitizer/electrolyte of DSSC were analyzed in detail by transient photocurrent measurements, intensity modulated photocurrent and photovoltage spectroscopy (IMPS/IMVS), photovoltage decay and charge-extraction. Results are discussed for different sensitizers adsorbed to the ZnO surface and for ZnO prepared on various substrates and optimized in structure and morphology.

  12. Shape- and size-controlled synthesis of nanometre ZnO from a simple solution route at room temperature

    International Nuclear Information System (INIS)

    Cao, H L; Qian, X F; Gong, Q; Du, W M; Ma, X D; Zhu, Z K

    2006-01-01

    Single crystalline ZnO nanorods with a diameter of about 5 nm were synthesized without the presence of any surfactants in ethanol solvent at room temperature. Nanodots and nanorods with different size and shape could be observed by TEM via simply altering NaOH concentration and reaction time. The polar ZnO nanorod growth mechanism was discussed by the 'Ostwald ripening' mechanism. Optical absorption and photoluminescence properties of ZnO nanorods have been characterized. The UV absorption spectrum revealed a clear blue-shift with a single absorption peak centred at 350 nm

  13. Enhanced piezoelectric output voltage and Ohmic behavior in Cr-doped ZnO nanorods

    International Nuclear Information System (INIS)

    Sinha, Nidhi; Ray, Geeta; Godara, Sanjay; Gupta, Manoj K.; Kumar, Binay

    2014-01-01

    Highlights: • Low cost highly crystalline Cr-doped ZnO nanorods were synthesized. • Enhancement in dielectric, piezoelectric and ferroelectric properties were observed. • A high output voltage was obtained in AFM. • Cr-doping resulted in enhanced conductivity and better Ohmic behavior in ZnO/Ag contact. - Abstract: Highly crystalline Cr-doped ZnO nanorods (NRs) were synthesized by solution technique. The size distribution was analyzed by high resolution tunneling electron microscope (HRTEM) and particle size analyzer. In atomic force microscope (AFM) studies, peak to peak 8 mV output voltage was obtained on the application of constant normal force of 25 nN. It showed high dielectric constant (980) with phase transition at 69 °C. Polarization vs. electric field (P–E) loops with remnant polarization (6.18 μC/cm 2 ) and coercive field (0.96 kV/cm) were obtained. In I–V studies, Cr-doping was found to reduce the rectifying behavior in the Ag/ZnO Schottky contact which is useful for field effect transistor (FET) and solar cell applications. With these excellent properties, Cr-doped ZnO NRs can be used in nanopiezoelectronics, charge storage and ferroelectric applications

  14. From Coordination Cages to a Stable Crystalline Porous Hydrogen-Bonded Framework

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Zhanfeng [State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou 350002 P. R. China; Liu, Guoliang [State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou 350002 P. R. China; Chen, Yu-Sheng [ChemMatCARS, Center for Advanced Radiation Sources, The University of Chicago, Argonne Illinois 60439 USA; Yuan, Daqiang [State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou 350002 P. R. China; Chen, Banglin [Department of Chemistry, University of Texas at San Antonio, San Antonio Texas 78249-0698 USA

    2017-03-20

    A stable framework has been constructed through multiple charge-assisted H-bonds between cationic coordination cages and chloride ions. The framework maintained its original structure upon desolvation, which has been established by single-crystal structure analysis. This is the first fully characterized stable porous framework based on coordination cages after desolvation, with a moderately high Brunauer–Emmett–Teller (BET) surface area of 1201 m2 g-1. This work will not only give a light to construct stable porous frameworks based on coordination cages and thus broaden their applications, but will also provide a new avenue to the assembly of other porous materials such as porous organic cages and hydrogen-bonded organic frameworks (HOFs) through non covalent bonds.

  15. A novel low-temperature chemical solution route for straight and dendrite-like ZnO nanostructures

    International Nuclear Information System (INIS)

    Zhang Hui; Du Ning; Wu Jianbo; Ma, Xiangyang; Yang Deren; Zhang Xiaobin; Yang Zhiqing

    2007-01-01

    The straight and dendrite-like growths of ZnO have been completely and simply controlled by the status of ZnO seed instead of surfactant, template, oriented attachment, and ZnO buffer layer on the substrate in the chemical reaction synthesis of ZnO nanostructures. The monodisperse ZnO seeds, which are prepared by in situ quickly injecting the cool mixed zinc acetate and potassium hydrate ethanol solution into the hot matrix aqueous solution of zinc nitrate hydrate and diethylenetriamine at 95 deg. C, improve the straight growth and lots of uniform, straight, and single-crystalline ZnO nanorods with about 20-30 nm in diameter and 300 nm in length are achieved. While, the aggregated ZnO seeds, which are prepared by dropwise adding potassium hydrate ethanol solution into zinc acetate ethanol solution at 60 deg. C for 3 h, result in the dendrite-like growth and the bur-like ZnO nanostructures consisting of hundreds of nanorods with about 30-50 nm in diameter and several micrometers in length are formed. Furthermore, the approach presented here provides a simple, low-cost, environmental-friendly and high efficiency route to synthesize the high quality ZnO nanorods and bur-like ZnO nanostructures

  16. Effect of different solutions on electrochemical deposition of ZnO

    International Nuclear Information System (INIS)

    Asil, H.; Chinar, K.; Gur, E.; Tuzemen, S.

    2010-01-01

    ZnO thin films were grown by electrochemical deposition (ECD) onto indium tin oxide using different compounds such as Zn(NO 3 ) 2 , Zn(C 2 H 3 O 2 ) 2 , ZnCl 2 , Zn(ClO 4 ) 2 and different solvents such as dimethylsulfoxide (DMSO) and 18 M deionized water. Furthermore, solutions were prepared using different electrolytes and concentrations in order to determine the optimum deposition parameters of ZnO. All the grown films were characterized by X-ray diffraction, optical absorption and photoluminescence measurement techniques. It is indicated that films grown by using Zn(ClO 4 ) 2 show high crystallinity and optical quality. The X-ray diffraction analysis showed that ZnO thin films which were grown electrochemically in a non-aqueous solution (DMSO) prepared by Zn(ClO 4 ) 2 have highly c-axis preferential orientation. PL measurements showed that ZnO thin films grown in Zn(ClO 4 ) 2 indicates high quality emission characteristics compared to the thin films grown by other solutions

  17. Synthesis and properties of ZnO nanorods as ethanol gas sensors

    International Nuclear Information System (INIS)

    Mirabbaszadeh, K; Mehrabian, M

    2012-01-01

    Uniform ZnO nanorods were synthesized via the sol-gel process under mild conditions in which different ZnO nanostructures have been prepared by changing the pH of growth solution. It was seen that the optimum nanorods were grown at pH 11.33. The prepared ZnO nanostructures and morphologies were characterized by x-ray diffraction and scanning electron microscopy measurements. The ZnO one-dimensional nanostructures were found to have a wurtzite hexagonal crystalline structure and grow along the [001] direction. The optimum nanorods were about 1 μm in length and less than 100 nm in diameter. The ZnO nanostructures have been tested for different concentrations and different operating temperatures for ethanol vapor in air and the surface resistance of the sensors has been evaluated as a function of different parameters. The gas sensor fabricated from ZnO nanorods grown in solution with a special pH exhibited good performance. The sensor response to 5000 ppm ethanol was up to about 2.5 at the operating temperature of 300 °C. The differences in gas-sensing performance between the sensors were analyzed based on the defects created in the nanorods during their fast growth. The correlations between material structures and the properties of the gas sensors are discussed.

  18. Hydrothermal synthesis of highly crystalline ZnO nanorod arrays: Dependence of morphology and alignment on growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Azzez, Shrook A., E-mail: shurouq44@yahoo.com [Institutes of Nano-Optoelectronic Research and Technology Laboratory (INOR), Ministry of Science and Technology, Baghdad (Iraq); Hassan, Z.; Alimanesh, M.; Rasheed, Hiba S.; Sabah, Fayroz A.; Abdulateef, Sinan A. [Institutes of Nano-Optoelectronic Research and Technology Laboratory (INOR), Ministry of Science and Technology, Baghdad (Iraq); Hassan, J. J. [Department of Physics, College of Science, University of Basrah, Basrah (Iraq)

    2016-07-06

    Highly oriented zinc oxide nanorod were successfully grown on seeded p-type silicon substrate by hydrothermal methode. The morphology and the crystallinty of ZnO c-axis (002) arrays were systematically studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) methods. The effect of seed layer pre-annealing on nanorods properties was explained according to the nucleation site of ZnO nanoparticles on silicon substrate. In addition, the variation of the equal molarity of zinc nitrate hexahydrate and hexamine concentrations in the reaction vessel play a crucial role related to the ZnO nanorods.

  19. Mesoporous ZnO microcube derived from a metal-organic framework as photocatalyst for the degradation of organic dyes

    Science.gov (United States)

    Ban, Jin-jin; Xu, Guan-cheng; Zhang, Li; Lin, He; Sun, Zhi-peng; Lv, Yan; Jia, Dian-zeng

    2017-12-01

    A cube-like porous ZnO architecture was synthesized by direct two-step thermolysis of a zinc-based metal-organic framework [(CH3)2NH2][Zn(HCOO)3]. The obtained ZnO microcube was characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption and desorption isotherms. The mesoporous ZnO microcube was comprised by many nanoparticles, and inherited the cube shape from [(CH3)2NH2][Zn(HCOO)3] precursor. With large surface area and mesoporous structure, the ZnO microcube exhibits excellent photocatalytic activities against methyl orange (MO) and rhodamine B (RhB) under UV irradiation, and the degradation rates reached 99.7% and 98.1% within 120 min, respectively.

  20. ZnO Nanorod-Induced Heteroepitaxial Growth of SOD Type Co-Based Zeolitic Imidazolate Framework Membranes for H2 Separation.

    Science.gov (United States)

    Nian, Pei; Li, Yujia; Zhang, Xiang; Cao, Yi; Liu, Haiou; Zhang, Xiongfu

    2018-01-31

    Up to now, the fabrication of well-intergrown Co-based zeolitic imidazolate framework (ZIF) membranes on porous tubular supports is still a major challenge. We report here a heteroepitaxial growth for preparing well-intergrown Co-based ZIFs (ZIF-67 and ZIF-9) tubular membranes with high performance and excellent thermal stability by employing a thin layer of ZnO nanorods acting as both nucleation centers and anchor sites for the growth of metal-organic framework membranes. The results show that well-intergrown Co-ZIF-67 and Co-ZIF-9 membranes are successfully achieved on the ZnO nanorod-modified porous ceramic tubes. This highly active heteroepitaxial growth may be attributed to the fact that the (Zn,Co) hydroxy double salt intermediate produced in situ from ZnO nanorods acts as heteroseeds and enables the uniform growth of Co-based membranes. The H 2 /CO 2 selectivity of the as-prepared Co-ZIF-9 tubular membrane could reach about 23.8 and the H 2 /CH 4 selectivity of Co-ZIF-67 tubular membrane is as high as 45.4. Moreover, the membranes demonstrate excellent stability because of the ZnO nanorods as linkers between the membrane and substrate.

  1. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    Science.gov (United States)

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  2. Structural characterization of ZnO thin films grown on various substrates by pulsed laser deposition

    International Nuclear Information System (INIS)

    Novotný, M; Bulíř, J; Lančok, J; Čížek, J; Kužel, R; Connolly, J; McCarthy, E; Krishnamurthy, S; Mosnier, J-P; Anwand, W; Brauer, G

    2012-01-01

    ZnO thin films were grown by pulsed laser deposition on three different substrates: sapphire (0 0 0 1), MgO (1 0 0) and fused silica (FS). The structure and morphology of the films were characterized by x-ray diffraction and scanning electron microscopy and defect studies were carried out using slow positron implantation spectroscopy (SPIS). Films deposited on all substrates studied in this work exhibit the wurtzite ZnO structure and are characterized by an average crystallite size of 20-100 nm. However, strong differences in the microstructure of films deposited on various substrates were found. The ZnO films deposited on MgO and sapphire single-crystalline substrates exhibit local epitaxy, i.e. a well-defined relation between film crystallites and the substrate. Domains with different orientation relationships with the substrate were found in both films. On the other hand, the film deposited on the FS substrate exhibits fibre texture with random lateral orientation of crystallites. Extremely high compressive in-plane stress of σ ∼ 14 GPa was determined in the film deposited on the MgO substrate, while the film deposited on sapphire is virtually stress-free, and the film deposited on the FS substrate exhibits a tensile in-plane stress of σ ∼ 0.9 GPa. SPIS investigations revealed that the concentration of open-volume defects in the ZnO films is substantially higher than that in a bulk ZnO single crystal. Moreover, the ZnO films deposited on MgO and sapphire single-crystalline substrates exhibit a significantly higher density of defects than the film deposited on the amorphous FS substrate. (paper)

  3. Luminescence and spectroscopic investigations on Gd3+ doped ZnO nanophosphor

    Directory of Open Access Journals (Sweden)

    G. Krishna Reddy

    2017-09-01

    Full Text Available The present paper describes the synthesis of 0.1 mol% Gadolinium (Gd doped Zinc oxide (ZnO nanophosphor by solution combustion method using Oxalyl dihydrazide (ODH fuel. Powder X-ray diffraction (PXRD peaks are well matched with the standard hexagonal wurtzite structure of ZnO (JCPDS card no. 36-1451. SEM and TEM analysis reveals porous morphology of as -formed sample with particles having narrow size distribution in the range ∼60–70 nm, in good agreement with XRD data. The PL spectrum of Gd doped ZnO sample exhibits an extra blue emission at 441 nm (∼2.81 eV in addition to the emission bands from undoped ZnO. From the TL data of ZnO:Gd nanophosphor with UV irradiation, it is observed that considerable amount of re-trapping is taking place in all the TL second order peaks. The EPR spectrum exhibits a number of resonance signals suggesting that Gd3+ ions are experiencing different crystal field strength and Zeeman interactions.

  4. Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method

    International Nuclear Information System (INIS)

    Zheng, J.H.; Jiang, Q.; Lian, J.S.

    2011-01-01

    Flower-like ZnO nanorods have been synthesized by heating a mixture of ZnO/graphite powders using the thermal evaporation and vapor transport on Si (1 0 0) substrates without any catalyst. The structures, morphologies and optical properties of the products were characterized in detail by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and Raman spectroscopy. The synthesized products consisted of large quantities of flower-like ZnO nanostructures in the form of uniform nanorods. The flower-like ZnO nanorods had high purity and well crystallized wurtzite structure, whose high crystalline quality was proved by Raman spectroscopy. The as-synthesized flower-like ZnO nanorods showed a strong ultraviolet emission at 386 nm and a weak and broad yellow-green emission in visible spectrum in its room temperature photoluminescence (PL) spectrum. In addition, the growth mechanism of the flower-like ZnO nanorods was discussed based on the reaction conditions.

  5. Passivation of ZnO Nanowire Guests and 3D Inverse Opal Host Photoanodes for Dye-Sensitized Solar Cells

    KAUST Repository

    Labouchere, Philippe

    2014-04-23

    A hierarchical host-guest nanostructured photoanode is reported for dye-sensitized solar cells. It is composed of ZnO nanowires grown in situ into the macropores of a 3D ZnO inverse opal structure, which acts both as a seed layer and as a conductive backbone host. Using a combination of self-assembly, hydrothermal or electrodeposition of single crystalline ZnO nanowires and TiO2 passivation, a novel photoanode with scattering capability for optimal light harvesting is fabricated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Comparison of the influence of boron and aluminium doping on the material properties of electrochemically deposited ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Calnan, Sonya [Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Riedel, Wiebke; Gledhill, Sophie [Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Fachbereich Physik, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Stannowski, Bernd [Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Lux-Steiner, Martha Ch. [Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Fachbereich Physik, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Schlatmann, Rutger [Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Fachbereich 1 Ingenieurwissenschaften I, University of Applied Science (HTW) Berlin, Wilhelminenhofstraße 75 A, 12459 Berlin (Germany)

    2015-11-02

    The effect of varying the boron and aluminium content of the starting electrolyte for extrinsically doped ZnO films grown on SnO{sub 2}:F substrates by electrochemical deposition was investigated. The ZnO:B film surface was characterized by grains with mainly hexagonal faces exposed while the exposed faces of the ZnO:Al grains were rectangular. Whereas a B{sup 3+}/Zn{sup 2+} ratio of up to 10 at.% in the electrolyte had no significant effect on the crystalline structure of the ZnO films, an Al{sup 3+}/Zn{sup 2+} ratio above 0.25 at.% increased the disorder in the crystalline structure. All the boron doped films exhibit a strong E{sub 2}-high Raman mode related to wurtzite ZnO structure but this peak was much weaker for ZnO:Al and diminished with increasing Al incorporation in the films. Exposing the films to ultra-violet light reduced their effective sheet resistance from values beyond measurement range to values between 40 and 5000 kΩ/sq for film thicknesses of 200–550 nm. Inspection of the optical spectra near the bandgap edge and the plasma edge in the mid infrared range, showed that the Al-doping resulted in a higher carrier concentration ~ 10{sup 20} cm{sup −3} than B-doping. X-ray electron spectroscopy showed that the dopant efficiency was limited by the absence of dopant atoms near the surface of all the ZnO:B films and of the lightly doped ZnO:Al and, by the formation of aluminium oxide at the surface of the more highly doped ZnO:Al films. - Highlights: • Crystalline ZnO grown by electrochemical deposition. • Comparison of influence of H{sub 3}BO{sub 3} and Al(NO{sub 3}){sub 3} as dopant sources. • Different ZnO crystalline orientation for Al and boron doping. • Film surface chemical composition suppressed electrical conductivity.

  7. Photoelectrocatalytic activity of a hydrothermally grown branched Zno nanorod-array electrode for paracetamol degradation.

    Science.gov (United States)

    Lin, Chin Jung; Liao, Shu-Jun; Kao, Li-Cheng; Liou, Sofia Ya Hsuan

    2015-06-30

    Hierarchical branched ZnO nanorod (B-ZnR) arrays as an electrode for efficient photoelectrocatalytic degradation of paracetamol were grown on fluorine-doped tin oxide substrates using a solution route. The morphologic and structural studies show the ZnO trunks are single-crystalline hexagonal wurtzite ZnO with a [0001] growth direction and are densely covered by c-axis-oriented ZnO branches. The obvious enhancement in photocurrent response of the B-ZnR electrode was obtained than that in the ZnO nanoparticle (ZnO NP) electrode. For the photoelectrocatalytic degradation of paracetamol in 20 h, the conversion fraction of the drug increased from 32% over ZnO NP electrode to 62% over B-ZnR arrays with about 3-fold increase in initial reaction rate. The light intensity-dependent photoelectrocatalytic experiment indicated that the superior performance over the B-ZnR electrode was mainly ascribed to the increased specific surface area without significantly sacrificing the charge transport and pollutant diffusion efficiencies. Two aromatic intermediate compounds were observed and eventually converted into harmless carboxylic acids and ammonia. Hierarchical tree-like ZnO arrays can be considered effective alternatives to improve photoelectro degradation rates without the need for expensive additives. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Low-temperature growth of aligned ZnO nanorods: effect of annealing gases on the structural and optical properties.

    Science.gov (United States)

    Umar, Ahmad; Hahn, Yoon-Bong; Al-Hajry, A; Abaker, M

    2014-06-01

    Aligned ZnO nanorods were grown on ZnO/Si substrate via simple aqueous solution process at low-temperature of - 65 degrees C by using zinc nitrate and hexamethylenetetramine (HMTA). The detailed morphological and structural properties measured by FESEM, XRD, EDS and TEM confirmed that the as-grown nanorods are vertically aligned, well-crystalline possessing wurtzite hexagonal phase and grown along the [0001] direction. The room-temperature photoluminescence spectrum of the grown nanorods exhibited a strong and broad green emission and small ultraviolet emission. The as-prepared ZnO nanorods were post-annealed in nitrogen (N2) and oxygen (O2) environments and further characterized in terms of their morphological, structural and optical properties. After annealing the nanorods exhibit well-crystallinity and wurtzite hexagonal phase. Moreover, by annealing the PL spectra show the enhancement in the UV emission and suppression in the green emission. The presented results demonstrate that simply by post-annealing process, the optical properties of ZnO nanostructures can be controlled.

  9. Realizing luminescent downshifting in ZnO thin films by Ce doping with enhancement of photocatalytic activity

    Science.gov (United States)

    Narayanan, Nripasree; Deepak, N. K.

    2018-04-01

    ZnO thin films doped with Ce at different concentration were deposited on glass substrates by spray pyrolysis technique. XRD analysis revealed the phase purity and polycrystalline nature of the films with hexagonal wurtzite geometry and the composition analysis confirmed the incorporation of Ce in the ZnO lattice in the case of doped films. Crystalline quality and optical transmittance diminished while electrical conductivity enhanced with Ce doping. Ce doping resulted in a red-shift of optical energy gap due to the downshift of the conduction band minimum after merging with Ce related impurity bands formed below the conduction band in the forbidden gap. In the room temperature photoluminescence spectra, UV emission intensity of the doped films decreased while the intensity of the visible emission band increased drastically implying the degradation in crystallinity as well as the incorporation of defect levels capable of luminescence downshifting. Ce doping showed improvement in photocatalytic efficiency by effectively trapping the free carriers and then transferring for dye degradation. Thus Ce doped ZnO thin films are capable of acting as luminescent downshifters as well as efficient photocatalysts.

  10. Fabrication of layered hydroxide zinc nitrate films and their conversion to ZnO nanosheet assemblies for use in dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Takuya Yuki

    2015-03-01

    Full Text Available Layered hydroxide zinc nitrate (LHZN; Zn5(NO32(OH8·xH2O films were fabricated on glass or plastic substrates by a chemical bath deposition method combined with a homogeneous precipitation in methanolic solutions. High- or low-temperature pyrolytic decomposition of the LHZN films having two-dimensional morphology was attempted to obtain porous ZnO nanosheet-assembly films. The LHZN films were converted into porous ZnO films by pyrolyzing at temperatures above 400 °C, while porous LHZN/ZnO hybrid films were obtained by pyrolyzing at a lower temperature of 120 °C without morphological changes. The pyrolyzed ZnO films were applied to dye-sensitized solar cells (DSSCs, resulting in the generation of relatively high open-circuit voltages. The low-temperature pyrolysis enabled us to fabricate the LHZN/ZnO film even on the plastic substrate. Actually a cell using the LHZN/ZnO film on an indium tin oxide-coated polyethylene naphthalate substrate showed an energy conversion efficiency of 2.08% with a high open-circuit voltage around 0.70 V.

  11. Optical characterization of Er-implanted ZnO films formed by sol-gel method

    International Nuclear Information System (INIS)

    Fukudome, T.; Kaminaka, A.; Isshiki, H.; Saito, R.; Yugo, S.; Kimura, T.

    2003-01-01

    In this paper, we report on the 1.54 μm photoluminescence (PL) of Er-implanted ZnO thin films formed by a sol-gel method on Si substrates. In spite of the polycrystalline structure of the sol-gel ZnO thin films, they showed strong PL emissions due to the near band edge recombination at 375 nm as well as the Er-related luminescence at 1.54 μm. The Er-related luminescence showed no decrease (quench) in the intensity up to the Er concentration of 1.5 x 10 21 cm -3 . The PL intensity of Er-implanted ZnO at 1.54 μm was found to be as strong as Er-doped PS (porous Si) at 20 K, and the intensity reduced to 1/3 at room temperature

  12. Inhibition of growth of S. epidermidis by hydrothermally synthesized ZnO nanoplates

    Science.gov (United States)

    Abinaya, C.; Mayandi, J.; Osborne, J.; Frost, M.; Ekstrum, C.; Pearce, J. M.

    2017-07-01

    The antibacterial effect of zinc oxide (ZnO#1) as prepared and annealed (ZnO#2) at 400 °C, Cu doped ZnO (CuZnO), and Ag doped ZnO (AgZnO) nanoplates on Staphylococcus epidermidis was investigated for the inhibition and inactivation of cell growth. The results shows that pure ZnO and doped ZnO samples exhibited antibacterial activity against Staphylococcus epidermidis (S. epidermidis) as compared to tryptic soy broth (TSB). Also it is observed that S. epidermidis was extremely sensitive to treatment with ZnO nanoplates and it is clear that the effect is not purely depend on Cu/Ag. Phase identification of a crystalline material and unit cell dimensions were studied by x-ray powder diffraction (XRD). The scanning electron microscopy (SEM) provides information on sample’s surface topography and the EDX confirms the presence of Zn, O, Cu and Ag. X-ray photo-electron spectroscopy (XPS) was used to analyze the elemental composition and electronic state of the elements that exist within the samples. These studies confirms the formation of nanoplates and the presence of Zn, O, Ag, Cu with the oxidation states  +2, -2, 0 and  +2 respectively. These results indicates promising antibacterial applications of these ZnO-based nanoparticles synthesized with low-cost hydrothermal methods.

  13. Modulating the size of ZnO nanorods on SiO2 substrates by incorporating reduced graphene oxide into the seed layer solution

    Directory of Open Access Journals (Sweden)

    Tzu-Yi Yu

    2017-06-01

    Full Text Available In this research, reduced graphene oxide was incorporated into the ZnO seed layer to modulate the rod diameter of ZnO nanorods (NRs during solgel/hydrothermal growth. To characterize the reduced graphene oxide incorporated ZnO NRs, multiple material analysis techniques including field-emission scanning electron microscopy, surface contact angle measurements, X-ray diffraction, and photoluminescence were used to explore distinct properties of these size modulatable NRs. Results indicate ZnO NRs with smaller diameters could be observed with more reduced graphene oxide added into the ZnO seed layer. Furthermore, better crystallinity, higher hydrophobicity and lower defect concentration could be obtained with more amount of reduced graphene oxide added into the ZnO seed layer. The modulatable reduced graphene oxide-incorporated ZnO NRs growth is promising for future ZnO NRs based nanodevice applications.

  14. ZnO and copper indium chalcogenide heterojunctions prepared by inexpensive methods

    International Nuclear Information System (INIS)

    Berruet, M.; Di Iorio, Y.; Troviano, M.; Vázquez, M.

    2014-01-01

    Solution-based techniques were used to prepare ZnO/CuIn(Se, S) 2 heterojunctions that serve as solar cell prototypes. A duplex layer of ZnO (compact + porous) was electrodeposited. Chalcogenide thin films were deposited using successive ionic layer adsorption and reaction method (SILAR). By subsequent thermal treatments in two different atmospheres, CuInSe 2 (CISe) and CuInSe 2−x S x (CISeS) were obtained. The composition and morphology of the annealed films were characterized by GXRD, micro-Raman spectroscopy and SEM. Devices prepared with CISe and CISeS show a clear photo-response. The introduction of a buffer layer of TiO 2 into the ZnO/chalcogenide interface was necessary to detect photocurrent. The presence of CISeS improves the response of the cell, with higher values of short circuit current density, open circuit potential and fill factor. These promising results show that it is possible to prepare photovoltaic heterojunctions by depositing chalcogenides onto porous ZnO substrates using low-cost solution-based techniques. - Highlights: • Heterojunctions that serve as solar cell prototypes were prepared using solution-based techniques. • The devices comprised a double layer of ZnO and CuInSe 2 or CuInSe 0.4 S 1.6 . • A TiO 2 buffer layer in the ZnO/chalcogenide interface is necessary to detect photocurrent. • The incorporation of S improved the response of the photovoltaic heterojunction

  15. Atomic Layer Deposition of ZnO on Multi-walled Carbon Nanotubes and Its Use for Synthesis of CNT–ZnO Heterostructures

    Directory of Open Access Journals (Sweden)

    Li C

    2010-01-01

    Full Text Available Abstract In this article, direct coating of ZnO on PECVD-grown multi-walled carbon nanotubes (MWCNTs is achieved using atomic layer deposition (ALD. Transmission electron microscopy investigation shows that the deposited ZnO shell is continuous and uniform, in contrast to the previously reported particle morphology. The ZnO layer has a good crystalline quality as indicated by Raman and photoluminescence (PL measurements. We also show that such ZnO layer can be used as seed layer for subsequent hydrothermal growth of ZnO nanorods, resulting in branched CNT–inorganic hybrid nanostructures. Potentially, this method can also apply to the fabrication of ZnO-based hybrid nanostructures on other carbon nanomaterials.

  16. Influence of PANI Additions on Methanol Sensing Properties of ZnO Thin Films

    International Nuclear Information System (INIS)

    Mohammad Hafizuddin Jumali; Norhashimah Ramli; Izura Izzuddin; Muhammad Yahaya; Muhamad Mat Salleh

    2011-01-01

    The influence of PANI additions on methanol sensing properties of ZnO thin films at room temperature had been investigated. Commercial poly aniline powder (PANI) was mixed into 3 mL ZnO solution in five different weight percentages namely 1.25, 2.50, 3.75, 5.00 and 6.25 % to obtain ZnO/ PANI composite solutions. These solutions were spin coated onto glass substrate to form thin films. Microstructural studies by FESEM indicated that ZnO/ PANI films showed porous structures with nano size grains. The thickness of the film increased from 55 to 256 nm, proportionate to increment of PANI. The presence of 2 adsorption peaks at ∼310 nm and ∼610 nm in UV-Vis spectrum proved that addition of PANI has modified the adsorption peak of ZnO film. Methanol vapour detection showed that addition of PANI into ZnO dramatically improved the sensing properties of the sensor. The sensors also exhibited good repeatability and reversibility. Sensor with the amount of PANI of 3.75 wt % exhibited the highest sensitivity with response and recovery time was about 10 and 80 s, respectively. The possible sensing mechanism of the sensor was also discussed in this article. (author)

  17. Study on Crystallographic Properties of Li Doped ZnO Thin Films

    International Nuclear Information System (INIS)

    Khine Khine Linn; Than Than Win; Yin Maung Maung; Ko Ko Kyaw Soe

    2008-03-01

    Li-doped ZnO film is prepared on highly polished Si substrate. The process temperature are range from 400 0 C to 600 0 C and maintained 1 hr for homogenization. According to the experimental results, it is significant that the growth chemistry is quite feasible and expected to be crystalline at above-mentioned temperatures.

  18. Synthesis and properties of the diluted magnetic semiconductor ZnO doped with nickel ions by combustion reaction; Sintese e propriedades do semicondutor magnetico diluido ZnO dopado com ions de niquel por meio da reacao de combustao

    Energy Technology Data Exchange (ETDEWEB)

    Morais, A.; Torquato, R.A.; Costa, A.C.F.M, E-mail: m.artur@hotmail.com.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Departamento de Engenharia de Materiais; Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais

    2017-10-01

    One of the greatest challenges for the development of the spintronics this creation of materials having semiconductivity and magnetism at above room temperatures, enabling the creation of devices with greater processing speeds. This work aims to synthesize by combustion reaction semiconductor ZnO doped with nickel ions at a concentration of 0.08 mol for applications such as diluted magnetic semiconductor (DMS). The combustion reaction is quite simple and promising in obtaining single-phase materials at the nanoscale. The obtained powder was subjected to the characterizations of X-ray diffraction (XRD), X-ray fluorescence, vibrating sample magnetometry (VSM), and UV-vis spectroscopy. The crystalline material exhibits ZnO crystalline structure and coercive field of 161,36 Oe, showing that the material exhibits the properties of an SMD. (author)

  19. Investigation of photocalalytic activity of ZnO prepared by spray pyrolis with various precursors

    International Nuclear Information System (INIS)

    Bourfaa, F; Lamri Zeggar, M; A, A; Aida, M S; Attaf, N

    2016-01-01

    Semiconductor photocatalysts such as ZnO has attracted much attention in recent years due to their various applications for the degradation of organic pollutants in water, air and in dye sensitized photovoltaic solar cell. In the present work, ZnO thin films were prepared by ultrasonic spray pyrolysis by using different precursors namely: acetate, chloride and zinc nitrate in order to investigate their influence on ZnO photocatalytic activity. The films crystalline structure was studied by mean of X- ray diffraction measurements (XRD) and the films surface morphology by Scanning Electron Microscopy (SEM). The films optical properties were studied by mean of UV-visible spectroscopy. The prepared films were tested for the degradation of the red reactive dye largely used in textile industry. As a result, we found that the zinc nitrate is the best precursor to prepare ZnO thin films suitable for a good photocatalytic activity. (paper)

  20. Reduction of Peroxodisulfate at Porous and Crystalline Silicon Electrodes: An Anomaly

    NARCIS (Netherlands)

    Kooij, Ernst S.; Noordhoek, S.M.; Kelly, J.J.

    1996-01-01

    Electroluminescence from n-type porous silicon can be generated in solution by reduction of peroxodisulfate. It has been assumed that the SO4•- radical ion, formed in the first reduction step, injects a hole into the valence band of the porous semiconductor. The hole should subsequently undergo

  1. In-situ anion exchange fabrication of porous ZnO/ZnSe heterostructural microspheres with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hairui, E-mail: liuhairui1@126.com [College of Physics & Electrics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Hu, Yanchun [College of Physics & Electrics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); He, Xia [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); Jia, Husheng, E-mail: jia_husheng@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Liu, Xuguang; Xu, Bingshe [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China)

    2015-11-25

    Porous ZnO microspheres were fabricated by an ultrasonic irradiation technique. Subsequently, through a facile in-situ anion exchange reaction between the ZnO microsphere and sodium selenite, spherical ZnO/ZnSe heterostructures with different ratios of the two components were fabricated. The as-obtained products were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV–vis spectrometry. The results reveal that the secondary ZnSe nanoparticles are grown on the surface of pre-grown ZnO microspheres. Compared with pure ZnO microspheres, the ZnO/ZnSe hetero-microspheres show enhance visible-light photocatalytic activity for degradation of methylene blue (MB) and 4-nitrophenol (4-NP). The enhanced photocatalytic performance is attributed to fast separation and transport of photogenerated electrons and holes derived from the coupling effect of ZnSe and ZnO heterostructure. Photoluminescent spectra further indicate that the ZnO/ZnSe heterostructures greatly suppress the charge recombination of photogenerated electron–hole pairs, which would be beneficial to improve their photocatalytic activity. Finally, the photocatalytic mechanism of the ZnO/ZnSe heterostructures is proposed. - Graphical abstract: Porous ZnO/ZnSe heterostructures with different ratios of the two components were fabricated and present enhance visible-light photocatalytic activity for degradation of methylene blue (MB) and 4-nitrophenol (4-NP). The enhanced photocatalytic performance is attributed to fast separation and transport of photogenerated electrons and holes derived from the coupling effect of ZnSe and ZnO heterostructure. - Highlights: • Spherical ZnO/ZnSe porous composites were fabricated by in-situ anion exchange. • ZnO/ZnSe composites exhibited enhanced visible-light photocatalytic activity. • The matching band gap improves the separation of

  2. A comparative study of ultraviolet photoconductivity relaxation in zinc oxide (ZnO) thin films deposited by different techniques

    International Nuclear Information System (INIS)

    Yadav, Harish Kumar; Gupta, Vinay

    2012-01-01

    Photoresponse characteristics of ZnO thin films deposited by three different techniques namely rf diode sputtering, rf magnetron sputtering, and electrophoretic deposition has been investigated in the metal-semiconductor-metal (MSM) configuration. A significant variation in the crystallinity, surface morphology, and photoresponse characteristics of ZnO thin film with change in growth kinetics suggest that the presence of defect centers and their density govern the photodetector relaxation properties. A relatively low density of traps compared to the true quantum yield is found very crucial for the realization of practical ZnO thin film based ultraviolet (UV) photodetector.

  3. A comparative study of ultraviolet photoconductivity relaxation in zinc oxide (ZnO) thin films deposited by different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Harish Kumar; Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)

    2012-05-15

    Photoresponse characteristics of ZnO thin films deposited by three different techniques namely rf diode sputtering, rf magnetron sputtering, and electrophoretic deposition has been investigated in the metal-semiconductor-metal (MSM) configuration. A significant variation in the crystallinity, surface morphology, and photoresponse characteristics of ZnO thin film with change in growth kinetics suggest that the presence of defect centers and their density govern the photodetector relaxation properties. A relatively low density of traps compared to the true quantum yield is found very crucial for the realization of practical ZnO thin film based ultraviolet (UV) photodetector.

  4. p-type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Xiu, F.X.; Yang, Z.; Mandalapu, L.J.; Liu, J.L.; Beyermann, W. P.

    2006-01-01

    Phosphorus-doped p-type ZnO films were grown on r-plane sapphire substrates using molecular-beam epitaxy with a solid-source GaP effusion cell. X-ray diffraction spectra and reflection high-energy electron diffraction patterns indicate that high-quality single crystalline (1120) ZnO films were obtained. Hall and resistivity measurements show that the phosphorus-doped ZnO films have high hole concentrations and low resistivities at room temperature. Photoluminescence (PL) measurements at 8 K reveal a dominant acceptor-bound exciton emission with an energy of 3.317 eV. The acceptor energy level of the phosphorus dopant is estimated to be 0.18 eV above the valence band from PL spectra, which is also consistent with the temperature dependence of PL measurements

  5. Vertically aligned ZnO nanowire arrays in Rose Bengal-based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Basudev; Batabyal, Sudip K.; Pal, Amlan J. [Indian Association for the Cultivation of Science, Department of Solid State Physics, Kolkata 700032 (India)

    2007-05-23

    We fabricate dye-sensitized solar cells (DSSC) using vertically oriented, high density, and crystalline array of ZnO nanowires, which can be a suitable alternative to titanium dioxide nanoparticle films. The vertical nanowires provide fast routes or channels for electron transport to the substrate electrode. As an alternative to conventional ruthenium complex, we introduce Rose Bengal dye, which acts as a photosensitizer in the dye-sensitized solar cells. The dye energetically matches the ZnO with usual KI-I{sub 2} redox couple for dye-sensitized solar cell applications. (author)

  6. Influence of seed layer treatment on low temperature grown ZnO nanotubes: Performances in dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ameen, Sadia [Energy Materials and Surface Science Laboratory, Solar Energy Research Center, School of Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Akhtar, M. Shaheer [School of Semiconductor and Chemical Engineering and Solar Energy Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); New and Renewable Energy Material Development Center (NewREC), Chonbuk National University, Buan-gun, Jeonbuk (Korea, Republic of); Kim, Young Soon [Energy Materials and Surface Science Laboratory, Solar Energy Research Center, School of Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Yang, O-Bong [School of Semiconductor and Chemical Engineering and Solar Energy Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shin, Hyung-Shik, E-mail: hsshin@jbnu.ac.k [Energy Materials and Surface Science Laboratory, Solar Energy Research Center, School of Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2011-01-01

    Non-aligned and highly densely aligned ZnO nanotube (NTs), synthesized by low temperature solution method were applied as photoanode materials for the fabrication of efficient dye-sensitized solar cells (DSSCs). The crystalline and the morphological analysis revealed that the grown aligned ZnO NTs possessed a typical hexagonal crystal structure of outer and inner diameter {approx}250 nm and {approx}100 nm, respectively. ZnO seeding on FTO substrates is an essential step to achieve the aligned ZnO NTs. A DSSC fabricated with aligned ZnO NTs photoanode achieved high solar-to-electricity conversion efficiency of {approx}2.2% with short circuit current (J{sub SC}) of 5.5 mA/cm{sup 2}, open circuit voltage (V{sub OC}) of 0.65 V and fill factor (FF) of 0.61. Significantly, the aligned ZnO NTs photoanode showed three times improved solar-to-electricity conversion efficiency than DSSC fabricated with non-aligned ZnO NTs. The enhanced performances were credited to the aligned morphology of ZnO NTs which executed the high charge collection and the transfer of electrons at the interfaces of ZnO NTs and electrolyte layer.

  7. Photovoltaic Performance of ZnO Nanosheets Solar Cell Sensitized with Beta-Substituted Porphyrin

    Directory of Open Access Journals (Sweden)

    Arumugam Mahesh

    2011-01-01

    Full Text Available The photoanode of dye-sensitized solar cell (DSSC was fabricated using two-dimensional ZnO nanosheets (2D ZnO NSs sensitized with beta-substituted porphyrins photosensitizer, and its photovoltaic performance in solid-state DSSC with TiO2 nanotubes (TiO2 TNs modified poly (ethylene oxide (PEO polymer electrolyte was studied. The ZnO NSs were synthesized through hydrothermal method and were characterized through high-resolution scanning electron microscopy (HRSEM, diffused reflectance spectra (DRS, photoluminescence spectra (PL, and X-ray diffraction (XRD analysis. The crystallinity of the polymer electrolytes was investigated using X-ray diffraction analysis. The photovoltaic performance of the beta-substituted porphyrins sensitized solar cells was evaluated under standard AM1.5G simulated illumination (100 mW cm−2. The efficiency of energy conversion from solar to electrical due to 2D ZnO NSs based DSSCs is 0.13%, which is about 1.6 times higher than that of the control DSSC using ZnO nanoparticles (ZnO NPs as photoanode (0.08%, when TiO2 NTs fillers modified PEO electrolyte was incorporated in the DSSCs. The current-voltage (- and photocurrent-time (- curves proved stable with effective collection of electrons, when the 2D ZnO nanostructured photoanode was introduced in the solid-state DSSC.

  8. Fabrication of hierarchical flower-like porous ZnO nanostructures from layered ZnC2O4·3Zn(OH)2 and gas sensing properties

    International Nuclear Information System (INIS)

    Cui, Jiashan; Sun, Jianbo; Liu, Xin; Li, Jinwei; Ma, Xinzhi; Chen, Tingting

    2014-01-01

    ZnO materials with porous and hierarchical flower-like structure were synthesized through mild hydrothermal and simple calcination approach, in which the flower-like layered zinc oxalate hydroxide (ZnC 2 O 4 ·3Zn(OH) 2 ) precursor was first synthesized and then calcined at 600 °C. The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopic (TEM), Brunauer–Emmett–Teller (BET) and thermogravimetric (TG) analysis. We proposed the possible growth mechanism of the material via studying the time evolution experiment results. In the process of reaction, oxalic acid as a structure-directing agent hydrolyzed and then formed primarily sheets-like intermediate ZnC 2 O 4 ·2H 2 O. Hexamethylenetetramine (HMT) as surfactant, with directional adsorption, leads to the formation of layered zinc oxalate hydroxide precursor. Furthermore, the gas sensitivity also can be characterized, whose results indicated that the synthesized materials had a preferable selectivity to ethanol gas. The fast response rate and reversible performance can be attributed to the produced greater specific surface area produced, which was caused by the porous and hierarchical flower-like structure.

  9. Fabrication of hierarchical flower-like porous ZnO nanostructures from layered ZnC2O4·3Zn(OH)2 and gas sensing properties

    Science.gov (United States)

    Cui, Jiashan; Sun, Jianbo; Liu, Xin; Li, Jinwei; Ma, Xinzhi; Chen, Tingting

    2014-07-01

    ZnO materials with porous and hierarchical flower-like structure were synthesized through mild hydrothermal and simple calcination approach, in which the flower-like layered zinc oxalate hydroxide (ZnC2O4·3Zn(OH)2) precursor was first synthesized and then calcined at 600 °C. The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopic (TEM), Brunauer-Emmett-Teller (BET) and thermogravimetric (TG) analysis. We proposed the possible growth mechanism of the material via studying the time evolution experiment results. In the process of reaction, oxalic acid as a structure-directing agent hydrolyzed and then formed primarily sheets-like intermediate ZnC2O4·2H2O. Hexamethylenetetramine (HMT) as surfactant, with directional adsorption, leads to the formation of layered zinc oxalate hydroxide precursor. Furthermore, the gas sensitivity also can be characterized, whose results indicated that the synthesized materials had a preferable selectivity to ethanol gas. The fast response rate and reversible performance can be attributed to the produced greater specific surface area produced, which was caused by the porous and hierarchical flower-like structure.

  10. One-step synthesis of bird cage-like ZnO and other controlled morphologies: Structural, growth mechanism and photocatalytic properties

    International Nuclear Information System (INIS)

    Yang, Shuo; Wang, Jian; Li, Xiuyan; Zhai, Hongju; Han, Donglai; Wei, Bing; Wang, Dandan; Yang, Jinghai

    2014-01-01

    Highlights: • ZnO nanocage arrays were synthesized by a one-step etching route. • ZnO nanocage exhibit higher photocatalytic activity than other samples. • The different photocatalytic activities of different samples were analyzed. • The formation mechanism of ZnO nanocages was proposed. - Abstract: ZnO nanocages and other nanostructures have been synthesized via a simple one-pot hydrothermal method with different reaction times. It is worth mentioning that this is a completely green method which does not require any other chemicals except that Zn foil served as Zn source in the experiment. X-ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL) and UV–Vis diffuse reflection spectra were used to characterize the crystallinity, morphology and optical property of ZnO structures. Growth mechanisms of ZnO were proposed based on these results. Furthermore, ZnO films with different morphologies and crystal growth habits exhibited different activities to rhodamine B degradation. The influence of the reaction time on the morphology of ZnO films and the effect of the morphologies on the photocatalytic activity are discussed

  11. Porous and Nanoporous Semiconductors and Emerging Applications

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2006-01-01

    Full Text Available Pores in single-crystalline semiconductors can be produced in a wide range of geometries and morphologies, including the “nanometer” regime. Porous semiconductors may have properties completely different from the bulk, and metamaterials with, for example, optical properties not encountered in natural materials are emerging. Possible applications of porous semiconductors include various novel sensors, but also more “exotic” uses as, for example, high explosives or electrodes for micro-fuel cells. The paper briefly reviews pore formation (including more applied aspects of large area etching, properties of porous semiconductors, and emerging applications.

  12. High sensitivity ethanol gas sensor based on Sn - doped ZnO under visible light irradiation at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Peishuo; Pan, Guofeng; Zhang, Bingqiang; Zhen, Jiali; Sun, Yicai, E-mail: pgf@hebut.edu.cn [Institute of Microelectronic, Hebei University of Technology, Tianjin (China)

    2014-07-15

    Pure ZnO and 5at%, 7at%, 9at% Sn - doped ZnO materials are prepared by the chemical co - precipitation method. They were annealed by furnace at temperature range of 300 - 700ºC in air for 1h. The ZnO materials are characterized by X - ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the Sn - doped ZnO materials appear rough porous structures. The maximum sensitivity can be achieved by doping the amount of 7 at%. It has much better sensing performance towards ethanol vapor under visible light irradiation. The response and recovery time are ~1s and ~5s, respectively. The mechanism for the improvement in the sensing properties can be explained with the surface adsorption theory and the photoactivation theory. (author)

  13. Electroluminescence from porous silicon due to electron injection from solution

    NARCIS (Netherlands)

    Kooij, Ernst S.; Despo, R.W.; Kelly, J.J.

    1995-01-01

    We report on the electroluminescence from p‐type porous silicon due to minority carrier injection from an electrolyte solution. The MV+• radical cation formed in the reduction of divalent methylviologen is able to inject electrons into the conduction band of crystalline and porous silicon. The

  14. White-light emission from porous-silicon-aluminium Schottky junctions

    International Nuclear Information System (INIS)

    Masini, G.; La Monica, S.; Maiello, G.

    1996-01-01

    Porous-silicon-based white-light-emitting devices are presented. The fabrication process on different substrates is described. The peculiarities of technological steps for device fabrication (porous-silicon formation and aluminium treatment) are underlined. Doping profile of the porous layer, current-voltage characteristics, time response, lifetime tests and electroluminescence emission spectrum of the device are presented. A model for electrical behaviour of Al/porous silicon Schottky junction is presented. Electroluminescence spectrum of the presented devices showed strong similarities with white emission from crystalline silicon junctions in the breakdown region

  15. Effect of Er3+ doping on structural, morphological and photocatalytical properties of ZnO thin films

    Science.gov (United States)

    Bouhouche, S.; Bensouici, F.; Toubane, M.; Azizi, A.; Otmani, A.; Chebout, K.; Kezzoula, F.; Tala-Ighil, R.; Bououdina, M.

    2018-05-01

    In this research work, structure, microstructure, optical and photocatalytic properties of undoped and Erbium doped nanostructured ZnO thin films prepared by sol-gel dip-coating are investigated. X-ray diffraction (XRD) analysis indicates that the deposited films crystallize within the hexagonal wurtzite-type structure with a preferential growth orientation along (002) plane. Morphological observations using scanning electron microscopy (SEM) reveal important influence of Er concentration; displaying homogeneous and dense aspect for undoped to 0.3% then grid-like morphology for 0.4 and 0.5%. UV/vis/NIR transmittance spectroscopy spectra display a transmittance over 70%, and small variation in the energy gap energy 3.263–3.278 eV. Wettability test of ZnO thin films surface ranges from hydrophilic aspect for pure ZnO to hydrophobic one for Er doped ZnO, and the contact angle is found to increase from 58.7° for pure ZnO up to 98.4° for 0.4% Er doped ZnO. The photocatalytic activity measurements evaluated using the degradation of methylene blue (MB) under UV light irradiation demonstrate that undoped ZnO film shows higher photocatalytic activity compared to Er doped ZnO films, which may be attributed to the deterioration of films’crystallinity resulting in lower transmittance.

  16. Electrodeposition of ZnO nano-wires lattices with a controlled morphology

    International Nuclear Information System (INIS)

    Elias, J.; Tena-Zaera, R.; Katty, A.; Levy-Clement, C.

    2006-01-01

    In this work, it is shown that the electrodeposition is a changeable low cost method which allows, according to the synthesis conditions, to obtain not only plane thin layers of ZnO but different nano-structures too. In a first part, are presented the formation conditions of a compact thin layer of nanocrystalline ZnO electrodeposited on a conducing glass substrate. This layer plays a buffer layer role for the deposition of a lattice of ZnO nano-wires. The step of nano-wires nucleation is not only determined by the electrochemical parameters but by the properties of the buffer layer too as the grain sizes and its thickness. In this context, the use of an electrodeposition method in two steps allows to control the nano-wires length and diameter and their density. The morphology and the structural and optical properties of these nano-structures have been analyzed by different techniques as the scanning and transmission electron microscopy, the X-ray diffraction and the optical spectroscopy. These studies show that ZnO nano-structures are formed of monocrystalline ZnO nano-wires, presenting a great developed surface and a great optical transparency in the visible. These properties make ZnO a good material for the development of nano-structured photovoltaic cells as the extremely thin absorber cells (PV ETA) or those with dye (DSSC) which are generally prepared with porous polycrystalline TiO 2 . Its replacement by a lattice of monocrystalline ZnO nano-wires allows to reduce considerably the number of grain boundaries and in consequence to improve the transport of the electrons. The results are then promising for the PV ETA cells with ZnO nano-wires. (O.M.)

  17. Gum Tragacanth-Mediated Synthesis of Nanocrystalline ZnO Powder for Use in Varistors

    Science.gov (United States)

    Liu, Ting-Ting; Wang, Mao-Hua; Su, Hang; Chen, Xi; Chen, Chao; Zhang, Ruo-Chen

    2015-10-01

    Zinc oxide nanopowders were synthesized by a sol-gel method with gum tragacanth and zinc nitrate as raw materials. Gum tragacanth was used as stabilizer to control the mobility of zinc cations and the growth of the nanopowders. Thermo-gravimetric analysis, x-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, and scanning electron microscopy were used to characterize the as-prepared samples. Zinc oxide (ZnO) nanoparticles calcined at different temperatures had a hexagonal wurtzite structure with average particle size ranging from 32.29 nm to 42.83 nm. The crystallinity of ZnO nanoparticles was improved by increasing the calcination temperature. The density of ZnO varistor ceramics sintered at 1150°C for 2 h in air was 5.46 g/cm3, which was 97.5% of the theoretical density, their breakdown voltage was 4572 V/cm, and their nonlinear coefficient was ~16.8. This method can be used as an excellent alternative method for synthesis of ZnO nanoparticles with a plant extract as a raw material. Our experimental results show our method had the advantage of improving the electrical performance of ZnO varistors.

  18. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles.

    Science.gov (United States)

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-06-15

    This study was aimed to develop biopolymer based antimicrobial films for active food packaging and to reduce environmental pollution caused by accumulation of synthetic packaging. The ZnO NPs were incorporated as antimicrobials into different biopolymers such as agar, carrageenan and CMC. Solvent casting method was performed to prepare active nanocomposite films. Methods such as FE-SEM, FT-IR and XRD were used to characterize resulting films. Physical, mechanical, thermal and antimicrobial properties were also examined. Remarkable surface morphological differences were observed between control and nanocomposite films. The crystallinity of ZnO was confirmed by XRD analysis. The addition of ZnO NPs increased color, UV barrier, moisture content, hydrophobicity, elongation and thermal stability of the films, while decreased WVP, tensile strength and elastic modulus. ZnO NPs impregnated films inhibited growth of L. monocytogenes and E. coli. So these newly prepared nanocomposite films can be used as active packaging film to extend shelf-life of food. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Blood plasma separation in ZnO nanoflowers-supported paper based microfluidic for glucose sensing

    Science.gov (United States)

    Muhimmah, Luthviyah Choirotul; Roekmono, Hadi, Harsono; Yuwono, Rio Akbar; Wahyuono, Ruri Agung

    2018-04-01

    Blood plasma separation is essential to analyze and quantify the bio-substances in the human blood and hence, allows for diagnosing various diseases. This paper presents the two layer paper-based microfluidic analytical devices coated with ZnO nanoflowers (ZnO NF-µPAD) for a rapid blood plasma separation and glucose sensing. Plasma separation in ZnO NF-µPAD was evaluated experimentally and numerically using computational fluid dynamics package for a flow over porous networks. Glucose detection was carried out using Fourier-transform infrared (FTIR) measurements. The glucose concentrations in the red blood samples investigated here vary in the range of 150 - 310 mg.dl-1. The plasma separation process on ZnO NF-μPAD requires 240 ± 93 s. The spectroscopic data reveals that the IR absorptions and Raman signals at the typical vibrational frequencies of glucose are increasing at higher glucose concentration. After subtraction from absorption background arising from ZnO NF and the paper, linearly increasing IR absorption (913 and 1349 cm-1) and Raman signals (1346 and 1461 cm-1) are observable with a relatively good sensitivity.

  20. Nanoscaled Electrocatalytic Optically Modulated ZnO Nanoparticles through Green Process of Punica granatum L. and Their Antibacterial Activities

    Directory of Open Access Journals (Sweden)

    Xolile Fuku

    2016-01-01

    Full Text Available Most recently, green synthesis of metal oxide nanoparticles has become an interesting subject of the nanoscience and nanotechnology. The use of plant systems has been deemed a green route and a dependable method for nanoparticle biosynthesis, owing to its environmental friendly nature. The present work demonstrates the bioreductive green synthesis of nanosized zinc oxide (ZnO using peel extracts of pomegranate. Highly crystalline ZnO nanoparticles (ZnO NPs which are 5 nm in particle size were characterised by HRTEM and XRD. FT-IR spectra confirmed the presence of the biomolecules and formation of plant protein-coated ZnO NPs and also the pure ZnO NPs. Electrochemical investigation revealed the redox properties and the conductivity of the as-prepared ZnO nanoparticles. The optical band gap of ZnO NPs was calculated to be 3.48 eV which indicates that ZnO NPs can be used in metal oxide semiconductor-based devices. Further, the nanomaterials were also found to be good inhibitors of bacterial strains at both low and high concentrations of 5–10 mg mL−1.

  1. ZnO and copper indium chalcogenide heterojunctions prepared by inexpensive methods

    Energy Technology Data Exchange (ETDEWEB)

    Berruet, M., E-mail: berruetm@gmail.com [División Electroquímica y Corrosión, Facultad de Ingeniería, INTEMA, CONICET, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Di Iorio, Y. [División Electroquímica y Corrosión, Facultad de Ingeniería, INTEMA, CONICET, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Troviano, M. [Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, CONICET-UNCo), Buenos Aires 1400, Q8300IBX Neuquén (Argentina); Vázquez, M. [División Electroquímica y Corrosión, Facultad de Ingeniería, INTEMA, CONICET, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina)

    2014-12-15

    Solution-based techniques were used to prepare ZnO/CuIn(Se, S){sub 2} heterojunctions that serve as solar cell prototypes. A duplex layer of ZnO (compact + porous) was electrodeposited. Chalcogenide thin films were deposited using successive ionic layer adsorption and reaction method (SILAR). By subsequent thermal treatments in two different atmospheres, CuInSe{sub 2} (CISe) and CuInSe{sub 2−x}S{sub x} (CISeS) were obtained. The composition and morphology of the annealed films were characterized by GXRD, micro-Raman spectroscopy and SEM. Devices prepared with CISe and CISeS show a clear photo-response. The introduction of a buffer layer of TiO{sub 2} into the ZnO/chalcogenide interface was necessary to detect photocurrent. The presence of CISeS improves the response of the cell, with higher values of short circuit current density, open circuit potential and fill factor. These promising results show that it is possible to prepare photovoltaic heterojunctions by depositing chalcogenides onto porous ZnO substrates using low-cost solution-based techniques. - Highlights: • Heterojunctions that serve as solar cell prototypes were prepared using solution-based techniques. • The devices comprised a double layer of ZnO and CuInSe{sub 2} or CuInSe{sub 0.4}S{sub 1.6}. • A TiO{sub 2} buffer layer in the ZnO/chalcogenide interface is necessary to detect photocurrent. • The incorporation of S improved the response of the photovoltaic heterojunction.

  2. Effect of thickness on structural and electrical properties of Al-doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Garcés, F.A., E-mail: felipe.garces@santafe-conicet.gov.ar [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, Santa Fe S3000GLN (Argentina); Budini, N. [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, Santa Fe S3000GLN (Argentina); Arce, R.D.; Schmidt, J.A. [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, Santa Fe S3000GLN (Argentina); Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, Santa Fe S3000AOM (Argentina)

    2015-01-01

    In this work, we have investigated the influence of thickness on structural and electrical properties of Al-doped ZnO films. Transparent conducting oxide films were grown by the spray pyrolysis technique from precursors prepared via the sol–gel method. We determined the structural properties of the films by performing X-ray diffraction and mosaicity measurements, which evidenced an increase of disorder and inhomogeneity between crystalline domains as the films thickened. This behavior was contrasted with results obtained from electrical measurements and was attributed to plastic deformation of the films as their thickness increased. As a result, the carrier mobility, the optical gap and the activation energy are affected due to emerging grain boundaries and a higher degree of disorder. - Highlights: • Al-doped ZnO thin films on glass with different thicknesses • Film thickness affects the morphological and electrical properties. • Increasing time deposition allows modification of resistivity and Hall mobility. • Mosaicity between crystalline domains increases with film thickness.

  3. Effect of thickness on structural and electrical properties of Al-doped ZnO films

    International Nuclear Information System (INIS)

    Garcés, F.A.; Budini, N.; Arce, R.D.; Schmidt, J.A.

    2015-01-01

    In this work, we have investigated the influence of thickness on structural and electrical properties of Al-doped ZnO films. Transparent conducting oxide films were grown by the spray pyrolysis technique from precursors prepared via the sol–gel method. We determined the structural properties of the films by performing X-ray diffraction and mosaicity measurements, which evidenced an increase of disorder and inhomogeneity between crystalline domains as the films thickened. This behavior was contrasted with results obtained from electrical measurements and was attributed to plastic deformation of the films as their thickness increased. As a result, the carrier mobility, the optical gap and the activation energy are affected due to emerging grain boundaries and a higher degree of disorder. - Highlights: • Al-doped ZnO thin films on glass with different thicknesses • Film thickness affects the morphological and electrical properties. • Increasing time deposition allows modification of resistivity and Hall mobility. • Mosaicity between crystalline domains increases with film thickness

  4. Porous plasmonic nanocomposites for SERS substrates fabricated by two-step laser method

    Energy Technology Data Exchange (ETDEWEB)

    Koleva, M.E., E-mail: mihaela_ek@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee blvd., Sofia 1784 (Bulgaria); International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044 (Japan); Nedyalkov, N.N.; Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee blvd., Sofia 1784 (Bulgaria); Gerlach, J.W.; Hirsch, D.; Prager, A.; Rauschenbach, B. [Leibniz Institute of Surface Modification (IOM), Permoserstrasse 15, D-04318 Leipzig (Germany); Fukata, N.; Jevasuwan, W. [International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044 (Japan)

    2016-04-25

    This research is focused on investigation of coupled plasmonic/metal-semiconductor nanomaterials. A two-step laser-assisted method is demonstrated for formation of plasmonic Ag nanoparticles (NPs) distributed into porous metal–oxide semiconductors. The mosaic Ag-ZnO target is used for laser ablation and, subsequently, laser annealing of the deposited layer is applied. The plasmon resonance properties of the nanostructures produced are confirmed by optical transmission spectroscopy. The wurtzite structure of ZnO is formed with tilted c-axis orientation and, respectively, a mixed Raman mode appears at 580 cm{sup −1}. The oxygen pressure applied during a deposition process has impact on the morphology and thickness of the porous nanostructures, but not on the size and size distribution of AgNPs. The porous nanocomposites exhibited potential for SERS applications, most pronounced for the oxygen deficient sample, grown at lower oxygen pressure. The observed considerable SERS enhancement of R6G molecules on AgNP/ZnO can be attributed to the ZnO-to-molecule charge transfer contribution, enhanced by the additional electrons from the local surface plasmon resonance (LSPR) of AgNPs to the ZnO through the conduction band. - Highlights: • Porous AgNPs/ZnO composites are obtained by laser deposition and laser annealing. • Morphology and properties depend on growth oxygen pressure. • The emergence of mixed-symmetry Raman mode at 580 cm{sup −1} is registered. • The AgNPs/ZnO porous nanocomposites are suitable for SERS-active substrates. • The charge transfer enhanced by LSPR has a contribution to SERS effect.

  5. Self-aligned nanocrystalline ZnO hexagons by facile solid-state and co-precipitation route

    International Nuclear Information System (INIS)

    Thorat, J. H.; Kanade, K. G.; Nikam, L. K.; Chaudhari, P. D.; Panmand, R. P.; Kale, B. B.

    2012-01-01

    In this study, we report the synthesis of well-aligned nanocrystalline hexagonal zinc oxide (ZnO) nanoparticles by facile solid-state and co-precipitation method. The co-precipitation reactions were performed using aqueous and ethylene glycol (EG) medium using zinc acetate and adipic acid to obtain zinc adipate and further decomposition at 450 °C to confer nanocrystalline ZnO hexagons. XRD shows the hexagonal wurtzite structure of the ZnO. Thermal study reveals complete formation of ZnO at 430 °C in case of solid-state method, whereas in case of co-precipitation method complete formation was observed at 400 °C. Field emission scanning electron microscope shows spherical morphology for ZnO synthesized by solid-state method. The aqueous-mediated ZnO by co-precipitation method shows rod-like morphology. These rods are formed via self assembling of spherical nanoparticles, however, uniformly dispersed spherical crystallites were seen in EG-mediated ZnO. Transmission electron microscope (TEM) investigations clearly show well aligned and highly crystalline transparent and thin hexagonal ZnO. The particle size was measured using TEM and was observed to be 50–60 nm in case of solid-state method and aqueous-mediated co-precipitation method, while 25–50 nm in case of EG-mediated co-precipitation method. UV absorption spectra showed sharp absorption peaks with a blue shift for EG-mediated ZnO, which demonstrate the mono-dispersed lower particle size. The band gap of the ZnO was observed to be 3.4 eV which is higher than the bulk, implies nanocrystalline nature of the ZnO. The photoluminescence studies clearly indicate the strong violet and weak blue emission in ZnO nanoparticles which is quite unique. The process investigated may be useful to synthesize other oxide semiconductors and transition metal oxides.

  6. Self-aligned nanocrystalline ZnO hexagons by facile solid-state and co-precipitation route

    Energy Technology Data Exchange (ETDEWEB)

    Thorat, J. H. [Mahatma Phule College, Department of Chemistry (India); Kanade, K. G. [Annasaheb Awate College (India); Nikam, L. K. [B.G. College (India); Chaudhari, P. D.; Panmand, R. P.; Kale, B. B., E-mail: kbbb1@yahoo.com [Center for Materials for Electronics Technology (C-MET) (India)

    2012-02-15

    In this study, we report the synthesis of well-aligned nanocrystalline hexagonal zinc oxide (ZnO) nanoparticles by facile solid-state and co-precipitation method. The co-precipitation reactions were performed using aqueous and ethylene glycol (EG) medium using zinc acetate and adipic acid to obtain zinc adipate and further decomposition at 450 Degree-Sign C to confer nanocrystalline ZnO hexagons. XRD shows the hexagonal wurtzite structure of the ZnO. Thermal study reveals complete formation of ZnO at 430 Degree-Sign C in case of solid-state method, whereas in case of co-precipitation method complete formation was observed at 400 Degree-Sign C. Field emission scanning electron microscope shows spherical morphology for ZnO synthesized by solid-state method. The aqueous-mediated ZnO by co-precipitation method shows rod-like morphology. These rods are formed via self assembling of spherical nanoparticles, however, uniformly dispersed spherical crystallites were seen in EG-mediated ZnO. Transmission electron microscope (TEM) investigations clearly show well aligned and highly crystalline transparent and thin hexagonal ZnO. The particle size was measured using TEM and was observed to be 50-60 nm in case of solid-state method and aqueous-mediated co-precipitation method, while 25-50 nm in case of EG-mediated co-precipitation method. UV absorption spectra showed sharp absorption peaks with a blue shift for EG-mediated ZnO, which demonstrate the mono-dispersed lower particle size. The band gap of the ZnO was observed to be 3.4 eV which is higher than the bulk, implies nanocrystalline nature of the ZnO. The photoluminescence studies clearly indicate the strong violet and weak blue emission in ZnO nanoparticles which is quite unique. The process investigated may be useful to synthesize other oxide semiconductors and transition metal oxides.

  7. Structure and magnetic properties of Zn1-xCoxO single-crystalline nanorods synthesized by a wet chemical method

    International Nuclear Information System (INIS)

    Wang Hao; Wang, H B; Yang, F J; Chen, Y; Zhang, C; Yang, C P; Li, Q; Wong, S P

    2006-01-01

    A novel approach for the synthesis of cobalt-doped ZnO single-crystalline nanorods based on a wet chemical reaction has been developed. The as-doped ZnO nanorods have a length between 0.3 and 0.6 μm and a diameter between 30 and 60 nm. Structure and composition analyses indicate that the cobalt is incorporated into the ZnO lattice, forming a solid solution without any precipitation. Magnetic property measurements reveal that there is room-temperature ferromagnetism in the Zn 1-x Co x O nanorods with T c higher than 300 K

  8. Ferromagnetism and suppression of metallic clusters in Fe implanted ZnO -- a phenomenon related to defects?

    International Nuclear Information System (INIS)

    Arenholz, Elke; Zhou, S.; Potzger, K.; Talut, G.; Reuther, H.; Kuepper, K.; Grenzer, J.; Xu, Q.; Mucklich, A.; Helm, M.; Fassbender, J.; Arenholz, E.

    2008-01-01

    We investigated ZnO(0001) single crystals annealed in high vacuum with respect to their magnetic properties and cluster formation tendency after implant-doping with Fe. While metallic Fe cluster formation is suppressed, no evidence for the relevance of the Fe magnetic moment to the observed ferromagnetism was found. The latter along with the cluster suppression is discussed with respect to defects in the ZnO host matrix, since the crystalline quality of the substrates was lowered due to the preparation as observed by x-ray diffraction

  9. Dye-sensitized solar cells with ZnO nanoparticles fabricated at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sungjae; Moon, Byungjoon; Son, Dongick [Korea Institute of Science and Technology, Wanju (Korea, Republic of); Kwon, Byoungwook; Choi, Wonkook [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2014-11-15

    The authors investigated the microstructural and the electrical properties of ZnO based dyesensitized solar cells (DSSCs) fabricated using a low-temperature-processed(200 .deg. C) dye-sensitized ZnO-nanoparticle thin film and a Pt catalyst deposited on ITO/glass by using RF magnetron sputtering. A hydropolymer containing PEG (poly(ethylene glycol)) and PEO (poly ethylene oxide) was used to make uniformly-distributed ZnO nanoparticle layer that form a nano-porous ZnO network after heat treatment and was then dye sensitized and sandwiched between two electrodes in an electrolyte to make a DSSC device. The highest measured parameters, the short circuit current density (J{sub sc}), the open circuit potential(V{sub oc}), the fill factor(FF), and the power conversion efficiency (η), of the DSSC fabricated under optimized conditions were observed to be 4.93 mA/cm{sup 2}, 0.56 V, 0.40, and 1.12%, respectively.

  10. Large-scale syntheses of uniform ZnO nanorods and ethanol gas sensors application

    International Nuclear Information System (INIS)

    Chen Jin; Li Jin; Li Jiahui; Xiao Guoqing; Yang Xiaofeng

    2011-01-01

    Research highlights: → The uniform ZnO nanorods could be synthesized by a low temperature, solution-based method. → The results showed that the sample had uniform rod-like morphology with a narrow size distribution and highly crystallinity. → Room-temperature photoluminescence spectra of these nanorods show an exciton emission around 382 nm and a weak deep level emission, indicating the nanorods have high quality. → The sensor exhibited high sensitivity and fast response to ethanol gas at a work temperature of 400 deg. C. - Abstract: Uniform ZnO nanorods with a gram scale were prepared by a low temperature and solution-based method. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence (PL). The results showed that the sample had uniform rod-like morphology with a narrow size distribution and highly crystallinity. Room-temperature PL spectra of these nanorods show an exciton emission around 382 nm and a negligible deep level emission, indicating the nanorods have high quality. The gas-sensing properties of the materials have been investigated. The results indicate that the as-prepared nanorods show much better sensitivity and stability. The n-type semiconductor gas sensor exhibited high sensitivity and fast response to ethanol gas at a work temperature of 400 deg. C. ZnO nanorods are excellent potential candidates for highly sensitive gas sensors and ultraviolet laser.

  11. Nanoporous zinc oxide films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Ghimpu, L.; Lupan, O.; Popescu, L.; Tiginyanu, I.M.

    2011-01-01

    In this paper we demonstrate an inexpensive approach for the fabrication of nanoporous zinc oxide films by using magnetron sputtering. Study of the structural properties proves the crystallographic perfection of porous nanostructures and the possibility of its controlling by adjusting the technological parameters in the growth process. The XRD pattern of nanoporous ZnO films exhibits high intensity of the peaks relative to the background signal which is indicative of the ZnO hexagonal phase and a good crystallinity of the samples grown by magnetron sputtering.

  12. A Review on the Fabrication of Hierarchical ZnO Nanostructures for Photocatalysis Application

    Directory of Open Access Journals (Sweden)

    Yi Xia

    2016-11-01

    Full Text Available Semiconductor photocatalysis provides potential solutions for many energy and environmental-related issues. Recently, various semiconductors with hierarchical nanostructures have been fabricated to achieve efficient photocatalysts owing to their multiple advantages, such as high surface area, porous structures, as well as enhanced light harvesting. ZnO has been widely investigated and considered as the most promising alternative photocatalyst to TiO2. Herein, we present a review on the fabrication methods, growth mechanisms and photocatalytic applications of hierarchical ZnO nanostructures. Various synthetic strategies and growth mechanisms, including multistep sequential growth routes, template-based synthesis, template-free self-organization and precursor or self-templating strategies, are highlighted. In addition, the fabrication of multicomponent ZnO-based nanocomposites with hierarchical structures is also included. Finally, the application of hierarchical ZnO nanostructures and nanocomposites in typical photocatalytic reactions, such as pollutant degradation and H2 evolution, is reviewed.

  13. The effects of ZnO2 nanoparticles on properties of concrete using ground granulated blast furnace Slag as binder

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2011-09-01

    Full Text Available In the present study, flexural strength together with pore structure, thermal behavior and microstructure of concrete containing ground granulated blast furnace slag with different amount of ZnO2 nanoparticles has been investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Although it negatively impact the properties of concrete, ground granulated blast furnace slag was found to improve the physical and mechanical properties of concrete up to 45 wt. (%. ZnO2 nanoparticles with the average particle size of 15 nm were added partially to concrete with the optimum content of 45 wt. (% of ground granulated blast furnace slag and physical and mechanical properties of the specimens was measured. ZnO2 nanoparticle as a partial replacement of cement up to 3 wt. (% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH2 amount at the early age of hydration and hence increase flexural strength of concrete. The increased the ZnO2 nanoparticles' content more than 3 wt. (%, causes the reduced the flexural strength because of the decreased crystalline Ca(OH2 content required for C-S-H gel formation together with unsuitable dispersion of nanoparticles in the concrete matrix. ZnO2 nanoparticles could improve the pore structure of concrete and shift the distributed pores to harmless and few-harm pores.

  14. Evolution of Structural and Optical Properties of ZnO Nanorods Grown on Vacuum Annealed Seed Crystallites

    Directory of Open Access Journals (Sweden)

    Waqar Khan

    2018-01-01

    Full Text Available In this study, the ambient condition for the as-coated seed layer (SL annealing at 350 °C is varied from air or nitrogen to vacuum to examine the evolution of structural and optical properties of ZnO nanorods (NRs. The NR crystals of high surface density (~240 rods/μm2 and aspect ratio (~20.3 show greatly enhanced (002 degree of orientation and crystalline quality, when grown on the SLs annealed in vacuum, compared to those annealed in air or nitrogen ambient. This is due to the vacuum-annealed SL crystals of a highly preferred orientation toward (002 and large grain sizes. X-ray photoelectron spectroscopy also reveals that the highest O/Zn atomic ratio of 0.89 is obtained in the case of vacuum-annealed SL crystals, which is due to the effective desorption of hydroxyl groups and other contaminants adsorbed on the surface formed during aqueous solution-based growth process. Near band edge emission (ultra violet range of 360–400 nm of the vacuum-annealed SLs is also enhanced by 44% and 33% as compared to those annealed in air and nitrogen ambient, respectively, in photoluminescence with significant suppression of visible light emission associated with deep level transition. Due to this improvement of SL optical crystalline quality, the NR crystals grown on the vacuum-annealed SLs produce ~3 times higher ultra violet emission intensity than the other samples. In summary, it is shown that the ZnO NRs preferentially grow along the wurtzite c-axis direction, thereby producing the high crystalline quality of nanostructures when they grow on the vacuum-annealed SLs of high crystalline quality with minimized impurities and excellent preferred orientation. The ZnO nanostructures of high crystalline quality achieved in this study can be utilized for a wide range of potential device applications such as laser diodes, light-emitting diodes, piezoelectric transducers and generators, gas sensors, and ultraviolet detectors.

  15. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties

    OpenAIRE

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-01-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160?nm and an average length of 2??m. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255?nm...

  16. Effect of ZnO decoration on the photovoltaic performance of TiO{sub 2} based dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Long; Zhai, Bao-gai [School of Mathematics and Physics, Changzhou University, Jiangsu 213164 (China); Ma, Qing-lan [School of Electronics and Information, Nantong University, Jiangsu 226019 (China); Huang, Yuan Ming, E-mail: dongshanisland@126.com [School of Electronics and Information, Nantong University, Jiangsu 226019 (China)

    2014-08-25

    Highlights: • Various ZnO morphologies coated TiO{sub 2} photoanodes are formed and applied to DSSCs. • The effect of photoanode morphology on performance of DSSCs was studied. • ZnO NRs@TiO{sub 2} electrode provides more dye absorption and fast transfer pathway. • The η of DSSC with ZnO NRs@TiO{sub 2} is increased over fourfold than other DSSCs. - Abstract: ZnO nanoparticles and one-dimensional vertically aligned ZnO nanorods were grown on the TiO{sub 2} layers in the photoanodes via the hydrothermal method at 60 and 90 °C, respectively. The effect of ZnO decoration on the photovoltaic performance of TiO{sub 2} based dye sensitized solar cells (DSSCs) was investigated. The morphologies, crystalline structures and optical properties of the synthesized ZnO nanoparticles and ZnO nanorods were characterized by field-emission scanning electron microscope, X-ray diffractometer and photoluminescence spectroscopy, respectively. The photocurrent–voltage curves of the fabricated DSSCs showed that the ZnO nanorods decorated DSSCs exhibited better photovoltaic performance than the ZnO nanoparticles decorated DSSCs. The improved performance of the ZnO nanorods decorated DSSCs can be ascribed to the fact that the vertically aligned ZnO nanorods provide high specific surface area for dye adsorption and the efficient pathway for electron transportation.

  17. Fabrication and Characterization of ZnO Nano-Clips by the Polyol-Mediated Process

    Science.gov (United States)

    Wang, Mei; Li, Ai-Dong; Kong, Ji-Zhou; Gong, You-Pin; Zhao, Chao; Tang, Yue-Feng; Wu, Di

    2018-02-01

    ZnO nano-clips with better monodispersion were prepared successfully using zinc acetate hydrate (Zn(OAc)2·nH2O) as Zn source and ethylene glycol (EG) as solvent by a simple solution-based route-polyol process. The effect of solution concentration on the formation of ZnO nano-clips has been investigated deeply. We first prove that the 0.01 M Zn(OAc)2·nH2O can react with EG without added water or alkaline, producing ZnO nano-clips with polycrystalline wurtzite structure at 170 °C. As-synthesized ZnO nano-clips contain a lot of aggregated nanocrystals ( 5 to 15 nm) with high specific surface area of 88 m2/g. The shapes of ZnO nano-clips basically keep constant with improved crystallinity after annealing at 400-600 °C. The lower solution concentration and slight amount of H2O play a decisive role in ZnO nano-clip formation. When the solution concentration is ≤ 0.0125 M, the complexing and polymerization reactions between Zn(OAc)2·nH2O and EG predominate, mainly elaborating ZnO nano-clips. When the solution concentration is ≥ 0.015 M, the alcoholysis and polycondensation reactions of Zn(OAc)2·nH2O and EG become dominant, leading to ZnO particle formation with spherical and elliptical shapes. The possible growth mechanism based on a competition between complexing and alcoholysis of Zn(OAc)2·nH2O and EG has been proposed.

  18. Insights into post-annealing and silver doping effects on the internal microstructure of ZnO nanoparticles through X-ray diffraction probe

    Science.gov (United States)

    Obeydavi, Ali; Dastafkan, Kamran; Rahimi, Mohammad; Ghadam Dezfouli, Mohammad Amin

    2017-07-01

    ZnO nanoparticles were synthesized via Pechini method at various post-annealing temperatures (400°, 500°, and 600 °C) and silver doping concentrations (Zn:Ag molar ratios of 30, 20, and 10). Multifarious microstructural features including crystallite size, size-strain based broadening, residual stress, preferential orientation, crystallinity degree, lattice parameters, unit cell variation, and stacking fault probability were surveyed through phase analysis, Williamson-Hall plot, texture coefficient and unit cell calculations. X-ray probing verified good crystallinity with a hexagonal close pack Wurtzite morphology. Williamson-Hall analysis exhibited distributions of crystallite size and microstrain as well as their contributions on the line broadening of the host ZnO and guest Ag phases upon annealing-doping treatments. Textural analysis revealed the alteration in anisotropic crystallinity of the host phase and transformation of the preferred directions, (100) and (101), as function of annealing-doping processes. Besides, while guest Ag phase was shown to be polycrystalline with randomly orientated crystals at moderate concentration with respect to thermal treatment, preferential orientation went through a major change, (220) to (111), with increment in Ag loadings. Under identical synthetic conditions, the distinction in the lattice constants and unit cell variation between pure and doped ZnO nanoparticles was enforced and results verified major impressionability via annealing and doping factors.

  19. Growth and Characterization of Indium Doped ZnO Nano wires Using Thermal Evaporation Method

    International Nuclear Information System (INIS)

    Abrar Ismardi; Dee, C.F.; Majlis, B.Y.

    2011-01-01

    Indium doped ZnO nano wires were grown on silicon substrate using vapor thermal deposition method without using any catalyst. Morphological structures were extensively investigated using field emission scanning electron microscopy (FESEM) and show that the nano wires have uniformly hexagonal nano structures with diameters less than 100 nm and lengths from one to a few microns. The sample was measured for elemental composition with energy dispersive X-ray (EDX) spectroscopy, Zn, In and O elements were found on the sample. XRD spectrum of indium doped ZnO nano wires revealed that the nano wires have a high crystalline structure. (author)

  20. Optical and Morphological Properties of ZnO- and TiO2-Derived Nanostructures Synthesized via a Microwave-Assisted Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Nosipho Moloto

    2012-01-01

    Full Text Available A microwave-assisted hydrothermal method was used to synthesize ZnO and TiO2 nanostructures. The experimental results show that the method resulted in crystalline monodispersed ZnO nanorods that have pointed tips with hexagonal crystal phase. TiO2 nanotubes were also formed with minimum bundles. The mechanism for the formation of the tubes was validated by HRTEM results. The optical properties of both ZnO and TiO2 nanostructures showed characteristics of strong quantum confinement regime. The photoluminescence spectrum of TiO2 nanotubes shows good improvement from previously reported data.

  1. Temperature dependent optical properties of ZnO thin film using ellipsometry and photoluminescence

    Science.gov (United States)

    Bouzourâa, M.-B.; Battie, Y.; Dalmasso, S.; Zaïbi, M.-A.; Oueslati, M.; En Naciri, A.

    2018-05-01

    We report the temperature dependence of the dielectric function, the exciton binding energy and the electronic transitions of crystallized ZnO thin film using spectroscopic ellipsometry (SE) and photoluminescence (PL). ZnO layers were prepared by sol-gel method and deposited on crystalline silicon (Si) by spin coating technique. The ZnO optical properties were determined between 300 K and 620 K. Rigorous study of optical responses was achieved in order to demonstrate the quenching exciton of ZnO as a function of temperature. Numerical technique named constrained cubic splines approximation (CCS), Tauc-Lorentz (TL) and Tanguy dispersion models were selected for the ellipsometry data modeling in order to obtain the dielectric function of ZnO. The results reveals that the exciton bound becomes widely flattening at 470 K on the one hand, and on the other that the Tanguy dispersion law is more appropriate for determining the optical responses of ZnO thin film in the temperature range of 300 K-420 K. The Tauc-Lorentz, for its part, reproduces correctly the ZnO dielectric function in 470 K-620 K temperature range. The temperature dependence of the electronic transition given by SE and PL shows that the exciton quenching was observed in 420 K-∼520 K temperature range. This quenching effect can be explained by the equilibrium between the Coulomb force of exciton and its kinetic energy in the film. The kinetic energy was found to induce three degrees of freedom of the exciton.

  2. Process for forming a porous silicon member in a crystalline silicon member

    Science.gov (United States)

    Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  3. Field electron emission improvement of ZnO nanorod arrays after Ar plasma treatment

    International Nuclear Information System (INIS)

    Li Chun; Fang Guojia; Yuan Longyan; Liu Nishuang; Li Jun; Li Dejie; Zhao Xingzhong

    2007-01-01

    Vertically well-aligned single crystal ZnO nanorod arrays were synthesized and enhanced field electron emission was achieved after radio-frequency (rf) Ar plasma treatment. With Ar plasma treatment for 30 min, flat tops of the as-grown ZnO nanorods have been etched into sharp tips without damaging ZnO nanorod geometrical morphologies and crystallinity. After the Ar ion bombardment, the emission current density increases from 2 to 20 μA cm -2 at 9.0 V μm -1 with a decrease in turn-on voltage from 7.1 to 4.8 V μm -1 at a current density of 1 μA cm -2 , which demonstrates that the field emission of the as-grown ZnO nanorods has been efficiently enhanced. The scanning electron microscopy (SEM) results, in conjunction with the results of transmission electron microscopy (TEM), Raman spectroscopy and photoluminescence observation, are used to investigate the mechanisms of the field emission enhancement. It is believed that the enhancements can be mainly attributed to the sharpening of rod tops, and the decrease of electrostatic screening effect

  4. Synthesis and photoluminescence properties of self-assembled Eu-doped ZnO hollow microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jin [Department of Materials Science and Engineering, College of Materials, Xiamen University, Siming South Road 422, 361005 Xiamen (China); Key Laboratory for Fire Retardant Materials of Fujian Province, Xiamen University, Siming South Road 422, 361005 Xiamen (China); Wang, Nating; Wang, Weiqiang [Department of Materials Science and Engineering, College of Materials, Xiamen University, Siming South Road 422, 361005 Xiamen (China)

    2011-12-15

    ZnO hollow microspheres with a shell wall consisting of crystalline ZnO nanosheets were synthesized by using Zn{sub 5}(CO{sub 3}){sub 2}(OH){sub 6} microspheres as spherical templates. Zn{sub 5}(CO{sub 3}){sub 2}(OH){sub 6} microspheres were first fabricated by a solvothermal procedure in an ethylene glycol (EG)-water solution. ZnO microspheres with a hexagonal structure were identified by means of X-ray diffraction (XRD) and selected-area electron diffraction (SAED). On the basis of the results, a possible self-assembly growth mechanism was proposed. It reveals that the EG played an important role in determining the hollow morphologies of Zn{sub 5}(CO{sub 3}){sub 2}(OH){sub 6} structures. In addition, photoluminescence (PL) investigation of ZnO:Eu{sup 3+} suggested that a direct energy transfer occurred, which was ascribed to the energy transfer from ZnO host to Eu{sup 3+} ions. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application.

    Science.gov (United States)

    Jia, Qianqian; Ji, Huiming; Zhang, Ying; Chen, Yalu; Sun, Xiaohong; Jin, Zhengguo

    2014-07-15

    Hierarchical nanostructured ZnO dandelion-like spheres were synthesized via solvothermal reaction at 200°C for 4h. The products were pure hexagonal ZnO with large exposure of (002) polar facet. Side-heating gas sensor based on hierarchical ZnO spheres was prepared to evaluate the acetone gas sensing properties. The detection limit to acetone for the ZnO sensor is 0.25ppm. The response (Ra/Rg) toward 100ppm acetone was 33 operated at 230°C and the response time was as short as 3s. The sensor exhibited remarkable acetone selectivity with negligible response toward other hazardous gases and water vapor. The high proportion of electron depletion region and oxygen vacancies contributed to high gas response sensitivity. The hollow and porous structure of dandelion-like ZnO spheres facilitated the diffusion of gas molecules, leading to a rapid response speed. The largely exposed (002) polar facets could adsorb acetone gas molecules easily and efficiently, resulting in a rapid response speed and good selectivity of hierarchical ZnO spheres gas sensor at low operating temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Growth of high-density ZnO nanorods on wood with enhanced photostability, flame retardancy and water repellency

    Science.gov (United States)

    Kong, Lizhuo; Tu, Kunkun; Guan, Hao; Wang, Xiaoqing

    2017-06-01

    Zinc oxide (ZnO) nanorod arrays were successfully assembled on the wood surface in situ via a two-step process consisting of formation of ZnO seeds and subsequent crystal growth under hydrothermal conditions at a low temperature. The morphology and crystalline structure of the formed ZnO nanorods were studied by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). Highly dense and uniform arrays of ZnO nanorods with well-defined hexagonal facets were generated on the wood surface by tuning the concentration of the ZnO growth solution during the hydrothermal treatment. Accelerated weathering tests indicated that the assembled ZnO nanorod arrays were highly protective against UV radiation and greatly enhanced the photostability of the coated wood. Meanwhile, the ZnO nanorod-coated wood can withstand continuous exposure to flame with only minor smoldering in contrast with the pristine wood catching fire easily and burning rapidly. Moreover, when further modified with low-surface-energy stearic acid, the ZnO nanorod decorated wood surface can be transformed into a superhydrophobic surface, with a water contact angle (CA) of ∼154°. Such ZnO nanorod-modified woods with enhanced photostability, flame retardancy and water repellency offer an interesting alternative to conventional wood preservation strategies, highlighting their potential applications in some novel wood products.

  7. The effects of Mg incorporation and annealing temperature on the physicochemical properties and antibacterial activity against Listeria monocytogenes of ZnO nanoparticles

    Science.gov (United States)

    Shadan, Nima; Ziabari, Ali Abdolahzadeh; Meraat, Rafieh; Jalali, Kamyar Mazloum

    2017-02-01

    In this paper, Mg-doped ZnO nanoparticles were synthesized by the facile sol-gel method. The crystalline structure, characteristic absorption bands and morphology of the obtained Mg-doped ZnO nanoparticles were studied by XRD, FTIR and TEM. The thermal degradation behaviour of the samples was investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG). The effect of Mg concentrations and annealing temperatures on the antibacterial properties of the obtained nanoparticles was investigated in detail. The results indicated that doping Mg ions into ZnO lattice could enhance its antibacterial activity. Antibacterial assay demonstrated that Mg-doped ZnO with 7% Mg content annealed at 400 ∘C had the strongest antibacterial activity against Listeria monocytogenes (98.7%). This study indicated that the inhibition rate of ZnO nanoparticles increased with the formation of granular structure and the decrease of ZnO size due to the doping of Mg ions into the ZnO lattice.

  8. Ferromagnetism and suppression of metallic clusters in Fe implanted ZnO: a phenomenon related to defects?

    International Nuclear Information System (INIS)

    Zhou Shengqiang; Potzger, K; Talut, G; Reuther, H; Kuepper, K; Grenzer, J; Xu Qingyu; Muecklich, A; Helm, M; Fassbender, J; Arenholz, E

    2008-01-01

    We investigated ZnO(0 0 0 1) single crystals annealed in high vacuum with respect to their magnetic properties and cluster formation tendency after implant-doping with Fe. While metallic Fe cluster formation is suppressed, no evidence for the relevance of the Fe magnetic moment to the observed ferromagnetism was found. The latter along with the cluster suppression is discussed with respect to defects in the ZnO host matrix, since the crystalline quality of the substrates was lowered due to the preparation as observed by x-ray diffraction

  9. Optical and structural properties of thin films of ZnO at elevated temperature

    International Nuclear Information System (INIS)

    Kayani, Zohra N.; Afzal, Tosif; Riaz, Saira; Naseem, Shahzad

    2014-01-01

    Highlights: • Thin films of ZnO are prepared on glass substrates using dip-coating. • The X-ray diffraction showed that films are crystalline. • Optical measurements show that the film possesses high transmittance in visible region. • The transmission decreased with increased withdrawal speed. • The films has direct band gap in range 3.78-3.48 eV. - Abstract: Zinc oxide (ZnO) thin films were prepared on glass substrate by sol–gel dip-coating method. The paper presents the properties of zinc oxide thin films deposited on soda-lime-glass substrate via dip-coating technique, using zinc acetate dehydrate and ethanol as raw materials. The effect of withdrawal speed on the crystalline structure, surface morphology and optical properties of the thin films has been investigated using XRD, SEM and UV–Vis spectrophotometer. X-ray diffraction study shows that all the films have hexagonal wurtzite structure with preferred orientation in (0 0 2) direction and transmission spectra showed highly transparent films with band gap ranging from 3.78 to 3.48 eV

  10. Structural, electrical, and dielectric properties of Cr doped ZnO thin films: Role of Cr concentration

    Energy Technology Data Exchange (ETDEWEB)

    Gürbüz, Osman, E-mail: osgurbuz@yildiz.edu.tr; Okutan, Mustafa

    2016-11-30

    Highlights: • Magnetic material of Cr and semiconductor material of ZnO were grown by the magnetron sputtering co-sputter technique. • Perfect single crystalline structures were grown. • DC and AC conductivity with dielectric properties as a function of frequency (f = 5Hz–13 MHz) at room temperature were measured and compared. • Cr doped ZnO can be used in microwave, sensor and optoelectronic devices as the electrical conductivity increases while dielectric constant decreases with the Cr content. - Abstract: An undoped zinc oxide (ZnO) and different concentrations of chromium (Cr) doped ZnO Cr{sub x}ZnO{sub 1−x} (x = 3.74, 5.67, 8.10, 11.88, and 15.96) thin films were prepared using a magnetron sputtering technique at room temperature. These films were characterized by X-ray diffraction (XRD), High resolution scanning electron microscope (HR-SEM), and Energy dispersive X-ray spectrometry (EDS). XRD patterns of all the films showed that the films possess crystalline structure with preferred orientation along the (100) crystal plane. The average crystallite size obtained was found to be between 95 and 83 nm which was beneficial in high intensity recording peak. Both crystal quality and crystallite sizes decrease with increasing Cr concentration. The crystal and grain sizes of the all film were investigated using SEM analysis. The surface morphology that is grain size changes with increase Cr concentration and small grains coalesce together to form larger grains for the Cr{sub 11.88}ZnO and Cr{sub 15.96}ZnO samples. Impedance spectroscopy studies were carried out in the frequencies ranging from 5 Hz to 13 MHz at room temperature. The undoped ZnO film had the highest dielectric value, while dielectric values of other films decreased as doping concentrations increased. Besides, the dielectric constants decreased whereas the loss tangents increased with increasing Cr content. This was considered to be related to the reduction of grain size as Cr content in ZnO

  11. Engineering of nearly strain-free ZnO films on Si(1 1 1) by tuning AlN buffer thickness

    International Nuclear Information System (INIS)

    Venkatachalapathy, Vishnukanthan; Galeckas, Augustinas; Lee, In-Hwan; Kuznetsov, Andrej Yu.

    2012-01-01

    ZnO properties were investigated as a function of AlN buffer layer thickness (0–100 nm) in ZnO/AlN/Si(1 1 1) structures grown by metal organic vapor phase epitaxy. A significant improvement of ZnO film crystallinity by tuning AlN buffer thickness was confirmed by x-ray diffraction, topography and photoluminescence measurements. An optimal AlN buffer layer thickness of 50 nm is defined, which allows for growth of nearly strain-free ZnO films. The presence of free excitons at 10 K suggests high crystal quality for all ZnO samples grown on AlN/Si(1 1 1) templates. The intensities of neutral and ionized donor bound exciton lines are found to correlate with the in-plane and out-of-plane strain in the films, respectively.

  12. Engineering of nearly strain-free ZnO films on Si(1 1 1) by tuning AlN buffer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Venkatachalapathy, Vishnukanthan, E-mail: vishnukanthan.venkatachalapathy@smn.uio.no [Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo (Norway); Galeckas, Augustinas [Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo (Norway); Lee, In-Hwan [School of Advanced Materials Engineering, Research Centre for Advanced Materials Development (RCAMD), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kuznetsov, Andrej Yu. [Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo (Norway)

    2012-05-15

    ZnO properties were investigated as a function of AlN buffer layer thickness (0-100 nm) in ZnO/AlN/Si(1 1 1) structures grown by metal organic vapor phase epitaxy. A significant improvement of ZnO film crystallinity by tuning AlN buffer thickness was confirmed by x-ray diffraction, topography and photoluminescence measurements. An optimal AlN buffer layer thickness of 50 nm is defined, which allows for growth of nearly strain-free ZnO films. The presence of free excitons at 10 K suggests high crystal quality for all ZnO samples grown on AlN/Si(1 1 1) templates. The intensities of neutral and ionized donor bound exciton lines are found to correlate with the in-plane and out-of-plane strain in the films, respectively.

  13. Synthesis of ZnO nanopowders by DC thermal plasma for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo-Jung; Choi, Jinsub [Department of Chemical Engineering, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of); Park, Dong-Wha, E-mail: dwpark@inha.ac.kr [Department of Chemical Engineering, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2013-05-01

    Highlights: ► ZnO nanopowders were synthesized using DC thermal plasma process. ► Type and flow rate of reaction gas were controlled as experimental variables. ► Various morphologies were identified by changing the reaction gas. ► The photovoltaic performances were promoted by removing the unreacted precursors. ► DSSCs based on 1D nanostructure ZnO show the enhanced energy conversion efficiency. -- Abstract: Zinc oxide (ZnO) nanopowders were synthesized from commercially available micro-sized zinc powders (Aldrich Co., 98%, 10 μm) by a DC thermal plasma process at atmospheric pressure. The micro-sized zinc powders were vaporized in the plasma region, after which the plasma processing equipment was rapidly quenched, resulting in the formation of ZnO nanopowders with a size of less than 300 nm. Two different reaction gases of oxygen and carbon dioxide were used as the oxygen source and each gas flow rate was controlled as a process variable. The obtained ZnO nanopowders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). All synthesized ZnO nanopowders showed high crystalline wurtzite structures and the differences in their morphologies were strongly dependent on the operating variables. The photocurrent–voltage (J–V) curve of the ZnO nanopowders with a dye of ruthenium (II) 535 bis-TBA (N719, Solaronix) in redox electrolyte showed an overall energy conversion efficiency (η) of 2.54%, demonstrating that the application of the mass-producible ZnO nanopowders by thermal plasma processing to DSSC was feasible.

  14. Fabrication and Characterization of ZnO Nano-Clips by the Polyol-Mediated Process.

    Science.gov (United States)

    Wang, Mei; Li, Ai-Dong; Kong, Ji-Zhou; Gong, You-Pin; Zhao, Chao; Tang, Yue-Feng; Wu, Di

    2018-02-09

    ZnO nano-clips with better monodispersion were prepared successfully using zinc acetate hydrate (Zn(OAc) 2 ·nH 2 O) as Zn source and ethylene glycol (EG) as solvent by a simple solution-based route-polyol process. The effect of solution concentration on the formation of ZnO nano-clips has been investigated deeply. We first prove that the 0.01 M Zn(OAc) 2 ·nH 2 O can react with EG without added water or alkaline, producing ZnO nano-clips with polycrystalline wurtzite structure at 170 °C. As-synthesized ZnO nano-clips contain a lot of aggregated nanocrystals (~ 5 to 15 nm) with high specific surface area of 88 m 2 /g. The shapes of ZnO nano-clips basically keep constant with improved crystallinity after annealing at 400-600 °C. The lower solution concentration and slight amount of H 2 O play a decisive role in ZnO nano-clip formation. When the solution concentration is ≤ 0.0125 M, the complexing and polymerization reactions between Zn(OAc) 2 ·nH 2 O and EG predominate, mainly elaborating ZnO nano-clips. When the solution concentration is ≥ 0.015 M, the alcoholysis and polycondensation reactions of Zn(OAc) 2 ·nH 2 O and EG become dominant, leading to ZnO particle formation with spherical and elliptical shapes. The possible growth mechanism based on a competition between complexing and alcoholysis of Zn(OAc) 2 ·nH 2 O and EG has been proposed.

  15. A template-free sol-gel technique for controlled growth of ZnO nanorod arrays

    International Nuclear Information System (INIS)

    Huang, N.; Zhu, M.W.; Gao, L.J.; Gong, J.; Sun, C.; Jiang, X.

    2011-01-01

    The growth of ZnO nanorod arrays via a template-free sol-gel process was investigated. The nanorod is single-crystalline wurtzite structure with [0 0 0 1] growth direction determined by the transmission electron microscope. The aligned ZnO arrays were obtained directly on the glass substrates by adjusting the temperatures and the withdrawal speeds, without seed-layer or template assistant. A thicker oriented ZnO nanorod arrays was obtained at proper experimental conditions by adding dip-coating layers. Room temperature photoluminescence spectrum exhibits an intensive UV emission with a weak broad green emission as well as a blue double-peak emission located at 451 and 468 nm, respectively. Further investigation results show that the difference in the alignment of nanorods ascribes to the different orientations of the nanoparticles-packed film formed prior to nanorods on the substrate. Well ordered ZnO nanorods are formed from this film with good c-axis orientation. Our study is expected to pave a way for direct growth of oriented nanorods by low-cost solution approaches.

  16. Structural and Optical Properties of ZnO Thin Film Prepared by Oxidation of Zn Metal Powders

    International Nuclear Information System (INIS)

    Hassan, N.K.; Hashim, M.R.

    2013-01-01

    High quality ZnO nano structures have been fabricated at room temperature by a simple vacuum thermal evaporator from metallic Zn powders (99.999 % purity) on a silicon (100) substrate. The Zn thin films were then transferred into a thermal tube furnace for oxidation at 700 degree Celsius for different time durations. Time was found to be a critical factor in the synthesis. This was followed by characterization of their morphological, structural and optical properties. The morphology of the grown ZnO nano structures exhibited several large grains, which increased gradually with increasing oxidation time. The crystallinity of the grown nano structures was investigated using X-ray diffraction, revealing that the synthesized ZnO was in hexagonal wurtzite phase. The photoluminescence (PL) spectra of the fabricated ZnO nano structures showed high intensity peak in the UV region due to near-band-edge (NBE) emission in which the structures oxidized for 30 min showing highest intensity. (author)

  17. ZnO thin films on single carbon fibres fabricated by Pulsed Laser Deposition (PLD)

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, André; Engel, Sebastian [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Sangiorgi, Nicola [Institute of Science and Technology for Ceramics – National Research Council of Italy (CNR-ISTEC), via Granarolo 64, 48018 Faenza, RA (Italy); Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133 Rome (Italy); Sanson, Alessandra [Institute of Science and Technology for Ceramics – National Research Council of Italy (CNR-ISTEC), via Granarolo 64, 48018 Faenza, RA (Italy); Bartolomé, Jose F. [Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain); Gräf, Stephan, E-mail: stephan.graef@uni-jena.de [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Müller, Frank A. [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena (Germany)

    2017-03-31

    Highlights: • Carbon fibres were entirely coated with thin films consisting of aligned ZnO crystals. • A Q-switched CO2 laser was utilised as radiation source. • Suitability of ZnO thin films on carbon fibres as photo anodes for DSSC was studied. - Abstract: Single carbon fibres were 360° coated with zinc oxide (ZnO) thin films by pulsed laser deposition using a Q-switched CO{sub 2} laser with a pulse duration τ ≈ 300 ns, a wavelength λ = 10.59 μm, a repetition frequency f{sub rep} = 800 Hz and a peak power P{sub peak} = 15 kW in combination with a 3-step-deposition technique. In a first set of experiments, the deposition process was optimised by investigating the crystallinity of ZnO films on silicon and polished stainless steel substrates. Here, the influence of the substrate temperature and of the oxygen partial pressure of the background gas were characterised by scanning electron microscopy and X-ray diffraction analyses. ZnO coated carbon fibres and conductive glass sheets were used to prepare photo anodes for dye-sensitised solar cells in order to investigate their suitability for energy conversion devices. To obtain a deeper insight of the electronic behaviour at the interface between ZnO and substrate I–V measurements were performed.

  18. Electrodeposition of Cu-doped ZnO nanowire arrays and heterojunction formation with p-GaN for color tunable light emitting diode applications

    International Nuclear Information System (INIS)

    Lupan, O.; Pauporté, T.; Viana, B.; Aschehoug, P.

    2011-01-01

    Highlights: ► High quality copper-doped zinc oxide nanowires were electrochemically grown at low temperature. ► ZnO:Cu nanowires have been epitaxially grown on Mg-doped p-GaN single-crystalline layers. ► The (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction was used to fabricate a light-emitting diode structure. ► The photo- and electroluminescence emission was red-shifted to the violet spectral region compared to pure ZnO. ► The results are of importance for band-gap engineering of ZnO and for color-tunable LED. - Abstract: Copper-doped zinc oxide (ZnO:Cu) nanowires (NWs) were electrochemically deposited at low temperature on fluor-doped tin oxide (FTO) substrates. The electrochemical behavior of the Cu–Zn system for Cu-doped ZnO electrodeposition was studied and the electrochemical reaction mechanism is discussed. The synthesized ZnO arrayed layers were investigated by using SEM, XRD, EDX, photoluminescence and Raman techniques. X-ray diffraction analysis demonstrates a decrease in the lattice parameters of Cu-doped ZnO NWs. Structural analyses show that the nanomaterial is of hexagonal structure with the Cu incorporated in ZnO NWs probably by substituting zinc in the host lattice. Photoluminescence studies on pure and Cu-doped ZnO NWs shows that the near band edge emission is red-shifted by about 5 or 12 nm depending on Cu(II) concentration in the electrolytic bath solution (3 or 6 μmol l −1 ). Cu-doped ZnO NWs have been also epitaxially grown on Mg doped p-GaN single-crystalline layers and the (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction has been used to fabricate a light-emitting diode (LED) structure. The emission was red-shifted to the visible violet spectral region compared to pure ZnO. The present work demonstrates the ability of electrodeposition to produce high quality ZnO nanowires with tailored optical properties by doping. The obtained results are of great importance for further studies on bandgap engineering of ZnO, for color-tunable LED applications

  19. Enhanced luminescence properties of hybrid Alq{sub 3}/ZnO (organic/inorganic) composite films

    Energy Technology Data Exchange (ETDEWEB)

    Cuba, M.; Muralidharan, G., E-mail: muraligru@gmail.com

    2014-12-15

    Pristine tris-(8-hydroxyquionoline)aluminum(Alq{sub 3}) and (Alq{sub 3}/ZnO hybrid) composites containing different weight percentages (5 wt%, 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt%) of ZnO in Alq{sub 3} were synthesized and coated on to a glass substrate using the dip coating method. The optimum concentration of ZnO in Alq{sub 3} films to get the best luminescence yield has been identified. XRD pattern reveals the amorphous nature of pure Alq{sub 3} film. The Alq{sub 3} films containing different weight percentages of ZnO show the presence of crystalline ZnO in Alq{sub 3}/ZnO composite films. The FTIR spectrum confirms the formation of quinoline with absorption in the region 600−800 cm{sup −1}. The hybrid Alq{sub 3}/ZnO composite films indicate the presence of Zn−O vibration band along with the corresponding Alq{sub 3} band. The band gap (HOMO–LUMO) of Alq{sub 3} film was calculated using absorption spectra and it is 2.87 eV for pristine films while it is 3.26 eV, 3.21 eV, 3.14 eV, 3.10 eV, 3.13 eV and 3.20 eV for the composite films containing 5–50 wt% of ZnO. The photoluminescence (PL) spectra of Alq{sub 3} films show a maximum PL intensity at 514 nm when excited at 390 nm. The ZnO incorporated composite films (Alq{sub 3}/ZnO) exhibit an emission in 485 nm and 514 nm. The composite films containing 30 wt% of ZnO exhibit maximum luminescence yield. - Highlights: • The pure Alq{sub 3} and Alq{sub 3}/ZnO composite were synthesized and coated on to a glass substrate using dip coating method. • Alq{sub 3}/ZnO composite film containing 30 wt% of ZnO exhibits two fold increases in luminescence intensity. • The shielding effect of ZnO on the Alq{sub 3} material suppresses the interactions among the host molecules in the excited state. • This leads to enhance the luminescence intensity in composite films.

  20. Growth of High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Nurul Izni Rusli

    2012-12-01

    Full Text Available The formation of high-density zinc oxide (ZnO nanorods on porous silicon (PS substrates at growth temperatures of 600–1000 °C by a simple thermal evaporation of zinc (Zn powder in the presence of oxygen (O2 gas was systematically investigated. The high-density growth of ZnO nanorods with (0002 orientation over a large area was attributed to the rough surface of PS, which provides appropriate planes to promote deposition of Zn or ZnOx seeds as nucleation sites for the subsequent growth of ZnO nanorods. The geometrical morphologies of ZnO nanorods are determined by the ZnOx seed structures, i.e., cluster or layer structures. The flower-like hexagonal-faceted ZnO nanorods grown at 600 °C seem to be generated from the sparsely distributed ZnOx nanoclusters. Vertically aligned hexagonal-faceted ZnO nanorods grown at 800 °C may be inferred from the formation of dense arrays of ZnOx clusters. The formation of disordered ZnO nanorods formed at 1000 °C may due to the formation of a ZnOx seed layer. The growth mechanism involved has been described by a combination of self-catalyzed vapor-liquid-solid (VLS and vapor-solid (VS mechanism. The results suggest that for a more precise study on the growth of ZnO nanostructures involving the introduction of seeds, the initial seed structures must be taken into account given their significant effects.

  1. The Modulation of Optical Property and its Correlation with Microstructures of ZnO Nanowires

    Directory of Open Access Journals (Sweden)

    Hope Greg

    2009-01-01

    Full Text Available Abstract ZnO nanowires with both good crystallinity and oxygen vacancies defects were synthesized by thermal oxidation of Zn substrate pretreated in concentrated sulfuric acid under the air atmosphere, Ar- and air-mixed gas stream. The photoluminescence spectra reveal that only near-band-edge (NBE emission peak was observed for the sample grown in the air atmosphere; the broad blue–green and the red-shifted NBE emission peaks were observed for the sample grown in the mixed gas stream, indicating that the sample grown in the mixed gas stream has a defective structure and its optical properties can be modulated by controlling its structure. The high-resolution transmission electron microscope and the corresponding structural simulation confirm that the oxygen vacancies exist in the crystal of the nanowires grown in the mixed gas stream. The ZnO nanowires with oxygen vacancies defects exhibit better photocatalytic activity than the nanowires with good crystallinity. The photocatalytic process obeys the rules of first-order kinetic reaction, and the rate constants were calculated.

  2. Strain-free GaN thick films grown on single crystalline ZnO buffer layer with in situ lift-off technique

    International Nuclear Information System (INIS)

    Lee, S. W.; Minegishi, T.; Lee, W. H.; Goto, H.; Lee, H. J.; Lee, S. H.; Lee, Hyo-Jong; Ha, J. S.; Goto, T.; Hanada, T.; Cho, M. W.; Yao, T.

    2007-01-01

    Strain-free freestanding GaN layers were prepared by in situ lift-off process using a ZnO buffer as a sacrificing layer. Thin Zn-polar ZnO layers were deposited on c-plane sapphire substrates, which was followed by the growth of Ga-polar GaN layers both by molecular beam epitaxy (MBE). The MBE-grown GaN layer acted as a protecting layer against decomposition of the ZnO layer and as a seeding layer for GaN growth. The ZnO layer was completely in situ etched off during growth of thick GaN layers at low temperature by hydride vapor phase epitaxy. Hence freestanding GaN layers were obtained for the consecutive growth of high-temperature GaN thick layers. The lattice constants of freestanding GaN agree with those of strain-free GaN bulk. Extensive microphotoluminescence study indicates that strain-free states extend throughout the high-temperature grown GaN layers

  3. Epitaxial properties of ZnO thin films on SrTiO3 substrates grown by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wei, X. H.; Li, Y. R.; Zhu, J.; Huang, W.; Zhang, Y.; Luo, W. B.; Ji, H.

    2007-01-01

    Epitaxial ZnO thin films with different orientations have been grown by laser molecular beam epitaxy on (001)- (011)-, and (111)-orientated SrTiO 3 single-crystal substrates. The growth behavior was in situ monitored by reflection high-energy electron diffraction, and the epitaxial orientation relations were reconfirmed by ex situ x-ray diffraction measurements. In the case of ZnO on SrTiO 3 (001), four orthogonal domains coexisted in the ZnO epilayer, i.e., ZnO(110) parallel SrTiO 3 (001) and ZnO[-111] parallel SrTiO 3 . For (011)- and (111)-orientated substrates, single-domain epitaxy with c axial orientation was observed, in which the in-plane relationship was ZnO[110] parallel SrTiO 3 [110] irrespective of the substrate orientations. Additionally, the crystalline quality of ZnO on SrTiO 3 (111) was better than that of ZnO on SrTiO 3 (011) because of the same symmetry between the (111) substrates and (001) films. The obtained results can be attributed to the difference of the in-plane crystallographic symmetry. Furthermore, those alignments can be explained by the interface stress between the substrates and the films

  4. Synthesis and photoluminescence of a full zinc blende phase ZnO nanorod array

    International Nuclear Information System (INIS)

    Zhou Shaomin; Gong Hechun; Zhang Bin; Du Zuliang; Zhang Xingtang; Wu Sixin

    2008-01-01

    A single-crystalline ZnO nanorod array with rectangular cross-sections has been synthesized, in which the as-obtained products are a complete metastable zinc blende (ZB) phase. X-ray powder diffraction, electron microscopy, and elemental maps have been used to show that the ZB-ZnO samples have a lattice constant a = 4.580 A, and are free from contamination by hexagonal wurtzite (HW) ZnO. Based on our experimental data, the associated growth mechanism is tentatively suggested. In addition, the photoluminescence (PL) spectrum (about 400 nm (3.1 eV)) of the as-fabricated ZB-ZnO products was detected; this is the first experimental report of the optical properties of ZB-ZnO nanorod arrays

  5. Role of substrate and annealing temperature on the structure of ZnO and Al{sub x}Zn{sub 1−x}O thin films for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Nambala, Fred Joe [Department of Physics, University of Pretoria, Private bag X20, Hatfield 0028 (South Africa); Department of Physics, University of Zambia, PO Box 32379, Great East Road Campus, Lusaka (Zambia); Nel, Jacqueline M.; Machatine, Augusto G.J. [Department of Physics, University of Pretoria, Private bag X20, Hatfield 0028 (South Africa); Mwakikunga, Bonex W. [DST/CSIR National Centre for Nano-Structured Materials, PO Box 395, Pretoria (South Africa); Njoroge, Eric G. [Department of Physics, University of Pretoria, Private bag X20, Hatfield 0028 (South Africa); Maabong, Kelebogile [Department of Physics, University of Pretoria, Private bag X20, Hatfield 0028 (South Africa); Physics Department, University of Botswana, Private Bag 0022, Gaborone (Botswana); Das, Arran G.M. [Monash University, Private Bag X60, Roodepoort 1725 (South Africa); Diale, Mmantsae, E-mail: mmantsae.diale@up.ac.za [Department of Physics, University of Pretoria, Private bag X20, Hatfield 0028 (South Africa)

    2016-01-01

    This paper reports on the deposition of pure and 5 at% Al doped ZnO (AZO) prepared by sol–gel and applied to the substrates by spin-coating, and the role of annealing temperature on the crystallinity of these layers. It is found that both ZnO and AZO are largely amorphous when coated on glass compared to n-Si(111), as substrates. On both substrates, X-ray diffraction (XRD) shows that the crystallinity improves as annealing temperature is raised from 200 to 600 °C with better crystallinity on Si substrates. The thickness of the films on substrates was determined as 120 nm by Rutherford backscattering spectroscopy (RBS). Specular ultra-violet visible (UV–vis) gives the direct transition optical band gaps (E{sub g}) for AZO as-deposited films are 2.60 and 3.35 eV while that of 600 °C annealed films are 3.00 and 3.60 eV. The E{sub g} calculated from diffuse reflectance spectroscopy (DRS) UV–vis are more diverse in ZnO- and AZO-Si than the ZnO- and AZO-glass samples, although in both sets the E{sub g} tend to converge after annealing 600 °C. The Raman spectra of samples show multiphonon processes of higher order from the AZO and substrates. It is found that residual stresses are related to E{sub 2} Raman mode.

  6. Rapid thermal melted TiO2 nano-particles into ZnO nano-rod and its application for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Chao, Ching-Hsun; Chang, Chi-Lung; Chan, Chien-Hung; Lien, Shui-Yang; Weng, Ko-Wei; Yao, Kuo-Shan

    2010-01-01

    TiO 2 nano-particles with an anchored ZnO nano-rod structure were synthesized using the hydrothermal method to grow ZnO nano-rods and coated TiO 2 nano-particles on ZnO nano-rods using the rapid thermal annealing method on ITO conducting glass pre-coated with nano porous TiO 2 film. The XRD study showed that there was little difference in crystal composition for various types of TiO 2 nano-particles anchored to ZnO nano-rods. The as-prepared architecture was characterized using field-emission scanning electron microscopy (FE-SEM). Films with TiO 2 nano-particles anchored to ZnO nano-rods were used as electrode materials to fabricate dye sensitized solar cells (DSSCs). The best solar energy conversion efficiency of 2.397% was obtained by modified electrode material, under AM 1.5 illumination, achieved up to J sc = 15.382 mA/cm 2 , V oc = 0.479 V and fill factor = 32.8%.

  7. Asymmetric ZnO panel-like hierarchical architectures with highly interconnected pathways for free-electron transport and photovoltaic improvements.

    Science.gov (United States)

    Shi, Yantao; Zhu, Chao; Wang, Lin; Li, Wei; Fung, Kwok Kwong; Wang, Ning

    2013-01-02

    Through a rapid and template-free precipitation approach, we synthesized an asymmetric panel-like ZnO hierarchical architecture (PHA) for photoanodes of dye-sensitized solar cells (DSCs). The two sides of the PHA are constructed differently using densely interconnected, mono-crystalline and ultrathin ZnO nanosheets. By mixing these PHAs with ZnO nanoparticles (NPs), we developed an effective and feasible strategy to improve the electrical transport and photovoltaic performance of the composite photoanodes of DSCs. The highly crystallized and interconnected ZnO nanosheets largely minimized the total grain boundaries within the composite photoanodes and thus served as direct pathways for the transport and effective collection of free electrons. Through low-temperature (200 °C) annealing, these novel composite photoanodes achieved high conversion efficiencies of up to 5.59% for ZnO-based quasi-solid DSCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Growth of hybrid carbon nanostructures on iron-decorated ZnO nanorods

    Science.gov (United States)

    Mbuyisa, Puleng N.; Rigoni, Federica; Sangaletti, Luigi; Ponzoni, Stefano; Pagliara, Stefania; Goldoni, Andrea; Ndwandwe, Muzi; Cepek, Cinzia

    2016-04-01

    A novel carbon-based nanostructured material, which includes carbon nanotubes (CNTs), porous carbon, nanostructured ZnO and Fe nanoparticles, has been synthetized using catalytic chemical vapour deposition (CVD) of acetylene on vertically aligned ZnO nanorods (NRs). The deposition of Fe before the CVD process induces the presence of dense CNTs in addition to the variety of nanostructures already observed on the process done on the bare NRs, which range from amorphous graphitic carbon up to nanostructured dendritic carbon films, where the NRs are partially or completely etched. The combination of scanning electron microscopy and in situ photoemission spectroscopy indicate that Fe enhances the ZnO etching, and that the CNT synthesis is favoured by the reduced Fe mobility due to the strong interaction between Fe and the NRs, and to the presence of many defects, formed during the CVD process. Our results demonstrate that the resulting new hybrid shows a higher sensitivity to ammonia gas at ambient conditions (∼60 ppb) than the carbon nanostructures obtained without the aid of Fe, the bare ZnO NRs, or other one-dimensional carbon nanostructures, making this system of potential interest for environmental ammonia monitoring. Finally, in view of the possible application in nanoscale optoelectronics, the photoexcited carrier behaviour in these hybrid systems has been characterized by time-resolved reflectivity measurements.

  9. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties

    Science.gov (United States)

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-03-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells.

  10. Highly sensitive hydrogen detection of catalyst-free ZnO nanorod networks suspended by lithography-assisted growth

    International Nuclear Information System (INIS)

    Huh, Junghwan; Kim, Gyu Tae; Park, Jonghyurk; Park, Jeong Young

    2011-01-01

    We have successfully demonstrated a ZnO nanorod-based 3D nanostructure to show a high sensitivity and very fast response/recovery to hydrogen gas. ZnO nanorods have been synthesized selectively over the pre-defined area at relatively low temperature using a simple self-catalytic solution process assisted by a lithographic method. The conductance of the ZnO nanorod device varies significantly as the concentration of the hydrogen is changed without any additive metal catalyst, revealing a high sensitivity to hydrogen gas. Its superior performance can be explained by the porous structure of its three-dimensional network and the enhanced surface reaction of the hydrogen molecules with the oxygen defects resulting from a high surface-to-volume ratio. It was found that the change of conductance follows a power law depending on the hydrogen concentration. A Langmuir isotherm following an ideal power law and a cross-over behavior of the activation energy with respect to hydrogen concentration were observed. This is a very novel and intriguing phenomenon on nanostructured materials, which suggests competitive surface reactions in ZnO nanorod gas sensors.

  11. Highly sensitive hydrogen detection of catalyst-free ZnO nanorod networks suspended by lithography-assisted growth.

    Science.gov (United States)

    Huh, Junghwan; Park, Jonghyurk; Kim, Gyu Tae; Park, Jeong Young

    2011-02-25

    We have successfully demonstrated a ZnO nanorod-based 3D nanostructure to show a high sensitivity and very fast response/recovery to hydrogen gas. ZnO nanorods have been synthesized selectively over the pre-defined area at relatively low temperature using a simple self-catalytic solution process assisted by a lithographic method. The conductance of the ZnO nanorod device varies significantly as the concentration of the hydrogen is changed without any additive metal catalyst, revealing a high sensitivity to hydrogen gas. Its superior performance can be explained by the porous structure of its three-dimensional network and the enhanced surface reaction of the hydrogen molecules with the oxygen defects resulting from a high surface-to-volume ratio. It was found that the change of conductance follows a power law depending on the hydrogen concentration. A Langmuir isotherm following an ideal power law and a cross-over behavior of the activation energy with respect to hydrogen concentration were observed. This is a very novel and intriguing phenomenon on nanostructured materials, which suggests competitive surface reactions in ZnO nanorod gas sensors.

  12. Reciprocal space analysis of the microstructure of luminescent and nonluminescent porous silicon films

    International Nuclear Information System (INIS)

    Lee, S.R.; Barbour, J.C.; Medernach, J.W.; Stevenson, J.O.; Custer, J.S.

    1994-01-01

    The microstructure of anodically prepared porous silicon films was determined using a novel X-ray diffraction technique. This technique uses double-crystal diffractometry combined with position-sensitive X- ray detection to efficiently and quantitatively image the reciprocal space structure of crystalline materials. Reciprocal space analysis of newly prepared, as well as aged, p - porous silicon films showed that these films exhibit a very broad range of crystallinity. This material appears to range in structure from a strained, single-crystal, sponge-like material exhibiting long-range coherency to isolated, dilated nanocrystals embedded in an amorphous matrix. Reciprocal space analysis of n + and p + porous silicon showed these materials are strained single-crystals with a spatially-correlated array of vertical pores. The vertical pores in these crystals may be surrounded by nanoporous or nanocrystalline domains as small as a few nm in size which produce diffuse diffraction indicating their presence. The photoluminescence of these films was examined using 488 nm Ar laser excitation in order to search for possible correlations between photoluminescent intensity and crystalline microstructure

  13. Effect of Porous Structure on the Magnetic Properties of NixMgyZn1−x−yFe2O4 Magnetic Materials

    International Nuclear Information System (INIS)

    Qi Xin; Zhou Xin; Shu Di; Zhao Jing-Jing; Wang Wei; Chen Juan

    2011-01-01

    We deal with the preparation of NiMgZnFe III -SO 4 layered double hydroxides (LDHs) with the layered precursor method and introduce excessive ZnO into the NiMgZnFe III -SO 4 LDHs to produce Ni x Mg y Zn 1−x−y Fe 2 O 4 ferrites that contain massive ZnO. Then the Ni x Mg y Zn 1−x−y Fe 2 O 4 ferrites are treated with NaOH solution to remove ZnO to produce the porous Ni x Mg y Zn 1−x−y Fe 2 O 4 magnetic material: when y = 0, porous NiZnFe 2 O 4 ferrite magnetic materials are obtained; when y ≠ 0, porous NiMgZnFe 2 O 4 ferrite magnetic materials are obtained. From analyses of these two ferrites, their pore-forming mechanism and comparison of their properties before and after they undergo the alkali treatment, we find that after being treated by the NaOH solution, NiZnFe 2 O 4 /NiMgZnFe 2 O 4 have better uniform-structure pores, which will greatly expand their pore volume, widen their application scope and improve their magnetic properties. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Growth of high-density ZnO nanorods on wood with enhanced photostability, flame retardancy and water repellency

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lizhuo; Tu, Kunkun; Guan, Hao [Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091 (China); Wang, Xiaoqing, E-mail: wangxq@caf.ac.cn [Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091 (China); Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091 (China)

    2017-06-15

    Highlights: • ZnO nanorod arrays were deposited on the wood surface via a hydrothermal process. • The assembled ZnO nanorod arrays greatly enhanced the photostability of wood. • The treated wood can sustain direct exposure to flame with only minor smoldering. • The ZnO-coated wood modified with stearic acid showed a superhydrophobic surface. - Abstract: Zinc oxide (ZnO) nanorod arrays were successfully assembled on the wood surface in situ via a two-step process consisting of formation of ZnO seeds and subsequent crystal growth under hydrothermal conditions at a low temperature. The morphology and crystalline structure of the formed ZnO nanorods were studied by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). Highly dense and uniform arrays of ZnO nanorods with well-defined hexagonal facets were generated on the wood surface by tuning the concentration of the ZnO growth solution during the hydrothermal treatment. Accelerated weathering tests indicated that the assembled ZnO nanorod arrays were highly protective against UV radiation and greatly enhanced the photostability of the coated wood. Meanwhile, the ZnO nanorod-coated wood can withstand continuous exposure to flame with only minor smoldering in contrast with the pristine wood catching fire easily and burning rapidly. Moreover, when further modified with low-surface-energy stearic acid, the ZnO nanorod decorated wood surface can be transformed into a superhydrophobic surface, with a water contact angle (CA) of ∼154°. Such ZnO nanorod-modified woods with enhanced photostability, flame retardancy and water repellency offer an interesting alternative to conventional wood preservation strategies, highlighting their potential applications in some novel wood products.

  15. Growth of high-density ZnO nanorods on wood with enhanced photostability, flame retardancy and water repellency

    International Nuclear Information System (INIS)

    Kong, Lizhuo; Tu, Kunkun; Guan, Hao; Wang, Xiaoqing

    2017-01-01

    Highlights: • ZnO nanorod arrays were deposited on the wood surface via a hydrothermal process. • The assembled ZnO nanorod arrays greatly enhanced the photostability of wood. • The treated wood can sustain direct exposure to flame with only minor smoldering. • The ZnO-coated wood modified with stearic acid showed a superhydrophobic surface. - Abstract: Zinc oxide (ZnO) nanorod arrays were successfully assembled on the wood surface in situ via a two-step process consisting of formation of ZnO seeds and subsequent crystal growth under hydrothermal conditions at a low temperature. The morphology and crystalline structure of the formed ZnO nanorods were studied by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). Highly dense and uniform arrays of ZnO nanorods with well-defined hexagonal facets were generated on the wood surface by tuning the concentration of the ZnO growth solution during the hydrothermal treatment. Accelerated weathering tests indicated that the assembled ZnO nanorod arrays were highly protective against UV radiation and greatly enhanced the photostability of the coated wood. Meanwhile, the ZnO nanorod-coated wood can withstand continuous exposure to flame with only minor smoldering in contrast with the pristine wood catching fire easily and burning rapidly. Moreover, when further modified with low-surface-energy stearic acid, the ZnO nanorod decorated wood surface can be transformed into a superhydrophobic surface, with a water contact angle (CA) of ∼154°. Such ZnO nanorod-modified woods with enhanced photostability, flame retardancy and water repellency offer an interesting alternative to conventional wood preservation strategies, highlighting their potential applications in some novel wood products.

  16. Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Astam K.; Dutta, Arghya; Bhaumik, Asim, E-mail: msab@iacs.res.in

    2014-07-01

    We demonstrate a facile chemical approach to produce self-assembled ultra-small mesoporous zinc oxide nanocrystals using sodium salicylate (SS) as a template under hydrothermal conditions. These ZnO nanomaterials have been successfully fabricated as a photoanode for the dye-sensitized solar cell (DSSC) in the presence of N719 dye and iodine–triiodide electrolyte. The structural features, crystallinity, purity, mesophase and morphology of the nanostructure ZnO are investigated by several characterization tools. N{sub 2} sorption analysis revealed high surface areas (203 m{sup 2} g{sup −1}) and narrow pore size distributions (5.1–5.4 nm) for different samples. The mesoporous structure and strong photoluminescence facilitates the high dye loading at the mesoscopic void spaces and light harvesting in DSSC. By utilizing this ultra-small ZnO photoelectrode with film thickness of about 7 μm in the DSSC with an open-circuit voltage (V{sub OC}) of 0.74 V, short-circuit current density (J{sub SC}) of 3.83 mA cm{sup −2} and an overall power conversion efficiency of 1.12% has been achieved. - Graphical abstract: Ultra-small ZnO nanocrystals have been synthesized with sodium salicylate as a template and using it as a photoanode in a dye-sensitized solar cell 1.12% power conversion efficiency has been observed. - Highlights: • Synthesis of self-assembled ultra-small mesoporous ZnO nanocrystals by using sodium salicylate as a template. • Mesoporous ZnO materials have high BET surface areas and void space. • ZnO nanoparticles serve as a photoanode for the dye-sensitized solar cell (DSSC). • Using ZnO nanocrystals as photoelectrode power conversion efficiency of 1.12% has been achieved.

  17. Surfactant-assisted carbon doping in ZnO nanowires using Poly Ethylene Glycol (PEG)

    Energy Technology Data Exchange (ETDEWEB)

    Amanullah, Malik; Javed, Qurat-ul-Ain, E-mail: Quratulain@sns.nust.edu.pk; Rizwan, Syed

    2016-09-01

    Zinc Oxide (ZnO) provides unique properties owing to its wide bandgap, large resistivity range and possibility to tune the physical properties. The surfactant assisted carbon doping was made possible due to the lowering of surface energy. The ZnO and carbon doped ZnO (C-ZnO) nanowires fabricated by hydrothermal process, Poly Ethylene Glycol (PEG) is used as surfactant in hydrothermal synthesis followed by post growth annealing treatment at 600 °C–700 °C. At 5%–10% of diluted PEG carbon is doped in ZnO. The crystallinity, structural morphology and elemental composition analysis for ZnO and C-ZnO nanowires were carried out using X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy techniques respectively. Carbon doping in ZnO nanowires in the presence of different percentage of surfactant is explained by calculating the change in surface energy with respect to change in PEG molecule concentration. It was found that the surface energy per molecule modulates from 3.92 × 10{sup −8} J/m{sup 2} to 8.16 × 10{sup −7} J/m{sup 2} in the PEG concentration range between 5% and 10%. Our results provides a new theoretical calculations, implemented on real system, to observe the details of PEG-assisted Carbon doping in II-VI semiconductor nanowires. - Highlights: • ZnO and C-ZnO was synthesized by PEG assisted post growth annealing process. • At 5% and 10% of PEG successful synthesis of C-ZnO was found. • XRD, SEM and EDX characterizations confirm the successful synthesis of ZnO and C-ZnO. • Change in surface energy with respect to PEG molecule concentration was calculated.

  18. Rapid visualization of fingerprints on various surfaces using ZnO superstructures prepared via simple combustion route

    Directory of Open Access Journals (Sweden)

    N.H. Deepthi

    2018-03-01

    Full Text Available A simple solution combustion route has been used to prepare ZnO nanopowders (NPs using different barbiturates (Barbituric acid, 1, 3-dimethyl barbiturates and 2-thiobarbiturates as fuels. The obtained product was well characterized by powder X-ray diffraction (PXRD, scanning electron microscope (SEM, ultraviolet-visible Spectroscope (UV-Vis and Photoluminescence (PL. The PXRD results confirm the hexagonal phase of the material. The detailed structural analysis is performed by Rietveld refinement method. The energy band gap of NPs is found to be in the range of 3.31 - 3.49 eV. The growth mechanism for the formation of 3D micro-architectures is discussed in detail. The PL emission spectrum shows a broad emission peak at 502 nm upon an 406 nm excitation wavelength. The ZnO NPs can be used for the visualization of latent finger prints (LFPs under normal light on various porous and non-porous surfaces. In this case, the visualized LFPs are found to be excellent compared to the commercially available powders. Keywords: Zinc oxide, Barbiturates, Photoluminescence, Latent fingerprint

  19. Effects of Doping Concentration on the Structural and Optical Properties of Spin-Coated In-doped ZnO Thin Films Grown on Thermally Oxidized ZnO Film/ZnO Buffer Layer/Mica Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byunggu; Leem, Jae-Young [Inje University, Gimhae (Korea, Republic of)

    2017-01-15

    ZnO buffer layers were deposited on mica substrates using a sol-gel spin coating method. Then, a thin film of metallic Zn was deposited onto the ZnO buffer layer/mica substrate using a thermal evaporator, and the deposited Zn thin films were then thermally oxidized in a furnace at 500 ℃ for 2 h in air. Finally, In-doped ZnO (IZO) thin films with different In concentrations were grown on the oxidized ZnO film/ZnO buffer layer/mica substrates using the sol-gel spin-coating method. All the IZO films showed ZnO peaks with similar intensities. The full width at half maximum values of the ZnO (002) peak for the IZO thin films decreased with an increase in the In concentration to 1 at%, because the crystallinity of the films was enhanced. However, a further increase in the In concentration caused the crystal quality to degrade. This might be attributed to the fact that the higher In doping resulted in an increase in the number of ionized impurities. The Urbach energy (EU) values of the IZO thin film decreased with an increase in the In concentration to 1 at % because of the enhanced crystal quality of the films. The EU values for the IZO thin films increased with the In concentration from 1 at%to 3 at%, reflecting the broadening of localized band tail state near the conduction band edge of the films.

  20. Effects of Doping Concentration on the Structural and Optical Properties of Spin-Coated In-doped ZnO Thin Films Grown on Thermally Oxidized ZnO Film/ZnO Buffer Layer/Mica Substrate

    International Nuclear Information System (INIS)

    Kim, Byunggu; Leem, Jae-Young

    2017-01-01

    ZnO buffer layers were deposited on mica substrates using a sol-gel spin coating method. Then, a thin film of metallic Zn was deposited onto the ZnO buffer layer/mica substrate using a thermal evaporator, and the deposited Zn thin films were then thermally oxidized in a furnace at 500 ℃ for 2 h in air. Finally, In-doped ZnO (IZO) thin films with different In concentrations were grown on the oxidized ZnO film/ZnO buffer layer/mica substrates using the sol-gel spin-coating method. All the IZO films showed ZnO peaks with similar intensities. The full width at half maximum values of the ZnO (002) peak for the IZO thin films decreased with an increase in the In concentration to 1 at%, because the crystallinity of the films was enhanced. However, a further increase in the In concentration caused the crystal quality to degrade. This might be attributed to the fact that the higher In doping resulted in an increase in the number of ionized impurities. The Urbach energy (EU) values of the IZO thin film decreased with an increase in the In concentration to 1 at % because of the enhanced crystal quality of the films. The EU values for the IZO thin films increased with the In concentration from 1 at%to 3 at%, reflecting the broadening of localized band tail state near the conduction band edge of the films.

  1. Synthesis of assembled ZnO structures by precipitation method in aqueous media

    International Nuclear Information System (INIS)

    Sepulveda-Guzman, S.; Reeja-Jayan, B.; Rosa, E. de la; Torres-Castro, A.; Gonzalez-Gonzalez, V.; Jose-Yacaman, M.

    2009-01-01

    In this work, arrays of submicron ZnO structures were successfully synthesized using a one-step aqueous precipitation method. Snowflake-like and flower-like morphologies were obtained by changing the reaction temperature. X-ray diffraction (XRD) patterns indicated that the ZnO arrays have a wurtzite crystal structure. A possible growth mechanism based on the analysis done by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and high-angle annular dark field (HAADF) is proposed. Our findings suggest that the growth mechanism of the ZnO arrays is by self-aggregation, and that such an oriented aggregation is enhanced by increasing the reaction temperature. The results also revealed that the aggregation process introduces several structural defects such as differences in mass distribution and crystalline structure. In order to study the surface chemical composition the samples were also characterized by XPS. The results showed the presence of Zn(OH) 2 and absorbed carbon species on the ZnO surface. In addition, the photoluminescence characterization showed that on UV excitation (λ = 360 nm) all samples present the characteristic UV emission centered at 390 nm, and for the sample synthesized at 60 deg. C, a visible emission was also observed

  2. Synthesis of assembled ZnO structures by precipitation method in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda-Guzman, S. [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, UANL Km. 10 de la nueva carretera al Aeropuerto Internacional de Monterrey, PIIT Monterrey, Apodaca NL (Mexico); Facultad de Ingenieria Mecanica y Electrica de la UANL, Ciudad Universitaria San Nicolas de los Garza, Nuevo Leon C.P. 66451 (Mexico)], E-mail: ssepulveda@mail.uanl.mx; Reeja-Jayan, B. [Texas Materials Institute, University of Texas at Austin, 1 University Station C0803 (United States); Rosa, E. de la [Centro de Investigaciones en Optica, A.C. Loma del Bosque 115 Col. Lomas del Campestre, Leon Gto. C.P. 37150 (Mexico); Torres-Castro, A.; Gonzalez-Gonzalez, V. [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, UANL Km. 10 de la nueva carretera al Aeropuerto Internacional de Monterrey, PIIT Monterrey, Apodaca NL (Mexico); Facultad de Ingenieria Mecanica y Electrica de la UANL, Ciudad Universitaria San Nicolas de los Garza, Nuevo Leon C.P. 66451 (Mexico); Jose-Yacaman, M. [Physics and Astronomy Department, University of Texas at San Antonio, 1604 Campus San Antonio, TX 78249 (United States)

    2009-05-15

    In this work, arrays of submicron ZnO structures were successfully synthesized using a one-step aqueous precipitation method. Snowflake-like and flower-like morphologies were obtained by changing the reaction temperature. X-ray diffraction (XRD) patterns indicated that the ZnO arrays have a wurtzite crystal structure. A possible growth mechanism based on the analysis done by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and high-angle annular dark field (HAADF) is proposed. Our findings suggest that the growth mechanism of the ZnO arrays is by self-aggregation, and that such an oriented aggregation is enhanced by increasing the reaction temperature. The results also revealed that the aggregation process introduces several structural defects such as differences in mass distribution and crystalline structure. In order to study the surface chemical composition the samples were also characterized by XPS. The results showed the presence of Zn(OH){sub 2} and absorbed carbon species on the ZnO surface. In addition, the photoluminescence characterization showed that on UV excitation ({lambda} = 360 nm) all samples present the characteristic UV emission centered at 390 nm, and for the sample synthesized at 60 deg. C, a visible emission was also observed.

  3. Porous silicon-based direct hydrogen sulphide fuel cells.

    Science.gov (United States)

    Dzhafarov, T D; Yuksel, S Aydin

    2011-10-01

    In this paper, the use of Au/porous silicon/Silicon Schottky type structure, as a direct hydrogen sulphide fuel cell is demonstrated. The porous silicon filled with hydrochlorid acid was developed as a proton conduction membrane. The Au/Porous Silicon/Silicon cells were fabricated by first creating the porous silicon layer in single-crystalline Si using the anodic etching under illumination and then deposition Au catalyst layer onto the porous silicon. Using 80 mM H2S solution as fuel the open circuit voltage of 0.4 V was obtained and maximum power density of 30 W/m2 at room temperature was achieved. These results demonstrate that the Au/Porous Silicon/Silicon direct hydrogen sulphide fuel cell which uses H2S:dH2O solution as fuel and operates at room temperature can be considered as the most promising type of low cost fuel cell for small power-supply units.

  4. Development and validation of TOF-SIMS and CLSM imaging method for cytotoxicity study of ZnO nanoparticles in HaCaT cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Pei-Ling; Chen, Bo-Chia; Gollavelli, Ganesh [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Shen, Sin-Yu [Graduate Institute of Medical Science, Taipei Medical University, Taipei 11031, Taiwan (China); Yin, Yu-Sheng; Lei, Shiu-Ling [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Jhang, Cian-Ling; Lee, Woan-Ruoh [Department of Dermatology, Taipei Medical University, Taipei 11031, Taiwan (China); Ling, Yong-Chien, E-mail: ycling@mx.nthu.edu.tw [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Graduate Institute of Medical Science, Taipei Medical University, Taipei 11031, Taiwan (China)

    2014-07-30

    Highlights: • Assorted material, chemical, and toxicological analysis methods were used to confirm the shape, size, crystalline structure, and aggregation properties of ZnO NPS as well as their dissolution behavior and effect on HaCaT cell viability. • The developed TOF-SIMS and CLSM imaging method for rapid and sensitive study of ZnO NPs in HaCaT cells was validated by comparative and correlative analyses to aforementioned experimental results. • The imaging results demonstrate spatially-resolved cytotoxicity relationship between intracellular ZnO NPs concentration, {sup 40}Ca/{sup 39}K ratio, phosphocholine fragments, and glutathione fragments. CLSM images reveal the localization of ZnO NPs in cytoplasm and nuclei. • The trend of change in TOF-SIMS spectra and images of ZnO NPs treated HaCaT cells demonstrate the possible mode of actions by ZnO NP involves cell membrane disruption, cytotoxic response, and ROS mediated apoptosis. - Abstract: Zinc oxide nanoparticles (ZnO NPs) exhibit novel physiochemical properties and have found increasing use in sunscreen products and cosmetics. The potential toxicity is of increasing concern due to their close association with human skin. A time-of-flight secondary ion mass spectrometry (TOF-SIMS) and confocal laser scanning microscopy (CLSM) imaging method was developed and validated for rapid and sensitive cytotoxicity study of ZnO NPs using human skin equivalent HaCaT cells as a model system. Assorted material, chemical, and toxicological analysis methods were used to confirm their shape, size, crystalline structure, and aggregation properties as well as dissolution behavior and effect on HaCaT cell viability in the presence of various concentrations of ZnO NPs in aqueous media. Comparative and correlative analyses of aforementioned results with TOF-SIMS and CLSM imaging results exhibit reasonable and acceptable outcome. A marked drop in survival rate was observed with 50 μg/ml ZnO NPs. The CLSM images reveal the

  5. Hydrothermal growth and characterization of vertically well-aligned and dense ZnO nanorods on glass and silicon using a simple optimizer system

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad, Sabah M., E-mail: Sabahaskari14@gmail.com; Ahmed, Naser M.; Abd-Alghafour, Nabeel M. [Institute of Nano-Optoelectronics Research and Technology Laboratory (INOR), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia); Hassan, Z., E-mail: zai@usm.my [Institute of Nano-Optoelectronics Research and Technology Laboratory (INOR), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia); CRI Natural Sciences, Universiti Sains Malaysia, Penang 11800 (Malaysia); Talib, Rawnaq A. [Institute of Nano-Optoelectronics Research and Technology Laboratory (INOR), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia); Polymer Research Center, University of Basra (Iraq); Omar, A. F. [School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia)

    2016-07-06

    Vertically, well-aligned and high density ZnO nanorods were successfully hydrothermally grown on glass and silicon substrates using a simple and low cost system. The mechanism of synthesis of ZnO nanorods, generated with our system under hydrothermal conditions, is investigated in this report. Field-emission scanning electron microscopy indicated that the fabricated ZnO nanorods on both substrates have hexagonal shape with diameters ranging from 20 nm to 70 nm which grew vertically from the substrate. XRD analysis confirms the formation of wurtzite ZnO phase with a preferred orientation along (002) direction perpendicular on the substrate and enhanced crystallinity. The low value of the tensile strain (0.126 %) revealed that ZnO nanorods preferred to grow along the c-axis for both substrates. Photoluminescence spectra exhibited a strong, sharp UV near band edge emission peak with narrow FWHM values for both samples.

  6. Hydrothermal growth and characterization of vertically well-aligned and dense ZnO nanorods on glass and silicon using a simple optimizer system

    International Nuclear Information System (INIS)

    Mohammad, Sabah M.; Ahmed, Naser M.; Abd-Alghafour, Nabeel M.; Hassan, Z.; Talib, Rawnaq A.; Omar, A. F.

    2016-01-01

    Vertically, well-aligned and high density ZnO nanorods were successfully hydrothermally grown on glass and silicon substrates using a simple and low cost system. The mechanism of synthesis of ZnO nanorods, generated with our system under hydrothermal conditions, is investigated in this report. Field-emission scanning electron microscopy indicated that the fabricated ZnO nanorods on both substrates have hexagonal shape with diameters ranging from 20 nm to 70 nm which grew vertically from the substrate. XRD analysis confirms the formation of wurtzite ZnO phase with a preferred orientation along (002) direction perpendicular on the substrate and enhanced crystallinity. The low value of the tensile strain (0.126 %) revealed that ZnO nanorods preferred to grow along the c-axis for both substrates. Photoluminescence spectra exhibited a strong, sharp UV near band edge emission peak with narrow FWHM values for both samples.

  7. Thermally induced growth of ZnO nanocrystals on mixed metal oxide surfaces.

    Science.gov (United States)

    Inayat, Alexandra; Makky, Ayman; Giraldo, Jose; Kuhnt, Andreas; Busse, Corinna; Schwieger, Wilhelm

    2014-06-23

    An in situ method for the growth of ZnO nanocrystals on Zn/Al mixed metal oxide (MMO) surfaces is presented. The key to this method is the thermal treatment of Zn/Al layered double hydroxides (Zn/Al LDHs) in the presence of nitrate anions, which results in partial demixing of the LDH/MMO structure and the subsequent crystallization of ZnO crystals on the surface of the forming MMO layers. In a first experimental series, thermal treatment of Zn/Al LDHs with different fractions of nitrate and carbonate in the interlayer space was examined by thermogravimetry coupled with mass spectrometry (TG-MS) and in situ XRD. In a second experimental series, Zn/Al LDHs with only carbonate in the interlayer space were thermally treated in the presence of different amounts of an external nitrate source (NH4NO3). All obtained Zn/Al MMO samples were analysed by electron microscopy, nitrogen physisorption and powder X-ray diffraction. The gas phase formed during nitrate decomposition turned out to be responsible for the formation of crystalline ZnO nanoparticles. Accordingly, both interlayer nitrate and the presence of ammonium nitrate led to the formation of supported ZnO nanocrystals with mean diameters between 100 and 400 nm, and both methods offer the possibility to tailor the amount and size of the ZnO crystals by means of the amount of nitrate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Photoluminescence studies on porous silicon/polymer heterostructure

    International Nuclear Information System (INIS)

    Mishra, J.K.; Bhunia, S.; Banerjee, S.; Banerji, P.

    2008-01-01

    Hybrid devices formed by filling porous silicon with MEH-PPV or poly [2-methoxy-5(2-ethylhexyloxy-p-phenylenevinylene)] have been investigated in this work. Analyses of the structures by scanning electron microscopy (SEM) demonstrated that the porous silicon layer was filled by the polymer with no significant change of the structures except that the polymer was infiltrated in the pores. The photoluminescence (PL) of the structures at 300 K showed that the emission intensity was very high as compared with that of the MEH-PPV films on different substrates such as crystalline silicon (c-Si) and indium tin oxide (ITO). The PL peak in the MEH-PPV/porous silicon composite structure is found to be shifted towards higher energy in comparison with porous silicon PL. A number of possibilities are discussed to explain the observations

  9. Electrochemical synthesis and characterization of hierarchically branched ZnO nanostructures on ensembles of gold nanowires

    International Nuclear Information System (INIS)

    Ongaro, Michael; Gambirasi, Arianna; Favaro, Monica; Ugo, Paolo

    2012-01-01

    Highlights: ► ZnO branched nanofibres for photoelectrochemical applications. ► Branched nanostructures are obtained by electrochemical deposition of ZnO on gold template nanowires. ► Branched nanowires crystallographic phase determined by electron back scatter diffraction. ► Branched structures display improved performances for the photoelectrochemical oxidation of water. - Abstract: This study presents an electrosynthetic methodology to obtain hierarchically structured ZnO electrodes with improved surface area, by exploiting gold nanowires ensembles (3D-NEEs) as the growing substrate. By this way, semiconductor electrodes organized in the shape of fir-like branches are obtained. Branched nanofibres are characterized by electron microscopy and electron backscatter diffraction (EBSD), the latter technique allowing the determination of the crystalline habit of individual nanostructures. The hierarchical branched nanowires show enhanced performances with respect to water photooxidation in comparison with already known nanostructured materials such as 1D-ZnO nanowires.

  10. Genesis of flake-like morphology and dye-sensitized solar cell performance of Al-doped ZnO particles: a study

    International Nuclear Information System (INIS)

    Sengupta, D.; Mondal, B.; Mukherjee, K.

    2017-01-01

    In dye-sensitized solar cell (DSSC) application, the particulate morphologies of photo-anode facilitate efficient dye loading and thus lead to better photo-conversion efficiency than their thin film counterpart. However, till date, the electronic and optical properties as well as the DSSC application of Al-doped ZnO (AZO) particles as photo-anode material is studied less than thin films. Herein, phase formation behavior, morphology evolution, optical properties, and dye-sensitized solar cell performance of wet chemically prepared ZnO and AZO (dopant level: 1–4 mol%) particles are studied. It is found that Al doping modulates significantly the ZnO morphology which in turn results the maximum dye adsorption as well as best photo-conversion efficiency at optimum dopant concentration. Specifically, the nanoparticle of ZnO turns predominantly to flake-like morphology with a higher surface area when 2 mol% Al is doped. Such morphology modulation is expected, since the crystallinity, lattice parameters, and lattice strain of ZnO changes appreciably with Al doping. The variations of optical properties (absorbance, diffused reflectance, and band gap) of AZO materials as compared to primitive ZnO are also identified through UV-vis studies. An attempt is made here to correlate the structural features with the photovoltaic performances of ZnO and AZO.

  11. Genesis of flake-like morphology and dye-sensitized solar cell performance of Al-doped ZnO particles: a study

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, D.; Mondal, B.; Mukherjee, K., E-mail: kalisadhanm@yahoo.com [CSIR-Central Mechanical Engineering Research Institute, Centre for Advanced Materials Processing (India)

    2017-03-15

    In dye-sensitized solar cell (DSSC) application, the particulate morphologies of photo-anode facilitate efficient dye loading and thus lead to better photo-conversion efficiency than their thin film counterpart. However, till date, the electronic and optical properties as well as the DSSC application of Al-doped ZnO (AZO) particles as photo-anode material is studied less than thin films. Herein, phase formation behavior, morphology evolution, optical properties, and dye-sensitized solar cell performance of wet chemically prepared ZnO and AZO (dopant level: 1–4 mol%) particles are studied. It is found that Al doping modulates significantly the ZnO morphology which in turn results the maximum dye adsorption as well as best photo-conversion efficiency at optimum dopant concentration. Specifically, the nanoparticle of ZnO turns predominantly to flake-like morphology with a higher surface area when 2 mol% Al is doped. Such morphology modulation is expected, since the crystallinity, lattice parameters, and lattice strain of ZnO changes appreciably with Al doping. The variations of optical properties (absorbance, diffused reflectance, and band gap) of AZO materials as compared to primitive ZnO are also identified through UV-vis studies. An attempt is made here to correlate the structural features with the photovoltaic performances of ZnO and AZO.

  12. Mechanisms of electron transport and recombination in ZnO nanostructures for dye-sensitized solar cells.

    Science.gov (United States)

    Vega-Poot, Alberto G; Macías-Montero, Manuel; Idígoras, Jesus; Borrás, Ana; Barranco, Angel; Gonzalez-Elipe, Agustín R; Lizama-Tzec, Francisco I; Oskam, Gerko; Anta, Juan A

    2014-04-14

    ZnO is an attractive material for applications in dye-sensitized solar cells and related devices. This material has excellent electron-transport properties in the bulk but its electron diffusion coefficient is much smaller in mesoporous films. In this work the electron-transport properties of two different kinds of dye-sensitized ZnO nanostructures are investigated by small-perturbation electrochemical techniques. For nanoparticulate ZnO photoanodes prepared via a wet-chemistry technique, the diffusion coefficient is found to reproduce the typical behavior predicted by the multiple-trapping and the hopping models, with an exponential increase with respect to the applied bias. In contrast, in ZnO nanostructured thin films of controlled texture and crystallinity prepared via a plasma chemical vapor deposition method, the diffusion coefficient is found to be independent of the electrochemical bias. This observation suggests a different transport mechanism not controlled by trapping and electron accumulation. In spite of the quite different transport features, the recombination kinetics, the electron-collection efficiency and the photoconversion efficiency are very similar for both kinds of photoanodes, an observation that indicates that surface properties rather than electron transport is the main efficiency-determining factor in solar cells based on ZnO nanostructured photoanodes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of polyacrylamide on morphology and electromagnetic properties of chrysanthemum-like ZnO particles

    International Nuclear Information System (INIS)

    Jun-Feng, Yan; Zhi-Yong, Zhang; Tian-Gui, You; Wu, Zhao; Jiang-Ni, Yun; Fu-Chun, Zhang

    2009-01-01

    Through hydrothermal process, the chrysanthemum-like ZnO particles are prepared with zinc acetate dihydrate (Zn(CH 3 COO) 2 ·2H 2 O) and sodium hydroxide (NaOH) used as main resources under the different concentrations of surfactant polyacrylamide (PAM). The microstructure, morphology and the electromagnetic properties of the as-prepared products are characterized by high-resolution transmissïon electron microscopy (HRTEM), field emission environment scanning electron microscope (FEESEM) and microwave vector network analyzer, respectively. The experimental results indicate that the as-prepared products are ZnO single crystalline with hexagona wurtzite structure, that the values of slenderness ratio L d are different in different PAM concentrations, and that the good magnetic loss property is found in the ZnO products, and the average magnetic loss tangent tan δ u increases with PAM concentration increasing, while the dielectric loss tangent tan δ e decreases. (cross-disciplinary physics and related areas of science and technology)

  14. Mass transfer processes in crystalline aggregates containing a fluid phase

    NARCIS (Netherlands)

    Visser, H.J.M.

    1999-01-01

    Understanding mass transfer processes in porous crystalline aggregates containing a fluid phase is of major importance for modelling partially molten regions of the Earth's mantle, such as those under mid-ocean spreading ridges. Despite the fact that mid-ocean ridges can be considered the

  15. Mass transfer processes in crystalline aggregates containing a fluid phase

    NARCIS (Netherlands)

    Visser, H.J.M.

    1999-01-01

    Understanding mass transfer processes in porous crystalline aggregates containing a fluid phase is of major importance for modelling partially molten regions of the Earth's mantle, such as those under mid-ocean spreading ridges. Despite the fact that mid-ocean ridges can be considered the simplest

  16. Enhanced Photocatalytic Activity of Rare Earth Metal (Nd and Gd doped ZnO Nanostructures

    Directory of Open Access Journals (Sweden)

    P. Logamani

    2017-06-01

    Full Text Available Presence of harmful organic pollutants in wastewater effluents causes serious environmental problems and therefore purification of this contaminated water by a cost effective treatment method is one of the most important issue which is in urgent need of scientific research. One such promising treatment technique uses semiconductor photocatalyst for the reduction of recalcitrant pollutants in water. In the present work, rare earth metals (Nd and Gd doped ZnO nanostructured photocatalyst have been synthesized by wet chemical method. The prepared samples were characterized by X-ray diffraction (XRD, Field Emission Scanning Electron Microscopy (FESEM and energy dispersive X-ray spectroscopy (EDS. The XRD results showed that the prepared samples were well crystalline with hexagonal Wurtzite structure. The results of EDS revealed that rare earth elements were doped into ZnO structure. The effect of rare earth dopant on morphology and photocatalytic degradation properties of the prepared samples were studied and discussed. The results revealed that the rare earth metal doped ZnO samples showed enhanced visible light photocatalytic activity for the degradation of methylene blue dye than pure nano ZnO photocatalyst.

  17. Polyelectrolyte-assisted preparation and characterization of nanostructured ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shijun

    2005-05-15

    The present work focuses on the synthesis and characterization of nanostructured ZnO thin films onto silicon wafers modified by self-assembled-monolayers via chemical bath deposition. Two precursor solutions were designed and used for the film deposition, in which two different polymers were introduced respectively to control the growth of the ZnO colloidal particles in solution. ZnO films were deposited from an aqueous solution containing zinc salt and hexamethylenetetramine (HMTA) in the presence of a graft-copolymer (P (MAA{sub 0.50}-co(MAA-EO{sub 20}){sub 0.50}){sub 70}). A film-formation-diagram was established based on the results obtained by scanning electron microscopy (SEM) and atomic force microscopy (AFM), which describes the influence of the concentration of HMTA and copolymer on the ZnO film formation. According to the film morphology, film formation can be classified into three categories: (a) island-like films, (b) uniform films and (c) canyon-like films. The ZnO films annealed at temperatures of 450 C, 500 C, 600 C and 700 C were examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). After annealing, the films are polycrystalline ZnO with wurtzite structure. XRD measurements indicate that with increasing annealing temperature, the average grain size increases accordingly and the crystallinity of the films is improved. Upon heating to 600 C, the ZnO films exhibit preferred orientation with c-axis normal to substrate, whereas the films annealed at 700 C even show a more explicit texture. By annealing at temperatures above 600 C the ZnO film reacts with the substrate to form an interfacial layer of Zn{sub 2}SiO{sub 4}, which grows thicker at elevated annealing temperatures. The ZnO films annealed at 600 C and 700 C show strong UV emission. Another non-aqueous solution system for ZnO thin film deposition was established, in which 2- propanol was used as a solvent and Zn(CH3COO){sub 2}.2H{sub 2}O as well as NaOH as reactants

  18. Low-temperature-fabricated ZnO, AZO, and SnO{sub 2} nanoparticle-based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Hee; Park, Cheolmin; Choi, Wonkook; Cho, Sungjae; Moon, Byungjoon; Son, Dongick [Korea Institute of Science and Technology, Seoul (Korea, Republic of); Yonsei University, Seoul (Korea, Republic of)

    2014-11-15

    The authors investigated the microstructural and the electrical properties of ZnO, AZO, and SnO{sub 2} based dye-sensitized solar cells (DSSCs) fabricated using a low-temperature-processed (200 .deg. C) dyesensitized ZnO, AZO, and SnO{sub 2} nanoparticle thin film and a Pt catalyst deposited on ITO/glass by RF magnetron sputtering. A hydropolymer containing PEG (poly ethylene glycol) and PEO (poly ethylene oxide) is used to make uniformly-distributed ZnO, AZO, and SnO{sub 2} nanoparticle layer which forms a nano porous ZnO, AZO, and SnO{sub 2} network after heat treatment. The layer is then dye sensitized and sandwiched between two electrodes in an electrolyte to make a DSSC device. The highest measured parameters, the short-circuit current density (J{sub sc}), the open circuit potential (V{sub oc}), the fill factor (FF), and power conversion efficiency (η), of the DSSC fabricated wander optimized conditions were observed to be 5.10 mA/cm{sup 2}, 0.61 V, 0.46, and 1.43%, respectively.

  19. A study on morphology control and optical properties of ZnO nanorods synthesized by microwave heating

    International Nuclear Information System (INIS)

    Tsai, M.K.; Huang, C.C.; Lee, Y.C.; Yang, C.S.; Yu, H.C.; Lee, J.W.; Hu, S.Y.; Chen, C.H.

    2012-01-01

    In this study, we present morphology control investigations on zinc oxide (ZnO) nanorods synthesized by microwave heating of a mixture of zinc nitrate hexahydrate and hexamethylenetetramine (HMTA) precursors in deionized water (DI water). To study the morphology and structural variations of the obtained ZnO nanorods in different molar ratio of zinc nitrate hexahydrate to HMTA, X-ray diffraction (XRD), scanning electron microscopy (SEM) images, Raman scattering, and photoluminescence (PL) spectroscopy were measured. XRD and SEM images are utilized to examine the crystalline quality as well as the morphological properties of the ZnO nanorods. It is found that morphology control can be achieved by simply adjusting the reactant concentrations and the molar ratio of zinc nitrate hexahydrate to HMTA. Raman scattering and PL spectroscopy measurements were demonstrated to study the size- and shape-dependent optical response of the ZnO nanorods. The Raman scattering result shows that the intensity of LO mode at around 576 cm -1 decreases with the increase in the molar ratio of zinc nitrate hexahydrate to HMTA, indicating the reduction of defect concentrations in the synthesized ZnO nanorods. Room temperature PL spectrum of the synthesized ZnO nanorods reveals an ultraviolet (UV) emission peak and a broad visible emission. An enhancement of UV emission appears in the PL spectra as the molar ratio of zinc nitrate hexahydrate to HMTA increases, indicating that the defect concentration of the synthesized ZnO nanorods can be reduced by increasing the molar ratio. - Highlights: → Morphology of ZnO nanorods can be controlled via microwave-heating synthesis. → Molar ratio of Zn(NO 3 ) 2 .6H 2 O to C 6 H 12 N 4 affects the aspect ratio of ZnO nanorod. → ZnO nanorod showing higher aspect ratio can exhibit better optical properties.

  20. A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jambure, S.B.; Patil, S.J.; Deshpande, A.R.; Lokhande, C.D., E-mail: l_chandrakant@yahoo.com

    2014-01-01

    Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z{sub 1}) and nanograins by SILAR (Z{sub 2}). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. The X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10{sup 2} Ω cm) is lower than that of SILAR deposited films (10{sup 5} Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method.

  1. A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films

    International Nuclear Information System (INIS)

    Jambure, S.B.; Patil, S.J.; Deshpande, A.R.; Lokhande, C.D.

    2014-01-01

    Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z 1 ) and nanograins by SILAR (Z 2 ). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. The X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10 2 Ω cm) is lower than that of SILAR deposited films (10 5 Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method

  2. Efficacy of saccharides bio-template on structural, morphological, optical and antibacterial property of ZnO nanoparticles.

    Science.gov (United States)

    Dhanalakshmi, A; Palanimurugan, A; Natarajan, B

    2018-09-01

    Mono, di and polysaccharides of glucose (C 6 H 12 O 6 ), sucrose (C 12 H 24 O 12 ) and starch (C 6 H 12 O 6 ) n bio-template ZnO nanoparticles (NPs) has prepared by chemical precipitation method. Saccharides bio-template ZnO (SBts-ZnO) NPs were efficiently prepared for their structural and optical properties were examined by using XRD, FE-SEM, AFM, FTIR, UV and PL techniques. All the samples are polycrystalline nature with a preferential orientation depending on the (1 0 1) plane. The reduction of crystalline size by utilizing glucose, sucrose and starch bio-template of ZnO NPs. FE-SEM images revealed that the spherical and nano-rods like morphologies for ZnO and SBts-ZnO NPs respectively. AFM recorded images shows spherical features that confirmed and also the morphological changes were noticed with the addition of polymers. Interaction of bio-templated saccharides (glucose G 1 , sucrose S 2 & starch S n ) molecules was proved by FTIR study. Optical absorbance and emission behaviours were investigated using UV-Vis and photoluminescence techniques. The antibacterial study revealed that SBts-ZnO have excellent antibacterial effect than ZnO. The S n -ZnO sample has potent antibacterial activity against the Proteus vulgaris followed by Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Effects of intermittent atomization on the properties of Al-doped ZnO thin films deposited by aerosol-assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Linjie; Wang, Lixin [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Qin, Xiujuan, E-mail: qinxj@ysu.edu.cn [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Cui, Li [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Shao, Guangjie [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2016-04-30

    Al-doped ZnO (AZO) thin films were prepared on glass substrates with different atomization interval times by aerosol-assisted chemical vapor deposition method. The structure, morphology, and optical and electrical properties were investigated by X-ray diffractometer, atomic force microscope, UV-vis double beam spectrophotometer and 4 point probe method. ZnO thin films exhibited strong growth orientation along the (002) plane and the crystalline was affected by the atomization interval time. All the films had high transmittance and the films with interval times of 2 min and 4 min had good haze values for the transparent conducting oxide silicon solar cell applications. The AZO thin film had the best optical and electrical properties when the atomization interval time was 4 min. This is very important for the optoelectronic device applications. The surface morphology of AZO films depended on the atomization interval time. - Highlights: • Intermittent atomization is proved to be an effective measure. • Atomization interval time has an important influence on the crystallinity of films. • The surface morphology of ZnO films depends on atomization interval time. • Different hazes can be obtained by changing the atomization interval time.

  4. Effects of intermittent atomization on the properties of Al-doped ZnO thin films deposited by aerosol-assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu, Linjie; Wang, Lixin; Qin, Xiujuan; Cui, Li; Shao, Guangjie

    2016-01-01

    Al-doped ZnO (AZO) thin films were prepared on glass substrates with different atomization interval times by aerosol-assisted chemical vapor deposition method. The structure, morphology, and optical and electrical properties were investigated by X-ray diffractometer, atomic force microscope, UV-vis double beam spectrophotometer and 4 point probe method. ZnO thin films exhibited strong growth orientation along the (002) plane and the crystalline was affected by the atomization interval time. All the films had high transmittance and the films with interval times of 2 min and 4 min had good haze values for the transparent conducting oxide silicon solar cell applications. The AZO thin film had the best optical and electrical properties when the atomization interval time was 4 min. This is very important for the optoelectronic device applications. The surface morphology of AZO films depended on the atomization interval time. - Highlights: • Intermittent atomization is proved to be an effective measure. • Atomization interval time has an important influence on the crystallinity of films. • The surface morphology of ZnO films depends on atomization interval time. • Different hazes can be obtained by changing the atomization interval time.

  5. Enhanced magnetic properties of chemical solution deposited BiFeO3 thin film with ZnO buffer layer

    International Nuclear Information System (INIS)

    Rajalakshmi, R.; Kambhala, Nagaiah; Angappane, S.

    2012-01-01

    Highlights: ► Enhanced magnetization of BiFeO 3 is important for strong magnetoelectric coupling. ► BiFeO 3 film with ZnO buffer layer was successfully synthesized by chemical method. ► Magnetization of BiFeO 3 has increased by more than 10 times with ZnO buffer layer. ► A mechanism for enhancement in ferromagnetism of BiFeO 3 film is proposed. - Abstract: Magnetic properties of BiFeO 3 films deposited on Si substrates with and without ZnO buffer layer have been studied in this work. We adopted the chemical solution deposition method for the deposition of BiFeO 3 as well as ZnO films. The x-ray diffraction measurements on the deposited films confirm the formation of crystalline phase of BiFeO 3 and ZnO films, while our electron microscopy measurements help to understand the morphology of few micrometers thick films. It is found that the deposited ZnO film exhibit a hexagonal particulate surface morphology, whereas BiFeO 3 film fully covers the ZnO surface. Our magnetic measurements reveal that the magnetization of BiFeO 3 has increased by more than ten times in BiFeO 3 /ZnO/Si film compared to BiFeO 3 /Si film, indicating the major role played by ZnO buffer layer in enhancing the magnetic properties of BiFeO 3 , a technologically important multiferroic material.

  6. Boron doped nanostructure ZnO films deposited by ultrasonic spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Karakaya, Seniye, E-mail: seniyek@ogu.edu.tr; Ozbas, Omer

    2015-02-15

    Highlights: • Nanostructure undoped and boron doped ZnO films were deposited by USP technique. • Influences of doping on the surface and optical properties of the ZnO films were investigated. • XRD spectra of the films exhibited a variation in crystalline quality depending on the B content. - Abstract: ZnO is an II–VI compound semiconductor with a wide direct band gap of 3.3 eV at room temperature. Doped with group III elements (B, Al or Ga), it becomes an attractive candidate to replace tin oxide (SnO{sub 2}) or indium tin oxide (ITO) as transparent conducting electrodes in solar cell devices and flat panel display due to competitive electrical and optical properties. In this work, ZnO and boron doped ZnO (ZnO:B) films have been deposited onto glass substrates at 350 ± 5 °C by a cost-efficient ultrasonic spray pyrolysis technique. The optical, structural, morphological and electrical properties of nanostructure undoped and ZnO:B films have been investigated. Electrical resistivity of films has been analyzed by four-probe technique. Optical properties and thicknesses of the films have been examined in the wavelength range 1200–1600 nm by using spectroscopic ellipsometry (SE) measurements. The optical constants (refractive index (n) and extinction coefficient (k)) and the thicknesses of the films have been fitted according to Cauchy model. The optical method has been used to determine the band gap value of the films. Transmission spectra have been taken by UV spectrophotometer. It is found that both ZnO and ZnO:B films have high average optical transmission (≥80%). X-ray diffraction (XRD) patterns indicate that the obtained ZnO has a hexagonal wurtzite type structure. The morphological properties of the films were studied by atomic force microscopy (AFM). The surface morphology of the nanostructure films is found to depend on the concentration of B. As a result, ZnO:B films are promising contender for their potential use as transparent window layer and

  7. Rapid green synthesis of ZnO nanoparticles using a hydroelectric cell without an electrolyte

    Science.gov (United States)

    Shah, Jyoti; Kumar Kotnala, Ravinder

    2017-09-01

    In this study, zinc oxide (ZnO) nanoparticles were synthesized using a novel environmentally friendly hydroelectric cell without an electrolyte or external current source. The hydroelectric cell comprised a nanoporous Li substituted magnesium ferrite pellet in contact with two electrodes, with zinc as the anode and silver as an inert cathode. The surface unsaturated cations and oxygen vacancies in the nanoporous ferrite dissociated water molecules into hydronium and hydroxide ions when the hydroelectric cell was dipped into deionized water. Hydroxide ions migrated toward the zinc electrode to form zinc hydroxide and the hydronium ions were evolved as H2 gas at the silver electrode. The zinc hydroxide collected as anode mud was converted into ZnO nanoparticles by heating at 250 °C. Structural analysis using Raman spectroscopy indicated the good crystallinity of the ZnO nanoparticles according to the presence of a high intensity E2-(high) mode. The nanoparticle size distribution was 5-20 nm according to high resolution transmission electron microscopy. An indirect band gap of 2.75 eV was determined based on the Tauc plot, which indicated the existence of an interstitial cation level in ZnO. Near band edge and blue emissions were detected in photoluminescence spectral studies. The blue emissions obtained from the ZnO nanoparticles could potentially have applications in blue lasers and LEDs. The ZnO nanoparticles synthesized using this method had a high dielectric constant value of 5 at a frequency of 1 MHz, which could be useful for fabricating nano-oscillators. This facile, clean, and cost-effective method obtained a significant yield of 0.017 g for ZnO nanoparticles without applying an external current source.

  8. Lattice locations and properties of Fe in Co/Fe co-implanted ZnO

    DEFF Research Database (Denmark)

    Gunnlaugsson, H.P.; Johnston, K.; Mølholt, T.E.

    2012-01-01

    The lattice locations and electronic configurations of Fe in 57Co/57Fe implanted ZnO (to (5‐6) × 1014 Fe/cm−2) have been studied by 57Fe Mössbauer emission spectroscopy. The spectra acquired upon room temperature implantation show ∼20% of the probe atoms as Fe2+ on perturbed Zn sites and the rema......The lattice locations and electronic configurations of Fe in 57Co/57Fe implanted ZnO (to (5‐6) × 1014 Fe/cm−2) have been studied by 57Fe Mössbauer emission spectroscopy. The spectra acquired upon room temperature implantation show ∼20% of the probe atoms as Fe2+ on perturbed Zn sites...... and the remaining fraction as Fe2+ in damage sites of interstitial character. After annealing at 773 K, ∼20% remain on crystalline sites, while the damage fraction has partly disappeared and instead a ∼30% fraction occurs as high‐spin Fe3+, presumably in precipitates. This suggests that precipitation of Co/Fe in ZnO...... likely takes place at relatively low temperatures, thus explaining some of the discrepancies in the literature regarding magnetic properties of 3d metal‐doped ZnO....

  9. Effects of Annealing Temperature on Properties of Ti-Ga-Doped ZnO Films Deposited on Flexible Substrates.

    Science.gov (United States)

    Chen, Tao-Hsing; Chen, Ting-You

    2015-11-03

    An investigation is performed into the optical, electrical, and microstructural properties of Ti-Ga-doped ZnO films deposited on polyimide (PI) flexible substrates and then annealed at temperatures of 300 °C, 400 °C, and 450 °C, respectively. The X-ray diffraction (XRD) analysis results show that all of the films have a strong (002) Ga doped ZnO (GZO) preferential orientation. As the annealing temperature is increased to 400 °C, the optical transmittance increases and the electrical resistivity decreases. However, as the temperature is further increased to 450 °C, the transmittance reduces and the resistivity increases due to a carbonization of the PI substrate. Finally, the crystallinity of the ZnO film improves with an increasing annealing temperature only up to 400 °C and is accompanied by a smaller crystallite size and a lower surface roughness.

  10. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires

    Science.gov (United States)

    He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho

    2017-06-01

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  11. Defect free C-axis oriented zinc oxide (ZnO) films grown at room temperature using RF magnetron sputtering

    International Nuclear Information System (INIS)

    Kunj, Saurabh; Sreenivas, K.

    2016-01-01

    Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O_2/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.

  12. Defect free C-axis oriented zinc oxide (ZnO) films grown at room temperature using RF magnetron sputtering

    Science.gov (United States)

    Kunj, Saurabh; Sreenivas, K.

    2016-05-01

    Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O2/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.

  13. Defect free C-axis oriented zinc oxide (ZnO) films grown at room temperature using RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kunj, Saurabh, E-mail: saurabhkunj22@gmail.com; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi-110007 (India)

    2016-05-23

    Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O{sub 2}/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.

  14. The influence of ZnO incorporation on the aqueous leaching characteristics of a borosilicate glass

    Science.gov (United States)

    Vance, E. R.; Gregg, D. J.; Karatchevtseva, I.; Griffiths, G. J.; Olufson, K.; Rees, Gregory J.; Hanna, John V.

    2017-10-01

    With increasing ZnO content, short term aqueous durability enhancement of all elements in borosilicate glasses containing 1.0 and 3.85 wt% ZnO was evident in 7-day PCT-B tests. In 14-day MCC-1 type leach tests conducted at 90 °C, surface alteration was very clear in the undoped glass via the formation of strongly altered amorphous material which tended to spall off the surface. No sign of crystallinity was detected by grazing incidence X-ray diffraction or electron microscopy of the surface layers and the surface material was very rich in silica. For the ZnO-bearing glasses, significant growth of particles following PCT leaching for 7 days was observed, due to a build-up of surface ZnO-containing Si-rich material and possible agglomeration. This alteration layer was also observed in MCC-1 type experiments in which cross-section SEM-EDS data were obtained. Raman, infrared and 11B and 29Si MAS NMR spectroscopy showed only slight changes in boron speciation on the addition of up to 9.1 wt% ZnO. Bulk positron annihilation lifetime spectra (PALS) of glasses containing 0-3.85 wt% ZnO could be analysed with three distinct lifetimes and also showed only slight differences. These results indicate that the basic glass structure was essentially not influenced by the ZnO content and that the passivation of the alteration layer is promoted by ZnO content.

  15. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    Science.gov (United States)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  16. Photoelectrochemical water splitting under visible light over anti-photocorrosive In2O3-coupling ZnO nanorod arrays photoanode

    International Nuclear Information System (INIS)

    Zhang, Yan; Zhang, Jinqiu; Nie, Mengyan; Sun, Kai; Li, Chunhu; Yu, Jianqiang

    2015-01-01

    In 2 O 3 quantum dots with a high crystallinity were deposited on the surface of ZnO nanorods through a chemistry bath method. The resulting In 2 O 3 -sensitizing ZnO nanorod arrays not only exhibited enhanced photoelectrochemical activity for water splitting under visible-light irradiation, but also possessed anti-photocorrosion property. The photo-induced charge-transfer property of In 2 O 3 could be improved greatly by coupling with ZnO. This observation demonstrated that the heterojunction at the interface between In 2 O 3 and ZnO could efficiently reduce the recombination of photo-induced electron–hole pairs and increase the lifetime of charge carriers and therefore enhance the photo-to-current efficiency of the In 2 O 3 –ZnO nanocrystalline arrays. It reveals that the heterojunction construction between two different semiconductors plays a very important role in determining the dynamic properties of their photogenerated charge carriers and their photo-to-current conversion efficiency

  17. Vibrational Order, Structural Properties, and Optical Gap of ZnO Nanostructures Sintered through Thermal Decomposition

    Directory of Open Access Journals (Sweden)

    Alejandra Londono-Calderon

    2014-01-01

    Full Text Available The sintering of different ZnO nanostructures by the thermal decomposition of zinc acetate is reported. Morphological changes from nanorods to nanoparticles are exhibited with the increase of the decomposition temperature from 300 to 500°C. The material showed a loss in the crystalline order with the increase in the temperature, which is correlated to the loss of oxygen due to the low heating rate used. Nanoparticles have a greater vibrational freedom than nanorods which is demonstrated in the rise of the main Raman mode E 2(high during the transformation. The energy band gap of the nanostructured material is lower than the ZnO bulk material and decreases with the rise in the temperature.

  18. ZnO nanorod arrays prepared by chemical bath deposition combined with rapid thermal annealing: structural, photoluminescence and field emission characteristics

    International Nuclear Information System (INIS)

    Chen, Hung-Wei; He, Hsin-Min; Lee, Yi-Mu; Yang, Hsi-Wen

    2016-01-01

    ZnO nanorod arrays were prepared by low temperature chemical bath deposition (CBD) combined with rapid thermal annealing (RTA) under different ambient conditions. The structure and morphology of the synthesized ZnO have been characterized by field-emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). The obtained ZnO samples are highly crystalline with a hexagonal wurtzite phase and also display well-aligned array structure. A pronounced effect on increased nanorod length was found for the RTA-treated ZnO as compared to the as-grown ZnO. Analysis of XRD indicates that the (0 0 2) feature peak of the as-grown ZnO was shifted towards a lower angle as compared to the peaks of RTA-treated ZnO samples due to the reduction of tensile strain along the c-axis by RTA. Photoluminescence (PL) studies reveal that the ZnO nanorod arrays receiving RTA in an O 2 environment have the sharpest UV emission band and greatest intensity ratio of near band-edge emission (NBE) to deep level emission (DLE). Additionally, the effects of RTA on the field emission properties were evaluated. The results demonstrate that RTA an O 2 environment can lower the turn-on field and improve the field enhancement factor. The stability of the field emission current was also tested for 4 h. (paper)

  19. Effect of temperature on structural, optical and photoluminescence studies on ZnO nanoparticles synthesized by the standard co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Raj, K. Pradeev [Research and Development Centre, Bharathiar University, Coimbatore 641046, Tamil Nadu (India); Department of Physics, CSI College of Engineering, Ooty 643215, Tamil Nadu (India); Sadayandi, K. [Department of Physics, Alagappa Government Arts College, Karaikudi, Sivagangai 630003, Tamil Nadu (India)

    2016-04-15

    This present study brings the synthesis of Zinc oxide (ZnO) nanoparticles (NPs) by the standard aqueous chemical route technique. The impact of calcination temperature on the extent of the ZnO nanoparticles is studied for its lattice constraints. X-ray diffraction (XRD) affirms the hexagonal Wurtzite structure of the synthesized ZnO nanoparticles. From the Williamson–Hall (W–H) plot, positive slope is inferred for pure and calcined ZnO NPs and confirms the presence of tensile strain. From the SEM images it is found that the crystallinity enhances with calcination temperature. From the optical studies, it is found that the band gap energy decreases with improved transmission. The Photoluminescence (PL) spectrum reveals the UV emission is strong near the band-edge. The emission peaks around 400–480 nm result in blue emission and the peaks around 540–560 nm result in green emission. Decrease in band gap energy and enhancement in PL studies reveal the red shift of the calcined ZnO exhibiting solid quantum confinements.

  20. Tuning the photovoltage of dye-sensitized solar cells based on electrodeposited ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Oekermann, Torsten [Institute of Physical Chemistry and Electrochemistry, Leibniz Universitaet Hannover, Callinstrasse 3- 3A, 30167 Hannover (Germany); Peter, Laurence [Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom); Yoshida, Tsukasa [Graduate School of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193 (Japan)

    2007-07-01

    Nanoporous, fully crystalline ZnO films can be prepared by cathodic electrodeposition from aqueous solutions of Zn salts under the influence of structure-directing agents such as surfactants. Dye-sensitized solar cells (DSSC) based on such films have emerged as a possible alternative for nanocrystalline TiO2-based DSSC due to the very high porosity and good electron transport properties of the films. In this study, we have investigated the influence of the sensitizer dye molecules on the photovoltage of the ZnO-based DSSC. Impedance measurements show that the adsorbed dye molecules lead to a shift of the flatband potential of the ZnO. Electron pushing or withdrawing effects of the dye molecules and protonation or deprotonation of the ZnO surface are discussed as possible explanations. The shifts in the flatband potential partly explain the differences in the photovoltages caused by different dyes, however, differences in the electron injection efficiency and the blocking of electron back reaction by the dye molecules have to be taken into account, too, for a complete description.

  1. Solar-assisted synthesis of ZnO nanoparticles using lime juice: a green approach

    Science.gov (United States)

    Hinge, Shruti P.; Pandit, Aniruddha B.

    2017-12-01

    Zinc oxide (ZnO) nanoparticles are those nanoparticles which have been synthesized in various morphologies and shapes. Their size and shape dependent properties and their applications in vivid sectors of science and technology make them interesting to synthesize. Present work reports a green method for ZnO nanoparticle synthesis using lime juice and sunlight. ZnO nanoparticles were also synthesized by conventionally used methods like heating, stirring or no heating and/or stirring. The nanoparticles were characterized using different techniques like UV-vis spectroscopy, scanning electron microscopy (SEM), x-ray diffraction (XRD) and dynamic light scattering (DLS). Thermo gravimetric analysis (TGA) was also carried out for the intermediate product to select the calcination temperature. Stoichiometric study reveals that the intermediate product formed is zinc citrate dihydrate. The synthesized calcined nanoparticles have good crystallinity, uniform shape, and high purity and were in the size range of 20-30 nm. These nanoparticles formed agglomerates of various shapes in the size range of 200-750 nm. This process is ecofriendly and is amiable for easy scale up.

  2. A Comparative Study on Structural and Optical Properties of ZnO Micro-Nanorod Arrays Grown on Seed Layers Using Chemical Bath Deposition and Spin Coating Methods

    Directory of Open Access Journals (Sweden)

    Sibel MORKOÇ KARADENİZ

    2016-11-01

    Full Text Available In this study, Zinc Oxide (ZnO seed layers were prepared on Indium Tin Oxide (ITO substrates by using Chemical Bath Deposition (CBD method and Sol-gel Spin Coating (SC method. ZnO micro-nanorod arrays were grown on ZnO seed layers by using Hydrothermal Synthesis method. Seed layer effects of structural and optical properties of ZnO arrays were characterized. X-ray diffractometer (XRD, Scanning Electron Microscopy (SEM and Ultraviolet Visible (UV-Vis Spectrometer were used for analyses. ZnO micro-nanorod arrays consisted of a single crystalline wurtzite ZnO structure for each seed layer. Besides, ZnO rod arrays were grown smoothly and vertically on SC seed layer, while ZnO rod arrays were grown randomly and flower like structures on CBD seed layer. The optical absorbance peaks found at 422 nm wavelength in the visible region for both ZnO arrays. Optical bandgap values were determined by using UV-Vis measurements at 3.12 and 3.15 eV for ZnO micro-nanorod arrays on CBD seed layer and for ZnO micro-nanorod arrays on SC-seed layer respectively.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.13443

  3. Facile Synthesis of Porous ZnMnO3 Spherulites with a High Lithium Storage Capability

    International Nuclear Information System (INIS)

    Liu, Xinru; Zhao, Chenhao; Zhang, He; Shen, Qiang

    2015-01-01

    Graphical abstract: Porous ZnMnO 3 spherulites show an enhanced high lithium storage capability when potentially applied as a lithium-ion battery anode for the first time. - Highlights: • Composite Zn 0.5 Mn 0.5 CO 3 microspheres are facilely co-precipitated. • Porous ZnMnO 3 spherulites can be used as a lithium-ion battery anode. • Porous ZnMnO 3 spherulites show superior electrochemical properties. • A synergistic effect of Zn-O and Mn-O components in cubic ZnMnO 3 is proposed. - Abstract: In this paper, pure-phase ZnMnO 3 porous spherulites are uniquely synthesized through the thermal decomposition of Zn-Mn binary carbonate precursors facilely co-precipitated at room temperature, possessing an average diameter of 1.2 ± 0.3 μm and acquiring porosity with a specific surface area of 24.3 m 2 g −1 . When tentatively applied as lithium-ion battery anodes for the first time, these porous spherulites deliver an initial discharge capacity of 1294 mAh g −1 at 500 mA g −1 and retain an reversible value of 879 mAh g −1 over 150 cycles. By comparison, the equimolar powder mixture of nano-sized ZnO and MnO 2 synergistically shows a higher lithium storage capability than the two unary transition metal oxides, but lower than anode material ZnMnO 3 . Aside from its nanostructured characteristics, an inner atomic synergistic effect within the cubic lattices may account for the superior electrochemical performance of well-crystallized ZnMnO 3

  4. Optical and microstructural investigations of porous silicon

    Indian Academy of Sciences (India)

    Raman scattering and photoluminescence (PL) measurements on (100) oriented -type crystalline silicon (-Si) and porous silicon (PS) samples were carried out. PS samples were prepared by anodic etching of -Si under the illumination of light for different etching times of 30, 60 and 90 min. Raman scattering from the ...

  5. Mobility enhancement in crystalline In-Ga-Zn-oxide with In-rich compositions

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Kazuhiro; Matsubayashi, Daisuke; Ishihara, Noritaka; Takasu, Takako; Matsuda, Shinpei; Yamazaki, Shunpei [Semiconductor Energy Laboratory Co., Ltd., 398 Hase, Atsugi-shi 243-0036, Kanagawa (Japan)

    2015-12-28

    The electron mobility of In-Ga-Zn-oxide (IGZO) is known to be enhanced by higher In content. We theoretically investigated the mobility-enhancement mechanism by proposing an In-Ga-Zn-disorder scattering model for an In-rich crystalline IGZO (In{sub 1+x}Ga{sub 1−x}O{sub 3}(ZnO){sub m} (0 < x < 1, m > 0)) thin film. The obtained theoretical mobility was found to be in agreement with experimental Hall mobility for a crystalline In{sub 1.5}Ga{sub 0.5}O{sub 3}(ZnO) (or In{sub 3}GaZn{sub 2}O{sub 8}) thin film. The mechanism specific to In-rich crystalline IGZO thin films is based on three types of Coulomb scattering potentials that originate from effective valence differences. In this study, the In-Ga-Zn-disorder scattering model indicates that the effective valence of the In{sup 3+} ions in In-rich crystalline IGZO thin films significantly affects their electron mobility.

  6. Study of a sol–gel precursor and its evolution towards ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Núñez, Alberto [University of Barcelona, Department of Electronics, Martí i Franquès 1, E08028 Barcelona (Spain); López, Concepción [University of Barcelona, Department of Inorganic Chemistry, Martí i Franquès 1, E08028 Barcelona (Spain); Alonso-Gil, Santiago [University of Barcelona, Department of Organic Chemistry, Martí i Franquès 1, E08028 Barcelona (Spain); Roura, Pere [University of Girona, Department of Physics, Campus Montilivi, Edif. PII, E17071 Girona (Spain); Vilà, Anna, E-mail: anna.vila@ub.edu [University of Barcelona, Department of Electronics, Martí i Franquès 1, E08028 Barcelona (Spain)

    2015-07-15

    The processes involved in the assembly of zinc acetate dihydrate {Zn(CH_3COO)_2·2H_2O} and ethanolamine (H{sub 2}NCH{sub 2}CH{sub 2}OH), with or without 2-methoxyethanol as solvent, have been analysed by infrared spectra, mass spectrometry, nuclear magnetic resonance, powder X-ray diffraction and computational studies. Thermal evolution of the mixtures was characterized by thermoanalytical and structural techniques (thermogravimetry, differential thermal analysis, differential scanning calorimetry, X-ray diffraction and X-Ray photoelectron spectroscopy). Computational studies together with experiments served to thoroughly describe the precursor and its decomposition. The thermal decomposition of the mixture and its transformation into crystalline ZnO take place in a temperature range between 50 and 450 °C through different processes. With solvent, the processes need temperatures 90 °C higher with respect to the mixture without solvent, and ZnO arises at 250 °C. - Graphical abstract: Display Omitted - Highlights: • Tetramer structure of the zinc-acetate plus ethanolamine precursor confirmed by IR, MS and theoretical calculations. • Precursor crystal structure determined to be of the monoclinic P2{sub 1}/m system. • High influence of the metoxyethanol solvent on the formation temperature of ZnO. • Detailed description of the thermal evolution from the zinc-based precursor to ZnO.

  7. Improvement of physical properties of ZnO thin films by tellurium doping

    Energy Technology Data Exchange (ETDEWEB)

    Sönmezoğlu, Savaş, E-mail: svssonmezoglu@kmu.edu.tr; Akman, Erdi

    2014-11-01

    Highlights: • We report the synthesis of tellurium-doped zinc oxide (Te–ZnO) thin films using sol–gel method. • Highly c-axis oriented Te-doped ZnO thin films were grown on FTO glasses as substrate. • 1.5% Te-doping ratio could improve the physical properties of ZnO thin films. - Abstract: This investigation addressed the structural, optical and morphological properties of tellurium incorporated zinc oxide (Te–ZnO) thin films. The obtained results indicated that Te-doped ZnO thin films exhibit an enhancement of band gap energy and crystallinity compared with non-doped films. The optical transmission spectra revealed a shift in the absorption edge toward lower wavelengths. X-ray diffraction measurement demonstrated that the film was crystallized in the hexagonal (wurtzite) phase and presented a preferential orientation along the c-axis. The XRD obtained patterns indicate that the crystallite size of the thin films, ranging from 23.9 to 49.1 nm, changed with the Te doping level. The scanning electron microscopy and atomic force microscopy results demonstrated that the grain size and surface roughness of the thin films increased as the Te concentration increased. Most significantly, we demonstrate that it is possible to control the structural, optical and morphological properties of ZnO thin films with the isoelectronic Te-incorporation level.

  8. Porous Core-Shell Nanostructures for Catalytic Applications

    Science.gov (United States)

    Ewers, Trevor David

    Porous core-shell nanostructures have recently received much attention for their enhanced thermal stability. They show great potential in the field of catalysis, as reactant gases can diffuse in and out of the porous shell while the core particle is protected from sintering, a process in which particles coalesce to form larger particles. Sintering is a large problem in industry and is the primary cause of irreversible deactivation. Despite the obvious advantages of high thermal stability, porous core-shell nanoparticles can be developed to have additional interactive properties from the combination of the core and shell together, rather than just the core particle alone. This dissertation focuses on developing new porous core-shell systems in which both the core and shell take part in catalysis. Two types of systems are explored; (1) yolk-shell nanostructures with reducible oxide shells formed using the Kirkendall effect and (2) ceramic-based porous oxide shells formed using sol-gel chemistry. Of the Kirkendall-based systems, Au FexOy and Cu CoO were synthesized and studied for catalytic applications. Additionally, ZnO was explored as a potential shelling material. Sol-gel work focused on optimizing synthetic methods to allow for coating of small gold particles, which remains a challenge today. Mixed metal oxides were explored as a shelling material to make dual catalysts in which the product of a reaction on the core particle becomes a reactant within the shell.

  9. Mg doping induced high structural quality of sol–gel ZnO nanocrystals: Application in photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Abed, Chayma; Bouzidi, Chaker [Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, BP 95, Hammam-Lif 2050 (Tunisia); Elhouichet, Habib, E-mail: Habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, BP 95, Hammam-Lif 2050 (Tunisia); Département de Physique, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis 2092 (Tunisia); Gelloz, Bernard [Graduate School of Engineering, Nagoya University, 2-24-16 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Ferid, Mokhtar [Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, BP 95, Hammam-Lif 2050 (Tunisia)

    2015-09-15

    Highlights: • ZnO nancrystals doped with Mg were prepared from sol–gel method. • Structural and optical properties of ZnO:Mg nanocrystals were investigated. • Good crystalline quality of ZnO nanocrystals was reported after Mg doping. • Good photocatalytic activity of Mg doped ZnO nanocrystals was demonstrated under sun light illumination. - Abstract: Undoped and Mg doped ZnO nanocrystals (NCs) ZnO:x%Mg (x = 1, 2, 3, and 5) were synthesized using sol–gel method. The structural and optical properties were investigated by X-ray diffraction (XRD), Raman spectroscopy, diffuse reflectivity, and photoluminescence (PL). XRD analysis demonstrates that all prepared samples present pure hexagonal wurtzite structure without any Mg related phases. The NCs size varies from 26.82 nm to 42.96 nm with Mg concentrations; it presents an optimal value for 2% of Mg. The Raman spectra are dominated by the E{sub 2high} mode. For highly Mg doping (5%), the occurrence of silent B{sub 1(low)} mode suggested that the Mg ions do substitute at Zn sites in the ZnO lattice The band gap energy was estimated from both Tauc and Urbach methods and found to be 3.39 eV for ZnO:2%Mg. The PL spectra exhibit two emission bands in the UV and visible range. Their evolution with Mg doping reveals the reduction of defect density in ZnO at low Mg doping by filling Zn vacancies. In addition, it was found that further Mg doping, above 2%, improves the photocatalytic activity of ZnO NCs for photodegradation of Rhodamine B (RhB) under sunlight irradiation. The efficient electron–hole separation is the main factor responsible for the enhancement of photocatalytic performance of Mg doped ZnO NCs. Through this work, we show that by varying the Mg contents in ZnO, this material can be a potential candidate for both optoelectronic and photocatalytic applications.

  10. Synthesis of ZnO thin film by sol-gel spin coating technique for H2S gas sensing application

    Science.gov (United States)

    Nimbalkar, Amol R.; Patil, Maruti G.

    2017-12-01

    In this present work, zinc oxide (ZnO) thin film synthesized by a simple sol-gel spin coating technique. The structural, morphology, compositional, microstructural, optical, electrical and gas sensing properties of the film were studied by using XRD, FESEM, EDS, XPS, HRTEM, Raman, FTIR and UV-vis techniques. The ZnO thin film shows hexagonal wurtzite structure with a porous structured morphology. Gas sensing performance of synthesized ZnO thin film was tested initially for H2S gas at different operating temperatures as well as concentrations. The maximum gas response is achieved towards H2S gas at 300 °C operating temperature, at 100 ppm gas concentration as compared to other gases like CH3OH, Cl2, NH3, LPG, CH3COCH3, and C2H5OH with a good stability.

  11. Influence of Silver and Gold Nanoparticles and Thin Layers on Charge Carrier Generation in InGaN/GaN Multiple Quantum Well Structures and Crystalline Zinc Oxide Films

    Science.gov (United States)

    Mezdrogina, M. M.; Vinogradov, A. Ya.; Kozhanova, Yu. V.; Levitskii, V. S.

    2018-04-01

    It has been shown that Ag and Au nanoparticles and thin layers influence charge carrier generation in InGaN/GaN multiple quantum well structures and crystalline ZnO films owing to the surface morphology heterogeneity of the semiconductors. When nanoparticles 10 films, the radiation intensity has turned out to grow considerably because of a plasmon resonance with the participation of localized plasmons. The application of Ag or Au layers on the surface of the structures strongly attenuates the radiation. When Ag and Au nanoparticles are applied on crystalline ZnO films obtained by rf magnetron sputtering, the radiation intensity in the short-wavelength part of the spectrum increases insignificantly because of their highly heterogeneous surface morphology.

  12. Fabrication of ZnO Nanowire Based Piezoelectric Generators and Related Structures

    Science.gov (United States)

    Opoku, Charles; Dahiya, Abhishek Singh; Oshman, Christopher; Cayrel, Frederic; Poulin-Vittrant, Guylaine; Alquier, Daniel; Camara, Nicolas

    Using vertically grown hydrothermal ZnO nanowires, we demonstrate the assembly of fully functional piezoelectric energy harvesters on plastics substrates. A seedless hydrothermal process is employed for the growth of single crystalline vertically orientated ZnO NWs at around 100oC. Flexible NG are assembled using ∼7 μm thick PDMS polymer matrix on a 3x3cm substrate. A representative device with an active area of 4cm2 is characterised revealing average output voltage generation of ∼22mV (±1.2) and -32mV (±0.16) in the positive and negative cycles after 3-4mm periodic deflection at 20Hz. A power density of ∼288nW/cm3 is estimated for the device. It is envisaged that such energy scavengers may find potential applications targeting self-powered systems, sensors and on-body charging of electronics.

  13. Effect of ion beam irradiation on the structure of ZnO films deposited by a dc arc plasmatron.

    Science.gov (United States)

    Penkov, Oleksiy V; Lee, Heon-Ju; Plaksin, Vadim Yu; Ko, Min Gook; Joa, Sang Beom; Yim, Chan Joo

    2008-02-01

    The deposition of polycrystalline ZnO film on a cold substrate was performed by using a plasmatron in rough vacuum condition. Low energy oxygen ion beam generated by a cold cathode ion source was introduced during the deposition process. The change of film property on the ion beam energy was checked. It is shown that irradiation by 200 eV ions improves crystalline structure of the film. Increasing of ion beam energy up to 400 eV leads to the degradation of a crystalline structure and decreases the deposition rate.

  14. Decoration of ZnO Nanorods with Coral Reefs like NiO Nanostructures by the Hydrothermal Growth Method and Their Luminescence Study

    Directory of Open Access Journals (Sweden)

    Mazhar Ali Abbasi

    2014-01-01

    Full Text Available Composite nanostructures of coral reefs like p-type NiO/n-type ZnO were synthesized on fluorine-doped tin oxide glass substrates by hydrothermal growth. Structural characterization was performed by field emission scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction techniques. This investigation shows that the adopted synthesis leads to high crystalline quality nanostructures. The morphological study shows that the coral reefs like nanostructures are densely packed on the ZnO nanorods. Cathodoluminescence (CL spectra for the synthesized composite nanostructures are dominated mainly by a broad interstitial defect related luminescence centered at ~630 nm. Spatially resolved CL images reveal that the luminescence of the decorated ZnO nanostructures is enhanced by the presence of the NiO.

  15. Effects of Cr-doping on the photoluminescence and ferromagnetism at room temperature in ZnO nanomaterials prepared by soft chemistry route

    International Nuclear Information System (INIS)

    Wang Baiqi; Iqbal, Javed; Shan Xudong; Huang Guowei; Fu Honggang; Yu Ronghai; Yu Dapeng

    2009-01-01

    The pure and Cr-doped ZnO nanomaterials were prepared by soft chemistry route. The crystallinity and morphology of as-prepared ZnO nanomaterials were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), which show that Cr-doping could influence crystal and improve the oriented growth of ZnO nanomaterials. The amount of contents and valence state of Cr ions were investigated by energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), which demonstrate that the Cr ions are uniformly doped about 2 atm% in each nanowire and are in +3 valence state in doped ZnO nanomaterials. The effect of Cr-doping on the photoluminescence (PL) and magnetic properties of as-prepared ZnO nanomaterials were principally investigated at room temperature. The Cr-doping can adjust the energy level of ZnO nanocrystal and increase the amount of defects and oxygen vacancies, which lead to shift in the emission peak position in ultraviolet (UV) region and enhance the PL performance in visible light (VL) region of ZnO nanomaterials. In addition, the presence of Cr dopant in ZnO structures establishes the room-temperature ferromagnetism, which is possibly related to the existence of defects and oxygen vacancies as well as due to exchange interaction between Cr 3d and O 2p spin moments

  16. Porous-shaped silicon carbide ultraviolet photodetectors on porous silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, N., E-mail: naderi.phd@gmail.com [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hashim, M.R. [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2013-03-05

    Highlights: ► Porous-shaped silicon carbide thin film was deposited on porous silicon substrate. ► Thermal annealing was followed to enhance the physical properties of samples. ► Metal–semiconductor-metal ultraviolet detectors were fabricated on samples. ► The effect of annealing temperature on electrical performance of devices was studied. ► The efficiency of photodetectors was enhanced by annealing at elevated temperatures. -- Abstract: A metal–semiconductor-metal (MSM) ultraviolet photodetector was fabricated based on a porous-shaped structure of silicon carbide (SiC). For increasing the surface roughness of SiC and hence enhancing the light absorption effect in fabricated devices, porous silicon (PS) was chosen as a template; SiC was deposited on PS substrates via radio frequency magnetron sputtering. Therefore, the deposited layers followed the structural pattern of PS skeleton and formed a porous-shaped SiC layer on PS substrate. The structural properties of samples showed that the as-deposited SiC was amorphous. Thus, a post-deposition annealing process with elevated temperatures was required to convert its amorphous phase to crystalline phase. The morphology of the sputtered samples was examined via scanning electron and atomic force microscopies. The grain size and roughness of the deposited layers clearly increased upon an increase in the annealing temperature. The optical properties of sputtered SiC were enhanced due to applying high temperatures. The most intense photoluminescence peak was observed for the sample with 1200 °C of annealing temperature. For the metallization of the SiC substrates to fabricate MSM photodetectors, two interdigitated Schottky contacts of Ni with four fingers for each electrode were deposited onto all the porous substrates. The optoelectronic characteristics of MSM UV photodetectors with porous-shaped SiC substrates were studied in the dark and under UV illumination. The electrical characteristics of fabricated

  17. Porous-shaped silicon carbide ultraviolet photodetectors on porous silicon substrates

    International Nuclear Information System (INIS)

    Naderi, N.; Hashim, M.R.

    2013-01-01

    Highlights: ► Porous-shaped silicon carbide thin film was deposited on porous silicon substrate. ► Thermal annealing was followed to enhance the physical properties of samples. ► Metal–semiconductor-metal ultraviolet detectors were fabricated on samples. ► The effect of annealing temperature on electrical performance of devices was studied. ► The efficiency of photodetectors was enhanced by annealing at elevated temperatures. -- Abstract: A metal–semiconductor-metal (MSM) ultraviolet photodetector was fabricated based on a porous-shaped structure of silicon carbide (SiC). For increasing the surface roughness of SiC and hence enhancing the light absorption effect in fabricated devices, porous silicon (PS) was chosen as a template; SiC was deposited on PS substrates via radio frequency magnetron sputtering. Therefore, the deposited layers followed the structural pattern of PS skeleton and formed a porous-shaped SiC layer on PS substrate. The structural properties of samples showed that the as-deposited SiC was amorphous. Thus, a post-deposition annealing process with elevated temperatures was required to convert its amorphous phase to crystalline phase. The morphology of the sputtered samples was examined via scanning electron and atomic force microscopies. The grain size and roughness of the deposited layers clearly increased upon an increase in the annealing temperature. The optical properties of sputtered SiC were enhanced due to applying high temperatures. The most intense photoluminescence peak was observed for the sample with 1200 °C of annealing temperature. For the metallization of the SiC substrates to fabricate MSM photodetectors, two interdigitated Schottky contacts of Ni with four fingers for each electrode were deposited onto all the porous substrates. The optoelectronic characteristics of MSM UV photodetectors with porous-shaped SiC substrates were studied in the dark and under UV illumination. The electrical characteristics of fabricated

  18. Excimer laser processing of ZnO thin films prepared by the sol-gel process

    International Nuclear Information System (INIS)

    Winfield, R.J.; Koh, L.H.K.; O'Brien, Shane; Crean, Gabriel M.

    2007-01-01

    ZnO thin films were prepared on soda-lime glass from a single spin-coating deposition of a sol-gel prepared with anhydrous zinc acetate [Zn(C 2 H 3 O 2 ) 2 ], monoethanolamine [H 2 NC 2 H 4 OH] and isopropanol. The deposited films were dried at 50 and 300 deg. C. X-ray analysis showed that the films were amorphous. Laser annealing was performed using an excimer laser. The laser pulse repetition rate was 25 Hz with a pulse energy of 5.9 mJ, giving a fluence of 225 mJ cm -2 on the ZnO film. Typically, five laser pulses per unit area of the film were used. After laser processing, the hexagonal wurtzite phase of zinc oxide was observed from X-ray diffraction pattern analysis. The thin films had a transparency of greater than 70% in the visible region. The optical band-gap energy was 3.454 eV. Scanning electron microscopy and profilometry analysis highlighted the change in morphology that occurred as a result of laser processing. This comparative study shows that our sol-gel processing route differs significantly from ZnO sol-gel films prepared by conventional furnace annealing which requires temperatures above 450 deg. C for the formation of crystalline ZnO

  19. Quantum dots coupled ZnO nanowire-array panels and their photocatalytic activities.

    Science.gov (United States)

    Liao, Yulong; Que, Wenxiu; Zhang, Jin; Zhong, Peng; Yuan, Yuan; Qiu, Xinku; Shen, Fengyu

    2013-02-01

    Fabrication and characterization of a heterojunction structured by CdS quantum dots@ZnO nanowire-array panels were presented. Firstly, ZnO nanowire-array panels were prepared by using a chemical bath deposition approach where wurtzite ZnO nanowires with a diameter of about 100 nm and 3 microm in length grew perpendicularly to glass substrate. Secondly, CdS quantum dots were deposited onto the surface of the ZnO nanowire-arrays by using successive ion layer absorption and reaction method, and the CdS shell/ZnO core heterojunction were thus obtained. Field emission scanning electron microscopy and transmission electron microscope were employed to characterize the morphological properties of the as-obtained CdS quantum dots@ZnO nanowire-array panels. X-ray diffraction was adopted to characterize the crystalline properties of the as-obtained CdS quantum dots@ZnO nanowire-array panels. Methyl orange was taken as a model compound to confirm the photocatalytic activities of the CdS shell/ZnO core heterojunction. Results indicate that CdS with narrow band gap not only acts as a visible-light sensitizer but also is responsible for an effective charge separation.

  20. Underground Research Laboratories for Crystalline Rock and Sedimentary Rock in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, N.; Takeda, S.; Matsui, H.; Yamasaki, S.

    2003-02-27

    The Japan Nuclear Cycle Development Institute (JNC) has started two off-site (generic) underground research laboratory (URL) projects, one for crystalline rock as a fractured media and the other for sedimentary rock as a porous media. This paper introduces an overview and current status of these projects.

  1. A novel, substrate independent three-step process for the growth of uniform ZnO nanorod arrays

    International Nuclear Information System (INIS)

    Byrne, D.; McGlynn, E.; Henry, M.O.; Kumar, K.; Hughes, G.

    2010-01-01

    We report a three-step deposition process for uniform arrays of ZnO nanorods, involving chemical bath deposition of aligned seed layers followed by nanorod nucleation sites and subsequent vapour phase transport growth of nanorods. This combines chemical bath deposition techniques, which enable substrate independent seeding and nucleation site generation with vapour phase transport growth of high crystalline and optical quality ZnO nanorod arrays. Our data indicate that the three-step process produces uniform nanorod arrays with narrow and rather monodisperse rod diameters (∼ 70 nm) across substrates of centimetre dimensions. X-ray photoelectron spectroscopy, scanning electron microscopy and X-ray diffraction were used to study the growth mechanism and characterise the nanostructures.

  2. Highly transparent and conductive Sn/F and Al co-doped ZnO thin films prepared by sol–gel method

    International Nuclear Information System (INIS)

    Pan, Zhanchang; Luo, Junming; Tian, Xinlong; Wu, Shoukun; Chen, Chun; Deng, Jianfeng; Xiao, Chumin; Hu, Guanghui; Wei, Zhigang

    2014-01-01

    Highlights: • F/Sn and Al co-doped ZnO thin films were synthesized by sol–gel method. • The co-doped nanocrystals exhibit good crystal quality. • The origin of the photoluminescence emissions was discussed. • The films showed high transmittance and low resistivity. -- Abstract: Al doped ZnO, Al–Sn co-doped ZnO and Al–F co-doped ZnO nanocrystals were successfully synthesized onto glass substrates by the sol–gel method. The structure and morphology of the films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The results indicated that all the films were polycrystalline with a hexagonal wurtzite structure and exhibited a c-axis preferred orientation. The electrical and optical properties were also investigated by 4-point probe device and Uv–vis spectroscopy, room temperature photoluminescence (PL) and Raman spectrum (Raman), respectively. The PL and Raman results suggested that the co-doped films with a very low defect concentration and exhibit a better crystallinity than AZO thin films. The XPS study confirmed the incorporation of Al, Sn and F ions in the ZnO lattice

  3. ZnO nanopowder induced light scattering for improved visualization of emission sites in carbon nanotube films and arrays

    Science.gov (United States)

    Meško, Marcel; Ou, Qiongrong; Matsuda, Takafumi; Ishikawa, Tomokazu; Veis, Martin; Antoš, Roman; Ogino, Akihisa; Nagatsu, Masaaki

    2009-06-01

    We report on ZnO nanopowder induced light scattering for improved visualization of emission sites in carbon nanotube films and arrays. We observed a significant reduction of the internal multiple light scattering phenomena, which are characteristic for ZnO micropowders. The microsized grains of the commercially available ZnO:Zn (P 15) were reduced to the nanometre scale by pulsed laser ablation at an oxygen ambient pressure of 10 kPa. Our investigations show no crystalline change and no shift of the broad green emission peak at 500 nm for the ZnO nanopowder. For the application in field emission displays, we demonstrate the possibility of achieving cathodoluminescence with a fine pitch size of 100 µm of the patterned pixels without requiring additional electron beam focusing and without a black matrix. Moreover, the presented results show the feasibility of employing ZnO nanopowder as a detection material for the phosphorus screen method, which is able to localize emission sites of carbon nanotube films and arrays with an accuracy comparable to scanning anode field emission microscopy.

  4. ZnO nanopowder induced light scattering for improved visualization of emission sites in carbon nanotube films and arrays

    International Nuclear Information System (INIS)

    Mesko, Marcel; Ou Qiongrong; Matsuda, Takafumi; Ishikawa, Tomokazu; Ogino, Akihisa; Nagatsu, Masaaki; Veis, Martin; Antos, Roman

    2009-01-01

    We report on ZnO nanopowder induced light scattering for improved visualization of emission sites in carbon nanotube films and arrays. We observed a significant reduction of the internal multiple light scattering phenomena, which are characteristic for ZnO micropowders. The microsized grains of the commercially available ZnO:Zn (P 15) were reduced to the nanometre scale by pulsed laser ablation at an oxygen ambient pressure of 10 kPa. Our investigations show no crystalline change and no shift of the broad green emission peak at 500 nm for the ZnO nanopowder. For the application in field emission displays, we demonstrate the possibility of achieving cathodoluminescence with a fine pitch size of 100 μm of the patterned pixels without requiring additional electron beam focusing and without a black matrix. Moreover, the presented results show the feasibility of employing ZnO nanopowder as a detection material for the phosphorus screen method, which is able to localize emission sites of carbon nanotube films and arrays with an accuracy comparable to scanning anode field emission microscopy.

  5. Exploring the potential of laser assisted flow deposition grown ZnO for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, J., E-mail: joana.catarina@ua.pt [Departamento de Física & I3N, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Cerqueira, A.F.R.; Sousa, M.G.; Santos, N.F. [Departamento de Física & I3N, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Pimentel, A.; Fortunato, E. [CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Cunha, A.F. da; Monteiro, T.; Costa, F.M. [Departamento de Física & I3N, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)

    2016-07-01

    Zinc oxide (ZnO) is a widely studied wide band gap semiconductor with applications in several fields, namely to enhance solar cells efficiency. Its ability to be grown in a wide variety of nanostructured morphologies, allowing the designing of the surface area architecture constitutes an important advantage over other semiconductors. Laser assisted flow deposition (LAFD) is a recently developed growth method, based on a vapour-solid mechanism, which proved to be a powerful approach in the production of ZnO micro/nanostructures with different morphologies as well as high crystallinity and optical quality. In the present work we report the use of the LAFD technique to grow functional ZnO nanostructures (nanoparticles and tetrapods) working as nano templates to improve the dye-sensitized solar cells (DSSCs) efficiency. The structural and morphological characterization of the as-grown ZnO crystals were performed by X-ray diffraction and electron microscopy, respectively, and the optical quality was assessed by photoluminescence spectroscopy. DSSCs were produced using a combination of these nanostructures, which were subsequently sensitized with N719 dye. An efficiency of ∼3% was achieved under simulated AM 1.5 illumination conditions for a dye loading time of 1 h. - Highlights: • Laser assisted flow deposition proved to be an efficient technique to produce high quality ZnO. • Active layer formed by an interconnected network of tetrapods and a small amount of nanoparticles. • Efficiency of ∼3% obtained under simulated AM 1.5 illumination conditions.

  6. Luminescence and optical absorption determination in porous silicon

    International Nuclear Information System (INIS)

    Nogal, U.; Calderon, A.; Marin, E.; Rojas T, J. B.; Juarez, A. G.

    2012-10-01

    We applied the photoacoustic spectroscopy technique in order to obtain the optical absorption spectrum in porous silicon samples prepared by electrochemical anodic etching on n-type, phosphorous doped, (100)-oriented crystal-line silicon wafer with thickness of 300 μm and 1-5 ωcm resistivity. The porous layers were prepared with etching times of 13, 20, 30, 40 and 60 minutes. Also, we realized a comparison among the optical absorption spectrum with the photoluminescence and photo reflectance ones, both obtained at room temperature. Our results show that the absorption spectrum of the samples of porous silicon depends notably of the etching time an it consist of two distinguishable absorption bands, one in the Vis region and the other one in the UV region. (Author)

  7. Effects of Post Heat Treatments on ZnO Thin-Films Grown on Zn-coated Teflon Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ikhyun; Nam, Giwoong; Lee, Cheoleon; Kim, Dongwhan; Choi, Hyonkwang; Kim, Yangsoo; Leem, Jae-Young [Inje University, Gimhae (Korea, Republic of); Kim, Jin Soo [Chonbuk National University, Jeonju (Korea, Republic of); Kim, Jong Su [Yeungnam University, Gyeongsan (Korea, Republic of); Son, Jeong-Sik [Kyungwoon University, Gumi (Korea, Republic of)

    2015-06-15

    ZnO thin films were first grown on Zn-coated Teflon substrates using a spin-coating method, with various post-heating temperatures. The structural and optical properties of the ZnO thin films were then investigated using field-effect scanning-electron microscopy, X-ray diffractometry, and photoluminescence (PL) spectroscopy. The surface morphology of these ZnO thin films exhibited dendritic structures. With increasing post-heating temperature, all samples preferentially exhibited preferential c-axis orientation and increased residual tensile stress. All of the films exhibited preferential c-axis orientation, and the residual tensile stress of those increased with increasing post-heating temperature. The near-band-edge emission (NBE) peaks were red-shifted after post-heating treatment at 400 ℃. The intensity of the deep-level emission (DLE) peaks gradually decreased with increasing post- heating temperature. Moreover, the narrowest ‘full width at half maximum’ (FWHM) and the highest intensity ratio of the NBE to the DLE for thin films, were observed after post-heating at 400 ℃. The ZnO thin films fabricated with the 400 ℃ post-heating process provided the highest crystallinity and optical properties.

  8. A Mechanochemical Approach to Porous Silicon Nanoparticles Fabrication

    Directory of Open Access Journals (Sweden)

    Luca De Stefano

    2011-06-01

    Full Text Available Porous silicon samples have been reduced in nanometric particles by a well known industrial mechanical process, the ball grinding in a planetary mill; the process has been extended to crystalline silicon for comparison purposes. The silicon nanoparticles have been studied by X-ray diffraction, infrared spectroscopy, gas porosimetry and transmission electron microscopy. We have estimated crystallites size from about 50 nm for silicon to 12 nm for porous silicon. The specific surface area of the powders analyzed ranges between 100 m2/g to 29 m2/g depending on the milling time, ranging from 1 to 20 h. Electron microscopy confirms the nanometric size of the particles and reveals a porous structure in the powders obtained by porous silicon samples which has been preserved by the fabrication conditions. Chemical functionalization during the milling process by a siloxane compound has also been demonstrated.

  9. Nanostructure sword-like ZnO wires: Rapid synthesis and characterization through a microwave-assisted route

    International Nuclear Information System (INIS)

    Kajbafvala, Amir; Shayegh, Mohammad Reza; Mazloumi, Mahyar; Zanganeh, Saeid; Lak, Aidin; Mohajerani, Matin Sadat; Sadrnezhaad, S.K.

    2009-01-01

    Nanostructure sword-like ZnO wires with diameters of about 80-250 nm and the length of ∼1-4 μm have been synthesized by a fast, simple and template-free microwave-assisted method. X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy and room temperature photoluminescence (PL) measurements was used for characterization of the as-prepared products. The nanostructure sword-like ZnO wires have high crystallinity with the average crystallite size of about 53 nm and show a UV emission and a visible green band in their PL spectrum. The possible growth mechanism of the nanostructures along the crystallographic direction and subsequent formation of wires were also investigated

  10. Microstructure of ZnO thin films deposited by high power impulse magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Reed, A.N., E-mail: amber.reed.5@us.af.mil [Materials and Manufacturing Directorate, Air Force Research Laboratory, 3005 Hobson Way, Wright Patterson Air Force Base, OH 45433 (United States); Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469 (United States); Shamberger, P.J. [Department of Materials Science and Engineering, Texas A& M University, College Station, TX 77843 (United States); Hu, J.J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, 3005 Hobson Way, Wright Patterson Air Force Base, OH 45433 (United States); University of Dayton Research Institute, University of Dayton, Dayton, OH 45469 (United States); Muratore, C. [Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469 (United States); Bultman, J.E. [Materials and Manufacturing Directorate, Air Force Research Laboratory, 3005 Hobson Way, Wright Patterson Air Force Base, OH 45433 (United States); University of Dayton Research Institute, University of Dayton, Dayton, OH 45469 (United States); Voevodin, A.A., E-mail: andrey.voevodin@us.af.mil [Materials and Manufacturing Directorate, Air Force Research Laboratory, 3005 Hobson Way, Wright Patterson Air Force Base, OH 45433 (United States)

    2015-03-31

    High power impulse magnetron sputtering was used to deposit thin (~ 100 nm) zinc oxide (ZnO) films from a ceramic ZnO target onto substrates heated to 150 °C. The resulting films had strong crystallinity, highly aligned (002) texture and low surface roughness (root mean square roughness less than 10 nm), as determined by X-ray diffraction, transmission electron microscopy, scanning electron microscopy and atomic force spectroscopy measurements. Deposition pressure and target–substrate distance had the greatest effect on film microstructure. The degree of alignment in the films was strongly dependent on the gas pressure. Deposition at pressures less than 0.93 Pa resulted in a bimodal distribution of grain sizes. An initial growth layer with preferred orientations (101) and (002) parallel to the interface was observed at the film–substrate interface under all conditions examined here; the extent of that competitive region was dependent on growth conditions. Time-resolved current measurements of the target and ion energy distributions, determined using energy resolved mass spectrometry, were correlated to film microstructure in order to investigate the effect of plasma conditions on film nucleation and growth. - Highlights: • Low temperature growth of nanocrystalline zinc oxide (ZnO) films. • ZnO films had a highly (002) textured, smooth, dense microstructure. • Dominant (002) orientation of films was pressure dependent. • Interfacial (101)/(002) mixed orientation layer controlled by substrate location.

  11. Interfacial passivation of CdS layer to CdSe quantum dots-sensitized electrodeposited ZnO nanowire thin films

    International Nuclear Information System (INIS)

    Zhang, Jingbo; Sun, Chuanzhen; Bai, Shouli; Luo, Ruixian; Chen, Aifan; Sun, Lina; Lin, Yuan

    2013-01-01

    ZnO porous thin films with nanowire structure were deposited by the one-step electrochemical deposition method. And a CdS layer was coated on the as-deposited ZnO nanowire thin films by successive ionic layer adsorption and reaction (SILAR) method to passivate surface states. Then the films were further sensitized by CdSe quantum dots (QDs) to serve as a photoanode for fabricating quantum dots-sensitized solar cells (QDSSCs). The effect of the CdS interfacial passivation layer on the performance of the QDSSCs was systematically investigated by varying the SILAR cycle number and heating the passivation layer. The amorphous CdS layer with an optimized thickness can effectively suppress the recombination of the injected electrons with holes on QDs and the redox electrolyte. The newly formed CdS layer on the surface of the ZnO nanowire thin film obviously prolongs the electron lifetime in the passivated ZnO nanoporous thin film because of the lower surface trap density in the ZnO nanowires after CdS deposition, which is favorable to the higher short-circuit photocurrent density (J sc ). For the CdSe QDs-sensitized ZnO nanoporous thin film with the interfacial passivation layer, the J sc and conversion efficiency can reach a maximum of 8.36 mA cm −2 and 2.36%, respectively. The conversion efficiency was improved by 83.47% compared with that of the cell based on the CdSe QDs-sensitized ZnO nanoporous thin film without CdS interfacial passivation (0.39%)

  12. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Javed, Rabia [Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Usman, Muhammad, E-mail: uk_phy@yahoo.com [Department of Physics, Faculty of Natural Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Department of Physics, School of Science and Engineering, Lahore University of Management Sciences, Lahore 54729 (Pakistan); Tabassum, Saira; Zia, Muhammad [Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2016-11-15

    Highlights: • ZnO nanoparticles have been effectively capped with polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) shown by the data of XRD, FTIR and UV–visible spectroscopy. • Reduction in size occurred from 34 nm to 26 nm due to capping agent and band gap energy increases with the decrease in the particle size. • Antibacterial activity against Gram-positive bacteria is greater than the Gram-negative bacteria. • All biological assays reveal highest activities in capped ZnO nanoparticles as compared to the uncapped ZnO nanoparticles. • Highest antibacterial activity has been exhibited by ZnO-PVP while highest antioxidant and antidiabetic activities have been conferred by ZnO- PEG. - Abstract: Different biological activities of capped and uncapped ZnO nanoparticles were investigated, and the effects of potential capping agents on these biological activities were studied. ZnO nanoparticles were synthesized and capped by polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) using a simple chemical method of co-precipitation. Characterization by X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR) and UV–vis spectroscopy confirmed the crystallinity, size, functional group, and band gap of synthesized nanoparticles. Reduction in size occurred from 34 nm to 26 nm due to surfactant. Results of all biological activities indicated significantly higher values in capped as compared to uncapped nanoparticles. Antibacterial activity against Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC15224), and Acetobacter was obtained. This activity was more prominent against Gram-positive bacteria, and ZnO-PVP nanoparticles elucidated highest antibacterial activity (zone of inhibition 17 mm) against Gram-positive, Bacillus subtilis species. Antioxidant activities including total flavonoid content, total phenolic content, total antioxidant capacity, total reducing power and %age inhibition of DPPH, and

  13. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles

    International Nuclear Information System (INIS)

    Javed, Rabia; Usman, Muhammad; Tabassum, Saira; Zia, Muhammad

    2016-01-01

    Highlights: • ZnO nanoparticles have been effectively capped with polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) shown by the data of XRD, FTIR and UV–visible spectroscopy. • Reduction in size occurred from 34 nm to 26 nm due to capping agent and band gap energy increases with the decrease in the particle size. • Antibacterial activity against Gram-positive bacteria is greater than the Gram-negative bacteria. • All biological assays reveal highest activities in capped ZnO nanoparticles as compared to the uncapped ZnO nanoparticles. • Highest antibacterial activity has been exhibited by ZnO-PVP while highest antioxidant and antidiabetic activities have been conferred by ZnO- PEG. - Abstract: Different biological activities of capped and uncapped ZnO nanoparticles were investigated, and the effects of potential capping agents on these biological activities were studied. ZnO nanoparticles were synthesized and capped by polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) using a simple chemical method of co-precipitation. Characterization by X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR) and UV–vis spectroscopy confirmed the crystallinity, size, functional group, and band gap of synthesized nanoparticles. Reduction in size occurred from 34 nm to 26 nm due to surfactant. Results of all biological activities indicated significantly higher values in capped as compared to uncapped nanoparticles. Antibacterial activity against Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC15224), and Acetobacter was obtained. This activity was more prominent against Gram-positive bacteria, and ZnO-PVP nanoparticles elucidated highest antibacterial activity (zone of inhibition 17 mm) against Gram-positive, Bacillus subtilis species. Antioxidant activities including total flavonoid content, total phenolic content, total antioxidant capacity, total reducing power and %age inhibition of DPPH, and

  14. Chemical bath deposition of ZnO nanowire-nanoparticle composite electrodes for use in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ku, C-H; Wu, J-J [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2007-12-19

    ZnO nanowire (NW)-layered basic zinc acetate (LBZA)/ZnO nanoparticle (NP) composite electrodes with different NP occupying extents have been synthesized using a simple wet-chemical route for use in dye-sensitized solar cells (DSSCs). By employing mercurochrome as the sensitizer, superior efficiencies ({eta}) of 1.27-2.37% are obtained using the ZnO NW-LBZA/ZnO NP composite electrodes composed of a 5.5 {mu}m thick NW array with different NP occupying extents in comparison with the ZnO NW DSSC ({eta} = 0.45%). It suggests that the ZnO NW-LBZA/ZnO NP composite films which possess a considerable enlarged surface area by NPs growth, without sacrificing electron transport efficiency of single-crystalline ZnO NWs at the same time, are promising photoanodes for use in DSSCs. In addition to the extent of NP occupation, the overall efficiency of the ZnO NW-LBZA/ZnO NP composite DSSC is also influenced by the thickness of the composite film as well as the LBZA fraction and the cracks within the composite. The fraction of LBZA affected by the NP growth period and post-annealing conditions is found to play a crucial role in electron transport through the composite anode. Up to now, a high efficiency DSSC of 3.2% is achieved using a mercurochrome-sensitized and 6.2 {mu}m thick NW-NP composite film.

  15. A Resistive Humidity Sensor Based on Nanostructured WO3-ZnO Composites

    Directory of Open Access Journals (Sweden)

    Karunesh Tiwari

    2011-11-01

    Full Text Available Paper reports morphological and humidity sensing studies of WO3 and WO3-ZnO composite pellets prepared in the weight % ratio of 10:1, 4:1 and 2:1 by solid-state reaction route. The pellets have been annealed at temperatures of 300-500 °C. XRD pattern shows peaks of ZnWO4 formed due to solid state reaction between WO3 and ZnO. SEM micrographs show that the sensing elements manifest porous structure. Granulation and tendency to agglomerate seen in the SEM micrograph are due to the presence of zinc ions in ZnWO4. Nanoparticles are having their sizes in the range 37-182 nm. The average Kelvin radius at 20˚C room temperature is 27 Ả. Humidity sensing application of the pellets has been studied in a humidity control cabinet. It is observed that as relative humidity increases, there is decrease in the resistance of pellets in the range 10-85 % RH. Sensing element of WO3-ZnO in 2:1 weight % ratio shows best results in 10-85 % relative humidity range. The average sensitivity of this sample is 1.25 MΩ/%RH. This sensing element shows good reproducibility, low hysteresis and less effect of aging.

  16. Decontamination of chemical warfare sulfur mustard agent simulant by ZnO nanoparticles

    Science.gov (United States)

    Sadeghi, Meysam; Yekta, Sina; Ghaedi, Hamed

    2016-07-01

    In this study, zinc oxide nanoparticles (ZnO NPs) have been surveyed to decontaminate the chloroethyl phenyl sulfide as a sulfur mustard agent simulant. Prior to the reaction, ZnO NPs were successfully prepared through sol-gel method in the absence and presence of polyvinyl alcohol (PVA). PVA was utilized as a capping agent to control the agglomeration of the nanoparticles. The formation, morphology, elemental component, and crystalline size of nanoscale ZnO were certified and characterized by SEM/EDX, XRD, and FT-IR techniques. The decontamination (adsorption and destruction) was tracked by the GC-FID analysis, in which the effects of polarity of the media, such as isopropanol, acetone and n-hexane, reaction time intervals from 1 up to 18 h, and different temperatures, including 25, 35, 45, and 55 °C, on the catalytic/decontaminative capability of the surface of ZnO NPs/PVA were investigated and discussed, respectively. Results demonstrated that maximum decontamination (100 %) occurred in n-hexane solvent at 55 °C after 1 h. On the other hand, the obtained results for the acetone and isopropanol solvents were lower than expected. GC-MS chromatograms confirmed the formation of hydroxyl ethyl phenyl sulfide and phenyl vinyl sulfide as the destruction reaction products. Furthermore, these chromatograms proved the role of hydrolysis and elimination mechanisms on the catalyst considering its surface Bronsted and Lewis acid sites. A non-polar solvent aids material transfer to the reactive surface acid sites without blocking these sites.

  17. Synthesis and Characterization of ZnO Nanoparticles Using Sol-gel Process

    Directory of Open Access Journals (Sweden)

    Jayasree ALURI

    2016-05-01

    Full Text Available In the Present work structural, morphological and compositional properties of ZnO nanopowders synthesized using Zinc nitrate and NaOH using sol-gel process were reported. The synthesized nanopowders were further analyzed using X-Ray Diffraction (XRD, Scanning electron microscopy (SEM and Fourier Transform Infrared (FTIR spectroscopic characterizations. Crystalline size and Lattice strain determined from XRD spectra. Morphology of Nanopowders viewed from SEM images observed at different magnifications. The presence of Functional groups analyzed from FTIR spectra. From the results it was very clear that particles synthesized using Zinc nitrate and NaOH plays a vital role on crystalline size, surface morphology of Nanopowders. Synthesized nanopowders can be utilized as building materials in fabrication of various optoelectronic devices including solar cells, LED’s etc. due to its significant structural, morphological and optical properties.

  18. Rational growth of semi-polar ZnO texture on a glass substrate for optoelectronic applications

    Science.gov (United States)

    Lu, B.; Ma, M. J.; Ye, Y. H.; Lu, J. G.; He, H. P.; Ye, Z. Z.

    2013-02-01

    Semi-polar ZnO films with surface texture were grown on glass substrates via pulsed-laser deposition (PLD) through Co-Ga co-doping. Oxygen pressure (PO2) was found to have significant effects on the structural and optical properties of the Zn(Co, Ga)O (ZCGO) films. A self-textured film with (1\\,0\\,\\bar {1}\\,1) preferred orientation (PO) was achieved by varying the growth conditions including a crucial narrow PO2 window and growth time. A possible mechanism underlying the PO evolution and the final texture of the films was proposed, which can be attributed to the collaboration of the doping effect and the PO2-dependent evolutionary selection process, in which certain grains can have increased vertical growth rate with respect to the substrate surface through interplane diffusion. Moreover, the growth of undoped pure ZnO films proceeded by using the (1\\,0\\,\\bar {1}\\,1) ZCGO film as a buffer layer. The ZnO layers retained a semi-polar characteristic with improved crystallinity and better optical quality. The epitaxy-like orientation of ZnO layers grown on (1\\,0\\,\\bar {1}\\,1) ZCGO films has applications in the development of semi-polar ZnO-based light-emitting diodes.

  19. Effects of growth duration on the structural and optical properties of ZnO nanorods grown on seed-layer ZnO/polyethylene terephthalate substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.I.; Shin, C.M.; Heo, J.H. [Department of Nano Systems Engineering, Center for Nano Manufacturing Inje University, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Ryu, H., E-mail: hhryu@inje.ac.kr [Department of Nano Systems Engineering, Center for Nano Manufacturing Inje University, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Lee, W.J. [Department of Nano Engineering, Dong-Eui University, Busan 614-714 (Korea, Republic of); Chang, J.H. [Major of Nano Semiconductor, Korea Maritime University, Busan 606-791 (Korea, Republic of); Son, C.S. [Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Yun, J. [Department of Nano Science and Engineering, Institute of Advanced Materials Kyungnam University, Changwon, Gyeongnam 631-701 (Korea, Republic of)

    2011-10-01

    Well-aligned single crystalline zinc oxide (ZnO) nanorods were successfully grown, by hydrothermal synthesis at a low temperature, on flexible polyethylene terephthalate (PET) substrates with a seed layer. Photoluminescence (PL), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) measurements were used to analyze the optical and structural properties of ZnO nanorods grown for various durations from 0.5 h to 10 h. Regular and well-aligned ZnO nanorods with diameters ranging from 62 nm to 127 nm and lengths from 0.3 {mu}m to 1.65 {mu}m were formed after almost 5 h of growth. The growth rate of ZnO grown on PET substrates is lower than that grown on Si (1 0 0) substrates. Enlarged TEM images show that the tips of the ZnO nanorods grown for 6 h have a round shape, whereas the tips grown for 10 h are sharpened. The crystal properties of ZnO nanorods can be tuned by using the growth duration as a growth condition. The XRD and PL results indicate that the structural and optical properties of the ZnO nanorods are most improved after 5 h and 6 h of growth, respectively.

  20. Nanometre-thick single-crystalline nanosheets grown at the water-air interface

    Science.gov (United States)

    Wang, Fei; Seo, Jung-Hun; Luo, Guangfu; Starr, Matthew B.; Li, Zhaodong; Geng, Dalong; Yin, Xin; Wang, Shaoyang; Fraser, Douglas G.; Morgan, Dane; Ma, Zhenqiang; Wang, Xudong

    2016-01-01

    To date, the preparation of free-standing 2D nanomaterials has been largely limited to the exfoliation of van der Waals solids. The lack of a robust mechanism for the bottom-up synthesis of 2D nanomaterials from non-layered materials has become an obstacle to further explore the physical properties and advanced applications of 2D nanomaterials. Here we demonstrate that surfactant monolayers can serve as soft templates guiding the nucleation and growth of 2D nanomaterials in large area beyond the limitation of van der Waals solids. One- to 2-nm-thick, single-crystalline free-standing ZnO nanosheets with sizes up to tens of micrometres are synthesized at the water-air interface. In this process, the packing density of surfactant monolayers adapts to the sub-phase metal ions and guides the epitaxial growth of nanosheets. It is thus named adaptive ionic layer epitaxy (AILE). The electronic properties of ZnO nanosheets and AILE of other materials are also investigated.

  1. Intrinsic localized gap states in IGZO and its parent single crystalline TCOs

    Energy Technology Data Exchange (ETDEWEB)

    Schmeißer, D.; Haeberle, J.

    2016-03-31

    We report on the X-ray absorption data for Indium–Gallium–Zink–Oxide thin films, amorphous ZnO films, amorphous SnO{sub x} films, and single crystalline In{sub 2}O{sub 3}, Ga{sub 2}O{sub 3}, ZnO, and SnO{sub 2} data. These absorption data probe the empty conduction band states explicitly. Also they allow for an elemental assignment using resonant excitation to derive the contributions of each metal ion. We find that the lowest states appear right at the Fermi energy and result from configuration interaction induced charge transfer states which we consider as intrinsic gap states. - Highlights: • We identify contributions of localized configuration interaction induced gap states. • Auger profiles taken on metal absorption edges show metallic density of states around E{sub F}. • D-shell opening leads to a charge-transfer state involving metallic d-states.

  2. Stable electroluminescence from passivated nano-crystalline porous silicon using undecylenic acid

    Science.gov (United States)

    Gelloz, B.; Sano, H.; Boukherroub, R.; Wayner, D. D. M.; Lockwood, D. J.; Koshida, N.

    2005-06-01

    Stabilization of electroluminescence from nanocrystalline porous silicon diodes has been achieved by replacing silicon-hydrogen bonds terminating the surface of nanocrystalline silicon with more stable silicon-carbon (Si-C) bonds. Hydrosilylation of the surface of partially and anodically oxidized porous silicon samples was thermally induced at about 90 °C using various different organic molecules. Devices whose surface have been modified with stable covalent bonds shows no degradation in the EL efficiency and EL output intensity under DC operation for several hours. The enhanced stability can be attributed to the high chemical resistance of Si-C bonds against current-induced surface oxidation associated with the generation of nonradiative defects. Although devices treated with 1-decene exhibit reduced EL efficiency and brightness compared to untreatred devices, other molecules, such as ethyl-undecylenate and particularly undecylenic acid provide stable and more efficient visible electroluminescence at room temperature. Undecylenic acid provides EL brightness as high as that of an untreated device.

  3. Cytotoxic effects of ZnO nanoparticles on mouse testicular cells

    Directory of Open Access Journals (Sweden)

    Han Z

    2016-10-01

    Full Text Available Zhe Han,1,* Qi Yan,1,* Wei Ge,2 Zhi-Guo Liu,1 Sangiliyandi Gurunathan,3 Massimo De Felici,4 Wei Shen,2 Xi-Feng Zhang1 1College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, People’s Republic of China; 2Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China; 3Department of Stem Cell and Regenerative Biology, Konkuk University, Seoul, Republic of Korea; 4Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy *These authors contributed equally to this work Background: Nanoscience and nanotechnology are developing rapidly, and the applications of nanoparticles (NPs have been found in several fields. At present, NPs are widely used in traditional consumer and industrial products, however, the properties and safety of NPs are still unclear and there are concerns about their potential environmental and health effects. The aim of the present study was to investigate the potential toxicity of ZnO NPs on testicular cells using both in vitro and in vivo systems in a mouse experimental model. Methods: ZnO NPs with a crystalline size of 70 nm were characterized with various analytical techniques, including ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and atomic force microscopy. The cytotoxicity of the ZnO NPs was examined in vitro on Leydig cell and Sertoli cell lines, and in vivo on the testes of CD1 mice injected with single doses of ZnO NPs.Results: ZnO NPs were internalized by Leydig cells and Sertoli cells, and this resulted in cytotoxicity in a time- and dose-dependent manner through the induction of apoptosis. Apoptosis likely occurred as a consequence of DNA damage (detected as γ-H2AX and RAD51 foci caused by increase in reactive oxygen

  4. Porous silicon technology for integrated microsystems

    Science.gov (United States)

    Wallner, Jin Zheng

    With the development of micro systems, there is an increasing demand for integrable porous materials. In addition to those conventional applications, such as filtration, wicking, and insulating, many new micro devices, including micro reactors, sensors, actuators, and optical components, can benefit from porous materials. Conventional porous materials, such as ceramics and polymers, however, cannot meet the challenges posed by micro systems, due to their incompatibility with standard micro-fabrication processes. In an effort to produce porous materials that can be used in micro systems, porous silicon (PS) generated by anodization of single crystalline silicon has been investigated. In this work, the PS formation process has been extensively studied and characterized as a function of substrate type, crystal orientation, doping concentration, current density and surfactant concentration and type. Anodization conditions have been optimized for producing very thick porous silicon layers with uniform pore size, and for obtaining ideal pore morphologies. Three different types of porous silicon materials: meso porous silicon, macro porous silicon with straight pores, and macro porous silicon with tortuous pores, have been successfully produced. Regular pore arrays with controllable pore size in the range of 2mum to 6mum have been demonstrated as well. Localized PS formation has been achieved by using oxide/nitride/polysilicon stack as masking materials, which can withstand anodization in hydrofluoric acid up to twenty hours. A special etching cell with electrolytic liquid backside contact along with two process flows has been developed to enable the fabrication of thick macro porous silicon membranes with though wafer pores. For device assembly, Si-Au and In-Au bonding technologies have been developed. Very low bonding temperature (˜200°C) and thick/soft bonding layers (˜6mum) have been achieved by In-Au bonding technology, which is able to compensate the potentially

  5. Electrical properties of fluorine-doped ZnO nanowires formed by biased plasma treatment

    Science.gov (United States)

    Wang, Ying; Chen, Yicong; Song, Xiaomeng; Zhang, Zhipeng; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-05-01

    Doping is an effective method for tuning electrical properties of zinc oxide nanowires, which are used in nanoelectronic devices. Here, ZnO nanowires were prepared by a thermal oxidation method. Fluorine doping was achieved by a biased plasma treatment, with bias voltages of 100, 200, and 300 V. Transmission electron microscopy indicated that the nanowires treated at bias voltages of 100 and 200 V featured low crystallinity. When the bias voltage was 300 V, the nanowires showed single crystalline structures. Photoluminescence measurements revealed that concentrations of oxygen and surface defects decreased at high bias voltage. X-ray photoelectron spectroscopy suggested that the F content increased as the bias voltage was increased. The conductivity of the as-grown nanowires was less than 103 S/m; the conductivity of the treated nanowires ranged from 1 × 104-5 × 104, 1 × 104-1 × 105, and 1 × 103-2 × 104 S/m for bias voltage treatments at 100, 200, and 300 V, respectively. The conductivity improvements of nanowires formed at bias voltages of 100 and 200 V, were attributed to F-doping, defects and surface states. The conductivity of nanowires treated at 300 V was attributed to the presence of F ions. Thus, we provide a method of improving electrical properties of ZnO nanowires without altering their crystal structure.

  6. The electrical properties of low pressure chemical vapor deposition Ga doped ZnO thin films depending on chemical bonding configuration

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hanearl [School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Doyoung [School of Electrical and Electronic Engineering, Ulsan College, 57 Daehak-ro, Nam-gu, Ulsan 680-749 (Korea, Republic of); Kim, Hyungjun, E-mail: hyungjun@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2014-04-01

    Highlights: • Undoped and Ga doped ZnO thin films were deposited using DEZ and TMGa. • Effects of Ga doping using TMGa in Ga doped ZnO were investigated. • Degraded properties from excessive doping were analyzed using chemical bondings. - Abstract: The electrical and chemical properties of low pressure chemical vapor deposition (LP-CVD) Ga doped ZnO (ZnO:Ga) films were systematically investigated using Hall measurement and X-ray photoemission spectroscopy (XPS). Diethylzinc (DEZ) and O{sub 2} gas were used as precursor and reactant gas, respectively, and trimethyl gallium (TMGa) was used as a Ga doping source. Initially, the electrical properties of undoped LP-CVD ZnO films depending on the partial pressure of DEZ and O{sub 2} ratio were investigated using X-ray diffraction (XRD) by changing partial pressure of DEZ from 40 to 140 mTorr and that of O{sub 2} from 40 to 80 mTorr. The resistivity was reduced by Ga doping from 7.24 × 10{sup −3} Ω cm for undoped ZnO to 2.05 × 10{sup −3} Ω cm for Ga doped ZnO at the TMG pressure of 8 mTorr. The change of electric properties of Ga doped ZnO with varying the amount of Ga dopants was systematically discussed based on the structural crystallinity and chemical bonding configuration, analyzed by XRD and XPS, respectively.

  7. Anchoring ZnO Nanoparticles in Nitrogen-Doped Graphene Sheets as a High-Performance Anode Material for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Guanghui Yuan

    2018-01-01

    Full Text Available A novel binary nanocomposite, ZnO/nitrogen-doped graphene (ZnO/NG, is synthesized via a facile solution method. In this prepared ZnO/NG composite, highly-crystalline ZnO nanoparticles with a size of about 10 nm are anchored uniformly on the N-doped graphene nanosheets. Electrochemical properties of the ZnO/NG composite as anode materials are systematically investigated in lithium-ion batteries. Specifically, the ZnO/NG composite can maintain the reversible specific discharge capacity at 870 mAh g−1 after 200 cycles at 100 mA g−1. Besides the enhanced electronic conductivity provided by interlaced N-doped graphene nanosheets, the excellent lithium storage properties of the ZnO/NG composite can be due to nanosized structure of ZnO particles, shortening the Li+ diffusion distance, increasing reaction sites, and buffering the ZnO volume change during the charge/discharge process.

  8. Thin Film growth and characterization of Ti doped ZnO by RF/DC magnetron sputtering

    KAUST Repository

    Baseer Haider, M.

    2015-01-01

    Thin film Ti doped ZnO (Ti-ZnO) film were grown on sapphire (0001) substrate by RF and DC magnetron sputtering. Films were grown at a substrate temperature of 250 °C with different Ti/Zn concentration. Surface chemical study of the samples was performed by X-ray photoelectron spectroscopy to determine the stoichiometry and Ti/Zn ratio for all samples. Surface morphology of the samples were studied by atomic force microscopy. X-ray diffraction was carried out to determine the crystallinity of the film. No secondary phases of TixOy was observed. We observed a slight increase in the lattice constant with the increase in Ti concentration in ZnO. No ferromagnetic signal was observed for any of the samples. However, some samples showed super-paramagnetic phase. © 2015 Materials Research Society.

  9. Improved electron injection in spin coated Alq3 incorporated ZnO thin film in the device for solution processed OLEDs

    Science.gov (United States)

    Dasi, Gnyaneshwar; Ramarajan, R.; Thangaraju, Kuppusamy

    2018-04-01

    We deposit tris-(8-hydroxyquinoline)aluminum (Alq3) incorporated zinc oxide (ZnO) thin films by spin coating method under the normal ambient. It showed the higher transmittance (90% at 550 nm) when compared to that (80% at 550 nm) of spin coated pure ZnO film. SEM studies show that the Alq3 incorporation in ZnO film also enhances the formation of small sized particles arranged in the network of wrinkles on the surface. XRD reveals the improved crystalline properties upon Alq3 inclusion. We fabricate the electron-only devices (EODs) with the structure of ITO/spin coated ZnO:Alq3 as ETL/Alq3 interlayer/LiF/Al. The device showed the higher electron current density of 2.75 mA/cm2 at 12V when compared to that (0.82 mA/cm2 at 12V) of the device using pure ZnO ETL. The device results show that it will be useful to fabricate the low-cost solution processed OLEDs for future lighting and display applications.

  10. Limits of ZnO Electrodeposition in Mesoporous Tin Doped Indium Oxide Films in View of Application in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Christian Dunkel

    2014-04-01

    Full Text Available Well-ordered 3D mesoporous indium tin oxide (ITO films obtained by a templated sol-gel route are discussed as conductive porous current collectors. This paper explores the use of such films modified by electrochemical deposition of zinc oxide (ZnO on the pore walls to improve the electron transport in dye-sensitized solar cells (DSSCs. Mesoporous ITO film were dip-coated with pore sizes of 20–25 nm and 40–45 nm employing novel poly(isobutylene-b-poly(ethylene oxide block copolymers as structure-directors. After electrochemical deposition of ZnO and sensitization with the indoline dye D149 the films were tested as photoanodes in DSSCs. Short ZnO deposition times led to strong back reaction of photogenerated electrons from non-covered ITO to the electrolyte. ITO films with larger pores enabled longer ZnO deposition times before pore blocking occurred, resulting in higher efficiencies, which could be further increased by using thicker ITO films consisting of five layers, but were still lower compared to nanoporous ZnO films electrodeposited on flat ITO. The major factors that currently limit the application are the still low thickness of the mesoporous ITO films, too small pore sizes and non-ideal geometries that do not allow obtaining full coverage of the ITO surface with ZnO before pore blocking occurs.

  11. Limits of ZnO Electrodeposition in Mesoporous Tin Doped Indium Oxide Films in View of Application in Dye-Sensitized Solar Cells

    Science.gov (United States)

    Dunkel, Christian; von Graberg, Till; Smarsly, Bernd M.; Oekermann, Torsten; Wark, Michael

    2014-01-01

    Well-ordered 3D mesoporous indium tin oxide (ITO) films obtained by a templated sol-gel route are discussed as conductive porous current collectors. This paper explores the use of such films modified by electrochemical deposition of zinc oxide (ZnO) on the pore walls to improve the electron transport in dye-sensitized solar cells (DSSCs). Mesoporous ITO film were dip-coated with pore sizes of 20–25 nm and 40–45 nm employing novel poly(isobutylene)-b-poly(ethylene oxide) block copolymers as structure-directors. After electrochemical deposition of ZnO and sensitization with the indoline dye D149 the films were tested as photoanodes in DSSCs. Short ZnO deposition times led to strong back reaction of photogenerated electrons from non-covered ITO to the electrolyte. ITO films with larger pores enabled longer ZnO deposition times before pore blocking occurred, resulting in higher efficiencies, which could be further increased by using thicker ITO films consisting of five layers, but were still lower compared to nanoporous ZnO films electrodeposited on flat ITO. The major factors that currently limit the application are the still low thickness of the mesoporous ITO films, too small pore sizes and non-ideal geometries that do not allow obtaining full coverage of the ITO surface with ZnO before pore blocking occurs. PMID:28788618

  12. Exploration of Al-Doped ZnO in Photovoltaic Thin Films

    Science.gov (United States)

    Ciccarino, Christopher; Sahiner, M. Alper

    The electrical properties of Al doped ZnO-based thin films represent a potential advancement in the push for increasing solar cell efficiency. Doping with Aluminum will theoretically decrease resistivity of the film and therefore achieve this potential as a viable option in the P-N junction phase of photovoltaic cells. The n-type semi-conductive characteristics of the ZnO layer will theoretically be optimized with the addition of Aluminum carriers. In this study, Aluminum doping concentrations ranging from 1-3% by mass were produced, analyzed, and compared. Films were developed onto ITO coated glass using the Pulsed Laser Deposition technique. Target thickness was 250 nm and ellipsometry measurements showed uniformity and accuracy in this regard. Active dopant concentrations were determined using Hall Effect measurements. Efficiency measurements showed possible applications of this doped compound, with upwards of 7% efficiency measured, using a Keithley 2602 SourceMeter set-up. XRD scans showed highly crystalline structures, with effective Al intertwining of the hexagonal wurtzile ZnO molecular structure. This alone indicates a promising future of collaboration between these two materials.

  13. Conventional and 360 degree electron tomography of a micro-crystalline silicon solar cell

    DEFF Research Database (Denmark)

    Duchamp, Martial; Ramar, Amuthan; Kovács, András

    2011-01-01

    Bright-field (BF) and annular dark-field (ADF) electron tomography in the transmission electron microscope (TEM) are used to characterize elongated porous regions or cracks (simply referred to as cracks thereafter) in micro-crystalline silicon (μc-Si:H) solar cell. The limitations of inferring...

  14. Colloid-templated multisectional porous polymeric fibers.

    Science.gov (United States)

    Song, Jung Hun; Kretzschmar, Ilona

    2008-10-07

    A fabrication method for porous polymeric fibers (PPFs) is reported. We show that a multisectional colloidal crystal can be assembled within a microcapillary by alternating dipping into colloidal solutions of varying size. Subsequent infiltration with curable polymer and washing with suitable solvents results in porous fibers with a cylindrical cross section. Along the length of the fiber, alternating sections of controlled length, pore size, and pore size distribution exist. These fibers present interesting materials for neural scaffolding, catalysis, and possibly photonics if produced with a high degree of crystallinity. The surface pores and bulk porosity of the fibers are characterized by variable-pressure scanning electron microscopy (vp-SEM). Careful analysis shows that the surface pores vary with the colloidal template diameter and polymer infiltration time.

  15. Electrodeposition of CdSe coatings on ZnO nanowire arrays for extremely thin absorber solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, Hasti [Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104 (United States); Baxter, Jason B., E-mail: jbaxter@drexel.ed [Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104 (United States)

    2011-02-15

    We report on electrodeposition of CdSe coatings onto ZnO nanowire arrays and determine the effect of processing conditions on material properties such as morphology and microstructure. CdSe-coated ZnO nanowire arrays have potential use in extremely thin absorber (ETA) solar cells, where CdSe absorbs visible light and injects photoexcited electrons into the ZnO nanowires. We show that room-temperature electrodeposition enables growth of CdSe coatings that are highly crystalline, uniform, and conformal with precise control over thickness and microstructure. X-ray diffraction and transmission electron microscopy show nanocrystalline CdSe in both hexagonal and cubic phases with grain size {approx}5 nm. Coating morphology depends on electrodeposition current density. Uniform and conformal coatings were achieved using moderate current densities of {approx}2 mA cm{sup -2} for nanowires with roughness factor of {approx}10, while lower current densities resulted in sparse nucleation and growth of larger, isolated islands. Electrodeposition charge density controls the thickness of the CdSe coating, which was exploited to investigate the evolution of the morphology at early stages of nucleation and growth. UV-vis transmission spectroscopy and photoelectrochemical solar cell measurements demonstrate that CdSe effectively sensitizes ZnO nanowires to visible light.

  16. Electrodeposition of CdSe coatings on ZnO nanowire arrays for extremely thin absorber solar cells

    International Nuclear Information System (INIS)

    Majidi, Hasti; Baxter, Jason B.

    2011-01-01

    We report on electrodeposition of CdSe coatings onto ZnO nanowire arrays and determine the effect of processing conditions on material properties such as morphology and microstructure. CdSe-coated ZnO nanowire arrays have potential use in extremely thin absorber (ETA) solar cells, where CdSe absorbs visible light and injects photoexcited electrons into the ZnO nanowires. We show that room-temperature electrodeposition enables growth of CdSe coatings that are highly crystalline, uniform, and conformal with precise control over thickness and microstructure. X-ray diffraction and transmission electron microscopy show nanocrystalline CdSe in both hexagonal and cubic phases with grain size ∼5 nm. Coating morphology depends on electrodeposition current density. Uniform and conformal coatings were achieved using moderate current densities of ∼2 mA cm -2 for nanowires with roughness factor of ∼10, while lower current densities resulted in sparse nucleation and growth of larger, isolated islands. Electrodeposition charge density controls the thickness of the CdSe coating, which was exploited to investigate the evolution of the morphology at early stages of nucleation and growth. UV-vis transmission spectroscopy and photoelectrochemical solar cell measurements demonstrate that CdSe effectively sensitizes ZnO nanowires to visible light.

  17. Modified Shrinking Core Model for Atomic Layer Deposition of TiO2 on Porous Alumina with Ultrahigh Aspect Ratio

    International Nuclear Information System (INIS)

    Park, Inhye; Leem, Jina; Lee, Hooyong; Min, Yosep

    2013-01-01

    When atomic layer deposition (ALD) is performed on a porous material by using an organometallic precursor, minimum exposure time of the precursor for complete coverage becomes much longer since the ALD is limited by Knudsen diffusion in the pores. In the previous report by Min et al. (Ref. 23), shrinking core model (SCM) was proposed to predict the minimum exposure time of diethylzinc for ZnO ALD on a porous cylindrical alumina monolith. According to the SCM, the minimum exposure time of the precursor is influenced by volumetric density of adsorption sites, effective diffusion coefficient, precursor concentration in gas phase and size of the porous monolith. Here we modify the SCM in order to consider undesirable adsorption of byproduct molecules. TiO 2 ALD was performed on the cylindrical alumina monolith by using titanium tetrachloride (TiCl 4 ) and water. We observed that the byproduct (i. e., HCl) of TiO 2 ALD can chemically adsorb on adsorption sites, unlike the behavior of the byproduct (i. e., ethane) of ZnO ALD. Consequently, the minimum exposure time of TiCl 4 (∼16 min) was significantly much shorter than that (∼71 min) of DEZ. The predicted minimum exposure time by the modified SCM well agrees with the observed time. In addition, the modified SCM gives an effective diffusion coefficient of TiCl 4 of ∼1.78 Χ 10 -2 cm 2 /s in the porous alumina monolith

  18. Synthesis of Fe-Doped ZnO Nanorods by Rapid Mixing Hydrothermal Method and Its Application for High Performance UV Photodetector

    Directory of Open Access Journals (Sweden)

    Chan Oeurn Chey

    2014-01-01

    Full Text Available We have successfully synthesized Fe-doped ZnO nanorods by a new and simple method in which the adopted approach is by using ammonia as a continuous source of OH- for hydrolysis instead of hexamethylenetetramine (HMT. The energy dispersive X-ray (EDX spectra revealed that the Fe peaks were presented in the grown Fe-doped ZnO nanorods samples and the X-ray photoelectron spectroscopy (XPS results suggested that Fe3+ is incorporated into the ZnO lattice. Structural characterization indicated that the Fe-doped ZnO nanorods grow along the c-axis with a hexagonal wurtzite structure and have single crystalline nature without any secondary phases or clusters of FeO or Fe3O4 observed in the samples. The Fe-doped ZnO nanorods showed room temperature (300 K ferromagnetic magnetization versus field (M-H hysteresis and the magnetization increases from 2.5 μemu to 9.1 μemu for Zn0.99Fe0.01O and Zn0.95Fe0.05O, respectively. Moreover, the fabricated Au/Fe-doped ZnO Schottky diode based UV photodetector achieved 2.33 A/W of responsivity and 5 s of time response. Compared to other Au/ZnO nanorods Schottky devices, the presented responsivity is an improvement by a factor of 3.9.

  19. Investigation of room temperature UV emission of ZnO films with different defect densities induced by laser irradiation.

    Science.gov (United States)

    Zhao, Yan; Jiang, Yijian

    2010-08-01

    We studied the room temperature UV emission of ZnO films with different defect densities which is fabricated by KrF laser irradiation process. It is shown room temperature UV photoluminescence of ZnO film is composed of contribution from free-exciton (FX) recombination and its longitudinal-optical phonon replica (FX-LO) (1LO, 2LO). With increase of the defect density, the FX emission decreased and FX-LO emission increased dramatically; and the relative strengths of FX to FX-LO emission intensities determine the peak position and intensity of UV emission. What is more, laser irradiation with moderate energy density could induce the crystalline ZnO film with very flat and smooth surface. This investigation indicates that KrF laser irradiation could effectively modulate the exciton emission and surface morphology, which is important for the application of high performance of UV emitting optoelectronic devices. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Spatially Correlated, Single Nanomaterial-Level Structural and Optical Profiling of Cu-Doped ZnO Nanorods Synthesized via Multifunctional Silicides

    Directory of Open Access Journals (Sweden)

    Johnson Truong

    2018-04-01

    Full Text Available We demonstrate a straightforward and effective method to synthesize vertically oriented, Cu-doped ZnO nanorods (NRs using a novel multipurpose platform of copper silicide nanoblocks (Cu3Si NBs preformed laterally in well-defined directions on Si. The use of the surface-organized Cu3Si NBs for ZnO NR growth successfully results in densely assembled Cu-doped ZnO NRs on each NB platform, whose overall structures resemble thick bristles on a brush head. We show that Cu3Si NBs can uniquely serve as a catalyst for ZnO NRs, a local dopant source of Cu, and a prepatterned guide to aid the local assembly of the NRs on the growth substrate. We also ascertain the crystalline structures, optical properties, and spectroscopic signatures of the Cu-doped ZnO NRs produced on the NBs, both at each module of NRs/NB and at their ensemble level. Subsequently, we determine their augmented properties relative to the pristine form of undoped ZnO NRs and the source material of Cu3Si NBs. We provide spatially correlated structural and optical data for individual modules of Cu-doped ZnO NRs assembled on a Cu3Si NB by resolving them along the different positions on the NB. Ensemble-averaged versus individual behaviors of Cu-doped ZnO NRs on Cu3Si NBs are then compared. We further discuss the potential impact of such ZnO-derived NRs on their relatively unexplored biological and biomedical applications. Our efforts will be particularly useful when exploiting each integrated module of self-aligned, Cu-doped ZnO NRs on a NB as a discretely addressable, active element in solid-state sensors and miniaturized luminescent bioprobes.

  1. Development of highly porous crystalline titania photocatalysts

    Science.gov (United States)

    Marszewski, Michal

    The objectives of this dissertation are the design, synthesis, and characterization of titania materials with surface area, porosity, crystallinity and doping tailored toward photocatalytic applications. Ultimately, the research should result in a strategy allowing the synthesis of titania with all these important features. The synthetic methods investigated in this research will include: i) soft-templating, ii) hard-templating, and iii) modified precursor strategy. Soft-templating strategy uses organic templates--either block copolymers or surfactants--that under specific conditions assemble into micelles, and later, these micelles are used to template the desired material around them. The resulting organic-inorganic composite is then calcined in air to remove the organic template and recover the final material with high surface area and large pore volume. This work explores 1) synthesis of titania materials in the presence of polymer templates, and the effects of different synthetic conditions on the structure of the resulting materials. Hard-templating, in contrast to soft-templating, uses inorganic templates. The hard template is introduced during the synthesis to cast its shape onto the fabricated material and removed afterwards, when the material has formed. The final material is an inverse replica of the hard template used, typically with a well-developed mesostructure. This work explores 1) hard templating synthesis of titania materials using silica and alumina, and 2) the effects of the template amount and type. The modified precursor strategy is a novel synthetic method, developed in this research, and designed specifically to achieve titania material with high surface area, large pore volume, high crystallinity, and possibly doping. The modified precursors are prepared by reacting generic titania precursors, such as titanium isopropoxide (TIPO), with organic acids, which results in substitution of some or all alkoxide groups in TIPO structure. The goal

  2. Synthesis and characterization of porous metal oxides and desulfurization studies of sulfur containing compounds

    Science.gov (United States)

    Garces Trujillo, Hector Fabian

    This thesis contains two parts: 1) synthesis and characterization of porous metal oxides that include zinc oxide and a porous mixed-valent manganese oxide with an amorphous structure (AMO) 2) the desulfurization studies for the removal of sulfur compounds. Zinc oxide with different nano-scale morphologies may result in various porosities with different adsorption capabilities. A tunable shape microwave synthesis of ZnO nano-spheres in a co-solvent mixture is presented. The ZnO nano-sphere material is investigated as a desulfurizing sorbent in a fixed bed reactor in the temperature range 200 to 400 °C and compared with ZnO nanorods and platelet-like morphologies. Fresh and sulfided materials were characterized by X-ray diffraction (XRD), BET specific surface area, pore volume, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (SEM/EDX), Raman spectroscopy, and thermogravimetric analysis (TGA). The tunable shape microwave synthesis of ZnO presents a high sulfur sorption capacity at temperatures as low as 200 °C which accounts for a three and four fold enhancement over the other preparations presented in this work, and reached 76 % of the theoretical sulfur capacity (TSC) at 300 °C. Another ZnO material with a bimodal micro- and mesopore size distribution investigated as a desulfurizing sorbent presents a sorption capacity that reaches 87% of the theoretical value for desulfurization at 400 °C at breakthrough time. A deactivation model that considers the activity of the solid reactant was used to fit the experimental data. Good agreement between the experimental breakthrough curves and the model predictions are obtained. Manganese oxides are a type of metal oxide materials commonly used in catalytic applications. Little is known about the adsorption capabilities for the removal of sulfur compounds. One of these manganese oxides; amorphous manganese oxide (AMO) is highly promising material for low temperature sorption processes. Amorphous

  3. Annealing impact on the structural and photoluminescence properties of ZnO thin films on Ag substrates

    International Nuclear Information System (INIS)

    Xu, Linhua; Zheng, Gaige; Lai, Min; Pei, Shixin

    2014-01-01

    Graphical abstract: The Gaussian fitting indicates that the PL spectra of the ZnO thin films include four emission peaks which are centered at 380, 520, 570 and 610 nm, respectively. The ZnO thin film deposited on an Ag substrate shows a stronger green emission and a weaker UV emission than the ZnO thin film directly deposited on a Si substrate annealed at 400 °C. With the rise of annealing temperature, the visible emission intensity and wavelength are largely changed. Highlights: • ZnO thin films have been prepared on Ag substrates by sol–gel method. • The Ag substrates have a great effect on the photoluminescence of ZnO thin films. • All the films exhibit three visible emission bands including green, yellow and red. • Annealing causes a large change of the visible emission intensity and wavelength. -- Abstract: In this work, ZnO thin films were prepared by sol–gel method on Ag substrates. The structural and optical properties of the films annealed at different temperatures were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence, respectively. The results of XRD showed that all the ZnO thin films had a wurtzite phase and were preferentially oriented along the c-axis direction. The sample annealed at 400 °C exhibited better crystalline quality than the ZnO thin film directly deposited on a Si substrate annealed at the same temperature. The photoluminescence spectra showed that ZnO thin films had an ultraviolet emission band and three visible emission bands including green, yellow and red band. The sample annealed at 400 °C exhibited a stronger green emission and a weaker ultraviolet emission compared with the ZnO thin film deposited on a Si substrate annealed at the same temperature. The difference of the luminescence properties was thought to be originated from different substrates. As for the ZnO films on Ag substrates, the increase of annealing temperature led to different changes of visible emissions

  4. Methanol-Sensing Property Improvement of Meso structured Zinc Oxide Prepared by the Nano casting Strategy

    International Nuclear Information System (INIS)

    Gao, Q.; Zheng, W.T.; Wei, C.D.; Lin, H.M.

    2013-01-01

    The specific structure and morphology often play a critical role in governing the excellent intrinsic properties of the compound semiconductor. Herein, meso structured ZnO with excellent methanol-sensing properties was prepared by a structure replication procedure through the incipient wetness technique. The investigation on the crystal structure and morphology of the resultant material shows that the product consists of hexagonally arranged meso pores and crystalline walls, and its structure is an ideal replication of CMK-3 template. Consequently, meso structured ZnO was fabricated as a gas sensor for methanol. The excellent methanol-sensing performance was achieved at a relatively low operating temperature of 120°C. In comparison with the non porous ZnO prepared through conventional coprecipitation approach, meso structured ZnO material shows the higher sensitivity and stability. Furthermore, it shows the discrimination between methanol and ethanol sensitivity, which makes it a good candidate in fabricating selective methanol sensor in practice

  5. Ultrasonic spray pyrolysis growth of ZnO and ZnO:Al nanostructured films: Application to photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Kenanakis, G., E-mail: gkenanak@iesl.forth.gr [Institute of Electronic Structure and Laser, Foundation for Research and Technology – Hellas, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Katsarakis, N. [Institute of Electronic Structure and Laser, Foundation for Research and Technology – Hellas, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece)

    2014-12-15

    Highlights: • Al–ZnO thin films and nanostructures were obtained by ultrasonic spray pyrolysis. • The texture and morphology of the samples depend on the deposition parameters. • The photocatalytic degradation of stearic acid was studied upon UV-A irradiation. - Abstract: Pure and Al-doped ZnO (Al = 1, 3, 5%) nanostructured thin films were grown at 400 °C on glass substrates by ultrasonic spray pyrolysis, a simple, environmental-friendly and inexpensive method, using aqueous solutions as precursors. The structural and morphological characteristics of the samples depend drastically on deposition parameters; ZnO nanostructured films, nanopetals and nanorods were systematically obtained by simply varying the precursor solution and/or the spraying time. Transmittance measurements have shown that all samples are transparent in the visible wavelength region. Finally, the photocatalytic properties of the samples were investigated against the degradation of stearic acid under UV-A light illumination (365 nm); both pure and Al-doped ZnO nanostructured thin films show good photocatalytic activity regarding the degradation of stearic acid, due to their good crystallinity and large surface area.

  6. Tuning of Ag doped core−shell ZnO NWs/Cu2O grown by electrochemical deposition

    International Nuclear Information System (INIS)

    Makhlouf, Houssin; Messaoudi, Olfa; Souissi, Ahmed; Ben Assaker, Ibtissem; Oueslati, Mihrez; Bechelany, Mikhael; Chtourou, Radhouane

    2015-01-01

    ZnO nanowires (NWs)/Cu 2 O–Ag core–shell nanostructures (NSs) have been synthesized by electrochemical deposition method on ITO-coated glass substrates in order to improve the efficiency of the type-II transition of core–shell ZnO NWs/Cu 2 O–Ag NSs. The morphologies of the obtained NSs were studied by scanning electron microscopy confirming the presence of core–shell NSs. The crystalline proprieties were analyzed by x-ray diffraction and micro-Raman measurement: wurtzite ZnO and cuprit Cu 2 O phase were founded. The presence of Ag content in core–shell NS was detected by EDX. Optical measurement reveals an additional contribution δE at about 1.72 eV attributed to the type-II interfacial transition between the valance band of cuprit−Cu 2 O and the conduction band of W−ZnO. The effect of the Ag doping into the type-II transition was investigated. A red shift of the type-II transition was detected according to the Ag concentration. These materials could have potential applications in photocatalytic and photovoltaic fields. (paper)

  7. Effects of ZnO nanowire synthesis parameters on the photovoltaic performance of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juneui; Myoung, Jihyun; Lim, Sangwoo, E-mail: swlim@yonsei.ac.kr

    2012-06-30

    Determination of the effects of ZnO nanowires on the efficiency of ZnO nanowire-based dye-sensitized solar cells (DSSCs) is important. In this study, we determined the effects of different OH{sup -} precursors, concentrations, the ratio of zinc nitrate to hexamethylene tetramine (HMT), and the hydrothermal synthesis temperature on the physical, crystal, and optical properties of ZnO nanowires and investigated the performance of the resulting DSSCs. We observed that ZnO nanowires synthesized using an equimolar ratio of HMT to zinc nitrate yielded a DSSC with high incident photon-to-current efficiency (IPCE), cell efficiency, short circuit current density (J{sub sc}), and fill factor (FF), and low ZnO-dye-electrolyte interface resistance due to an increased amount of dye and a decreased density of defects. Furthermore, ZnO nanowires made using optimal concentrations and ratios of zinc nitrate to HMT had a high surface area and low defect density. All the photovoltaic performance parameters of DSSCs assessed such as IPCE, cell efficiency, J{sub sc}, open circuit potential (V{sub oc}), and FF increased with synthesis temperature, which was related to a decrease in the resistance at the ZnO-dye-electrolyte interface. We attributed these results to an increased amount of dye facilitated by a large nanowire surface area and fast electron transfer because of the improved crystalline structure of the ZnO nanowires and their low defect density. By optimizing the ZnO nanowires, we increased DSSC efficiency to 0.26% using ZnO nanowires synthesized with 25 mM of both zinc nitrate and HMT at 90 Degree-Sign C, while only a 0.02% increase in efficiency was obtained when NH{sub 4}OH was used as OH{sup -} precursor. - Highlights: Black-Right-Pointing-Pointer Fabrication of ZnO nanowire-based dye-sensitized solar cells (DSSCs) Black-Right-Pointing-Pointer Correlation of synthesis parameters with ZnO nanowires' properties and DSSC performance Black

  8. Photocatalytic Activity and Stability of Porous Polycrystalline ZnO Thin-Films Grown via a Two-Step Thermal Oxidation Process

    Directory of Open Access Journals (Sweden)

    James C. Moore

    2014-08-01

    Full Text Available The photocatalytic activity and stability of thin, polycrystalline ZnO films was studied. The oxidative degradation of organic compounds at the ZnO surface results from the ultraviolet (UV photo-induced creation of highly oxidizing holes and reducing electrons, which combine with surface water to form hydroxyl radicals and reactive oxygen species. Therefore, the efficiency of the electron-hole pair formation is of critical importance for self-cleaning and antimicrobial applications with these metal-oxide catalyst systems. In this study, ZnO thin films were fabricated on sapphire substrates via direct current sputter deposition of Zn-metal films followed by thermal oxidation at several annealing temperatures (300–1200 °C. Due to the ease with which they can be recovered, stabilized films are preferable to nanoparticles or colloidal suspensions for some applications. Characterization of the resulting ZnO thin films through atomic force microscopy and photoluminescence indicated that decreasing annealing temperature leads to smaller crystal grain size and increased UV excitonic emission. The photocatalytic activities were characterized by UV-visible absorption measurements of Rhodamine B dye concentrations. The films oxidized at lower annealing temperatures exhibited higher photocatalytic activity, which is attributed to the increased optical quality. Photocatalytic activity was also found to depend on film thickness, with lower activity observed for thinner films. Decreasing activity with use was found to be the result of decreasing film thickness due to surface etching.

  9. Porous membrane modifier as a new trend for deoiling process

    Directory of Open Access Journals (Sweden)

    Nermen H. Mohamed

    2017-09-01

    Full Text Available Porous membranes are prepared through micro phase separation of immiscible polymers consisting of hydrophobic polymer (polystyrene and hydrophilic polymer (poly(2-vinylpyridine. The greatest difficulties during petrolatum deoiling are related to the filtration stage for obtaining microcrystalline wax. The present study deals with the addition of porous membrane as modifier for the crystal structure of solid hydrocarbons, which will be the cornerstone in rearrangement and reformulation of new hard crystals in deoiling process. XRD and SEM photographs were used to evaluate the crystallinity and crystal sizes of the separated hard waxes.

  10. An effective flexible wireless energy harvester/sensor based on porous electret piezoelectric polymer

    Energy Technology Data Exchange (ETDEWEB)

    Mahanty, Biswajit [Organic Nano-Piezoelectric Device Laboratory, Department of Physics, Jadavpur University, Kolkata, 700032 (India); Department of Electronics and Communication Engineering, Saroj Mohan Institute of Technology, Hooghly, 712512 (India); Ghosh, Sujoy Kumar; Garain, Samiran [Organic Nano-Piezoelectric Device Laboratory, Department of Physics, Jadavpur University, Kolkata, 700032 (India); Mandal, Dipankar, E-mail: dipankar@phys.jdvu.ac.in [Organic Nano-Piezoelectric Device Laboratory, Department of Physics, Jadavpur University, Kolkata, 700032 (India)

    2017-01-15

    A flexible sponge-like nanogenerator (FSNG) based on ZnO nanoparticles (NPs) etched porous electret poly (vinylidene fluoride–hexafluoropropylene) (P(VDF-HFP)) film is spotlighted without any electrical poling treatment. It possesses improved dielectric and ferroelectric properties than neat P(VDF-HFP) film. The FSNG harvests an open-circuit voltage (V{sub oc}) of 9 V and short circuit current (I{sub sc}) of 1.3 μAcm{sup −2} under repeated mechanical impact of 0.36 MPa stress amplitude on the top surface. With the power density (P) of 1.21 mW/cm{sup 2} and energy conversion efficiency of 0.3% it directly operates several consumer electronics. The highly sensitive (∼1 μVPa{sup −1}) FSNG is demonstrated as a self-powered wireless sensor with 3.0% efficiency for detecting some tiny human activities including finger movements. - Highlights: • ZnO nanoparticles etched porous electret P(VDF-HFP) film is spot lighted. • Superior dielectric and ferroelectric properties without any poling are observed. • It harvests 9 V output voltage with 4.7 μA current under 0.36 MPa stress. • It shows superior power density and energy conversion efficiency of same stress. • It also acts as self-powered wireless sensor for detecting tiny human activities.

  11. Synthesis of cadmium oxide doped ZnO nanostructures using electrochemical deposition

    International Nuclear Information System (INIS)

    Singh, Trilok; Pandya, D.K.; Singh, R.

    2011-01-01

    Research highlights: → Ternary ZnCdO alloy semiconductor nanostructures were grown using electrochemical deposition. → X-ray diffraction measurements showed that the nanostructures were of wurtzite structure and possessed a compressive stress along the c-axis direction. → The cut-off wavelength shifted from blue to red on account of the Cd incorporation in the ZnO and the average transmittance decreased by ∼31%. → The bandgap tuning for 4-16 at% Cd in the initial solution was achieved in the range of 3.08-3.32 eV (up to 0.24 eV). - Abstract: Ternary ZnCdO alloy semiconductor nanostructures were grown using electrochemical deposition. Crystalline nanostructures/nanorods with cadmium concentration ranging from 4 to 16 at% in the initial solution were electrodeposited on tin doped indium oxide (ITO) conducting glass substrates at a constant cathodic potential -0.9 V and subsequently annealed in air at 300 deg. C. X-ray diffraction measurements showed that the nanostructures were of wurtzite structure and possessed a compressive stress along the c-axis direction. The elemental composition of nanostructures was confirmed by energy dispersive spectroscopy (EDS). ZnO nanostructures were found to be highly transparent and had an average transmittance of 85% in the visible range of the spectrum. After the incorporation of Cd content into ZnO the average transmittance decreased and the bandgap tuning was also achieved.

  12. Comparison of defects in crystalline oxide semiconductor materials by electron spin resonance

    International Nuclear Information System (INIS)

    Matsuda, Tokiyoshi; Kimura, Mutsumi

    2015-01-01

    Defects in crystalline InGaZnO 4 (IGZO) induced by plasma were investigated using electron spin resonance (ESR). Thermal stabilities and g factors of two ESR signals (A and B observed at g = 1.939 and 2.003, respectively) in IGZO were different from those of the ESR signals observed in component materials such as Ga 2 O 3 (signal observed at g = 1.969), In 2 O 3 (no signal), and ZnO (signal observed at g = 1.957). Signal A in IGZO increased upon annealing at 300 °C for 1 h, but decreased when annealing was continued for more than 2 h. On the other hand, signal B decreased upon annealing at 300 °C for 1 h. The ESR signal in ZnO decayed in accordance with a second-order decay model with a rate constant of 2.1 × 10 −4 s −1 ; however, this phenomenon was not observed in other materials. This difference might have been due to randomly formed IGZO lattices such as asymmetrical (Ga, Zn)O and In-O layers. Defects in signals A and B in IGZO were formed in trap states (at the deep level) and tail states, respectively

  13. Development and validation of TOF-SIMS and CLSM imaging method for cytotoxicity study of ZnO nanoparticles in HaCaT cells.

    Science.gov (United States)

    Lee, Pei-Ling; Chen, Bo-Chia; Gollavelli, Ganesh; Shen, Sin-Yu; Yin, Yu-Sheng; Lei, Shiu-Ling; Jhang, Cian-Ling; Lee, Woan-Ruoh; Ling, Yong-Chien

    2014-07-30

    Zinc oxide nanoparticles (ZnO NPs) exhibit novel physiochemical properties and have found increasing use in sunscreen products and cosmetics. The potential toxicity is of increasing concern due to their close association with human skin. A time-of-flight secondary ion mass spectrometry (TOF-SIMS) and confocal laser scanning microscopy (CLSM) imaging method was developed and validated for rapid and sensitive cytotoxicity study of ZnO NPs using human skin equivalent HaCaT cells as a model system. Assorted material, chemical, and toxicological analysis methods were used to confirm their shape, size, crystalline structure, and aggregation properties as well as dissolution behavior and effect on HaCaT cell viability in the presence of various concentrations of ZnO NPs in aqueous media. Comparative and correlative analyses of aforementioned results with TOF-SIMS and CLSM imaging results exhibit reasonable and acceptable outcome. A marked drop in survival rate was observed with 50μg/ml ZnO NPs. The CLSM images reveal the absorption and localization of ZnO NPs in cytoplasm and nuclei. The TOF-SIMS images demonstrate elevated levels of intracellular ZnO concentration and associated Zn concentration-dependent (40)Ca/(39)K ratio, presumably caused by the dissolution behavior of ZnO NPs. Additional validation by using stable isotope-labeled (68)ZnO NPs as tracers under the same experimental conditions yields similar cytotoxicity effect. The imaging results demonstrate spatially-resolved cytotoxicity relationship between intracellular ZnO NPs, (40)Ca/(39)K ratio, phosphocholine fragments, and glutathione fragments. The trend of change in TOF-SIMS spectra and images of ZnO NPs treated HaCaT cells demonstrate the possible mode of actions by ZnO NP involves cell membrane disruption, cytotoxic response, and ROS mediated apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Stable electroluminescence from passivated nano-crystalline porous silicon using undecylenic acid

    Energy Technology Data Exchange (ETDEWEB)

    Gelloz, B.; Sano, H.; Koshida, N. [Dept. Elec. and Elec. Eng., Tokyo Univ. of A and T, Koganei, Tokyo 184-8588 (Japan); Boukherroub, R. [Laboratoire de Physique de la Matiere Condensee, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau (France); Wayner, D.D.M.; Lockwood, D.J. [National Research Council, Ottawa (Canada)

    2005-06-01

    Stabilization of electroluminescence from nanocrystalline porous silicon diodes has been achieved by replacing silicon-hydrogen bonds terminating the surface of nanocrystalline silicon with more stable silicon-carbon (Si-C) bonds. Hydrosilylation of the surface of partially and anodically oxidized porous silicon samples was thermally induced at about 90 C using various different organic molecules. Devices whose surface have been modified with stable covalent bonds shows no degradation in the EL efficiency and EL output intensity under DC operation for several hours. The enhanced stability can be attributed to the high chemical resistance of Si-C bonds against current-induced surface oxidation associated with the generation of nonradiative defects. Although devices treated with 1-decene exhibit reduced EL efficiency and brightness compared to untreated devices, other molecules, such as ethyl-undecylenate and particularly undecylenic acid provide stable and more efficient visible electroluminescence at room temperature. Undecylenic acid provides EL brightness as high as that of an untreated device. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Photoelectrochemical water splitting under visible light over anti-photocorrosive In{sub 2}O{sub 3}-coupling ZnO nanorod arrays photoanode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan, E-mail: zhangyanchem@qdu.edu.cn [Oceanology University of China, College of Chemistry and Chemical Engineering (China); Zhang, Jinqiu [Qingdao University, Faculty of Chemical Science and Engineering (China); Nie, Mengyan [University of Southampton, National Centre for Advanced Tribology at Southampton, School of Engineering Sciences (United Kingdom); Sun, Kai [Qingdao University, Faculty of Chemical Science and Engineering (China); Li, Chunhu [Oceanology University of China, College of Chemistry and Chemical Engineering (China); Yu, Jianqiang [Qingdao University, Faculty of Chemical Science and Engineering (China)

    2015-07-15

    In{sub 2}O{sub 3} quantum dots with a high crystallinity were deposited on the surface of ZnO nanorods through a chemistry bath method. The resulting In{sub 2}O{sub 3}-sensitizing ZnO nanorod arrays not only exhibited enhanced photoelectrochemical activity for water splitting under visible-light irradiation, but also possessed anti-photocorrosion property. The photo-induced charge-transfer property of In{sub 2}O{sub 3} could be improved greatly by coupling with ZnO. This observation demonstrated that the heterojunction at the interface between In{sub 2}O{sub 3} and ZnO could efficiently reduce the recombination of photo-induced electron–hole pairs and increase the lifetime of charge carriers and therefore enhance the photo-to-current efficiency of the In{sub 2}O{sub 3}–ZnO nanocrystalline arrays. It reveals that the heterojunction construction between two different semiconductors plays a very important role in determining the dynamic properties of their photogenerated charge carriers and their photo-to-current conversion efficiency.

  16. Porous silicon based anode material formed using metal reduction

    Science.gov (United States)

    Anguchamy, Yogesh Kumar; Masarapu, Charan; Deng, Haixia; Han, Yongbong; Venkatachalam, Subramanian; Kumar, Sujeet; Lopez, Herman A.

    2015-09-22

    A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m.sup.2/g to about 200 m.sup.2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V to 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm.sup.2 to about 3.5 mg/cm.sup.2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.

  17. Large-scale uniform ZnO tetrapods on catalyst free glass substrate by thermal evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Alsultany, Forat H., E-mail: foratusm@gmail.com [School of Physics, USM, 11800 Penang (Malaysia); Hassan, Z. [Institute of Nano-Optoelectronics Research and Technology Laboratory (INOR), USM, 11800 Penang (Malaysia); Ahmed, Naser M. [School of Physics, USM, 11800 Penang (Malaysia)

    2016-07-15

    Highlights: • Investigate the growth of ZnO-Ts on glass substrate by thermal evaporation method. • Glass substrate without any catalyst or a seed layer. • The morphology was controlled by adjusting the temperature of the material and the substrate. • Glass substrate was placed vertically in the quartz tube. - Abstract: Here, we report for the first time the catalyst-free growth of large-scale uniform shape and size ZnO tetrapods on a glass substrate via thermal evaporation method. Three-dimensional networks of ZnO tetrapods have needle–wire junctions, an average leg length of 2.1–2.6 μm, and a diameter of 35–240 nm. The morphology and structure of ZnO tetrapods were investigated by controlling the preparation temperature of each of the Zn powder and the glass substrate under O{sub 2} and Ar gases. Studies were carried out on ZnO tetrapods using X-ray diffraction, field emission scanning electron microscopy, UV–vis spectrophotometer, and a photoluminescence. The results showed that the sample grow in the hexagonal wurtzite structure with preferentially oriented along (002) direction, good crystallinity and high transmittance. The band gap value is about 3.27 eV. Photoluminescence spectrum exhibits a very sharp peak at 378 nm and a weak broad green emission.

  18. Optical Design of Porous ZnO/TiO2 Films for Highly Transparent Glasses with Broadband Ultraviolet Protection

    Directory of Open Access Journals (Sweden)

    Han Sung Song

    2017-01-01

    Full Text Available We present a design of a bilayer porous film structure on a glass substrate for the highly efficient ultraviolet (UV protection with high visible-light transparency. To effectively block UVB (280–315 nm and UVA (315–400 nm, titanium dioxide (TiO2 and zinc oxide (ZnO are used as absorbing layers having the appropriate coverages in different UV ranges with extinction coefficients, respectively. We show the process of refractive index (RI matching by controlling porosity (Pr. Effective RIs of porous media with TiO2 and ZnO were calculated based on volume averaging theory. Transmittances of the designed films with different effective RIs were calculated using rigorous coupled-wave analysis method. Using admittance loci method, the film thickness was optimized in center wavelengths from 450 to 550 nm. The results show that the optimal design provides high UV shielding performance at both UVA and UVB with high transparency in the visible range. We also analyze electrical field distributions in each layer and angle dependency with 3D HSV color map.

  19. Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yersak, Alexander S.; Sharma, Kashish; Wallas, Jasmine M.; Dameron, Arrelaine A.; Li, Xuemin; Yang, Yongan; Hurst, Katherine E.; Ban, Chunmei; Tenent, Robert C.; George, Steven M. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 and Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309

    2018-01-01

    Ultrathin atomic layer deposition (ALD) coatings on the electrodes of Li-ion batteries can enhance the capacity stability of the Li-ion batteries. To commercialize ALD for Li-ion battery production, spatial ALD is needed to decrease coating times and provide a coating process compatible with continuous roll-to-roll (R2R) processing. The porous electrodes of Li-ion batteries provide a special challenge because higher reactant exposures are needed for spatial ALD in porous substrates. This work utilized a modular rotating cylinder spatial ALD reactor operating at rotation speeds up to 200 revolutions/min (RPM) and substrate speeds up to 200 m/min. The conditions for spatial ALD were adjusted to coat flexible porous substrates. The reactor was initially used to characterize spatial Al2O3 and ZnO ALD on flat, flexible metalized polyethylene terephthalate foils. These studies showed that slower rotation speeds and spacers between the precursor module and the two adjacent pumping modules could significantly increase the reactant exposure. The modular rotating cylinder reactor was then used to coat flexible, model porous anodic aluminum oxide (AAO) membranes. The uniformity of the ZnO ALD coatings on the porous AAO membranes was dependent on the aspect ratio of the pores and the reactant exposures. Larger reactant exposures led to better uniformity in the pores with higher aspect ratios. The reactant exposures were increased by adding spacers between the precursor module and the two adjacent pumping modules. The modular rotating cylinder reactor was also employed for Al2O3 ALD on porous LiCoO2 (LCO) battery electrodes. Uniform Al coverages were obtained using spacers between the precursor module and the two adjacent pumping modules at rotation speeds of 25 and 50 RPM. The LCO electrodes had a thickness of ~49 um and pores with aspect ratios of ~12-25. Coin cells were then constructed using the ALD-coated LCO electrodes and were tested to determine their battery

  20. A third kind growth model of tetrapod: Rod-based single crystal ZnO tetrapod nanostructure

    International Nuclear Information System (INIS)

    Gong, J.F.; Huang, H.B.; Wang, Z.Q.; Zhao, X.N.; Yang, S.G.; Yu Zhongzhen

    2008-01-01

    In this paper, rod-based ZnO tetrapods were successfully synthesized by burning Zn particles in air covered with two firebricks. The products show hexagonal wurtzite phase. The microstructures of the tetrapod were studied carefully by scanning electron microscope (SEM), transmission electron microscope (TEM), SAED and HRTEM. The results show that tetrapod has single crystalline phase with one broader nanorod growing along [0 0 0 1] direction, three triangular nanosheets, growing out of the three trisection planes along [101-bar0] direction, and three epitaxial nanowires, growing from each tip of the triangular nanosheets. Based on the experimental results, a rod-based growth model was proposed to interpret its growth mechanism. Room temperature photoluminescence spectrum reveals that the ZnO tetrapods have ultra violet (UV) emission band (389 nm) and a green emission band (517 nm)

  1. Evolution of microstructure and related optical properties of ZnO grown by atomic layer deposition

    Directory of Open Access Journals (Sweden)

    Adib Abou Chaaya

    2013-10-01

    Full Text Available A study of transmittance and photoluminescence spectra on the growth of oxygen-rich ultra-thin ZnO films prepared by atomic layer deposition is reported. The structural transition from an amorphous to a polycrystalline state is observed upon increasing the thickness. The unusual behavior of the energy gap with thickness reflected by optical properties is attributed to the improvement of the crystalline structure resulting from a decreasing concentration of point defects at the growth of grains. The spectra of UV and visible photoluminescence emissions correspond to transitions near the band-edge and defect-related transitions. Additional emissions were observed from band-tail states near the edge. A high oxygen ratio and variable optical properties could be attractive for an application of atomic layer deposition (ALD deposited ultrathin ZnO films in optical sensors and biosensors.

  2. Effect of hydrogen on ZnO films and Au/ZnO Schottky contacts

    International Nuclear Information System (INIS)

    Tsiarapas, C; Girginoudi, D; Georgoulas, N

    2014-01-01

    The structural, optical and electrical properties of ZnO films for different amounts of incorporated hydrogen (H), as well as the electrical characteristics of Au Schottky contacts based on these ZnO layers have been investigated. The films were deposited with the dc-magnetron sputtering technique, varying the H flow rate in the Ar/H sputtering gas. We found a significant improvement of the crystallinity (as obtained from x-ray diffraction spectra), Hall mobility and resistivity as the H concentration per vol. [H 2 ] (during deposition) increases from 0% to 33.3%, which is followed by degradation for further [H 2 ] increase. A high dependence of the carrier mobility on the grain size is also noted. The Schottky diodes were characterized through current–voltage (I–V) and capacitance–voltage (C–V) measurements at room temperature. In correlation with the basic film properties, we obtained the best results for the Schottky diodes with [H 2 ] = 33.3%, in terms of higher rectification ratio, lower ideality factor (η) and series resistance (R s ). Both the electron concentration n and the ionized donors' concentration N D (obtained from C–V curves) increase constantly with [H 2 ] increase, and that seems to be consistent with our suggestion that H acts as a donor in ZnO. (paper)

  3. A Thermoelectric Generator Using Porous Si Thermal Isolation

    Directory of Open Access Journals (Sweden)

    Emmanouel Hourdakis

    2013-10-01

    Full Text Available In this paper we report on a thermoelectric generator (TEG using thermal isolation provided by a thick porous Si layer locally formed on the Si wafer and thermocouples composed of p-doped polycrystalline Si/Al. The “hot” contacts of the thermocouples lie on the porous Si layer, while the “cold” contacts lie on bulk crystalline Si. A housing was also designed and fabricated in order to transfer any external temperature change on the “hot” contacts of the thermocouples, the “cold” contacts being isolated from the “hot” contacts by a thick resist layer. The fabrication of the sensing element (Si die is fully compatible with batch Si processing. The output power of the thermoelectric generator depends on the porous Si isolation layer thickness, porosity, structure and morphology. For a mesoporous Si layer of 60% porosity and a macroscopic temperature differential of 10 K, an output power of 0.39 μW/cm2 was measured for a 50 μm thick porous Si layer.

  4. A Thermoelectric Generator Using Porous Si Thermal Isolation

    Science.gov (United States)

    Hourdakis, Emmanouel; Nassiopoulou, Androula G.

    2013-01-01

    In this paper we report on a thermoelectric generator (TEG) using thermal isolation provided by a thick porous Si layer locally formed on the Si wafer and thermocouples composed of p-doped polycrystalline Si/Al. The “hot” contacts of the thermocouples lie on the porous Si layer, while the “cold” contacts lie on bulk crystalline Si. A housing was also designed and fabricated in order to transfer any external temperature change on the “hot” contacts of the thermocouples, the “cold” contacts being isolated from the “hot” contacts by a thick resist layer. The fabrication of the sensing element (Si die) is fully compatible with batch Si processing. The output power of the thermoelectric generator depends on the porous Si isolation layer thickness, porosity, structure and morphology. For a mesoporous Si layer of 60% porosity and a macroscopic temperature differential of 10 K, an output power of 0.39 μW/cm2 was measured for a 50 μm thick porous Si layer. PMID:24152923

  5. Preparation and performance of porous phase change polyethylene glycol/polyurethane membrane

    International Nuclear Information System (INIS)

    Ke Guizhen; Xie Huifang; Ruan Ruping; Yu Weidong

    2010-01-01

    Based on the theory of clotty porous phase change materials, the porous membrane was prepared with the blend of polyurethane (PU) and two polyethylene glycol (PEG) systems. Studied by scanning electron microscope (SEM), Fourier transform infrared (FT-IR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and thermo-gravimetric (TG) tests, the morphology structure, chemical composition, crystalline morphology, phase change behaviors and thermal stability of porous phase change membrane were investigated. The results showed that the PU/PEG membrane had obvious porous structural feature, suitable transition temperature and high transition enthalpy. It is a flexible membrane with good energy storage function. When it is between solid and liquid transfer state in microcosms, the membrane can still keep solid shape in macroscopic state at high temperature during phase transition processing. It means that porous membrane PCM can be regarded as functional polymer. This method solved the problem of low working materials content in phase change textile. It succeeded in introducing the porous technology into functional textile's formation, and developed a new way to improve the phase change enthalpy largely for adjustable textile.

  6. Electrochemical Fabrication of Nanostructures on Porous Silicon for Biochemical Sensing Platforms.

    Science.gov (United States)

    Ko, Euna; Hwang, Joonki; Kim, Ji Hye; Lee, Joo Heon; Lee, Sung Hwan; Tran, Van-Khue; Chung, Woo Sung; Park, Chan Ho; Choo, Jaebum; Seong, Gi Hun

    2016-01-01

    We present a method for the electrochemical patterning of gold nanoparticles (AuNPs) or silver nanoparticles (AgNPs) on porous silicon, and explore their applications in: (1) the quantitative analysis of hydroxylamine as a chemical sensing electrode and (2) as a highly sensitive surface-enhanced Raman spectroscopy (SERS) substrate for Rhodamine 6G. For hydroxylamine detection, AuNPs-porous silicon can enhance the electrochemical oxidation of hydroxylamine. The current changed linearly for concentrations ranging from 100 μM to 1.32 mM (R(2) = 0.995), and the detection limit was determined to be as low as 55 μM. When used as SERS substrates, these materials also showed that nanoparticles decorated on porous silicon substrates have more SERS hot spots than those decorated on crystalline silicon substrates, resulting in a larger SERS signal. Moreover, AgNPs-porous silicon provided five-times higher signal compared to AuNPs-porous silicon. From these results, we expect that nanoparticles decorated on porous silicon substrates can be used in various types of biochemical sensing platforms.

  7. Interface-defect-mediated photocatalysis of mesocrystalline ZnO assembly synthesized in-situ via a template-free hydrothermal approach

    Science.gov (United States)

    Wang, Hui; Wang, Cuicui; Chen, Qifeng; Ren, Baosheng; Guan, Ruifang; Cao, Xiaofeng; Yang, Xiaopeng; Duan, Ran

    2017-08-01

    Both architecture construction and defects engineering of photocatalysts are highly vital in the photocatalytic activity. We report herein that the interface-defect-mediated photocatalytic activity of pompon-like ZnO (P-ZnO) mesocrystal photocatalyst synthesized via an aqueous approach, in the presence of sodium citrate without any other organic templates. The microstructure and defects of the diverse ZnO photocatalysts were examined with various techniques. The results indicated that the P-ZnO assemblies were composed of mesocrystal nanosheets exposed high energy (002) facet with high crystallinity. More importantly, the defects located at the interfaces among the nanocrystals in ZnO mesocrystals played an important role in the photocatalytic activity than that of interstitial zinc vacancies in bulk, which was confirmed by photocatalytic degradation of organic pollutants, such as methylene blue (MB) and 2,4,6-trichlorophenol (2,4,6-TCP). The results showed that the P-ZnO exhibited higher photocatalytic activity than that of the nanosized ZnO (N-ZnO), which could be attributed to not only the unique mesocrystal structure and high energy (002) facet exposed, but also the defects located at interfaces among nanocrystals in ZnO mesocrystals. In addition, the formation mechanism of the P-ZnO was investigated via a time-dependent method. It was found that the formation of P-ZnO hierarchical architecture assembled with ZnO mesocrystals involved a nonclassical crystallization growth and Ostwald Ripening process. This study provides a perspective on the improvement in photocatalytic activity via adjusting the bulk and interface defects and construction of hierarchical architectures of semiconductors.

  8. Morphologies of Sol–Gel Derived Thin Films of ZnO Using Different Precursor Materials and their Nanostructures

    Directory of Open Access Journals (Sweden)

    Chandra Sudhir

    2007-01-01

    Full Text Available AbstractWe have shown that the morphological features of the sol–gel derived thin films of ZnO depend strongly on the choice of the precursor materials. In particular, we have used zinc nitrate and zinc acetate as the precursor materials. While the films using zinc acetate showed a smoother topography, those prepared by using zinc nitrate exhibited dendritic character. Both types of films were found to be crystalline in nature. The crystallite dimensions were confined to the nanoscale. The crystallite size of the nanograins in the zinc nitrate derived films has been found to be smaller than the films grown by using zinc acetate as the precursor material. Selected area electron diffraction patterns in the case of both the precursor material has shown the presence of different rings corresponding to different planes of hexagonal ZnO crystal structure. The results have been discussed in terms of the fundamental considerations and basic chemistry governing the growth kinetics of these sol–gel derived ZnO films with both the precursor materials.

  9. High performance top-gated ferroelectric field effect transistors based on two-dimensional ZnO nanosheets

    Science.gov (United States)

    Tian, Hongzheng; Wang, Xudong; Zhu, Yuankun; Liao, Lei; Wang, Xianying; Wang, Jianlu; Hu, Weida

    2017-01-01

    High quality ultrathin two-dimensional zinc oxide (ZnO) nanosheets (NSs) are synthesized, and the ZnO NS ferroelectric field effect transistors (FeFETs) are demonstrated based on the P(VDF-TrFE) polymer film used as the top gate insulating layer. The ZnO NSs exhibit a maximum field effect mobility of 588.9 cm2/Vs and a large transconductance of 2.5 μS due to their high crystalline quality and ultrathin two-dimensional structure. The polarization property of the P(VDF-TrFE) film is studied, and a remnant polarization of >100 μC/cm2 is achieved with a P(VDF-TrFE) thickness of 300 nm. Because of the ultrahigh remnant polarization field generated in the P(VDF-TrFE) film, the FeFETs show a large memory window of 16.9 V and a high source-drain on/off current ratio of more than 107 at zero gate voltage and a source-drain bias of 0.1 V. Furthermore, a retention time of >3000 s of the polarization state is obtained, inspiring a promising candidate for applications in data storage with non-volatile features.

  10. Interface electronic properties of co-evaporated MAPbI3 on ZnO(0001): In situ X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy study

    International Nuclear Information System (INIS)

    Zhou, Xianzhong; Li, Xiaoli; Huang, Feng; Zhong, Dingyong; Liu, Yuan

    2016-01-01

    In this work, the interface electronic properties of ZnO(0001)/CH 3 NH 3 PbI 3 were investigated by both X-ray and ultraviolet photoelectron spectroscopy. The CH 3 NH 3 PbI 3 thin films were grown on single crystalline ZnO(0001) substrate in situ by co-evaporation of PbI 2 and CH 3 NH 3 I at room temperature with various thickness from 1.5 nm to 190 nm. It was found that the conduction band minimum of ZnO lies 0.3 eV below that of CH 3 NH 3 PbI 3 , while the valence band maximum of ZnO lies 2.1 eV below that of CH 3 NH 3 PbI 3 , implying that the electrons can be effectively transported from CH 3 NH 3 PbI 3 to ZnO, and the holes can be blocked in the same time. A PbI 2 rich layer was initially formed at the interface of ZnO(0001)/CH 3 NH 3 PbI 3 during the growth. As a consequence, an interface barrier was built up which may prevent the electron transport at the interface.

  11. Microwave-assisted low temperature fabrication of ZnO thin film electrodes for solar energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Nirmal Peiris, T.A.; Sagu, Jagdeep S.; Hazim Yusof, Y.; Upul Wijayantha, K.G., E-mail: U.Wijayantha@lboro.ac.uk

    2015-09-01

    Metallic Zn thin films were electrodeposited on fluorine-doped tin oxide (FTO) glass substrates and oxidized under air by conventional radiant and microwave post-annealing methods to obtain ZnO thin film electrodes. The temperature of each post-annealing method was varied systematically and the photoelectrochemical (PEC) performance of electrodes was evaluated. The best photocurrent density achieved by the conventional radiant annealing method at 425 °C for 15 min was 93 μA cm{sup −2} at 1.23 V vs. NHE and the electrode showed an incident photon-to-electron conversion efficiency (IPCE) of 28.2%. X-ray diffractogram of this electrode showed that the oxidation of Zn to ZnO was not completed during the radiant annealing process as evident by the presence of metallic Zn in the electrode. For the electrode oxidized from Zn to ZnO under microwave irradiation, a photocurrent of 130 μA cm{sup −2} at 1.23 V vs. NHE and IPCE of 35.6% was observed after annealing for just 3 min, during which the temperature reached 250 °C. The photocurrent was 40% higher for the microwave annealed sample; this increase was attributed to higher surface area by preserving the nanostructure, confirmed by SEM surface topographical analysis, and better conversion yields to crystalline ZnO. Overall, it was demonstrated that oxidation of Zn to ZnO can be accomplished by microwave annealing five times faster than that of conventional annealing, thus resulting in a ~ 75% power saving. This study shows that microwave processing of materials offers significant economic and performance advantages for industrial scale up. - Highlights: • Conversion of Zn to ZnO by microwave and radiant annealing was conducted. • Microwave conversion was 5 times faster compared to radiant annealing. • Photoelectrochemical performance of microwave annealed ZnO was 40% higher. • Microwave annealing results in a 75% energy saving.

  12. ZnO nanorods arrays with Ag nanoparticles on the (002) plane derived by liquid epitaxy growth and electrodeposition process

    International Nuclear Information System (INIS)

    Yin Xingtian; Que Wenxiu; Shen Fengyu

    2011-01-01

    Well-aligned ZnO nanorods (NRs) arrays with Ag nanoparticles (NPs) on the (002) plane are obtained by combining a liquid epitaxy technique with an electrodeposition process. Cyclic voltammetry study is employed to understand the electrochemical behaviors of the electrodeposition system, and potentiostatic method is employed to deposit silver NPs on the ZnO NRs in the electrolyte with an Ag + concentration of 1 mM. X-ray diffraction analysis is used to study the crystalline properties of the as-prepared samples, and energy dispersive X-ray is adopted to confirm the composition at the surface of the deposited samples. Results indicate only a small quantity of silver can be deposited on the surface of the samples. Effect of the deposition potential and time on the morphological properties of the resultant Ag NPs/ZnO NRs are investigated in detail. Scanning electron microscopy images and transmission electron microscopy images indicate that the Ag NPs deposited on the (002) plane of the ZnO NRs with a large dispersion in diameter can be obtained by a single potentiostatic deposition process, while dense Ag NPs with a much smaller diameter dispersion on the top of the ZnO NRs, most of which locate on the conical tip of the ZnO NRs, can be obtained by a two-potentiostatic deposition process, The mechanism of this deposition process is also suggested.

  13. 3D imaging of intrinsic crystalline defects in zinc oxide by spectrally resolved two-photon fluorescence microscopy

    Science.gov (United States)

    Al-Tabich, A.; Inami, W.; Kawata, Y.; Jablonski, R.; Worasawat, S.; Mimura, H.

    2017-05-01

    We present a method for three-dimensional intrinsic defect imaging in zinc oxide (ZnO) by spectrally resolved two-photon fluorescence microscopy, based on the previously presented method of observing a photoluminescence distribution in wide-gap semiconductor crystals [Noor et al., Appl. Phys. Lett. 92(16), 161106 (2008)]. A tightly focused light beam radiated by a titanium-sapphire laser is used to obtain a two-photon excitation of selected area of the ZnO sample. Photoluminescence intensity of a specific spectral range is then selected by optical band pass filters and measured by a photomultiplier tube. Reconstruction of the specimen image is done by scanning the volume of interest by a piezoelectric positioning stage and measuring the spectrally resolved photoluminescence intensity at each point. The method has been proved to be effective at locating intrinsic defects of the ZnO crystalline structure in the volume of the crystal. The method was compared with other defect imaging and 3D imaging techniques like scanning tunneling microscopy and confocal microscopy. In both cases, our method shows superior penetration abilities and, as the only method, allows location of the defects of the chosen type in 3D. In this paper, we present the results of oxygen vacancies and zinc antisites imaging in ZnO nanorods.

  14. ZnO nanowall network grown by chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Amrita, E-mail: but.then.perhaps@gmail.com; Dhar, Subhabrata [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India)

    2015-06-24

    Network of wedge shaped ZnO nanowalls are grown on c-sapphire by Chemical Vapor Deposition (CVD) technique. Structural studies using x-ray diffraction show much better crystallinity in the nanowall sample as compared to the continuous film. Moreover, the defect related broad green luminescence is found to be suppressed in the nanowall sample. The low temperature photoluminescence study also suggests the quantum confinement of carriers in nanowall sample. Electrical studies performed on the nanowalls show higher conductivity, which has been explained in terms of the reduction of scattering cross-section as a result of 1D quantum confinement of carriers on the tip of the nanowalls.

  15. Al-doped ZnO seed layer-dependent crystallographic control of ZnO nanorods by using electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hyo-Soo; Choi, Nak-Jung [Department of Nano-Optical Engineering, Korea Polytechnic University, Siheung 429-793 (Korea, Republic of); Kim, Kyoung-Bo [Department of Metallurgical and Materials Engineering, Inha Technical College, Incheon 402-752 (Korea, Republic of); Kim, Moojin [Department of Renewable Energy, Jungwon University, Goesan-gun, Chungbuk 367-805 (Korea, Republic of); Lee, Sung-Nam, E-mail: snlee@kpu.ac.kr [Department of Nano-Optical Engineering, Korea Polytechnic University, Siheung 429-793 (Korea, Republic of)

    2016-10-15

    Highlights: • Polar and semipolar ZnO NRs were successfully achieved by hydrothermal synthesis. • Semipolar and polar ZnO NRs were grown on ZnO and AZO/m-sapphire, respectively. • Al % of AZO/m-sapphire enhanced the lateral growth rate of polar ZnO NRs. - Abstract: We investigated the effect of an Al-doped ZnO film on the crystallographic direction of ZnO nanorods (NRs) using electrochemical deposition. From high-solution X-ray diffraction measurements, the crystallographic plane of ZnO NRs grown on (1 0 0) ZnO/m-plane sapphire was (1 0 1). The surface grain size of the (100) Al-doped ZnO (AZO) film decreased with increasing Al content in the ZnO seed layer, implying that the Al dopant accelerated the three-dimensional (3D) growth of the AZO film. In addition, it was found that with increasing Al doping concentration of the AZO seed layer, the crystal orientation of the ZnO NRs grown on the AZO seed layer changed from [1 0 1] to [0 0 1]. With increasing Al content of the nonpolar (1 0 0) AZO seed layer, the small surface grains with a few crystallographic planes of the AZO film changed from semipolar (1 0 1) ZnO NRs to polar (0 0 1) ZnO NRs due to the increase of the vertical [0 0 1] growth rate of the ZnO NRs owing to excellent electrical properties.

  16. Impedance measurements of nanoporosity in electrodeposited ZnO films for DSSC

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, L.; Haller, S.; Rousset, J.; Donsanti, F.; Guillemoles, J.-F.; Lincot, D. [Institute of R and D on Photovoltaic Energy (IRDEP), UMR 7174 EDF-CNRS-Chimie Paristech, 6 quai Watier, 78400 Chatou (France); Decker, F. [Chemistry Department, ' ' Sapienza' ' Universita di Roma, 00185 Roma (Italy)

    2010-05-15

    Porous ZnO/dye hybrid films have been deposited by cathodic electrodeposition, and their active surface area after dye desorption was evaluated by impedance measurements with the semiconducting electrode polarized in accumulation. Surface area ratios have been deduced for a large number of films from imaginary part Z' vs. frequency measurements, having a constant rate over the frequency range from 0.5 Hz to > 50 Hz. The active surface increased by a factor of roughly 150 per every micron of film with respect to the area of a flat ZnO electrode: this linear relationship held from less than 1 {mu}m up to 9 {mu}m thick films. (author)

  17. Comparison of the thermal decomposition processes of several aminoalcohol-based ZnO inks with one containing ethanolamine

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Núñez, Alberto [University of Barcelona, Department of Electronics, Martí i Franquès 1, E08028-Barcelona (Spain); Roura, Pere [University of Girona, Department of Physics, Campus Montilivi, Edif. PII, E17071-Girona, Catalonia (Spain); López, Concepción [University of Barcelona, Department of Inorganic Chemistry, Martí i Franquès 1, E08028-Barcelona (Spain); Vilà, Anna, E-mail: avila@el.ub.edu [University of Barcelona, Department of Electronics, Martí i Franquès 1, E08028-Barcelona (Spain)

    2016-09-15

    Highlights: • Four alternatives to ethanolamine as stabilizer for the chemical synthesis of ZnO with zinc acetate dihydrate are proposed: aminopropanol, aminomethyl butanol, aminophenol and aminobenzyl alcohol. • Thermal decomposition processes described. Nitrogen cyclic compounds result. • Molecule flexibility helps decomposition, and in particular aliphatic aminoalcohols (quite flexible) decompose the precursor at lower temperatures than aromatic ones (more rigid). • Aminopropanol, aminomethyl butanol and aminobenzyl crystallize ZnO at a lower temperature than ethanolamine. • Nitrogen cyclic specimens have been identified and evolve in all cases (included ethanolamine) at temperatures up to 600 °C. - Abstract: Four inks for the production of ZnO semiconducting films have been prepared with zinc acetate dihydrate as precursor salt and one among the following aminoalcohols: aminopropanol (APr), aminomethyl butanol (AMB), aminophenol (APh) and aminobenzyl alcohol (AB) as stabilizing agent. Their thermal decomposition process has been analyzed in situ by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and evolved gas analysis (EGA), whereas the solid product has been analysed ex-situ by X-ray diffraction (XRD) and infrared spectroscopy (IR). Although, except for the APh ink, crystalline ZnO is already obtained at 300 °C, the films contain an organic residue that evolves at higher temperature in the form of a large variety of nitrogen-containing cyclic compounds. The results indicate that APr can be a better stabilizing agent than ethanolamine (EA). It gives larger ZnO crystal sizes with similar carbon content. However, a common drawback of all the amino stabilizers (EA included) is that nitrogen atoms have not been completely removed from the ZnO film at the highest temperature of our experiments (600 °C).

  18. Fabrication of thin ZnO films with wide-range tuned optical properties by reactive magnetron sputtering

    Science.gov (United States)

    Davydova, A.; Tselikov, G.; Dilone, D.; Rao, K. V.; Kabashin, A. V.; Belova, L.

    2018-02-01

    We report the manufacturing of thin zinc oxide films by reactive magnetron sputtering at room temperature, and examine their structural and optical properties. We show that the partial oxygen pressure in DC mode can have dramatic effect on absorption and refractive index (RI) of the films in a broad spectral range. In particular, the change of the oxygen pressure from 7% to 5% can lead to either conventional crystalline ZnO films having low absorption and characteristic descending dependence of RI from 2.4-2.7 RIU in the visible to 1.8-2 RIU in the near-infrared (1600 nm) range, or to untypical films, composed of ZnO nano-crystals embedded into amorphous matrix, exhibiting unexpectedly high absorption in the visible-infrared region and ascending dependence of RI with values varying from 1.5 RIU in the visible to 4 RIU in the IR (1600 nm), respectively. Untypical optical characteristics in the second case are explained by defects in ZnO structure arising due to under-oxidation of ZnO crystals. We also show that the observed defect-related film structure remains stable even after annealing of films under relatively high temperatures (30 min under 450 °C). We assume that both types of films can be of importance for photovoltaic (as contact or active layers, respectively), as well as for chemical or biological sensing, optoelectronics etc.

  19. Influence of corn flour as pore forming agent on porous ceramic material based mullite: Morphology and mechanical properties

    Directory of Open Access Journals (Sweden)

    Ayala-Landeros J.G.

    2016-01-01

    Full Text Available Porous material was processed by the mixing, molding and pressing the ceramic material, afterward burnout and sintering; through the forming porous, using corn flour at different concentration (10, 15 and 20 wt.% as a pore forming agent; in order to determinate the influence of porous on the mechanical, morphological and structural properties. The effect of the volume fraction of corn flour in the mullite matrix, at various sintering temperature from 1100, 1200, 1300 and 1500°C were tested by Diffraction X ray, showing changes in crystalline phases of mullite (3Al2O3-2SiO2, as result of sintered temperatures. Presence of talcum powder in formula, also cause the formation of the cordierite and cristobalite crystalline phases, giving stability and adhesion to the structure of ceramic material. When sintering at temperatures between 1300 to 1500°C, and it was used the concentration of corn flour 15-20 wt.% as forming agent porous, it was found the better mechanical properties. The scanning electron microscopy analysis shows the presence of open porosity and anisotropy.

  20. ZnO quantum dots–decorated ZnO nanowires for the enhancement of antibacterial and photocatalytic performances

    International Nuclear Information System (INIS)

    Wu, Jyh Ming; Tsay, Li-Yi

    2015-01-01

    We demonstrate highly antibacterial activities for killing off Staphylococcus aureus and Escherichia coli using ZnO nanowires decorated with ZnO quantum dots (so-called ZnO QDs/NWs) under visible-light irradiation and dark conditions. The average size of the ZnO QDs is in the range of 3–5 nm; these were uniformly dispersed on the ZnO nanowires’ surface to form the ZnO QDs/NWs. A significant blue-shift effect was observed using photoluminescence (PL) spectra. The size of the ZnO QDs is strongly dependent on the material’s synthesis time. The ZnO QDs/NWs exhibited an excellent photocatalytic activity under visible-light irradiation. The ZnO QDs’ active sites (i.e. the O–H bond and Zn"2"+) accelerate the photogenerated-carrier migration from the QDs to the NWs. As a consequence, the electrons reacted with the dissolved oxygen to form oxygen ions and produced hydroperoxyl radicals to enhance photocatalytic activity. The antibacterial activities (as indicated by R-factor-inhibiting activity) of the ZnO QDs/NWs for killing off Staphylococcus aureus and Escherichia coli is around 4.9 and 5.5 under visible-light irradiation and dark conditions, respectively. The hydroxyl radicals served as an efficient oxidized agent for decomposing the organic dye and microorganism species. The antibacterial activities of the ZnO QDs/NWs in the dark may be attributed to the Zn"2"+ ions that were released from the ZnO QDs and infused into the microbial solution against the growth of bacteria thus disrupting the microorganism. The highly antibacterial and photocatalytic activity of the ZnO QDs/NWs can be well implanted on a screen window, thus offering a promising solution to inhibit the spread of germs under visible-light and dark conditions. (paper)

  1. Structural and optical properties of DC magnetron sputtered ZnO films on glass substrate and their modification by Ag ions implantation

    Science.gov (United States)

    Ahmad, R.; Afzal, Naveed; Amjad, U.; Jabbar, S.; Hussain, T.; Hussnain, A.

    2017-07-01

    This work is focused on investigating the effects of deposition time and Ag ions implantation on structural and optical properties of ZnO film. The ZnO film was prepared on glass substrate by pulsed DC magnetron sputtering of pure Zn target in reactive oxygen environment for 2 h, 3 h, 4 h and 5 h respectively. X-ray diffraction results revealed polycrystalline ZnO film whose crystallinity was improved with increase of the deposition time. The morphological features indicated agglomeration of smaller grains into larger ones by increasing the deposition time. The UV-vis spectroscopy analysis depicted a small decrease in the band gap of ZnO from 3.36 eV to 3.27 eV with increase of deposition time. The Ag ions implantation in ZnO films deposited for 5 h on glass was carried out by using Pelletron Accelerator at different ions fluences ranging from 1  ×  1011 ions cm-2 to 2  ×  1012 ions cm-2. XRD patterns of Ag ions implanted ZnO did not show significant change in crystallite size by increasing ions fluence from 1  ×  1011 ions cm-2 to 5  ×  1011 ions cm-2. However, with further increase of the ions fluence, the crystallite size was decreased. The band gap of Ag ions implanted ZnO indicated anomalous variations with increase of the ions fluence.

  2. Chemical synthesis of porous web-structured CdS thin films for photosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Gosavi, S.R., E-mail: srgosavi.taloda@gmail.com [C. H. C. Arts, S. G. P. Commerce, and B. B. J. P. Science College, Taloda, Dist., Nandurbar 425413, M. S. (India); Nikam, C.P. [B.S.S.P.M.S. Arts, Commerce and Science College, Songir, Dist., Dhule 424309, M. S. (India); Shelke, A.R.; Patil, A.M. [Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Ryu, S.-W. [Department of Physics, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Bhat, J.S. [Department of Physics, Karnatak University, Dharwad 580003 (India); Deshpande, N.G., E-mail: nicedeshpande@yahoo.co.in [Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)

    2015-06-15

    The photo-activity of chemically deposited cadmium sulphide (CdS) thin film has been studied. The simple chemical route nucleates the CdS films with size up to the mean free path of the electron. Growth Kinematics of crystalline hexagonal CdS phase in the thin film form was monitored using X-ray diffraction. The time limitation set for the formation of the amorphous/nano-crystalline material is 40 and 60 min. Thereafter enhancement of the crystalline orientation along the desired plane was identified. Web-like porous structured surface morphology of CdS thin film over the entire area is observed. With decrease in synthesis time, increase of band gap energy i.e., a blue spectral shift was seen. The activation energy of CdS thin film at low and high temperature region was examined. It is considered that this activation energy corresponds to the donor levels associated with shallow traps or surface states of CdS thin film. The photo-electrochemical performance of CdS thin films in polysulphide electrolyte showed diode-like characteristics. Exposure of light on the CdS electrode increases the photocurrent. This suggests the possibility of production of free carriers via excited ions and also the light harvesting mechanism due to porous web-structured morphology. These studies hint that the obtained CdS films can work as a photosensor. - Highlights: • Photoactivity of chemically synthesized cadmium sulphide (CdS) thin films was studied. • Web-like porous structured surface morphology of CdS thin film over the entire area was observed. • Blue spectral shift with lowering of the synthesis time suggests films can act as a window layer over the absorber layer. • Porous web-structured CdS thin films can be useful in light harvesting.

  3. Chemical synthesis of porous web-structured CdS thin films for photosensor applications

    International Nuclear Information System (INIS)

    Gosavi, S.R.; Nikam, C.P.; Shelke, A.R.; Patil, A.M.; Ryu, S.-W.; Bhat, J.S.; Deshpande, N.G.

    2015-01-01

    The photo-activity of chemically deposited cadmium sulphide (CdS) thin film has been studied. The simple chemical route nucleates the CdS films with size up to the mean free path of the electron. Growth Kinematics of crystalline hexagonal CdS phase in the thin film form was monitored using X-ray diffraction. The time limitation set for the formation of the amorphous/nano-crystalline material is 40 and 60 min. Thereafter enhancement of the crystalline orientation along the desired plane was identified. Web-like porous structured surface morphology of CdS thin film over the entire area is observed. With decrease in synthesis time, increase of band gap energy i.e., a blue spectral shift was seen. The activation energy of CdS thin film at low and high temperature region was examined. It is considered that this activation energy corresponds to the donor levels associated with shallow traps or surface states of CdS thin film. The photo-electrochemical performance of CdS thin films in polysulphide electrolyte showed diode-like characteristics. Exposure of light on the CdS electrode increases the photocurrent. This suggests the possibility of production of free carriers via excited ions and also the light harvesting mechanism due to porous web-structured morphology. These studies hint that the obtained CdS films can work as a photosensor. - Highlights: • Photoactivity of chemically synthesized cadmium sulphide (CdS) thin films was studied. • Web-like porous structured surface morphology of CdS thin film over the entire area was observed. • Blue spectral shift with lowering of the synthesis time suggests films can act as a window layer over the absorber layer. • Porous web-structured CdS thin films can be useful in light harvesting

  4. Optimization of chemical displacement deposition of copper on porous silicon.

    Science.gov (United States)

    Bandarenka, Hanna; Redko, Sergey; Nenzi, Paolo; Balucani, Marco; Bondarenko, Vitaly

    2012-11-01

    Copper (II) sulfate was used as a source of copper to achieve uniform distribution of Cu particles deposited on porous silicon. Layers of the porous silicon were formed by electrochemical anodization of Si wafers in a mixture of HF, C3H7OH and deionized water. The well-known chemical displacement technique was modified to grow the copper particles of specific sizes. SEM and XRD analysis revealed that the outer surface of the porous silicon was covered with copper particles of the crystal orientation inherited from the planes of porous silicon skeleton. The copper crystals were found to have the cubic face centering elementary cell. In addition, the traces of Cu2O cubic primitive crystalline phases were identified. The dimensions of Cu particles were determined by the Feret's analysis of the SEM images. The sizes of the particles varied widely from a few to hundreds of nanometers. A phenomenological model of copper deposition was proposed.

  5. Formation of zinc-containing nanoparticles from Zn²⁺ ions in cell culture media: implications for the nanotoxicology of ZnO.

    Science.gov (United States)

    Turney, Terence W; Duriska, Martin B; Jayaratne, Vidura; Elbaz, Abdulkareem; O'Keefe, Sean J; Hastings, Andrew S; Piva, Terrence J; Wright, Paul F A; Feltis, Bryce N

    2012-10-15

    Zinc ions generate a range of poorly soluble Zn-containing nanoparticles when added to commonly used mammalian cell culture media. The formation of these nanoparticles confounds the use of soluble Zn salts as positive controls during cytotoxicity testing of other Zn-containing nanoparticles, such as ZnO. These nanoprecipitates can either be crystalline or amorphous and vary in composition depending upon the concentration of Zn(II) within the medium. The cytotoxicity and immune system response of these nanoparticles in situ are similar to those of 30 nm ZnO nanoparticles. The low residual level of truly soluble Zn species (taken as species passing through a 2 kDa membrane) in cell culture media with serum is insufficient to elicit any appreciable cytotoxicity. These observations highlight the importance of employing appropriate controls when studying ZnO nanoparticle toxicity and suggest a re-evaluation of the conclusions drawn in some previous cytotoxicity studies.

  6. Understanding lattice defects to influence ferromagnetic order of ZnO nanoparticles by Ni, Cu, Ce ions

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Kuldeep Chand, E-mail: dkuldeep.physics@gmail.com [Department of Physics, Panjab University, Chandigarh 160014 (India); Kotnala, R.K., E-mail: rkkotnala@gmail.com [CSIR-National Physical Laboratory, New Delhi 110012 (India)

    2017-02-15

    Future spintronics technologies based on diluted magnetic semiconductors (DMS) will rely heavily on a sound understanding of the microscopic origins of ferromagnetism in such materials. It remains unclear, however, whether the ferromagnetism in DMS is intrinsic - a precondition for spintronics - or due to dopant clustering. For this, we include a simultaneous doping from transition metal (Ni, Cu) and rare earth (Ce) ions in ZnO nanoparticles that increase the antiferromagnetic ordering to achieve high-T{sub c} ferromagnetism. Rietveld refinement of XRD patterns indicate that the dopant ions in ZnO had a wurtzite structure and the dopants, Ni{sup 2+}, Cu{sup 2+}, Ce{sup 3+} ions, are highly influenced the lattice constants to induce lattice defects. The Ni, Cu, Ce ions in ZnO have nanoparticles formation than nanorods was observed in pure sample. FTIR involve some organic groups to induce lattice defects and the metal-oxygen bonding of Zn, Ni, Cu, Ce and O atoms to confirm wurtzite structure. Raman analysis evaluates the crystalline quality, structural disorder and defects in ZnO lattice with doping. Photoluminescence spectra have strong near-band-edge emission and visible emission bands responsible for defects due to oxygen vacancies. The energy band gap is calculated using Tauc relation. Room temperature ferromagnetism has been described due to bound magnetic polarons formation with Ni{sup 2+}, Cu{sup 2+}, Ce{sup 3+} ions in ZnO via oxygen vacancies. The zero field and field cooling SQUID measurement confirm the strength of antiferromagnetism in ZnO. The field cooling magnetization is studied by Curie-Weiss law that include antiferromagnetic interactions up to low temperature. The XPS spectra have involve +3/+4 oxidation states of Ce ions to influence the observed ferromagnetism. - Graphical abstract: The lattice defects/vacancies attributed by Ni and Ce ions in the wurtzite ZnO structure are responsible in high T{sub c} -ferromagnetism due to long-range magnetic

  7. Structural Characterization and Magnetic Properties of Undoped and Ti-Doped ZnO Nanoparticles Prepared by Modified Oxalate Route

    Directory of Open Access Journals (Sweden)

    Ekane Peter Etape

    2018-01-01

    Full Text Available Ti-doped zinc oxide and pure zinc oxide nanoparticles were synthesized by a modified oxalate route using Averrhoa carambola fruit juice as a natural source of oxalate. The characteristics of the precursors have been investigated by FTIR, TGA, and XRD. The results from the investigation revealed that the precursors are zinc oxalate and Ti-doped zinc oxalate which readily decompose at 450°C. The as-prepared precursors were calcined at 450°C for 4 hours, and the decomposition products have been characterized by XRD, SEM, EDX, and VSM. XRD results revealed crystallinity with hexagonal wurtzite structure, while the average grain size was found to be 26 nm for Ti-doped ZnO and 29 nm for ZnO, using calculations based on Debye-Scherrer equation. Furthermore, the morphological studies by SEM showed particle agglomeration, while the presence of Ti3+ in the zinc oxide lattice is indicated by EDS analysis. Finally the hysteresis loop from VSM results shows that Ti-doped ZnO exhibits ferromagnetism.

  8. NMR of mercury in porous coal and silica gel

    International Nuclear Information System (INIS)

    Kasperovich, V.S.; Charnaya, E.V.; Tien, C.; Wur, C.S.

    2003-01-01

    Temperature dependences of the integral intensity and NMR signals Knight shift in 199 Hg nuclei are measured for liquid and solid mercury introduced into the porous coal and silica gel. The decrease in the crystallization completion temperature and small temperature hysteresis (from 4 up to 9 K) between melting and crystallization are identified. Mercury melting temperature in pores coincided with melting temperature of the bulk mercury. NMR signal from crystalline mercury under conditions of limited geometry was observed for the first time. It is ascertained that Knight shift for mercury in the pores both in liquid and crystalline phases is lesser than for the bulk mercury [ru

  9. Comparison of defects in crystalline oxide semiconductor materials by electron spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Tokiyoshi, E-mail: toki@rins.ryukoku.ac.jp; Kimura, Mutsumi [Department of Electronics and Informatics, Faculty of Science and Technology, Ryukoku University, 1-438, 1-5 Yokotani, Seta Oe-Cho, Otsu, Shiga 520-2194, Japan and Joint Research Center for Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-Cho, Otsu, Shiga 520-2194 (Japan)

    2015-03-15

    Defects in crystalline InGaZnO{sub 4} (IGZO) induced by plasma were investigated using electron spin resonance (ESR). Thermal stabilities and g factors of two ESR signals (A and B observed at g = 1.939 and 2.003, respectively) in IGZO were different from those of the ESR signals observed in component materials such as Ga{sub 2}O{sub 3} (signal observed at g = 1.969), In{sub 2}O{sub 3} (no signal), and ZnO (signal observed at g = 1.957). Signal A in IGZO increased upon annealing at 300 °C for 1 h, but decreased when annealing was continued for more than 2 h. On the other hand, signal B decreased upon annealing at 300 °C for 1 h. The ESR signal in ZnO decayed in accordance with a second-order decay model with a rate constant of 2.1 × 10{sup −4} s{sup −1}; however, this phenomenon was not observed in other materials. This difference might have been due to randomly formed IGZO lattices such as asymmetrical (Ga, Zn)O and In-O layers. Defects in signals A and B in IGZO were formed in trap states (at the deep level) and tail states, respectively.

  10. Ambient Layer-by-Layer ZnO Assembly for Highly Efficient Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Eita, Mohamed Samir

    2015-02-04

    The use of metal oxide interlayers in polymer solar cells has great potential because metal oxides are abundant, thermally stable, and can be used in fl exible devices. Here, a layer-by-layer (LbL) protocol is reported as a facile, room-temperature, solution-processed method to prepare electron transport layers from commercial ZnO nanoparticles and polyacrylic acid (PAA) with a controlled and tunable porous structure, which provides large interfacial contacts with the active layer. Applying the LbL approach to bulk heterojunction polymer solar cells with an optimized ZnO layer thickness of H25 nm yields solar cell power-conversion effi ciencies (PCEs) of ≈6%, exceeding the effi ciency of amorphous ZnO interlayers formed by conventional sputtering methods. Interestingly, annealing the ZnO/PAA interlayers in nitrogen and air environments in the range of 60-300 ° C reduces the device PCEs by almost 20% to 50%, indicating the importance of conformational changes inherent to the PAA polymer in the LbL-deposited fi lms to solar cell performance. This protocol suggests a new fabrication method for solution-processed polymer solar cell devices that does not require postprocessing thermal annealing treatments and that is applicable to fl exible devices printed on plastic substrates.

  11. Synthesis and characterization of DC magnetron sputtered ZnO thin films under high working pressures

    International Nuclear Information System (INIS)

    Hezam, M.; Tabet, N.; Mekki, A.

    2010-01-01

    ZnO thin films were deposited on glass substrates using direct current (dc) magnetron sputtering under high working pressures. A pure zinc target was used, and sputtering was carried out in an oxygen atmosphere. The working pressure was varied between 50 and 800 mTorr. XRD characterization showed that for a window of working pressures between 300 and 500 mTorr, the deposited films were polycrystalline, with strong preferential orientation of grains along the c-axis. The film deposited at 400 mTorr had the highest (002) peak with the largest estimated grain size. Outside this window, the crystallinity and c-orientation of grains are lost. The microstructure of the films was investigated by Atomic Force microscopy (AFM). Optical transparency of the films was about 85%. The films produced were highly resistive, which might provide new alternatives for the synthesis of ZnO thin films aimed for SAW devices.

  12. Oriented Attachment Is a Major Control Mechanism To Form Nail-like Mn-Doped ZnO Nanocrystals.

    Science.gov (United States)

    Patterson, Samuel; Arora, Priyanka; Price, Paige; Dittmar, Jasper W; Das, Vijay Kumar; Pink, Maren; Stein, Barry; Morgan, David Gene; Losovyj, Yaroslav; Koczkur, Kallum M; Skrabalak, Sara E; Bronstein, Lyudmila M

    2017-12-26

    Here, we present a controlled synthesis of Mn-doped ZnO nanoparticles (NPs) with predominantly nail-like shapes, whose formation occurs via tip-to-base-oriented attachment of initially formed nanopyramids, followed by leveling of sharp edges that lead to smooth single-crystalline "nails". This shape is prevalent in noncoordinating solvents such as octadecene and octadecane. Yet, the double bond in the former promotes oriented attachment. By contrast, Mn-doped ZnO NP synthesis in a weakly coordinating solvent, benzyl ether, results in dendritic structures because of random attachment of initial NPs. Mn-doped ZnO NPs possess a hexagonal wurtzite structure, and in the majority of cases, the NP surface is enriched with Mn, indicating a migration of Mn 2+ ions to the NP surface during the NP formation. When the NP formation is carried out without the addition of octadecyl alcohol, which serves as a surfactant and a reaction initiator, large, concave pyramid dimers are formed whose attachment takes place via basal planes. UV-vis and photoluminescence spectra of these NPs confirm the utility of controlling the NP shape to tune electro-optical properties.

  13. Annealing Temperature Dependent Structural and Optical Properties of RF Sputtered ZnO Thin Films.

    Science.gov (United States)

    Sharma, Shashikant; Varma, Tarun; Asokan, K; Periasamy, C; Boolchandani, Dharmendar

    2017-01-01

    This work investigates the effect of annealing temperature on structural and optical properties of ZnO thin films grown over Si 100 and glass substrates using RF sputtering technique. Annealing temperature has been varied from 300 °C to 600 °C in steps of 100, and different microstructural parameters such as grain size, dislocation density, lattice constant, stress and strain have been evaluated. The structural and surface morphological characterization has been done using X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). XRD analysis reveals that the peak intensity of 002 crystallographic orientation increases with increased annealing temperature. Optical characterization of deposited films have been done using UV-Vis-NIR spectroscopy and photoluminescence spectrometer. An increase in optical bandgap of deposited ZnO thin films with increasing annealing temperature has been observed. The average optical transmittance was found to be more than 85% for all deposited films. Photoluminiscense spectra (PL) suggest that the crystalline quality of deposited film has increased at higher annealing temperature.

  14. Antibacterial activity and biocompatibility of three-dimensional nanostructured porous granules of hydroxyapatite and zinc oxide nanoparticles—an in vitro and in vivo study

    International Nuclear Information System (INIS)

    Grenho, L; Salgado, C L; Monteiro, F J; Fernandes, M H; Ferraz, M P

    2015-01-01

    Ceramic scaffolds are widely studied in the bone tissue engineering field due to their potential in regenerative medicine. However, adhesion of microorganisms on biomaterials with subsequent formation of antibiotic-resistant biofilms is a critical factor in implant-related infections. Therefore, new strategies are needed to address this problem. In the present study, three-dimensional and interconnected porous granules of nanostructured hydroxyapatite (nanoHA) incorporated with different amounts of zinc oxide (ZnO) nanoparticles were produced using a simple polymer sponge replication method. As in vitro experiments, granules were exposed to Staphylococcus aureus and Staphylococcus epidermidis and, after 24 h, the planktonic and sessile populations were assessed. Cytocompatibility towards osteoblast-like cells (MG63 cell line) was also evaluated for a period of 1 and 3 days, through resazurin assay and imaging flow cytometry analysis. As in vivo experiments, nanoHA porous granules with and without ZnO nanoparticles were implanted into the subcutaneous tissue in rats and their inflammatory response after 3, 7 and 30 days was examined, as well as their antibacterial activity after 1 and 3 days of S. aureus inoculation. The developed composites proved to be especially effective at reducing bacterial activity in vitro and in vivo for a weight percentage of 2% ZnO, with a low cell growth inhibition in vitro and no differences in the connective tissue growth and inflammatory response in vivo. Altogether, these results suggest that nanoHA–ZnO porous granules have a great potential to be used in orthopaedic and dental applications as a template for bone regeneration and, simultaneously, to restrain biomaterial-associated infections. (paper)

  15. Antibacterial activity and biocompatibility of three-dimensional nanostructured porous granules of hydroxyapatite and zinc oxide nanoparticles—an in vitro and in vivo study

    Science.gov (United States)

    Grenho, L.; Salgado, C. L.; Fernandes, M. H.; Monteiro, F. J.; Ferraz, M. P.

    2015-08-01

    Ceramic scaffolds are widely studied in the bone tissue engineering field due to their potential in regenerative medicine. However, adhesion of microorganisms on biomaterials with subsequent formation of antibiotic-resistant biofilms is a critical factor in implant-related infections. Therefore, new strategies are needed to address this problem. In the present study, three-dimensional and interconnected porous granules of nanostructured hydroxyapatite (nanoHA) incorporated with different amounts of zinc oxide (ZnO) nanoparticles were produced using a simple polymer sponge replication method. As in vitro experiments, granules were exposed to Staphylococcus aureus and Staphylococcus epidermidis and, after 24 h, the planktonic and sessile populations were assessed. Cytocompatibility towards osteoblast-like cells (MG63 cell line) was also evaluated for a period of 1 and 3 days, through resazurin assay and imaging flow cytometry analysis. As in vivo experiments, nanoHA porous granules with and without ZnO nanoparticles were implanted into the subcutaneous tissue in rats and their inflammatory response after 3, 7 and 30 days was examined, as well as their antibacterial activity after 1 and 3 days of S. aureus inoculation. The developed composites proved to be especially effective at reducing bacterial activity in vitro and in vivo for a weight percentage of 2% ZnO, with a low cell growth inhibition in vitro and no differences in the connective tissue growth and inflammatory response in vivo. Altogether, these results suggest that nanoHA-ZnO porous granules have a great potential to be used in orthopaedic and dental applications as a template for bone regeneration and, simultaneously, to restrain biomaterial-associated infections.

  16. Photoluminescence quenching, structures, and photovoltaic properties of ZnO nanostructures decorated plasma grown single walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Aïssa, Brahim, E-mail: brahim.aissa@mpbc.ca [University of Quebec, Centre Énergie, Matériaux et Télécommunications, INRS-EMT (Canada); Nedil, Mourad [Telebec Wireless Underground Communication Laboratory, UQAT (Canada); Belaidi, Abdelhak; Isaifan, Rima J. [Hamad Bin Khalifa University, Qatar Foundation, Qatar Environment and Energy Research Institute (Qatar); Bentouaf, Ali [University Hassiba Ben Bouali, Physics Department, Faculty of Science (Algeria); Fauteux, Christian; Therriault, Daniel [École Polytechnique de Montréal, Laboratory for Multiscale Mechanics (LM2), Mechanical Engineering Department (Canada)

    2017-05-15

    Zinc oxide (ZnO) nanostructures were successfully grown directly on single walled carbon nanotubes (SWCNT) template through the CO{sub 2} laser-induced chemical liquid deposition (LCLD) process. Photoluminescence (PL) of the deposited ZnO/SWCNT hybrid composites exhibits, at room temperature, a narrow near UV band located at 390 nm with no emission bands in the visible region, indicating a high degree of crystalline quality of the ZnO nanostructures. Moreover, when the relative SWCNT loads are varied within the composites, the PL intensity and the diffused optical reflectance diminish in comparison with those of ZnO alone, owing to the transfer of photo-excited electrons from ZnO to the SWCNT, and the enhancement of the optical absorbance, respectively. Finally, these ZnO/SWCNT hybrid composites are integrated into a heterojunction photovoltaic-based device, using PEDOT:PSS on ITO/glass substrate. The devices show an evident p–n junction behavior in the dark, and a clear I–V curve shift downward when illuminated with an open-circuit voltage of 1.1 V, a short circuit current density of 14.05 μA cm{sup −2}, and a fill factor of ∼35%. These results indicate that these composites fabricated via LCLD process could be promising for optoelectronic and energy-harvesting devices.

  17. Highly Uniform Epitaxial ZnO Nanorod Arrays for Nanopiezotronics

    Directory of Open Access Journals (Sweden)

    Nagata T

    2009-01-01

    Full Text Available Abstract Highly uniform and c-axis-aligned ZnO nanorod arrays were fabricated in predefined patterns by a low temperature homoepitaxial aqueous chemical method. The nucleation seed patterns were realized in polymer and in metal thin films, resulting in, all-ZnO and bottom-contacted structures, respectively. Both of them show excellent geometrical uniformity: the cross-sectional uniformity according to the scanning electron micrographs across the array is lower than 2%. The diameter of the hexagonal prism-shaped nanorods can be set in the range of 90–170 nm while their typical length achievable is 0.5–2.3 μm. The effect of the surface polarity was also examined, however, no significant difference was found between the arrays grown on Zn-terminated and on O-terminated face of the ZnO single crystal. The transmission electron microscopy observation revealed the single crystalline nature of the nanorods. The current–voltage characteristics taken on an individual nanorod contacted by a Au-coated atomic force microscope tip reflected Schottky-type behavior. The geometrical uniformity, the designable pattern, and the electrical properties make the presented nanorod arrays ideal candidates to be used in ZnO-based DC nanogenerator and in next-generation integrated piezoelectric nano-electromechanical systems (NEMS.

  18. Effect of Annealing on the Structural and Optical Properties of Nano Fiber ZnO Films Deposited by Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    M. R. Islam

    2011-11-01

    Full Text Available Nano fiber ZnO films have been deposited on to glass substrate at 200 °C by a simple spray pyrolysis technique under atmospheric pressure. The effect of annealing temperature on the structural and optical properties of the as grown films has been studied by Scanning Electron Microscopy (SEM attached with an EDX, powder X-ray diffraction and UV visible spectroscopy. The atomic weight % of Zinc and Oxygen were found to be 49.22 % and 49.62 % respectively. The SEM micrographs show nano fiber structure and uniform deposition on the substrate. Average grain size of ZnO thin film was found in the range of 21 to 27 nm. The lattice constant a and c of ZnO thin film are determined at different annealing temperatures and values are found slightly larger than those of JCPDS data and lower for the sample annealed at 600 °C. The lattice parameters a and c decrease with increasing temperature. It reveals that the samples are poly-crystalline and having with low densities. Band gap energy of ZnO was found in the range of 3.33 to 3.17 eV and decreases with the increase of the annealing temperature.

  19. Study on the enhanced and stable field emission behavior of a novel electrosprayed Al-doped ZnO bilayer film

    KAUST Repository

    Mahmood, Khalid; Munir, Rahim; Swain, Bhabani Sankar; Han, Gill Sang; Kim, Byeong Jo; Jung, Hyun Suk

    2014-01-01

    A novel electrosprayed bilayer film composed of an over-layer (L 2) of aluminium-doped ZnO (AZO) nanoflakes (NF-AZO) and a under-layer (L1) of AZO nanocrystallites structure (NC-AZO) named BL:NF/NC-AZO is studied as an excellent field-emitter. The XRD pattern demonstrated that the doped bilayer film has preferential growth along the c-axis with hexagonal wurtzite structure and the (0 0 2) peak shifted toward the larger angle side after doping. The lowest turn-on field of ∼2.8 V μm-1, highest emission current density of 1.95 mA cm-2 is obtained for BL:NF/NC-AZO under the field of 6.8 V μm-1 and as well as the highest field enhancement factor (β) is estimated to be 4370 ± 3, compared to pure ZnO bilayer film (BL:NF/NC-ZnO) and also better than NC-AZO film and possesses the excellent long term stability of emission current. The PL intensity of doped ZnO bilayer film is very much stronger than pure ZnO bilayer structure. The superior field emission properties are attributed to the better morphologies, Al-doping and better crystallinity of bilayer AZO films. © 2014 The Royal Society of Chemistry.

  20. Room-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic properties

    Science.gov (United States)

    Guerrero, Miguel; Zhang, Jin; Altube, Ainhoa; García-Lecina, Eva; Roldan, Mònica; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi

    2016-01-01

    Abstract A facile synthetic approach to prepare porous ZnO@CuNi hybrid films is presented. Initially, magnetic CuNi porous layers (consisting of phase separated CuNi alloys) are successfully grown by electrodeposition at different current densities using H2 bubbles as a dynamic template to generate the porosity. The porous CuNi alloys serve as parent scaffolds to be subsequently filled with a solution containing ZnO nanoparticles previously synthesized by sol-gel. The dispersed nanoparticles are deposited dropwise onto the CuNi frameworks and the solvent is left to evaporate while the nanoparticles impregnate the interior of the pores, rendering ZnO-coated CuNi 3D porous structures. No thermal annealing is required to obtain the porous films. The synthesized hybrid porous layers exhibit an interesting combination of tunable ferromagnetic and photoluminescent properties. In addition, the aqueous photocatalytic activity of the composite is studied under UV−visible light irradiation for the degradation of Rhodamine B. The proposed method represents a fast and inexpensive approach towards the implementation of devices based on metal-semiconductor porous systems, avoiding the use of post-synthesis heat treatment steps which could cause deleterious oxidation of the metallic counterpart, as well as collapse of the porous structure and loss of the ferromagnetic properties. PMID:27877868

  1. Effect of the substrate surface topology and temperature on the structural properties of ZnO layers obtained by plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kitova, S; Danev, G, E-mail: skitova@clf.bas.b [Acad. J .Malinowski Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.109, 1113 Sofia (Bulgaria)

    2010-04-01

    In this work thin ZnO layers were grown by metal-organic PECVD (RF 13.56 MHz) on Si wafers. Zn acetylacetonate was used as a precursor and oxygen as oxidant. A system for dosed injection of the precursor and oxidant into the plasma reactor was developed. The influence of the substrate surface topology and temperature on the structural properties of the deposited layers was studied. ZnO and graphite powder dispersions were used to modify the silicon wafers before starting the deposition process of the layers. Some of the ZnO layers were deposited on the back, unpolished, side of Si wafers. Depositions at 400 {sup 0}C were performed to examine the effect of the substrate temperatures on the layer growth. The film structure was examined by XRD and SEM. The results show that all layers are crystalline with hexagonal wurtzite structure. The crystallites are preferentially oriented along the c-axis direction perpendicular to the substrate surfaces. ZnO layers deposited on thin ZnO seed films and clean Si surface exhibit well-developed grain structures and more c-axis preferred phase with better crystal quality than that of the layers deposited on graphite seed layer or rough, unpolished Si wafer.

  2. Carbon doped ZnO: Synthesis, characterization and interpretation

    International Nuclear Information System (INIS)

    Mishra, D.K.; Mohapatra, J.; Sharma, M.K.; Chattarjee, R.; Singh, S.K.; Varma, Shikha; Behera, S.N.; Nayak, Sanjeev K.; Entel, P.

    2013-01-01

    A novel thermal plasma in-flight technique has been adopted to synthesize nanocrystalline ZnO and carbon doped nanocrystalline ZnO matrix. Transmission electron microscopy (TEM) studies on these samples show the average particle sizes to be around 32 nm for ZnO and for carbon doped ZnO. An enhancement of saturation magnetization in nanosized carbon doped ZnO matrix by a factor of 3.8 has been found in comparison to ZnO nanoparticles at room temperature. Raman measurement clearly indicates the presence of Zn–C complexes surrounded by ZnO matrix in carbon doped ZnO. This indicates that the ferromagnetic signature in carbon doped ZnO arises from the creation of defects or the development of oxy-carbon clusters, in the carbon doped ZnO system. Theoretical studies based on density functional theory also support the experimental analyses. - Highlights: ► Synthesis of nanocrystalline ZnO and carbon doped ZnO matrix by inflight thermal plasma reactor. ► Enhancement of ferromagnetism in nanosized carbon doped ZnO in comparison to ZnO nanoparticles. ► Raman measurement indicates the presence of Zn–C complexes surrounded by ZnO matrix. ► Ferromagnetic signature in carbon doped ZnO arises from the development of oxy-carbon clusters. ► DFT supports experimental evidence of ferromagnetism in C doped ZnO nanoparticles.

  3. Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer.

    Science.gov (United States)

    Khun, Kimleang; Ibupoto, Zafar Hussain; AlSalhi, Mohamad S; Atif, Muhammad; Ansari, Anees A; Willander, Magnus

    2013-09-30

    In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices.

  4. Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer

    Directory of Open Access Journals (Sweden)

    Anees A. Ansari

    2013-09-01

    Full Text Available In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices.

  5. Ordered ZnO/AZO/PAM nanowire arrays prepared by seed-layer-assisted electrochemical deposition

    International Nuclear Information System (INIS)

    Shen, Yu-Min; Pan, Chih-Huang; Wang, Sheng-Chang; Huang, Jow-Lay

    2011-01-01

    An Al-doped ZnO (AZO) seed layer is prepared on the back side of a porous alumina membrane (PAM) substrate by spin coating followed by annealing in a vacuum at 400 °C. Zinc oxide in ordered arrays mediated by a high aspect ratio and an ordered pore array of AZO/PAM is synthesized. The ZnO nanowire array is prepared via a 3-electrode electrochemical deposition process using ZnSO 4 and H 2 O 2 solutions at a potential of − 1 V (versus saturated calomel electrode) and temperatures of 65 and 80 °C. The microstructure and chemical composition of the AZO seed layer and ZnO/AZO/PAM nanowire arrays are characterized by field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and energy-dispersive X-ray spectroscopy (EDS). Results indicate that the ZnO/AZO/PAM nanowire arrays were assembled in the nanochannel of the porous alumina template with diameters of 110–140 nm. The crystallinity of the ZnO nanowires depends on the AZO seed layer during the annealing process. The nucleation and growth process of ZnO/AZO/PAM nanowires are interpreted by the seed-layer-assisted growth mechanism.

  6. Epitaxial growth of Sb-doped nonpolar a-plane ZnO thin films on r-plane sapphire substrates by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hou-Guang, E-mail: houguang@isu.edu.tw [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Hung, Sung-Po [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China)

    2014-02-15

    Highlights: ► Sb-doped nonpolar a-plane ZnO layers were epitaxially grown on sapphire substrates. ► Crystallinity and electrical properties were studied upon growth condition and doping concentration. ► The out-of-plane lattice spacing of ZnO films reduces monotonically with increasing Sb doping level. ► The p-type conductivity of ZnO:Sb film is closely correlated with annealing condition and Sb doping level. -- Abstract: In this study, the epitaxial growth of Sb-doped nonpolar a-plane (112{sup ¯}0) ZnO thin films on r-plane (11{sup ¯}02) sapphire substrates was performed by radio-frequency magnetron sputtering. The influence of the sputter deposition conditions and Sb doping concentration on the microstructural and electrical properties of Sb-doped ZnO epitaxial films was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and the Hall-effect measurement. The measurement of the XRD phi-scan indicated that the epitaxial relationship between the ZnO:Sb layer and sapphire substrate was (112{sup ¯}0){sub ZnO}//(11{sup ¯}02){sub Al{sub 2O{sub 3}}} and [11{sup ¯}00]{sub ZnO}//[112{sup ¯}0]{sub Al{sub 2O{sub 3}}}. The out-of-plane a-axis lattice parameter of ZnO films was reduced monotonically with the increasing Sb doping level. The cross-sectional transmission electron microscopy (XTEM) observation confirmed the absence of any significant antimony oxide phase segregation across the thickness of the Sb-doped ZnO epitaxial film. However, the epitaxial quality of the films deteriorated as the level of Sb dopant increased. The electrical properties of ZnO:Sb film are closely correlated with post-annealing conditions and Sb doping concentrations.

  7. Fabrication of luminescent porous silicon with stain etches and evidence that luminescence originates in amorphous layers

    Science.gov (United States)

    Fathauer, R. W.; George, T.; Ksendzov, A.; Lin, T. L.; Pike, W. T.; Vasquez, R. P.; Wu, Z.-C.

    1992-01-01

    Simple immersion of Si in stain etches of HF:HNO3:H2O or NaNO2 in aqueous HF was used to produce films exhibiting luminescence in the visible similar to that of anodically-etched porous Si. All of the luminescent samples consist of amorphous porous Si in at least the near surface region. No evidence was found for small crystalline regions within these amorphous layers.

  8. Anti-microbial surfaces: An approach for deposition of ZnO nanoparticles on PVA-Gelatin composite film by screen printing technique

    Energy Technology Data Exchange (ETDEWEB)

    Meshram, J.V.; Koli, V.B.; Phadatare, M.R.; Pawar, S.H., E-mail: shpawar1946@gmail.com

    2017-04-01

    Initially micro-organisms get exposed to the surfaces, this demands development of anti-microbial surfaces to inhibit their proliferation. Therefore, herein, we attempt screen printing technique for development of PVA-GE/ZnO nanocomposite (PG/ZnO) films. The synthesis of PG/ZnO nanocomposite includes two steps as: (i) Coating of Zinc Oxide nanoparticles (ZnO NPs) by poly ethylene glycol in order to be compatible with organic counterparts. (ii) Deposition of coated nanoparticles on the PG film surface. The results suggest the enhancement in anti-microbial activity of PG/ZnO nanocomposite over pure ZnO NPs against both Gram positive Bacillus subtilis and Gram negative Escherichia coli from zone of inhibition. The uniformity in deposition is further confirmed by scanning electron microscopy (SEM) images. The phase identification of ZnO NPs and formation of PG/ZnO nanocomposite has been confirmed by X-ray diffraction (XRD) analysis and UV–vis spectroscopy (UV–vis). The Attenuated total reflection Spectroscopy (ATR) analysis indicates the ester bond between PVA and gelatin molecules. The thermal stability of nanocomposite is studied by thermogravimetric analysis (TGA) revealing increase in crystallinity due to ZnO NPs which could be utilized to inhibit the growth of micro-organisms. The tensile strength is found to be higher and percent elongation is double of PG/ZnO nanocomposite than PG composite film. - Highlights: • Synthesis of PG/ZnO nanocomposite by screen printing technique • Antimicrobial activity is due presence of ZnO nanoparticles on PG composite. • Improved tensile strength due to ZnO nanoparticles.

  9. Low temperature growth and properties of ZnO nanorod arrays

    International Nuclear Information System (INIS)

    Wu, Xiang; Zheng, Yufeng; Chen, Huibo; Gong, Lihong; Qu, Fengyu

    2011-01-01

    In this paper, well aligned ZnO nanorod arrays were synthesized by a simple hydrothermal route at a low temperature. The diameters of the as-synthesized products were 20–60 nm and the lengths were as much as several micrometers. The surfaces and tops of the nanorods were smooth. The as-grown nanorod arrays were investigated by x-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), photoluminescence (PL) spectroscopy and contact angle (CA) analysis. The as-grown nanorods were single crystalline structures with a wurtzite phase, and grew along the [0001] direction. The PL spectrum with only one strong peak at 383 nm shows good intrinsic emission

  10. Quenching of surface traps in Mn doped ZnO thin films for enhanced optical transparency

    International Nuclear Information System (INIS)

    Ilyas, Usman; Rawat, R.S.; Roshan, G.; Tan, T.L.; Lee, P.; Springham, S.V.; Zhang, Sam; Fengji Li; Chen, R.; Sun, H.D.

    2011-01-01

    The structural and photoluminescence analyses were performed on un-doped and Mn doped ZnO thin films grown on Si (1 0 0) substrate by pulsed laser deposition (PLD) and annealed at different post-deposition temperatures (500-800 deg. C). X-ray diffraction (XRD), employed to study the structural properties, showed an improved crystallinity at elevated temperatures with a consistent decrease in the lattice parameter 'c'. The peak broadening in XRD spectra and the presence of Mn 2p3/2 peak at ∼640 eV in X-ray Photoelectron Spectroscopic (XPS) spectra of the doped thin films confirmed the successful incorporation of Mn in ZnO host matrix. Extended near band edge emission (NBE) spectra indicated the reduction in the concentration of the intrinsic surface traps in comparison to the doped ones resulting in improved optical transparency. Reduced deep level emission (DLE) spectra in doped thin films with declined PL ratio validated the quenching of the intrinsic surface traps thereby improving the optical transparency and the band gap, essential for optoelectronic and spintronic applications. Furthermore, the formation and uniform distribution of nano-sized grains with improved surface features of Mn-doped ZnO thin films were observed in Field Emission Scanning Electron Microscopy (FESEM) images.

  11. Catalyst growth of single crystal aligned ZnO nanorods on ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dongxu; Andreazza, Caroline; Andreazza, Pascal [Centre de Recherche sur la Matiere Divisee, CNRS-Universite d' Orleans, 1b rue de la Ferollerie, 45071 Orleans cedex 2 (France)

    2005-02-01

    One dimensional ZnO nanorods were successfully fabricated on Si substrates via a simple physical vapor-phase transport method at 950 C. A ZnO shell covered Au/Zn alloy is assumed as the nucleation site, then ZnO nanorods grow following a vapor-solid (VS) process. In order to guide the nanorod growth a c-axis oriented ZnO thin film and Au catalyst were first deposited on Si (100) surface. SEM images show nanorods grown on this substrate are vertical to the substrate surface. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Annealing temperature dependence of the structures and properties of Co-implanted ZnO films

    International Nuclear Information System (INIS)

    Chen, Bin; Tang, Kun; Gu, Shulin; Ye, Jiandong; Huang, Shimin; Gu, Ran; Zhang, Yang; Yao, Zhengrong; Zhu, Shunming; Zheng, Youdou

    2014-01-01

    Highlights: • To avoid the forming of Co clusters and explore the origin of the magnetism, detailed investigation on the properties of the Co-implanted ZnO films with a rather low dose of 8 × 10 15 cm −2 and high implantation energy of 1 MeV were carried out. • The crystalline structure of the damaged region caused by ion-implantation has been recovered via the thermal annealing treatment at the temperature of 900 °C and above. • The low temperature magnetic hysteresis loops have indicated paramagnetism for the annealed films with weak ferromagnetic characteristics. • The zero-field cooling (ZFC) magnetization curves of the Co-implanted ZnO samples have varied from concave shape to convex one as the annealing temperature increased from 750 °C to 1000 °C. - Abstract: The effects of thermal annealing treatment on the structural, electrical, optical and magnetic properties of Co-implanted ZnO (0 0 0 1) films have been investigated in detail. The crystalline structure of the damaged region caused by ion implantation has been recovered via the thermal annealing at the temperature of 900 °C and above, and no Co clusters or its related oxide phases have been observed. The electrical and optical properties of the annealed films have shown strong dependence on the annealing temperature. The zero field cooling magnetization curves of the annealed films have varied from concave shape to convex one as the annealing temperature increased from 750 °C to 1000 °C, which are possibly tuned by the changes of the ratio of the itinerant carriers over the localized spin density. The low temperature magnetic hysteresis loops have indicated paramagnetic behavior for the annealed films with weak ferromagnetic characteristics. The ferromagnetism is attributed to the substituted Co 2+ ions and vacancy defects, while the paramagnetism could be induced by ionized interstitial Zn defects

  13. Polarity in GaN and ZnO: Theory, measurement, growth, and devices

    Science.gov (United States)

    Zúñiga-Pérez, Jesús; Consonni, Vincent; Lymperakis, Liverios; Kong, Xiang; Trampert, Achim; Fernández-Garrido, Sergio; Brandt, Oliver; Renevier, Hubert; Keller, Stacia; Hestroffer, Karine; Wagner, Markus R.; Reparaz, Juan Sebastián; Akyol, Fatih; Rajan, Siddharth; Rennesson, Stéphanie; Palacios, Tomás; Feuillet, Guy

    2016-12-01

    The polar nature of the wurtzite crystalline structure of GaN and ZnO results in the existence of a spontaneous electric polarization within these materials and their associated alloys (Ga,Al,In)N and (Zn,Mg,Cd)O. The polarity has also important consequences on the stability of the different crystallographic surfaces, and this becomes especially important when considering epitaxial growth. Furthermore, the internal polarization fields may adversely affect the properties of optoelectronic devices but is also used as a potential advantage for advanced electronic devices. In this article, polarity-related issues in GaN and ZnO are reviewed, going from theoretical considerations to electronic and optoelectronic devices, through thin film, and nanostructure growth. The necessary theoretical background is first introduced and the stability of the cation and anion polarity surfaces is discussed. For assessing the polarity, one has to make use of specific characterization methods, which are described in detail. Subsequently, the nucleation and growth mechanisms of thin films and nanostructures, including nanowires, are presented, reviewing the specific growth conditions that allow controlling the polarity of such objects. Eventually, the demonstrated and/or expected effects of polarity on the properties and performances of optoelectronic and electronic devices are reported. The present review is intended to yield an in-depth view of some of the hot topics related to polarity in GaN and ZnO, a fast growing subject over the last decade.

  14. Interface electronic properties of co-evaporated MAPbI{sub 3} on ZnO(0001): In situ X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xianzhong; Li, Xiaoli; Huang, Feng; Zhong, Dingyong, E-mail: dyzhong@mail.sysu.edu.cn [School of Physics and Engineering and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275 Guangzhou (China); Liu, Yuan [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou (China); University of the Chinese Academy of Sciences, 100049 Beijing (China)

    2016-03-21

    In this work, the interface electronic properties of ZnO(0001)/CH{sub 3}NH{sub 3}PbI{sub 3} were investigated by both X-ray and ultraviolet photoelectron spectroscopy. The CH{sub 3}NH{sub 3}PbI{sub 3} thin films were grown on single crystalline ZnO(0001) substrate in situ by co-evaporation of PbI{sub 2} and CH{sub 3}NH{sub 3}I at room temperature with various thickness from 1.5 nm to 190 nm. It was found that the conduction band minimum of ZnO lies 0.3 eV below that of CH{sub 3}NH{sub 3}PbI{sub 3}, while the valence band maximum of ZnO lies 2.1 eV below that of CH{sub 3}NH{sub 3}PbI{sub 3}, implying that the electrons can be effectively transported from CH{sub 3}NH{sub 3}PbI{sub 3} to ZnO, and the holes can be blocked in the same time. A PbI{sub 2} rich layer was initially formed at the interface of ZnO(0001)/CH{sub 3}NH{sub 3}PbI{sub 3} during the growth. As a consequence, an interface barrier was built up which may prevent the electron transport at the interface.

  15. Small-scale, self-propagating combustion realized with on-chip porous silicon.

    Science.gov (United States)

    Piekiel, Nicholas W; Morris, Christopher J

    2015-05-13

    For small-scale energy applications, energetic materials represent a high energy density source that, in certain cases, can be accessed with a very small amount of energy input. Recent advances in microprocessing techniques allow for the implementation of a porous silicon energetic material onto a crystalline silicon wafer at the microscale; however, combustion at a small length scale remains to be fully investigated, particularly with regards to the limitations of increased relative heat loss during combustion. The present study explores the critical dimensions of an on-chip porous silicon energetic material (porous silicon + sodium perchlorate (NaClO4)) required to propagate combustion. We etched ∼97 μm wide and ∼45 μm deep porous silicon channels that burned at a steady rate of 4.6 m/s, remaining steady across 90° changes in direction. In an effort to minimize the potential on-chip footprint for energetic porous silicon, we also explored the minimum spacing between porous silicon channels. We demonstrated independent burning of porous silicon channels at a spacing of 0.5 m on a chip surface area of 1.65 cm(2). Smaller porous silicon channels of ∼28 μm wide and ∼14 μm deep were also utilized. These samples propagated combustion, but at times, did so unsteadily. This result may suggest that we are approaching a critical length scale for self-propagating combustion in a porous silicon energetic material.

  16. Effect of Eu{sup 3+} on the structure, morphology and optical properties of flower-like ZnO synthesized using chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Koao, L.F. [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba ZA9866 (South Africa); Dejene, F.B., E-mail: dejenebf@qwa.ufs.ac.za [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba ZA9866 (South Africa); Kroon, R.E. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa)

    2014-03-15

    The chemical bath deposition (CBD) method was used to synthesize ZnO undoped and Eu{sup 3+}-doped nanostructures. The Eu{sup 3+} concentration was varied from 0.2 to 5 mol%. The X-ray diffraction (XRD) spectra of the undoped and low concentration Eu{sup 3+} doped ZnO nanostructures correspond to the various planes of a single hexagonal ZnO phase. The estimated crystalline grain size was calculated using the XRD spectra and was found to be in the order of 47±5 nm and independent on the Eu{sup 3+} ion concentration up to 4 mol%. Scanning electron microscopy (SEM) micrographs, however, indicate that the addition of Eu{sup 3+} influences the morphology of the samples. In the UV–vis study the highest band gap energy was obtained for the undoped ZnO. The effective band gap energy of the ZnO decayed exponentially with the addition of Eu{sup 3+} up to 4 mol% where impurity phases started to appear. Although weak luminescence was observed for excitation above the bandgap at 300 nm the best results were obtained by exciting the Eu{sup 3+} directly through the {sup 7}F{sub 0}→{sup 5}L{sub 6} absorption band at 395 nm. Excitation at a wavelength of 395 nm produced the highest Eu{sup 3+} luminescence intensity without any noticeable ZnO defect emissions. The maximum luminescence intensity for this excitation was obtained for ZnO:3 mol% Eu{sup 3+} ions and luminescent quenching was observed for higher Eu concentrations. -- Highlights: • CBD was used to synthesize ZnO undoped and Eu{sup 3+}-doped nanostructures. • The powders having particles with flower-like morphology with good optical properties. • Weak luminescence for excitation above the bandgap at 300 nm. • Excitation at 395 nm produced the highest pure Eu{sup 3+} luminescence.

  17. Bovine serum albumin adsorption on passivated porous silicon layers

    Science.gov (United States)

    Lockwood, David; Boukherroub, Rabah

    2005-03-01

    Hydrogen-terminated porous silicon (pSi) films were fabricated through electrochemical anodization of crystalline Si in HF-based solutions. The pSi-H surface was chemically functionalized by thermal reaction with undecylenic acid to produce an organic monolayer covalently attached to the silicon surface through Si-C bonds and bearing an acid terminal group. Bovine serum albumin (BSA) was then adsorbed onto the modified surface. SEM showed that the porous films were damaged and partially lifted off the Si substrate after a prolonged BSA adsorption. Ellipsometry revealed that the BSA had penetrated ˜ 1.3 micrometers into the porous structure. The film damage results from BSA anchoring itself tightly through strong electrostatic interactions to the acid-covered Si sidewalls. A change in surface tension during BSA film formation then causes the pSi layer to buckle and lift-off the underlying Si substrate. FTIR results from the modified pSi surfaces showed the presence of strong characteristic Amide I, II and III vibrational bands after BSA adsorption.

  18. Influence of Fe-doping on the structural, optical and magnetic properties of ZnO nanoparticles

    International Nuclear Information System (INIS)

    Liu Changzhen; Meng Dawei; Pang Haixia; Wu Xiuling; Xie Jing; Yu Xiaohong; Chen Long; Liu Xiaoyang

    2012-01-01

    Zn 1–x Fe x O (x=0–0.05) nanoparticles were synthesized without a catalyst by a two-step method. Fe was doped into ZnO by a source of metallic Fe sheets in a solid–liquid system at 80 °C, and the Zn 1−x Fe x O nanoparticles were obtained by annealing at 300 °C. X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy were used to characterize the structural properties of the as-grown Zn 1−x Fe x O. The optical properties were determined by Infrared and Ultraviolet–visible spectroscopy. The results confirm that the crystallinity of the ZnO is deteriorated due to Fe-doping. XPS results show that there is a mixture of Fe 0+ and the Fe 3+ in the representative Zn 0.95 Fe 0.05 O sample. The optical band gap of Zn 1−x Fe x O is enhanced with increasing of Fe-doping. Room temperature ferromagnetism was observed in all the Fe-doped ZnO samples. - Highlights: ► Zn 1−x Fe x O nanoparticles were synthesized with a simple two-step method. ► The Zn 1−x Fe x O predecessors were synthesized at a low temperature. ► Fe element was readily doped from the source of metallic Fe sheet. ► All the Fe doping ZnO samples have room temperature ferromagnetism. ► The structural and properties of the Zn 1−x Fe x O are regular with different x.

  19. Structural, optical, and LED characteristics of ZnO and Al doped ZnO thin films

    Science.gov (United States)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2017-05-01

    ZnO (pristine) and Al doped ZnO (AZO) films were prepared using sol-gel spin coating method. The XRD analysis showed the enhanced compressive stress in AZO film. The presence of extended states below the conduction band edge in AZO accounts for the redshift in optical bandgap. The PL spectra of AZO showed significant blue emission due to the carrier recombination from defect states. The TRPL curves showed the dominant DAP recombination in ZnO film, whereas defect related recombination in Al doped ZnO film. Color parameters viz: the dominant wavelength, color coordinates (x,y), color purity, luminous efficiency and correlated color temperature (CCT) of ZnO and AZO films are calculated using 1931 (CIE) diagram. Further, a strong blue emission with color purity more than 96% is observed in both the films. The enhanced blue emission in AZO significantly increased the luminous efficiency (22.8%) compared to ZnO film (10.8%). The prepared films may be used as blue phosphors in white light generation.

  20. Synthesis of cauliflower-like ZnO-TiO2 composite porous film and photoelectrical properties

    International Nuclear Information System (INIS)

    Jiang Yinhua; Yan Yun; Zhang Wenli; Ni Liang; Sun Yueming; Yin Hengbo

    2011-01-01

    A series of cauliflower-like TiO 2 -ZnO composite porous films with various molar ratios of Zn/Ti were prepared by the screen printing technique on the fluorine-doped SnO 2 (FTO) conducting glasses. The composite films were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray energy-dispersive spectrometry (EDS) and UV-vis transmittance spectrum. The results showed composite film electrode had a novel cauliflower-like morphology, which could effectively increase the dye absorption. The corresponding dye-sensitized solar cells (DSCs) were made by the composite film, and effects of ZnO incorporation on the photovoltaic performances of the DSCs were studied. With the Zn/Ti molar ratio not more than 3% in ZnO-TiO 2 composite film of about 5 μm-thickness, the photocurrent density (J sc ) and the solar-to-electricity conversion efficiency (η) were greatly improved compared with those of the DSC based on bare TiO 2 film of same thickness. This increases in efficiency and J sc were attributed to high electron conductivity of ZnO, the improved dye adsorption and large light transmittance of composite film.