WorldWideScience

Sample records for crystalline cellulose synthesis

  1. Synthesis and characterization of amorphous cellulose from triacetate of cellulose

    International Nuclear Information System (INIS)

    Vega-Baudrit, Jose; Sibaja, Maria; Nikolaeva, Svetlana; Rivera A, Andrea

    2014-01-01

    It was carried-out a study for the synthesis and characterization of amorphous cellulose starting from cellulose triacetate. X-rays diffraction was used in order to obtain the cellulose crystallinity degree, also infrared spectroscopy FTIR was used. (author)

  2. Isolation and Characterization of Two Cellulose Morphology Mutants of Gluconacetobacter hansenii ATCC23769 Producing Cellulose with Lower Crystallinity

    Science.gov (United States)

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh-hui

    2015-01-01

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the

  3. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity.

    Directory of Open Access Journals (Sweden)

    Ying Deng

    Full Text Available Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC. These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of

  4. Liquid crystalline solutions of cellulose in phosphoric acid for preparing cellulose yarns

    NARCIS (Netherlands)

    Boerstoel, H.

    2006-01-01

    The presen thesis describes a new process for manufacturing high tenacity and high modulus cellulose yarns. A new direct solvent for cellulose has been discovered, leading to liquid crystalline solutions. This new solvent, superphosphoric acid, rapidly dissolves cellulose. These liquid crystalline

  5. INFLUENCE OF CELLULOSE POLYMERIZATION DEGREE AND CRYSTALLINITY ON KINETICS OF CELLULOSE DEGRADATION

    OpenAIRE

    Edita Jasiukaitytė-Grojzdek,; Matjaž Kunaver,; Ida Poljanšek

    2012-01-01

    Cellulose was treated in ethylene glycol with p-toluene sulfonic acid monohydrate as a catalyst at different temperatures. At the highest treatment temperature (150 °C) liquefaction of wood pulp cellulose was achieved and was dependant on cellulose polymerization degree (DP). Furthermore, the rate of amorphous cellulose weight loss was found to increase with cellulose degree of polymerization, while the rate of crystalline cellulose weight loss was reciprocal to the size of the crystallites. ...

  6. Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility

    Directory of Open Access Journals (Sweden)

    Himmel Michael E

    2011-10-01

    Full Text Available Abstract Background In converting biomass to bioethanol, pretreatment is a key step intended to render cellulose more amenable and accessible to cellulase enzymes and thus increase glucose yields. In this study, four cellulose samples with different degrees of polymerization and crystallinity indexes were subjected to aqueous sodium hydroxide and anhydrous liquid ammonia treatments. The effects of the treatments on cellulose crystalline structure were studied, in addition to the effects on the digestibility of the celluloses by a cellulase complex. Results From X-ray diffractograms and nuclear magnetic resonance spectra, it was revealed that treatment with liquid ammonia produced the cellulose IIII allomorph; however, crystallinity depended on treatment conditions. Treatment at a low temperature (25°C resulted in a less crystalline product, whereas treatment at elevated temperatures (130°C or 140°C gave a more crystalline product. Treatment of cellulose I with aqueous sodium hydroxide (16.5 percent by weight resulted in formation of cellulose II, but also produced a much less crystalline cellulose. The relative digestibilities of the different cellulose allomorphs were tested by exposing the treated and untreated cellulose samples to a commercial enzyme mixture (Genencor-Danisco; GC 220. The digestibility results showed that the starting cellulose I samples were the least digestible (except for corn stover cellulose, which had a high amorphous content. Treatment with sodium hydroxide produced the most digestible cellulose, followed by treatment with liquid ammonia at a low temperature. Factor analysis indicated that initial rates of digestion (up to 24 hours were most strongly correlated with amorphous content. Correlation of allomorph type with digestibility was weak, but was strongest with cellulose conversion at later times. The cellulose IIII samples produced at higher temperatures had comparable crystallinities to the initial cellulose I

  7. On the determination of crystallinity and cellulose content in plant fibres

    DEFF Research Database (Denmark)

    Thygesen, Anders; Oddershede, Jette; Lilholt, Hans

    2005-01-01

    A comparative study of cellulose crystallinity based on the sample crystallinity and the cellulose content in plant fibres was performed for samples of different origin. Strong acid hydrolysis was found superior to agricultural fibre analysis and comprehensive plant fibre analysis for a consistent...... determination of the cellulose content. Crystallinity determinations were based on X-ray powder diffraction methods using side-loaded samples in reflection (Bragg-Brentano) mode. Rietveld refinements based on the recently published crystal structure of cellulose I beta followed by integration of the crystalline...... and 60 - 70 g/ 100 g cellulose in wood based fibres. These findings are significant in relation to strong fibre composites and bio-ethanol production....

  8. Pretreatment assisted synthesis and characterization of cellulose nanocrystals and cellulose nanofibers from absorbent cotton.

    Science.gov (United States)

    Abu-Danso, Emmanuel; Srivastava, Varsha; Sillanpää, Mika; Bhatnagar, Amit

    2017-09-01

    In this work, cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) were synthesized from absorbent cotton. Two pretreatments viz. dewaxing and bleaching with mild alkali were applied to the precursor (cotton). Acid hydrolysis was conducted with H 2 SO 4 and dissolution of cotton was achieved with a mixture of NaOH-thiourea-urea-H 2 O at -3°C. Synthesized cellulose samples were characterized using FTIR, XRD, SEM, BET, and zeta potential. It seems that synthesis conditions contributed to negative surface charge on cellulose samples and CNCs had the higher negative surface charge compared to CNFs. Furthermore, BET surface area, pore volume and pore diameter of CNCs were found to be higher as compared to CNFs. The dewaxed cellulose nanofibers (CNF D) had a slightly higher BET surface area (0.47m 2 /g) and bigger pore diameter (59.87Å) from attenuated contraction compared to waxed cellulose nanofibers (CNFW) (0.38m 2 /g and 44.89Å). The XRD of CNCs revealed a semi-crystalline structure and the dissolution agents influenced the crystallinity of CNFs. SEM images showed the porous nature of CNFs, the flaky nature and the nano-sized width of CNCs. Synthesized CNF D showed a better potential as an adsorbent with an average lead removal efficiency of 91.49% from aqueous solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Determination of cellulose I crystallinity by FT-Raman spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Sally A. Ralph

    2009-01-01

    Two new methods based on FT-Raman spectroscopy, one simple, based on band intensity ratio, and the other, using a partial least-squares (PLS) regression model, are proposed to determine cellulose I crystallinity. In the simple method, crystallinity in semicrystalline cellulose I samples was determined based on univariate regression that was first developed using the...

  10. Vibrational sum frequency generation (SFG) spectroscopic study of crystalline cellulose in biomass

    Science.gov (United States)

    Kim, Seong H.; Lee, Christopher M.; Kafle, Kabindra; Park, Yong Bum; Xi, Xiaoning

    2013-09-01

    The noncentrosymmetry requirement of sum frequency generation (SFG) spectroscopy allows selective detection of crystalline cellulose in plant cell walls and lignocellulose biomass without spectral interferences from hemicelluloses and lignin. In addition, the phase synchronization requirement of the SFG process allows noninvasive investigation of spatial arrangement of crystalline cellulose microfibrils in the sample. This paper reviews how these principles are applied to reveal structural information of crystalline cellulose in plant cell walls and biomass.

  11. Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate

    Science.gov (United States)

    Shishir P.S. Chundawat; Giovanni Bellesia; Nirmal Uppugundla; Leonardo da Costa Sousa; Dahai Gao; Albert M. Cheh; Umesh P. Agarwal; Christopher M. Bianchetti; George N. Phillips; Paul Langan; Venkatesh Balan; S. Gnanakaran; Bruce E. Dale

    2011-01-01

    Conversion of lignocellulose to biofuels is partly inefficient due to the deleterious impact of cellulose crystallinity on enzymatic saccharification. We demonstrate how the synergistic activity of cellulases was enhanced by altering the hydrogen bond network within crystalline cellulose fibrils. We provide a molecular-scale explanation of these phenomena through...

  12. Coarse-grained model for the interconversion between different crystalline cellulose allomorphs

    Energy Technology Data Exchange (ETDEWEB)

    Langan, Paul [ORNL

    2012-01-01

    We present the results of Langevin dynamics simulations on a coarse grained model for crystalline cellulose. In particular, we analyze two different cellulose crystalline forms: cellulose I (the natural form of cellulose) and cellulose IIII (obtained after cellulose I is treated with anhydrous liquid ammonia). Cellulose IIII has been the focus of wide interest in the field of cellulosic biofuels as it can be efficiently hydrolyzed to glucose (its enzymatic degradation rates are up to 5 fold higher than those of cellulose I ). In turn, glucose can eventually be fermented into fuels. The coarse-grained model presented in this study is based on a simplified geometry and on an effective potential mimicking the changes in both intracrystalline hydrogen bonds and stacking interactions during the transition from cellulose I to cellulose IIII. The model accurately reproduces both structural and thermomechanical properties of cellulose I and IIII. The work presented herein describes the structural transition from cellulose I to cellulose IIII as driven by the change in the equilibrium state of two degrees of freedom in the cellulose chains. The structural transition from cellulose I to cellulose IIII is essentially reduced to a search for optimal spatial arrangement of the cellulose chains.

  13. Enzymatic hydrolysis of loblolly pine: effects of cellulose crystallinity and delignification

    Science.gov (United States)

    Umesh P. Agarwal; J.Y. Zhu; Sally A. Ralph

    2013-01-01

    Hydrolysis experiments with commercial cellulases have been performed to understand the effects of cell wall crystallinity and lignin on the process. In the focus of the paper are loblolly pine wood samples, which were systematically delignified and partly ball-milled, and, for comparison, Whatman CC31 cellulose samples with different crystallinities. In pure cellulose...

  14. Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy.

    Science.gov (United States)

    Barnette, Anna L; Bradley, Laura C; Veres, Brandon D; Schreiner, Edward P; Park, Yong Bum; Park, Junyeong; Park, Sunkyu; Kim, Seong H

    2011-07-11

    The selective detection of crystalline cellulose in biomass was demonstrated with sum-frequency-generation (SFG) vibration spectroscopy. SFG is a second-order nonlinear optical response from a system where the optical centrosymmetry is broken. In secondary plant cell walls that contain mostly cellulose, hemicellulose, and lignin with varying concentrations, only certain vibration modes in the crystalline cellulose structure can meet the noninversion symmetry requirements. Thus, SFG can be used to detect and analyze crystalline cellulose selectively in lignocellulosic biomass without extraction of noncellulosic species from biomass or deconvolution of amorphous spectra. The selective detection of crystalline cellulose in lignocellulosic biomass is not readily achievable with other techniques such as XRD, solid-state NMR, IR, and Raman analyses. Therefore, the SFG analysis presents a unique opportunity to reveal the cellulose crystalline structure in lignocellulosic biomass.

  15. Characterization of low crystallinity cellulose as a direct compression excipient: Effects of physicochemical properties of cellulose excipients on their tabletting characteristics

    Science.gov (United States)

    Kothari, Sanjeev Hukmichand

    A scale-up method for the preparation of a new excipient, low crystallinity powder cellulose (LCPC), was established. Physicochemical characterization of a series of LCPC materials was performed, and compared to the physicochemical properties of commercially existing cellulose excipients, microcrystalline cellulose (AvicelsRTM) and powdered celluloses (Solka Flocs RTM). Low crystallinity cellulose powders had high amorphous contents (>50%) and a low degree of polymerization (2 kg), typically showed low yield pressures (200 MPa), and intermediate compactability (250--600 MPa2) values. Mechanical characterization of the three types of cellulose materials, and the statistical models obtained for the results, indicated that a high porosity (>810%), a high average of amorphous content (>40%) and moisture content (>4%), and a low degree of polymerization (disintegration times (5 to 90 seconds) for LCPC tablets at low as well as high solid fractions suggest the high affinity of these materials to water, due to their high amorphous contents that expose a larger number of hydroxyl groups to water, compared to the more crystalline materials, such as microcrystalline celluloses, the tablets of which showed extremely long disintegration times (24 to 6000 seconds). The physicochemical and mechanical characterization of low crystallinity cellulose suggests it to be a promising direct compression excipient for immediate release tablet formulations.

  16. Cellulose I crystallinity determination using FT-Raman spectroscopy : univariate and multivariate methods

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Sally A. Ralph

    2010-01-01

    Two new methods based on FT–Raman spectroscopy, one simple, based on band intensity ratio, and the other using a partial least squares (PLS) regression model, are proposed to determine cellulose I crystallinity. In the simple method, crystallinity in cellulose I samples was determined based on univariate regression that was first developed using the Raman band...

  17. Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD.

    Science.gov (United States)

    Zhang, Jiafu; Wang, Yixun; Zhang, Liye; Zhang, Ruihong; Liu, Guangqing; Cheng, Gang

    2014-01-01

    X-ray diffraction (XRD) was used to understand the interactions of cellulose in lignocellulosic biomass with ionic liquids (ILs). The experiment was designed in such a way that the process of swelling and solubilization of crystalline cellulose in plant cell walls was followed by XRD. Three different feedstocks, switchgrass, corn stover and rice husk, were pretreated using 1-butyl-3-methylimidazolium acetate ([C4mim][OAc]) at temperatures of 50-130°C for 6h. At a 5 wt.% biomass loading, increasing pretreatment temperature led to a drop in biomass crystallinity index (CrI), which was due to swelling of crystalline cellulose. After most of the crystalline cellulose was swollen with IL molecules, a low-order structure was found in the pretreated samples. Upon further increasing temperature, cellulose II structure started to form in the pretreated biomass samples as a result of solubilization of cellulose in [C4mim][OAc] and subsequent regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Cellulose Synthesis in Agrobacterium tumefaciens

    Energy Technology Data Exchange (ETDEWEB)

    Alan R. White; Ann G. Matthysse

    2004-07-31

    We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants including CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins required for cellulose synthesis. We have carried out one

  19. Comparative Community Proteomics Demonstrates the Unexpected Importance of Actinobacterial Glycoside Hydrolase Family 12 Protein for Crystalline Cellulose Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hiras, Jennifer; Wu, Yu-Wei; Deng, Kai; Nicora, Carrie D.; Aldrich, Joshua T.; Frey, Dario; Kolinko, Sebastian; Robinson, Errol W.; Jacobs, Jon M.; Adams, Paul D.; Northen, Trent R.; Simmons, Blake A.; Singer, Steven W.

    2016-08-23

    ABSTRACT

    Glycoside hydrolases (GHs) are key enzymes in the depolymerization of plant-derived cellulose, a process central to the global carbon cycle and the conversion of plant biomass to fuels and chemicals. A limited number of GH families hydrolyze crystalline cellulose, often by a processive mechanism along the cellulose chain. During cultivation of thermophilic cellulolytic microbial communities, substantial differences were observed in the crystalline cellulose saccharification activities of supernatants recovered from divergent lineages. Comparative community proteomics identified a set of cellulases from a population closely related to actinobacteriumThermobispora bisporathat were highly abundant in the most active consortium. Among the cellulases fromT. bispora, the abundance of a GH family 12 (GH12) protein correlated most closely with the changes in crystalline cellulose hydrolysis activity. This result was surprising since GH12 proteins have been predominantly characterized as enzymes active on soluble polysaccharide substrates. Heterologous expression and biochemical characterization of the suite ofT. bisporahydrolytic cellulases confirmed that the GH12 protein possessed the highest activity on multiple crystalline cellulose substrates and demonstrated that it hydrolyzes cellulose chains by a predominantly random mechanism. This work suggests that the role of GH12 proteins in crystalline cellulose hydrolysis by cellulolytic microbes should be reconsidered.

    IMPORTANCECellulose is the most abundant organic polymer on earth, and its enzymatic hydrolysis is a key reaction in the global carbon cycle and the conversion of plant biomass to biofuels. The glycoside hydrolases that depolymerize crystalline cellulose have been primarily characterized from isolates. In this study, we demonstrate that adapting microbial consortia from compost to grow on crystalline cellulose

  20. Cellulose nanocrystal from pomelo (C. Grandis osbeck) albedo: Chemical, morphology and crystallinity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Zain, Nor Fazelin Mat; Yusop, Salma Mohamad [Food Science Program, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor (Malaysia); Ahmad, Ishak [Polymer Research Centre (PORCE), School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor (Malaysia)

    2013-11-27

    Citrus peel is one of the under-utilized waste materials that have potential in producing a valuable fibre, which are cellulose and cellulose nanocrystal. Cellulose was first isolated from pomelo (C. Grandis Osbeck) albedo by combination of alkali treatment and bleaching process, followed by acid hydrolysis (65% H{sub 2}SO{sub 4}, 45 °C, 45min) to produce cellulose nanocrystal. The crystalline, structural, morphological and chemical properties of both materials were studied. Result reveals the crystallinity index obtained from X-ray diffraction for cellulose nanocrystal was found higher than extracted cellulose with the value of 60.27% and 57.47%, respectively. Fourier transform infrared showed that the chemical treatments removed most of the hemicellulose and lignin from the pomelo albedo fibre. This has been confirmed further by SEM and TEM for their morphological studies. These results showed that cellulose and cellulose nanocrystal were successfully obtained from pomelo albedo and might be potentially used in producing functional fibres for food application.

  1. Cellulose nanocrystal from pomelo (C. Grandis osbeck) albedo: Chemical, morphology and crystallinity evaluation

    International Nuclear Information System (INIS)

    Zain, Nor Fazelin Mat; Yusop, Salma Mohamad; Ahmad, Ishak

    2013-01-01

    Citrus peel is one of the under-utilized waste materials that have potential in producing a valuable fibre, which are cellulose and cellulose nanocrystal. Cellulose was first isolated from pomelo (C. Grandis Osbeck) albedo by combination of alkali treatment and bleaching process, followed by acid hydrolysis (65% H 2 SO 4 , 45 °C, 45min) to produce cellulose nanocrystal. The crystalline, structural, morphological and chemical properties of both materials were studied. Result reveals the crystallinity index obtained from X-ray diffraction for cellulose nanocrystal was found higher than extracted cellulose with the value of 60.27% and 57.47%, respectively. Fourier transform infrared showed that the chemical treatments removed most of the hemicellulose and lignin from the pomelo albedo fibre. This has been confirmed further by SEM and TEM for their morphological studies. These results showed that cellulose and cellulose nanocrystal were successfully obtained from pomelo albedo and might be potentially used in producing functional fibres for food application

  2. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    Energy Technology Data Exchange (ETDEWEB)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-09-25

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  3. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    International Nuclear Information System (INIS)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-01-01

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  4. Probing crystallinity of never-dried wood cellulose with Raman spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Sally A. Ralph; Richard S. Reiner; Carlos Baez

    2016-01-01

    The structure of wood cell wall cellulose in its native state remains poorly understood, limiting the progress of research and development in numerous areas, including plant science, biofuels, and nanocellulose based materials. It is generally believed that cellulose in cell wall microfibrils has both crystalline and amorphous regions. However, there is evidence that...

  5. New thermophilic anaerobes that decompose crystalline cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Taya, M; Hinoki, H; Suzuki, Y; Yagi, T; Yap, M G.S.; Kobayashi, T

    1985-01-01

    Two strains (designated as 25A and 3B) of cellulolytic, thermophilic, anaerobic, spore-forming bacteria were newly isolated from an alkaline hot spring through enrichment cultures at 60/sup 0/C. Though strain 25A was nearly identical to Clostridium thermocellum ATCC 27405 as a reference strain, strain 3B had some characteristics different from the reference; no flagellation, alkalophilic growth property (optimum pH of 7.5-8) and orange-colored pigmentation of the cell mass. Strain 3B effectively decomposed micro-crystalline cellulose (Avicel) and raw cellulosics (rice straw, newspaper, and bagasse) without physical or chemical pretreatments. 20 references, 2 figures, 2 tables.

  6. Green thermal-assisted synthesis and characterization of novel cellulose-Mg(OH)2 nanocomposite in PEG/NaOH solvent.

    Science.gov (United States)

    Ponomarev, Nikolai; Repo, Eveliina; Srivastava, Varsha; Sillanpää, Mika

    2017-11-15

    Synthesis of nanocomposites was performed using microcrystalline cellulose (MCC), MgCl 2 in PEG/NaOH solvent by a thermal-assisted method at different temperatures by varying time and the amount of MCC. Results of XRD, FTIR, and EDS mapping showed that the materials consisted of only cellulose (CL) and magnesium hydroxide (MH). According to FTIR and XRD, it was found that crystallinity of MH in cellulose nanocomposites is increased with temperature and heating time and decreased with increasing of cellulose amount. The PEG/NaOH solvent has a significant effect on cellulose and Mg(OH) 2 morphology. BET and BJH results demonstrated the effects of temperature and cellulose amount on the pore size corresponding to mesoporous materials. TG and DTG analyses showed the increased thermal stability of cellulose nanocomposites with increasing temperature. TEM and SEM analyses showed an even distribution of MH nanostructures with various morphology in the cellulose matrix. The cellulose presented as the polymer matrix in the nanocomposites. It was supposed the possible interaction between cellulose and Mg(OH) 2 . The novel synthesis method used in this study is feasible, cost-efficient and environmentally friendly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Temporal changes in wood crystalline cellulose during degradation by brown rot fungi

    DEFF Research Database (Denmark)

    Howell, Caitlin; Hastrup, Anne Christine Steenkjær; Goodell, Barry

    2009-01-01

    The degradation of wood by brown rot fungi has been studied intensely for many years in order to facilitate the preservation of in-service wood. In this work we used X-ray diffraction to examine changes in wood cellulose crystallinity caused by the brown rot fungi Gloeophyllum trabeum, Coniophora...... planes in all degraded samples after roughly 20% weight loss, as well as a decrease in the average observed relative peak width at 2¿ = 22.2°. These results may indicate a disruption of the outer most semi-crystalline cellulose chains comprising the wood microfibril. X-ray diffraction analysis of wood...... subjected to biological attack by fungi may provide insight into degradative processes and wood cellulose structure....

  8. EFFECTS OF ULTRASOUND ON THE MORPHOLOGY, PARTICLE SIZE, CRYSTALLINITY, AND CRYSTALLITE SIZE OF CELLULOSE

    Directory of Open Access Journals (Sweden)

    SUMARI SUMARI

    2014-05-01

    Full Text Available The aim of this study is to optimize ultrasound treatment to produce fragment of cellulose that is low in particles size, crystallite size, and crystallinity. Slurry of 1 % (w/v the cellulose was sonicated at different time periods and temperatures. An ultrasonic reactor was operated at 300 Watts and 28 kHz to cut down the polymer into smaller particles. We proved that ultrasound damages and fragments the cellulose particles into shorter fibers. The fiber lengths were reduced from in the range of 80-120 µm to 30-50 µm due to an hour ultrasonication and became 20-30 µm after 5 hours. It was also found some signs of erosion on the surface and stringy. The acoustic cavitation also generated a decrease in particle size, crystallinity, and crystallite size of the cellulose along with increasing sonication time but it did not change d-spacing. However, the highest reduction of particle size, crystallite size, and crystallinity of the cellulose occurred within the first hour of ultrasonication, after which the efficiency was decreased. The particle diameter, crystallite size, and crystallinity were decreased from 19.88 µm to 15.96 µm, 5.81 Å to 2.98 Å, and 77.7% to 73.9% respectively due to an hour ultrasound treatment at 40 °C. The treatment that was conducted at 40 °C or 60 °C did not give a different effect significantly. Cellulose with a smaller particle and crystallite size as well as a more amorphous shape is preferred for further study.

  9. Enhancement of crystallinity of cellulose produced by Escherichia coli through heterologous expression of bcsD gene from Gluconacetobacter xylinus.

    Science.gov (United States)

    Sajadi, Elaheh; Babaipour, Valiollah; Deldar, Ali Asghar; Yakhchali, Bagher; Fatemi, Seyed Safa-Ali

    2017-09-01

    To evaluate the crystallinity index of the cellulose produced by Escherichia coli Nissle 1917 after heterologous expression of the cellulose synthase subunit D (bcsD) gene of Gluconacetobacter xylinus BPR2001. The bcsD gene of G. xylinus BPR2001 was expressed in E. coli and its protein product was visualized using SDS-PAGE. FTIR analysis showed that the crystallinity index of the cellulose produced by the recombinants was 0.84, which is 17% more than that of the wild type strain. The increased crystallinity index was also confirmed by X-ray diffraction analysis. The cellulose content was not changed significantly after over-expressing the bcsD. The bcsD gene can improve the crystalline structure of the bacterial cellulose but there is not any significant difference between the amounts of cellulose produced by the recombinant and wild type E. coli Nissle 1917.

  10. Temperature dependence of viscoelasticity of crystalline cellulose with different molecular weights added to silicone elastomer

    Science.gov (United States)

    Sugino, Naoto; Nakajima, Shinya; Kameda, Takao; Takei, Satoshi; Hanabata, Makoto

    2017-08-01

    Silicone elastomers ( polydimethylsiloxane _ PDMS) are widely used in the field of imprint lithography and microcontactprinting (μCP). When performing microcontactprinting, the mechanical properties of the PCMS as a base material have a great influence on the performance of the device. Cellulose nanofibers having features of high strength, high elasticity and low coefficient of linear expansion have attracted attention in recent years due to their characteristics. Therefore, three types of crystalline cellulose having different molecular weights were added to PDMS to prepare a composite material, and dynamic viscoelasticity was measured using a rheometer. The PDMS with the highest molecular weight crystalline cellulose added exhibited smaller storage modulus than PDMS with other molecular weight added in all temperature ranges. Furthermore, when comparing PDMS to which crystalline cellulose was added and PDMS which is not added, the storage modulus of PDMS to which cellulose was added in the low temperature region was higher than that of PDMS to which it was not added, but it was reversed in the high temperature region It was a result. When used in a low temperature range (less than 150 ° C.), it can be said that cellulose can function as a reinforcing material for PDMS.

  11. Regioselective Synthesis of Cellulose Ester Homopolymers

    Science.gov (United States)

    Daiqiang Xu; Kristen Voiges; Thomas Elder; Petra Mischnick; Kevin J. Edgar

    2012-01-01

    Regioselective synthesis of cellulose esters is extremely difficult due to the small reactivity differences between cellulose hydroxyl groups, small differences in steric demand between acyl moieties of interest, and the difficulty of attaching and detaching many protecting groups in the presence of cellulose ester moieties without removing the ester groups. Yet the...

  12. Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size

    Science.gov (United States)

    Umesh P. Agarwal; Sally A. Ralph; Carlos Baez; Richard S. Reiner; Steve P. Verrill

    2017-01-01

    Although X-ray diffraction (XRD) has been the most widely used technique to investigate crystallinity index (CrI) and crystallite size (L200) of cellulose materials, there are not many studies that have taken into account the role of sample moisture on these measurements. The present investigation focuses on a variety of celluloses and cellulose...

  13. A study on displacement of crystalline diffraction peaks in electron-beam irradiated filter paper cellulose

    International Nuclear Information System (INIS)

    Zhou Ruimin; Xiang Qun; Song Jing

    1997-01-01

    It is found that the crystalline diffraction angles of the electron-beam irradiated filter paper cellulose shift regularly when the irradiation dose is increased. The experiments indicate that the molecules between crystalline area and amorphous area in the filter paper cellulose will be degraded by the irradiation and the cellulose molecules in the surface of crystal will come off, thus the microcrystalline dimension will be reduced and the diffraction angle will become smaller. The fact that intensity of the 002 peak for filter paper samples decreases gradually with the increasing storage time can be attributed to the post-irradiation effect

  14. From Cellulosic Based Liquid Crystalline Sheared Solutions to 1D and 2D Soft Materials

    Directory of Open Access Journals (Sweden)

    Maria Helena Godinho

    2014-06-01

    Full Text Available Liquid crystalline cellulosic-based solutions described by distinctive properties are at the origin of different kinds of multifunctional materials with unique characteristics. These solutions can form chiral nematic phases at rest, with tuneable photonic behavior, and exhibit a complex behavior associated with the onset of a network of director field defects under shear. Techniques, such as Nuclear Magnetic Resonance (NMR, Rheology coupled with NMR (Rheo-NMR, rheology, optical methods, Magnetic Resonance Imaging (MRI, Wide Angle X-rays Scattering (WAXS, were extensively used to enlighten the liquid crystalline characteristics of these cellulosic solutions. Cellulosic films produced by shear casting and fibers by electrospinning, from these liquid crystalline solutions, have regained wider attention due to recognition of their innovative properties associated to their biocompatibility. Electrospun membranes composed by helical and spiral shape fibers allow the achievement of large surface areas, leading to the improvement of the performance of this kind of systems. The moisture response, light modulated, wettability and the capability of orienting protein and cellulose crystals, opened a wide range of new applications to the shear casted films. Characterization by NMR, X-rays, tensile tests, AFM, and optical methods allowed detailed characterization of those soft cellulosic materials. In this work, special attention will be given to recent developments, including, among others, a moisture driven cellulosic motor and electro-optical devices.

  15. Improvement of ethanol production from crystalline cellulose via optimizing cellulase ratios in cellulolytic Saccharomyces cerevisiae.

    Science.gov (United States)

    Liu, Zhuo; Inokuma, Kentaro; Ho, Shih-Hsin; den Haan, Riaan; van Zyl, Willem H; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-06-01

    Crystalline cellulose is one of the major contributors to the recalcitrance of lignocellulose to degradation, necessitating high dosages of cellulase to digest, thereby impeding the economic feasibility of cellulosic biofuels. Several recombinant cellulolytic yeast strains have been developed to reduce the cost of enzyme addition, but few of these strains are able to efficiently degrade crystalline cellulose due to their low cellulolytic activities. Here, by combining the cellulase ratio optimization with a novel screening strategy, we successfully improved the cellulolytic activity of a Saccharomyces cerevisiae strain displaying four different synergistic cellulases on the cell surface. The optimized strain exhibited an ethanol yield from Avicel of 57% of the theoretical maximum, and a 60% increase of ethanol titer from rice straw. To our knowledge, this work is the first optimization of the degradation of crystalline cellulose by tuning the cellulase ratio in a cellulase cell-surface display system. This work provides key insights in engineering the cellulase cocktail in a consolidated bioprocessing yeast strain. Biotechnol. Bioeng. 2017;114: 1201-1207. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Regulation of cellulose synthesis in response to stress.

    Science.gov (United States)

    Kesten, Christopher; Menna, Alexandra; Sánchez-Rodríguez, Clara

    2017-12-01

    The cell wall is a complex polysaccharide network that provides stability and protection to the plant and is one of the first layers of biotic and abiotic stimuli perception. A controlled remodeling of the primary cell wall is essential for the plant to adapt its growth to environmental stresses. Cellulose, the main component of plant cell walls is synthesized by plasma membrane-localized cellulose synthases moving along cortical microtubule tracks. Recent advancements demonstrate a tight regulation of cellulose synthesis at the primary cell wall by phytohormone networks. Stress-induced perturbations at the cell wall that modify cellulose synthesis and microtubule arrangement activate similar phytohormone-based stress response pathways. The integration of stress perception at the primary cell wall and downstream responses are likely to be tightly regulated by phytohormone signaling pathways in the context of cellulose synthesis and microtubule arrangement. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome.

    Science.gov (United States)

    Hirano, Katsuaki; Nihei, Satoshi; Hasegawa, Hiroki; Haruki, Mitsuru; Hirano, Nobutaka

    2015-07-01

    The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and the dockerin modules of a wide variety of polysaccharide-degrading enzymes. Cellulosomal enzymes bound to the scaffoldin protein act synergistically to degrade crystalline cellulose. However, there have been few attempts to reconstitute intact cellulosomes due to the difficulty of heterologously expressing full-length scaffoldin proteins. We describe the synthesis of a full-length scaffoldin protein containing nine cohesin modules, CipA; its deletion derivative containing two cohesin modules, ΔCipA; and three major cellulosomal cellulases, Cel48S, Cel8A, and Cel9K, of the Clostridium thermocellum cellulosome. The proteins were synthesized using a wheat germ cell-free protein synthesis system, and the purified proteins were used to reconstitute cellulosomes. Analysis of the cellulosome assembly using size exclusion chromatography suggested that the dockerin module of the enzymes stoichiometrically bound to the cohesin modules of the scaffoldin protein. The activity profile of the reconstituted cellulosomes indicated that cellulosomes assembled at a CipA/enzyme molar ratio of 1/9 (cohesin/dockerin = 1/1) and showed maximum synergy (4-fold synergy) for the degradation of crystalline substrate and ∼2.4-fold-higher synergy for its degradation than minicellulosomes assembled at a ΔCipA/enzyme molar ratio of 1/2 (cohesin/dockerin = 1/1). These results suggest that the binding of more enzyme molecules on a single scaffoldin protein results in higher synergy for the degradation of crystalline cellulose and that the stoichiometric assembly of the cellulosome, without excess or insufficient enzyme, is crucial for generating maximum synergy for the degradation of crystalline cellulose. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Direct conversion of straw to ethanol by Fusarium oxysporum: effect of cellulose crystallinity

    Energy Technology Data Exchange (ETDEWEB)

    Christakopoulos, P.; Koullas, D.P.; Kekos, D.; Koukios, E.G.; Macris, B.J. (Ethnikon Metsovion Polytechneion, Athens (Greece))

    1991-03-01

    Wheat straw was successfully fermented to ethanol by Fusarium oxysporum F3 in a one-step process. Cellulose crystallinity was found to be a major factor in the bioconversion process. Ethanol yields increased linearly with decreasing crystallinity index. Approximately 80% of straw carbohydrates were converted directly to ethanol with a yield of 0.28 g ethanol/g{sup -1} of straw when the crystallinity index was reduced to 23.6%. (author).

  19. Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chunfa; Zhang, Xianglin, E-mail: hust_zxl@mail.hust.edu.cn; Cai, Hao

    2014-01-15

    Graphical abstract: -- Highlights: • Synthesis of silver nanoparticles using hydroxy propyl methyl cellulose is reported. • HPMC and glucose are used as capping agent and reducing agent respectively. • It is the first time to use HPMC for synthesis of silver nanoparticles. • The small, spherical and well-dispersed particle is observed in the range of 3–17 nm. • The green method can be extended to other noble metals. -- Abstract: A simple and environmentally friendly method for the synthesis of highly stable and small sized silver nanoparticles with narrow distribution from 3 nm to 17 nm is reported. Silver nitrate, hydroxy propyl methyl cellulose (HPMC) and glucose, were used as silver precursor, capping agents and reducing agents respectively. The formation of silver nanoparticles was observed by change of color from colorless to wine red. The silver nanoparticles were characterized by transmission electron microscopy (TEM), UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were single crystalline silver nanoparticles capped with HPMC. The effects of the reaction time, reaction temperature and the concentration of silver ion and reducing agents on the particle size were investigated. A possible formation mechanism was proposed. The method may be extended to other noble metal for other technological applications such as additional medicinal, industrial applications.

  20. Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose

    International Nuclear Information System (INIS)

    Dong, Chunfa; Zhang, Xianglin; Cai, Hao

    2014-01-01

    Graphical abstract: -- Highlights: • Synthesis of silver nanoparticles using hydroxy propyl methyl cellulose is reported. • HPMC and glucose are used as capping agent and reducing agent respectively. • It is the first time to use HPMC for synthesis of silver nanoparticles. • The small, spherical and well-dispersed particle is observed in the range of 3–17 nm. • The green method can be extended to other noble metals. -- Abstract: A simple and environmentally friendly method for the synthesis of highly stable and small sized silver nanoparticles with narrow distribution from 3 nm to 17 nm is reported. Silver nitrate, hydroxy propyl methyl cellulose (HPMC) and glucose, were used as silver precursor, capping agents and reducing agents respectively. The formation of silver nanoparticles was observed by change of color from colorless to wine red. The silver nanoparticles were characterized by transmission electron microscopy (TEM), UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were single crystalline silver nanoparticles capped with HPMC. The effects of the reaction time, reaction temperature and the concentration of silver ion and reducing agents on the particle size were investigated. A possible formation mechanism was proposed. The method may be extended to other noble metal for other technological applications such as additional medicinal, industrial applications

  1. Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods.

    Science.gov (United States)

    Barnette, Anna L; Lee, Christopher; Bradley, Laura C; Schreiner, Edward P; Park, Yong Bum; Shin, Heenae; Cosgrove, Daniel J; Park, Sunkyu; Kim, Seong H

    2012-07-01

    The non-centrosymmetry requirement of sum frequency generation (SFG) vibration spectroscopy allows the detection and quantification of crystalline cellulose in lignocellulose biomass without spectral interferences from hemicelluloses and lignin. This paper shows a correlation between the amount of crystalline cellulose in biomass and the SFG signal intensity. Model biomass samples were prepared by mixing commercially available cellulose, xylan, and lignin to defined concentrations. The SFG signal intensity was found sensitive to a wide range of crystallinity, but varied non-linearly with the mass fraction of cellulose in the samples. This might be due to the matrix effects such as light scattering and absorption by xylan and lignin, as well as the non-linear density dependence of the SFG process itself. Comparison with other techniques such as XRD, FT-Raman, FT-IR and NMR demonstrate that SFG can be a complementary and sensitive tool to assess crystalline cellulose in biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Crystallographic snapshot of cellulose synthesis and membrane translocation.

    Science.gov (United States)

    Morgan, Jacob L W; Strumillo, Joanna; Zimmer, Jochen

    2013-01-10

    Cellulose, the most abundant biological macromolecule, is an extracellular, linear polymer of glucose molecules. It represents an essential component of plant cell walls but is also found in algae and bacteria. In bacteria, cellulose production frequently correlates with the formation of biofilms, a sessile, multicellular growth form. Cellulose synthesis and transport across the inner bacterial membrane is mediated by a complex of the membrane-integrated catalytic BcsA subunit and the membrane-anchored, periplasmic BcsB protein. Here we present the crystal structure of a complex of BcsA and BcsB from Rhodobacter sphaeroides containing a translocating polysaccharide. The structure of the BcsA-BcsB translocation intermediate reveals the architecture of the cellulose synthase, demonstrates how BcsA forms a cellulose-conducting channel, and suggests a model for the coupling of cellulose synthesis and translocation in which the nascent polysaccharide is extended by one glucose molecule at a time.

  3. Optimization of cellulose acrylate and grafted 4-vinylpyridine and 1-vinylimidazole synthesis

    Directory of Open Access Journals (Sweden)

    Bojanić Vaso

    2010-01-01

    Full Text Available Optimization of cellulose acrylate synthesis by reaction with sodium cellulosate and acryloyl chloride was carried out. Optimal conditions for conducting the synthesis reaction of cellulose acrylate were as follows: the molar ratio of cellulose/potassium-t-butoxide/acryloyl chloride was 1:3:10 and the optimal reaction time was 10 h. On the basis of elemental analysis with optimal conditions for conducting the reaction of cellulose acrylate, the percentage of substitution of glucose units in cellulose Y = 80.7%, and the degree of substitution of cellulose acrylate DS = 2.4 was determined. The grafting reaction of acrylate vinyl monomers onto cellulose in acetonitrile with initiator azoisobutyronitrile (AIBN in a nitrogen atmosphere was performed, by mixing for 5 h at acetonitrile boiling temperature. Radical copolymerization of synthesized cellulose acrylate and 4-vinylpyridine, 1-vinylimidazole, 1-vinyl-2-pyrrolidinone and 9-vinylcarbazole, cellulose-poly-4-vinylpyridine (Cell-PVP, cellulose-poly-1- vinylimidazole (Cell-PVIm and cellulose-poly-1-vinyl-2-pyrrolidinone (Cell-P1V2P and cellulose-poly-9-vinylcarbazole (Cell-P9VK were synthesized. Acrylate cellulose and cellulose grafted copolymers were confirmed by IR spectroscopy, based on elementary analysis and the characteristics of grafted copolymers of cellulose were determined. The mass share of grafted copolymers, X, the relationship of derivative parts/cellulose vinyl group, Z, and the degree of grafting copolymers of cellulose (mass% were determined. In reaction of methyl iodide and cellulose-poly-4-vinylpyridine (Cell-PVP the cellulose-1-methyl-poly-4-vinylpyridine iodide (Cell-1-Me-PVPJ was synthesized. Cellulose acrylate and grafted copolymers were obtained with better thermal, electrochemical and ion-emulation properties for bonding of noble metals Au, Pt, Pd from water solutions. The synthesis optimization of cellulose acrylate was applied as a model for the synthesis of grafted

  4. Optimization of cellulose acrylate and grafted 4-vinylpyridine and 1-vinylimidazole synthesis

    OpenAIRE

    Bojanić Vaso

    2010-01-01

    Optimization of cellulose acrylate synthesis by reaction with sodium cellulosate and acryloyl chloride was carried out. Optimal conditions for conducting the synthesis reaction of cellulose acrylate were as follows: the molar ratio of cellulose/potassium-t-butoxide/acryloyl chloride was 1:3:10 and the optimal reaction time was 10 h. On the basis of elemental analysis with optimal conditions for conducting the reaction of cellulose acrylate, the percentage of substitution of glucose units in c...

  5. Tensile strength of Iß crystalline cellulose predicted by molecular dynamics simulation

    Science.gov (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2014-01-01

    The mechanical properties of Iß crystalline cellulose are studied using molecular dynamics simulation. A model Iß crystal is deformed in the three orthogonal directions at three different strain rates. The stress-strain behaviors for each case are analyzed and then used to calculate mechanical properties. The results show that the elastic modulus, Poisson's ratio...

  6. TARGETED DISRUPTION OF HYDROXYL CHEMISTRY AND CRYSTALLINITY IN NATURAL FIBERS FOR THE ISOLATION OF CELLULOSE NANO-FIBERS VIA ENZYMATIC TREATMENT

    Directory of Open Access Journals (Sweden)

    Sreekumar Janardhnan

    2011-04-01

    Full Text Available Cellulose is the Earth’s most abundant biopolymer. Exploiting its environmentally friendly attributes such as biodegradability, renewability, and high specific strength properties are limited by our inability to isolate them from the secondary cell wall in an economical manner. Intermolecular and intramolecular hydrogen bonding between the cellulose chains is the major force one needs to overcome in order to isolate the cellulose chain in its microfibrillar form. This paper describes how a hydrogen bond-specific enzyme disrupts the crystallinity of the cellulose, bringing about internal defibrillation within the cell wall. Bleached kraft softwood pulp was treated with a fungus (OS1 isolated from an elm tree infected with Dutch elm disease. FT-IR spectral analysis indicated a significant reduction in the density of intermolecular and intramolecular hydrogen bonding within the fiber. X-ray spectrometry indicated a reduction in the crystallinity. The isolated nano-cellulose fibers also exhibited better mechanical strength compared to those isolated through conventional methods. The structural disorder created in the crystalline region in the plant cell wall by hydrogen bond-specific enzymes is a key step forward in the isolation of cellulose at its microfibrillar level.

  7. The effect of cellulose crystallinity on the in vitro digestibility and fermentation, kinetics of meadow hay and barley, wheat and rice straws

    NARCIS (Netherlands)

    Cone, J.W.; Gelder, van A.H.; Fonseca, A.; Ferreira, L.M.M.; Sequeria, C.A.

    2003-01-01

    The effect of cellulose crystallinity on in vitro digestibility (IVD) and fermentation kinetics was investigated in samples of meadow hay and barley, wheat and rice straws. A saturated solution of potassium permanganate was used to isolate the celluloses, and their crystallinity was evaluated in a

  8. Role of cellulose functionality in bio-inspired synthesis of nano bioactive glass.

    Science.gov (United States)

    Gupta, Nidhi; Santhiya, Deenan

    2017-06-01

    In search of abundant cheaper natural polymer for bio-inspired bioactive glass nanoparticles synthesis, cellulose and its derivatives have been considered as a template. Different templates explored in the present studies are pure cellulose, methyl cellulose and amine grafted cellulose. To the best of our knowledge, for the first time of the considered templates, pure cellulose and amine grafted cellulose results in in situ nano particulate composite formation while interestingly methyl cellulose proves to be an excellent sacrificial template for the synthesis of uniform bioglass nanoparticles of diameter in the range of 55nm. Further, viscoelastic measurements were carried out using dynamic mechanical analyzer. Herein, an attempt has been made to establish structure-mechanical relationship based on the templates. Moreover, in vitro bioactivity is also observed to be affected by the nature of the template molecule used for the synthesis of bioactive glass. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens

    International Nuclear Information System (INIS)

    Amikam, D.; Benziman, M.

    1989-01-01

    The occurrence of the novel regulatory nucleotide bis(3',5')-cyclic diguanylic acid (c-di-GMP) and its relation to cellulose biogenesis in the plant pathogen Agrobacterium tumefaciens was studied. c-di-GMP was detected in acid extracts of 32 P-labeled cells grown in various media, and an enzyme responsible for its formation from GTP was found to be present in cell-free preparations. Cellulose synthesis in vivo was quantitatively assessed with [ 14 C]glucose as a tracer. The organism produced cellulose during growth in the absence of plant cells, and this capacity was retained in resting cells. Synthesis of a cellulosic product from UDP-glucose in vitro with membrane preparations was markedly stimulated by c-di-GMP and its precursor GTP and was further enhanced by Ca2+. The calcium effect was attributed to inhibition of a c-di-GMP-degrading enzyme shown to be present in the cellulose synthase-containing membranes

  10. Single-molecule Imaging Analysis of Elementary Reaction Steps of Trichoderma reesei Cellobiohydrolase I (Cel7A) Hydrolyzing Crystalline Cellulose Iα and IIII*

    Science.gov (United States)

    Shibafuji, Yusuke; Nakamura, Akihiko; Uchihashi, Takayuki; Sugimoto, Naohisa; Fukuda, Shingo; Watanabe, Hiroki; Samejima, Masahiro; Ando, Toshio; Noji, Hiroyuki; Koivula, Anu; Igarashi, Kiyohiko; Iino, Ryota

    2014-01-01

    Trichoderma reesei cellobiohydrolase I (TrCel7A) is a molecular motor that directly hydrolyzes crystalline celluloses into water-soluble cellobioses. It has recently drawn attention as a tool that could be used to convert cellulosic materials into biofuel. However, detailed mechanisms of action, including elementary reaction steps such as binding, processive hydrolysis, and dissociation, have not been thoroughly explored because of the inherent challenges associated with monitoring reactions occurring at the solid/liquid interface. The crystalline cellulose Iα and IIII were previously reported as substrates with different crystalline forms and different susceptibilities to hydrolysis by TrCel7A. In this study, we observed that different susceptibilities of cellulose Iα and IIII are highly dependent on enzyme concentration, and at nanomolar enzyme concentration, TrCel7A shows similar rates of hydrolysis against cellulose Iα and IIII. Using single-molecule fluorescence microscopy and high speed atomic force microscopy, we also determined kinetic constants of the elementary reaction steps for TrCel7A against cellulose Iα and IIII. These measurements were performed at picomolar enzyme concentration in which density of TrCel7A on crystalline cellulose was very low. Under this condition, TrCel7A displayed similar binding and dissociation rate constants for cellulose Iα and IIII and similar fractions of productive binding on cellulose Iα and IIII. Furthermore, once productively bound, TrCel7A processively hydrolyzes and moves along cellulose Iα and IIII with similar translational rates. With structural models of cellulose Iα and IIII, we propose that different susceptibilities at high TrCel7A concentration arise from surface properties of substrate, including ratio of hydrophobic surface and number of available lanes. PMID:24692563

  11. Enzymatic Cellulose Palmitate Synthesis Using Immobilized Lipase

    Directory of Open Access Journals (Sweden)

    Anna Roosdiana

    2017-06-01

    Full Text Available Bacterial cellulose can be modified by esterification using palmitic acid and Mucor miehei  lipase  as catalyst. The purpose of this research was to determine the optimum conditions of esterification reaction of cellulose and palmitic acid . The esterification reaction was carried out at the time variation  of  6, 12, 18, 24 and 30 hours and the mass ratio of cellulose: palmitic acid (1: 11: 2, 1: 3, 1: 4, 1: 5,1:6 at 50 °C. The   cellulose palmitate  was examined  its  physical and chemical properties by using FTIR spectrophotometer, XRD, bubble point test and saponification  apparatus. The results showed that the optimum reaction time of esterification reaction of cellulose and palmitic acid occurred within 24 hours and the mass ratio of cellulose: palmitic acid was 1: 3 resulting in DS of  0.376 with  swelling index of 187 %, crystallinity index of 61.95%,  and Φ porous of 2.40 μm. Identification of functional groups using FTIR spectrophotometer showed that C=O ester group  was observed at 1737.74 cm-1 and strengthened  by  the appearance of C-O ester peak at 1280 cm-1. The conclusion of this study is reaction time and reactant ratio influence significantly the DS of cellulose ester.

  12. Cellulose nanofiber isolation from palm oil Empty Fruit Bunches (EFB) through strong acid hydrolysis

    Science.gov (United States)

    Setyaningsih, Dwi; Uju; Muna, Neli; Isroi; Budi Suryawan, Nyoman; Azid Nurfauzi, Ami

    2018-03-01

    The palm oil industry produces about 25-26% of palm oil empty fruit bunches. The empty fruit bunch of palm oil contains cellulose up to 36.67%. This is a good opportunity for the synthesis of cellulose nanofiber (CNF). Cellulose nanofiber is a nano-sized cellulose material that has unique physical and mechanical properties. The synthesis was performed using a strong acid method with sulfuric acid. Sulfuric acid removes the amorphous region of cellulose so that the crystalline part can be isolated. CNF yield measurement showed that temperature, time, acid concentration, and interaction between each factor were affecting significantly to CNF yield. The result showed that yield of 14.98 grams, was obtained by hydrolysis at 35°C for 6 hours and 55% acid concentration. The crystallinity measurement showed that the temperature, time, acid concentration, and interaction between each factor during hydrolysis were not affected significantly to percent value of CNF crystallinity. The result showed that 31.1% of crystallinity, was obtained by hydrolysis at 45°C for 3 hours and 55% of acid concentration. The size measurement showed that the temperature, time, acid concentration and interaction between each factor were affected significantly. The result showed 894.25 nm as the best result, obtained by hydrolysis with 35°C and 60% acid concentration for 6 hours. CNF color was white with the best dispersion of hydrolysis at 35°C of 55% for 6 hours.

  13. Single-molecule Imaging Analysis of Binding, Processive Movement, and Dissociation of Cellobiohydrolase Trichoderma reesei Cel6A and Its Domains on Crystalline Cellulose*

    Science.gov (United States)

    Nakamura, Akihiko; Tasaki, Tomoyuki; Ishiwata, Daiki; Yamamoto, Mayuko; Okuni, Yasuko; Visootsat, Akasit; Maximilien, Morice; Noji, Hiroyuki; Uchiyama, Taku; Samejima, Masahiro; Igarashi, Kiyohiko; Iino, Ryota

    2016-01-01

    Trichoderma reesei Cel6A (TrCel6A) is a cellobiohydrolase that hydrolyzes crystalline cellulose into cellobiose. Here we directly observed the reaction cycle (binding, surface movement, and dissociation) of single-molecule intact TrCel6A, isolated catalytic domain (CD), cellulose-binding module (CBM), and CBM and linker (CBM-linker) on crystalline cellulose Iα. The CBM-linker showed a binding rate constant almost half that of intact TrCel6A, whereas those of the CD and CBM were only one-tenth of intact TrCel6A. These results indicate that the glycosylated linker region largely contributes to initial binding on crystalline cellulose. After binding, all samples showed slow and fast dissociations, likely caused by the two different bound states due to the heterogeneity of cellulose surface. The CBM showed much higher specificity to the high affinity site than to the low affinity site, whereas the CD did not, suggesting that the CBM leads the CD to the hydrophobic surface of crystalline cellulose. On the cellulose surface, intact molecules showed slow processive movements (8.8 ± 5.5 nm/s) and fast diffusional movements (30–40 nm/s), whereas the CBM-Linker, CD, and a catalytically inactive full-length mutant showed only fast diffusional movements. These results suggest that both direct binding and surface diffusion contribute to searching of the hydrolysable point of cellulose chains. The duration time constant for the processive movement was 7.7 s, and processivity was estimated as 68 ± 42. Our results reveal the role of each domain in the elementary steps of the reaction cycle and provide the first direct evidence of the processive movement of TrCel6A on crystalline cellulose. PMID:27609516

  14. Direct observation of the effects of cellulose synthesis inhibitors using live cell imaging of Cellulose Synthase (CESA) in Physcomitrella patens.

    Science.gov (United States)

    Tran, Mai L; McCarthy, Thomas W; Sun, Hao; Wu, Shu-Zon; Norris, Joanna H; Bezanilla, Magdalena; Vidali, Luis; Anderson, Charles T; Roberts, Alison W

    2018-01-15

    Results from live cell imaging of fluorescently tagged Cellulose Synthase (CESA) proteins in Cellulose Synthesis Complexes (CSCs) have enhanced our understanding of cellulose biosynthesis, including the mechanisms of action of cellulose synthesis inhibitors. However, this method has been applied only in Arabidopsis thaliana and Brachypodium distachyon thus far. Results from freeze fracture electron microscopy of protonemal filaments of the moss Funaria hygrometrica indicate that a cellulose synthesis inhibitor, 2,6-dichlorobenzonitrile (DCB), fragments CSCs and clears them from the plasma membrane. This differs from Arabidopsis, in which DCB causes CSC accumulation in the plasma membrane and a different cellulose synthesis inhibitor, isoxaben, clears CSCs from the plasma membrane. In this study, live cell imaging of the moss Physcomitrella patens indicated that DCB and isoxaben have little effect on protonemal growth rates, and that only DCB causes tip rupture. Live cell imaging of mEGFP-PpCESA5 and mEGFP-PpCESA8 showed that DCB and isoxaben substantially reduced CSC movement, but had no measureable effect on CSC density in the plasma membrane. These results suggest that DCB and isoxaben have similar effects on CSC movement in P. patens and Arabidopsis, but have different effects on CSC intracellular trafficking, cell growth and cell integrity in these divergent plant lineages.

  15. Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1{sup A903V} and CESA3{sup T942I} of cellulose synthase

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Darby; Corbin, Kendall; Wang, Tuo; Gutierrez, Ryan; Bertolo, Ana; Petti, Caroalberto; Smilgies, Detlef-M; Estevez, Jose Manuel; Bonetta, Dario; Urbanowicz, Breeanna; Ehrhardt, David; Somerville, Chris; Rose, Jocelyn; Hong, Mei; DeBolt, Seth

    2012-01-08

    The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1{sup A903V} and CESA3{sup T942I} in Arabidopsis thaliana. Using {sup 13}C solid-state nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1{sup A903V} and CESA3{sup T942I} displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1{sup A903V} and CESA3{sup T942I} have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization.

  16. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice.

    Science.gov (United States)

    Huang, Debao; Wang, Shaogan; Zhang, Baocai; Shang-Guan, Keke; Shi, Yanyun; Zhang, Dongmei; Liu, Xiangling; Wu, Kun; Xu, Zuopeng; Fu, Xiangdong; Zhou, Yihua

    2015-06-01

    Cellulose, which can be converted into numerous industrial products, has important impacts on the global economy. It has long been known that cellulose synthesis in plants is tightly regulated by various phytohormones. However, the underlying mechanism of cellulose synthesis regulation remains elusive. Here, we show that in rice (Oryza sativa), gibberellin (GA) signals promote cellulose synthesis by relieving the interaction between SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and NACs, the top-layer transcription factors for secondary wall formation. Mutations in GA-related genes and physiological treatments altered the transcription of CELLULOSE SYNTHASE genes (CESAs) and the cellulose level. Multiple experiments demonstrated that transcription factors NAC29/31 and MYB61 are CESA regulators in rice; NAC29/31 directly regulates MYB61, which in turn activates CESA expression. This hierarchical regulation pathway is blocked by SLR1-NAC29/31 interactions. Based on the results of anatomical analysis and GA content examination in developing rice internodes, this signaling cascade was found to be modulated by varied endogenous GA levels and to be required for internode development. Genetic and gene expression analyses were further performed in Arabidopsis thaliana GA-related mutants. Altogether, our findings reveal a conserved mechanism by which GA regulates secondary wall cellulose synthesis in land plants and provide a strategy for manipulating cellulose production and plant growth. © 2015 American Society of Plant Biologists. All rights reserved.

  17. Anisotropy of the elastic properties of crystalline cellulose Iß from first principles density functional theory with Van der Waals interactions

    Science.gov (United States)

    Fernando L. Dri; Louis G. Jr. Hector; Robert J. Moon; Pablo D. Zavattieri

    2013-01-01

    In spite of the significant potential of cellulose nanocrystals as functional nanoparticles for numerous applications, a fundamental understanding of the mechanical properties of defect-free, crystalline cellulose is still lacking. In this paper, the elasticity matrix for cellulose Iß with hydrogen bonding network A was calculated using ab initio...

  18. Regiocontroll synthesis cellulose-graft-polycaprolactone copolymer (2,3-di-O-PCL-cellulose by a new route

    Directory of Open Access Journals (Sweden)

    K. L. Wang

    2017-12-01

    Full Text Available A new and convenient route to the regiocontrolled synthesis of a cellulose-based derivate copolymer (2,3-di-O-polycaprolactone-cellulose grafting ε-caprolactone (ε-CL from α-cellulose, cellulose-graft-polycaprolactone (cellulose-g-PCL, by a classical ring-opening polymerization (ROP reaction, using stannous octoate (Sn(Oct2 as catalyst, in 68% concentration of zinc chloride aqueous solution at 120 °C was presented. By controlling the hydroxyl of cellulose/ε-CL, catalyst/monomer ratio and the reaction time, the molecular architecture of the copolymers can be altered. The solubility of cellulose in zinc chloride aqueous was indicated by UV/VIS spectrometer and rheological measurements. The structures and thermal properties of cellulose-g-polycaprolactone copolymers were characterized using Fourier Transform Infrared (FT-IR, Proton Nuclear Magnetic Resonance Spectroscopy (1H NMR, X-ray Diffraction (XRD, Thermogravimetric Analysis (TGA, Differential Scanning Calorimetry (DSC and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES. The interesting results confirm that zinc chloride solution can break the intra-molecular hydrogen bonds of cellulose selectively (not only O3H···O5, but also O2H···O6, and has no effect on the inter-molecular hydrogen bonds (O6H···O3. And the grafting reactivity of hydroxyl on cellulose is C2–OH > C3–OH >> C6–OH in zinc chloride solution, and this is clearly different from other researches. Most importantly, this work confirms that the method to regiocontrolled synthesis cellulose-based derivative polymers by regiobreaking hydrogen bonds is feasible. It is strongly believed that the new discovery may give a novel, environmental, simple and inexpensive method to modify cellulose chemically with various side chains grafted on a given hydroxyl, through liberating hydroxyl as reactive group from hydrogen bonds broken selectively by different solvents.

  19. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice[OPEN

    Science.gov (United States)

    Huang, Debao; Wang, Shaogan; Zhang, Baocai; Shang-Guan, Keke; Shi, Yanyun; Zhang, Dongmei; Liu, Xiangling; Wu, Kun; Xu, Zuopeng; Fu, Xiangdong; Zhou, Yihua

    2015-01-01

    Cellulose, which can be converted into numerous industrial products, has important impacts on the global economy. It has long been known that cellulose synthesis in plants is tightly regulated by various phytohormones. However, the underlying mechanism of cellulose synthesis regulation remains elusive. Here, we show that in rice (Oryza sativa), gibberellin (GA) signals promote cellulose synthesis by relieving the interaction between SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and NACs, the top-layer transcription factors for secondary wall formation. Mutations in GA-related genes and physiological treatments altered the transcription of CELLULOSE SYNTHASE genes (CESAs) and the cellulose level. Multiple experiments demonstrated that transcription factors NAC29/31 and MYB61 are CESA regulators in rice; NAC29/31 directly regulates MYB61, which in turn activates CESA expression. This hierarchical regulation pathway is blocked by SLR1-NAC29/31 interactions. Based on the results of anatomical analysis and GA content examination in developing rice internodes, this signaling cascade was found to be modulated by varied endogenous GA levels and to be required for internode development. Genetic and gene expression analyses were further performed in Arabidopsis thaliana GA-related mutants. Altogether, our findings reveal a conserved mechanism by which GA regulates secondary wall cellulose synthesis in land plants and provide a strategy for manipulating cellulose production and plant growth. PMID:26002868

  20. Cellulose-precursor synthesis of nanocrystalline Co0.5Cu0.5Fe2O4 spinel ferrites

    International Nuclear Information System (INIS)

    Ounnunkad, Kontad; Phanichphant, Sukon

    2012-01-01

    Highlights: ► Synthesis of spinel copper cobalt nanoferrite particles from a cellulose precursor for the first time. Control of nanosize and properties of nanoferrites can take place by varying the calcining temperature. The simple, low cost, easy cellulose process is a choice of nanoparticle processing technology. -- Abstract: Nanocrystalline Cu 0.5 Co 0.5 Fe 2 O 4 powders were prepared via a metal-cellulose precursor synthetic route. Cellulose was used as a fuel and a dispersing agent. The resulting precursors were calcined in the temperature range of 450–600 °C. The phase development of the samples was determined by using Fourier transform infrared (FT-IR) spectroscopy and powder X-ray diffraction (XRD). The field-dependent magnetizations of the nanopowders were measured by vibrating sample magnetometer (VSM). All XRD patterns are of a spinel ferrite with cubic symmetry. Microstructure of the ferrites showed irregular shapes and uniform particles with agglomeration. From XRD data, the crystallite sizes are in range of 16–42 nm. Saturation magnetization and coercivity increased with increasing calcining temperature due to enhancement of crystallinity and reduction of oxygen vacancies.

  1. LIQUID CRYSTALLINE BEHAVIOR OF HYDROXYPROPYL CELLULOSE ESTERIFIED WITH 4-ALKOXYBENZOIC ACID.

    Directory of Open Access Journals (Sweden)

    Yehia Fahmy

    2010-07-01

    Full Text Available A series of 4- alkyoxybenzoyloxypropyl cellulose (ABPC-n samples was synthesized via the esterification of hydroxypropyl cellulose (HPC with 4-alkoxybenzoic acid bearing different numbers of carbon atoms. The molecular structure of the ABPC-n was confirmed by Fourier transform infrared (FT-IR spectroscopy and 1H NMR spectroscopy. The liquid crystalline (LC phases and transitions behaviors were investigated using differential scanning calorimetry (DSC, polarized light microscopy (PLM, and refractometry. It was found that the glass transition (Tg and clearing (Tc temperatures decrease with increase of the alkoxy chain length. It was observed that the derivatives with an odd number of carbon atoms are non-mesomorphic. This series of ABPC-n polymers exhibit characteristic features of cholesteric LC phases between their glass transition and isotropization temperatures.

  2. Effect of late planting and shading on cellulose synthesis during cotton fiber secondary wall development.

    Directory of Open Access Journals (Sweden)

    Ji Chen

    Full Text Available Cotton-rapeseed or cotton-wheat double cropping systems are popular in the Yangtze River Valley and Yellow River Valley of China. Due to the competition of temperature and light resources during the growing season of double cropping system, cotton is generally late-germinating and late-maturing and has to suffer from the coupling of declining temperature and low light especially in the late growth stage. In this study, late planting (LP and shading were used to fit the coupling stress, and the coupling effect on fiber cellulose synthesis was investigated. Two cotton (Gossypium hirsutum L. cultivars were grown in the field in 2010 and 2011 at three planting dates (25 April, 25 May and 10 June each with three shading levels (normal light, declined 20% and 40% PAR. Mean daily minimum temperature was the primary environmental factor affected by LP. The coupling of LP and shading (decreased cellulose content by 7.8%-25.5% produced more severe impacts on cellulose synthesis than either stress alone, and the effect of LP (decreased cellulose content by 6.7%-20.9% was greater than shading (decreased cellulose content by 0.7%-5.6%. The coupling of LP and shading hindered the flux from sucrose to cellulose by affecting the activities of related cellulose synthesis enzymes. Fiber cellulose synthase genes expression were delayed under not only LP but shading, and the coupling of LP and shading markedly postponed and even restrained its expression. The decline of sucrose-phosphate synthase activity and its peak delay may cause cellulose synthesis being more sensitive to the coupling stress during the later stage of fiber secondary wall development (38-45 days post-anthesis. The sensitive difference of cellulose synthesis between two cultivars in response to the coupling of LP and shading may be mainly determined by the sensitiveness of invertase, sucrose-phosphate synthase and cellulose synthase.

  3. Posidonia oceanica as a Renewable Lignocellulosic Biomass for the Synthesis of Cellulose Acetate and Glycidyl Methacrylate Grafted Cellulose

    Directory of Open Access Journals (Sweden)

    Elena Vismara

    2013-05-01

    Full Text Available High-grade cellulose (97% α-cellulose content of 48% crystallinity index was extracted from the renewable marine biomass waste Posidonia oceanica using H2O2 and organic peracids following an environmentally friendly and chlorine-free process. This cellulose appeared as a new high-grade cellulose of waste origin quite similar to the high-grade cellulose extracted from more noble starting materials like wood and cotton linters. The benefits of α-cellulose recovery from P. oceanica were enhanced by its transformation into cellulose acetate CA and cellulose derivative GMA-C. Fully acetylated CA was prepared by conventional acetylation method and easily transformed into a transparent film. GMA-C with a molar substitution (MS of 0.72 was produced by quenching Fenton’s reagent (H2O2/FeSO4 generated cellulose radicals with GMA. GMA grafting endowed high-grade cellulose from Posidonia with adsorption capability. GMA-C removes β-naphthol from water with an efficiency of 47%, as measured by UV-Vis spectroscopy. After hydrolysis of the glycidyl group to glycerol group, the modified GMA-C was able to remove p-nitrophenol from water with an efficiency of 92%, as measured by UV-Vis spectroscopy. α-cellulose and GMA-Cs from Posidonia waste can be considered as new materials of potential industrial and environmental interest.

  4. Cellulose Triacetate Synthesis from Cellulosic Wastes by Heterogeneous Reactions

    Directory of Open Access Journals (Sweden)

    Sherif Shawki Z. Hindi

    2015-06-01

    Full Text Available Cellulosic fibers from cotton fibers (CF, recycled writing papers (RWP, recycled newspapers (RN, and macerated woody fibers of Leucaena leucocephala (MWFL were acetylated by heterogeneous reactions with glacial acetic acid, concentrated H2SO4, and acetic anhydride. The resultant cellulose triacetate (CTA was characterized for yield and solubility as well as by using 1H-NMR spectroscopy and SEM. The acetylated product (AP yields for CF, RWP, RN, and MWFL were 112, 94, 84, and 73%, respectively. After isolation of pure CTA from the AP, the CTA yields were 87, 80, 68, and 54%. The solubility test for the CTA’s showed a clear solubility in chloroform, as well as mixture of chloroform and methanol (9:1v/v and vice versa for acetone. The degree of substitution (DS values for the CTA’s produced were nearly identical and confirmed the presence of CTA. In addition, the pore diameter of the CTA skeleton ranged from 0.072 to 0.239 µm for RWP and RN, and within the dimension scale of the CTA pinholes confirm the synthesis of CTA. Accordingly, pouring of the AP liquor at 25 °C in distilled water at the end of the acetylation and filtration did not hydrolyze the CTA to cellulose diacetate.

  5. Brittle Culm1, a COBRA-Like Protein, Functions in Cellulose Assembly through Binding Cellulose Microfibrils

    Science.gov (United States)

    Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity. PMID:23990797

  6. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    Directory of Open Access Journals (Sweden)

    Lifeng Liu

    Full Text Available Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1, a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  7. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    Science.gov (United States)

    Liu, Lifeng; Shang-Guan, Keke; Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  8. A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium.

    Science.gov (United States)

    Satyamurthy, P; Vigneshwaran, N

    2013-01-10

    Degradation of cellulose by anaerobic microbial consortium is brought about either by an exocellular process or by secretion of extracellular enzymes. In this work, a novel route for synthesis of nanocellulose is described where in an anaerobic microbial consortium enriched for cellulase producers is used for hydrolysis. Microcrystalline cellulose derived from cotton fibers was subjected to controlled hydrolysis by the anaerobic microbial consortium and the resultant nanocellulose was purified by differential centrifugation technique. The nanocellulose had a bimodal size distribution (43±13 and 119±9 nm) as revealed by atomic force microscopy. A maximum nanocellulose yield of 12.3% was achieved in a span of 7 days. While the conventional process of nanocellulose preparation using 63.5% (w/w) sulfuric acid resulted in the formation of whisker shaped nanocellulose with surface modified by sulfation, controlled hydrolysis by anaerobic microbial consortium yielded spherical nanocellulose also referred to as nano crystalline cellulose (NCC) without any surface modification as evidenced from Fourier transform infrared spectroscopy. Also, it scores over chemo-mechanical production of nanofibrillated cellulose by consuming less energy due to enzyme (cellulase) assisted catalysis. This implies the scope for use of microbial prepared nanocellulose in drug delivery and bio-medical applications requiring bio-compatibility. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase by Caldicellulosiruptor bescii during growth on crystalline cellulose.

    Directory of Open Access Journals (Sweden)

    Zhuolin Yi

    Full Text Available During growth on crystalline cellulose, the thermophilic bacterium Caldicellulosiruptor bescii secretes several cellulose-degrading enzymes. Among these enzymes is CelA (CbCel9A/Cel48A, which is reported as the most highly secreted cellulolytic enzyme in this bacterium. CbCel9A/Cel48A is a large multi-modular polypeptide, composed of an N-terminal catalytic glycoside hydrolase family 9 (GH9 module and a C-terminal GH48 catalytic module that are separated by a family 3c carbohydrate-binding module (CBM3c and two identical CBM3bs. The wild-type CbCel9A/Cel48A and its truncational mutants were expressed in Bacillus megaterium and Escherichia coli, respectively. The wild-type polypeptide released twice the amount of glucose equivalents from Avicel than its truncational mutant that lacks the GH48 catalytic module. The truncational mutant harboring the GH9 module and the CBM3c was more thermostable than the wild-type protein, likely due to its compact structure. The main hydrolytic activity was present in the GH9 catalytic module, while the truncational mutant containing the GH48 module and the three CBMs was ineffective in degradation of either crystalline or amorphous cellulose. Interestingly, the GH9 and/or GH48 catalytic modules containing the CBM3bs form low-density particles during hydrolysis of crystalline cellulose. Moreover, TM3 (GH9/CBM3c and TM2 (GH48 with three CBM3 modules synergistically hydrolyze crystalline cellulose. Deletion of the CBM3bs or mutations that compromised their binding activity suggested that these CBMs are important during hydrolysis of crystalline cellulose. In agreement with this observation, seven of nine genes in a C. bescii gene cluster predicted to encode cellulose-degrading enzymes harbor CBM3bs. Based on our results, we hypothesize that C. bescii uses the GH48 module and the CBM3bs in CbCel9A/Cel48A to destabilize certain regions of crystalline cellulose for attack by the highly active GH9 module and other

  10. Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase by Caldicellulosiruptor bescii during growth on crystalline cellulose.

    Science.gov (United States)

    Yi, Zhuolin; Su, Xiaoyun; Revindran, Vanessa; Mackie, Roderick I; Cann, Isaac

    2013-01-01

    During growth on crystalline cellulose, the thermophilic bacterium Caldicellulosiruptor bescii secretes several cellulose-degrading enzymes. Among these enzymes is CelA (CbCel9A/Cel48A), which is reported as the most highly secreted cellulolytic enzyme in this bacterium. CbCel9A/Cel48A is a large multi-modular polypeptide, composed of an N-terminal catalytic glycoside hydrolase family 9 (GH9) module and a C-terminal GH48 catalytic module that are separated by a family 3c carbohydrate-binding module (CBM3c) and two identical CBM3bs. The wild-type CbCel9A/Cel48A and its truncational mutants were expressed in Bacillus megaterium and Escherichia coli, respectively. The wild-type polypeptide released twice the amount of glucose equivalents from Avicel than its truncational mutant that lacks the GH48 catalytic module. The truncational mutant harboring the GH9 module and the CBM3c was more thermostable than the wild-type protein, likely due to its compact structure. The main hydrolytic activity was present in the GH9 catalytic module, while the truncational mutant containing the GH48 module and the three CBMs was ineffective in degradation of either crystalline or amorphous cellulose. Interestingly, the GH9 and/or GH48 catalytic modules containing the CBM3bs form low-density particles during hydrolysis of crystalline cellulose. Moreover, TM3 (GH9/CBM3c) and TM2 (GH48 with three CBM3 modules) synergistically hydrolyze crystalline cellulose. Deletion of the CBM3bs or mutations that compromised their binding activity suggested that these CBMs are important during hydrolysis of crystalline cellulose. In agreement with this observation, seven of nine genes in a C. bescii gene cluster predicted to encode cellulose-degrading enzymes harbor CBM3bs. Based on our results, we hypothesize that C. bescii uses the GH48 module and the CBM3bs in CbCel9A/Cel48A to destabilize certain regions of crystalline cellulose for attack by the highly active GH9 module and other endoglucanases

  11. Cellulose synthesis inhibition, cell expansion, and patterns of cell wall deposition in Nitella internodes

    International Nuclear Information System (INIS)

    Richmond, P.A.; Metraux, J.P.

    1984-01-01

    The authors have investigated the pattern of wall deposition and maturation and correlated it with cell expansion and cellulose biosynthesis. The herbicide 2,6-dichlorobenzonitrile (DCB) was found to be a potent inhibitor of cellulose synthesis, but not of cell expansion in Nitella internodal cells. Although cellulose synthesis is inhibited during DCB treatment, matrix substances continue to be synthesized and deposited. The inhibition of cellulose microfibril deposition can be demonstrated by various techniques. These results demonstrate that matrix deposition is by apposition, not by intussusception, and that the previously deposited wall moves progressively outward while stretching and thinning as a result of cell expansion

  12. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    International Nuclear Information System (INIS)

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan

    2013-01-01

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF 3 SO 3 were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2–10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10 −7 Scm −1 upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity

  13. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    Science.gov (United States)

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan

    2013-11-01

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF3SO3 were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2-10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10-7 Scm-1 upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity.

  14. Differences in crystalline cellulose modification due to degradation by brown and white rot fungi.

    Science.gov (United States)

    Hastrup, Anne Christine Steenkjær; Howell, Caitlin; Larsen, Flemming Hofmann; Sathitsuksanoh, Noppadon; Goodell, Barry; Jellison, Jody

    2012-10-01

    Wood-decaying basidiomycetes are some of the most effective bioconverters of lignocellulose in nature, however the way they alter wood crystalline cellulose on a molecular level is still not well understood. To address this, we examined and compared changes in wood undergoing decay by two species of brown rot fungi, Gloeophyllum trabeum and Meruliporia incrassata, and two species of white rot fungi, Irpex lacteus and Pycnoporus sanguineus, using X-ray diffraction (XRD) and (13)C solid-state nuclear magnetic resonance (NMR) spectroscopy. The overall percent crystallinity in wood undergoing decay by M. incrassata, G. trabeum, and I. lacteus appeared to decrease according to the stage of decay, while in wood decayed by P. sanguineus the crystallinity was found to increase during some stages of degradation. This result is suggested to be potentially due to the different decay strategies employed by these fungi. The average spacing between the 200 cellulose crystal planes was significantly decreased in wood degraded by brown rot, whereas changes observed in wood degraded by the two white rot fungi examined varied according to the selectivity for lignin. The conclusions were supported by a quantitative analysis of the structural components in the wood before and during decay confirming the distinct differences observed for brown and white rot fungi. The results from this study were consistent with differences in degradation methods previously reported among fungal species, specifically more non-enzymatic degradation in brown rot versus more enzymatic degradation in white rot. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  15. Electrochemical synthesis of highly crystalline copper nanowires

    International Nuclear Information System (INIS)

    Kaur, Amandeep; Gupta, Tanish; Kumar, Akshay; Kumar, Sanjeev; Singh, Karamjeet; Thakur, Anup

    2015-01-01

    Copper nanowires were fabricated within the pores of anodic alumina template (AAT) by template synthesis method at pH = 2.9. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to investigate the structure, morphology and composition of fabricated nanowires. These characterizations revealed that the deposited copper nanowires were highly crystalline in nature, dense and uniform. The crystalline copper nanowires are promising in application of future nanoelectronic devices and circuits

  16. Synthesis and characterization of [BMIM]bromide using microwave-assisted organic synthesis method and its application for dissolution of palm empty fruit bunch

    International Nuclear Information System (INIS)

    Arianie, Lucy; Wahyuningrum, Deana; Nurrachman, Zeily; Natalia, Dessy

    2014-01-01

    The decrease of cellulose crystallinity index of palm empty fruit bunch is crucial for the next application of cellulose as raw material for various biofuel and its derivatives. The aim of this research is to decrease the cellulose crystallinity index of palm empty fruit bunch using 1-butyl-3-methylimidazoliumbromide or [BMIM] bromide which has been synthesized using Microwave-Assisted Organic Synthesis (MAOS) method. Conventional reaction method has also been carried out to synthesize [BMIM]bromide for comparison as well. The characterization of synthesized product using FTIR, 1 H-NMR, 13 C-NMR and LC-MS showed that these reactions have been carried out successfully. The results showed that MAOS method is up to 90% faster in producing [BMIM]bromide compare to the conventional method. The application of [BMIM]bromide for dissolution of palm empty fruit bunch showed that cellulose and lignin could be extracted using stirring process for 20 hours. The decrease of cellulose crystallinity index and its morphology changes were identified using FTIR and Scanning Electron Microscope

  17. Synthesis and characterization of [BMIM]bromide using microwave-assisted organic synthesis method and its application for dissolution of palm empty fruit bunch

    Energy Technology Data Exchange (ETDEWEB)

    Arianie, Lucy, E-mail: lucy205@yahoo.com [Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Tanjungpura, Jl. A.Yani, 73 Pontianak 78124 (Indonesia); Wahyuningrum, Deana, E-mail: deana@chem.itb.ac.id; Nurrachman, Zeily, E-mail: deana@chem.itb.ac.id; Natalia, Dessy, E-mail: deana@chem.itb.ac.id [Department of Chemistry, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132 (Indonesia)

    2014-03-24

    The decrease of cellulose crystallinity index of palm empty fruit bunch is crucial for the next application of cellulose as raw material for various biofuel and its derivatives. The aim of this research is to decrease the cellulose crystallinity index of palm empty fruit bunch using 1-butyl-3-methylimidazoliumbromide or [BMIM] bromide which has been synthesized using Microwave-Assisted Organic Synthesis (MAOS) method. Conventional reaction method has also been carried out to synthesize [BMIM]bromide for comparison as well. The characterization of synthesized product using FTIR, {sup 1}H-NMR, {sup 13}C-NMR and LC-MS showed that these reactions have been carried out successfully. The results showed that MAOS method is up to 90% faster in producing [BMIM]bromide compare to the conventional method. The application of [BMIM]bromide for dissolution of palm empty fruit bunch showed that cellulose and lignin could be extracted using stirring process for 20 hours. The decrease of cellulose crystallinity index and its morphology changes were identified using FTIR and Scanning Electron Microscope.

  18. Anisotropy and temperature dependence of structural, thermodynamic, and elastic properties of crystalline cellulose Iβ: a first-principles investigation

    Science.gov (United States)

    ShunLi Shang; Louis G. Hector Jr.; Paul Saxe; Zi-Kui Liu; Robert J. Moon; Pablo D. Zavattieri

    2014-01-01

    Anisotropy and temperature dependence of structural, thermodynamic and elastic properties of crystalline cellulose Iβ were computed with first-principles density functional theory (DFT) and a semi-empirical correction for van der Waals interactions. Specifically, we report the computed temperature variation (up to 500...

  19. Novel route of synthesis for cellulose fiber-based hybrid polyurethane

    Science.gov (United States)

    Ikhwan, F. H.; Ilmiati, S.; Kurnia Adi, H.; Arumsari, R.; Chalid, M.

    2017-07-01

    Polyurethanes, obtained by the reaction of a diisocyanate compound with bifunctional or multifunctional reagent such as diols or polyols, have been studied intensively and well developed. The wide range modifier such as chemical structures and molecular weight to build polyurethanes led to designs of materials that may easily meet the functional product demand and to the extraordinary spreading of these materials in market. Properties of the obtained polymer are related to the chemical structure of polyurethane backbone. A number polyurethanes prepared from biomass-based monomers have been reported. Cellulose fiber, as a biomass material is containing abundant hydroxyl, promising material as chain extender for building hybrid polyurethanes. In previous researches, cellulose fiber was used as filler in synthesis of polyurethane composites. This paper reported a novel route of hybrid polyurethane synthesis, which a cellulose fiber was used as chain extender. The experiment performed by reacting 4,4’-Methylenebis (cyclohexyl isocyanate) (HMDI) and polyethylene glycol with variation of molecular weight to obtained pre-polyurethane, continued by adding micro fiber cellulose (MFC) with variation of type and composition in the mixture. The experiment was evaluated by NMR, FTIR, SEM and STA measurement. NMR and FTIR confirmed the reaction of the hybrid polyurethane. STA showed hybrid polyurethane has good thermal stability. SEM showed good distribution and dispersion of sorghum-based MFC.

  20. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    Energy Technology Data Exchange (ETDEWEB)

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan [Polymer Research Centre (PORCE), School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF{sub 3}SO{sub 3} were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2–10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10{sup −7} Scm{sup −1} upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity.

  1. Cellulose powder from Cladophora sp. algae.

    Science.gov (United States)

    Ek, R; Gustafsson, C; Nutt, A; Iversen, T; Nyström, C

    1998-01-01

    The surface are and crystallinity was measured on a cellulose powder made from Cladophora sp. algae. The algae cellulose powder was found to have a very high surface area (63.4 m2/g, N2 gas adsorption) and build up of cellulose with a high crystallinity (approximately 100%, solid state NMR). The high surface area was confirmed by calculations from atomic force microscope imaging of microfibrils from Cladophora sp. algae.

  2. Kinetics of Cellulose Digestion by Fibrobacter succinogenes S85

    OpenAIRE

    Maglione, G.; Russell, J. B.; Wilson, D. B.

    1997-01-01

    Growing cultures of Fibrobacter succinogenes S85 digested cellulose at a rapid rate, but nongrowing cells and cell extracts did not have detectable crystalline cellulase activity. Cells that had been growing exponentially on cellobiose initiated cellulose digestion and succinate production immediately, and cellulose-dependent succinate production could be used as an index of enzyme activity against crystalline cellulose. Cells incubated with cellulose never produced detectable cellobiose, and...

  3. Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage

    International Nuclear Information System (INIS)

    Patchan, M.; Graham, J.L.; Xia, Z.; Maranchi, J.P.; McCally, R.; Schein, O.; Elisseeff, J.H.; Trexler, M.M.

    2013-01-01

    Cellulose is a biologically derived material with excellent wound-healing properties. The high strength of cellulose fibers and the ability to synthesize gels with high optical transparency make these materials suitable for ocular applications. In this study, cellulose materials derived from wood pulp, cotton, and bacterial sources were dissolved in lithium chloride/N,N-dimethylacetamide to form regenerated cellulose hydrogels. Material properties of the resulting hydrogels, including water content, optical transparency, and tensile and tear strengths, were evaluated. Synthesis parameters, including activation time, dissolution time, relative humidity, and cellulose concentration, were found to impact the material properties of the resulting hydrogels. Overnight activation time improves the optical transparency of the hydrogels from 77% to 97% at 550 nm, whereas controlling cellulose concentration improves their tear strength by as much as 200%. On the basis of the measured transmittance and strength values of the regenerated hydrogels prepared via the optimized synthesis parameters, Avicel PH 101, Sigma-Aldrich microcrystalline cellulose 435236, and bacterial cellulose types were prioritized for future biocompatibility testing and potential clinical investigation. - Highlights: • Hydrogels were prepared (via LiCl/DMAc) from 7 different types of cellulose. • Synthesis parameters (activation, gelation, and concentration) were optimized. • Impact of synthesis parameters on transparency and strength was explored

  4. Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage

    Energy Technology Data Exchange (ETDEWEB)

    Patchan, M. [Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Graham, J.L. [Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, 720 Rutland Avenue/Ross 720, Baltimore, MD 21205 (United States); Xia, Z.; Maranchi, J.P. [Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); McCally, R. [Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Wilmer Eye Institute, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD 21287 (United States); Schein, O. [Wilmer Eye Institute, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD 21287 (United States); Elisseeff, J.H. [Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, 720 Rutland Avenue/Ross 720, Baltimore, MD 21205 (United States); Trexler, M.M., E-mail: morgana.trexler@jhuapl.edu [Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States)

    2013-07-01

    Cellulose is a biologically derived material with excellent wound-healing properties. The high strength of cellulose fibers and the ability to synthesize gels with high optical transparency make these materials suitable for ocular applications. In this study, cellulose materials derived from wood pulp, cotton, and bacterial sources were dissolved in lithium chloride/N,N-dimethylacetamide to form regenerated cellulose hydrogels. Material properties of the resulting hydrogels, including water content, optical transparency, and tensile and tear strengths, were evaluated. Synthesis parameters, including activation time, dissolution time, relative humidity, and cellulose concentration, were found to impact the material properties of the resulting hydrogels. Overnight activation time improves the optical transparency of the hydrogels from 77% to 97% at 550 nm, whereas controlling cellulose concentration improves their tear strength by as much as 200%. On the basis of the measured transmittance and strength values of the regenerated hydrogels prepared via the optimized synthesis parameters, Avicel PH 101, Sigma-Aldrich microcrystalline cellulose 435236, and bacterial cellulose types were prioritized for future biocompatibility testing and potential clinical investigation. - Highlights: • Hydrogels were prepared (via LiCl/DMAc) from 7 different types of cellulose. • Synthesis parameters (activation, gelation, and concentration) were optimized. • Impact of synthesis parameters on transparency and strength was explored.

  5. Polymorphy in native cellulose: recent developments

    International Nuclear Information System (INIS)

    Atalla, R.H.

    1984-01-01

    In a number of earlier studies, the authors developed a model of cellulose structure based on the existence of two stable, linearly ordered conformations of the cellulose chain that are dominant in celluloses I and II, respectively. The model rests on extensive Raman spectral observations together with conformational considerations and solid-state 13 C-NMR studies. More recently, they have proposed, on the basis of high resolution solid-state 13 C-NMR observations, that native celluloses are composites of two distinct crystalline forms that coexist in different proportions in all native celluloses. In the present work, they examine the Raman spectra of the native celluloses, and reconcile their view of conformational differences with the new level of crystalline polymorphy of native celluloses revealed in the solid-state 13 C-NMR investigations

  6. Rapid synthesis of graft copolymers from natural cellulose fibers.

    Science.gov (United States)

    Thakur, Vijay Kumar; Thakur, Manju Kumari; Gupta, Raju Kumar

    2013-10-15

    Cellulose is the most abundant natural polysaccharide polymer, which is used as such or its derivatives in a number of advanced applications, such as in paper, packaging, biosorption, and biomedical. In present communication, in an effort to develop a proficient way to rapidly synthesize poly(methyl acrylate)-graft-cellulose (PMA-g-cellulose) copolymers, rapid graft copolymerization synthesis was carried out under microwave conditions using ferrous ammonium sulfate-potassium per sulfate (FAS-KPS) as redox initiator. Different reaction parameters such as microwave radiation power, ratio of monomer, solvent and initiator concentrations were optimized to get the highest percentage of grafting. Grafting percentage was found to increase with increase in microwave power up to 70%, and maximum 36.73% grafting was obtained after optimization of all parameters. Fourier transforms infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG) analysis were used to confirm the graft copolymerization of poly(methyl acrylate) (PMA) onto the mercerized cellulose. The grafted cellulosic polymers were subsequently subjected to the evaluation of different physico-chemical properties in order to access their application in everyday life, in a direction toward green environment. The grafted copolymers demonstrated increased chemical resistance, and higher thermal stability. Published by Elsevier Ltd.

  7. Synthesis and Characterization of Alkylated Bacterial Cellulose in an Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Jinmin Qin

    2015-02-01

    Full Text Available Bacterial cellulose was alkylated by alkyl halide in the ionic liquid 1-butyl-3-methylimmidazolium chloride ([Bmim]Cl with NaH as the alkaline agent. The derivatives were characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, elemental analyses, X-ray diffraction, and thermal gravimetric analyses. The resultant bacterial cellulose alkylated derivatives (BCADs had a degree of substitution (DS between 0.21 and 2.01. The effects of the alkylating agent, reactant amount, and temperature on the DS were investigated. BCADs with a butyl substituent had a higher DS than did those with ethyl or propyl groups. The crystallinity and thermal stability of the derivatives decreased after modification owing to the change in morphological structure.

  8. Cellulose synthesis genes CESA6 and CSI1 are important for salt stress tolerance in Arabidopsis.

    Science.gov (United States)

    Zhang, Shuang-Shuang; Sun, Le; Dong, Xinran; Lu, Sun-Jie; Tian, Weidong; Liu, Jian-Xiang

    2016-07-01

    Two salt hypersensitive mutants she1 and she2 were identified through genetic screening. SHE1 encodes a cellulose synthase CESA6 while SHE2 encodes a cellulose synthase-interactive protein CSI1. Both of them are involved in cellulose deposition. Our results demonstrated that the sustained cellulose synthesis is important for salt stress tolerance in Arabidopsis. © 2015 Institute of Botany, Chinese Academy of Sciences.

  9. Effects of ionic conduction on hydrothermal hydrolysis of corn starch and crystalline cellulose induced by microwave irradiation.

    Science.gov (United States)

    Tsubaki, Shuntaro; Oono, Kiriyo; Onda, Ayumu; Yanagisawa, Kazumichi; Mitani, Tomohiko; Azuma, Jun-Ichi

    2016-02-10

    This study investigated the effects of ionic conduction of electrolytes under microwave field to facilitate hydrothermal hydrolysis of corn starch and crystalline cellulose (Avicel), typical model biomass substrates. Addition of 0.1M NaCl was effective to improve reducing sugar yield by 1.61-fold at unit energy (kJ) level. Although Avicel cellulose was highly recalcitrant to hydrothermal hydrolysis, addition of 0.1M MgCl2 improved reducing sugar yield by 6.94-fold at unit energy (kJ). Dielectric measurement of the mixture of corn starch/water/electrolyte revealed that ionic conduction of electrolytes were strongly involved in facilitating hydrothermal hydrolysis of polysaccharides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Physicotechnical, spectroscopic and thermogravimetric properties of powdered cellulose and microcrystalline cellulose derived from groundnut shells

    Directory of Open Access Journals (Sweden)

    Chukwuemeka P. Azubuike

    2012-09-01

    Full Text Available α-Cellulose and microcrystalline cellulose powders, derived from agricultural waste products, that have for the pharmaceutical industry, desirable physical (flow properties were investigated. α–Cellulose (GCN was extracted from groundnut shell (an agricultural waste product using a non-dissolving method based on inorganic reagents. Modification of this α -cellulose was carried out by partially hydrolysing it with 2N hydrochloric acid under reflux to obtain microcrystalline cellulose (MCGN. The physical, spectroscopic and thermal properties of the derived α-cellulose and microcrystalline cellulose powders were compared with Avicel® PH 101, a commercial brand of microcrystalline cellulose (MCCA, using standard methods. X-ray diffraction and infrared spectroscopy analysis showed that the α-cellulose had lower crystallinity. This suggested that treatment with 2N hydrochloric acid led to an increase in the crystallinity index. Thermogravimetric analysis showed quite similar thermal behavior for all cellulose samples, although the α-cellulose had a somewhat lower stability. A comparison of the physical properties between the microcrystalline celluloses and the α-cellulose suggests that microcrystalline cellulose (MCGN and MCCA might have better flow properties. In almost all cases, MCGN and MCCA had similar characteristics. Since groundnut shells are agricultural waste products, its utilization as a source of microcrystalline cellulose might be a good low-cost alternative to the more expensive commercial brand.

  11. A universal route for the simultaneous extraction and functionalization of cellulose nanocrystals from industrial and agricultural celluloses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guo-Yin; Yu, Hou-Yong, E-mail: phdyu@zstu.edu.cn; Zhang, Cai-Hong [Zhejiang Sci-Tech University, The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles (China); Zhou, Ying; Yao, Ju-Ming, E-mail: yaoj@zstu.edu.cn [Zhejiang Sci-Tech University, National Engineering Lab for Textile Fiber Materials & Processing Technology (China)

    2016-02-15

    A simple route was designed to extract the cellulose nanocrystals (CNCs) with formate groups from industrial and agricultural celluloses like microcrystalline cellulose (MCC), viscose fiber, ginger fiber, and bamboo fiber. The effect of reaction time on the microstructure and properties of the CNCs was investigated in detail, while microstructure and properties of different CNCs were compared. The rod-like CNCs (MCC) with hundreds of nanometers in length and about 10 nm in width, nanofibrillated CNCs (ginger fiber bamboo fiber) with average width of 30 nm and the length of 1 μm, and spherical CNCs (viscose fiber) with the width of 56 nm were obtained by one-step HCOOH/HCl hydrolysis. The CNCs with improved thermal stability showed the maximum degradation temperature (T{sub max}) of 368.9–388.2 °C due to the introduction of formate groups (reducibility) and the increased crystallinity. Such CNCs may be used as an effective template for the synthesis of nanohybrids or reinforcing material for high-performance nanocomposites.

  12. A universal route for the simultaneous extraction and functionalization of cellulose nanocrystals from industrial and agricultural celluloses

    International Nuclear Information System (INIS)

    Chen, Guo-Yin; Yu, Hou-Yong; Zhang, Cai-Hong; Zhou, Ying; Yao, Ju-Ming

    2016-01-01

    A simple route was designed to extract the cellulose nanocrystals (CNCs) with formate groups from industrial and agricultural celluloses like microcrystalline cellulose (MCC), viscose fiber, ginger fiber, and bamboo fiber. The effect of reaction time on the microstructure and properties of the CNCs was investigated in detail, while microstructure and properties of different CNCs were compared. The rod-like CNCs (MCC) with hundreds of nanometers in length and about 10 nm in width, nanofibrillated CNCs (ginger fiber bamboo fiber) with average width of 30 nm and the length of 1 μm, and spherical CNCs (viscose fiber) with the width of 56 nm were obtained by one-step HCOOH/HCl hydrolysis. The CNCs with improved thermal stability showed the maximum degradation temperature (T max ) of 368.9–388.2 °C due to the introduction of formate groups (reducibility) and the increased crystallinity. Such CNCs may be used as an effective template for the synthesis of nanohybrids or reinforcing material for high-performance nanocomposites

  13. Synthesis and Characterization of Methyl Cellulose/Keratin Hydrolysate Composite Membranes

    Directory of Open Access Journals (Sweden)

    Bernd M. Liebeck

    2017-03-01

    Full Text Available It is known that aqueous keratin hydrolysate solutions can be produced from feathers using superheated water as solvent. This method is optimized in this study by varying the time and temperature of the heat treatment in order to obtain a high solute content in the solution. With the dissolved polypeptides, films are produced using methyl cellulose as supporting material. Thereby, novel composite membranes are produced from bio-waste. It is expected that these materials exhibit both protein and polysaccharide properties. The influence of the embedded keratin hydrolysates on the methyl cellulose structure is investigated using Fourier transform infrared spectroscopy (FTIR and wide angle X-ray diffraction (WAXD. Adsorption peaks of both components are present in the spectra of the membranes, while the X-ray analysis shows that the polypeptides are incorporated into the semi-crystalline methyl cellulose structure. This behavior significantly influences the mechanical properties of the composite films as is shown by tensile tests. Since further processing steps, e.g., crosslinking, may involve a heat treatment, thermogravimetric analysis (TGA is applied to obtain information on the thermal stability of the composite materials.

  14. Structure and transformation of tactoids in cellulose nanocrystal suspensions

    Science.gov (United States)

    Wang, Pei-Xi; Hamad, Wadood Y.; MacLachlan, Mark J.

    2016-05-01

    Cellulose nanocrystals obtained from natural sources are of great interest for many applications. In water, cellulose nanocrystals form a liquid crystalline phase whose hierarchical structure is retained in solid films after drying. Although tactoids, one of the most primitive components of liquid crystals, are thought to have a significant role in the evolution of this phase, they have evaded structural study of their internal organization. Here we report the capture of cellulose nanocrystal tactoids in a polymer matrix. This method allows us to visualize, for the first time, the arrangement of cellulose nanocrystals within individual tactoids by electron microscopy. Furthermore, we can follow the structural evolution of the liquid crystalline phase from tactoids to iridescent-layered films. Our insights into the early nucleation events of cellulose nanocrystals give important information about the growth of cholesteric liquid crystalline phases, especially for cellulose nanocrystals, and are crucial for preparing photonics-quality films.

  15. Controlled synthesis of single-crystalline graphene

    Directory of Open Access Journals (Sweden)

    Wang Xueshen

    2014-02-01

    Full Text Available This paper reports the controlled synthesis of single-crystalline graphene on the back side of copper foil using CH4 as the precursor. The influence of growth time and the pressure ratio of CH4/H2 on the structure of graphene are examined. An optimized polymer-assisted method is used to transfer the synthesized graphene onto a SiO2/Si substrate. Scanning electron microscopy and Raman spectroscopy are used to characterize the graphene.

  16. Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus.

    Science.gov (United States)

    Xi, Wang; Song, Dongliang; Sun, Jiayan; Shen, Junhui; Li, Laigeng

    2017-03-01

    Cellulose biosynthesis is mediated by cellulose synthases (CesAs), which constitute into rosette-like cellulose synthase complexe (CSC) on the plasma membrane. Two types of CSCs in Arabidopsis are believed to be involved in cellulose synthesis in the primary cell wall and secondary cell walls, respectively. In this work, we found that the two type CSCs participated cellulose biosynthesis in differentiating xylem cells undergoing secondary cell wall thickening in Populus. During the cell wall thickening process, expression of one type CSC genes increased while expression of the other type CSC genes decreased. Suppression of different type CSC genes both affected the wall-thickening and disrupted the multilaminar structure of the secondary cell walls. When CesA7A was suppressed, crystalline cellulose content was reduced, which, however, showed an increase when CesA3D was suppressed. The CesA suppression also affected cellulose digestibility of the wood cell walls. The results suggest that two type CSCs are involved in coordinating the cellulose biosynthesis in formation of the multilaminar structure in Populus wood secondary cell walls.

  17. Relative crystallinity of plant biomass: studies on assembly, adaptation and acclimation.

    Directory of Open Access Journals (Sweden)

    Darby Harris

    Full Text Available Plant biomechanical design is central to cell shape, morphogenesis, reproductive performance and protection against environmental and mechanical stress. The cell wall forms the central load bearing support structure for plant design, yet a mechanistic understanding of its synthesis is incomplete. A key tool for studying the structure of cellulose polymorphs has been x-ray diffraction and fourier transform infrared spectroscopy (FTIR. Relative crystallinity index (RCI is based on the x-ray diffraction characteristics of two signature peaks and we used this technique to probe plant assembly, adaptation and acclimation. Confocal microscopy was used to visualize the dynamics of cellulose synthase in transgenic Arabidopsis plants expressing a homozygous YFP::CESA6. Assembly: RCI values for stems and roots were indistinguishable but leaves had 23.4 and 21.6% lower RCI than stems and roots respectively. Adaptation: over 3-fold variability in RCI was apparent in leaves from 35 plant species spanning Ordovician to Cretaceous periods. Within this study, RCI correlated positively with leaf geometric constraints and with mass per unit area, suggestive of allometry. Acclimation: biomass crystallinity was found to decrease under conditions of thigmomorphogenesis in Arabidopsis. Further, in etiolated pea hypocotyls, RCI values also decreased compared to plants that were grown in light, consistent with alterations in FTIR cellulose fingerprint peaks and live cell imaging experiments revealing rapid orientation of the YFP::cellulose synthase-6 array in response to light. Herein, results and technical challenges associated with the structure of the cell wall that gives rise to sample crystallinity are presented and examined with respect to adaptation, acclimation and assembly in ecosystem-level processes.

  18. Binding Cellulose and Chitosan via Intermolecular Inclusion Interaction: Synthesis and Characterisation of Gel

    Directory of Open Access Journals (Sweden)

    Jiufang Duan

    2015-01-01

    Full Text Available A novel cellulose-chitosan gel was successfully prepared in three steps: (1 ferrocene- (Fc- cellulose with degrees of substitution (DS of 0.5 wt% was synthesised by ferrocenecarboxylic acid and cellulose within dimethylacetamide/lithium chloride (DMAc/LiCl; (2 the β-cyclodextrin (β-CD groups were introduced onto the chitosan chains by reacting chitosan with epichlorohydrin in dimethyl sulphoxide and a DS of 0.35 wt%; (3 thus, the cellulose-chitosan gel was obtained via an intermolecular inclusion interaction of Fc-cellulose and β-CD-chitosan in DMA/LiCl, that is, by an intermolecular inclusion interaction, between the Fc groups of cellulose and the β-CD groups on the chitosan backbone at room temperature. The successful synthesis of Fc-cellulose and β-CD-chitosan was characterised by 13C-NMR spectroscopy. The gel based on β-CD-chitosan and Fc-cellulose was formed under mild conditions which can engender autonomous healing between cut surfaces after 24 hours: the gel cannot self-heal while the cut surfaces were coated with a solution of a competitive guest (adamantane acid. The cellulose-chitosan complex made by this method underwent self-healing. Therefore, this study provided a novel method of expanding the application of chitosan by binding it with another polymer.

  19. Microwave-Assisted Hydrothermal Synthesis of Cellulose/Hydroxyapatite Nanocomposites

    Directory of Open Access Journals (Sweden)

    Lian-Hua Fu

    2016-09-01

    Full Text Available In this paper, we report a facile, rapid, and green strategy for the synthesis of cellulose/hydroxyapatite (HA nanocomposites using an inorganic phosphorus source (sodium dihydrogen phosphate dihydrate (NaH2PO4·2H2O, or organic phosphorus sources (adenosine 5′-triphosphate disodium salt (ATP, creatine phosphate disodium salt tetrahydrate (CP, or D-fructose 1,6-bisphosphate trisodium salt octahydrate (FBP through the microwave-assisted hydrothermal method. The effects of the phosphorus sources, heating time, and heating temperature on the phase, size, and morphology of the products were systematically investigated. The experimental results revealed that the phosphate sources played a critical role on the phase, size, and morphology of the minerals in the nanocomposites. For example, the pure HA was obtained by using NaH2PO4·2H2O as phosphorus source, while all the ATP, CP, and FBP led to the byproduct, calcite. The HA nanostructures with various morphologies (including nanorods, pseudo-cubic, pseudo-spherical, and nano-spherical particles were obtained by varying the phosphorus sources or adjusting the reaction parameters. In addition, this strategy is surfactant-free, avoiding the post-treatment procedure and cost for the surfactant removal from the product. We believe that this work can be a guidance for the green synthesis of cellulose/HA nanocomposites in the future.

  20. Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative study on Their Microstructures and Effects as Polymer Reinforcing Agents

    Science.gov (United States)

    Xuezhu Xu; Fei Liu; Long Jiang; J.Y. Zhu; Darrin Haagenson; Dennis P. Wiesenborn

    2013-01-01

    Both cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) are nanoscale cellulose fibers that have shown reinforcing effects in polymer nanocomposites. CNCs and CNFs are different in shape, size and composition. This study systematically compared their morphologies, crystalline structure, dispersion properties in polyethylene oxide (PEO) matrix, interactions...

  1. Characterization of cellulose nanowhiskers

    International Nuclear Information System (INIS)

    Nascimento, Nayra R.; Pinheiro, Ivanei F.; Morales, Ana R.; Ravagnani, Sergio P.; Mei, Lucia

    2015-01-01

    Cellulose is the most abundant polymer earth. The cellulose nanowhiskers can be extracted from the cellulose. These have attracted attention for its use in nanostructured materials for various applications, such as nanocomposites, because they have peculiar characteristics, among them, high aspect ratio, biodegradability and excellent mechanical properties. This work aims to characterize cellulose nanowhiskers from microcrystalline cellulose. Therefore, these materials were characterized by X-ray diffraction (XRD) to assess the degree of crystallinity, infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) to the morphology of nanowhiskers and thermal stability was evaluated by Thermogravimetric Analysis (TGA). (author)

  2. Synthesis and characterization of cellulose derivatives obtained from bacterial cellulose

    International Nuclear Information System (INIS)

    Oliveira, Rafael L. de; Barud, Hernane; Ribeiro, Sidney J.L.; Messaddeq, Younes

    2011-01-01

    The chemical modification of cellulose leads to production of derivatives with different properties from those observed for the original cellulose, for example, increased solubility in more traditional solvents. In this work we synthesized four derivatives of cellulose: microcrystalline cellulose, cellulose acetate, methylcellulose and carboxymethylcellulose using bacterial cellulose as a source. These were characterized in terms of chemical and structural changes by examining the degree of substitution (DS), infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy - NMR 13 C. The molecular weight and degree of polymerization were evaluated by viscometry. The characterization of the morphology of materials and thermal properties were performed with the techniques of X-ray diffraction, electron microscopy images, differential scanning calorimetry (DSC) and thermogravimetric analysis. (author)

  3. One-step green synthesis of non-hazardous dicarboxyl cellulose flocculant and its flocculation activity evaluation

    International Nuclear Information System (INIS)

    Zhu, Hangcheng; Zhang, Yong; Yang, Xiaogang; Liu, Hongyi; Shao, Lan; Zhang, Xiumei; Yao, Juming

    2015-01-01

    The waste management of used flocculants is a thorny issue in the field of wastewater treatment. To natural cellulose based flocculants, utilization of hazardous cellulose solvent and simplification of synthetic procedure are the two urgent problems needing to be further improved. In this work, a series of natural dicarboxyl cellulose flocculants (DCCs) were one-step synthesized via Schiff-base route. The cellulose solvent (NaOH/Urea solution) was utilized during the synthesis process. The full-biodegradable flocculants avoid causing secondary pollution to environment. The chemical structure and solution property of the DCC products were characterized by FT-IR, 1 H NMR, 13 C NMR, TGA, FESEM, charge density and ζ-potential. Kaolin suspension and effluent from paper mill were selected to evaluate the flocculation activity of the DCCs. Their flocculation performance was compared with that of commercial cationic polyacrylamide and poly aluminium chloride flocculants. The positive results showed that the NaOH/Urea solvent effectively promoted the dialdehyde cellulose (DAC) conversion to DCC in the one-step synthesis reaction. The DCCs with the carboxylate content more than 1 mmol/g exhibited steady flocculation performance to kaolin suspension in the broad pH range from 4 to 10. Its flocculation capacity to the effluent from paper mill also showed excellent

  4. Chapter 2.1 Integrated Production of Cellulose Nanofibrils and Cellulosic Biofuel by Enzymatic Hydrolysis of wood Fibers

    Science.gov (United States)

    Ronald Sabo; J.Y. Zhu

    2013-01-01

    One key barrier to converting woody biomass to biofuel through the sugar platform is the low efficiency of enzymatic cellulose saccharification due to the strong recalcitrance of the crystalline cellulose. Significant past research efforts in cellulosic biofuels have focused on overcoming the recalcitrance of lignocelluloses to enhance the saccharification of...

  5. Dynamics of water bound to crystalline cellulose

    Energy Technology Data Exchange (ETDEWEB)

    O’Neill, Hugh; Pingali, Sai Venkatesh; Petridis, Loukas; He, Junhong; Mamontov, Eugene; Hong, Liang; Urban, Volker; Evans, Barbara; Langan, Paul; Smith, Jeremy C.; Davison, Brian H.

    2017-09-19

    Interactions of water with cellulose are of both fundamental and technological importance. Here, we characterize the properties of water associated with cellulose using deuterium labeling, neutron scattering and molecular dynamics simulation. Quasi-elastic neutron scattering provided quantitative details about the dynamical relaxation processes that occur and was supported by structural characterization using small-angle neutron scattering and X-ray diffraction. We can unambiguously detect two populations of water associated with cellulose. The first is “non-freezing bound” water that gradually becomes mobile with increasing temperature and can be related to surface water. The second population is consistent with confined water that abruptly becomes mobile at ~260 K, and can be attributed to water that accumulates in the narrow spaces between the microfibrils. Quantitative analysis of the QENS data showed that, at 250 K, the water diffusion coefficient was 0.85 ± 0.04 × 10-10 m2sec-1 and increased to 1.77 ± 0.09 × 10-10 m2sec-1 at 265 K. MD simulations are in excellent agreement with the experiments and support the interpretation that water associated with cellulose exists in two dynamical populations. Our results provide clarity to previous work investigating the states of bound water and provide a new approach for probing water interactions with lignocellulose materials.

  6. Green synthesis of palladium nanoparticles with carboxymethyl cellulose for degradation of azo-dyes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang; Li, Yun; Wang, Zhengdong; Liu, Huihong, E-mail: huihongliu@126.com

    2017-02-01

    Palladium nanoparticles (PdNPs) were synthesized through friendly environmental method using PdCl{sub 2} and carboxymethyl cellulose (CMC) in an aqueous solution (pH 6) at controlled water bath (80 °C) for 30 min. CMC functioned as both reducing and stabilizing agent. The characterization through high resolution-transmission electron microscopic (HRTEM) and X-ray Fluorescence Spectrometry (XRF) inferred that the as-synthesized PdNPs were spherical in shape with a face cubic crystal (FCC) structure. The results from dynamic light scattering (DLS) suggested the PdNPs had the narrow size distribution with an average size of 2.5 nm. The negative zeta potential (−52.6 mV) kept the as-synthesized PdNPs stable more than one year. The PdNPs showed the excellent catalytic activity by reducing degradation of azo-dyes, such as p-Aminoazobenzene, acid red 66, acid orange 7, scarlet 3G and reactive yellow 179, in the present of sodium borohydride. - Highlights: • Green synthesis of palladium nanoparticles using carboxymethyl cellulose. • The synthesis of palladium nanoparticles were performed easily. • Carboxymethyl cellulose acts as both reducing and stabilization agents. • The as-synthesized palladium nanoparticles show excellent catalytic activity.

  7. Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy

    Science.gov (United States)

    Szymańska-Chargot, Monika; Cybulska, Justyna; Zdunek, Artur

    2011-01-01

    Raman and Fourier Transform Infrared (FT-IR) spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the Iβ content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (XCRAMAN%) varied from −25% for apple cellulose to 53% for microcrystalline commercial cellulose. Considering bacterial cellulose, addition of xyloglucan has an impact on the percentage content of cellulose Iβ. However, addition of only xyloglucan or only pectins to pure bacterial cellulose both resulted in a slight decrease of crystallinity. However, culturing bacterial cellulose in the presence of mixtures of xyloglucan and pectins results in an increase of crystallinity. The results confirmed that the higher degree of crystallinity, the broader the peak around 913 cm−1. Among all bacterial celluloses the bacterial cellulose cultured in presence of xyloglucan and pectin (BCPX) has the most similar structure to those observed in natural primary cell walls. PMID:22163913

  8. Synthesis of crystalline ceramics for actinide immobilisation

    International Nuclear Information System (INIS)

    Burakov, B.; Gribova, V.; Kitsay, A.; Ojovan, M.; Hyatt, N.C.; Stennett, M.C.

    2007-01-01

    Methods for the synthesis of ceramic wasteforms for the immobilization of actinides are common to those for non-radioactive ceramics: hot uniaxial pressing (HUP); hot isostatic pressing (HIP); cold pressing followed by sintering; melting (for some specific ceramics, such as garnet/perovskite composites). Synthesis of ceramics doped with radionuclides is characterized with some important considerations: all the radionuclides should be incorporated into crystalline structure of durable host-phases in the form of solid solutions and no separate phases of radionuclides should be present in the matrix of final ceramic wasteform; all procedures of starting precursor preparation and ceramic synthesis should follow safety requirements of nuclear industry. Synthesis methods that avoid the use of very high temperatures and pressures and are easily accomplished within the environment of a glove-box or hot cell are preferable. Knowledge transfer between the V. G. Khlopin Radium Institute (KRI, Russia) and Immobilisation Science Laboratory (ISL, UK) was facilitated in the framework of a joint project supported by UK Royal Society. In order to introduce methods of precursor preparation and ceramic synthesis we selected well-known procedures readily deployable in radiochemical processing plants. We accounted that training should include main types of ceramic wasteforms which are currently discussed for industrial applications. (authors)

  9. Synthesis of flexible magnetic nanohybrid based on bacterial cellulose under ultrasonic irradiation

    International Nuclear Information System (INIS)

    Zheng, Yi; Yang, Jingxuan; Zheng, Weili; Wang, Xiao; Xiang, Cao; Tang, Lian; Zhang, Wen; Chen, Shiyan; Wang, Huaping

    2013-01-01

    Flexible magnetic membrane based on bacterial cellulose (BC) was successfully prepared by in-situ synthesis of the Fe 3 O 4 nanoparticles under different conditions and its properties were characterized. The results demonstrated that the Fe 3 O 4 nanoparticles coated with PEG were well homogeneously dispersed in the BC matrix under ultrasonic irradiation with the saturation magnetization of 40.58 emu/g. Besides that, the membranes exhibited the striking flexibility and mechanical properties. This study provided a green and facile method to inhibit magnetic nanoparticle aggregation without compromising the mechanical properties of the nanocomposites. Magnetically responsive BC membrane would have potential applications in electronic actuators, information storage, electromagnetic shielding coating and anti-counterfeit. - Highlights: ► Flexible magnetic film is prepared by in situ synthesis on bacterial cellulose. ► Ultrasound and PEG are used together to inhibit the nanoparticle aggregation. ► The magnetic membrane demonstrates the great superparamagnetic behavior

  10. Synthesis and crystalline properties of CdS incorporated polyvinylidene fluoride (PVDF) composite film

    Science.gov (United States)

    Patel, Arunendra Kumar; Sunder, Aishwarya; Mishra, Shweta; Bajpai, Rakesh

    2018-05-01

    This paper gives an insight on the synthesis and crystalline properties of Polyvinylidene Fluoride (PVDF) (host matrix) composites impregnated with Cadmium Sulphide (CdS) using Dimethyl formamide (DMF) as the base, prepared by the well known solvent casting technique. The effect of doping concentration of CdS in to the PVDF matrix was studied using X-ray diffraction technique. The structural properties like crystallinity Cr, interplanar distance d, average size of the crystalline region (D), and average inter crystalline separation (R) have been estimated for the developed composite. The crystallinity index, crystallite size and inter crystalline separation is increasing with increase in the concentration of CdS in to the PVDF matrix while the interplanar distance d is decreasing.

  11. Cellulose microfibril structure: inspirations from plant diversity

    Science.gov (United States)

    Roberts, A. W.

    2018-03-01

    Cellulose microfibrils are synthesized at the plasma membrane by cellulose synthase catalytic subunits that associate to form cellulose synthesis complexes. Variation in the organization of these complexes underlies the variation in cellulose microfibril structure among diverse organisms. However, little is known about how the catalytic subunits interact to form complexes with different morphologies. We are using an evolutionary approach to investigate the roles of different catalytic subunit isoforms in organisms that have rosette-type cellulose synthesis complexes.

  12. Cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  13. CELLULOSIC NANOCOMPOSITES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Martin A. Hubbe

    2008-08-01

    Full Text Available Because of their wide abundance, their renewable and environmentally benign nature, and their outstanding mechanical properties, a great deal of attention has been paid recently to cellulosic nanofibrillar structures as components in nanocomposites. A first major challenge has been to find efficient ways to liberate cellulosic fibrils from different source materials, including wood, agricultural residues, or bacterial cellulose. A second major challenge has involved the lack of compatibility of cellulosic surfaces with a variety of plastic materials. The water-swellable nature of cellulose, especially in its non-crystalline regions, also can be a concern in various composite materials. This review of recent work shows that considerable progress has been achieved in addressing these issues and that there is potential to use cellulosic nano-components in a wide range of high-tech applications.

  14. Properties of cellulose nanocrystals from oil palm trunk isolated by total chlorine free method.

    Science.gov (United States)

    Lamaming, Junidah; Hashim, Rokiah; Leh, Cheu Peng; Sulaiman, Othman

    2017-01-20

    Cellulose nanocrystals were isolated from oil palm trunk by total chlorine free method. The samples were either water pre-hydrolyzed or non-water pre-hydrolyzed, subjected to soda pulping, acidified and ozone bleached. Cellulose and cellulose nanocrystal (CNC) physical, chemical, thermal properties, and crystallinity index were investigated by composition analysis, scanning electron microscopy, transmission electron microscopy, fourier transform infrared, thermogravimetric analysis and X-ray diffraction. Water pre-hydrolysis reduced lignin (process compared to non-fibrillated of non-water pre-hydrolyzed cellulose. Water pre-hydrolysis improved final CNC crystallinity (up to 75%) compared to CNC without water pre-hydrolysis crystallinity (69%). Cellulose degradation was found to occur during ozone bleaching stage but CNC showed an increase in crystallinity after acid hydrolysis. Thus, oil palm trunk CNC can be potentially applied in pharmaceutical, food, medical and nanocomposites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Chapter 1.1 Crystallinity of Nanocellulose Materials by Near-IR FT-Raman Spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Sally A. Ralph

    2013-01-01

    Considering that crystallinity is one of the important properties that influence the end use of cellulose nanomaterials, it is important that the former be measured accurately. Recently, a new method based on near-IR FTRaman spectroscopy was proposed to determine cellulose I crystallinity. It was reported that in the Raman spectrum of cellulose materials, the...

  16. Nanocomposites of cellulose/iron oxide: influence of synthesis conditions on their morphological behavior and thermal stability

    International Nuclear Information System (INIS)

    Ma Mingguo; Zhu Jiefang; Li Shuming; Jia Ning; Sun Runcang

    2012-01-01

    Nanocomposites of cellulose/iron oxide have been successfully prepared by hydrothermal method using cellulose solution and Fe(NO 3 ) 3 ·9H 2 O at 180 °C. The cellulose solution was obtained by the dissolution of microcrystalline cellulose in NaOH/urea aqueous solution, which is a good system to dissolve cellulose and favors the synthesis of iron oxide without needing any template or other reagents. The phases, microstructure, and morphologies of nanocomposites were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectra (EDS). The effects of the heating time, heating temperature, cellulose concentration, and ferric nitrate concentration on the morphological behavior of products were investigated. The experimental results indicated that the cellulose concentration played an important role in both the phase and shape of iron oxide in nanocomposites. Moreover, the nanocomposites synthesized by using different cellulose concentrations displayed different thermal stabilities. - Highlights: ► Nanocomposites of cellulose/iron oxide have been prepared by hydrothermal method. ► The cellulose concentration played an important role in the phase of iron oxide. ► The cellulose concentration played an important role in the shape of iron oxide. ► The samples displayed different thermal stabilities.

  17. Dynamic rheology behavior of electron beam-irradiated cellulose pulp/NMMO solution

    International Nuclear Information System (INIS)

    Zhou Ruimin; Deng Bangjun; Hao Xufeng; Zhou Fei; Wu Xinfeng; Chen Yongkang

    2008-01-01

    The rheological behavior of irradiated cellulose pulp solution by electron beam was investigated. Storage modulus G', loss modulus G'', the dependence of complex viscosity η* and frequency ω of cellulose solutions were measured by DSR-200 Rheometer (Rheometrics co., USA). The molecular weight of irradiated cellulose was measured via the intrinsic viscosity measurement using an Ubbelohde capillary viscometer. The crystalline structure was studied by FTIR Spectroscopy. The results congruously showed that the molecular weight of pulp cellulose decrease and the molecular weight distribution of cellulose become narrow with increase in the irradiation dose. Moreover, the crystalline structure of the cellulose was destroyed, the force of the snarl between the cellulose molecules weakens and the accessibility of pulp spinning is improved. The study supplies some useful data for spinnability of irradiated cellulose and technical data to the filature industry

  18. Gel–sol synthesis and aging effect on highly crystalline anatase ...

    Indian Academy of Sciences (India)

    Gel–sol synthesis and aging effect on highly crystalline anatase nanopowder .... −1 in static air. To identify the gel-phase, it was mixed with D2O to form sample solution ... Ti(OH)4 chemical composition is produced this way: Ti3. [. (OC2H4)3 N. ].

  19. Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers

    Science.gov (United States)

    Junyong Zhu; Ronald Sabo; Xiaolin Luo

    2011-01-01

    This study demonstrates the feasibility of integrating the production of nano-fibrillated cellulose (NFC), a potentially highly valuable biomaterial, with sugar/biofuel (ethanol) from wood fibers. Commercial cellulase enzymes were used to fractionate the less recalcitrant amorphous cellulose from a bleached Kraft eucalyptus pulp, resulting in a highly crystalline and...

  20. Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions.

    Science.gov (United States)

    Chimentão, R J; Lorente, E; Gispert-Guirado, F; Medina, F; López, F

    2014-10-13

    The hydrolysis of dilute acid-pretreated cellulose was investigated in a conventional oven and under microwave heating. Two acids--sulfuric and oxalic--were studied. For both hydrothermal conditions (oven and microwave) the resultant total organic carbon (TOC) values obtained by the hydrolysis of the cellulose pretreated with sulfuric acid were higher than those obtained by the hydrolysis of the cellulose pretreated with oxalic acid. However, the dicarboxylic acid exhibited higher hydrolytic efficiency towards glucose. The hydrolysis of cellulose was greatly promoted by microwave heating. The Rietveld method was applied to fit the X-ray patterns of the resultant cellulose after hydrolysis. Oxalic acid preferentially removed the amorphous region of the cellulose and left the crystalline region untouched. On the other hand, sulfuric acid treatment decreased the ordering of the cellulose by partially disrupting its crystalline structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide.

    Science.gov (United States)

    Wei, Liqing; McDonald, Armando G; Stark, Nicole M

    2015-03-09

    Polyhydroxybutyrate (PHB) was grafted onto cellulose fiber by dicumyl peroxide (DCP) radical initiation via in situ reactive extrusion. The yield of the grafted (cellulose-g-PHB) copolymer was recorded and grafting efficiency was found to be dependent on the reaction time and DCP concentration. The grafting mechanism was investigated by electron spin resonance (ESR) analysis and showed the presence of radicals produced by DCP radical initiation. The grafted copolymer structure was determined by nuclear magnetic resonance (NMR) spectroscopy. Scanning electronic microscopy (SEM) showed that the cellulose-g-PHB copolymer formed a continuous phase between the surfaces of cellulose and PHB as compared to cellulose-PHB blends. The relative crystallinity of cellulose and PHB were quantified from Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) results, while the absolute degree of crystallinity was evaluated by differential scanning calorimetry (DSC). The reduction of crystallinity indicated the grafting reaction occurred not just in the amorphous region but also slightly in crystalline regions of both cellulose and PHB. The smaller crystal sizes suggested the brittleness of PHB was decreased. Thermogravimetric analysis (TGA) showed that the grafted copolymer was stabilized relative to PHB. By varying the reaction parameters the compositions (%PHB and %cellulose) of resultant cellulose-g-PHB copolymer are expected to be manipulated to obtain tunable properties.

  2. The structures of native celluloses, and the origin of their variability

    Science.gov (United States)

    R. H. Atalla

    1999-01-01

    The structures of native celluloses have traditionally been presented in terms of two-domain models consisting of crystalline and non-crystalline fractions. Such models have been of little help in advancing understanding of enzyme-substrate interactions. In this report we first address issues that complicate characterization of the structure of native celluloses...

  3. Characterization of Cellulose Synthesis in Plant Cells

    Science.gov (United States)

    Maleki, Samaneh Sadat; Mohammadi, Kourosh; Ji, Kong-shu

    2016-01-01

    Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family. PMID:27314060

  4. Characterization of Cellulose Synthesis in Plant Cells

    Directory of Open Access Journals (Sweden)

    Samaneh Sadat Maleki

    2016-01-01

    Full Text Available Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4 D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family.

  5. Method of saccharifying cellulose

    Science.gov (United States)

    Johnson, E.A.; Demain, A.L.; Madia, A.

    1983-05-13

    A method is disclosed of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of thiol reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.

  6. Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton

    Energy Technology Data Exchange (ETDEWEB)

    Thambiraj, S.; Ravi Shankaran, D., E-mail: dravishankaran@hotmail.com

    2017-08-01

    Graphical abstract: Schematic representation of the preparation of cellulose nanocrystals from industrial waste cotton. - Highlights: • Cellulose microcrystals (CMCs) were synthesized from industrial waste cotton by controlled acid and basic hydrolysis. • Cellulose nanocrystals (CNCs) were synthesized from CMCs by controlled acid hydrolysis. • The synthesis process is simple and the CNCs possess liquid crystalline character, biocompatibility and sustainability. • The morphology of the CNCs were studied by AFM and TEM analysis. The average width is 10 ± 1 nm and length is 180 ± 60 nm. - Abstract: We aimed to develop a simple and low-cost method for the production of high-performance cellulose nanomaterials from renewable and sustainable resources. Here, cellulose microcrystals (CMCs) were prepared by controlled acidic and basic hydrolysis of cotton from textile industry wastes. The resulted CMCs were further converted into cellulose nanocrystals (CNCs) with high crystallinity by acidic hydrolysis. The physicochemical characteristics and morphological feature of CMCs and CNCs were studied by various analytical techniques such as UV–vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Fluorescence spectroscopy, Atomic force microscopy (AFM), High-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The isolated CNCs possess a needle-like morphological structure with the longitudinal and lateral dimensions of 180 ± 60 nm, 10 ± 1 nm, respectively. The AFM result reveals that the CNCs have a high aspect ratio of 40 ± 14 nm and the average thickness of 6.5 nm. The XRD and TEM analysis indicate that the synthesized CNCs possess face-centered cubic crystal structure. Preliminary experiments were carried out to fabricate CNCs incorporated poly (vinyl alcohol) (PVA) film. The results suggest that the concept of waste to wealth could be well

  7. Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton

    International Nuclear Information System (INIS)

    Thambiraj, S.; Ravi Shankaran, D.

    2017-01-01

    Graphical abstract: Schematic representation of the preparation of cellulose nanocrystals from industrial waste cotton. - Highlights: • Cellulose microcrystals (CMCs) were synthesized from industrial waste cotton by controlled acid and basic hydrolysis. • Cellulose nanocrystals (CNCs) were synthesized from CMCs by controlled acid hydrolysis. • The synthesis process is simple and the CNCs possess liquid crystalline character, biocompatibility and sustainability. • The morphology of the CNCs were studied by AFM and TEM analysis. The average width is 10 ± 1 nm and length is 180 ± 60 nm. - Abstract: We aimed to develop a simple and low-cost method for the production of high-performance cellulose nanomaterials from renewable and sustainable resources. Here, cellulose microcrystals (CMCs) were prepared by controlled acidic and basic hydrolysis of cotton from textile industry wastes. The resulted CMCs were further converted into cellulose nanocrystals (CNCs) with high crystallinity by acidic hydrolysis. The physicochemical characteristics and morphological feature of CMCs and CNCs were studied by various analytical techniques such as UV–vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Fluorescence spectroscopy, Atomic force microscopy (AFM), High-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The isolated CNCs possess a needle-like morphological structure with the longitudinal and lateral dimensions of 180 ± 60 nm, 10 ± 1 nm, respectively. The AFM result reveals that the CNCs have a high aspect ratio of 40 ± 14 nm and the average thickness of 6.5 nm. The XRD and TEM analysis indicate that the synthesized CNCs possess face-centered cubic crystal structure. Preliminary experiments were carried out to fabricate CNCs incorporated poly (vinyl alcohol) (PVA) film. The results suggest that the concept of waste to wealth could be well

  8. Cellulose binding domain fusion proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  9. Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using Acid hydrolysis.

    Science.gov (United States)

    Shaheen, Th I; Emam, Hossam E

    2018-02-01

    Cellulose nanocrystal (CNC) is a unique material obtained from naturally occurring cellulose fibers. Owing to their mechanical, optical, chemical, and rheological properties, CNC gained significant interest. Herein, we investigate the potential of commercially non-recyclable wood waste, in particular, sawdust as a new resource for CNC. Isolation of CNC from sawdust was conducted as per acid hydrolysis which induced by ultrasonication technique. Thus, sawdust after being alkali delignified prior sodium chlorite bleaching, was subjected to sulfuric acid with concentration of 65% (w/w) at 60 ° C for 60min. After complete reaction, CNC were collected by centrifugation followed by dialyzing against water and finally dried via using lyophilization technique. The CNC yield attained values of 15% from purified sawdust. Acid hydrolysis mechanism exactly referred that, the amorphous regions along with thinner as well as shorter crystallites spreaded throughout the cellulose structure are digested by the acid leaving CNC suspension. The latter was freeze-dried to produce CNC powder. A thorough investigation pertaining to nanostructural characteristics of CNC was performed. These characteristics were monitored using TEM, SEM, AFM, XRD and FTIR spectra for following the changes in functionality. Based on the results obtained, the combination of sonication and chemical treatment was great effective in extraction of CNC with the average dimensions (diameter×length) of 35.2±7.4nm×238.7±81.2nm as confirmed from TEM. Whilst, the XRD study confirmed the crystal structure of CNC is obeyed cellulose type I with crystallinity index ∼90%. Cellulose nanocrystals are nominated as the best candidate within the range studied in the area of reinforcement by virtue of their salient textural features. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Determinação dos índices de cristalinidade de fibras celulósicas Crystallinity index determination on cellulosic fibers

    Directory of Open Access Journals (Sweden)

    Rose Marry Araújo Gondim Tomaz

    1994-01-01

    Full Text Available No presente estudo, foi avaliada a introdução de métodos de análises de micro-estrutura de fibras celulósicas. O algodão utilizado, proveniente das variedades IAC 17, IAC 19 e IAC 20, foi colhido em dez localidades do ensaio regional de variedades do Estado de São Paulo, no ano agrícola de 1985/86. Amostras de fibras de viscose, rami e rami tratado quimicamente com ácido clorídrico, também foram usadas, a fim de estabelecer uma relação entre os dois sistemas de determinação dos índices de cristalinidade. Utilizaram-se os métodos empíricos de difratometria de raios X e espectroscopia de infravermelho para as determinações dos índices de cristalinidade: o obtido por espectroscopia de infravermelho permitiu a diferenciação de variedades de algodoeiro IAC, enquanto o proposto por difratometria de raios X não possibilitou essa diferença. As propriedades físicas das fibras de variedades de algodoeiro IAC não se correlacionaram com os índices de cristalinidade obtidos nos dois processos. Os métodos usados para a determinação de tais índices foram altamente correlacionados (r = 0,95, empregando-se amostras de celulose com tratamento diferenciado.The purpose of this work was to develop analytical techniques for structural characterization of cellulosic fibers. To establish a relationship between the two methods that determine crystallinity index, three varieties of cotton (IAC 17, IAC 19, and IAC 20 and fibers of viscose, rami and rami chemical treated were used. Two empirical methods, x-ray diffraction and infrared spectroscopy, were used to evaluate the crystallinity index. Differentiation of IAC cotton varieties was possible with the crystallinity index obtained by infrared spectroscopy; but, not with the x-ray diffraction method. The crystallinity index obtained by these two methods had no correlation with physical properties of cotton fibers. When cellulose fibers with different treatment were assayed, there was a

  11. Characterisation of Microbial Cellulose Modified by Graft Copolymerization Technique

    International Nuclear Information System (INIS)

    Tita Puspitasari; Cynthia Linaya Radiman

    2008-01-01

    Chemical and phisycal modifications of polymer can be carried out by radiation induced graft copolymerization. This research was carried out to study the morphology and crystallinity of microbial cellulose copolymer grafted by acrylic acid (MC-g-AAC). The SEM microstructural analysis proved that the acrylic acid could diffuse into the microbial celullose and resulted a dense structure. Crystallinity measurement showded that the crystalinity of microbial cellulose increase from 50 % to 53 % after modification. (author)

  12. Synthesis and study of nano-structured cellulose acetate based materials for energy applications

    International Nuclear Information System (INIS)

    Fischer, F.

    2006-12-01

    Nano-structured materials have unique properties (high exchange areas, containment effect) because of their very low characteristic dimensions. The elaboration way set up in this PhD work consists in applying the classical processes for the preparation of aerogel-like materials (combining sol-gel synthesis and CO 2 supercritical extraction) to cellulosic polymers. This work is divided in four parts: a literature review, the presentation and the study of the chemical synthesis that leads to cellulose acetate-based aerogel, the characterizations (chemical, structural and thermal) of the elaborated nano-materials, and finally the study of the first carbons that were obtained after pyrolysis of the organic matrix. The formulations and the sol-gel protocol lead to chemical gels by crosslinking cellulose acetate using a poly-functional iso-cyanate. The dry materials obtained after solvent extraction with supercritical CO 2 are nano-structured and mainly meso-porous. Correlations between chemical synthesis parameters (reagent concentrations, crosslinking rate and degree of polymerisation) and porous properties (density, porosity, pore size distribution) were highlighted thanks to structural characterizations. An ultra-porous reference aerogel, with a density equals to 0,245 g.cm -3 together with a meso-porous volume of 3,40 cm 3 .g -1 was elaborated. Once in granular shape, this material has a thermal conductivity of 0,029 W.m -1 .K -1 . In addition, carbon materials produced after pyrolysis of the organic matrix and after grinding are nano-structured and nano-porous, even if important structural modifications have occurred during the carbonization process. The elaborated materials are evaluated for applications in relation with energy such as thermal insulation (organic aerogels) but also for energy conversion and storage through electrochemical way (carbon aerogels). (author)

  13. Characterization of the bacterial cellulose dissolved on dimethylacetamide/lithium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Glaucia de Marco [Universidade do Vale do Itajai (PMCF/UNIVALI), Itajai, SC (Brazil). Programa de Mestrado em Ciencias Farmaceuticas; Sierakowski, Maria Rita; Faria-Tischer, Paula C.S.; Tischer, Cesar A., E-mail: cesar.tischer@pq.cnpq.b [Universidade Federal do Parana (BIOPOL/UFPR), Curitiba, PR (Brazil). Lab. de Biopolimeros

    2009-07-01

    The main barrier to the use of cellulose is his insolubility on water or organic solvents, but derivates can be obtained with the use of ionic solvents. Bacterial cellulose, is mainly produced by the bacterium Acetobacter xylinum, and is identical to the plant, but free of lignin and hemi cellulose, and with several unique physical-chemical properties. Cellulose produced in a 4 % glucose medium with static condition was dissoluted on heated DMAc/LiCl (120 '0 C, 150 '0 C or 170 '0 C). The product of dissolved cellulose was observed with 13 C-NMR and the effect on crystalline state was seen with x-ray crystallography. The crystalline structure was lost in the dissolution, becoming an amorphous structure, as well as Avicel. The process of dissolution of the bacterial cellulose is basics for the analysis of these water insoluble polymer, facilitating the analysis of these composites, by 13 C-NMR spectroscopy, size exclusion chromatography and light scattering techniques. (author)

  14. Characterization of the bacterial cellulose dissolved on dimethylacetamide/lithium chloride

    International Nuclear Information System (INIS)

    Lima, Glaucia de Marco; Sierakowski, Maria Rita; Faria-Tischer, Paula C.S.; Tischer, Cesar A.

    2009-01-01

    The main barrier to the use of cellulose is his insolubility on water or organic solvents, but derivates can be obtained with the use of ionic solvents. Bacterial cellulose, is mainly produced by the bacterium Acetobacter xylinum, and is identical to the plant, but free of lignin and hemi cellulose, and with several unique physical-chemical properties. Cellulose produced in a 4 % glucose medium with static condition was dissoluted on heated DMAc/LiCl (120 '0 C, 150 '0 C or 170 '0 C). The product of dissolved cellulose was observed with 13 C-NMR and the effect on crystalline state was seen with x-ray crystallography. The crystalline structure was lost in the dissolution, becoming an amorphous structure, as well as Avicel. The process of dissolution of the bacterial cellulose is basics for the analysis of these water insoluble polymer, facilitating the analysis of these composites, by 13 C-NMR spectroscopy, size exclusion chromatography and light scattering techniques. (author)

  15. Superabsorbent nanocomposite synthesis of cellulose from rice husk grafted poly(acrylate acid-co-acrylamide)/bentonite

    Science.gov (United States)

    Helmiyati; Abbas, G. H.; Kurniawan, S.

    2017-04-01

    Superabsorbent nanocomposite synthesis of cellulose rice husk as the backbone with free radical polymerization method in copolymerization grafted with acrylic acid and acrylamide monomer. The cellulose was isolated from rice husk with mixture of toluene and ethanol and then hemicellulose and lignin were removed by using potassium hydroxide 4% and hydrogen peroxide 2%. The obtained cellulose rendement was 37.85%. The functional group of lignin analyzed by FTIR spectra was disappeared at wavenumber 1724 cm-1. Crystal size of the obtained isolated cellulose analyzed by XRD diffraction pattern was 34.6 nm, indicated the nanocrystal structure. Copolymerization was performed at temperature of 70°C with flow nitrogen gas. Initiator and crosslinking agent used were potassium persulfate and N‧N-methylene-bis-acrylamide. The swelling capacity of water and urea showed the results was quite satisfactory, the maximum swelling capacity in urea and water were 611.700 g/g and 451.303 g/g, respectively, and can be applied in agriculture to absorb water and urea fertilizer.

  16. Structural characterization of cellulosic materials using x-ray and neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Penttila, P.

    2013-11-01

    Cellulosic biomass can be used as a feedstock for sustainable production of biofuels and various other products. A complete utilization of the raw material requires understanding on its structural aspects and their role in the various processes. In this thesis, x-ray and neutron scattering methods were applied to study the structure of various cellulosic materials and how they are affected in different processes. The obtained results were reviewed in the context of a model for the cellulose nanostructure. The dimensions of cellulose crystallites and the crystallinity were determined with wide-angle x-ray scattering (WAXS), whereas the nanoscale fibrillar structure of cellulose was characterized with small-angle x-ray and neutron scattering (SAXS and SANS). The properties determined with the small-angle scattering methods included specific surface areas and distances characteristic of the packing of cellulose microfibrils. Also other physical characterization methods, such as x-ray microtomography, infrared spectroscopy, and solid-state NMR were utilized in this work. In the analysis of the results, a comprehensive understanding of the structural changes throughout a range of length scales was aimed at. Pretreatment of birch sawdust by pressurized hot water extraction was observed to increase the crystal width of cellulose, as determined with WAXS, even though the cellulose crystallinity was slightly decreased. A denser packing of microfibrils caused by the removal of hemicelluloses and lignin in the extraction was evidenced by SAXS. This resulted in the opening of new pores between the microfibril bundles and an increase of the specific surface area. Enzymatic hydrolysis of microcrystalline cellulose (MCC) did not lead to differences in the average crystallinity or crystal size of the hydrolysis residues, which was explained to be caused by limitations due to the large size of the enzymes as compared to the pores inside the fibril aggregates. The SAXS intensities

  17. fA cellular automaton model of crystalline cellulose hydrolysis by cellulases

    Directory of Open Access Journals (Sweden)

    Little Bryce A

    2011-10-01

    Full Text Available Abstract Background Cellulose from plant biomass is an abundant, renewable material which could be a major feedstock for low emissions transport fuels such as cellulosic ethanol. Cellulase enzymes that break down cellulose into fermentable sugars are composed of different types - cellobiohydrolases I and II, endoglucanase and β-glucosidase - with separate functions. They form a complex interacting network between themselves, soluble hydrolysis product molecules, solution and solid phase substrates and inhibitors. There have been many models proposed for enzymatic saccharification however none have yet employed a cellular automaton approach, which allows important phenomena, such as enzyme crowding on the surface of solid substrates, denaturation and substrate inhibition, to be considered in the model. Results The Cellulase 4D model was developed de novo taking into account the size and composition of the substrate and surface-acting enzymes were ascribed behaviors based on their movements, catalytic activities and rates, affinity for, and potential for crowding of, the cellulose surface, substrates and inhibitors, and denaturation rates. A basic case modeled on literature-derived parameters obtained from Trichoderma reesei cellulases resulted in cellulose hydrolysis curves that closely matched curves obtained from published experimental data. Scenarios were tested in the model, which included variation of enzyme loadings, adsorption strengths of surface acting enzymes and reaction periods, and the effect on saccharide production over time was assessed. The model simulations indicated an optimal enzyme loading of between 0.5 and 2 of the base case concentrations where a balance was obtained between enzyme crowding on the cellulose crystal, and that the affinities of enzymes for the cellulose surface had a large effect on cellulose hydrolysis. In addition, improvements to the cellobiohydrolase I activity period substantially improved overall

  18. The Synthesis of a Novel Cellulose Physical Gel

    Directory of Open Access Journals (Sweden)

    Jiufang Duan

    2014-01-01

    Full Text Available Cellulose possessing β-cyclodextrin (β-CD was used as a host molecule and cellulose possessing ferrocene (Fc as a guest polymer. Infrared spectra, differential scanning calorimetry (DSC, ultraviolet spectroscopy (UV, and contact angle analysis were used to characterise the material structure and the inclusion behaviour. The results showed that the β-CD-cellulose and the Fc-cellulose can form inclusion complexes. Moreover, ferrocene oxidation, and reduction of state can be adjusted by sodium hypochlorite (NaClO as an oxidant and glutathione (GSH as a reductant. In this study, a physical gel based on β-CD-cellulose/Fc-cellulose was formed under mild conditions in which autonomous healing between cut surfaces occurred after 24 hours. The physical gel can be controlled in the sol-gel transition. The compressive strength of the Fc-cellulose/β-CD-cellulose gel increased with increased cellulose concentration. The host-guest interaction between the side chains of cellulose could strengthen the gel. The cellulose physical gel may eventually be used as a stimulus-responsive, healing material in biomedical applications.

  19. Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose

    International Nuclear Information System (INIS)

    Wang, Shurong; Dai, Gongxin; Ru, Bin; Zhao, Yuan; Wang, Xiaoliu; Xiao, Gang; Luo, Zhongyang

    2017-01-01

    The influence of torrefaction on cellulose structural characteristics and the resulting pyrolysis behavior was investigated in this study. Torrefaction reduced O/C ratio in cellulose and increased its high heating value. The crystallinity of cellulose increased slightly first and then decreased sharply with the increase of torrefaction temperature, which could be ascribed to competitive degradation between crystalline region and amorphous region, as indicated by "1"3C CP/MAS NMR analysis. Besides, the cleavage of β-1,4-glycosidic bond and the dehydration of hydroxyl were the major reactions occurring in torrefaction. Avrami-Erofeev model was found to be the most suitable kinetic reaction model for explaining the thermogravimetric weight loss during the pyrolysis of the raw and torrefied cellulose. A distributed activation energy model based on Avrami-Erofeev model was subsequently used to reveal the pyrolytic kinetics. It was found that the changes in cellulose structure influenced the kinetic parameters greatly. Torrefaction also changed pyrolytic product distribution. The yields of furfural, alicyclic ketones and anhydrosugars increased while that of 5-hydroxymethyl-furfural decreased as torrefaction temperature increased. - Highlights: • Competitive degradation of crystalline and amorphous regions caused CrI change. • Cleavage of glycosidic bond and dehydration of hydroxyl occurred during torrefaction. • Am-DAEM was used to analyze the raw and torrefied cellulose pyrolysis kinetics. • Torrefaction changed cellulose pyrolytic products distribution greatly.

  20. Dissolution mechanism of crystalline cellulose in H3PO4 as assessed by high-field NMR spectroscopy and fast field cycling NMR relaxometry.

    Science.gov (United States)

    Conte, Pellegrino; Maccotta, Antonella; De Pasquale, Claudio; Bubici, Salvatore; Alonzo, Giuseppe

    2009-10-14

    Many processes have been proposed to produce glucose as a substrate for bacterial fermentation to obtain bioethanol. Among others, cellulose degradation appears as the most convenient way to achieve reliable amounts of glucose units. In fact, cellulose is the most widespread biopolymer, and it is considered also as a renewable resource. Due to extended intra- and interchain hydrogen bonds that provide a very efficient packing structure, however, cellulose is also a very stable polymer, the degradation of which is not easily achievable. In the past decade, researchers enhanced cellulose reactivity by increasing its solubility in many solvents, among which concentrated phosphoric acid (H(3)PO(4)) played the major role because of its low volatility and nontoxicity. In the present study, the solubilization mechanism of crystalline cellulose in H(3)PO(4) has been elucidated by using high- and low-field NMR spectroscopy. In particular, high-field NMR spectra showed formation of direct bonding between phosphoric acid and dissolved cellulose. On the other hand, molecular dynamics studies by low-field NMR with a fast field cycling (FFC) setup revealed two different H(3)PO(4) relaxing components. The first component, described by the fastest longitudinal relaxation rate (R(1)), was assigned to the H(3)PO(4) molecules bound to the biopolymer. Conversely, the second component, characterized by the slowest R(1), was attributed to the bulk solvent. The understanding of cellulose dissolution in H(3)PO(4) represents a very important issue because comprehension of chemical mechanisms is fundamental for process ameliorations to produce bioenergy from biomasses.

  1. Preparation and Characterization of Microcrystalline Cellulose (MCC from Kenaf and Cotton Stem

    Directory of Open Access Journals (Sweden)

    Farshad Mirehki

    2013-11-01

    Full Text Available Cellulose, microcrystalline cellulose (MCC and nanofiber cellulose are the ones of materials which are being used recently as biodegradable filler and reinforcing agent for making composites. In this research, microcrystalline cellulose were prepared from kenaf and cotton bast by hydrochloric acid hydrolysis. The effects of hydrolysis condition on amount of crystallinity and crystal size of MCC were investigated by infrared spectroscopy (FT-IR, X-ray diffraction (XRD and scanning electron microscopy (SEM. Results have shown that in both samples increasing the acid ratio increased the crystallinity; however, the size of crystals did not change. SEM results have shown that after hydrolysis the size of sample particles was micro.

  2. X-ray Studies of Regenerated Cellulose Fibers Wet Spun from Cotton Linter Pulp in NaOH/Thiourea Aqueous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chen,X.; Burger, C.; Fang, D.; Ruan, D.; Zhang, L.; Hsiao, B.; Chu, B.

    2006-01-01

    Regenerated cellulose fibers were fabricated by dissolution of cotton linter pulp in NaOH (9.5 wt%) and thiourea (4.5 wt%) aqueous solution followed by wet-spinning and multi-roller drawing. The multi-roller drawing process involved three stages: coagulation (I), coagulation (II) and post-treatment (III). The crystalline structure and morphology of regenerated cellulose fiber was investigated by synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. Results indicated that only the cellulose II crystal structure was found in regenerated cellulose fibers, proving that the cellulose crystals were completely transformed from cellulose I to II structure during spinning from NaOH/thiourea aqueous solution. The crystallinity, orientation and crystal size at each stage were determined from the WAXD analysis. Drawing of cellulose fibers in the coagulation (II) bath (H{sub 2}SO{sub 4}/H{sub 2}O) was found to generate higher orientation and crystallinity than drawing in the post-treatment (III). Although the post-treatment process also increased crystal orientation, it led to a decrease in crystallinity with notable reduction in the anisotropic fraction. Compared with commercial rayon fibers fabricated by the viscose process, the regenerated cellulose fibers exhibited higher crystallinity but lower crystal orientation. SAXS results revealed a clear scattering maximum along the meridian direction in all regenerated cellulose fibers, indicating the formation of lamellar structure during spinning.

  3. Single-molecule study of oxidative enzymatic deconstruction of cellulose.

    Science.gov (United States)

    Eibinger, Manuel; Sattelkow, Jürgen; Ganner, Thomas; Plank, Harald; Nidetzky, Bernd

    2017-10-12

    LPMO (lytic polysaccharide monooxygenase) represents a unique paradigm of cellulosic biomass degradation by an oxidative mechanism. Understanding the role of LPMO in deconstructing crystalline cellulose is fundamental to the enzyme's biological function and will help to specify the use of LPMO in biorefinery applications. Here we show with real-time atomic force microscopy that C1 and C4 oxidizing types of LPMO from Neurospora crassa (NcLPMO9F, NcLPMO9C) bind to nanocrystalline cellulose with high preference for the very same substrate surfaces that are also used by a processive cellulase (Trichoderma reesei CBH I) to move along during hydrolytic cellulose degradation. The bound LPMOs, however, are immobile during their adsorbed residence time ( ~ 1.0 min for NcLPMO9F) on cellulose. Treatment with LPMO resulted in fibrillation of crystalline cellulose and strongly ( ≥ 2-fold) enhanced the cellulase adsorption. It also increased enzyme turnover on the cellulose surface, thus boosting the hydrolytic conversion.Understanding the role of enzymes in biomass depolymerization is essential for the development of more efficient biorefineries. Here, the authors show by atomic force microscopy the real-time mechanism of cellulose deconstruction by lytic polysaccharide monooxygenases.

  4. Synthesis and Supramolecular Chemistry of Novel Liquid Crystalline Crown Ether-Substituted Phthalocyanines : Toward Molecular Wires and Molecular Ionoelectronics

    NARCIS (Netherlands)

    Nostrum, Cornelus F. van; Picken, Stephen J.; Schouten, Arend-Jan; Nolte, Roeland J.M.

    1995-01-01

    The synthesis of the metal-free and the dihydroxysilicon derivatives of tetrakis[4’,5’-bis(decoxy)benzo-18-crown-6]phthalocyanine is described. The metal-free phthalocyanine is liquid crystalline and exhibits a crystalline phase to mesophase transition at 148 °C. The structures of the crystalline

  5. Biomass enzymatic saccharification is determined by the non-KOH-extractable wall polymer features that predominately affect cellulose crystallinity in corn.

    Science.gov (United States)

    Jia, Jun; Yu, Bin; Wu, Leiming; Wang, Hongwu; Wu, Zhiliang; Li, Ming; Huang, Pengyan; Feng, Shengqiu; Chen, Peng; Zheng, Yonglian; Peng, Liangcai

    2014-01-01

    Corn is a major food crop with enormous biomass residues for biofuel production. Due to cell wall recalcitrance, it becomes essential to identify the key factors of lignocellulose on biomass saccharification. In this study, we examined total 40 corn accessions that displayed a diverse cell wall composition. Correlation analysis showed that cellulose and lignin levels negatively affected biomass digestibility after NaOH pretreatments at pcorn samples indicated that cellulose and lignin should not be the major factors on biomass saccharification after pretreatments with NaOH and H2SO4 at three concentrations. Notably, despite that the non-KOH-extractable residues covered 12%-23% hemicelluloses and lignin of total biomass, their wall polymer features exhibited the predominant effects on biomass enzymatic hydrolysis including Ara substitution degree of xylan (reverse Xyl/Ara) and S/G ratio of lignin. Furthermore, the non-KOH-extractable polymer features could significantly affect lignocellulose crystallinity at pcorn.

  6. The distribution of sorbed moisture within a partially crystalline cellulosic web of fibres (paper)

    International Nuclear Information System (INIS)

    Garvey, C.; Parker, I.H.; Simon, G.

    1999-01-01

    Full text: Paper is a hydrophilic web of partially crystalline cellulosic fibres. In conditions of changing humidity it will sorb/desorb moisture. It has been found by dielectric relaxation spectroscopy and two dimensional nuclear magnetic resonance spectroscopy that the sorption of water causes the activation of long range co-operative molecular motions by lowering the glass transition temperature into normal ambient range. Water therefore acts as a plasticiser. NMR also indicates that the water is not uniformly distributed within the paper matrix. Preliminary experiments have been performed using the AUSANS instrument to investigate the distribution of sorbed water with the eventual aim of understanding how sorbed water is mixed within the paper sheet. Samples of paper with varying polymer morphology have been selectively deuterated by allowing to equilibrate with known D 2 O humidities. The results are discussed within the context of the AUSANS instrument

  7. A co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals from ball-milled woods.

    Science.gov (United States)

    Du, Lanxing; Wang, Jinwu; Zhang, Yang; Qi, Chusheng; Wolcott, Michael P; Yu, Zhiming

    2017-08-01

    This study demonstrated the technical potential for the large-scale co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals. Ball-milled woods with two particle sizes were prepared by ball milling for 80min or 120min (BMW 80 , BMW 120 ) and then enzymatically hydrolyzed. 78.3% cellulose conversion of BMW 120 was achieved, which was three times as high as the conversion of BMW 80 . The hydrolyzed residues (HRs) were neutrally sulfonated cooking. 57.72g/L and 88.16g/L lignosulfonate concentration, respectively, were harvested from HR 80 and HR 120 , and 42.6±0.5% lignin were removed. The subsequent solid residuals were purified to produce cellulose and then this material was acid-hydrolyzed to produce cellulose nanocrystals. The BMW 120 maintained smaller particle size and aspect ratio during each step of during the multiple processes, while the average aspect ratio of its cellulose nanocrystals was larger. The crystallinity of both materials increased with each step of wet processing, reaching to 74% for the cellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cellulose fibers extracted from rice and oat husks and their application in hydrogel.

    Science.gov (United States)

    Oliveira, Jean Paulo de; Bruni, Graziella Pinheiro; Lima, Karina Oliveira; Halal, Shanise Lisie Mello El; Rosa, Gabriela Silveira da; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-04-15

    The commercial cellulose fibers and cellulose fibers extracted from rice and oat husks were analyzed by chemical composition, morphology, functional groups, crystallinity and thermal properties. The cellulose fibers from rice and oat husks were used to produce hydrogels with poly (vinyl alcohol). The fibers presented different structural, crystallinity, and thermal properties, depending on the cellulose source. The hydrogel from rice cellulose fibers had a network structure with a similar agglomeration sponge, with more homogeneous pores compared to the hydrogel from oat cellulose fibers. The hydrogels prepared from the cellulose extracted from rice and oat husks showed water absorption capacity of 141.6-392.1% and high opacity. The highest water absorption capacity and maximum stress the compression were presented by rice cellulose hydrogel at 25°C. These results show that the use of agro-industrial residues is promising for the biomaterial field, especially in the preparation of hydrogels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Saccharification of cellulose by acetolysis

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T; Yamanaka, S; Takinami, K

    1978-01-01

    For saccharification of cellulose, an acetolysis method using assimilable acid with a microorganism was applied. Based on this method, a new method which gave totally assimilable products was established. The rigid crystalline structure of cellulose was disrupted by acetolysis with 2-2.5 times as much acetic anhydride as cellulose on a weight basis and 1 N sulfuric acid as a catalyst. Then for cleavage of O-acetyl ester and glycosidic bonds, the resulting amorphous acetolysate of cellulose could easily be hydrolyzed by heating in 1 N sulfuric acid at 120/sup 0/C for 1-1.5 h without over-disruption of glucose. Ninety-eight % of the cellulose used was recovered in the form of hydrolysate having about 30% saccharide concentration. The hydrolysate obtained was composed of 74% glucose, 13% cellobiose and 11% mono-O-acetyl glucose on a weight basis.

  10. Biomimetic synthesis of hierarchical crystalline hydroxyapatite fibers in large-scale

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Chaogang; Ge, Suxiang; Huang, Baojun; Bo, Yingying [Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan Province 461000 (China); Zhang, Di [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China); Zheng, Zhi, E-mail: zhengzhi9999@yahoo.com.cn [Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan Province 461000 (China)

    2012-06-15

    Highlights: ► Crystalline hierarchical hydroxyapatite (HAp) fibers are synthesized. ► We employ a biomimetic route by using cotton cloth as a natural bio-template. ► We study the effects of pH, ultrasonic cleaning time, and calcination temperature. ► We obtain an optimized reaction condition. ► This is a low cost method for production of hierarchical HAp fibers. -- Abstract: Crystalline hierarchical hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HAp)] fibers were successfully synthesized via a biomimetic route by using cotton cloth as a natural bio-template. The effects of pH value, aging time, ultrasonic cleaning time, and calcination temperature on the purity and morphology of the resulting hydroxyapatite (HAp) were monitored by scanning election microscope (SEM), X-ray diffraction (XRD), and infrared spectrophotometer (IR) to obtain an optimized reaction condition, namely, pH 9, ultrasonic cleaning for 1 min, aging for 24 h, and calcination at 600 °C for 4 h. We found that the natural cellulose could not only control the morphology of HAp but also lower its phase transformation temperature. The impact of this method lies in its low cost and successful production of large-scale patterning of three-dimensional hierarchical HAp fibers.

  11. Biomimetic synthesis of hierarchical crystalline hydroxyapatite fibers in large-scale

    International Nuclear Information System (INIS)

    Xing, Chaogang; Ge, Suxiang; Huang, Baojun; Bo, Yingying; Zhang, Di; Zheng, Zhi

    2012-01-01

    Highlights: ► Crystalline hierarchical hydroxyapatite (HAp) fibers are synthesized. ► We employ a biomimetic route by using cotton cloth as a natural bio-template. ► We study the effects of pH, ultrasonic cleaning time, and calcination temperature. ► We obtain an optimized reaction condition. ► This is a low cost method for production of hierarchical HAp fibers. -- Abstract: Crystalline hierarchical hydroxyapatite [Ca 10 (PO 4 ) 6 (OH) 2 , HAp)] fibers were successfully synthesized via a biomimetic route by using cotton cloth as a natural bio-template. The effects of pH value, aging time, ultrasonic cleaning time, and calcination temperature on the purity and morphology of the resulting hydroxyapatite (HAp) were monitored by scanning election microscope (SEM), X-ray diffraction (XRD), and infrared spectrophotometer (IR) to obtain an optimized reaction condition, namely, pH 9, ultrasonic cleaning for 1 min, aging for 24 h, and calcination at 600 °C for 4 h. We found that the natural cellulose could not only control the morphology of HAp but also lower its phase transformation temperature. The impact of this method lies in its low cost and successful production of large-scale patterning of three-dimensional hierarchical HAp fibers.

  12. Extraction of cellulose microcrystalline from galam wood for biopolymer

    Science.gov (United States)

    Ismail, Ika; Sa'adiyah, Devy; Rahajeng, Putri; Suprayitno, Abdi; Andiana, Rocky

    2018-04-01

    Consumption of plastic raw materials tends to increase, but until now the meet of the consumption of plastic raw are still low, even some are still imported. Nowadays, Indonesia's plastic needs are supported by petrochemicals where raw materials are still dependent abroad and petropolymer raw materials are derived from petroleum which will soon be depleted due to rising petroleum needs. Therefore, various studies have been conducted to develop natural fiber-based polymers that are biodegradable and abundant in nature. It is because the natural polymer production process is very efficient and very environmentally friendly. There have been many studies of biopolymers especially natural fiber-based polymers from plants, due to plants containing cellulose, hemicellulose and lignin. However, cellulose is the only one who has crystalline structures. Cellulose has a high crystality compared to amorphous lignin and hemicellulose. In this study, extracted cellulose as biopolymer and amplifier on composite. The cellulose is extracted from galam wood from East Kalimantan. Cellulose extraction will be obtained in nano / micro form through chemical and mechanical treatment processes. The chemical treatment of cellulose extraction is alkalinization process using NaOH solution, bleaching using NaClO2 and acid hydrolysis using sulfuric acid. After chemical treatment, ultrasonic mechanical treatment is made to make cellulose fibers into micro or nano size. Besides, cellulose results will be characterized. Characterization was performed to analyze molecules of cellulose compounds extracted from plants using Fourier Transformation Infra Red (FTIR) testing. XRD testing to analyze cellulose crystallinity. Scanning Electron Microscope (SEM) test to analyze morphology and fiber size.

  13. Synthesis, Antibacterial and Thermal Studies of Cellulose Nanocrystal Stabilized ZnO-Ag Heterostructure Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohd Zobir Hussein

    2013-05-01

    Full Text Available Synthesis of ZnO-Ag heterostructure nanoparticles was carried out by a precipitation method with cellulose nanocrystals (CNCs as a stabilizer for antimicrobial and thermal studies. ZnO-Ag nanoparticles were obtained from various weight percentages of added AgNO3 relative to Zn precursors for evaluating the best composition with enhanced functional properties. The ZnO-Ag/CNCs samples were characterized systematically by TEM, XRD, UV, TGA and DTG. From the TEM studies we observed that ZnO-Ag heterostructure nanoparticles have spherical shapes with size diameters in a 9–35 nm range. The antibacterial activities of samples were assessed against the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The CNC-stabilized ZnO-Ag exhibited greater bactericidal activity compared to cellulose-free ZnO-Ag heterostructure nanoparticles of the same particle size. The incorporation of ZnO-Ag hetreostructure nanoparticles significantly increased the thermal stability of cellulose nanocrystals.

  14. Defining Determinants and Dynamics and Cellulose Microfibril Biosynthesis, Assembly and Degredation OSP Number: 63079/A001

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-12-01

    The central paradigm for converting plant biomass into soluble sugars for subsequent conversion to transportation fuels involves the enzymatic depolymerization of lignocellulosic plant cell walls by microbial enzymes. Despite decades of intensive research, this is still a relatively inefficient process, due largely to the recalcitrance and enormous complexity of the substrate. A major obstacle is still insufficient understanding of the detailed structure and biosynthesis of major wall components, including cellulose. For example, although cellulose is generally depicted as rigid, insoluble, uniformly crystalline microfibrils that are resistant to enzymatic degradation, the in vivo structures of plant cellulose microfibrils are surprisingly complex. Crystallinity is frequently disrupted, for example by dislocations and areas containing chain ends, resulting in “amorphous” disordered regions. Importantly, microfibril structure and the relative proportions of crystalline and non-crystalline disordered surface regions vary substantially and yet the molecular mechanisms by which plants regulate microfibril crystallinity, and other aspects of microfibril architecture, are still entirely unknown. This obviously has a profound effect on susceptibility to enzymatic hydrolysis and so this is a critical area of research in order to characterize and optimize cellulosic biomass degradation. The entire field of cell wall assembly, as distinct from polysaccharide biosynthesis, and the degree to which they are coupled, are relatively unexplored, despite the great potential for major advances in addressing the hurdle of biomass recalcitrance. Our overarching hypothesis was that identification of the molecular machinery that determine microfibril polymerization, deposition and structure will allow the design of more effective degradative systems, and the generation of cellulosic materials with enhanced and predictable bioconversion characteristics. Our experimental framework had

  15. Electrochemical synthesis of self-organized TiO2 crystalline nanotubes without annealing

    Science.gov (United States)

    Giorgi, Leonardo; Dikonimos, Theodoros; Giorgi, Rossella; Buonocore, Francesco; Faggio, Giuliana; Messina, Giacomo; Lisi, Nicola

    2018-03-01

    This work demonstrates that upon anodic polarization in an aqueous fluoride-containing electrolyte, TiO2 nanotube array films can be formed with a well-defined crystalline phase, rather than an amorphous one. The crystalline phase was obtained avoiding any high temperature annealing. We studied the formation of nanotubes in an HF/H2O medium and the development of crystalline grains on the nanotube wall, and we found a facile way to achieve crystalline TiO2 nanotube arrays through a one-step anodization. The crystallinity of the film was influenced by the synthesis parameters, and the optimization of the electrolyte composition and anodization conditions (applied voltage and time) were carried out. For comparison purposes, crystalline anatase TiO2 nanotubes were also prepared by thermal treatment of amorphous nanotubes grown in an organic bath (ethylene glycol/NH4F/H2O). The morphology and the crystallinity of the nanotubes were studied by field emission gun-scanning electron microscopy (FEG-SEM) and Raman spectroscopy, whereas the electrochemical and semiconducting properties were analyzed by means of linear sweep voltammetry, impedance spectroscopy, and Mott-Schottky plots. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) allowed us to determine the surface composition and the electronic structure of the samples and to correlate them with the electrochemical data. The optimal conditions to achieve a crystalline phase with high donor concentration are defined.

  16. X-ray diffraction of modified and graft polymerised cellulose fibres

    International Nuclear Information System (INIS)

    Ouajai, S.; Hodzic, A.; Shanks, R.A.

    2003-01-01

    Full text: The aim of this research is to modify natural cellulosic fibres in order to improve and increase consistency of their performance in biodegradable materials. Fibre modification consisted of solvent extraction and NaOH treatment in order to remove wax and lignin before grafting with acrylonitrile monomer. The mechanical properties, moisture regain and pore structures were investigated. Finally an analysis of crystalline structure was performed using quantitative FTIR, WAXD and SAXS to assess the relationship between structure and properties after modification. Materials: Hemp (Cannabis sativa), Australian Hemp Resource and Manufacture (AHRM) and Flax (Durafibre Grade 1, 95 % purity), Cargill, Canada. Pretreatments: Dewaxing by acetone extraction, alkalisation with NaOH solutions, grafting reaction with acrylonitrile and AIBN thermal initiator after absorption of the monomer. Surface and pore structure analysis using Micromeritics ASAP 2000 BET adsorption instrument, FTIR Perkin-Elmer 2000 spectrometer, wide angle X-ray diffraction, Bruker AXS D8, Ni-filtered CuKα radiation (λ 0.1542 nm) at 40 kV and 35 mA. The diffractograms were recorded from 5 to 60 deg of 2 θ (Bragg angle) by a goniometer with a scintillation counter, scanning speed 0.02 deg/s and sampling rate of 2 data/s. The 2-D small-angle X-ray data was collected by Bruker AXS, Nanostar from 0.5 to 14 deg of 2θ (Bragg angle). Typical exposure time was 5 hours at 40 kV and 35 mA. Single fibre mechanical properties were carried out on a Rheometric DMTA IV at 0.03 mm/min. Moisture regain measurements were performed gravimetrically. The crystalline structure of the fibres were changed from cellulose I to cellulose II after NaOH treatment. The intensity of the 1431 cm -1 band was reduced while the 898 cm -1 band was increased and shifted to 893 cm -1 with an increase of NaOH concentration. X-ray diffractograms of flax and hemp were obtained for each treatment. Untreated fibre shows the

  17. Size Tunable Synthesis of Highly Crystalline BaTiO3 Nanoparticles using Salt-Assisted Spray Pyrolysis

    International Nuclear Information System (INIS)

    Itoh, Yoshifumi; Lenggoro, I. Wuled; Okuyama, Kikuo; Maedler, Lutz; Pratsinis, Sotiris E.

    2003-01-01

    Highly crystalline, dense BaTiO 3 nanoparticles in a size range from 30 to 360nm with a narrow size distribution (σ g = 1.2-1.4) were prepared at various synthesis temperatures using a salt-assisted spray pyrolysis (SASP) method without the need for post-annealing. The effect of synthesis temperature on particle size, crystallinity and surface morphology of the nanoparticles were characterized by X-ray diffraction and scanning/transmission electron microscopy. The nature of the crystalline structure was analyzed by Rietveld refinement and Raman spectroscopy. The particle size decreased with decreasing operation temperature. The crystal phase was transformed from tetragonal to cubic at a particles size of about 50nm at room temperature. SASP can be used to produce high weight fraction of tetragonal BaTiO 3 nanoparticles down to 64nm in a single step

  18. Synthesis and Self-Assembly of Cellulose Microfibrils from Reconstituted Cellulose Synthase.

    Science.gov (United States)

    Cho, Sung Hyun; Purushotham, Pallinti; Fang, Chao; Maranas, Cassandra; Díaz-Moreno, Sara M; Bulone, Vincent; Zimmer, Jochen; Kumar, Manish; Nixon, B Tracy

    2017-09-01

    Cellulose, the major component of plant cell walls, can be converted to bioethanol and is thus highly studied. In plants, cellulose is produced by cellulose synthase, a processive family-2 glycosyltransferase. In plant cell walls, individual β-1,4-glucan chains polymerized by CesA are assembled into microfibrils that are frequently bundled into macrofibrils. An in vitro system in which cellulose is synthesized and assembled into fibrils would facilitate detailed study of this process. Here, we report the heterologous expression and partial purification of His-tagged CesA5 from Physcomitrella patens Immunoblot analysis and mass spectrometry confirmed enrichment of PpCesA5. The recombinant protein was functional when reconstituted into liposomes made from yeast total lipid extract. The functional studies included incorporation of radiolabeled Glc, linkage analysis, and imaging of cellulose microfibril formation using transmission electron microscopy. Several microfibrils were observed either inside or on the outer surface of proteoliposomes, and strikingly, several thinner fibrils formed ordered bundles that either covered the surfaces of proteoliposomes or were spawned from liposome surfaces. We also report this arrangement of fibrils made by proteoliposomes bearing CesA8 from hybrid aspen. These observations describe minimal systems of membrane-reconstituted CesAs that polymerize β-1,4-glucan chains that coalesce to form microfibrils and higher-ordered macrofibrils. How these micro- and macrofibrils relate to those found in primary and secondary plant cell walls is uncertain, but their presence enables further study of the mechanisms that govern the formation and assembly of fibrillar cellulosic structures and cell wall composites during or after the polymerization process controlled by CesA proteins. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Synthesis and characterization of polyvinyl alcohol/cellulose cryogels and their testing as carriers for a bioactive component

    Energy Technology Data Exchange (ETDEWEB)

    Paduraru, Oana Maria; Ciolacu, Diana; Darie, Raluca Nicoleta; Vasile, Cornelia, E-mail: cvasile@icmpp.ro

    2012-12-01

    Novel physically cross-linked cryogels containing polyvinyl alcohol (PVA) and various amounts of microcrystalline cellulose were obtained by freezing/thawing technique. The main goal of this study was to improve the properties and the performances of the pure PVA cryogels. The morphological aspects of the cryogels were studied by scanning electron microscopy (SEM). The Fourier transform infrared spectroscopy (FT-IR) was used to reveal the presence of the interactions between the two polymers. Changes in crystallinity of the samples were confirmed by X-ray diffraction (XRD) and by FT-IR spectroscopy. The modification of the thermal behavior induced by cellulose was studied by thermogravimetry. Rheological analysis revealed higher values of storage modulus (G Prime ) for the cryogels containing higher amounts of cellulose. The degree and rate of swelling were controlled by the presence of the natural polymer in the network. The potential application as bioactive compound carriers was tested, using vanillin as an active agent. Highlights: Black-Right-Pointing-Pointer Novel PVA/microcrystalline cellulose cryogels were obtained by freezing/thawing. Black-Right-Pointing-Pointer The main advantage of this technique is that no chemical crosslinker is being used. Black-Right-Pointing-Pointer The presence of cellulose improves the swelling properties and the cryogels' strength. Black-Right-Pointing-Pointer The potential application as carriers for bioactive components was tested.

  20. Nucleic acids encoding a cellulose binding domain

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  1. Preparation and Characterization of Jute Cellulose Crystals-Reinforced Poly(L-lactic acid Biocomposite for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Mohammed Mizanur Rahman

    2014-01-01

    Full Text Available Crystalline cellulose was extracted from jute by hydrolysis with 40% H2SO4 to get mixture of micro/nanocrystals. Scanning electron microscope (SEM showed the microcrystalline structure of cellulose and XRD indicated the Iβ polymorph of cellulose. Biodegradable composites were prepared using crystalline cellulose (CC of jute as the reinforcement (3–15% and poly(lactic acid (PLA as a matrix by extrusion and hot press method. CC was cellulose derived from mercerized and bleached jute fiber by acid hydrolysis to remove the amorphous regions. FT-IR studies showed hydrogen bonding between the CC and the PLA matrix. The X-ray diffraction (XRD and differential scanning calorimetry (DSC studies showed that the percentage crystallinity of PLA in composites was found to be higher than that of neat PLA as a result of the nucleating ability of the crystalline cellulose. Furthermore, Vicker hardness and yield strength were found to increase with increasing cellulose content in the composite. The SEM images of the fracture surfaces of the composites were indicative of poor adhesion between the CC and the PLA matrix. The composite with 15% CC showed antibacterial effect though pure films but had no antimicrobial effect; on the other hand its cytotoxicity in biological medium was found to be medium which might be suitable for its potential biomedical applications.

  2. Acid hydrolysis of sisal cellulose: studies aiming at nano fibers and bio ethanol preparation

    International Nuclear Information System (INIS)

    Paula, Mauricio P. de; Lacerda, Talita M.; Zambon, Marcia D.; Frollini, Elisabete

    2009-01-01

    The hydrolysis of cellulose can result in nanofibers and also is an important stage in the bioethanol production process. In order to evaluate the influence of acid (sulfuric) concentration, temperature, and native cellulose (sisal) pretreatment on cellulose hydrolysis, the acid concentration was varied between 5% and 30% (v/v) in the temperature range from 60 to 100 deg C using native and alkali-treated (mercerized) sisal cellulose. The following techniques were used to evaluate the residual (non-hydrolysed) cellulose characteristics: viscometry, average degree of polymerization (DP), X-ray diffraction, crystallinity index, and Scanning Electron Microscopy. The sugar cane liquor was analyzed in terms of sugar composition, using High Performance Liquid Chromatography (HPLC). The results showed that increasing the concentration of sulfuric acid and temperature afforded residual cellulose with lower molecular weight and, up to specific acid concentrations, higher crystallinity indexes, when compared to the original cellulose values, and increased the glucose (the bioethanol precursor ) production of the liquor, which was favored for mercerized cellulose. (author)

  3. Facile synthesis of TiO2/microcrystalline cellulose nanocomposites: photocatalytically active material under visible light irradiation

    Science.gov (United States)

    Doped TiO2 nanocomposites were prepared in situ by a facile and simple synthesis utilizing benign and renewable precursors such as microcrystalline cellulose (MC) and TiCl4 through hydrolysis in alkaline medium without the addition of organic solvents. The as-prepared nanocompos...

  4. Cyanoresin, cyanoresin/cellulose triacetate blends for thin film, dielectric capacitors

    Science.gov (United States)

    Yen, Shiao-Ping S. (Inventor); Lewis, Carol R. (Inventor); Cygan, Peter J. (Inventor); Jow, T. Richard (Inventor)

    1996-01-01

    Non brittle dielectric films are formed by blending a cyanoresin such as cyanoethyl, hydroxyethyl cellulose (CRE) with a compatible, more crystalline resin such as cellulose triacetate. The electrical breakdown strength of the blend is increased by orienting the films by uniaxial or biaxial stretching. Blends of high molecular weight CRE with high molecular weight cyanoethyl cellulose (CRC) provide films with high dielectric constants.

  5. Experimental synthesis of crystalline matrices based on Ce, Ba, Sr zirconates for immobilization of high-level radioactive actinides

    International Nuclear Information System (INIS)

    Anderson, E.B.; Burakov, B.E.; Vasiliev, V.G.; Starchenko, V.A.

    1993-01-01

    In geological disposal of high-level radioactive waste the main storage barriers, in the first place the matrix containing radionuclides, must remain undestructible over a long period of time. Very high requirements are imposed for the matrices from the viewpoint of their chemical stability and mechanical strength. Zirconates may be classified among compounds potentially suitable for the creation of crystalline matrices incorporating radionuclides in their structure. The paper considers results of laboratory experiments on the synthesis of crystalline matrices based on various zirconates by the methods of gas-static and axial pressing. Problems are discussed concerning the crystalline matrix industrial synthesis technology developed at the Radium Institute. One of the most promising directions in solving the problem of high-level waste (HLW) removal from the sphere of human activity is disposal in deep geological formations. The realization of this direction envisages creation of multibarrier compositions. Special attention is paid to the technology for the synthesis of the first, the most crucial, engineering barrier: the matrix into which radionuclides are incorporated. It is assumed that crystalline compounds best satisfy all the requirements as the most thermodynamically stable

  6. Cellulose synthase complex organization and cellulose microfibril structure.

    Science.gov (United States)

    Turner, Simon; Kumar, Manoj

    2018-02-13

    Cellulose consists of linear chains of β-1,4-linked glucose units, which are synthesized by the cellulose synthase complex (CSC). In plants, these chains associate in an ordered manner to form the cellulose microfibrils. Both the CSC and the local environment in which the individual chains coalesce to form the cellulose microfibril determine the structure and the unique physical properties of the microfibril. There are several recent reviews that cover many aspects of cellulose biosynthesis, which include trafficking of the complex to the plasma membrane and the relationship between the movement of the CSC and the underlying cortical microtubules (Bringmann et al. 2012 Trends Plant Sci. 17 , 666-674 (doi:10.1016/j.tplants.2012.06.003); Kumar & Turner 2015 Phytochemistry 112 , 91-99 (doi:10.1016/j.phytochem.2014.07.009); Schneider et al. 2016 Curr. Opin. Plant Biol. 34 , 9-16 (doi:10.1016/j.pbi.2016.07.007)). In this review, we will focus on recent advances in cellulose biosynthesis in plants, with an emphasis on our current understanding of the structure of individual catalytic subunits together with the local membrane environment where cellulose synthesis occurs. We will attempt to relate this information to our current knowledge of the structure of the cellulose microfibril and propose a model in which variations in the structure of the CSC have important implications for the structure of the cellulose microfibril produced.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'. © 2017 The Author(s).

  7. Characterization of cellulose nanowhiskers; Caracterizacao do nanowhiskers de celulose

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Nayra R.; Pinheiro, Ivanei F.; Morales, Ana R.; Ravagnani, Sergio P.; Mei, Lucia, E-mail: 25nareis@gmail.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2015-07-01

    Cellulose is the most abundant polymer earth. The cellulose nanowhiskers can be extracted from the cellulose. These have attracted attention for its use in nanostructured materials for various applications, such as nanocomposites, because they have peculiar characteristics, among them, high aspect ratio, biodegradability and excellent mechanical properties. This work aims to characterize cellulose nanowhiskers from microcrystalline cellulose. Therefore, these materials were characterized by X-ray diffraction (XRD) to assess the degree of crystallinity, infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) to the morphology of nanowhiskers and thermal stability was evaluated by Thermogravimetric Analysis (TGA). (author)

  8. ISOLATION AND CHARACTERIZATION OF NANOFIBRILLATED CELLULOSE FROM OAT HULLS

    Directory of Open Access Journals (Sweden)

    Giovanni B. Paschoal

    2015-05-01

    Full Text Available The objectives of this work were to investigate the microstructure, crystallinity and thermal stability of nanofibrillated cellulose obtained from oat hulls using bleaching and acid hydrolysis at a mild temperature (45 ºC followed by ultrasonication. The oat hulls were bleached with peracetic acid, and after bleaching, the compact structure around the cellulosic fibers was removed, and the bundles became individualized. The extraction time (30 or 60 min did not affect the properties of the nanofibrillated cellulose, which presented a higher crystallinity index and thermal stability than the raw material (oat hulls. The nanocellulose formed interconnected webs of tiny fibers with diameters of 70-100 nm and lengths of several micrometers, producing nanofibers with a relatively high aspect ratio, thus indicating that these materials are suitable for polymer reinforcement.

  9. MARTINI Coarse-Grained Model for Crystalline Cellulose Microfibers

    NARCIS (Netherlands)

    Lopez, Cesar A.; Bellesia, Giovanni; Redondo, Antonio; Langan, Paul; Chundawat, Shishir P. S.; Dale, Bruce E.; Marrink, Siewert J.; Gnanakaran, S.

    2015-01-01

    Commercial-scale biofuel production requires a deep understanding of the structure and dynamics of its principal target: cellulose. However, an accurate description and modeling of this carbohydrate structure at the mesoscale remains elusive, particularly because of its overwhelming length scale and

  10. High rate flame synthesis of highly crystalline iron oxide nanorods

    International Nuclear Information System (INIS)

    Merchan-Merchan, W; Taylor, A M; Saveliev, A V

    2008-01-01

    Single-step flame synthesis of iron oxide nanorods is performed using iron probes inserted into an opposed-flow methane oxy-flame. The high temperature reacting environment of the flame tends to convert elemental iron into a high density layer of iron oxide nanorods. The diameters of the iron oxide nanorods vary from 10 to 100 nm with a typical length of a few microns. The structural characterization performed shows that nanorods possess a highly ordered crystalline structure with parameters corresponding to cubic magnetite (Fe 3 O 4 ) with the [100] direction oriented along the nanorod axis. Structural variations of straight nanorods such as bends, and T-branched and Y-branched shapes are frequently observed within the nanomaterials formed, opening pathways for synthesis of multidimensional, interconnected networks

  11. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility.

    Science.gov (United States)

    Jeoh, Tina; Ishizawa, Claudia I; Davis, Mark F; Himmel, Michael E; Adney, William S; Johnson, David K

    2007-09-01

    Attempts to correlate the physical and chemical properties of biomass to its susceptibility to enzyme digestion are often inconclusive or contradictory depending on variables such as the type of substrate, the pretreatment conditions and measurement techniques. In this study, we present a direct method for measuring the key factors governing cellulose digestibility in a biomass sample by directly probing cellulase binding and activity using a purified cellobiohydrolase (Cel7A) from Trichoderma reesei. Fluorescence-labeled T. reesei Cel7A was used to assay pretreated corn stover samples and pure cellulosic substrates to identify barriers to accessibility by this important component of cellulase preparations. The results showed cellulose conversion improved when T. reesei Cel7A bound in higher concentrations, indicating that the enzyme had greater access to the substrate. Factors such as the pretreatment severity, drying after pretreatment, and cellulose crystallinity were found to directly impact enzyme accessibility. This study provides direct evidence to support the notion that the best pretreatment schemes for rendering biomass more digestible to cellobiohydrolase enzymes are those that improve access to the cellulose in biomass cell walls, as well as those able to reduce the crystallinity of cell wall cellulose.

  12. Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solid acid-catalyzed hydrolysis.

    Science.gov (United States)

    Kim, Soo-Jin; Dwiatmoko, Adid Adep; Choi, Jae Wook; Suh, Young-Woong; Suh, Dong Jin; Oh, Moonhyun

    2010-11-01

    This study has been focused on developing a cellulose pretreatment process using 1-n-butyl-3-methylimidazolium chloride ([bmim]Cl) for subsequent hydrolysis over Nafion(R) NR50. Thus, several pretreatment variables such as the pretreatment period and temperature, and the [bmim]Cl amount were varied. Additionally, the [bmim]Cl-treated cellulose samples were characterized by X-ray diffraction analysis, and their crystallinity index values including CI(XD), CI(XD-CI) and CI(XD-CII) were then calculated. When correlated with these values, the concentrations of total reducing sugars (TRS) obtained by the pretreatment of native cellulose (NC) and glucose produced by the hydrolysis reaction were found to show a distinct relationship with the [CI(NC)-CI(XD)] and CI(XD-CII) values, respectively. Consequently, the cellulose pretreatment step with [bmim]Cl is to loosen a crystalline cellulose through partial transformation of cellulose I to cellulose II and, furthermore, the TRS release, while the subsequent hydrolysis of [bmim]Cl-treated cellulose over Nafion(R) NR50 is effective to convert cellulose II to glucose. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. A synthetic auxin (NAA) suppresses secondary wall cellulose synthesis and enhances elongation in cultured cotton fiber.

    Science.gov (United States)

    Singh, Bir; Cheek, Hannah D; Haigler, Candace H

    2009-07-01

    Use of a synthetic auxin (naphthalene-1-acetic acid, NAA) to start (Gossypium hirsutum) ovule/fiber cultures hindered fiber secondary wall cellulose synthesis compared with natural auxin (indole-3-acetic acid, IAA). In contrast, NAA promoted fiber elongation and ovule weight gain, which resulted in larger ovule/fiber units. To reach these conclusions, fiber and ovule growth parameters were measured and cell wall characteristics were examined microscopically. The differences in fiber from NAA and IAA culture were underpinned by changes in the expression patterns of marker genes for three fiber developmental stages (elongation, the transition stage, and secondary wall deposition), and these gene expression patterns were also analyzed quantitatively in plant-grown fiber. The results demonstrate that secondary wall cellulose synthesis: (1) is under strong transcriptional control that is influenced by auxin; and (2) must be specifically characterized in the cotton ovule/fiber culture system given the many protocol variables employed in different laboratories.

  14. Enzymic hydrolysis of cellulosic wastes to glucose

    Energy Technology Data Exchange (ETDEWEB)

    Spano, L A; Medeiros, J; Mandels, M

    1976-01-01

    An enzymic process for the conversion of cellulose to glucose is based on the use of a specific enzyme derived from mutant strains of the fungus trichoderma viride which is capable of reacting with the crystalline fraction of the cellulose molecule. The production and mode of action of the cellulase complex produced during the growth of trichoderma viride is discussed as well as the application of such enzymes for the conversion of cellulosic wastes to crude glucose syrup for use in production of chemical feedstocks, single-cell proteins, fuels, solvents, etc.

  15. Template synthesis of highly crystalline and monodisperse iron oxide pigments of nanosize

    International Nuclear Information System (INIS)

    Sreeram, Kalarical Janardhanan; Indumathy, Ramasamy; Rajaram, Ananthanarayanan; Nair, Balachandran Unni; Ramasami, Thirumalachari

    2006-01-01

    Synthesis of highly crystalline and monodisperse iron oxide nanoparticles is reported. The separation of Fe centers through site-specific binding to a polysaccharide-alginate matrix enables the generation of particles with a monodisperse or narrow size distribution character, resulting in transparent pigments. Site-specific interactions coupled with gel like character of alginate is proposed as the mechanism behind generation of lower particle sizes. Alginate-Fe complexes developed were subjected to heat treatment to provide for crystalline character and development of hematite (α-Fe 2 O 3 ). Conditions most ideal for achieving monodispersity and lower sizes have been optimized and confirmed through microscopic and photon correlation spectroscopic measurements

  16. Current characterization methods for cellulose nanomaterials.

    Science.gov (United States)

    Foster, E Johan; Moon, Robert J; Agarwal, Umesh P; Bortner, Michael J; Bras, Julien; Camarero-Espinosa, Sandra; Chan, Kathleen J; Clift, Martin J D; Cranston, Emily D; Eichhorn, Stephen J; Fox, Douglas M; Hamad, Wadood Y; Heux, Laurent; Jean, Bruno; Korey, Matthew; Nieh, World; Ong, Kimberly J; Reid, Michael S; Renneckar, Scott; Roberts, Rose; Shatkin, Jo Anne; Simonsen, John; Stinson-Bagby, Kelly; Wanasekara, Nandula; Youngblood, Jeff

    2018-04-23

    A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.

  17. Comparison between Cellulose Nanocrystal and Cellulose Nanofibril Reinforced Poly(ethylene oxide) Nanofibers and Their Novel Shish-Kebab-Like Crystalline Structures

    Science.gov (United States)

    Xuezhu Xu; Haoran Wang; Long Jiang; Xinnan Wang; Scott A. Payne; J.Y. Zhu; Ruipeng Li

    2014-01-01

    Poly(ethylene oxide) (PEO) nanofiber mats were produced by electrospinning. Biobased cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) as reinforcement nanofillers were also added to the polymer to produce composite nanofiber mats. The effects of the two cellulose nanofillers on the rheological properties of the PEO solutions and the microstructure,...

  18. Laser cleaning of particulates from paper: Comparison between sized ground wood cellulose and pure cellulose

    International Nuclear Information System (INIS)

    Arif, S.; Kautek, W.

    2013-01-01

    Visible laser cleaning of charcoal particulates from yellow acid mechanical ground wood cellulose paper was compared with that from bleached sulphite softwood cellulose paper. About one order of magnitude of fluence range is available for a cleaning dynamics between the cleaning threshold and the destruction threshold for two laser pulses. Wood cellulose paper exhibited a higher destruction threshold of the original paper than that of the contaminated specimen because of heat transfer from the hot or evaporating charcoal particulates. In contrast, the contaminated bleached cellulose paper exhibited a higher destruction threshold due to shading by the particulates. The graphite particles are not only detached thermo-mechanically, but also by evaporation or combustion. A cleaning effect was found also outside the illuminated areas due to lateral blasting. Infrared measurements revealed dehydration/dehydrogenation reactions and cross-links by ether bonds together with structural changes of the cellulose chain arrangement and the degree of crystallinity.

  19. Extraction of cellulose from pistachio shell and physical and mechanical characterisation of cellulose-based nanocomposites

    Science.gov (United States)

    Movva, Mounika; Kommineni, Ravindra

    2017-04-01

    Cellulose is an important nanoentity that have been used for the preparation of composites. The present work focuses on the extraction of cellulose from pistachio shell and preparing a partially degradable nanocomposite with extracted cellulose. Physical and microstructural characteristics of nanocellulose extracted from pistachio shell powder (PSP) through various stages of chemical treatment are identified from scanning electron microscopy (SEM), Fourier transform infra-red spectroscopy (FTIR), x-ray powder diffraction (XRD), and thermogravimetric analysis (TGA). Later, characterized nanocellulose is reinforced in a polyester matrix to fabricate nanocellulose-based composites according to the ASTM standard. The resulting nanocellulose composite performance is evaluated in the mechanical perspective through tensile and flexural loading. SEM, FTIR, and XRD showed that the process for extraction is efficient in obtaining 95% crystalline cellulose. Cellulose also showed good thermal stability with a peak thermal degradation temperature of 361 °C. Such cellulose when reinforced in a matrix material showed a noteworthy rise in tensile and flexural strengths of 43 MPa and 127 MPa, at a definite weight percent of 5%.

  20. X-ray diffraction of modified and graft polymerised cellulose fibres

    Energy Technology Data Exchange (ETDEWEB)

    Ouajai, S; Hodzic, A; Shanks, R A [RMIT University, Melbourne, VIC (Australia). Applied Chemistry

    2003-07-01

    Full text: The aim of this research is to modify natural cellulosic fibres in order to improve and increase consistency of their performance in biodegradable materials. Fibre modification consisted of solvent extraction and NaOH treatment in order to remove wax and lignin before grafting with acrylonitrile monomer. The mechanical properties, moisture regain and pore structures were investigated. Finally an analysis of crystalline structure was performed using quantitative FTIR, WAXD and SAXS to assess the relationship between structure and properties after modification. Materials: Hemp (Cannabis sativa), Australian Hemp Resource and Manufacture (AHRM) and Flax (Durafibre Grade 1, 95 % purity), Cargill, Canada. Pretreatments: Dewaxing by acetone extraction, alkalisation with NaOH solutions, grafting reaction with acrylonitrile and AIBN thermal initiator after absorption of the monomer. Surface and pore structure analysis using Micromeritics ASAP 2000 BET adsorption instrument, FTIR Perkin-Elmer 2000 spectrometer, wide angle X-ray diffraction, Bruker AXS D8, Ni-filtered CuK{alpha} radiation ({lambda} 0.1542 nm) at 40 kV and 35 mA. The diffractograms were recorded from 5 to 60 deg of 2 {theta} (Bragg angle) by a goniometer with a scintillation counter, scanning speed 0.02 deg/s and sampling rate of 2 data/s. The 2-D small-angle X-ray data was collected by Bruker AXS, Nanostar from 0.5 to 14 deg of 2{theta} (Bragg angle). Typical exposure time was 5 hours at 40 kV and 35 mA. Single fibre mechanical properties were carried out on a Rheometric DMTA IV at 0.03 mm/min. Moisture regain measurements were performed gravimetrically. The crystalline structure of the fibres were changed from cellulose I to cellulose II after NaOH treatment. The intensity of the 1431 cm{sup -1} band was reduced while the 898 cm{sup -1} band was increased and shifted to 893 cm{sup -1} with an increase of NaOH concentration. X-ray diffractograms of flax and hemp were obtained for each treatment

  1. Enzymatically-Mediated Co-Production of Cellulose Nanocrystals and Fermentable Sugars

    Directory of Open Access Journals (Sweden)

    Dawit Beyene

    2017-10-01

    Full Text Available Cellulose nanocrystals (CNCs can be extracted from cellulosic materials through the degradation of non-crystalline cellulose domains in the feedstock via acid hydrolysis. However, the sugars released from the hydrolysis process cannot be easily recovered from the acid waste stream. In this study, cellulases were used to preferentially degrade non-crystalline domains with the objectives of recovering sugars and generating a feedstock with concentrated CNC precursors for a more efficient acid hydrolysis process. Filter paper and wood pulp substrates were enzyme-treated for 2–10 h to recover 20–40 wt % glucose. Substantial xylose yield (6–12 wt % was generated from wood pulp. CNC yields from acid hydrolysis of cellulases-treated filter paper, and wood pulp improved by 8–18% and 58–86%, respectively, when compared with the original substrate. It was thought that CNC precursors accumulated in the cellulases-treated feedstock due to enzymatic digestion of the more accessible non-crystalline celluloses. Therefore, acid hydrolysis from enzyme-treated feedstock will require proportionally less water and reagents resulting in increased efficiency and productivity in downstream processes. This study demonstrates that an enzymatically-mediated process allows recovery of fermentable sugars and improves acid hydrolysis efficiency for CNC production.

  2. Graft Copolymerization Of Methyl Methacrylate Onto Agave Cellulose

    International Nuclear Information System (INIS)

    Noor Afizah Rosli; Ishak Ahmad; Ibrahim Abdullah; Farah Hannan Anuar

    2014-01-01

    The grafting polymerization of methyl methacrylate (MMA) and Agave cellulose was prepared and the grafting reaction conditions were optimized by varying the reaction time and temperature, and ratio of monomer to cellulose. The resulting graft copolymers were characterized by Fourier transform infrared, X-ray diffraction analysis, thermogravimetric analysis, and scanning electron microscopy (SEM). The experimental results showed that the optimal conditions were at a temperature of 45 degree Celsius for 90 min with ratio monomer to cellulose at 1:1 (g/ g). An additional peak at 1738 cm -1 which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted cellulose, respectively. Grafting of MMA onto cellulose enhanced its thermal stability and SEM observation further furnished evidence of grafting MMA onto Agave cellulose with increasing cellulose diameter and surface roughness. (author)

  3. The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases

    Energy Technology Data Exchange (ETDEWEB)

    Stipanovic, Arthur J [SUNY College of Environmental Science and Forestry

    2014-11-17

    Consistent with the US-DOE and USDA “Roadmap” objective of producing ethanol and chemicals from cellulosic feedstocks more efficiently, a three year research project entitled “The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases” was initiated in early 2003 under DOE sponsorship (Project Number DE-FG02-02ER15356). A three year continuation was awarded in June 2005 for the period September 15, 2005 through September 14, 2008. The original goal of this project was to determine the effect of cellulose crystal structure, including allomorphic crystalline form (Cellulose I, II, III, IV and sub-allomorphs), relative degree of crystallinity and crystallite size, on the activity of different types of genetically engineered cellulase enzymes to provide insight into the mechanism and kinetics of cellulose digestion by “pure” enzymes rather than complex mixtures. We expected that such information would ultimately help enhance the accessibility of cellulose to enzymatic conversion processes thereby creating a more cost-effective commercial process yielding sugars for fermentation into ethanol and other chemical products. Perhaps the most significant finding of the initial project phase was that conversion of native bacterial cellulose (Cellulose I; BC-I) to the Cellulose II (BC-II) crystal form by aqueous NaOH “pretreatment” provided an increase in cellulase conversion rate approaching 2-4 fold depending on enzyme concentration and temperature, even when initial % crystallinity values were similar for both allomorphs.

  4. Methods of use of cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  5. Preparation of cellulose II and IIII films by allomorphic conversion of bacterial cellulose I pellicles

    International Nuclear Information System (INIS)

    Faria-Tischer, Paula C.S.; Tischer, Cesar A.; Heux, Laurent; Le Denmat, Simon; Picart, Catherine; Sierakowski, Maria-R.

    2015-01-01

    The structural changes resulting from the conversion of native cellulose I (Cel I) into allomorphs II (Cel II) and III I (Cel III I ) have usually been studied using powder samples from plant or algal cellulose. In this work, the conversion of Cel I into Cel II and Cel III I was performed on bacterial cellulose films without any mechanical disruption. The surface texture of the films was observed by atomic force microscopy (AFM) and the morphology of the constituting cellulose ribbons, by transmission electron microscopy (TEM). The structural changes were characterized using solid-state NMR spectroscopy as well as X-ray and electron diffraction. The allomorphic change into Cel II and Cel III I resulted in films with different crystallinity, roughness and hydrophobic/hydrophilicity surface and the films remained intact during all process of allomorphic conversion. - Highlights: • Description of a method to modify the allomorphic structure of bacterial cellulose films • Preparation of films with specific morphologies and hydrophobic/hydrophilic surface characters • First report on cellulose III films from bacterial cellulose under swelling conditions • Detailed characterization of cellulose II and III films with complementary techniques • Development of films with specific properties as potential support for cells, enzymes, and drugs

  6. Preparation, Characterization, and Cationic Functionalization of Cellulose-Based Aerogels for Wastewater Clarification

    Directory of Open Access Journals (Sweden)

    Yang Hu

    2016-01-01

    Full Text Available Aerogels are a series of materials with porous structure and light weight which can be applied to many industrial divisions as insulators, sensors, absorbents, and cushions. In this study, cellulose-based aerogels (aerocelluloses were prepared from cellulosic material (microcrystalline cellulose in sodium hydroxide/water solvent system followed by supercritical drying operation. The average specific surface area of aerocelluloses was 124 m2/g. The nitrogen gas (N2 adsorption/desorption isotherms revealed type H1 hysteresis loops for aerocelluloses, suggesting that aerocelluloses may possess a porous structure with cylindrically shaped pores open on both ends. FTIR and XRD analyses showed that the crystallinity of aerocelluloses was significantly decreased as compared to microcrystalline cellulose and that aerocelluloses exhibited a crystalline structure of cellulose II as compared to microcrystalline cellulose (cellulose I. To perform cationic functionalization, a cationic agent, (3-chloro-2-hydroxypropyl trimethylammonium chloride, was used to introduce positively charged sites on aerocelluloses. The cationized aerocelluloses exhibited a strong ability to remove anionic dyes from wastewater. Highly porous and low cost aerocelluloses prepared in this study would be also promising as a fast absorbent for environmental pollutants.

  7. Investigation of the physico-mechanical properties of electrospun PVDF/cellulose nanofibers.

    OpenAIRE

    Issa, A.A.; Al-Maadeed, M.; Luyt, A.S.; Mrlik, M.; Hassan, M.K.

    2016-01-01

    The electro-activity and mechanical properties of PVDF depends mainly on the b-phase content and degree of crystallinity. In this study, cellulose fibers were used to improve these characteristics. This could be achieved because the hydroxyl groups on cellulose would force the fluorine atoms in PVDF to be in the trans-conformation, and the cellulose particles could act as nucleation centers. Electrospinning was used to prepare the PVDF/cellulose (nano)fibrous films, and this improved the tota...

  8. An investigation on the characteristics of cellulose nanocrystals from Pennisetum sinese

    International Nuclear Information System (INIS)

    Lu, Qi-lin; Tang, Li-rong; Wang, Siqun; Huang, Biao; Chen, Yan-dan; Chen, Xue-rong

    2014-01-01

    The aim of this study was to explore the utilization of Pennisetum sinese as cellulose source for the preparation of cellulose nanocrystals (CNC). The cellulose was extracted from P. sinese by chemical treatment and bleaching, and obtained cellulose nanocrystals by acid hydrolysis. Transmission electron microscopy (TEM) showed that CNC were rod-like with the diameter of 20–30 nm and the length of 200–300 nm. Fourier transform infrared (FTIR) showed that chemical treatment removed most of the lignin and hemicellulose from P. sinese, and CNC had similar structure to that of native cellulose. The crystallinity indexes calculated from X-ray diffraction (XRD) for P. sinese and CNC were 40.6% and 77.3%, respectively. The zeta-potential analysis showed that CNC had higher stability than P. sinese had. The thermal stability was investigated by thermogravimetric analysis (TGA), and the result showed that P. sinese had higher thermal stability than that of prepared CNC. - Highlights: • Pennisetum sinese Roxb is good raw material for preparing cellulose nanocrystals (CNC). • Crystallinity of prepared CNC is higher than that of P. sinese Roxb. • Thermal stability of prepared CNC is lower than that of P. sinese Roxb

  9. Cellulose Perversions

    Directory of Open Access Journals (Sweden)

    Maria H. Godinho

    2013-03-01

    Full Text Available Cellulose micro/nano-fibers can be produced by electrospinning from liquid crystalline solutions. Scanning electron microscopy (SEM, as well as atomic force microscopy (AFM and polarizing optical microscopy (POM measurements showed that cellulose-based electrospun fibers can curl and twist, due to the presence of an off-core line defect disclination, which was present when the fibers were prepared. This permits the mimicking of the shapes found in many systems in the living world, e.g., the tendrils of climbing plants, three to four orders of magnitude larger. In this work, we address the mechanism that is behind the spirals’ and helices’ appearance by recording the trajectories of the fibers toward diverse electrospinning targets. The intrinsic curvature of the system occurs via asymmetric contraction of an internal disclination line, which generates different shrinkages of the material along the fiber. The completely different instabilities observed for isotropic and anisotropic electrospun solutions at the exit of the needle seem to corroborate the hypothesis that the intrinsic curvature of the material is acquired during liquid crystalline sample processing inside the needle. The existence of perversions, which joins left and right helices, is also investigated by using suspended, as well as flat, targets. Possible routes of application inspired from the living world are addressed.

  10. On the conflicting findings of Role of Cellulose-Crystallinity in Enzume Hydrolysis of Biomass

    Science.gov (United States)

    Umesh Agarwal; Sally Ralph

    2014-01-01

    In the field of conversion of biomass to ethanol, an important area of research is the enzymatic hydrolysis of cellulose. Once cellulose is converted to glucose, it can be easily fermented to ethanol. As the cellulosic ethanol technology stands now, costly pretreatments and high dosages of cellulases are needed to achieve complete hydrolysis of the cellulose fraction...

  11. Optimizing Extraction of Cellulose and Synthesizing Pharmaceutical Grade Carboxymethyl Sago Cellulose from Malaysian Sago Pulp

    Directory of Open Access Journals (Sweden)

    Anand Kumar Veeramachineni

    2016-06-01

    Full Text Available Sago biomass is an agro-industrial waste produced in large quantities, mainly in the Asia-Pacific region and in particular South-East Asia. This work focuses on using sago biomass to obtain cellulose as the raw material, through chemical processing using acid hydrolysis, alkaline extraction, chlorination and bleaching, finally converting the material to pharmaceutical grade carboxymethyl sago cellulose (CMSC by carboxymethylation. The cellulose was evaluated using Thermogravimetric Analysis (TGA, Infrared Spectroscopy (FTIR, X-Ray Diffraction (XRD, Differential Scanning Calorimetry (DSC and Field Emission Scanning Electronic Microscopy (FESEM. The extracted cellulose was analyzed for cellulose composition, and subsequently modified to CMSC with a degree of substitution (DS 0.6 by typical carboxymethylation reactions. X-ray diffraction analysis indicated that the crystallinity of the sago cellulose was reduced after carboxymethylation. FTIR and NMR studies indicate that the hydroxyl groups of the cellulose fibers were etherified through carboxymethylation to produce CMSC. Further characterization of the cellulose and CMSC were performed using FESEM and DSC. The purity of CMSC was analyzed according to the American Society for Testing and Materials (ASTM International standards. In this case, acid and alkaline treatments coupled with high-pressure defibrillation were found to be effective in depolymerization and defibrillation of the cellulose fibers. The synthesized CMSC also shows no toxicity in the cell line studies and could be exploited as a pharmaceutical excipient.

  12. Cellulose biosynthesis in higher plants

    Directory of Open Access Journals (Sweden)

    Krystyna Kudlicka

    2014-01-01

    Full Text Available Knowledge of the control and regulation of cellulose synthesis is fundamental to an understanding of plant development since cellulose is the primary structural component of plant cell walls. In vivo, the polymerization step requires a coordinated transport of substrates across membranes and relies on delicate orientations of the membrane-associated synthase complexes. Little is known about the properties of the enzyme complexes, and many questions about the biosynthesis of cell wall components at the cell surface still remain unanswered. Attempts to purify cellulose synthase from higher plants have not been successful because of the liability of enzymes upon isolation and lack of reliable in vitro assays. Membrane preparations from higher plant cells incorporate UDP-glucose into a glucan polymer, but this invariably turns out to be predominantly β -1,3-linked rather than β -1,4-linked glucans. Various hypotheses have been advanced to explain this phenomenon. One idea is that callose and cellulose-synthase systems are the same, but cell disruption activates callose synthesis preferentially. A second concept suggests that a regulatory protein as a part of the cellulose-synthase complex is rapidly degraded upon cell disruption. With new methods of enzyme isolation and analysis of the in vitro product, recent advances have been made in the isolation of an active synthase from the plasma membrane whereby cellulose synthase was separated from callose synthase.

  13. The Effect of Alkaline Concentration on Coconut Husk Crystallinity and the Yield of Sugars Released

    Science.gov (United States)

    Sangian, H. F.; Widjaja, A.

    2018-02-01

    This work was to analyze the effect of alkaline concentration on coconut coir husk crystallinity and sugar liberated enzymatically. The data showed that the employing of alkaline on lignocellulose transformed the crystallinity. The XRD peaks increased highly which indicated that cellulose was more opened and exposed. After pretreatment, the chemical compositions (cellulose, hemicellulose, and lignin) were changed significantly. The employing 1% alkaline, the cellulosic content inclined if compared to that of non-pretreatment. When the alkaline concentration was added to 4%, the cellulose was decreased slightly which indicated that a part of cellulose and hemicellulose was dissolved into solution. It was found the alkaline pretreatment influenced by the biochemical reaction of treated substrates in producing the reducing sugars. The amounts of sugar liberated enzymatically of coconut husk treated by 1% and 4% alkaline increased to 0.26, and 0.24 g sugar/g (cellulose+hemicellulose), respectively, compared to that of native solid recorded at 0.18 g sugar/g (cellulose+hemicellulose).

  14. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice.

    Science.gov (United States)

    Li, Fengcheng; Xie, Guosheng; Huang, Jiangfeng; Zhang, Ran; Li, Yu; Zhang, Miaomiao; Wang, Yanting; Li, Ao; Li, Xukai; Xia, Tao; Qu, Chengcheng; Hu, Fan; Ragauskas, Arthur J; Peng, Liangcai

    2017-09-01

    Genetic modification of plant cell walls has been posed to reduce lignocellulose recalcitrance for enhancing biomass saccharification. Since cellulose synthase (CESA) gene was first identified, several dozen CESA mutants have been reported, but almost all mutants exhibit the defective phenotypes in plant growth and development. In this study, the rice (Oryza sativa) Osfc16 mutant with substitutions (W481C, P482S) at P-CR conserved site in CESA9 shows a slightly affected plant growth and higher biomass yield by 25%-41% compared with wild type (Nipponbare, a japonica variety). Chemical and ultrastructural analyses indicate that Osfc16 has a significantly reduced cellulose crystallinity (CrI) and thinner secondary cell walls compared with wild type. CESA co-IP detection, together with implementations of a proteasome inhibitor (MG132) and two distinct cellulose inhibitors (Calcofluor, CGA), shows that CESA9 mutation could affect integrity of CESA4/7/9 complexes, which may lead to rapid CESA proteasome degradation for low-DP cellulose biosynthesis. These may reduce cellulose CrI, which improves plant lodging resistance, a major and integrated agronomic trait on plant growth and grain production, and enhances biomass enzymatic saccharification by up to 2.3-fold and ethanol productivity by 34%-42%. This study has for the first time reported a direct modification for the low-DP cellulose production that has broad applications in biomass industries. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization.

    Science.gov (United States)

    Joshi, Mahesh Kumar; Tiwari, Arjun Prasad; Pant, Hem Raj; Shrestha, Bishnu Kumar; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2015-09-09

    Post-electrospinning treatment is a facile process to improve the properties of electrospun nanofibers for various applications. This technique is commonly used when direct electrospinning is not a suitable option to fabricate a nonwoven membrane of the desired polymer in a preferred morphology. In this study, a representative natural-synthetic hybrid of cellulose acetate (CA) and polycaprolactone (PCL) in different ratios was fabricated using an electrospinning process, and CA in the hybrid fiber was transformed into cellulose (CL) by post-electrospinning treatment via alkaline saponification. Scanning electron microscopy was employed to study the effects of polymer composition and subsequent saponification on the morphology of the nanofibers. Increasing the PCL content in the PCL/CA blend solution caused a gradual decrease in viscosity, resulting in smoother and more uniform fibers. The saponification of fibers lead to pronounced changes in the physicochemical properties. The crystallinity of the PCL in the composite fiber was varied according to the composition of the component polymers. The water contact angle was considerably decreased (from 124° to less than 20°), and the mechanical properties were greatly enhanced (Young's Modulus was improved by ≈20-30 fold, tensile strength by 3-4 fold, and tensile stress by ≈2-4 fold) compared to those of PCL and PCL/CA membranes. Regeneration of cellulose chains in the nanofibers increased the number of hydroxyl groups, which increased the hydrogen bonding, thereby improving the mechanical properties and wettability of the composite nanofibers. The improved wettability and presence of surface functional groups enhanced the ability to nucleate bioactive calcium phosphate crystals throughout the matrix when exposed to a simulated body fluid solution. Experimental results of cell viability assay, confocal microscopy, and scanning electron microscopy imaging showed that the fabricated nanofibrous membranes have

  16. Hydrolysis of the amorphous cellulose in cotton-based paper.

    Science.gov (United States)

    Stephens, Catherine H; Whitmore, Paul M; Morris, Hannah R; Bier, Mark E

    2008-04-01

    Hydrolysis of cellulose in Whatman no. 42 cotton-based paper was studied using gel permeation chromatography (GPC), electrospray ionization-mass spectrometry (ESI-MS), and uniaxial tensile testing to understand the course and kinetics of the reaction. GPC results suggested that scission reactions passed through three stages. Additionally, the evolution of soluble oligomers in the ESI-MS data and the steady course of strength loss showed that the hydrolysis reaction occurred at a constant rate. These findings are explained with a more detailed description of the cellulose hydrolysis, which includes multiple chain scissions on amorphous segments. The breaks occur with increasing frequency near the ends of amorphous segments, where chains protrude from crystalline domains. Oligomers unattached to crystalline domains are eventually created. Late-stage reactions near the ends of amorphous segments produce a kinetic behavior that falsely suggests that hydrolysis had ceased. Monte Carlo simulations of cellulose degradation corroborated the experimental findings.

  17. Cellulose-reinforced composites: from micro-to nanoscale

    Directory of Open Access Journals (Sweden)

    Alain Dufresne

    2013-01-01

    Full Text Available This paper present the most relevant advances in the fields of: i cellulose fibres surface modification; ii cellulose fibres-based composite materials; and iii nanocomposites based on cellulose whiskers or starch platelet-like nanoparticles. The real breakthroughs achieved in the first topic concern the use of solvent-free grafting process (plasma and the grafting of the matrix at the surface of cellulose fibres through isocyanate-mediated grafting or thanks to "click chemistry". Concerning the second topic, it is worth to mention that for some cellulose/matrix combination and in the presence of adequate aids or specific surface treatment, high performance composite materials could be obtained. Finally, nanocomposites allow using the semi-crystalline nature and hierarchical structure of lignocellulosic fibres and starch granules to more deeply achieve this goal profitably exploited by Mother Nature

  18. New approach for extraction of cellulose from tucumã's endocarp and its structural characterization

    Science.gov (United States)

    Manzato, L.; Rabelo, L. C. A.; de Souza, S. M.; da Silva, C. G.; Sanches, E. A.; Rabelo, D.; Mariuba, L. A. M.; Simonsen, J.

    2017-09-01

    The recycling of plant wasted materials into useful products represents a green alternative to prevent environmental problems. Tucumã palm fruit (Astrocaryum aculeatum Meyer) is widely used in Amazon region for food and crafts. Due to the large amount of wasted Tucumã's endocarp, this work proposes a new approach for extraction of cellulose and its structural characterization. X-ray Diffraction (XRD), Rietveld Refinement, Scanning Electron Microscopy (SEM), Infrared-transform Fourier Spectroscopy (FTIR) and Thermal Analysis (TG/DSC) have been used for characterization of the extracted cellulose. XRD patterns of the in natura tucumã's endocarp has showed a natural crystalline content embedded in a non-crystalline matrix. Nanocrystals of cellulose have been observed in the XRD pattern of the extracted cellulose, showing a good agreement with type II. Rietveld refinement allowed the cell parameters obtainment (a = 8.43(1) Å, b = 9.50(1) Å, c = 9.39(3) Å and γ = 118.43(4)°). Apparent average crystallite size and microstrain were, respectively, 20.0 Å and 0.1%. Two different methods were applied for estimative of crystallinity percentage. In the first method the height ratio between the intensity of the crystalline peak and the total intensity after the subtraction of the non-crystalline content was applied, leading to 48.5%. The second approach was performed using the amorphous area and the total area of the (1 1 0) peak from the experimental diffractogram, leading to 31.5%. The difference in crystallinity percentage concerning these two used approaches may be explained due to the first method does not consider the broad peaks resulted from nanocrystals diffraction. FTIR spectroscopy has evidenced a cellulose type II structure. SEM images showed micrometric sized fibers with ranged thicknesses. However, a new morphology of spherical nanostructures was observed on the type II matrix fibers. Thermal analysis suggests that the extracted cellulose have low thermal

  19. Structure-process-yield interrelations in nanocrystalline cellulose extraction

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, W.Y.; Hu, T.Q. [FPInnovations, Vancouver, BC (Canada). Paprican Div.

    2010-06-15

    An understanding of the effect of hydrolysis conditions on yields of extracted water-insoluble cellulose materials is needed in order to understand the full potential of the extracted materials and the extent of their applications. This study provided a detailed analysis of the extraction of highly crystalline water-insoluble cellulose nanomaterials from commercial bleached kraft pulps using a sulfuric acid hydrolysis process. The process-yield-structure interrelations of the extracted materials were evaluated. The reproducibility of the hydrolysis process was evaluated, and methods of optimizing the yield of the extracted nanomaterials were explored. A Ruland-Rietveld analysis was used to resolve X-ray diffraction patterns and characterize crystallite size, crystalline and amorphous areas, and to determine the crystallinity of the extracted materials. The study showed that sulfation determines the yield of the materials and imparts the unique solid-state characteristics of the nanomaterials. The nanomaterials possessed iridescent patterns typical of chiral nematic materials. 27 refs., 3 tabs., 7 figs.

  20. Synthesis and structure of large single crystalline silver hexagonal microplates suitable for micromachining

    Energy Technology Data Exchange (ETDEWEB)

    Lyutov, Dimitar L.; Genkov, Kaloyan V.; Zyapkov, Anton D.; Tsutsumanova, Gichka G.; Tzonev, Atanas N. [Department of Solid State Physics and Microelectronics, Faculty of Physics, University of Sofia, 5, J. Bouchier Blvd, Sofia (Bulgaria); Lyutov, Lyudmil G. [Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Sofia, 1, J. Bouchier Blvd, Sofia (Bulgaria); Russev, Stoyan C., E-mail: scr@phys.uni-sofia.bg [Department of Solid State Physics and Microelectronics, Faculty of Physics, University of Sofia, 5, J. Bouchier Blvd, Sofia (Bulgaria)

    2014-01-15

    We report a simple one-step synthesis method of large single crystalline Ag (111) hexagonal microplates with sharp edges and a size of up to tens of microns. Single silver crystals were produced by reduction silver nitrate aqueous solution with 4-(methylamino)phenol sulfate. Scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, selected area electron diffraction and optical microscopy techniques were combined to characterize the crystals. It is shown that the microplates can be easily dispersed and transferred as single objects onto different substrates and subsequently used as a high quality plasmonic starting material for micromachining of future nanocomponents, using modern top-down techniques like focused-ion beam milling and gas injection deposition. - Highlights: • Synthesis of large Ag hexagonal microplates with high crystallinity. • It is shown and discussed the role of twinning for the anisotropic 2D growth. • The Ag plates are stable in water and can be dispersed onto different substrates. • Their positioning and subsequent micromachining with FIB/GIS is demonstrated. • Suitable starting material for future plasmonic nanocomponents.

  1. Characterization of TEMPO-oxidized bacterial cellulose

    International Nuclear Information System (INIS)

    Nascimento, Eligenes S.; Pereira, Andre L.S.; Lima, Helder L.; Barroso, Maria K. de A.; Barros, Matheus de O.; Morais, Joao P.S.; Borges, Maria de F.; Rosa, Morsyleide de F.

    2015-01-01

    The aim of this study was to characterize the TEMPO-oxidized bacterial cellulose, as a preliminary research for further application in nanocomposites. Bacterial cellulose (BC) was selectively oxidized at C-6 carbon by TEMPO radical. Oxidized bacterial cellulose (BCOX) was characterized by TGA, FTIR, XRD, and zeta potential. BCOX suspension was stable at pH 7.0, presented a crystallinity index of 83%, in spite of 92% of BC, because of decrease in the free hydroxyl number. FTIR spectra showed characteristic BC bands and, in addition, band of carboxylic group, proving the oxidation. BCOX DTG showed, in addition to characteristic BC thermal events, a maximum degradation peak at 233 °C, related to sodium anhydro-glucuronate groups formed during the cellulose oxidation. Thus, BC can be TEMPO-oxidized without great loss in its structure and properties. (author)

  2. Bio-hydrogen production based on catalytic reforming of volatiles generated by cellulose pyrolysis: An integrated process for ZnO reduction and zinc nanostructures fabrication

    International Nuclear Information System (INIS)

    Maciel, Adriana Veloso; Job, Aldo Eloizo; Nova Mussel, Wagner da; Brito, Walter de; Duarte Pasa, Vanya Marcia

    2011-01-01

    The paper presents a process of cellulose thermal degradation with bio-hydrogen generation and zinc nanostructures synthesis. Production of zinc nanowires and zinc nanoflowers was performed by a novel processes based on cellulose pyrolysis, volatiles reforming and direct reduction of ZnO. The bio-hydrogen generated in situ promoted the ZnO reduction with Zn nanostructures formation by vapor-solid (VS) route. The cellulose and cellulose/ZnO samples were characterized by thermal analyses (TG/DTG/DTA) and the gases evolved were analyzed by FTIR spectroscopy (TG/FTIR). The hydrogen was detected by TPR (Temperature Programmed Reaction) tests. The results showed that in the presence of ZnO the cellulose thermal degradation produced larger amounts of H 2 when compared to pure cellulose. The process was also carried out in a tubular furnace with N 2 atmosphere, at temperatures up to 900 o C, and different heating rates. The nanostructures growth was catalyst-free, without pressure reduction, at temperatures lower than those required in the carbothermal reduction of ZnO with fossil carbon. The nanostructures were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The optical properties were investigated by photoluminescence (PL). One mechanism was presented in an attempt to explain the synthesis of zinc nanostructures that are crystalline, were obtained without significant re-oxidation and whose morphologies are dependent on the heating rates of the process. This route presents a potential use as an industrial process taking into account the simple operational conditions, the low costs of cellulose and the importance of bio-hydrogen and nanostructured zinc.

  3. Rapid hydrolysis of celluloses in homogeneous solution

    Energy Technology Data Exchange (ETDEWEB)

    Garves, K

    1979-01-01

    Dissolution of cellulose (I), cotton, and cotton linters in a mixture of Ac0H, Ac/sub 2/O, H/sub 2/SO/sub 4/, and DMF at 120 to 160 degrees resulted in rapid and complete hydrolysis of I with decomposition of the cellulose acetatesulfate formed by gradual addition of aqueous acid. Highly crystalline I is quickly decomposed to glucose with minimum byproduct formation. Carbohydrate products containing sugar units other than glucose are hydrolyzed with destruction of monosaccharides.

  4. NanoCrystalline Cellulose isolated from oil palm empty fruit bunch and its potential in cadmium metal removal

    Directory of Open Access Journals (Sweden)

    Lim Yong Hui

    2016-01-01

    Full Text Available NanoCrystalline Cellulose (NCC was isolated via ultrasonic cavitation assisted acid hydrolysis method. Characterization was done using Dynamic Light Scattering (DLS together with Scanning Electron Microscope (SEM imaging to double prove the existence of NCC. DLS measures length of 236.6 nm with width of 34.40 nm, supported by SEM which showed NCC a rod-like shaped particle with large surface area and high porosity. It was then attempted for heavy metal cadmium ion (Cd2+ removal from aqueous solution. The pH implication to the rate of Cd2+ adsorption was investigated by varying the solution to pH 4, pH 7 and pH 10 over a duration of 120 minutes. The removal efficiency was analyzed using Atomic Absorption Spectroscopy (AAS resulting in pH 7 being the most favorable for Cd2+ removal.

  5. Effects of autohydrolysis of Eucalyptus urograndis and Eucalyptus grandis on influence of chemical components and crystallinity index.

    Science.gov (United States)

    da Silva Morais, Alaine Patrícia; Sansígolo, Cláudio Angeli; de Oliveira Neto, Mario

    2016-08-01

    Samples of Eucalyptus urograndis and Eucalyptus grandis sawdust were autohydrolyzed in aqueous conditions to reach temperatures in the range 110-190°C and reaction times of 0-150min in a minireactor. In each minireactor were used a liquor:wood ratio (10:1 L:kg dry wood), in order to assess the effects of the autohydrolysis severity and the crystalline properties of cellulose. The content of extractives, lignin, holocellulose, cellulose, hemicelluloses and crystallinity index obtained from the solid fraction after autohydrolysis of sawdust were determined. This study demonstrated that the hemicelluloses were extensively removed at 170 and 190°C, whereas cellulose was partly degraded to Eucalyptus urograndis and Eucalyptus grandis sawdust. The lignin content decreased, while the extractives content increased. It was defined that during autohydrolysis, had a slight decreased on crystalline structure of cellulose of Eucalyptus urogandis and Eucalyptus grandis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation.

    Science.gov (United States)

    Long, Lingfeng; Tian, Dong; Hu, Jinguang; Wang, Fei; Saddler, Jack

    2017-11-01

    Although biological pretreatment of cellulosic fiber based on endoglucanases has shown some promise to facilitate cellulose nanofibrillation, its efficacy is still limited. In this study, a xylanase-aided endoglucanase pretreatment was assessed on the bleached hardwood and softwood Kraft pulps to facilitate the downstream cellulose nanofibrillation. Four commercial xylanase preparations were compared and the changes of major fiber physicochemical characteristics such as cellulose/hemicellulose content, gross fiber properties, fiber morphologies, cellulose accessibility/degree of polymerization (DP)/crystallinity were systematically evaluated before and after enzymatic pretreatment. It showed that the synergistic cooperation between endoglucanase and certain xylanase (Biobrite) could efficiently "open up" the hardwood Kraft pulp with limited carbohydrates degradation (cellulose nanofibrillation during mild sonication process (90Wh) with more uniform disintegrated nanofibril products (50-150nm, as assessed by scanning electron microscopy and UV-vis spectroscopy). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Development of composites of polycaprolactone with cellulose

    International Nuclear Information System (INIS)

    Aguiar, V.O.; Marques, M.F.V.

    2015-01-01

    In the present work, alkaline followed by an acid treatment were performed in plant sources of curaua and jute fibers to remove the amorphous portion and to aid fibrillation. Using the technique of X-ray diffraction it was observed that the chemical treatments led to a better organization of cellulose microfibrils and, consequently, the increase in their crystallinity index. Using the thermogravimetric analysis it was noted a slight decrease in thermal stability of the chemically treated cellulose fibers, however it did not impairs its use as filler in the polymer matrix. Through the SEM micrographs it was observed that the chemical treatment reduced the dimensions of the fibers in natura. Polycaprolactone composite was prepared in a twin-screw extruder at different amounts for several cellulose sources (those obtained from vegetable fibers, curaua and jute, commercial cellulose and amorphous cellulose) at and maintaining the process time and temperature constant. (author)

  8. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine

    Directory of Open Access Journals (Sweden)

    Tae-Hee Kim

    2016-02-01

    Full Text Available Gallium nitride (GaN nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO33∙xH2O was used as a raw material and NH3 gas was used as a nitridation source. Additionally, melamine (C3H6N6 powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga2O3. Argon thermal plasma was applied to synthesize GaN nanopowder. The synthesized GaN nanopowder by thermal plasma has low crystallinity and purity. It was improved to relatively high crystallinity and purity by annealing. The crystallinity is enhanced by the thermal treatment and the purity was increased by the elimination of residual C3H6N6. The combined process of thermal plasma and annealing was appropriate for synthesizing crystalline GaN nanopowder. The annealing process after the plasma synthesis of GaN nanopowder eliminated residual contamination and enhanced the crystallinity of GaN nanopowder. As a result, crystalline GaN nanopowder which has an average particle size of 30 nm was synthesized by the combination of thermal plasma treatment and annealing.

  9. Synthesis of molybdenum oxide (MoO3) nanoparticles by hydrolysis method

    International Nuclear Information System (INIS)

    Alfons, M.; Manoj, V.; Karthika, M.; Karn, R.K.; John Bosco Balaguru, R.; Jeyadheepan, K.; Pandiyan, S.K.; Boomadevi, S.

    2013-01-01

    A pure crystalline MoO 3 nanoparticles were synthesized using Ammonium molybdate (NH 4 ) 6 Mo 7 O 24. 4H 2 O precursor and sodium carboxymethyl cellulose (CMC) capping agent. Various reaction parameters such as the additive/Mo molar ratio and temperature of the synthesis media were optimized to analyze the morphology and size of the nanoparticles. The prepared nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning Electron Microscopy (FESEM). (author)

  10. Synthesis and Self-Assembly of Cellulose Microfibrils from Reconstituted Cellulose Synthase1[OPEN

    Science.gov (United States)

    Purushotham, Pallinti; Fang, Chao; Maranas, Cassandra; Bulone, Vincent

    2017-01-01

    Cellulose, the major component of plant cell walls, can be converted to bioethanol and is thus highly studied. In plants, cellulose is produced by cellulose synthase, a processive family-2 glycosyltransferase. In plant cell walls, individual β-1,4-glucan chains polymerized by CesA are assembled into microfibrils that are frequently bundled into macrofibrils. An in vitro system in which cellulose is synthesized and assembled into fibrils would facilitate detailed study of this process. Here, we report the heterologous expression and partial purification of His-tagged CesA5 from Physcomitrella patens. Immunoblot analysis and mass spectrometry confirmed enrichment of PpCesA5. The recombinant protein was functional when reconstituted into liposomes made from yeast total lipid extract. The functional studies included incorporation of radiolabeled Glc, linkage analysis, and imaging of cellulose microfibril formation using transmission electron microscopy. Several microfibrils were observed either inside or on the outer surface of proteoliposomes, and strikingly, several thinner fibrils formed ordered bundles that either covered the surfaces of proteoliposomes or were spawned from liposome surfaces. We also report this arrangement of fibrils made by proteoliposomes bearing CesA8 from hybrid aspen. These observations describe minimal systems of membrane-reconstituted CesAs that polymerize β-1,4-glucan chains that coalesce to form microfibrils and higher-ordered macrofibrils. How these micro- and macrofibrils relate to those found in primary and secondary plant cell walls is uncertain, but their presence enables further study of the mechanisms that govern the formation and assembly of fibrillar cellulosic structures and cell wall composites during or after the polymerization process controlled by CesA proteins. PMID:28768815

  11. Tunable d-Limonene Permeability in Starch-Based Nanocomposite Films Reinforced by Cellulose Nanocrystals.

    Science.gov (United States)

    Liu, Siyuan; Li, Xiaoxi; Chen, Ling; Li, Lin; Li, Bing; Zhu, Jie

    2018-01-31

    In order to control d-limonene permeability, cellulose nanocrystals (CNC) were used to regulate starch-based film multiscale structures. The effect of sphere-like cellulose nanocrystal (CS) and rod-like cellulose nanocrystal (CR) on starch molecular interaction, short-range molecular conformation, crystalline structure, and micro-ordered aggregated region structure were systematically discussed. CNC aspect ratio and content were proved to be independent variables to control d-limonene permeability via film-structure regulation. New hydrogen bonding formation and increased hydroxypropyl starch (HPS) relative crystallinity could be the reason for the lower d-limonene permeability compared with tortuous path model approximation. More hydrogen bonding formation, higher HPS relative crystallinity and larger size of micro-ordered aggregated region in CS0.5 and CR2 could explain the lower d-limonene permeability than CS2 and CR0.5, respectively. This study provided new insight for the control of the flavor release from starch-based films, which favored its application in biodegradable food packaging and flavor encapsulation.

  12. Low melting point pyridinium ionic liquid pretreatment for enhancing enzymatic saccharification of cellulosic biomass.

    Science.gov (United States)

    Uju; Nakamoto, Aya; Shoda, Yasuhiro; Goto, Masahiro; Tokuhara, Wataru; Noritake, Yoshiyuki; Katahira, Satoshi; Ishida, Nobuhiro; Ogino, Chiaki; Kamiya, Noriho

    2013-05-01

    The potential of 1-hexylpyridinium chloride ([Hpy][Cl]), to pretreat cellulosic feedstocks was investigated using microcrystalline cellulose (Avicel) and Bagasse at 80 °C or 100 °C. Short [Hpy][Cl] pretreatments, conversion of pretreated Avicel to glucose was attained after 24h enzymatic saccharification under optimal conditions, whereas regenerated Bagasse showed 1-3-fold higher conversion than untreated biomass. FT-IR analysis of both Avicel and Bagasse samples pretreated with [Hpy][Cl] or 1-ethyl-3-methyimidazolium acetate ([Emim][OAc]) revealed that these ionic liquids behaved differently during pretreatment. [Hpy][Cl] pretreatment for an extended duration (180 min) released mono- and disaccharides without using cellulase enzymes, suggesting [Hpy][Cl] has capability for direct saccharification of cellulosic feedstocks. On the basis of the results obtained, [Hpy][Cl] pretreatment enhanced initial reaction rates in enzymatic saccharification by either crystalline polymorphic alteration of cellulose or partial degradation of the crystalline cellulosic fraction in biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07.

    Science.gov (United States)

    Ji, Kaihua; Wang, Wei; Zeng, Bing; Chen, Sibin; Zhao, Qianqian; Chen, Yueqing; Li, Guoqiang; Ma, Ting

    2016-02-25

    Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. Three potential BC synthesis gene clusters (bcsI, bcsII and bcsIII) of Enterobacter sp. FY-07 have been predicted using genome sequencing and comparative genome analysis, in which bcsIII was confirmed as the main contributor to BC synthesis by gene knockout and functional reconstitution methods. Protein homology, gene arrangement and gene constitution analysis indicated that bcsIII had high identity to the bcsI operon of Enterobacter sp. 638; however, its arrangement and composition were same as those of BC synthesizing operon of G. xylinum ATCC53582 except for the flanking sequences. According to the BC biosynthesizing process, oxygen is not directly involved in the reactions of BC synthesis, however, energy is required to activate intermediate metabolites and synthesize the activator, c-di-GMP. Comparative transcriptome and metabolite quantitative analysis demonstrated that under anaerobic conditions genes involved in the TCA cycle were downregulated, however, genes in the nitrate reduction and gluconeogenesis pathways were upregulated, especially, genes in three pyruvate metabolism pathways. These results suggested that Enterobacter sp. FY-07 could produce energy efficiently under anaerobic conditions to meet the requirement of BC biosynthesis.

  14. CP/MAS ¹³C NMR study of pulp hornification using nanocrystalline cellulose as a model system.

    Science.gov (United States)

    Idström, Alexander; Brelid, Harald; Nydén, Magnus; Nordstierna, Lars

    2013-01-30

    The hornification process of paper pulp was investigated using solid-state (13)C NMR spectroscopy. Nanocrystalline cellulose was used to serve as a model system of the crystalline parts of the fibrils in pulp fibers. Characterization of the nanocrystalline cellulose dimensions was carried out using scanning electron microscopy. The samples were treated by drying and wetting cycles prior to NMR analysis where the hornification phenomenon was recorded by spectral changes of the cellulose C-4 carbon signals. An increase of the crystalline signal and a decrease of the signals corresponding to the accessible amorphous domains were found for both paper pulp and nanocrystalline cellulose. These spectral changes grew stronger with repeating drying and wetting cycles. The results show that cellulose co-crystallization contribute to hornification. Another conclusion is that the surfaces of higher hydrophobicity in cellulose fibrils have an increased preference for aggregation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Morphology and crystallinity of sisal nanocellulose after sonication

    Science.gov (United States)

    Sosiati, H.; Wijayanti, D. A.; Triyana, K.; Kamiel, B.

    2017-09-01

    Different preparation methods on the natural fibers resulted in different morphology. However, the relationships between type of natural fibers, preparation methods and the morphology of produced nanocellulose could not be exactly defined. The sisal nanocellulose was presently prepared by alkalization and bleaching followed by sonication to verify changes in the morphology and crystallinity of nanocellulose related to the formation mechanism. The extracted microcellulose was subjected to scanning electron microscopy (SEM) and x-ray diffraction (XRD) analysis. The isolated cellulose nanospheres were examined with respect to morphology by SEM and transmission electron microscopy (TEM) and, to crystallinity by electron diffraction analysis. Bleaching after alkalization made the microfibrils clearly separated from each other to the individual fiber whose width of the single fiber was ranging from 6 to 13 µm. The XRD crystallinity index (CI) of microcellulose gradually increased after the chemical treatments; 83.12% for raw sisal fiber, 88.57% for alkali treated fiber and 94.03% for bleached fibers. The ultrasonic agitation after bleaching that was carried out at 750 Watt, 20 kHz and amplitude of 39% for 2 h produces homogeneous cellulose nanospheres less than 50 nm in diameter with relatively low crystallinity. The electron diffraction analysis confirmed that the low crystallinity of produced nnocellulose is related to the effect of chemical treatment done before sonication.

  16. Single-crystalline spherical β-Ga2O3 particles: Synthesis, N-doping and photoluminescence properties

    International Nuclear Information System (INIS)

    Zhang, Tingting; Lin, Jing; Zhang, Xinghua; Huang, Yang; Xu, Xuewen; Xue, Yanming; Zou, Jin; Tang, Chengchun

    2013-01-01

    We report on the synthesis of single-crystalline spherical β-Ga 2 O 3 particles by a simple method in ambient atmosphere. No pre-treatment, catalyst, substrate, or gas flow was required during the synthesis process. The well-dispersed Ga 2 O 3 particles display uniform spherical morphology with an average diameter of ∼200 nm. Photoluminescence studies indicate that the Ga 2 O 3 particles exhibit a broad blue-green light emission and an interesting red light emission at room temperature. The red light emission can be further tuned by post-annealing of the particles in ammonia atmosphere. The present single-crystalline β-Ga 2 O 3 particles with spherical morphology, uniform sub-micrometer sizes and tunable light emission are envisaged to be of high promise for applications in white-LED phosphors and optoelectronic devices. -- Highlights: ► We prepared single-crystalline spherical β-Ga 2 O 3 particles in ambient atmosphere. ► The particles display uniform spherical morphology with an average diameter of ∼200 nm. ► The Ga 2 O 3 particles exhibit a broad blue-green light and an interesting red light emission. ► The red light emission can be further tuned by post-annealing of the particles

  17. Methods of detection using a cellulose binding domain fusion product

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  18. Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus

    Directory of Open Access Journals (Sweden)

    Xu Ning

    2012-08-01

    Full Text Available Abstract Background Lignocellulose is the most abundant biomass on earth. However, biomass recalcitrance has become a major factor affecting biofuel production. Although cellulose crystallinity significantly influences biomass saccharification, little is known about the impact of three major wall polymers on cellulose crystallization. In this study, we selected six typical pairs of Miscanthus samples that presented different cell wall compositions, and then compared their cellulose crystallinity and biomass digestibility after various chemical pretreatments. Results A Miscanthus sample with a high hemicelluloses level was determined to have a relatively low cellulose crystallinity index (CrI and enhanced biomass digestibility at similar rates after pretreatments of NaOH and H2SO4 with three concentrations. By contrast, a Miscanthus sample with a high cellulose or lignin level showed increased CrI and low biomass saccharification, particularly after H2SO4 pretreatment. Correlation analysis revealed that the cellulose CrI negatively affected biomass digestion. Increased hemicelluloses level by 25% or decreased cellulose and lignin contents by 31% and 37% were also found to result in increased hexose yields by 1.3-times to 2.2-times released from enzymatic hydrolysis after NaOH or H2SO4 pretreatments. The findings indicated that hemicelluloses were the dominant and positive factor, whereas cellulose and lignin had synergistic and negative effects on biomass digestibility. Conclusions Using six pairs of Miscanthus samples with different cell wall compositions, hemicelluloses were revealed to be the dominant factor that positively determined biomass digestibility after pretreatments with NaOH or H2SO4 by negatively affecting cellulose crystallinity. The results suggested potential approaches to the genetic modifications of bioenergy crops.

  19. Correlation between cellulose physical-chemical properties and its solubilization and derivatization in DMAc/LiCl

    International Nuclear Information System (INIS)

    Ramos, Ludmila de A.; Frollini, Elisabete; Assaf, Jose M.

    2001-01-01

    We report on the dissolution and acetylation under homogeneous solution conditions, in DMAc/LiCl, of microcrystalline cellulose Avicel PH 101, as well as cellulose from cotton linter and mercerized cotton linter. The porous and crystalline cellulose structures were investigated by BET method and X-rays diffraction, respectively. During dissolution, the cellulose structural changes were followed by Scanning Electron Microscopy (SEM) and X-rays diffraction. The degree of substitution (DS) of the products was discussed regarding cellulose properties. (author)

  20. Synthesis and study of nano-structured cellulose acetate based materials for energy applications; Synthese et etude de materiaux nanostructures a base d'acetate de cellulose pour applications energetiques

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, F

    2006-12-15

    Nano-structured materials have unique properties (high exchange areas, containment effect) because of their very low characteristic dimensions. The elaboration way set up in this PhD work consists in applying the classical processes for the preparation of aerogel-like materials (combining sol-gel synthesis and CO{sub 2} supercritical extraction) to cellulosic polymers. This work is divided in four parts: a literature review, the presentation and the study of the chemical synthesis that leads to cellulose acetate-based aerogel, the characterizations (chemical, structural and thermal) of the elaborated nano-materials, and finally the study of the first carbons that were obtained after pyrolysis of the organic matrix. The formulations and the sol-gel protocol lead to chemical gels by crosslinking cellulose acetate using a poly-functional iso-cyanate. The dry materials obtained after solvent extraction with supercritical CO{sub 2} are nano-structured and mainly meso-porous. Correlations between chemical synthesis parameters (reagent concentrations, crosslinking rate and degree of polymerisation) and porous properties (density, porosity, pore size distribution) were highlighted thanks to structural characterizations. An ultra-porous reference aerogel, with a density equals to 0,245 g.cm{sup -3} together with a meso-porous volume of 3,40 cm{sup 3}.g{sup -1} was elaborated. Once in granular shape, this material has a thermal conductivity of 0,029 W.m{sup -1}.K{sup -1}. In addition, carbon materials produced after pyrolysis of the organic matrix and after grinding are nano-structured and nano-porous, even if important structural modifications have occurred during the carbonization process. The elaborated materials are evaluated for applications in relation with energy such as thermal insulation (organic aerogels) but also for energy conversion and storage through electrochemical way (carbon aerogels). (author)

  1. Characterization of the crystalline quality of β-SiC formed by ion beam synthesis

    International Nuclear Information System (INIS)

    Intarasiri, S.; Hallen, A.; Kamwanna, T.; Yu, L.D.; Possnert, G.; Singkarat, S.

    2006-01-01

    The ion beam synthesis (IBS) technique is applied to form crystalline silicon carbide (SiC) for future optoelectronics applications. Carbon ions at 80 and 40 keV were implanted into (1 0 0) high-purity p-type silicon wafers at room temperature and 400 deg. C, respectively, to doses in excess of 10 17 ions/cm 2 . Subsequent thermal annealing of the implanted samples was performed in a vacuum furnace at temperatures of 800, 900 and 1000 deg. C, respectively. Elastic recoil detection analysis was used to investigate depth distributions of the implanted ions and infrared transmittance (IR) measurement was used to characterize formation of SiC in the implanted Si substrate. Complementary to IR, Raman scattering measurements were also carried out. Levels of the residual damage distribution of the samples annealed at different temperatures were compared with that of the as-implanted one by Rutherford backscattering spectrometry (RBS) in the channeling mode. The results show that C-ion implantation at the elevated temperature, followed by high-temperature annealing, enhances the synthesis of crystalline SiC

  2. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants.

    Science.gov (United States)

    Kan, Kevin H M; Li, Jian; Wijesekera, Kushlani; Cranston, Emily D

    2013-09-09

    Cellulose nanocrystals (CNCs) are a sustainable nanomaterial with applications spanning composites, coatings, gels, and foams. Surface modification routes to optimize CNC interfacial compatibility and functionality are required to exploit the full potential of this material in the design of new products. In this work, CNCs have been rendered pH-responsive by surface-initiated graft polymerization of 4-vinylpyridine with the initiator ceric(IV) ammonium nitrate. The polymerization is a one-pot, water-based synthesis carried out under sonication, which ensures even dispersion of the cellulose nanocrystals during the reaction. The resultant suspensions of poly(4-vinylpyridine)-grafted cellulose nanocrystals (P4VP-g-CNCs) show reversible flocculation and sedimentation with changes in pH; the loss of colloidal stability is visible by eye even at concentrations as low as 0.004 wt %. The presence of grafted polymer and the ability to tune the hydrophilic/hydrophobic properties of P4VP-g-CNCs were characterized by Fourier transform infrared spectroscopy, elemental analysis, electrophoretic mobility, mass spectrometry, transmittance spectroscopy, contact-angle measurements, thermal analysis, and various microscopies. Atomic force microscopy showed no observable changes in the CNC dimensions or degree of aggregation after polymer grafting, and a liquid crystalline nematic phase of the modified CNCs was detected by polarized light microscopy. Controlled stability and wettability of P4VP-g-CNCs is advantageous both in composite design, where cellulose nanocrystals generally have limited dispersibility in nonpolar matrices, and as biodegradable flocculants. The responsive nature of these novel nanoparticles may offer new applications for CNCs in biomedical devices, as clarifying agents, and in industrial separation processes.

  3. Preparation and characterization of regenerated cellulose membranes from natural cotton fiber

    Directory of Open Access Journals (Sweden)

    Yanjuan CAO

    2015-06-01

    Full Text Available A series of organic solutions with different cellulose concentrations are prepared by dissolving natural cotton fibers in lithium chloride/dimethyl acetamide (LiCl/DMAC solvent system after the activation of cotton fibers. Under different coagulating bath, the regenerated cellulose membranes are formed in two kinds of coagulation baths, and two coating methods including high-speed spin technique (KW-4A spin coating machine and low-speed scraping (AFA-Ⅱ Film Applicator are selected in this paper. The macromolecular structure, mechanical properties, crystallinity, thermal stability and wetting property of the regenerated cellulose membrane are characterized by Scanning Electron Microscope(SEM, Fourier Transform Infrared Spectroscopy (FT-IR,X-ray diffraction (XRD, Thermogravimetric analysis (TG and contacting angle tester. The effects of mass fraction, coagulation bath type, membrane forming process on the regenerated membrane properties are investigated. Experimental results show that the performance of regenerated cellulose membrane is relatively excellent under the condition of using the KW-4A high-speed spin method, water coagulation bath, and when mass fraction of cellulose is 3.5%. The crystallinity of the regenerated cellulose membrane changes a lot compared with natural cotton fibers. The variation trend of thermal stability is similar with that of cotton fiber. But thermal stability is reduced to some degree, while the wetting ability is improved obviously.

  4. Hydrophobic modification of cellulose isolated from Agave angustifolia fibre by graft copolymerisation using methyl methacrylate.

    Science.gov (United States)

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan; Mohamed, Faizal

    2015-07-10

    Graft copolymerisation of methyl methacrylate (MMA) onto Agave angustifolia was conducted with ceric ammonium nitrate (CAN) as the redox initiator. The maximum grafting efficiency was observed at CAN and MMA concentrations of 0.91 × 10(-3) and 5.63 × 10(-2)M, respectively, at 45°C for 3h reaction time. Four characteristic peaks at 2995, 1738, 1440, and 845 cm(-1), attributed to PMMA, were found in the IR spectrum of grafted cellulose. The crystallinity index dropped from 0.74 to 0.46, while the thermal stability improved upon grafting. The water contact angle increased with grafting yield, indicating increased hydrophobicity of cellulose. SEM images showed the grafted cellulose to be enlarged and rougher. The changes in the physical nature of PMMA-grafted cellulose can be attributed to the PMMA grafting in the amorphous regions of cellulose, causing it to expand at the expense of the crystalline component. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Isolation and Characterization of Cellulose from Different Fruit and Vegetable Pomaces

    Directory of Open Access Journals (Sweden)

    Monika Szymańska-Chargot

    2017-10-01

    Full Text Available A new fractionation process was developed to achieve valorization of fruit and vegetable pomaces. The importance of the residues from fruits and vegetables is still growing; therefore; the study presents the novel route of a fractioning process for the conversion of agro-industrial biomasses, such as pomaces, into useful feedstocks with potential application in the fields of fuels, chemicals, and polymers. Hence, the biorefinery process is expected to convert them into various by-products offering a great diversity of low-cost materials. The final product of the process is the cellulose of the biofuel importance. The study presents the novel route of the fractioning process for the conversion of agro-industrial biomasses, such as pomaces, into useful feedstocks with a potential application in the fields of fuels, chemicals, and polymers. Therefore the aim of this paper was to present the novel route of the pomaces fraction and the characterization of residuals. Pomaces from apple, cucumber, carrot, and tomato were treated sequentially with water, acidic solution, alkali solution, and oxidative reagent in order to obtain fractions reach in sugars, pectic polysaccharides, hemicellulose, cellulose, and lignin. Pomaces were characterized by dry matter content, neutral detergent solubles, hemicellulose, cellulose, and lignin. Obtained fractions were characterized by the content of pectins expressed as galacturonic acid equivalent and hemicelluloses expressed as a xyloglucan equivalent. The last fraction and residue was cellulose characterized by crystallinity degree by X-ray diffractometer (XRD, microfibril diameter by atomic force microscope (AFM, and overall morphology by scanning electron microscope (SEM. The hemicelluloses content was similar in all pomaces. Moreover, all the materials were characterized by the high pectins level in extracts evaluated as galacturonic acid content. The lignins content compared with other plant biomasses was on a

  6. Extraction of cellulose nanofibers from Pinus oocarpa residues

    Energy Technology Data Exchange (ETDEWEB)

    Manrich, Anny; Martins, Maria Alice, E-mail: anny@daad-alumni.de [EMBRAPA Instrumentacao, Sao Carlos, SP (Brazil); Moraes, Jheyce Cristina; Pasquoloto, Camila [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2016-07-01

    Full text: Pinus oocarpa, which wood is moderately hard and tough, is planted in Brazil for reforestation and employed for timber production used in constructions. The wood residues, such as shavings, bark and sawdust represent 30% to 50% of the total volume of wood production, of which the sawdust is 10%{sup 1}. Cellulose nanofibers is nanomaterials having a diameter between 5 nm and 20 nm and a length of up to hundreds of nm. To obtain nanofibers from cellulose sources, such as sisal and sugarcane bagasse, is used chemical processes, in which the lignocellulosic material initially undergoes pre-treatments to promote partial separation of the cellulose, such as mercerisation and bleaching thus disposing lignin and hemicellulose components. Sequentially, by controlled acid hydrolysis, amorphous regions of the cellulose are removed, and crystalline cellulose is isolated in the form of cellulose nanofibers. In this work, nanofibers from sawdust of Pinnus oocarpa, containing 44.8 wt% of cellulose 20.6 wt% hemicellulose and 30.0 wt% insoluble lignin were isolated by mercerisation (NaOH 5%, 80°C, 120 min), followed by bleaching (NaOH + acetic acid + NaClO{sub 2}, 80 deg C, 240min) and acid hydrolysis (60 wt% sulfuric acid, 45 °C, 40min). Nanofibers obtained were characterized by DRX and SEM-FEG. Results showed that, for used conditions, fiber acid hydrolysis was not complete, therefore a biphasic suspension was formed. Crystallinity index achieved was not much higher than that from pinus fiber itself, increasing from 62% to 65% and signs of cellulose type II were observed. SEM images showed elongated fibers, which have diameter of 15 ± 5 nm and length of hundreds of nm, what means that they have a large L/D aspect ratio. Nanofiber extraction yield was very low (1.3 wt% of initial residue). All steps of the process are being reviewed aiming at better results. 1) Morais, S. A. L.; Nascimento E. A. e D. C. Melo, 2005, R. Árvore, 29, 3, 461-470. (author)

  7. Physical properties of agave cellulose graft polymethyl methacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan [Polymer Research Centre (PORCE), School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor (Malaysia)

    2013-11-27

    The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm{sup −1} which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.

  8. PPLA-cellulose nanocrystals nanocomposite prepared by in situ polymerization

    International Nuclear Information System (INIS)

    Paula, Everton L. de; Pereirea, Fabiano V.; Mano, Valdir

    2011-01-01

    This work reports the preparation and and characterization of a PLLA-cellulose nanocrystals nanocomposite obtained by in situ polymerization. The nanocomposite was prepared by ring opening polymerization of the lactide dimer in the presence of cellulose nanocrystals (CNCs) and the as-obtained materials was characterized using FTIR, DSC, XRD and TGA measurements. The incorporation of cellulose nanocrystals in PLLA using this method improved the thermal stability and increased the crystallinity of PLLA. These results indicate that the incorporation of CNCs by in situ polymerization improve thermal properties and has potential to improve also mechanical properties of this biodegradable polymer. (author)

  9. Synthesis, characterization and electrospinning of corn cob cellulose-graft-polyacrylonitrile and their clay nanocomposites.

    Science.gov (United States)

    Kalaoğlu, Özlem I; Ünlü, Cüneyt H; Galioğlu Atıcı, Oya

    2016-08-20

    This study aims at evaluation of cellulose recovered from agricultural waste (corn cob) in terms of synthesis of graft copolymers, polymer/clay nanocomposites, and nanofibers. The copolymers and nanocomposites were synthesized in aqueous solution using Ce(4+) initiator. Conditions (concentrations of the components, reaction temperature, and period) were determined first for copolymer synthesis to obtain the highest conversion ratio. Then found parameters were used to synthesize nanocomposites adding clay mineral to reaction medium. Although there was a decrease in conversion in nanocomposites syntheses, thermal and rheologic measurements indicated enhancements compared to pristine copolymer. Obtained polymeric materials have been successfully electrospun into nanofibers and characterized. Average diameter of the nanofibers was about 650nm and was strongly influenced by NaMMT amount in the nanocomposite sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Extraction and characterization of cellulose nano whiskers from balsa wood

    International Nuclear Information System (INIS)

    Morelli, Carolina L.; Bretas, Rosario E.S.; Marconcini, Jose M.; Pereira, Fabiano V.; Branciforti, Marcia C.

    2011-01-01

    In this study cellulose nano whiskers were obtained from balsa wood. For this purpose, fibers of balsa wood were subjected to hydrolysis reactions for lignin and hemi cellulose digestion and acquisition of nano-scale cellulose. Cellulose nano crystals obtained had medium length and thickness of 176 nm and 7 nm respectively. Infrared spectroscopy and x-ray diffraction showed that the process used for extracting nano whiskers could digest nearly all the lignin and hemi cellulose from the balsa fiber and still preserve the aspect ratio and crystallinity, satisfactory enough for future application in polymer nano composites. Thermogravimetry showed that the onset temperature of thermal degradation of cellulose nano crystals (226 degree C) was higher than the temperature of the balsa fiber (215 degree C), allowing its use in molding processes with many polymers from the molten state.(author)

  11. Influence of the crystalline structure of cellulose on the production of ethanol from lignocellulose biomass

    Science.gov (United States)

    Smuga-Kogut, Małgorzata; Zgórska, Kazimiera; Szymanowska-Powałowska, Daria

    2016-01-01

    In recent years, much attention has been devoted to the possibility of using lignocellulosic biomass for energy. Bioethanol is a promising substitute for conventional fossil fuels and can be produced from straw and wood biomass. Therefore, the aim of this paper was to investigate the effect of 1-ethyl-3-methylimidazolium pretreatment on the structure of cellulose and the acquisition of reducing sugars and bioethanol from cellulosic materials. Material used in the study was rye straw and microcrystalline cellulose subjected to ionic liquid 1-ethyl-3-methylimidazolium pretreatment. The morphology of cellulose fibres in rye straw and microcrystalline cellulose was imaged prior to and after ionic liquid pretreatment. Solutions of ionic liquid-treated and untreated cellulosic materials were subjected to enzymatic hydrolysis in order to obtain reducing sugars, which constituted a substrate for alcoholic fermentation. An influence of the ionic liquid on the cellulose structure, accumulation of reducing sugars in the process of hydrolysis of this material, and an increase in ethanol amount after fermentation was observed. The ionic liquid did not affect cellulolytic enzymes negatively and did not inhibit yeast activity. The amount of reducing sugars and ethyl alcohol was higher in samples purified with 1-ethyl-3-methy-limidazolium acetate. A change in the supramolecular structure of cellulose induced by the ionic liquid was also observed.

  12. Directed Biosynthesis of Oriented Crystalline Cellulose for Advanced Composite Fibers

    Science.gov (United States)

    2012-05-03

    trifluoromethylsulfonyl)amide IL: ionic liquids IR : infra-red MSE: Material Sciences & Engineering ORNL: Oak Ridge National Laboratory PI...biomedical applications, we have investigated approaches for incorporating hydroxyapatite into the cellulose pellicles as bone replacement materials

  13. Biomass enzymatic saccharification is determined by the non-KOH-extractable wall polymer features that predominately affect cellulose crystallinity in corn.

    Directory of Open Access Journals (Sweden)

    Jun Jia

    Full Text Available Corn is a major food crop with enormous biomass residues for biofuel production. Due to cell wall recalcitrance, it becomes essential to identify the key factors of lignocellulose on biomass saccharification. In this study, we examined total 40 corn accessions that displayed a diverse cell wall composition. Correlation analysis showed that cellulose and lignin levels negatively affected biomass digestibility after NaOH pretreatments at p<0.05 & 0.01, but hemicelluloses did not show any significant impact on hexoses yields. Comparative analysis of five standard pairs of corn samples indicated that cellulose and lignin should not be the major factors on biomass saccharification after pretreatments with NaOH and H2SO4 at three concentrations. Notably, despite that the non-KOH-extractable residues covered 12%-23% hemicelluloses and lignin of total biomass, their wall polymer features exhibited the predominant effects on biomass enzymatic hydrolysis including Ara substitution degree of xylan (reverse Xyl/Ara and S/G ratio of lignin. Furthermore, the non-KOH-extractable polymer features could significantly affect lignocellulose crystallinity at p<0.05, leading to a high biomass digestibility. Hence, this study could suggest an optimal approach for genetic modification of plant cell walls in bioenergy corn.

  14. COBRA-LIKE2, a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE family, plays a role in cellulose deposition in arabidopsis seed coat mucilage secretory cells.

    Science.gov (United States)

    Ben-Tov, Daniela; Abraham, Yael; Stav, Shira; Thompson, Kevin; Loraine, Ann; Elbaum, Rivka; de Souza, Amancio; Pauly, Markus; Kieber, Joseph J; Harpaz-Saad, Smadar

    2015-03-01

    Differentiation of the maternally derived seed coat epidermal cells into mucilage secretory cells is a common adaptation in angiosperms. Recent studies identified cellulose as an important component of seed mucilage in various species. Cellulose is deposited as a set of rays that radiate from the seed upon mucilage extrusion, serving to anchor the pectic component of seed mucilage to the seed surface. Using transcriptome data encompassing the course of seed development, we identified COBRA-LIKE2 (COBL2), a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE gene family in Arabidopsis (Arabidopsis thaliana), as coexpressed with other genes involved in cellulose deposition in mucilage secretory cells. Disruption of the COBL2 gene results in substantial reduction in the rays of cellulose present in seed mucilage, along with an increased solubility of the pectic component of the mucilage. Light birefringence demonstrates a substantial decrease in crystalline cellulose deposition into the cellulosic rays of the cobl2 mutants. Moreover, crystalline cellulose deposition into the radial cell walls and the columella appears substantially compromised, as demonstrated by scanning electron microscopy and in situ quantification of light birefringence. Overall, the cobl2 mutants display about 40% reduction in whole-seed crystalline cellulose content compared with the wild type. These data establish that COBL2 plays a role in the deposition of crystalline cellulose into various secondary cell wall structures during seed coat epidermal cell differentiation. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Characterisation of bacterial cellulose partly acetylated by dimethylacetamide/lithium chloride

    International Nuclear Information System (INIS)

    Lima, G. de Marco; Sierakowski, M.-R.; Faria-Tischer, P.C.S.; Tischer, C.A.

    2011-01-01

    Cellulose is a water-insoluble polysaccharide used at an industrial scale for the manufacture of paper and films or in the dust form, natural, hydrolysed or derivatised. The cellulose produced by G. hansenii (former A. xylinum) has a structure identical to that of plants, but is free of lignin and hemicellulose, with several unique physical-chemical properties. The main barrier to the use of cellulose is its insolubility in water and most organic solvents, but soluble derivatives can be obtained with the use of ionic solvents. Bacterial cellulose, produced in a static, 4% glucose medium, was dissolved in hot DMAc/LiCl (120, 150 or 170 deg. C). The solution was analysed by 13 C NMR, and the effect of the dissolution on the crystalline state was shown by X-ray crystallography. The crystalline structure was lost upon dissolution, becoming amorphous; this was also observed for Avicel plant cellulose. The soluble cellulose was partly acetylated in acetic anhydride with acetic anhydride-cellulose ratios of 1:50, 1:6 and 1:12 (w/v). The resulting cellulose acetates were examined by infrared spectroscopy, and the best result was 43% (w/v). The degree of acetylation was determined via 1 H NMR spectroscopy by comparing the area of the glucose ring at 2.60-5.20 ppm and that of the methyl proton of the acetate group at 1.80-2.20 ppm. The 13 C NMR spectra showed acetylation at C6 >> C2 > C3 at 60-80 ppm, with C1 signals at ∼ 100-104 ppm. The derivatisation of bacterial cellulose in DMAc/LiCl/acetic anhydride (1:4:50, v/v/v) gave rise to 87% substitution. The process of dissolution of the bacterial cellulose is essential for the analysis of the insoluble polymer in water, facilitating analysis and characterisation of these composites by 13 C NMR spectroscopy, size exclusion chromatography and light scattering techniques.

  16. Cellulose nanocrystals as templates for cetyltrimethylammonium bromide mediated synthesis of Ag nanoparticles and their novel use in PLA films.

    Science.gov (United States)

    Yalcinkaya, E E; Puglia, D; Fortunati, E; Bertoglio, F; Bruni, G; Visai, L; Kenny, J M

    2017-02-10

    In the present paper, we reported how cellulose nanocrystals (CNC) from microcrystalline cellulose have the capacity to assist in the synthesis of metallic nanoparticles chains. A cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as modifier for CNC surface. Silver nanoparticles were synthesized on CNC, and nanoparticle density and size were optimized by varying concentrations of nitrate and reducing agents, and the reduction time. The experimental conditions were optimized for the synthesis and the resulting Ag grafted CNC (Ag-g-CNC) were characterized by means of TGA, SEM, FTIR and XRD, and then introduced in PLA matrix. PLA nanocomposite containing silver grafted cellulose nanocrystals (PLA/0.5Ag-g-1CNC) was characterized by optical and thermal analyses and the obtained data were compared with results from PLA nanocomposites containing 1% wt. of CNC (PLA/1CNC), 0.5% wt. of silver nanoparticles (PLA/0.5Ag) and hybrid system containing CNC and silver in the same amount (PLA/1CNC/0.5Ag). The results demonstrated that grafting of silver nanoparticles on CNC positively affected the thermal degradation process and cold crystallization processes of PLA matrix. Finally, the antibacterial activity of the different systems was studied at various incubation times and temperatures, showing the best performance for PLA/1CNC/0.5Ag based nanocomposite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Cyanobacterial cellulose synthesis in the light of the photanol concept

    NARCIS (Netherlands)

    Schuurmans, R.M.; Matthijs, H.C.P.; Stal, L.J.; Hellingwerf, K.J.; Sharma, N.K.; Rai, A.K.; Stal, L.J.

    2014-01-01

    The detailed knowledge already available about cellulose synthases and their regulation, plus emerging insights into the process of cellulose secretion in cyanobacteria make cellulose an attractive polymer for the application of the photanol concept in an economically viable production process. By

  18. Enhanced Cellulose Degradation Using Cellulase-Nanosphere Complexes

    Science.gov (United States)

    Blanchette, Craig; Lacayo, Catherine I.; Fischer, Nicholas O.; Hwang, Mona; Thelen, Michael P.

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production. PMID:22870287

  19. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    Directory of Open Access Journals (Sweden)

    Craig Blanchette

    Full Text Available Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC; however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.

  20. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    Science.gov (United States)

    Blanchette, Craig; Lacayo, Catherine I; Fischer, Nicholas O; Hwang, Mona; Thelen, Michael P

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.

  1. Flash pyrolysis at high temperature of ligno-cellulosic biomass and its components - production of synthesis gas

    International Nuclear Information System (INIS)

    Couhert, C.

    2007-11-01

    Pyrolysis is the first stage of any thermal treatment of biomass and governs the formation of synthesis gas for the production of electricity, hydrogen or liquid fuels. The objective of this work is to establish a link between the composition of a biomass and its pyrolysis gas. We study experimental flash pyrolysis and fix the conditions in which quantities of gas are maximal, while aiming at a regime without heat and mass transfer limitations (particles about 100 μm): temperature of 950 C and residence time of about 2 s. Then we try to predict gas yields of any biomass according to its composition, applicable in this situation where thermodynamic equilibrium is not reached. We show that an additivity law does not allow correlating gas yields of a biomass with fractions of cellulose, hemi-cellulose and lignin contained in this biomass. Several explanations are suggested and examined: difference of pyrolytic behaviour of the same compound according to the biomass from which it is extracted, interactions between compounds and influence of mineral matter. With the aim of industrial application, we study pyrolysis of millimetric and centimetric size particles, and make a numerical simulation of the reactions of pyrolysis gases reforming. This simulation shows that the choice of biomass affects the quantities of synthesis gas obtained. (author)

  2. Microwave-assisted combustion synthesis of nano iron oxide/iron-coated activated carbon, anthracite, cellulose fiber, and silica, with arsenic adsorption studies

    Science.gov (United States)

    Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was com...

  3. Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose.

    Science.gov (United States)

    Carlsson, Daniel O; Hua, Kai; Forsgren, Johan; Mihranyan, Albert

    2014-01-30

    TEMPO-mediated surface oxidation of mesoporous highly crystalline Cladophora cellulose was used to introduce negative surface charges onto cellulose nanofibrils without significantly altering other structural characteristics. This enabled the investigation of the influence of mesoporous nanocellulose surface charges on aspirin chemical stability to be conducted. The negative surface charges (carboxylate content 0.44±0.01 mmol/g) introduced on the mesoporous crystalline nanocellulose significantly accelerated aspirin degradation, compared to the starting material which had significantly less surface charge (0.06±0.01 mmol/g). This effect followed from an increased aspirin amorphisation ability in mesopores of the oxidized nanocellulose. These results highlight the importance of surface charges in formulating nanocellulose for drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Fe3O4 Modification of Microcrystalline Cellulose for Composite Materials

    OpenAIRE

    Dimitrov, Kiril; Herzog, Michael; Nenkova, Sanchi

    2013-01-01

    A new synthesis method for producing cellulose ferrite micro- and nano- composites was developed and new material properties were studied. Microcrystalline cellulose was modified with a mixture of Fe+2/Fe+3 to produce surface bonded nanoparticles magnetite (Fe3O4). Optimal conditions were determined. Microsized hematite (Fe2O3) was mixed with microcrystalline cellulose and used as a reference. The magnetite modified microcrystalline cellulose and hematite filled microcrystalline cellulose wer...

  5. Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties.

    Science.gov (United States)

    Arrieta, M P; Fortunati, E; Dominici, F; Rayón, E; López, J; Kenny, J M

    2014-07-17

    Cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose by acid hydrolysis were added into poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends to improve the final properties of the multifunctional systems. CNC were also modified with a surfactant (CNCs) to increase the interfacial adhesion in the systems maintaining the thermal stability. Firstly, masterbatch pellets were obtained for each formulation to improve the dispersion of the cellulose structures in the PLA-PHB and then nanocomposite films were processed. The thermal stability as well as the morphological and structural properties of nanocomposites was investigated. While PHB increased the PLA crystallinity due to its nucleation effect, well dispersed CNC and CNCs not only increased the crystallinity but also improved the processability, the thermal stability and the interaction between both polymers especially in the case of the modified CNCs based PLA-PHB formulation. Likewise, CNCs were better dispersed in PLA-CNCs and PLA-PHB-CNCs, than CNC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse

    Science.gov (United States)

    Wulandari, W. T.; Rochliadi, A.; Arcana, I. M.

    2016-02-01

    Cellulose in nanometer range or called by nano-cellulose has attracted much attention from researchers because of its unique properties. Nanocellulose can be obtained by acid hydrolysis of cellulose. The cellulose used in this study was isolated from sugarcane bagasse, and then it was hydrolyzed by 50% sulfuric acid at 40 °C for 10 minutes. Nanocellulose has been characterized by Transmission Electron Microscope (TEM), Particle Size Analyzer (PSA), Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Analysis of FTIR showed that there were not a new bond which formed during the hydrolysis process. Based on the TEM analysis, nano-cellulose has a spherical morphology with an average diameter of 111 nm and a maximum distribution of 95.9 nm determined by PSA. The XRD analysis showed that the crystallinity degree of nano-cellulose was higher than cellulose in the amount of 76.01%.

  7. Characterisation of spray dried soy sauce powders made by adding crystalline carbohydrates to drying carrier.

    Science.gov (United States)

    Wang, Wei; Zhou, Weibiao

    2015-02-01

    This study aimed to reduce stickiness and caking of spray dried soy sauce powders by introducing a new crystalline structure into powder particles. To perform this task, soy sauce powders were formulated by using mixtures of cellulose and maltodextrin or mixtures of waxy starch and maltodextrin as drying carriers, with a fixed carrier addition rate of 30% (w/v) in the feed solution. The microstructure, crystallinity, solubility as well as stickiness and caking strength of all the different powders were analysed and compared. Incorporating crystalline carbohydrates in the drying carrier could significantly reduce the stickiness and caking strength of the powders when the ratio of crystalline carbohydrates to maltodextrin was above 1:5 and 1:2, respectively. X-ray Diffraction (XRD) results showed that adding cellulose or waxy starch could induce the crystallinity of powders. Differential Scanning Calorimetry (DSC) results demonstrated that the native starch added to the soy sauce powders did not fully gelatinize during spray drying. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Properties of ligno-cellulose ficus religiosa leaf fibers

    CSIR Research Space (South Africa)

    Reddy, KO

    2010-04-01

    Full Text Available by scanning electron microscopic method. The FTIR and chemical analyses indicated lowering of hemi-cellulose content by alkali treatment of the fibers. The X-ray diffraction revealed an increase in crystallinity of the fibers on alkali treatment. The thermal...

  9. Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity

    Science.gov (United States)

    Yucheng Peng; Douglas J. Gardner; Yousoo Han; Alper Kiziltas; Zhiyong Cai; Mandla A. Tshabalala

    2013-01-01

    The effect of drying method on selected material properties of nanocellulose was investigated. Samples of nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNC) were each subjected to four separate drying methods: air-drying, freeze-drying, spray-drying, and supercritical-drying. The thermal stability and crystallinity of the dried nanocellulose were...

  10. Films based on oxidized starch and cellulose from barley.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A novel ethanol templating synthesis of ordered lamellar superstructured crystalline zirconia

    International Nuclear Information System (INIS)

    Liu Chao; Wang Bin; Ji Xiujie; Zhao Shanshan; Wu Jie; Jia Jianlong; Ma Dongxia

    2012-01-01

    Soft template technique has attracted great interest, because it is a facile, inexpensive and efficient synthesis strategy for ordered superstructural systems. Here, a novel ethanol template was used to synthesize the ordered lamellar superstructured crystalline zirconia (Lα-ZrO 2 ) without post-treatments and surfactants. ZrOCl 2 and NaOH were served as Zr source and precipitant, respectively. XRD analysis showed that Lα-ZrO 2 is crystalline. XPS spectra indicated the physical adsorption of ethanol molecules in Lα-ZrO 2 . TEM further observed and proved the 1.36-nm period of superstructure detected and calculated by SAXRD (1.35 nm), which is composed of 0.68-nm thick ZrO 2 and pore alternatively. In contrast, the template-free ZrO 2 (TF-ZrO 2 ) presents no superstructure and is poorly crystallized. As a soft template, ethanol presents the roles of (i) inducing the growth of zirconia layers, (ii) directing the self-assembly of ordered lamellar superstructure, and (iii) decreasing the crystallization temperature. The possible mechanism of ethanol serving as a soft template was proposed and discussed in thermodynamics.

  12. Gamma-ray irradiation as a pretreatment for the enzyme hydrolysis of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Beardmore, D H; Fan, L T; Lee, Y

    1980-01-01

    The susceptibility of cellulose to enzymic hydrolysis is significantly enhanced by gamma radiation pretreatment when dosages are very high. Depolymerization is evident from the reducing sugar production data. The surface area of the cellulose is drastically increased at high dosages; however, the crystallinity is relatively unaffected. If sources with dosage rates are readily available, the gamma radiation pretreatment shows great promise.

  13. Degradation of cellulosic substances by Thermomonospora curvata

    Energy Technology Data Exchange (ETDEWEB)

    Stutzenberger, F J

    1979-05-01

    Research is reported on the cellulolytic activity of Thermomonospora curvata, a thermophilic cellulolytic actinomycete prevalent in municipal solid waste compost. Various cellulosic wastes were evaluated for their potential for the induction of cellulase synthesis by Th. curvata and the extent of cellulose degradation under optimal culture conditions. All the substrates tested showed significant degradation of their cellulose content with the exception of sawdust and barley straw. In contrast to Trichoderma viride, cotton fibers were the best substrates for both C/sub 1/ and C/sub x/ cellulase production. Further research is recommended. (JSR)

  14. Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications

    International Nuclear Information System (INIS)

    Wan, Y.Z.; Huang, Y.; Yuan, C.D.; Raman, S.; Zhu, Y.; Jiang, H.J.; He, F.; Gao, C.

    2007-01-01

    Hydroxyapatite (HAp) and bacterial cellulose (BC) are both excellent materials for use in biomaterial areas. The former has outstanding osteoconductivity and bioactivity and the latter is a high-strength nano-fibrous and extensively used biomaterial. In this work, the HAp/BC nanocomposites with a 3-dimensional (3-D) network were synthesized via a biological route by soaking both phosphorylated and unphosphorylated BCs in 1.5 simulated body fluid (SBF). Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) were employed to characterize the HAp/BC nanocomposites. SEM observations demonstrated that HAp crystals were uniformly formed on the phosphorylated BC fibers after soaking in 1.5 SBF whereas little HAp was observed on individual unphosphorylated BC fibers. Our experimental results suggested that the unphosphorylated BC did not induce HAp growth and that phosphorylation effectively triggered HAp formation on BC. Mechanisms were proposed for the explanation of the experimental observations. XRD and FTIR results revealed that the HAp crystals formed on the phosphorylated BC fibers were carbonate-containing with nano-sized crystallites and crystallinities less than 1%. These structural features were close to those of biological apatites

  15. Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y.Z. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)]. E-mail: yzwantju@yahoo.com; Huang, Y. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Yuan, C.D. [School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Raman, S. [Department of Community Health and Epidemiology, Queen' s University, Kingston, Ontario, Canada K7L 3N6 (Canada); Zhu, Y. [School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Jiang, H.J. [Wendeng Hospital of Orthopaedics, Shandong 264400 (China); He, F. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Gao, C. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2007-05-16

    Hydroxyapatite (HAp) and bacterial cellulose (BC) are both excellent materials for use in biomaterial areas. The former has outstanding osteoconductivity and bioactivity and the latter is a high-strength nano-fibrous and extensively used biomaterial. In this work, the HAp/BC nanocomposites with a 3-dimensional (3-D) network were synthesized via a biological route by soaking both phosphorylated and unphosphorylated BCs in 1.5 simulated body fluid (SBF). Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) were employed to characterize the HAp/BC nanocomposites. SEM observations demonstrated that HAp crystals were uniformly formed on the phosphorylated BC fibers after soaking in 1.5 SBF whereas little HAp was observed on individual unphosphorylated BC fibers. Our experimental results suggested that the unphosphorylated BC did not induce HAp growth and that phosphorylation effectively triggered HAp formation on BC. Mechanisms were proposed for the explanation of the experimental observations. XRD and FTIR results revealed that the HAp crystals formed on the phosphorylated BC fibers were carbonate-containing with nano-sized crystallites and crystallinities less than 1%. These structural features were close to those of biological apatites.

  16. Zinc oxide nanorod clusters deposited seaweed cellulose sheet for antimicrobial activity.

    Science.gov (United States)

    Bhutiya, Priyank L; Mahajan, Mayur S; Abdul Rasheed, M; Pandey, Manoj; Zaheer Hasan, S; Misra, Nirendra

    2018-06-01

    Seaweed cellulose was isolated from green seaweed Ulva fasciata using a common bleaching agent. Sheet containing porous mesh was prepared from the extracted seaweed crystalline cellulose along with zinc oxide (ZnO) nanorod clusters grown over the sheet by single step hydrothermal method. Seaweed cellulose and zinc oxide nanorod clusters deposited seaweed cellulose sheet was characterized by FT-IR, XRD, TGA, and SEM-EDX. Morphology showed that the diameter of zinc oxide nanorods were around 70nm. Zinc oxide nanorod clusters deposited on seaweed cellulose sheet gave remarkable antibacterial activity towards gram-positive (Staphylococcus aureus, Bacillus ceresus, Streptococcus thermophilis) and gram-negative (Escherichia coli, Pseudomonas aeruginous) microbes. Such deposited sheet has potential applications in pharmaceutical, biomedical, food packaging, water treatment and biotechnological industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Preparation of carboxymethyl cellulose produced from purun tikus (Eleocharis dulcis)

    Science.gov (United States)

    Sunardi, Febriani, Nina Mutia; Junaidi, Ahmad Budi

    2017-08-01

    Sodium carboxymethyl cellulose (Na-CMC) is one of the important modified cellulose, a water-soluble cellulose, which is widely used in many application of food, pharmaceuticals, detergent, paper coating, dispersing agent, and others. The main raw material of modified cellulose is cellulose from wood and cotton. Recently, much attention has been attracted to the use of various agriculture product and by-product, grass, and residual biomass as cellulose and modified cellulose source for addressing an environmental and economic concern. Eleocharis dulcis, commonly known as purun tikus (in Indonesia), is a native aquatic plant of swamp area (wetland) in Kalimantan, which consists of 30-40% cellulose. It is significantly considered as one of the alternative resources for cellulose. The aims of present study were to isolate cellulose from E. dulcis and then to synthesise Na-CMC from isolated cellulose. Preparation of carboxymethyl cellulose from E. dulcis was carried out by an alkalization and etherification process of isolated cellulose, using various concentration of sodium hydroxide (NaOH) and monochloroacetic acid (MCA). The results indicated that the optimum reaction of alkalization was reached at 20% NaOH and etherification at the mass fraction ratio of MCA to cellulose 1.0. The optimum reaction has the highest solubility and degree of substitution. The carboxymethylation process of cellulose was confirmed by Fourier Transform Infrared spectroscopy (FTIR). In addition, changes in crystallinity of cellulose and Na-CMC were evaluated by X-ray diffraction (XRD).

  18. Assessment of cellulose purification methods from the residue of enzymatic hydrolysis of sugarcane bagasse for the production of cellulose nanocrystals

    International Nuclear Information System (INIS)

    Camargo, Lais Angelice de; Farinas, Cristiane Sanchez; Marconcini, José Manoel; Mattoso, Luiz Henrique Capparelli; Pereira, Sandra Cerqueira

    2016-01-01

    Full text: Over the years, there is a growing trend in the reuse of residues from the agricultural industries due to social, environmental and economic demands. The production of Brazilian sugarcane in the 2014/15 season was more than 640 million tons, estimating that one third of this total is bagasse [1]. After enzymatic hydrolysis of bagasse in order to give the 2G ethanol, remains a solid fibrous residue which can be repurposed in other processes. This study evaluated four methods for the purification of the resulting solid fibrous residue from the enzymatic hydrolysis process of bagasse, with the intention of obtaining cellulose. Measurements of the crystallinity index (CI) of the cellulose contained in the samples were determined using X-ray Diffraction (XRD). The enzymatic hydrolysis of generates a fibrous solid residue with contents of lignin and cellulose. This residue was subjected to four purification methods: I) 100 mL of NaOH (5%, w/w) at 55 °C was added to 5 g of residue and 43 mL of H 2 O 2 (35%, v/v) under stirring for 1.5 hours; II) the same procedure was repeated on the resulting material from I; III) 105 mL of solution 10:1 (ν/ν) of CH 3 COOH and HNO 3 at 60 °C was added to 5 g of residue under stirring for 30 minutes; IV) reaction with a solution composed of 1 ml of CH 3 COOH and 2.5 g of NaClO 2 at 70 °C under stirring for 1 hour and after that time, the procedure was repeated twice and then the solution was kept under stirring for further 3 hours. The crystallinity indexes found for the purification procedures were: I) 81.7%; II) 83.2%; III) 52.1% e IV) 77.2%. The best result was found for the material subjected to the method II. This process (II) generated a material composed of high content of crystalline cellulose. References: [1] CONAB (National Supply Company), 2015. (author)

  19. Identification and Characterization of Non-Cellulose-Producing Mutants of Gluconacetobacter hansenii Generated by Tn5 Transposon Mutagenesis

    Science.gov (United States)

    Deng, Ying; Nagachar, Nivedita; Xiao, Chaowen; Tien, Ming

    2013-01-01

    The acs operon of Gluconacetobacter is thought to encode AcsA, AcsB, AcsC, and AcsD proteins that constitute the cellulose synthase complex, required for the synthesis and secretion of crystalline cellulose microfibrils. A few other genes have been shown to be involved in this process, but their precise role is unclear. We report here the use of Tn5 transposon insertion mutagenesis to identify and characterize six non-cellulose-producing (Cel−) mutants of Gluconacetobacter hansenii ATCC 23769. The genes disrupted were acsA, acsC, ccpAx (encoding cellulose-complementing protein [the subscript “Ax” indicates genes from organisms formerly classified as Acetobacter xylinum]), dgc1 (encoding guanylate dicyclase), and crp-fnr (encoding a cyclic AMP receptor protein/fumarate nitrate reductase transcriptional regulator). Protein blot analysis revealed that (i) AcsB and AcsC were absent in the acsA mutant, (ii) the levels of AcsB and AcsC were significantly reduced in the ccpAx mutant, and (iii) the level of AcsD was not affected in any of the Cel− mutants. Promoter analysis showed that the acs operon does not include acsD, unlike the organization of the acs operon of several strains of closely related Gluconacetobacter xylinus. Complementation experiments confirmed that the gene disrupted in each Cel− mutant was responsible for the phenotype. Quantitative real-time PCR and protein blotting results suggest that the transcription of bglAx (encoding β-glucosidase and located immediately downstream from acsD) was strongly dependent on Crp/Fnr. A bglAx knockout mutant, generated via homologous recombination, produced only ∼16% of the wild-type cellulose level. Since the crp-fnr mutant did not produce any cellulose, Crp/Fnr may regulate the expression of other gene(s) involved in cellulose biosynthesis. PMID:24013627

  20. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans.

    Science.gov (United States)

    Chen, You Wei; Lee, Hwei Voon; Juan, Joon Ching; Phang, Siew-Moi

    2016-10-20

    Nanocellulose was successfully isolated from Gelidium elegans red algae marine biomass. The red algae fiber was treated in three stages namely alkalization, bleaching treatment and acid hydrolysis treatment. Morphological analysis was performed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). TEM results revealed that the isolated nanocellulose had the average diameter and length of 21.8±11.1nm and of 547.3±23.7nm, respectively. Fourier transform infrared (FTIR) spectroscopy proved that the non-cellulosic polysaccharides components were progressively removed during the chemically treatment, and the final derived materials composed of cellulose parent molecular structure. X-ray diffraction (XRD) study showed that the crystallinity of yielded product had been improved after each successive treatments subjected to the treated fiber. The prepared nano-dimensional cellulose demonstrated a network-like structure with higher crystallinity (73%) than that of untreated fiber (33%), and possessed of good thermal stability which is suitable for nanocomposite material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. COBRA-LIKE2, a Member of the Glycosylphosphatidylinositol-Anchored COBRA-LIKE Family, Plays a Role in Cellulose Deposition in Arabidopsis Seed Coat Mucilage Secretory Cells1,2[OPEN

    Science.gov (United States)

    Ben-Tov, Daniela; Abraham, Yael; Stav, Shira; Thompson, Kevin; Loraine, Ann; Elbaum, Rivka; de Souza, Amancio; Pauly, Markus; Kieber, Joseph J.; Harpaz-Saad, Smadar

    2015-01-01

    Differentiation of the maternally derived seed coat epidermal cells into mucilage secretory cells is a common adaptation in angiosperms. Recent studies identified cellulose as an important component of seed mucilage in various species. Cellulose is deposited as a set of rays that radiate from the seed upon mucilage extrusion, serving to anchor the pectic component of seed mucilage to the seed surface. Using transcriptome data encompassing the course of seed development, we identified COBRA-LIKE2 (COBL2), a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE gene family in Arabidopsis (Arabidopsis thaliana), as coexpressed with other genes involved in cellulose deposition in mucilage secretory cells. Disruption of the COBL2 gene results in substantial reduction in the rays of cellulose present in seed mucilage, along with an increased solubility of the pectic component of the mucilage. Light birefringence demonstrates a substantial decrease in crystalline cellulose deposition into the cellulosic rays of the cobl2 mutants. Moreover, crystalline cellulose deposition into the radial cell walls and the columella appears substantially compromised, as demonstrated by scanning electron microscopy and in situ quantification of light birefringence. Overall, the cobl2 mutants display about 40% reduction in whole-seed crystalline cellulose content compared with the wild type. These data establish that COBL2 plays a role in the deposition of crystalline cellulose into various secondary cell wall structures during seed coat epidermal cell differentiation. PMID:25583925

  2. Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis

    Science.gov (United States)

    Liheng Chen; Qianqian Wang; Kolby Hirth; Carlos Baez; Umesh P. Agarwal; J. Y. Zhu

    2015-01-01

    Cellulose nanocrystals (CNC) have recently received much attention in the global scientific community for their unique mechanical and optical properties. Here, we conducted the first detailed exploration of the basic properties of CNC, such as morphology, crystallinity, degree of sulfation and yield, as a function of production condition variables. The rapid cellulose...

  3. Microwave flexible transistors on cellulose nanofibrillated fiber substrates

    Science.gov (United States)

    Jung-Hun Seo; Tzu-Hsuan Chang; Jaeseong Lee; Ronald Sabo; Weidong Zhou; Zhiyong Cai; Shaoqin Gong; Zhenqiang Ma

    2015-01-01

    In this paper, we demonstrate microwave flexible thin-film transistors (TFTs) on biodegradable substrates towards potential green portable devices. The combination of cellulose nanofibrillated fiber (CNF) substrate, which is a biobased and biodegradable platform, with transferrable single crystalline Si nanomembrane (Si NM), enables the realization of truly...

  4. Characterization of Aldehyde Crosslinked Kenaf Regenerated Cellulose Film

    Directory of Open Access Journals (Sweden)

    Hatika Kaco

    2015-08-01

    Full Text Available Regenerated cellulose film with better mechanical properties was successfully produced by introducing aldehyde crosslinker during the regeneration process. The cellulose source material was derived from kenaf core powder and dissolved in LiOH/urea solvent at −13 °C to form a cellulose solution. The cellulose solution was cast and coagulated in a crosslinker bath at different percentages of glutaraldehyde (GA and glyoxal (GX to form a regenerated cellulose film. According to Fourier transform infrared spectroscopy (FTIR spectra, the hydroxyl group of the cellulose was reduced, reducing the percentage of swelling as the percentage of crosslinker was increased. X-ray diffraction (XRD patterns showed that the crystallinity index of the crosslinked film was decreased. The pore size of the films decreased as the percentage of crosslinker was increased, resulting in decreased film transparency. The pore volume and percentage of swelling in water of the films also increased with decreases in the pore size as the percentage of crosslinker was increased. The tensile strengths of the GA- and GX-crosslinked films increased by 20 and 15% with the addition of 20% of each crosslinker, respectively.

  5. New and improved method of investigation using thermal tools for characterization of cellulose from eucalypts pulp

    Energy Technology Data Exchange (ETDEWEB)

    Lengowski, Elaine Cristina, E-mail: elainelengowski@yahoo.com.br [Laboratório de Anatomia e Qualidade da Madeira – LANAQM, Departamento de Engenharia e Tecnologia Florestal – DETF/Universidade Federal do Paraná, (UFPR), Curitiba, PR (Brazil); Magalhães, Washington Luiz Esteves, E-mail: washington.magalhaes@embrapa.br [Embrapa Florestas, Estrada da Ribeira km 111 P.O. Box 319, 83411-000 Colombo, PR (Brazil); Programa de Pós Graduação em Engenharia de Materiais – PIPE Universidade Federal do Paraná, (UFPR), Curitiba, PR (Brazil); Nisgoski, Silvana, E-mail: silnis@yahoo.com [Laboratório de Anatomia e Qualidade da Madeira – LANAQM, Departamento de Engenharia e Tecnologia Florestal – DETF/Universidade Federal do Paraná, (UFPR), Curitiba, PR (Brazil); Muniz, Graciela Inês Bolzon de, E-mail: graciela.ufpr@gmail.com [Laboratório de Anatomia e Qualidade da Madeira – LANAQM, Departamento de Engenharia e Tecnologia Florestal – DETF/Universidade Federal do Paraná, (UFPR), Curitiba, PR (Brazil); Satyanarayana, Kestur Gundappa [Embrapa Florestas, Estrada da Ribeira km 111 P.O. Box 319, 83411-000 Colombo, PR (Brazil); Lazzarotto, Marcelo, E-mail: marcelo.lazzarotto@embrapa.br [Embrapa Florestas, Estrada da Ribeira km 111 P.O. Box 319, 83411-000 Colombo, PR (Brazil)

    2016-08-20

    Highlights: • Cellulose was treated to modify its crystallinity. • Cellulose was characterized by X-ray diffraction to evaluate Segal’s index. • TGA and DTA with chemometric tools were used to predict Segal’s index. • MLR model was applied to predict XRD cellulose Segal’s index from TGA curves. • MLR model was applied to predict XRD cellulose Segal’s index from DTA curves. - Abstract: Despite cellulose being the most abundant biopolymer on earth and an important commodity, there is a lack of deeper knowledge about its structure as well as faster and more efficient characterization techniques. This paper presents preparation of nanocellulose from bleached cellulose pulp of Eucalyptus by chemical and mechanical pre-treatments, while the cellulose was given treatment to obtain a great range of crystallinity index. The nanocellulose is characterized by X-ray diffraction to evaluate Segal’s index while chemometric tools by TGA and DTA were used to predict Segal’s index. DTA curves, along with multivariate statistical model, presented better result than TGA. The coefficient of variation and standard error of prediction for the proposed models using external validation samples were in the range of 0.91–0.96 and 4.18–8.71, respectively. These successful mathematical models are discussed by correlating them with the observed characteristics of cellulose.

  6. New and improved method of investigation using thermal tools for characterization of cellulose from eucalypts pulp

    International Nuclear Information System (INIS)

    Lengowski, Elaine Cristina; Magalhães, Washington Luiz Esteves; Nisgoski, Silvana; Muniz, Graciela Inês Bolzon de; Satyanarayana, Kestur Gundappa; Lazzarotto, Marcelo

    2016-01-01

    Highlights: • Cellulose was treated to modify its crystallinity. • Cellulose was characterized by X-ray diffraction to evaluate Segal’s index. • TGA and DTA with chemometric tools were used to predict Segal’s index. • MLR model was applied to predict XRD cellulose Segal’s index from TGA curves. • MLR model was applied to predict XRD cellulose Segal’s index from DTA curves. - Abstract: Despite cellulose being the most abundant biopolymer on earth and an important commodity, there is a lack of deeper knowledge about its structure as well as faster and more efficient characterization techniques. This paper presents preparation of nanocellulose from bleached cellulose pulp of Eucalyptus by chemical and mechanical pre-treatments, while the cellulose was given treatment to obtain a great range of crystallinity index. The nanocellulose is characterized by X-ray diffraction to evaluate Segal’s index while chemometric tools by TGA and DTA were used to predict Segal’s index. DTA curves, along with multivariate statistical model, presented better result than TGA. The coefficient of variation and standard error of prediction for the proposed models using external validation samples were in the range of 0.91–0.96 and 4.18–8.71, respectively. These successful mathematical models are discussed by correlating them with the observed characteristics of cellulose.

  7. Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers

    Science.gov (United States)

    Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Daniel J. Yelle; Gisela Buschle-Diller

    2011-01-01

    Nanoreinforced hydrogels with a unique network structure were prepared from wood cellulose whiskers coated with chemically modified wood hemicelluloses. The hemicelluloses were modified with 2-hydroxyethylmethacrylate prior to adsorption onto the cellulose whiskers in aqueous medium. Synthesis of the hydrogels was accomplished by in situ radical polymerization of the...

  8. Isolation of cellulose fibers from kenaf using electron beam

    International Nuclear Information System (INIS)

    Shin, Hye Kyoung; Pyo Jeun, Joon; Bin Kim, Hyun; Hyun Kang, Phil

    2012-01-01

    Cellulose fibers were isolated from a kenaf bast fiber using a electron beam irradiation (EBI) treatment. The methods of isolation were based on a hot water treatment after EBI and two-step bleaching processes. FT-IR spectroscopy demonstrated that the content of lignin and hemicellulose in the bleached cellulose fibers treated with various EBI doses decreased with increasing doses of EBI. Specifically, the lignin in the bleached cellulose fibers treated at 300 kGy, was almost completely removed. Moreover, XRD analyses showed that the bleached cellulose fibers treated at 300 kGy presented the highest crystallinity of all the samples treated with EBI. Finally, the morphology of the bleached fiber was characterized by SEM imagery, and the studies showed that the separated degree of bleached cellulose fibers treated with various EBI doses increased with an increase of EBI dose, and the bleached cellulose fibers obtained by EBI treatment at 300 kGy was separated more uniformly than the bleached cellulose fiber obtained by alkali cooking with non-irradiated kenaf fiber. - Highlights: ► This study was to provide a progressive and convenient cellulose isolation process. ► Using an electron beam irradiation, we can obtain cellulose fibers using only water without chemicals during cooking process. ► We think that this cellulose isolation method will have an effect on enormous environmental and economic benefits.

  9. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, Sara

    2015-05-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. By these methods porous supports could be easily coated with semi-crystalline cellulose. The membranes were hydrophilic with contact angles as low as 22.0°, molecular weight cut-off as low as 3000 g mol-1 with corresponding water permeance of 13.8 Lm−2 h−1 bar−1. Self-standing cellulose membranes were also manufactured without porous substrate, using only ionic liquid as green solvent. This membrane was insoluble in water, tetrahydrofuran, hexane, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide.

  10. Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose.

    Science.gov (United States)

    Hamid, Sharifah Bee Abd; Zain, Siti Khadijah; Das, Rasel; Centi, Gabriele

    2016-03-15

    The utilization of sonication in combination with tungstophosphoric acid (PWA) catalyst reduces dramatically the time of operations from 30h to 10min by using an optimum sonication power of 225W. The basic cellulosic structure is maintained, allowing preparing high-quality nanocellulose. The size of the nanocellulose obtained was in the range from 15 to 35nm in diameter and several hundred nanometers in length, with a high crystallinity of about 88%. The nanocellulose shows a surface charge of -38.2mV which allows to obtaina stable colloidal suspension. The surface tension of the stable, swollen aqueous nanocellulose was close to that of water. These characteristics, together with the fast procedure allowed from the synergic combination of PWA and sonication, evidence the high potential of the proposed method for the industrial production of nanocellulose having the properties required in many applications. Copyright © 2015. Published by Elsevier Ltd.

  11. Isolation and properties of cellulose nanofibrils from coconut palm petioles by different mechanical process.

    Science.gov (United States)

    Xu, Changyan; Zhu, Sailing; Xing, Cheng; Li, Dagang; Zhu, Nanfeng; Zhou, Handong

    2015-01-01

    In this study, cellulose nanofibrils (CNFs) were successfully isolated from coconut palm petiole residues falling off naturally with chemical pretreatments and mechanical treatments by a grinder and a homogenizor. FTIR spectra analysis showed that most of hemicellulose and lignin were removed from the fiber after chemical pretreatments. The compositions of CNFS indicated that high purity of nanofibrils with cellulose contain more than 95% was obtained. X-ray diffractogram demonstrated that chemical pretreatments significantly increased the crystallinity of CNFs from 38.00% to 70.36%; however, 10-15 times of grinding operation followed by homogenizing treatment after the chemical pretreatments did not significantly improve the crystallinity of CNFs. On the contrary, further grinding operation could destroy crystalline regions of the cellulose. SEM image indicated that high quality of CNFs could be isolated from coconut palm petiole residues with chemical treatments in combination of 15 times of grinding followed by 10 times of homogenization and the aspect ratio of the obtained CNFs ranged from 320 to 640. The result of TGA-DTG revealed that the chemical-mechanical treatments improved thermal stability of fiber samples, and the CNFs with 15 grinding passing times had the best thermal stability. This work suggests that the CNFs can be successfully extracted from coconut palm petiole residues and it may be a potential feedstock for nanofiber reinforced composites due to its high aspect ratio and crystallinity.

  12. Isolation and Properties of Cellulose Nanofibrils from Coconut Palm Petioles by Different Mechanical Process

    Science.gov (United States)

    Li, Dagang; Zhu, Nanfeng

    2015-01-01

    In this study, cellulose nanofibrils (CNFs) were successfully isolated from coconut palm petiole residues falling off naturally with chemical pretreatments and mechanical treatments by a grinder and a homogenizor. FTIR spectra analysis showed that most of hemicellulose and lignin were removed from the fiber after chemical pretreatments. The compositions of CNFS indicated that high purity of nanofibrils with cellulose contain more than 95% was obtained. X-ray diffractogram demonstrated that chemical pretreatments significantly increased the crystallinity of CNFs from 38.00% to 70.36%; however, 10-15 times of grinding operation followed by homogenizing treatment after the chemical pretreatments did not significantly improve the crystallinity of CNFs. On the contrary, further grinding operation could destroy crystalline regions of the cellulose. SEM image indicated that high quality of CNFs could be isolated from coconut palm petiole residues with chemical treatments in combination of 15 times of grinding followed by 10 times of homogenization and the aspect ratio of the obtained CNFs ranged from 320 to 640. The result of TGA-DTG revealed that the chemical-mechanical treatments improved thermal stability of fiber samples, and the CNFs with 15 grinding passing times had the best thermal stability. This work suggests that the CNFs can be successfully extracted from coconut palm petiole residues and it may be a potential feedstock for nanofiber reinforced composites due to its high aspect ratio and crystallinity. PMID:25875280

  13. Synthesis of well-dispersed magnetic CoFe2O4 nanoparticles in cellulose aerogels via a facile oxidative co-precipitation method.

    Science.gov (United States)

    Wan, Caichao; Li, Jian

    2015-12-10

    With the increasing emphasis on green chemistry, it is becoming more important to develop environmentally friendly matrix materials for the synthesis of nanocomposites. Cellulose aerogels with hierarchical micro/nano-scale three-dimensional network beneficial to control and guide the growth of nanoparticles, are suitable as a class of ideal green nanoparticles hosts to fabricate multifunctional nanocomposites. Herein, a facile oxidative co-precipitation method was carried out to disperse CoFe2O4 nanoparticles in the cellulose aerogels matrixes, and the cellulose aerogels were prepared from the native wheat straw based on a green NaOH/polyethylene glycol solution. The mean diameter of the well-dispersed CoFe2O4 nanoparticles in the hybrid aerogels is 98.5 nm. Besides, the hybrid aerogels exhibit strong magnetic responsiveness, which could be flexibly actuated by a small magnet. And this feature also makes this class of magnetic aerogels possibly useful as recyclable adsorbents and some magnetic devices. Meanwhile, the mild green preparation method could also be extended to fabricate other miscellaneous cellulose-based nanocomposites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Use of polarized spectroscopy as a tool for examining the microstructure of cellulosic textile fibers.

    Science.gov (United States)

    Garside, Paul; Wyeth, Paul

    2007-05-01

    Textile artifacts form a vital part of our cultural heritage. In order to determine appropriate methods of conservation, storage, and display, it is important to understand the current physical state of an artifact, as effected by the microstructure of the component fibers. The semi-crystalline nature of the constituent polymer aggregates, the degree of crystallinity, and the crystallite orientation have a significant influence on mechanical properties. The value of polarized Fourier transform infrared (FT-IR) spectroscopy in probing these aspects of cellulosic fibers has been assessed. A variety of representative fibers (both natural plant fibers and regenerated materials) were examined by polarized attenuated total reflection spectroscopy (Pol-ATR) and polarized infrared microspectroscopy (Pol-microIR); the former is a surface sampling technique and the latter is a transmission technique. The introduction of a polarizer into the system allows the alignment as well as the nature of bonds to be determined, and thus the presence and extent of crystallinity or long range ordering can be investigated. Using the data from the Pol-ATR experiments, it was found to be possible to derive the principle alignment of the cellulose polymer with respect to the fiber axis, along with an indication of the total cellulose crystallinity of the material, as measured by a crystallinity parameter, Chi. The Pol-microIR spectra, on the other hand, yielded more limited information, particularly when considering plant fibers with more complex microstructures.

  15. Improved Properties of Coconut Shell Regenerated Cellulose Biocomposite Films using Butyl Methacrylate

    Directory of Open Access Journals (Sweden)

    Farah Norain Hahary

    2015-11-01

    Full Text Available Butyl methacrylate acid (BMA was used to enhance the properties of coconut shell (CS and regenerated cellulose (RC biocomposite films. The effects of coconut shell content and BMA on the tensile properties, crystallinity index (CrI, thermal properties, and morphology of biocomposite films were investigated. An increase in CS content, up to 3 wt.%, increased the tensile strength and modulus of elasticity, but decreased the elongation at break. The CS-RC biocomposite films treated with BMA exhibited higher tensile strength and modulus of elasticity but lower elongation at break. The crystallinity index (CrI and thermal stability of CS-RC biocomposite films increased with increasing CS up to 3 wt.%. Treated CS biocomposite films had better thermal stability than untreated CS biocomposite films. The presence of BMA increased the crystallinity of CS regenerated cellulose biocomposite films. Enhancement of the interfacial interaction of CS-RC biocomposite films was revealed by morphological study.

  16. Preparation and characterization of nanocomposites of the carboxymethyl cellulose reinforced with cellulose nanocrystals

    International Nuclear Information System (INIS)

    Flauzino Neto, Wilson P.; Silverio, Hudson A.; Vieira, Julia G.; Silva, Heden C.; Rosa, Joyce R.; Pasquini, Daniel; Assuncao, Rosana M.N.

    2011-01-01

    Nanocrystals of cellulose (NCC) isolated from Eucalyptus urograndis Kraft pulp were used to prepare nanocomposites employing carboxymethyl cellulose (CMC) as matrix. The nanocrystals were isolated by hydrolysis with H 2 SO 4 64% solution, for 20 minutes at 45 deg C. The nanocrystals were characterized by X-ray diffraction to evaluate the crystallinity of them. The amount of NCC used in the preparation of nanocomposites varied from 0 to 15%. The nanocomposites were characterized by thermal and mechanical analysis. A large reinforcing effect of NCC on the CMC matrix was observed. With the incorporation of the NCC, the tensile strength of nanocomposites was significantly improved by 107%, the elongation at break decreased by 48% and heat resistance to decomposition increased subtle. The improvement in thermo-mechanical properties are attributed to strong interactions between nanoparticles and CMC matrix. (author)

  17. Multiscale Modulation of Nanocrystalline Cellulose Hydrogel via Nanocarbon Hybridization for 3D Neuronal Bilayer Formation.

    Science.gov (United States)

    Kim, Dongyoon; Park, Subeom; Jo, Insu; Kim, Seong-Min; Kang, Dong Hee; Cho, Sung-Pyo; Park, Jong Bo; Hong, Byung Hee; Yoon, Myung-Han

    2017-07-01

    Bacterial biopolymers have drawn much attention owing to their unconventional three-dimensional structures and interesting functions, which are closely integrated with bacterial physiology. The nongenetic modulation of bacterial (Acetobacter xylinum) cellulose synthesis via nanocarbon hybridization, and its application to the emulation of layered neuronal tissue, is reported. The controlled dispersion of graphene oxide (GO) nanoflakes into bacterial cellulose (BC) culture media not only induces structural changes within a crystalline cellulose nanofibril, but also modulates their 3D collective association, leading to substantial reduction in Young's modulus (≈50%) and clear definition of water-hydrogel interfaces. Furthermore, real-time investigation of 3D neuronal networks constructed in this GO-incorporated BC hydrogel with broken chiral nematic ordering revealed the vertical locomotion of growth cones, the accelerated neurite outgrowth (≈100 µm per day) with reduced backward travel length, and the efficient formation of synaptic connectivity with distinct axonal bifurcation abundancy at the ≈750 µm outgrowth from a cell body. In comparison with the pristine BC, GO-BC supports the formation of well-defined neuronal bilayer networks with flattened interfacial profiles and vertical axonal outgrowth, apparently emulating the neuronal development in vivo. We envisioned that our findings may contribute to various applications of engineered BC hydrogel to fundamental neurobiology studies and neural engineering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Radiation modification of cellulose pulps. Preparation of cellulose derivatives

    International Nuclear Information System (INIS)

    Iller, E.; Zimek, Z.; Stupinska, H.; Mikolajczyk, W; Starostka, P.

    2005-01-01

    One of the most common methods of cellulose pulp modification (activation) applied in the production process of cellulose derivatives is the treatment of the pulp with NaOH solutions leading to the formation of alkalicellulose. The product then undergoes a prolonged process of maturation by its storage under specific conditions. The goal of the process is lowering of the molecular weight of cellulose down to the level resulting from various technological requirements. The process is time-consuming and costly; besides, it requires usage of large-capacity technological vessels and produces considerable amounts of liquid waste. Therefore, many attempts have been made to limit or altogether eliminate the highly disadvantageous stage of cellulose treatment with lye. One of the alternatives proposed so far is the radiation treatment of the cellulose pulp. In the pulp exposed to an electron beam, the bonds between molecules of D-antihydroglucopiranoses loosen and the local crystalline lattice becomes destroyed. This facilitates the access of chemical reagents to the inner structure of the cellulose and, in consequence, eliminates the need for the prolonged maturation of alkalicellulose, thus reducing the consumption of chemicals by the whole process. Research aimed at the application of radiation treatment of cellulose pulp for the production of cellulose derivatives has been conducted by a number of scientific institutions including the Institute of Nuclear Chemistry and Technology, Institute of Biopolymers and Chemical Fibres, and Pulp and Paper Research Institute. For the investigations and assessment of the molecular, hypermolecular, morphologic properties and the chemical reactivity, cellulose pulps used for chemical processing, namely Alicell, Borregaard and Ketchikan, as well as paper pulps made from pine and birch wood were selected. The selected cellulose pulps were exposed to an electron beam with an energy of 10 MeV generated in a linear electron accelerator

  19. A novel ethanol templating synthesis of ordered lamellar superstructured crystalline zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chao, E-mail: liuchao_tj@yahoo.com; Wang Bin [Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology (China); Ji Xiujie, E-mail: jxjchem@yahoo.com [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University (China); Zhao Shanshan; Wu Jie; Jia Jianlong; Ma Dongxia [Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology (China)

    2012-03-15

    Soft template technique has attracted great interest, because it is a facile, inexpensive and efficient synthesis strategy for ordered superstructural systems. Here, a novel ethanol template was used to synthesize the ordered lamellar superstructured crystalline zirconia (L{alpha}-ZrO{sub 2}) without post-treatments and surfactants. ZrOCl{sub 2} and NaOH were served as Zr source and precipitant, respectively. XRD analysis showed that L{alpha}-ZrO{sub 2} is crystalline. XPS spectra indicated the physical adsorption of ethanol molecules in L{alpha}-ZrO{sub 2}. TEM further observed and proved the 1.36-nm period of superstructure detected and calculated by SAXRD (1.35 nm), which is composed of 0.68-nm thick ZrO{sub 2} and pore alternatively. In contrast, the template-free ZrO{sub 2} (TF-ZrO{sub 2}) presents no superstructure and is poorly crystallized. As a soft template, ethanol presents the roles of (i) inducing the growth of zirconia layers, (ii) directing the self-assembly of ordered lamellar superstructure, and (iii) decreasing the crystallization temperature. The possible mechanism of ethanol serving as a soft template was proposed and discussed in thermodynamics.

  20. Elastic moduli of biological fibers in a coarse-grained model: crystalline cellulose and β-amyloids.

    Science.gov (United States)

    Poma, Adolfo B; Chwastyk, Mateusz; Cieplak, Marek

    2017-10-25

    We study the mechanical response of cellulose and β-amyloid microfibrils to three types of deformation: tensile, indentational, and shear. The cellulose microfibrils correspond to the allomorphs Iα or Iβ whereas the β-amyloid microfibrils correspond to the polymorphs of either two- or three-fold symmetry. This response can be characterized by three elastic moduli, namely, Y L , Y T , and S. We use a structure-based coarse-grained model to analyze the deformations in a unified manner. We find that each of the moduli is almost the same for the two allomorphs of cellulose but Y L is about 20 times larger than Y T (140 GPa vs. 7 GPa), indicating the existence of significant anisotropy. For cellulose we note that the anisotropy results from the involvement of covalent bonds in stretching. For β-amyloid, the sense of anisotropy is opposite to that of cellulose. In the three-fold symmetry case, Y L is about half of Y T (3 vs. 7) whereas for two-fold symmetry the anisotropy is much larger (1.6 vs. 21 GPa). The S modulus is derived to be 1.2 GPa for three-fold symmetry and one half of it for the other symmetry and 3.0 GPa for cellulose. The values of the moduli reflect deformations in the hydrogen-bond network. Unlike in our theoretical approach, no experiment can measure all three elastic moduli with the same apparatus. However, our theoretical results are consistent with various measured values: typical Y L for cellulose Iβ ranges from 133 to 155 GPa, Y T from 2 to 25 GPa, and S from 1.8 to 3.8 GPa. For β-amyloid, the experimental values of S and Y T are about 0.3 GPa and 3.3 GPa respectively, while the value of Y L has not been reported.

  1. Cellulose nanocrystals with tunable surface charge for nanomedicine

    Science.gov (United States)

    Hosseinidoust, Zeinab; Alam, Md Nur; Sim, Goeun; Tufenkji, Nathalie; van de Ven, Theo G. M.

    2015-10-01

    Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For applications in imaging and drug delivery, surface charge is one of the most important factors affecting the performance of nanocarriers. However, current methods of preparation offer little flexibility for controlling the surface charge of cellulose nanocrystals, leading to compromised colloidal stability under physiological conditions. We report a synthesis method that results in nanocrystals with remarkably high carboxyl content (6.6 mmol g-1) and offers continuous control over surface charge without any adjustment to the reaction conditions. Six fractions of nanocrystals with various surface carboxyl contents were synthesized from a single sample of softwood pulp with carboxyl contents varying from 6.6 to 1.7 mmol g-1 and were fully characterized. The proposed method resulted in highly stable colloidal nanocrystals that did not aggregate when exposed to high salt concentrations or serum-containing media. Interactions of these fractions with four different tissue cell lines were investigated over a wide range of concentrations (50-300 μg mL-1). Darkfield hyperspectral imaging and confocal microscopy confirmed the uptake of nanocrystals by selected cell lines without any evidence of membrane damage or change in cell density; however a charge-dependent decrease in mitochondrial activity was observed for charge contents higher than 3.9 mmol g-1. A high surface carboxyl content allowed for facile conjugation of fluorophores to the nanocrystals without compromising colloidal stability. The cellular uptake of fluoresceinamine-conjugated nanocrystals exhibited a time-dose dependent relationship and increased significantly with doubling of the surface charge.Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For

  2. Effect of Acid Hydrolysis and Thermal Hydrolysis on Solubility and Properties of Oil Palm Empty Fruit Bunch Fiber Cellulose Hydrogel

    Directory of Open Access Journals (Sweden)

    Sinyee Gan

    2015-11-01

    Full Text Available Cellulose hydrogel was produced from pretreated oil palm empty fruit bunch fiber (EFB that went through acid hydrolysis and thermal hydrolysis. The pretreated EFB was dissolved in LiOH/urea aqueous solution using the rapid dissolution method and was subjected to a crosslinking process with the aid of epichlorohydrin to form hydrogel. The effects of both hydrolyses’ time on average molecular weight (Mŋ, solubility, and properties of EFB hydrogels were evaluated. Both hydrolyses led to lower Mŋ, lower crystallinity index (CrI and hence, resulted in higher cellulose solubility. X-ray diffraction (XRD characterization revealed the CrI and transition of crystalline structure of EFB from cellulose I to II. The effects of hydrolysis time on the transparency, degree of swelling (DS, and morphology of the regenerated cellulose hydrogel were also investigated using an ultraviolet-visible (UV-Vis spectrophotometer and a Field emission scanning electron microscope (FESEM, respectively. These findings provide an efficient method to improve the solubility and properties of regenerated cellulose products.

  3. The Dictyostelium discoideum cellulose synthase: Structure/function analysis and identification of interacting proteins

    Energy Technology Data Exchange (ETDEWEB)

    Richard L. Blanton

    2004-02-19

    OAK-B135 The major accomplishments of this project were: (1) the initial characterization of dcsA, the gene for the putative catalytic subunit of cellulose synthase in the cellular slime mold Dictyostelium discoideum; (2) the detection of a developmentally regulated event (unidentified, but perhaps a protein modification or association with a protein partner) that is required for cellulose synthase activity (i.e., the dcsA product is necessary, but not sufficient for cellulose synthesis); (3) the continued exploration of the developmental context of cellulose synthesis and DcsA; (4) the isolation of a GFP-DcsA-expressing strain (work in progress); and (5) the identification of Dictyostelium homologues for plant genes whose products play roles in cellulose biosynthesis. Although our progress was slow and many of our results negative, we did develop a number of promising avenues of investigation that can serve as the foundation for future projects.

  4. Poly(vinyl alcohol) films reinforced with nanofibrillated cellulose (NFC) isolated from corn husk by high intensity ultrasonication.

    Science.gov (United States)

    Xiao, Shaoliang; Gao, Runan; Gao, LiKun; Li, Jian

    2016-01-20

    This work was aimed at fabricating and characterizing poly(vinyl alcohol) films that were reinforced by nanofibrillated corn husk celluloses using a combination of chemical pretreatments and ultrasonication. The obtained nanofibrillated celluloses (NFCs) possessed a narrow width ranging from 50 to 250 nm and a high aspect ratio (394). The crystalline type of NFC was cellulose I type. Compared with the original corn husks, the NCF crystallinity and thermal stability increased due to the removal of the hemicelluloses and lignin. PVA films containing different NFC concentrations (0.5%, 1%, 3%, 5%, 7% and 9%, w/w, dry basis) were examined. The 1% PVA/NFC reinforced films exhibited a highly visible light transmittance of 80%, and its tensile strength and the tensile strain at break were increased by 1.47 and 1.80 times compared to that of the pure PVA film, respectively. The NFC with high aspect ratio and high crystallinity is beneficial to the improvement of the mechanical strength and thermal stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes

    International Nuclear Information System (INIS)

    Hu Weili; Chen Shiyan; Li Xin; Shi Shuaike; Shen Wei; Zhang Xiang; Wang Huaping

    2009-01-01

    In situ synthesis of silver chloride (AgCl) nanoparticles was carried out under ambient conditions in nanoporous bacterial cellulose (BC) membranes as nanoreactors. The growth of the nanoparticles was readily obtained by alternating dipping of BC membranes in the solution of silver nitrate or sodium chloride followed by a rinse step. X-ray diffraction (XRD) patterns indicated the existence of AgCl nanoparticles in the BC and scanning electron microscopy (SEM) images showed that the AgCl nanoparticles well dispersed on the surface of BC and penetrated into the BC network. The AgCl nanoparticle-impregnated BC membranes exhibited high hydrophilic ability and strong antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The preparative procedure is facile and versatile, and provides a simple route to manufacturing of useful antimicrobial membranes, which would be a good alternative for antimicrobial wound dressing.

  6. Hybrid composite thin films composed of tin oxide nanoparticles and cellulose

    International Nuclear Information System (INIS)

    Mahadeva, Suresha K; Nayak, Jyoti; Kim, Jaehwan

    2013-01-01

    This paper reports the preparation and characterization of hybrid thin films consisting of tin oxide (SnO 2 ) nanoparticles and cellulose. SnO 2 nanoparticle loaded cellulose hybrid thin films were fabricated by a solution blending technique, using sodium dodecyl sulfate as a dispersion agent. Scanning and transmission electron microscopy studies revealed uniform dispersion of the SnO 2 nanoparticles in the cellulose matrix. Reduction in the crystalline melting transition temperature and tensile properties of cellulose was observed due to the SnO 2 nanoparticle loading. Potential application of these hybrid thin films as low cost, flexible and biodegradable humidity sensors is examined in terms of the change in electrical resistivity of the material exposed to a wide range of humidity as well as its response–recovery behavior. (paper)

  7. High resolution NMR study of cellulose in solid state and in solution

    International Nuclear Information System (INIS)

    Saint-Germain, Jean

    1983-01-01

    This research thesis reports the study of native cellulose (cotton) and wood by nuclear magnetic resonance (NMR). As far as the cotton spectrum is concerned, the author assigned resonances which more specifically corresponded to amorphous or crystalline areas. Wood was studied in its bulk condition, and resonances have been determined for the different wood components. The behaviour of cellulose in solution in a solvent has been studied by liquid high resolution NMR. The solvation mechanism has been determined and a study of model components of the macromolecule allowed a conformational study of cellulose in this solvent to be performed. Bi-dimensional NMR and longitudinal relaxation time measurements highlighted the existence of an intramolecular hydrogen bond in the cellulose in solution [fr

  8. Modification and characterization of microcrystalline cellulose with succinic anhydride

    International Nuclear Information System (INIS)

    Santos, Clecio M.R.; Santos, Douglas C.; Freitas, Gizele B.; Cardoso, Giselia

    2011-01-01

    Cellulose is a natural polymer, non-toxic, biodegradable and renewable source. With increasing global attention to environmental problems, the chemical modification of cellulose has been evaluated with increasing applicability in various industrial sectors. The cellulose can be chemical modified through the hydroxyl present in their molecules. This paper aims to present the main results in the modification of microcrystalline cellulose. The sample was pure and modified chemically and morphologically characterized by absorption spectroscopy in the infrared (IR) and showed the band in the 1551cm -1 characterization modification made, X-ray diffraction (XRD) where it was observed that the change led to a reduction significant crystallinity, and determination of average pore radius through the analyzer porosity and surface area resulting in values of 6.97 angstrom for pure sample and 8.62 angstrom for the modified. In addition to these tests we determined the average degree of substitution finding the value of 1.67. (author)

  9. CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  10. Effects of Lytic Polysaccharide Monooxygenase Oxidation on Cellulose Structure and Binding of Oxidized Cellulose Oligomers to Cellulases

    Energy Technology Data Exchange (ETDEWEB)

    Vermaas, Josh V.; Crowley, Michael F.; Beckham, Gregg T.; Payne, Christina M.

    2015-05-21

    In nature, polysaccharide glycosidic bonds are cleaved by hydrolytic enzymes for a vast array of biological functions. Recently, a new class of enzymes that utilize an oxidative mechanism to cleave glycosidic linkages was discovered; these enzymes are called lytic polysaccharide monooxygenases (LPMO). These oxidative enzymes are synergistic with cocktails of hydrolytic enzymes and are thought to act primarily on crystalline regions, in turn providing new sites of productive attachment and detachment for processive hydrolytic enzymes. In the case of cellulose, the homopolymer of ..beta..-1,4-d-glucose, enzymatic oxidation occurs at either the reducing end or the nonreducing end of glucose, depending on enzymatic specificity, and results in the generation of oxidized chemical substituents at polymer chain ends. LPMO oxidation of cellulose is thought to produce either a lactone at the reducing end of glucose that can spontaneously or enzymatically convert to aldonic acid or 4-keto-aldose at the nonreducing end that may further oxidize to a geminal diol. Here, we use molecular simulation to examine the effect of oxidation on the structure of crystalline cellulose. The simulations highlight variations in behaviors depending on the chemical identity of the oxidized species and its location within the cellulose fibril, as different oxidized species introduce steric effects that disrupt local crystallinity and in some cases reduce the work needed for polymer decrystallization. Reducing-end oxidations are easiest to decrystallize when located at the end of the fibril, whereas nonreducing end oxidations readily decrystallize from internal cleavage sites despite their lower solvent accessibility. The differential in decrystallization free energy suggests a molecular mechanism consistent with experimentally observed LPMO/cellobiohydrolase synergy. Additionally, the soluble oxidized cellobiose products released by hydrolytic cellulases may bind to the active sites of cellulases

  11. Synthesis and characterization of graphene/cellulose nanocomposite

    Science.gov (United States)

    Kafy, Abdullahil; Yadav, Mithilesh; Kumar, Kishor; Kumar, Kishore; Mun, Seongcheol; Gao, Xiaoyuan; Kim, Jaehwan

    2014-04-01

    Cellulose is one of attractive natural polysaccharides in nature due to its good chemical stability, mechanical strength, biocompatibility, hydrophilic, and biodegradation properties [1-2]. The main disadvantages of biopolymer films like cellulose are their poor mechanical properties. Modification of polymers with inorganic materials is a new way to improve polymer properties such as mechanical strength [3-4]. Presently, the use of graphene/graphene oxide (GO) in materials research has attracted tremendous attention in the past 40 years in various fields including biomedicine, information technology and nanotechnology[5-7]. Graphene, a single sheet of graphite, has an ideal 2D structure with a monolayer of carbon atoms packed into a honeycomb crystal plane. Using both experimental and theoretical scientific research, researchers including Geim, Rao and Stankovich [8-10] have described the attractiveness of graphene in the materials research field. Due to its sp2 hybrid carbon network as well as extraordinary mechanical, electronic, and thermal properties, graphene has opened new pathways for developing a wide range of novel functional materials. Perfect graphene does not exist naturally, but bulk and solution processable functionalized graphene materials including graphene oxide (GO) can now be prepared [11-13].The large surface area of GO has a number of functional groups, such as -OH, -COOH, -O- , and C=O, which make GO hydrophilic and readily dispersible in water as well as some organic solvents[14] , thereby providing a convenient access to fabrication of graphene-based materials by solution casting. According to several reports [15-17], GO can be dispersed throughout a selected polymer matrix to make GO-based nanocomposites with excellent mechanical and thermal properties. Since GO is prepared from low-cost graphite, it has an outstanding price advantage over CNTs, which has encouraged studies of GO/synthetic polymer composites [18-20]. In some reported papers

  12. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends.

    Science.gov (United States)

    Arrieta, M P; Fortunati, E; Dominici, F; López, J; Kenny, J M

    2015-05-05

    Optically transparent plasticized poly(lactic acid) (PLA) based bionanocomposite films intended for food packaging were prepared by melt blending. Materials were plasticized with 15wt% of acetyl(tributyl citrate) (ATBC) to improve the material processability and to obtain flexibile films. Poly(hydroxybutyrate) (PHB) was used to increase PLA crystallinity. The thermal stability of the PLA-PHB blends was improved by the addition of 5 wt% of cellulose nanocrystals (CNC) or modified cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose. The combination of ATBC and cellulose nanocrystals, mainly the better dispersed CNCs, improved the interaction between PLA and PHB. Thus, an improvement on the oxygen barrier and stretchability was achieved in PLA-PHB-CNCs-ATBC which also displayed somewhat UV light blocking effect. All bionanocomposite films presented appropriate disintegration in compost suggesting their possible applications as biodegradable packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Susceptibility of Iα- and Iβ-Dominated Cellulose to TEMPO-Mediated Oxidation.

    Science.gov (United States)

    Carlsson, Daniel O; Lindh, Jonas; Strømme, Maria; Mihranyan, Albert

    2015-05-11

    The susceptibility of Iα- and Iβ-dominated cellulose to TEMPO-mediated oxidation was studied in this work since the cellulose Iα-allomorph is generally considered to be thermodynamically less stable and therefore more reactive than the cellulose Iβ-allomorph. Highly crystalline Cladophora nanocellulose, which is dominated by the Iα-allomorph, was oxidized to various degrees with TEMPO oxidant via bulk electrolysis in the absence of co-oxidants. Further, the Cladophora nanocellulose was thermally annealed in glycerol to produce its Iβ-dominated form and then oxidized. The produced materials were subsequently studied using FTIR, CP/MAS (13)C NMR, XRD, and SEM. The solid-state analyses confirmed that the annealed Cladophora cellulose was successfully transformed from an Iα- to an Iβ-dominated form. The results of the analyses of pristine and annealed TEMPO-oxidized samples suggest that Iα- and Iβ-dominated cellulose do not differ in susceptibility to TEMPO-oxidation. This work hence suggests that cellulose from different sources are not expected to differ in susceptibility to the oxidation due to differences in allomorph composition.

  14. The nanostructures of native celluloses, their transformations upon isolation, and their implications for production of nanocelluloses

    Science.gov (United States)

    Rajai H. Atalla; Rowan S Atalla; Umesh P. Agarwal

    2018-01-01

    Native celluloses in plant cell walls occur in a variety of highly periodic fibrillar forms that have curvature and varying degrees of twist about their longitudinal axes. Though X-ray measurements reveal diffraction patterns, the celluloses are not crystalline in the traditional sense. The diffraction patterns rather are a consequence of the high degree of spatial...

  15. Ultrasound-assisted acid hydrolysis of cellulose to chemical building blocks: Application to furfural synthesis.

    Science.gov (United States)

    Santos, Daniel; Silva, Ubiratan F; Duarte, Fabio A; Bizzi, Cezar A; Flores, Erico M M; Mello, Paola A

    2018-01-01

    In this work, the use of ultrasound energy for the production of furanic platforms from cellulose was investigated and the synthesis of furfural was demonstrated. Several systems were evaluated, as ultrasound bath, cup horn and probe, in order to investigate microcrystalline cellulose conversion using simply a diluted acid solution and ultrasound. Several acid mixtures were evaluated for hydrolysis, as diluted solutions of HNO 3 , H 2 SO 4 , HCl and H 2 C 2 O 4 . The influence of the following parameters in the ultrasound-assisted acid hydrolysis (UAAH) were studied: sonication temperature (30 to 70°C) and ultrasound amplitude (30 to 70% for a cup horn system) for 4 to 8molL -1 HNO 3 solutions. For each evaluated condition, the products were identified by ultra-performance liquid chromatography with high-resolution time-of-flight mass spectrometry (UPLC-ToF-MS), which provide accurate information regarding the products obtained from biomass conversion. The furfural structure was confirmed by nuclear magnetic resonance ( 1 H and 13 C NMR) spectroscopy. In addition, cellulosic residues from hydrolysis reaction were characterized using scanning electron microscopy (SEM), which contributed for a better understanding of physical-chemical effects caused by ultrasound. After process optimization, a 4molL -1 HNO 3 solution, sonicated for 60min at 30°C in a cup horn system at 50% of amplitude, lead to 78% of conversion to furfural. This mild temperature condition combined to the use of a diluted acid solution represents an important contribution for the selective production of chemical building blocks using ultrasound energy. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Longevity in vivo of primary cell wall cellulose synthases.

    Science.gov (United States)

    Hill, Joseph Lee; Josephs, Cooper; Barnes, William J; Anderson, Charles T; Tien, Ming

    2018-02-01

    Our work focuses on understanding the lifetime and thus stability of the three main cellulose synthase (CESA) proteins involved in primary cell wall synthesis of Arabidopsis. It had long been thought that a major means of CESA regulation was via their rapid degradation. However, our studies here have uncovered that AtCESA proteins are not rapidly degraded. Rather, they persist for an extended time in the plant cell. Plant cellulose is synthesized by membrane-embedded cellulose synthase complexes (CSCs). The CSC is composed of cellulose synthases (CESAs), of which three distinct isozymes form the primary cell wall CSC and another set of three isozymes form the secondary cell wall CSC. We determined the stability over time of primary cell wall (PCW) CESAs in Arabidopsis thaliana seedlings, using immunoblotting after inhibiting protein synthesis with cycloheximide treatment. Our work reveals very slow turnover for the Arabidopsis PCW CESAs in vivo. Additionally, we show that the stability of all three CESAs within the PCW CSC is altered by mutations in individual CESAs, elevated temperature, and light conditions. Together, these results suggest that CESA proteins are very stable in vivo, but that their lifetimes can be modulated by intrinsic and environmental cues.

  17. Accumulation of noncrystalline cellulose in Physarum microplasmodia

    OpenAIRE

    Ogawa, Kyoko; Maki, Hisae; Sato, Mamiko; Ashihara, Hiroshi; Kaneko, Takako S.

    2013-01-01

    Physarum plasmodium lives as a slimy mass of protoplast in the dark fragments into small multinucleated microplasmodia (mPL) in a liquid medium. When mPL are exposed to several unfavorable environments, they transform into ?spherules? with a cell wall. Using a synchronous spherule-induction system for mPL, we examined the effect of 2,6-dichlorobenzonitrile on the synthesis of cellulose in mPL, by observing mPL under a fluorescence microscope, and isolated cellulose from mPL to identify them m...

  18. Bio-inspired hydrophobic modification of cellulose nanocrystals with castor oil.

    Science.gov (United States)

    Shang, Qianqian; Liu, Chengguo; Hu, Yun; Jia, Puyou; Hu, Lihong; Zhou, Yonghong

    2018-07-01

    This work presents an efficient and environmentally friendly approach to generate hydrophobic cellulose nanocrystals (CNC) using thiol-containing castor oil (CO-SH) as a renewable hydrophobe with the assist of bio-inspired dopamine at room temperature. The modification process included the formation of the polydopamine (PDA) buffer layer on CNC surfaces and the Michael addition reaction between the catechol moieties of PDA coating and thiol groups of CO-SH. The morphology, crystalline structure, surface chemistry, thermal stability and hydrophobicity of the modified CNC were charactered by TEM, XRD, FT-IR, solid-state 13 C NMR, XPS, TGA and contact angle analysis. The modified CNC preserved cellulose crystallinity, displayed higher thermal stability than unmodified CNC, and was highly hydrophobic with a water contact angle of 95.6°. The simplicity and versatility of the surface modification strategy inspired by adhesive protein of mussel may promote rapid development of hydrophobic bio-based nanomaterials for various applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Physical and mechanical properties of microcrystalline cellulose prepared from local agricultural residues

    International Nuclear Information System (INIS)

    El-Sakhawy, M.M.; Hassan, M.L.

    2005-01-01

    Microcrystalline cellulose (MCC) was prepared from local agricultural residues, namely, bagasse, rice straw, and cotton stalks bleached pulps. Hydrolysis of bleached pulps was carried out using hydrochloric or sulfuric acid to study the effect of the acid used on the properties of produced microcrystalline cellulose such as degree of polymerization (DP), crystallinity index (CrI), crystallite size, bulk density, particle size, and thermal stability. The mechanical properties of tablets made from microcrystalline cellulose of the different agricultural residues were tested and compared to commercial grade MCC. The use of rice straw pulp in different proportions as a source of silica to prepare silicified microcrystalline cellulose (SMCC) was carried out. The effect of the percent of silica on the mechanical properties of tablets before and after wet granulation was tested

  20. Physical and mechanical properties of microcrystalline cellulose prepared from local agricultural residues

    Energy Technology Data Exchange (ETDEWEB)

    El-Sakhawy, M M; Hassan, M L [Cellulose and Paper Dept., National Research Center, Dokki, Cairo (Egypt)

    2005-07-01

    Microcrystalline cellulose (MCC) was prepared from local agricultural residues, namely, bagasse, rice straw, and cotton stalks bleached pulps. Hydrolysis of bleached pulps was carried out using hydrochloric or sulfuric acid to study the effect of the acid used on the properties of produced microcrystalline cellulose such as degree of polymerization (DP), crystallinity index (CrI), crystallite size, bulk density, particle size, and thermal stability. The mechanical properties of tablets made from microcrystalline cellulose of the different agricultural residues were tested and compared to commercial grade MCC. The use of rice straw pulp in different proportions as a source of silica to prepare silicified microcrystalline cellulose (SMCC) was carried out. The effect of the percent of silica on the mechanical properties of tablets before and after wet granulation was tested.

  1. Biomass Enzymatic Saccharification Is Determined by the Non-KOH-Extractable Wall Polymer Features That Predominately Affect Cellulose Crystallinity in Corn

    Science.gov (United States)

    Wu, Leiming; Wang, Hongwu; Wu, Zhiliang; Li, Ming; Huang, Pengyan; Feng, Shengqiu; Chen, Peng; Zheng, Yonglian; Peng, Liangcai

    2014-01-01

    Corn is a major food crop with enormous biomass residues for biofuel production. Due to cell wall recalcitrance, it becomes essential to identify the key factors of lignocellulose on biomass saccharification. In this study, we examined total 40 corn accessions that displayed a diverse cell wall composition. Correlation analysis showed that cellulose and lignin levels negatively affected biomass digestibility after NaOH pretreatments at pbiomass saccharification after pretreatments with NaOH and H2SO4 at three concentrations. Notably, despite that the non-KOH-extractable residues covered 12%–23% hemicelluloses and lignin of total biomass, their wall polymer features exhibited the predominant effects on biomass enzymatic hydrolysis including Ara substitution degree of xylan (reverse Xyl/Ara) and S/G ratio of lignin. Furthermore, the non-KOH-extractable polymer features could significantly affect lignocellulose crystallinity at pbiomass digestibility. Hence, this study could suggest an optimal approach for genetic modification of plant cell walls in bioenergy corn. PMID:25251456

  2. Electrically aligned cellulose film for electro-active paper and its piezoelectricity

    International Nuclear Information System (INIS)

    Yun, Sungryul; Jang, Sangdong; Yun, Gyu-Young; Kim, Jaehwan

    2009-01-01

    Electrically aligned regenerated cellulose films were fabricated and the effect of applied electric field was investigated for the piezoelectricity of electro-active paper (EAPap). The EAPap was fabricated by coating gold electrodes on both sides of regenerated cellulose film. The cellulose film was prepared by dissolving cotton pulp in LiCl/N,N-dimethylacetamide solution followed by a cellulose chain regeneration process. During the regeneration process an external electric field was applied in the direction of mechanical stretching. Alignment of cellulose fiber chains was investigated as a function of applied electric field. The material characteristics of the cellulose films were analyzed by using an x-ray diffractometer, a field emission scanning electron microscope and a high voltage electron microscope. The application of external electric fields was found to induce formation of nanofibers in the cellulose, resulting in an increase in the crystallinity index (CI) values. It was also found that samples with higher CI values showed higher in-plane piezoelectric constant, d 31 , values. The piezoelectricity of the current EAPap films was measured to be equivalent or better than that of ordinary PVDF films. Therefore, an external electric field applied to a cellulose film along with a mechanical stretching during the regeneration process can enhance the piezoelectricity. (technical note)

  3. Studies on the enzymology of cellulose degradation by the anaerobic bacterium Clostridium thermocellum and the anaerobic fungus Neocallimastix frontalis

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, K.M.; Gow, L.A.; Wilson, C.A.; Wood, T.W. (Rowett Research Inst., Aberdeen (UK))

    1990-01-01

    The extracellular cellulases from the anaerobic bacterium Clostridium thermocellum and the anaerobic rumen fungus Neocallimastix frontalis are very active on crystalline cellulose. In both cases the activity resides in a high molecular weight complex. The complex from C. thermocellum (termed the cellulosome) was found to be readily dissociated at pH 5.0 and at room temperature by a mixture of SDS, EDTA and DTT. Virtually all the activity of the unfractionated cellulosome was recovered when the dissociated enzyme components were reassociated by dialysis. Thus, the route is now established for the first time for a meaningful study of the mechanism of cellulase action of this commercially important enzyme system. Nearly all of the activity to crystalline cellulose shown by the cellulase of N. frontalis was associated with a fraction which comprised only 2% of the extracellular protein, 3% of the endoglucanase and 3% of the {beta}-glucosidase. This fraction, which could be isolated by affinity chromatography on cellulose, was produced in greater quantity when the fungus was grown in co-culture with the methanogen, Methanobrevibacter smithii. The specific activity of the partially purified enzyme for degradation of crystalline cellulose was several-fold greater than that produced by the aerobic fungus T. reesei, which is being developed world-wide for its commercial potential for converting cellulose to fermentable soluble sugars. The cellulase of N. frontalis clearly has great commercial potential. 39 refs., 19 figs., 22 tabs.

  4. A green and efficient technology for the degradation of cellulosic materials: structure changes and enhanced enzymatic hydrolysis of natural cellulose pretreated by synergistic interaction of mechanical activation and metal salt.

    Science.gov (United States)

    Zhang, Yanjuan; Li, Qian; Su, Jianmei; Lin, Ye; Huang, Zuqiang; Lu, Yinghua; Sun, Guosong; Yang, Mei; Huang, Aimin; Hu, Huayu; Zhu, Yuanqin

    2015-02-01

    A new technology for the pretreatment of natural cellulose was developed, which combined mechanical activation (MA) and metal salt treatments in a stirring ball mill. Different valent metal nitrates were used to investigate the changes in degree of polymerization (DP) and crystallinity index (CrI) of cellulose after MA+metal salt (MAMS) pretreatment, and Al(NO3)3 showed better pretreatment effect than NaNO3 and Zn(NO3)2. The destruction of morphological structure of cellulose was mainly resulted from intense ball milling, and the comparative studies on the changes of DP and crystal structure of MA and MA+Al(NO3)3 pretreated cellulose samples showed a synergistic interaction of MA and Al(NO3)3 treatments with more effective changes of structural characteristics of MA+Al(NO3)3 pretreated cellulose and substantial increase of reducing sugar yield in enzymatic hydrolysis of cellulose. In addition, the results indicated that the presence of Al(NO3)3 had significant enhancement for the enzymatic hydrolysis of cellulose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Terahertz Absorption by Cellulose: Application to Ancient Paper Artifacts

    Science.gov (United States)

    Peccianti, M.; Fastampa, R.; Mosca Conte, A.; Pulci, O.; Violante, C.; Łojewska, J.; Clerici, M.; Morandotti, R.; Missori, M.

    2017-06-01

    Artifacts made of cellulose, such as ancient documents, pose a significant experimental challenge in the terahertz transmission spectra interpretation due to their small optical thickness. In this paper, we describe a method to recover the complex refractive index of cellulose fibers from the terahertz transmission data obtained on single freely standing paper sheets in the (0.2-3.5)-THz range. By using our technique, we eliminate Fabry-Perot effects and recover the absorption coefficient of the cellulose fibers. The obtained terahertz absorption spectra are explained in terms of absorption peaks of the cellulose crystalline phase superimposed to a background contribution due to a disordered hydrogen-bond network. The comparison between the experimental spectra with terahertz vibrational properties simulated by density-functional-theory calculations confirms this interpretation. In addition, evident changes in the terahertz absorption spectra are produced by natural and artificial aging on paper samples, whose final stage is characterized by a spectral profile with only two peaks at about 2.1 and 3.1 THz. These results can be used to provide a quantitative assessment of the state of preservation of cellulose artifacts.

  6. Plasma-enhanced synthesis of green flame retardant cellulosic materials

    Science.gov (United States)

    Totolin, Vladimir

    The natural fiber-containing fabrics and composites are more environmentally friendly, and are used in transportation (automobiles, aerospace), military applications, construction industries (ceiling paneling, partition boards), consumer products, etc. Therefore, the flammability characteristics of the composites based on polymers and natural fibers play an important role. This dissertation presents the development of plasma assisted - green flame retardant coatings for cellulosic substrates. The overall objective of this work was to generate durable flame retardant treatment on cellulosic materials. In the first approach sodium silicate layers were pre-deposited onto clean cotton substrates and cross linked using low pressure, non-equilibrium oxygen plasma. A statistical design of experiments was used to optimize the plasma parameters. The modified cotton samples were tested for flammability using an automatic 45° angle flammability test chamber. Aging tests were conducted to evaluate the coating resistance during the accelerated laundry technique. The samples revealed a high flame retardant behavior and good thermal stability proved by thermo-gravimetric analysis. In the second approach flame retardant cellulosic materials have been produced using a silicon dioxide (SiO2) network coating. SiO 2 network armor was prepared through hydrolysis and condensation of the precursor tetraethyl orthosilicate (TEOS), prior coating the substrates, and was cross linked on the surface of the substrates using atmospheric pressure plasma (APP) technique. Due to protection effects of the SiO2 network armor, the cellulosic based fibers exhibit enhanced thermal properties and improved flame retardancy. In the third approach, the TEOS/APP treatments were extended to linen fabrics. The thermal analysis showed a higher char content and a strong endothermic process of the treated samples compared with control ones, indicating a good thermal stability. Also, the surface analysis proved

  7. Quantum Mechanical Calculations of Vibrational Sum-Frequency-Generation (SFG) Spectra of Cellulose: Dependence of the CH and OH Peak Intensity on the Polarity of Cellulose Chains within the SFG Coherence Domain.

    Science.gov (United States)

    Lee, Christopher M; Chen, Xing; Weiss, Philip A; Jensen, Lasse; Kim, Seong H

    2017-01-05

    Vibrational sum-frequency-generation (SFG) spectroscopy is capable of selectively detecting crystalline biopolymers interspersed in amorphous polymer matrices. However, the spectral interpretation is difficult due to the lack of knowledge on how spatial arrangements of crystalline segments influence SFG spectra features. Here we report time-dependent density functional theory (TD-DFT) calculations of cellulose crystallites in intimate contact with two different polarities: parallel versus antiparallel. TD-DFT calculations reveal that the CH/OH intensity ratio is very sensitive to the polarity of the crystallite packing. Theoretical calculations of hyperpolarizability tensors (β abc ) clearly show the dependence of SFG intensities on the polarity of crystallite packing within the SFG coherence length, which provides the basis for interpretation of the empirically observed SFG features of native cellulose in biological systems.

  8. Characterisation of solution cast cellulose nanofibre – reinforced poly(lactic acid

    Directory of Open Access Journals (Sweden)

    2010-01-01

    Full Text Available Cellulose nanofibres, 20 nm in diameter and 300 nm long, were prepared by acid hydrolysis of flax yarns. Composite films containing 2.5 and 5.0 wt% flax cellulose (FC fibres were prepared by solution casting of mixtures of poly(lactic acid (PLA solution and cellulose nanofibre suspension in chloroform. The resulting composite films and solution cast pure PLA film, with thickness of around 160 m, showed good transparency. For composites with 2.5 and 5.0 wt% FC, the tensile strength increased by 25 and 59% and tensile modulus by 42 and 47%, respectively, compared to pure PLA film. The composite film with 2.5 wt% FC combined high strength and ductility with tensile strength of 24.3 MPa and 70% elongation at break. Flax cellulose appeared to facilitate nucleation and subsequent crystallisation of PLA more effectively in the amorphous composites than in the crystalline composites.

  9. Characterization of TEMPO-oxidized bacterial cellulose; Caracterizacao de celulose bacteriana tempo-oxidada

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Eligenes S.; Pereira, Andre L.S.; Lima, Helder L.; Barroso, Maria K. de A., E-mail: eligenessampaio@hotmail.com [Universidade Federal Ceara (UFC), Fortaleza, CE (Brazil); Barros, Matheus de O. [Instituto Federal do Ceara (IFCE), Fortaleza, CE (Brazil); Morais, Joao P.S. [Embrapa Algodao, Campina Grande, PB (Brazil); Borges, Maria de F.; Rosa, Morsyleide de F. [Embrapa Agroindustria Tropical, Fortaleza, CE (Brazil)

    2015-07-01

    The aim of this study was to characterize the TEMPO-oxidized bacterial cellulose, as a preliminary research for further application in nanocomposites. Bacterial cellulose (BC) was selectively oxidized at C-6 carbon by TEMPO radical. Oxidized bacterial cellulose (BCOX) was characterized by TGA, FTIR, XRD, and zeta potential. BCOX suspension was stable at pH 7.0, presented a crystallinity index of 83%, in spite of 92% of BC, because of decrease in the free hydroxyl number. FTIR spectra showed characteristic BC bands and, in addition, band of carboxylic group, proving the oxidation. BCOX DTG showed, in addition to characteristic BC thermal events, a maximum degradation peak at 233 °C, related to sodium anhydro-glucuronate groups formed during the cellulose oxidation. Thus, BC can be TEMPO-oxidized without great loss in its structure and properties. (author)

  10. Molecular weights and molecular weight distributions of irradiated cellulose fibers by gel permeation chromatography

    International Nuclear Information System (INIS)

    Kusama, Y.; Kageyama, E.; Shimada, M.; Nakamura, Y.

    1976-01-01

    Radiation degradation of cellulose fibers was investigated by gel permeation chromatography (GPC). Scoured cotton of Mexican variety (cellulose I), Polynosic rayon (cellulose II), and their microcrystalline celluloses obtained by hydrolysis of the original fibers were irradiated by Co-60 γ-rays under vacuum or humid conditions. The irradiated samples were then nitrated under nondegradative conditions. The molecular weights and molecular weight distributions were measured by GPC using tetrahydrofuran as solvent. The relationship between molecular weight and elution count was obtained with cellulose trinitrate standards fractionated by preparative GPC. The degree of polymerization of the fibers decreased with increasing irradiation dose, but their microcrystalline celluloses were only slightly degraded by irradiation, especially in microcrystalline cellulose from cellulose I. Degradation of the fibers irradiated under humid conditions was less than that irradiated under vacuum. It was found that the G-values for main-chain scission for the irradiated cellulose I, cellulose II, microcrystalline cellulose I, and microcrystalline cellulose II were 2.8, 2.9, less than 1, and 2.9, respectively, but the G-value for main-chain scission for the irradiated cellulose II was increased to 11.2 at irradiation doses above 3 Mrad. Consequently, it is inferred that cellulose molecules in the amorphous regions are degraded more readily, and the well-aligned molecules in crystalline regions are not as easily degraded by irradiation

  11. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches

    Science.gov (United States)

    Yan Qing; Ronald Sabo; J.Y. Zhu; Umesh Agarwal; Zhiyong Cai; Yiqiang Wu

    2013-01-01

    Various cellulose nanofibrils (CNFs) created by refining and microfluidization, in combination withenzymatic or 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidized pretreatment were compared. Themorphological properties, degree of polymerization, and crystallinity for the obtained nanofibrils, aswell as physical and mechanical properties of the corresponding films...

  12. Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals.

    Science.gov (United States)

    Reiniati, Isabela; Hrymak, Andrew N; Margaritis, Argyrios

    2017-06-01

    Cellulosic nanomaterials provide a novel and sustainable platform for the production of high performance materials enabled by nanotechnology. Bacterial cellulose (BC) is a highly crystalline material and contains pure cellulose without lignin and hemicellulose. BC offers an opportunity to provide control of the products' properties in-situ, via specific BC production methods and culture conditions. The BC potential in advanced material applications are hindered by a limited knowledge of optimal BC production conditions, efficient process scale-up, separation methods, and purification methods. There is a growing body of work on the production of bacterial cellulose nanocrystals (BCNs) from BC fibers. However, there is limited information regarding the effect of BC fibers' characteristics on the production of nanocrystals. This review describes developments in BC and BCNs production methods and factors affecting their yield and physical characteristics.

  13. Modification of Bacterial Cellulose Biofilms with Xylan Polyelectrolytes.

    Science.gov (United States)

    Santos, Sara M; Carbajo, José M; Gómez, Nuria; Ladero, Miguel; Villar, Juan C

    2017-11-28

    The effect of the addition of two [4-butyltrimethylammonium]-xylan chloride polyelectrolytes (BTMAXs) on bacterial cellulose (BC) was evaluated. The first strategy was to add the polyelectrolytes to the culture medium together with a cell suspension of the bacterium. After one week of cultivation, the films were collected and purified. The second approach consisted of obtaining a purified and homogenized BC, to which the polyelectrolytes were added subsequently. The films were characterized in terms of tear and burst indexes, optical properties, surface free energy, static contact angle, Gurley porosity, SEM, X-ray diffraction and AFM. Although there are small differences in mechanical and optical properties between the nanocomposites and control films, the films obtained by BC synthesis in the presence of BTMAXs were remarkably less opaque, rougher, and had a much lower specular gloss. The surface free energy depends on the BTMAXs addition method. The crystallinity of the composites is lower than that of the control material, with a higher reduction of this parameter in the composites obtained by adding the BTMAXs to the culture medium. In view of these results, it can be concluded that BC-BTMAX composites are a promising new material, for example, for paper restoration.

  14. Radiation Synthesis of Poly(N-Vinyl Pyrrolidone) Nanogels and Nanoscale Grafting of Poly(Acrylic Acid) from Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Guven, Olgun; Isik, Semiha Duygu; Barsbay, Murat [Hacettepe University, Department of Chemistry, 06800 Ankara (Turkey)

    2010-07-01

    Ionizing radiation has long been known to be a very useful tool for the preparation of nanogels. Although preparation is straightforward, the control of the sizes of nanogels has been a challenging issue. This report shows the results of our work on using radiation for the synthesis of PVP nanogels in the range of 40-200nm by making use of the principles of solution thermodynamics of aqueous polymer solutions. Nanoscale grafting of responsive polymers however has been of scientific and industrial importance due to fine control of the molecular weight and molecular weight distribution of grafted polymers. The second part of this report deals with the grafting of poly(acrylic acid) onto the surface of cellulose, thus imparting pH response to the substrate. The use of radiation as a constant source of radical generation and Reversible-Addition-Fragmentation-Chain transfer agents for the control of free radical polymerization provided a full control over the molecular weight and distribution of poly(acrylic acid) grafts on cellulose. (author)

  15. Radiation Synthesis of Poly(N-Vinyl Pyrrolidone) Nanogels and Nanoscale Grafting of Poly(Acrylic Acid) from Cellulose

    International Nuclear Information System (INIS)

    Guven, Olgun; Isik, Semiha Duygu; Barsbay, Murat

    2010-01-01

    Ionizing radiation has long been known to be a very useful tool for the preparation of nanogels. Although preparation is straightforward, the control of the sizes of nanogels has been a challenging issue. This report shows the results of our work on using radiation for the synthesis of PVP nanogels in the range of 40-200nm by making use of the principles of solution thermodynamics of aqueous polymer solutions. Nanoscale grafting of responsive polymers however has been of scientific and industrial importance due to fine control of the molecular weight and molecular weight distribution of grafted polymers. The second part of this report deals with the grafting of poly(acrylic acid) onto the surface of cellulose, thus imparting pH response to the substrate. The use of radiation as a constant source of radical generation and Reversible-Addition-Fragmentation-Chain transfer agents for the control of free radical polymerization provided a full control over the molecular weight and distribution of poly(acrylic acid) grafts on cellulose. (author)

  16. Cationic quaternization of cellulose with methacryloyloxy ethyl trimethyl ammonium chloride via ATRP method

    International Nuclear Information System (INIS)

    Supeno; Daik, Rusli; El-Sheikh, Said M.

    2014-01-01

    The synthesis of a cationic cellulose copolymer from cellulose macro-initiator (MCC-BiB) and quaternary compound monomer (METMA) via atom transfer radical polymerization (ATRP) was studied. By using dimethylformamide (DMF), the optimum condition for successful synthesis was at the mole ratio of MCC-BIB:Catalyst:METMA = 1:1:26. The highest copolymer recovery was 93.2 % for 6 h and at 40°C. The copolymer was insoluble in weak polar solvents such as THF and DMF but soluble in methanol and water. The chemistry of cellulose copolymer was confirmed by the FTIR and TGA in which the METMA monomer was used as a reference. The absence of C C bond in the CiB-g-METMA spectrum indicated that graft copolymerization occurred

  17. XRD and solid state 13C-NMR evaluation of the crystallinity enhancement of 13C-labeled bacterial cellulose biosynthesized by Komagataeibacter xylinus under different stimuli: A comparative strategy of analyses.

    Science.gov (United States)

    Meza-Contreras, Juan C; Manriquez-Gonzalez, Ricardo; Gutiérrez-Ortega, José A; Gonzalez-Garcia, Yolanda

    2018-05-22

    The production and crystallinity of 13 C bacterial cellulose (BC) was examined in static culture of Komagataeibacter xylinus with different chemical and physical stimuli: the addition of NaCl or cloramphenicol as well as exposure to a magnetic field or to UV light. Crystalline BC biosynthesized under each stimulus was studied by XRD and solid state 13 C NMR analyses. All treatments produced BC with enhanced crystallinity over 90% (XRD) and 80% (NMR) compared to the control (83 and 76%, respectively) or to Avicel (77 and 62%, respectively). The XRD data indicated that the crystallite size was 80-85 Å. Furthermore, changes on the allomorphs (I α and I β ) ratio tendency of BC samples addressed to the stimuli were estimated using the C4 signal from 13 C NMR data. These results showed a decrease of the allomorph I α (3%) when BC was biosynthesized with UV light and chloramphenicol compared to control (58.79%). In contrast, the BC obtained with NaCl increased up to 60.31% of the I α allomorph ratio. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. [Study on spectroscopic characterization and property of PES/ micro-nano cellulose composite membrane material].

    Science.gov (United States)

    Tang, Huan-Wei; Zhang, Li-Ping; Li, Shuai; Zhao, Guang-Jie; Qin, Zhu; Sun, Su-Qin

    2010-03-01

    In the present paper, the functional groups of PES/micro-nano cellulose composite membrane materials were characterized by Fourier transform infrared spectroscopy (FTIR). Also, changes in crystallinity in composite membrane materials were analyzed using X-ray diffraction (XRD). The effects of micro-nano cellulose content on hydrophilic property of composite membrane material were studied by measuring hydrophilic angle. The images of support layer structure of pure PES membrane material and composite membrane material were showed with scanning electron microscope (SEM). These results indicated that in the infrared spectrogram, the composite membrane material had characteristic peaks of both PES and micro-nano cellulose without appearance of other new characteristics peaks. It revealed that there were no new functional groups in the composite membrane material, and the level of molecular compatibility was achieved, which was based on the existence of inter-molecular hydrogen bond association between PES and micro-nano cellulose. Due to the existence of micro-nano cellulose, the crystallinity of composite membrane material was increased from 37.7% to 47.9%. The more the increase in micro-nano cellulose mass fraction, the better the van de Waal force and hydrogen bond force between composite membrane material and water were enhanced. The hydrophilic angle of composite membrane material was decreased from 55.8 degrees to 45.8 degrees and the surface energy was raised from 113.7 to 123.5 mN x m(-2). Consequently, the hydrophilic property of composite membrane material was improved. The number of pores in the support layer of composite membrane material was lager than that of pure PES membrane. Apparently, pores were more uniformly distributed.

  19. Isolation of developing secondary xylem specific cellulose synthase ...

    Indian Academy of Sciences (India)

    The present study aimed at identifying developing secondary xylem specific cellulose synthase genes from .... the First strand cDNA synthesis kit (Fermentas, Pittsburgh,. USA). .... ing height of the rooted cutting, girth of the stem, leaf area.

  20. Cellular automata modeling depicts degradation of cellulosic material by a cellulase system with single-molecule resolution.

    Science.gov (United States)

    Eibinger, Manuel; Zahel, Thomas; Ganner, Thomas; Plank, Harald; Nidetzky, Bernd

    2016-01-01

    Enzymatic hydrolysis of cellulose involves the spatiotemporally correlated action of distinct polysaccharide chain cleaving activities confined to the surface of an insoluble substrate. Because cellulases differ in preference for attacking crystalline compared to amorphous cellulose, the spatial distribution of structural order across the cellulose surface imposes additional constraints on the dynamic interplay between the enzymes. Reconstruction of total system behavior from single-molecule activity parameters is a longstanding key goal in the field. We have developed a stochastic, cellular automata-based modeling approach to describe degradation of cellulosic material by a cellulase system at single-molecule resolution. Substrate morphology was modeled to represent the amorphous and crystalline phases as well as the different spatial orientations of the polysaccharide chains. The enzyme system model consisted of an internally chain-cleaving endoglucanase (EG) as well as two processively acting, reducing and non-reducing chain end-cleaving cellobiohydrolases (CBHs). Substrate preference (amorphous: EG, CBH II; crystalline: CBH I) and characteristic frequencies for chain cleavage, processive movement, and dissociation were assigned from biochemical data. Once adsorbed, enzymes were allowed to reach surface-exposed substrate sites through "random-walk" lateral diffusion or processive motion. Simulations revealed that slow dissociation of processive enzymes at obstacles obstructing further movement resulted in local jamming of the cellulases, with consequent delay in the degradation of the surface area affected. Exploiting validation against evidence from atomic force microscopy imaging as a unique opportunity opened up by the modeling approach, we show that spatiotemporal characteristics of cellulose surface degradation by the system of synergizing cellulases were reproduced quantitatively at the nanometer resolution of the experimental data. This in turn gave

  1. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties.

    Science.gov (United States)

    Seantier, Bastien; Bendahou, Dounia; Bendahou, Abdelkader; Grohens, Yves; Kaddami, Hamid

    2016-03-15

    Bio-composite aerogels based on bleached cellulose fibers (BCF) and cellulose nanoparticles having various morphological and physico-chemical characteristics are prepared by a freeze-drying technique and characterized. The various composite aerogels obtained were compared to a BCF aerogel used as the reference. Severe changes in the material morphology were observed by SEM and AFM due to a variation of the cellulose nanoparticle properties such as the aspect ratio, the crystalline index and the surface charge density. BCF fibers form a 3D network and they are surrounded by the cellulose nanoparticle thin films inducing a significant reduction of the size of the pores in comparison with a neat BCF based aerogel. BET analyses confirm the appearance of a new organization structure with pores of nanometric sizes. As a consequence, a decrease of the thermal conductivities is observed from 28mWm(-1)K(-1) (BCF aerogel) to 23mWm(-1)K(-1) (bio-composite aerogel), which is below the air conductivity (25mWm(-1)K(-1)). This improvement of the insulation properties for composite materials is more pronounced for aerogels based on cellulose nanoparticles having a low crystalline index and high surface charge (NFC-2h). The significant improvement of their insulation properties allows the bio-composite aerogels to enter the super-insulating materials family. The characteristics of cellulose nanoparticles also influence the mechanical properties of the bio-composite aerogels. A significant improvement of the mechanical properties under compression is obtained by self-organization, yielding a multi-scale architecture of the cellulose nanoparticles in the bio-composite aerogels. In this case, the mechanical property is more dependent on the morphology of the composite aerogel rather than the intrinsic characteristics of the cellulose nanoparticles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Formation of cellulases and degradation of cellulose by several fungi

    Energy Technology Data Exchange (ETDEWEB)

    Herr, D; Luck, G; Dellweg, H

    1978-01-01

    Five strains of fungi (Aspergillus niger, Lenzites trabea, Myrothecium verrucaria, Trichoderma koningii and Trichoderma lignorum) were tested for the production of cellulolytic enzymes on pure glucose and on cellulose media. The most active strains belonging to the genera of Trichoderma, Aspergillus and Myrothecium, also secreting high activities of ..beta..-glucosidase, were grown in a bioreactor under defined conditions. Depending on the strain this procedure resulted in a manifold increase in cellulolytic activities. The culture filtrates were concentrated and standardized with respect to ..beta..-glucosidase activity and used for the hydrolysis of cellulose powder. With Trichoderma-cellulase, 46% conversion of crystalline cellulose to glucose was achieved within 48 h. The ratio of cellobiose to glucose found in the hydrolysate, the amount of high molecular carbohydrates as well as the degree of hydrolysis widely depended on the type of cellulase used.

  3. The correlation between cellulose allomorphs (I and II) and conversion after removal of hemicellulose and lignin of lignocellulose.

    Science.gov (United States)

    Song, Yanliang; Zhang, Jingzhi; Zhang, Xu; Tan, Tianwei

    2015-10-01

    H2SO4, NaOH and H3PO4 were applied to decompose lignocellulose samples (giant reeds, pennisetum and cotton stalks) to investigate the correlation between cellulose allomorphs (cellulose I and II) and conversion of cellulose. The effect of removal of hemicellulose and lignin on the surface morphology, crystallinity index (CrI), cellulose allomorphs (cellulose I and II), and enzymatic hydrolysis under different pretreatments was also studied. CrI caused by H3PO4 pretreatment reached 11.19%, 24.93% and 8.15% for the three samples, respectively. Corn stalk showed highest conversion of cellulose among three samples, irrespective of the pretreatment used. This accounted for the widely use of corn stalk as the renewable crop substrate to synthesize biofuels like ethanol. CrI of cellulose I (CrI-I) negatively affects cellulose conversion but CrI of cellulose II (CrI-II) positively affects cellulose conversion. It contributes to make the strategy to transform cellulose I to cellulose II and enhancing enzymatic hydrolysis of lignocellulose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation

    International Nuclear Information System (INIS)

    Hoeng, Fanny; Denneulin, Aurore; Neuman, Charles; Bras, Julien

    2015-01-01

    Synthesis of silver nanoparticles using cellulose nanocrystals (CNC) has been found to be a great method for producing metallic particles in a sustainable way. In this work, we propose to evaluate the influence of the charge density of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-oxidized CNC on the morphology and the stability of synthetized silver nanoparticles. Silver nanoparticles were obtained by sol–gel reaction using borohydride reduction, and charge density of TEMPO-oxidized CNC was tuned by an amine grafting. The grafting was performed at room temperature and neutral pH. Crystallinity and morphology were kept intact during the peptidic reaction on CNC allowing knowing the exact impact of the charge density. Charge density has been found to have a strong impact on shape, organization, and suspension stability of resulting silver particles. Results show an easy way to tune the charge density of CNC and propose a sustainable way to control the morphology and stability of silver nanoparticles in aqueous suspension

  5. Mechanics of Cellulose Synthase Complexes in Living Plant Cells

    Science.gov (United States)

    Zehfroosh, Nina; Liu, Derui; Ramos, Kieran P.; Yang, Xiaoli; Goldner, Lori S.; Baskin, Tobias I.

    The polymer cellulose is one of the major components of the world's biomass with unique and fascinating characteristics such as its high tensile strength, renewability, biodegradability, and biocompatibility. Because of these distinctive aspects, cellulose has been the subject of enormous scientific and industrial interest, yet there are still fundamental open questions about cellulose biosynthesis. Cellulose is synthesized by a complex of transmembrane proteins called ``Cellulose Synthase A'' (CESA) in the plasma membrane. Studying the dynamics and kinematics of the CESA complex will help reveal the mechanism of cellulose synthesis and permit the development and validation of models of CESA motility. To understand what drives these complexes through the cell membrane, we used total internal reflection fluorescence microscopy (TIRFM) and variable angle epi-fluorescence microscopy to track individual, fluorescently-labeled CESA complexes as they move in the hypocotyl and root of living plants. A mean square displacement analysis will be applied to distinguish ballistic, diffusional, and other forms of motion. We report on the results of these tracking experiments. This work was funded by NSF/PHY-1205989.

  6. Development of composites of polycaprolactone with cellulose; Desenvolvimento de compositos de policaprolactona com celulose

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, V.O.; Marques, M.F.V., E-mail: nviny@ima.ufrj.br, E-mail: fmarques@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas

    2015-07-01

    In the present work, alkaline followed by an acid treatment were performed in plant sources of curaua and jute fibers to remove the amorphous portion and to aid fibrillation. Using the technique of X-ray diffraction it was observed that the chemical treatments led to a better organization of cellulose microfibrils and, consequently, the increase in their crystallinity index. Using the thermogravimetric analysis it was noted a slight decrease in thermal stability of the chemically treated cellulose fibers, however it did not impairs its use as filler in the polymer matrix. Through the SEM micrographs it was observed that the chemical treatment reduced the dimensions of the fibers in natura. Polycaprolactone composite was prepared in a twin-screw extruder at different amounts for several cellulose sources (those obtained from vegetable fibers, curaua and jute, commercial cellulose and amorphous cellulose) at and maintaining the process time and temperature constant. (author)

  7. Production of nanotubes in delignified porous cellulosic materials after hydrolysis with cellulase.

    Science.gov (United States)

    Koutinas, Αthanasios Α; Papafotopoulou-Patrinou, Evgenia; Gialleli, Angelika-Ioanna; Petsi, Theano; Bekatorou, Argyro; Kanellaki, Maria

    2016-08-01

    In this study, tubular cellulose (TC), a porous cellulosic material produced by delignification of sawdust, was treated with a Trichoderma reesei cellulase in order to increase the proportion of nano-tubes. The effect of enzyme concentration and treatment duration on surface characteristics was studied and the samples were analyzed with BET, SEM and XRD. Also, a composite material of gelatinized starch and TC underwent enzymatic treatment in combination with amylase (320U) and cellulase (320U) enzymes. For TC, the optimum enzyme concentration (640U) led to significant increase of TC specific surface area and pore volume along with the reduction of pore diameter. It was also shown that the enzymatic treatment did not result to a significant change of cellulose crystallinity index. The produced nano-tubular cellulose shows potential for application to drug and chemical preservative delivery systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Structure Study of Cellulose Fibers Wet-Spun from Environmentally Friendly NaOH/Urea Aqueous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chen,X.; Burger, C.; Wan, F.; Zhang, J.; Rong, L.; Hsiao, B.; Chu, B.; Cai, J.; Zhang, L.

    2007-01-01

    In this study, structure changes of regenerated cellulose fibers wet-spun from a cotton linter pulp (degree of polymerization {approx}620) solution in an NaOH/urea solvent under different conditions were investigated by simultaneous synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS). WAXD results indicated that the increase in flow rate during spinning produced a better crystal orientation and a higher degree of crystallinity, whereas a 2-fold increase in draw ratio only affected the crystal orientation. When coagulated in a H{sub 2}SO{sub 4}/Na{sub 2}SO{sub 4} aqueous solution at 15 {sup o}C, the regenerated fibers exhibited the highest crystallinity and a crystal orientation comparable to that of commercial rayon fibers by the viscose method. SAXS patterns exhibited a pair of meridional maxima in all regenerated cellulose fibers, indicating the existence of a lamellar structure. A fibrillar superstructure was observed only at higher flow rates (>20 m/min). The conformation of cellulose molecules in NaOH/urea aqueous solution was also investigated by static and dynamic light scattering. It was found that cellulose chains formed aggregates with a radius of gyration, R{sub g}, of about 232 nm and an apparent hydrodynamic radius, R{sub h}, of about 172 nm. The NaOH/urea solvent system is low-cost and environmentally friendly, which may offer an alternative route to replace more hazardous existing methods for the production of regenerated cellulose fibers.

  9. DEVELOPMENT OF MICROORGANISMS FOR CELLULOSE-BIOFUEL CONSOLIDATED BIOPROCESSINGS: METABOLIC ENGINEERS' TRICKS

    Directory of Open Access Journals (Sweden)

    Roberto Mazzoli

    2012-10-01

    By starting from the description of natural enzyme systems for plant biomass degradation and natural metabolic pathways for some of the most valuable product (i.e. butanol, ethanol, and hydrogen biosynthesis, this review describes state-of-the-art bottlenecks and solutions for the development of recombinant microbial strains for cellulosic biofuel CBP by metabolic engineering. Complexed cellulases (i.e. cellulosomes benefit from stronger proximity effects and show enhanced synergy on insoluble substrates (i.e. crystalline cellulose with respect to free enzymes. For this reason, special attention was held on strategies involving cellulosome/designer cellulosome-bearing recombinant microorganisms.

  10. A comparative study of green composites based on tapioca starch and celluloses

    Science.gov (United States)

    Owi, Wei Tieng; Lin, Ong Hui; Sam, Sung Ting; Mern, Chin Kwok; Villagracia, Al Rey; Santos, Gil Nonato C.; Akil, Hazizan Md

    2017-07-01

    The objective of this study was to compare the properties of green composites based on tapioca starch (TS) and celluloses isolated from empty fruit bunches (EFB) and commercial celluloses from cotton linter (supplied by Sigma). Empty fruit bunches (EFB) acted as the main source to obtain the cellulose by using a chemical approach whereas the commercial cellulose from Sigma was used as reference. The TS/cellulose composite films were prepared using cellulose in varying proportions as filler into TS matrix by a casting method. The amount of celluloses added into the tapioca starch were 5, 10, 15, 20 and 25 phr (as per dry mass of TS). The celluloses were characterized using Fourier transform infrared (FTTR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). While the green composite films were analyzed in terms of thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), SEM and tensile properties. FTTR analysis confirmed the removal of non-cellulosic materials such as hemicelluloses and lignin from raw EFB after the chemical treatment. XRD diffractograms revealed that the crystallinity of celluloses EFB increased from 43.1 % of raw EFB to 52.1 %. SEM images showed the fibrillar structure of cellulose isolated from EFB. The TGA and derivative thermogravimetric (DTG) curves of green composite films showed no significant effect on the thermal stability. Melting temperature of TS/cellulose EFB higher than neat TS while TS/cellulose Sigma lower than neat TS. The green composite films with 15 phr cellulose from EFB filler loading provided the best tensile properties in term of its strength and modulus. However, in term of elongation at break, the percentage elongation decreased with the increased of the amount of filler loading. SEM images of the films demonstrated a good interaction between cellulose filler and TS matrix especially with the addition of 15 phr of cellulose from EFB.

  11. Cellulose synthases: new insights from crystallography and modeling.

    Science.gov (United States)

    Slabaugh, Erin; Davis, Jonathan K; Haigler, Candace H; Yingling, Yaroslava G; Zimmer, Jochen

    2014-02-01

    Detailed information about the structure and biochemical mechanisms of cellulose synthase (CelS) proteins remained elusive until a complex containing the catalytic subunit (BcsA) of CelS from Rhodobacter sphaeroides was crystalized. Additionally, a 3D structure of most of the cytosolic domain of a plant CelS (GhCESA1 from cotton, Gossypium hirsutum) was produced by computational modeling. This predicted structure contributes to our understanding of how plant CelS proteins may be similar and different as compared with BcsA. In this review, we highlight how these structures impact our understanding of the synthesis of cellulose and other extracellular polysaccharides. We show how the structures can be used to generate hypotheses for experiments testing mechanisms of glucan synthesis and translocation in plant CelS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Cellulose whiskers from sisal fibers: a study about the variable of extraction by acid hydrolysis

    International Nuclear Information System (INIS)

    Teodoro, Kelcilene B.R.; Teixeira, Eliangela de Morais; Correa, Ana Carolina; Campos, Adriana de; Marconcini, Jose Manoel; Mattoso, Luiz Henrique Capparelli

    2011-01-01

    The incorporation of cellulosic nanostructures in polymeric matrices has been studied due to their properties of biodegradation, and expected higher mechanical performance than the traditional composites. In this work, cellulose nanofibers were obtained from sisal bleached with reagents without chlorine, where it was used an acid mixture, with acetic acid and nitric acid, and after the bleached fibers were submitted to acid hydrolysis. The influence of the temperature and time of hydrolysis on the morphology and dimensions, crystallinity and thermal stability were analyzed by scanning transmission electronic microscopy (TEM), x-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. The hydrolysis condition of 60 deg C and 15 minutes showed to be the most effective condition to obtain whiskers from sisal fibers, resulting in nanostructures with higher crystallinity and thermal. (author)

  13. Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha.

    Science.gov (United States)

    Nguyen, Vu Tuan; Flanagan, Bernadine; Gidley, Michael J; Dykes, Gary A

    2008-11-01

    The aims of this work were to characterize and improve cellulose production by a Gluconoacetobacter xylinus strain isolated from Kombucha and determine the purity and some structural features of the cellulose from this strain. Cellulose yield in tea medium with both black tea and green tea and in Hestrin and Schramm (HS) medium under both static and agitated cultures was compared. In the tea medium, the highest cellulose yield was obtained with green tea (approximately 0.20 g/L) rather than black tea (approximately 0.14 g/L). Yield in HS was higher (approximately 0.28 g/L) but did not differ between static and agitated incubation. (1)H-NMR and (13)C-NMR spectroscopy indicated that the cellulose is pure (free of acetan) and has high crystallinity, respectively. Cellulose yield was improved by changing the type and level of carbon and nitrogen source in the HS medium. A high yield of approximately 2.64 g/L was obtained with mannitol at 20 g/L and corn steep liquor at 40 g/L in combination. In the tea medium, tea at a level of 3 g/L gave the highest cellulose yield and the addition of 3 g/L of tea to the HS medium increased cellulose yield to 3.34 g/L. In conclusion, the G. xylinus strain from Kombucha had different cellulose-producing characteristics than previous strains isolated from fruit. Cellulose was produced in a pure form and showed high potential applicability. Our studies extensively characterized cellulose production from a G. xylinus strain from Kombucha for the first time, indicating both similarities and differences to strains from different sources.

  14. Ultra-Fast Microwave Synthesis of ZnO Nanorods on Cellulose Substrates for UV Sensor Applications

    Directory of Open Access Journals (Sweden)

    Ana Pimentel

    2017-11-01

    Full Text Available In the present work, tracing and Whatman papers were used as substrates to grow zinc oxide (ZnO nanostructures. Cellulose-based substrates are cost-efficient, highly sensitive and environmentally friendly. ZnO nanostructures with hexagonal structure were synthesized by hydrothermal under microwave irradiation using an ultrafast approach, that is, a fixed synthesis time of 10 min. The effect of synthesis temperature on ZnO nanostructures was investigated from 70 to 130 °C. An Ultra Violet (UV/Ozone treatment directly to the ZnO seed layer prior to microwave assisted synthesis revealed expressive differences regarding formation of the ZnO nanostructures. Structural characterization of the microwave synthesized materials was carried out by scanning electron microscopy (SEM and X-ray diffraction (XRD. The optical characterization has also been performed. The time resolved photocurrent of the devices in response to the UV turn on/off was investigated and it has been observed that the ZnO nanorod arrays grown on Whatman paper substrate present a responsivity 3 times superior than the ones grown on tracing paper. By using ZnO nanorods, the surface area-to-volume ratio will increase and will improve the sensor sensibility, making these types of materials good candidates for low cost and disposable UV sensors. The sensors were exposed to bending tests, proving their high stability, flexibility and adaptability to different surfaces.

  15. Development of the metrology and imaging of cellulose nanocrystals

    International Nuclear Information System (INIS)

    Postek, Michael T; Vladár, András; Dagata, John; Farkas, Natalia; Ming, Bin; Wagner, Ryan; Raman, Arvind; Moon, Robert J; Sabo, Ronald; Wegner, Theodore H; Beecher, James

    2011-01-01

    The development of metrology for nanoparticles is a significant challenge. Cellulose nanocrystals (CNCs) are one group of nanoparticles that have high potential economic value but present substantial challenges to the development of the measurement science. Even the largest trees owe their strength to this newly appreciated class of nanomaterials. Cellulose is the world's most abundant natural, renewable, biodegradable polymer. Cellulose occurs as whisker-like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. The nanocrystals are isolated by hydrolyzing away the amorphous segments leaving the acid resistant crystalline fragments. Therefore, the basic raw material for new nanomaterial products already abounds in nature and is available to be utilized in an array of future materials. However, commercialization requires the development of efficient manufacturing processes and nanometrology to monitor quality. This paper discusses some of the instrumentation, metrology and standards issues associated with the ramping up for production and use of CNCs

  16. Development of the metrology and imaging of cellulose nanocrystals

    Science.gov (United States)

    Postek, Michael T.; Vladár, András; Dagata, John; Farkas, Natalia; Ming, Bin; Wagner, Ryan; Raman, Arvind; Moon, Robert J.; Sabo, Ronald; Wegner, Theodore H.; Beecher, James

    2011-02-01

    The development of metrology for nanoparticles is a significant challenge. Cellulose nanocrystals (CNCs) are one group of nanoparticles that have high potential economic value but present substantial challenges to the development of the measurement science. Even the largest trees owe their strength to this newly appreciated class of nanomaterials. Cellulose is the world's most abundant natural, renewable, biodegradable polymer. Cellulose occurs as whisker-like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. The nanocrystals are isolated by hydrolyzing away the amorphous segments leaving the acid resistant crystalline fragments. Therefore, the basic raw material for new nanomaterial products already abounds in nature and is available to be utilized in an array of future materials. However, commercialization requires the development of efficient manufacturing processes and nanometrology to monitor quality. This paper discusses some of the instrumentation, metrology and standards issues associated with the ramping up for production and use of CNCs.

  17. Cellulose Degradation by Cellulose-Clearing and Non-Cellulose-Clearing Brown-Rot Fungi

    OpenAIRE

    Highley, Terry L.

    1980-01-01

    Cellulose degradation by four cellulose-clearing brown-rot fungi in the Coniophoraceae—Coniophora prasinoides, C. puteana, Leucogyrophana arizonica, and L. olivascens—is compared with that of a non-cellulose-clearing brown-rot fungus, Poria placenta. The cellulose- and the non-cellulose-clearing brown-rot fungi apparently employ similar mechanisms to depolymerize cellulose; most likely a nonenzymatic mechanism is involved.

  18. Identifying the catalytic components of cellulose synthase and the maize mixed-linkage beta-glucan synthase

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas C Carpita

    2009-04-20

    Five specific objectives of this project are to develop strategies to identify the genes that encode the catalytic components of "mixed-linkage" (1→3),(1→4)-beta-D-glucans in grasses, to determine the protein components of the synthase complex, and determine the biochemical mechanism of synthesis. We have used proteomic approaches to define intrinsic and extrinsic polypeptides of Golgi membranes that are associated with polysaccharide synthesis and trafficking. We were successful in producing recombinant catalytic domains of cellulose synthase genes and discovered that they dimerize upon concentration, indicating that two CesA proteins form the catalytic unit. We characterized a brittle stalk2 mutant as a defect in a COBRA-like protein that results in compromised lignin-cellulose interactions that decrease tissue flexibility. We used virus-induced gene silencing of barley cell wall polysaccharide synthesis by BSMV in an attempt to silence specific members of the cellulose synthase-like gene family. However, we unexpectedly found that regardless of the specificity of the target gene, whole gene interaction networks were silenced. We discovered the cause to be an antisense transcript of the cellulose synthase gene initiated small interfering RNAs that spread silencing to related genes.

  19. Synthesis and characterization of methylcellulose from cellulose extracted from mango seeds for use as a mortar additive

    Directory of Open Access Journals (Sweden)

    Júlia G. Vieira

    2012-01-01

    Full Text Available Methylcellulose was produced from the fibers of Mangifera indica L. Ubá mango seeds. MCD and MCI methylcellulose samples were made by heterogeneous methylation, using dimethyl sulfate and iodomethane as alkylating agents, respectively. The materials produced were characterized for their thermal properties (DSC and TGA, crystallinity (XRD and Degree of Substitution (DS in the chemical route. The cellulose derivatives were employed as mortar additive in order to improve mortar workability and adhesion to the substrate. These properties were evaluated by means of the consistency index (CI and bond tensile strength (TS tests. The methylcellulose (MCD and MCI samples had CI increased by 27.75 and 71.54% and TS increased by 23.33 and 29.78%, respectively, in comparison to the reference sample. Therefore, the polymers can be used to produce adhesive mortars.

  20. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity.

    Science.gov (United States)

    Liu, Yongliang; Thibodeaux, Devron; Gamble, Gary; Bauer, Philip; VanDerveer, Don

    2012-08-01

    Despite considerable efforts in developing curve-fitting protocols to evaluate the crystallinity index (CI) from X-ray diffraction (XRD) measurements, in its present state XRD can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous fraction in a sample. The greatest barrier to establishing quantitative XRD is the lack of appropriate cellulose standards, which are needed to calibrate the XRD measurements. In practice, samples with known CI are very difficult to prepare or determine. In a previous study, we reported the development of a simple algorithm for determining fiber crystallinity information from Fourier transform infrared (FT-IR) spectroscopy. Hence, in this study we not only compared the fiber crystallinity information between FT-IR and XRD measurements, by developing a simple XRD algorithm in place of a time-consuming and subjective curve-fitting process, but we also suggested a direct way of determining cotton cellulose CI by calibrating XRD with the use of CI(IR) as references.

  1. Influence of homogenization treatment on physicochemical properties and enzymatic hydrolysis rate of pure cellulose fibers.

    Science.gov (United States)

    Jacquet, N; Vanderghem, C; Danthine, S; Blecker, C; Paquot, M

    2013-02-01

    The aim of this study is to compare the effect of different homogenization treatments on the physicochemical properties and the hydrolysis rate of a pure bleached cellulose. Results obtained show that homogenization treatments improve the enzymatic hydrolysis rate of the cellulose fibers by 25 to 100 %, depending of the homogenization treatment applied. Characterization of the samples showed also that homogenization had an impact on some physicochemical properties of the cellulose. For moderate treatment intensities (pressure below 500 b and degree of homogenization below 25), an increase of water retention values (WRV) that correlated to the increase of the hydrolysis rate was highlighted. Result also showed that the overall crystallinity of the cellulose properties appeared not to be impacted by the homogenization treatment. For higher treatment intensities, homogenized cellulose samples developed a stable tridimentional network that contributes to decrease cellulase mobility and slowdown the hydrolysis process.

  2. Influence of Chemical Treatments Sequence on Morphology and Crystallinity of Sorghum Fibers

    Directory of Open Access Journals (Sweden)

    Ismojo Ismojo

    2018-05-01

    Full Text Available Micro-fibrillated cellulose (MFC derived from natural fibre is continuously gaining interest to produce an environmentally-friendly material, due to economic and ecological reasons. In consequence, sorghum is one of the most-cultivated crops that usually remain the waste as by product of bioethanol production. Indeed, it will be a promising area to utilize sorghum waste to produce MFC for enhancing polymer performance, especially in terms of crystallinity. The objective of this study is to investigate the effect of a sequence of chemical modification was applied to sorghum fibres, i.e. alkalization using 4% sodium hydroxide followed by bleaching using 1.7% sodium chlorite plus acetic acid as a buffer. The treatment was purposed to unbundle the lignocellulose networks into microfibrils cellulose with less amorphous part and lower hydrophilic properties. Evaluation of the chemical treatments effect on internal microstructure, crystallinity index and chemical composition of sorghum fibre was measured via Field-Emission Scanning Electron microscope (FE-SEM, X-ray Diffraction (XRD and Fourier Transformation Infra-Red (FTIR Spectroscopy. The experiments show that treatments led to a removal of binding materials, such as amorphous parts hemicellulose and lignin, from the sorghum fibres, resulting MFC of sorghum fibres and enhanced crystallinity index from 41.12 % to 75.73%.

  3. Rate of Threading a Cellulose Chain into the Binding Tunnel of a Cellulase

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Alasepp, Kadri; Andersen, Morten

    2016-01-01

    the tunnel with a cellulose strand and end with the opposite, that is, the dethreading process. Evidence has suggested that threading or dethreading may be rate-limiting for the overall enzyme reaction. To directly elucidate the rates of threading and dethreading, we analyzed experimental data with respect......, at which other steps also influenced the overall dynamics. These results will be helpful in identifying rate-limiting steps for cellulases and, in turn, targets for rational design of faster enzymes.......Industrially important cellulase Cel7A hydrolyzes crystalline cellulose by a complex processive mechanism in which the enzyme slides along the cellulose surface with one strand of the polymeric substrate channeled through its catalytic tunnel. Each processive run must start with threading...

  4. EFFECT OF AGING TIME TOWARD CRYSTALLINITY OF PRODUCTS IN SYNTHESIS OF MESOPOROUS SILICATES MCM-41

    Directory of Open Access Journals (Sweden)

    Suyanta Suyanta

    2010-12-01

    Full Text Available Researches about the effects of aging time toward crystallinity of products in the synthesis of mesoporous silicates MCM-41 have been done. MCM-41 was synthesized by hydrothermal treatment to the mixture of sodium silicate, sodium hydroxide, cetyltrimetylammoniumbromide (CTMAB and aquadest in the molar ratio of 8Na2SiO3 : CTMAB : NaOH : 400H2O. Hydrothermal treatment was carried out at 110 °C in a teflon-lined stainless steel autoclave heated in the oven, with variation of aging time, i.e.: 4, 8, 12, 16, 24, 36, 48, and 72 h respectively. The solid phase were filtered, then washed with deionised water, and dried in the oven at 100 °C for 2 h. The surfactant CTMAB was removed by calcinations at 550 °C for 10 h with heating rate 2 °C/min. The as-synthesized and calcined powders were characterized by using FTIR spectroscopy and X-ray diffraction method. The relative crystallinity of products was evaluated based on the intensity of d100 peaks. The best product was characterized by using N2 physisorption method in order to determine the specific surface area, mean pore diameter, lattice parameter, and pore walls thickness. It was concluded that the relative crystallinity of the products was sensitively influenced by the aging time. The highest relative crystallinity was achieved when used 36 h of aging time in hydrothermal treatment. In this optimum condition the product has 946.607 m2g-1 of specific surface area, 3.357 nm of mean pore diameter, 4.533 nm of lattice parameter, and 1.176 nm of pore walls thickness.

  5. Impacts of fiber orientation and milling on observed crystallinity in jack pine

    Science.gov (United States)

    Umesh P. Agarwal; Sally A. Ralph; Richard S. Reiner; Roderquita K. Moore; Carlos Baez

    2014-01-01

    Influences of fiber orientation and milling on wood cellulose crystallinity were studied using jack pine wood. The fiber orientation effects were measured by sampling rectangular wood blocks in radial, tangential, and cross-sectional orientations. The influence of milling was studied by analyzing the unsieved and sieved milled wood fractions (all

  6. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    Science.gov (United States)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  7. Mathematical model for enzymatic hydrolysis and fermentation of cellulose by Trichoderma

    Energy Technology Data Exchange (ETDEWEB)

    Peitersen, N; Ross, Jr, E W

    1979-06-01

    This paper describes a mathematical model for the enzymatic hydrolysis and fermentation of cellulose by Trichoderma reesei. The principal features of the model are the assumption of two forms of cellulose (crystalline and amorphous), two sugars (cellobiose and glucose), and two enzymes (cellulase and ..beta..-glucosidase). An inducer-repressor-messenger RNA mechanism is used to predict enzyme formation, and pH effects are included. The model consists of 12 ordinary differential equations for 12 state variables and contains 38 parameters. The parameters were estimated from four sets of experimental data by optimization. The results appear satisfactory, and the computer programs permit simulation of a variety of system changes.

  8. Preparation and Characterization of Cellulose and Nanocellulose from Agro-industrial Waste - Cassava Peel

    Science.gov (United States)

    Widiarto, S.; Yuwono, S. D.; Rochliadi, A.; Arcana, I. M.

    2017-02-01

    Cassava peel is an agro-industrial waste which is available in huge quantities in Lampung Province of Indonesia. This work was conducted to evaluate the potential of cassava peel as a source of cellulose and nanocellulose. Cellulose was extracted from cassava peel by using different chemical treatment, and the nanocellulose was prepared by hydrolysis with the use of sulfuric acid. The best methods of cellulose extraction from cassava peels are using alkali treatment followed by a bleaching process. The cellulose yield from this methods was 17.8% of dry base cassava peel, while the yield from nitric and sulfuric methods were about 10.78% and 10.32% of dry base cassava peel respectively. The hydrolysis was performed at the temperature of 50 °C for 2 hours. The intermediate reaction product obtained after each stage of the treatments was characterized. Fourier transform infrared spectroscopy showed the removal of non-cellulosic constituent. X-ray Diffraction (XRD) analysis revealed that the crystallinity of cellulose increased after hydrolysis. Morphological investigation was performed using Scanning Electron Microscopy (SEM). The size of particle was confirmed by Particle Size Analyzer (PSA) and Transmission Electron Microscopy (TEM).

  9. Macromolecular organization of xyloglucan and cellulose in pea epicotyls

    International Nuclear Information System (INIS)

    Hayashi, T.; Maclachlan, G.

    1984-01-01

    Xyloglucan is known to occur widely in the primary cell walls of higher plants. This polysaccharide in most dicots possesses a cellulose-like main chain with three of every four consecutive residues substituted with xylose and minor addition of other sugars. Xyloglucan and cellulose metabolism is regulated by different processes; since different enzyme systems are probably required for the synthesis of their 1,4-β-linkages. A macromolecular complex composed of xyloglucan and cellulose only was obtained from elongating regions of etiolated pea stems. It was examined by light microscopy using iodine staining, by radioautography after labeling with [ 3 H]fructose, by fluorescence microscopy using a fluorescein-lectin (fructose-binding) as probe, and by electron microscopy after shadowing. The techniques all demonstrated that the macromolecule was present in files of cell shapes, referred to here as cell-wall ghosts, in which xyloglucan was localized both on and between the cellulose microfibrils

  10. Optimized Monitoring of Production of Cellulose Nanowhiskers from Opuntia ficus-indica (Nopal Cactus

    Directory of Open Access Journals (Sweden)

    Horacio Vieyra

    2015-01-01

    Full Text Available Preparation of cellulose nanowhiskers (CNWs has grown significantly because they are useful for a wide range of applications. Additional advantage in their design requires that they meet the following characteristics: nontoxicity, abundance, sustainability, renewability, and low cost. To address these requirements, nanowhiskers were prepared from Opuntia ficus-indica (nopal cellulose by acid hydrolysis. Monitoring the process of CNWs preparation is necessary to ensure maximum yield and purity of the end product. In this study, the cellulose preparation was monitored by analyzing microscopic morphology by SEM; the purity degree was determined by fluorescence microscopy as a novel and rapid technique, and FTIR spectroscopy was used for confirmation. The additional parameters that monitored the process were the crystallinity index by X-ray diffraction and the size of the particle by dynamic light scattering (DLS. Nopal cellulose was found to be comparable to commercial microcrystalline cellulose. The use of Opuntia ficus-indica is a viable alternative for the production of highly pure CNWs and the strategy to supervise the preparation process was rapid.

  11. Synthesis and characterization of organic-inorganic hybrids formed between conducting polymers and crystalline antimonic acid

    Directory of Open Access Journals (Sweden)

    Beleze Fábio A.

    2001-01-01

    Full Text Available In this paper we report the synthesis and characterization of novel organic-inorganic hybrid materials between the crystalline antimonic acid (CAA and two conductive polymers: polypyrrole and polyaniline. The hybrids were obtained by in situ oxidative polymerization of monomers by the Sb(V present in the pyrochlore-like CAA structure. The materials were characterized by infrared and Raman spectroscopy, X-ray diffraction, cyclic voltammetry, CHN elemental analysis and electronic paramagnetic resonance spectroscopy. The results showed that both polymers were formed in their oxidized form, with the CAA structure acting as a counter anion.

  12. Simultaneous microwave-assisted synthesis, characterization, thermal stability, and antimicrobial activity of cellulose/AgCl nanocomposites

    International Nuclear Information System (INIS)

    Li, Shu-Ming; Fu, Lian-Hua; Ma, Ming-Guo; Zhu, Jie-Fang; Sun, Run-Cang; Xu, Feng

    2012-01-01

    By means of a simultaneous microwave-assisted method and a simple chemical reaction, cellulose/AgCl nanocomposites have been successfully synthesized using cellulose solution and AgNO 3 in N,N-dimethylacetamide (DMAc) solvent. The cellulose solution was firstly prepared by the dissolution of the microcrystalline cellulose and lithium chloride (LiCl) in DMAc. DMAc acts as both a solvent and a microwave absorber. LiCl was used as the reactant to fabricate AgCl crystals. The effects of the heating time and heating temperature on the products were studied. This method is based on the simultaneous formation of AgCl nanoparticles and precipitation of the cellulose, leading to a homogeneous distribution of AgCl nanoparticles in the cellulose matrix. The experimental results confirmed the formation of cellulose/AgCl nanocomposites with high-purity, good thermal stability and antimicrobial activity. This rapid, green and environmentally friendly microwave-assisted method opens a new window to the high value-added applications of biomass. -- Highlights: ► Cellulose/AgCl nanocomposites have been synthesized by microwave method. ► Effect of heating temperature on the nanocomposites was researched. ► Thermal stability of the nanocomposites was investigated. ► Cellulose/AgCl nanocomposites had good antimicrobial activity. ► This method is based on the simultaneous formation of AgCl and cellulose.

  13. Ionic Liquid-assisted Synthesis of Cellulose/TiO2 Composite and Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    ZHU Mo-shuqi

    2016-12-01

    Full Text Available Cellulose/TiO2 composite was prepared by sol-gel method using the ionic liquid BMIMCl as reactive medium and Ti(OBu4 as a precursor. The synthesis conditions were optimized by single-factor experiment. The structure and properties of the composite were characterized by scanning electron microscope (SEM,X-ray diffraction(XRD,Fourier transform infrared spectoscopy(FT-IR,UV-vis-diffuse reflectance spectroscope(DRS and thermogravimetric (TG analysis. The photocatalytic activity of the composite was investigated via testing the photodegradation of methyl orange in aqueous suspension under UV-light. The results show that the high active photocatalytic composite is prepared by using ionic liquid BMIMCl as medium at room temperature and atmospheric pressure. The photo catalytic degradation rate of composite on methyl orange(MO reaches 97.09% in 80min. Comparing with bare TiO2, the degradation rate of MO increases by 37%. Moreover, the composite still shows 62.66% degradation rate towards MO after recycling 4 times.

  14. Statistical Optimization for Acid Hydrolysis of Microcrystalline Cellulose and Its Physiochemical Characterization by Using Metal Ion Catalyst

    Directory of Open Access Journals (Sweden)

    Md. Ziaul Karim

    2014-10-01

    Full Text Available Hydrolyzing the amorphous region while keeping the crystalline region unaltered is the key technology for producing nanocellulose. This study investigated if the dissolution properties of the amorphous region of microcrystalline cellulose can be enhanced in the presence of Fe3+ salt in acidic medium. The process parameters, including temperature, time and the concentration of metal chloride catalyst (FeCl3, were optimized by using the response surface methodology (RSM. The experimental observation demonstrated that temperature and time play vital roles in hydrolyzing the amorphous sections of cellulose. This would yield hydrocellulose with higher crystallinity. The factors that were varied for the production of hydrocellulose were the temperature (x1, time (x2 and FeCl3 catalyst concentration (x3. Responses were measured in terms of percentage of crystallinity (y1 and the yield (y2 of the prepared hydrocellulose. Relevant mathematical models were developed. Analysis of variance (ANOVA was carried out to obtain the most significant factors influencing the responses of the percentage of crystallinity and yield. Under optimum conditions, the percentage of crystallinity and yield were 83.46% and 86.98% respectively, at 90.95 °C, 6 h, with a catalyst concentration of 1 M. The physiochemical characteristics of the prepared hydrocellulose were determined in terms of XRD, SEM, TGA and FTIR analyses. The addition of FeCl3 salt in acid hydrolyzing medium is a novel technique for substantially increasing crystallinity with a significant morphological change.

  15. Oxidoreductive Cellulose Depolymerization by the Enzymes Cellobiose Dehydrogenase and Glycoside Hydrolase 61▿†

    Science.gov (United States)

    Langston, James A.; Shaghasi, Tarana; Abbate, Eric; Xu, Feng; Vlasenko, Elena; Sweeney, Matt D.

    2011-01-01

    Several members of the glycoside hydrolase 61 (GH61) family of proteins have recently been shown to dramatically increase the breakdown of lignocellulosic biomass by microbial hydrolytic cellulases. However, purified GH61 proteins have neither demonstrable direct hydrolase activity on various polysaccharide or lignacious components of biomass nor an apparent hydrolase active site. Cellobiose dehydrogenase (CDH) is a secreted flavocytochrome produced by many cellulose-degrading fungi with no well-understood biological function. Here we demonstrate that the binary combination of Thermoascus aurantiacus GH61A (TaGH61A) and Humicola insolens CDH (HiCDH) cleaves cellulose into soluble, oxidized oligosaccharides. TaGH61A-HiCDH activity on cellulose is shown to be nonredundant with the activities of canonical endocellulase and exocellulase enzymes in microcrystalline cellulose cleavage, and while the combination of TaGH61A and HiCDH cleaves highly crystalline bacterial cellulose, it does not cleave soluble cellodextrins. GH61 and CDH proteins are coexpressed and secreted by the thermophilic ascomycete Thielavia terrestris in response to environmental cellulose, and the combined activities of T. terrestris GH61 and T. terrestris CDH are shown to synergize with T. terrestris cellulose hydrolases in the breakdown of cellulose. The action of GH61 and CDH on cellulose may constitute an important, but overlooked, biological oxidoreductive system that functions in microbial lignocellulose degradation and has applications in industrial biomass utilization. PMID:21821740

  16. Modification of Bacterial Cellulose Biofilms with Xylan Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Sara M. Santos

    2017-11-01

    Full Text Available The effect of the addition of two [4-butyltrimethylammonium]-xylan chloride polyelectrolytes (BTMAXs on bacterial cellulose (BC was evaluated. The first strategy was to add the polyelectrolytes to the culture medium together with a cell suspension of the bacterium. After one week of cultivation, the films were collected and purified. The second approach consisted of obtaining a purified and homogenized BC, to which the polyelectrolytes were added subsequently. The films were characterized in terms of tear and burst indexes, optical properties, surface free energy, static contact angle, Gurley porosity, SEM, X-ray diffraction and AFM. Although there are small differences in mechanical and optical properties between the nanocomposites and control films, the films obtained by BC synthesis in the presence of BTMAXs were remarkably less opaque, rougher, and had a much lower specular gloss. The surface free energy depends on the BTMAXs addition method. The crystallinity of the composites is lower than that of the control material, with a higher reduction of this parameter in the composites obtained by adding the BTMAXs to the culture medium. In view of these results, it can be concluded that BC–BTMAX composites are a promising new material, for example, for paper restoration.

  17. Isolation and Characteristics of Cellulose and Nanocellulose from Lotus Leaf Stalk Agro-wastes

    Directory of Open Access Journals (Sweden)

    Yandan Chen

    2014-12-01

    Full Text Available Valorization of lotus leaf stalks (LLS produced as an abundantly available agro-waste was achieved through the extraction of value-added nanocellulose. Nanofibrillated cellulose (NFC was successfully prepared from LLS by using chemical pretreatment combined with high-intensity ultrasonication. The morphological characteristics of the chemically purified LLS cellulose microfibrils were characterized by optical microscopy and MorFi fiber analysis. Fourier transform infrared (FTIR spectroscopy indicated the extensive removal of non-cellulosic components after chemical pretreatment. The transmission electron microscopy (TEM results revealed agglomeration of the developed individual NFC, with a width of 20 ± 5 nm and length on a micron scale, into a network-like feature. X-ray diffraction results showed that the resulting NFC had a cellulose I crystal structure with a high crystallinity (70%. The NFC started to degrade at around 217 °C, and the peak rate of degradation occurred at 344 °C. Nanofibrils obtained from LLS have great potential as reinforcement agents in nanocomposites.

  18. Microwave-Assisted Combustion Synthesis of Nano Iron Oxide/Iron-Coated Activated Carbon, Anthracite, Cellulose Fiber, and Silica, with Arsenic Adsorption Studies

    Directory of Open Access Journals (Sweden)

    Mallikarjuna N. Nadagouda

    2011-01-01

    Full Text Available Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber, and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was completed within a few minutes. The method used no additional fuel and nitrate, which is present in the precursor itself, to drive the reaction. The obtained samples were then characterized with X-ray mapping, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDS, selected area diffraction pattern (SAED, transmission electron microscopy (TEM, X-ray diffraction (XRD, and inductively coupled plasma (ICP spectroscopy. The size of the iron oxide/iron nanoparticle-coated activated carbon, anthracite, cellulose fiber, and silica samples were found to be in the nano range (50–400 nm. The iron oxide/iron nanoparticles mostly crystallized into cubic symmetry which was confirmed by SAED. The XRD pattern indicated that iron oxide/iron nano particles existed in four major phases. That is, γ-Fe2O3, α-Fe2O3, Fe3O4, and Fe. These iron-coated activated carbon, anthracite, cellulose fiber, and silica samples were tested for arsenic adsorption through batch experiments, revealing that few samples had significant arsenic adsorption.

  19. Characteristics of unique HBr-hydrolyzed cellulose nanocrystals from freshwater green algae (Cladophora rupestris) and its reinforcement in starch-based film.

    Science.gov (United States)

    Sucaldito, Melvir R; Camacho, Drexel H

    2017-08-01

    Cellulose nanocrystals (CNCs) are promising materials that are readily extracted from plants and other cellulose-containing organisms. In this study, CNCs were isolated from freshwater green algae (Cladophora rupestris) thriving in a volcanic lake, using hydrobromic acid (HBr) hydrolysis. Morphological and structural studies revealed highly crystalline CNCs (94.0% crystallinity index) with preferred orientation to [100] lattice plane as shown by XRD measurements and have an average diameter of 20.0 (±4.4)nm as shown by TEM. Thermal studies showed increased temperature for thermal decomposition of CNCs (381.6°C), which is a result of HBr hydrolysis for CNCs isolation. The isolated CNCs were reinforced into starch based biocomposites via solution casting and evaporation method. Mechanical strength was improved as high as 78% upon addition of 1% cellulose nanocrystals in the films. The produced films are promising materials for their high mechanical strength, biodegradability and availability of raw materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Crystallinity and flux pinning properties of MgB2 bulks

    International Nuclear Information System (INIS)

    Yamamoto, A.; Shimoyama, J.; Ueda, S.; Katsura, Y.; Iwayama, I.; Horii, S.; Kishio, K.

    2006-01-01

    The relationship between flux pinning properties and crystallinity of MgB 2 bulks was systematically studied. Improved flux pinning properties under high fields were observed for samples with low crystallinity. Increased impurity scattering due to strain and defects in lattice corresponding to the degraded crystallinity was considered to enhance flux pinning strength at grain boundaries. Low-temperature synthesis and carbon substitution were confirmed to be effective for degrading crystallinity of MgB 2 bulks, resulting in high critical current properties under high fields

  1. Process optimization for obtaining nano cellulose from curaua fiber

    International Nuclear Information System (INIS)

    Lunz, Juliana do N.; Cordeiro, Suellem B.; Mota, Jose Carlos F.; Marques, Maria de Fatima V.

    2011-01-01

    This study focuses on the methodology for optimization to obtain nanocellulose from vegetal fibers. An experimental planning was carried out for the treatment of curaua fibers and parameters were estimated, having the concentration of H 2 SO 4 , hydrolysis time, reaction temperature and time of sonication applied as independent variables for further statistical analysis. According to the estimated parameters, the statistically significant effects were determined for the process of obtaining nanocellulose. According to the results obtained from the thermogravimetric analysis (TGA) it was observed that certain conditions led to cellulose with degradation temperatures near or even above that of untreated cellulose fibers. The crystallinity index (IC) obtained after fiber treatment (X-ray diffraction) were higher than that of the pure fiber. Treatments with high acid concentrations led to higher IC. (author)

  2. Suite of Activity-Based Probes for Cellulose-Degrading Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Chauvigne-Hines, Lacie M.; Anderson, Lindsey N.; Weaver, Holly M.; Brown, Joseph N.; Koech, Phillip K.; Nicora, Carrie D.; Hofstad, Beth A.; Smith, Richard D.; Wilkins, Michael J.; Callister, Stephen J.; Wright, Aaron T.

    2012-12-19

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic cellulose degrading systems, and facilitates a greater understanding of the organismal role associated within biofuel development.

  3. Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse.

    Science.gov (United States)

    El Achaby, Mounir; El Miri, Nassima; Aboulkas, Adil; Zahouily, Mohamed; Bilal, Essaid; Barakat, Abdellatif; Solhy, Abderrahim

    2017-03-01

    Novel synthesis strategy of eco-friendly bio-nanocomposite films have been exploited using cellulose nanocrystals (CNC) and polyvinyl alcohol/carboxymethyl cellulose (PVA/CMC) blend matrix as a potential in food packaging application. The CNC were extracted from sugarcane bagasse using sulfuric acid hydrolysis, and they were successfully characterized regarding their morphology, size, crystallinity and thermal stability. Thereafter, PVA/CMC-CNC bio-nanocomposite films, at various CNC contents (0.5-10wt%), were fabricated by the solvent casting method, and their properties were investigated. It was found that the addition of 5wt% CNC within a PVA/CMC increased the tensile modulus and strength by 141% and 83% respectively, and the water vapor permeability was reduced by 87%. Additionally, the bio-nanocomposites maintained the same transparency level of the PVA/CMC blend film (transmittance of ∼90% in the visible region), suggesting that the CNC were dispersed at the nanoscale. In these bio-nanocomposites, the adhesion properties and the large number of functional groups that are present in the CNC's surface and the macromolecular chains of the PVA/CMC blend are exploited to improve the interfacial interactions between the CNC and the blend. Consequently, these eco-friendly structured bio-nanocomposites with superior properties are expected to be useful in food packaging applications. Copyright © 2016. Published by Elsevier B.V.

  4. Synthesis of single-crystalline Al layers in sapphire

    International Nuclear Information System (INIS)

    Schlosser, W.; Lindner, J.K.N.; Zeitler, M.; Stritzker, B.

    1999-01-01

    Single-crystalline, buried aluminium layers were synthesized by 180 keV high-dose Al + ion implantation into sapphire at 500 deg. C. The approximately 70 nm thick Al layers exhibit in XTEM investigations locally abrupt interfaces to the single-crystalline Al 2 O 3 top layer and bulk, while thickness and depth position are subjected to variations. The layers grow by a ripening process of oriented Al precipitates, which at low doses exist at two different orientations. With increasing dose, precipitates with one out of the two orientations are observed to exist preferentially, finally leading to the formation of a single-crystalline layer. Al outdiffusion to the surface and the formation of spherical Al clusters at the surface are found to be competing processes to buried layer formation. The formation of Al layers is described by Rutherford Backscattering Spectroscopy (RBS), Cross-section transmission electron microscopy (XTEM) and Scanning electron microscopy (SEM) studies as a function of dose, temperature and substrate orientation

  5. ZnO Coatings with Controlled Pore Size, Crystallinity and Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Roman SCHMACK

    2016-05-01

    Full Text Available Zinc oxide is a wide bandgap semiconductor with unique optical, electrical and catalytic properties. Many of its practical applications rely on the materials pore structure, crystallinity and electrical conductivity. We report a synthesis method for ZnO films with ordered mesopore structure and tuneable crystallinity and electrical conductivity. The synthesis relies on dip-coating of solutions containing micelles of an amphiphilic block copolymer and complexes of Zn2+ ions with aliphatic ligands. A subsequent calcination at 400°C removes the template and induces crystallization of the pore walls. The pore structure is controlled by the template polymer, whereas the aliphatic ligands control the crystallinity of the pore walls. Complexes with a higher thermal stability result in ZnO films with a higher content of residual carbon, smaller ZnO crystals and therefore lower electrical conductivity. The paper discusses the ability of different types of ligands to assist in the synthesis of mesoporous ZnO and relates the structure and thermal stability of the precursor complexes to the crystallinity and electrical conductivity of the zinc oxide.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.8634

  6. Isotopic composition of cellulose from aquatic organisms

    International Nuclear Information System (INIS)

    DeNiro, M.J.; Epstein, S.

    1981-01-01

    The stable isotopic ratios of oxygen, carbon and the non-exchangeable carbon-bound hydrogen of cellulose from marine plants and animals collected in their natural habitats and from freshwater vascular plants grown in the laboratory under controlled conditions were determined. The delta 18 O values of cellulose from all the plants and animals were 27 +- 3 parts per thousand more positive than the delta 18 O values of the waters in which the organisms grew. Temperature had little or no influence on this relationship for three species of freshwater vascular plants that were analyzed. The deltaD values of the non-exchangeable hydrogen of cellulose from different organisms that grew in the same environment differed by large amounts. This difference ranged up to 200 parts per thousand for different species of algae collected at a single site; the corresponding difference for different species of tunicates and vascular plants was 60 and 20 parts per thousand respectively. The deltaD values of cellulose nitrate from different species of freshwater vascular plants grown in water of constant temperature and isotopic composition differed by as much as 60 parts per thousand. The relationship between the deltaD values of the carbon-bound hydrogen of cellulose and the water used in its synthesis displayed a significant temperature dependence for four species of freshwater vascular plants that were analyzed. (author)

  7. Formation of Highly Twisted Ribbons in a Carboxymethylcellulase Gene-Disrupted Strain of a Cellulose-Producing Bacterium

    Science.gov (United States)

    Sugano, Yasushi; Shoda, Makoto; Sakakibara, Hitoshi; Oiwa, Kazuhiro; Tuzi, Satoru; Imai, Tomoya; Sugiyama, Junji; Takeuchi, Miyuki; Yamauchi, Daisuke

    2013-01-01

    Cellulases are enzymes that normally digest cellulose; however, some are known to play essential roles in cellulose biosynthesis. Although some endogenous cellulases of plants and cellulose-producing bacteria are reportedly involved in cellulose production, their functions in cellulose production are unknown. In this study, we demonstrated that disruption of the cellulase (carboxymethylcellulase) gene causes irregular packing of de novo-synthesized fibrils in Gluconacetobacter xylinus, a cellulose-producing bacterium. Cellulose production was remarkably reduced and small amounts of particulate material were accumulated in the culture of a cmcax-disrupted G. xylinus strain (F2-2). The particulate material was shown to contain cellulose by both solid-state 13C nuclear magnetic resonance analysis and Fourier transform infrared spectroscopy analysis. Electron microscopy revealed that the cellulose fibrils produced by the F2-2 cells were highly twisted compared with those produced by control cells. This hypertwisting of the fibrils may reduce cellulose synthesis in the F2-2 strains. PMID:23243308

  8. Cellulose acetate nanocomposite with nanocellulose obtained from bagasse of sugarcane

    International Nuclear Information System (INIS)

    Santos, Frirllei Cardozo dos

    2016-01-01

    This study presents a methodology for the extraction of nanocellulose of sugarcane bagasse for use in nanocomposites with cellulose acetate (CA). The bagasse sugarcane was treated with sodium hydroxide (NaOH) and sodium hypochlorite (NaClO) to remove lignin, hemicellulose, pectin and impurities. For removal of the amorphous region of cellulose microfibrils obtained from alkali treatments were submitted to acid hydrolysis with sulfuric acid under different temperature conditions. The nanocellulose obtained through acid hydrolysis heated at 45 ° C was used for the formulation of nanocomposites by smaller dimensions presented. The films were formulated at different concentrations (1, 2, 4 and 6 wt%) by the casting technique at room temperature. Each alkaline treatment was accompanied by spectrophotometry by infrared and fluorescence analysis to confirm the removal of the amorphous fraction, micrographs carried out by Scanning Electron Microscope (SEM) to display the fiber defibration. The efficiency of acid hydrolysis was confirmed by micrographs obtained by transmission electron microscope (TEM). The crystallinity index (CI) of the nanocrystals was determined by X-ray Diffraction (XRD). The surface of the obtained films were characterized by SEM and AFM microscopy of. The results showed that the sugarcane bagasse is an excellent source for nanocellulose extraction, the amorphous fraction of the fiber can be removed with the suggested alkaline treatments, and hydrolysis with H_2SO_4 was efficient both in the removal of amorphous cellulose as in reducing cellulose nanoscale with a length around 250 nm and a diameter of about 10 nm. The use of heated nanocellulose obtained through hydrolysis was selected after analysis of XRD, it was confirmed that this material had higher when compared to IC hydrolysis at room temperature. The nanocomposites showed high rigidity and brittleness with high crystallinity when compared to the pure polymer film was observed by AFM and SEM

  9. Protein synthesis in x-irradiated rabbit lens

    International Nuclear Information System (INIS)

    Garadi, R.; Foltyn, A.R.; Giblin, F.J.; Reddy, V.N.

    1984-01-01

    The present study deals with the incorporation of 35 S methionine into lens crystallins as a function of time after x-irradiation. Crystallin synthesis is first affected approximately 4 weeks following x-irradiation. This coincides with the time period at which the ratio of the two cations in the lens is affected, as shown in earlier studies. A greater decrease in 35 S-methionine incorporation into crystallins is observed between 5-7 weeks following x-irradiation in good agreement with a cation imbalance at these time intervals. These studies also revealed for the first time that the change in cation distribution can affect not only crystallin synthesis, but also the synthesis of certain polypeptides of lens membranes. No alteration in protein synthesis could be detected in lens epithelium even after 7 weeks following irradiation. In addition to the effect of Na+ and K+ levels on protein synthesis, an impaired transport of amino acids into the x-rayed lens was also found to be a factor in the observed reduction in synthesis of the crystallin, cytoskeletal and membrane proteins of the fiber cells. It is concluded that Na+/K+ ratio as well as the availability of amino acids in the lens are important factors in protein synthesis of x-ray cataracts

  10. A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis.

    Science.gov (United States)

    Sato, Katsutoshi; Imamura, Kazuya; Kawano, Yukiko; Miyahara, Shin-Ichiro; Yamamoto, Tomokazu; Matsumura, Syo; Nagaoka, Katsutoshi

    2017-01-01

    Ammonia is a crucial chemical feedstock for fertilizer production and is a potential energy carrier. However, the current method of synthesizing ammonia, the Haber-Bosch process, consumes a great deal of energy. To reduce energy consumption, a process and a substance that can catalyze ammonia synthesis under mild conditions (low temperature and low pressure) are strongly needed. Here we show that Ru/Pr 2 O 3 without any dopant catalyzes ammonia synthesis under mild conditions at 1.8 times the rates reported with other highly active catalysts. Scanning transmission electron micrograph observations and energy dispersive X-ray analyses revealed the formation of low-crystalline nano-layers of ruthenium on the surface of Pr 2 O 3 . Furthermore, CO 2 temperature-programmed desorption revealed that the catalyst was strongly basic. These unique structural and electronic characteristics are considered to synergistically accelerate the rate-determining step of NH 3 synthesis, cleavage of the N 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000

  11. Preparation of amino-functionalized regenerated cellulose membranes with high catalytic activity.

    Science.gov (United States)

    Wang, Wei; Bai, Qian; Liang, Tao; Bai, Huiyu; Liu, Xiaoya

    2017-09-01

    The modification of regenerated cellulose (RC) membranes was carried out by using silane coupling agents presenting primary and secondary amino-groups. The grafting of the amino groups onto the modified cellulose molecule was confirmed by X-ray photoelectron spectroscopies and 13 C nuclear magnetic resonance spectroscopic analyses. The crystallinity of the cellulose membranes (CM) decreased after chemical modification as indicated by the X-ray diffraction results. Moreover, a denser structure was observed at the surface and cross section of the modified membranes by SEM images. The contact angle measurements showed that the silane coupling treatment enhanced the hydrophobicity of the obtained materials. Then the catalytic properties of two types of modified membranes were studied in a batch process by evaluating their catalytic performance in a Knoevenagel condensation. The results indicated that the cellulose membrane grafted with many secondary amines exhibited a better catalytic activity compared to the one grafted only by primary amines. In addition, the compact structure of the modified membranes permitted their application in a pervaporation catalytic membrane reactor. Therefore, functional CM that prepared in this paper represented a promising material in the field of industrial catalysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Exploration of a Chemo-Mechanical Technique for the Isolation of Nanofibrillated Cellulosic Fiber from Oil Palm Empty Fruit Bunch as a Reinforcing Agent in Composites Materials

    Directory of Open Access Journals (Sweden)

    Ireana Yusra A. Fatah

    2014-10-01

    Full Text Available The aim of the present study was to determine the influence of sulphuric acid hydrolysis and high-pressure homogenization as an effective chemo-mechanical process for the isolation of quality nanofibrillated cellulose (NFC. The cellulosic fiber was isolated from oil palm empty fruit bunch (OPEFB using acid hydrolysis methods and, subsequently, homogenized using a high-pressure homogenizer to produce NFC. The structural analysis and the crystallinity of the raw fiber and extracted cellulose were carried out by Fourier transform infrared spectroscopy (FT-IR and X-ray diffraction (XRD. The morphology and thermal stability were investigated by scanning electron microscopy (SEM, transmission electron microscopy (TEM and thermogravimetric (TGA analyses, respectively. The FTIR results showed that lignin and hemicellulose were removed effectively from the extracted cellulose nanofibrils. XRD analysis revealed that the percentage of crystallinity was increased from raw EFB to microfibrillated cellulose (MFC, but the decrease for NFC might due to a break down the hydrogen bond. The size of the NFC was determined within the 5 to 10 nm. The TGA analysis showed that the isolated NFC had high thermal stability. The finding of present study reveals that combination of sulphuric acid hydrolysis and high-pressure homogenization could be an effective chemo-mechanical process to isolate cellulose nanofibers from cellulosic plant fiber for reinforced composite materials.

  13. Extraction and characterization of cellulose microfibrils from agricultural residue –Cocos nucifera L

    International Nuclear Information System (INIS)

    Uma Maheswari, C.; Obi Reddy, K.; Muzenda, E.; Guduri, B.R.; Varada Rajulu, A.

    2012-01-01

    The aim of this study was to extract cellulose microfibrils from the agricultural residue of coconut palm leaf sheath using chlorination and alkaline extraction process. Chemical characterization of the cellulose microfibrils confirmed that the α-cellulose mass fraction increased from 0.373 kg kg −1 to 0.896 kg kg −1 after application of several treatments including dewaxing, chlorite delignification and alkaline extraction of hemicelluloses. Similarly, the crystallinity index obtained from X-ray diffraction for leaf sheath and extracted cellulose microfibrils was found to be 42.3 and 47.7 respectively. The morphology of the cellulose microfibrils was investigated by scanning electron microscopy. The cellulose microfibrils had diameters in the range of 10–15 μm. Fourier transform infrared and Nuclear magnetic resonance spectroscopy showed that the chemical treatments removed most of the hemicellulose and lignin from the leaf sheath fibers. The thermal stability of the fibers was analyzed using thermogravimetric analysis, which demonstrated that this thermal stability was enhanced noticeably for cellulose microfibrils. This work provides a new approach for more effective utilization of coconut palm leaf sheaths to examine their potential use as pulp and paper and reinforcement fibers in biocomposite applications. -- Highlights: ► Utilization of Coconut palm leaf sheath as an alternate material for cellulose extraction. ► Using an abundant natural waste for paper pulp, biofilms and composite applications. ► Cellulose microfibrils have higher cellulose content than the leaf sheath. ► FTIR and NMR were used to study fiber structural changes during several treatments. ► Thermal stability of microfibrils is higher than their respective leaf sheath.

  14. Nano-Structural Investigation on Cellulose Highly Dissolved in Ionic Liquid: A Small Angle X-ray Scattering Study

    Directory of Open Access Journals (Sweden)

    Takatsugu Endo

    2017-01-01

    Full Text Available We investigated nano-structural changes of cellulose dissolved in 1-ethyl-3-methylimidazolium acetate—an ionic liquid (IL—using a small angle X-ray scattering (SAXS technique over the entire concentration range (0–100 mol %. Fibril structures of cellulose disappeared at 40 mol % of cellulose, which is a significantly higher concentration than the maximum concentration of dissolution (24–28 mol % previously determined in this IL. This behavior is explained by the presence of the anion bridging, whereby an anion prefers to interact with multiple OH groups of different cellulose molecules at high concentrations, discovered in our recent work. Furthermore, we observed the emergence of two aggregated nano-structures in the concentration range of 30–80 mol %. The diameter of one structure was 12–20 nm, dependent on concentration, which is ascribed to cellulose chain entanglement. In contrast, the other with 4.1 nm diameter exhibited concentration independence and is reminiscent of a cellulose microfibril, reflecting the occurrence of nanofibrillation. These results contribute to an understanding of the dissolution mechanism of cellulose in ILs. Finally, we unexpectedly proposed a novel cellulose/IL composite: the cellulose/IL mixtures of 30–50 mol % that possess liquid crystallinity are sufficiently hard to be moldable.

  15. Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity.

    Science.gov (United States)

    Wijesinghe, W P S L; Mantilaka, M M M G P G; Premalal, E V A; Herath, H M T U; Mahalingam, S; Edirisinghe, M; Rajapakse, R P V J; Rajapakse, R M G

    2014-09-01

    Synthetic hydroxyapatite (HA) nanoparticles, that mimic natural HA, are widely used as biocompatible coatings on prostheses to repair and substitute human bones. In this study, HA nanoparticles are prepared by precipitating them from a precursor solution containing calcium sucrate and ammonium dihydrogen orthophosphate, at a Ca/P mole ratio of 1.67:1, at temperatures, ranging from 10°C to 95°C. A set of products, prepared at different temperatures, is analyzed for their crystallinity, crystallite size, morphology, thermal stability and composition, by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopic techniques, while the other set is analyzed after calcining the respective products, soon after their synthesis, for 3h, at 700°C. The as-prepared products, after 2h of drying, without any calcination, are not crystalline, but they grow very slowly into needle-like morphologies, as they are ripened with time. The percentage crystallinity of the final products increases from 15% to 52%, with increasing the preparative temperature. The calcined samples always produce spherical nanoparticles of essentially the same diameter, between 90 nm and 100 nm, which does not change due to aging and preparative temperatures. Therefore, the same method can be utilized to synthesize both spherical and needle-like nanoparticles of hydroxyapatite, with well-defined sizes and shapes. The ability to use readily available cheap raw materials, for the synthesis of such well-defined crystallites of hydroxyapatite, is an added advantage of this method, which may be explored further for the scaling up of the procedures to suit to industrial scale synthesis of such hydroxyapatite nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Extraction and characterization of cellulose nano whiskers from balsa wood; Extracao e caracterizacao de nanocristais de celulose obtidos da madeira balsa

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, Carolina L.; Bretas, Rosario E.S., E-mail: bretas@ufscar.br [Universidade Federal de Sao Carlos - UFSCar, Sao Carlos, SP (Brazil); Marconcini, Jose M. [Embrapa Instrumentacao, Sao Carlos, SP (Brazil); Pereira, Fabiano V. [Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG (Brazil); Branciforti, Marcia C. [Universidade de Sao Paulo - USP, Sao Carlos, SP (Brazil)

    2011-07-01

    In this study cellulose nano whiskers were obtained from balsa wood. For this purpose, fibers of balsa wood were subjected to hydrolysis reactions for lignin and hemi cellulose digestion and acquisition of nano-scale cellulose. Cellulose nano crystals obtained had medium length and thickness of 176 nm and 7 nm respectively. Infrared spectroscopy and x-ray diffraction showed that the process used for extracting nano whiskers could digest nearly all the lignin and hemi cellulose from the balsa fiber and still preserve the aspect ratio and crystallinity, satisfactory enough for future application in polymer nano composites. Thermogravimetry showed that the onset temperature of thermal degradation of cellulose nano crystals (226 degree C) was higher than the temperature of the balsa fiber (215 degree C), allowing its use in molding processes with many polymers from the molten state.(author)

  17. Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds.

    Science.gov (United States)

    Owolabi, Abdulwahab F; Haafiz, M K Mohamad; Hossain, Md Sohrab; Hussin, M Hazwan; Fazita, M R Nurul

    2017-02-01

    In the present study, microcrystalline cellulose (MCC) was isolated from oil palm fronds (OPF) using chemo-mechanical process. Wherein, alkaline hydrogen peroxide (AHP) was utilized to extract OPF fibre at different AHP concentrations. The OPF pulp fibre was then bleached with acidified sodium chlorite solution followed by the acid hydrolysis using hydrochloric acid. Several analytical methods were conducted to determine the influence of AHP concentration on thermal properties, morphological properties, microscopic and crystalline behaviour of isolated MCC. Results showed that the MCC extracted from OPF fibres had fibre diameters of 7.55-9.11nm. X-ray diffraction (XRD) analyses revealed that the obtained microcrystalline fibre had both celluloses I and cellulose II polymorphs structure, depending on the AHP concentrations. The Fourier transmission infrared (FTIR) analyses showed that the AHP pre-hydrolysis was successfully removed hemicelluloses and lignin from the OPF fibre. The crystallinity of the MCC was increased with the AHP concentrations. The degradation temperature of MCC was about 300°C. The finding of the present study showed that pre-treatment process potentially influenced the quality of the isolation of MCC from oil palm fronds. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effects of acid impregnated steam explosion process on xylose recovery and enzymatic conversion of cellulose in corncob.

    Science.gov (United States)

    Fan, Xiaoguang; Cheng, Gang; Zhang, Hongjia; Li, Menghua; Wang, Shizeng; Yuan, Qipeng

    2014-12-19

    Corncob residue is a cellulose-rich byproduct obtained from industrial xylose production via dilute acid hydrolysis processes. Enzymatic hydrolysis of cellulose in acid hydrolysis residue of corncob (AHRC) is often less efficient without further pretreatment. In this work, the process characteristics of acid impregnated steam explosion were studied in conjunction with a dilute acid process, and their effects on physiochemical changes and enzymatic saccharification of corncob residue were compared. With the acid impregnated steam explosion process, both higher xylose recovery and higher cellulose conversion were obtained. The maximum conversion of cellulose in acid impregnated steam explosion residue of corncob (ASERC) reached 85.3%, which was 1.6 times higher than that of AHRC. Biomass compositional analysis showed similar cellulose and lignin content in ASERC and AHRC. XRD analysis demonstrated comparable crystallinity of ASERC and AHRC. The improved enzymatic hydrolysis efficiency was attributed to higher porosity in ASERC, measured by mercury porosimetry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Exploration of a Chemo-Mechanical Technique for the Isolation of Nanofibrillated Cellulosic Fiber from Oil Palm Empty Fruit Bunch as a Reinforcing Agent in Composites Materials

    OpenAIRE

    Ireana Yusra A. Fatah; H. P. S. Abdul Khalil; Md. Sohrab Hossain; Astimar A. Aziz; Yalda Davoudpour; Rudi Dungani; Amir Bhat

    2014-01-01

    The aim of the present study was to determine the influence of sulphuric acid hydrolysis and high-pressure homogenization as an effective chemo-mechanical process for the isolation of quality nanofibrillated cellulose (NFC). The cellulosic fiber was isolated from oil palm empty fruit bunch (OPEFB) using acid hydrolysis methods and, subsequently, homogenized using a high-pressure homogenizer to produce NFC. The structural analysis and the crystallinity of the raw fiber and extracted cellulose ...

  20. Homogeneous synthesis of Ag nanoparticles-doped water-soluble cellulose acetate for versatile applications.

    Science.gov (United States)

    Cao, Jie; Sun, Xunwen; Zhang, Xinxing; Lu, Canhui

    2016-11-01

    We report a facile and efficient approach for synthesis of well-dispersed and stable silver nanoparticles (Ag NPs) using water-soluble cellulose acetate (CA) as both reductant and stabilizer. Partially substituted CA with highly active hydroxyl groups and excellent water-solubility is able to reduce silver ions in homogeneous aqueous medium effectively. The synthesized Ag NPs were characterized by UV-vis spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscope analysis. The as-prepared Ag NPs were well-dispersed, showing a surface plasmon resonance peak at 426nm. The resulted Ag NPs@CA nanohybrids exhibit high catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH 4 . Meanwhile, the nanohybrids are also effective in inhibiting the growth of bacterial. This environmentally friendly method promotes the use of renewable natural resources to prepare a variety of inorganic-organic materials for catalysis, antibacterial, sensors and other applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A novel method for preparing microfibrillated cellulose from bamboo fibers

    International Nuclear Information System (INIS)

    Nguyen, Huu Dat; Nguyen, Ngoc Bich; Dang, Thanh Duy; Thuy Mai, Thi Thanh; Phung Le, My Loan; Tran, Van Man; Dang, Tan Tai

    2013-01-01

    The bamboo fiber is a potential candidate for biomass and power source application. In this study, microfibrillated cellulose (MFC) is prepared from raw fibers of bamboo tree (Bambusa Blumeana J A and J H Schultes) by an alkali treatment at room temperature in association with a bleaching treatment followed by a sulfuric acid hydrolysis. Field-emission scanning electron microscopy (FESEM) images indicated that final products ranged from 20 to 40 nm in diameter. The chemical composition measurement and Fourier transform infrared (FTIR) spectroscopy showed that both hemicellulose and lignin are mostly removed in the MFC. The x-ray diffraction (XRD) results also show that MFC has crystallinity of more than 70%. The thermogravimetric analysis (TGA) curves revealed that cellulose microfibers have a two-step thermal decomposition behavior owing to the attachment of sulfated groups onto the cellulose surface in the hydrolysis process with sulfuric acid. The obtained MFCs may have potential applications in alternative power sources as biomass, in pharmaceutical and optical industries as additives, as well as in composite fields as a reinforcement phase. (paper)

  2. Synthesis of Monodispersed Spherical Single Crystalline Silver Particles by Wet Chemical Process; Shisshiki kagakuho ni yoru tanbunsankyujo tankesshoginryushi no gose

    Energy Technology Data Exchange (ETDEWEB)

    Ueyama, Ryousuke.; Harada, Masahiro.; Ueyama, Tamotsu.; Harada, Akio. [Daiken Chemistry Industry Corporation, Osaka (Japan); Yamamoto, Takashi. [National Defence Academy, Kanagawa (Japan). Dept. of Electrical Engineering; Shiosaki, Tadashi. [Nara Institute of Science and Technology, Nara (Japan). Graduate School of Materials Science; Kuribayashi, Kiyoshi. [Teikyo University of Science and Technology, Yamanashi (Japan). Dept. of Materials

    1999-01-01

    Ultrafine silver monodispersed particle were prepared by wet chemical process. To decrease the reduction speed, an important factor in generating monodispersed particles is to control the following three factors: synthesis temperature, concentration of aggregation-relaxing agent added, and concentration of silver nitrate solution. Synthesis of monodispersed spherical Ag particles, used as metal powders for electrode, became possible using the nucleus grouwth reaction method. This process also allowed the control of the diameter of the powder particles. The silver particles were distributed in ta narrow particle diameter range with on average of 0.5 {mu}m. Transmission electron microscopy (TEM) revealed that single-crystalline silver particles were prepared by the present method. (author)

  3. Modeling the minimum enzymatic requirements for optimal cellulose conversion

    International Nuclear Information System (INIS)

    Den Haan, R; Van Zyl, W H; Van Zyl, J M; Harms, T M

    2013-01-01

    Hydrolysis of cellulose is achieved by the synergistic action of endoglucanases, exoglucanases and β-glucosidases. Most cellulolytic microorganisms produce a varied array of these enzymes and the relative roles of the components are not easily defined or quantified. In this study we have used partially purified cellulases produced heterologously in the yeast Saccharomyces cerevisiae to increase our understanding of the roles of some of these components. CBH1 (Cel7), CBH2 (Cel6) and EG2 (Cel5) were separately produced in recombinant yeast strains, allowing their isolation free of any contaminating cellulolytic activity. Binary and ternary mixtures of the enzymes at loadings ranging between 3 and 100 mg g −1 Avicel allowed us to illustrate the relative roles of the enzymes and their levels of synergy. A mathematical model was created to simulate the interactions of these enzymes on crystalline cellulose, under both isolated and synergistic conditions. Laboratory results from the various mixtures at a range of loadings of recombinant enzymes allowed refinement of the mathematical model. The model can further be used to predict the optimal synergistic mixes of the enzymes. This information can subsequently be applied to help to determine the minimum protein requirement for complete hydrolysis of cellulose. Such knowledge will be greatly informative for the design of better enzymatic cocktails or processing organisms for the conversion of cellulosic biomass to commodity products. (letter)

  4. Solar assisted alkali pretreatment of garden biomass: Effects on lignocellulose degradation, enzymatic hydrolysis, crystallinity and ultra-structural changes in lignocellulose

    International Nuclear Information System (INIS)

    Gabhane, Jagdish; William, S.P.M. Prince; Vaidya, Atul N.; Das, Sera; Wate, Satish R.

    2015-01-01

    Highlights: • SAAP is an efficient and economic means of pretreatment. • SAAP was found to be efficient in lignin and hemicellulose removal. • SAAP enhanced the enzymatic hydrolysis. • FTIR, XRD and SEM provided vivid understanding about the mode of action of SAAP. • Mass balance closer of 98% for pretreated GB confirmed the reliability of SAAP. - Abstract: A comprehensive study was carried out to assess the effectiveness of solar assisted alkali pretreatment (SAAP) on garden biomass (GB). The pretreatment efficiency was assessed based on lignocellulose degradation, conversion of cellulose into reducing sugars, changes in the ultra-structure and functional groups of lignocellulose and impact on the crystallinity of cellulose, etc. SAAP was found to be efficient for the removal of lignin and hemicellulose that facilitated enzymatic hydrolysis of cellulose. FTIR and XRD studies provided details on the effectiveness of SAAP on lignocellulosic moiety and crystallinity of cellulose. Scanning electron microscopic analysis showed ultra-structural disturbances in the microfibrils of GB as a result of pretreatment. The mass balance closer of 97.87% after pretreatment confirmed the reliability of SAAP pretreatment. Based on the results, it is concluded that SAAP is not only an efficient means of pretreatment but also economical as it involved no energy expenditure for heat generation during pretreatment

  5. Liquid crystalline tactoids: ordered structure, defective coalescence and evolution in confined geometries

    Science.gov (United States)

    Wang, Pei-Xi; MacLachlan, Mark J.

    2017-12-01

    Tactoids are liquid crystalline microdroplets that spontaneously nucleate from isotropic dispersions, and transform into macroscopic anisotropic phases. These intermediate structures have been found in a range of molecular, polymeric and colloidal liquid crystals. Typically only studied by polarized optical microscopy, these ordered but easily deformable microdroplets are now emerging as interesting components for structural investigations and developing new materials. In this review, we highlight the structure, property and transformation of tactoids in different compositions, but especially cellulose nanocrystals. We have selected references that illustrate the diversity and most exciting developments in tactoid research, while capturing the historical development of this field. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  6. Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation

    Science.gov (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2013-01-01

    The elastic modulus of cellulose Iß in the axial and transverse directions was obtained from atomistic simulations using both the standard uniform deformation approach and a complementary approach based on nanoscale indentation. This allowed comparisons between the methods and closer connectivity to experimental measurement techniques. A reactive...

  7. Oxalic acid induced hydrothermal synthesis of single crystalline tungsten oxide nanorods

    International Nuclear Information System (INIS)

    Patil, V.B.; Adhyapak, P.V.; Suryavanshi, S.S.; Mulla, I.S.

    2014-01-01

    Highlights: • We report synthesis of 1D tungsten oxide using a hydrothermal route at 170 °C. • Oxalic acid plays an important role in the formation of 1D nanostructure. • Monoclinic transforms to hexagonal phase with increment in reaction duration. -- Abstract: One-dimensional single-crystalline tungsten oxide nanorods have been synthesized by the hydrothermal technique. The controlled morphology of tungsten oxide was obtained by using sodium tungstate and oxalic acid as an organic inducer. The reaction was carried out at 170 °C for 24, 48 and 72 h. The obtained tungsten oxides were investigated by using XRD, SEM and HRTEM techniques. In order to understand the role of organic inducer on the shape, size and phase formation of WO 3 was prepared with and without organic inducer. On heating of sodium tungstate without organic inducer for 72 h at 170 °C in the hydrothermal unit we obtain nanoparticles of monoclinic WO 3 , however, on addition of oxalic acid a single phase hexagonal WO 3 with distinct nanorods was formed. On addition of oxalic acid a systematic emergence of nanorod-like morphology was obtained with incrementing reaction times from 24 h to 48 h. The 72 h reaction generates self-assembled 20–30 nm diameter and 4–5 μm long h-WO 3 bundles of nanorods. The XRD studies show hexagonal structure of tungsten oxide, while SAED reveals its single crystalline nature. The photoluminescence (PL) emission spectrum shows a characteristic blue emission peak at 3 eV (410 nm). Raman spectra provide the evidence of hexagonal structure with stretching vibrations (830 cm −1 ) for 72 h of heating at 170 °C

  8. Oxalic acid induced hydrothermal synthesis of single crystalline tungsten oxide nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Patil, V.B. [School of Physical Sciences, Solapur University, Solapur 413255 (India); Adhyapak, P.V. [Centre for Materials for Electronic Technology (C-MET), Pune 411008 (India); Suryavanshi, S.S., E-mail: sssuryavanshi@rediffmail.com [School of Physical Sciences, Solapur University, Solapur 413255 (India); Mulla, I.S., E-mail: ismulla2001@gmail.com [Emeritus Scientist (CSIR), Centre for Materials for Electronic Technology (C-MET), Pune 411008 (India)

    2014-03-25

    Highlights: • We report synthesis of 1D tungsten oxide using a hydrothermal route at 170 °C. • Oxalic acid plays an important role in the formation of 1D nanostructure. • Monoclinic transforms to hexagonal phase with increment in reaction duration. -- Abstract: One-dimensional single-crystalline tungsten oxide nanorods have been synthesized by the hydrothermal technique. The controlled morphology of tungsten oxide was obtained by using sodium tungstate and oxalic acid as an organic inducer. The reaction was carried out at 170 °C for 24, 48 and 72 h. The obtained tungsten oxides were investigated by using XRD, SEM and HRTEM techniques. In order to understand the role of organic inducer on the shape, size and phase formation of WO{sub 3} was prepared with and without organic inducer. On heating of sodium tungstate without organic inducer for 72 h at 170 °C in the hydrothermal unit we obtain nanoparticles of monoclinic WO{sub 3}, however, on addition of oxalic acid a single phase hexagonal WO{sub 3} with distinct nanorods was formed. On addition of oxalic acid a systematic emergence of nanorod-like morphology was obtained with incrementing reaction times from 24 h to 48 h. The 72 h reaction generates self-assembled 20–30 nm diameter and 4–5 μm long h-WO{sub 3} bundles of nanorods. The XRD studies show hexagonal structure of tungsten oxide, while SAED reveals its single crystalline nature. The photoluminescence (PL) emission spectrum shows a characteristic blue emission peak at 3 eV (410 nm). Raman spectra provide the evidence of hexagonal structure with stretching vibrations (830 cm{sup −1}) for 72 h of heating at 170 °C.

  9. Cellulose aerogels functionalized with polypyrrole and silver nanoparticles: In-situ synthesis, characterization and antibacterial activity.

    Science.gov (United States)

    Wan, Caichao; Li, Jian

    2016-08-01

    Green porous and lightweight cellulose aerogels have been considered as promising candidates to substitute some petrochemical host materials to support various nanomaterials. In this work, waste wheat straw was collected as feedstock to fabricate cellulose hydrogels, and a green inexpensive NaOH/polyethylene glycol solution was used as cellulose solvent. Prior to freeze-drying treatment, the cellulose hydrogels were integrated with polypyrrole and silver nanoparticles by easily-operated in-situ oxidative polymerization of pyrrole using silver ions as oxidizing agent. The tri-component hybrid aerogels were characterized by scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectroscopy, selected area electron diffraction, X-ray photoelectron spectroscopy, and X-ray diffraction. Moreover, the antibacterial activity of the hybrid aerogels against Escherichia coli (Gram-negative), Staphylococcus aureus (Gram-positive) and Listeria monocytogenes (intracellular bacteria) was qualitatively and quantitatively investigated by parallel streak method and determination of minimal inhibitory concentration, respectively. This work provides an example of combining cellulose aerogels with nanomaterials, and helps to develop novel forms of cellulose-based functional materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Conversion of industrial (ligno)cellulose feeds to isosorbide with heteropoly acids and Ru on carbon

    Energy Technology Data Exchange (ETDEWEB)

    Op de Beeck, B.; Van Lishout, J.; Jacobs, P.A.; Sels, B.F. [Centre for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium); Geboers, J. [Max-Planck-Institut fuer Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim an der Ruhr (Germany); Van de Vyver, S. [Massachusetts Institute of Technology MIT, Massachusetts Avenue 77, Cambridge, MA 02139-4307 (United States); Snelders, J.; Courtin, C.M. [Centre for Food and Microbial Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Heverlee (Belgium); Huijgen, W.J.J. [Biomass and Energy Efficiency BEE, Energy research Centre of the Netherlands ECN, Westerduinweg 3, 1755 LE Petten (Netherlands)

    2013-01-11

    The catalytic valorization of cellulose is currently subject of intense research. Isosorbide is among the most interesting products that can be formed from cellulose as it is a potential platform molecule and can be used for the synthesis of a wide range of pharmaceuticals, chemicals, and polymers. A promising direct route from cellulose to isosorbide is presented in this work. The strategy relies on a one-pot bifunctional catalytic concept, combining heteropoly acids, viz. H4SiW12O40, and redox catalysts, viz. commercial Ru on carbon, under H2 pressure. Starting from pure microcrystalline cellulose, a rapid conversion was observed, resulting in over 50% isosorbide yield. The robustness of the developed system is evidenced by the conversion of a range of impure cellulose pulps obtained by organosolv fractionation, with isosorbide yields up to 63%. Results were compared with other (ligno)cellulose feedstocks, highlighting the importance of fractionation and purification to increase reactivity and convertibility of the cellulose feedstock.

  11. A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications.

    Science.gov (United States)

    Zulkifli, Farah Hanani; Hussain, Fathima Shahitha Jahir; Zeyohannes, Senait Sileshi; Rasad, Mohammad Syaiful Bahari Abdull; Yusuff, Mashitah M

    2017-10-01

    Green porous and ecofriendly scaffolds have been considered as one of the potent candidates for tissue engineering substitutes. The objective of this study is to investigate the biocompatibility of hydroxyethyl cellulose (HEC)/silver nanoparticles (AgNPs), prepared by the green synthesis method as a potential host material for skin tissue applications. The substrates which contained varied concentrations of AgNO 3 (0.4%-1.6%) were formed in the presence of HEC, were dissolved in a single step in water. The presence of AgNPs was confirmed visually by the change of color from colorless to dark brown, and was fabricated via freeze-drying technique. The outcomes exhibited significant porosity of >80%, moderate degradation rate, and tremendous value of water absorption up to 1163% in all samples. These scaffolds of HEC/AgNPs were further characterized by SEM, UV-Vis, ATR-FTIR, TGA, and DSC. All scaffolds possessed open interconnected pore size in the range of 50-150μm. The characteristic peaks of Ag in the UV-Vis spectra (417-421nm) revealed the formation of AgNPs in the blend composite. ATR-FTIR curve showed new existing peak, which implies the oxidation of HEC in the cellulose derivatives. The DSC thermogram showed augmentation in T g with increased AgNO 3 concentration. Preliminary studies of cytotoxicity were carried out in vitro by implementation of the hFB cells on the scaffolds. The results substantiated low toxicity of HEC/AgNPs scaffolds, thus exhibiting an ideal characteristic in skin tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A coarse-grained model for synergistic action of multiple enzymes on cellulose

    Directory of Open Access Journals (Sweden)

    Asztalos Andrea

    2012-08-01

    Full Text Available Abstract Background Degradation of cellulose to glucose requires the cooperative action of three classes of enzymes, collectively known as cellulases. Endoglucanases randomly bind to cellulose surfaces and generate new chain ends by hydrolyzing β-1,4-D-glycosidic bonds. Exoglucanases bind to free chain ends and hydrolyze glycosidic bonds in a processive manner releasing cellobiose units. Then, β-glucosidases hydrolyze soluble cellobiose to glucose. Optimal synergistic action of these enzymes is essential for efficient digestion of cellulose. Experiments show that as hydrolysis proceeds and the cellulose substrate becomes more heterogeneous, the overall degradation slows down. As catalysis occurs on the surface of crystalline cellulose, several factors affect the overall hydrolysis. Therefore, spatial models of cellulose degradation must capture effects such as enzyme crowding and surface heterogeneity, which have been shown to lead to a reduction in hydrolysis rates. Results We present a coarse-grained stochastic model for capturing the key events associated with the enzymatic degradation of cellulose at the mesoscopic level. This functional model accounts for the mobility and action of a single cellulase enzyme as well as the synergy of multiple endo- and exo-cellulases on a cellulose surface. The quantitative description of cellulose degradation is calculated on a spatial model by including free and bound states of both endo- and exo-cellulases with explicit reactive surface terms (e.g., hydrogen bond breaking, covalent bond cleavages and corresponding reaction rates. The dynamical evolution of the system is simulated by including physical interactions between cellulases and cellulose. Conclusions Our coarse-grained model reproduces the qualitative behavior of endoglucanases and exoglucanases by accounting for the spatial heterogeneity of the cellulose surface as well as other spatial factors such as enzyme crowding. Importantly, it captures

  13. An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production.

    Science.gov (United States)

    Mathew, Anil Kuruvilla; Parameshwaran, Binod; Sukumaran, Rajeev Kumar; Pandey, Ashok

    2016-01-01

    The challenge associated with cellulosic ethanol production is maximizing sugar yield at low cost. Current research is being focused to develop a pretreatment method to overcome biomass recalcitrance in an efficient way. This review is focused on two major pretreatments: dilute acid (DA) and ammonia fiber explosion (AFEX) pretreatment of corn stover and how these pretreatment cause morphological and chemical changes to corn stover in order to overcome the biomass recalcitrance. This review highlights the key differences of these two pretreatments based on compositional analysis, cellulose and its crystallinity, morphological changes, structural changes to lignin, enzymatic reactivity and enzyme adsorption onto pretreated solids and finally cellulosic ethanol production from the hydrolysate of DA and AFEX treated corn stover. Each stage of the process, AFEX pretreated corn stover was superior to DA treated corn stover. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Analysis of Twisting of Cellulose Nanofibrils in Atomistic Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Paavilainen, S.; Rog, T.; Vattulainen, I.

    2011-01-01

    We use atomistic molecular dynamics simulations to study the crystal structure of cellulose nanofibrils, whose sizes are comparable with the crystalline parts in commercial nanocellulose. The simulations show twisting, whose rate of relaxation is strongly temperature dependent. Meanwhile......, no significant bending or stretching of nanocellulose is discovered. Considerations of atomic-scale interaction patterns bring about that the twisting arises from hydrogen bonding within and between the chains in a fibril....

  15. Liquid-phase synthesis of Ni nanowire/cellulose hybrid structure

    Science.gov (United States)

    Rahmah Shamsuri, Siti; Shiomi, Shohei; Matsubara, Eiichiro

    2018-02-01

    One-dimensional (1D) nanomaterials (nanowires or nanofibers) are superior to conventional zero-dimensional (0D) nanomaterials (nanoparticles). 1D nanomaterials offer not only the benefits of 0D nanomaterials, such as a large surface area and numerous active sites, but also the capability to prepare macroscopic free-standing and flexible structures owing to their formability to form a sheet. For practical applications, it is essential to develop a simple and easy method of synthesizing 1D nanomaterials. In the present work, a nickel nanowire/cellulose hybrid structure is successfully fabricated via a single-batch liquid-phase reduction method under a magnetic field. The product is not a simple 1D or two-dimensional (2D) structure, but an intricately entangled and interconnected three-dimensional (3D) structure. Fine nickel nanowires are grown from nickel nanoparticles that are heterogeneously nucleated on the surface of a cellulose fiber by using its chemical properties that attract nickel ions.

  16. Cost-effective production of bacterial cellulose using acidic food industry by-products.

    Science.gov (United States)

    Revin, Victor; Liyaskina, Elena; Nazarkina, Maria; Bogatyreva, Alena; Shchankin, Mikhail

    2018-03-13

    To reduce the cost of obtaining bacterial cellulose, acidic by-products of the alcohol and dairy industries were used without any pretreatment or addition of other nitrogen sources. Studies have shown that the greatest accumulation of bacterial cellulose (6.19g/L) occurs on wheat thin stillage for 3 days of cultivation under dynamic conditions, which is almost 3 times higher than on standard Hestrin and Schramm medium (2.14g/L). The use of whey as a nutrient medium makes it possible to obtain 5.45g/L bacterial cellulose under similar conditions of cultivation. It is established that the pH of the medium during the growth of Gluconacetobacter sucrofermentans B-11267 depends on the feedstock used and its initial value. By culturing the bacterium on thin stillage and whey, there is a decrease in the acidity of the waste. It is shown that the infrared spectra of bacterial cellulose obtained in a variety of environments have a similar character, but we found differences in the micromorphology and crystallinity of the resulting biopolymer. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  17. Hydrogen-Bonding Network and OH Stretch Vibration of Cellulose: Comparison of Computational Modeling with Polarized IR and SFG Spectra.

    Science.gov (United States)

    Lee, Christopher M; Kubicki, James D; Fan, Bingxin; Zhong, Linghao; Jarvis, Michael C; Kim, Seong H

    2015-12-10

    Hydrogen bonds play critical roles in noncovalent directional interactions determining the crystal structure of cellulose. Although diffraction studies accurately determined the coordinates of carbon and oxygen atoms in crystalline cellulose, the structural information on hydrogen atoms involved in hydrogen-bonding is still elusive. This could be complemented by vibrational spectroscopy; but the assignment of the OH stretch peaks has been controversial. In this study, we performed calculations using density functional theory with dispersion corrections (DFT-D2) for the cellulose Iβ crystal lattices with the experimentally determined carbon and oxygen coordinates. DFT-D2 calculations revealed that the OH stretch vibrations of cellulose are highly coupled and delocalized through intra- and interchain hydrogen bonds involving all OH groups in the crystal. Additionally, molecular dynamics (MD) simulations of a single cellulose microfibril showed that the conformations of OH groups exposed at the microfibril surface are not well-defined. Comparison of the computation results with the experimentally determined IR dichroism of uniaxially aligned cellulose microfibrils and the peak positions of various cellulose crystals allowed unambiguous identification of OH stretch modes observed in the vibrational spectra of cellulose.

  18. Effect of Reaction Conditions on the Surface Modification of Cellulose Nanofibrils with Aminopropyl Triethoxysilane

    Directory of Open Access Journals (Sweden)

    Eduardo Robles

    2018-04-01

    Full Text Available Nine different surface modifications of cellulose nanofibrils (CNF with 3-aminopropyl triethoxysilane (ATS by using three different solvent systems (water, ethanol, and a mixture of both were investigated. The effect of reaction conditions, such as silane to cellulose ratio and solvent type were evaluated to determine their contribution to the extent of the silane modification. Nanofibril properties were evaluated by infrared spectroscopy, powder X-ray diffraction, surface free energy, thermogravimetry, 13C and 29Si nuclear magnetic resonance, and electronic microscopy. The influence of the solvent in the solvolysis of the silane was reflected in the presence or absence of ethoxy groups in the silane. On the other hand, whereas the surface modification was increased directly proportionally to silane ratio on the reaction, the aggregation of nanofibrils was also increased, which can play a negative role in certain applications. The increment of silane modification also had substantial repercussions on the crystallinity of the nanofibrils by the addition of amorphous components to the crystalline unit; moreover, silane surface modifications enhanced the hydrophobic character of the nanofibrils.

  19. SYNTHESIS AND CHARACTERIZATION OF CELLULOSE BASED BIO-POLYMER AEROGEL ISOLATED FROM WASTE OF BLUEBERRY TREE (VACCINIUM MYRTILLUS

    Directory of Open Access Journals (Sweden)

    Mehmet KAYA

    2016-09-01

    Full Text Available Cellulose aerogel (CA has highly porous structure, environmentally friendly, thermally stable and flame retardant properties. These properties in material worlds have attracted large interest as a potentially industrial material. In this paper, cellulose aerogel with flame retardant was produced from pruned branches and bushes of blueberries wastes (PBBW. Firstly, cellulose raw material these wastes was obtained and then, cellulose aerogel via freeze-drying, followed by cellulose hydrogel production. Our reports showed that three dimensionally network aerogel structure prepared from NaOH/Urea as scaffold solution. The present cellulose aerogel has excellent flame retardancy, which can extinguish within 140 s. By the way, it was inferred thermal stability performance of cellulose aerogel could be efficient potential thermal insulating material. Besides, this process are sustainable, easily available at low cost and suitable for industrial applications.

  20. Gram-scale synthesis of highly crystalline, 0-D and 1-D SnO2 nanostructures through surfactant-free hydrothermal process

    International Nuclear Information System (INIS)

    Pal, Umapada; Pal, Mou; Sánchez Zeferino, Raul

    2012-01-01

    We report the synthesis of highly crystalline SnO 2 nanoparticle and nanorod structures with average diameters well within quantum confinement limit (3.5−6.4 nm), through surfactant-free hydrothermal synthesis. The size and shape of the nanostructures could be controlled by controlling the pH (4.5–13.0) of the reaction mixture and the temperature of hydrothermal treatment. Probable mechanisms for the variation of particle size and growth of one-dimensional structures are presented considering the size-dependent crystal solubility at lower pH values of the reaction solution and Ostwald ripening of the quasi-spherical nanoparticles at higher pH values, respectively. Variation of optical band gap energy and hence the effects of quantum confinement in the nanostructures have been studied.

  1. Regenerated cellulose/halloysite nanotube nanocomposite films prepared with an ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Soheilmoghaddam, Mohammad [Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia (UTM), Johor (Malaysia); Wahit, Mat Uzir, E-mail: mat.uzir@cheme.utm.my [Center for Composites, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor (Malaysia); Mahmoudian, Shaya [Department of Textile Engineering, Kashan Branch, Islamic Azad University, Kashan (Iran, Islamic Republic of); Hanid, Nurbaiti Abdul [Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia (UTM), Johor (Malaysia)

    2013-09-16

    Regenerated cellulose/halloysite nanotube (RC/HNT) nanocomposite films were successfully prepared in ionic liquid, 1-butyl-3-methylimidazolium chloride (BMIMCl) using solution casting method. The structural, morphological, thermal and mechanical properties of RC/HNT nanocomposites were investigated. X-ray diffraction analysis revealed a cellulose II crystalline structure and well dispersed HNT in RC/HNT nanocomposite films. At 6 wt.% HNT film, tensile strength and Young's modulus of RC films improved by 55.3% and 100%, respectively. Moisture absorption by the nanocomposites in an environment with 75% constant relative humidity was reduced by the addition of HNT to the RC. The presence of HNT enhanced the thermal stability and char yield of RC. The significant reinforcing effects of HNTs demonstrated that there is a possible interface interaction between cellulose and HNT which yielded better thermal and mechanical properties of the nanocomposite films as compared to pure RC. - Highlights: • The RC/HNT nanocomposite films were prepared via ionic liquid, BMIMCl. • XRD diffraction patterns and FESEM revealed well dispersed HNT in cellulose matrix. • The nanocomposite films exhibited excellent mechanical properties. • Moisture absorption and diffusion coefficient of RC reduced by HNT incorporation. • Addition of HNT enhanced thermal stability and activation energy of the RC.

  2. Regenerated cellulose/halloysite nanotube nanocomposite films prepared with an ionic liquid

    International Nuclear Information System (INIS)

    Soheilmoghaddam, Mohammad; Wahit, Mat Uzir; Mahmoudian, Shaya; Hanid, Nurbaiti Abdul

    2013-01-01

    Regenerated cellulose/halloysite nanotube (RC/HNT) nanocomposite films were successfully prepared in ionic liquid, 1-butyl-3-methylimidazolium chloride (BMIMCl) using solution casting method. The structural, morphological, thermal and mechanical properties of RC/HNT nanocomposites were investigated. X-ray diffraction analysis revealed a cellulose II crystalline structure and well dispersed HNT in RC/HNT nanocomposite films. At 6 wt.% HNT film, tensile strength and Young's modulus of RC films improved by 55.3% and 100%, respectively. Moisture absorption by the nanocomposites in an environment with 75% constant relative humidity was reduced by the addition of HNT to the RC. The presence of HNT enhanced the thermal stability and char yield of RC. The significant reinforcing effects of HNTs demonstrated that there is a possible interface interaction between cellulose and HNT which yielded better thermal and mechanical properties of the nanocomposite films as compared to pure RC. - Highlights: • The RC/HNT nanocomposite films were prepared via ionic liquid, BMIMCl. • XRD diffraction patterns and FESEM revealed well dispersed HNT in cellulose matrix. • The nanocomposite films exhibited excellent mechanical properties. • Moisture absorption and diffusion coefficient of RC reduced by HNT incorporation. • Addition of HNT enhanced thermal stability and activation energy of the RC

  3. Glycosylphosphatidylinositol-anchored proteins are required for cell wall synthesis and morphogenesis in Arabidopsis.

    Science.gov (United States)

    Gillmor, C Stewart; Lukowitz, Wolfgang; Brininstool, Ginger; Sedbrook, John C; Hamann, Thorsten; Poindexter, Patricia; Somerville, Chris

    2005-04-01

    Mutations at five loci named PEANUT1-5 (PNT) were identified in a genetic screen for radially swollen embryo mutants. pnt1 cell walls showed decreased crystalline cellulose, increased pectins, and irregular and ectopic deposition of pectins, xyloglucans, and callose. Furthermore, pnt1 pollen is less viable than the wild type, and pnt1 embryos were delayed in morphogenesis and showed defects in shoot and root meristems. The PNT1 gene encodes the Arabidopsis thaliana homolog of mammalian PIG-M, an endoplasmic reticulum-localized mannosyltransferase that is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor. All five pnt mutants showed strongly reduced accumulation of GPI-anchored proteins, suggesting that they all have defects in GPI anchor synthesis. Although the mutants are seedling lethal, pnt1 cells are able to proliferate for a limited time as undifferentiated callus and do not show the massive deposition of ectopic cell wall material seen in pnt1 embryos. The different phenotype of pnt1 cells in embryos and callus suggest a differential requirement for GPI-anchored proteins in cell wall synthesis in these two tissues and points to the importance of GPI anchoring in coordinated multicellular growth.

  4. Why to synthesize vaterite polymorph of calcium carbonate on the cellulose matrix via sonochemistry process?

    Science.gov (United States)

    Fu, Lian-Hua; Dong, Yan-Yan; Ma, Ming-Guo; Yue, Wen; Sun, Shao-Long; Sun, Run-Cang

    2013-09-01

    Vaterite is an important biomedical material due to its features such as high specific surface area, high solubility, high dispersion, and small specific gravity. The purposes of this article were to explore the growth mechanism of vaterite on the cellulose matrix via sonochmistry process. In the work reported herein, the influences of experimental parameters on the polymorph of calcium carbonate were investigated in detail. The calcium carbonate crystals on the cellulose matrix were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Experimental results revealed that all the reactants, solvent, and synthesis method played an important role in the polymorph of calcium carbonate. The pure phase of vaterite polymorph was obtained using Na2CO3 as reactant in ethylene glycol on the cellulose matrix via sonochmistry process. Based on the experimental results, one can conclude that the synthesis of vaterite polymorph is a system process. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Thermoresponsive Membrane Based on Thermotropic Liquid Crystalline Cholesteryl - (L-lacticacidn System: Study of Its Drug Permeability

    Directory of Open Access Journals (Sweden)

    Massoumeh Bagheri

    2013-01-01

    Full Text Available The rapidly increasing interest in functional materials with reversibly switchable physico- chemical properties has led to significant work on the development of stimuli responsive membranes. Thermotropic liquid crystals with their exceptional properties have potentials for drug-delivery applications. Thermoresponsive liquid-crystal-embedded membranes were investigated for the purpose of developing the drug delivery systems with thermal stimuli response. Drug release occurs at temperatures above the phase transition temperature of thermotropic liquid crystals. Therefore, they can control drug release in response to small temperature changes. In this work, the biocompatible and thermotropic liquid crystalline polymer cholesteryl-(L-lactic acidn ,CLAn (n=30, was synthesized with accurate control of molecular weight via ring opening polymerization method. Polymerization of L-lactide was carried out in the presence of cholesterol as an initiator and catalytic amount of tin (II octoate (Sn(Oct2 at 150°C in 5 h. The number-average degree of polymerization of CLA 30 was obtained from 1H NMR spectroscopy. The phase transition behavior of liquid crystalline CLA30 was established by differential scanning calorimetry and polarizing optical microscopy. The resulting liquid crystalline CLA30 was subsequently utilized to prepare CLA30 -embedded cellulose nitrate membrane by adsorption method. The CLA30-embedded cellulose nitrate membrane was used by an in-vitro drug penetration studies. Acetaminophen was used as a model drug. The permeation study was carried out at different temperatures around glass transition temperature of polymer CLA30 (37, 45 and 40°C, respectively. The results show that the CLA30 -embedded cellulose nitrate membranes exhibit thermo-responsive sensitivity with controlled drug permeation.

  6. Bacterial Cellulose-Hydroxyapatite Nanocomposites for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    S. Saska

    2011-01-01

    Full Text Available The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl2 followed by Na2HPO4. BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40%–50% of the total weight. Spectroscopy, electronic microscopy/energy dispersive X-ray analyses, and X-ray diffraction showed formation of HA crystals on BC nanofibres. Low crystallinity HA crystals presented Ca/P a molar ratio of 1.5 (calcium-deficient HA, similar to physiological bone. Fourier transformed infrared spectroscopy analysis showed bands assigned to phosphate and carbonate ions. In vivo tests showed no inflammatory reaction after 1 week. After 4 weeks, defects were observed to be completely filled in by new bone tissue. The BC-HA membranes were effective for bone regeneration.

  7. Facile Synthesis of Highly Hydrophobic Cellulose Nanoparticles through Post-Esterification Microfluidization

    Directory of Open Access Journals (Sweden)

    Chunxiang Lin

    2018-04-01

    Full Text Available A post-esterification with a high degree of substitution (hDS mechanical treatment (Pe(hDSM approach was used for the production of highly hydrophobic cellulose nanoparticles (CNPs. The process has the advantages of substantially reducing the mechanical energy input for the production of CNPs and avoiding CNP aggregation through drying or solvent exchange. A conventional esterification reaction was carried out using a mixture of acetic anhydride, acetic acid, and concentrated sulfuric acid, but at temperatures of 60–85 °C. The successful hDS esterification of bleached eucalyptus kraft pulp fibers was confirmed by a variety of techniques, such as Fourier transform infrared (FTIR, solid state 13C NMR, X-ray photoelectron spectroscopy (XPS, elemental analyses, and X-ray diffraction (XRD. The CNP morphology and size were examined by atomic force microscopy (AFM as well as dynamic light scattering. The hydrophobicity of the PeM-CNP was confirmed by the redispersion of freeze-dried CNPs into organic solvents and water contact-angle measurements. Finally, the partial conversion of cellulose I to cellulose II through esterification improved PeM-CNP thermal stability.

  8. Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers’ tricks

    Directory of Open Access Journals (Sweden)

    Roberto Mazzoli

    2012-10-01

    Full Text Available Cellulose waste biomass is the most abundant and attractive substrate for "biorefinery strategies" that are aimed to produce high-value products (e.g. solvents, fuels, building blocks by economically and environmentally sustainable fermentation processes. However, cellulose is highly recalcitrant to biodegradation and its conversion by biotechnological strategies currently requires economically inefficient multistep industrial processes. The need for dedicated cellulase production continues to be a major constraint to cost-effective processing of cellulosic biomass.Research efforts have been aimed at developing recombinant microorganisms with suitable characteristics for single step biomass fermentation (consolidated bioprocessing, CBP. Two paradigms have been applied for such, so far unsuccessful, attempts: a “native cellulolytic strategies”, aimed at conferring high-value product properties to natural cellulolytic microorganisms; b “recombinant cellulolytic strategies”, aimed to confer cellulolytic ability to microorganisms exhibiting high product yields and titers.By starting from the description of natural enzyme systems for plant biomass degradation and natural metabolic pathways for some of the most valuable product (i.e. butanol, ethanol, and hydrogen biosynthesis, this review describes state-of-the-art bottlenecks and solutions for the development of recombinant microbial strains for cellulosic biofuel CBP by metabolic engineering. Complexed cellulases (i.e. cellulosomes benefit from stronger proximity effects and show enhanced synergy on insoluble substrates (i.e. crystalline cellulose with respect to free enzymes. For this reason, special attention was held on strategies involving cellulosome/designer cellulosome-bearing recombinant microorganisms.

  9. Preparation and characterization of nanocomposites of the carboxymethyl cellulose reinforced with cellulose nanocrystals; Preparacao e caracterizacao de nanocompositos de carboximetilcelulose reforcados com nanocristais de celulose

    Energy Technology Data Exchange (ETDEWEB)

    Flauzino Neto, Wilson P.; Silverio, Hudson A.; Vieira, Julia G.; Silva, Heden C.; Rosa, Joyce R.; Pasquini, Daniel, E-mail: wilsonpfneto@yahoo.com.br [Instituto de Quimica - Universidade Federal de Uberlandia - UFU, MG (Brazil); Assuncao, Rosana M.N. [Fac. de Ciencias Integradas do Pontal - FACIP, Universidade Federal de Uberlandia, Ituiutaba, MG (Brazil)

    2011-07-01

    Nanocrystals of cellulose (NCC) isolated from Eucalyptus urograndis Kraft pulp were used to prepare nanocomposites employing carboxymethyl cellulose (CMC) as matrix. The nanocrystals were isolated by hydrolysis with H{sub 2}SO{sub 4} 64% solution, for 20 minutes at 45 deg C. The nanocrystals were characterized by X-ray diffraction to evaluate the crystallinity of them. The amount of NCC used in the preparation of nanocomposites varied from 0 to 15%. The nanocomposites were characterized by thermal and mechanical analysis. A large reinforcing effect of NCC on the CMC matrix was observed. With the incorporation of the NCC, the tensile strength of nanocomposites was significantly improved by 107%, the elongation at break decreased by 48% and heat resistance to decomposition increased subtle. The improvement in thermo-mechanical properties are attributed to strong interactions between nanoparticles and CMC matrix. (author)

  10. Valorization of lignin and cellulose in acid-steam-exploded corn stover by a moderate alkaline ethanol post-treatment based on an integrated biorefinery concept

    OpenAIRE

    Yang, Sheng; Zhang, Yue; Yue, Wen; Wang, Wei; Wang, Yun-Yan; Yuan, Tong-Qi; Sun, Run-Cang

    2016-01-01

    Background Due to the unsustainable consumption of fossil resources, great efforts have been made to convert lignocellulose into bioethanol and commodity organic compounds through biological methods. The conversion of cellulose is impeded by the compactness of plant cell wall matrix and crystalline structure of the native cellulose. Therefore, appropriate pretreatment and even post-treatment are indispensable to overcome this problem. Additionally, an adequate utilization of coproduct lignin ...

  11. Synthesis and characterization of cellulose acetate from rice husk: eco-friendly condition.

    Science.gov (United States)

    Das, Archana M; Ali, Abdul A; Hazarika, Manash P

    2014-11-04

    Cellulose acetate was synthesized from rice husk by using a simple, efficient, cost-effective and solvent-free method. Cellulose was isolated from rice husk (RH) using standard pretreatment method with dilute alkaline and acid solutions and bleaching with 2% H2O2. Cellulose acetate (CA) was synthesized successfully with the yield of 66% in presence of acetic anhydride and iodine as a catalyst in eco-friendly solvent-free conditions. The reaction parameters were standardized at 80 °C for 300 min and the optimum results were taken for further study. The extent of acetylation was evaluated from % yield and the degree of substitution (DS), which was determined by (1)H NMR and titrimetrically. The synthesized products were characterized with the help modern analytical techniques like FT-IR, (1)H NMR, XRD, etc. and the thermal behavior was evaluated by TGA and DSC thermograms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Preparation of micro-fibrillated cellulose based on sugar palm ijuk (Arenga pinnata) fibres through partial acid hydrolysis

    Science.gov (United States)

    Saputro, A.; Verawati, I.; Ramahdita, G.; Chalid, M.

    2017-07-01

    The aim of this study was to isolate and characterized micro-fibrillated cellulose (MFC) from sugar palm/ijuk fibre (Arenga pinnata) by partial sulfuric acid hydrolysis. Cellulose fibre was prepared by repeated treatments with 5 wt% sodium hydroxide 2 h at 80°C, followed by bleaching with 1.7 wt% sodium chlorite for 2 h at 80°C in acidic environment under stirring. MFC was prepared by partial hydrolysis with sulfuric acid in various concentrations (30, 40, 50, and 60 % for 45 min at 45 °C) under stirring. Fourier Transform Infrared, Field Emission Scanning Electron Microscope, Thermo Gravimetric Analyzer and X-ray Diffraction characterized cellulose fibre and MFC. FTIR measurements showed that alkaline and bleaching treatments were effective to remove non-cellulosic constituents such as wax, lignin and hemicellulose. FESEM observation revealed conversion into more clear surface and defibrillation of cellulosic fibre after pre-treatments. XRD measurement revealed increase in crystallinity after pre-treatments and acid hydrolysis from 54.4 to 87.8%. Thermal analysis showed that increasing acid concentration reduced thermal stability.

  13. Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: Effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity

    International Nuclear Information System (INIS)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Premalal, E.V.A.; Herath, H.M.T.U.; Mahalingam, S.; Edirisinghe, M.; Rajapakse, R.P.V.J.; Rajapakse, R.M.G.

    2014-01-01

    Synthetic hydroxyapatite (HA) nanoparticles, that mimic natural HA, are widely used as biocompatible coatings on prostheses to repair and substitute human bones. In this study, HA nanoparticles are prepared by precipitating them from a precursor solution containing calcium sucrate and ammonium dihydrogen orthophosphate, at a Ca/P mole ratio of 1.67:1, at temperatures, ranging from 10 °C to 95 °C. A set of products, prepared at different temperatures, is analyzed for their crystallinity, crystallite size, morphology, thermal stability and composition, by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopic techniques, while the other set is analyzed after calcining the respective products, soon after their synthesis, for 3 h, at 700 °C. The as-prepared products, after 2 h of drying, without any calcination, are not crystalline, but they grow very slowly into needle-like morphologies, as they are ripened with time. The percentage crystallinity of the final products increases from 15% to 52%, with increasing the preparative temperature. The calcined samples always produce spherical nanoparticles of essentially the same diameter, between 90 nm and 100 nm, which does not change due to aging and preparative temperatures. Therefore, the same method can be utilized to synthesize both spherical and needle-like nanoparticles of hydroxyapatite, with well-defined sizes and shapes. The ability to use readily available cheap raw materials, for the synthesis of such well-defined crystallites of hydroxyapatite, is an added advantage of this method, which may be explored further for the scaling up of the procedures to suit to industrial scale synthesis of such hydroxyapatite nanoparticles. - Highlights: • Hydroxyapatite nanoparticles are synthesized using a simple precipitation method. • Both needle-like and spherical hydroxyapatite nanoparticles are synthesized. • The prepared

  14. Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: Effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G. [Department of Chemistry, Faculty of Science, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Post-graduate Institute of Science, P.O. Box: 25, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Premalal, E.V.A. [Department of Materials Science, Shizuoka University, Johoku, Naka-ku Hamamatsu, 432-8011 (Japan); Herath, H.M.T.U. [Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Mahalingam, S.; Edirisinghe, M. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Rajapakse, R.P.V.J. [Department of Veterinary Pathobiology, Faculty of Veterinary, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Rajapakse, R.M.G., E-mail: rmgr@pdn.ac.lk [Department of Chemistry, Faculty of Science, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Post-graduate Institute of Science, P.O. Box: 25, University of Peradeniya, Peradeniya 20400 (Sri Lanka)

    2014-09-01

    Synthetic hydroxyapatite (HA) nanoparticles, that mimic natural HA, are widely used as biocompatible coatings on prostheses to repair and substitute human bones. In this study, HA nanoparticles are prepared by precipitating them from a precursor solution containing calcium sucrate and ammonium dihydrogen orthophosphate, at a Ca/P mole ratio of 1.67:1, at temperatures, ranging from 10 °C to 95 °C. A set of products, prepared at different temperatures, is analyzed for their crystallinity, crystallite size, morphology, thermal stability and composition, by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopic techniques, while the other set is analyzed after calcining the respective products, soon after their synthesis, for 3 h, at 700 °C. The as-prepared products, after 2 h of drying, without any calcination, are not crystalline, but they grow very slowly into needle-like morphologies, as they are ripened with time. The percentage crystallinity of the final products increases from 15% to 52%, with increasing the preparative temperature. The calcined samples always produce spherical nanoparticles of essentially the same diameter, between 90 nm and 100 nm, which does not change due to aging and preparative temperatures. Therefore, the same method can be utilized to synthesize both spherical and needle-like nanoparticles of hydroxyapatite, with well-defined sizes and shapes. The ability to use readily available cheap raw materials, for the synthesis of such well-defined crystallites of hydroxyapatite, is an added advantage of this method, which may be explored further for the scaling up of the procedures to suit to industrial scale synthesis of such hydroxyapatite nanoparticles. - Highlights: • Hydroxyapatite nanoparticles are synthesized using a simple precipitation method. • Both needle-like and spherical hydroxyapatite nanoparticles are synthesized. • The prepared

  15. Synthesis, Characterization, and Antimicrobial Efficacy of Photomicrobicidal Cellulose Paper.

    Science.gov (United States)

    Carpenter, Bradley L; Scholle, Frank; Sadeghifar, Hasan; Francis, Aaron J; Boltersdorf, Jonathan; Weare, Walter W; Argyropoulos, Dimitris S; Maggard, Paul A; Ghiladi, Reza A

    2015-08-10

    Toward our goal of scalable, antimicrobial materials based on photodynamic inactivation, paper sheets comprised of photosensitizer-conjugated cellulose fibers were prepared using porphyrin and BODIPY photosensitizers, and characterized by spectroscopic (infrared, UV-vis diffuse reflectance, inductively coupled plasma optical emission) and physical (gel permeation chromatography, elemental, and thermal gravimetric analyses) methods. Antibacterial efficacy was evaluated against Staphylococcus aureus (ATCC-2913), vancomycin-resistant Enterococcus faecium (ATCC-2320), Acinetobacter baumannii (ATCC-19606), Pseudomonas aeruginosa (ATCC-9027), and Klebsiella pneumoniae (ATCC-2146). Our best results were achieved with a cationic porphyrin-paper conjugate, Por((+))-paper, with inactivation upon illumination (30 min, 65 ± 5 mW/cm(2), 400-700 nm) of all bacterial strains studied by 99.99+% (4 log units), regardless of taxonomic classification. Por((+))-paper also inactivated dengue-1 virus (>99.995%), influenza A (∼ 99.5%), and human adenovirus-5 (∼ 99%). These results demonstrate the potential of cellulose materials to serve as scalable scaffolds for anti-infective or self-sterilizing materials against both bacteria and viruses when employing a photodynamic inactivation mode of action.

  16. Synthesis of wheat straw cellulose-g-poly (potassium acrylate)/PVA semi-IPNs superabsorbent resin.

    Science.gov (United States)

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu; Wang, Rui

    2013-04-15

    To better use wheat straw and minimize its negative impact on environment, a novel semi-interpenetrating polymer networks (semi-IPNs) superabsorbent resin (SAR) composed of wheat straw cellulose-g-poly (potassium acrylate) (WSC-g-PKA) network and linear polyvinyl alcohol (PVA) was prepared by polymerization in the presence of a redox initiating system. The structure and morphology of semi-IPNs SAR were characterized by means of FTIR, SEM and TGA, which confirmed that WSC and PVA participated in the graft polymerization reaction with acrylic acid (AA). The factors that can influence the water absorption of the semi-IPNs SAR were investigated and optimized, including the weight ratios of AA to WSC and PVA to WSC, the content of initiator and crosslinker, neutralization degree (ND) of AA, reaction temperature and time. The semi-IPNs SAR prepared under optimized synthesis condition gave the best water absorption of 266.82 g/g in distilled water and 34.32 g/g in 0.9 wt% NaCl solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Minimalistic Liquid-Assisted Route to Highly Crystalline α-Zirconium Phosphate.

    Science.gov (United States)

    Cheng, Yu; Wang, Xiaodong Tony; Jaenicke, Stephan; Chuah, Gaik-Khuan

    2017-08-24

    Zirconium phosphates have potential applications in areas of ion exchange, catalysis, photochemistry, and biotechnology. However, synthesis methodologies to form crystalline α-zirconium phosphate (Zr(HPO 4 ) 2 ⋅H 2 O) typically involve the use of excess phosphoric acid, addition of HF or oxalic acid and long reflux times or hydrothermal conditions. A minimalistic sustainable route to its synthesis has been developed by using only zirconium oxychloride and concentrated phosphoric acid to form highly crystalline α-zirconium phosphate within hours. The morphology can be changed from platelets to rod-shaped particles by fluoride addition. By varying the temperature and time, α-zirconium phosphate with particle sizes from nanometers to microns can be obtained. Key features of this minimal solvent synthesis are the excellent yields obtained with high atom economy under mild conditions and ease of scalability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Orientation-controlled synthesis and magnetism of single crystalline Co nanowires

    International Nuclear Information System (INIS)

    Huang, Gui-Fang; Huang, Wei-Qing; Wang, Ling-Ling; Zou, B.S.; Pan, Anlian

    2012-01-01

    Orientation control and the magnetic properties of single crystalline Co nanowires fabricated by electrodeposition have been systematically investigated. It is found that the orientation of Co nanowires can be effectively controlled by varying either the current density or the pore diameter of AAO templates. Lower current density or small diameter is favorable for forming the (1 0 0) texture, while higher current values or larger diameter leads to the emergence and enhancement of (1 1 0) texture of Co nanowires. The mechanism for the manipulated growth characterization is discussed in detail. The orientation of Co nanowires has a significant influence on the magnetic properties, resulting from the competition between the magneto-crystalline and shape anisotropy of Co nanowires. This work offers a simple method to manipulate the orientation and magnetic properties of nanowires for future applications. - Highlights: ► Single crystalline Co nanowires have successfully been grown by DC electrodeposition. ► Orientation controlling and its effect on magnetism of Co nanowires were investigated. ► The orientation of Co nanowires can be effectively controlled by varying current density. ► The crystalline orientation of Co nanowires has significant influence on the magnetic properties.

  19. FTIR spectroscopy and X-ray powder diffraction characterization of microcrystalline cellulose obtained from alfa fibers

    Directory of Open Access Journals (Sweden)

    Trache D.

    2013-07-01

    Full Text Available Many cereal straws have been used as raw materials for the preparation of microcrystalline cellulose (MCC. These raw materials were gradually replaced with wood products; nevertheless about 10% of the world overall pulp production is obtained from non-wood raw material. The main interest in pulp made from straw is that it provides excellent fibres for different industries with special properties, and that it is the major available source of fibrous raw material in some geographical areas. The aim of the present work was to characterize microcrystalline cellulose prepared from alfa fibers using the hydrolysis process. The products obtained are characterized with FTIR spectroscopy and X-ray powder diffraction. As a result, FTIR spectroscopy is an appropriate technique for studying changes occurred by any chemical treatment. The spectrum of alfa grass stems shows the presence of lignin and hemicelluloses. However, the cellulose spectrum indicates that the extraction of lignin and hemicellulose was effective. The X-ray analysis indicates that the microcrystalline cellulose is more crystalline than the source material.

  20. Physicochemical and biochemical characterization of non-biodegradable cellulose in Miocene gymnosperm wood from the Entre-Sambre-et-Meuse, Southern Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Lechien, Valerie; Rodriguez, Christian; Ongena, Marc; Hiligsmann, Serge; Thonart, Philippe [Liege Univ., Walloon Center of Industrial Biology, Gembloux (Belgium); Rulmont, Andre [Liege Univ., Chemistry Dept., Liege (Belgium)

    2006-11-15

    Specimens of Miocene fossil wood from the Entre-Sambre-et-Meuse karsts (southern Belgium) were examined using physicochemical and biochemical techniques in order to understand the reasons for the exceptional preservation of these fossilized remains after 15 million years. Structural and chemical changes were assessed by comparing the structural features of the fossil samples with those of their modern counterpart, Metasequoia. Solid state {sup 13} C nuclear magnetic resonance (NMR) and microscopic analysis showed good preservation of the cellulose structure in the fossil wood from the Florennes peat deposit. Despite the substantial cellulose fraction available in the fossil tissue, an enzymatic degradation test and a biochemical methane potential assay showed that the fossil cellulose could not be degraded by cellulases and anaerobic microorganisms usually involved in the biodegradation of organic matter. Moreover, the cellulose structure (crystallinity and surface area) seemed to have no effect on cellulose biodegradability in these Miocene fossil wood samples. On the basis of our observations, we suggest that the presence of a modified lignin structure could greatly influence cellulose preservation/biodegradability. (Author)

  1. Inactivation of Cellobiose Dehydrogenases Modifies the Cellulose Degradation Mechanism of Podospora anserina.

    Science.gov (United States)

    Tangthirasunun, Narumon; Navarro, David; Garajova, Sona; Chevret, Didier; Tong, Laetitia Chan Ho; Gautier, Valérie; Hyde, Kevin D; Silar, Philippe; Berrin, Jean-Guy

    2017-01-15

    Conversion of biomass into high-value products, including biofuels, is of great interest to developing sustainable biorefineries. Fungi are an inexhaustible source of enzymes to degrade plant biomass. Cellobiose dehydrogenases (CDHs) play an important role in the breakdown through synergistic action with fungal lytic polysaccharide monooxygenases (LPMOs). The three CDH genes of the model fungus Podospora anserina were inactivated, resulting in single and multiple CDH mutants. We detected almost no difference in growth and fertility of the mutants on various lignocellulose sources, except on crystalline cellulose, on which a 2-fold decrease in fertility of the mutants lacking P. anserina CDH1 (PaCDH1) and PaCDH2 was observed. A striking difference between wild-type and mutant secretomes was observed. The secretome of the mutant lacking all CDHs contained five beta-glucosidases, whereas the wild type had only one. P. anserina seems to compensate for the lack of CDH with secretion of beta-glucosidases. The addition of P. anserina LPMO to either the wild-type or mutant secretome resulted in improvement of cellulose degradation in both cases, suggesting that other redox partners present in the mutant secretome provided electrons to LPMOs. Overall, the data showed that oxidative degradation of cellulosic biomass relies on different types of mechanisms in fungi. Plant biomass degradation by fungi is a complex process involving dozens of enzymes. The roles of each enzyme or enzyme class are not fully understood, and utilization of a model amenable to genetic analysis should increase the comprehension of how fungi cope with highly recalcitrant biomass. Here, we report that the cellobiose dehydrogenases of the model fungus Podospora anserina enable it to consume crystalline cellulose yet seem to play a minor role on actual substrates, such as wood shavings or miscanthus. Analysis of secreted proteins suggests that Podospora anserina compensates for the lack of cellobiose

  2. Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis.

    Science.gov (United States)

    Meng, Xiangtao; Edgar, Kevin J

    2015-11-05

    Cellulose esters with amide functionalities were synthesized by cross-metathesis (CM) reaction of terminally olefinic esters with different acrylamides, catalyzed by Hoveyda-Grubbs 2nd generation catalyst. Chelation by amides of the catalyst ruthenium center caused low conversions using conventional solvents. The effects of both solvent and structure of acrylamide on reaction conversion were investigated. While the inherent tendency of acrylamides to chelate Ru is governed by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides, from 50% to up to 99%. Homogeneous hydrogenation using p-toluenesulfonyl hydrazide successfully eliminated the α,β-unsaturation of the CM products to give stable amide-functionalized cellulose esters. The amide-functionalized product showed higher Tg than its starting terminally olefinic counterpart, which may have resulted from strong hydrogen bonding interactions of the amide functional groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites.

    Science.gov (United States)

    Fortunati, E; Peltzer, M; Armentano, I; Torre, L; Jiménez, A; Kenny, J M

    2012-10-01

    The aim of this paper is to report the impact of the addition of cellulose nanocrystals on the barrier properties and on the migration behaviour of poly(lactic acid), PLA, based nano-biocomposites prepared by the solvent casting method. Their microstructure, crystallinity, barrier and overall migration properties were investigated. Pristine (CNC) and surfactant-modified cellulose nanocrystals (s-CNC) were used, and the effect of the cellulose modification and content in the nano-biocomposites was investigated. The presence of surfactant on the nanocrystal surface favours the dispersion of CNC in the PLA matrix. Electron microscopy analysis shows the good dispersion of s-CNC in the nanoscale with well-defined single crystals indicating that the surfactant allowed a better interaction between the cellulose structures and the PLA matrix. Reductions of 34% in water permeability were obtained for the cast films containing 1 wt.% of s-CNC while good oxygen barrier properties were detected for nano-biocomposites with both 1 wt.% and 5 wt.% of modified and un-modified cellulose nanocrystals, underlining the improvement provided by cellulose on the PLA films. Moreover, the migration level of the studied nano-biocomposites was below the overall migration limits required by the current normative for food packaging materials in both non-polar and polar simulants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The effect of bacterial cellulose on the shape memory behavior of polyvinyl alcohol nanocomposite hydrogel

    Science.gov (United States)

    Pirahmadi, Pegah; Kokabi, Mehrdad

    2018-01-01

    Most research on shape memory polymers has been confined to neat polymers in their dry state, while, some hydrogel networks are known for their shape memory properties. Hydrogels have low glass transition temperatures which are below 100°C depend on the content of water. But they are usually weak and brittle, and not suitable for structural applications due to their low mechanical strengths because of these materials have large amount of water (>50%), so they could not remember original shape perfectly. Bacterial cellulose nanofibers with perfect properties such as high water holding capacity, high crystallinity, high tensile strength and good biocompatibility can dismiss all the drawbacks. In the present study, polyvinyl alcohol/bacterial cellulose nanocomposite hydrogel prepared by repetitive freezing-thawing method. The bacterial cellulose was used as reinforcement to improve the mechanical properties and stimuli response. Differential scanning calorimetry was employed to obtain the glass transition temperature. Nanocomposite morphology was characterized by field-emission scanning electron microscopy and mechanical properties were investigated by standard tensile test. Finally, the effect of bacterial cellulose nanofiber on shape memory behavior of polyvinyl alcohol/bacterial cellulose nanocomposite hydrogel was investigated. It is found that switching temperature of this system is the glass transition temperature of the nano domains formed within the system. The results also show increase of shape recovery, and shape recovery speed due to presence of bacterial cellulose.

  5. Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity.

    Science.gov (United States)

    Li, Cuiping; Wang, Jie; Guo, Hong; Ding, Shujiang

    2015-11-15

    A series of one-dimensional polyaniline-crystalline TiO2-halloysite composite nanotubes with different mass ratio of polyaniline to TiO2 are facilely prepared by employing the low-temperature synthesis of crystalline TiO2 on halloysite nanotubes. The halloysite nanotubes can adsorb TiO2/polyaniline precursors and induce TiO2 nanocrystals/polyaniline to grow on the support in situ simultaneously. By simply adjusting the acidity of reaction system, PANI-crystalline TiO2-HA composite nanotubes composed of anatase, a mixed phase TiO2 and different PANI redox state are obtained. The XRD and UV-vis results show that the surface polyaniline sensitization has no effect on the crystalline structure of halloysite and TiO2 and the light response of TiO2 is extended to visible-light regions. Photocatalysis test results reveal the photocatalytic activity will be affected by the pH value and the volume ratio of ANI to TTIP. The highest photocatalytic activity is achieved with the composite photocatalysts prepared at pH 0.5 and 1% volume ratio of ANI and TTIP owing to the sensitizing effect of polyaniline and the charge transfer from the photoexcited PANI sensitizer to TiO2. Moreover, the PANI-TiO2-HA composite nanotubes synthesized by one-step at pH 0.5 with 1% volume ratio of ANI to TTIP exhibit higher visible light photocatalytic activity than those synthesized by the two-step. Heterogeneous PANI-TiO2-HA composite nanotubes prepared at pH 0.5 exhibit a higher degradation activity than that prepared at pH 1.5. The redoped experiment proves that the PANI redox state plays the main contribution to the enhanced visible light catalytic degradation efficiency of PANI-TiO2-HA prepared at pH 0.5. Furthermore, the heterogeneous PANI-crystalline TiO2-HA nanotubes have good photocatalytic stability and can be reused four times with only gradual loss of activity under visible light irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Cellulose is not just cellulose

    DEFF Research Database (Denmark)

    Hidayat, Budi Juliman; Felby, Claus; Johansen, Katja Salomon

    2012-01-01

    are not regions where free cellulose ends are more abundant than in the bulk cell wall. In more severe cases cracks between fibrils form at dislocations and it is possible that the increased accessibility that these cracks give is the reason why hydrolysis of cellulose starts at these locations. If acid...... or enzymatic hydrolysis of plant cell walls is carried out simultaneously with the application of shear stress, plant cells such as fibers or tracheids break at their dislocations. At present it is not known whether specific carbohydrate binding modules (CBMs) and/or cellulases preferentially access cellulose...

  7. Modification of cellulose nanocrystals (CNCs) for use in poly(lactic acid) (PLA)-CNC composite packaging products

    Science.gov (United States)

    Liqing Wei; Nicole M. Stark; Ronald C. Sabo; Laurent Matuana

    2016-01-01

    There is growing interest in developing bio-based materials for packaging. Bio-derived materials such as cellulose nanocrystals (CNCs) and poly(lactic acid) (PLA) can be used to develop sustainable packaging applications. Incorporating CNCs into PLA can increase the crystallinity and barrier properties of PLA. The challenge lies in both increasing the flexibility of...

  8. Synthesis of hybrid cellulose nanocomposite bonded with dopamine SiO2/TiO2 and its antimicrobial activity

    Science.gov (United States)

    Ramesh, Sivalingam; Kim, Gwang-Hoon; Kim, Jaehwan; Kim, Joo-Hyung

    2015-04-01

    Organic-inorganic hybrid material based cellulose was synthesized by the sol-gel approach. The explosion of activity in this area in the past decade has made tremendous progress in industry or academic both fundamental understanding of sol-gel process and applications of new functionalized hybrid materials. In this present research work, we focused on cellulose-dopamine functionalized SiO2/TiO2 hybrid nanocomposite by sol-gel process. The cellulose-dopamine hybrid nanocomposite was synthesized via γ-aminopropyltriethoxysilane (γ-APTES) coupling agent by in-situ sol-gel process. The chemical structure of cellulose-amine functionalized dopamine bonding to cellulose structure with covalent cross linking hybrids was confirmed by FTIR spectral analysis. The morphological analysis of cellulose-dopamine nanoSiO2/TiO2 hybrid nanocomposite materials was characterized by XRD, SEM and TEM. From this different analysis results indicate that the optical transparency, thermal stability, control morphology of cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite. Furthermore cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite was tested against pathogenic bacteria for antimicrobial activity.

  9. Fabrication and investigation of a biocompatible microfilament with high mechanical performance based on regenerated bacterial cellulose and bacterial cellulose.

    Science.gov (United States)

    Wu, Huan-Ling; Bremner, David H; Wang, Hai-Jun; Wu, Jun-Zi; Li, He-Yu; Wu, Jian-Rong; Niu, Shi-Wei; Zhu, Li-Min

    2017-10-01

    A high-strength regenerated bacterial cellulose (RBC)/bacterial cellulose (BC) microfilament of potential use as a biomaterial was successfully prepared via a wet spinning process. The BC not only consists of a 3-D network composed of nanofibers with a diameter of several hundred nanometers but also has a secondary structure consisting of highly oriented nanofibrils with a diameter ranging from a few nanometers to tens of nanometers which explains the reason for the high mechanical strength of BC. Furthermore, a strategy of partially dissolving BC was used and this greatly enhanced the mechanical performance of spun filament and a method called post-treatment was utilized to remove residual solvents from the RBC/BC filaments. A comparison of structure, properties, as well as cytocompatibility between BC nanofibers and RBC/BC microfilaments was achieved using morphology, mechanical properties, X-ray Diffraction (XRD) and an enzymatic hydrolysis assay. The RBC/BC microfilament has a uniform groove structure with a diameter of 50-60μm and XRD indicated that the crystal form was transformed from cellulose Iα to cellulose III I and the degree of crystallinity of RBC/BC (33.22%) was much lower than the original BC (60.29%). The enzymatic hydrolysis assay proved that the RBC/BC material was more easily degraded than BC. ICP detection indicated that the residual amount of lithium was 0.07mg/g (w/w) and GC-MS analysis showed the residual amount of DMAc to be 8.51μg/g (w/w) demonstrating that the post-treatment process is necessary and effective for removal of residual materials from the RBC/BC microfilaments. Also, a cell viability assay demonstrated that after post-treatment the RBC/BC filaments had good cytocompatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Surface modification of cellulose isolated from Sesamun indicum underutilized seed: A means of enhancing cellulose hydrophobicity

    Directory of Open Access Journals (Sweden)

    Adewale Adewuyi

    2017-09-01

    Full Text Available Cellulose (SC isolated from sesame seed (SS was surface modified with the introduction of an ester functional group via a simple reaction to produce the modified product (SA. SS, SC and SA were characterized using Fourier transform infrared (FTIR, X-ray diffraction (XRD, thermogravimetric analysis (TG, particle size distribution (PSD, zeta potential and scanning electron microscopy (SEM. SC and SA were evaluated for their water holding capacity (WC, oil holding capacity (OC, swelling capacity (SW and their ability to adsorb heavy metals. The FTIR revealed peaks corresponding to the formation of the ester functional group at the surface of SA. The crystallinity of SC was 28.02% but after the modification, it increased to 77.03% in SA. The PSD of SC and SA was both monomodal with sizes of 10.1305 μm in SC and 10.2511 μm in SA. The adsorption capacity of SC towards Pb (II and Cu (II ions was higher than that of SA. However, SA was unable to adsorb Cu (II ions. SA exhibited the lower WC and SW values as compared to SC which suggested an improved hydrophobicity after the modification. This study has shown that hydrophobicity can be improved in cellulose via surface modification.

  11. Unidirectional Movement of Cellulose Synthase Complexes in Arabidopsis Seed Coat Epidermal Cells Deposit Cellulose Involved in Mucilage Extrusion, Adherence, and Ray Formation1[OPEN

    Science.gov (United States)

    Lam, Patricia; Young, Robin; DeBolt, Seth

    2015-01-01

    CELLULOSE SYNTHASE5 (CESA5) synthesizes cellulose necessary for seed mucilage adherence to seed coat epidermal cells of Arabidopsis (Arabidopsis thaliana). The involvement of additional CESA proteins in this process and details concerning the manner in which cellulose is deposited in the mucilage pocket are unknown. Here, we show that both CESA3 and CESA10 are highly expressed in this cell type at the time of mucilage synthesis and localize to the plasma membrane adjacent to the mucilage pocket. The isoxaben resistant1-1 and isoxaben resistant1-2 mutants affecting CESA3 show defects consistent with altered mucilage cellulose biosynthesis. CESA3 can interact with CESA5 in vitro, and green fluorescent protein-tagged CESA5, CESA3, and CESA10 proteins move in a linear, unidirectional fashion around the cytoplasmic column of the cell, parallel with the surface of the seed, in a pattern similar to that of cortical microtubules. Consistent with this movement, cytological evidence suggests that the mucilage is coiled around the columella and unwinds during mucilage extrusion to form a linear ray. Mutations in CESA5 and CESA3 affect the speed of mucilage extrusion and mucilage adherence. These findings imply that cellulose fibrils are synthesized in an ordered helical array around the columella, providing a distinct structure to the mucilage that is important for both mucilage extrusion and adherence. PMID:25926481

  12. Cellulose Nanofibril Film as a Piezoelectric Sensor Material.

    Science.gov (United States)

    Rajala, Satu; Siponkoski, Tuomo; Sarlin, Essi; Mettänen, Marja; Vuoriluoto, Maija; Pammo, Arno; Juuti, Jari; Rojas, Orlando J; Franssila, Sami; Tuukkanen, Sampo

    2016-06-22

    Self-standing films (45 μm thick) of native cellulose nanofibrils (CNFs) were synthesized and characterized for their piezoelectric response. The surface and the microstructure of the films were evaluated with image-based analysis and scanning electron microscopy (SEM). The measured dielectric properties of the films at 1 kHz and 9.97 GHz indicated a relative permittivity of 3.47 and 3.38 and loss tangent tan δ of 0.011 and 0.071, respectively. The films were used as functional sensing layers in piezoelectric sensors with corresponding sensitivities of 4.7-6.4 pC/N in ambient conditions. This piezoelectric response is expected to increase remarkably upon film polarization resulting from the alignment of the cellulose crystalline regions in the film. The CNF sensor characteristics were compared with those of polyvinylidene fluoride (PVDF) as reference piezoelectric polymer. Overall, the results suggest that CNF is a suitable precursor material for disposable piezoelectric sensors, actuators, or energy generators with potential applications in the fields of electronics, sensors, and biomedical diagnostics.

  13. Effect of various carbon and nitrogen sources on cellulose synthesis ...

    African Journals Online (AJOL)

    The effect of various carbon and nitrogen sources on cellulose production by Acetobacter lovaniensis HBB5 was examined. In this study, glucose, fructose, sucrose and ethanol as carbon source and yeast extract, casein hydrolysate and ammonium sulphate as nitrogen source were used. Among the carbon sources, ...

  14. Facile Fabrication of 100% Bio-based and Degradable Ternary Cellulose/PHBV/PLA Composites

    Directory of Open Access Journals (Sweden)

    Tao Qiang

    2018-02-01

    Full Text Available Modifying bio-based degradable polymers such as polylactide (PLA and poly(hydroxybutyrate-co-hydroxyvalerate (PHBV with non-degradable agents will compromise the 100% degradability of their resultant composites. This work developed a facile and solvent-free route in order to fabricate 100% bio-based and degradable ternary cellulose/PHBV/PLA composite materials. The effects of ball milling on the physicochemical properties of pulp cellulose fibers, and the ball-milled cellulose particles on the morphology and mechanical properties of PHBV/PLA blends, were investigated experimentally and statistically. The results showed that more ball-milling time resulted in a smaller particle size and lower crystallinity by way of mechanical disintegration. Filling PHBV/PLA blends with the ball-milled celluloses dramatically increased the stiffness at all of the levels of particle size and filling content, and improved their elongation at the break and fracture work at certain levels of particle size and filling content. It was also found that the high filling content of the ball-milled cellulose particles was detrimental to the mechanical properties for the resultant composite materials. The ternary cellulose/PHBV/PLA composite materials have some potential applications, such as in packaging materials and automobile inner decoration parts. Furthermore, filling content contributes more to the variations of their mechanical properties than particle size does. Statistical analysis combined with experimental tests provide a new pathway to quantitatively evaluate the effects of multiple variables on a specific property, and figure out the dominant one for the resultant composite materials.

  15. The Synthesis of Cellulose Graft Copolymers Using Cu(0)-Mediated Polymerization

    Science.gov (United States)

    Donaldson, Jason L.

    Cellulose is the most abundant renewable polymer on the planet and there is great interest in expanding its use beyond its traditional applications. However, its hydrophilicity and insolubility in most common solvent systems are obstacles to its widespread use in advanced materials. One way to counteract this is to attach hydrophobic polymer chains to cellulose: this allows the properties of the copolymer to be tailored by the molecular weight, density, and physical properties of the grafts. Two methods were used here to synthesize the graft copolymers: a 'grafting-from' approach, where synthetic chains were grown outward from bromoester moieties on cellulose (Cell-BiB) via Cu(0)-mediated polymerization; and a 'grafting-to' approach, where fully formed synthetic chains with terminal sulfide functionality were added to cellulose acetate with methacrylate functionality (CA-MAA) via thiol-ene Michael addition. The Cell-BiB was synthesized in the ionic liquid 1-butyl-3-methylimidazolium chloride and had a degree of substitution of 1.13. Polymerization from Cell-BiB proceeded at similar but slightly slower rate than an analogous non-polymeric initiator (EBiB). The average graft density of poly(methyl acrylate) chains was 0.71 chains/ring, with a maximum of 1.0 obtained. The graft density when grafting poly(methyl methacrylate) was only 0.15, and this appeared to be due to the slow initiation of BiB groups. Using EBiB to model the reaction and improve the design should allow this to be overcome. Chain extension experiments demonstrated the living behaviour of the polymer. The CA-MAA was synthesized by esterification with methacrylic acid. Reactions of CA-MAA with thiophenol and dodecanethiol resulted in quantitative addition of the thiol to the alkene. The grafts were synthesized by Cu(0)-mediated polymerization from a bifunctional initiator containing a disulfide bond, followed by reduction to sulfides. The synthetic polymers were successfully grafted to CA-MAA but the

  16. Induction of mutation in Trichoderma viride for conversion of natural cellulose into glucose

    Energy Technology Data Exchange (ETDEWEB)

    Tahoun, M.K.; Khalil, A.I.; Helmi, S.; Khairy, A.H. [Univ. of Alexandria Research Centre, Alexandria (Egypt)

    1991-12-31

    The production of cellulolytic enzymes from fungi has been extensively studied. Several mutants of Trichoderma reesei were selected. Most of the studies were carried out on T. reesei, T. viride, T. harzianum, Penicillium funiculosum, Altemaria alternata. Aspergillus phoenicis, A. ustus, A. tamarii, A. japonicus, and A. niger. T. koningii is one of the most active producers of the so-called C, factor, which is indispensable for the rapid and extensive attack on crystal-line cellulose. However, Trichodenna is known to excrete only small amounts of {beta}-glucosidase. Therefore, Trichoderma is supplemented with {beta}-glucosidase from Aspergillus to increase the saccharification rate of cellulose to glucose as the main sugar. Induction of mutations in Trichodenna spp. rather than T. viride as a tool for the enhancement of {beta}-glucosidase activity was reported. Unfortunately, T. reesei is a poor producer of {beta}-glucosidase. On the other hand, T. harzianum M{sub 5}, a mutant that was induced by gamma radiation, produced high yields, not only of Avicelase and carboxy methyl cellulose, but also of {beta}-glucosidase, than its respective wild type.

  17. Chitin and Cellulose Processing in Low-Temperature Electron Beam Plasma

    Directory of Open Access Journals (Sweden)

    Tatiana Vasilieva

    2017-11-01

    Full Text Available Polysaccharide processing by means of low-temperature Electron Beam Plasma (EBP is a promising alternative to the time-consuming and environmentally hazardous chemical hydrolysis in oligosaccharide production. The present paper considers mechanisms of the EBP-stimulated destruction of crab shell chitin, cellulose sulfate, and microcrystalline cellulose, as well as characterization of the produced oligosaccharides. The polysaccharide powders were treated in oxygen EBP for 1–20 min at 40 °C in a mixing reactor placed in the zone of the EBP generation. The chemical structure and molecular mass of the oligosaccharides were analyzed by size exclusion and the reversed phase chromatography, FTIR-spectroscopy, XRD-, and NMR-techniques. The EBP action on original polysaccharides reduces their crystallinity index and polymerization degree. Water-soluble products with lower molecular weight chitooligosaccharides (weight-average molecular mass, Mw = 1000–2000 Da and polydispersity index 2.2 and cellulose oligosaccharides with polymerization degrees 3–10 were obtained. The 1H-NMR analysis revealed 25–40% deacetylation of the EBP-treated chitin and FTIR-spectroscopy detected an increase of carbonyl- and carboxyl-groups in the oligosaccharides produced. Possible reactions of β-1,4-glycosidic bonds’ destruction due to active oxygen species and high-energy electrons are given.

  18. Effect of stretching on the mechanical properties in melt-spun poly(butylene succinate)/microfibrillated cellulose (MFC) nanocomposites.

    Science.gov (United States)

    Zhou, Mi; Fan, Mao; Zhao, Yongsheng; Jin, Tianxiang; Fu, Qiang

    2016-04-20

    In order to prepare poly(butylene succinate)/microfibrillated cellulose composites with high performance, in this work, microfibrillated cellulose (MFC) was first treated by acetylchloride with ball-milling to improve its interfacial compatibility with poly(butylene succinate) (PBS). Then melt stretching processing was adopted to further improve the dispersion and orientation of MFC in as-spun PBS fiber. And the effect of MFC on the crystalline structure and mechanical properties were systematically investigated for the melt-spun fibers prepared with two different draw ratios. The dispersion, alignment of the MFC and interfacial crystalline structure in the composite fibers are significantly influenced by the stretching force during the melt spinning. The possible formation of nanohybrid shish kebab (NHSK) superstructure where aligned MFC as shish and PBS lamellae as kebab has been suggested via SEM and SAXS in the composite fibers prepared at the high draw ratio. Large improvement in tensile strength has been realized at the high draw ratio due to the enhanced orientation and dispersion of MFC as well as the formation of NHSK. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Biosynthesis of callose and cellulose by detergent extracts of tobacco cell membranes and quantification of the polymers synthesized in vivo.

    NARCIS (Netherlands)

    Cifuentes Espitia, C.C.; Bulone, V.; Emons, A.M.C.

    2010-01-01

    The conditions that favor the in vitro synthesis of cellulose from tobacco BY-2 cell extracts were determined. The procedure leading to the highest yield of cellulose consisted of incubating digitonin extracts of membranes from 11-day-old tobacco BY-2 cells in the presence of 1 mM UDP-glucose, 8 mM

  20. Properties of cellulose derivatives produced from radiation-Modified cellulose pulps

    International Nuclear Information System (INIS)

    Iller, Edward; Stupinska, Halina; Starostka, Pawel

    2007-01-01

    The aim of project was elaboration of radiation methods for properties modification of cellulose pulps using for derivatives production. The selected cellulose pulps were exposed to an electron beam with energy 10 MeV in a linear accelerator. After irradiation pulps underwent the structural and physico-chemical investigations. The laboratory test for manufacturing carboxymethylocellulose (CMC), cellulose carbamate (CC) and cellulose acetate (CA) with cellulose pulps irradiated dose 10 and 15 kGy have been performed. Irradiation of the pulp influenced its depolimerisation degree and resulted in the drop of viscosity of CMC. However, the expected level of cellulose activation expressed as a rise of the substitution degree or increase of the active substance content in the CMC sodium salt was not observed. In the case of cellulose esters (CC, CA) formation, the action of ionising radiation on cellulose pulps with the dose 10 and 15 kGy enables obtaiment of the average values of polimerisation degree as required for CC soluble in aqueous sodium hydroxide solution. The properties of derivatives prepared by means of radiation and classic methods were compared

  1. Cellulose nanocrystals the next big nano-thing?

    Science.gov (United States)

    Postek, Michael T.; Vladar, Andras; Dagata, John; Farkas, Natalia; Ming, Bin; Sabo, Ronald; Wegner, Theodore H.; Beecher, James

    2008-08-01

    Biomass surrounds us from the smallest alga to the largest redwood tree. Even the largest trees owe their strength to a newly-appreciated class of nanomaterials known as cellulose nanocrystals (CNC). Cellulose, the world's most abundant natural, renewable, biodegradable polymer, occurs as whisker like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. Therefore, the basic raw materials for a future of new nanomaterials breakthroughs already abound in the environment and are available to be utilized in an array of future materials once the manufacturing processes and nanometrology are fully developed. This presentation will discuss some of the instrumentation, metrology and standards issues associated with nanomanufacturing of cellulose nanocrystals. The use of lignocellulosic fibers derived from sustainable, annually renewable resources as a reinforcing phase in polymeric matrix composites provides positive environmental benefits with respect to ultimate disposability and raw material use. Today we lack the essential metrology infrastructure that would enable the manufacture of nanotechnology-based products based on CNCs (or other new nanomaterial) to significantly impact the U.S. economy. The basic processes common to manufacturing - qualification of raw materials, continuous synthesis methods, process monitoring and control, in-line and off-line characterization of product for quality control purposes, validation by standard reference materials - are not generally in place for nanotechnology based products, and thus are barriers to innovation. One advantage presented by the study of CNCs is that, unlike other nanomaterials, at least, cellulose nanocrystal manufacturing is already a sustainable and viable bulk process. Literally tons of cellulose nanocrystals can be generated each day, producing other viable byproducts such as glucose (for alternative fuel) and gypsum (for buildings).There is an immediate need for the

  2. Calcinated tea and cellulose composite films and its dielectric and lead adsorption properties.

    Science.gov (United States)

    Jayaramudu, Tippabattini; Varaprasad, Kokkarachedu; Kim, Hyun Chan; Kafy, Abdullahil; Kim, Jung Woong; Kim, Jaehwan

    2017-09-01

    In this paper, calcinated tea and cellulose composite (CTCC) films were fabricated via solution casting method. Chemical structure, morphology, crystallinity and thermal stability of the fabricated films were characterized by using Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and thermogravimetric analysis. The effect of calcinated tea loading on the properties of the prepared CTCC films was studied. The results suggest that the prepared CTCC films show higher mechanical properties, thermal stability and dielectric constant than the neat cellulose film. In addition, the CTCC films adsorb Pb 2+ ions and its adsorption performance depends on the calcinated tea content and pH level. The CTCC films are useful for sensors, flexible capacitor as well as lead adsorption applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A Genome-Wide Association Study for Culm Cellulose Content in Barley Reveals Candidate Genes Co-Expressed with Members of the CELLULOSE SYNTHASE A Gene Family

    Science.gov (United States)

    Houston, Kelly; Burton, Rachel A.; Sznajder, Beata; Rafalski, Antoni J.; Dhugga, Kanwarpal S.; Mather, Diane E.; Taylor, Jillian; Steffenson, Brian J.; Waugh, Robbie; Fincher, Geoffrey B.

    2015-01-01

    Cellulose is a fundamentally important component of cell walls of higher plants. It provides a scaffold that allows the development and growth of the plant to occur in an ordered fashion. Cellulose also provides mechanical strength, which is crucial for both normal development and to enable the plant to withstand both abiotic and biotic stresses. We quantified the cellulose concentration in the culm of 288 two – rowed and 288 six – rowed spring type barley accessions that were part of the USDA funded barley Coordinated Agricultural Project (CAP) program in the USA. When the population structure of these accessions was analysed we identified six distinct populations, four of which we considered to be comprised of a sufficient number of accessions to be suitable for genome-wide association studies (GWAS). These lines had been genotyped with 3072 SNPs so we combined the trait and genetic data to carry out GWAS. The analysis allowed us to identify regions of the genome containing significant associations between molecular markers and cellulose concentration data, including one region cross-validated in multiple populations. To identify candidate genes we assembled the gene content of these regions and used these to query a comprehensive RNA-seq based gene expression atlas. This provided us with gene annotations and associated expression data across multiple tissues, which allowed us to formulate a supported list of candidate genes that regulate cellulose biosynthesis. Several regions identified by our analysis contain genes that are co-expressed with CELLULOSE SYNTHASE A (HvCesA) across a range of tissues and developmental stages. These genes are involved in both primary and secondary cell wall development. In addition, genes that have been previously linked with cellulose synthesis by biochemical methods, such as HvCOBRA, a gene of unknown function, were also associated with cellulose levels in the association panel. Our analyses provide new insights into the

  4. Bioconversion of different sizes of microcrystalline cellulose pretreated by microwave irradiation with/without NaOH

    International Nuclear Information System (INIS)

    Peng, Huadong; Chen, Hongzhang; Qu, Yongshui; Li, Hongqiang; Xu, Jian

    2014-01-01

    Highlights: • High concentration of alkali or temperature was necessary in cellulose degradation. • Effects of alkali pretreatment could be enhanced with the addition of microwave irradiation. • The structures diversities of microcrystalline cellulose were eliminated in the fermentation. • The significance of particle size and treat condition varied with reaction time. - Abstract: The process of microwave irradiation (MWI) pretreatment on microcrystalline cellulose (MCC) with different sizes with/without NaOH was investigated on the variation of the ratio of degradated solid residue (R DS ), particle size, crystallinity index (CrI), crystallite size (Sc) and specific surface area (SSA). High concentration of alkali or high temperature was necessary in dissolving or decomposing the cellulose. Appropriate pretreatment severity eliminated the effects of structural diversities in feedstocks, which led to convergence in the ethanol fermentation. After the reaction proceeded to 120 h, the samples could be converted to glucose completely and the highest ethanol yield of the theoretical was 58.91% for all the samples pretreated by the combined treatment of MWI and NaOH. In addition, the statistical analysis implied that when reaction time got to 24 h, particle size and pretreatment condition affected much more significant than other factors

  5. Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark

    International Nuclear Information System (INIS)

    Goelzer, F.D.E.; Faria-Tischer, P.C.S.; Vitorino, J.C.; Sierakowski, Maria-R.; Tischer, C.A.

    2009-01-01

    Bacterial cellulose (BC), biosynthesized by Acetobacter xylinum, was produced in a medium consisting of rice bark pre-treated with an enzymatic pool. Rice bark was evaluated as a carbon source by complete enzymatic hydrolysis and monosaccharide composition (GC-MS of derived alditol acetates). It was treated enzymatically and then enriched with glucose up to 4% (w/v). The BC produced by static and aerated processes was purified by immersion in 0.1 M NaOH, was characterized by FT-IR, X-ray diffraction and the biosynthetic nanostructures were evaluated by Scanning Electronic (SEM), Transmission Electronic (TEM) and Atomic Force Microscopy (AFM). The BC films arising from static fermentation with rice bark/glucose and glucose are tightly intertwined, partially crystalline, being type II cellulose produced with rice bark/glucose, and type I to the produced in a glucose medium. The nanostructurated biopolymer obtained from the rice bark/glucose medium, produced in a reactor with air flux had micro- and nanospheres linked to nanofibers of cellulose. These results indicate that the bark components, namely lignins, hemicelluloses or mineral contents, interact with the cellulose forming micro- and nanostructures with potential use to incorporate drugs

  6. Kombucha-synthesized bacterial cellulose: preparation, characterization, and biocompatibility evaluation.

    Science.gov (United States)

    Zhu, Changlai; Li, Feng; Zhou, Xinyang; Lin, Lin; Zhang, Tianyi

    2014-05-01

    Bacterial cellulose (BC) is a natural biomaterial with unique properties suitable for tissue engineering applications, but it has not yet been used for preparing nerve conduits to repair peripheral nerve injuries. The objectives of this study were to prepare and characterize the Kampuchea-synthesized bacterial cellulose (KBC) and further evaluate the biocompatibility of KBC with peripheral nerve cells and tissues in vitro and in vivo. KBC membranes were composed of interwoven ribbons of about 20-100 nm in width, and had a high purity and the same crystallinity as that of cellulose Iα. The results from light and scanning electron microscopy, MTT assay, flow cytometry, and RT-PCR indicated that no significant differences in the morphology and cell function were observed between Schwann cells (SCs) cultured on KBC membranes and glass slips. We also fabricated a nerve conduit using KBC, which was implanted into the spatium intermusculare of rats. At 1, 3, and 6 weeks post-implantation, clinical chemistry and histochemistry showed that there were no significant differences in blood counts, serum biochemical parameters, and tissue reactions between implanted rats and sham-operated rats. Collectively, our data indicated that KBC possessed good biocompatibility with primary cultured SCs and KBC did not exert hematological and histological toxic effects on nerve tissues in vivo. Copyright © 2013 Wiley Periodicals, Inc.

  7. Chain scission and anti fungal effect of electron beam on cellulose membrane

    International Nuclear Information System (INIS)

    Wanichapichart, Pikul; Taweepreeda, Wirach; Nawae, Safitree; Choomgan, Pastraporn; Yasenchak, Dan

    2012-01-01

    Two types of bacterial cellulose (BC) membranes were produced under a modified H and S medium using sucrose as a carbon source, with (CCB) and without (SHB) coconut juice supplement. Both membranes showed similar crystallinity of 69.24 and 71.55%. After being irradiated with E-beams under oxygen limited and ambient condition, the results from water contact angle showed that only the irradiated membrane CCB was increased from 30 to 40 degrees, and irradiation under oxygen ambient condition provided the greatest value. Comparing with the control membranes, smaller water flux was the cases after electron beam irradiation which indicated a reduction of membrane pore area. However, the results from molecular weight cut off (MWCO) revealed that chain scission was greater for membrane SHB and its cut off was increased from 28,000 Da to more than 35,000 Da. FTIR analysis revealed some changes in membrane functional groups, corresponding with the above results. These changes initiated new property of cellulose membranes, an anti-fungal food wrap. - Highlights: ► Electron beam irradiation increased membrane hydrophobicity and molecular weight cut off. ► The irradiation caused chain scissoring and anti fungal property of cellulose membrane. ► FT-IR studies revealed changes in functional groups causing a decrease in membrane moisture. ► Anti fungal test of cellulose membrane showed the same shelf life as polyethylene sheet.

  8. In vitro chondrogenesis with lysozyme susceptible bacterial cellulose as a scaffold.

    Science.gov (United States)

    Yadav, Vikas; Sun, Lin; Panilaitis, Bruce; Kaplan, David L

    2015-12-01

    A current focus of tissue engineering is the use of adult human mesenchymal stem cells (hMSCs) as an alternative to autologous chondrocytes for cartilage repair. Several natural and synthetic polymers (including cellulose) have been explored as a biomaterial scaffold for cartilage tissue engineering. While bacterial cellulose (BC) has been used in tissue engineering, its lack of degradability in vivo and high crystallinity restricts widespread applications in the field. Recently we reported the formation of a novel bacterial cellulose that is lysozyme-susceptible and -degradable in vivo from metabolically engineered Gluconacetobacter xylinus. Here we report the use of this modified bacterial cellulose (MBC) for cartilage tissue engineering using hMSCs. MBC's glucosaminoglycan-like chemistry, combined with in vivo degradability, suggested opportunities to exploit this novel polymer in cartilage tissue engineering. We have observed that, like BC, MBC scaffolds support cell attachment and proliferation. Chondrogenesis of hMSCs in the MBC scaffolds was demonstrated by real-time RT-PCR analysis for cartilage-specific extracellular matrix (ECM) markers (collagen type II, aggrecan and SOX9) as well as histological and immunohistochemical evaluations of cartilage-specific ECM markers. Further, the attachment, proliferation, and differentiation of hMSCs in MBC showed unique characteristics. For example, after 4 weeks of cultivation, the spatial cell arrangement and collagen type-II and ACAN distribution resembled those in native articular cartilage tissue, suggesting promise for these novel in vivo degradable scaffolds for chondrogenesis. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Construction of cellulose-utilizing Escherichia coli based on a secretable cellulase.

    Science.gov (United States)

    Gao, Dongfang; Luan, Yaqi; Wang, Qian; Liang, Quanfeng; Qi, Qingsheng

    2015-10-09

    The microbial conversion of plant biomass into value added products is an attractive option to address the impacts of petroleum dependency. The Gram-negative bacterium Escherichia coli is commonly used as host for the industrial production of various chemical products with a variety of sugars as carbon sources. However, this strain neither produces endogenous cellulose degradation enzymes nor secrets heterologous cellulases for its poor secretory capacity. Thus, a cellulolytic E. coli strain capable of growth on plant biomass would be the first step towards producing chemicals and fuels. We previously identified the catalytic domain of a cellulase (Cel-CD) and its N-terminal sequence (N20) that can serve as carriers for the efficient extracellular production of target enzymes. This finding suggested that cellulose-utilizing E. coli can be engineered with minimal heterologous enzymes. In this study, a β-glucosidase (Tfu0937) was fused to Cel-CD and its N-terminal sequence respectively to obtain E. coli strains that were able to hydrolyze the cellulose. Recombinant strains were confirmed to use the amorphous cellulose as well as cellobiose as the sole carbon source for growth. Furthermore, both strains were engineered with poly (3-hydroxybutyrate) (PHB) synthesis pathway to demonstrate the production of biodegradable polyesters directly from cellulose materials without exogenously added cellulases. The yield of PHB reached 2.57-8.23 wt% content of cell dry weight directly from amorphous cellulose/cellobiose. Moreover, we found the Cel-CD and N20 secretion system can also be used for the extracellular production of other hydrolytic enzymes. This study suggested that a cellulose-utilizing E. coli was created based on a heterologous cellulase secretion system and can be used to produce biofuels and biochemicals directly from cellulose. This system also offers a platform for conversion of other abundant renewable biomass to biofuels and biorefinery products.

  10. Identification of cellulose fibres belonging to Spanish cultural heritage using synchrotron high resolution X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, L.K.; Justo, A.; Duran, A.; Haro, M.C.J. de; Franquelo, M.L.; Perez Rodriguez, J.L. [CSIC-Seville University, Materials Science Institute of Seville, Seville (Spain)

    2010-05-15

    A complete characterisation of fibres used in Spanish artwork is necessary to provide a complete knowledge of these natural fibres and their stage of degradation. Textile samples employed as painting supports on canvas and one sample of unprocessed plant material were chosen for this study. All the samples were investigated by synchrotron radiation X-ray diffraction (SR-XRD). Flax and cotton have the Cellulose I structure. The values of the crystalline index (CI) were calculated for both types of fibres. The structure of Cellulose IV was associated with the unprocessed plant material. The information obtained by SR-XRD was confirmed by laboratory techniques including scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). (orig.)

  11. Cellulose-Hemicellulose Interactions at Elevated Temperatures Increase Cellulose Recalcitrance to Biological Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Ashutosh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kumar, Rajeev [University of California, Riverside; Oak Ridge National Laboratory; ; Smith, Micholas Dean [Oak Ridge National Laboratory; University of Tennessee; Petridis, Loukas [Oak Ridge National Laboratory; University of Tennessee; Ong, Rebecca G. [Michigan Technological University; Cai, Charles M. [University of California, Riverside; Oak Ridge National Laboratory; Balan, Venkatesh [University of Houston; Dale, Bruce E. [Michigan State University; Ragauskas, Arthur J. [Oak Ridge National Laboratory; University of Tennessee; Smith, Jeremy C. [Oak Ridge National Laboratory; University of Tennessee; Wyman, Charles E. [University of California, Riverside; Oak Ridge National Laboratory

    2018-01-23

    It has been previously shown that cellulose-lignin droplets' strong interactions, resulting from lignin coalescence and redisposition on cellulose surface during thermochemical pretreatments, increase cellulose recalcitrance to biological conversion, especially at commercially viable low enzyme loadings. However, information on the impact of cellulose-hemicellulose interactions on cellulose recalcitrance following relevant pretreatment conditions are scarce. Here, to investigate the effects of plausible hemicellulose precipitation and re-association with cellulose on cellulose conversion, different pretreatments were applied to pure Avicel(R) PH101 cellulose alone and Avicel mixed with model hemicellulose compounds followed by enzymatic hydrolysis of resulting solids at both low and high enzyme loadings. Solids produced by pretreatment of Avicel mixed with hemicelluloses (AMH) were found to contain about 2 to 14.6% of exogenous, precipitated hemicelluloses and showed a remarkably much lower digestibility (up to 60%) than their respective controls. However, the exogenous hemicellulosic residues that associated with Avicel following high temperature pretreatments resulted in greater losses in cellulose conversion than those formed at low temperatures, suggesting that temperature plays a strong role in the strength of cellulose-hemicellulose association. Molecular dynamics simulations of hemicellulosic xylan and cellulose were found to further support this temperature effect as the xylan-cellulose interactions were found to substantially increase at elevated temperatures. Furthermore, exogenous, precipitated hemicelluloses in pretreated AMH solids resulted in a larger drop in cellulose conversion than the delignified lignocellulosic biomass containing comparably much higher natural hemicellulose amounts. Increased cellulase loadings or supplementation of cellulase with xylanases enhanced cellulose conversion for most pretreated AMH solids; however, this approach

  12. Physical and structural properties of polyaniline/microcrystalline cellulose nanocomposite

    Science.gov (United States)

    Abdi, Mahnaz M.; Liyana, Rawaida; Tahir, Paridah Md; Heng, Lee Yook; Sulaiman, Yusran; Waheeda, Nur Farhana; Hassan, Nabihah Abu

    2017-12-01

    A composite of Polyaniline/Microcrystalline Cellulose (PAni/MCC) was prepared via a chemical polymerization method in the presence of ammonium persulfate (NH4)2S2O8 as oxidant and cetyltrimethylammonium bromide (CTAB) as a cationic surfactant. The results of FESEM showed that the morphology of nanocomposite depends on the monomer concentration. Wire-like and porous nanostructure was observed for PAni/MCC/CTAB composite that could be suitable for enzyme immobilization and sensor applications. The electrochemical properties of the composites were studied using Cyclic Voltammetry (CV) and it was shown that PAni/MCC/CTAB composite generated a higher current response compared to the pure PAni. The synergy effect of MCC and CTAB on the physical and electrochemical properties of composite resulted in higher electron transferring in PAni/MCC/CTAB. The presence of significant peaks of PAni and MCC in FT-IR spectrum of nanocomposite indicating polymerization of aniline on the surface of MCC. Characteristic peaks of crystalline cellulose were observed at 22.8 and 14.7 2theta in XRD pattern.

  13. Cellulose Nanocrystal Membranes as Excipients for Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Ananda M. Barbosa

    2016-12-01

    Full Text Available In this work, cellulose nanocrystals (CNCs were obtained from flax fibers by an acid hydrolysis assisted by sonochemistry in order to reduce reaction times. The cavitation inducted during hydrolysis resulted in CNC with uniform shapes, and thus further pretreatments into the cellulose are not required. The obtained CNC exhibited a homogeneous morphology and high crystallinity, as well as typical values for surface charge. Additionally, CNC membranes were developed from CNC solution to evaluation as a drug delivery system by the incorporation of a model drug. The drug delivery studies were carried out using chlorhexidine (CHX as a drug and the antimicrobial efficiency of the CNC membrane loaded with CHX was examined against Gram-positive bacteria Staphylococcus aureus (S. Aureus. The release of CHX from the CNC membranes is determined by UV-Vis. The obtaining methodology of the membranes proved to be simple, and these early studies showed a potential use in antibiotic drug delivery systems due to the release kinetics and the satisfactory antimicrobial activity.

  14. Synthetic crystalline ferroborosilicate compositions, the preparation thereof and their use in the conversion of synthesis gas to low molecular weight hydrocarbons

    International Nuclear Information System (INIS)

    Hinnenkamp, J.A.; Walatka, V.V.

    1987-01-01

    A method for the conversion of synthesis gas is described comprising: contacting synthesis gas which comprises hydrogen and carbon monoxide with a catalytically effective amount of a crystalline ferroborosilicate composition, under conversion conditions effective to provide ethane selectivity of at least 40%. The borosilicate composition is represented in terms of mole ratios as follows: (0.2 to 15) M/sub 2/m/O:(0.2 to 10) Z/sub 2/ O /sub 3/: (5 to 1000) SiO/sub 2/: Fe/sub 2/n/O: (0 to 2000) H/sub 2/O wherein M comprises a cation of a quaternary ammonium, metal, ammonium, hydrogen and mixtures thereof, m is the valence of the cation, n is the valence of the iron cation, and Z is boron. The composition contains ion-exchanged palladium or palladium impregnated onto the composition

  15. Production of bacterial cellulose and enzyme from waste fiber sludge

    Science.gov (United States)

    2013-01-01

    Background Bacterial cellulose (BC) is a highly crystalline and mechanically stable nanopolymer, which has excellent potential as a material in many novel applications, especially if it can be produced in large amounts from an inexpensive feedstock. Waste fiber sludge, a residue with little or no value, originates from pulp mills and lignocellulosic biorefineries. A high cellulose and low lignin content contributes to making the fiber sludge suitable for bioconversion, even without a thermochemical pretreatment step. In this study, the possibility to combine production of BC and hydrolytic enzymes from fiber sludge was investigated. The BC was characterized using field-emission scanning electron microscopy and X-ray diffraction analysis, and its mechanical properties were investigated. Results Bacterial cellulose and enzymes were produced through sequential fermentations with the bacterium Gluconacetobacter xylinus and the filamentous fungus Trichoderma reesei. Fiber sludges from sulfate (SAFS) and sulfite (SIFS) processes were hydrolyzed enzymatically without prior thermochemical pretreatment and the resulting hydrolysates were used for BC production. The highest volumetric yields of BC from SAFS and SIFS were 11 and 10 g/L (DW), respectively. The BC yield on initial sugar in hydrolysate-based medium reached 0.3 g/g after seven days of cultivation. The tensile strength of wet BC from hydrolysate medium was about 0.04 MPa compared to about 0.03 MPa for BC from a glucose-based reference medium, while the crystallinity was slightly lower for BC from hydrolysate cultures. The spent hydrolysates were used for production of cellulase with T. reesei. The cellulase activity (CMCase activity) in spent SAFS and SIFS hydrolysates reached 5.2 U/mL (87 nkat/mL), which was similar to the activity level obtained in a reference medium containing equal amounts of reducing sugar. Conclusions It was shown that waste fiber sludge is a suitable raw material for production of

  16. Cellulose and the Control of Growth Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Tobias I. Baskin

    2004-04-01

    The authors research aims to understand morphogenesis, focusing on growth anisotropy, a process that is crucial to make organs with specific and heritable shapes. For the award, the specific aims were to test hypotheses concerning how growth anisotropy is controlled by cell wall structure, particularly by the synthesis and alignment of cellulose microfibrils, the predominant mechanical element in the cell wall. This research has involved characterizing the basic physiology of anisotropic expansion, including measuring it at high resolution; and second, characterizing the relationship between growth anisotropy, and cellulose microfibrils. Important in this relationship and also to the control of anisotropic expansion are structures just inside the plasma membrane called cortical microtubules, and the research has also investigated their contribution to controlling anisotropy and microfibril alignment. In addition to primary experimental papers, I have also developed improved methods relating to these objectives as well as written relevant reviews. Major accomplishments in each area will now be described.

  17. Structure and characteristics of an endo-beta-1,4-glucanase, isolated from Trametes hirsuta, with high degradation to crystalline cellulose.

    Science.gov (United States)

    Nozaki, Kouichi; Seki, Takahiro; Matsui, Keiko; Mizuno, Masahiro; Kanda, Takahisa; Amano, Yoshihiko

    2007-10-01

    Trametes hirsuta produced cellulose-degrading enzymes when it was grown in a cellulosic medium such as Avicel or wheat bran. An endo-beta-1,4-glucanase (ThEG) was purified from the culture filtrate, and the gene and the cDNA were isolated. The gene consisted of an open reading frame encoding 384 amino acids, interrupted by 11 introns. The whole sequence showed high homology with that of family 5 glycoside hydrolase. The properties of the recombinant enzyme (rEG) in Aspergillus oryzae were compared with those of the En-1 from Irpex lacteus, which showed the highest homology among all the endoglucanases reported. The rEG activity against Avicel was about 8 times higher than that of En-1 when based on CMC degradation. A remarkable structural difference between the two enzymes was the length of the linker connecting the cellulose-binding domain to the catalytic domain.

  18. Conductive nano composites based on cellulose nano fiber coated poly aniline via in situ polymerization

    International Nuclear Information System (INIS)

    Silva, Michael J. da; Sanches, Alex O.; Malmonge, Luiz F.; Malmonge, Jose A.; Medeiros, Eliton S. de; Rosa, Morsyleide F.

    2011-01-01

    Cellulose nano fiber (CNF) was extracted by acid hydrolysis from cotton microfibril and nano composites of CNF/PANI-DBSA were obtained by in situ polymerization of aniline onto CNF. The ratios between DBSA/aniline and aniline/oxidant were varied and the nano composites were characterized by four probes direct current (dc) electrical conductivity, ultraviolet-visible (UV-Vis-NIR) and FTIR spectroscopy and X-ray diffraction (XRD). Electrical conductive about ∼10 -1 S/cm was research and was independent of DBSA/aniline molar ratio between 2-4 and the aniline/oxidant molar ratio between 1-5. X-ray patterns of the samples show crystalline peaks characteristic of cellulose I. The FTIR spectra confirmed the presence of PANI and CNF in all samples. (author)

  19. Dynamic mechanical analysis and crystalline analysis of hemp fiber reinforced cellulose filled epoxy composite

    Energy Technology Data Exchange (ETDEWEB)

    Palanivel, Anand; Duruvasalu, Rajesh; Iyyanar, Saranraj; Velumayil, Ramesh, E-mail: p.anand@ymail.com [Mechanical Engineering, Vel Tech Dr RR. & Dr. SR University, Avadi, Chennai, Tamilnadu (India); Veerabathiran, Anbumalar [Mechanical Engineering, Velammal College of Engineering & Technology, Madurai, TN (India)

    2017-07-01

    The Dynamic mechanical behavior of chemically treated and untreated hemp fiber reinforced composites was investigated. The morphology of the composites was studied to understand the interaction between the filler and polymer. A series of dynamic mechanical tests were performed by varying the fiber loading and test frequencies over a range of testing temperatures. It was found that the storage modulus (E') recorded above the glass transition temperature (Tg) decrease with increasing temperature. The loss modulus (E”) and damping peaks (Tan δ) values were found to be reduced with increasing matrix loading and temperature. Morphological changes and crystallinity of Composites were investigated using scanning electron microscope (SEM) and XRD techniques. The composites with Alkali and Benzoyl treated fibers has attributed enhanced DMA Results. In case of XRD studies, the composites with treated fibers with higher filler content show enhanced crystallinity. (author)

  20. Dynamic mechanical analysis and crystalline analysis of hemp fiber reinforced cellulose filled epoxy composite

    Directory of Open Access Journals (Sweden)

    Anand Palanivel

    Full Text Available Abstract The Dynamic mechanical behavior of chemically treated and untreated hemp fiber reinforced composites was investigated. The morphology of the composites was studied to understand the interaction between the filler and polymer. A series of dynamic mechanical tests were performed by varying the fiber loading and test frequencies over a range of testing temperatures. It was found that the storage modulus (E’ recorded above the glass transition temperature (Tg decrease with increasing temperature. The loss modulus (E” and damping peaks (Tan δ values were found to be reduced with increasing matrix loading and temperature. Morphological changes and crystallinity of Composites were investigated using scanning electron microscope (SEM and XRD techniques. The composites with Alkali and Benzoyl treated fibers has attributed enhanced DMA Results. In case of XRD studies, the composites with treated fibers with higher filler content show enhanced crystallinity.

  1. Synthesis and Swelling Behavior of pH-Sensitive Semi-IPN Superabsorbent Hydrogels Based on Poly(acrylic acid Reinforced with Cellulose Nanocrystals

    Directory of Open Access Journals (Sweden)

    Lim Sze Lim

    2017-11-01

    Full Text Available pH-sensitive poly(acrylic acid (PAA hydrogel reinforced with cellulose nanocrystals (CNC was prepared. Acrylic acid (AA was subjected to chemical cross-linking using the cross-linking agent MBA (N,N-methylenebisacrylamide with CNC entrapped in the PAA matrix. The quantity of CNC was varied between 0, 5, 10, 15, 20, and 25 wt %. X-ray diffraction (XRD data showed an increase in crystallinity with the addition of CNC, while rheology tests demonstrated a significant increase in the storage modulus of the hydrogel with an increase in CNC content. It was found that the hydrogel reached maximum swelling at pH 7. The potential of the resulting hydrogels to act as drug carriers was then evaluated by means of the drug encapsulation efficiency test using theophylline as a model drug. It was observed that 15% CNC/PAA hydrogel showed the potential to be used as drug carrier system.

  2. Synthesis, Characterization and Applications of Ethyl Cellulose-Based Polymeric Calcium(II) Hydrogen Phosphate Composite

    Science.gov (United States)

    Mohammad, Faruq; Arfin, Tanvir; Al-Lohedan, Hamad A.

    2018-03-01

    The present report deals with the synthesis, characterization and testing of an ethyl cellulose-calcium(II) hydrogen phosphate (EC-CaHPO4) composite, where a sol-gel synthesis method was applied for the preparation of the composite so as to test its efficacy towards the electrochemical, biological, and adsorption related applications. The physical properties of the composite were characterized by using scanning electron microscopy (SEM), ultraviolet- visible (UV-Vis) spectroscopy, and fourier transform-infrared (FTIR) spectroscopy. On testing, the mechanical properties indicated that the composite is highly stable due to the cross-linked rigid framework and the enhanced interactions offered by the EC polymer supported for its binding very effectively. In addition, the conductivity of EC-CaHPO4 is completely governed by the transport mechanism where the electrolyte concentration has preference towards the adsorption of ions and the variations in the conductivity significantly affected the material's performance. We observed an increasing order of KCl > NaCl for the conductivity when 1:1 electrolytes were applied. Further, the material was tested for its usefulness towards the purification of industrial waste waters by removing harmful metal ions from the samples collected near the Aligarh city, India where the data indicates that the material has highest affinity towards Pb2+, Cu2+, Ni2+ and Fe3+ metal ions. Finally, the biological efficiency of the material was confirmed by means of testing the antibacterial activity against two gram positive (staphylococcus aureus and Bacillus thuringiensis) and two gram negative bacteriums (Pseudomonas aeruginosa and Patoea dispersa). Thus, from the cumulative study of outcomes, it indicates that the EC-CaHPO4 composite found to serve as a potential smart biomaterial due to its efficiency in many different applications that includes the electrical conductivity, adsorption capability, and antimicrobial activity.

  3. Fabrication and characterization of novel biomimetic PLLA/cellulose/hydroxyapatite nanocomposite for bone repair applications

    Energy Technology Data Exchange (ETDEWEB)

    Eftekhari, Samin [Department of Chemical Engineering, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 (Canada); El Sawi, Ihab; Bagheri, Zahra Shaghayegh [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 (Canada); Turcotte, Ginette [Department of Chemical Engineering, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 (Canada); Bougherara, Habiba, E-mail: habiba.bougherara@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 (Canada)

    2014-06-01

    The purpose of this research is to develop and characterize a novel biomimetic nanocomposite that closely mimics the properties of real bone such as morphology, composition and mechanical characteristics. This novel porous nanocomposite is composed of cotton-sourced cellulose microcrystals, hydroxyapatite nanoparticles and poly L-lactide acid. A unique combination of commonly used fabrication procedures has been developed including pre-treatment of particles using a coupling agent. The effect of various weight ratios of the reinforcing agents was evaluated to assess their influence on the chemical, thermal, and mechanical properties of the nanocomposites. The prepared nanocomposites were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry and compression testing. Our results indicated the presence of molecular interactions between all components leading to an increase of the crystallinity of the polymer from 50% to 80%. Compression test results revealed that increasing the weight ratio of microcrystalline cellulose/poly L-lactide acid and hydroxyapatite/poly L-lactide acid from 0.1 to 0.5 enhanced the compressive yield stress from 0.127 to 2.2 MPa and The Young's modulus from 6.6 to 38 MPa, respectively. It was found that the fabricated nanocomposites are comparable with the trabecular bone from compositional, structural, and mechanical point of view. - Highlights: • Fabrication of PLLA/HA/cellulose composites that mimic the spongeous bone • Homogenous dispersion of the reinforcing agents in the PLLA matrix was attained. • More efficient interface between the PLLA and the reinforcing agents was achieved. • Preliminary in vitro biocompatibility test showed the nontoxicity of the composite. • The crystallinity, the compressive strength and modulus were investigated.

  4. Influence of steaming explosion time on the physic-chemical properties of cellulose from Lespedeza stalks (Lespedeza crytobotrya).

    Science.gov (United States)

    Wang, Kun; Jiang, Jian-Xin; Xu, Feng; Sun, Run-Cang

    2009-11-01

    The synergistic effect of steam explosion pretreatment and sodium hydroxide post-treatment of Lespedeza stalks (Lespedeza crytobotrya) has been investigated in this study. In this case, Lespedeza stalks were firstly exploded at a fixed steam pressure (22.5 kg/m(2)) for 2-10 min. Then the steam-exploded Lespedeza stalks was extracted with 1 M NaOH at 50 degrees C for 3 h with a shrub to water ratio of 1:20 (g/ml), which yielded 57.3%, 53.1%, 55.4%, 52.8%, 53.2%, and 56.4% (% dry weight) cellulose rich fractions, comparing to 68.0% from non-steam-exploded material. The content of glucose in cellulose rich residues increased with increment of the steaming time and reached to 94.10% at the most severity. The similar increasing trend occurred during the dissolution of hemicelluloses. It is evident that at shorter steam explosion time, autohydrolysis mainly occurred on the hemicelluloses and the amorphous area of cellulose. The crystalline region of cellulose was depolymerized under a prolonged incubation time. The characteristics of the cellulose rich fractions in terms of FT-IR and CP/MAS (13)C NMR spectroscopy and thermal analysis were discussed, and the surface structure was also investigated by SEM.

  5. Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC

    Science.gov (United States)

    Q.Q. Wang; J.Y. Zhu; R.S. Reiner; S.P. Verrill; U. Baxa; S.E. McNeil

    2012-01-01

    This study demonstrated the potential of simultaneously recovering cellulosic solid residues (CSR) and producing cellulose nanocrystals (CNCs) by strong sulfuric acid hydrolysis to minimize cellulose loss to near zero. A set of slightly milder acid hydrolysis conditions than that considered as “optimal” were used to significantly minimize the degradation of cellulose...

  6. The Effect of Mechanochemical Treatment of the Cellulose on Characteristics of Nanocellulose Films

    Science.gov (United States)

    Barbash, V. A.; Yaschenko, O. V.; Alushkin, S. V.; Kondratyuk, A. S.; Posudievsky, O. Y.; Koshechko, V. G.

    2016-09-01

    The development of the nanomaterials with the advanced functional characteristics is a challenging task because of the growing demand in the market of the optoelectronic devices, biodegradable plastics, and materials for energy saving and energy storage. Nanocellulose is comprised of the nanosized cellulose particles, properties of which depend on characteristics of plant raw materials as well as methods of nanocellulose preparation. In this study, the effect of the mechanochemical treatment of bleached softwood sulfate pulp on the optical and mechanical properties of nanocellulose films was assessed. It was established that the method of the subsequent grinding, acid hydrolysis and ultrasound treatment of cellulose generated films with the significant transparency in the visible spectral range (up to 78 % at 600 nm), high Young's modulus (up to 8.8 GPa), and tensile strength (up to 88 MPa) with increased ordering of the packing of the cellulose macromolecules. Morphological characterization was done using the dynamic light scattering (DLS) analyzer and transmission electron microscopy (TEM). The nanocellulose particles had an average diameter of 15-30 nm and a high aspect ratio in the range 120-150. The crystallinity was increased with successive treatments as shown by the X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis. The thermal degradation behavior of cellulose samples was explored by thermal gravimetric analysis (TGA).

  7. Thermodynamically Controlled High-Pressure High-Temperature Synthesis of Crystalline Fluorinated sp 3 -Carbon Networks

    Energy Technology Data Exchange (ETDEWEB)

    Klier, Kamil; Landskron, Kai

    2015-11-19

    We report the feasibility of the thermodynamically controlled synthesis of crystalline sp3-carbon networks. We show that there is a critical pressure below which decomposition of the carbon network is favored and above which the carbon network is stable. Based on advanced, highly accurate quantum mechanical calculations using the all-electron full-potential linearized augmented plane-wave method (FP-LAPW) and the Birch–Murnaghan equation of state, this critical pressure is 26.5 GPa (viz. table of contents graphic). Such pressures are experimentally readily accessible and afford thermodynamic control for suppression of decomposition reactions. The present results further suggest that a general pattern of pressure-directed control exists for many isolobal conversions of sp2 to sp3 allotropes, relating not only to fluorocarbon chemistry but also extending to inorganic and solid-state materials science.

  8. Microbial reduction of uranium using cellulosic substrates

    International Nuclear Information System (INIS)

    Thombre, M.S.; Thomson, B.M.; Barton, L.L.

    1996-01-01

    Previous work at the University of New Mexico and elsewhere has shown that sulfate-reducing bacteria are capable of reducing uranium from the soluble +6 oxidation state to the insoluble +4 oxidation state. This chemistry forms the basis of a proposed ground water remediation strategy in which microbial reduction would be used to immobilize soluble uranium. One such system would consist of a subsurface permeable barrier which would stimulate microbial growth resulting in the reduction of sulfate and nitrate and immobilization of metals while permitting the unhindered flow of ground water through it. This research investigated some of the engineering considerations associated with a microbial reducing barrier such as identifying an appropriate biological substrate, estimating the rate of substrate utilization, and identifying the final fate of the contaminants concentrated in the barrier matrix. The performance of batch reactors and column systems that treated simulated plume water was evaluated using cellulose, wheat straw, alfalfa hay, sawdust, and soluble starch as substrates. The concentrations of sulfate, nitrate, and U(VI) were monitored over time. Precipitates from each system were collected, and the precipitated U(IV) was determined to be crystalline UO 2(s) by x-ray diffraction. The results of this study support the proposed use of cellulosic substrates as candidate barrier materials

  9. Low-Cost Label-Free Biosensing Bimetallic Cellulose Strip with SILAR-Synthesized Silver Core-Gold Shell Nanoparticle Structures.

    Science.gov (United States)

    Kim, Wansun; Lee, Jae-Chul; Lee, Gi-Ja; Park, Hun-Kuk; Lee, Anbok; Choi, Samjin

    2017-06-20

    We introduce a label-free biosensing cellulose strip sensor with surface-enhanced Raman spectroscopy (SERS)-encoded bimetallic core@shell nanoparticles. Bimetallic nanoparticles consisting of a synthesis of core Ag nanoparticles (AgNP) and a synthesis of shell gold nanoparticles (AuNPs) were fabricated on a cellulose substrate by two-stage successive ionic layer absorption and reaction (SILAR) techniques. The bimetallic nanoparticle-enhanced localized surface plasmon resonance (LSPR) effects were theoretically verified by computational calculations with finite element models of optimized bimetallic nanoparticles interacting with an incident laser source. Well-dispersed raspberry-like bimetallic nanoparticles with highly polycrystalline structure were confirmed through X-ray and electron analyses despite ionic reaction synthesis. The stability against silver oxidation and high sensitivity with superior SERS enhancement factor (EF) of the low-cost SERS-encoded cellulose strip, which achieved 3.98 × 10 8 SERS-EF, 6.1%-RSD reproducibility, and <10%-degraded sustainability, implicated the possibility of practical applications in high analytical screening methods, such as single-molecule detection. The remarkable sensitivity and selectivity of this bimetallic biosensing strip in determining aquatic toxicities for prohibited drugs, such as aniline, sodium azide, and malachite green, as well as monitoring the breast cancer progression for urine, confirmed its potential as a low-cost label-free point-of-care test chip for the early diagnosis of human diseases.

  10. Synthesis and characterization of cotton fiber-based nanocellulose.

    Science.gov (United States)

    Theivasanthi, T; Anne Christma, F L; Toyin, Adeleke Joshua; Gopinath, Subash C B; Ravichandran, Ramanibai

    2018-04-01

    Nanocellulose prepared from the natural material has a promising wide range of opportunities to obtain the superior material properties towards various end-products. In this research, commercially available natural cotton was treated with aqueous sodium hydroxide solution to eliminate the hemicellulose and lignin, then cellulose was collected. The collected cellulose was subjected to acid hydrolysis using sulfuric acid to obtain nanocellulose. The prepared nanocellulose was further characterized with the aid of Fourier transform infrared spectroscopy, X-ray diffraction and Scanning Electron Microscopy to elucidate the chemical structure, crystallinity and the morphology. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Influence of PVA and silica on chemical, thermo-mechanical and electrical properties of Celluclast-treated nanofibrillated cellulose composites.

    Science.gov (United States)

    Poyraz, Bayram; Tozluoğlu, Ayhan; Candan, Zeki; Demir, Ahmet; Yavuz, Mustafa

    2017-11-01

    This study reports on the effects of organic polyvinyl alcohol (PVA) and inorganic silica polymer on properties of Celluclast-treated nanofibrillated cellulose composites. Nanofibrillated cellulose was isolated from Eucalyptus camaldulensis and prior to high-pressure homogenizing was pretreated with Celluclast enzyme in order to lower energy consumption. Three nanocomposite films were fabricated via the casting process: nanofibrillated cellulose (CNF), nanocellulose-PVA (CNF-P) and nanocellulose-silica (CNF-Si). Chemical characterization, crystallization and thermal stability were determined using FT-IR and TGA. Morphological alterations were monitored with SEM. The Young's and storage moduli of the nanocomposites were determined via a universal testing machine and DTMA. The real and imaginary parts of permittivity and electric modulus were evaluated using an impedance analyzer. The crystallinity values of the nanocomposites calculated from the FT-IR were in agreement with the TGA results, showing that the lowest crystallinity value was in the CNF-Si. The CNF-P displayed the highest tensile strength. At a high temperature interval, the storage modulus of the CNF-Si was greater than that of the CNF or CNF-P. The CNF-Si also exhibited a completed singular relaxation process, while the CNF and the CNF-P processes were uncompleted. Consequently, in terms of industrial applications, although the CNF-P composite had mechanical advantages, the CNF-Si composite displayed the best thermo-mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Highly crystalline zinc incorporated hydroxyapatite nanorods' synthesis, characterization, thermal, biocompatibility, and antibacterial study

    Science.gov (United States)

    Udhayakumar, Gayathri; Muthukumarasamy, N.; Velauthapillai, Dhayalan; Santhosh, Shanthi Bhupathi

    2017-10-01

    Highly crystalline zinc incorporated hydroxyapatite (Zn-HAp) nanorods have been synthesized using microwave irradiation method. To improve bioactivity and crystallinity of pure HAp, zinc was incorporated into it. As-synthesized samples were characterized by Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction, field-emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX), high-resolution transmission electron microscopy (HRTEM), and the thermal and crystallinity behavior of Zn-HAp nanoparticle were studied by thermogravimetry (TGA) and differential scanning calorimetry (DSC). Antibacterial activity of the as-synthesized nanorods was evaluated against two prokaryotic strains ( Escherichia coli and Staphylococcus aureus). The FT-IR studies show the presence of hydroxide and phosphate functional groups. HRTEM and FESEM images showed highly crystalline rod-shaped nanoparticles with the diameter of about 50-60 nm. EDAX revealed the presence of Ca, Zn, P, and O in the prepared samples. The crystallinity and thermal stability were further confirmed by TGA-DSC analysis. The biocompatibility evaluation results promoted that the Zn-HAp nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopaedic application.

  13. Effects of Two Different Cellulose Nanofiber Types on Properties of Poly(vinyl alcohol Composite Films

    Directory of Open Access Journals (Sweden)

    Kitti Yuwawech

    2015-01-01

    Full Text Available This work concerns a study on the effects of fiber types and content of cellulose nanofiber on mechanical, thermal, and optical properties polyvinyl alcohol (PVA composites. Two different types of cellulose nanofibers, which are nanofibrillated cellulose (NFC and bacterial cellulose (BC, were prepared under various mechanical treatment times and then incorporated into the PVA prior to the fabrication of composite films. It was found that tensile modulus of the PVA film increased with nanofibers content at the expense of its percentage elongation value. DSC thermograms indicate that percentage crystallinity of PVA increased after adding 2–4 wt% of the fibers. This contributed to the better mechanical properties of the composites. Tensile toughness values of the PVA/BC nanocomposite films were also superior to those of the PVA/NFC system containing the same fiber loading. SEM images of the composite films reveal that tensile fractured surface of PVA/BC experienced more ductile deformation than the PVA/NFC analogue. The above discrepancies were discussed in the light of differences between the two types of fibers in terms of diameter and their intrinsic properties. Lastly, percentage total visible light transmittance values of the PVA composite films were greater than 90%, regardless of the fiber type and content.

  14. Films of chitin, chitosan and cellulose obtained from aqueous suspension treated by irradiation of high intensity ultrasound

    International Nuclear Information System (INIS)

    Almeida, Erika V.R.; Mariano, Mario S.; Campana-Filho, Sergio P.

    2011-01-01

    Films of chitin, chitin/chitosan and chitin/sisal cellulose were obtained by casting their aqueous suspensions previously treated with irradiation of high intensity ultrasound. The films were characterized for surface morphology by scanning electron microscopy and it is possible notice that the films containing chitosan are much more homogeneous. The thermal behavior of the films was evaluated by dynamic mechanical thermal analysis, differential scanning calorimetry, and thermogravimetric analysis and revealing similarity in comparison with the thermal behavior of polysaccharide isolated. The tensile strength was determined and the film containing chitosan showed the best result when compared to other films. The crystallinity index of the films analyzed by X-ray diffraction showed that the films are amorphous material. The analysis by infrared spectroscopy showed that treatment of aqueous suspensions of polysaccharides with irradiation of high intensity ultrasound did not change the chemical structure of polymers. The crystallinity index was determined by X-ray diffraction, revealing that the films are amorphous materials. The results of this study indicate the possibility of processing of chitin, chitosan and cellulose, polysaccharides whose solubilities are limited to a few solvent systems, by treating their aqueous suspensions with high intensity ultrasound. (author)

  15. Flocculation characteristics of polyacrylamide grafted cellulose from Phyllostachys heterocycla: An efficient and eco-friendly flocculant.

    Science.gov (United States)

    Liu, Hongyi; Yang, Xiaogang; Zhang, Yong; Zhu, Hangcheng; Yao, Juming

    2014-08-01

    This work presents a synthesis process and flocculation characteristics of an eco-friendly flocculant based on bamboo pulp cellulose (BPC) from Phyllostachys heterocycla. Ployacrylamide (PAM) was grafted onto the BPC by free-radical graft copolymerization in homogeneous aqueous solution. The optimal synthesis conditions of the bamboo pulp cellulose-graft-ployacrylamide flocculant (BPC-g-PAM) and its performance on wastewater treatments were investigated. A UV-based method was used to rapidly determine the degree of substitution (DS) of BPC. The results showed that, under the optimal synthesis conditions, the obtained BPC-g-PAM held a grafting ratio of 43.8% and DS of 1.31. Turbidity removal of the product reached 98.0% accompanying with the significant flocculation and sedimentation in target suspensions. The flocculation mechanism was explored by means of zeta potential method. For negatively charged contaminants, like kaolin clay particles, the BPC-g-PAM could remove the contaminants efficiently via bridging and charge neutralization in acidic or neutral environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Nanofibers of cellulose bagasse from Agave tequilana Weber var. azul by electrospinning: preparation and characterization.

    Science.gov (United States)

    Robles-García, Miguel Ángel; Del-Toro-Sánchez, Carmen Lizette; Márquez-Ríos, Enrique; Barrera-Rodríguez, Arturo; Aguilar, Jacobo; Aguilar, José A; Reynoso-Marín, Francisco Javier; Ceja, I; Dórame-Miranda, R; Rodríguez-Félix, Francisco

    2018-07-15

    In this study, cellulose of bagasse from Agave tequilana Weber var. azul was extracted to elaborate nanofibers by the electrospinning technique. Fiber characterization was performed using Transmission Electron Microscopy (TEM), x-ray, Fournier Transform-InfraRed (FT-IR) spectroscopy, and thermal analysis by Differential Scanning Calorimetry-Thermogravimetric Analysis (DSC-TGA). Different diameters (ranging from 54.57 ± 0.02 to 171 ± 0.01 nm) of nanofibers were obtained. Cellulose nanofibers were analyzed by means of x-ray diffraction, where we observed a total loss of crystallinity in comparison with the cellulose, while FT-IR spectroscopy revealed that the hemicellulose and lignin present in the agave bagasse were removed. Thermal analysis showed that nanofibers exhibit enhanced thermal properties, and the zeta potential value (-32.5 mV) demonstrated moderate stability in the sample. In conclusion, the nanofibers obtained provide other alternatives-of-use for this agro-industrial residue and could have potential in various industrial applications, among these encapsulation of bioactive compounds and reinforcing material, to mention a few. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    Clostridium papyrosolvens. We discovered that C. papyrosolvens produces a multiprotein, multicomplex cellulase-xylanase enzyme system that hydrolyzes crystalline cellulose, and we have described this system in detail.

  18. Mechanochemical synthesis of fluorescent carbon dots from cellulose powders

    Science.gov (United States)

    Chae, Ari; Ram Choi, Bo; Choi, Yujin; Jo, Seongho; Kang, Eun Bi; Lee, Hyukjin; Park, Sung Young; In, Insik

    2018-04-01

    A novel mechanochemical method was firstly developed to synthesize carbon nanodots (CNDs) or carbon nano-onions (CNOs) through high-pressure homogenization of cellulose powders as naturally abundant resource depending on the treatment times. While CNDs (less than 5 nm in size) showed spherical and amorphous morphology, CNOs (10-50 nm in size) presented polyhedral shape, and onion-like outer lattice structure, graphene-like interlattice spacing of 0.36 nm. CNOs showed blue emissions, moderate dispersibility in aqueous media, and high cell viability, which enables efficient fluorescence imaging of cellular media.

  19. Preliminary studies of the development of a direct compression cellulose excipient from bagasse.

    Science.gov (United States)

    Padmadisastra, Y; Gonda, I

    1989-06-01

    Bagasse is an unused by-product in cane sugar manufacture. Bagasse from sugar cane manually harvested in Indonesia was transformed to pulp by mechanical means and repeated autoclaving in 1.4% NaOH. It was then subjected to cycles of bleaching with hypochlorite and acid hydrolysis with 2.5 M HCl to produce 'microcrystalline' cellulose (MCC). Extraction of waxes by petroleum ether was necessary in order to improve the disintegration properties of tablets made from this material, DICEB III. When the bagasse-derived cellulose was reconstituted by recombining different proportions of selected sieve cuts to have a similar sieve size distribution as the commercially available MCC, Avicel PH102, it was found that the latter and DICEB III also had similar crystallinity as measured by X-ray powder diffraction (degree of crystallinity 2.8 +/- 0.2). The crystallinity and flow index were also relatively insensitive to most of the changes in the manufacturing procedure, indicating that the production process was quite robust. Directly compressed tablets were made containing 50 mg of caffeine and 500 mg of either Avicel PH102 or DICEB III to approximately the same hardness (11.6 +/- 1.1 and 13.7 +/- 0.5 kPa, respectively). They displayed similar satisfactory disintegration and dissolution behavior. However, DICEB III required greater compaction pressures than Avicel PH102, perhaps because the former was not spray dried to give spherical agglomerates of particles of uniform size as the commercial product. Rather, DICEB III consisted mainly of single irregular particles. Further work is required to improve the new excipient and to explore if the bagasse from mechanically harvested sugar cane (often contaminated by soil) could also be used for production of MCC.

  20. Controlled silver delivery by silver-cellulose nanocomposites prepared by a one-pot green synthesis assisted by microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Rosa; Unali, Gianfranco, E-mail: ana.rosa.silva@ua.pt [Structured Materials Expertise Group, Unilever Discover Port Sunlight, Quarry Road East, Bebington CH63 3JW (United Kingdom)

    2011-08-05

    Controlled silver release from cellulosic nanocomposites was achieved by synthesizing silver nanoparticles, under microwave heating for 1-15 min, in a one-pot, versatile and sustainable process in which microcrystalline cellulose simultaneously functions as reducing, stabilizing and supporting agent in water; chitin, starch and other cellulose derivatives could also be used as reducing, stabilizing and supporting agents for silver nanoparticles and the method was also found to be extensible to the preparation of noble metal (Au, Pt) and metal oxide nanoparticle (ZnO, Cu, CuO and Cu{sub 2}O) nanocomposites.

  1. Controlled silver delivery by silver-cellulose nanocomposites prepared by a one-pot green synthesis assisted by microwaves

    International Nuclear Information System (INIS)

    Silva, Ana Rosa; Unali, Gianfranco

    2011-01-01

    Controlled silver release from cellulosic nanocomposites was achieved by synthesizing silver nanoparticles, under microwave heating for 1-15 min, in a one-pot, versatile and sustainable process in which microcrystalline cellulose simultaneously functions as reducing, stabilizing and supporting agent in water; chitin, starch and other cellulose derivatives could also be used as reducing, stabilizing and supporting agents for silver nanoparticles and the method was also found to be extensible to the preparation of noble metal (Au, Pt) and metal oxide nanoparticle (ZnO, Cu, CuO and Cu 2 O) nanocomposites.

  2. Isolation and Characterization of Cellulose Nanofibers from Gigantochloa scortechinii as a Reinforcement Material

    Directory of Open Access Journals (Sweden)

    Chaturbhuj K. Saurabh

    2016-01-01

    Full Text Available Cellulose nanofibers (CNF were isolated from Gigantochloa scortechinii bamboo fibers using sulphuric acid hydrolysis. This method was compared with pulping and bleaching process for bamboo fiber. Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis were used to determine the properties of CNF. Structural analysis by FT-IR showed that lignin and hemicelluloses were effectively removed from pulp, bleached fibers, and CNF. It was found that CNF exhibited uniform and smooth morphological structures, with fiber diameter ranges from 5 to 10 nm. The percentage of crystallinity was significantly increased from raw fibers to cellulose nanofibers, microfibrillated, along with significant improvement in thermal stability. Further, obtained CNF were used as reinforcement material in epoxy based nanocomposites where tensile strength, flexural strength, and modulus of nanocomposites improved with the addition of CNF loading concentration ranges from 0 to 0.7%.

  3. Conductivity of Cellulose Acetate Membranes from Pandan Duri Leaves (Pandanus tectorius for Li-ion Battery

    Directory of Open Access Journals (Sweden)

    Laksono Endang W.

    2016-01-01

    Full Text Available The purpose of this research is to know the influence of lithium chloride composition on membrane conductivity. Cellulose was extracted from pandan duri leaves (P. tectorius by dilute alkaline and bleaching with 0.5% NaOCl followed by synthesis of cellulose acetate using acetic anhydride as acetylating agent, acetic acid as solvent and sulfuric acid as catalyst. The membranes were prepared by casting polymer solution method and the composition of CA/LiCl were 60/40, 65/35, 70/30, 75/25, 80/20 and 100/0. Structural analysis was carried out by FTIR and X-ray diffraction. The conductivity was measured using Elkahfi 100. The highest conductivity of cellulose acetate membrane was 2.20 × 10-4 S cm-1 that measured at room temperature for 65/35 composition

  4. Valorization of lignin and cellulose in acid-steam-exploded corn stover by a moderate alkaline ethanol post-treatment based on an integrated biorefinery concept.

    Science.gov (United States)

    Yang, Sheng; Zhang, Yue; Yue, Wen; Wang, Wei; Wang, Yun-Yan; Yuan, Tong-Qi; Sun, Run-Cang

    2016-01-01

    Due to the unsustainable consumption of fossil resources, great efforts have been made to convert lignocellulose into bioethanol and commodity organic compounds through biological methods. The conversion of cellulose is impeded by the compactness of plant cell wall matrix and crystalline structure of the native cellulose. Therefore, appropriate pretreatment and even post-treatment are indispensable to overcome this problem. Additionally, an adequate utilization of coproduct lignin will be important for improving the economic viability of modern biorefinery industries. The effectiveness of moderate alkaline ethanol post-treatment on the bioconversion efficiency of cellulose in the acid-steam-exploded corn stover was investigated in this study. Results showed that an increase of the alcoholic sodium hydroxide (NaOH) concentration from 0.05 to 4% led to a decrease in the lignin content in the post-treated samples from 32.8 to 10.7%, while the cellulose digestibility consequently increased. The cellulose conversion of the 4% alcoholic NaOH integrally treated corn stover reached up to 99.3% after 72 h, which was significantly higher than that of the acid steam exploded corn stover without post-treatment (57.3%). In addition to the decrease in lignin content, an expansion of cellulose I lattice induced by the 4% alcoholic NaOH post-treatment played a significant role in promoting the enzymatic hydrolysis of corn stover. More importantly, the lignin fraction (AL) released during the 4% alcoholic NaOH post-treatment and the lignin-rich residue (EHR) remained after the enzymatic hydrolysis of the 4% alcoholic NaOH post-treated acid-steam-exploded corn stover were employed to synthesize lignin-phenol-formaldehyde (LPF) resins. The plywoods prepared with the resins exhibit satisfactory performances. An alkaline ethanol system with an appropriate NaOH concentration could improve the removal of lignin and modification of the crystalline structure of cellulose in acid

  5. The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6

    OpenAIRE

    Endler, Anne; Schneider, Rene; Kesten, Christopher; Lampugnani, Edwin R.; Persson, Staffan

    2016-01-01

    Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1). In a recent study we identified another family of proteins that also are associated with the ...

  6. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Science.gov (United States)

    Isik, Mehmet; Sardon, Haritz; Mecerreyes, David

    2014-01-01

    Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels. PMID:25000264

  7. Hydrothermal Synthesis and Biocompatibility Study of Highly Crystalline Carbonated Hydroxyapatite Nanorods

    Science.gov (United States)

    Xue, Caibao; Chen, Yingzhi; Huang, Yongzhuo; Zhu, Peizhi

    2015-08-01

    Highly crystalline carbonated hydroxyapatite (CHA) nanorods with different carbonate contents were synthesized by a novel hydrothermal method. The crystallinity and chemical structure of synthesized nanorods were studied by Fourier transform infrared spectroscopy (FTIR), X-ray photo-electronic spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The biocompatibility of synthesized CHA nanorods was evaluated by cell viability and alkaline phosphatase (ALP) activity of MG-63 cell line. The biocompatibility evaluation results show that these CHA nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopedic application.

  8. Electron beam application as pre treatment of sugar cane bagasse to enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Cardoso, Vanessa Miguel

    2008-01-01

    Due to increasing worldwide shortage of food and energy sources, sugarcane bagasse has been considered as a substrate for single cell protein, animal feed, and renewable energy production. Sugarcane bagasse generally contain up to 45% glucose polymer cellulose, much of which is in a crystalline structure, 40% hemicelluloses, an amorphous polymer usually composed of xylose, arabinose, galactose, glucose, and mannose and 20% lignin, which cannot be easily separated into readily usable components due to their recalcitrant nature. Pure cellulose is readily depolymerised by radiation, but in biomass the cellulose is intimately bonded with lignin, that protect it from radiation effects. The objective of this study was the evaluation of the electron beam irradiation efficiency as a pre-treatment to enzymatic hydrolysis of cellulose in order to facilitate its fermentation and improves the production of ethanol biofuel. Samples of sugarcane bagasse were obtained in sugar/ethanol Mill sited in Piracicaba, Brazil, and were irradiated using Radiation Dynamics Electron Beam Accelerator with 1,5 MeV energy and 37 kW, in batch systems. The applied absorbed doses of the fist sampling, Bagasse A, were 20 kGy, 50 kGy, 10 0 kGy and 200 kGy. After the evaluation the preliminary obtained results, it was applied lower absorbed doses in the second assay: 5 kGy, 10 kGy, 20 kGy, 30 kGy, 50 kGy, 70 kGy, 100 kGy and 150 kGy. The electron beam processing took to changes in the sugarcane bagasse structure and composition, lignin and cellulose cleavage. The yield of enzymatic hydrolyzes of cellulose in. (author)

  9. Electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  10. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Directory of Open Access Journals (Sweden)

    Mehmet Isik

    2014-07-01

    Full Text Available Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.

  11. Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton

    Science.gov (United States)

    Thambiraj, S.; Ravi Shankaran, D.

    2017-08-01

    We aimed to develop a simple and low-cost method for the production of high-performance cellulose nanomaterials from renewable and sustainable resources. Here, cellulose microcrystals (CMCs) were prepared by controlled acidic and basic hydrolysis of cotton from textile industry wastes. The resulted CMCs were further converted into cellulose nanocrystals (CNCs) with high crystallinity by acidic hydrolysis. The physicochemical characteristics and morphological feature of CMCs and CNCs were studied by various analytical techniques such as UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Fluorescence spectroscopy, Atomic force microscopy (AFM), High-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The isolated CNCs possess a needle-like morphological structure with the longitudinal and lateral dimensions of 180 ± 60 nm, 10 ± 1 nm, respectively. The AFM result reveals that the CNCs have a high aspect ratio of 40 ± 14 nm and the average thickness of 6.5 nm. The XRD and TEM analysis indicate that the synthesized CNCs possess face-centered cubic crystal structure. Preliminary experiments were carried out to fabricate CNCs incorporated poly (vinyl alcohol) (PVA) film. The results suggest that the concept of waste to wealth could be well executed from the prepared CNCs, which have great potential for various applications including bio-sensors, food packaging and drug delivery applications.

  12. Glycosaminoglycan synthesis by human chondrosarcoma

    International Nuclear Information System (INIS)

    Thonar, E.J-M.A.; Lyons, G.; Sweet, M.B.; Immelman, A.R.

    1979-01-01

    Human chondrosarcoma of low-grade malignancy was cultured in the presence of 35 S-sulphate and 3 H-glucosamine. The glycosaminoglycans isolated were fractioned on Ecteola cellulose and electrophoresed on cellulose acetate membranes before and after treatment with chondroitinase AC or Streptomyces hyaluronidase. The results demonstrated the in vitro synthesis of hyaluronate, chondroitin sulphate and keratan sulphate. The presence of keratan sulphate of large average chain length (approximately equal to 15 monosaccharides) supports the contention that chain length of keratan sulphate is inversely proportional to the degree of malignancy

  13. Synthesis Magnesium Hydroxide Nanoparticles and Cellulose Acetate- Mg(OH2-MWCNT Nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Ghorbanali

    2015-04-01

    Full Text Available Mg(OH2 nanoparticles were synthesized by a rapid microwave reaction. The effect of sodium dodecyl sulfonate (SDS as anionic surfactant and cetyl tri-methyl ammonium bromide (CTAB as cationic surfactant on the morphology of magnesium hydroxide nanostructures was investigated. Multi wall carbon nano tubes was organo-modified for better dispersion in cellulose acetate matrix. The influence of Mg(OH2 nanoparticles and modified multi wall carbon nano tubes (MWCNT on the thermal stability of the cellulose acetate (CA matrix was studied using thermo-gravimetric analysis (TGA. Nanostructures were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and Fourier transform infrared (FT-IR spectroscopy. Thermal decomposition of the nanocomposites shift towards higher temperature in the presence of Mg(OH2 nanostructures. The enhancement of thermal stability of nanocomposites is due to the endothermic decomposition of Mg(OH2 and release of water which dilutes combustible gases.

  14. Processing and Characterization of Cellulose Nanocrystals/Polylactic Acid Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Erin M. Sullivan

    2015-12-01

    Full Text Available The focus of this study is to examine the effect of cellulose nanocrystals (CNC on the properties of polylactic acid (PLA films. The films are fabricated via melt compounding and melt fiber spinning followed by compression molding. Film fracture morphology, thermal properties, crystallization behavior, thermo-mechanical behavior, and mechanical behavior were determined as a function of CNC content using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, dynamic mechanical analysis, and tensile testing. Film crystallinity increases with increasing CNC content indicating CNC act as nucleating agents, promoting crystallization. Furthermore, the addition of CNC increased the film storage modulus and slightly broadened the glass transition region.

  15. Visible light activated TiO2/microcrystalline cellulose nanocatalyst to destroy organic contaminants in water.

    Science.gov (United States)

    Hybrid TiO2/microcrystalline cellulose (MC) nanophotocatalyst was prepared in situ by a facile and simple synthesis utilizing benign precursors such as MC and TiCl4. The as-prepared nanocomposite was characterized by XRD, XPS, BET surface area analyzer, UV–vis DRS and TGA. Surfac...

  16. Effect of ionizing and nonionizing radiations on the mechanical properties of cellulose tri acetate polymer

    Energy Technology Data Exchange (ETDEWEB)

    Sallam, M M; El-Fiki, S A; Nooh, S A [Physics Department, Faculty of Science, Ain Chams Univ, Cairo (Egypt); Eissa, H M [National Institute for Standard, Cairo (Egypt)

    1997-12-31

    Several quantities including modulus of elasticity, fracture stress, fracture strain, yield tress and yield strain, were calculated for cellulose tri acetate polymer. These samples were exposed to different gamma doses in the range from (32 kg y), and different energies of infrared pulsated laser of 5 watt power in the range (Zero to 9 j/cm 2). The changes in these parameters were found to be due to changes in degree of crystallinity of polymers.4 figs., 3 tabs.

  17. Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application

    International Nuclear Information System (INIS)

    Fu, Jiapeng; Pang, Zengyuan; Yang, Jie; Huang, Fenglin; Cai, Yibing; Wei, Qufu

    2015-01-01

    Graphical abstract: - Highlights: • PANI nanorods have been grown onto the surface of CMC/cellulose nanofibers for the fabrication of biosensor substrate material. • The proposed laccase biosensor exhibited a low detection limit and high sensitivity in the detection of catechol. • Hierarchical PANI/CMC/cellulose nanofibers are the promising material in the design of high-efficient biosensors. - Abstract: We report a facile approach to synthesizing and immobilizing polyaniline nanorods onto carboxymethyl cellulose (CMC)-modified cellulose nanofibers for their biosensing application. Firstly, the hierarchical PANI/CMC/cellulose nanofibers were fabricated by in situ polymerization of aniline on the CMC-modified cellulose nanofiber. Subsequently, the PANI/CMC/cellulose nanofibrous mat modified with laccase (Lac) was used as biosensor substrate material for the detection of catechol. PANI/CMC/cellulose nanofibers with highly conductive and three dimensional nanostructure were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under optimum conditions, the Lac/PANI/CMC/cellulose/glassy carbon electrode (GCE) exhibited a fast response time (within 8 s), a linear response range from 0.497 μM to 2.27 mM with a high sensitivity and low detection limit of 0.374 μM (3σ). The developed biosensor also displayed good repeatability, reproducibility as well as selectivity. The results indicated that the composite mat has potential application in enzyme biosensors

  18. Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiapeng, E-mail: firgexiao@sina.cn; Pang, Zengyuan, E-mail: pangzengyuan1212@163.com; Yang, Jie, E-mail: young1993@126.com; Huang, Fenglin, E-mail: flhuang@jiangnan.edu.cn; Cai, Yibing, E-mail: yibingcai@jiangnan.edu.cn; Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn

    2015-09-15

    Graphical abstract: - Highlights: • PANI nanorods have been grown onto the surface of CMC/cellulose nanofibers for the fabrication of biosensor substrate material. • The proposed laccase biosensor exhibited a low detection limit and high sensitivity in the detection of catechol. • Hierarchical PANI/CMC/cellulose nanofibers are the promising material in the design of high-efficient biosensors. - Abstract: We report a facile approach to synthesizing and immobilizing polyaniline nanorods onto carboxymethyl cellulose (CMC)-modified cellulose nanofibers for their biosensing application. Firstly, the hierarchical PANI/CMC/cellulose nanofibers were fabricated by in situ polymerization of aniline on the CMC-modified cellulose nanofiber. Subsequently, the PANI/CMC/cellulose nanofibrous mat modified with laccase (Lac) was used as biosensor substrate material for the detection of catechol. PANI/CMC/cellulose nanofibers with highly conductive and three dimensional nanostructure were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under optimum conditions, the Lac/PANI/CMC/cellulose/glassy carbon electrode (GCE) exhibited a fast response time (within 8 s), a linear response range from 0.497 μM to 2.27 mM with a high sensitivity and low detection limit of 0.374 μM (3σ). The developed biosensor also displayed good repeatability, reproducibility as well as selectivity. The results indicated that the composite mat has potential application in enzyme biosensors.

  19. High Dehumidification Performance of Amorphous Cellulose Composite Membranes prepared from Trimethylsilyl Cellulose

    KAUST Repository

    Puspasari, Tiara

    2018-04-11

    Cellulose is widely regarded as an environmentally friendly, natural and low cost material which can significantly contribute the sustainable economic growth. In this study, cellulose composite membranes were prepared via regeneration of trimethylsilyl cellulose (TMSC), an easily synthesized cellulose derivative. The amorphous hydrophilic feature of the regenerated cellulose enabled fast permeation of water vapour. The pore-free cellulose layer thickness was adjustable by the initial TMSC concentration and acted as an efficient gas barrier. As a result, a 5,000 GPU water vapour transmission rate (WVTR) at the highest ideal selectivity of 1.1 x 106 was achieved by the membranes spin coated from a 7% (w/w) TMSC solution. The membranes maintained a 4,000 GPU WVTR with selectivity of 1.1 x 104 in the mixed-gas experiments, surpassing the performances of the previously reported composite membranes. This study provides a simple way to not only produce high performance membranes but also to advance cellulose as a low-cost and sustainable membrane material for dehumidification applications.

  20. Degradation of γ-irradiated cellulose by the accumulating culture of a cellulose bacterium

    International Nuclear Information System (INIS)

    Namsaraev, B.B.; Kuznetsova, E.A.; Termkhitarova, N.G.

    1987-01-01

    Possibility of degradation of γ-irradiated cellulose by the accumulating culture of an anaerobic cellulose bacterium has been investigated. Cellulose irradiation by γ-quanta (Co 60 ) has been carried out using the RKh-30 device with 35.9 Gy/min dose rate. Radiation monitoring has been carried out by the standard ferrosulfate method. Samples have been irradiated in dry state or when water presenting with MGy. It is detected that the accumulating culture with the growth on the irradiated cellulose has a lag-phase, which duration reduces when the cellulose cleaning by flushing with distillation water. The culture has higher growth and substrate consumption rate when growing by cellulose irradiated in comparison with non-irradiated one. The economical coefficient is the same in using both the irradiated and non-irradiated cellulose. The quantity of forming reducing saccharides, organic acids, methane and carbon dioxide is the same both when cultivating by irradiated cellulose and by non-irradiated. pH of the culture liquid is shifted to the acid nature in the process of growth