WorldWideScience

Sample records for crystal violet dye

  1. Optimization of Crystal Violet dye removal from aqueous solution ...

    African Journals Online (AJOL)

    Batch adsorption process involving use of groundnut shell (GS) and orange peel (OP) as adsorbents was employed for the removal of carcinogenic Crystal Violet dye from aqueous solution. Studies were carried out as function of contact time, sorbent dosage, initial dye concentration and pΗ of the dye solution with a view of ...

  2. optimization of crystal violet dye removal from aqueous solution

    African Journals Online (AJOL)

    maje malamiyo

    -Journal of Chemistry, 6(4):1109-1116. Malik P.K. (2003): Use of activated carbons prepared from sawdust and rice-husk for Adsorption of acid dyes: a case study of acid yellow 36,. Dyes Pigments 56:239-249. Malik, R., Ramteke, D.S., and ...

  3. Colorimetric Nucleic Acid Detection on Paper Microchip Using Loop Mediated Isothermal Amplification and Crystal Violet Dye.

    Science.gov (United States)

    Roy, Sharmili; Mohd-Naim, Noor Faizah; Safavieh, Mohammadali; Ahmed, Minhaz Uddin

    2017-11-22

    Nucleic acid detection is of paramount importance in monitoring of microbial pathogens in food safety and infectious disease diagnostic applications. To address these challenges, a rapid, cost-effective label-free technique for nucleic acid detection with minimal instrumentations is highly desired. Here, we present paper microchip to detect and quantify nucleic acid using colorimetric sensing modality. The extracted DNA from food samples of meat as well as microbial pathogens was amplified utilizing loop-mediated isothermal amplification (LAMP). LAMP amplicon was then detected and quantified on a paper microchip fabricated in a cellulose paper and a small wax chamber utilizing crystal violet dye. The affinity of crystal violet dye toward dsDNA and positive signal were identified by changing the color from colorless to purple. Using this method, detection of Sus scrofa (porcine) and Bacillus subtilis (bacteria) DNA was possible at concentrations as low as 1 pg/μL (3.43 × 10 -1 copies/μL) and 10 pg/μL (2.2 × 10 3 copies/μL), respectively. This strategy can be adapted for detection of other DNA samples, with potential for development of a new breed of simple and inexpensive paper microchip at the point-of-need.

  4. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption

    International Nuclear Information System (INIS)

    Saeed, Asma; Sharif, Mehwish; Iqbal, Muhammad

    2010-01-01

    This study reports the sorption of crystal violet (CV) dye by grapefruit peel (GFP), which has application potential in the remediation of dye-contaminated wastewaters using a solid waste generated by the citrus fruit juice industry. Batch adsorption of CV was conducted to evaluate the effect of initial pH, contact time, temperature, initial dye concentration, GFP adsorbent dose, and removal of the adsorbate CV dye from aqueous solution to understand the mechanism of sorption involved. Sorption equilibrium reached rapidly with 96% CV removal in 60 min. Fit of the sorption experimental data was tested on the pseudo-first and pseudo-second-order kinetics mathematical equations, which was noted to follow the pseudo-second-order kinetics better, with coefficient of correlation ≥0.992. The equilibrium process was well described by the Langmuir isotherm model, with maximum sorption capacity of 254.16 mg g -1 . The GFP was regenerated using 1 M NaOH, with up to 98.25% recovery of CV and could be reused as a dye sorbent in repeated cycles. GFP was also shown to be highly effective in removing CV from aqueous solution in continuous-flow fixed-bed column reactors. The study shows that GFP has the potential of application as an efficient sorbent for the removal of CV from aqueous solutions.

  5. Measuring the Photocatalytic Breakdown of Crystal Violet Dye using a Light Emitting Diode Approach

    Science.gov (United States)

    Ryan, Robert E.; Underwood, Lauren W.; O'Neal, Duane; Pagnutti, Mary; Davis, Bruce A.

    2009-01-01

    A simple method to estimate the photocatalytic reactivity performance of spray-on titanium dioxide coatings for transmissive glass surfaces was developed. This novel technique provides a standardized method to evaluate the efficiency of photocatalytic material systems over a variety of illumination levels. To date, photocatalysis assessments have generally been conducted using mercury black light lamps. Illumination levels for these types of lamps are difficult to vary, consequently limiting their use for assessing material performance under a diverse range of simulated environmental conditions. This new technique uses an ultraviolet (UV) gallium nitride (GaN) light emitting diode (LED) array instead of a traditional black light to initiate and sustain photocatalytic breakdown. This method was tested with a UV-resistant dye (crystal violet) applied to a titanium dioxide coated glass slide. Experimental control is accomplished by applying crystal violet to both titanium dioxide coated slides and uncoated control slides. A slide is illuminated by the UV LED array, at various light levels representative of outdoor and indoor conditions, from the dye side of the slide. To monitor degradation of the dye over time, a temperature-stabilized white light LED, whose emission spectrum overlaps with the dye absorption spectrum, is used to illuminate the opposite side of the slide. Using a spectrometer, the amount of light from the white light LED transmitted through the slide as the dye degrades is monitored as a function of wavelength and time and is subsequently analyzed. In this way, the rate of degradation for photocatalytically coated versus uncoated slide surfaces can be compared. Results demonstrate that the dye absorption decreased much more rapidly on the photocatalytically coated slides than on the control uncoated slides, and that dye degradation is dependent on illumination level. For photocatalytic activity assessment purposes, this experimental configuration and

  6. ZnO nanonails for photocatalytic degradation of crystal violet dye under UV irradiation

    Directory of Open Access Journals (Sweden)

    Nirmalya Tripathy

    2017-02-01

    Full Text Available In this study, nanonails-like zinc oxide (ZnO nanostructures were synthesized in large quantity by thermal evaporation technique and further characterized in detail using different techniques such as field emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, X-ray diffractometer (XRD, UV-visible spectroscopy, photoluminescence (PL spectroscopy, and Raman spectroscopy. Morphological characterizations revealed that the as-synthesized nanostructures possess nail-like geometry, grown in large quantity. The XRD, UV-visible absorbance spectra, PL, and Raman spectra confirms good crystallinity and optical property of as-synthesized ZnO nanonails. The photocatalytic activities of designed nanostructures for crystal violet dye (CV-dye degradation was evaluated under UV illumination and monitored by UV-vis spectroscopy at different time intervals until the dye was completely degraded to colorless end product. A fast decomposition was observed with ~95% degradation rate within the initial 70 min, which is attributed to high specific surface area (56.8 m2/g, high crystallinity and better optical property of ZnO nanonails.

  7. Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach.

    Science.gov (United States)

    Singh, Kunwar P; Gupta, Shikha; Singh, Arun K; Sinha, Sarita

    2011-02-28

    A magnetic nanocomposite was developed and characterized. Adsorption of crystal violet (CV) dye from water was studied using the nanocomposite. A four-factor central composite design (CCD) combined with response surface modeling (RSM) was employed for maximizing CV removal from aqueous solution by the nanocomposite based on 30 different experimental data obtained in a batch study. Four independent variables, viz. temperature (10-50°C), pH of solution (2-10), dye concentration (240-400 mg/l), and adsorbent dose (1-5 g/l) were transformed to coded values and a second-order quadratic model was built to predict the responses. The significance of independent variables and their interactions were tested by the analysis of variance (ANOVA) and t-test statistics. Adequacy of the model was tested by the correlation between experimental and predicted values of the response and enumeration of prediction errors. Optimization of the process variables for maximum adsorption of CV by nanocomposite was performed using the quadratic model. The Langmuir adsorption capacity of the adsorbent was determined as 81.70 mg/g. The model predicted maximum adsorption of 113.31 mg/g under the optimum conditions of variables (concentration 240 mg/l; temperature 50°C; pH 8.50; dose 1g/l), which was very close to the experimental value (111.80 mg/g) determined in batch experiment. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Removal of Crystal Violet Dye from Aqueous Solutions onto Date Palm Fiber by Adsorption Technique

    Directory of Open Access Journals (Sweden)

    Mashael Alshabanat

    2013-01-01

    Full Text Available The adsorption of crystal violet (CV onto date palm fibers (DPFs was examined in aqueous solution at 25°C. The experimental maximum adsorption capacity value was 0.66×10−6. Langmuir, Freundlich, Elovich and Temkin models were applied to describe the equilibrium isotherms. The influence of pH and temperature on dye removal was evaluated. The percentage removal of CV dye by adsorption onto DPF at different pH and temperatures showed that these factors play a role in the adsorption process. Thermodynamic analysis was performed, and the Gibbs free energy ΔGο, enthalpy change ΔHο, and entropy ΔSο were calculated. The negative values of ΔGο indicate spontaneous adsorption. The negative value of ΔHο indicates that the interaction between CV and DPF is exothermic, and the positive value of ΔSο indicates good affinity between DPF and CV. The kinetic data were fitted to a pseudo-second-order model.

  9. Radiochromic leuco dye micelle hydrogels: II. Low diffusion rate leuco crystal violet gel

    Energy Technology Data Exchange (ETDEWEB)

    Babic, Steven; Battista, Jerry; Jordan, Kevin [Department of Physics and Engineering, London Regional Cancer Program at London Health Sciences Centre, 790 Commissioners Road East, London, Ontario, N6A 4L6 (Canada)

    2009-11-21

    Radiation-sensitive hydrogels offer the capability of verifying intricate dose distributions in three-dimensional (3D) space conveniently in a single measurement with sub-millimetre spatial resolution. In this study, a new radiochromic hydrogel called leuco crystal violet (LCV) micelle gel is introduced. Upon irradiation, LCV converts to crystal violet (CV{sup +}). Triton X-100 micelles are used to provide the required hybrid-interfacing environment to dissolve LCV. The diffusion coefficient of the LCV gel has been measured to be 0.036 {+-} 0.001 mm{sup 2} h{sup -1}, which is a factor of 25 times less than the standard radiochromic ferrous xylenol-orange (FX) gel; LCV gels without Triton X-100 micelles have a diffusion coefficient of 0.33 {+-} 0.02 mm{sup 2} h{sup -1}. The LCV gel formulation contains: 1 mM LCV, 25 mM trichloroacetic acid, 4 mM Triton X-100 and 4% w/w gelatin. The primary innovative feature of this 3D hydrogel is that the radiation-induced CV{sup +} dye is more soluble in the Triton X-100 micelles than in the surrounding water which consequently leads to more stable post-irradiation dose distributions. A dosimetric characterization revealed that the dose response is reproducible to within 1% over three separate batches, independent of energy, dose rate and dose fractionation but is affected by the temperature ({approx}4% per deg. C) during irradiation. LCV micelle gels scanned optically with a yellow light source are a promising system for 3D dose verification. They may prove to be, especially, useful for scanning large volume dosimeters (i.e. 20 cm) since they are easily manufactured, transparent and near colourless prior to irradiation.

  10. Radiochromic leuco dye micelle hydrogels: II. Low diffusion rate leuco crystal violet gel

    Science.gov (United States)

    Babic, Steven; Battista, Jerry; Jordan, Kevin

    2009-11-01

    Radiation-sensitive hydrogels offer the capability of verifying intricate dose distributions in three-dimensional (3D) space conveniently in a single measurement with sub-millimetre spatial resolution. In this study, a new radiochromic hydrogel called leuco crystal violet (LCV) micelle gel is introduced. Upon irradiation, LCV converts to crystal violet (CV+). Triton X-100 micelles are used to provide the required hybrid-interfacing environment to dissolve LCV. The diffusion coefficient of the LCV gel has been measured to be 0.036 ± 0.001 mm2 h-1, which is a factor of 25 times less than the standard radiochromic ferrous xylenol-orange (FX) gel; LCV gels without Triton X-100 micelles have a diffusion coefficient of 0.33 ± 0.02 mm2 h-1. The LCV gel formulation contains: 1 mM LCV, 25 mM trichloroacetic acid, 4 mM Triton X-100 and 4% w/w gelatin. The primary innovative feature of this 3D hydrogel is that the radiation-induced CV+ dye is more soluble in the Triton X-100 micelles than in the surrounding water which consequently leads to more stable post-irradiation dose distributions. A dosimetric characterization revealed that the dose response is reproducible to within 1% over three separate batches, independent of energy, dose rate and dose fractionation but is affected by the temperature (~4% per °C) during irradiation. LCV micelle gels scanned optically with a yellow light source are a promising system for 3D dose verification. They may prove to be, especially, useful for scanning large volume dosimeters (i.e. 20 cm) since they are easily manufactured, transparent and near colourless prior to irradiation.

  11. An LED Approach for Measuring the Photocatalytic Breakdown of Crystal Violet Dye

    Science.gov (United States)

    Ryan, Robert E.; Underwood, Lauren W.; ONeal, Duane; Pagnutti, Mary; Davis, Bruce A.

    2009-01-01

    A simple technique to assess the reactivity of photocatalytic coatings sprayed onto transmissive glass surfaces was developed. This new method uses ultraviolet (UV) gallium nitride (GaN) light-emitting diodes (LEDs) to drive a photocatalytic reaction (the photocatalytic breakdown of a UV-resistant dye applied to a surface coated with the semiconductor titanium dioxide); and then a combination of a stabilized white light LED and a spectrometer to track the dye degradation as a function of time. Simple, standardized evaluation techniques that assess photocatalytic materials over a variety of environmental conditions, including illumination level, are not generally available and are greatly needed prior to in situ application of photocatalytic technologies. To date, much research pertaining to this aspect of photocatalysis has been limited and has focused primarily on laboratory experiments using mercury lamps. Mercury lamp illumination levels are difficult to control over large ranges and are temporally modulated by line power, limiting their use in helping to understand and predict how photocatalytic materials will behave in natural environmental settings and conditions. The methodology described here, using steady-state LEDs and time series spectroradiometric techniques, is a novel approach to explore the effect of UV light on the photocatalytic degradation of a UV resistant dye (crystal violet). GaN UV LED arrays, centered around 365 nm with an adjustable DC power supply, are used to create a small, spatially uniform light field where the steady state light level can be varied over three to four orders of magnitude. For this study, a set of glass microscope slides was custom coated with a thinly sprayed layer of photocatalytic titanium dioxide. Crystal violet was then applied to these titanium-dioxide coated slides and to uncoated control slides. The slides were then illuminated at various light levels from the dye side of the slide by the UV LED array. To monitor

  12. Adsorptive removal of crystal violet dye by a local clay and process optimization by response surface methodology

    Science.gov (United States)

    Loqman, Amal; El Bali, Brahim; Lützenkirchen, Johannes; Weidler, Peter G.; Kherbeche, Abdelhak

    2017-11-01

    The current study relates to the removal of a dye [crystal violet (CV)] from aqueous solutions through batch adsorption experiment onto a local clay from Morocco. The clay was characterized by X-ray diffraction, IR spectroscopy, X-ray fluorescence, scanning electron microscope, Brunauer-Emmett-Teller analysis and Fraunhofer diffraction method. The influence of independent variables on the removal efficiency was determined and optimized by response surface methodology using the Box-Behnken surface statistical design. The model predicted maximum adsorption of 81.62% under the optimum conditions of operational parameters (125 mg L-1 initial dye concentration, 2.5 g L-1 adsorbent dose and time of 43 min). Practically, the removal ranges in 27.4-95.3%.

  13. Crystal violet: Study of the photo-fading of an early synthetic dye in aqueous solution and on paper with HPLC-PDA, LC-MS and FORS

    NARCIS (Netherlands)

    Confortin, D.; Neevel, H.; Brustolon, M.; Franco, L.; Kettelarij, A.J.; Williams, R.M.; van Bommel, M.R.

    2010-01-01

    The photo-fading of crystal violet (CV), one of the earliest synthetic dyes and an ink component, is examined both in solution and on paper. Aqueous solutions of CV were exposed to UV light (365nm) and samples were taken at constant time intervals and analysed with a High Performance Liquid

  14. An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: A novel low cost adsorbent.

    Science.gov (United States)

    Jayasantha Kumari, H; Krishnamoorthy, P; Arumugam, T K; Radhakrishnan, S; Vasudevan, D

    2017-03-01

    A composite of Typha latifolia activated carbon (TLAC) (a novel, low cost absorbent) and chitosan (TLAC/Chitosan composite) was prepared. The composite was characterised using IR spectra, XRD, FESEM and Pore size studies. Its effectivity was tested for the removal of crystal violet dye from aqueous solutions. The effect of pH, dose rate and initial dye concentration was evaluated. The adsorption isotherm, kinetics and thermodynamic parameters were studied. Langmuir and Freundlich isotherm models were found fit effectively for the dye adsorption data in the present study. The adsorption followed pseudo-second order kinetics. The evaluated thermodynamic parameters show a spontaneous and exothermic reaction. Overall, this study indicates TLAC/Chitosan composite as an effective adsorbent for the removal of crystal violet dye from aqueous solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Small particle reagent based on crystal violet dye for developing latent fingerprints on non-porous wet surfaces

    Directory of Open Access Journals (Sweden)

    Richa Rohatgi

    2015-12-01

    Full Text Available Small particle reagent (SPR is a widely used method for developing latent fingerprints on non-porous wet surfaces. SPR based on zinc carbonate hydroxide monohydrate, ZnCo3·2Zn(OH2·H2O – also called basic zinc carbonate – has been formulated. The other ingredients of the formulation are crystal violet dye and a commercial liquid detergent. The composition develops clear, sharp and detailed fingerprints on non-porous items, after these were immersed separately in clean and dirty water for variable periods of time. The ability of the present formulation to detect weak and faint chance prints not only enhances its utility, but also its potentiality in forensic case work investigations. The raw materials used to prepare the SPR are cost-effective and non-hazardous.

  16. Thermomechanical and Photophysical Properties of Crystal-Violet-Dye/H2O Based Dissolutions via the Pulsed Laser Photoacoustic Technique

    Directory of Open Access Journals (Sweden)

    Vicente Torres-Zúñiga

    2014-01-01

    Full Text Available Different thermoelastic parameters, for example, the acoustic attenuation and the speed of sound, are fundamental for instrumental calibration and quantitative characterization of organic-based dissolutions. In this work, these parameters as functions of the concentration of an organic dye (crystal-violet: CV in distillated water (H2O based dissolutions are investigated. The speed of sound was measured by the pulsed-laser photoacoustic technique (PLPA, which consists in the generation of acoustic-waves by the optical absorption of pulsed light in a given material (in this case a liquid sample. The thermally generated sound-waves traveling through a fluid are detected with two piezoelectric sensors separated by a known distance. An appropriate processing of the photoacoustic signals allows an adequate data analysis of the generated waves within the system, providing an accurate determination of the speed of sound as function of the dye-concentration. The acoustic attenuation was calculated based on the distance of the two PZT-microphones to an acoustic-source point and performing linear-fitting of the experimental data (RMS-amplitudes as function of the dye-concentration. An important advantage of the PLPA-method is that it can be implemented with poor or null optical transmitting materials permitting the characterization of the mechanical and concentration/aggregate properties of dissolved organic compounds.

  17. Adsorption Properties of PVA/PAA/clay Composite Hydrogel Synthesized by Gamma Radiation and its Application in Removal of Crystal Violet Dye from Its Aqueous Solution

    International Nuclear Information System (INIS)

    Kamal, H.; El-Sayed, A. Hegazy; Mohamed, M.M.; Sabaa, M.W.; El-Dessouky, M.M.

    2014-01-01

    Copolymer hydrogels composed of Poly vinyl alcohol (PVA) and Poly acrylic acid (PAA) were prepared by γ-irradiation in the presence of N,N’ methylene bis acrylamide (MBAM) as crosslinking agent or bentonite clay. The copolymers were characterized by FTIR and SEM. The dye adsorption experiments for Crystal Violet dye (CV) were carried out by using bath procedure. UV-visible absorption spectroscopy was used to determine the adsorption behavior. The effect of different copolymer composition, clay concentration, ph, contact time, adsorbent dose, initial dye concentration, and adsorption temperature were investigated to obtain the best experimental conditions. The adsorption equilibrium was attained after about 24h. of contact time. It was found that the adsorption process was correlated with Freundlich isotherm equation. Kinetic and thermodynamic studies of CV dye onto the prepared hydrogels were also evaluated

  18. Decolourisation of Crystal Violet and Malachite Green By Fungi ...

    African Journals Online (AJOL)

    Decolourisation of crystal violet and malachite green by white rot fungi, Polyporus elegans, Trametes versicolor, Lenzites betulina and soil fungus Mucor mucedo isolated from dye effluent amended soils was studied. There was no toxic effect of crystal violet on the growth of the four fungi but malachite green showed ...

  19. IncP-1β plasmids of Comamonas sp. and Delftia sp. strains isolated from a wastewater treatment plant mediate resistance to and decolorization of the triphenylmethane dye crystal violet.

    Science.gov (United States)

    Stolze, Yvonne; Eikmeyer, Felix; Wibberg, Daniel; Brandis, Gerrit; Karsten, Christina; Krahn, Irene; Schneiker-Bekel, Susanne; Viehöver, Prisca; Barsch, Aiko; Keck, Matthias; Top, Eva M; Niehaus, Karsten; Schlüter, Andreas

    2012-08-01

    The application of toxic triphenylmethane dyes such as crystal violet (CV) in various industrial processes leads to large amounts of dye-contaminated sludges that need to be detoxified. Specific bacteria residing in wastewater treatment plants (WWTPs) are able to degrade triphenylmethane dyes. The objective of this work was to gain insights into the genetic background of bacterial strains capable of CV degradation. Three bacterial strains isolated from a municipal WWTP harboured IncP-1β plasmids mediating resistance to and decolorization of CV. These isolates were assigned to the genera Comamonas and Delftia. The CV-resistance plasmid pKV29 from Delftia sp. KV29 was completely sequenced. In addition, nucleotide sequences of the accessory regions involved in conferring CV resistance were determined for plasmids pKV11 and pKV36 from the other two isolates. Plasmid pKV29 contains typical IncP-1β backbone modules that are highly similar to those of previously sequenced IncP-1β plasmids that confer antibiotic resistance, degradative capabilities or mercury resistance. The accessory regions located between the conjugative transfer (tra) and mating pair formation modules (trb) of all three plasmids analysed share common modules and include a triphenylmethane reductase gene, tmr, that is responsible for decolorization of CV. Moreover, these accessory regions encode other enzymes that are dispensable for CV degradation and hence are involved in so-far-unknown metabolic pathways. Analysis of plasmid-mediated degradation of CV in Escherichia coli by ultra-high-performance liquid chromatography-electrospray ionization-quadrupole-time-of-flight MS revealed that leuco crystal violet was the first degradation product. Michler's ketone and 4-dimethylaminobenzaldehyde appeared as secondary degradation metabolites. Enzymes encoded in the E. coli chromosome seem to be responsible for cleavage of leuco crystal violet. Plasmid-mediated degradation of triphenylmethane dyes such as CV

  20. Biodegradation of Crystal Violet by Agrobacterium radiobacter

    DEFF Research Database (Denmark)

    Parshetti, G.K.; Parshetti, S.G.; Telke, A.A.

    2011-01-01

    Violet (100 mg/L) was studied, maximum decolorization was observed with 15% inoculum concentration. A significant increase in the activities of laccase (184%) and aminopyrine Af-demethylase (300%) in cells obtained after decolorization indicated the involvement of these enzymes in decolorization process...... and phenol. We proposed the hypothetical metabolic pathway of Crystal Violet biodegradation by A. radiobacter. Phytotoxicity and microbial toxicity study showed that Crystal Violet biodegradation metabolites were less toxic to bacteria (A. radiobacter, P. aurugenosa and A. vinelandii) contributing to soil...

  1. Non-diffusing radiochromic leuco-crystal violet hydrogel dosimeter

    Science.gov (United States)

    Jordan, K. J.; Lindenmaier, T.; Dekker, K. H.

    2017-05-01

    A systematic study to prepare mixed-micelle, radiochromic hydrogels found that non-diffusing dosimeters can be prepared. Subsequent experiments determined that sodium dodecyl sulfate (SDS) a negatively charged surfactant, binds positively charged crystal violet dye to gelatin below the critical micelle concentration. A typical formulation includes: 4% gelatin by mass, 1 mM hydrogen peroxide, 1 mM SDS, 1 mM leuco crystal violet (LCV) and 25 mM trichloroacetic acid (TCAA). This transparent material has an initial attenuation coefficient of 0.08 cm-1 and dose sensitivity of 0.015 cm-1 Gy-1. Which is a doubling of the dose sensitivity from the initial formulation with uncharged Triton X100 micelles. Reconstructed beam profiles from 3D optical CT scans performed 1, 14 and 85 hours post irradiation demonstrate no diffusion of the recorded dose distribution.

  2. Simultaneous removal of binary mixture of Brilliant Green and Crystal Violet using derivative spectrophotometric determination, multivariate optimization and adsorption characterization of dyes on surfactant modified nano-γ-alumina.

    Science.gov (United States)

    Zolgharnein, Javad; Bagtash, Maryam; Shariatmanesh, Tahere

    2015-02-25

    The present study deals with the simultaneous removal of Brilliant Green (BG) and Crystal Violet (CV) by surfactant-modified alumina. The utilization of alumina nanoparticles with an anionic surfactant (sodium dodecyl sulfate (SDS)) as a novel and efficient adsorbent is successfully carried out to remove two cationic dyes from aqueous solutions in binary batch systems. A first-order derivative spectrophotometric method is developed for the simultaneous determination of BG and CV in binary solutions. The linear concentration range and limits of detection for the simultaneous determination of BG and CV were found to be: 1-20, 1-15 mg/L, 0.3 and 0.5 mg/L, respectively. The influence of various parameters, such as contact time, initial concentration of dyes and sorbent mass on the dye adsorption is investigated. A response surface methodology achieved through performing the Box-Behnken design is utilized to optimize the removal of dyes by surfactant-modified nanoparticle alumina through a batch adsorption process. The proposed quadratic model resulting from the Box-Behnken design approach fitted very well with the experimental data. The optimal conditions for dye removal were contact time t=50 min, sorbent dose=0.036 g, CBG (Initial BG concentration)=215 mg/L and CCV (Initial CV concentration)=170 mg/L. Furthermore, FT-IR analysis, the isotherms and kinetics of adsorption were also explored. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Simultaneous removal of binary mixture of Brilliant Green and Crystal Violet using derivative spectrophotometric determination, multivariate optimization and adsorption characterization of dyes on surfactant modified nano-γ-alumina

    Science.gov (United States)

    Zolgharnein, Javad; Bagtash, Maryam; Shariatmanesh, Tahere

    2015-02-01

    The present study deals with the simultaneous removal of Brilliant Green (BG) and Crystal Violet (CV) by surfactant-modified alumina. The utilization of alumina nanoparticles with an anionic surfactant (sodium dodecyl sulfate (SDS)) as a novel and efficient adsorbent is successfully carried out to remove two cationic dyes from aqueous solutions in binary batch systems. A first-order derivative spectrophotometric method is developed for the simultaneous determination of BG and CV in binary solutions. The linear concentration range and limits of detection for the simultaneous determination of BG and CV were found to be: 1-20, 1-15 mg/L, 0.3 and 0.5 mg/L, respectively. The influence of various parameters, such as contact time, initial concentration of dyes and sorbent mass on the dye adsorption is investigated. A response surface methodology achieved through performing the Box-Behnken design is utilized to optimize the removal of dyes by surfactant-modified nanoparticle alumina through a batch adsorption process. The proposed quadratic model resulting from the Box-Behnken design approach fitted very well with the experimental data. The optimal conditions for dye removal were contact time t = 50 min, sorbent dose = 0.036 g, CBG (Initial BG concentration) = 215 mg/L and CCV (Initial CV concentration) = 170 mg/L. Furthermore, FT-IR analysis, the isotherms and kinetics of adsorption were also explored.

  4. Photocatalytic degradation of crystal violet by thiourea-doped TiO2 ...

    African Journals Online (AJOL)

    In this study, optimisation of the photocatalytic behaviour of crystal violet (CV) by thiourea (Tu)-codoped TiO2 thin film in fixed bed photoreactor was investigated by central composite designs (CCDs). The effective variables were pH, the concentration of CV dye, flow rate and reaction time. The results of the CCD model ...

  5. Quirks of dye nomenclature. 8. Methylene blue, azure and violet.

    Science.gov (United States)

    Cooksey, C J

    2017-01-01

    Methylene blue was synthesized in 1877 and soon found application in medicine, staining for microscopy and as an industrial dye and pigment. An enormous literature has accumulated since its introduction. Early on, it was known that methylene blue could be degraded easily by demethylation; consequently, the purity of commercial samples often was low. Therefore, demethylation products, such as azures and methylene violet, also are considered here. The names and identity of the components, their varying modes of manufacture, analytical methods and their contribution to biological staining are discussed.

  6. Liquid crystal tunable photonic crystal dye laser

    DEFF Research Database (Denmark)

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron

    2010-01-01

    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium.......We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  7. Kinetic studies on the degradation of crystal violet by the Fenton oxidation process.

    Science.gov (United States)

    Wu, H; Fan, M M; Li, C F; Peng, M; Sheng, L J; Pan, Q; Song, G W

    2010-01-01

    The degradation of dye crystal violet (CV) by Fenton oxidation process was investigated. The UV-Vis spectrogram has shown that CV can be degraded effectively by Fenton oxidation process. Different system variables namely initial H(2)O(2) concentration, initial Fe(2 + ) concentration and reaction temperature, which have effect on the degradation of CV by Fenton oxidation process, have been studied systematically. The degradation kinetics of CV was also elucidated based on the experimental data. The degradation of CV obeys the first-order reaction kinetics. The kinetic model can be described as k=1.5 exp(-(7.5)/(RT))[H(2)O(2)](0)(0.8718)[Fe(2+)](0)(0.5062). According to the IR spectrogram, it is concluded that the benzene ring of crystal violet has been destroyed by Fenton oxidation. The result will be useful in treating dyeing wastewater containing CV by Fenton oxidation process.

  8. REMOVAL OF CRYSTAL VIOLET BY BIOSORPTION ONTO DATE STONES

    Directory of Open Access Journals (Sweden)

    NOUREDDINE EL MESSAOUDI

    2016-07-01

    Full Text Available The biosorption has the advantage that it can be applied to effluent disposal and thus brings various responses to the regulatory requirements for environmental protection. This study presents the results obtained from the use of date stones (DS for the elimination of crystal violet (CV from aqueous medium. Several analysis techniques were used to determine the different characteristics of biosorbent studied (FTIR, TGA-DTA, SEM and pHzpc.The physico-chemical parameters influence of the biosorption such as biosorbent dosage, contact time, temperature, biosorbent particles size and initial dye pH were investigated under static conditions in order to evaluate the process system. The test results show that a gram of date stones may set a maximum amount adsorbed 90.89 mg·g-1 of CV at 50 °C according to the Langmuir isotherm with pseudo-second-order kinetic. Thermodynamic calculations performed shows also that sorption is spontaneous, endothermic and increased randomness in the solid / solution interface.

  9. Adsorption of gentian violet dyes in aqueous solution on microporous AlPOs molecular sieves synthesized by ionothermal method

    Science.gov (United States)

    Fortas, W.; Djelad, A.; Hasnaoui, M. A.; Sassi, M.; Bengueddach, A.

    2018-02-01

    In this work, AlPO-34, like-chabazite (CHA) zeolite, was ionothermally prepared using the ionic liquid (IL), 1-ethyl-3-methylimidazolium chloride [EMIMCl], as solvent. The solids obtained were characterized by x-ray powder diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FTIR), thermal analysis (TG) and nitrogen adsorption/desorption at 77.3 K. The results show that the ionic liquid is occluded in the AlPO-34 framework and consequently it acts also as a structure-directing agent. The variation of chemical composition led to AlPO-34 materials with different crystal sizes and morphologies. The well crystallized AlPO-34 material was used as adsorbent for Crystal Violet (CV) dye removal from aqueous solutions. The effect of adsorption parameters such as pH and initial concentration were investigated. It was found that adsorption dyes is favorable at pH = 6. The adsorption isotherm data follow the Langmuir equation in which parameters are calculated. The selected AlPO-34 sample exhibited a high crystal violet dye removal of 46.08 mg g-1 at pH = 6.

  10. Electrochemical Decolorization of Reactive Violet 5 Textile Dye using Pt/Ir Electrodes

    Directory of Open Access Journals (Sweden)

    Bahadır K. Körbahti

    2016-08-01

    Full Text Available Electrochemical decolorization of textile dyeing wastewater containing Reactive Violet 5 (RV5 were investigated at Pt/Ir electrodes in the presence of 75%NaCl+25%Na2CO3 (w/w supporting electrolyte mixture in a batch electrochemical reactor. Experimental parameters were operated in the range of 300-1500 mg/L textile dye concentration, 4-20 g/L 75%NaCl+25%Na2CO3 electrolyte concentration, 5-15 mA/cm2 current density, and 20-60°C reaction temperature in 15 min electrolysis time. Reactive Violet 5 decolorization increased with increasing current density and electrolyte concentration, and decreasing the textile dye concentration. Although a slight increase obtained in color removal efficiency, the temperature was not show much significant effect on decolorization. Depending on electrochemical reaction conditions, Reactive Violet 5 textile dye decolorization were obtained between 42.8-100%.

  11. Equilibrium and Kinetics Study of Adsorption of Crystal Violet onto the Peel of Cucumis sativa Fruit from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    T. Smitha

    2012-01-01

    Full Text Available The use of low-cost, locally available, high efficiency and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This study investigates the potential use of the peel of Cucumis sativa fruit for the removal of crystal violet (CV dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH and contact time were investigated and optimal experimental conditions were ascertained. The results showed that as the amount of the adsorbent increased, the percentage of dye removal increased accordingly. Optimum pH value for dye adsorption was determined as 7.0. The adsorption of crystal violet followed pseudo-second order rate equation and fit well Langmuir and Freundlich equations. The maximum removal of CV was obtained at pH 7 as 92.15% for adsorbent dose of 0.2 g/50 mL and 25 mg L-1 initial dye concentration at room temperature. The maximum adsorption capacity obtained from Langmuir equation was 34.24 mg g-1. Furthermore, adsorption kinetics of (CV was studied and the rate of adsorption was found to conform to pseudo-second order kinetics with a good correlation (R2 > 0.9739. The peel of Cucumis sativa fruit can be attractive options for dye removal from diluted industrial effluents since test reaction made on simulated dyeing wastewater show better removal percentage of (CV.

  12. Investigation of Equilibrium and Thermodynamic parameters of Crystal Violet Adsorption onto Bottom Ash

    OpenAIRE

    , P.V. Nidheesh; , R. Gandhimathi; , S.T. Ramesh; , T.S. Anantha Singh

    2016-01-01

    In this work, batch adsorption experiments were carried out for removal crystal violet (CV) dye from aqueous solution using bottom ash as adsorbent. Effect of temperature, bottom ash dosage, agitation speed and pH on CV removal efŞciency by bottom ash was carried out. Removal of CV by bottom ash is an endothermic nature of adsorption. Batch isotherm study was carried out to Şnd the equilibrium capacity of bottom ash. The maximum removal was found to be 84.1, 90.5 and 97.33% at the dose of 1.1...

  13. Decolorization of reactive violet 5 dye in textile wastewater by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Borislav N. Malinovic

    2016-04-01

    Full Text Available The textile dyeing industry consumes large quantities of water and produces large volumes of wastewater from different steps in the dyeing and finishing processes. Wastewater from printing and dyeing units is often rich in color, containing residues of reactive dyes and chemicals, such as complex components. This study investigates the decolorization of synthetic dye wastewater containing textile dye Reactive Violet 5 (RV5 by electrocoagulation. A laboratory batch reactor was used to investigate the effect of various operating parameters using aluminium (Al, iron (Fe and stainless steel (SS anode. The effect of dye concentration, current density, supporting electrolyte, sup­porting electrolyte concentration, electrolysis duration, and material of anode of the systems were evaluated. Color removal efficiency was 22, 91.5 and 99.8 % in 15 minutes using Al, Fe and SS anode, respectively (j = 10 mA/cm2, cNaCl = 0.171 M.

  14. Removal of Azo Dyes (Violet B and Violet 5R from Aqueous Solution Using New Activated Carbon Developed from Orange Peel

    Directory of Open Access Journals (Sweden)

    Saeedeh Hashemian

    2013-01-01

    Full Text Available Activated carbon developed from agricultural waste orange peel (COP was prepared. COP was characterized using Fourier infrared spectroscopy (FTIR, X-ray powder diffraction (XRD, scanning electron microscopy (SEM, and BET. COP has surface area and mean pore diameter of 225.6 m2 g−1 and 22.40 nm, respectively. The removal of violet B (VB and violet 5R (V5R from aqueous solutions by COP was investigated. The effect of operational parameters such as contact time, pH, initial dye concentration, and adsorbent dosage on the adsorption of dyes was investigated. Maximum dye was removed within 30 min of contact time at pH > 7. Two common models, the Langmuir and Freundlich isotherms, were used to investigate the interaction of dye and COPs. The isotherm evaluations revealed that the Langmuir model provides better fit to the experimental data than the Freundlich model. The adsorption of VB and V5R onto COP was followed by pseudo-second-order kinetic model with a good correlation (R2>0.99. Activation energies 5.47 and 29.7 KJ mol−1 were determined for violet B and violet 5R, respectively. The rate of adsorption of violet 5R was faster than that of violet B (kV5R>kVB. The prepared COP could thus be used as promising adsorbent for removal of organic dyes, especially azo dye, from polluted water. The solid COP could be conveniently regenerated after adsorption.

  15. Adsorption of crystal violet with diatomite earth&carbon by a modification of hydrothermal carbonization process.

    Science.gov (United States)

    Zhang, Yanzhuo; Li, Jun; Chen, Guanghui; Bian, Wei; Lu, Yun; Li, Wenjing; Zheng, Zhaoming; Cheng, Xiaojie

    2016-01-01

    The high colority and difficulty of decolorization are the most important tasks on printing and dyeing wastewater. This study investigates the ability of diatomite earth&carbon (DE&C) as an adsorbent to removal crystal violet (CV) from aqueous solutions. Fourier transform infrared spectroscopy results indicate the importance of functional groups during the adsorption of CV. The obtained N2 adsorption-desorption isotherm values accord with well IUPAC type II. Our calculations determined a surface area of 73.15 m(2) g(-1) for DE&C and an average pore diameter of 10.56 nm. Equilibrium data of the adsorption process fitted very well to the Langmuir model (R(2) > 0.99). The results of kinetics study showed that the pseudo-second-order model fitted to the experimental data well. The thermodynamic parameters were also evaluated. ΔH° 0 and ΔG° dye. Furthermore the positive value of ΔS° reflected good affinity of the CV dye.

  16. Removal of methyl violet dye by adsorption onto N-benzyltriazole derivatized dextran

    DEFF Research Database (Denmark)

    Cho, Eunae; Tahir, Muhammad Nazir; Kim, Hwanhee

    2015-01-01

    with equilibrium isotherms including the Langmuir, Freundlich, and Temkin models. Based on the Langmuir isotherm, the maximum adsorption capacity was determined to be 95.24 mg of dye per gram of the adsorbent. The adsorption obeyed pseudo-second order kinetics, and a negative Delta G(0) value indicated adsorption......In this work, N-benzyltriazole derivatized dextran was evaluated for its potential as a novel carbohydrate-based adsorbent for the removal of methyl violet dye from water. The modified dextran was synthesized by a click reaction of pentynyl dextran and benzyl azide, and the structure...... was characterized by nuclear magnetic resonance spectroscopy, elemental analysis, and scanning electron microscopy. Dextran was substituted with a triazole-linked benzyl group. For decolorization of the dye effluent, adsorption is a very effective treatment; here, the driving force is based on hydrogen bonding, pi...

  17. Decolorization of crystal violet over TiO2 and TiO2 doped with zirconia photocatalysts

    Directory of Open Access Journals (Sweden)

    Vasic Marija B.

    2017-01-01

    Full Text Available Titania based catalyst and TiO2 doped with zirconia were prepared by modified sol–gel method. The synthesized catalysts samples were characterized by BET, XRD, SEM and FTIR techniques. Photocatalytic activity was tested in the reaction of crystal violet (CV dye decolorization/decomposition under UV light irradiation. The effect of several operational parameters, such as catalyst dosage, initial dye concentrations, duration of UV irradiation treatment and number of reaction cycles were also considered. The obtained results indicated faster dye decolorization with the increase of the catalyst amount and a decrease of initial CV concentrations. An influence of doping with zirconia on the physico-chemical properties of bare titania was studied. The doping procedure had affected photocatalytic properties of the final catalytic material, and had improved photocatalytic performances of doped catalyst on crystal violet decolorization/degradation in comparison to bare titania. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 1612008, Grant no. 45012 and Grant no. 172061

  18. Biopolymers composites with peanut hull waste biomass and application for Crystal Violet adsorption.

    Science.gov (United States)

    Tahir, Noor; Bhatti, Haq Nawaz; Iqbal, Munawar; Noreen, Saima

    2017-01-01

    Composites of polyaniline, starch, polypyrrole, chitosan aniline and chitosan pyrrole using peanut waste were prepared and employed for the adsorption of Crystal Violet (CV) dye from aqueous media. The process variables i.e., composite doses, pH, contact time, CV initial concentration and temperature were optimized. Thermodynamic, equilibrium modelling and kinetics models were fitted to the CV adsorption data in order to understand the mechanism and nature of CV adsorption onto native and composite adsorbents. Maximum CV adsorption of 100.6mg/g was achieved (onto chitosan aniline composite) using 150mg/L dye initial concentration, 50°C temperature, 60min contact time, 0.05g adsorbent dose and>7pH. Effect of composites pre-treatments with salts, surfactants and co-metals ions were also studied. The CV adsorption efficiencies of adsorbents were found in following order; chitosan aniline composite>starch composite>chitosan pyrrole composite>polyaniline composite>polypyrrole composite>native peanut biomass. The pseudo-second-order kinetic model and Freundlich isotherm fitted well to the CV equilibrium adsorption data and intraparticle diffusion was the rate limiting step. Composites showed endothermic and energetically stable nature for CV adsorption. Composites also showed good desorption properties, which revealed the recycling ability of prepared composites. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Adsorption equilibrium and kinetic studies of crystal violet and naphthol green on torreya-grandis-skin-based activated carbon

    International Nuclear Information System (INIS)

    Dai, Wei; Yu, Huijing; Ma, Na; Yan, Xiaoyang

    2015-01-01

    A new type of activated carbon, torreya-grandis-skin-based activated carbon (TAC), has been used to remove the harmful dyes (cationic dye crystal violet (CV) and anionic dye naphthol green (NG)) from contaminated water via batch adsorption. The effects of solution pH, adsorption time and temperature were studied. The Langmuir and Freundlich adsorption models were used to describe the equilibrium isotherm and isotherm constant calculation. It was found that the maximum equilibrium adsorption capacities were 292mg/g and 545mg/g for CV and NG, respectively. Adsorption kinetics was verified by pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetic models. Results indicated that the rate of dye adsorption followed pseudo-second-order kinetic model for the initial dye concentration range studied. Temperature-dependent adsorption behavior of CV and NG shows that the adsorption is spontaneous and endothermic, accompanying an entropy increase. This work indicates that TAC could be employed as a low-cost alternative for the removal of the textile dyes from effluents

  20. Partial removal and detoxification of Malachite Green and Crystal Violet from laboratory artificially contaminated water by Pleurotus ostreatus

    Directory of Open Access Journals (Sweden)

    Claudia Marcela Rivera-Hoyos

    2016-10-01

    Full Text Available The triphenylmethane dyes Malachite Green (MG and Crystal Violet (CV are cationic dyes and mix with domestic wastewater when dumped; increasing, among others, the chemical and biological demand of oxygen and can cause acute toxicity at different trophic levels. Promoting the removal (decolorization of MG and CV, and laccase activity (54.8 ± 8.9 and 30.6 ± 2.9 UL-1 respectively by using P. ostreatus viable biomass needed parameters such as pH (4.5 and 6.0, temperature (25 to 30 °C, stirring speed (120 rpm, percentage of inoculum (2% v/v, and dye concentration (20 and 10 mg L-1. In adsorption studies, it was showed that an acidic pH favors the adsorption of both dyes and the model of pseudo-second order describes best the phenomenon of adsorption. Finally, the germination index (GI, using Lactuca sativa seeds for the initial dyes solutions, was <50%; demonstrating its high phytotoxic effect. When dye solutions were treated with viable biomass, the GI increased, leaving open the possibility to performing future research to determine if the aqueous solutions, post-treated with P. ostreatus, could be used in treatments that generate less toxic water which could be used in processes that do not require potable water.

  1. Chemically Modified Polyvinyl Chloride for Removal of Thionine Dye (Lauth’s Violet

    Directory of Open Access Journals (Sweden)

    Helena Ma A. M. M. S. Ali

    2017-11-01

    Full Text Available The chemical modification of hydrophobic polymer matrices is an alternative way to elchange their surface properties. The introduction of sulfonic groups in the polymer changes the surface properties such as adhesion, wettability, catalytic ability, and adsorption capacity. This work describes the production and application of chemically modified polyvinyl chloride (PVC as adsorbent for dyes removal. Chemical modification of PVC was evaluated by infrared spectroscopy and elemental analysis, which indicated the presence of sulfonic groups on PVC. The chemically modified PVC (PVCDS showed an ion exchange capacity of 1.03 mmol−1, and efficiently removed the thionine dye (Lauth’s violet from aqueous solutions, reaching equilibrium in 30 min. The adsorption kinetics was better adjusted for a pseudo second order model. This result indicates that the adsorption of thionine onto PVCDS occurs by chemisorption. Among the models for the state of equilibrium, SIPS and Langmuir exhibited the best fit to the experimental results and PVCDS showed high adsorption capacities (370 mg−1. Thus, it is assumed that the system presents homogeneous characteristics to the distribution of active sites. The modification promoted the formation of surface characteristics favorable to the dye adsorption by the polymer.

  2. An Unusual Dimeric Inhibitor of Acetylcholinesterase: Cooperative Binding of Crystal Violet

    Directory of Open Access Journals (Sweden)

    Anders Allgardsson

    2017-08-01

    Full Text Available Acetylcholinesterase (AChE is an essential enzyme that terminates cholinergic transmission by a rapid hydrolysis of the neurotransmitter acetylcholine. AChE is an important target for treatment of various cholinergic deficiencies, including Alzheimer’s disease and myasthenia gravis. In a previous high throughput screening campaign, we identified the dye crystal violet (CV as an inhibitor of AChE. Herein, we show that CV displays a significant cooperativity for binding to AChE, and the molecular basis for this observation has been investigated by X-ray crystallography. Two monomers of CV bind to residues at the entrance of the active site gorge of the enzyme. Notably, the two CV molecules have extensive intermolecular contacts with each other and with AChE. Computational analyses show that the observed CV dimer is not stable in solution, suggesting the sequential binding of two monomers. Guided by the structural analysis, we designed a set of single site substitutions, and investigated their effect on the binding of CV. Only moderate effects on the binding and the cooperativity were observed, suggesting a robustness in the interaction between CV and AChE. Taken together, we propose that the dimeric cooperative binding is due to a rare combination of chemical and structural properties of both CV and the AChE molecule itself.

  3. Bacillus amyloliquefaciens biofilm as a novel biosorbent for the removal of crystal violet from solution.

    Science.gov (United States)

    Sun, Pengfei; Hui, Cai; Wang, Sheng; Wan, Li; Zhang, Xin; Zhao, Yuhua

    2016-03-01

    Bacillus amyloliquefaciens biofilm shows promise for use in the control of soil-borne pathogens; however, it has never been used to treat dye-polluted wastewaters. Here, we propose the novel idea of using B. amyloliquefaciens biofilm for the adsorption of crystal violet (CV) from liquids. The relative contents of three main elements (C1s, O1s, and N1s) in the biofilm were 65.55%, 21.21%, and 13.24%, respectively. The results of Fourier transform infrared (FTIR) spectra and X-ray photoelectron spectroscopy revealed that the biofilm contained β-type heteropolysaccharide and proteins. The ruggedness of the biofilm surface due to embedded bacterial cells suggested potential adsorption sites for CV molecules. The maximum capacity for CV adsorption was 582.41mg/g, which is the largest value reported to date for any CV adsorbent. Blueshift occurred in the FTIR spectrum of CV-loaded biofilm as compared to that of virgin biofilm, confirming a physical adsorption process. We found that CV adsorption by biofilm was complex and resulted from intraparticle diffusion as well as surface adsorption. Our data also suggested that the process is exothermal and spontaneous, with micropore diffusion as the rate-limiting step. These findings provide a basis for using B. amyloliquefaciens biofilm as an efficient adsorbent for treating CV-polluted wastewaters. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Blue light induced free radicals from riboflavin in degradation of crystal violet by microbial viability evaluation.

    Science.gov (United States)

    Liang, Ji-Yuan; Yuann, Jeu-Ming P; Hsie, Zong-Jhe; Huang, Shiuh-Tsuen; Chen, Chiing-Chang

    2017-09-01

    Crystal violet (CV) is applied in daily use mainly as a commercial dye and antimicrobial agent. Waste water containing CV may affect aquatic ecosystems. Riboflavin, also known as vitamin B 2 , is non-toxic and an essential vitamin required for the functions of the human body. Riboflavin is photosensitive to UV and visible light in terms of generating reactive oxygen species. This study investigated the potential application of blue light on riboflavin, so as to come up with an effective way of degrading CV during its treatment. Photosensitivity of CV leading to degradation in the presence of riboflavin was investigated by light intensity, exposure time, and irradiation dosage. The degradation of CV during riboflavin photolysis treatment was studied by a UV/vis spectrometry and chromatography. The effects of CV degradation on microbial viability are relevant when considering the influences on the ecosystem. This study proved that riboflavin photochemical treatment with blue light degrades CV dye by ROS formation. The riboflavin photolysis-treated CV solution appeared to be transparent during conformational transformations of the CV that was rearranged by free radical species generated from riboflavin photolysis. After riboflavin photolysis, colony-forming units (CFUs) were determined for each CV solution. CFU preservation was 85.2% for the CV dissolved riboflavin solution treated with blue light irradiation at 2.0mW/cm 2 for 120min. Degradation of CV by riboflavin photochemical procedures can greatly reduce antimicrobial ability and serve as an environmental friendly waste water treatment method. Our results presented here concerning riboflavin photolysis in degradation of CV provide a novel technique, and a simple and safe practice for environmental decontamination processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Removal of methyl violet 2B dye from aqueous solution using Nepenthes rafflesiana pitcher and leaves

    Science.gov (United States)

    Kooh, Muhammad Raziq Rahimi; Dahri, Muhammad Khairud; Lim, Linda B. L.

    2017-11-01

    This study reported Nepenthes rafflesiana pitcher (NP) and Nepenthes rafflesiana leaves (NL) as new adsorbents for methyl violet (MV) dye. The experiments were done using 2 h contact time and without any pH alteration (pH 4.4). The effects of pH and ionic strength revealed hydrophobic-hydrophobic interaction as the predominant force of dye interaction with the adsorbent. Both NP-MV and NL-MV followed pseudo-second-order model indicating the adsorption processes may be governed by chemical process. Weber-Morris intraparticle diffusion model verified that the rate-limiting step of both the NP-MV and NL-MV systems is not intraparticle diffusion. The Langmuir model best described the adsorption process with high maximum monolayer adsorption ( q m) of 288.7 and 194.0 mg g-1 for NP-MV and NL-MV, respectively. Thermodynamics studies revealed both NP-MV and NL-MV systems are spontaneous and endothermic in nature. From the regeneration study, it was found that NP's and NL's adsorption capacities could be recovered using distilled water and base whereby distilled water was able to recover 78% (NP) and 71% (NL) while base was able to recover 82% for both samples after three regeneration cycles.

  6. Laccase-conjugated amino-functionalized nanosilica for efficient degradation of Reactive Violet 1 dye

    Science.gov (United States)

    Gahlout, Mayur; Rudakiya, Darshan M.; Gupte, Shilpa; Gupte, Akshaya

    2017-08-01

    Immobilization of enzyme with nanostructures enhances its ideal characteristics, which may allow the enzyme to become more stable and resistant. The present investigation deals with the formulation of laccase nanosilica conjugates to overcome the problems associated with its stability and reusability. Synthesized nanosilica and laccase nanoparticles were spherical shaped, with the mean size of 220 and 615 nm, respectively. Laccase nanoparticles had an optimum temperature of 55 °C and pH 4.0 for the oxidation of ABTS. Laccase nanoparticle retained 79% of residual activity till 20th cycle. It also showed 91% of its initial activity at lower temperatures even after 60 days. Laccase nanoparticles were applied for Reactive Violet 1 degradation wherein 96.76% of decolourization was obtained at pH 5.0 and 30 °C within 12 h. Toxicity studies on microbes and plants suggested that the degraded metabolites were less toxic than control dye. Thus, the method applied for immobilization increased storage stability and reusability of laccase, and therefore, it can be utilized for efficient degradation of azo dyes.

  7. Degradation of crystal violet over heterogeneous TiO2 -based catalysts: The effect of process parameters

    Directory of Open Access Journals (Sweden)

    Marija B. Vasić

    2016-09-01

    Full Text Available In this study, modified sol-gel method was employed to synthesize the pure and Zr-doped titania catalysts. Brunauer-Emmett-Teller (BET method was applied to determine porosity, X-ray diffraction (XRD analysis was used to study crystal structure, scanning electron microscopy (SEM was used to investigate morphology and Fourier transform infrared spectroscopy (FTIR was used to examine surface properties/total acidity of the obtained catalysts samples. Photocatalytic activity was tested in the reaction of crystal violet (CV dye decolourization/degradation under UV light irradiation. The effects of several photocatalysis operational parameters were considered, such as catalyst dosage, initial dye concentrations, duration of UV irradiation treatment, as well as catalysts calcination temperatures and dopant amounts. The obtained results indicated faster dye decolourization/degradation with the increase of the catalyst dosage and the decrease of initial CV concentrations. The Zr-doping affects photocatalytic properties, i.e. CV decolourization/degradation of the prepared catalytic materials. Thus, addition of 5 wt.% of ZrO2 to titania increases photocatalytic effect for ∼15% and addition of 10 wt.% of ZrO2 improves the photocatalytic efficiency of titania for nearly 30%.

  8. Isolation and Characterization of Paracoccus sp. GSM2 Capable of Degrading Textile Azo Dye Reactive Violet 5

    Directory of Open Access Journals (Sweden)

    Mallikarjun C. Bheemaraddi

    2014-01-01

    Full Text Available A potential bacterial strain GSM2, capable of degrading an azo dye Reactive Violet 5 as a sole source of carbon, was isolated from textile mill effluent from Solapur, India. The 16S rDNA sequence and phenotypic characteristics indicated an isolated organism as Paracoccus sp. GSM2. This strain exhibited complete decolorization of Reactive Violet 5 (100 mg/L within 16 h, while maximally it could decolorize 800 mg/L of dye within 38 h with 73% decolorization under static condition. For color removal, the most suitable pH and temperature were pH 6.0–9.0 and 25–40°C, respectively. The isolate was able to decolorize more than 70% of five structurally different azo dyes within 38 h. The isolate is salt tolerant as it can bring out more than 90% decolorization up to a salt concentration of 2% (w/v. UV-Visible absorption spectra before and after decolorization suggested that decolorization was due to biodegradation and was further confirmed by FT-IR spectroscopy. Overall results indicate the effectiveness of the strain GSM2 explored for the treatment of textile industry effluents containing various azo dyes. To our knowledge, this could be the first report on biodegradation of Reactive Violet 5 by Paracoccus sp. GSM2.

  9. Isolation and Characterization of Paracoccus sp. GSM2 Capable of Degrading Textile Azo Dye Reactive Violet 5

    Science.gov (United States)

    Bheemaraddi, Mallikarjun C.; Shivannavar, Channappa T.; Gaddad, Subhashchandra M.

    2014-01-01

    A potential bacterial strain GSM2, capable of degrading an azo dye Reactive Violet 5 as a sole source of carbon, was isolated from textile mill effluent from Solapur, India. The 16S rDNA sequence and phenotypic characteristics indicated an isolated organism as Paracoccus sp. GSM2. This strain exhibited complete decolorization of Reactive Violet 5 (100 mg/L) within 16 h, while maximally it could decolorize 800 mg/L of dye within 38 h with 73% decolorization under static condition. For color removal, the most suitable pH and temperature were pH 6.0–9.0 and 25–40°C, respectively. The isolate was able to decolorize more than 70% of five structurally different azo dyes within 38 h. The isolate is salt tolerant as it can bring out more than 90% decolorization up to a salt concentration of 2% (w/v). UV-Visible absorption spectra before and after decolorization suggested that decolorization was due to biodegradation and was further confirmed by FT-IR spectroscopy. Overall results indicate the effectiveness of the strain GSM2 explored for the treatment of textile industry effluents containing various azo dyes. To our knowledge, this could be the first report on biodegradation of Reactive Violet 5 by Paracoccus sp. GSM2. PMID:24883397

  10. Adsorption of Acid Yellow-73 and Direct Violet-51 Dyes from Textile Wastewater by Using Iron Doped Corncob Charcoal

    Directory of Open Access Journals (Sweden)

    Mujtaba Baqar

    2015-06-01

    Full Text Available The presence of synthetic dyes in textile industry wastewater lead to deterioration of precious fresh water resources, making the need to remove dyes crucial for environmental protection. Recently, different techniques have been employed to remove these dyes from water resources. Among them, biosorption has gained tremendous popularity due to its eco-friendly nature and inexpensive method. In this study, the removal potential of two acid dyes, i.e. yellow-73 and direct violet-51, was assessed from textile effluent samples using iron modified corncob charcoal. The adsorption efficiency ranged between 93.93 ­ 97.96 % and 92.2 - 95.4 % for acid yellow-73 and direct violet-51, respectively. Furthermore, study highlights optimum parameters for successful adsorption of these dyes, such as stirring time (numbers, pH (numbers, temperature (numbers, and adsorbent dosage (numbers. Keeping in consideration these findings, we recommend the use of Iron Doped Corncob Charcoal (IDCC as a low-cost, efficient alternative for wastewater treatment, primarily minimizing the detrimental effects of hazardous dyes.

  11. Detection of low concentration of malachite green and crystal violet in water

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Šafaříková, Miroslava

    2002-01-01

    Roč. 36, - (2002), s. 196-200 ISSN 0043-1354 R&D Projects: GA ČR GA203/98/1145 Institutional research plan: CEZ:AV0Z6087904 Keywords : magnetic particles * crystal violet Subject RIV: EH - Ecology, Behaviour Impact factor: 1.611, year: 2002

  12. Low-cost nanoparticles sorbent from modified rice husk and a copolymer for efficient removal of Pb(II) and crystal violet from water.

    Science.gov (United States)

    Masoumi, Arameh; Hemmati, Khadijeh; Ghaemy, Mousa

    2016-03-01

    In this work, preparation of adsorbent nanoparticles based on treated low-value agricultural by-product rice husk (TARH), and poly(methylmethacrylate-co-maleic anhydride), poly(MMA-co-MA), is reported for the removal of Pb(II) ion and Crystal violet dye from water. The prepared adsorbent was characterized by FT-IR, SEM, AFM, DLS, BET and Zeta potential. The metal ion adsorption capability was determined for rice husk (RH), TARH, crosslinked poly(MMA-co-MA) (CNR), and CNR@TARH nanoparticles. Different factors affecting the adsorption of Pb(II) such as pH, contact time, initial metal ion concentration and also temperature were studied to investigate adsorption isotherms, kinetics and thermodynamics. For the four tested adsorption isotherm models, the equilibrium sorption data for CNR@TARH nanoparticles obeyed the Langmuir isotherm equation with maximum sorption capacity of 93.45 mg g(-1). The kinetic adsorption data fitted best the Lagergren pseudo-second order model. Regeneration of adsorbent was easily performed by adsorption/desorption experiments followed for 4 cycles. Finally, the ability of the nanoparticles to remove Crystal violet dye from aqueous solution was also investigated by varying the initial dye concentration, pH and immersion time and the adsorption mechanism followed the second-order kinetic model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Electrochemical degradation of crystal violet with BDD electrodes: effect of electrochemical parameters and identification of organic by-products.

    Science.gov (United States)

    Palma-Goyes, Ricardo E; Guzmán-Duque, Fernando L; Peñuela, Gustavo; González, Ignacio; Nava, Jose L; Torres-Palma, Ricardo A

    2010-09-01

    This paper explores the applicability of electrochemical oxidation on a triphenylmethane dye compound model, hexamethylpararosaniline chloride (or crystal violet, CV), using BDD anodes. The effect of the important electrochemical parameters: current density (2.5-15 m A cm(-2)), dye concentration (33-600 mg L(-1)), sodium sulphate concentration (7.1-50.0 g L(-1)) and initial pH (3-11) on the efficiency of the electrochemical process was evaluated. The results indicated that while the current density was lower than the limiting current density, no side products (hydrogen peroxide, peroxodisulphate, ozone and chlorinated oxidizing compounds) were generated and the degradation, through OH radical attack, occurred with high efficiency. Analysis of intermediates using GC-MS investigation identified several products: N-methylaniline, N,N-dimethylaniline, 4-methyl-N,N-dimethylaniline, 4-methyl-N-methylaniline, 4-dimethylaminophenol, 4-dimethylaminobenzoic acid, 4-(N,N-dimethylamino)-4'-(N',N'-dimethylamino) diphenylmethane, 4-(4-dimethylaminophenyl)-N,N-dimethylaniline, 4-(N,N-dimethylamino)-4'-(N',N'-dimethylamino) benzophenone. The presence of these aromatic structures showed that the main CV degradation pathway is related to the reaction of CV with the OH radical. Under optimal conditions, practically 100% of the initial substrate and COD were eliminated in approximately 35 min of electrolysis; indicating that the early CV by-products were completely degraded by the electrochemical system. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. Synthesis of bismuth (III oxide films based anodes for electrochemical degradation of reactive blue 19 and crystal violet

    Directory of Open Access Journals (Sweden)

    Petrović Milica M.

    2014-01-01

    Full Text Available The Bi2O3 films-based anodes were synthesized by electrodeposition of Bi on stainless steel substrate at constant current density and during different deposition times, fallowed by calcination, forming Bi2O3. The thickness of the films was determined by two methods: the observation under the microscope and by calculation from mass difference. Electrochemical proceses at the anodes were ivestigated by linear sweep voltammetry. At the anodes obtained within 2, 5, 10 and 15 minutes of deposition, two dyes, namely: Reactive Blue 19 and Crystal Violet, were decolorized by oxidation with •OH radical, generated from H2O2 decomposition at the anodes. Decoloration times of the anodes varied, and the shortest one was achieved with the anode obtained during 5 minutes of deposition, with the film thickness of 2.5±0.3 μm. The optimal H2O2 concentration for the dyes degradation was found to be 10 mmol dm-3. [Projekat Ministarstva nauke Republike Srbije, br. ТR 34008

  15. Methyl Violet Dye Absorption from Aqueous Solutions by Nanomagnetic Hydrogels Based on κ-Carrageenan and Acrylic Acid

    Directory of Open Access Journals (Sweden)

    Hossein Ghasemzadeh

    2016-09-01

    Full Text Available Nanomagnetic hydrogels, based on κ-carrageenan and acrylic acid, were prepared for removal of methyl violet from aqueous solutions. κ-Carrageenan/acrylic acid-based hydrogels were prepared in aqueous solution in the presence of methylene bisacrylamide (MBA and ammonium persulfate (APS, the former as a crosslinking agent and the latter as an initiator. The nanomagnetic hydrogels were obtained by co-precipitation of Fe (II and Fe (III ions in presence of ammonia solution. The effects of different variables such as contact time, temperature, amount of adsorbent, and pH were examined in relation to the sorption behavior of the methyl violet. The structure of the nanomagnetic hydrogels were studied by infrared spectroscopy (IR, thermogravimetric analysis (TGA, scanning electron microscopy(SEM and transmission electron microscopy (TEM. The results of scanning electron microscopy and transmission electron microscopy showed that the magnetic nanoparticles in the hydrogel matrix were dispersed satisfactorily with approximate size of 5-15 nm. The maximum amount of adsorption reached approximately 86% under optimum conditions of 60 min, pH 8 and initial dye concentration of 10 ppm. The adsorption capacity increased with temperature and pH. This study showed that the obtained nanomagnetic hydrogels with high removal efficiency and low reaction time could be used as effective adsorbents of methyl violet dyes from aqueous solution and for simple separation by a magnetic field. The equilibrium process of removing metal ions by nanomagnetic hydrogels could be evaluated efficiently using the Langmuir, Freundlich and Temkin models.

  16. Spectrophotometric determination of boron by solvent extraction with hydrobenzoin and crystal violet

    International Nuclear Information System (INIS)

    Sato, Shigeya; Uchikawa, Sumio

    1982-01-01

    A highly sensitive and simple method for the spectrophotometric determination of boron was developed. Boron was found to react with hydrobenzoin in weak alkaline medium to form a complex anion extractable into benzene with crystal violet, and the measurement of the absorbance of crystal violet in the extract at 600 nm enabled the determination of boron indirectly. The recommended procedure is as follows: Take an aliquot of the boron solution (2.0 x 10 - 4 mol l - 1 ) into a 10-ml test tube. Add 1 ml of carbonate buffer solution (pH 9.4) and 0.25 ml of crystal violet solution (1.0 x 10 - 2 mol l - 1 ), and dilute the mixed solution to 4 ml with deionized water. Shake the solution with 4 ml of benzene solution containing hydrobenzoin (2.0 x 10 - 2 mol l - 1 ) for 2 min. Measure the absorbance of the organic phase at 600 nm using a 10-mm glass cell against benzene. The calibration curve obeyed Beer's law on the concentration range from 2.5 x 10 - 6 mol l - 1 to 2.5 x 10 - 5 mol l - 1 of boron, and the apparent molar absorptivity was 3.0 x 10 4 l mol - 1 cm - 1 at 20 0 C. It was found that many kinds of co-existing ions interfered with the determination. However, this method was applicable to the determination of boron in sea water when chloride ion and cations such as Ca(II) and Mg(II) were previously eliminated by treating the sample solution with Ag 2 O and cation exchanger resin. The proposed method is a very simple and rapid one, because this method does not require apparatus other than common laboratories and the evaporation to dryness of sample or removal of the excess of reagent. (author)

  17. Electronic structure of superconducting Bi2212 crystal by angle resolved ultra violet photoemission

    International Nuclear Information System (INIS)

    Saini, N.L.; Shrivastava, P.; Garg, K.B.

    1993-01-01

    The electronic structure of a high quality superconducting Bi 2 Sr 2 CaCu 2 Osub(8+δ) (Bi2212) single crystal is studied by angle resolved ultra violet photoemission (ARUPS) using He I (21.2 eV). Our results appear to show two bands crossing the Fermi level in ΓX direction of the Brillouin zone as reported by Takahashi et al. The bands at higher binding energy do not show any appreciable dispersion. The nature of the states near the Fermi level is discussed and the observed band structure is compared with the band structure calculations. (author)

  18. Triplet and SERS study of crystal violet in presence of metal nanoparticles

    Science.gov (United States)

    Chadha, Ridhima; Maiti, Nandita; Kapoor, Sudhir

    2013-07-01

    Recently, it has been shown that triplet of methylene blue gets quenched by Au nanoparticles (J. Am. Chem. Soc. 132 (2010) 6298). Herein, we have shown that the reactivity of triplet crystal violet (CV), produced by ionizing radiation, is low towards Ag nanoparticles contrary to Au nanoparticles. Using absorption and surface-enhanced Raman spectroscopy (SERS) we have further examined the interaction of CV with Ag and Au nanoparticles. It has been shown that the polarizability of CV changes with the excitation wavelength and it is independent of metal nanoparticles.

  19. Modified dynamical equation for dye doped nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Manohar, Rajiv, E-mail: rajlu1@rediffmail.co [Liquid Crystal Research Lab, Physics Department, University of Lucknow, Lucknow 226007 (India); Misra, Abhishek Kumar; Srivastava, Abhishek Kumar [Liquid Crystal Research Lab, Physics Department, University of Lucknow, Lucknow 226007 (India)

    2010-04-15

    Dye doped liquid crystals show changed dielectric properties in comparison to pure liquid crystals. These changes are strongly dependent on the concentration of dye. In the present work we have measured dielectric properties of standard nematic liquid crystals E-24 and its two guest host mixtures of different concentrations with Anthraquinone dye D5. The experimental results are fitted using linear response and in the light of this we have proposed some modifications in the dynamical equation for the nematic liquid crystals by introducing two new variables as dye concentration coefficients. The limitations of the proposed equation in high temperature range have also been discussed. With the help of the proposed dynamical equation for the guest-host liquid crystals (GHLCs) it is possible to predict the various parameters like rotational viscosity, dielectric anisotropy and relaxation time for GHLCs at other concentrations of dye in liquid crystals theoretically.

  20. ADSORPTION AND DESORPTION CHARACTERISTICS OF CRYSTAL VIOLET IN BOTTOM ASH COLUMN

    Directory of Open Access Journals (Sweden)

    Puthiya Veetil Nidheesh

    2012-01-01

    Full Text Available This study described adsorption of Crystal Violet (CV by bottom ash in fixed-bed column mode. Equilibrium of adsorption was studied in batch mode for finding adsorption capacity of bottom ash. In fixed bed column adsorption, the effects of bed height, feed flow rate, and initial concentration were studied by assessing breakthrough curve. The slope of the breakthrough curve decreased with increasing bed height. The breakthrough time and exhaustion time were decreased with increasing influent CV concentration and flow rates. The effect of bed depth, flow rate and CV concentration on the adsorption column design parameters were analyzed. Bed depth service time (BDST model was applied for analysis of crystal violet adsorption in the column. The adsorption capacity of bottom ash was calculated at 10% breakthrough point for different flow rates and concentrations. Desorption studies reveals that recovery of CV from bottom ash was effective by using CH3COOH than H2SO4, NaOH, HCl and NaCl solutions.

  1. Adsorption and desorption characteristics of crystal violet in bottom ash column

    Directory of Open Access Journals (Sweden)

    Puthiya Veetil Nidheesh

    2012-06-01

    Full Text Available This study described adsorption of Crystal Violet (CV by bottom ash in fixed-bed column mode. Equilibrium of adsorption was studied in batch mode for finding adsorption capacity of bottom ash. In fixed bed column adsorption, the effects of bed height, feed flow rate, and initial concentration were studied by assessing breakthrough curve. The slope of the breakthrough curve decreased with increasing bed height. The breakthrough time and exhaustion time were decreased with increasing influent CV concentration and flow rates. The effect of bed depth, flow rate and CV concentration on the adsorption column design parameters were analyzed. Bed depth service time (BDST model was applied for analysis of crystal violet adsorption in the column. The adsorption capacity of bottom ash was calculated at 10% breakthrough point for different flow rates and concentrations. Desorption studies reveals that recovery of CV from bottom ash was effective by using CH3COOH than H2SO4, NaOH, HCl and NaCl solutions.

  2. Quantifying hydrogen peroxide in iron-containing solutions using leuco crystal violet

    Directory of Open Access Journals (Sweden)

    Schoonen Martin A

    2005-06-01

    Full Text Available Hydrogen peroxide is present in many natural waters and wastewaters. In the presence of Fe(II, this species decomposes to form hydroxyl radicals, that are extremely reactive. Hence, in the presence of Fe(II, hydrogen peroxide is difficult to detect because of its short lifetime. Here, we show an expanded use of a hydrogen peroxide quantification technique using leuco crystal violet (LCV for solutions of varying pH and iron concentration. In the presence of the biocatalyst peroxidase, LCV is oxidized by hydrogen peroxide, forming a colored crystal violet ion (CV+, which is stable for days. The LCV method uses standard equipment and allows for detection at the low microM concentration level. Results show strong pH dependence with maximum LCV oxidation at pH 4.23. By chelating dissolved Fe(II with EDTA, hydrogen peroxide can be stabilized for analysis. Results are presented for hydrogen peroxide quantification in pyrite–water slurries. Pyrite–water slurries show surface area dependent generation of hydrogen peroxide only in the presence of EDTA, which chelates dissolved Fe(II. Given the stability of CV+, this method is particularly useful for field work that involves the detection of hydrogen peroxide.

  3. Fluorescence, Decay Time, and Structural Change of Laser Dye Cresyl Violet in Solution due to Microwave Irradiation at GSM 900/1800 Mobile Phone Frequencies

    Directory of Open Access Journals (Sweden)

    Fuat Bayrakceken

    2012-01-01

    Full Text Available Microwave irradiation at GSM 900/1800 MHz mobile phone frequencies affects the electronic structure of cresyl violet in solution. These changes are important because laser-dye cresyl violet strongly bonds to DNA- and RNA-rich cell compounds in nerve tissues. The irradiation effects on the electronic structure of cresyl violet and its fluorescence data were all obtained experimentally at room temperature. For most laser dyes, this is not a trivial task because laser dye molecules possess a relatively complex structure. They usually consist of an extended system of conjugated double or aromatic π-bonds with attached auxochromic (electron donating groups shifting the absorption band further towards longer wavelength. Because of the intrinsically high degree of conjugation, the vibrational modes of the molecular units couple strongly with each other. We found that the fluorescence quantum yield was increased from to due to intramolecular energy hopping of cresyl violet in solution which is exposed to microwave irradiation at mobile phone frequencies, and the photonic product cannot be used as a laser dye anymore.

  4. Polypyrrole-magnetite dispersive micro-solid-phase extraction combined with ultraviolet-visible spectrophotometry for the determination of rhodamine 6G and crystal violet in textile wastewater.

    Science.gov (United States)

    Kamaruddin, Amirah Farhan; Sanagi, Mohd Marsin; Wan Ibrahim, Wan Aini; Md Shukri, Dyia S; Abdul Keyon, Aemi S

    2017-11-01

    Polypyrrole-magnetite dispersive micro-solid-phase extraction method combined with ultraviolet-visible spectrophotometry was developed for the determination of selected cationic dyes in textile wastewater. Polypyrrole-magnetite was used as adsorbent due to its thermal stability, magnetic properties, and ability to adsorb Rhodamine 6G and crystal violet. Dispersive micro-solid-phase extraction parameters were optimized, including sample pH, adsorbent amount, extraction time, and desorption solvent. The optimum polypyrrole-magnetite dispersive micro-solid phase-extraction conditions were sample pH 8, 60 mg polypyrrole-magnetite adsorbent, 5 min of extraction time, and acetonitrile as the desorption solvent. Under the optimized conditions, the polypyrrole-magnetite dispersive micro-solid-phase extraction with ultraviolet-visible method showed good linearity in the range of 0.05-7 mg/L (R 2  > 0.9980). The method also showed a good limit of detection for the dyes (0.05 mg/L) and good analyte recoveries (97.4-111.3%) with relative standard deviations textile wastewater samples where the concentration found was 1.03 mg (RSD ±7.9%) and 1.13 mg/L (RSD ± 4.6%) for Rhodamine 6G and crystal violet, respectively. It can be concluded that this method can be adopted for the rapid extraction and determination of dyes at trace concentration levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Discovery of Black Dye Crystal Structure Polymorphs: Implications for Dye Conformational Variation in Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Cole, Jacqueline M; Low, Kian Sing; Gong, Yun

    2015-12-23

    We present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world's leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye···TiO2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiple conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye···TiO2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye···TiO2 interfaces in DSSCs, at least for ruthenium-based dye complexes.

  6. Fabrication of hybrid biosorbent nanoscale zero-valent iron-Sargassum swartzii biocomposite for the removal of crystal violet from aqueous solution.

    Science.gov (United States)

    Jerold, M; Vasantharaj, K; Joseph, Daisy; Sivasubramanian, V

    2017-03-04

    A novel nanoscale zero-valent iron-Sargassum swartzii (nZVI-SS) biocomposite was synthesized and evaluated for its ability to adsorb crystal violet (CV) from aqueous solutions. Involvement of various functional groups of the biosorbent in preferential adsorption of cationic dye was observed using Fourier transform infrared (FTIR) spectroscopy. Morphological changes occurring on the biocomposite materials were characterized using scanning electron microscopy (SEM). Significant increase (∼90%) in the biosorption of cationic dye was observed with gradual increase in pH of the medium from 3 to 12. The effect of biosorbent concentration, initial pH, temperature, agitation rate, adsorption time, and initial dye concentration was studied for the biosorption of CV using nZVI biocomposite. During the optimization study, maximum biosorption capacity was observed at pH of 8. At various initial CV concentrations (20-100 mg/L), attainment of batch sorption equilibrium was observed within 120 min of reaction time. The Langmuir isotherm model expressed high coefficient of determination (R 2 = 0.999). The maximum dye uptake of 200 mg/g was reported at pH 8. Kinetics and temperature profiles were evaluated and reported. Desorption study was carried out with 0.1 M HCl. Investigations proved that nZVI-SS is an excellent biosorbent for the sequestration of CV in aqueous media.

  7. Effectiveness of photochemical and sonochemical processes in degradation of Basic Violet 16 (BV16 dye from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Rahmani Zahra

    2012-11-01

    Full Text Available Abstract In this study, degradation of Basic Violet 16 (BV16 by ultraviolet radiation (UV, ultrasonic irradiation (US, UV/H2O2 and US/H2O2 processes was investigated in a laboratory-scale batch photoreactor equipped with a 55W immersed-type low-pressure mercury vapor lamp and a sonoreactor with high frequency (130kHz plate type transducer at 100W of acoustic power. The effects of initial dye concentration, concentration of H2O2 and solution pH and presence of Na2SO4 was studied on the sonochemical and photochemical destruction of BV16 in aqueous phase. The results indicated that in the UV/H2O2 and US/H2O2 systems, a sufficient amount of H2O2 was necessary, but a very high H2O2 concentration would inhibit the reaction rate. The optimum H2O2 concentration was achieved in the range of 17 mmol/L at dye concentration of 30 mg/L. A degradation of 99% was obtained with UV/H2O2 within 8 minutes while decolorization efficiency by using UV (23%, US (2O2(

  8. Removal of Remazol brilliant violet textile dye by adsorption using rice hulls

    Directory of Open Access Journals (Sweden)

    Geyse Adriana Corrêa Ribeiro

    Full Text Available Abstract The release of industrial effluents into the environment causes widespread contamination of aquatic systems. Adsorption is seen as one of the most promising treatment processes, and lignocellulosic materials have gained prominence as adsorbents. This study investigates the potential of rice hulls, either in natura or treated with nitric acid, as adsorbents for removal of the dye. The adsorbents were characterized by infrared spectroscopy, solid state 13C-NMR, thermogravimetric analysis, and pH at point of zero charge. The dye adsorption experiments were carried out in batch mode, using different experimental conditions. The kinetic adsorption data could be fitted using the model of Elovich. The Freundlich model provided the best fit to the isothermal data. The thermodynamic parameters confirmed the spontaneity of the adsorption process. These adsorbents offer an alternative for dye removal, with advantages including biomass availability and low cost.

  9. Removal of Remazol brilliant violet textile dye by adsorption using rice hulls

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Geyse Adriana Correa; Silva, Domingos Sergio Araujo; Santos, Clayane Carvalho dos; Bezerra, Cicero Wellington Brito; Tanaka, Auro Atsushi; Santana, Sirlane Aparecida Abreu, E-mail: cwb.bezerra@ufma.br [Universidade Federal do Maranhao, (UFMA), Sao Luis (Brazil); Vieira, Adriana Pires [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil)

    2017-01-15

    The release of industrial effluents into the environment causes widespread contamination of aquatic systems. Adsorption is seen as one of the most promising treatment processes, and lignocellulosic materials have gained prominence as adsorbents. This study investigates the potential of rice hulls, either in natura or treated with nitric acid, as adsorbents for removal of the dye. The adsorbents were characterized by infrared spectroscopy, solid state {sup 13}C-NMR, thermogravimetric analysis, and pH at point of zero charge. The dye adsorption experiments were carried out in batch mode, using different experimental conditions. The kinetic adsorption data could be fitted using the model of Elovich. The Freundlich model provided the best fit to the isothermal data. The thermodynamic parameters confirmed the spontaneity of the adsorption process. These adsorbents offer an alternative for dye removal, with advantages including biomass availability and low cost. (author)

  10. Decolorization and degradation of azo dye--Reactive Violet 5R by an acclimatized indigenous bacterial mixed cultures-SB4 isolated from anthropogenic dye contaminated soil.

    Science.gov (United States)

    Jain, Kunal; Shah, Varun; Chapla, Digantkumar; Madamwar, Datta

    2012-04-30

    Azo dyes an important group of synthetic compounds are recalcitrant xenobiotics. Conventional technologies are unsuccessful to efficiently remove these compounds from contaminated environment. However, consorted metabolic functioning of innate microbial communities is a promising approach for bioremediation of polluted environment. Bacterial mixed cultures SB4 proficient in complete decolorization of azo dye - Reactive Violet 5R was developed through culture enrichment technique. Bacterial community composition based on 16S rRNA gene analysis revealed that mixed cultures SB4 composed of six bacterial strains namely Bacillus sp. V1DMK, Lysinibacillus sp. V3DMK, Bacillus sp. V5DMK, Bacillus sp. V7DMK, Ochrobacterium sp. V10DMK, Bacillus sp. V12DMK. SB4 grew well in minimal medium containing low amount of glucose and yeast extract (YE) (1 g/L) and decolorized 200mg/L of RV5 within 18 h under static condition. Mixed cultures SB4 decolorized wide range of azo dyes and maximum rate of decolorization was observed at 37 °C and pH 7.0. Decolorization efficiency was found to be unaltered under high RV5 and salt concentration where 1500 mg/L of RV5 was decolorized in presence of 20 g/L NaCl. We propose the asymmetric cleavage of RV5 and Fourier transformed infrared (FTIR), NMR and gas chromatography-mass spectrometry (GC-MS) confirmed the formation of four intermediatory compounds 1-diazo-2-naphthol, 4-hydroxybenzenesulphonic acid, 2-naphthol and benzenesulphonic acid. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Enhancement of polymer dye lasers by multifunctional photonic crystal lattice

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Xiao, Sanshui; Mortensen, Asger

    2009-01-01

    The light output of dye doped hybrid polymer band-edge lasers is increased more than 100 times by using a rectangular lattice photonic crystal, which provides both feedback and couples more pump light into the laser.......The light output of dye doped hybrid polymer band-edge lasers is increased more than 100 times by using a rectangular lattice photonic crystal, which provides both feedback and couples more pump light into the laser....

  12. Wood (Bagassa guianensis Aubl) and green coconut mesocarp (cocos nucifera) residues as textile dye removers (Remazol Red and Remazol Brilliant Violet).

    Science.gov (United States)

    Monteiro, Mônica S; de Farias, Robson F; Chaves, José Alberto Pestana; Santana, Sirlane A; Silva, Hildo A S; Bezerra, Cícero W B

    2017-12-15

    In this work the efficiency of two lignocellulosic waste materials, wood residues and coconut mesocarp, were investigated as adsorbents towards two representative textile dyes (Remazol Red, RR and Remazol Brilliant Violet, RBV). The moisture, carbohydrate, protein, lipid, ash and fiber contents of both natural matrices were characterized. The materials were also characterized by infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, specific surface area analysis and thermogravimetry. The adsorption of dyes was monitored by using UV-Vis spectrophotometry. It was verified that both, coconut mesocarp (CM) and wood residues can act as effective adsorbents towards the investigated dyes. It is verified that the maximum adsorption capacity Γ M (mg g -1 ) for RBV and RR are 7.28 and 3.97 towards CM and 0.64 and 0.71 towrads SD. Furthermore, it was verified that the adsorption is strongly pH dependent and, as a general behavior, an increase in the pH value is associated with a decrease of the total amount of adsorbed dye. The adsorption of violet dye onto coconut mesocarp is well described by the Langmuir model, while all the remazol red fitted better with the Freundlich equation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Leuco-crystal-violet micelle gel dosimeters: II. Recipe optimization and testing

    Science.gov (United States)

    Nasr, A. T.; Alexander, K. M.; Olding, T.; Schreiner, L. J.; McAuley, K. B.

    2015-06-01

    In this study, recipe optimization of Leuco Crystal Violet (LCV) micelle gels made with the surfactant Cetyl Trimethyl Ammonium Bromide (CTAB) and the chemical sensitizer 2,2,2-trichloroethanol (TCE) was aided by a two-level three-factor designed experiment. The optimized recipe contains 0.75 mM LCV, 17.0 mM CTAB, 120 mM TCE, 25.0 mM tri-chloro acetic acid (TCAA), 4 wt% gelatin and ~96 wt% water. Dose sensitivity of the optimized gel is 1.5 times higher than that of Jordan’s standard LCV micelle gel. Spatial integrity of the 3D dose distribution information in 1L phantoms filled with this recipe is maintained for  >120 d. Unfortunately, phantoms made using the optimized recipe showed dose-rate dependence (14% difference in optical attenuation at the peak dose using electron beam irradiations at 100 and 400 MU min-1). Further testing suggests that the surfactant CTAB is the cause of this dose rate behaviour.

  14. Study of the concentration and separation of cadmium with microcrystalline phenolphthalein modified by crystal violet.

    Science.gov (United States)

    Li, Quanmin; Ouyang, Ruizhuo; Liu, Guoguang

    2004-11-15

    A new method for cadmium separation and concentration with microcrystalline phenolphthalein modified by crystal violet (CV) was developed in the paper. In the presence of potassium iodide (KI) and CV, cadmium are quantitatively absorbed on microcrystalline phenolphthalein in the pH range 1.0-6.0 as the forms of water-insoluble ion-associated complexes (CdI(3)(-)).(CV(+)) and (CdI(4)(2-)).(CV(+))(2). Effect of different parameters such as phenolphthalein amount, stirring time, the concentration of CV and KI, various salts and metal ions was studied in detail. During the present study, a significant enhancement of the extraction of cadmium was observed. Cd(II) can be completely separated from Zn(II), Fe(II), Co(II), Ni(II), Mn(II), Cr(III) and Al(III) in this microcrystalline system and well concentrated without the interference of these metal ions at high level. The possible reactive mechanism of cadmium concentration has been discussed. Analytical results obtained by this new method were very gratifying.

  15. Dye sensitization of titanium dioxide crystals and nanocrystalline films with a ruthenium based dye

    Science.gov (United States)

    Fillinger, Akiko

    The dye/semiconductor interface of a recently developed highly efficient (overall conversion efficiency >13%) dye sensitized nanocrystalline TiO2 solar cell was investigated. First, the adsorption and desorption rates of the dye (cis-di(thiocyanato)bis(2,2' -bipyridyl-4,4'-dicarboxylate)ruthenium(II):N3), and the relationship between the dye coverage and the photon-to-current conversion efficiencies were examined for nanocrystalline TiO2 films. A two-step dye adsorption mechanism was postulated where initial binding of N3 is through one carboxyl group, with subsequent binding of two or more carboxyl groups. The photon-to-current conversion efficiencies were found to increase abruptly at a coverage of about 0.3 monolayers. To explain the non-linear increases in the conversion efficiencies, a hole-hopping mechanism was proposed. At greater than 30% coverage, hole transfer between adjacent N3 molecules becomes possible and facilitates the regeneration of the oxidized N3 by the redox species (I-) in the matrix of the nanoporous structure. Natural anatase crystals were also investigated as substrates for dye sensitization by N3 to circumvent the complexity of the nanoporous structure of the nanocrystalline TiO2 films. A crystal face dependence of the sensitization yield was observed and explained with the variation in the distances between the Ti binding sites by different crystal faces. The dye sensitized photocurrents with the natural anatase crystals had millisecond rise times. The rise time decreased with greater light intensity and greater dye coverage, suggesting that trapping and detrapping of injected electrons at traps in the crystals is involved in the electron transport in the natural anatase crystals. The absorbed photon to current efficiency of the nanocrystalline films was calculated to be approximately three to seven times greater than that of the single crystals, indicating more recombination in the single crystals. Finally, the surface morphologies of

  16. Nanoimprinted polymer photonic crystal dye lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Smith, Cameron; Buss, Thomas

    2010-01-01

    with the laser dye Pyrromethene 597. A compact frequency doubled Nd:YAG laser (352 nm, 5 ns pulses) is used to pump the lasers from above the chip. The laser devices are 450 nm thick slab waveguides with a rectangular lattice of 100 nm deep air holes imprinted into the surface. The 2-dimensional rectangular...

  17. Ultraviolet-pumped liquid-crystal dye-laser

    International Nuclear Information System (INIS)

    Bertolotti, M.; Sbrolli, L.; Scudieri, F.; Papa, T.

    1981-01-01

    The possibility offered by the orientation properties of liquid crystals as a matrix for dye lasers is shown. In particular, the linear polarization of emitted light can be changed by acting with an external magnetic field on the molecular nematic director. (author)

  18. Influence of operational parameters on photocatalytic degradation of a genotoxic azo dye Acid Violet 7 in aqueous ZnO suspensions.

    Science.gov (United States)

    Krishnakumar, B; Swaminathan, M

    2011-10-15

    The photocatalytic degradation of a genotoxic azo dye Acid Violet 7 (AV 7) using ZnO as a photocatalyst in aqueous solution has been investigated under UV irradiation. The degradation is higher with UV/ZnO process than with UV/TiO(2)-P25 process at pH 9. The effects of different parameters such as pH of the solution, amount of catalyst, initial dye concentration and the influence of cations, anions and oxidants on photodegradation of AV 7 were analyzed. Addition of oxidants except H(2)O(2) has no significant effect on degradation. The degradation of AV 7 follows pseudo-first order kinetics according to the Langmuir-Hinshelwood model. The degradation of AV 7 has also been confirmed by COD and CV measurements. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Enhancing the Antibacterial Activity of Light-Activated Surfaces Containing Crystal Violet and ZnO Nanoparticles: Investigation of Nanoparticle Size, Capping Ligand, and Dopants.

    Science.gov (United States)

    Sehmi, Sandeep K; Noimark, Sacha; Pike, Sebastian D; Bear, Joseph C; Peveler, William J; Williams, Charlotte K; Shaffer, Milo S P; Allan, Elaine; Parkin, Ivan P; MacRobert, Alexander J

    2016-09-30

    Healthcare-associated infections pose a serious risk for patients, staff, and visitors and are a severe burden on the National Health Service, costing at least £1 billion annually. Antimicrobial surfaces significantly contribute toward reducing the incidence of infections as they prevent bacterial adhesion and cause bacterial cell death. Using a simple, easily upscalable swell-encapsulation-shrink method, novel antimicrobial surfaces have been developed by incorporating metal oxide nanoparticles (NPs) and crystal violet (CV) dye into medical-grade polyurethane sheets. This study compares the bactericidal effects of polyurethane incorporating ZnO, Mg-doped ZnO, and MgO. All metal oxide NPs are well defined, with average diameters ranging from 2 to 18 nm. These materials demonstrate potent bactericidal activity when tested against clinically relevant bacteria such as Escherichia coli and Staphylococcus aureus . Additionally, these composites are tested against an epidemic strain of methicillin-resistant Staphylococcus aureus (MRSA) that is rife in hospitals throughout the UK. Furthermore, we have tested these materials using a low light intensity (∼500 lx), similar to that present in many clinical environments. The highest activity is achieved from polymer composites incorporating CV and ∼3 nm ZnO NPs, and the different performances of the metal oxides have been discussed.

  20. Preparation of Calcined Zirconia-Carbon Composite from Metal Organic Frameworks and Its Application to Adsorption of Crystal Violet and Salicylic Acid

    Directory of Open Access Journals (Sweden)

    Zubair Hasan

    2016-03-01

    Full Text Available Zirconia-carbon (ZC composites were prepared via calcination of Zr-based metal organic frameworks, UiO-66 and amino-functionalized UiO-66, under N2 atmosphere. The prepared composites were characterized using a series of instrumental analyses. The surface area of the ZC composites increased with the increase of calcination temperature, with the formation of a graphite oxide phase observed at 900 °C. The composites were used for adsorptive removal of a dye (crystal violet, CV and a pharmaceutical and personal care product (salicylic acid, SA. The increase of the calcination temperature resulted in enhanced adsorption capability of the composites toward CV. The composite calcined at 900 °C exhibited a maximum uptake of 243 mg·g−1, which was much greater than that by a commercial activated carbon. The composite was also effective in SA adsorption (102 mg·g−1, and N-functionalization of the composite further enhanced its adsorption capability (109 mg·g−1. CV adsorption was weakly influenced by solution pH, but was more dependent on the surface area and pore volume of the ZC composite. Meanwhile, SA adsorption showed strong pH dependence, which implies an active role of electrostatic interactions in the adsorption process. Base-base repulsion and hydrogen bonding are also suggested to influence the adsorption of CV and SA, especially for the N-functionalized composite.

  1. Optical tuning of photonic bandgaps in dye-doped nematic liquid crystal photonic crystal fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard; Hermann, David Sparre

    2005-01-01

    An all-optical modulator is demonstrated, which utilizes a pulsed 532 nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid crystal. In order to investigate the time response of the LCPBG fiber device, a low-power CW probe...

  2. Comparison of staining of mitotic figures by haematoxylin and eosin-and crystal violet stains, in oral epithelial dysplasia and squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ankle Madhuri

    2007-01-01

    Full Text Available Mitosis of cells gives rise to tissue integrity. Defects during mitosis bring about abnormalities. Excessive proliferation of cells due to increased mitosis is one such outcome, which is the hallmark in precancer and cancer. The localization of proliferating cells or their precursors may not be obvious and easy. Establishing an easy way to distinguish these mitotic cells will help in grading and understanding their biological potential. Although immunohistochemistry is an advanced method in use, the cost and time factor makes it less feasible for many laboratories. Selective histochemical stains like toluidine blue, giemsa and crystal violet have been used in tissues including the developing brain, neural tissue and skin. Aim of the study: 1To compare the staining of mitotic cells in haematoxylin and eosin with that in crystal violet. 2To compare the number of mitotic figures present in normal oral mucosa, epithelial dysplasia and oral squamous cell carcinoma in crystal violet-stained sections with that in H and E-stained sections. Materials and Methods: Ten tissues of normal oral mucosa and 15 tissues each of oral epithelial dysplasia seen in tobacco-associated leukoplakia and squamous cell carcinoma were studied to evaluate the selectivity of 1% crystal violet for mitotic figures. The staining was compared with standard H and E staining. Statistical analysis was done using Man-Whitney U test. Results: A statistically significant increase in the mean mitotic count was observed in crystal violet-stained sections of epithelial dysplasia as compared to the H and E-stained sections ( p = 0.0327. A similar increase in the mitotic counts was noted in crystal violet-stained sections of oral squamous cell carcinoma as compared to the H and E-stained sections.( p = 0.0443. No significant difference was found in the mitotic counts determined in dysplasia or carcinoma by either the crystal violet ( p = 0.4429 or the H and E-staining techniques ( p = 0

  3. Preparation and catalytic performance of copper-containing magnetic catalysts for degradation of azo dye (direct violet).

    Science.gov (United States)

    Duan, Qiannan; Lee, Jianchao; Chen, Han; Zheng, Yunyun

    2017-12-01

    A novel magnetically separable magnetic activated carbon supporting-copper (MCAC) catalyst for catalytic wet peroxide oxidation (CWPO) was prepared by chemical impregnation. The prepared samples were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, and scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS). The catalytic performance of the catalysts was evaluated by direct violet (D-BL) degradation in CWPO experiments. The influence of preparative and operational parameters (dipping conditions, calcination temperature, catalyst loading H 2 O 2 dosage, pH, reaction temperature, additive salt ions and initial D-BL concentration) on degradation performance of CWPO process was investigated. The resulting MCAC catalyst showed higher reusability in direct violet oxidation than the magnetic activated carbon (MAC). Besides, dynamic tests also showed the maximal degradation rate reached 90.16% and its general decoloring ability of MCAC was 34 mg g -1 for aqueous D-BL.

  4. Feasibility study on the use of liquid crystal/dye cells for digital signage

    Science.gov (United States)

    Itaya, Shunsuke; Azumi, Nada Dianah B. M.; Ohta, Masamichi; Ozawa, Shintaro; Fujieda, Ichiro

    2016-03-01

    Elongated dye molecules orient themselves with surrounding liquid crystal molecules. We propose to incorporate such a guest-host cell in a screen of a projection display. This configuration might be applied for digital signage to be installed on building walls. Dual-mode operation is realized by the bias applied to the cell. In display-mode, the dye molecules are oriented in parallel to the substrate of the cell. When excited by ultra-violet light, photoluminescence (PL) is generated. Because it is mostly perpendicular to the long axis of the molecule, it exits the cell efficiently. In powerharvesting mode, they are oriented vertically. The PL generated by ambient light is directed to edge surfaces where solar cells are mounted. In experiment, we fabricated a cell with commonly-available materials (coumarin 6 and a nematic liquid crystal). Anti-parallel alignment condition was adopted. We recorded PL spectra from the cell for the two excitation conditions. First, the center of the cell was irradiated by a 1.69mW blue laser beam. Second, the whole cell was uniformly exposed to the light from a fluorescent lamp at illuminance of 800lx. From the measured spectra for these cases, the contrast of luminance is calculated to be 3.2 ×105 . This factor is improved to 5 7.5×105 by attaching a polarizer sheet on the cell surface. The optical power reaching its edge surfaces is measured and it roughly agrees with the prediction by a simple model neglecting self-absorption. Development of phosphor materials with a large Stokes shift is desired to boost performance of the proposed system.

  5. Localization microscopy of DNA in situ using Vybrant{sup ®} DyeCycle™ Violet fluorescent probe: A new approach to study nuclear nanostructure at single molecule resolution

    Energy Technology Data Exchange (ETDEWEB)

    Żurek-Biesiada, Dominika [Laboratory of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków (Poland); Szczurek, Aleksander T. [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Prakash, Kirti [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg (Germany); Mohana, Giriram K. [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Lee, Hyun-Keun [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Department of Physics, University of Mainz (JGU), Staudingerweg 7, 55128 Mainz (Germany); Roignant, Jean-Yves [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Birk, Udo J. [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Department of Physics, University of Mainz (JGU), Staudingerweg 7, 55128 Mainz (Germany); Dobrucki, Jurek W., E-mail: jerzy.dobrucki@uj.edu.pl [Laboratory of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków (Poland); Cremer, Christoph, E-mail: c.cremer@imb-mainz.de [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg (Germany); Department of Physics, University of Mainz (JGU), Staudingerweg 7, 55128 Mainz (Germany)

    2016-05-01

    Higher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy. We report here that the standard DNA dye Vybrant{sup ®} DyeCycle™ Violet can be used to provide single molecule localization microscopy (SMLM) images of DNA in nuclei of fixed mammalian cells. This SMLM method enabled optical isolation and localization of large numbers of DNA-bound molecules, usually in excess of 10{sup 6} signals in one cell nucleus. The technique yielded high-quality images of nuclear DNA density, revealing subdiffraction chromatin structures of the size in the order of 100 nm; the interchromatin compartment was visualized at unprecedented optical resolution. The approach offers several advantages over previously described high resolution DNA imaging methods, including high specificity, an ability to record images using a single wavelength excitation, and a higher density of single molecule signals than reported in previous SMLM studies. The method is compatible with DNA/multicolor SMLM imaging which employs simple staining methods suited also for conventional optical microscopy. - Highlights: • Super-resolution imaging of nuclear DNA with Vybrant Violet and blue excitation. • 90nm resolution images of DNA structures in optically thick eukaryotic nuclei. • Enhanced resolution confirms the existence of DNA-free regions inside the nucleus. • Optimized imaging conditions enable multicolor super-resolution imaging.

  6. Polymer photonic crystal dye lasers as optofluidic cell sensors

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Lopacinska, Joanna M.; Jakobsen, Mogens Havsteen

    2009-01-01

    Dye doped hybrid polymer lasers are implemented as label free evanescent field biosensors for detection of cells. It is demonstrated that although the coverage is irregular and the cells extend over several lattice constants, the emission wavelength depends linearly on the fraction of the surface...... covered by the HeLa cells used as model system. Design parameters relating to photonic crystal sensing of large objects are identified and discussed. The lasers are chemically modified to bind cells and molecules with flexible UV activated linker molecules.......Dye doped hybrid polymer lasers are implemented as label free evanescent field biosensors for detection of cells. It is demonstrated that although the coverage is irregular and the cells extend over several lattice constants, the emission wavelength depends linearly on the fraction of the surface...

  7. Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass (Boehmeria nivea (L.) Gaud.): Characterization and application for crystal violet removal.

    Science.gov (United States)

    Tan, Xiao-Fei; Liu, Yun-Guo; Gu, Yan-Ling; Liu, Shao-Bo; Zeng, Guang-Ming; Cai, Xiaoxi; Hu, Xin-Jiang; Wang, Hui; Liu, Si-Mian; Jiang, Lu-Hua

    2016-12-15

    A novel biochar/MgAl-layered double hydroxides composite (CB-LDH) was prepared for the removal of crystal violet from aqueous solution by pyrolyzing MgAl-LDH pre-coated ramie stem (Boehmeria nivea (L.) Gaud.). Pyrolysis played dual role for both converting biomass into biochar and calcining MgAl-LDH during the pyrolysis process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) and zeta potential analysis were used to characterize the CB-LDH. The results of characterization suggested that the calcined LDH was successfully synthesized and coated on biochar. The resulted CB-LDH had higher total pore volume and more functional groups than the pristine biochar. Adsorption experimental data fitted well with the pseudo-second order kinetics model and the Freundlich isotherm model. The rate-controlled step was controlled by film-diffusion initially and then followed by intra-particle diffusion. Thermodynamic analysis showed that the adsorption of crystal violet was a spontaneous and endothermic process. The higher pH and temperature of the solution enhanced the adsorption performance. CB-LDH could also have excellent ability for the removal of crystal violet from the actual industrial wastewater and groundwater with high ionic strength. LDH adsorption, electrostatic attraction, pore-filling, π-π interaction and hydrogen bond might be the main mechanisms for crystal violet adsorption on CB-LDH. The results of this study indicated that CB-LDH is a sustainable and green adsorbent with high performance for crystal violet contaminated wastewater treatment and groundwater remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A Novel Magnetic Nano-hybrid as a Sorbent for Solid-phase Extraction-spectrophotometric Determination of Methyl Violet 10B Dye

    Directory of Open Access Journals (Sweden)

    Naser Samadi

    2017-12-01

    Full Text Available In this research, the magnetite polystyrene maleic anhydride (MPSMA was synthesized and structure and morphology characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy techniques. The obtained nano-structured inorganic material was employed as a novel magnetic nanosorbent for separation and pre-concentration of Methyl violet (10B dye from aqueous solutions, which can be spectrophotometrically monitored at λ = 585 nm after pre-concentration by solid phase extraction (SPE. The effect of several parameters including pH of the sample solution, amount of the sorbent, extraction and desorption times, and elution conditions and sample volume were investigated and optimized. UV–Vis spectrophotometer was used for determination of MV (10B concentration after desorption of the dye by nitric acid solution. Under the optimum experimental conditions, the limit of detection and the relative standard deviation were 0.08 µg L–1 and 1.10 %, respectively. The enrichment factor of 200 was achieved and the calibration graph using the presented solid phase extraction system was linear in the range of 0.3 – 1500 µg L–1 with a correlation coefficient of 0.9989. The method was successfully applied to pre-concentration of MV (10B from several textile waste water effluents.

  9. Physicochemical modeling of reactive violet 5 dye adsorption on home-made cocoa shell and commercial activated carbons using the statistical physics theory

    Directory of Open Access Journals (Sweden)

    Lotfi Sellaoui

    Full Text Available Two equilibrium models based on statistical physics, i.e., monolayer model with single energy and multilayer model with saturation, were developed and employed to access the steric and energetic aspects in the adsorption of reactive violet 5 dye (RV-5 on cocoa shell activated carbon (AC and commercial activated carbon (CAC, at different temperatures (from 298 to 323 K. The results showed that the multilayer model with saturation was able to represent the adsorption system. This model assumes that the adsorption occurs by a formation of certain number of layers. The n values ranged from 1.10 to 2.98, indicating that the adsorbate molecules interacted in an inclined position on the adsorbent surface and aggregate in solution. The study of the total number of the formed layers (1 + L2 showed that the steric hindrance is the dominant factor. The description of the adsorbate–adsorbent interactions by calculation of the adsorption energy indicated that the process occurred by physisorption in nature, since the values were lower than 40 kJ mol−1. Keywords: RV-5 dye, Activated carbon, Modeling, Aggregation

  10. Single mode dye-doped polymer photonic crystal lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Buss, Thomas; Smith, Cameron

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode...... emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e. g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be -0.045 or -0...

  11. Removal of the methyl violet 2B dye from aqueous solution using sustainable adsorbent Artocarpus odoratissimus stem axis

    Science.gov (United States)

    Kooh, Muhammad Raziq Rahimi; Dahri, Muhammad Khairud; Lim, Linda B. L.

    2017-11-01

    This study investigates the potential of the stem axis of Artocarpus odoratissimus fruit (TSA) as an adsorbent for the removal of methyl violet 2B (MV). The functional group analysis was carried out using Fourier-transform infrared spectroscopy. Investigation of the effects of pH and ionic strength provide insights on the involvement of electrostatic attraction and hydrophobic-hydrophobic attraction between the adsorbent and adsorbates. Kinetics models (pseudo-first-order, pseudo-second-order, Weber-Morris and Boyd) and isotherm models (Langmuir, Freundlich and Dubinin-Raduskevich) were used for characterising the adsorption process. The Langmuir model predicted a high q m of 263.7 mg g-1. Thermodynamics studies indicate the adsorption system is spontaneous, endothermic and physical sorption dominant. The spent adsorbent was successfully regenerated using water and obtained adsorption capacity close to the unused adsorbent even after fifth cycle of washing.

  12. Leuco-crystal-violet micelle gel dosimeters: Component effects on dose-rate dependence

    Science.gov (United States)

    Xie, J. C.; Katz, E. A. B.; Alexander, K. M.; Schreiner, L. J.; McAuley, K. B.

    2017-05-01

    Designed experiments were performed to produce empirical models for the dose sensitivity, initial absorbance, and dose-rate dependence respectively for leucocrystal violet (LCV) micelle gel dosimeters containing cetyltrimethylammonium bromide (CTAB) and 2,2,2-trichloroethanol (TCE). Previous gels of this type showed dose-rate dependent behaviour, producing an ∼18% increase in dose sensitivity between dose rates of 100 and 600 cGy min-1. Our models predict that the dose rate dependence can be reduced by increasing the concentration of TCE, CTAB and LCV. Increasing concentrations of LCV and CTAB produces a significant increase in dose sensitivity with a corresponding increase in initial absorbance. An optimization procedure was used to determine a nearly dose-rate independent gel which maintained high sensitivity and low initial absorbance. This gel which contains 33 mM CTAB, 1.25 mM LCV, and 96 mM TCE in 25 mM trichloroacetic acid and 4 wt% gelatin showed an increase in dose sensitivity of only 4% between dose rates of 100 and 600 cGy min-1, and provides an 80% greater dose sensitivity compared to Jordan’s standard gels with similar initial absorbance.

  13. Efficient degradation of crystal violet in magnetic CuFe2O4 aqueous solution coupled with microwave radiation.

    Science.gov (United States)

    Chen, Hongzhe; Yang, Shaogui; Chang, Jiao; Yu, Kai; Li, Dongfang; Sun, Cheng; Li, Aimin

    2012-09-01

    Nanoscale copper ferrite was prepared by co-precipitation method, while citrate acid assisted method was used as reference. Microwave-induced degradation of crystal violet was performed with synthesized copper ferrite, and the behavior of copper ferrite in this process was studied by X-ray photoelectron spectroscopy, SEM/EDS and vector network analyzer. Microwave radiation could greatly enhance the activity of copper ferrite in organic oxidation. The variant of copper and iron on the surface and in the inner core of copper ferrite was studied here. Copper ferrite presents relatively low dielectric loss. Meanwhile, microwave radiation makes a faster degradation than conventional heating process, indicating an indispensable non-thermal effect of microwave with copper ferrite in the process. Microwave induced holes could be responsible for the efficient degradation. The effect of annealing on crystallization and degradation process was considered here, and the intermediates and products were studied by GC-MS and LC-MS to provide a comprehensively evaluation of degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Synthesis, linear optical, non-linear optical, thermal and mechanical characterizations of dye-doped semi-organic NLO crystals

    International Nuclear Information System (INIS)

    Sesha Bamini, N; Choedak, Tenzin; Muthukrishnan, P; Ancy, C J; Vidyalakshmy, Y; Kejalakshmy, N

    2015-01-01

    Organic laser dyes Coumarin 485, Coumarin 540 and Rhodamine 590 Chloride were used to dope potassium acid phthalate crystals (KAP). Dye-doped KAP crystals with different dye concentrations such as 0.01 mM, 0.03 mM, 0.05 mM, 0.07 mM and 0.09 mM (in the KAP growth solution) were grown. The linear optical, non-linear optical, mechanical and thermal characterizations of dye-doped KAP crystals were studied and compared to understand the effect of dye and dye concentration on the KAP crystal. Absorption and emission studies of KAP and dye-doped KAP single crystals indicated the inclusion of the dye into the KAP crystal lattice. The effect of dye and its concentration on the SHG efficiency of the KAP crystal was studied using the Kurtz and Perry powder technique. It was observed that the absorption maximum wavelength and concentration of the dye used for doping the KAP single crystal decided the SHG efficiency of the dye-doped KAP single crystals. The mechanical hardness of the dye-doped and undoped (pure) KAP single crystals were studied using the Vickner’s microhardness test. It was observed that doping the KAP crystals with the laser dyes changed them from softer material to harder material. Etching studies showed an improvement in the optical quality of the KAP crystal after doping with laser dyes. (paper)

  15. Ultraviolet/violet dual-color electroluminescence based on n-ZnO single crystal/p-GaN direct-contact light-emitting diode

    International Nuclear Information System (INIS)

    Li, Songzhan; Lin, Wenwen; Fang, Guojia; Huang, Feng; Huang, Huihui; Long, Hao; Mo, Xiaoming; Wang, Haoning; Guan, Wenjie; Zhao, Xingzhong

    2013-01-01

    We have fabricated a fully transparent ultraviolet (UV)/violet dual-color electroluminescence (EL) device based on n-ZnO single crystal and p-GaN via a simple direct-contact method. The device presents dual-color EL under forward and reverse biases—an intense violet emission centered at 400 nm from ZnO and a sharp UV emission peaked at 365 nm from GaN, respectively. The reason for dual color emissions is proposed in terms of the energy band theory and the transmission spectra of ZnO single crystal and p-GaN. -- Highlights: ► A fully transparent LED based on n-ZnO SC and p-GaN is fabricated via the direct-contact method. ► The n-ZnO SC/p-GaN device shows UV/violet dual-color emission under electrically pumped. ► The device presents a violet emission 400 nm and a UV emission 365 nm under forward and reverse biases. ► The EL of the dual-color device displays good stability and reproducibility

  16. Fabrication of Microcapsules for Dye-Doped Polymer-Dispersed Liquid Crystal-Based Smart Windows.

    Science.gov (United States)

    Kim, Mingyun; Park, Kyun Joo; Seok, Seunghwan; Ok, Jong Min; Jung, Hee-Tae; Choe, Jaehoon; Kim, Do Hyun

    2015-08-19

    A dye-doped polymer-dispersed liquid crystal (PDLC) is an attractive material for application in smart windows. Smart windows using a PDLC can be operated simply and have a high contrast ratio compared to those of other devices that employed photochromic or thermochromic material. However, in conventional dye-doped PDLC methods, dye contamination can cause problems and has a limited degree of commercialization of electric smart windows. Here, we report on an approach to resolve dye-related problems by encapsulating the dye in monodispersed capsules. By encapsulation, a fabricated dye-doped PDLC had a contrast ratio of >120 at 600 nm. This fabrication method of encapsulating the dye in a core-shell structured microcapsule in a dye-doped PDLC device provides a practical platform for dye-doped PDLC-based smart windows.

  17. Simultaneous and sequential adsorption of crystal violet and 2-naphthol onto montmorillonite: a microstructural and thermodynamic study.

    Science.gov (United States)

    Zhu, Jianxi; Wei, Jingming; Zhu, Runliang; Qing, Yanhong; Ge, Fei; Yuan, Peng; He, Hongping

    2010-01-01

    Thermodynamic analysis of simultaneous and sequential adsorption of crystal violet (CV) and 2-naphthol adsorption on montmorillonite has been conducted, and the changes of microstructure of the clay after adsorption were investigated using X-ray diffraction (XRD). The basal spacing and structural order of CV and 2-naphthol adsorbed montmorillonites varied with different CV loadings. In principle, larger basal spacing was resulted from a higher loading of CV in montmorillonites. The excellent structural order of the resultant hybrids is achieved in samples with 0.50-0.75 CEC (cation exchange capacity) loadings of CV. The effects of temperature and ionic strength on the adsorption of CV and 2-naphthol on montmorillonite were also investigated. The Freundlich isotherm model was applied for curve-fitting of the equilibrium isotherm data. The resulting thermodynamics parameters suggested that the sorption process was a spontaneous exothermic process in the case of low CV concentrations. The negative values of Gibbs free energy in all of the adsorption processes indicated that these processes are spontaneous processes. With the increase of CV concentration, the sequential adsorption of 2-naphthol onto montmorillonite proved to be an endothermic process.

  18. A new rapid colourimetric method for testing Mycobacterium tuberculosis susceptibility to isoniazid and rifampicin: a crystal violet decolourisation assay

    Directory of Open Access Journals (Sweden)

    Ahmet Yilmaz Coban

    2014-04-01

    Full Text Available The aim of this study was to investigate the performance of a new and accurate method for the detection of isoniazid (INH and rifampicin (RIF resistance among Mycobacterium tuberculosis isolates using a crystal violet decolourisation assay (CVDA. Fifty-five M. tuberculosis isolates obtained from culture stocks stored at -80ºC were tested. After bacterial inoculation, the samples were incubated at 37ºC for seven days and 100 µL of CV (25 mg/L stock solution was then added to the control and sample tubes. The tubes were incubated for an additional 24-48 h. CV (blue/purple was decolourised in the presence of bacterial growth; thus, if CV lost its colour in a sample containing a drug, the tested isolate was reported as resistant. The sensitivity, specificity, positive predictive value, negative predictive value and agreement for INH were 92.5%, 96.4%, 96.1%, 93.1% and 94.5%, respectively, and 88.8%, 100%, 100%, 94.8% and 96.3%, respectively, for RIF. The results were obtained within eight-nine days. This study shows that CVDA is an effective method to detect M. tuberculosis resistance to INH and RIF in developing countries. This method is rapid, simple and inexpensive. Nonetheless, further studies are necessary before routine laboratory implementation.

  19. Removal of Triphenylmethane Dyes by Bacterial Consortium

    Science.gov (United States)

    Cheriaa, Jihane; Khaireddine, Monia; Rouabhia, Mahmoud; Bakhrouf, Amina

    2012-01-01

    A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila)-(CM-4) was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50 mg/L) and malachite green (50 mg/L) dyes within 24 h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2 h. The rate of chemical oxygen demand (COD) removal increases after 24 h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes. PMID:22623907

  20. Removal of Triphenylmethane Dyes by Bacterial Consortium

    Directory of Open Access Journals (Sweden)

    Jihane Cheriaa

    2012-01-01

    Full Text Available A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila-(CM-4 was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50 mg/L and malachite green (50 mg/L dyes within 24 h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2 h. The rate of chemical oxygen demand (COD removal increases after 24 h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes.

  1. The molecular ordering phenomenon in dye-doped nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Prakash Yadav, Satya; Pandey, Kamal Kumar; Kumar Misra, Abhishek; Kumar Tripathi, Pankaj; Manohar, Rajiv, E-mail: rajiv.manohar@gmail.com [Liquid Crystal Research Laboratory, Physics Department, University of Lucknow, Lucknow-226007 (India)

    2011-03-15

    The experimental results of this work point out the role of the guest dye molecules in the molecular ordering of nematic liquid crystals. We have discussed the changes in the energies of interactions between rod-like nematic molecules and anthraquinone dye by considering the presence of steric and dipole-dipole interactions in the dye-doped system. The concentration of the dye plays an important role in the determination of molecular ordering in such dye-doped systems. Below a certain concentration of dye (known as the critical concentration), where the interaction between the dye molecules can be neglected, the addition of dye molecules introduces some disorder into the system in the form of domain formation. Above this critical concentration, this disorder is small.

  2. Bioaccumulation of the synthetic dye Basic Violet 3 and heavy metals in single and binary systems by Candida tropicalis grown in a sugarcane bagasse extract medium: Modelling optimal conditions using response surface methodology (RSM) and inhibition kinetics

    International Nuclear Information System (INIS)

    Das, Devlina; Charumathi, D.; Das, Nilanjana

    2011-01-01

    Single and binary effects of dye Basic Violet 3 and heavy metals, 'namely', Pb(II) and Cd(II), were investigated for their role in dye and heavy metal bioaccumulation by Candida tropicalis that was grown in a sugarcane bagasse extract medium containing 8 g/L, 16 g/L or 24 g/L of sugar. The optimum pH was found to be 4.0 in the single system and 5.0 in the binary system. A central composite design was successfully used to analyse the experimental results. Four numerical correlations that were fitted to a second order quadratic equation were used to estimate optimum combinations predicted by response surface methodology. In the dye-Pb(II) binary system, C. tropicalis was capable of bioaccumulating 49.5% of the dye and 49.6% of the Pb(II), in comparison to 15.9% of the dye and 55.5% of the Cd(II) in the dye-Cd(II) binary system. In these two systems, the pollutants were dispersed at minimum working concentration levels. Competitive inhibition was observed in both the single and binary systems, which was suggested by an increase in the saturation constant, K s , and a simultaneous decrease in the specific growth rate that was calculated from Lineweaver-Burk plots. Atomic force microscopy images demonstrated changes in yeast cell morphology by exposure to these contaminants in the dye-Pb(II) binary system grown in a bioaccumulation medium.

  3. Immobilization of Laccase in Alginate-Gelatin Mixed Gel and Decolorization of Synthetic Dyes

    OpenAIRE

    Mogharabi, Mehdi; Nassiri-Koopaei, Nasser; Bozorgi-Koushalshahi, Maryam; Nafissi-Varcheh, Nastaran; Bagherzadeh, Ghodsieh; Faramarzi, Mohammad Ali

    2012-01-01

    Alginate-gelatin mixed gel was applied to immobilized laccase for decolorization of some synthetic dyes including crystal violet. The immobilization procedure was accomplished by adding alginate to a gelatin solution containing the enzyme and the subsequent dropwise addition of the mixture into a stirred CaCl2 solution. The obtained data showed that both immobilized and free enzymes acted optimally at 50°C for removal of crystal violet, but the entrapped enzyme showed higher thermal stability...

  4. Expansion of the scope of AOAC first action method 2012.25 - single-laboratory validation of triphenylmethane dye and leuco metabolite analysis in shrimp, tilapia, catfish, and salmon by LC-MS/MS

    Science.gov (United States)

    Prior to conducting a collaborative study of AOAC First Action 2012.25 LC-MS/MS analytical method for the determination of residues of three triphenylmethane dyes (malachite green, crystal violet, and brilliant green) and their metabolites (leucomalachite green and leucocrystal violet) in seafood, a...

  5. Dichroic dye-dependent studies in guest-host polymer-dispersed liquid crystal films

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Praveen, E-mail: pmalik100@yahoo.co [Department of Physics, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab (India); Raina, K.K. [Liquid Crystal Group, Materials Research Laboratory, School of Physics and Materials Science, Thapar University, Patiala 147004, Punjab (India)

    2010-01-01

    Guest-host polymer-dispersed liquid crystal (GHPDLC) films were prepared using a nematic liquid crystal, photo-curable polymer and dichroic dye (anthraquinone blue) by polymerization-induced phase separation (PIPS) technique. Non-ionic dichroic dye (1%, 2% and 4% wt./wt. ratio) was taken as guest in PDLC host. Polarizing microscopy shows that in the absence of electric field, liquid crystal (LC) droplets in polymer matrix mainly exhibit bipolar configuration, however, relatively at higher field, maltese-type crosses were observed. Our results show that approx1% dye-doped PDLC film shows better transmission and faster response times over pure polymer-dispersed nematic liquid crystal (PDNLC) and higher concentrated (2% and 4%) GHPDLC films.

  6. A case-control study of oral epithelial proliferative markers among Sudanese Toombak dippers using micronuclei assay, argyrophilic nucleolar organizer region, Papanicolaou and crystal violet methods

    Directory of Open Access Journals (Sweden)

    Anass M. Abbas

    2013-07-01

    Full Text Available The use of Toombak has been reported to play a major role in the etiology of oral cancer in Sudan. The cellular proliferative activity on the oral epithelium of 210 Toombak dippers was assessed by applying the micronuclei frequency, mean argyrophilic nucleolar organizer region (AgNOR counts, Papanicolaou method, and 1% crystal violet stain. Participants were divided into 3 groups: 200 were apparently healthy individuals, 100 were Toombak users (cases, 100 were non-tobacco users (control and 10 were patients with oral squamous cell carcinomas. Cytological atypia was identified among 4 (4%. Toombak users and was not found among the control group (P<0.04. The micronuclei frequencies were higher in Toombak users (1.026 than in the control group (0.356 (P<0.0001. The mean AgNOR counts in Toombak users (2.423 were higher than control group (1.303 (P<0.0001. Neither Toombak users nor control group showed mitotic figures in 1% crystal violet method. The results of this research showed that Toombak dipping is a high risk factor for increase in the cellular proliferation in the oral mucosa. The cytological proliferative marker methods used are useful for screening Toombak users.

  7. Decolouration of laboratory dyes by immobilized cells of ...

    African Journals Online (AJOL)

    Dyes are indicated as one of the most problematic compounds in industrial effluents. This is due to their high solubility and low degradability. The aim of the study was to evaluate the effect of external carbon source on decolouration of bromothymol blue, crystal violet and methylene blue by alginate immobilized cells of ...

  8. Phenylazoindole dyes--part I: the syntheses, characterizations, crystal structures, quantum chemical calculations and antimicrobial properties.

    Science.gov (United States)

    Seferoğlu, Zeynel; Yalçın, Ergin; Babür, Banu; Seferoğlu, Nurgül; Hökelek, Tuncer; Yılmaz, Ebru; Şahin, Ertan

    2013-09-01

    In this study, the synthesis of four new phenylazo indole dyes (dye 1-4) were carried out by diazotization of 4-aminoacetophenone and coupling with various 2- and 1,2-disubstituted indole derivatives. The dyes were characterized by UV-vis, FT-IR, (1)H NMR, HRMS and X-ray single crystal diffraction methods. Azo-hydrazone tautomeric bahavior of the dyes in different solvents (DMSO, methanol, acetic acid and chloroform) was investigated by using (1)H NMR and UV-vis results. The experimental results were compared with the corresponding calculated values. The results of experimental data and theoretical calculations showed that the azo tautomer is more stable than hydrazone tautomer. In addition to this, the antimicrobial activity of the dyes was also evaluated. Published by Elsevier B.V.

  9. Removal of dyes from water using crosslinked aminomethane sulfonic acid based resin.

    Science.gov (United States)

    Kaner, Damla; Saraç, Ayfer; Senkal, Bahire Filiz

    2010-08-01

    A new polymeric resin with amino sulfonic acid pendant functions has been prepared for the extraction of acidic and basic dyes from water. Beaded polymer supports were prepared by suspension polymerization of vinyl benzyl chloride (0.9 mol) and ethylene glycol dimethacrylate (0.1 mol). The resulting copolymer beads were modified with amino methane sulfonic acid. The dye adsorption capacity of the resin was found as 0.16 g dye/g resin for ramazol black and 0.15 g dye/g resin for crystal violet. The pH depending measurements and dye sorption kinetics of the resin were also investigated.

  10. Biodegradation of Textile Dyes by Fungi Isolated from North Indian Field Soil

    Directory of Open Access Journals (Sweden)

    Arshi Shahid

    2013-07-01

    Full Text Available In this study one azo dye "Congo red", two triphenymethane dyes "Crystal violet" and "Methylene blue" have been selected for biodegradation using three soil fungal isolates A. niger, F. oxysporum and T. lignorum. These fungal strains were isolated from field soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25°C. The experiment was conducted for 10 days and the results were periodically observed. Aspergillus niger decolorized maximum Congo red (74.07% followed by Crystal violet (33.82% and Methylene blue (22.44% under liquid medium (stationary condition. Whereas, under same conditions, T. lignorum decolorized maximum crystal violet (92.7%, Methylene blue (48.3% and Congo red (35.25%. Use of T. lignorum as dye bio degrader or decolorizer has been done first time in this study. Fusarium oxysporum performed better under shaking conditions compared to stationary and overlay method. It can be concluded that among soil fungus T. lignorum could be used as efficient dye decolorizer especially for crystal violet and A. niger for Congo red. The excellent performance of T. lignorum and F. oxysporum in the biodegradation of textile dyes of different chemical structures reinforces the potential of these fungi for environmental decontamination similar to white rot fungi.

  11. Photonic integration in k-space: Enhancing the performance of photonic crystal dye lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Kristensen, Anders; Xiao, Sanshui

    2008-01-01

    We demonstrate how two optical functionalities can be implemented in a single photonic crystal structure by carefully engineering dispersion in several different bands at several different wavelengths. We use the concept for optically pumped dye doped hybrid polymer band edge lasers and show how...

  12. Estudo da sorção do corante catiônico violeta cristal por espuma de poliuretano em meio aquoso contendo dodecilsulfato de sódio Sorption of crystal violet by polyurethane foam from aqueous medium containing sodium dodecylsulfate

    Directory of Open Access Journals (Sweden)

    Mariana Mori

    2009-01-01

    Full Text Available This work presents a detailed study about the sorption of crystal violet (CV cationic dye onto polyether type polyurethane foam (PUF. The sorption process was based on the formation of an ionic-pair between cationic dye and dodecylsulfate anion (SDS, which presented high affinity by PUF. Set-up employed in the study was built up by adjusting a 200 mg cylinder of PUF to the arm of an overhead stirrer. The system was characterized in relation to equilibrium and kinetic aspects and it was modeled by employing Langmuir and Freundlich isotherms. Obtained results showed that the ratio between SDS and MB concentrations played an important role on the sorption process. According to results found it was possible to retain up to 3.4 mg of dye from 200 mL of a 5.0 x 10-5 mol L-1 CV solution containing 1.25 x 10-4 mol L-1 SDS, which represented a removal efficiency of around 92%.

  13. Polymer photonic crystal dye lasers as optofluidic cell sensors

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Lopacinska, Joanna M.; Jakobsen, Mogens Havsteen

    2009-01-01

    Hybrid polymer photonic crystal band-edge lasers are chemically activated to covalently bind bio-molecules or for HeLa cell attachment using an anthraquinone (AQ) UV activated photolinker. The lasers change emission wavelength linearly with inhomogeneous cell coverage.......Hybrid polymer photonic crystal band-edge lasers are chemically activated to covalently bind bio-molecules or for HeLa cell attachment using an anthraquinone (AQ) UV activated photolinker. The lasers change emission wavelength linearly with inhomogeneous cell coverage....

  14. Biodecolorization of acid violet 19 by Alternaria solani | Ali | African ...

    African Journals Online (AJOL)

    In the current research work, the potential of a deuteromycete fungus, Alternaria solani for the removal of a dye, Acid Violet 19 from aqueous solution was studied. The fungus showed promising potential for the decolorization of the dye (88.6%) at a dye concentration of 30 mg/L within a relatively short period of time (four ...

  15. Biodecolorization of acid violet 19 by Alternaria solani

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... In the current research work, the potential of a deuteromycete fungus, Alternaria solani for the removal of a dye, Acid Violet 19 from aqueous solution was studied. The fungus showed promising potential for the decolorization of the dye. (88.6%) at a dye concentration of 30 mg/L within a relatively short ...

  16. Dye-Induced Enhancement of Optical Nonlinearity in Liquids and Liquid Crystals

    International Nuclear Information System (INIS)

    Muenster, R.; Jarasch, M.; Zhuang, X.; Shen, Y.

    1997-01-01

    Optical nonlinearity of liquid crystals (LC) in the isotropic phase can be enhanced by 1 order of magnitude by dissolving 0.1% of anthraquinone dye in the LC. The enhancement decreases by ∼30% when the LC transforms into the nematic phase. The same guest-host effect also exists in non-LC liquids. It can be explained by a model based on the change of guest-host interaction induced by optical excitations of the dye. copyright 1996 The American Physical Society

  17. Detection and identification of dyes in blue writing inks by LC-DAD-orbitrap MS.

    Science.gov (United States)

    Sun, Qiran; Luo, Yiwen; Yang, Xu; Xiang, Ping; Shen, Min

    2016-04-01

    In the field of forensic questioned document examination, to identify dyes detected in inks not only provides a solid foundation for ink discrimination in forged contents identification, but also facilitates the investigation of ink origin or the study regarding ink dating. To detect and identify potential acid and basic dyes in blue writing inks, a liquid chromatography-diode array detection-Orbitrap mass spectrometry (LC-DAD-Orbitrap MS) method was established. Three sulfonic acid dyes (Acid blue 1, Acid blue 9 and Acid red 52) and six triphenylmethane basic dyes (Ethyl violet, Crystal violet, Methyl violet 2B, Basic blue 7, Victoria blue B and Victoria blue R) were employed as reference dyes for method development. Determination of the nine dyes was validated to evaluate the instrument performance, and it turned out to be sensitive and stable enough for quantification. The method was then applied in the screening analysis of ten blue roller ball pen inks and twenty blue ballpoint pen inks. As a result, including TPR (a de-methylated product of Crystal violet), ten known dyes and four unknown dyes were detected in the inks. The latter were further identified as a de-methylated product of Victoria blue B, Acid blue 104, Acid violet 49 and Acid blue 90, through analyzing their characteristic precursor and product ions acquired by Orbitrap MS with good mass accuracy. The results showed that the established method is capable of detecting and identifying potential dyes in blue writing inks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. A visible-light-excited fluorescence method for imaging protein crystals without added dyes

    Science.gov (United States)

    Lukk, Tiit; Gillilan, Richard E.; Szebenyi, Doletha M. E.; Zipfel, Warren R.

    2016-01-01

    Fluorescence microscopy methods have seen an increase in popularity in recent years for detecting protein crystals in screening trays. The fluorescence-based crystal detection methods have thus far relied on intrinsic UV-inducible tryptophan fluorescence, nonlinear optics or fluorescence in the visible light range dependent on crystals soaked with fluorescent dyes. In this paper data are presented on a novel visible-light-inducible autofluorescence arising from protein crystals as a result of general stabilization of conjugated double-bond systems and increased charge delocalization due to crystal packing. The visible-light-inducible autofluorescence serves as a complementary method to bright-field microscopy in beamline applications where accurate crystal centering about the rotation axis is essential. Owing to temperature-dependent chromophore stabilization, protein crystals exhibit tenfold higher fluorescence intensity at cryogenic temperatures, making the method ideal for experiments where crystals are cooled to 100 K with a cryostream. In addition to the non-damaging excitation wavelength and low laser power required for imaging, the method can also serve a useful role for differentiating protein crystals from salt crystals in screening trays. PMID:26937240

  19. Photochemistry of triarylmethane dyes bound to proteins

    Science.gov (United States)

    Indig, Guilherme L.

    1996-04-01

    Triarylmethanes represent a class of cationic dyes whose potential as photosensitizers for use in photodynamic therapy of neoplastic diseases has never been comprehensively evaluated. Here, the laser-induced photodecomposition of three triarylmethane dyes, crystal violet, ethyl violet, and malachite green, non-covalently bound to bovine serum albumin (a model biological target) was investigated. Upon laser excitation at 532 nm, the bleaching of the corresponding dye-protein molecular complexes follows spectroscopic patterns that suggest the formation of reduced forms of the dyes as major reaction photoproducts. That implies that an electron or hydrogen atom transfer from the protein to the dye's moiety within the guest-host complex is the first step of the photobleaching process. Since the availability of dissolved molecular oxygen was not identified as a limiting factor for the phototransformations to occur, these dyes can be seen as potential phototherapeutic agents for use in hypoxic areas of tumors. These triarylmethane dyes strongly absorb at relatively long wavelengths (absorption maximum around 600 nm; (epsilon) max approximately equals 105 M-1 cm-1), and only minor changes in their absorption characteristics are observed upon binding to the protein. However the binding event leads to a remarkable increase in their fluorescence quantum yield and photoreactivity.

  20. Random lasing in dye-doped polymer dispersed liquid crystal film

    Science.gov (United States)

    Wu, Rina; Shi, Rui-xin; Wu, Xiaojiao; Wu, Jie; Dai, Qin

    2016-09-01

    A dye-doped polymer-dispersed liquid crystal film was designed and fabricated, and random lasing action was studied. A mixture of laser dye, nematic liquid crystal, chiral dopant, and PVA was used to prepare the dye-doped polymer-dispersed liquid crystal film by means of microcapsules. Scanning electron microscopy analysis showed that most liquid crystal droplets in the polymer matrix ranged from 30 μm to 40 μm, the size of the liquid crystal droplets was small. Under frequency doubled 532 nm Nd:YAG laser-pumped optical excitation, a plurality of discrete and sharp random laser radiation peaks could be measured in the range of 575-590 nm. The line-width of the lasing peak was 0.2 nm and the threshold of the random lasing was 9 mJ. Under heating, the emission peaks of random lasing disappeared. By detecting the emission light spot energy distribution, the mechanism of radiation was found to be random lasing. The random lasing radiation mechanism was then analyzed and discussed. Experimental results indicated that the size of the liquid crystal droplets is the decisive factor that influences the lasing mechanism. The surface anchor role can be ignored when the size of the liquid crystal droplets in the polymer matrix is small, which is beneficial to form multiple scattering. The transmission path of photons is similar to that in a ring cavity, providing feedback to obtain random lasing output. Project supported by the National Natural Science Foundation of China (Grant No. 61378042), the Colleges and Universities in Liaoning Province Outstanding Young Scholars Growth Plans, China (Grant No. LJQ2015093), and Shenyang Ligong University Laser and Optical Information of Liaoning Province Key Laboratory Open Funds, China.

  1. Enhanced fluorescence of selected cationic dyes adsorbed on reduced-charge montmorillonite

    Czech Academy of Sciences Publication Activity Database

    Pustková, P.; Klika, Z.; Preclíková, J.; Matys Grygar, Tomáš

    2011-01-01

    Roč. 46, č. 1 (2011), s. 93-103 ISSN 0009-8558 Institutional research plan: CEZ:AV0Z40320502 Keywords : cationic dye * crystal violet * Nile blue * rhodamine B * reduced-charge montmorillonite * visible spectrophotometry * fluorescence Subject RIV: DD - Geochemistry Impact factor: 1.053, year: 2011

  2. Radiation resistance and loss of crystal violet binding activity in Yersinia enterocolitica suspended in raw ground pork exposed to gamma radiation and modified atmosphere.

    Science.gov (United States)

    Bhaduri, Saumya; Sheen, Shiowshuh; Sommers, Christopher H

    2014-05-01

    Virulence of many foodborne pathogens is directly linked to genes carried on self-replicating extra-chromosomal elements, which can transfer genetic material, both vertically and horizontally, between bacteria of the same and different species. Pathogenic Yersinia enterocolitica harbors a 70-kb virulence plasmid (pYV) that encodes genes for low calcium response, crystal violet (CV) binding, Congo red uptake, autoagglutination (AA), hydrophobicity (HP), type III secretion channels, host immune suppression factors, and biofilm formation. Ionizing radiation and modified atmosphere packaging (MAP) are used to control foodborne pathogens and meat spoilage. In this study, the effect of gamma radiation and modified atmosphere (air, 100% N2 , 75% N2 : 25% CO2 , 50% N2 : 50% CO2 , 25% N2 : 75% CO2 , 100% CO2 ) were examined by using the CV binding phenotype, for the presence or absence of pYV in Y. enterocolitica, suspended in raw ground pork. All Y. enterocolitica serovars used (O:3, O:8, and O5,27) were more sensitive to radiation as the CO2 concentration increased above 50%. Crystal violet binding following a radiation dose of 1.0 kGy, which reduced the Y. enterocolitica serovars >5 log, was greatest in the presence of air (ca. 8%), but was not affected by N2 or CO2 concentration (ca. 5%). Following release from modified atmosphere after irradiation, the loss of CV binding rose from 5% to 8% immediately following irradiation to >30% after outgrowth at 25 °C for 24 h. These results, using Y. enterocolitica as a model system, indicate that the risk of foodborne illness could be affected by the loss of virulence factors when postprocess intervention technologies are used. Provides gamma radiation D10 data for inactivation data for Y. enterocolitica irradiated under modified atmosphere and information to risk assessors regarding the difference between pathogen presence versus actual virulence. Published 2014. This article is a U.S. Government work and is in the public

  3. Dye concentration dependence of spectral triplet in one-dimensional photonic crystal with cyanine dye J-aggregate in strong coupling regime

    Science.gov (United States)

    Suzuki, Makoto; Sakata, Tomohiro; Takenobu, Ryouya; Uemura, Shinobu; Miyagawa, Hayato; Nakanishi, Shunsuke; Tsurumachi, Noriaki

    2017-10-01

    We report on the dye concentration dependence of nonlinear transmission properties of one-dimensional photonic crystal microcavities containing cyanine dye J-aggregates. Using femtosecond nonlinear transmission spectroscopy, we observed a transition from a polariton doublet state to a spectral triplet state over the whole tested concentration range, even at room temperature. In these samples, changes in the dye concentration affected the Rabi splitting energy in the linear transmission measurements; however, we found that changes in the concentration did not greatly affect the triplet formation.

  4. Biosorption Behavior of Basic Red 46 and Violet 3 by Dead Pleurotus mutilus from Single- and Multicomponent Systems

    OpenAIRE

    Yeddou Mezenner, N.; Hamadi, A.; Kaddour, S.; Bensaadi, Z.; Bensmaili, A.

    2013-01-01

    The performance of nonviable P. mutilus for removal of Crystal Violet (CV) and Basic Red 46 (BR46) was investigated in single and binary systems. Batch kinetic studies were carried out as a function of pH, temperature, biomass amount, and dye concentration to determine the decolorization efficiency of biosorbent. In single system, the biosorption capacities of P. M. reached 166 and 76.92 mg/g for CV and BR46, respectively. A comparison of kinetic models applied to the adsorption of basic dyes...

  5. Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer film

    DEFF Research Database (Denmark)

    Smith, Cameron; Lind, Johan Ulrik; Christiansen, Mads Brøkner

    2011-01-01

    We present the enhanced transduction of a photonic crystal dye laser for gas sensing via deposition of an additional swelling polymer film. Device operation involves swelling of the polymer film during exposure to specific gases, leading to a change in total effective refractive index. Experimental...... in its application to other intracavity-based detection schemes to enable gas sensing. © 2011 Optical Society of America....

  6. Single-Photon Source for Quantum Information Based on Single Dye Molecule Fluorescence in Liquid Crystal Host

    International Nuclear Information System (INIS)

    Lukishova, S.G.; Knox, R.P.; Freivald, P.; McNamara, A.; Boyd, R.W.; Stroud, Jr. C.R.; Schmid, A.W.; Marshall, K.L.

    2006-01-01

    This paper describes a new application for liquid crystals: quantum information technology. A deterministically polarized single-photon source that efficiently produces photons exhibiting antibunching is a pivotal hardware element in absolutely secure quantum communication. Planar-aligned nematic liquid crystal hosts deterministically align the single dye molecules which produce deterministically polarized single (antibunched) photons. In addition, 1-D photonic bandgap cholesteric liquid crystals will increase single-photon source efficiency. The experiments and challenges in the observation of deterministically polarized fluorescence from single dye molecules in planar-aligned glassy nematic-liquid-crystal oligomer as well as photon antibunching in glassy cholesteric oligomer are described for the first time

  7. All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper; Bjarklev, Anders Overgaard

    2004-01-01

    Photonic crystal fibers (PCFs) have attracted significant attention during the last years and much research has been devoted to develop fiber designs for various applications, hereunder tunable fiber devices. Recently, thermally and electrically tunable PCF devices based on liquid crystals (LCs......) have been demonstrated. However, optical tuning of the LC PCF has until now not been demonstrated. Here we demonstrate an all-optical modulator, which utilizes a pulsed 532nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid...... crystal. We demonstrate a modulation frequency of 2kHz for a moderate pump power of 2-3mW and describe two pump pulse regimes in which there is an order of magnitude difference between the decay times....

  8. Comparison of the colony formation and crystal violet cell proliferation assays to determine cellular radiosensitivity in a repair-deficient MCF10A cell line

    Energy Technology Data Exchange (ETDEWEB)

    Vandersickel, Veerle [Department of Basic Medical Sciences, Ghent University, Campus Heymans, De Pintelaan 185 (6B3), 9000 Gent (Belgium); Slabbert, Jacobus [NRF iThemba LABS (Laboratory for Accelerated Based Sciences), PO box 722, 7129 Somerset West (South Africa); Thierens, Hubert [Department of Basic Medical Sciences, Ghent University, Campus Heymans, De Pintelaan 185 (6B3), 9000 Gent (Belgium); Vral, Anne, E-mail: anne.Vral@UGent.b [Department of Basic Medical Sciences, Ghent University, Campus Heymans, De Pintelaan 185 (6B3), 9000 Gent (Belgium)

    2011-01-15

    Colony formation as measured by the in vitro clonogenic assay is a very important endpoint to determine cellular radiosensitivity and tumor response to radiotherapy. In the framework of assessing in vitro cellular radiosensitivity, proliferation assays could represent an attractive alternative to the clonogenic assay for cell lines that do not form proper colonies. In the present study, we compared cellular radiosensitivity measurements obtained by the crystal violet (CV) cell proliferation assay and the standard colony formation assay in repair-deficient and-proficient human MCF10A cell lines. Compared to the clonogenic assay, the CV cell proliferation assay yielded higher surviving fractions for the same radiation dose. This is reflected in larger mean inactivation dose values - a parameter that reflects the area under the survival curve. However, as the dose modifying factors obtained by both assays are comparable, the CV cell proliferation assay can be used to compare the in vitro cellular radiosensitivity of cell lines that lack the ability to form well-defined colonies.

  9. Identificação e quantificação do cristal violeta em aguardentes de mandioca (tiquira) Identification and characterization of crystal violet in cassava spirits (tiquira)

    OpenAIRE

    Geraldino da Silva Santos; Edmar Pereira Marques; Hildo Antônio dos Santos Silva; Cícero Wellington Brito Bezerra; Aldaléa Brandes Marques

    2005-01-01

    Tiquira is a traditional homemade alcoholic distillate produced in the Maranhão State (Brazil), gotten from cassava (Manihot esculenta, Crantz.). It can be normally found on street markets. Due to the addition of tangerine leaves, the original tiquira has a bluish color. Samples of this beverage were acquired in the local trade and analyzed from the spectroanalytical point of view. The results indicated that these drinks had been adulterated by the addition of crystal violet, a potencialy haz...

  10. Controlled hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible-light photocatalytic degradation of crystal violet

    International Nuclear Information System (INIS)

    Jiang, Yu-Rou; Lin, Ho-Pan; Chung, Wen-Hsin; Dai, Yong-Ming; Lin, Wan-Yu; Chen, Chiing-Chang

    2015-01-01

    Highlights: • This is the first report on a series of BiO x Cl y /BiO m I n heterojunctions. • The BiO x Cl y /BiO m I n composition was controlled by adjusting the growth parameters. • The BiO x Cl y /BiO m I n were indirect semiconductors with a 1.78–2.95-eV bandgap. • The new photocatalysts removed CV at a much faster rate than TiO 2 . • Mechanisms were determined by separating the intermediates using HPLC-MS. - Abstract: A series of BiO x Cl y /BiO m I n composites were prepared using autoclave hydrothermal methods. The composition and morphologies of the BiO x Cl y /BiO m I n composites were controlled by adjusting the experimental conditions: the reaction pH value, temperature, and KCl/KI molar ratio. The products were characterized using X-ray diffraction, scanning electron microscopy-electron dispersive X-ray spectroscopy, UV–vis diffuse reflectance spectroscopy, Brunauer–Emmett–Teller specific surface areas, cathodoluminescence, high-resolution transmission electron microscopy, and high-resolution X-ray photoelectron spectroscopy. The photocatalytic efficiencies of composite powder suspensions were evaluated by monitoring the crystal violet (CV) concentrations. In addition, the quenching effects of various scavengers indicated that the reactive O 2 · − played a major role, and OH· or h + played a minor role in CV degradation. The intermediates formed during the decomposition process were isolated, identified, and characterized using high performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry to elucidate the CV decomposition mechanism

  11. Immobilization of laccase in alginate-gelatin mixed gel and decolorization of synthetic dyes.

    Science.gov (United States)

    Mogharabi, Mehdi; Nassiri-Koopaei, Nasser; Bozorgi-Koushalshahi, Maryam; Nafissi-Varcheh, Nastaran; Bagherzadeh, Ghodsieh; Faramarzi, Mohammad Ali

    2012-01-01

    Alginate-gelatin mixed gel was applied to immobilized laccase for decolorization of some synthetic dyes including crystal violet. The immobilization procedure was accomplished by adding alginate to a gelatin solution containing the enzyme and the subsequent dropwise addition of the mixture into a stirred CaCl(2) solution. The obtained data showed that both immobilized and free enzymes acted optimally at 50°C for removal of crystal violet, but the entrapped enzyme showed higher thermal stability compared to the free enzyme. The immobilized enzyme represented optimum decolorization at pH 8. Reusability of the entrapped laccase was also studied and the results showed that ca. 85% activity was retained after five successive cycles. The best removal condition was applied for decolorization of seven other synthetic dyes. Results showed that the maximum and minimum dye removal was related to amido black 10B and eosin, respectively.

  12. Characterization of N3 dye adsorption on TiO2 using quartz-crystal microbalance with dissipation monitoring

    Science.gov (United States)

    Wayment-Steele, Hannah K.; Johnson, Lewis E.; Dixon, Matthew C.; Johal, Malkiat S.

    2013-09-01

    Understanding the kinetics of dye adsorption on semiconductors is crucial for designing dye-sensitized solar cells (DSSCs) with enhanced efficiency. Harms et al. recently applied the Quartz-Crystal Microbalance with Dissipation Monitoring (QCM-D) to study in situ dye adsorption on flat TiO2 surfaces. QCM-D measures adsorption in real time and therefore allows one to determine the kinetics of the process. In this work, we characterize the adsorption of N3, a commercial RuBipy dye, using the native oxide layer of a titanium sensor to simulate the TiO2 substrate of a DSSC. We report equilibrium constants that are in agreement with previous absorbance studies of N3 adsorption, and therefore demonstrate the native oxide layer of a titanium sensor as a valid and readily available planar TiO2 morphology to study dye adsorption.

  13. Observation of applied voltage response of dye-doped liquid crystal by optical measurement of real and imaginary parts of complex refractive index

    Science.gov (United States)

    Sakamoto, Moritsugu; Bannai, Kenta; Noda, Kohei; Sasaki, Tomoyuki; Ono, Hiroshi

    2017-09-01

    The behavior of liquid crystal (LC) molecules and dye molecules in a dye-doped liquid crystal (DDLC) under a voltage application condition was quantitatively investigated. To observe the reorientation of these molecules, the real and imaginary parts of the complex refractive index were simultaneously and individually measured using an optical interferometer. The obtained results indicate that the alignment of dye molecules doped in DDLC occurs following the electrically responding LC molecules, near the Freedericksz transition region of LC.

  14. Analytical and preparative chromatographic procedures for obtaining pure cresyl violet and cresyl red from commercial cresyl violet.

    Science.gov (United States)

    Urrutia, M N; Ortiz, C S

    2015-04-01

    Cresyl violet and cresyl red, components of commercial cresyl violet acetate, were separated and purified using preparative column liquid chromatography. The stationary phase was silica gel and gradient elution was carried out using chloroform:methanol. The purified dyes were obtained in high yield; 51% of the original lot was recovered as cresyl violet and 40% as cresyl red. Separated materials were characterized by nuclear magnetic resonance and mass spectroscopy; UV-visible and Fourier-transform infrared spectra also were obtained for samples of pure cresyl violet and cresyl red. The colored constituents of the commercial dye lot were identified using thin layer chromatography and reverse phase high performance liquid chromatography. Both methodologies were suitable for routine testing; reverse phase high performance liquid chromatography is an appropriate tool for quality control and high resolution identification of these compounds.

  15. Manipulation and assembly of small objects in liquid crystals by dynamical disorganizing effect of push-pull-azobenzene-dye.

    Science.gov (United States)

    Kurihara, Seiji; Ohta, Kazuhiro; Oda, Takahiro; Izumi, Ryo; Kuwahara, Yutaka; Ogata, Tomonari; Kim, Sun-Nam

    2013-01-01

    The phase transition of a nematic liquid crystal containing a push-pull azobenzene dye could be induced efficiently during irradiation with visible light. The dynamical disorganizing effect of the push-pull azobenzene dye on the liquid crystalline order through its trans-cis-trans photoisomerizaion cycle under visible light was contributed to the efficient phase transition. Then, the effects of light irradiation on the motion of small objects dispersed in the liquid crystals containing the push-pull azobenzene were explored, and the manipulation and assembly of those objects were successfully achieved in the nematic phase but also in the smectic phase. The combination of the photo-controlled dynamical change in the liquid crystalline order and the intrinsic self-assembly property of a liquid crystal is promising for use in technologies that require not only the organization of small objects but also the photo-driving of nano- and micro-sized mechanical materials.

  16. Manipulation and assembly of small objects in liquid crystals by dynamical disorganizing effect of push-pull-azobenzene-dye

    Science.gov (United States)

    Kurihara, Seiji; Ohta, Kazuhiro; Oda, Takahiro; Izumi, Ryo; Kuwahara, Yutaka; Ogata, Tomonari; Kim, Sun-Nam

    2013-01-01

    The phase transition of a nematic liquid crystal containing a push-pull azobenzene dye could be induced efficiently during irradiation with visible light. The dynamical disorganizing effect of the push-pull azobenzene dye on the liquid crystalline order through its trans-cis-trans photoisomerizaion cycle under visible light was contributed to the efficient phase transition. Then, the effects of light irradiation on the motion of small objects dispersed in the liquid crystals containing the push-pull azobenzene were explored, and the manipulation and assembly of those objects were successfully achieved in the nematic phase but also in the smectic phase. The combination of the photo-controlled dynamical change in the liquid crystalline order and the intrinsic self-assembly property of a liquid crystal is promising for use in technologies that require not only the organization of small objects but also the photo-driving of nano- and micro-sized mechanical materials. PMID:23835605

  17. Hoffman's violet and dahlia as specific stains for animal chromosomes.

    Science.gov (United States)

    Dutt, M K

    1979-03-01

    The paper deals with staining of the chromosomes of animal testicular materials with two basic dyes, Hoffman's violet and dahlia of the triphenylmethane group, following iodine-dye procedure. The important finding, as presented herein, is that iodinated alcohol after staining can be substituted with various acids, both organic as well as inorganic, all of which act as trapping agent preventing leaching of the dye that binds with the chromosomal DNA. It is clear from this study that RNA is not involved by this process of staining, since treatment of stained sections with cold phosphoric acid at 5 degrees C for 20--25 min and then stained also reveals perfect colouration of the chromosomes without any cytoplasmic staining. The in vitro absorption properties of Hoffman's violet have also been presented herein. The probable mechanism of action of these dyes has been suggested.

  18. Synthesis and characterization of reactive dye-cassava mesocarp ...

    African Journals Online (AJOL)

    The synthesis of triazine based reactive dyes was carried out. The resultant dyes were characterized by thin layers chromatography, molecular weight, infrared and ultra- violet spectroscopy, and used in dyeing cassava mesocarp to produce dye modified cellulosic substrates. The dyed substrates were tested for dye fixation, ...

  19. Interplay between Long-Range Crystal Order and Short-Range Molecular Interactions Tunes Carrier Mobility in Liquid Crystal Dyes.

    Science.gov (United States)

    Tchamba Yimga, Nadine; Ramanan, Charusheela; Borchert, Holger; Parisi, Jürgen; Untenecker, Harald; Kirsch, Peer; von Hauff, Elizabeth

    2017-02-22

    We investigated the influence of molecular packing on the optical and electrical properties of the liquid crystalline dye 4,7-bis[5-(2-fluoro-4-pentyl-phenyl)-2-thienyl]-2,1,3-benzothiadiazole (FPPTB). FPPTB is crystalline at room temperature, exhibits a nematic phase at temperatures above 149 °C and is in an isotropic melt at temperatures above 230 °C. Solution processed FPPTB films were subject to thermal annealing through these phase transition temperatures and characterized with X-ray diffraction and polarized optical microscopy. Cooling FPPTB films from the nematic and isotropic phases increased crystal domain size, but also induced local structural variations in the molecular packing of crystalline FPPTB. The decrease in long-range order was correlated with an increase in short-range π-π interactions, leading to changes in molecular aggregation which persisted even when the FPPTB films were cooled to room temperature. Annealing-induced changes in molecular aggregation were confirmed with optical spectroscopy. The carrier mobility in FPPTB films increased over 2 orders of magnitude from (2.2 ± 0.4) × 10 -5 cm 2 V -1 s -1 in as-spun films to μ = (5.0 ± 0.8) × 10 -3 cm 2 V -1 s -1 in films cooled from the isotropic melt. We discuss the relationship between thermal stability and high carrier mobility values in terms of the interplay between long-range molecular order and increased π-π interactions between molecular pairs in the FPPTB film.

  20. Toxic textile dyes accumulate in wild European eel Anguilla anguilla.

    Science.gov (United States)

    Belpaire, Claude; Reyns, Tim; Geeraerts, Caroline; Van Loco, Joris

    2015-11-01

    Dyes are used to stain inks, paints, textile, paper, leather and household products. They are omnipresent, some are toxic and may threaten our environment, especially aquatic ecosystems. The presence of residues of sixteen dyes (triarylmethanes, xanthenes, phenothiazines and phenoxazines) and their metabolites was analyzed in muscle tissue samples of individual yellow-phased European eels (Anguilla anguilla) from 91 locations in Belgian rivers, canals and lakes sampled between 2000 and 2009 using ultra performance liquid chromatography-tandem mass spectrometry. Eel was contaminated by dyes in 77% of the sites. Malachite Green, Crystal Violet and Brilliant Green were present in 25-58% of the samples. Dye occurrence was related to the distribution of textile and dye production industries. This field study is the first large-scale survey to document the occurrence of artificial dyes in wildlife. Considering the annual amounts of dyes produced worldwide and the unintentional spillage during their use, our observations warrant additional research in other parts of the world. The presence of these highly toxic dyes in the European eel may form an additional threat to this critically endangered species. The contaminated eels should be considered as not suitable for consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Utilization of magnetically responsive cereal by-product for organic dye removal

    Czech Academy of Sciences Publication Activity Database

    Baldíková, Eva; Politi, D.; Maděrová, Zdeňka; Pospíšková, K.; Sidiras, D.; Šafaříková, Miroslava; Šafařík, Ivo

    2016-01-01

    Roč. 96, č. 6 (2016), s. 2204-2214 ISSN 0022-5142 R&D Projects: GA ČR GA13-13709S Grant - others:GA MŠk(CZ) LO1305 Institutional support: RVO:67179843 Keywords : modified rice straw * aqueous-solution * methylene-blue * wheat-straw * activated carbon * cost adsorbents * crystal violet * anionic dyes * adsorption * acid * barley straw * magnetic modification * magnetic adsorbent * microwave-assisted synthesis * organic dyes Subject RIV: GC - Agronomy Impact factor: 2.463, year: 2016

  2. Synthesis and analysis of nickel dithiolene dyes in a nematic liquid crystal host. 1998 summer research program for high school juniors at the University of Rochester's Laboratory for Laser Energetics. Student research reports

    International Nuclear Information System (INIS)

    Lippa, I.

    1999-03-01

    The Liquid Crystal Point Diffraction Interferometer (LCPDI) can be employed to evaluate the Omega Laser system for optimum firing capabilities. This device utilizes a nickel dithiolene infrared absorbing liquid crystal dye dissolved in a liquid crystal host medium (Merck E7). Three nickel dithiolene dyes were characterized for both their solubility in the E7 host and their infrared spectral absorption

  3. Dye-sensitized nanoarrays with discotic liquid crystals as interlayer for high-efficiency inverted polymer solar cells.

    Science.gov (United States)

    Shi, Yueqin; Tan, Licheng; Chen, Yiwang

    2014-10-22

    The well-aligned and highly uniform one-dimensional ZnO with organic dyes core/shell (ZNs) and ZnO with dyes and liquid crystals core/double-shells nanoarrays (ZNLs) with controllable lengths were fabricated as electron transport layers (ETLs) in inverted polymer solar cells (PSCs). Ditetrabutylammonium cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium(II) dye (N719) was presented to reduce the surface defects of ZnO nanoarrays (NAs). In addition, the shell modification could decrease the electron injection barrier between ZnO and active layer, thereby facilitating electron injection effectively and forming a direct electron transport channel into the cathode. Due to the orientation of nanoarrays and the self-organization of 3,6,7,10,11-pentakis(hexyloxy)-2-hydroxytriphenylene liquid crystals (LCs) in liquid crystalline mesophase and isotropic phase transition, the components of active layer would be driven rearrange and infiltrate among the interspaces of nanoarrays more orderly. The increased interfacial contact between cathode and active layer would benefit charge generation, transportation and collection. On the basis of these advantages, it was found the N719 shell and N719/LCs double-shells modifications of ZnO NAs could boost the photovoltaic performance of PSCs with the best power conversion efficiency (PCE) of 7.3% and 8.0%, respectively.

  4. Thermally switchable photonic band-edge to random laser emission in dye-doped cholesteric liquid crystals

    Science.gov (United States)

    Ye, Lihua; Wang, Yan; Feng, Yangyang; Liu, Bo; Gu, Bing; Cui, Yiping; Lu, Yanqing

    2018-03-01

    By changing the doping concentration of the chiral agent to adjust the relative position of the reflection band of cholesteric liquid crystals and the fluorescence emission spectrum of the dye, photonic band-edge and random lasing were observed, respectively. The reflection band of the cholesteric phase liquid crystal can also be controlled by adjusting the temperature: the reflection band is blue-shifted with increasing temperature, and a reversible switch from photonic band-edge to random lasing is obtained. Furthermore, the laser line width can be thermally adjusted from 1.1 nm (at 27 °C) to 4.6 nm (at 32.1 °C). A thermally tunable polarization state of a random laser from dual cells was observed, broadening the field of application liquid crystal random lasers.

  5. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation.

    Science.gov (United States)

    An, Alicia Kyoungjin; Guo, Jiaxin; Jeong, Sanghyun; Lee, Eui-Jong; Tabatabai, S Assiyeh Alizadeh; Leiknes, TorOve

    2016-10-15

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR18), and acid yellow 36 (AY36) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane-dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye-dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Verbunt, Paul P.C.; Kaiser, Anton; Hermans, Ko; Broer, Dirk J.; Debije, Michael G. [Polymer Technology Chemical Engineering and Chemistry, Eindhoven University of Technology (Netherlands); Bastiaansen, Cees W.M. [Polymer Technology Chemical Engineering and Chemistry, Eindhoven University of Technology (Netherlands); School of Engineering and Materials Science, Queen Mary University of London (United Kingdom)

    2009-09-09

    A luminescent solar concentrator (LSC) is a potential low-cost enhancement of the standard large-area silicon photovoltaic panels for the generation of electricity from sunlight. In this work, guest-host systems are investigated using anisotropic fluorescent dyes and liquid crystal mesogens to control the direction of emitted light in the LSC. It is determined that up to 30% more light is emitted from the edge of an LSC waveguide with planar dye alignment parallel to the alignment direction than from any edge of an LSC with no alignment (isotropic). The aligned samples continue to show dichroic performance after additions of both edge mirrors and rear scattering layer. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  7. Rapid degradation of dyes in water by magnetic Fe(0)/Fe3O4/graphene composites.

    Science.gov (United States)

    Chong, Shan; Zhang, Guangming; Tian, Huifang; Zhao, He

    2016-06-01

    Magnetic Fe(0)/Fe3O4/graphene has been successfully synthesized by a one-step reduction method and investigated in rapid degradation of dyes in this work. The material was characterized by N2 sorption-desorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), vibrating-sample magnetometer (VSM) measurements and X-ray photoelectron spectroscopy (XPS). The results indicated that Fe(0)/Fe3O4/graphene had a layered structure with Fe crystals highly dispersed in the interlayers of graphene, which could enhance the mass transfer process between Fe(0)/Fe3O4/graphene and pollutants. Fe(0)/Fe3O4/graphene exhibited ferromagnetism and could be easily separated and re-dispersed for reuse in water. Typical dyes, such as Methyl Orange, Methylene Blue and Crystal Violet, could be decolorized by Fe(0)/Fe3O4/graphene rapidly. After 20min, the decolorization efficiencies of methyl orange, methylene blue and crystal violet were 94.78%, 91.60% and 89.07%, respectively. The reaction mechanism of Fe(0)/Fe3O4/graphene with dyes mainly included adsorption and enhanced reduction by the composite. Thus, Fe(0)/Fe3O4/graphene prepared by the one-step reduction method has excellent performance in removal of dyes in water. Copyright © 2016. Published by Elsevier B.V.

  8. Effect of NaCl on the spectral and kinetic properties of cresyl violet ...

    Indian Academy of Sciences (India)

    Effect of added NaCl on the spectral and kinetic properties of cationically charged dye (cresyl violet) and anionically charged surfactant (sodium dodecyl sulphate) were studied in the pre-micellar and micellar regions. Addition of 0.2M NaCl to dye-surfactant solution decreased the critical micellar concentration for the ...

  9. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation

    KAUST Repository

    An, Alicia Kyoungjin

    2016-07-25

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR), and acid yellow 36 (AY) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane–dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye–dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment.

  10. A chemometric-assisted method for the simultaneous determination of malachite green and crystal violet in water based on absorbance-pH data generated by a homemade pH gradient apparatus.

    Science.gov (United States)

    Yu, Shuling; Yuan, Xuejie; Yang, Jing; Yuan, Jintao; Shi, Jiahua; Wang, Yali; Chen, Yuewen; Gao, Shufang

    2015-01-01

    An attractive method of generating second-order data was developed by a dropping technique to generate pH gradient simultaneously coupled with diode-array spectrophotometer scanning. A homemade apparatus designed for the pH gradient. The method and the homemade apparatus were used to simultaneously determine malachite green (MG) and crystal violet (CV) in water samples. The absorbance-pH second-order data of MG or CV were obtained from the spectra of MG or CV in a series of pH values of HCl-KCl solution. The second-order data of mixtures containing MG and CV that coexisted with interferents were analyzed using multidimensional partial least-squares with residual bilinearization. The method and homemade apparatus were used to simultaneously determine MG and CV in fish farming water samples and in river ones with satisfactory results. The presented method and the homemade apparatus could serve as an alternative tool to handle some analysis problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The efficient n-doping of [6,6]-phenyl C61-butyric acid methyl ester by leuco-crystal violet to enhance the performance of inverted organic solar cells

    Science.gov (United States)

    Chen, Li; Zhao, Wei; Cao, Huan; Shi, Zhihua; Zhang, Jidong; Qin, Dashan

    2018-02-01

    Inverted organic solar cells (OSCs) have been fabricated using the photoactive blend thin films based on regioregular poly(3-hexylthiophene) (P3HT), [6,6]-phenyl C61-butyric acid methyl ester (PCBM), and leuco-crystal violet (LCV). It was found that the LCV as an efficient n-dopant could significantly increase intrinsic electron concentration of PCBM zone. The electron mobility of P3HT:PCBM:LCV blend thin film was measured 1.75 times as high as that of P3HT:PCBM blend thin film, as a result of LCV-induced trap filling in the bandgap of PCBM. The power conversion efficiency for the inverted device using the photoactive layer of P3HT:PCBM:LCV could be 1.22 times as high as that for the inverted device using the conventional photoactive layer of P3HT:PCBM, mostly because (1) the higher electron mobility could enhance the exciton dissociation and thereby short-circuit current density in the former relative to the latter; (2) the increase in the electron concentration of PCBM zone in P3HT:PCBM:LCV blend thin film may help blocking holes diffusion towards cathode, improving the hole collection efficiency and thereby fill factor of device. We provide a new insight on optimizing the electron-conducting property of bulk-heterojunction photoactive thin film, useful for pushing forward inverted OSCs towards the cost-effective commercialization.

  12. Lasing from dye-doped photonic crystals with graded layers in dichromate gelatin emulsions

    Science.gov (United States)

    Kok, Mang Hin; Lu, Weixin; Lee, Jeffrey Chi Wai; Tam, Wing Yim; Wong, George K. L.; Chan, C. T.

    2008-04-01

    We report on optically pumped lasing from dye-doped, graded-spacing layer structures of dichromate gelatin emulsions fabricated using two-beam holographic interference. The graded layers exhibited deep and wide photonic band gaps. Multimode lasing with both a low threshold and a high quality factor was observed at the band edge of the photonic band gap. We modeled the emissions from the dye-doped graded layer system using a finite difference time domain technique and achieved good agreement with experimental results.

  13. Biosorption Behavior of Basic Red 46 and Violet 3 by Dead Pleurotus mutilus from Single- and Multicomponent Systems

    Directory of Open Access Journals (Sweden)

    N. Yeddou Mezenner

    2013-01-01

    Full Text Available The performance of nonviable P. mutilus for removal of Crystal Violet (CV and Basic Red 46 (BR46 was investigated in single and binary systems. Batch kinetic studies were carried out as a function of pH, temperature, biomass amount, and dye concentration to determine the decolorization efficiency of biosorbent. In single system, the biosorption capacities of P. M. reached 166 and 76.92 mg/g for CV and BR46, respectively. A comparison of kinetic models applied to the adsorption of basic dyes onto P. Mutilus was evaluated for the pseudo-second-order and intraparticle diffusion kinetics models. The experimental data fitted very well the pseudo-second-order kinetic model, whereas diffusion is not only the rate-controlling step. The thermodynamic study indicates that the adsorption of dyes is spontaneous and endothermic process. In binary system, the biosorption capacities of P. Mutilus for both dyes decreased significantly compared to that in single system. Competitive coefficients calculated on a concentration basis using Sheindorf-Rebhun-Sheintuch (SRS equation were useful for describing the degree of competitive interaction in P. M.

  14. Improved power conversion efficiency of dye-sensitized solar cells using side chain liquid crystal polymer embedded in polymer electrolytes

    International Nuclear Information System (INIS)

    Cho, Woosum; Lee, Jae Wook; Gal, Yeong-Soon; Kim, Mi-Ra; Jin, Sung Ho

    2014-01-01

    Side chain liquid crystal polymer (SCLCP) embedded in poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based polymer electrolytes (PVdF-co-HFP:side chain liquid crystal polymer (SCLCP)) was prepared for dye-sensitized solar cell (DSSC) application. The polymer electrolytes contained tetrabutylammonium iodide (TBAI), iodine (I 2 ), and 8 wt% PVdF-co-HFP in acetonitrile. DSSCs comprised of PVdF-co-HFP:SCLCP-based polymer electrolytes displayed enhanced redox couple reduction and reduced charge recombination in comparison to those of the conventional PVdF-co-HFP-based polymer electrolyte. The significantly increased short-circuit current density (J sc , 10.75 mA cm −2 ) of the DSSCs with PVdF-co-HFP:SCLCP-based polymer electrolytes afforded a high power conversion efficiency (PCE) of 5.32% and a fill factor (FF) of 0.64 under standard light intensity of 100 mW cm −2 irradiation of AM 1.5 sunlight. - Highlights: • We developed the liquid crystal polymer embedded on polymer electrolyte for DSSCs. • We fabricated the highly efficient DSSCs using polymer electrolyte. • The best PCE achieved for P1 is 5.32% using polymer electrolyte

  15. Specific interactions within micelle microenvironment in different charged dye/surfa

    Directory of Open Access Journals (Sweden)

    Adina Roxana Petcu

    2016-01-01

    Full Text Available The interactions of two ionic dyes, Crystal Violet and Methyl Orange, with different charged surfactants and also with a nonionic surfactant were investigated using surface tension measurements and visible spectroscopy in pre-micellar and post-micellar regions. It was found that for the water dominant phase systems the dye was localized between the polar heads, at the exterior of the direct micelle shells for all the systems. For the oil dominant phase systems, in case of the same charged dye/surfactant couples, the dye was localized in the micelle shell between the hydrocarbon chain of the surfactant nearby the hydrophilic head groups while for nonionic surfactant and oppositely charged dye/surfactant, localization of dye was between the oxyethylenic head groups towards the interior of the micelle core. Mixed aggregates of the dye and surfactant (below the critical micellar concentration of cationic surfactant, dye-surfactant ion pair and surfactant-micelles were present. The values of equilibrium constants (for TX-114/MO and TX-114/CV systems were 0.97 and 0.98, respectively, partition coefficients between the micellar and bulk water phases and standard free energy (for the nonionic systems were −12.59 kJ/mol for MO and −10.97 kJ/mol for CV were calculated for all the studied systems. The partition processes were exothermic and occurred spontaneously.

  16. Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization

    Science.gov (United States)

    Wang, Lei; Wang, Meng; Yang, Mingchao; Shi, Li-Jie; Deng, Luogen; Yang, Huai

    2016-09-01

    In this paper, we investigate the bichromatic coherent random lasing actions from the dye-doped polymer stabilized blue phase liquid crystals. Two groups of lasing peaks, of which the full widith at half maximum is about 0.3 nm, are clearly observed. The shorter- and longer-wavelength modes are associated with the excitation of the single laser dye (DCM) monomers and dimers respectively. The experimental results show that the competition between the two groups of the lasing peaks can be controlled by varying the polarization of the pump light. When the polarization of the pump light is rotated from 0° to 90°, the intensity of the shorter-wavelength lasing peak group reduces while the intensity of the longer-wavelength lasing peak group increases. In addition, a red shift of the longer-wavelength modes is also observed and the physical mechanisms behind the red-shift phenomenon are discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474021 and 51333001), the Key Program for International S&T Cooperation Projects of China (Grant No. 2013DFB50340), the Issues of Priority Development Areas of the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120001130005), and the Key (Key Grant) Project of Chinese Ministry of Education (Grant No. 313002).

  17. Controlled hydrothermal synthesis of BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} composites exhibiting visible-light photocatalytic degradation of crystal violet

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yu-Rou; Lin, Ho-Pan [Department of Science Application and Dissemination, National Taichung University of Education, Taichung 403, Taiwan, ROC (China); Chung, Wen-Hsin [Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Dai, Yong-Ming [Department of Science Application and Dissemination, National Taichung University of Education, Taichung 403, Taiwan, ROC (China); Lin, Wan-Yu [Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Chen, Chiing-Chang, E-mail: ccchen@ms3.ntcu.edu.tw [Department of Science Application and Dissemination, National Taichung University of Education, Taichung 403, Taiwan, ROC (China)

    2015-02-11

    Highlights: • This is the first report on a series of BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} heterojunctions. • The BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} composition was controlled by adjusting the growth parameters. • The BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} were indirect semiconductors with a 1.78–2.95-eV bandgap. • The new photocatalysts removed CV at a much faster rate than TiO{sub 2}. • Mechanisms were determined by separating the intermediates using HPLC-MS. - Abstract: A series of BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} composites were prepared using autoclave hydrothermal methods. The composition and morphologies of the BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} composites were controlled by adjusting the experimental conditions: the reaction pH value, temperature, and KCl/KI molar ratio. The products were characterized using X-ray diffraction, scanning electron microscopy-electron dispersive X-ray spectroscopy, UV–vis diffuse reflectance spectroscopy, Brunauer–Emmett–Teller specific surface areas, cathodoluminescence, high-resolution transmission electron microscopy, and high-resolution X-ray photoelectron spectroscopy. The photocatalytic efficiencies of composite powder suspensions were evaluated by monitoring the crystal violet (CV) concentrations. In addition, the quenching effects of various scavengers indicated that the reactive O{sub 2}·{sup −} played a major role, and OH· or h{sup +} played a minor role in CV degradation. The intermediates formed during the decomposition process were isolated, identified, and characterized using high performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry to elucidate the CV decomposition mechanism.

  18. Thermodynamic Study of the Ion-Pair Complexation Equilibria of Dye and Surfactant by Spectral Titration and Chemometric Analysis

    Directory of Open Access Journals (Sweden)

    Hakimeh Abbasi Awal

    2017-12-01

    Full Text Available Surfactant-dye interactions are very important in chemical and dyeing processes. The dyes interact strongly with surfactant and show new spectrophotometric properties, so the UV-vis absorption spectrophotometric method has been used to study this process and extract some thermodynamic parameters. In this work, the association equilibrium between ionic dyes and ionic surfactant were studied by analyzing spectrophotometric data using chemometric methods. Methyl orange and crystal violet were selected as a model of cationic and anionic dyes respectively. Also sodium dodecyl sulphate and cetyltrimethylammonium bromide were selected as anionic and cationic surfactant, respectively. Hard model methods such as target transform fitting (TTF classical multi-wavelength fitting and soft model method such as multivariate curve resolution (MCR were used to analyze data that were recorded as a function of surfactant concentration in premicellar and postmicellar regions. Hard model methods were used to resolve data using ion-pair model in premicellar region in order to extract the concentration and spectral profiles of individual components and also related thermodynamic parameters. The equilibrium constants and other thermodynamic parameters of interaction of dyes with surfactants were determined by studying the dependence of their absorption spectra on the temperature in the range 293–308 K at concentrations of 5 × 10−6 M and 8 × 10−6 M for dye crystal violet and methyl orange, respectively. In postmicellar region, the MCR-ALS method was applied for resolving data and getting the spectra and concentration profiles in complex mixtures of dyes and surfactants.

  19. Multifunctional walnut shell layer used for oil/water mixtures separation and dyes adsorption

    Science.gov (United States)

    Li, Jian; Zhao, Zhihong; Li, Dianming; Tang, Xiaohua; Feng, Hua; Qi, Wei; Wang, Qiong

    2017-10-01

    Functional materials with superwetting property have been extensively used for wastewater treatment. Here, walnut shell powders (WSPs) were accumulated into a layer to separate oil/water mixtures and adsorb organic dyes, avoiding the complex process involved in the fabrication of traditional superhydrophobic or underwater superoleophobic filtering membranes. By making use of the underwater superoleophobicity and low adhesion to oils, the pre-wetted WSPs layer can be used for gravity driven oil/water separation with ultrahigh separation efficiency. Furthermore, the WSPs exhibited excellent adsorption property to the organic dyes including methylene blue, rhodamine B and crystal violet. Finally, the WSPs are agricultural residue to environment, and using it for water remediation not only is a good way to treat water pollution, but also can reduce the pressure to the environment. We believe that such multifunctional material will be an effective approach for separating oil/water separation and adsorbing organic dyes pollution in practical applications.

  20. Effect of dielectric permittivity on the performance of polymer dispersed liquid crystal (PDLC) electrolyte dye-sensitized solar cells (DSSCs)

    Science.gov (United States)

    Kamarudin, Muhammad A. A.; Khan, Ammar A.; Qasim, Malik M.; Wilkinson, Timothy D.

    2016-09-01

    Dye-sensitized solar cells (DSSCs) are a type of organic solar cell often cited for their high efficiency and easy fabrication. Recent studies have shown that modification of the standard liquid electrolyte DSSC architecture by the changing one of the components or the addition of additives often results in the improvement in one of the photovoltaic parameters and hence the overall efficiency. Here we explore a dielectric liquid crystal material which is a known insulator but possesses a high degree of order and optical anisotropy. In the presence of an applied electric field, the equilibrium of positive and negative charges are displaced in opposite directions. In this work, different mixtures with different dielectric anisotropies ranging from negative, zero and positive are formulated. These mixtures are then used to prepare polymer dispersed liquid crystal (PDLC) electrolytes and subsequently DSSC devices based on these PDLC electrolytes are fabricated. The morphology of the PDLC is observed through polarizing optical microscopy (POM) and the electrical/photovoltaic characterizations are performed through current density-voltage (J-V) measurements and electrochemical impedance spectroscopy.

  1. Shape induced (spherical, sheets and rods) optical and magnetic properties of CdS nanostructures with enhanced photocatalytic activity for photodegradation of methylene blue dye under ultra-violet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Bilal; Kumar, Sachin; Kumar, Sumeet; Ojha, Animesh K., E-mail: animesh@mnnit.ac.in

    2016-09-15

    CdS nanostructures of different shapes such as, nanoparticles (NPs), nanosheets (NS) and nanorods (NRs) have been synthesized by one step chemical solvothermal method. The synthesized samples were characterized by X-ray diffractometer (XRD), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, UV–visible (UV-VIS) spectroscopy, Raman spectroscopy (RS) and vibrating sample magnetometer (VSM) techniques. The effect of shape on optical and magnetic properties of CdS nanostructures was studied. The optical band gap and emission spectra are found to be shape dependent. CdS NRs were found to have high saturation (Ms) magnetization than that of CdS NPs and NS. The role of shape on photocatalytic performance of CdS NPs, NS and NRs was investigated by monitoring the photodegradation of methylene blue (MB) dye under the UV irradiation of wavelength 365 nm. The lower recombination rate of electron-hole pairs and larger surface area as reactive facets for adsorption of MB dye molecules in CdS NS are mainly lead to the better photocatalytic performance of CdS NS compared to NPs and NRs. - Highlights: • Synthesis of CdS nanostructures with different shapes (spherical, rod and sheet) by easy and low cost solvothermal method. • Shape induced optical and magnetic properties of CdS nanostructures have been investigated. • The shapes of nanostructures play an important role for photocatalytic performance of CdS nanostructures.

  2. Mycoremediation of Textile Dyes: Application of Novel Autochthonous Fungal Isolates

    Directory of Open Access Journals (Sweden)

    Sweety

    2017-07-01

    Full Text Available Four fungal isolates Trichoderma virens, Phlebiopsis cf. ravenelii, Talaromyces stipitatus, Aspergillus niger originally isolated from the textile dye contaminated soil of Meerut (U.P. India. They were used for the decolorization studies of selected textile azo dyes under laboratory conditions. Out of total 74 isolates, selected four fungal strains were picked on the basis of primary screening carried out using agar layer decolorization method. Decolorization efficiency of textile dyes was studied at an interval of 3, 5, 7 and 9 days at temperatures 20, 25, 30 and 40°C using five synthetic dyes viz. Xylene cynol FF, Brilliant blue R, Aniline Blue, Orange G II and Crystal violet. Decolorization study was carried out under shaking and stationary conditions at pH 4.0, 5.4, 6.5, and 8.0. The results obtained showed that Trichoderma virens and Aspergillus niger were more efficient then Phlebiopsis cf. ravenelii and Talaromyces stipitatus. Highest biodegradation activities of dyes by these aboriginal fungal isolates were observed at pH 5.4 after 9 days of incubation. Maximum decolorization 99.84 % was achieved by Aspergillus niger, followed by Trichoderma virens. This is the first report where the bioremediation aspects of Phlebiopsis cf. ravenelii and Talaromyces stipitatus has been revealed.

  3. Light-controlled electric Freedericksz threshold in dye doped liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lucchetti, L.; Catani, L.; Simoni, F. [Dipartimento di Scienze e Ingegneria della Materia, dell' Ambiente ed Urbanistica and CNISM Università Politecnica delle Marche, Ancona (Italy)

    2014-05-28

    We report the results of measurements of the threshold of Freedericksz transition in a nematic liquid crystal doped by Methyl-red. We show that in case of dc field the threshold voltage can decrease or increase depending on the light dose, due to the light-induced desorption and adsorption of charge complexes from and on the irradiated surface, that has been recently demonstrated. This effect has the potential to be exploited in optical devices such as liquid crystal microlenses and spatial light modulators.

  4. Polymer photonic crystal dye lasers as label free evanescent cell sensors

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Lopacinska, Joanna M.; Jakobsen, Mogens Havsteen

    2009-01-01

    the sensitivity of photonic crystal band-edge lasers to partial coverage with HeLa cells. The lasers are chemically activated with a flexible UV activated anthraquinone based linker molecule, which enables selective binding of cells and molecules. When measuring in Phosphate Buffered Saline (PBS), which has...

  5. Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals.

    Science.gov (United States)

    Qiao, Han; Zhou, Yanmei; Yu, Fang; Wang, Enze; Min, Yinghao; Huang, Qi; Pang, Lanfang; Ma, Tongsen

    2015-12-01

    A novel carboxylate-functionalized adsorbent (CNM) based on cellulose nanocrystals (CNCs) was prepared and adsorptive removal of multiple cationic dyes (crystal violet, methylene blue, malachite green and basic fuchsin) were investigated. The maximum cationic dyes uptakes ranged from 30.0 to 348.9mgg(-1) following the order of: CNM>CNCs>raw cellulose. Furthermore, the removal of crystal violet by CNM was investigated representatively where kinetics, thermodynamics and isotherm analysis were employed to explain in-depth information associated with the adsorption process. The adsorption kinetics fitted well to the pseudo-second-order model and thermodynamic analysis revealed that the adsorption process was spontaneous and exothermic. Meanwhile, isothermal study demonstrated a monolayer adsorption behavior following the Langmuir model with a calculated maximum absorption capacity of 243.9mgg(-1), which is higher than those of many other reported adsorbents. These findings prefigure the promising potentials of CNM as a versatile adsorbent for the efficient removal of cationic dyes from wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Column operation studies for the removal of dyes and phenols using a low cost adsorbent

    Directory of Open Access Journals (Sweden)

    V. K. Gupta

    2016-01-01

    Full Text Available Fertilizer plant waste carbon slurry has been investigated after some processing as an adsorbent for the removal of dyes and phenols using columns. The results show that the carbonaceous adsorbent prepared from carbon slurry being porous and having appreciable surface area (380 m2/g can remove dyes both cationic (meldola blue, methylene blue, chrysoidine G, crystal violet as well as anionic (ethyl orange, metanil yellow, acid blue 113, and phenols (phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol fruitfully from water. The column type continuous flow operations were used to obtain the breakthrough curves. The breakthrough capacity, exhaustion capacity and degree of column utilization were evaluated from the plots. The results shows that the degree of column utilization for dyes lies in the range 60 to 76% while for phenols was in the range 53-58%. The exhaustion capacities were quite high as compared to the breakthrough capacities and were found to be 217, 211, 104, 126, 233, 248, 267 mg/g for meldola blue, crystal violet, chrysoidine G, methylene blue, ethyl orange, metanil yellow, acid blue 113, respectively and 25.6, 72.2, 82.2 and 197.3 mg/g for  phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol, respectively

  7. PHOTOCATALYTIC DEGRADATION OF CRYSTAL VIOLET BY ...

    African Journals Online (AJOL)

    The fixed bed photoreactor consisted of three glass tubes (7.5 mm i.d. and 200 mm length), these glass .... degradation as a function of time, concentra model for ... A quadratic n from several models and was fitted to the results. After the analysis of. A), the regression equation was obtained, which represents the level of %.

  8. Chlorophyll J-aggregates: from bioinspired dye stacks to nanotubes, liquid crystals, and biosupramolecular electronics.

    Science.gov (United States)

    Sengupta, Sanchita; Würthner, Frank

    2013-11-19

    Among the natural light-harvesting (LH) systems, those of green sulfur and nonsulfur photosynthetic bacteria are exceptional because they lack the support of a protein matrix. Instead, these so-called chlorosomes are based solely on "pigments". These are self-assembled bacteriochlorophyll c, d, and e derivatives, which consist of a chlorophyll skeleton bearing a 3(1)-hydroxy functional group. Chemists consider the latter as an essential structural unit to direct the formation of light-harvesting self-assembled dye aggregates with J-type excitonic coupling. The intriguing properties of chlorosomal J-type aggregates, particularly narrow red-shifted absorption bands, compared with monomers and their ability to delocalize and migrate excitons, have inspired intense research activities toward synthetic analogues in this field. The ultimate goal of this research field is the development of (opto-)electronic devices based on the architectural principle of chlorosomal LH systems. In this regard, the challenge is to develop small, functional building blocks with appropriate substituents that are preprogrammed to self-assemble across different length scales and to emulate functions of natural LH systems or to realize entirely new functions beyond those found in nature. In this Account, we highlight our achievements in the past decade with semisynthetic zinc chlorins (ZnChls) as model compounds of bacteriochlorophylls obtained from the naturally most abundant chlorin precursor: chlorophyll a. To begin, we explore how supramolecular strategies involving π-stacking, hydrogen bonding, and metal-oxygen coordination can be used to design ZnChl-based molecular stack, tube, and liquid crystalline assemblies conducive to charge and energy transport. Our design principle is based on the bioinspired functionalization of the 3(1)-position of ZnChl with a hydroxy or methoxy group; the former gives rise to tubular assemblies, whereas the latter induces stack assemblies. Functionalization

  9. Cavity polaritons in one-dimensional photonic crystals containing dye molecule-titanate nanosheet hybrids

    Science.gov (United States)

    Ishii, Kenta; Suzuki, Makoto; Chen, Changdong; Feng, Qi; Nakanishi, Shunsuke; Tsurumachi, Noriaki

    2014-02-01

    We investigated the optical properties of one dimensional photonic crystal (1D-PC) microcavity with a wedge-shaped cavity layer containing fluorescent pseudoisocyanine (PIC)-gelatin and nonfluorescent PIC-H1.07Ti1.73O4•nH2O (HTO) nanohybrids. In the case of the PIC-gelatin, the formation of cavity polaritons with a Rabi splitting energy of 49.2 meV was clearly observed. Contrary to our expectations, the formation of cavity polaritons in the case of the PIC-HTO nanohybrids was also observed, even though their splitting energy of 5.8 meV was small. Although different possible explanations were considered, at present, there is insufficient information to completely explain the phenomena. The formation of cavity polaritons with nonfluorescent excitons is indeed very rare and therefore interesting.

  10. Evaluation of the individuality of white rot macro fungus for the decolorization of synthetic dye.

    Science.gov (United States)

    Pandey, Priyanka; Singh, Ram Praksh; Singh, Kailash Nath; Manisankar, Paramasivam

    2013-01-01

    A biosorbent was developed by simple dried Agaricus bisporus (SDAB) and effectively used for the biosorption of cationic dyes, Crystal Violet and Brilliant Green. For the evaluation of the biosorbent system, all the batch equilibrium parameters like pH, biomass dose, contact time, and temperature were optimized to determine the decolorization efficiency of the biosorbent. The maximum yields of dye removal were achieved at pH 4.0 for Crystal Violet (CV) and pH 5.0 for Brilliant Green (BG), which are closer to their natural pH also. Equilibrium was established at 60 and 40 min for CV and BG, respectively. Pseudo first-order, pseudo second-order, and intraparticle-diffusion kinetic models were studied at different temperatures. Isotherm models such as Freundlich, Langmuir, and Dubinin-Radushkevich were also studied. Biosorption processes were successfully described by Langmuir isotherm model and the pseudo second-order kinetic model. The biosorption capacity of A. bisporus over CV and BG were found as 21.74 and 12.16 mg gm(-1). Thermodynamic parameters indicated that the CV and BG dye adsorption onto A. bisporus is spontaneous and exothermic in the single and ternary systems. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used for the surface morphology, crystalline structure of biosorbent, and dye-biosorbent interaction, respectively. This analysis of the biosorption data confirmed that these biosorption processes are ecofriendly and economical. Thus, this biomass system may be useful for the removal of contaminating cationic dyes.

  11. Effect of single walled carbon nanotubes on the threshold voltage of dye based photovoltaic devices

    International Nuclear Information System (INIS)

    Chakraborty, S.; Manik, N.B.

    2016-01-01

    Carbon nanotubes are being widely used in organic photovoltaic (OPV) devices as their usage has been reported to enhance the device efficiency along with other related parameters. In this work we have studied the energy (E c ) effect of single walled carbon nanotubes (SWCNT) on the threshold voltage (V th ) and also on the trap states of dye based photovoltaic devices. SWCNT is added in a series of dyes such as Rose Bengal (RB), Methyl Red (MR), Malachite Green (MG) and Crystal Violet (CV). By analysing the steady state dark current–voltage (I–V) characteristics V th and E c is estimated for the different devices with and without addition of SWCNT. It is observed that on an average for all the dyes V th is reduced by about 30% in presence of SWCNT. The trap energy E c also reduces in case of all the dyes. The relation between V th , E c and total trap density is discussed. From the photovoltaic measurements it is seen that the different photovoltaic parameters change with addition of SWCNT to the dye based devices. Both the short circuit current density and fill factor are found to increase for all the dye based devices in presence of SWCNT.

  12. Simultaneous UV-Vis spectrophotometric quantification of ternary basic dye mixtures by partial least squares and artificial neural networks.

    Science.gov (United States)

    Hassaninejad-Darzi, Seyed Karim; Torkamanzadeh, Mohammad

    2016-11-01

    One of the main difficulties in quantification of dyes in industrial wastewaters is the fact that dyes are usually in complex mixtures rather than being pure. Here we report the development of two rapid and powerful methods, partial least squares (PLS-1) and artificial neural network (ANN), for spectral resolution of a highly overlapping ternary dye system in the presence of interferences. To this end, Crystal Violet (CV), Malachite Green (MG) and Methylene Blue (MB) were selected as three model dyes whose UV-Vis absorption spectra highly overlap each other. After calibration, both prediction models were validated through testing with an independent spectra-concentration dataset, in which high correlation coefficients (R 2 ) of 0.998, 0.999 and 0.999 were obtained by PLS-1 and 0.997, 0.999 and 0.999 were obtained by ANN for CV, MG and MB, respectively. Having shown a relative error of prediction of less than 3% for all the dyes tested, both PLS-1 and ANN models were found to be highly accurate in simultaneous determination of dyes in pure aqueous samples. Using net-analyte signal concept, the quantitative determination of dyes spiked in seawater samples was carried out successfully by PLS-1 with satisfactory recoveries (90-101%).

  13. Phytoremediation of triphenylmethane dyes by overexpressing a Citrobacter sp. triphenylmethane reductase in transgenic Arabidopsis.

    Science.gov (United States)

    Fu, Xiao-Yan; Zhao, Wei; Xiong, Ai-Sheng; Tian, Yong-Sheng; Zhu, Bo; Peng, Ri-He; Yao, Quan-Hong

    2013-02-01

    Triphenylmethane dyes are extensively utilized in textile industries, medicinal products, biological stains, and food processing industries, etc. They are generally considered as xenobiotic compounds, which are very recalcitrant to biodegradation. The widespread persistence of such compounds has generated concerns with regard to remediation of them because of their potential carcinogenicity, teratogenicity, and mutagenicity. In this study, we present a system of phytoremediation by Arabidopsis plants developed on the basis of overexpression of triphenylmethane reductase (TMR) from the Citrobacter sp. The morphology and growth of TMR transgenic Arabidopsis plants showed significantly enhanced tolerances to crystal violet (CV) and malachite green (MG). Further, HPLC and HPLC-MS analyses of samples before and after dye decolorization in culture media revealed that TMR transgenic plants exhibited strikingly higher capabilities of removing CV from their media and high efficiencies of converting CV to non-toxic leucocrystal violet (LCV). This work indicates that microbial degradative gene may be transgenically exploited in plants for bioremediation of triphenylmethane dyes in the environment.

  14. Persistence of gentian violet and leucogentian violet in channel catfish (ictalurus punctatus) muscle after water-borne exposure.

    Science.gov (United States)

    Thompson, H C; Rushing, L G; Gehring, T; Lochmann, R

    1999-02-19

    Gentian violet is a triphenylmethane dye that is an antifungal/antiparastic agent. GV is similar to malachite green that has been used in the aquaculture industry for treatment or prevention of external fungal and parasitic infections in fish and fish eggs although it (MG) is not approved for this use. For these reasons, GV's potential for misuse by the aquaculture industry is high. The uptake and depletion of gentian violet (GV) were determined in channel catfish (Ictalurus punctatus) after water-borne exposure (100 ng ml(-1), 1 h) under simulated aquaculture farming conditions. Leucogentian violet (LGV) was rapidly formed, concentrated in the muscle tissue, and very slowly eliminated from muscle tissue. An isocratic (60% acetonitrile-40% water; 0.05 M ammonium acetate buffer, pH 4.5) HPLC system consisting of a 5 microm LC-CN 250x4.6 mm I.D. column, a 20x2.0 mm I.D. PbO2 oxidative post-column, and a UV-VIS detector set at 588 nm were used to determine uptake and depletion of tissue residues of GV and LGV with time. GV was rapidly depleted and converted to its major metabolite, LGV, which was detected out to 79 days. Therefore, LGV is the appropriate target analyte for monitoring exposure of channel catfish to GV.

  15. Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and Saccharina japonica.

    Science.gov (United States)

    Sewu, Divine Damertey; Boakye, Patrick; Jung, Hwansoo; Woo, Seung Han

    2017-11-01

    The potential of activating terrestrial biomass (spent mushroom substrate, SMS) with ash-laden marine biomass [kelp seaweed, KE] via co-pyrolysis in the field of adsorption was first investigated. KE biochar (KBC), SMS biochar (SMSBC), biochar (SK10BC) from 10%-KE added SMS, and biochar (ESBC) from KE-extract added SMS were used for the adsorption of cationic dye crystal violet (CV). ESBC had highest fixed carbon content (70.60%) and biochar yield (31.6%). SK10BC exhibited high ash content, abundant functional groups, coarser surface morphology and Langmuir maximum adsorptive capacity (610.1mg/g), which is 2.2 times higher than that of SMSBC (282.9mg/g). Biochar activated by a small amount of high ash-containing biomass such as seaweed via co-pyrolysis can serve as viable alternative adsorbent for cationic dye removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Adsorption thermodynamics of some basic dyes uptake from ...

    African Journals Online (AJOL)

    The efficiency of Albizia lebbeck shell for the adsorption of auramine yellow (AY), basic malachite green (BMG) and basic violet (BV) dyes from aqueous solution has been studied in a batch system. The effects of contact time, adsorbent dosage, initial dye concentration, solution pH and temperature have been investigated ...

  17. Enhancement factor sign inversion triggered by the variation of the incident direction of light in the azo-dye doped liquid crystals

    International Nuclear Information System (INIS)

    Deng Luogen; Wang Liang; Luo Liyuan; Wang Guohui

    2006-01-01

    The optical reorientation process of the azo-dye doped liquid crystals (LCs) is studied and the dependence of the enhancement factor on the incident light direction is explained. By analysing the relation between the order parameter and the cis isomer concentration in the azo-dye doped LC system, an analytical expression that describes the dependence of the order parameters on the direction of the incident light is obtained. It is found that, since the order parameters of the guest-host LC system depend on the direction of the incident light, the intermolecular orientational interaction potentials are also related with the incident light direction. In order to describe the interaction of the cis isomer with the liquid crystalline molecules, a revised Maier-Saupe potential expression that allows for a higher-order interaction is used. A microscopic formula of the enhancement factor for the azo-dye doped LC system is derived on the basis of a simplified two-level model. From the microscopic formula, the mechanism behind the dependence of the enhancement factor on the incident direction of light is revealed. The comparison of our computational results with the existent experimental data verified our enhancement factor's microscopic form

  18. Degradation of TiO2 and/or SiO2 hybrid films doped with different cationic dyes

    International Nuclear Information System (INIS)

    Purcar, Violeta; Caprarescu, Simona; Donescu, Dan; Petcu, Cristian; Stamatin, Ioan; Ianchis, Raluca; Stroescu, Hermine

    2013-01-01

    Hybrid thin films, silica–titanium oxides and silica–aluminum oxides, designed based on the sol–gel process are evaluated as catalysts in the photo-degradation of the cationic dyes. Silica matrices from different precursors with various organic functional groups and cross-linked with titanium or aluminum agents (tetraisopropyl orthotitanate and aluminum sec-butoxide) allow the surface property tailoring related to the high capacity of the dye adsorption respective, high photo-degradation activity. The cationic dyes (methylene blue, rhodamine B, crystal violet, malachite green) embedded on the hybrid silica matrix, under ultraviolet light, have a first order kinetics of photodegradation. The cross-linking agents play a key role in the photocatalytic degradation and silica matrix as dye absorbent. The photo-degradation rate for the binary system derived from methyltriethoxysilane/vinyltriethoxysilane precursors with both cross linkers showed a significant improvement by comparison with other hybrid materials. The significant increasing in the photodecomposition rate is related to the capacity to generate additional oxidizing species by each silica hybrid compounds. - Highlights: ► Dyes display different electrostatic interactions to the silica matrix. ► Cross-linking agent influences the photocatalytic degradation of dyes. ► Photodegradation reaction obeyed the rules of a pseudo-first-order kinetic reaction. ► UV radiation can be the origin of the photodegradation

  19. Synthesis and swelling characteristics of chitosan and CMC grafted sodium acrylate-co-acrylamide using modified nanoclay and examining its efficacy for removal of dyes.

    Science.gov (United States)

    Nagarpita, M V; Roy, Pratik; Shruthi, S B; Sailaja, R R N

    2017-09-01

    Chitosan/carboxy methyl chitosan (CMC) grafted sodium acrylate-co-acrylamide/nanoclay superabsorbent nanocomposites have been synthesized in this study by following conventional and microwave assisted grafting methods. Microwave assisted grafting method showed higher grafting yield with enhanced reaction rate. Effect of nanoclay on water adsorption and swelling behaviour of both the composites in acidic, neutral and alkaline medium has been studied. Results showed enhanced swelling rate and water adsorption of both composites after adding 5% of silane treated nanoclay. Dye adsorption capacity of both the composites has been investigated for crystal violet, napthol green and sunset yellow dyes. It was observed that addition of 5% nanoclay enhanced the dye adsorption in both the composites. Langmuir and Freundlich isotherm models have been used to explain the dye adsorption capabilities. The chitosan and CMC nanocomposites follow both the models with R 2 value more than 0.97. Both the composites showed enhanced dye adsorption with 5% nanoclay. Effect of pH on dye adsorption has also been studied in both the composites. Chitosan nanocomposites showed better performance in dye removal as compared to CMC nanocomposites. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Biosorption of aniline violet from aqueous solution on moringa oleifera saw dust (abstract)

    International Nuclear Information System (INIS)

    Javed, T.; Mirza, M.L.

    2011-01-01

    Batch adsorption studies were carried out to evaluate the potential of Moringa Oleifera wood saw dust for the removal of aniline violet dye from aqueous solution by optimizing different parameters such as effect of shaking time, adsorbent dose, initial adsorbate concentration etc. The experimental data was subjected to different types of linearized isotherm models such as Freundlich, Langmuir and Dubinin-Radushkevich. The Freundlich isotherm was fitted well with the data. The maximum adsorption capacity of 8.92 m mol./g of aniline violet has been observed through Freundlich isotherm by using the optimized parameters of 50 mg of adsorbent, 5 minutes of shaking time at room temperature of 25 deg. C. The sorption mean free energy from Dubinin-Radushkevich isotherm is 13.36 kJ mol 1 indicating chemisorption. Pseudo-first and Pseudo-second order kinetics models were tested for the adsorption of 1.23 X 10/sup -5) mol L/sup -1) of aniline violet onto Moringa Oleifera wood saw dust. The experimental data fitted well for Pseudo-second order model with coefficient of correlation R/sup 2/ greater or equal to 0.999. The uptake of aniline violet was also studied with the rise in temperature. Thermodynamic parameters have been evaluated and the adsorption process seems to be endothermic. The results indicate that the Moringa Oleifera wood saw dust is an efficient adsorbent for aniline violet from aqueous solutions. (author)

  1. Toxicity of imine-iminium dyes and pigments: electron transfer, radicals, oxidative stress and other physiological effects.

    Science.gov (United States)

    Kovacic, Peter; Somanathan, Ratnasamy

    2014-08-01

    Although conjugation is well known as an important contributor to color, there is scant recognition concerning involvement of imine and iminium functions in the physiological effects of this class of dyes and pigments. The group includes the dyes methylene blue, rhodamine, malachite green, fuchsin, crystal violet, auramine and cyanins, in addition to the pigments consisting of pyocyanine, phthalocyanine and pheophytin. The physiological effects consist of both toxicity and beneficial aspects. The unifying theme of electron transfer-reactive oxygen species-oxidative stress is used as the rationale in both cases. Toxicity is frequently prevented or alleviated by antioxidants. The apparent dichotomy of methylene blue action as both oxidant and antioxidant is rationalized based on similar previous cases. This mechanistic approach may have practical benefit. This review is important in conveying, for the first time, a unifying mechanism for toxicity based on electron transfer-reactive oxygen species-oxidative stress arising from imine-iminium. Copyright © 2014 John Wiley & Sons, Ltd.

  2. A strategy to reduce the angular dependence of a dye-sensitized solar cell by coupling to a TiO2 nanotube photonic crystal

    Science.gov (United States)

    Guo, Min; Xie, Keyu; Liu, Xiaolin; Wang, Yu; Zhou, Limin; Huang, Haitao

    2014-10-01

    Almost all types of solar cells suffer from a decreased power output when the incident light is tilted away from normal since the incident intensity generally follows a cosine law of the incident angle. Making use of the blue shift nature of the Bragg position of a TiO2 nanotube photonic crystal (NT PC) under oblique incidence, we demonstrate experimentally that the use of the NT PC can partially compensate the cosine power loss of a dye-sensitized solar cell (DSSC). The strategy used here is to purposely choose the Bragg position of the NT PC to be at the longer wavelength side of the dye absorption peak. When the incident light is tilted, the blue shift of the Bragg position results in more overlap with the dye absorption peak, generating a higher efficiency that partially compensates the reduced photon flux due to light inclination. Moreover, the unique structure of the vertically aligned TiO2 nanotubes contributes an additional scattering effect when the incident light is tilted. As a result, the power output of a DSSC coupled with the NT PC layer shows a much flatter angular dependence than a DSSC without the NT PC. At all the incident angles, the DSSC coupled with the NT PC layer also shows a higher power conversion efficiency than the one without. The concept of using NT PC to mitigate the angular dependence of DSSCs can be easily extended to many other optoelectronic devices that are irradiance sensitive.Almost all types of solar cells suffer from a decreased power output when the incident light is tilted away from normal since the incident intensity generally follows a cosine law of the incident angle. Making use of the blue shift nature of the Bragg position of a TiO2 nanotube photonic crystal (NT PC) under oblique incidence, we demonstrate experimentally that the use of the NT PC can partially compensate the cosine power loss of a dye-sensitized solar cell (DSSC). The strategy used here is to purposely choose the Bragg position of the NT PC to be at the

  3. Photonic manipulation of topological defects in liquid-crystal emulsions doped with azobenzene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Takahiro [Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Ibaraki (Japan) and Liquid-Crystal Nano-System Project, ERATO/SORST, Japan Science and Technology, Agency, 5-9-9 Tokodai, Tsukuba 300-2635, Ibaraki (Japan)]. E-mail: takahiro.yamamoto@aist.go.jp; Tabe, Yuka [Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Ibaraki (Japan); Liquid-Crystal Nano-System Project, ERATO/SORST, Japan Science and Technology, Agency, 5-9-9 Tokodai, Tsukuba 300-2635, Ibaraki (Japan); Department of Applied Physics, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjyuku, 169-8555, Tokyo (Japan); Yokoyama, Hiroshi [Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Ibaraki (Japan); Liquid-Crystal Nano-System Project, ERATO/SORST, Japan Science and Technology, Agency, 5-9-9 Tokodai, Tsukuba 300-2635, Ibaraki (Japan)

    2006-06-19

    By modulating liquid-crystal alignment on a colloidal sphere, we successfully manipulated topological defects in glycerol-droplet/liquid-crystal emulsions doped with amphiphilic azobenzene derivatives. At an initial state, a disclination loop (Saturn ring) could be observed around the droplet, in which the azobenzene molecules should adsorb onto the droplet and liquid crystal molecules align normally to the surface of the droplet. On irradiation with ultra-violet light ({lambda} = 365 nm), the disclination loop was unfastened and transformed into two point defects called boojums. This should be attributed to the alignment change of the liquid crystal molecules from normal to planar arrangement triggered by trans-to-cis photoisomerization of the adsorbed azo-dyes. On irradiation with visible light causing cis-to-trans photoisomerization ({lambda} = 435 nm), the boojums went back to the Saturn ring reversibly.

  4. Investigation of adsorption of the dyestuff astrazon red violet 3rn (basic violet 16 on montmorillonite clay

    Directory of Open Access Journals (Sweden)

    B. A. Fil

    2014-03-01

    Full Text Available In this study, color removal by absorption from synthetically prepared wastewater was investigated using montmorillonite clay by adsorption. As dyestuff Astrazon Red Violet 3RN (Basic Violet 16 was used. Experimental parameters selected were pH, temperature, agitation speed, initial dyestuff concentration, adsorbent dosage and ionic strength. It was established that adsorption rate increased with increasing pH, temperature, dye concentration and agitation speed, but decreased with increased ionic strength and adsorbent dosage. Adsorption equilibrium data obtained by a series of experiments carried out in a water bath were employed with common isotherm equations such as Langmuir, Freundlich, Temkin, Elovich and Dubinin-Radushkevich. It was found that the Langmuir equation appears to fit the equilibrium data better than the other models. Furthermore, the fit of the kinetic data to common kinetic models such as the pseudo-first-order, second-order, Elovich and intraparticle diffusion models was tested to elucidate the adsorption mechanism. Kinetic data conformed to the pseudo-second-order model, indicating chemisorptions. In addition, the thermodynamic parameters activation energy, Ea, enthalpy ΔH*, entropy, ΔS*, and free energy change, ΔG*, were calculated. The values of the calculated parameters indicated that physical adsorption of ARV on the clay was dominant and that the adsorption process was endothermic.

  5. 21 CFR 73.2775 - Manganese violet.

    Science.gov (United States)

    2010-04-01

    .... Mercury (as Hg), not more than 1 part per million. Total color, based on Mn content in “as is” sample, not less than 93 percent. (c) Uses and restrictions. Manganese violet is safe for use in coloring cosmetics...

  6. Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes.

    Science.gov (United States)

    Madrakian, Tayyebeh; Afkhami, Abbas; Ahmadi, Mazaher; Bagheri, Hasan

    2011-11-30

    An adsorbent, magnetic-modified multi-walled carbon nanotubes, was used for removal of cationic dyes crystal violet (CV), thionine (Th), janus green B (JG), and methylene blue (MB) from water samples. Prepared nanoparticles were characterized by SEM, TEM, BET and XRD measurements. The prepared magnetic adsorbent can be well dispersed in the water and easily separated magnetically from the medium after loaded with adsorbate. The influences of parameters including initial pH, dosage of adsorbent and contact time have been investigated in order to find the optimum adsorption conditions. The optimum pH for removing of all the investigated cationic dyes from water solutions was found to be 7.0. The experimental data were analyzed by the Langmuir adsorption model. The maximum predicted adsorption capacities for CV, JG, Th and MB dyes were obtained as 227.7, 250.0, 36.4 and 48.1 mg g(-1), respectively. Desorption process of the adsorbed cationic dyes was also investigated using acetonitrile as the solvent. It was notable that both the adsorption and desorption of dyes were quite fast probably due to the absence of internal diffusion resistance. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot

    International Nuclear Information System (INIS)

    Onal, Yunus

    2006-01-01

    Adsorbent (WA11Zn5) has been prepared from waste apricot by chemical activation with ZnCl 2 . Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N 2 adsorption and DFT plus software. Adsorption of three dyes, namely, Methylene Blue (MB), Malachite Green (MG), Crystal Violet (CV), onto activated carbon in aqueous solution was studied in a batch system with respect to contact time, temperature. The kinetics of adsorption of MB, MG and CV have been discussed using six kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the Elovich equation, the intraparticle diffusion model, the Bangham equation, the modified Freundlich equation. Kinetic parameters and correlation coefficients were determined. It was shown that the second-order kinetic equation could describe the adsorption kinetics for three dyes. The dyes uptake process was found to be controlled by external mass transfer at earlier stages (before 5 min) and by intraparticle diffusion at later stages (after 5 min). Thermodynamic parameters, such as ΔG, ΔH and ΔS, have been calculated by using the thermodynamic equilibrium coefficient obtained at different temperatures and concentrations. The thermodynamics of dyes-WA11Zn5 system indicates endothermic process

  8. Fine and hyperfine structure spectra of the ultra-violet 23S → 53P transition in 4He and 3He with a frequency doubled CW ring laser, detected via associative ionization

    International Nuclear Information System (INIS)

    Runge, S.; Pesnelle, A.; Perdrix, M.; Sevin, D.; Wolffer, N.; Watel, G.

    1982-01-01

    High resolution laser spectroscopy coupled to a sensitive method of detection via mass analysis of He + 2 ions produced in He(5 3 P) + He(1 1 S) collisions, is used to obtain the fine and hyperfine spectra of the ultra-violet He 2 3 S → 5 3 P transition. A cw tunable UV radiation around 294.5 nm is generated by intracavity frequency doubling a Rhodamine 6G single mode ring dye laser using an ADA crystal. Both spectra enable fine and hyperfine structures to be determined within a few MHz. The magnetic dipole coupling constant A of the 5 3 P term of 3 He is found to be -4326 +- 9 MHz (-0.1443 +- 0.0003 cm -1 ). (orig.)

  9. Photo Inactivation of Streptococcus mutans Biofilm by Violet-Blue light.

    Science.gov (United States)

    Gomez, Grace F; Huang, Ruijie; MacPherson, Meoghan; Ferreira Zandona, Andrea G; Gregory, Richard L

    2016-09-01

    Among various preventive approaches, non-invasive phototherapy/photodynamic therapy is one of the methods used to control oral biofilm. Studies indicate that light at specific wavelengths has a potent antibacterial effect. The objective of this study was to determine the effectiveness of violet-blue light at 380-440 nm to inhibit biofilm formation of Streptococcus mutans or kill S. mutans. S. mutans UA159 biofilm cells were grown for 12-16 h in 96-well flat-bottom microtiter plates using tryptic soy broth (TSB) or TSB with 1 % sucrose (TSBS). Biofilm was irradiated with violet-blue light for 5 min. After exposure, plates were re-incubated at 37 °C for either 2 or 6 h to allow the bacteria to recover. A crystal violet biofilm assay was used to determine relative densities of the biofilm cells grown in TSB, but not in TSBS, exposed to violet-blue light. The results indicated a statistically significant (P mutans growth and reduce the formation of S. mutans biofilm. This in vitro study demonstrated that violet-blue light has the capacity to inhibit S. mutans biofilm formation. Potential clinical applications of light therapy in the future remain bright in preventing the development and progression of dental caries.

  10. Chemical characterization and toxicologic evaluation of airborne mixtures: chemical characterization of combusted inventory red and violet smoke mixes

    International Nuclear Information System (INIS)

    Rubin, I.B.; Buchanan, M.V.; Moneyhun, J.H.

    1982-10-01

    Red and violet smoke grenades (Grenade, Hand, Smoke, M18) were combusted within canvas tents and the combustion products were sampled and analyzed. Uncombusted red and violet smoke mixes from the same lots used to fill the combusted grenades were also analyzed. Approximately ten percent of the major dye component of the red smoke mix, methylaminoanthraquinone (MAA) was converted to aminoanthraquinones (1-AA and 2-AA). The violet smoke mix was formulated to contain 1,4-diamino-2,3-dihydroanthraquinone (DAA) and MAA. Upon combustion the DAA was converted almost completely to diaminoanthraquinone (DAA) which was a minor constituent of the uncombusted mix. As in the combusted red smoke mix, it was found that MAA was partially converted to aminoanthraquinones

  11. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye

    Science.gov (United States)

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  12. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.

    Science.gov (United States)

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-05

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Role of Laccase and Low Molecular Weight Metabolites from Trametes versicolor in Dye Decolorization

    Directory of Open Access Journals (Sweden)

    Diego Moldes

    2012-01-01

    Full Text Available The studies regarding decolorization of dyes by laccase may not only inform about the possible application of this enzyme for environmental purposes, but also may provide important information about its reaction mechanism and the influence of several factors that could be involved. In this paper, decolorization of crystal violet and phenol red was carried out with different fractions of extracellular liquids from Trametes versicolor cultures, in order to describe the role of laccase in this reaction. Moreover, the possible role of the low molecular weight metabolites (LMWMs also produced by the fungus was evaluated. The results confirm the existence of a nonenzymatic decolorization factor, since the nonprotein fraction of the extracellular liquids from cultures of T. versicolor has shown decolorization capability. Several experiments were performed in order to identify the main compounds related to this ability, which are probably low molecular weight peroxide compounds.

  14. Role of laccase and low molecular weight metabolites from Trametes versicolor in dye decolorization.

    Science.gov (United States)

    Moldes, Diego; Fernández-Fernández, María; Sanromán, M Ángeles

    2012-01-01

    The studies regarding decolorization of dyes by laccase may not only inform about the possible application of this enzyme for environmental purposes, but also may provide important information about its reaction mechanism and the influence of several factors that could be involved. In this paper, decolorization of crystal violet and phenol red was carried out with different fractions of extracellular liquids from Trametes versicolor cultures, in order to describe the role of laccase in this reaction. Moreover, the possible role of the low molecular weight metabolites (LMWMs) also produced by the fungus was evaluated. The results confirm the existence of a nonenzymatic decolorization factor, since the nonprotein fraction of the extracellular liquids from cultures of T. versicolor has shown decolorization capability. Several experiments were performed in order to identify the main compounds related to this ability, which are probably low molecular weight peroxide compounds.

  15. Green synthesis of Ag-Cr-AC nanocomposites by Azadirachta indica and its application for the simultaneous removal of binary mixture of dyes by ultrasonicated assisted adsorption process using Response Surface Methodology.

    Science.gov (United States)

    Saad, Muhammad; Tahir, Hajira; Ali, Duaa

    2017-09-01

    In the present studies the Ag-Cr-AC nanocomposites were synthesized by Azadirachta indica leaves extract. They were inoculated on the amorphous surface of activated carbon. The surface morphology and structural identification was determined by SEM, FTIR and XRD techniques. The simultaneous removal of binary dye system of Reactive Red and Crystal Violet were performed by ultrasonicated assisted adsorption process utilizing Ag-Cr-AC nanocomposites. Central Composite Design (CCD) having 5 factors of time, pH, amount of Ag-Cr-AC (adsorbent), concentrations of Reactive Red (RR) and Crystal Violet (CV) was employed. Response Surface Methodology was applied to study the Optimum Operating Parameters (OOP) for the adsorption process. The current studies showed that they can be efficiently employed to remove the coloured effluent from aqueous media as the simultaneous removal of dyes was observed to be 64.92% and 82.47% for RR and CV dyes respectively. Adsorption equilibrium was studied by Freundlich, Langmuir, Dubinin-Radushkevich, Temkin and Harkins-Jura Isotherm Models. The Langmuir isotherm was observed to be followed by the RR-Ag-Cr-AC system while CV-Ag-Cr-AC followed Harkins-Jura Isotherm model. For the binary system, the removal of CV and RR dyes by the nanocomposites obeyed Harkins-Jura model at temperature of 40°C. Thermodynamics studies affirmed the spontaneous nature of adsorption process. pH pzc was evaluated to be 6.29. The purification cost per cubic meter of the effluent was evaluated to be US$ 85.08. The proposed method might prove to be an efficient and cost effective way to eradicate color from the binary mixture of RR and CV dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Use of grape seed and its natural polyphenol extracts as a natural organic coagulant for removal of cationic dyes.

    Science.gov (United States)

    Jeon, Jong-Rok; Kim, Eun-Ju; Kim, Young-Mo; Murugesan, Kumarasamy; Kim, Jae-Hwan; Chang, Yoon-Seok

    2009-11-01

    Natural organic coagulants (NOCs) such as chitosan and Moringa oleifera seeds have been extensively characterized for potential application in water treatment as an alternative to metal-based coagulants. However, the action of both chitosan and M. oleifera seeds is mainly restricted to anionic organic pollutants because of their cationic functional groups affording poor cationic pollutant coagulation by electrostatic repulsion. In this study, we employed ethanolic grape seed extract (GSE) and grape seed-derived polyphenols such as tannic acid and catechin in an effort to find novel NOCs showing stable anionic forms for removal of cationic organic pollutants. The target substances tested were malachite green (MG) and crystal violet (CV), both mutagenic cationic dyes. Polyphenol treatment induced fast decolorization followed by gradual floc formation concomitant with red or blue shifts in maximum absorbance wavelengths of the cationic dyes. Liquid chromatography analysis of flocs formed by polyphenols directly showed that initial supramolecular complexes attributed mainly to electrostatic attraction between polyphenol hydroxyphenyl groups and cationic dyes further progressed into stronger aggregates, leading to precipitation of dye-polyphenol complexes. Consistent with the results obtained using catechin and tannic acid, use of GSE also resulted in effective decolorization and coagulation of soluble MG and CV in aqueous solutions. Screening of several organic GSE components for NOC activity strongly suggested that natural polyphenols are the main organic ingredients causing MG and CV removal via gradual floc formation. The treatment by natural polyphenols and GSE decreased toxicity of MG- or CV-contaminated water.

  17. Violet stimulated luminescence: geo- or thermochronometer?

    DEFF Research Database (Denmark)

    Ankjærgaard, Christina; Guralnik, Benny; Porat, N.

    2015-01-01

    The method of quartz optically stimulated luminescence (OSL) dating is widely used, but generally limited to the past ~0.1 million years (Ma) due to early saturation of the desired signal. Violet stimulated luminescence (VSL) of quartz has previously been shown as a promising alternative...

  18. Microwave-induced crystallization of AC/TiO{sub 2} for improving the performance of rhodamine B dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Fei [School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003 (China); Wu, Zhansheng, E-mail: wuzhans@126.com [School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003 (China); Chen, Qiuyu; Yan, Yujun [School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003 (China); Cravotto, Giancarlo; Wu, Zhilin [Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Torino 10125 (Italy)

    2015-10-01

    Graphical abstract: - Highlights: • Mixed phase titania coated with AC was obtained by microwave irradiation method. • The TiO{sub 2} nanoparticles were spherical and well distributed on the surface of AC. • The light absorption edges of AC/TiO{sub 2} showed red-shift compared to the pure TiO{sub 2}. • Higher surface and TiO{sub 2} content of AC/TiO{sub 2} could improve photocatalytic efficiency. - Abstract: Titanium dioxide (TiO{sub 2}) deposition on activated carbon (AC) is widely used for pollutant photodegradation. In this study, a simple and efficient method for preparing AC/TiO{sub 2} composites under microwave irradiation was developed for photocatalytic degradation of rhodamine B (RhB) under UV light. Results of X-ray diffraction, scanning electron microscopy, and transmission electron microscopy revealed that TiO{sub 2} nanoparticles are anatase and rutile, with a spherical shape and a particle size of 20–50 nm and are well distributed on the AC surface. The UV–vis spectrum of TiO{sub 2} coated on AC showed an evident red-shift and exhibited stronger optical absorption capacity than pure TiO{sub 2}. The AC/TiO{sub 2} nanoparticles prepared at a microwave power of 700 W for 15 min exhibited 98% efficiency in removing RhB dye under UV irradiation for 30 min. The high photocatalytic activity of AC/TiO{sub 2}-700 W could be mainly attributed to the high sorption capacity of the mesoporous carbon material and high TiO{sub 2} content, which could produce higher quantity of ·OH. This study provides a rapid synthesis technique to prepare AC/TiO{sub 2} and a novel method to improve photocatalytic efficiency via synergistic effect for other catalytic systems.

  19. Visible light absorbance enhanced by nitrogen embedded in the surface layer of Mn-doped sodium niobate crystals, detected by ultra violet - visible spectroscopy, x-ray photoelectron spectroscopy, and electric conductivity tests

    Energy Technology Data Exchange (ETDEWEB)

    Molak, A., E-mail: andrzej.molak@us.edu.pl; Pilch, M. [Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice (Poland)

    2016-05-28

    Sodium niobate crystals doped with manganese ions, Na(NbMn)O{sub 3}, were annealed in a nitrogen N{sub 2} flow at 600, 670, and 930 K. It was verified that simultaneous doping with Mn ions and annealing in nitrogen enhanced the photocatalytic features of sodium niobate. The transmission in the ultraviolet-visible range was measured at room temperature. The absorbance edge is in the range from 3.4 to 2.3 eV. The optical band gap E{sub gap} = 1.2–1.3 eV was evaluated using the Tauc relation. Crystals annealed at 670 K and 930 K exhibited an additional shift of the absorption edge of ∼20–40 nm toward longer wavelengths. The optical energy gap narrowed as a result of the superimposed effect of Mn and N co-doping. The x-ray photoelectron spectroscopy test showed that N ions incorporated into the surface layer. The valence band consisted of O 2p states hybridized with Nb 4d, Mn 3d, and N 2s states. The disorder detected in the surroundings of Nb and O ions decreased due to annealing. The binding energy of oxygen ions situated within the surface layer was E{sub B} ≈ 531 eV. The other contributions were assigned to molecular contamination. The contribution centered at 535.5 eV vanished after annealing at 600 K and 670 K. The contribution centered at 534 eV vanished after annealing at 930 K. The N{sub 2} annealing partly removed carbonates from the surfaces of the samples. In the 480–950 K range, the electric conductivity activation energy, E{sub a} = 0.7–1.2 eV, was comparable with the optical E{sub gap}. The electric permittivity showed dispersion in the 0.1–800 kHz range that corresponds to the occurrence of defects.

  20. Adsorption of cationic and anionic organic dyes from aqueous solution using silica.

    Science.gov (United States)

    Buvaneswari, N; Kannan, C

    2010-10-01

    The adsorption of cationic crystal violet (CV) and anionic indigo carmine (IC) has been studied on silica to identify the soil polluting nature of organic dyes. The adsorption parameters like contact time, concentration, temperature and adsorbent dosage were optimized for maximum adsorption. The adsorptions of CV and IC on silica followed Freundlich and Langmuir adsorption isotherm and pseudo second order kinetics. The deltaS degrees, deltaH degrees and deltaG degrees of adsorption on silica are calculated by using Vant Hoff's plot. The adsorption isotherms and thermodynamic studies proved that the CV was adsorbed more than IC on silica. The dyes recovery has been studied from dyes adsorbed silica in water. Very poor recovery of CV and high recovery of IC were observed. The adsorption mechanism, high adsorption and very poor recovery of CV on silica proved that the CV is polluting the soil more than IC. The poor adsorption and high recovery of IC on silica is a supportive evidence for very less soil polluting nature of the IC.

  1. Modified Multiwalled Carbon Nanotubes for Treatment of Some Organic Dyes in Wastewater

    Directory of Open Access Journals (Sweden)

    M. I. Mohammed

    2014-01-01

    Full Text Available In Iraq, a large quantity of basic orange and methyl violet dyes contaminated wastewater from textile industries is discharged into Tigris River. So the aim of this work is to found an efficient and fast technique that can be applied directly for removal of such dyes from the wastewater before discharging into river. Accordingly, CNTs as a new approach prepared by CCVD technique were purified, functionalized, and used as adsorption material to remove dyes from wastewater. The effect of pH, contact time, CNTs dosage, and dyes concentration on removal of pollutants was studied. The removal percentage of both dyes was proportional to the contact time, CNTs dosage, and pH and inversely proportional to the dyes concentration. The results show that the equilibrium time was 20 and 30 min for basic orange and methyl violet dyes, respectively, and the maximum removal percentage for all dyes concentrations was at pH = 8.5 and CNTs dosage of 0.25 g/L and 0.3 g/L for methyl violet and basic orange dye, respectively. The adsorption isotherm shows that the correlation coefficient of Freundlich model was higher than Langmuir model for both dyes, indicating that the Freundlich model is more appropriate to describe the adsorption characteristics of organic pollutants.

  2. Microwave-Assisted Synthesis of kappa-Carrageenan Beads Containing Silver Nanoparticles with Dye Adsorption and Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Hossein Hosseinzadeh

    2016-04-01

    Full Text Available In this work, we used a simple and totally green method for synthesizing silver nanoparticles using kappa-carrageenan as reducing and stabilizing agent. The beads were prepared in aqueous medium by microwave heating, and then followed by cross-linking with K+ cations without using any additional toxic and expensive chemical agents. The preparation method of the carrageenan-based beads is easy, fast, simple, effective, and safe. The synthesized beads loaded with were characterized by ultraviolet-visible absorbance spectra, transmition electron microscopy and X-Ray diffraction techniques. The as-prepared beads were evaluated to remove cationic crystal violet dye from aqueous solutions. The thermodynamic parameters shown that the sorption process was feasible, spontaneous and endothermic. The kinetics and isotherm of crystal violet adsorption were found to well fit to pseudo-second-order kinetic and Langmuir isotherm model, respectively. Moreover, the antibacterial activity of the obtained beads was examined using the nutrient agar disc diffusion method.

  3. In situ investigation of dye adsorption on TiO2 films using a quartz crystal microbalance with a dissipation technique

    KAUST Repository

    Harms, Hauke A.

    2012-01-01

    Dye adsorption plays a crucial role in dye-sensitized solar cells. Herein, we demonstrate an in situ liquid-phase analytical technique to quantify in real time adsorption of dye and coadsorbates on flat and mesoporous TiO 2 films. For the first time, a molar ratio of co-adsorbed Y123 and chenodeoxycholic acid has been measured. © 2012 the Owner Societies.

  4. Templated preparation of porous magnetic microspheres and their application in removal of cationic dyes from wastewater.

    Science.gov (United States)

    Liu, Qingquan; Wang, Li; Xiao, Anguo; Gao, Jingming; Ding, Wenbing; Yu, Haojie; Huo, Jia; Ericson, Mårten

    2010-09-15

    Porous magnetic microspheres with large particle size (350-450 microm) were prepared with sulfonated macroporous polydivinylbenzene as a template. The preparation process included ferrous ion exchange and following oxidation by hydrogen peroxide. The results showed that the weight fraction of magnetic nanoparticles exceeded 20 wt% in microspheres after the preparation process was repeated three times. X-ray diffraction profiles indicated that the crystalline phase of as-formed magnetic nanoparticles was magnetite (Fe(3)O(4)). TEM images revealed rod-like magnetite crystal after the first oxidation cycle, however, the crystal morphologies were transferred into random shape after more oxidation cycles. The applicability of porous magnetic microspheres for removal of cationic dyes from water was also explored. The results exhibited that basic fuchsin and methyl violet could be quickly removed from water with high efficiency. More importantly, the magnetic microspheres could be easily regenerated and repeatedly employed for wastewater treatment. Therefore, a novel methodology was provided for fast removal cationic dyes from wastewater. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Novel Tunable Dye Laser for Lidar Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A tunable dye laser for Lidar detection will be fabricated based on the innovative dye-doped Holographic Polymer Dispersed Liquid Crystals (HPDLC) technology. The...

  6. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  7. New method for quantification of dye sorption using SBA mesoporous silica as a target sorbent.

    Science.gov (United States)

    Nesic, Aleksandra R; Kokunesoski, Maja J; Volkov-Husovic, Tatjana D; Velickovic, Sava J

    2016-03-01

    In this work, a new method for the quantification of methyl violet cationic dye sorption onto SBA-15 mesoporous silica was developed. This method related the intensity of coloration of SBA-15 samples (after reached equilibrium sorption) within dye concentration in aqueous solution using Image-Pro Plus software. The sorption process of methyl violet dye onto SBA-15 was analyzed varying different initial parameters (dye concentration, mass of sorbent, pH of dye solution, and contact sorption time). SBA-15 proved as efficient sorbent for removal of methyl violet dye in contact time of 5 min, with maximum percentage of dye removal 99% at pH 8. The results obtained from Image-Pro Plus showed to be in good agreement with the sorption parameters obtained by UV/Vis spectroscopy, which has been the most commonly used instrument for quantification of dye sorption. The image analysis method proved well prediction of dye concentrations with maximum relative error of 1.83%. The advantages of this method are low cost and reliable quantitative evaluation with minimum of time.

  8. Transforming Benzophenoxazine Laser Dyes into Chromophores for Dye-Sensitized Solar Cells: A Molecular Engineering Approach

    Energy Technology Data Exchange (ETDEWEB)

    Schröder, Florian A. Y. N. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue Cambridge CB3 0HE UK; Cole, Jacqueline M. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue Cambridge CB3 0HE UK; Argonne National Laboratory, 9700 S. Cass Avenue Argonne IL 60439 USA; International Institute for Complex Adaptive Matter, University of California Davis, Davis CA 95616 USA; Waddell, Paul G. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue Cambridge CB3 0HE UK; Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234 Australia; McKechnie, Scott [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue Cambridge CB3 0HE UK

    2015-02-03

    The re-functionalization of a series of four well-known industrial laser dyes, based on benzophenoxazine, is explored with the prospect of molecularly engineering new chromophores for dye-sensitized solar cell (DSC) applications. Such engineering is important since a lack of suitable dyes is stifling the progress of DSC technology. The conceptual idea involves making laser dyes DSC-active by chemical modification, while maintaining their key property attributes that are attractive to DSC applications. This molecular engineering follows a step-wise approach. Firstly, molecular structures and optical absorption properties are determined for the parent laser dyes: Cresyl Violet (1); Oxazine 170 (2); Nile Blue A (3), Oxazine 750 (4). These reveal structure-property relationships which define the prerequisites for computational molecular design of DSC dyes; the nature of their molecular architecture (D-π-A) and intramolecular charge transfer. Secondly, new DSC dyes are computationally designed by the in silico addition of a carboxylic acid anchor at various chemical substitution points in the parent laser dyes. A comparison of the resulting frontier molecular orbital energy levels with the conduction band edge of a TiO2 DSC photoanode and the redox potential of two electrolyte options I-/I3- and Co(II/III)tris(bipyridyl) suggests promise for these computationally designed dyes as co-sensitizers for DSC applications.

  9. Photosensitive and all-optically fast-controllable photonic bandgap device and laser in a dye-doped blue phase with a low-concentration azobenzene liquid crystal.

    Science.gov (United States)

    Lin, Jia-De; Lin, Yu-Meng; Mo, Ting-Shan; Lee, Chia-Rong

    2014-04-21

    This work demonstrates the feasibility of a novel photosensitive and all-optically fast-controllable photonic bandgap (PBG) device based on a dye-doped blue phase (DDBP), embedded with a low-concentration azobenzene liquid crystal (azo-LC). PBG of the DDBP can be reversibly fast-tuned off and on with the successive illumination of a weak UV and green beams. UV irradiation can transform the trans azo-LCs into bend cis isomers, which can easily disturb LCs at the boundary between the double twisting cylinders (DTCs) and the disclinations, and, then, quickly destabilize BPI to become a BPIII-like texture with randomly-oriented DTCs. Doing so may quickly destroy the BP PBG structure. However, with the successive illumination of a green beam, the BPI PBG device can be fast-turned on, owing to the fast disappearance of the disturbance of the azo-LCs on the boundary LCs via the green-beam-induced cis → trans back isomerization. The response time and irradiated energy density for turning off (on) the BP PBG device under the UV (green) beam irradiation are only 120 ms (120 ms) and 0.764 mJ/cm(2) (2.12 mJ/cm(2)), respectively, which are a thousand-fold reduction in photoswitching a traditional cholesteric LC (CLC) PBG device based on similar experimental conditions (i.e., materials used, azo-LC concentration (1 wt%), spectral position of PBG peak, sample thickness, and temperature difference for a working temperature lower than the clearing one). The BP PBG device can significantly contribute to efforts to develop a photosensitive and all-optically fast-controlling LC laser.

  10. Utilization of cocoa pod husk waste as potential adsorbents for Remazol Brilliant Violet 5R removal

    International Nuclear Information System (INIS)

    Tan Tong Siang; Mohd Azmier Ahmad

    2010-01-01

    Removal of Remazol Brilliant Violet 5R (RBV5R) dye from aqueous solution by adsorption onto activated carbon produced from cocoa pod husk (CPH) waste was investigated. Adsorption isotherms were derived at 30 degree Celsius on the basis of batch analysis. Isotherm data were treated according to Langmuir and Freundlich models. Kinetics of adsorption was followed by in situ UV-spectroscopy and the data were treated according to pseudo-first-order and pseudo-second-order models. The fits of experimental data to these equations were examined. It was found that the adsorption process by RVB5R dye onto activated carbon (AC) follows the Freundlich and pseudo-first-order model. (author)

  11. Removal of Water-Soluble Cationic Dyes with TriSyl Silicas

    OpenAIRE

    KARADAİ, Erdener

    1998-01-01

    In this study, the adsorption of certain water-soluble cationic dyes, (basic blue 9, basic blue 12, basic blue 17, brilliant cresyl blue, janus green B, basic green 4, basic violet 1, basic violet 3, and thionin) onto TriSyl silicas by batch adsorption at 25oC was investigated. In the adsorption experiments, Langmuir type adsorption in the Giles classification system was found. Binding parameters such as the initial binding constant (Ki), the equilibrium binding constant (K), monolayer covera...

  12. Bioremoval of Basic Violet 3 and Acid Blue 93 by Pseudomonas putida and its adsorption isotherms and kinetics.

    Science.gov (United States)

    Arunarani, A; Chandran, Preethy; Ranganathan, B V; Vasanthi, N S; Sudheer Khan, S

    2013-02-01

    Basic Violet 3 and Acid Blue 93 are the most important group of synthetic colourants extensively used in textile industries for dyeing cotton, wool, silk and nylon. Release of these dye pollutants in to the environment adversely affects the human health and aquatic organisms. The present study we used Pseudomonas putida MTCC 4910 for the adsorptive removal of Basic Violet 3 and Acid Blue 93 from the aqueous solutions. The pH (4-9) and NaCl concentrations (1mM-1M) did not influence the adsorption process. The equilibrium adsorption process fitted well to Freundlich model than Langmuir model. The kinetics of adsorption fitted well by pseudo-second-order. Thus in the present study an attempt has been made to exploit the dye removal capability of P. putida MTCC 4910, and it was found to be an efficient microbe that could be used for bio removal of dyes from textile effluents. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Photodegradation of organic dyes in the presence of [Fe(III)-salen]Cl complex and H2O2 under visible light irradiation.

    Science.gov (United States)

    Gazi, Sarifuddin; Rajakumar, Ananthakrishnan; Singh, N D Pradeep

    2010-11-15

    Photodegradation of persistent organic dyes (Rhodamine B (RhB), Malachite Green Oxalate (MG) and Crystal Violet 10B (CV)) is studied with Fe(III)-salen complex (λ(max) 494 nm), and hydrogen peroxide under visible light irradiation (λ≥400 nm). The complete decolourization of the dyes (60 mg/L each) was achieved in the aqueous medium. The pseudo-first-order degradation rate constants of RhB, MG, CV were found to be 2.83×10(-3) s(-1), 1.57×10(-3) s(-1) and 1.34×10(-3) s(-1), respectively. The effect of various parameters like concentration of H(2)O(2), pH of the medium, and influence of electrolytes are investigated on the degradation of RhB. A modified benzoic acid hydroxylation method has been used to detect the active oxygen species (OH radicals) in this study. The hydroxyl radical production is increased with the increase in irradiation time. Interestingly, even an excess amount of scavenger could not arrest the degradation of the dyes. This may be due to the formation of some secondary oxidants. Here, active ferryl ion was identified as the secondary oxidant. Degradation products of the dye (RhB) were determined by GC-MS, and phthalic acid was identified as the major one. From the results, a possible photodegradation mechanism has been proposed. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Simultaneous determination of binary solution of triphenylmethane dyes in complex matrices onto magnetic amino-rich SWCNT using second-order calibration method.

    Science.gov (United States)

    Bayat, Mehrnoosh; Shemirani, Farzaneh; Ghasemi, Jahan B

    2017-10-30

    This study suggested a new method for simultaneous quantification of two dyes in complex matrices using second-order data by spectrophotometry. Second-order data was generated simply without any expensive instrument using two independent variables including wavelength and the monotonic addition of sodium dodecyl sulfate. Solid-phase extraction (SPE) based on amino-rich magnetic single-walled carbon nanotube as an adsorbent was employed prior to second-order data generation. SPE optimization was performed by Box-Behnken design, and parameters and their interaction which were dependent on the simultaneous extraction of dyes were examined. Competitive Langmuir and Freundlich isotherms for a binary system and individual dyes could all represent the equilibrium data well. The second-order data was processed by parallel factor analysis (PARAFAC and PARAFAC2) and multivariate curve resolution-alternating least squares (MCR-ALS). Figures of merit of the model including a limit of detection of 3.0 and 2.5 ng mL -1 for crystal violet and malachite green, respectively, were estimated using the MCR-ALS method. The combination of the second-order calibration and SPE presents an easy and versatile method for determination of the mixture of two dyes in the presence of uncalibrated interferences in environmental water, synthetic, and fish samples with the recoveries of 94-104.

  15. Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples.

    Science.gov (United States)

    Madrakian, Tayyebeh; Afkhami, Abbas; Ahmadi, Mazaher

    2012-12-01

    Adsorption of seven different organic dyes from aqueous solutions onto magnetite nanoparticles loaded tea waste (MNLTW) was studied. MNLTW was prepared via a simple method and was fully characterized. The properties of this magnetic adsorbent were characterized by scanning electron microscopy and X-ray diffraction. Adsorption characteristics of the MNLTW adsorbent was examined using Janus green, methylene blue, thionine, crystal violet, Congo red, neutral red and reactive blue 19 as adsorbates. Dyes adsorption process was thoroughly studied from both kinetic and equilibrium points of view for all adsorbents. The experimental isotherm data were analyzed using Langmuir, Freundlich, Sips, Redlich-Peterson, Brouers-Sotolongo and Temkin isotherms. The results from Langmuir isotherm indicated that the capacity of MNLTW for the adsorption of cationic dyes was higher than that for anionic dyes. The adsorption kinetics was tested for the pseudo-first order and pseudo-second order kinetic models at different experimental conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Laser Dyes

    Indian Academy of Sciences (India)

    treatments, including port-wine stain and tattoo removal, diag- nostic measurements, lithotripsy, activation of photosensitive drugs for photodynamic therapy, etc. In the field of medical applications, dye lasers have potential advantages over other lasers. Dye lasers are unique sources of tunable coherent radiation, from the ...

  17. Decolourisation of Crystal Violet and Malachite Green By Fungi ...

    African Journals Online (AJOL)

    Manganese peroxidase was secreted more after 10 days of incubation and laccase production was high after 15 days of incubation by Polyporus elegans and Trametes versicolor and after 10 days in the case of Lengites betulina. Mucor mucedo failed to secrete manganese peroxidase and laccase in all its incubations.

  18. Removal of health hazards causing acidic dyes from aqueous solutions by the process of adsorption

    Directory of Open Access Journals (Sweden)

    Sumanjit

    2008-01-01

    Full Text Available The association of dyes, particularly acidic dyes with health related problems is not a new phenomenon. A lot of well established literature is already available on the role of dyes as a major cause in skin and respiratory diseases. The adsorbents which are of low cost, locally available and are relatively new for their acidic dyes removal capacity from aqueous solutions were investigated. Bagasse, cow dung, groundnut shells, pea shells, used tea leaves, wheat straw were used in their charcoal form whereas brick kiln ash and cement kiln ash adsorbents were used as such for the removal of acid violet 17, acid violet 49, acid violet 54, acid blue 15 and acid red 119. The effects of various experimental parameters, initial pH, dye concentration, sorbent dosage, ion strength, contact time were examined and optimal experimental conditions were decided. At initial basic pH more than 8.0, all the five dyes studied could be removed effectively. The isothermal data for adsorption followed the Freundlich and Langmuir models. The adsorption results in this study indicated that all the adsorbents were attractive candidates for removing acidic dyes from dye wastewater.

  19. Kinetic modelling and mechanism of dye adsorption on unburned carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.B.; Li, H.T. [Curtin University of Technology, Perth, WA (Australia). Dept. of Chemical Engineering

    2007-07-01

    Textile dyeing processes are among the most environmentally unfriendly industrial processes by producing coloured wastewaters. The adsorption method using unburned carbon from coal combustion residue was studied for the decolourisation of typical acidic and basic dyes. It was discovered that the unburned carbon showed high adsorption capacity at 1.97 x 10{sup -4} and 5.27 x 10{sup -4} mol/g for Basic Violet 3 and Acid Black 1, respectively. The solution pH, particle size and temperature significantly influenced the adsorption capacity. Higher solution pH favoured the adsorption of basic dye while reduced the adsorption of acid dye. The adsorption of dye increased with increasing temperature but decreased with increasing particle size. Sorption kinetic data indicated that the adsorption kinetics followed the pseudo-second-order model. The adsorption mechanism consisted of two processes, external diffusion and intraparticle diffusion, and the external diffusion was the dominating process.

  20. Crystallization-mediated amorphous CuxO (x = 1, 2)/crystalline CuI p–p type heterojunctions with visible light enhanced and ultraviolet light restrained photocatalytic dye degradation performance

    International Nuclear Information System (INIS)

    Wang, Hongli; Cai, Yun; Zhou, Jian; Fang, Jun; Yang, Yang

    2017-01-01

    Highlights: • Cu x O(x = 1, 2)/CuI p–p type heterojunctions were facilely constructed via crystallization-mediated approaches. • Cu x O/CuI heterojunctions exhibit effective visible-light-driven photocatalytic activity for dye degradation. • The Cu x O/CuI interface can enhance the spatial separation of the photogenerated electron–hole pairs. • This work represents a critical step for mass production of functional semiconductor heterojunctions in a mild manner. - Abstract: We report simple and cost-effective fabrication of amorphous Cu x O (x = 1, 2)/crystalline CuI p–p type heterojunctions based on crystallization-mediated approaches including antisolvent crystallization and crystal reconstruction. Starting from CuI acetonitrile solution, large crystals in commercial CuI can be easily converted to aggregates consisting of small particles by the crystallization processes while the spontaneous oxidation of CuI by atmospheric/dissolved oxygen can induce the formation of trace Cu x O on CuI surface. As a proof of concept, the as-fabricated Cu x O/CuI heterojunctions exhibit effective photocatalytic activity towards the degradation of methyl blue and other organic pollutants under visible light irradiation, although the wide band-gap semiconductor CuI is insensible to visible light. Unexpectedly, the Cu x O/CuI heterojunctions exhibit restrained photocatalytic activity when ultraviolet light is applied in addition to the visible. It is suggested that the Cu x O/CuI interface can enhance the spatial separation of the electron–hole pairs with the excitation of Cu x O under visible light and prolong the lifetime of photogenerated charges with high redox ability. The present work represents a critically important step in advancing the crystallization technique for potential mass production of semiconductor heterojunctions in a mild manner.

  1. Theoretical Calculation and Experimental Verification Demonstrated the Impossibility of Finding Haptens Identifying Triphenylmethane Dyes and Their Leuco Metabolites Simultaneously

    Directory of Open Access Journals (Sweden)

    De-Xin Kong

    2018-03-01

    Full Text Available Detection of triphenylmethane dyes (TDs, especially the widely used malachite green (MG and crystal violet (CV, plays an important role in safety control of aquatic products. There are two chromatic forms of TDs: oxidized or reduced. Usually, only one form can be detected by reported ELISA antibodies. In this article, molecular shape superimposing and quantum mechanics calculation were employed to elucidate the differences between MG, CV, and their reduced chromatic forms (leucomalachite green, LMG and leucocrystal violet, LCV. A potential hapten was rationally designed and synthesized. Polyclonal antibodies were raised through immunizing New Zealand white rabbits and BALB/C mice. We tested the cross-reactivity ratios between the hapten and TDs. The cross-reactivity ratios were correlated with the difference in surface electrostatic potential. The determination coefficients (r2 of the correlations are 0.901 and 0.813 for the rabbit and mouse antibody, respectively. According to this linear model, the significant difference in the atomic charge seemed to make it impossible to find a hapten that can produce antibodies with good cross-reactivities with both reduced and oxidized TDs.

  2. Adsorption and removal of triphenylmethane dyes from water by magnetic reduced graphene oxide.

    Science.gov (United States)

    Sun, Jian-Zhong; Liao, Zhi-Hong; Si, Rong-Wei; Kingori, Gakai Peter; Chang, Fu-Xiang; Gao, Lu; Shen, Yu; Xiao, Xiang; Wu, Xiang-Yang; Yong, Yang-Chun

    2014-01-01

    Triphenylmethane (TPM) dye is one of the most prevalent and recalcitrant water contaminants. Magnetic reduced graphene oxide (rGO) is an efficient adsorbent for organic pollutants removal. However, the performance and adsorption kinetics of magnetic rGO towards TPM have not yet been studied. In this study, a magnetic Fe3O4@rGO nano-composite, which could be easily removed from water with a simple magnetic separation step was synthesized and characterized. The magnetic rGO showed fast adsorption rate and high adsorption capacity towards different TPM dyes (the Langmuir monolayer adsorption capacity is 64.93 mg/g for adsorption of crystal violet). The adsorption processes are well-fitted to the pseudo-second-order kinetic model (R(2) > 0.99) and the Langmuir isotherm model (R(2) = 0.9996). Moreover, the magnetic rGO also showed excellent recycling and regeneration capabilities. The results indicated that adsorption with magnetic rGO would be a promising strategy to clean up the TPM contamination.

  3. Application of experimental design and derivative spectrophotometry methods in optimization and analysis of biosorption of binary mixtures of basic dyes from aqueous solutions.

    Science.gov (United States)

    Asfaram, Arash; Ghaedi, Mehrorang; Ghezelbash, Gholam Reza; Pepe, Francesco

    2017-05-01

    Simultaneous biosorption of malachite green (MG) and crystal violet (CV) on biosorbent Yarrowia lipolytica ISF7 was studied. An appropriate derivative spectrophotometry technique was used to evaluate the concentration of each dye in binary solutions, despite significant interferences in visible light absorbances. The effects of pH, temperature, growth time, initial MG and CV concentration in batch experiments were assessed using Design of Experiment (DOE) according to central composite second order response surface methodology (RSM). The analysis showed that the greatest biosorption efficiency (>99% for both dyes) can be obtained at pH 7.0, T=28°C, 24h mixing and 20mgL -1 initial concentrations for both MG and CV dyes. The quadratic constructed equation ability for fitting experimental data is judged based on criterions like R 2 values, significant p and lack-of-fit value strongly confirm its high adequacy and applicability for prediction of revel behavior of the system under study. The proposed model showed very high correlation coefficients (R 2 =0.9997 for CV and R 2 =0.9989 for MG), while supported by closeness of predicted and experimental value. A kinetic analysis was carried out, showing that for both dyes a pseudo-second order kinetic model adequately describes the available data. The Langmuir isotherm model in single and binary components has better performance for description of dyes biosorption with maximum monolayer biosorption capacity of 59.4 and 62.7mgg -1 in single component and 46.4 and 50.0mgg -1 for CV and MB in binary components, respectively. The surface structure of biosorbents and the possible biosorbents-dyes interactions between were also evaluated by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The values of thermodynamic parameters including ΔG° and ΔH° strongly confirm which method is spontaneous and endothermic. Copyright © 2017. Published by Elsevier Inc.

  4. Evolutionary replacement of UV vision by violet vision in fish

    Science.gov (United States)

    Tada, Takashi; Altun, Ahmet; Yokoyama, Shozo

    2009-01-01

    The vertebrate ancestor possessed ultraviolet (UV) vision and many species have retained it during evolution. Many other species switched to violet vision and, then again, some avian species switched back to UV vision. These UV and violet vision are mediated by short wavelength-sensitive (SWS1) pigments that absorb light maximally (λmax) at approximately 360 and 390–440 nm, respectively. It is not well understood why and how these functional changes have occurred. Here, we cloned the pigment of scabbardfish (Lepidopus fitchi) with a λmax of 423 nm, an example of violet-sensitive SWS1 pigment in fish. Mutagenesis experiments and quantum mechanical/molecular mechanical (QM/MM) computations show that the violet-sensitivity was achieved by the deletion of Phe-86 that converted the unprotonated Schiff base-linked 11-cis-retinal to a protonated form. The finding of a violet-sensitive SWS1 pigment in scabbardfish suggests that many other fish also have orthologous violet pigments. The isolation and comparison of such violet and UV pigments in fish living in different ecological habitats will open an unprecedented opportunity to elucidate not only the molecular basis of phenotypic adaptations, but also the genetics of UV and violet vision. PMID:19805066

  5. Effect of some operational parameters on textile dye biodegradation in a sequential batch reactor.

    Science.gov (United States)

    Lourenço, N D; Novais, J M; Pinheiro, H M

    2001-08-23

    The combination of anaerobic and aerobic periods in the operation cycle of a Sequencing Batch Reactor (SBR) was chosen to study biological color removal from simulated textile effluents containing reactive, sulfonated, monoazo and diazo dyes, respectively, Remazol Brilliant Violet 5R and Remazol Black B. 90% color removal was obtained for the violet dye in a 24-h cycle with a Sludge Retention Time (SRT) of 15 days and an aerated reaction phase of 10 h. For the black dye only 75% color removal was achieved with the same operational conditions and no improvement was observed with the increase of the SRT to 20 days. For the violet dye a reduction of the color removal values from 90 to 75% was observed with the increase of the aerated reaction phase from 10 to 12 h. However, this increase did not promote the aerobic biodegradation of the produced aromatic amines. Abiotic tests were performed with sterilized SBR samples and no color removal was observed in cell-free supernatants. However color removal values of 30 and 12% were observed in the presence of sterilized cells and supernatants with violet and black dye, respectively and could be attributed to the presence of active reducing principles in the sterilized samples.

  6. Dye-Sensitized Approaches to Photovoltaics

    Science.gov (United States)

    Grätzel, Michael

    2008-03-01

    reaction of such a hole is the photocorrosion of the semiconductor itself. However, only relatively narrow band-gap materials have an effective optical absorption through the visible spectrum, towards and into the infra-red. Materials with an optimal band-gap match to the solar spectrum, of the order of 1.5eV, are therefore electrochemically unstable. A stable photoelectrochemical cell, without some process of optical sensitization, and necessarily using a wide-gap semiconductor is sensitive only to the ultra-violet limit of the visible spectrum. Over recent years a suitable combination of semiconductor and sensitizer has been identified and optimized, so that now a solar spectrum conversion efficiency of over 11% has been verified in a sensitized photoelectrochemical device. One key to such an efficient system is the suppression of recombination losses. When the excited dye relaxes by electron loss, the separated charge carriers find themselves on opposite sides of a phase barrier -- the electron within the solid-state semiconductor, the positive charge externally, in association with the dye molecule. There is no valence---band involvement in the process, so the system represents a majority-carrier device, avoiding one of the major loss mechanisms in conventional photovoltaics. In consequence also a highly-disordered, even porous, semiconductor structure is acceptable, enabling surface adsorption of a sufficient concentration of the dye to permit total optical absorption of incident light of photon energy greater than the HOMO-LUMO gap of the dye molecule. The accepted wide-band semiconductor for photoelectrochemical applications is titanium dioxide in the anatase crystal structure. The size of the nanocrystals making up the semiconductor photoanode can be determined by hydrothermal processing of a precursor sol, and the film can be deposited on a transparent conducting oxide (TCO) substrate by any convenient thin-film process such as screen printing or tape casting. The

  7. Self-assembled monolayers of bimetallic Au/Ag nanospheres with superior surface-enhanced Raman scattering activity for ultra-sensitive triphenylmethane dyes detection.

    Science.gov (United States)

    Tian, Yue; Zhang, Hua; Xu, Linlin; Chen, Ming; Chen, Feng

    2018-02-15

    The bimetallic Au/Ag self-assembled monolayers (SAMs) were constructed by using mono-dispersed Au/Ag nanospheres (Ag: 4.07%-34.53%) via evaporation-based assembly strategy. The composition-dependent surface-enhanced Raman scattering (SERS) spectroscopy revealed that the Au/Ag (Ag: 16.83%) SAMs provide maximized activity for triphenylmethane dyes detection. With the inter-metallic synergy, the optimized SAMs enable the Raman intensity of crystal violet molecules to be about 223 times higher than that of monometallic Au SAMs. Moreover, the SERS signals with excellent uniformity (<5% variation) are sensitive down to 10 -13   M concentrations because of the optimal matching between bimetallic plasmon resonance and the incident laser wavelength.

  8. The adsorption of mercury on tungsten (100) studied by ultra-violet photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Egelhoff, W.F. Jr.; Perry, D.L.; Linnett, J.W.

    1976-01-01

    In recent years, photoelectron spectroscopy has been applied to the study of adsorption on several metal surfaces. A popular choice of substrate has been the 100 face of single crystal tungsten, since adsorption on this surface has been well-characterised by a wide variety of experimental techniques. In this letter a study of the adsorption of mercury on W(100) by ultra-violet photoelectron spectroscopy (UPS) is reported. These results, seen in the context of previous UPS studies of chemisorption, show a number of interesting features. (Auth.)

  9. Vacuum ultra-violet and electron energy loss spectroscopy of gaseous and solid organic compounds

    International Nuclear Information System (INIS)

    Koch, E.E.; Otto, A.

    1976-01-01

    The experimental arrangements used by the authors for the study of optical vacuum ultra-violet and electron energy loss spectra of organic compounds are described and some theoretical aspects of studies of higher excited states are considered. Results for alkanes, benzene, naphthalene, anthracene and some more complex hydrocarbons are reviewed. Recent results obtained by reflection and electron energy loss spectroscopy for single crystals of anthracene are included and their relevance for gas phase work as well as for the understanding of exciton effects in organic solids is described. (author)

  10. Quantification of Adsorption of Azo Dye Molecules on Graphene Oxide Using Optical Spectroscopy

    Science.gov (United States)

    Chaudhary, Raghvendra Pratap; Pawar, Pranav Bhagwan; Vaibhav, Kumar; Saxena, Sumit; Shukla, Shobha

    2017-02-01

    The presence of azo dye molecules in effluents is a source of water pollution and an environmental hazard. Thus, it is very important to separate out such dye molecules. We have investigated the use of graphene oxide (GO) for the purification of dye-contaminated water. The adsorption efficiency of GO in the degradation of azo dye molecules and the interaction mechanism has been estimated using Ultra Violet-Visible absorption spectroscopy. The charge on the dye molecules along with steric hinderance due to their molecular structure is understood to be detrimental in the adsorption and removal of such dyes. Spectroscopic studies suggest that GO can be used as a potential candidate for efficient removal of cationic azo-dye molecules by adsorption.

  11. Study of photocatalytic activity of ZnS quantum dots as efficient nanoparticles for removal of methyl violet: effect of ferric ion doping.

    Science.gov (United States)

    Shamsipur, Mojtaba; Rajabi, Hamid Reza

    2014-03-25

    Zinc sulfide quantum dots (QDs), as pure and doped with Fe(3+), were prepared for photodecolorization of methyl violet (MV), as a model dye, under UV light irradiation. The syntheses of QDs were carried out using a simple chemical co-precipitation method. The prepared samples were characterized by various techniques including X-ray diffraction, transmission electron microscopy, UV-Vis spectrophotometry and flame atomic absorption spectroscopy. The influences of operational parameters on the decolorization of MV such as dopant content, pH, dosage of nanophotocatalyst, UV irradiation time and initial dye concentration were studied. The results showed that the QDs presented high efficiency for MV decolorization, and doping of ZnS QDs with Fe(3+) enhanced the efficiency and rate of dye removal. Finally, the reproducibility and kinetic model of the dye degradation were discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Laser Dyes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 9. Laser Dyes. G S Shankarling K J Jarag. General Article Volume 15 Issue 9 September ... Author Affiliations. G S Shankarling1 K J Jarag1. Dyestuff Technology, Department Institute of Chemical Technology, Matunga Mumbai 400 019, India.

  13. ISOLASI DAN KARAKTERISASI JAMUR PENDEGRADASI ZAT PEWARNA TEKSTIL (Isolation and Characterization of dye-degrading Fungi

    Directory of Open Access Journals (Sweden)

    Erni Martani

    2011-07-01

    . ABSTRACT The aim of this study was to isolate textile dye degrading fungi from many kinds of sample. Isolation was done using surface plating method on Potato Dextrose Agar medium. Degradation ability was measured based on dye decolorization of agar medium. The selection of isolates was based on ability to decolorize some types of dye, rate of decolorization, and tolerance to dye concentration, respectively. Six kinds dye, namely Basic fuchsin, Crystal violet, Direct blue, Methylene blue, Rhodamine B, and Safranine were used in this study. Six species of lignin degrading white rot fungi were used as positive controls. More than 100 fungal strains could be isolated from waste water and solid wastes of textile and pulp & paper industries, peat soils from Central Kalimantan and Riau, and forest soil. Examination on dye decolorization resulted in 6 selected isolates (coded as JKNT-1, JKSC-1, KRMS 5, TPA-4, TPA-10, and JYGC-1; and 2 species of lignin degrading white rot fungi, namely Phanerochaete chrysosporium and Pleurotus ostreatus. Decolorization of dye was depended on the fungal species and type of dye, i.e. one species decolorized some dyes but not the others. Methylene Blue was decolorized more readily than other dyes. In general, dye decolorization activity of fungal isolates was lower than the lignin degrading fungi. Microscopic examination indicated that the isolates of JKNT 1 and KRMS-5 were come from the genus Penicillium, the genus of JKSC-1 was Stachybotrys, the TPA-4 and JYGC-1 were Cladosporium, and TPA-10 isolate was included in genus of Aspergillus.

  14. Structural Color for Additive Manufacturing: 3D-Printed Photonic Crystals from Block Copolymers.

    Science.gov (United States)

    Boyle, Bret M; French, Tracy A; Pearson, Ryan M; McCarthy, Blaine G; Miyake, Garret M

    2017-03-28

    The incorporation of structural color into 3D printed parts is reported, presenting an alternative to the need for pigments or dyes for colored parts produced through additive manufacturing. Thermoplastic build materials composed of dendritic block copolymers were designed, synthesized, and used to additively manufacture plastic parts exhibiting structural color. The reflection properties of the photonic crystals arise from the periodic nanostructure formed through block copolymer self-assembly during polymer processing. The wavelength of reflected light could be tuned across the visible spectrum by synthetically controlling the block copolymer molecular weight and manufacture parts that reflected violet, green, or orange light with the capacity to serve as selective optical filters and light guides.

  15. Decolorization of textile dyes and their effluents using white rot fungi ...

    African Journals Online (AJOL)

    Reactive dyes are important chemical pollutants from textile industries .The two species of white rot fungi were evaluated for their ability to decolorize Blue CA, Black B133, Corazol Violet SR. Trametes hirsuta and Pleurotus florida displayed the greatest extent of decolorization. Laccase is the ligneolytic enzyme from these ...

  16. Effective removal of cationic dyes from aqueous solution using gum ghatti-based biodegradable hydrogel

    CSIR Research Space (South Africa)

    Mittal, H

    2015-08-01

    Full Text Available polymer was characterized by FTIR, SEM, and Brunauer–Emmett–Teller techniques. The Gg-cl-P(AAm-co-MAA) hydrogel was studied as an adsorbent for the removal of methylene blue (MB) and methyl violet (MV) from aqueous solutions. Adsorption of both the dyes...

  17. Estimation of Para Red Dye in Chilli Powder and Tomato Sauces by ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    spectrophotometric method followed by thin layer chromatography technique and compared the results by single point and multiple ..... Toxicity of an anthraquinone violet dye mixture following inhalation exposure, intratracheal instillation, or gavage. Fundam Appl Toxicol 22:103-112. Khanna, S. K., and Singh G. B., (1975).

  18. The Swift Ultra-Violet/Optical Telescope

    International Nuclear Information System (INIS)

    Roming, Peter; Hunsberger, S.D.; Nousek, John; Mason, Keith

    2001-01-01

    The Ultra-Violet/Optical Telescope (UVOT) provides the Swift Gamma-Ray Burst Explorer with the capability of quickly detecting and characterizing the optical and ultraviolet properties of gamma ray burst counterparts. The UVOT design is based on the design of the Optical Monitor on XMM-Newton. It is a Ritchey-Chretien telescope with microchannel plate intensified charged-coupled devices (MICs) that deliver sub-arcsecond imaging. These MICs are photon-counting devices, capable of detecting low intensity signal levels. When flown above the atmosphere, the UVOT will have the sensitivity of a 4m ground based telescope, attaining a limiting magnitude of 24 for a 1000 second observation in the white light filter. A rotating filter wheel allows sensitive photometry in six bands spanning the UV and visible, which will provide photometric redshifts of objects in the 1-3.5z range. For bright counterparts, such as the 9th magnitude GRB990123, or for fainter objects down to 17th magnitude, two grisms provide low-resolution spectroscopy

  19. Violet Laser Diode Enables Lighting Communication.

    Science.gov (United States)

    Chi, Yu-Chieh; Huang, Yu-Fang; Wu, Tsai-Chen; Tsai, Cheng-Ting; Chen, Li-Yin; Kuo, Hao-Chung; Lin, Gong-Ru

    2017-09-05

    Violet laser diode (VLD) based white-light source with high color rendering index (CRI) for lighting communication is implemented by covering with Y 3 Al 5 O 12 :Ce 3+ (YAG:Ce) or Lu 3 Al 5 O 12 :Ce 3+ /CaAlSiN 3 :Eu 2+ (LuAG:Ce/CASN:Eu) phosphorous diffuser plates. After passing the beam of VLD biased at 70 mA (~2I th ) through the YAG:Ce phosphorous diffuser, a daylight with a correlated color temperature (CCT) of 5068 K and a CRI of 65 is acquired to provide a forward error correction (FEC) certified data rate of 4.4 Gbit/s. By using the VLD biased at 122 mA (~3.5I th ) to excite the LuAG:Ce/CASN:Eu phosphorous diffuser with 0.85-mm thickness, a warm white-light source with a CCT of 2700 K and a CRI of 87.9 is obtained at a cost of decreasing transmission capacity to 2.4 Gbit/s. Thinning the phosphor thickness to 0.75 mm effectively reduces the required bias current by 32 mA to achieve the same CCT for the delivered white light, which offers an enlarged CRI of 89.1 and an increased data rate of 4.4 Gbit/s. Further enlarging the bias current to 105 mA remains the white-light transmission capacity at 4.4 Gbit/s but reveals an increased CCT of 3023 K and an upgraded CRI of 91.5.

  20. Violet stimulated luminescence: geo- or thermochronometer?

    International Nuclear Information System (INIS)

    Ankjærgaard, C.; Guralnik, B.; Porat, N.; Heimann, A.; Jain, M.; Wallinga, J.

    2015-01-01

    The method of quartz optically stimulated luminescence (OSL) dating is widely used, but generally limited to the past ∼0.1 million years (Ma) due to early saturation of the desired signal. Violet stimulated luminescence (VSL) of quartz has previously been shown as a promising alternative, with a dose saturation level ∼20 times higher compared to that of OSL, excellent thermal stability on the 10 11 year time scale, and agreement between VSL and OSL ages up to ∼0.3 Ma. Here we explore the usability of the VSL signal to date older quartz samples from palaeosols, whose ages are bracketed by K–Ar ages and palaeomagnetic data of the interbedded basalts, emplaced between 1.6 and 0.7 Ma. VSL ages from three palaeosols largely underestimate the independent ages of their overlying basalts. This can be explained either by a low-temperature thermal anomaly resetting the VSL signal in nature, and/or by an insufficient measurement protocol, unable to correctly translate the natural signal into the equivalent laboratory dose. - Highlights: • We investigate the potential of VSL to date quartz from early Quaternary palaeosols (1.6 - 0.7 Ma old). • The VSL signals show good reproducibility, dose response, thermal stability, and dose recovery. • VSL ages from three palaeosols underestimate the independent K-Ar ages by 50% or more. • It is possible that the VSL ages are correct, but have been reset by thermal anomalies. • Further investigation of the natural VSL signal is needed to confirm these underestimating ages.

  1. Dye Sensitized Tandem Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Greg D.

    2009-12-21

    This work provided a new way to look at photoelectrochemical cells and their performance. Although thought of as low efficiency, a the internal efficiency of a 9% global efficiency dye sensitized solar cell is approximately equal to an 18% efficient silicon cell when each is compared to their useful spectral range. Other work undertaken with this contract also reported the first growth oriented titania and perovskite columns on a transparent conducting oxide. Other work has shown than significant performance enhancement in the performance of dye sensitized solar cells can be obtained through the use of coupling inverse opal photonic crystals to the nanocrystalline dye sensitized solar cell. Lastly, a quick efficient method was developed to bond titanium foils to transparent conducting oxide substrates for anodization.

  2. Biosorption potential of synthetic dyes by heat-inactivated and live Lentinus edodes CCB-42 immobilized in loofa sponges.

    Science.gov (United States)

    Gimenez, Gabriela Gregolin; Ruiz, Suelen Pereira; Caetano, Wilker; Peralta, Rosane Marina; Matioli, Graciette

    2014-12-01

    Lentinus edodes CCB-42 was immobilized in loofa sponges and applied to the biosorption of the synthetic dyes congo red, bordeaux red and methyl violet. Live immobilized microorganisms achieved average decolorations of congo red, bordeaux red and methyl violet of 97.8, 99.7 and 90.6 %, respectively. The loofa sponge was the support and the coadjuvant promoting dye adsorption. The biosorption conditions were optimized for each dye, yielding 30 °C, pH 5.0 and a 12 h reaction time for congo red; 25 °C, pH 3.0 and 36 h for bordeaux red; and 25 °C, pH 8.0 and 24 h for methyl violet. Operational stability was evaluated over five consecutive cycles, with both bordeaux red and congo red exhibiting decolorations above 90 %, while the decoloration of methyl violet decreased after the third cycle. In the sixth month of storage, congo red, bordeaux red and methyl violet had decolorations of 93.1, 79.4 and 73.8 %, respectively. Biosorption process best fit the pseudo-second-order kinetic and Freundlich isotherm models. Maximum biosorption capacity of heat-treated L. edodes immobilized in loofa sponge was determined as 143.678, 500.00 and 381.679 mg/g for congo red, bordeaux red and methyl violet, respectively. Treatment with immobilized L. edodes reduced the phytotoxicity of the medium containing dyes. FT-Raman experiments suggested the occurrence of interactions between loofa sponge fibers, L. edodes and dye. L. edodes CCB-42 immobilized in loofa sponges represents a promising new mode of treatment of industrial effluents.

  3. Effect of functionalization on the adsorption capacity of cellulose for the removal of methyl violet.

    Science.gov (United States)

    Musyoka, Stephen Makali; Mittal, Hemant; Mishra, Shivani B; Ngila, Jane Catherine

    2014-04-01

    In this research paper a comparative study has been carried out for the removal of methyl violet dye using unfunctionalized and functionalized cellulose. The functionalization was achieved through esterification of cellulose with furan-2,5-dione. The functionalization of the cellulose was evidenced using BET, FT-IR, SEM and TGA. The adsorption isotherm data was fitted using different isotherm models like Langmuir, Freundlich, Temkin, Flory-Huggins and Dubinin-Kaganer-Radushkevich models and found to follow Langmuir and Temkin isotherm models with high value of correlation coefficients. Functionalized cellulose (106.38 mg g(-1)) showed higher dye removal capability than unfunctionalized cellulose (43.668 mg g(-1)). The kinetics of adsorption was investigated using pseudo first order, second order, Elovich, liquid film diffusion and intra-particle diffusion models. The mechanism of adsorption was found to follow pseudo second order rate equation. Thermodynamic studies showed that the adsorption process was endothermic and spontaneous. Copyright © 2014. Published by Elsevier B.V.

  4. Hair dye poisoning

    Science.gov (United States)

    Hair tint poisoning ... Different types of hair dye contain different harmful ingredients. The harmful ingredients in permanent dyes are: Naphthylamine Other aromatic amino compounds Phenylenediamines Toluene ...

  5. Predicting Solar-Cell Dyes for Cosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, Sam L. [Cavendish; Cole, Jacqueline M. [Cavendish; Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States; Institute; Waddell, Paul G. [Cavendish; Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234, Australia; McKechnie, Scott [Cavendish; Liu, Xiaogang [Cavendish

    2014-06-19

    A major limitation of using organic dyes for dye-sensitized solar cells (DSCs) has been their lack of broad optical absorption. Co-sensitization, in which two complementary dyes are incorporated into a DSC, offers a route to combat this problem. Here we construct and implement a design route for materials discovery of new dyes for co-sensitization, beginning with a chemically compatible series of existing laser dyes which are without an anchor group necessary for DSC use. We determine the crystal structures for this dye series, and use their geometries to establish the DSC molecular design prerequisites aided by density-functional theory and time-dependent density-functional theory calculations. Based on insights gained from these existing dyes, modified sensitizers are computationally designed to include a suitable anchor group. A DSC co-sensitization strategy for these modified sensitizers is predicted, using the central features of highest-occupied, and lowest-unoccupied molecular orbital positioning, optical absorption properties, intramolecular charge-transfer characteristics, and steric effects as selection criteria. Through this molecular engineering of a series of existing non-DSC dyes, we predict new materials for DSC co-sensitization.

  6. Synthesis and utilization of a novel carbon nanotubes supported nanocables for the adsorption of dyes from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Jiang, Xinyu [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Chen, Xiaoqing, E-mail: xqchen@csu.edu.cn [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization (China)

    2015-09-15

    Using multiwalled carbon nanotubes(MWCNTs) as mechanical support and glucose as carbon resource, a hydrothermal carbonization route was designed for the synthesis of MWCNTs@carbon nanocables with tunable diameter and length. MWCNTs are firstly used as templates for the formation of carbon-rich composite nanocables, and the diameter of the nanocables could be tailored through adjusting the hydrothermal time or the ratio of MWCNTs and glucose. Owing to abundant superficial oxygen-containing functional groups, porous surface and remarkable reactivity, the as-synthesized nanocables are capable of efficiently adsorbing cationic dye methylene blue (MB) and crystal violet (CV). Furthermore, the optimum adsorption conditions, kinetics, adsorption isotherms and adsorption thermodynamics of dyes were studied systematically. Additionally, the maximum adsorption capacities calculated from data analysis (298.5 mg/g for MB and 228.3 mg/g for CV) are significant higher than those of raw MWCNTs and some other adsorbents reported previously, which provides strong evidence for using MWCNTs@carbon nanocables as adsorbent to remove dyes from aqueous solutions. - Graphical abstract: MWCNTs@carbon nanocables has been successfully fabricated by a hydrothermal carbonization method. The as-synthesized novel samples were used as adsorbents and exhibited high adsorption capacity on MB and CV. - Highlights: • A simple, cost-effective and “green” method for the synthesis of the material. • The diameter and length of the material are relatively easy to control. • The surface has large oxygen-containing groups and preferable chemical reactivity. • Compared with raw MWCNTs and some other adsorbents, the adsorption capacity is much high.

  7. Laccase induction by synthetic dyes in Pycnoporus sanguineus and their possible use for sugar cane bagasse delignification.

    Science.gov (United States)

    Hernández, Christian; Farnet Da Silva, Anne-Marie; Ziarelli, Fabio; Perraud-Gaime, Isabelle; Gutiérrez-Rivera, Beatriz; García-Pérez, José Antonio; Alarcón, Enrique

    2017-02-01

    The use of synthetic dyes for laccase induction in vivo has been scarcely explored. We characterized the effect of adding different synthetic dyes to liquid cultures of Pycnoporus sanguineus on laccase production. We found that carminic acid (CA) can induce 722 % and alizarin yellow 317 % more laccase than control does, and they promoted better fungal biomass development in liquid cultures. Aniline blue and crystal violet did not show such positive effect. CA and alizarin yellow were degraded up to 95 % during P. sanguineus culturing (12 days). With this basis, CA was selected as the best inducer and used to evaluate the induction of laccase on solid-state fermentation (SSF), using sugarcane bagasse (SCB) as substrate, in an attempt to reach selective delignification. We found that laccase induction occurred in SSF, and a slight inhibition of cellulase production was observed when CA was added to the substrate; also, a transformation of SCB under SSF was followed by the 13 C cross polarization magic angle spinning (CPMAS) solid-state nuclear magnetic resonance (NMR). Results showed that P. sanguineus can selectively delignify SCB, decreasing aromatic C compounds by 32.67 % in 16 days; O-alkyl C region (polysaccharides) was degraded less than 2 %; delignification values were not correlated with laccase activities. Cellulose-crystallinity index was increased by 27.24 % in absence of CA and 15.94 % when 0.01 mM of CA was added to SCB; this dye also inhibits the production of fungal biomass in SSF (measured as alkyl C gain). We conclude that CA is a good inducer of laccase in liquid media, and that P. sanguineus is a fungus with high potential for biomass delignification.

  8. Grape stalks as substrate for white rot fungi, lignocellulolytic enzyme production and dye decolorization.

    Science.gov (United States)

    Levin, Laura; Diorio, Luis; Grassi, Emanuel; Forchiassin, Flavia

    2012-01-01

    The aim of this work was to evaluate the potential of grape stalks, an agroindustrial waste, for growth and lignocellulolytic enzyme production via solid-state fermentation, using the following three white rot fungi: Trametes trogii, Stereum hirsutum and Coriolus antarcticus. The decolorization of several dyes by the above mentioned cultures was also investigated. Similar values of dry weight loss of the substrate were measured after 60 days (33-43 %). C. antarcticus produced the highest laccase and Mn-peroxidase activities (33.0 and 1.6 U/g dry solid). The maximum endoglucanase production was measured in S. hirsutum cultures (10.4 U/g), while the endoxylanase peak corresponded to T. trogii (14.6 U/g). The C. antarcticus/grape stalk system seems potentially competitive in bioremediation of textile processing effluents, attaining percentages of decolorization of 93, 86, 82, 82, 77, and 58% for indigo carmine, malachite green, azure B, remazol brilliant blue R, crystal violet and xylidine, respectively, in 5 h.

  9. PERSULFATE ACTIVATION BY A NATURAL IRON OXIDE FOR THE REMEDIATION OF DYE CONTAMINATION

    Directory of Open Access Journals (Sweden)

    Sihem BELAIDI

    2017-12-01

    Full Text Available The objective of this work was to evaluate the removal of crystal violet (CV, a cationic dye, using sodium persulfate (PS as an oxidant in the presence of a natural iron oxide (NIO. Experimental results indicate that approximately 89 % and 98% of CV removal was achieved by PS alone and by (PS/NIO system respectively after 1 hour of reaction. Persulfate oxidation activated with soluble Fe (II enhanced the kinetic oxidation of CV. The increase in the removal extent is due to the adsorption of CV onto NIO surface and to the increased formation of either SO4•- or •OH radicals. The effect of pH on the degradation of CV by PS/NIO was studied. Persulfate degradation increases with a reduction in pH causing increased rate of degradation of organic contaminants. An additional factor in the NIO/PS/UV process is the photolysis of PS which produce two sulfate radicals (SO4•-. Results of this study suggest that NIO can be used as iron source to activate persulfate oxidation.

  10. Extraction of dye

    African Journals Online (AJOL)

    Mordants help in binding of dyes to fabric by forming a chemical bridge from dye to fiber thus improving the staining ability of a dye with increasing its fastness properties (Padma, 2000). Some of these mordants are chemical agents which are not eco-friendly therefore it is important to use natural dyes with eco-friendly ...

  11. Photochemical reaction monitoring by ultra-violet spectrophotometry.

    Science.gov (United States)

    Roig, B; Touraud, E; Thomas, O

    2002-11-01

    Within the framework of the monitoring of the trichloroacetylchloride (TCAC) photosynthesis, ultra-violet (UV) spectrophotometry is proposed as a simple and rapid tool allowing, in real time, the control of the process efficiency. A good correlation has been obtained between the results acquired by this alternative method and the standard gas chromatography.

  12. Effects of enhances ultra violet irradiation on photosynthesis in ...

    African Journals Online (AJOL)

    Effects of enhances ultra violet irradiation on photosynthesis in anabaena variabilis and phormidium uncinatum. VA Donkor. Abstract. No Abstract. Journal of the Ghana Association Vol. 2 (3) 1999: pp.16-23. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  13. Production of Laccase by a New Myrothecium verrucaria MD-R-16 Isolated from Pigeon Pea [Cajanus cajan (L. Millsp.] and its Application on Dye Decolorization

    Directory of Open Access Journals (Sweden)

    Jiao Sun

    2017-04-01

    Full Text Available The present study was conducted to screen a laccase-producing fungal endophyte, optimize fermentation conditions, and evaluate the decolorization ability of the laccase. A new fungal endophyte capable of laccase-producing was firstly isolated from pigeon pea and identified as Myrothecium verrucaria based on a ITS-rRNA sequences analysis. Meanwhile, various fermentation parameters on the laccase production were optimized via response surface methodology (RSM. The optimal fermentation conditions were a fermentation time of five days, temperature 30 °C and pH 6.22. Laccase activity reached 16.52 ± 0.18 U/mL under the above conditions. Furthermore, the laccase showed effective decolorization capability toward synthetic dyes (Congo red, Methyl orange, Methyl red, and Crystal violet in the presence of the redox mediator ABTS, with more than 70% of dyes decolorizing after 24 h of incubation. Additionally, the activity of laccase was relatively stable with pH (4.5–6.5 and a temperature range of 35–55 °C. Therefore, the high laccase production of the strain and the new fungal laccase could provide a promising alterative approach for industrial and environmental applications.

  14. 75 FR 27815 - Carbazole Violet Pigment 23 From China and India; Determinations

    Science.gov (United States)

    2010-05-18

    ... (Review) Carbazole Violet Pigment 23 From China and India; Determinations On the basis of the record \\1... that revocation of the antidumping duty orders on carbazole violet pigment 23 from China and India... Publication 4151 (April 2010), entitled Carbazole Violet Pigment 23 from China and India: Investigation Nos...

  15. 75 FR 14468 - Carbazole Violet Pigment 23 From China and India

    Science.gov (United States)

    2010-03-25

    ... COMMISSION Carbazole Violet Pigment 23 From China and India AGENCY: United States International Trade... carbazole violet pigment 23 from India and the antidumping duty orders on carbazole violet pigment 23 from China and India. SUMMARY: The Commission hereby gives notice of the scheduling of expedited reviews...

  16. 75 FR 29719 - Carbazole Violet Pigment 23 From India: Continuation of Countervailing Duty Order

    Science.gov (United States)

    2010-05-27

    ... International Trade Administration Carbazole Violet Pigment 23 From India: Continuation of Countervailing Duty.... See Notice of Countervailing Duty Order: Carbazole Violet Pigment 23 From India, 69 FR 77995 (December... countervailable subsidies likely to prevail were the order to be revoked. See Carbazole Violet Pigment 23 from...

  17. 76 FR 24855 - Carbazole Violet Pigment 23 From India: Rescission of Administrative Review

    Science.gov (United States)

    2011-05-03

    ... International Trade Administration Carbazole Violet Pigment 23 From India: Rescission of Administrative Review... carbazole violet pigment 23 (CVP 23) from India for the period of December 1, 2009, through November 30... Antidumping Duty Order: Carbazole Violet Pigment 23 From India, 69 FR 77988 (December 29, 2004). On January 28...

  18. 75 FR 33243 - Carbazole Violet Pigment 23 From India: Final Results of Countervailing Duty Administrative Review

    Science.gov (United States)

    2010-06-11

    ... International Trade Administration Carbazole Violet Pigment 23 From India: Final Results of Countervailing Duty... results of administrative review of the countervailing duty order on carbazole violet pigment 23 from India for the period January 1, 2007, through December 31, 2007. See Carbazole Violet Pigment 23 from...

  19. 21 CFR 500.30 - Gentian violet for animal drug use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Gentian violet for animal drug use. 500.30 Section... Gentian violet for animal drug use. The Food and Drug Administration (FDA) has determined that gentian violet is not generally recognized as safe and effective for any veterinary drug use in food animals and...

  20. Poly(methylmethacrylate) grafted chitosan: An efficient adsorbent for anionic azo dyes

    International Nuclear Information System (INIS)

    Singh, V.; Sharma, A.K.; Tripathi, D.N.; Sanghi, R.

    2009-01-01

    Present study reports on peroxydisulfate/ascorbic acid initiated synthesis of Chitosan-graft-poly(methylmethacrylate) (Ch-g-PMMA) and its characterization by FTIR, XRD and 13 C NMR. The copolymer remained water insoluble even under highly acidic conditions and was evaluated to be an efficient adsorbent for the three anionic azo dyes (Procion Yellow MX, Remazol Brilliant Violet and Reactive Blue H5G) over a wide pH range of 4-10 being most at pH 7. The adsorbent was also found efficient in decolorizing the textile industry wastewater and was much more efficient than the parent chitosan. Equilibrium sorption experiments were carried out at different pH and initial dye concentration values. The experimental equilibrium data for each adsorbent-dye system were successfully fitted to the Langmuir and Freundlich sorption isotherms. Based on Langmuir model Q max for yellow, violet and blue dyes was 250, 357 and 178, respectively. Thermodynamic parameters of the adsorption processes such as ΔG o , ΔH o , and ΔS o were calculated. The negative values of free energy reflected the spontaneous nature of adsorption. The adsorption kinetic data of all the three dyes could be well represented by pseudo-second-order model with the correlation coefficients (R 2 ) being 0.9922, 0.9997 and 0.9862, for direct yellow, reactive violet and blue dye, respectively with rate constants 0.91 x 10 -4 , 1.82 x 10 -4 and 1.05 x 10 -4 g mg -1 min -1 , respectively. At pH 7, parent chitosan also showed pseudo-second-order kinetics. The temperature dependence of dye uptake and the pseudo-second-order kinetics of the adsorption indicated that chemisorption is the rate-limiting step that controls the process

  1. Detection of Red Dye in Diesel Oil

    Directory of Open Access Journals (Sweden)

    B Varughese

    2017-06-01

    Full Text Available Developing a sensitive and effective instrument for detecting the presence of red dye in diesel fuel is very advantageous for governments in preventing tax loss by controlling illegal use of the diesel fuel. The objective of this work has been to investigate and develop an instrument to detect red dye in diesel, based on the principle of absorption. The peaks of absorption in red and pure diesel fuel were measured with the help of UV-spectrometer (Lambda 6/ PECSS. Optical interference filters of wavelengths 405 nm and 616 nm were used to modify the spectral transmittance of an optical system with appropriate spectral absorption characteristics. Two simultaneous light beams of two different colors were sent into the diesel fuel and the transmitted light from the fuel censored by a silicon photo detector. The signal from the detector was then amplified with the help of three operational amplifiers (OP-177 and sent to an analog device (AD 538 which can perform division operation. The voltage produced when the violet light passes through the medium was divided when the red light passes through the medium in the one quadrant division unit (AD 538. The output voltage from the analog device was measured with the help of a digital multi-meter. The results show that the output voltages decreases with the increase in percentage of red dye in diesel fuel.

  2. Adsorption and subsequent partial photodegradation of methyl violet 2B on Cu/Al layered double hydroxides

    International Nuclear Information System (INIS)

    Guzmán-Vargas, Ariel; Lima, Enrique; Uriostegui-Ortega, Gisselle A.; Oliver-Tolentino, Miguel A.; Rodríguez, Esaú E.

    2016-01-01

    Graphical abstract: - Highlights: • LDH Cu/Al material showed high adsorption capacity. • Adsorption occurs by π–π interactions from the aromatic ring on the surface. • Adsorption mechanism fits to pseudo-second order model. • The photodegradation is due to the ·OH radical formation. - Abstract: Uncalcined Cu/Al LDH was studied as adsorbent and photocatalyst in the adsorption and subsequent photodegradation of methyl violet 2B dye (MV2B). Physicochemical characterization was carried out by XRD, FTIR, UV–vis, including photoactive properties, DSC/TGA and SEM. Kinetic and thermodynamic models showed great affinity and sorption capacity, the maximum adsorption capacity was 361.0 mg g −1 obtained by Langmuir model, in addition, the results showed that the dye was adsorbed on the LDH surface. Photocatalytic activity was evaluated in the MV2B dye photodegradation process, and it was confirmed by the presence ·OH radicals monitored by EPR spin trapping technique, additionally, COD and TOC parameters were measured, 13 C NMR showed differences for the adsorbed and photodegraded samples.

  3. Adsorption and subsequent partial photodegradation of methyl violet 2B on Cu/Al layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Guzmán-Vargas, Ariel, E-mail: aguzmanv@ipn.mx [Instituto Politécnico Nacional, ESIQIE-SEPI-DIQI, Laboratorio de Investigación en Materiales Porosos, Catálisis Ambiental y Química Fina (LiMpCa-QuF), UPALM Edif. 7 P.B. Zacatenco, GAM, México, D.F.07738 (Mexico); Lima, Enrique [Instituto de Investigaciones en Materiales-UNAM, Circuito exterior s/n, Cd. Universitaria, Del. Coyoacán, México, D.F. 04510 (Mexico); Uriostegui-Ortega, Gisselle A. [Instituto Politécnico Nacional, ESIQIE-SEPI-DIQI, Laboratorio de Investigación en Materiales Porosos, Catálisis Ambiental y Química Fina (LiMpCa-QuF), UPALM Edif. 7 P.B. Zacatenco, GAM, México, D.F.07738 (Mexico); Oliver-Tolentino, Miguel A. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Calzada Legaria 694, Col. Irrigación, México, D.F. 11500 (Mexico); Rodríguez, Esaú E. [Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2580, Col. San Pedro Zacatenco, México, D.F. 07360 (Mexico)

    2016-02-15

    Graphical abstract: - Highlights: • LDH Cu/Al material showed high adsorption capacity. • Adsorption occurs by π–π interactions from the aromatic ring on the surface. • Adsorption mechanism fits to pseudo-second order model. • The photodegradation is due to the ·OH radical formation. - Abstract: Uncalcined Cu/Al LDH was studied as adsorbent and photocatalyst in the adsorption and subsequent photodegradation of methyl violet 2B dye (MV2B). Physicochemical characterization was carried out by XRD, FTIR, UV–vis, including photoactive properties, DSC/TGA and SEM. Kinetic and thermodynamic models showed great affinity and sorption capacity, the maximum adsorption capacity was 361.0 mg g{sup −1} obtained by Langmuir model, in addition, the results showed that the dye was adsorbed on the LDH surface. Photocatalytic activity was evaluated in the MV2B dye photodegradation process, and it was confirmed by the presence ·OH radicals monitored by EPR spin trapping technique, additionally, COD and TOC parameters were measured, {sup 13}C NMR showed differences for the adsorbed and photodegraded samples.

  4. Using SPE-LC-ESI-MS/MS Analysis to Assess Disperse Dyes in Environmental Water Samples.

    Science.gov (United States)

    Zocolo, Guilherme Julião; Pilon dos Santos, Glauco; Vendemiatti, Josiane; Vacchi, Francine Inforçato; Umbuzeiro, Gisela de Aragão; Zanoni, Maria Valnice Boldrin

    2015-09-01

    We have optimized an SPE-LC-ESI-MS/MS method and used it to monitor disperse azo dyes in environmental aquatic samples. Calibration curves constructed for nine disperse dyes-Red 1, Violet 93, Blue 373, Orange 1, Orange 3, Orange 25, Yellow 3, Yellow 7 and Red 13-in aqueous solution presented good linearity between 2.0 and 100.0 ng mL(-1). The method provided limits of detection and quantification around 2.0 and 8.0 ng L(-1), respectively. For dyes at concentrations of 25.0 ng mL(-1), the intra- and interday analyses afforded relative standard deviation lower than 6 and 13%, respectively. The recovery values obtained for each target analyte in Milli-Q water, receiving waters and treated water samples spiked with the nine studied dyes at concentrations of 8.0, 25.0 and 50.0 ng L(-1) (n = 3) gave average recoveries greater than 70%, with RSD dyes Disperse Red 1, Disperse Blue 373 and Disperse Violet 93 at concentrations ranging from 84 to 3452 ng L(-1) in the treated effluent (TE), affluent and points collected upstream and downstream of the drinking water treatment plant of a textile dye industry in Brazil. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  6. Liquid-crystalline membrane permeation ability for selected nitro hair dyes.

    Science.gov (United States)

    Bialas, Iwona; Arct, Jacek; Mojski, Miroslaw; Krus, Stanislaw

    2012-11-01

    A comparison of permeation ability of selected semi-permanent hair dyes and an attempt to estimate the influence of fundamental physicochemical parameters on dyes' epidermal penetration rate. Dyes' permeation ability through liposome membrane (as a model of stratum corneum) with side-by-side cells was assessed. It has been shown that the chosen dyes are capable of permeating the membrane. High penetration coefficients (Kp) were obtained for a simple nitrophenylenediamines and nitroaminophenols. Their N-, O-hydroxyalkyl substitution significantly limits penetration. H-bonding capability has a major impact on the investigated dyes' permeation ability. Substituents with H-bonding properties can significantly limit dyes' penetration, even in the case of lipophilic structures. Special attention should be placed into compounds with strong intramolecular H-bonding properties, which improve transmembrane transport. Substitution patterns have an influence on selected nitro dyes' permeation through a model stratum corneum. Permeation is limited by dyes diffusive properties (mostly by its H-bonding properties). Hydroxyalkylation results in hindered dyes permeation: purple, violet and blue nitrophenylenediamine or nitroaminophenol derivatives are less permeable than its not substituted analogues. © 2012 John Wiley & Sons A/S.

  7. Fluorescence dye tagging scheme for mercury quantification and speciation

    Science.gov (United States)

    Jiao, Hong; Catterall, Hannah

    2015-09-22

    A fluorescent dye or fluorophore capable of forming complexes with mercury comprises 6,8-difluoro-7-hydroxy-2-oxo-2H-chromene-3-carboxylate amide, wherein the amide is formed by reacting the succinimidyl ester (Pacific Blue.TM.) with an amino acid containing a thiol group, such as cysteine or glutathione. Mercury complexes of the fluorophore fluoresce when excited by a UV or violet laser diode, and the detected intensity can be calibrated to quantify the concentration of mercury in a sample reacted with the fluorophore.

  8. Photoporation and cell transfection using a violet diode laser

    Science.gov (United States)

    Paterson, L.; Agate, B.; Comrie, M.; Ferguson, R.; Lake, T. K.; Morris, J. E.; Carruthers, A. E.; Brown, C. T. A.; Sibbett, W.; Bryant, P. E.; Gunn-Moore, F.; Riches, A. C.; Dholakia, Kishan

    2005-01-01

    The introduction and subsequent expression of foreign DNA inside living mammalian cells (transfection) is achieved by photoporation with a violet diode laser. We direct a compact 405 nm laser diode source into an inverted optical microscope configuration and expose cells to 0.3 mW for 40 ms. The localized optical power density of ~1200 MW/m2 is six orders of magnitude lower than that used in femtosecond photoporation (~104 TW/m2). The beam perforates the cell plasma membrane to allow uptake of plasmid DNA containing an antibiotic resistant gene as well as the green fluorescent protein (GFP) gene. Successfully transfected cells then expand into clonal groups which are used to create stable cell lines. The use of the violet diode laser offers a new and simple poration technique compatible with standard microscopes and is the simplest method of laser-assisted cell poration reported to date.

  9. Benzidine Dyes Action Plan

    Science.gov (United States)

    This Action Plan addresses the use of benzidine-based dyes and benzidine congener-based dyes, both metalized and non-metalized, in products that would result in consumer exposure, such as for use to color textiles.

  10. Ultra-violet Behavior of Bosonic Quantum Membranes

    OpenAIRE

    Kaku, Michio

    1999-01-01

    We treat the action for a bosonic membrane as a sigma model, and then compute quantum corrections by integrating out higher membrane modes. As in string theory, where the equations of motion of Einstein's theory emerges by setting $\\beta = 0$, we find that, with certain assumptions, we can recover the equations of motion for the background fields. Although the membrane theory is non-renormalizable on the world volume by power counting, the investigation of the ultra-violet behavior of membran...

  11. Bioremediation of direct dyes in simulated textile effluents by a paramorphogenic form of Aspergillus oryzae.

    Science.gov (United States)

    Corso, C R; Almeida, E J R; Santos, G C; Morão, L G; Fabris, G S L; Mitter, E K

    2012-01-01

    Azo dyes are extensively used for coloring textiles, paper, food, leather, drinks, pharmaceutical products, cosmetics and inks. The textile industry consumes the largest amount of azo dyes, and it is estimated that approximately 10-15% of dyes used for coloring textiles may be lost in waste streams. Almost all azo dyes are synthetic and resist biodegradation, however, they can readily be reduced by a number of chemical and biological reducing systems. Biological treatment has advantages over physical and chemical methods due to lower costs and minimal environmental effect. This research focuses on the utilization of Aspergillus oryzae to remove some types of azo dyes from aqueous solutions. The fungus, physically induced in its paramorphogenic form (called 'pellets'), was used in the dye biosorption studies with both non-autoclaved and autoclaved hyphae, at different pH values. The goals were the removal of dyes by biosorption and the decrease of their toxicity. The dyes used were Direct Red 23 and Direct Violet 51. Their spectral stability (325-700 nm) was analyzed at different pH values (2.50, 4.50 and 6.50). The best biosorptive pH value and the toxicity limit, (which is given by the lethal concentration (LC(100)), were then determined. Each dye showed the same spectrum at different pH values. The best biosorptive pH was 2.50, for both non- autoclaved and autoclaved hyphae of A. oryzae. The toxicity level of the dyes was determined using the Trimmed Spearman-Karber Method, with Daphnia similis in all bioassays. The Direct Violet 51 (LC(100) 400 mg · mL(-1)) was found to be the most toxic dye, followed by the Direct Red 23 (LC(100) 900 mg · mL(-1)). The toxicity bioassays for each dye have shown that it is possible to decrease the toxicity level to zero by adding a small quantity of biomass from A. oryzae in its paramorphogenic form. The autoclaved biomass had a higher biosorptive capacity for the dye than the non-autoclaved biomass. The results show that

  12. Hair dye contact allergy

    DEFF Research Database (Denmark)

    Søsted, Heidi; Rastogi, Suresh Chandra; Andersen, Klaus Ejner

    2004-01-01

    Colouring of hair can cause severe allergic contact dermatitis. The most frequently reported hair dye allergens are p-phenylenediamine (PPD) and toluene-2,5-diamine, which are included in, respectively, the patch test standard series and the hairdressers series. The aim of the present study...... was to identify dye precursors and couplers in hair dyeing products causing clinical hair dye dermatitis and to compare the data with the contents of these compounds in a randomly selected set of similar products. The patient material comprised 9 cases of characteristic clinical allergic hair dye reaction, where...... exposure history and patch testing had identified a specific hair dye product as the cause of the reaction. The 9 products used by the patients were subjected to chemical analysis. 8 hair dye products contained toluene-2,5-diamine (0.18 to 0.98%). PPD (0.27%) was found in 1 product, and m-aminophenol (0...

  13. Dye-Sensitized Solar Cells (DSSCs) reengineering using TiO2 with natural dye (anthocyanin)

    Science.gov (United States)

    Subodro, Rohmat; Kristiawan, Budi; Ramelan, Ari Handono; Wahyuningsih, Sayekti; Munawaroh, Hanik; Hanif, Qonita Awliya; Saputri, Liya Nikmatul Maula Zulfa

    2017-01-01

    This research on Dye-Sensitized Solar Cells (DSSCs) reengineering was carried out using TiO2 with natural dye (anthocyanin). The fabrication of active carbon layer/TiO2 DSSC solar cell was based on natural dye containing anthocyanins such as mangosteen peel, red rose flower, black glutinous rice, and purple eggplant peel. DSSC was prepared with TiO2 thin layer doped with active carbon; Natural dye was analyzed using UV-Vis and TiO2 was analyzed using X-ray diffractometer (XRD), meanwhile scanning electron microscope (SEM) was used to obtain the size of the crystal. Keithley instrument test was carried out to find out I-V characteristics indicating that the highest efficiency occurred in DSSCs solar cell with 24-hour soaking with mangosteen peel 0.00047%.

  14. Decolorization of Anthraquinonic Dyes from Textile Effluent Using Horseradish Peroxidase: Optimization and Kinetic Study

    Science.gov (United States)

    Šekuljica, Nataša Ž.; Prlainović, Nevena Ž.; Stefanović, Andrea B.; Žuža, Milena G.; Čičkarić, Dragana Z.; Mijin, Dušan Ž.; Knežević-Jugović, Zorica D.

    2015-01-01

    Two anthraquinonic dyes, C.I. Acid Blue 225 and C.I. Acid Violet 109, were used as models to explore the feasibility of using the horseradish peroxidase enzyme (HRP) in the practical decolorization of anthraquinonic dyes in wastewater. The influence of process parameters such as enzyme concentration, hydrogen peroxide concentration, temperature, dye concentration, and pH was examined. The pH and temperature activity profiles were similar for decolorization of both dyes. Under the optimal conditions, 94.7% of C.I. Acid Violet 109 from aqueous solution was decolorized (treatment time 15 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.4 mM, dye concentration 30 mg/L, pH 4, and temperature 24°C) and 89.36% of C.I. Acid Blue 225 (32 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.04 mM, dye concentration 30 mg/L, pH 5, and temperature 24°C). The mechanism of both reactions has been proven to follow the two substrate ping-pong mechanism with substrate inhibition, revealing the formation of a nonproductive or dead-end complex between dye and HRP or between H2O2 and the oxidized form of the enzyme. Both chemical oxygen demand and total organic carbon values showed that there was a reduction in toxicity after the enzymatic treatment. This study verifies the viability of use of horseradish peroxidase for the wastewaters treatment of similar anthraquinonic dyes. PMID:25685837

  15. Decolorization of Anthraquinonic Dyes from Textile Effluent Using Horseradish Peroxidase: Optimization and Kinetic Study

    Directory of Open Access Journals (Sweden)

    Nataša Ž. Šekuljica

    2015-01-01

    Full Text Available Two anthraquinonic dyes, C.I. Acid Blue 225 and C.I. Acid Violet 109, were used as models to explore the feasibility of using the horseradish peroxidase enzyme (HRP in the practical decolorization of anthraquinonic dyes in wastewater. The influence of process parameters such as enzyme concentration, hydrogen peroxide concentration, temperature, dye concentration, and pH was examined. The pH and temperature activity profiles were similar for decolorization of both dyes. Under the optimal conditions, 94.7% of C.I. Acid Violet 109 from aqueous solution was decolorized (treatment time 15 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.4 mM, dye concentration 30 mg/L, pH 4, and temperature 24°C and 89.36% of C.I. Acid Blue 225 (32 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.04 mM, dye concentration 30 mg/L, pH 5, and temperature 24°C. The mechanism of both reactions has been proven to follow the two substrate ping-pong mechanism with substrate inhibition, revealing the formation of a nonproductive or dead-end complex between dye and HRP or between H2O2 and the oxidized form of the enzyme. Both chemical oxygen demand and total organic carbon values showed that there was a reduction in toxicity after the enzymatic treatment. This study verifies the viability of use of horseradish peroxidase for the wastewaters treatment of similar anthraquinonic dyes.

  16. Using protein nanofibrils to remove azo dyes from aqueous solution by the coagulation process.

    Science.gov (United States)

    Morshedi, Dina; Mohammadi, Zeinab; Akbar Boojar, Masoud Mashhadi; Aliakbari, Farhang

    2013-12-01

    The ever-increasing applications of hazardous azo dyes as industrialized coloring agents have led to serious remediation challenges. In this study, proteinaceous nanofibrils were examined as coagulants for decolorization of azo dyes in aqueous solutions. The results provided some insight regarding the mechanism of dye removal. The strength of nanofibrils to remove dyes from solution was evaluated by remediation of acid red 88, Bismarck brown R, direct violet 51, reactive black 5, and Congo red. However, the efficiency of nanofibrils to coagulate with different dyes was variable (60-98%) and dependent on the structures of dyes and the physicochemical conditions of the solutions. Increasing the temperature or ionic strength declined the coagulation time and induced the rate of dye removal. Changing pH had contradictory effects on the dye removal efficiency which was more affected by the chemical structure of the dye rather than the change in stability of the coagulant. The efficiency of nanofibrils to remove dyes was more than that of charcoal, which is considered as one of the most common substances used for azo dye remediation which may be due to its well dispersion in the aqueous solutions, and slower rates of the coagulation than that of the adsorption process. Furthermore, cytotoxicity was not detected after treating cell cultures with the decolorized solutions. Accordingly, by integrating biological and biophysicochemical processes, proteinaceous nanofibrils can be promising candidates for treatment of colored wastewaters. Ease of production, proper and quick dispersion in water, without the production of dangerous dye by-products and derivatives, are some of the main advantages of nanofibrils. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains.

    Science.gov (United States)

    Yu, J; Wang, X; Yue, P L

    2001-10-01

    Pseudomonas spp were isolated from an anaerobic-aerobic dyeing house wastewater treatment facility as the most active azo-dye degraders. Decolorization of azo dyes and non-azo dyes including anthraquinone, metal complex and indigo was compared with individual strains and a bacterial consortium consisting of the individual strain and municipal sludge (50 50wt). The consortium showed a significant improvement on decolorization of two recalcitrant non-azo dyes, but little effect on the dyes that the individual strains could degrade to a great or moderate extent. Decolorization of Acid violet 7 (monoazo) by a Pseudomonas strain GM3 was studied in detail under various conditions. The optimum decolorization activity was observed in a narrow pH range (7-8), a narrow temperature range (35-40 degrees C), and at the presence of organic and ammonium nitrogen. Nitrate had a severe inhibitory effect on azo dye decolorization: 10 mg/L led to 50% drop in decolorization activity and 1000 mg/L to complete activity depression. A kinetic model is established giving the dependence of decolorization rate on cell mass concentration (first-order) and dye concentration (half order). The rate increased with temperature from 10 to 35 C, which can be predicted by Arrhenius equation with the activation energy of 16.87 kcal/mol and the frequency factor of 1.49 x 10(11) (mg L)1/2/g DCM min.

  18. Adsorption kinetics and equilibrium studies for removal of acid azo dyes by aniline formaldehyde condensate

    Science.gov (United States)

    Terangpi, Praisy; Chakraborty, Saswati

    2017-11-01

    Adsorption of two acid dyes named Acid orange 8 (AO8) and Acid violet 7 (AV7) by amine based polymer aniline formaldehyde condensate (AFC) was studied. Adsorption of both dyes was favored at acidic pH. Electrostatic attraction between protonated amine group (NH3 +) of AFC and anionic sulfonate group (SO3 -) of dye molecule along with hydrogen bond formation and interaction between aromatic group of dye and AFC were responsible mechanisms for dye uptake. Isotherm of AO8 was Type I and followed Langmuir isotherm model. AV7 isotherm on AFC was of Type III and followed Freundlich model. Kinetics study showed that external mass transfer was the rate limiting step followed by intraparticle diffusion. Maximum adsorption capacities of AO8 and AV7 were observed as 164 and 68 mg/g. AO8 dye being smaller in molecular size was adsorbed more due to higher diffusion rate and higher dye: AFC ratio, which enhanced the interaction between dye and polymer.

  19. One-pot facile synthesis of Bi2S3/SnS2/Bi2O3 ternary heterojunction as advanced double Z-scheme photocatalytic system for efficient dye removal under sunlight irradiation

    Science.gov (United States)

    Yu, Chongfei; Wang, Ke; Yang, Pengyan; Yang, Shengnan; Lu, Chen; Song, Yingze; Dong, Shuying; Sun, Jingyu; Sun, Jianhui

    2017-10-01

    The construction of solid-state Z-scheme heterojunction photocatalytic system to efficiently tailor the photoinduced charge separation is of great significance to water purification. In this study, we reported for the first time the controlled preparation of Bi2S3/SnS2/Bi2O3 double Z-scheme heterojunction photocatalyst by a simple one-pot solvothermal route. The experimental results with regard to rhodamine B (RhB) degradation showed that the as-fabricated heterojunctions can significantly enhance photocatalytic activity in comparison with pure Bi2S3. In addition, the optimized BiS-4 sample possessed good simulated-sunlight photocatalytic efficiency towards the degradation of other types of dyes, including methyl orange (MO), methylene blue (MB), orange IV (OG IV) and crystal violet (CV). By further probing the charge separation and migration behaviors, studying the band structure, as well as conducting the active species trapping experiments, a possible double Z-scheme photocatalytic mechanism was proposed, which not only benefited the efficient photogenerated electron-hole pair separation but also demonstrated advanced capacity for the removal of organic dyes. This work would pave the route towards the design of novel Z-scheme photocatalytic systems for energy conversion and environmental remediation.

  20. Ultra-violet emission in Ho:ZBLAN fiber

    International Nuclear Information System (INIS)

    Kowalska, M.; Klocek, G.; Piramidowicz, R.; Malinowski, M.

    2004-01-01

    We report on the short wavelength (green, blue, and ultra-violet (UV)) emission in trivalent holmium doped fluoro-zirconate fiber (Ho 3+ :ZBLAN) under direct and upconversion pumping. Efficient red to UV upconversion has been observed using 647 nm cw pumping by krypton ion laser. A close to cubic UV signal intensity dependence on incident red pump power was determined, confirming the three-photon character of the observed process. The responsible upconversion mechanisms were investigated and shown to be excited state absorption (ESA) via low-lying 5 I 7 and 5 I 6 sates. Dynamics of the involved excited states have been studied under pulsed laser excitation

  1. [Anaphylaxis to blue dyes].

    Science.gov (United States)

    Langner-Viviani, F; Chappuis, S; Bergmann, M M; Ribi, C

    2014-04-16

    In medicine, vital blue dyes are mainly used for the evaluation of sentinel lymph nodes in oncologic surgery. Perioperative anaphylaxis to blue dyes is a rare but significant complication. Allergic reactions to blue dyes are supposedly IgE-mediated and mainly caused by triarylmethanes (patent blue and isosulfane blue) and less frequently by methylene blue. These substances usually do not feature on the anesthesia record and should not be omitted from the list of suspects having caused the perioperative reaction, in the same manner as latex and chlorhexidine. The diagnosis of hypersensitivity to vital blue dyes can be established by skin test. We illustrate this topic with three clinical cases.

  2. Dichroic Liquid Crystal Displays

    Science.gov (United States)

    Bahadur, Birendra

    The following sections are included: * INTRODUCTION * DICHROIC DYES * Chemical Structure * Chemical and Photochemical Stability * THEORETICAL MODELLING * DEFECTS CAUSED BY PROLONGED LIGHT IRRADIATION * CHEMICAL STRUCTURE AND PHOTOSTABILITY * OTHER PARAMETERS AFFECTING PHOTOSTABILITY * CELL PREPARATION * DICHROIC PARAMETERS AND THEIR MEASUREMENTS * Order Parameter and Dichroic Ratio Of Dyes * Absorbance, Order Parameter and Dichroic Ratio Measurements * IMPACT OF DYE STRUCTURE AND LIQUID CRYSTAL HOST ON PHYSICAL PROPERTIES OF A DICHROIC MIXTURE * Order Parameter and Dichroic Ratio * EFFECT OF LENGTH OF DICHROIC DYES ON THE ORDER PARAMETER * EFFECT OF THE BREADTH OF DYE ON THE ORDER PARAMETER * EFFECT OF THE HOST ON THE ORDER PARAMETER * TEMPERATURE VARIATION OF THE ORDER PARAMETER OF DYES IN A LIQUID CRYSTAL HOST * IMPACT OF DYE CONCENTRATION ON THE ORDER PARAMETER * Temperature Range * Viscosity * Dielectric Constant and Anisotropy * Refractive Indices and Birefringence * solubility43,153-156 * Absorption Wavelength and Auxochromic Groups * Molecular Engineering of Dichroic Dyes * OPTICAL, ELECTRO-OPTICAL AND LIFE PARAMETERS * Colour And CIE Colour space120,160-166 * CIE 1931 COLOUR SPACE * CIE 1976 CHROMATICITY DIAGRAM * CIE UNIFORM COLOUR SPACES & COLOUR DIFFERENCE FORMULAE120,160-166 * Electro-Optical Parameters120 * LUMINANCE * CONTRAST AND CONTRAST RATIO * SWITCHING SPEED * Life Parameters and Failure Modes * DICHROIC MIXTURE FORMULATION * Monochrome Mixture * Black Mixture * ACHROMATIC BLACK MIXTURE FOR HEILMEIER DISPLAYS * Effect of Illuminant on Display Colour * Colour of the Field-On State * Effect of Dye Linewidth * Optimum Centroid Wavelengths * Effect of Dye Concentration * Mixture Formulation Using More Than Three Dyes * ACHROMATIC MIXTURE FOR WHITE-TAYLOR TYPE DISPLAYS * HEILMEIER DISPLAYS * Theoretical Modelling * Threshold Characteristic * Effects of Dye Concentration on Electro-optical Parameters * Effect of Cholesteric Doping * Effect of Alignment

  3. 75 FR 25209 - Carbazole Violet Pigment 23 from India: Rescission of Administrative Review

    Science.gov (United States)

    2010-05-07

    ... International Trade Administration A-533-838 Carbazole Violet Pigment 23 from India: Rescission of... duty order on carbazole violet pigment 23 (CVP 23) from India for the period of December 1, 2008...) (Initiation Notice). We initiated the review with respect to Meghmani Pigments (Meghmani) based on its request...

  4. 75 FR 38076 - Carbazole Violet Pigment 23 from India: Final Results of Antidumping Duty Administrative Review

    Science.gov (United States)

    2010-07-01

    ... International Trade Administration Carbazole Violet Pigment 23 from India: Final Results of Antidumping Duty... administrative review of the antidumping duty order on carbazole violet pigment 23 (CVP 23) from India. The... Pigment 23 from India: Preliminary Results of Antidumping Duty Administrative Review, 74 FR 68038...

  5. 75 FR 977 - Carbazole Violet Pigment 23 From India: Preliminary Results of Countervailing Duty Administrative...

    Science.gov (United States)

    2010-01-07

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-533-839] Carbazole Violet Pigment 23... countervailing duty order on carbazole violet pigment 23 (CVP-23) from India for the period January 1, 2007... production and export of CVP-23 from India. See ``Preliminary Results of Administrative Review'' section...

  6. Oxazine laser dyes

    Science.gov (United States)

    Hammond, Peter R.; Field, George F.

    1992-01-01

    New oxazine compounds useful as dye laser media in solution, are superiior to prior art materials. The oxazine dyes useful when pumped by the 578.2 nm copper line to operate in the 700-800 nm range are described by formula I ##STR1##

  7. Chemistry of Natural Dyes

    Indian Academy of Sciences (India)

    The sulfonated oils, which possess better metal bind- ing capacity than the natural oils due to the presence of sulfonic acid group, bind to metal ions forming a complex with the dye to give superior fastness and hue. Limitations of Natural Dyes. Tedious extraction of colouring component from the raw mate- rial, low colour ...

  8. for aqueous dye lasers

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... inclusion complex of RhB with the container molecule cucurbit[7]uril (CB[7]). Keywords. Temperature-dependent fluorescence; Rhodamine B; cucurbit[7]uril; host–guest complex; dye laser. PACS Nos 36.20.kd; 83.60.pq; 87.64.kv. 1. Introduction. Rhodamine B (RhB) is an efficient and photostable laser dye ...

  9. Anaerobic azo dye reduction

    NARCIS (Netherlands)

    Zee, van der F.P.

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also

  10. Synthesis of Cu Doped ZnO Nanostructures for Ultra Violet Sensing

    Directory of Open Access Journals (Sweden)

    Nazar Abbas SHAH

    2015-03-01

    Full Text Available This paper mainly focused on the synthesis of zinc oxide nanostructures, their characterization and their ultra violet light sensing response at room temperature. Nanowires, nanobelts and nanosheets were synthesized by varying doping material copper by using vapor transport technique governed by the vapor-liquid-solid or vapor-solid mechanisms. The structural, morphological and optical characterization was carried out using X-ray diffraction, scanning electron microscopy, energy dispersive X-Ray and ultra violet visible spectroscopy techniques. Finally the ultra violet light sensing response of these nanostructures was observed by using Keithley meter. The high ultra violet photosensitivity and fast response time justifies the effective utilization of these ZnO nanostructures as ultra violet sensors in different areas.

  11. Karen Resistance Poetry translated and introduced by Violet Cho

    Directory of Open Access Journals (Sweden)

    Violet Cho

    2014-05-01

    Full Text Available Karen Resistance Poetry translated and introduced by Violet Cho. Tee Noe was born as M. No Noe in a village called Thavorta, Karen State, Myanmar (Burma in 1952. After completing year 10 at a state high school in 1974, he worked as a junior clerk at a local government office in Karen State, eastern Myanmar. Later he joined the rebellion as a soldier for the Karen National Liberation Army and as a schoolteacher in Burmese refugee camps along Thai-Burma border. With no formal knowledge of the mechanics of poetry, Tee Noe has become a leading voice of the Karen diaspora. From a young age, Noe was drawn to poetry. He remembers singing a short hta (Karen oral poem to thank his cousin who gave him a woollen hat as a present when he turned six: 'To school I run when the bell rings, with a woollen hat today I went.' "

  12. [Qualitative Determination of Organic Vapour Using Violet and Visible Spectrum].

    Science.gov (United States)

    Jiang, Bo; Hu, Wen-zhong; Liu, Chang-jian; Zheng, Wei; Qi, Xiao-hui; Jiang, Ai-li; Wang, Yan-ying

    2015-12-01

    Vapours of organic matters were determined qualitatively employed with ultraviolet-visible absorption spectroscopy. Vapours of organic matters were detected using ultraviolet-visible spectrophotometer employing polyethylene film as medium, the ultraviolet and visible absorption spectra of vegetable oil vapours of soybean oil, sunflower seed oil, peanut oil, rapeseed oil, sesame oil, cotton seed oil, tung tree seed oil, and organic compound vapours of acetone, ethyl acetate, 95% ethanol, glacial acetic acid were obtained. Experimental results showed that spectra of the vegetable oil vapour and the organic compound vapour could be obtained commendably, since ultra violet and visible spectrum of polyethylene film could be deducted by spectrograph zero setting. Different kinds of vegetable oils could been distinguished commendably in the spectra since the λ(max), λ(min), number of absorption peak, position, inflection point in the ultra violet and visible spectra obtained from the vapours of the vegetable oils were all inconsistent, and the vapours of organic compounds were also determined perfectly. The method had a good reproducibility, the ultraviolet and visible absorption spectra of the vapours of sunflower seed oil in 10 times determination were absolutely the same. The experimental result indicated that polyethylene film as a kind of medium could be used for qualitative analysis of ultraviolet and visible absorption spectroscopy. The method for determination of the vapours of the vegetable oils and organic compounds had the peculiarities of fast speed analysis, well reproducibility, accuracy and reliability and low cost, and so on. Ultraviolet and visible absorption spectrum of organic vapour could provide feature information of material vapour and structural information of organic compound, and provide a novel test method for identifying vapour of compound and organic matter.

  13. Textile Dye Removal from Aqueous Solution using Modified Graphite Waste/Lanthanum/Chitosan Composite

    Science.gov (United States)

    Kusrini, E.; Wicaksono, B.; Yulizar, Y.; Prasetyanto, EA; Gunawan, C.

    2018-03-01

    We investigated various pre-treatment processes of graphite waste using thermal, mechanical and chemical methods. The aim of this work is to study the performance of modified graphite waste/lanthanum/chitosan composite (MG) as adsorbent for textile dye removal from aqueous solution. Effect of graphite waste resources, adsorbent size and lanthanum concentration on the dye removal were studied in batch experiments. Selectivity of MG was also investigated. Pre-heated graphite waste (NMG) was conducted at 80°C for 1 h, followed by mechanical crushing of the resultant graphite to 75 μm particle size, giving adsorption performance of ˜58%, ˜67%, ˜93% and ˜98% of the model dye rhodamine B (concentration determined by UV-vis spectroscopy at 554 nm), methyl orange (464 nm), methylene blue (664 nm) and methyl violet (580 nm), respectively from aqueous solution. For this process, the system required less than ˜5 min for adsorbent material to be completely saturated with the adsorbate. Further chemical modification of the pre-treated graphite waste (MG) with lanthanum (0.01 – V 0.03 M) and chitosan (0.5% w/w) did not improve the performance of dye adsorption. Under comparable experimental conditions, as those of the ‘thermal-mechanical-pre-treated-only’ (NMG), modification of graphite waste (MG) with 0.03 M lanthanum and 0.5% w/w chitosan resulted in ˜14%, ˜47%, ˜72% and ˜85% adsorption of rhodamine B, methyl orange, methylene blue and methyl violet, respectively. Selective adsorption of methylene blue at most to ˜79%, followed by methyl orange, methyl violet and rhodamine B with adsorption efficiency ˜67, ˜38, and ˜9% sequentially using MG with 0.03 M lanthanum and 0.5% w/w chitosan.

  14. Comparison of photocatalytic degradation of dyes in relation to their structure.

    Science.gov (United States)

    Byberg, R; Cobb, J; Martin, L Diez; Thompson, R W; Camesano, T A; Zahraa, O; Pons, M N

    2013-06-01

    The photocatalytic degradation of a series of six acid dyes (Direct Red 80, Direct Red 81, Direct Red 23, Direct Violet 51, Direct Yellow 27, and Direct Yellow 50) has been tested compared in terms of color removal, mineralization, and toxicity (Lactuca sativa L. test) after photocatalysis on immobilized titanium dioxide. The dyes were examined at their natural pH and after hydrolysis at pH 12. Results show that hydrolysis decreases strongly the efficiency of color removal, that full mineralization takes much longer reaction time than color removal, and that toxicity is only very partially reduced. Some structural parameters, related to the structure and the topology of the dye molecules, could be correlated with the apparent color removal rates at natural pH.

  15. 75 FR 62765 - Carbazole Violet Pigment 23 From India: Final Results of Antidumping Duty Changed-Circumstances...

    Science.gov (United States)

    2010-10-13

    ... International Trade Administration Carbazole Violet Pigment 23 From India: Final Results of Antidumping Duty.... See Carbazole Violet Pigment 23 From India: Preliminary Results of Antidumping Duty Changed... most recently completed review. See Carbazole Violet Pigment 23 From India: Final Results of...

  16. 75 FR 36630 - Carbazole Violet Pigment 23 from the People's Republic of China: Final Results of Antidumping...

    Science.gov (United States)

    2010-06-28

    ... International Trade Administration A-570-892 Carbazole Violet Pigment 23 from the People's Republic of China... antidumping duty order on carbazole violet pigment 23 (CVP 23) from the People's Republic of China (PRC). See Carbazole Violet Pigment 23 From the People's Republic of China: Preliminary Results of Antidumping Duty...

  17. 77 FR 1463 - Carbazole Violet Pigment 23 From the People's Republic of China: Final Rescission of Antidumping...

    Science.gov (United States)

    2012-01-10

    ... International Trade Administration Carbazole Violet Pigment 23 From the People's Republic of China: Final... carbazole violet pigment 23 (CVP-23) from the People's Republic of China (PRC).\\1\\ This administrative... Carbazole Violet Pigment 23 From the People's Republic of China: Preliminary Intent To Rescind Antidumping...

  18. 76 FR 55003 - Carbazole Violet Pigment 23 From the People's Republic of China: Preliminary Intent To Rescind...

    Science.gov (United States)

    2011-09-06

    ... International Trade Administration Carbazole Violet Pigment 23 From the People's Republic of China: Preliminary... conducting an administrative review of the antidumping duty order on carbazole violet pigment 23 (CVP 23... on CVP 23 from the PRC. See Antidumping Duty Order: Carbazole Violet Pigment 23 From the People's...

  19. 75 FR 25840 - Carbazole Violet Pigment 23 from the People's Republic of China: Extension of Time Limit for the...

    Science.gov (United States)

    2010-05-10

    ... International Trade Administration Carbazole Violet Pigment 23 from the People's Republic of China: Extension of... preliminary results of the administrative review of the antidumping duty order on carbazole violet pigment 23.... See Carbazole Violet Pigment 23 From the People's Republic of China: Preliminary Results of...

  20. 75 FR 10759 - Carbazole Violet Pigment 23 from India: Initiation of Antidumping Duty Changed-Circumstances Review

    Science.gov (United States)

    2010-03-09

    ... International Trade Administration Carbazole Violet Pigment 23 from India: Initiation of Antidumping Duty... antidumping duty order on carbazole violet pigment 23 from India with respect to Meghmani Pigments. EFFECTIVE... 29, 2004, we published in the Federal Register the antidumping duty order on carbazole violet pigment...

  1. Direct thermal dyes

    Science.gov (United States)

    Ehlinger, Edward

    1990-07-01

    Direct thermal dyes are members of a class of compounds referred to in the imaging industry as color formers or leuco dyes. The oldest members of that class have simple triarylmethane structures, and have been employed for years in various dyeing applications. More complex triarylmethane compounds, such as phthalides and fluorans, are now used in various imaging systems to produce color. Color is derived from all of these compounds via the same mechanism, on a molecular level. That is, an event of activation produces a highly resonating cationic system whose interaction with incident light produces reflected light of a specific color. The activation event in the case of a direct thermal system is the creation of a melt on the paper involving dye and an acidic developer. The three major performance parameters in a thermal system are background color, image density, and image stability. The three major dye physical parameters affecting thermal performance are chemical constituency, purity, and particle size. Those dyes having the best combination of characteristics which can also be manufactured economically dominate the marketplace. Manufacturing high performance dyes for the thermal market involves multi-step, convergent reaction sequences performed on large scale. Intermediates must be manufactured at the right time, and at the right quality to be useful.

  2. Dyeing of Polyester with Disperse Dyes: Part 2. Synthesis and Dyeing Characteristics of Some Azo Disperse Dyes for Polyester Fabrics

    Directory of Open Access Journals (Sweden)

    Alya M. Al-Etaibi

    2016-06-01

    Full Text Available The goal of this study was to utilize carrier for accelerating the rate of dyeing not only to enhance dyeing of polyester fabrics dyed with disperse dyes 3a,b, but also to save energy. Both the color strength expressed as dye uptake and the fastness properties of the dyed fabrics were evaluated.

  3. A high-peak-power UV picosecond-pulse light source based on a gain-switched 1.55 microm laser diode and its application to time-resolved spectroscopy of blue-violet materials.

    Science.gov (United States)

    Sato, Aya; Kono, Shunsuke; Saito, Kyosuke; Sato, Ki-ichi; Yokoyama, Hiroyuki

    2010-02-01

    We generated sub-kilowatt peak-power and 6-ps duration 390-nm optical pulses via the fourth harmonic generation of amplified optical output from a gain-switched 1.55-microm laser diode. We obtained a power-conversion-efficiency of 12% from 1.55-microm to 390-nm light, and subsequently applied the ultraviolet pulses to time-resolved spectroscopy of blue-violet luminescent materials, including a Coumarine dye solution and nitride semiconductor materials using single-photon and two-photon excitation schemes.

  4. MORPHOGENESIS AND DEVELOPMENTAL BIOLOGY OF AFRICAN VIOLET (SAINTPAULIA IONANTHA H. WENDL.

    Directory of Open Access Journals (Sweden)

    Jaime A. TEIXEIRA DA SILVA

    2016-12-01

    Full Text Available African violet (Saintpaulia ionantha H. Wendl. has been domesticated, bred and commercialized. It is the most famous and popular of the Saintpaulia species, its ornamental value arising from its attractive leaves and flowers. African violet plants are easy to propagate by adventitious organ regeneration and are very sensitive to environmental factors including light, temperature, humidity, CO2 concentration and photoperiod. This review offers a short synthesis on advances made in conventional vegetative propagation by adventitious organ regeneration, select early historical in vitro developmental perspectives, and vegetative and reproductive development of African violet.

  5. The Far Ultra-Violet Imager on the Icon Mission

    Science.gov (United States)

    Mende, S. B.; Frey, H. U.; Rider, K.; Chou, C.; Harris, S. E.; Siegmund, O. H. W.; England, S. L.; Wilkins, C.; Craig, W.; Immel, T. J.; Turin, P.; Darling, N.; Loicq, J.; Blain, P.; Syrstad, E.; Thompson, B.; Burt, R.; Champagne, J.; Sevilla, P.; Ellis, S.

    2017-10-01

    ICON Far UltraViolet (FUV) imager contributes to the ICON science objectives by providing remote sensing measurements of the daytime and nighttime atmosphere/ionosphere. During sunlit atmospheric conditions, ICON FUV images the limb altitude profile in the shortwave (SW) band at 135.6 nm and the longwave (LW) band at 157 nm perpendicular to the satellite motion to retrieve the atmospheric O/N2 ratio. In conditions of atmospheric darkness, ICON FUV measures the 135.6 nm recombination emission of O+ ions used to compute the nighttime ionospheric altitude distribution. ICON Far UltraViolet (FUV) imager is a Czerny-Turner design Spectrographic Imager with two exit slits and corresponding back imager cameras that produce two independent images in separate wavelength bands on two detectors. All observations will be processed as limb altitude profiles. In addition, the ionospheric 135.6 nm data will be processed as longitude and latitude spatial maps to obtain images of ion distributions around regions of equatorial spread F. The ICON FUV optic axis is pointed 20 degrees below local horizontal and has a steering mirror that allows the field of view to be steered up to 30 degrees forward and aft, to keep the local magnetic meridian in the field of view. The detectors are micro channel plate (MCP) intensified FUV tubes with the phosphor fiber-optically coupled to Charge Coupled Devices (CCDs). The dual stack MCP-s amplify the photoelectron signals to overcome the CCD noise and the rapidly scanned frames are co-added to digitally create 12-second integrated images. Digital on-board signal processing is used to compensate for geometric distortion and satellite motion and to achieve data compression. The instrument was originally aligned in visible light by using a special grating and visible cameras. Final alignment, functional and environmental testing and calibration were performed in a large vacuum chamber with a UV source. The test and calibration program showed that ICON

  6. Dye Application, Manufacture of Dye Intermediates and Dyes

    Science.gov (United States)

    Freeman, H. S.; Mock, G. N.

    It is difficult if not impossible to determine when mankind first systematically applied color to a textile substrate. The first colored fabrics were probably nonwoven felts painted in imitation of animal skins. The first dyeings were probably actually little more than stains from the juice of berries. Ancient Greek writers described painted fabrics worn by the tribes of Asia Minor. But just where did the ancient craft have its origins? Was there one original birthplace or were there a number of simultaneous beginnings around the world?

  7. Avian ultraviolet/violet cones identified as probable magnetoreceptors.

    Directory of Open Access Journals (Sweden)

    Christine Niessner

    Full Text Available BACKGROUND: The Radical-Pair-Model postulates that the reception of magnetic compass directions in birds is based on spin-chemical reactions in specialized photopigments in the eye, with cryptochromes discussed as candidate molecules. But so far, the exact subcellular characterization of these molecules in the retina remained unknown. METHODOLOGY/PRINCIPAL FINDINGS: We here describe the localization of cryptochrome 1a (Cry1a in the retina of European robins, Erithacus rubecula, and domestic chickens, Gallus gallus, two species that have been shown to use the magnetic field for compass orientation. In both species, Cry1a is present exclusively in the ultraviolet/violet (UV/V cones that are distributed across the entire retina. Electron microscopy shows Cry1a in ordered bands along the membrane discs of the outer segment, and cell fractionation reveals Cry1a in the membrane fraction, suggesting the possibility that Cry1a is anchored along membranes. CONCLUSIONS/SIGNIFICANCE: We provide first structural evidence that Cry1a occurs within a sensory structure arranged in a way that fulfils essential requirements of the Radical-Pair-Model. Our findings, identifying the UV/V-cones as probable magnetoreceptors, support the assumption that Cry1a is indeed the receptor molecule mediating information on magnetic directions, and thus provide the Radical-Pair-Model with a profound histological background.

  8. Mask Materials and Designs for Extreme Ultra Violet Lithography

    Science.gov (United States)

    Kim, Jung Sik; Ahn, Jinho

    2018-03-01

    Extreme ultra violet lithography (EUVL) is no longer a future technology but is going to be inserted into mass production of semiconductor devices of 7 nm technology node in 2018. EUVL is an extension of optical lithography using extremely short wavelength (13.5 nm). This short wavelength requires major modifications in the optical systems due to the very strong absorption of EUV light by materials. Refractive optics can no longer be used, and reflective optics is the only solution to transfer image from mask to wafer. This is why we need the multilayer (ML) mirror-based mask as well as an oblique incident angle of light. This paper discusses the principal theory on the EUV mask design and its component materials including ML reflector and EUV absorber. Mask shadowing effect (or mask 3D effect) is explained and its technical solutions like phase shift mask is reviewed. Even though not all the technical issues on EUV mask are handled in this review paper, you will be able to understand the principles determining the performance of EUV masks.

  9. Computer-to-plate Technology: Violet or Thermo?

    Directory of Open Access Journals (Sweden)

    Michael Mittelhaus

    2004-12-01

    Full Text Available Up to now CtP has been a technology for medium-sized and large companies and their printing presses, and thus predominantly in the 70 x 100 cm format and larger. The CtP technology is and remains divided up between violet and thermo, with the advantages and drawbacks of both imaging systems in a counterbalance. Due to the broad penetration of CtP in many markets, practical questions have now come to the fore, including those of continuous process control and quality assurance; providers and specialist forums on these topics will also hold centre stage at drupa. This applies equally to frequency-modulated screening processes, which are today well known and are viewed as a means for ensuring a competitive edge. The CtP technology is now broader and more diverse than ever, and drupa 2004 will clarify which technology and which imagers best allow economical digital plate production for formats up to 50 x 70 cm.

  10. Investigation of nonionic diazo dye-doped polymer dispersed liquid ...

    Indian Academy of Sciences (India)

    Such changes were observed with the images taken by polarized optical microscope. (POM). The detail discussions on such behaviours were also made. Keywords. Polymer dispersed liquid crystals (PDLC); polymer-induced phase separation (PIPS); droplet morphology; order parameter; dichroic dye; contrast ratio. 1.

  11. Investigation of nonionic diazo dye-doped polymer dispersed liquid ...

    Indian Academy of Sciences (India)

    (DGIST), Daegu 711-873, Korea. MS received 1 December 2010; revised 25 May 2011. Abstract. Sudan black B (SBB) was used to investigate as the nonionic diazo dye-doped in polymer dispersed liq- uid crystal (PDLC) display, by polymerization-induced phase separation (PIPS) method. The maximum absorbance,.

  12. DYEING OF ELASTIC TISSUES WITHOUT DIFFERENTIATION: NEW, QUICKLY METHOD

    Directory of Open Access Journals (Sweden)

    Gorana Rancic

    2006-07-01

    Full Text Available Our methodological procedure established successful technique of the direct dying of elastic fibers and lamellas in elastic tissues. Experiments were carried out on a human autopsy material. Blocks rich in elastic fibers were fixed by 10% buffered neutral formaline and cut in the thickness of 5mm. Deparaffinization of slides is done by xylol treatment (2x15 min. Additional denaturation is achieved by combined solution, which contains 1.2 g of picric acid in 30% solution of glacial acetic acid. By chloramine B application as blocking agent in form of 1% DMSO solution the dye's affinity for eviromental tissue is decreased. Tissues prepared in this way are treated with 0.5% solution of acidic sulfonic color Evans Blue (C.I.23860 in ratio 2:1. Lamellas are dark violet with light violet periphery. Obtained results are in favor of high applicability of this method in light microscopy. In our opinion, this method can be recommended as one of the methods for identification of elastic tissues.

  13. Radiolysis of Reactive Azo Dyes in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Agustin N.M. Bagyo

    2004-07-01

    Full Text Available The effects of radiation on aerated reactive dye solutions i.e Cibacron Violet, Cibacron Orange and Cibacron Yellow solutions have been studied. Parameters analysis were the change of pH after radiation, the change of absorption, degradation products and effects of pH on the radiolysis. The uv-vis absorption of solutions were observed before and after irradiation. pH variation was done from pHs 3, 5, 7, 9 and 12. Irradiation was done at doses of 0, 2, 4, 6, 8 and 10 kGy with dose rate of 5 kGy/h and was determined by a Fricke dosimeter. HPLC with UV detector was used to analyze the degradation products. Oxalic acid was the main degradation product and small amount of succinic acid was also detected.

  14. A Fresh Look at the Crystal Violet Lab with Handheld Camera Colorimetry

    Science.gov (United States)

    Knutson, Theodore R.; Knutson, Cassandra M.; Mozzetti, Abbie R.; Campos, Antonio R.; Haynes, Christy L.; Penn, R. Lee

    2015-01-01

    Chemical kinetic experiments to determine rate laws are common in high school and college chemistry courses. For reactions involving a color change, rate laws can be determined experimentally using spectrophotometric or colorimetric equipment though this equipment can be cost prohibitive. Previous work demonstrated that inexpensive handheld camera…

  15. Performing Vaginal Lavage, Crystal Violet Staining, and Vaginal Cytological Evaluation for Mouse Estrous Cycle Staging Identification

    Science.gov (United States)

    McLean, Ashleigh C.; Valenzuela, Nicolas; Fai, Stephen; Bennett, Steffany A.L.

    2012-01-01

    A rapid means of assessing reproductive status in rodents is useful not only in the study of reproductive dysfunction but is also required for the production of new mouse models of disease and investigations into the hormonal regulation of tissue degeneration (or regeneration) following pathological challenge. The murine reproductive (or estrous) cycle is divided into 4 stages: proestrus, estrus, metestrus, and diestrus. Defined fluctuations in circulating levels of the ovarian steroids 17-β-estradiol and progesterone, the gonadotropins luteinizing and follicle stimulating hormones, and the luteotropic hormone prolactin signal transition through these reproductive stages. Changes in cell typology within the murine vaginal canal reflect these underlying endocrine events. Daily assessment of the relative ratio of nucleated epithelial cells, cornified squamous epithelial cells, and leukocytes present in vaginal smears can be used to identify murine estrous stages. The degree of invasiveness, however, employed in collecting these samples can alter reproductive status and elicit an inflammatory response that can confound cytological assessment of smears. Here, we describe a simple, non-invasive protocol that can be used to determine the stage of the estrous cycle of a female mouse without altering her reproductive cycle. We detail how to differentiate between the four stages of the estrous cycle by collection and analysis of predominant cell typology in vaginal smears and we show how these changes can be interpreted with respect to endocrine status. PMID:23007862

  16. Poly(acrylamide) functionalized chitosan: An efficient adsorbent for azo dyes from aqueous solutions

    International Nuclear Information System (INIS)

    Singh, Vandana; Sharma, Ajit Kumar; Sanghi, Rashmi

    2009-01-01

    In the present communication we report on the optimization of persulfate/ascorbic acid initiated synthesis of chitosan-graft-poly(acrylamide) (Ch-g-PAM) and its application in the removal of azo dyes. The optimum yield of the copolymer was obtained using 16 x 10 -2 M acrylamide, 3.0 x 10 -2 M ascorbic acid, 2.4 x 10 -3 M K 2 S 2 O 8 and 0.1 g chitosan in 25 mL of 5% aqueous formic acid at 45 ± 0.2 o C. Ch-g-PAM remained water insoluble even under highly acidic conditions and could efficiently remove Remazol violet and Procion yellow dyes from the aqueous solutions over a pH range of 3-8 in contrast to chitosan (Ch) which showed pH dependent adsorption. The adsorption data of the Ch-g-PAM and Ch for both the dyes were modeled by Langmuir and Freundlich isotherms where the data fitted better to Langmuir isotherms. To understand the adsorption behavior of Ch-g-PAM, adsorption of Remazol violet on to the copolymer was optimized and the kinetic and thermodynamic studies were carried out taking Ch as reference. Both Ch-g-PAM and Ch followed pseudo-second-order adsorption kinetics. The thermodynamic study revealed a positive heat of adsorption (ΔH o ), a positive ΔS o and a negative ΔG o , indicating spontaneous and endothermic nature of the adsorption of RV dye on to the Ch-g-PAM. The Ch-g-PAM was found to be very efficient in removing color from real industrial wastewater as well, though the interfering ions present in the wastewater slightly hindered its adsorption capacity. The data from regeneration efficiencies for ten cycles evidenced the high reusability of the copolymer in the treatment of waste water laden with even high concentrations of dye.

  17. Crystallization-mediated amorphous CuxO (x = 1, 2)/crystalline CuI p-p type heterojunctions with visible light enhanced and ultraviolet light restrained photocatalytic dye degradation performance

    Science.gov (United States)

    Wang, Hongli; Cai, Yun; Zhou, Jian; Fang, Jun; Yang, Yang

    2017-04-01

    We report simple and cost-effective fabrication of amorphous CuxO (x = 1, 2)/crystalline CuI p-p type heterojunctions based on crystallization-mediated approaches including antisolvent crystallization and crystal reconstruction. Starting from CuI acetonitrile solution, large crystals in commercial CuI can be easily converted to aggregates consisting of small particles by the crystallization processes while the spontaneous oxidation of CuI by atmospheric/dissolved oxygen can induce the formation of trace CuxO on CuI surface. As a proof of concept, the as-fabricated CuxO/CuI heterojunctions exhibit effective photocatalytic activity towards the degradation of methyl blue and other organic pollutants under visible light irradiation, although the wide band-gap semiconductor CuI is insensible to visible light. Unexpectedly, the CuxO/CuI heterojunctions exhibit restrained photocatalytic activity when ultraviolet light is applied in addition to the visible. It is suggested that the CuxO/CuI interface can enhance the spatial separation of the electron-hole pairs with the excitation of CuxO under visible light and prolong the lifetime of photogenerated charges with high redox ability. The present work represents a critically important step in advancing the crystallization technique for potential mass production of semiconductor heterojunctions in a mild manner.

  18. Photonic crystal-adaptive optical devices

    DEFF Research Database (Denmark)

    Buss, Thomas

    is investigated and switching times and driving voltages are competitive with existing non-projection liquid crystal displays. The principle has been investigated for use in projection displays but may also be applied to other applications such as cell manipulation in lab-on-a-chip systems and reconfigurable...... are minimized, thus allowing a homogeneous, glare-free, white-light daylighting into the room. Even more functionality can be achieved when the optical effects are tunable or reconfigurable. This is investigated with photonic crystal dye lasers. These lasers combine a photonic crystal resonator with a dye-doped...

  19. First organic–inorganic hybrid nanomaterial constructed from a Keggin-type polyoxometallate and a copper-dithiocarbamate complex: sonochemical synthesis, crystal structure and its adsorption performance for organic dye pollutants

    Czech Academy of Sciences Publication Activity Database

    Farhadi, S.; Dušek, Michal; Siadatnasab, F.; Eigner, Václav; Mokhtari Andani, A.

    2017-01-01

    Roč. 126, Apr (2017), s. 227-238 ISSN 0277-5387 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : organic–inorganic hybrid * polyoxometallate * dithiocarbamate * adsorption * organic dye pollutants Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.926, year: 2016

  20. Treatment of dyeing wastewater including reactive dyes (Reactive ...

    African Journals Online (AJOL)

    Fungal growth was not observed at pH 2. Maximum fungal decolourisation ocurred at pH 3 for anionic reactive dyes (RR, RBB, RB) and pH 6 for cationic MB dye. The fungal dye bioremoval was associated with the surface charge of the fungus due to electrostatic interactions. Growing R. arrhizus strain decolourised 100% of ...

  1. Water soluble laser dyes

    Science.gov (United States)

    Hammond, Peter R.; Feeman, James F.; Field, George F.

    1998-01-01

    Novel water soluble dyes of the formula I are provided ##STR1## wherein R.sup.1 and R.sup.4 are alkyl of 1 to 4 carbon atoms or hydrogen; or R.sup.1 -R.sup.2 or R.sup.2 -R.sup.4 form part of aliphatic heterocyclic rings; R.sup.2 is hydrogen or joined with R.sup.1 or R.sup.4 as described above; R.sup.3 is --(CH.sub.2).sub.m --SO.sub.3.sup.-, where m is 1 to 6; X is N, CH or ##STR2## where Y is 2 --SO.sub.3.sup.- ; Z is 3, 4, 5 or 6 --SO.sub.3.sup.-. The novel dyes are particularly useful as the active media in water solution dye lasers.

  2. Hair cosmetics: dyes.

    Science.gov (United States)

    Guerra-Tapia, A; Gonzalez-Guerra, E

    2014-11-01

    Hair plays a significant role in body image, and its appearance can be changed relatively easily without resort to surgical procedures. Cosmetics and techniques have therefore been used to change hair appearance since time immemorial. The cosmetics industry has developed efficient products that can be used on healthy hair or act on concomitant diseases of the hair and scalp. Dyes embellish the hair by bleaching or coloring it briefly, for temporary periods of longer duration, or permanently, depending on the composition of a dye (oxidative or nonoxidative) and its degree of penetration of the hair shaft. The dermatologist's knowledge of dyes, their use, and their possible side effects (contact eczema, cancer, increased porosity, brittleness) can extend to an understanding of cosmetic resources that also treat hair and scalp conditions. Copyright © 2013 Elsevier España, S.L.U. and AEDV. All rights reserved.

  3. Hair Dye and Hair Relaxers

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  4. Investigation of ultra violet (UV) resistance for high strength fibers

    Science.gov (United States)

    Said, M. A.; Dingwall, Brenda; Gupta, A.; Seyam, A. M.; Mock, G.; Theyson, T.

    Ultra long duration balloons (ULDB), currently under development by the National Aeronautics and Space Administration (NASA), requires the use of high strength fibers in the selected super-pressure pumpkin design. The pumpkin shape balloon concept allows clear separation of the load transferring functions of the major structural elements of the pneumatic envelope, the tendons and the film. Essentially, the film provides the gas barrier and transfers only local pressure load to the tendons. The tendons, in the mean time, provide the global pressure containing strength. In that manner, the strength requirement for the film only depends on local parameters. The tendon is made of p-phenylene-2,6-benzobisoxazole (PBO) fibers, which is selected due to its high strength to weight ratio when compared to other high performance, commercially available, fibers. High strength fibers, however, are known to degrade upon exposure to light, particularly at short wavelengths. This paper reports the results of an investigation of the resistance of four commercial high strength fibers to ultra violet (UV) exposure. The results indicate that exposing high strength fibers in continuous yarn form to UV led to serious loss in strength of the fibers except for Spectra® fibers. The adverse changes in mechanical behavior occurred over short duration of exposure compared to the 100 day duration targeted for these missions. UV blocking finishes to improve the UV resistance of these fibers are being investigated. The application of these specially formulated coatings is expected to lead to significant improvement of the UV resistance of these high performance fibers. In this publication, we report on the mechanical behavior of the fibers pre- and post-exposure to UV, but without application of the blocking finishes.

  5. Synthesis and characterization of natural red dye from Caesalpinia sappan linn

    Energy Technology Data Exchange (ETDEWEB)

    Mulyanto, Subur, E-mail: subur.mulyanto@poltekba.ac.id [Graduate Program of Mechanical Engineering, SebelasMaret University, Jl. Ir. Sutami 36 A, Surakarta (Indonesia); Department of Mechanical Engineering, State Polytechnic of Balikpapan, Jl. Soekarno-Hatta Km.8 Balikpapan (Indonesia); Suyitno,, E-mail: suyitno@uns.ac.id; Rachmanto, Rendy Adhi, E-mail: rendy.ar@gmail.com; Hidayat, Lullus Lambang Govinda, E-mail: lulus-l@yahoo.com; Hadi, Syamsul, E-mail: syamsulhadi@ft.uns.ac.id [Department of Mechanical Engineering, SebelasMaret University, Jl. Ir. Sutami 36 A, Surakarta (Indonesia); Wibowo, Atmanto Heru, E-mail: aheruwibowo@yahoo.com [Department of Chemistry, SebelasMaret University, Jl. Ir. Sutami 36 A, Surakarta (Indonesia)

    2016-03-29

    The study reports the synthesis and characterization of natural red dye. The dyes were extracted from woods of Caesalpiniasappanlinn at varied temperatures of 70, 80, 90, and 100°C for three hours. The dry wood chips and water at a ratio of 6:1 were immersed in the reactor of 150 liters. The absorbance spectra of the natural red dyes were measured by ultra-violet-visible spectroscopy. Meanwhile, Fourier transform infrared spectroscopy was used to investigate the functional groups of the natural red dyes. In addition, the basic production cost was calculated and the fastness property towards cotton fabrics was investigated according to the Indonesia national standard of 105-C06:2010, 105-B01:2010, and 0288-2008. The results showed that the functional groups found the extracted red dyes indicated the complex bond of brazilein with peak absorbance at a wavelength of 538-540 nm. The extraction temperature also changed the functional group of brazilein. From the color, the absorbance peak, the functional groups, and the main production cost, the best parameter to synthesize the natural red dyes from Caesalpiniasappanlinn was at a temperature of 80°C for two hours. Moreover, the natural red dyes has the fastness to wash resistance, light resistance, and scrub resistance by 4-5, 4, and 3-4, respectively. However, further studies for synthesis the natural red dyes by using a continuous reactor are required to identify the naturally complex compounds in brazilein for improving the fastness properties and for reducing the cost.

  6. Synthesis and characterization of natural red dye from Caesalpinia sappan linn

    International Nuclear Information System (INIS)

    Mulyanto, Subur; Suyitno,; Rachmanto, Rendy Adhi; Hidayat, Lullus Lambang Govinda; Hadi, Syamsul; Wibowo, Atmanto Heru

    2016-01-01

    The study reports the synthesis and characterization of natural red dye. The dyes were extracted from woods of Caesalpiniasappanlinn at varied temperatures of 70, 80, 90, and 100°C for three hours. The dry wood chips and water at a ratio of 6:1 were immersed in the reactor of 150 liters. The absorbance spectra of the natural red dyes were measured by ultra-violet-visible spectroscopy. Meanwhile, Fourier transform infrared spectroscopy was used to investigate the functional groups of the natural red dyes. In addition, the basic production cost was calculated and the fastness property towards cotton fabrics was investigated according to the Indonesia national standard of 105-C06:2010, 105-B01:2010, and 0288-2008. The results showed that the functional groups found the extracted red dyes indicated the complex bond of brazilein with peak absorbance at a wavelength of 538-540 nm. The extraction temperature also changed the functional group of brazilein. From the color, the absorbance peak, the functional groups, and the main production cost, the best parameter to synthesize the natural red dyes from Caesalpiniasappanlinn was at a temperature of 80°C for two hours. Moreover, the natural red dyes has the fastness to wash resistance, light resistance, and scrub resistance by 4-5, 4, and 3-4, respectively. However, further studies for synthesis the natural red dyes by using a continuous reactor are required to identify the naturally complex compounds in brazilein for improving the fastness properties and for reducing the cost.

  7. Levitated droplet dye laser

    DEFF Research Database (Denmark)

    Azzouz, H.; Alkafadiji, L.; Balslev, Søren

    2006-01-01

    We present the first observation, to our knowledge, of lasing from a levitated, dye droplet. The levitated droplets are created by computer controlled pico-liter dispensing into one of the nodes of a standing ultrasonic wave (100 kHz), where the droplet is trapped. The free hanging droplet forms...... a high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine 6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser, and the dye laser emission is analyzed by a fixed grating...

  8. Demonstration of the Replacement of the Dyes and Sulfur in the M18 Red and Violet Smoke Grenades

    Science.gov (United States)

    2008-09-10

    Test Report FDA U.S. Food and Drug Administration FD&C Food, Drug, and Cosmetic FTIR Fourier Transform Infrared Spectroscopy GC/FID Gas...Tetrachloroethene 2-Hexanone Dibromochloromethane 1,2-Dibromoethane Chlorobenzene 1,1,1,2-Tetrach1oroethane Ethylbenzene m/p- Xylene 07263 o- Xylene 07264...Trichloroethane Tetrachloroethene 2-Hexanone Dibromochloromethane 1,2-Dibromoethane Chlorobenzene 1,1,1,2-Tetrachloroethane Ethylbenzene m/p- Xylene o

  9. Crystal growth and scintillation properties of selected fluoride crystals for VUV scintillators

    Czech Academy of Sciences Publication Activity Database

    Pejchal, Jan; Fukuda, K.; Yamaji, A.; Yokota, Y.; Kurosawa, S.; Král, Robert; Nikl, Martin; Yoshikawa, A.

    2014-01-01

    Roč. 401, Sep (2014), s. 833-838 ISSN 0022-0248. [International Conference on Crystal Growth and Epitaxy /17./. Warsaw, 11.08.2013-16..08.2013] R&D Projects: GA MŠk LH12150 Institutional support: RVO:68378271 Keywords : vacuum-ultra-violet emission * micro-pulling-down method * barium -lutetium fluoride * erbium fluoride Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.698, year: 2014

  10. Laparoscopic visualization and dissection of retroperitoneal lymph nodes after patent blue dye injection: a pilot study.

    Science.gov (United States)

    Irkilata, Hasan Cem; Basal, Seref; Yildirim, Ibrahim; Kurt, Bulent; Aydur, Emin; Zor, Murat; Goktas, Serdar

    2008-05-01

    Retroperitoneal lymph node dissection (RPLND) for testicular cancer is an important treatment modality for patients with stage I or IIA disease. Several urologists have previously reported the feasibility and usefulness of laparoscopic RPLND for such patients. The aim of this experimental pilot-feasibility study was to investigate whether visualization of retroperitoneal lymph nodes with patent blue violet (PBV) dye application is a feasible and an effective method during laparoscopic RPLND in a pig model. Four 12-month-old white male pigs were included in the study. After PBV dye injection into the spermatic funicular and intratesticular parenchyma, the color changes in the retroperitoneal region were examined during transperitoneal laparoscopic visualization of the retroperitoneum. The time interval between the injection and the staining of lymphatic structures was measured for each intervention. Blue-stained retroperitoneal nodal tissues were dissected and removed by the laparoscopic approach and histologic examination was performed. After PBV dye injection, intense staining of the ipsilateral retroperitoneal lymphatic vessels and nodes was seen. Distribution of the PBV and the color changes of the retroperitoneal lymphatic structures were examined under laparoscopic vision in all pigs. All blue-stained retroperitoneal nodular tissues were removed laparoscopically and examined histologically. Histopathologic examination noted all specimens as lymph nodes with no toxic effects of PBV dye. We demonstrated that spermatic funicular injection of PVB dye is an effective and accurate method for retroperitoneal lymph node visualization in pigs. The use of this technique in combination with a laparoscopic approach makes RPLND easier and more effective.

  11. REUSE OF DECOLORIZED DYEING EFFLUENTS IN REPEATED DYEINGS

    Directory of Open Access Journals (Sweden)

    ÖNER Erhan

    2016-05-01

    Full Text Available In this experimental work, the effluents of the reactive and disperse dyeings were reused in the next dyeing after the decolourization by ozone gas. Accordingly, the polyester woven samples were dyed with C.I. Disperse Yellow 160, C.I. Disperse Red 77 and C.I. Disperse Blue 79:1, and the cotton woven samples were dyed with C.I. Reactive Yellow 176, C.I. Reactive Red 239 and C.I. Reactive Blue 221. The effluents of the dyeings with these dyes and also with their mixtures were decolorized by ozone gas. The colours of the samples dyed with the decolorized effluents were compared with the original dyeings (standards and the colour differences were calculated. Under the experimental conditions of this investigation, the many of the dyeing effluents were decolorized successfully, except the effluent of C.I. Disperse Red 77. In the case that this red disperse dye present in the dyebath, the decolorized effluent had a slight reddish colour. The colour differences between the original dyeing (standard and the samples dyed with the decolorized effluent are mostly below the tolerance (DE<1 or slightly above the tolerance. The solid colours and uniform dyeings were achieved in the dyeings. The method seems promising in decreasing the amount of water used in textile dyeings.

  12. OPTIMIZATION OF DYEING PARAMETERS TO DYE COTTON WITH CARROT EXTRACTION

    Directory of Open Access Journals (Sweden)

    MIRALLES Verónica

    2017-05-01

    Full Text Available Natural dyes derived from flora and fauna are believed to be safe because of non-toxic, non-carcinogenic and biodegradable nature. Furthermore, natural dyes do not cause pollution and waste water problems. Natural dyes as well as synthetic dyes need the optimum parameters to get a good dyeing. On some occasions, It is necessary the use of mordants to increase the affinity between cellulose fiber and natural dye, but there are other conditions to optimize in the dyeing process, like time, temperature, auxiliary porducts, etc. In addition, the optimum conditions are different depends on the type of dye and the fiber nature. The aim of this work is the use of carrot extract to dye cotton fabric by exhaustion at diverse dyeing conditions. Diffferent dyeing processes were carried out to study the effect of pH condition and the temperature, using 7, 6 and 4 pH values and 95 ºC and 130ºC for an hour. As a result some images of dyed samples are shown. Moreover, to evaluate the colour of each sample CIELAB parameters are analysed obtained by reflexion spectrophotometre. The results showed that the temperature used has an important influence on the colour of the dyed sample.

  13. Culture of the green microalga Botryococcus braunii Showa with LED irradiation eliminating violet light enhances hydrocarbon production and recovery.

    Science.gov (United States)

    Atobe, Sueko; Saga, Kiyotaka; Maeyama, Haruko; Fujiwara, Kazuhiro; Okada, Shigeru; Imou, Kenji

    2014-01-01

    The green microalga Botryococcus braunii (B. braunii), race B, was cultured under light-emitting diode (LED) irradiation with and without violet light. This study examined the effect of violet light on hydrocarbon recovery and production in B. braunii. C34 botryococcene hydrocarbons were efficiently extracted by thermal pretreatments at lower temperatures when the alga was cultured without violet light. The hydrocarbon content was also higher (approximately 3%) in samples cultured without violet light. To elucidate the mechanism of effective hydrocarbon recovery and production, we examined structural components of the extracellular matrix (ECM). The amounts of extracellular carotenoids and water-soluble polymers extracted by thermal pretreatment from the ECM were decreased when the alga was cultured without violet light. These results indicate that LED irradiation without violet light is more effective for hydrocarbon recovery and production in B. braunii. Furthermore, structural ECM components are closely involved in hydrocarbon recovery and production in B. braunii.

  14. Synthesis of interpenetrating network hydrogel from poly(acrylic acid-co-hydroxyethyl methacrylate) and sodium alginate: modeling and kinetics study for removal of synthetic dyes from water.

    Science.gov (United States)

    Mandal, Bidyadhar; Ray, Samit Kumar

    2013-10-15

    Several interpenetrating network (IPN) hydrogels were made by free radical in situ crosslink copolymerization of acrylic acid (AA) and hydroxy ethyl methacrylate in aqueous solution of sodium alginate. N,N'-methylenebisacrylamide (MBA) was used as comonomer crosslinker for making these crosslink hydrogels. All of these hydrogels were characterized by carboxylic content, FTIR, SEM, XRD, DTA-TGA and mechanical properties. Swelling, diffusion and network parameters of the hydrogels were studied. These hydrogels were used for adsorption of two important synthetic dyes, i.e. Congo red and methyl violet from water. Isotherms, kinetics and thermodynamics of dye adsorption by these hydrogels were also studied. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  16. Fabrication of CMC-g-PAM superporous polymer monoliths via eco-friendly Pickering-MIPEs for superior adsorption of methyl violet and methylene blue

    Science.gov (United States)

    Wang, Feng; Zhu, Yongfeng; Wang, Wenbo; Zong, Li; Lu, Taotao; Wang, Aiqin

    2017-06-01

    A series of superporous carboxymethylcellulose-graft-poly(acrylamide) (CMC-g-PAM) polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM) in the oil-in-water (O/W) Pickering-medium internal phase emulsions (Pickering-MIPEs) composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20) on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9-14% and 3%, respectively. The porous monolith can rapidly adsorb 1585 mg/g of methyl violet (MV) and 1625 mg/g of methylene blue (MB). After the monolith was regenerated by adsorption-desorption process for 5 times, the adsorption capacities still reached 92.1% (for MV) and 93.5% (for MB) of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontimination of dye-containing wastewater.

  17. Synthesis of azo pyridone dyes

    OpenAIRE

    Mijin, Dušan Ž.; Ušćumlić, Gordana S.; Valentić, Nataša V.; Marinković, Aleksandar D.

    2011-01-01

    Over 50% of all colorants which are used nowdays are azo dyes and pigments, and among them arylazo pyridone dyes (and pigments) have became of interest in last several decades due to the high molar extinction coefficient, and the medium to high light and wet fastness properties. They find application generally as disperse dyes. The importance of disperse dyes increased in the 1970s and 1980s due to the use of polyester and nylon as the main synthetic fibers. Also, disperse dyes were use...

  18. Dye laser principles with applications

    CERN Document Server

    Duarte, Frank J; Liao, Peter F; Kelley, Paul

    1990-01-01

    A tutorial introduction to the field of dye lasers, Dye Laser Principles also serves as an up-to-date overview for those using dye lasers as research and industrial tools. A number of the issues discussed in this book are pertinent not only to dye lasers but also to lasers in general. Most of the chapters in the book contain problem sets that expand on the material covered in the chapter.Key Features* Dye lasers are among the most versatile and successful laser sources currently available in use Offering both pulsed and continuous-wave operation and tunable from the near ultraviole

  19. In Situ Mapping of the Molecular Arrangement of Amphiphilic Dye Molecules at the TiO 2 Surface of Dye-Sensitized Solar Cells

    KAUST Repository

    Voïtchovsky, Kislon

    2015-05-27

    © 2015 American Chemical Society. Amphiphilic sensitizers are central to the function of dye-sensitized solar cells. It is known that the cell\\'s performance depends on the molecular arrangement and the density of the dye on the semiconductor surface, but a molecular-level picture of the cell-electrolyte interface is still lacking. Here, we present subnanometer in situ atomic force microscopy images of the Z907 dye at the surface of TiO2 in a relevant liquid. Our results reveal changes in the conformation and the lateral arrangement of the dye molecules, depending on their average packing density on the surface. Complementary quantitative measurements on the ensemble of the film are obtained by the quartz-crystal microbalance with dissipation technique. An atomistic picture of the dye coverage-dependent packing, the effectiveness of the hydrophobic alkyl chains as blocking layer, and the solvent accessibility is obtained from molecular dynamics simulations. (Figure Presented).

  20. African violet (Saintpaulia ionantha H. Wendl.: classical breeding and progress in the application of biotechnological techniques

    Directory of Open Access Journals (Sweden)

    Silva Jaime A. Teixeira da

    2017-12-01

    Full Text Available As a result of its domestication, breeding and subsequent commercialization, African violet (Saintpaulia ionantha H. Wendl. has become the most famous and popular Saintpaulia species. There is interest in producing cultivars that have increased resistance to pests and low temperature, in the introduction of novel horticultural characteristics such as leaf shape, flower colour, size and form, and in improved productivity and enhanced flower duration in planta. In African violet, techniques such as the application of chemical mutagens (ethylmethanesulfonate, N-nitroso-N-methylurea, radiation (gamma (γ-rays, X-rays, carbon ion beams and colchicine have been successfully applied to induce mutants. Among these techniques, γ radiation and colchicine have been the most commonly applied mutagens. This review offers a short synthesis of the advances made in African violet breeding, including studies on mutation and somaclonal variation caused by physical and chemical factors, as well as transgenic strategies using Agrobacterium-mediated transformation and particle bombardment. In African violet, Agrobacterium-mediated transformation is affected by the Agrobacterium strain, selection marker, and cutting-induced wounding stress. Somaclonal variation, which arises in tissue cultures, can be problematic in maintaining true-to-type clonal material, but may be a useful tool for obtaining variation in flower colour. The only transgenic African violet plants generated to date with horticulturally useful traits are tolerant to boron (heavy metal stress, or bear a glucanase-chitinase gene.

  1. Fabrication and characterization of nanowalls CdS/dye sensitized solar cells

    Science.gov (United States)

    Abdulelah, Haider; Ali, Basil; Mahdi, M. A.; Hassan, J. J.; Al-Taay, H. F.; Jennings, P.

    2017-06-01

    A microwave assisted chemical bath deposition (MA-CBD) was adopted to fabricate nanowalls CdS nanocrystalline thin film. Nanomaterials (such as nanowalls structure) have attracted significant attention due to their fascinating properties and unique applications, especially in optoelectronic nanodevices. Here we describe the fabrication of dye sensitized solar cells (DSSCs) based nanowalls cadmium sulfide (CdS) nanocrystalline thin films. The surface morphology, crystalline structure, and optical properties of the prepared nanocrystalline thin films are investigated. Rhodamine B, Malachite green, Eosin methylene blue, and Cresyl violet perchlorate dyes are used to fabricate the DSSCS devices. Current-voltage (I-V) characteristics show that the nanowall CdS/Eosin methylene blue device is the highest conversion efficiency of 0.89% under 100 mW/cm2. However, heat treatment of the fabricated solar cells causes significant enhancement in the output of all devices.

  2. Adsorption Profile of Basic Dye onto Novel Fabricated Carboxylated Functionalized Co-Polymer Nanofibers

    Directory of Open Access Journals (Sweden)

    Marwa F. Elkady

    2016-04-01

    Full Text Available Acrylonitrile-Styrene co-polymer was prepared by solution polymerization and fabricated into nanofibers using the electrospinning technique. The nanofiber polarization was enhanced through its surface functionalization with carboxylic acid groups by simple chemical modification. The carboxylic groups’ presence was dedicated using the FT-IR technique. SEM showed that the nanofiber attains a uniform and porous structure. The equilibrium and kinetic behaviors of basic violet 14 dye sorption onto the nanofibers were examined. Both Langmuir and Temkin models are capable of expressing the dye sorption process at equilibrium. The intraparticle diffusion and Boyd kinetic models specified that the intraparticle diffusion step was the main decolorization rate controlling the process.

  3. The performance of nanorods material as adsorbent for removal of azo dyes and heavy metal ions: Application of ultrasound wave, optimization and modeling.

    Science.gov (United States)

    Dil, Ebrahim Alipanahpour; Ghaedi, Mehrorang; Asfaram, Arash

    2017-01-01

    The present research is focused on the synthesis and characterization of zinc (II) oxide nanorods loaded on activated carbon (ZnO-NRs-AC) to prepare an outstanding adsorbent for the simultaneous adsorption of heavy metals and dyes as hazardous pollutant using ultrasound energy. The adsorbent was identified by Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analysis. The individual effects and possible interactions between the most effective variables including initial metal ions (Cd 2+ and Co 2+ ) and azo dyes (methylene blue (MB) and crystal violet (CV)) concentration, adsorbent dosage and ultrasonic time on the responses were investigated by response surface methodology (RSM) and optimum conditions was fixed at Cd 2+ , Co 2+ , MB and CV concentrations were 25, 24, 18 and 14mgL -1 , respectively, 0.025g of ZnO-NRs-AC and 5.1min sonication to achieve maximum removal percentage (>97.0%) for targets compounds. The artificial neural network (ANN) model was applied for prediction of data with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) in the hidden layer with 14 neurons. The minimum mean squared error (MSE) of 0.9646, 0.0402 and 0.0753 with high determination coefficient (R 2 ) of 0.9996, 0.9991 and 0.9999 for train, test and validation, respectively, were able to predict and model the adsorption process. The results of examination of the time on experimental adsorption data and their subsequent fitting reveal applicability of pseudo-second-order and intraparticle diffusion model. The experimental equilibrium data was analyzed by Langmuir, Freundlich, Temkin and D-R isotherm models and explored that the data well presented by Langmuir model with maximum adsorption capacity of 97.1, 92.6, 83.9 and 81.6mgg -1 for Cd +2 , Co +2 ions, MB and CV dyes, respectively. Copyright © 2016

  4. Highly efficient fluorescence sensing with hollow core photonic crystal fibers

    DEFF Research Database (Denmark)

    Smolka, Stephan; Barth, Michael; Benson, Oliver

    2008-01-01

    We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes....

  5. Biosorption studies on waste cotton seed for cationic dyes sequestration: equilibrium and thermodynamics

    Science.gov (United States)

    Sivarajasekar, N.; Baskar, R.; Ragu, T.; Sarika, K.; Preethi, N.; Radhika, T.

    2017-07-01

    The immature Gossypium hirsutum seeds—an agricultural waste was converted into a novel adsorbent and its effectiveness for cationic dyes removal was discussed in this study. Characterization revealed that sulfuric acid activated waste Gossypium hirsutum seed (WGSAB) contains surface area 496 m2 g-1. The ability of WGSAB to adsorb basic red 2 (BR2) and basic violet 3 (BV3) from aqueous solutions has been studied. Batch adsorption studies were carried out at different initial dye concentrations (100-300 mg l-1), contact time (1-5 h), pH (2-12) and temperature (293-323 K) to understand the adsorption mechanism. Adsorption data were modeled using Langmuir, Freundlich and Toth adsorption isotherms. Equilibrium data of the adsorption process fitted very well to the Toth model for both dyes. The Langmuir maximum adsorption capacity was 66.69 mg g-1 for BV3 and 50.11 mg g-1 for BR2 at optimum conditions. The near unity value of Toth isotherm constant (BR2: 0.999 and BV3: 1.0) indicates that WGSAB surface is heterogeneous in nature. The maximum adsorption capacity predicted by Toth isotherm of BV3 (66.699 mg g-1) is higher than BR2 (50.310 mg g-1). The kinetic investigation revealed that the BR2 and BV3 were chemisorbed on WGSAB surface following Avrami fractional order kinetics. Further, the fractional order and rate constant values are almost similar for every concentration in both the dyes. The thermodynamic parameters such as Δ H 0, Δ S 0 and Δ G 0 were evaluated. The dye adsorption process was found to be spontaneous and endothermic for the two dyes. Regeneration of WGSAB exhausted by the two dyes could be possible via acetic acid as elutant.

  6. DECOLORIZATION OF AZO DYES AND MINERALIZATION OF PHENANTHRENE BY TRAMETES SP. AS03 ISOLATED FROM INDONESIAN MANGROVE FOREST

    Directory of Open Access Journals (Sweden)

    Asep Hidayat

    2014-04-01

    Full Text Available Textile industry contributes the most disposals of synthetic dyes, and about 40% of textile dyes has been generating high amount of colored wastewater. Polycyclic aromatic hydrocarbons (PAHs, such as phenanthrene, is a group of organic compounds, that structurally comprised of two or more benzene rings, which persist in air, water, and soil. The organic pollutants of dyes and PAHs have adversely effects the food chain and are potentially toxic, mutagenic, and carcinogenic to the environment. The objective of this research is to screen and investigate the potential fungus from mangrove forest to degrade azo dyes and phenanthrene.  In this study, fungi were collected from mangrove forest in Riau Province – Sumatra – Indonesia. Previously, Trametes sp. AS03 is one of the fungi isolated from mangrove forest in Riau Province, that was able to decolorize Remazol Brilliant Blue R (RBBR. The capability of Trametes sp. AS03 to decolorize four azo dyes, Remazol B. Violet (V5, Levafix Orange E3GA (Or64, Levafix B. Red E-6BA (R159, and Sumifix S. Scarlet 2GF (R222, were further evaluated. The result shows that Trametes sp. AS03 decolorized 91, 60, 48, and 31 of V5, R222, R159, and Or64, respectively. By showing its capability to decolorize some of the dyes, Trametes sp. AS03 was used to break down phenanthrene. AS03 degraded more than 70% of phenanthrene in 15 days.

  7. Efficiency enhancement of dye-sensitized solar cells (DSSC) by addition of synthetic dye into natural dye (anthocyanin)

    Science.gov (United States)

    Pratiwi, D. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2017-02-01

    This article reported combination of anthocyanin and synthetic dyes in dye-sensitized solar cells (DSSC) applications. This study aims was to improve the performance of DSSC by addition of synthetic dye into anthocyanin dye. Anthocyanin dye was extracted from red cabbage and synthetic dye was obtained from N719. We prepared anthocyanin and synthetic dyes at 2 different volume, anthocyanin dye at volume of 10 ml and combination dyes with anthocyanin and synthetic dyes at volume of 8 mL : 2 mL. The DSSCs were designed into sandwich structure on the fluorine-doped tin oxide (FTO) substrates using TiO2 electrode, carbon electrode, anthocyanin and synthetic dyes, and redox electrolyte. The absorption wavelength of anthocyanin dye of red cabbage was 450 nm - 580 nm, the combination of anthocyanin and synthetic dyes can increase the absorbance peak only. The IPCE characteristic with anthocyanin dye of red cabbage and combination dyes resulted quantum efficiency of 0.081% and 0.092% at wavelength maximum about 430 nm. The DSSC by anthocyanin dye of red cabbage achieved a conversion efficiency of 0.024%, while the DSSC by combination dyes achieved a conversion efficiency of 0.054%, combination dyes by addition synthetic dye into anthocyanin dye enhanced the conversion efficiency up to 125%.

  8. Metal oxide semiconductors for dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, Sangeeta; Sarkar, Debasish, E-mail: dsarkar@nitrkl.ac.in

    2015-12-15

    Highlights: • Hydrothermal synthesis of monoclinic and hexagonal WO{sub 3} nanostructures. • Nanocuboid and nanofiber growth using different structure directing agents. • WO{sub 3}–ZnO nanocomposites for dye degradation under UV and visible light. • High photocatalytic efficiency is achieved by 10 wt% monoclinic WO{sub 3}. • WO{sub 3} assists to trap hole in UV and arrests electron in visible light irradiation. - Abstract: Organic contaminants are a growing threat to the environment that widely demands their degradation by high efficient photocatalysts. Thus, the proposed research work primely focuses on the efficient degradation of methyl orange using designed WO{sub 3}–ZnO photocatalysts under both UV and visible light irradiation. Two different sets of WO{sub 3} nanostructures namely, monoclinic WO{sub 3} (m-WO{sub 3}) and hexagonal WO{sub 3} (h-WO{sub 3}) synthesizes in presence of a different structure directing agents. A specific dispersion technique allows the intimate contact of as-synthesized WO{sub 3} and ultra-violet active commercial ZnO photocatalyst in different weight variations. ZnO nanocrystal in presence of an optimum 10 wt% m-WO{sub 3} shows a high degree of photocatalytic activity under both UV and visible light irradiation compared to counterpart h-WO{sub 3}. Symmetrical monoclinic WO{sub 3} assists to trap hole in UV, but electron arresting mechanism predominates in visible irradiation. Coupling of monoclinic nanocuboid WO{sub 3} with ZnO proves to be a promising photocatalyst in both wavelengths.

  9. The study of some thiazinic and indaminic dye syntheses induced by ionising radiation

    International Nuclear Information System (INIS)

    Balestic, S.

    1961-03-01

    With a view to finding some radiochemical reactions applicable on an industrial scale for evaluating the radioactive waste from nuclear reactors, a systematic study was made of the radiochemical synthesis of thiazinic dyes such as methylene blue and Lauths' violet, on which the first tests were carried out in 1954. The first part of the study concerned the identification and the dosage, during radiolysis, of dyes by means of their absorption spectra after separation from the reaction medium by adsorption chromatography or ion-exchange; other radiolysis products such as ammonium chloride and hydrogen peroxide were also identified. During a later stage by systematically varying the physico-chemical parameters it was possible to determine the most favourable conditions for radio-synthesis; the maximum radiochemical yields obtained had the following values: G (Lauths' violet) 1,65; G (Methylene blue) = 1,75. Furthermore, the study of the influence of variously substituted aminated products on the radiochemical yield showed the possibility of synthesising Bindsehedlers green and Wursters blue by radiochemical methods. Finally the discovery of a fundamental intermediate product, Wursters red, together with the kinetic study of the chemical synthesis of methylene blue made it possible to determine the main stages of the reaction mechanism and to decide which of these stages could be attributed to ionising radiations in the case of the radiochemical synthesis. (author) [fr

  10. Ultra-violet-resistant mutants of Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Jones, D.R.; Karunakaran, V.; Hacking, A.J.

    1991-01-01

    One of the main disadvantages of using Bacillus thuringiensis as an insecticide is that the spore and crystal preparations applied to foliage are readily washed away by rain and are inactivated by sunlight. Spores from some strains of B. thuringiensis have been shown to be highly sensitive to u.v. light. This study has demonstrated how mutants with increased resistance to u.v., isolated by successive rounds of u.v. irradiation, and additionally with increased specific pathogenicity can be isolated. These techniques should be applied to strains that are frequently used in the industrial production of B.thuringiensis toxin. (author)

  11. Photocatalytic decolorization of basic dye by TiO2 nanoparticle in photoreactor

    Directory of Open Access Journals (Sweden)

    Jutaporn Chanathaworn1

    2012-04-01

    Full Text Available Photocatalytic decolorization of rhodamine B (RB and malachite green (MG basic dyes in aqueous solution wasevaluated using TiO2 powder as a semiconductor photocatalyst under UV black light irradiation. A 0.5 L batch photoreactorcontaining dyeing solution was installed in a stainless steel chamber with air cooling under irradiation. The TiO2 powder wascharacterized by XRD observation and it was shown that the nanoparticles could be identified as 73 nm anatase crystals. Theeffects of operational parameters such as light intensity (0-114 W/m2, initial dye concentration (10-30 mg/L, and TiO2 powderloading (0.5-1.5 g/L on the decolorization of dye samples were examined. The photocatalytic decolorization rate depended onthe pollutant’s structure, such that the MG dye could be removed faster than the RB dye. Decolorization efficiency (% of thephotocatalytic system increased with increasing TiO2 loading and light intensity; however, it decreased with increasing initialdye concentration. A loading of 1.5 g TiO2/L, initial dye concentration of 20 mg/L, and light intensity of 114 W/m2 were foundto yield the highest removal efficiency of dye solution based on time requirement. The kinetics are of first order and dependon the TiO2 powder loading and dye structure. The research had a perfect application foreground.

  12. 75 FR 12497 - Carbazole Violet Pigment 23 from India and the People's Republic of China: Final Results of the...

    Science.gov (United States)

    2010-03-16

    ... International Trade Administration Carbazole Violet Pigment 23 from India and the People's Republic of China...) from India and the People's Republic of China (PRC) pursuant to section 751(c) of the Tariff Act of... on Carbazole Violet Pigment 23 from India and the People's Republic of China'' from Acting Deputy...

  13. 75 FR 29718 - Carbazole Violet Pigment 23 From India and the People's Republic of China: Continuation of...

    Science.gov (United States)

    2010-05-27

    ... International Trade Administration Carbazole Violet Pigment 23 From India and the People's Republic of China... carbazole violet pigment 23 (CVP-23) from India and the People's Republic of China (PRC) would likely lead... From China and India, 74 FR 56663 (November 2, 2009). \\1\\ On December 29, 2004, the Department...

  14. Comparison of methylene blue/gentian violet stain to Gram's stain for the rapid diagnosis of gonococcal urethritis in men.

    Science.gov (United States)

    Taylor, Stephanie N; DiCarlo, Richard P; Martin, David H

    2011-11-01

    We compared a simple, one-step staining procedure using a mixture of methylene blue and gentian violet to Gram stain for the detection of gonococcal urethritis. The sensitivity and specificity of both Gram stain and methylene blue/gentian violet stain were 97.3% and 99.6%, respectively. There was a 100% correlation between the 2 methods.

  15. 75 FR 23239 - Carbazole Violet Pigment 23 From India: Extension of Time Limit for Final Results of Antidumping...

    Science.gov (United States)

    2010-05-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Carbazole Violet Pigment 23 From India: Extension of Time Limit for Final... administrative review of the antidumping duty order on CVP 23 from India. See Carbazole Violet Pigment 23 from...

  16. Dye lasers in atomic spectroscopy

    International Nuclear Information System (INIS)

    Lange, W.; Luther, J.; Steudel, A.

    1974-01-01

    The properties of dye lasers which are relevant to atomic spectroscopy are discussed. Several experiments made possible by tunable dye lasers are discussed. Applications of high spectral density dye lasers are covered in areas such as absorption spectroscopy, fluorescence spectroscopy, photoionization and photodetachment, and two- and multi-photon processes. Applications which take advantage of the narrow bandwidth of tunable dye lasers are discussed, including saturation spectroscopy, fluorescence line narrowing, classic absorption and fluorescence spectroscopy, nonoptical detection of optical resonances, heterodyne spectroscopy, and nonlinear coherent resonant phenomena. (26 figures, 180 references) (U.S.)

  17. Ultra-violet Sensing Characteristic and Field Emission Properties of Vertically Aligned Aluminum Doped Zinc Oxide Nanorod Arrays

    Science.gov (United States)

    Mamat, M. H.; Khusaimi, Z.; Malek, M. F.; Musa, M. Z.; Rusop, M.

    2011-05-01

    Ultra-violet (UV) sensing behavior and field emission characteristic have been investigated on vertically aligned aluminum (Al) doped zinc oxide (ZnO) nanorod arrays prepared using sol-gel immersion method. Uniform and high coverage density of ZnO nanorod arrays have been succesfully deposited on seeded-catalyst coated substrates. The synthesized nanorods have diameter sizes between 50 nm to 150 nm. The XRD spectra show Al doped ZnO nanorod array has high crystallinity properties with the dominancy of crystal growth along (002) plane or c-axis. UV photoresponse measurement indicates that Al doped ZnO nanorod array sensitively detects UV light as shown by conductance increment after UV illumination exposure. The nanorod array shows good field emission properties with low turn on field and threshold field at 2.1 V/μm and 5.6 V/μm, respectively. The result suggested that Al doped ZnO nanorod arrays prepared by low-cost sol-gel immersion method show promising result towards fabrication of multi applications especially in UV photoconductive sensor and field emission displays.

  18. Nanotitania crystals induced efficient photocatalytic color degradation, antimicrobial and larvicidal activity.

    Science.gov (United States)

    Udayabhanu, Jinu; Kannan, Vaitheeswari; Tiwari, Manish; Natesan, Geetha; Giovanni, Benelli; Perumal, Venkatachalam

    2018-01-01

    Textile industries release tonnes of harmful toxic dyes into the environment, causing severe effects on living organisms, including humans. Mosquitoes vectors spread important diseases which cause millions of human deaths worldwide. To control mosquitoes a number of synthetic mosquitocidal agents have been employed but all these pesticides pose harmful effects to human health and non-target species and also led to resistance development in treated vectors. Microbial strains are also developing resistance to the available antibiotics, this currently represents a major public health challenge. The current study is focused on the green synthesis of titanium dioxide nanoparticles (TiO 2 NPs) using aqueous leaf extracts of Euphorbia hirta. Results suggested an efficient remedy for the above mentioned problems using TiO 2 NPs against the dye degradation, mosquito larvae and bacterial pathogens. The fabrication of TiO 2 NPs was confirmed by UV-visible spectroscopy, the biomolecules involved in the synthesis process were evidenced by Fourier transform infra-red spectroscopy (FT-IR), the crystalline structure was observed by using X-ray powder diffraction (XRD) analysis. Spherical shaped TiO 2 NPs were recorded using field emission scanning electron microscopy (FESEM). Energy dispersive X-ray spectroscopy (EDX) results showed the elemental composition of TiO 2 NPs. Enhanced rate of photocatalytic dye degradation efficacy was recorded in in methylene blue (95.8%) followed by crystal violet (86.7%). Antibacterial activity assays indicated growth inhibition was highest in Staphylococcus epidermidis and Proteus vulgaris. The LC 50 of TiO 2 NPs and E. hirta extract on Aedes aegypti larvae were 13.2mg/l and 81.2mg/l, while on Culex quinquefasciatus they were 6.89mg/l and 46.1mg/l respectively. Overall, based on the results of the present study, the green engineered nanotitania could be considered as novel and promising photocatalytic, antibacterial, and mosquitocidal agent

  19. Zinc peroxide nanomaterial as an adsorbent for removal of Congo red dye from waste water.

    Science.gov (United States)

    Chawla, Sneha; Uppal, Himani; Yadav, Mohit; Bahadur, Nupur; Singh, Nahar

    2017-01-01

    In the past decade, various natural byproducts, advanced metal oxide composites and photocatalysts have been reported for removal of dyes from water. Although these materials are useful for select applications, they have some limitations such as use at fixed temperature, ultra violet (UV) light and the need for sophisticated experimental set up. These materials can remove dyes up to a certain extent but require long time. To overcome these limitations, a promising adsorbent zinc peroxide (ZnO 2 ) nanomaterial has been developed for the removal of Congo red (CR) dye from contaminated water. ZnO 2 is highly efficient even in the absence of sunlight to remove CR from contaminated water upto the permissible limits set by the World Health Organization (WHO) and the United States- Environmental Protection Agency (US-EPA). The adsorbent has a specific property to adjust the pH of the test solution within 6.5-7.5 range irrespective of acidic or basic nature of water. The adsorption capacity of the material for CR dye was 208mgg -1 within 10min at 2-10pH range. The proposed material could be useful for the industries involved in water purification. The removal of CR has been confirmed by spectroscopic and microscopic techniques. The adsorption data followed a second order kinetics and Freundlich isotherm. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Graded photonic crystals by optical interference holography

    Science.gov (United States)

    Han, Chunrui; Tam, Wing Yim

    2012-08-01

    We report on the fabrication of graded photonic crystals in dye doped dichromate gelatin emulsions using an optical interference holographic technique. The gradedness is achieved by imposing a gradient form factor in the interference intensity resulting from the absorption of the dye in the dichromate gelatin. Wider and deeper photonic bandgaps are observed for the dyed samples as compared to the un-dyed samples. Our method could open up a new direction in fabricating graded photonic crystals which cannot be achieved easily using other techniques.

  1. Non-Carbon Dyes For Platic Scintillators- Report

    Energy Technology Data Exchange (ETDEWEB)

    Teprovich, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gaillard, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sexton, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ward, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Velten, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-19

    Scintillation based detectors are desirable for many radiation detection applications (portal and border monitoring, safeguards verification, contamination detection and monitoring). The development of next generation scintillators will require improved detection sensitivity for weak gamma ray sources, and fast and thermal neutron quantification. Radiation detection of gamma and neutron sources can be accomplished with organic scintillators, however, the single crystals are difficult to grow for large area detectors and subject to cracking. Alternatives to single crystal organic scintillators are plastic scintillators (PS) which offer the ability to be shaped and scaled up to produce large sized detectors. PS is also more robust than the typical organic scintillator and are ideally suited for deployment in harsh real-world environments. PS contain a mixture of dyes to down-convert incident radiation into visible light that can be detected by a PMT. This project will evaluate the potential use of nano-carbon dyes in plastic scintillators.

  2. Metal Complex Dyes for Dye-Sensitized Solar Cells: Recent ...

    Indian Academy of Sciences (India)

    Compared with organic dyes, inorganic metal complex dyes have high thermal and chemical stability. Among these complexes, polypyridyl ruthenium sensitizers were widely used and investi- gated for their high stability and outstanding redox properties and good response to natural visible sunlight. The sensitizers an-.

  3. Metal Complex Dyes for Dye-Sensitized Solar Cells: Recent ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 9. Metal Complex Dyes for Dye-Sensitized Solar Cells: ... Author Affiliations. N Sekar1 Vishal Y Gehlot. Dyestuff Technology Department Institute of Chemical Technology (Formerly UDCT) Nathalal Parekh Marg Matunga Mumbai 400 019, India.

  4. Ultra violet photoemission studies of CO2 and NO adsorbed on W(100) surface

    International Nuclear Information System (INIS)

    Bhattacharya, A.K.; Broughton, J.Q.; Perry, D.L.

    1978-01-01

    In the last few years ultra violet photoelectron spectroscopy (UPS) has been successfully empolyed to determine the nature and bonding of the species formed when gases absorb on metal surfaces. This information is necessary to understand the mechanism of hetergeneous catalysis. The present report deals with UPS investigation of the chemisorption of CO 2 and NO on a W(100) surface. (Auth.)

  5. Towards dating Quaternary sediments using the quartz Violet Stimulated Luminescence (VSL) signal

    DEFF Research Database (Denmark)

    Ankjærgaard, C.; Jain, Mayank; Wallinga, J.

    2013-01-01

    Quaternary sediments using the violet (402 nm) stimulated luminescence (VSL) signal of quartz.We develop and test a new post-blue VSL single aliquot regenerative dose dating protocol, and demonstrate that the VSL signal originates from a deep trap at about 1.9 eV with a thermal lifetime of 1011 years at 10...

  6. Pollination Observations Of The African Violet In The Taita Hills, Kenya

    African Journals Online (AJOL)

    The African violet, Saintpaulia teitensis (Gesneriaceae), is an Eastern Arc global biodiversity hotspot endemic. Forest fragments on the Taita ... Pollinators of this endangered plant species were found to be exclusively wild bee species of the genus Amegilla (Apoidea: Aprocrita: Apidae). Four different species of Amegilla ...

  7. Differential inheritance of pepper (capsicum annum) fruit pigments results in black to violet fruit color

    Science.gov (United States)

    Color and appearance of fruits and vegetables are critical determinants of product quality and may afford high-value market opportunities. Exploiting the rich genetic diversity in Capsicum, we characterized the inheritance of black and violet immature fruit color and chlorophyll, carotenoid and ant...

  8. Adsorption of violet B by agricultural waste of soft pistachio shells ...

    African Journals Online (AJOL)

    In this study, inexpensive agricultural waste pistachio sells was used for adsorption of violet B. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) were used to characterize the pistachio shells. The morphology of pistachio shell was studied by SEM and it showed the porous structure of ...

  9. Incapacity of β - carotene to protect Escherichia coli J-5 against ultra violet lethal action

    International Nuclear Information System (INIS)

    Passos Junior, G.A.S.; Zucchi, T.M.A.D.

    1982-01-01

    The ultra violet light survival of Escherichia coli J-5 cell population was not modified when it was β-carotene treated. It was found that this carotenoid does not confer radioprotection to the u.v. light effects in this bacterial strain. (author) [pt

  10. Dye solar cell research

    CSIR Research Space (South Africa)

    Cummings, F

    2009-11-01

    Full Text Available Cummings Energy and Processes Materials Science and Manufacturing Council for Scientific and Industrial Research P.O. Box 395 Pretoria 0001, South Africa 27 November 2009 CONTENT head2rightBackground head2rightCSIR Dye Solar Cell Research head2... rightCollaborations and Links © CSIR 2007 www.csir.co.za head2rightAcknowledgements BACKGROUND head2rightSA is dry: Annual rainfall average of 450 mm compared with a world average of 860 mm head2rightOn upside, we have some...

  11. Dyeing and characterization of regenerated cellulose nanofibers with vat dyes.

    Science.gov (United States)

    Khatri, Muzamil; Ahmed, Farooq; Shaikh, Irfan; Phan, Duy-Nam; Khan, Qamar; Khatri, Zeeshan; Lee, Hoik; Kim, Ick Soo

    2017-10-15

    Recent advancement in dyeing of nanofibers has been accelerated to improve their aesthetic properties, however, achieving good color fastness remains a challenge. Therefore, we attempt to improve the color fastness properties nanofibers. Vat dyes are known for better color fastness and their application on nanofibers has not been investigated to date. Herein, we report dyeing of regenerated cellulose nanofibers (RCNF) that were produced from precursor of cellulose acetate (CA) followed by deacetylation process. The resultant RCNF was dyed with two different vat dyes and the color attributes were examined under spectrophotometer which showed outstanding color build-up. Morphological of CA before and after deacetylation and before and after vat dyeing was investigated under TEM, FE-SEM and SEM respectively. The vat dyed RCNF were further characterized by FTIR and WAXD. Excellent color fastness results demonstrate that vat dyed RCNF can potentially be considered for advanced apparel applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Biological treatment of effluent containing textile dyes

    OpenAIRE

    Gomes, Arlindo Caniço; Amorim, M. T. P.; Porter, R. S.; Gonçalves, Isolina Cabral; Ferra, M. I. A.

    2010-01-01

    Colour removal of textile dyes from effluent was evaluated using a laboratory upflow anaerobic sludge blanket reactor. Several commercial dyes were selected to study the effect of dye structure on colour removal. The anaerobic reactor was fed with glucose, an easily biodegradable organic matter and selected individual dyes. Results show that some of the dyes are readily reduced under anaerobic conditions even at high concentration of 700 mg/l. The average removal efficiency for acid dyes usin...

  13. Photonic crystal optofluidic biolaser

    Science.gov (United States)

    Mozaffari, Mohammad Hazhir; Ebnali-Heidari, Majid; Abaeiani, Gholamreza; Moravvej-Farshi, Mohammad Kazem

    2017-09-01

    Optofluidic biolasers are recently being considered in bioanalytical applications due to their advantages over the conventional biosensing methods Exploiting a photonic crystal slab with selectively dye-infiltrated air holes, we propose a new optofluidic heterostructure biolaser, with a power conversion efficiency of 25% and the spectral linewidth of 0.24 nm. Simulations show that in addition to these satisfactory lasing characteristics, the proposed lab-on-a-chip biolaser is highly sensitive to the minute biological changes that may occur in its cavity and can detect a single virus with a radius as small as 13 nm.

  14. Decolorization of reactive azo dyes using a sequential chemical and activated sludge treatment.

    Science.gov (United States)

    Meerbergen, Ken; Crauwels, Sam; Willems, Kris A; Dewil, Raf; Van Impe, Jan; Appels, Lise; Lievens, Bart

    2017-12-01

    Textile wastewater contains high concentrations of organic substances derived from diverse dyes and auxiliary chemicals, some of which are non-biodegradable and/or toxic. Therefore, it is essential that textile wastewater is treated and that these substances are removed before being discharged into the environment. A combination of advanced oxidation processes (AOPs) to obtain partial dye degradation followed by a biological treatment has been suggested as a promising method for cost-effective decolorization of wastewater. The aim of this study was to develop and evaluate a combined method of partial Fenton's oxidation and biological treatment using activated sludge for decolorization of azo dyes, which represent an important group of recalcitrant, toxic textile dyes. Using Reactive Violet 5 (RV5) as a model dye, color removal was significantly higher when the combined Fenton treatment/activated sludge method was used, as opposed to separate application of these treatments. More specifically, pretreatment with Fenton's reagent removed 52.9, 83.9 and 91.3 % of color from a 500 mg l -1  RV5 aqueous solution within 60 min when H 2 O 2 concentrations of 1.0, 1.5, and 2.0 mM were used, respectively. Subsequent biological treatment was found to significantly enhance the chemical treatment, with microbial decolorization removing 70.2 % of the remaining RV5 concentration, on average. Molecular analysis of the microbial community within the activated sludge revealed that exposure to RV5 shifted the community composition from diverse towards a highly-specialized community harboring taxa with azo dye degrading activity, including Trichosporon, Aspergillus and Clostridium species. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Carbon/Attapulgite Composites as Recycled Palm Oil-Decoloring and Dye Adsorbents.

    Science.gov (United States)

    Tian, Guangyan; Wang, Wenbo; Zhu, Yongfeng; Zong, Li; Kang, Yuru; Wang, Aiqin

    2018-01-06

    Activated clay minerals have been widely used in the edible oil refining industry for decolorization of crude oil by adsorption, and so far many methods have been used to improve their decolorization efficiency. Herein, we successfully prepared a series of carbon/attapulgite (C/APT) composite adsorbents by a one-step in-situ carbonization process with natural starch (St) as the carbon source. It has been revealed that the adsorbent had better decolorization efficiency for crude palm oil than acid-activated APT. However, more than a million tons of decolorized waste is produced every year in the oil-refining industry, which was often treated as solid waste and has not yet been reutilized effectively. In order to explore a viable method to recycle and reuse the decolorant, the waste decolorant was further prepared into new C/APT adsorbents for the removal of dyes from wastewater, and then the dyes adsorbed on the adsorbent were used as the carbon sources to produce new C/APT adsorbents by a cyclic carbonization process. The results showed that the adsorbents prepared from the decolorized waste could remove more than 99.5% of the methylene blue (MB), methyl violet (MV), and malachite green (MG) dyes from the simulated wastewater with the dye concentration of 200 mg/L, and the C/APT-Re adsorbent consecutively regenerated five times using the adsorbed dyes as a carbon source still exhibit good adsorption efficiency for dyes. As a whole, this process opens a new avenue to develop efficient decolorants of palm oil and achieves recyclable utilization of decolored waste.

  16. Retroperitoneal lymph node mapping with intratesticular injected patent blue dye in rats.

    Science.gov (United States)

    Basal, Seref; Irkilata, Hasan Cem; Yildirim, Ibrahim; Sadir, Serdar; Korkmaz, Ahmet; Zor, Murat; Aydur, Emin; Peker, Ahmet Fuat

    2008-01-01

    Endolymphatic injection of several dyes have been previously studied to identify retroperitoneal lymphatic structure in animals and humans with malignant diseases. However, there have been no studies, to our knowledge, that demonstrate the utility of injecting patent blue dye into the testicular parenchyma to detect retroperitoneal lymphoid structure. The aim of this experimental study was to investigate whether intratesticular patent blue dye injection is feasible and is an accurate method for retroperitoneal lymph node mapping in rats. Twenty male albino Wistar rats were included in the study and divided over two equal groups. The first group underwent patent blue violet (PBV) injection into the spermatic funiculus, while the second group underwent PBV injection into the testicular parenchyma. After the injection, the color changes in the retroperitoneal lymphatic structures and the urinary bladder were anticipated. The time interval between the injection and the staining of lymphatic structures and urinary bladder was measured for each intervention. Blue stained retroperitoneal nodal tissues were dissected and removed. These nodal tissues were examined histologically. After PBV injection, intense staining of the ipsilateral spermatic cord lymphatics was seen and anticipated color changes in the retroperitoneal lymphatic structures and urinary bladder were evaluated visually. Both application routes of dye resulted in the same distribution of retroperitoneal lymph nodes in the same time frame. All retroperitoneal nodular tissues removed were noted histologically to be lymph nodes and were found to be consistent with the ipsilateral lumbar lymph and the ipsilateral suprarenal lymph nodes according to the staining order in both groups. No toxic effects were observed histologically. There were no statistically significant differences in the time intervals between the two groups. We demonstrated that both funicular and intratesticular injections of patent blue dye

  17. Carbon/Attapulgite Composites as Recycled Palm Oil-Decoloring and Dye Adsorbents

    Directory of Open Access Journals (Sweden)

    Guangyan Tian

    2018-01-01

    Full Text Available Activated clay minerals have been widely used in the edible oil refining industry for decolorization of crude oil by adsorption, and so far many methods have been used to improve their decolorization efficiency. Herein, we successfully prepared a series of carbon/attapulgite (C/APT composite adsorbents by a one-step in-situ carbonization process with natural starch (St as the carbon source. It has been revealed that the adsorbent had better decolorization efficiency for crude palm oil than acid-activated APT. However, more than a million tons of decolorized waste is produced every year in the oil-refining industry, which was often treated as solid waste and has not yet been reutilized effectively. In order to explore a viable method to recycle and reuse the decolorant, the waste decolorant was further prepared into new C/APT adsorbents for the removal of dyes from wastewater, and then the dyes adsorbed on the adsorbent were used as the carbon sources to produce new C/APT adsorbents by a cyclic carbonization process. The results showed that the adsorbents prepared from the decolorized waste could remove more than 99.5% of the methylene blue (MB, methyl violet (MV, and malachite green (MG dyes from the simulated wastewater with the dye concentration of 200 mg/L, and the C/APT–Re adsorbent consecutively regenerated five times using the adsorbed dyes as a carbon source still exhibit good adsorption efficiency for dyes. As a whole, this process opens a new avenue to develop efficient decolorants of palm oil and achieves recyclable utilization of decolored waste.

  18. Sexual Dimorphism and Retinal Mosaic Diversification following the Evolution of a Violet Receptor in Butterflies.

    Science.gov (United States)

    McCulloch, Kyle J; Yuan, Furong; Zhen, Ying; Aardema, Matthew L; Smith, Gilbert; Llorente-Bousquets, Jorge; Andolfatto, Peter; Briscoe, Adriana D

    2017-09-01

    Numerous animal lineages have expanded and diversified the opsin-based photoreceptors in their eyes underlying color vision behavior. However, the selective pressures giving rise to new photoreceptors and their spectral tuning remain mostly obscure. Previously, we identified a violet receptor (UV2) that is the result of a UV opsin gene duplication specific to Heliconius butterflies. At the same time the violet receptor evolved, Heliconius evolved UV-yellow coloration on their wings, due to the pigment 3-hydroxykynurenine (3-OHK) and the nanostructure architecture of the scale cells. In order to better understand the selective pressures giving rise to the violet receptor, we characterized opsin expression patterns using immunostaining (14 species) and RNA-Seq (18 species), and reconstructed evolutionary histories of visual traits in five major lineages within Heliconius and one species from the genus Eueides. Opsin expression patterns are hyperdiverse within Heliconius. We identified six unique retinal mosaics and three distinct forms of sexual dimorphism based on ommatidial types within the genus Heliconius. Additionally, phylogenetic analysis revealed independent losses of opsin expression, pseudogenization events, and relaxation of selection on UVRh2 in one lineage. Despite this diversity, the newly evolved violet receptor is retained across most species and sexes surveyed. Discriminability modeling of behaviorally preferred 3-OHK yellow wing coloration suggests that the violet receptor may facilitate Heliconius color vision in the context of conspecific recognition. Our observations give insights into the selective pressures underlying the origins of new visual receptors. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Fluorescence lifetime of emitters with broad homogeneous linewidths modified in opal photonic crystals

    DEFF Research Database (Denmark)

    Nikolaev, Ivan S.; Lodahl, Peter; Vos, Willem L.

    2008-01-01

    We have investigated the dynamics of spontaneous emission from dye molecules embedded in opal photonic crystals. Fluorescence lifetimes of Rhodamine 6G (R6G) dye were measured as a function of both optical frequency and crystal lattice parameter of the polystyrene opals. Due to the broad...... homogeneous line width of the dye, the observed fluorescence lifetime varies only slightly with the frequency within the dye emission spectrum. The lifetime however does change as a function of the crystal lattice parameter. Our observations agree with theoretical calculations of the local density of optical...... states (LDOS) in the three-dimensional photonic crystals. The experiments and theory taken together reveal that the emission lifetime is modified over frequency ranges that are broader than the homogeneous emission line width of R6G dye....

  20. Crystals in crystals

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion...... of the zeolite particles, particularly after thermal treatment. When using mesoporous zeolites, the particles were evenly distributed throughout the mesopore system of the zeolitic support, even after calcination, leading to nanocrystals within mesoporous zeolite single crystals....

  1. Contact allergy to textile dyes. Clinical and experimental studies on disperse azo dyes

    OpenAIRE

    Malinauskiene, Laura

    2012-01-01

    Disperse dyes are the most common allergens among textile dyes. It is not known whether the purified dyes, impurities in the commercial dyes, or metabolites are the actual sensitisers. Moreover, it is not known whether those disperse dyes that are now present in test series are actually used in textile dyeing today. The aim of this thesis was A) to evaluate the significance of the impurities found in the commercial dyes Disperse Orange 1 and Disperse Yellow 3 and their potential metabolit...

  2. Biotransformation and Detoxification of Xylidine Orange Dye Using Immobilized Cells of Marine-Derived Lysinibacillus sphaericus D3

    Directory of Open Access Journals (Sweden)

    Prabha Devi

    2017-02-01

    Full Text Available Lysinibacillus sphaericus D3 cell-immobilized beads in natural gel sodium alginate decolorized the xylidine orange dye 1-(dimethylphenylazo-2-naphthol-6-sulfonic acid sodium salt in the laboratory. Optimal conditions were selected for decolorization and the products formed were evaluated for toxicity by disc diffusion assay against common marine bacteria which revealed the non-toxic nature of the dye-degraded products. Decolorization of the brightly colored dye to colorless products was measured on an Ultra Violet-Vis spectrophotometer and its biodegradation products monitored on Thin Layer Chromatographic plate and High Performance Liquid Chromatography (HPLC. Finally, the metabolites formed in the decolorized medium were characterized by mass spectrometry. This analysis confirms the conversion of the parent molecule into lower molecular weight aromatic phenols and sulfonic acids as the final products of biotransformation. Based on the results, the probable degradation products of xylidine orange were naphthol, naphthylamine-6-sulfonic acid, 2-6-dihydroxynaphthalene, and bis-dinaphthylether. Thus, it may be concluded that the degradation pathway of the dye involved (a reduction of its azo group by azoreductase enzyme (b dimerization of the hydrazo compound followed by (c degradation of monohydrazo as well as dimeric metabolites into low molecular weight aromatics. Finally, it may be worth exploring the possibility of commercially utilizing L. sphaericus D3 for industrial applications for treating large-scale dye waste water.

  3. Soybean peroxidase-mediated degradation of an azo dye- a detailed mechanistic study.

    Science.gov (United States)

    Ali, Liaquat; Algaithi, Rowdha; Habib, Hosam M; Souka, Usama; Rauf, Muhammad A; Ashraf, S Salman

    2013-12-05

    Peroxidases are emerging as an important class of enzymes that can be used for the efficient degradation of organic pollutants. However, detailed studies identifying the various intermediates produced and the mechanisms involved in the enzyme-mediated pollutant degradation are not widely published. In the present study, the enzymatic degradation of an azo dye (Crystal Ponceau 6R, CP6R) was studied using commercially available soybean peroxidase (SBP) enzyme. Several operational parameters affecting the enzymatic degradation of dye were evaluated and optimized, such as initial dye concentration, H2O2 dosage, mediator amount and pH of the solution. Under optimized conditions, 40 ppm dye solution could be completely degraded in under one minute by SBP in the presence of H2O2 and a redox mediator. Dye degradation was also confirmed using HPLC and TOC analyses, which showed that most of the dye was being mineralized to CO2 in the process. Detailed analysis of metabolites, based on LC/MS results, showed that the enzyme-based degradation of the CP6R dye proceeded in two different reaction pathways- via symmetric azo bond cleavage as well as asymmetric azo bond breakage in the dye molecule. In addition, various critical transformative and oxidative steps such as deamination, desulfonation, keto-oxidation are explained on an electronic level. Furthermore, LC/MS/MS analyses confirmed that the end products in both pathways were small chain aliphatic carboxylic acids.

  4. Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates.

    Science.gov (United States)

    Berlier, Judith E; Rothe, Anca; Buller, Gayle; Bradford, Jolene; Gray, Diane R; Filanoski, Brian J; Telford, William G; Yue, Stephen; Liu, Jixiang; Cheung, Ching-Ying; Chang, Wesley; Hirsch, James D; Beechem, Joseph M; Haugland, Rosaria P; Haugland, Richard P

    2003-12-01

    Amine-reactive N-hydroxysuccinimidyl esters of Alexa Fluor fluorescent dyes with principal absorption maxima at about 555 nm, 633 nm, 647 nm, 660 nm, 680 nm, 700 nm, and 750 nm were conjugated to antibodies and other selected proteins. These conjugates were compared with spectrally similar protein conjugates of the Cy3, Cy5, Cy5.5, Cy7, DY-630, DY-635, DY-680, and Atto 565 dyes. As N-hydroxysuccinimidyl ester dyes, the Alexa Fluor 555 dye was similar to the Cy3 dye, and the Alexa Fluor 647 dye was similar to the Cy5 dye with respect to absorption maxima, emission maxima, Stokes shifts, and extinction coefficients. However, both Alexa Fluor dyes were significantly more resistant to photobleaching than were their Cy dye counterparts. Absorption spectra of protein conjugates prepared from these dyes showed prominent blue-shifted shoulder peaks for conjugates of the Cy dyes but only minor shoulder peaks for conjugates of the Alexa Fluor dyes. The anomalous peaks, previously observed for protein conjugates of the Cy5 dye, are presumably due to the formation of dye aggregates. Absorption of light by the dye aggregates does not result in fluorescence, thereby diminishing the fluorescence of the conjugates. The Alexa Fluor 555 and the Alexa Fluor 647 dyes in protein conjugates exhibited significantly less of this self-quenching, and therefore the protein conjugates of Alexa Fluor dyes were significantly more fluorescent than those of the Cy dyes, especially at high degrees of labeling. The results from our flow cytometry, immunocytochemistry, and immunohistochemistry experiments demonstrate that protein-conjugated, long-wavelength Alexa Fluor dyes have advantages compared to the Cy dyes and other long-wavelength dyes in typical fluorescence-based cell labeling applications.

  5. Conformation and chirality in liquid crystals

    Science.gov (United States)

    West, John L.; Zhao, Lei

    2013-09-01

    High helical twisting powerchiral additives are required for an expanding variety of liquid crystal displays and devices. Molecular conformation plays a critical role in determining the helical twisting power, HTP, of chiral additives. We studied additives based on an isosorbide benzoate ester core. Molecular modeling revealed two low energy states with very different conformations for this core The ultra-violet absorption and NMR spectra show two stable isosorbide conformers These spectra reveal how the relative populations of these two conformations change with temperature and how this is related to the helical twisting power. Conformation changes can explain many of the observed anomalous responses of HPT to temperature.

  6. Fabrication of CMC-g-PAM Superporous Polymer Monoliths via Eco-Friendly Pickering-MIPEs for Superior Adsorption of Methyl Violet and Methylene Blue

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2017-06-01

    Full Text Available A series of superporous carboxymethylcellulose-graft-poly(acrylamide/palygorskite (CMC-g-PAM/Pal polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM in the oil-in-water (O/W Pickering-medium internal phase emulsions (Pickering-MIPEs composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20 on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9–14 and 3%, respectively. The porous monolith can rapidly adsorb 1,585 mg/g of methyl violet (MV and 1,625 mg/g of methylene blue (MB. After the monolith was regenerated by adsorption-desorption process for five times, the adsorption capacities still reached 92.1% (for MV and 93.5% (for MB of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontamination of dye-containing wastewater.

  7. Development of AVLIS dye laser system

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Nakayama, Tsuyoshi; Kato, Masaaki; Arisawa, Takashi

    1995-01-01

    CVL pumped single mode dye laser was performed. It was found that pressure tuning has some excellent feature in comparison to mechanical tuning in dye laser frequency control. For evaluation of dye laser amplifier, two-dimensional rate equation was proposed. Calculated data by this equation agreed with experimental data in large diameter input dye laser beam condition. (author)

  8. Studies on Dyeing Performance of Novel Acid Azo Dyes and Mordent Acid Azo Dyes Based on 2,4-Dihydroxybenzophenone

    OpenAIRE

    Dixit, Bharat C.; Patel, Hitendra M.; Desai, Dhirubhai J.; Dixit, Ritu B.

    2009-01-01

    Novel acid azo and mordent acid azo dyes have been prepared by the coupling of diazo solution of different aminonaphthol sulphonic acids and aromatic amino acids with 2,4-dihydroxybenzophenone. The resultant dyes were characterized by elemental analysis as well as IR and 1H NMR spectral studies. The UV-visible spectral data have also been discussed in terms of structure property relationship. The dyeing assessments of all the dyes were evaluated on wool and silk textile fibers. The dyeing of ...

  9. Treatment of dye house effluents

    International Nuclear Information System (INIS)

    Waheed, S.; Ashraf, C.M.

    1999-01-01

    Environmental considerations play an increasingly important role in processing of textiles. For textile, limits on particular substances have been and are being laid down either by law or as a result of the demands of clothing manufactures. One of the most complex areas in textile processing is textile printing and dyeing. Here, virtually all dye classes are used. In some printing processes such as reactive printing, many of products used end up in the wastewater. A study of the optimisation of wastewater treatment systems and the systematic management of water and the problems of dyeing are reviewed in this article. (author)

  10. Hair dye poisoning and rhabdomyolysis.

    Science.gov (United States)

    Bokutz, Munira; Nasir, Nosheen; Mahmood, Faisal; Sajid, Sara

    2015-04-01

    Hair dye ingestion is a rare cause of toxicity in Pakistan. We are presenting the case report of a 55 year old male who presented with accidental hair dye ingestion and developed laryngeal oedema requiring emergent tracheostomy. He had also developed aspiration pneumonitis and chemical oesophagitis. However, the most alarming manifestation was rhabdomyolysis. Hair dye toxicity can be fatal if not recognized early. There is no antidote available. Rhabdomyolysis is a complication and needs to be managed aggressively in order to prevent long term morbidity.

  11. Survery on Actual Conditions of Food Dyes

    OpenAIRE

    佐藤, ひろみ

    1981-01-01

    Many food dyes are widely used as food additives in Japan, and many investigations have been pointed the problems of safety of these food dyes used in Japanese food. There are two types of commercial food dyes, one is synthetic dyes and the other is natural dyes.Recently Japanese food is not stained so colourfully, but it is stained faintly in colour near to natural food by using of mixed synthetic dyes. On their hand, many consumers have a tendency to prefer natural food dyes because they ha...

  12. Dye purity and dye standardization for biological staining

    DEFF Research Database (Denmark)

    Lyon, H O

    2002-01-01

    for separating, identifying and assaying dye components. In the second part of the review, descriptions are given of the standardized staining method approach using standard staining methods for assessing stains, and practical responses to stain impurity including commercial quality control, third-party quality...... control and standardization of reagents, protocols and documentation. Finally, reference is made to the current state of affairs in the dye field....

  13. Reversible polycolour change of viologens from violet through transparent to white

    International Nuclear Information System (INIS)

    Hoshino, Katsuyoshi; Oikawa, Yosuke; Sakabe, Ichiro; Komatsu, Toshiki

    2009-01-01

    The electrochromic properties of 1,1'-dibenzyl-4,4'-bipyridinium and 1,1'-diheptyl-4,4'-bipyridinium were investigated in the presence of MBr (M = Li + , Na + , and K + ). The cyclic voltammograms of these viologens showed a white-coloured state in addition to the usual violet one-electron reduction state and the colourless divalent state. Chemical analyses (FT-IR and XPS spectra) of the white film and some control experiments with different supporting electrolytes, MX (X = Cl - and I - ), revealed that the viologens formed water-insoluble ion pairs with tribromide generated by the electrooxidation of monobromide to produce a white film. The film was reversibly decolourized electrochemically to the initial transparent state, providing the polyelectrochromism using the simple viologen/MBr systems. The colouration efficiencies for the violet and the white-coloured states were 170 cm 2 /C and 104 cm 2 /C, respectively.

  14. DETERMINATION OF THE THERMODYNAMICS OF β-LACTOGLOBULIN AGGREGATION USING ULTRA VIOLET LIGHT SCATTERING SPECTROSCOPY

    OpenAIRE

    Belton, Daniel; Austerberry, James

    2018-01-01

    The problem of protein aggregation is widely studied across a number of disciplines, where understanding the behaviour of the protein monomer, and its behaviour with co-solutes is imperative in order to devise solutions to the problem. Here we present a method for measuring the kinetics of protein aggregation based on ultra violet light scattering spectroscopy (UVLSS) across a range of NaCl conditions. Through measurement of wavelength dependant scattering and using the model protein β-lactog...

  15. Synthesis of Cu Doped ZnO Nanostructures for Ultra Violet Sensing

    OpenAIRE

    Nazar Abbas SHAH; Muhammad ABID; Muhammad AMIN; Rahat AFRIN; Syed Zafar ILYAS

    2015-01-01

    This paper mainly focused on the synthesis of zinc oxide nanostructures, their characterization and their ultra violet light sensing response at room temperature. Nanowires, nanobelts and nanosheets were synthesized by varying doping material copper by using vapor transport technique governed by the vapor-liquid-solid or vapor-solid mechanisms. The structural, morphological and optical characterization was carried out using X-ray diffraction, scanning electron microscopy, energy dispersive X-...

  16. Violet Light Exposure Can Be a Preventive Strategy Against Myopia Progression

    OpenAIRE

    Torii, Hidemasa; Kurihara, Toshihide; Seko, Yuko; Negishi, Kazuno; Ohnuma, Kazuhiko; Inaba, Takaaki; Kawashima, Motoko; Jiang, Xiaoyan; Kondo, Shinichiro; Miyauchi, Maki; Miwa, Yukihiro; Katada, Yusaku; Mori, Kiwako; Kato, Keiichi; Tsubota, Kinya

    2017-01-01

    Prevalence of myopia is increasing worldwide. Outdoor activity is one of the most important environmental factors for myopia control. Here we show that violet light (VL, 360?400?nm wavelength) suppresses myopia progression. First, we confirmed that VL suppressed the axial length (AL) elongation in the chick myopia model. Expression microarray analyses revealed that myopia suppressive gene EGR1 was upregulated by VL exposure. VL exposure induced significantly higher upregulation of EGR1 in chi...

  17. Ultra-violet radiation for the inactivation of microorganisms in hydroponics

    International Nuclear Information System (INIS)

    Buyanosvsky, G.; Gale, J.; Degani, N.

    1981-01-01

    The growth of microorganisms in the nutrient solution of a circulating hydroponic system was suppressed by ultra-violet radiation. Applied for three hours daily (572 Jm -2 h -1 ) throughout experiments in which tomato and corn were grown, it was effective in reducing the population of microorganisms from between 500-800 x 10 3 to 10-50 x 10 3 cells per ml. (orig.)

  18. Effects of chronic gamma irradiation on adventitious plantlet formation of Saintpaulia ionantha (African violet) detached leaves

    International Nuclear Information System (INIS)

    Arunee Wongpiyasatid; Peeranuch Jompuk; Katarat Chusreeaeom; Thanya Taychasinpitak

    2007-01-01

    Formation of adventitious plantlets on unrootedly detached leaves of two African violet (Saintpaulia ionantha) cultivars, pink and violet flowers, chronically gamma-irradiated in gamma room at The Gamma Irradiation Service and Nuclear Technology Research Center, Kasetsart University was compared. Detached leaves were immediately planted after detachment in plastic trays containing peat moss, 18 leaves per treatment with 3 replications. Three dose rates (rad/h) with 3 doses (rad)/dose rate, were applied to the irradiated samples while the controls were placed outside the gamma room. Three months after irradiation, the number of survived leaves, the number of leaves producing adventitious plantlets and the number of plantlets per leaf were recorded. After that, the young plantlets were transferred to the new pots for further observation on plant growth and mutation characters. The results revealed that the number of survived leaves, the number of leaves producing adventitious plantlets and the number of plantlets per leaf varied slightly with radiation doses but were not significantly different at different dose rates. Radiosensitivity was noticed to be higher in pink flower cultivar than the violet one. M 1 V 1 plantlets will be followed up for growth and mutation character observations

  19. Hair Dyes and Cancer Risk

    Science.gov (United States)

    ... cancer: evidence from a case-control study in Spain. European Journal of Cancer 2006; 42(10):1448–1454. [PubMed Abstract] Lin J, Dinney CP, Grossman HB, Wu X. Personal permanent hair dye use is not ...

  20. Photocatalytic degradation of textile dyes.

    Science.gov (United States)

    Mahadwad, O K; Jasra, R V; Parikh, P A; Tayade, R J

    2010-07-01

    The photocatalytic degradation of commonly used textile dyes, namely, Reactive Black-5 (RB-5), Red (ME4BL), Golden Yellow (MERL), Blue-222, Methylene Blue, and Malachite Green, has been studied, using TiO2 (P25) as a photocatalyst. All the dye solutions could be decolorized. Kinetics of RB-5 oxidation reaction has been studied and was found to be of first order in dye concentration. Effects of different parameters such as catalyst amount, initial concentration of the dyes, and pH of solution along with biological parameters (TOC and COD) on the rate of degradation were studied. Experimental results showed that photocatalytic degradation of commonly used RB-5 was very effective at the optimum catalyst quantity of 2.5 g/L.

  1. Purification and characterization of extracellular laccase produced by Ceriporiopsis subvermispora and decolorization of triphenylmethane dyes.

    Science.gov (United States)

    Chmelová, Daniela; Ondrejovič, Miroslav

    2016-11-01

    Laccases of white-rot fungi provide a promising future as a tool to be used in the field of biodegradation of synthetic dyes with different chemical structures. The aim of this study was production, characterization, and application of laccases from the white-rot fungus Ceriporiopsis subvermispora ATCC 90467 for decolorization of triphenylmethane dyes that could remain persistent in wastewater. Laccase was purified from a C. subvermispora culture by a four-step method resulting high specific activity of 2,571 U g -1 , 88-fold higher than crude laccase. Purified laccase (molecular weight 45 kDa) had the optimum activity at pH 2.0 and the optimum temperature 50 °C using ABTS as chromogenic substrate. Laccases efficiently decolorized triphenylmethane dyes such as Malachite Green (87.8%), Bromocresol Purple (71.6%), and Methyl Violet (68.1%) without redox mediator. However, decolorization percentage of hardly degradable triphenylmethane dyes such as Phenol Red, Bromophenol Blue, and Brilliant Blue R-250 was increased the presence of some low-molecular weight compounds (natural or synthetic redox mediators). Purified laccases were resistant to Mg 2+ , Ca 2+ , Ba 2+ , Mn 2+ , Fe 2+ , Cu 2+ , Zn 2+ , and Sn 2+ (10 mmol L -1 ). These findings suggest that laccases from C. subvermispora are able to decolorize triphenylmethane dyes without the negative influence of metal ions that can be found in wastewater. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ultrasound for low temperature dyeing of wool with acid dye.

    Science.gov (United States)

    Ferrero, F; Periolatto, M

    2012-05-01

    The possibility of reducing the temperature of conventional wool dyeing with an acid levelling dye using ultrasound was studied in order to reach exhaustion values comparable to those obtained with the standard procedure at 98 °C, obtaining dyed samples of good quality. The aim was to develop a laboratory method that could be transferred at industrial level, reducing both the energy consumption and fiber damage caused by the prolonged exposure to high temperature without the use of polluting auxiliary agents. Dyeings of wool fabrics were carried out in the temperature range between 60 °C and 80 °C using either mechanical or ultrasound agitation of the bath and coupling the two methods to compare the results. For each dyeing, the exhaustion curves of the dye bath were determined and the better results of dyeing kinetics were obtained with ultrasound coupled with mechanical stirring. Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasonic efficiency were calculated in comparison with mechanical stirring alone. In the presence of ultrasound the absorption rate constants increased by at least 50%, at each temperature, confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound was ascribed to the pre-exponential factor of the Arrhenius equation. It was also shown that the effect of ultrasound at 60 °C was just on the dye bath, practically unaffecting the wool fiber surface, as confirmed by the results of SEM analysis. Finally, fastness tests to rubbing and domestic laundering yielded good values for samples dyed in ultrasound assisted process even at the lower temperature. These results suggest the possibility, thanks to the use of ultrasound, to obtain a well equalized dyeing on wool working yet at 60°C, a temperature process strongly lower than 98°C, currently used in industry

  3. Dye sensitization of antimony-doped CdS photoelectrochemical solar cell

    Energy Technology Data Exchange (ETDEWEB)

    El Zayat, M.Y.; Saed, A.O.; El-Dessouki, M.S. [Department of Physics, Faculty of Science, Cairo University, Giza (Egypt)

    2002-01-31

    Sb-doped CdS single crystal was used as a photoanode to fabricate a photoelectrochemical solar (PECS) cell. The three organic dyes; eosin, thymol blue and rhodamin 6G were used as sensitizers in (PECS) cell. In the absence of the dye, the results showed that with Sb-doped CdS single crystal electrode, a higher power conversion efficiency 9.27% has been achieved compared to 5.7-7.4% for pure crystal. Application of the dye in PECS cell increases the efficiency to about 13%. The efficiency reaches its maximum value when the dye concentration is (2.5x10{sup -5})M, sufficient to cover the surface of the semiconductor electrode with a continuous monolayer of the dye. Exceeding this value resulted in a gradual decrease of the efficiency from its maximum value. Mott-Schottky plots gave a doping density of 3.14x10{sup 17}cm{sup -3} and a space charge width of 4.95x10{sup -6}cm for the sample used. A flat-band potential equal to -0.84V, independent of both frequency and pH, was also predicted. Cyclic voltammetry (c.v.) measurements showed an anodic current peak at 0.4V vs. SCE. The disappearance of this peak after excess addition of the reducing agent Na{sub 2}S, indicates that this peak is due to the PEC corrosion of the semiconductor electrode.

  4. Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water.

    Science.gov (United States)

    Karim, Zoheb; Mathew, Aji P; Grahn, Mattias; Mouzon, Johanne; Oksman, Kristiina

    2014-11-04

    Fully biobased composite membranes for water purification were fabricated with cellulose nanocrystals (CNCs) as functional entities in chitosan matrix via freeze-drying process followed by compacting. The chitosan (10 wt%) bound the CNCs in a stable and nanoporous membrane structure with thickness of 250-270 μm, which was further stabilized by cross-linking with gluteraldehyde vapors. Scanning electron microscopy (SEM) studies revealed well-individualized CNCs embedded in a matrix of chitosan. Brunauer, Emmett and Teller (BET) measurements showed that the membranes were nanoporous with pores in the range of 13-10nm. In spite of the low water flux (64 Lm(-2) h(-1)), the membranes successfully removed 98%, 84% and 70% respectively of positively charged dyes like Victoria Blue 2B, Methyl Violet 2B and Rhodamine 6G, after a contact time of 24h. The removal of dyes was expected to be driven by the electrostatic attraction between negatively charged CNCs and the positively charged dyes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Chromonic liquid crystals: properties and applications as functional materials.

    Science.gov (United States)

    Tam-Chang, Suk-Wah; Huang, Liming

    2008-05-07

    Chromonic liquid crystals (or chromonics) are formed by the self-organization of aromatic compounds with ionic or hydrophilic groups in aqueous solutions. This review summarizes the research on chromonic liquid crystals in the last two decades. The research embraced the studies of commercially available chromonic dyes and drugs, the syntheses and investigations of molecularly designed mesogens, the invention of novel processes for aligning chromonic liquid crystals, and the development of new applications as functional materials and biosensors.

  6. Natural dyes as photosensitizers for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Sancun; Wu, Jihuai; Huang, Yunfang; Lin, Jianming [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, Fujian 362021 (China)

    2006-02-15

    The dye-sensitized solar cells (DSC) were assembled by using natural dyes extracted from black rice, capsicum, erythrina variegata flower, rosa xanthina, and kelp as sensitizers. The I{sub SC} from 1.142mA to 0.225mA, the V{sub OC} from 0.551V to 0.412V, the fill factor from 0.52 to 0.63, and P{sub max} from 58{mu}W to 327{mu}W were obtained from the DSC sensitized with natural dye extracts. In the extracts of natural fruit, leaves and flower chosen, the black rice extract performed the best photosensitized effect, which was due to the better interaction between the carbonyl and hydroxyl groups of anthocyanin molecule on black rice extract and the surface of TiO{sub 2} porous film. The blue-shift of absorption wavelength of the black rice extract in ethanol solution on TiO{sub 2} film and the blue-shift phenomenon from absorption spectrum to photoaction spectrum of DSC sensitized with black rice extract are discussed in the paper. Because of the simple preparation technique, widely available and low cheap cost natural dye as an alternative sensitizer for dye-sensitized solar cell is promising. (author)

  7. Phototropic liquid crystals comprising one component

    Science.gov (United States)

    Sobolewska, Anna; Zawada, Joanna; Bartkiewicz, Stanislaw; Galewski, Zbigniew

    2013-09-01

    Phototropic liquid crystals (PtLC), in which the phase transition can be controlled by the light, are a new class of liquid crystal materials possessing number of potential applications, especially in photonic devices. So far a significant majority of PtLC materials has been realized by the doping a classical liquid crystal with a photochromic dye. Here we report PtLCs comprising a single compound. Liquid-crystalline and photochromic properties have been accomplished in alkylo-alkoxy derivatives of azobenzene. Such compounds show a rich polymorphism which can be controlled by the light. The phenomenon of the photochemical phase transition has been investigated by means of holographic grating recording.

  8. Advancements of vertically aligned liquid crystal displays.

    Science.gov (United States)

    Kumar, Pankaj; Jaggi, Chinky; Sharma, Vandna; Raina, Kuldeep Kumar

    2016-02-01

    This review describes the recent advancements in the field of the vertical aligned (VA) liquid crystal displays. The process and formation of different vertical alignment modes such as conventional VA, patterned VA, multi-domain VA, and polymer stabilised VA etc are widely discussed. Vertical alignment of liquid crystal due to nano particle dispersion in LC host, bifunctional PR-SAM formed by silane coupling reaction to oxide surfaces, azo dye etc., are also highlighted and discussed. Overall, the article highlights the advances in the research of vertical aligned liquid crystal in terms of their scientific and technological aspects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Diffusion dynamics in microfluidic dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2007-01-01

    We have investigated the bleaching dynamics that occur in opto-fluidic dye lasers, where the liquid laser dye in a channel is locally bleached due to optical pumping. Our studies suggest that for micro-fluidic devices, the dye bleaching may be compensated through diffusion of dye molecules alone....... By relying on diffusion rather than convection to generate the necessary dye replenishment, our observation potentially allows for a significant simplification of opto-fluidic dye laser device layouts, omitting the need for cumbersome and costly external fluidic handling or on-chip micro-fluidic pumping...

  10. Removal of reactive blue 19 dyes from textile wastewater by pomegranate seed powder: Isotherm and kinetic studies

    Directory of Open Access Journals (Sweden)

    Mahboobeh Dehvari

    2016-01-01

    Full Text Available Aims: The aim of this study was the evaluation of adsorption kinetics and equilibrium of reactive blue 19 dyes from textile synthetic wastewater by pomegranate seed powder. Materials and Methods: This study is an experimental research, which was performed in laboratory scale. In this study, the parameters such as adsorbent dose, pH and retention time, initial concentration of dye and agitation rate have been investigated. After washing and boiling of pomegranate seeds for 2 h, they dried, milled and finally pulverized by standard ASTM sieves (40-100 mesh. Maximum adsorption wave length (λmax by spectrophotometer ultra violet/visible (model SP-3000 Plus 592 nm was determined. The Langmuir, Freundlich and Temkin isotherm models and the pseudo-first-order and pseudo-second-order kinetic models were analyzed. Results: According to results, the removal efficiency with adsorbent dose, retention time and agitation rate has a direct relation. Maximum adsorption occurred in the first 60 min. The removal efficiency with initial concentration of dye and pH of solution has indirect relation. The Freundlich isotherm fits the experimental data better than the other isotherms. It was recognized that the adsorption followed by pseudo-second-order model (R2 > 0.99. Conclusion: Based on the results, pomegranate seeds as a new natural sorbent can be used in removal of dye and other environmental pollutants with desirable absorption capacity.

  11. Topical gentian violet compared with nystatin oral suspension for the treatment of oropharyngeal candidiasis in HIV-1-infected participants.

    Science.gov (United States)

    Mukherjee, Pranab K; Chen, Huichao; Patton, Lauren L; Evans, Scott; Lee, Anthony; Kumwenda, Johnstone; Hakim, James; Masheto, Gaerolwe; Sawe, Frederick; Pho, Mai T; Freedberg, Kenneth A; Shiboski, Caroline H; Ghannoum, Mahmoud A; Salata, Robert A

    2017-01-02

    Compare the safety and efficacy of topical gentian violet with that of nystatin oral suspension (NYS) for the treatment of oropharyngeal candidiasis in HIV-1-infected adults in resource-limited settings. Multicenter, open-label, evaluator-blinded, randomized clinical trial at eight international sites, within the AIDS Clinical Trials Group. Adult HIV-infected participants with oropharyngeal candidiasis, stratified by CD4 cell counts and antiretroviral therapy status at study entry, were randomized to receive either gentian violet (0.00165%, BID) or NYS (500 000 units, QID) for 14 days. Cure or improvement after 14 days of treatment. Signs and symptoms of oropharyngeal candidiasis were evaluated in an evaluator-blinded manner. The study was closed early per Data Safety Monitoring Board after enrolling 221 participants (target = 494). Among the 182 participants eligible for efficacy analysis, 63 (68.5%) in the gentian violet arm had cure or improvement of oropharyngeal candidiasis versus 61 (67.8%) in the NYS arm, resulting in a nonsizable difference of 0.007 (95% confidence interval: -0.129, 0.143). There was no sizable difference in cure rates between the two arms (-0.0007; 95% confidence interval: -0.146, 0.131). No gentian violet-related adverse events were noted. No sizable differences were identified in tolerance, adherence, quality of life, or acceptability of study drugs. In gentian violet arm, 61 and 39% of participants reported 'no' and 'mild-to-moderate' staining, respectively. Cost for medication procurement was significantly lower for gentian violet versus NYS (median $2.51 and 19.42, respectively, P = 0.01). Efficacy of gentian violet was not statistically different than NYS, was well tolerated, and its procurement cost was substantially less than NYS.

  12. Synthesis, crystal growth, optical, thermal, and mechanical properties of a nonlinear optical single crystal: ammonium sulfate hydrogen sulphamate (ASHS)

    Science.gov (United States)

    Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.

    2018-04-01

    Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.

  13. Crystal Systems.

    Science.gov (United States)

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  14. Virtual Crystallizer

    Energy Technology Data Exchange (ETDEWEB)

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  15. Crystal Engineering

    Indian Academy of Sciences (India)

    Nangia (2002). “Today, research areas under the wide umbrella of crystal engineering include: supramolecular synthesis; nanotechnology; separation science and catalysis; supramolecular materials and devices; polymorphism; cocrystals, crystal structure prediction; drug design and ligand–protein binding.”

  16. Selective removal of the violet color produced by anthocyanins in procyanidin-rich unfermented cocoa extracts.

    Science.gov (United States)

    Wallace, Taylor C; Giusti, M Monica

    2011-09-01

    Cacao (Theobroma cacao L.) is rich in procyanidins, a large portion of which degrades during the natural fermentation process of producing cocoa powder. Recent advances in technology have enabled scientists to produce unfermented cocoa powder, preserving the original profile of procyanidins present in cocoa and allowing for the development of highly concentrated procyanidin-rich extracts. During this process, the anthocyanins naturally present in unfermented cocoa remain intact, producing a violet color in the final extract. The objective of this study was to selectively remove the violet color in procyanidin-rich extracts produced from unfermented cocoa powder, while maintaining the stability and composition of procyanidins present in the matrix. Several processing parameters, including pH fluctuations, enzymatic treatments, and the addition of potassium meta-bisulfite, were explored to influence the color of procyanidin-rich extracts throughout a 60-d shelf life study. The addition of potassium meta-bisulfite (500 ppm) was found to be the most effective means of removing the violet color present in the treated extracts (L*= 71.39, a*= 8.44, b*= 9.61, chroma = 12.79, and hue = 48.8˚) as compared to the control (L*= 52.84, a*= 11.08, b*= 2.24, chroma = 11.28, and hue = 11.4˚). The use of potassium meta-bisulfite at all treatment levels (200, 500, and 1000 ppm) did not show any significant detrimental effects on the stability, composition, or amount of procyanidins present in the extracts over the shelf life period as monitored by UV-Vis spectrophotometry and HPLC-MS. This research will enable the food industry to incorporate highly concentrated procyanidin-rich extracts in food products without influencing the color of the final product. © 2011 Institute of Food Technologists®

  17. Optofluidic ring resonator dye lasers

    Science.gov (United States)

    Sun, Yuze; Suter, Jonathan D.; Fan, Xudong

    2010-02-01

    We overview the recent progress on optofluidic ring resonator (OFRR) dye lasers developed in our research group. The fluidics and laser cavity design can be divided into three categories: capillary optofluidic ring resonator (COFRR), integrated cylindrical optofluidic ring resonator (ICOFRR), and coupled optofluidic ring resonator (CpOFRR). The COFRR dye laser is based on a micro-sized glass capillary with a wall thickness of a few micrometers. The capillary circular cross-section forms the ring resonator and supports the whispering gallery modes (WGMs) that interact evanescently with the gain medium in the core. The laser cavity structure is versatile to adapt to the gain medium of any refractive index. Owing to the high Q-factor (>109), the lasing threshold of 25 nJ/mm2 is achieved. Besides directly pump the dye molecules, lasing through fluorescence resonance energy transfer (FRET) between the donor and acceptor dye molecules is also studied in COFRR laser. The energy transfer process can be further controlled by designed DNA scaffold labeled with donor/acceptor molecules. The ICOFRR dye laser is based on a cylindrical ring resonator fused onto the inner surface of a thick walled glass capillary. The structure has robust mechanical strength to sustain rapid gain medium circulation. The CpOFRR utilizes a cylindrical ring resonator fused on the inner surface of the COFRR capillary. Since the capillary wall is thin, the individual WGMs of the cylindrical ring resonator and the COFRR couples strongly and forms Vernier effect, which provides a way to generate a single mode dye laser.

  18. Textile dyeing by dyestuffs of natural origin

    Directory of Open Access Journals (Sweden)

    Šmelcerović Miodrag

    2006-01-01

    Full Text Available The textile industry is one of the biggest industrial consumers of water especially dye houses which utilize synthetic dyes and other chemicals. Natural dyes are generally environmental friendly and have many advantages over synthetic dyes with respect to production and application. In recent years, there has been an interest in the application of these dyes due to their bio-degradability and higher compatibility with the environment. A review of previous work in the field of applying dyestuffs of natural source as possible textile dyes is given. From an ecological viewpoint, the substitution of chemical dyes by 'natural products' in textile dyeing may be feasible and may represent not only a strategy to reduce risks and pollutants, but also an opportunity for new markets and new businesses which can develop from the inclusion of ecology in trade policy.

  19. Photocatalytic Oxidation of Azo Dyes and Oxalic Acid in Batch Reactors and CSTR: Introduction of Photon Absorption by Dyes to Kinetic Models

    Directory of Open Access Journals (Sweden)

    I. Grčić

    2018-04-01

    Full Text Available The possibilities of treating industrial effluents and water purification by advanced oxidation processes have been extensively studied; photocatalysis has emerged as a feasible alternative solution. In order to apply the photocatalytic treatment on a larger scale, relevant modeling approaches are necessary. The scope of this work was to investigate the applicability of recently published kinetic models in different reactor systems (batch and CSTR under UVA or UVC irradiation and in combination with two types of TiO2 catalyst, AEROXIDE® P25 and PC-500 for degradation of azo dyes (C.I. Reactive Violet 2, and C.I. Mordant Yellow 10, oxalic acid and their mixtures. The influences of reactor geometry and irradiation intensities on pollutant oxidation efficiency were examined. The effect of photon absorption by dyes in water matrix was thoroughly studied. Relevant kinetic models were introduced to the mass balance for particular reactor system. Resulting models were sufficient for description of pollutant degradation in batch reactors and CSTR. Experimental results showed 1.15 times higher mineralization extents achieved after 7 cycles in CSTR than in batch photoreactor of similar geometry within the equivalent time-span. The application of CSTR in-series could simplify the photocatalytic water treatment on a larger scale.

  20. Kinetic spectrophotometric determination of trace manganese (II) with dahlia violet in nonionic microemulsion medium.

    Science.gov (United States)

    Wei, Qin; Yan, Liangguo; Chang, Guohua; Ou, Qingyu

    2003-02-06

    A new catalytic kinetic spectrophotometric method has been developed for the determination of trace amount of manganese (II) in nonionic microemulsion medium. The method is based on the catalytic effect of manganese (II) on the oxidation of dahlia violet by potassium periodate with nitrilotriacetic acid as an activitor in the presence of nonionic microemulsion. Under the optimum conditions, the calibration graph is linear in the range of 0.0004-0.0056 mug ml(-1) of manganese (II) at 580 nm. The detection limit achieved is 3.75x10(-5) mug ml(-1). Manganese (II) in foodstuff samples was determined with satisfactory results.

  1. Assessment of the potential for resistance to antimicrobial violet-blue light in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Rachael M. Tomb

    2017-09-01

    Full Text Available Abstract Background Antimicrobial violet-blue light in the region of 405 nm is emerging as an alternative technology for hospital decontamination and clinical treatment. The mechanism of action is the excitation of endogenous porphyrins within exposed microorganisms, resulting in ROS generation, oxidative damage and cell death. Although resistance to 405 nm light is not thought likely, little evidence has been published to support this. This study was designed to establish if there is potential for tolerance development, using the nosocomial pathogen Staphylococcus aureus as the model organism. Methods The first stage of this study investigated the potential for S. aureus to develop tolerance to high-intensity 405 nm light if pre-cultured in low-level stress violet-blue light (≤1 mW/cm2 conditions. Secondly, the potential for tolerance development in bacteria subjected to repeated sub-lethal exposure was compared by carrying out 15 cycles of exposure to high-intensity 405 nm light, using a sub-lethal dose of 108 J/cm2. Inactivation kinetics and antibiotic susceptibility were also compared. Results When cultured in low-level violet-blue light conditions, S. aureus required a greater dose of high-intensity 405 nm light for complete inactivation, however this did not increase with multiple (3 low-stress cultivations. Repeated sub-lethal exposures indicated no evidence of bacterial tolerance to 405 nm light. After 15 sub-lethal exposures 1.2 and 1.4 log10 reductions were achieved for MSSA and MRSA respectively, which were not significantly different to the initial 1.3 log10 reductions achieved (P = 0.242 & 0.116, respectively. Antibiotic susceptibility was unaffected, with the maximum change in zone of inhibition being ± 2 mm. Conclusions Repeated sub-lethal exposure of non-proliferating S. aureus populations did not affect the susceptibility of the organism to 405 nm light, nor to antibiotics. Culture in low-level violet-blue light

  2. High light extraction efficiency in bulk-GaN based volumetric violet light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    David, Aurelien, E-mail: adavid@soraa.com; Hurni, Christophe A.; Aldaz, Rafael I.; Cich, Michael J.; Ellis, Bryan; Huang, Kevin; Steranka, Frank M.; Krames, Michael R. [Soraa Inc., 6500 Kaiser Dr., Fremont, California 94555 (United States)

    2014-12-08

    We report on the light extraction efficiency of III-Nitride violet light-emitting diodes with a volumetric flip-chip architecture. We introduce an accurate optical model to account for light extraction. We fabricate a series of devices with varying optical configurations and fit their measured performance with our model. We show the importance of second-order optical effects like photon recycling and residual surface roughness to account for data. We conclude that our devices reach an extraction efficiency of 89%.

  3. Use of the alizarine violet N (AVN) as a spectrophotometric reagent for aluminium determination

    OpenAIRE

    Dantas, Alailson Falcão; Costa, Antônio Celso Spínola; Ferreira, Sérgio Luís Costa

    2000-01-01

    The present work proposes the application of the 4-Hidroxy-3-(2-hydroxynaphtylazo)-benzenesulphonic acid (C.I. 15670), Alizarine Violet N (AVN), as a reagent for direct aluminium determination using molecular absorption spectrophotometry in the presence of tensoatives. Al(III) cation reacts with AVN in pH 9.4, forming a red complex, stable for at least 24 hours, with absorption minimum at 607nm and, against a reagent blank, (epsiloncomplex - epsilonreagent) = -2.71x10(4) L.mol-1.cm-1. The rea...

  4. A temperature response function for modeling leaf growth and development of the African violet (Saintpaulia ionantha Wendl.

    Directory of Open Access Journals (Sweden)

    Streck Nereu Augusto

    2004-01-01

    Full Text Available Response functions used in crop simulation models are usually different for different physiological processes and cultivars, resulting in many unknown coefficients in the response functions. This is the case of African violet (Saintpaulia ionantha Wendl., where a generalized temperature response for leaf growth and development has not been developed yet. The objective of this study was to develop a generalized nonlinear temperature response function for leaf appearance rate and leaf elongation rate in African violet. The nonlinear function has three coefficients, which are the cardinal temperatures (minimum, optimum, and maximum temperatures. These coefficients were defined as 10, 24, and 33ºC, based on the cardinal temperatures of other tropical species. Data of temperature response of leaf appearance rate and leaf elongation rate in African violet, cultivar Utah, at different light levels, which are from published research, were used as independent data for evaluating the performance of the nonlinear temperature response function. The results showed that a generalized nonlinear response function can be used to describe the temperature response of leaf growth and development in African violet. These results imply that a reduction in the number of input data required in African violet simulation models is possible.

  5. Metal Complex Dyes for Dye-Sensitized Solar Cells: Recent ...

    Indian Academy of Sciences (India)

    Dye-sensitized solar cells (DSSC) provide a technically and economically credible alternative concept to present day p–n junction photovoltaic devices. In contrast to the conventional systems where the semiconductor acts as light absorbent and charge carrier transport, the two functions are separated in DSSC.

  6. Effect of dye structure and redox mediators on anaerobic azo and anthraquinone dye reduction

    Directory of Open Access Journals (Sweden)

    Mayara Carantino Costa

    2012-01-01

    Full Text Available We investigated the biological decolourisation of dyes with different molecular structures. The kinetic constant values (k1 achieved with azo dye Reactive Red 120 were 7.6 and 10.1 times higher in the presence of RM (redox mediators AQDS and riboflavin, respectively, than the assays lacking RM. The kinetic constant achieved with the azo dye Congo Red was 42 times higher than that obtained with the anthraquinone dye Reactive Blue 4. The effect of RM on dye reduction was more evident for azo dyes resistant to reductive processes, and ineffective for anthraquinone dyes because of the structural stability of the latter.

  7. Novel nanostructures for next generation dye-sensitized solar cells

    KAUST Repository

    Tétreault, Nicolas

    2012-01-01

    Herein, we review our latest advancements in nanostructured photoanodes for next generation photovoltaics in general and dye-sensitized solar cells in particular. Bottom-up self-assembly techniques are developed to fabricate large-area 3D nanostructures that enable enhanced charge extraction and light harvesting through optical scattering or photonic crystal effects to improve photocurrent, photovoltage and fill factor. Using generalized techniques to fabricate specialized nanostructures enables specific optoelectronic and physical characteristics like conduction, charge extraction, injection, recombination and light harvesting but also helps improve mechanical flexibility and long-term stability in low cost materials. © 2012 The Royal Society of Chemistry.

  8. From Serendipity to Rational Design: Tuning the Blue Trigonal Bipyramidal Mn3+ Chromophore to Violet and Purple through Application of Chemical Pressure.

    Science.gov (United States)

    Li, Jun; Lorger, Simon; Stalick, Judith K; Sleight, Arthur W; Subramanian, M A

    2016-10-03

    We recently reported that an allowed d-d transition of trigonal bipyramidal (TBP) Mn 3+ is responsible for the bright blue color in the YIn 1-x Mn x O 3 solid solution. The crystal field splitting between a'(d z 2 ) and e'(d x 2 -y 2 , d xy ) energy levels is very sensitive to the apical Mn-O distance. We therefore applied chemical pressure to compress the apical Mn-O distance in YIn 1-x Mn x O 3 , move the allowed d-d transition to higher energy, and thereby tune the color from blue to violet/purple. This was accomplished by substituting smaller cations such as Ti 4+ /Zn 2+ and Al 3+ onto the TBP In/Mn site, which yielded novel violet/purple phases. The general formula is YIn 1-x-2y-z Mn x Ti y Zn y Al z O 3 (x = 0.005-0.2, y = 0.1-0.4, and z ≤ 0.1), where the color darkens with the increasing amount of Mn. Higher y or small additions of Al provide a more reddish hue to the resulting purple colors. Substituting other rare earth cations for Y has little impact on color. Crystal structure analysis by neutron powder diffraction confirms a shorter apical Mn-O distance compared with that in the blue YIn 1-x Mn x O 3 . Magnetic susceptibility measurements verify the 3+ oxidation state for Mn. Diffuse reflection spectra were obtained over the wavelength region 200-2500 nm. All samples show excellent near-infrared reflectance comparable to that of commercial TiO 2 , making them ideal for cool pigment applications such as energy efficient roofs of buildings and cars where reducing solar heat to save energy is desired. In a comparison with commercial purple pigments, such as Co 3 (PO 4 ) 2 , our pigments are much more thermally stable and chemically inert, and are neither toxic nor carcinogenic.

  9. Application of linear and non-linear methods for modeling removal efficiency of textile dyes from aqueous solutions using magnetic Fe3O4 impregnated onto walnut shell

    Science.gov (United States)

    Ashrafi, Motahare; Arab Chamjangali, Mansour; Bagherian, Ghadamali; Goudarzi, Nasser

    2017-01-01

    The performance of the Nano-magnetite Fe3O4 impregnated onto walnut shell (Fe3O4-WNS), which possessed the adsorption features of walnut shell and the magnetic property of Fe3O4, was investigated for the elimination of the methyl violet and Rhodamine 6G from contaminated aqueous solutions. The effects of different experimental variables on the removal efficiency of the cited dyes were examined. Then these variables were used as the inputs to generate linear and non-linear models such as the multiple linear regression, random forest, and artificial neural network to predict the removal efficiency of these dye species at different experimental conditions. The validation studies of these models were performed using the test set, which was not present in the modeling procedure. It was found that ANN had a higher ability to predict the adsorption process under different experimental conditions, and could be applied for the development of an automated dye wastewater removal plant. Also the maximum adsorption capacity (qmax) indicated that the qmax value for Fe3O4-WNS for removal of cationic dyes was comparable or better than that for some reported adsorbents. Also it should be cited that exhausted Fe3O4-WNS was regenerated using dishwashing liquid, and reused for removal of the cited dye species from aqueous solutions.

  10. Nonlinear and quantum optics with liquid crystals

    International Nuclear Information System (INIS)

    Lukishova, Svetlana G

    2014-01-01

    Thermotropic liquid crystals' usual application is display technology. This paper describes experiments on light interaction with pure and doped liquid crystals under for these materials unconventional incident light powers: (1) under high-power laser irradiation, and (2) at the single-photon level. In (1), I will outline several nonlinear optical effects under high-power, nanosecond laser irradiation which should be taken into account in the design of lasers with liquid crystal components and in fabrication of optical power limiters based on liquid crystals: (1.1) athermal helical pitch dilation and unwinding of cholesteric mirrors (both in free space and inside laser resonators); (1.2) some pitfalls in measurements of refractive nonlinearity using z-scan technique under two-photon or linear absorption of liquids; (1.3) the first observation of thermal lens effects in liquid crystals under several-nanosecond, low-pulse-repetition rate (2-10 Hz) laser irradiation in the presence of two-photon absorption; (1.4) feedback-free kaleidoscope of patterns (hexagons, stripes, etc.) in dye-doped liquid crystals. In (2), at the single-photon level, it will be shown that with a proper selection of liquid crystals and a single-emitter dopant spectral range, liquid crystal structures can be used to control emitted single photons (both polarization and count rate). The application of the latter research is absolutely secure quantum communication with polarization coding of information. In particular, in (2.1), definite handedness, circular polarized cholesteric microcavity resonance in quantum dot fluorescence is reported. In (2.2), definite linear polarization of single (antibunched) photons from single-dye-molecules in planar-aligned nematic host is discussed. In (2.3), some results on photon antibunching from NV-color center in nanodiamond in liquid crystal host and circularly polarized fluorescence of definite handedness from nanocrystals doped with trivalent ions of

  11. Plications of extended ultra-violet circular dichroism spectroscopy in biology and medicine.

    Science.gov (United States)

    Jones, Gareth R; Clarke, David T

    2004-01-01

    Deep ultra-violet circular dichroism is fast becoming an important technique in structural biology. The exponential increase in the number of protein structures deposited in the Protein Data Bank together with programs that extract protein secondary structure from atomic coordinates and the advancement of the software to analyse circular dichroic spectra, have revolutionised the technique. In addition, the extended short wavelength data afforded by synchrotron radiation is set to have a major impact on the development of the area. We have selected three diverse areas of research and development in the biomedical sciences to illustrate the ubiquity of the technique for future applications in the area of biomedical research. For example, the high flux of synchrotron radiation has provided a gold standard for the assay of the lipoprotein HDL in serum which has been proven to reverse the effects of coronary heart disease. In a second example, the high flux of synchrotron radiation enables the recording of millisecond data during the conformational changes in proteins over their spectrum, mapping out changes to protein secondary structure and thus providing absolute structural measurements in the millisecond time regime. In the third example, subtle conformational changes are interpreted from the extended CD spectra on protein drug binding, distinguishing between induced binding effects and the conformational changes in the target protein. The strengths and weaknesses of extended ultra-violet circular dichroism using synchrotron radiation are discussed using these examples as a template.

  12. Preparation of a Novel Chitosan Based Biopolymer Dye and Application in Wood Dyeing

    Directory of Open Access Journals (Sweden)

    Xiaoqian Wang

    2016-09-01

    Full Text Available A novel chitosan-based biopolymer dye possessing antibacterial properties was synthesized by reaction of O-carboxymethyl chitosan and Acid Red GR. The synthesized materials were characterized by Fourier transform infrared spectroscopy (FTIR, degree of substitution (DS, X-ray photoelectron spectroscopy (XPS, thermogravimetric analysis (TG, X-ray diffraction (XRD, water solubility test, antibacterial property test, and dyeing performance, including dye uptake, color difference, and fastness. Results showed that the synthesized dye was combined by –NH3+ of O-carboxymethyl chitosan and the sulfonic group of Acid Red GR. According to the comprehensive analysis of XRD and water solubility, the introduction of the carboxymethyl group and acid dye molecule changed the structure of the chitosan from compact to loose, which improved the synthesized dye’s water solubility. However, the thermal stability of the synthesized dye was decreased. The antibacterial property of the poplar wood dyed with the synthesized dye was enhanced and its antibacterial rate, specifically against Staphylococcus aureus and Escherichia coli, also increased to a rate of more than 99%. However, the dye uptake of the synthesized dye was lower than that of the original dye. Despite this, though, the dyeing effect of the synthesized dye demonstrated better water-fastness, and light-fastness than the original dye. Therefore, the novel chitosan-based biopolymer dye can be a promising product for wood dyeing.

  13. Studies on Dyeing Performance of Novel Acid Azo Dyes and Mordent Acid Azo Dyes Based on 2,4-Dihydroxybenzophenone

    Directory of Open Access Journals (Sweden)

    Bharat C. Dixit

    2009-01-01

    Full Text Available Novel acid azo and mordent acid azo dyes have been prepared by the coupling of diazo solution of different aminonaphthol sulphonic acids and aromatic amino acids with 2,4-dihydroxybenzophenone. The resultant dyes were characterized by elemental analysis as well as IR and 1H NMR spectral studies. The UV-visible spectral data have also been discussed in terms of structure property relationship. The dyeing assessments of all the dyes were evaluated on wool and silk textile fibers. The dyeing of chrome pretreated wool and silk have also been monitored. The result shows that better hue was obtained on mordented fiber. Results of bactericidal studies of chrome pretreated fibers revealed that the toxicity of mordented dyes against bacteria is fairly good. Dyeing on wool and silk fibers resulted in yellowish pink to reddish brown colourations having excellent light fastness and washing fastness.

  14. Thin-film dye sensitization and impurity effects on TiO2 and SrTiO3 electrodes for the photoelectrolysis of water

    NARCIS (Netherlands)

    Mackor, A.; Schoonman, J.

    1980-01-01

    Single crystals of TiO2 and SrTiO3 are sensitized by thin films of a ruthenium surfactant dye, which is able to sustain catalytic oxidation of water upon irradiation with visible light. Calculated turnover numbers exceed 2000. Doping of the crystals with niobium does not improve the suitability of

  15. Binding of dyes to hydroxyapatite treated with cetylpyridinium chloride or cetrimonium bromide.

    Science.gov (United States)

    Jensen, J E

    1978-03-01

    The effect of cetylpyridinium chloride (CPC) and cetrimonium bromide (CTAB) on the adsorption of some acidic food dyes to hydroxyapatite was studied. The dyes investigated were brilliant blue (FD&C Blue No. 1), tartrazine (FD&C Yellow No. 5), sunset yellow (FD&C Yellow No. 6) and amaranth (FD&C Red No. 2). The apatite had adsorbed 9.2 mumol CPC per g dry weight. The adsorbed CPC was in equilibrium with a free concentration of 20 microgram/ml (58 micrometer). The adsorption of CPC and CTAB to the apatite was followed by an increased ability of the crystals to bind the dyes. The dyes were very firmly adsorbed and were not released during a series of washings. Untreated apatite showed only a minor affinity for the dyes. The adsorbed dyes were easily washed out. CPC and CTAB showed the smae specific ability to increase the binding capacity of the apatite. The results are discussed and related to the formation of stains on the teeth in persons using quaternary ammonium compounds for mouthrinsing. A mechanism explaining the production of stains is proposed.

  16. Effects of blue or violet light on the inactivation of Staphylococcus aureus by riboflavin-5'-phosphate photolysis.

    Science.gov (United States)

    Wong, Tak-Wah; Cheng, Chien-Wei; Hsieh, Zong-Jhe; Liang, Ji-Yuan

    2017-08-01

    The light sensitive compound riboflavin-5'-phosphate (or flavin mononucleotide, FMN) generates reactive oxygen species (ROS) upon photo-irradiation. FMN is required by all flavoproteins because it is a cofactor of biological blue-light receptors. The photochemical effects of FMN after irradiation by blue or violet light on the inactivation of Staphylococcus aureus strains, including a methicillin-resistant strain (MRSA), were investigated in this study. Upon blue- or violet-light photo-treatment, FMN was shown to inactivate S. aureus due to the generated ROS. Effective bacterial inactivation can be achieved by FMN photolysis without an exogenous electron provider. Inactivation rates of 94.9 and 95.2% in S. aureus and MRSA, respectively, can be reached by blue light irradiation (2.0mW/cm 2 ) with 120μM FMN for 120min. A lower FMN concentration and a shorter time are required to reach similar effects by violet light irradiation. Inactivation rates of 96.3 and 97.0% in S. aureus and MRSA, respectively, can be reached by violet light irradiation (1.0mW/cm 2 ) with 30μM FMN for 30min. The sensitivity of the inherent photosensitizers is lower under blue-light irradiation. A long exposure photolytic treatment of FMN by blue light is required to inactivate S. aureus. Violet light was found to be more efficient in S. aureus inactivation at the same radiant intensity. FMN photolysis with blue or violet light irradiation enhanced the inactivation rates of S. aureus and MRSA. FMN photochemical treatment could be a supplemental technique in hygienic decontamination processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Advanced oxidation of acid and reactive dyes

    DEFF Research Database (Denmark)

    Arslan-Alaton, I.; Gursoy, B.H.; Schmidt, Jens Ejbye

    2008-01-01

    M) for 10:hsp sp="0.25" min Fenton treatment at pH 3, resulting in reduced chemical oxygen demand and dissolved organic carbon removal efficiencies; only acetate was detected as a stable dye oxidation end product. During anaerobic digestion, 100, 29% and no inhibition in methane production was observed...... for the untreated blue, red and orange dyes, respectively. The inhibitory effect of the blue reactive dye on methane production was ∼21% after Fenton treatment. Neither untreated nor treated dyes exhibited an inhibitory effect on denitrification. Aerobic glucose degradation was inhibited by 23-29% by untreated dyes...

  18. TiO2 nanotubes and their application in dye-sensitized solar cells.

    Science.gov (United States)

    Roy, Poulomi; Kim, Doohun; Lee, Kiyoung; Spiecker, Erdmann; Schmuki, Patrik

    2010-01-01

    The present article reviews the current status of using TiO(2) nanotubes in Grätzel-type, dye-sensitized solar cells and extends the overview with the latest results and findings. Critical factors in tube geometry (length, diameter, top morphology), crystal structure (amorphous, anatase, rutile) as well as factors affecting dye loading or electron mobility are addressed. The highest solar cell efficiencies today for pure nanotube systems reach approximately 4% while for some mixed systems, around 7% has been reported. For both systems significant room for enhancement is anticipated and some key points and strategies for improvement are outlined.

  19. Toward the Extreme Ultra Violet Four Wave Mixing Experiments: From Table Top Lasers to Fourth Generation Light Sources

    Directory of Open Access Journals (Sweden)

    Riccardo Cucini

    2015-01-01

    Full Text Available Three different Transient Grating setups are presented, with pulsed and continuous wave probe at different wavelengths, ranging from infrared to the extreme ultra violet region. Both heterodyne and homodyne detections are considered. Each scheme introduces variations with respect to the previous one, allowing moving from classical table top laser experiments towards a new four wave mixing scheme based on free electron laser radiation. A comparison between the various setups and the first results from extreme ultra violet transient grating experiments is also discussed.

  20. Anaphylaxis to annatto dye: a case report.

    Science.gov (United States)

    Nish, W A; Whisman, B A; Goetz, D W; Ramirez, D A

    1991-02-01

    Annatto dye is an orange-yellow food coloring extracted from the seeds of the tree Bixa orellana. It is commonly used in cheeses, snack foods, beverages, and cereals. Previously reported adverse reactions associated with annatto dye have included urticaria and angioedema. We present a patient who developed urticaria, angioedema, and severe hypotension within 20 minutes following ingestion of milk and Fiber One cereal, which contained annatto dye. Subsequent skin tests to milk, wheat, and corn were negative. The patient had a strong positive skin test to annatto dye, while controls had no response. The nondialyzable fraction of annatto dye on SDS-PAGE demonstrated two protein staining bands in the range of 50 kD. Immunoblotting demonstrated patient IgE-specific for one of these bands, while controls showed no binding. Annatto dye may contain contaminating or residual seed proteins to which our patient developed IgE hypersensitivity. Annatto dye is a potential rare cause of anaphylaxis.

  1. Characteristics of a Broadband Dye Laser Using Pyrromethene and Rhodamine Dyes

    Science.gov (United States)

    Tedder, Sarah A.; Danehy, Paul M.; Wheeler, Jeffrey L.

    2011-01-01

    A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full-width half-maximum (FWHM) from 592 to 610 nm was created for the use in a dual-pump broadband CARS system called WIDECARS. The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes were used in the amplifier dye cell. To create this laser a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640, Pyrromethene dyes 597 and 650 as well as mixture of these dyes.

  2. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  3. Octane-Assisted Reverse Micellar Dyeing of Cotton with Reactive Dyes

    Directory of Open Access Journals (Sweden)

    Alan Yiu-lun Tang

    2017-12-01

    Full Text Available In this study, we investigated the computer colour matching (CCM of cotton fabrics dyed with reactive dye using the octane-assisted reverse micellar approach. The aim of this study is to evaluate the colour quality and compare the accuracy between CCM forecasting and simulated dyeing produced by conventional water-based dyeing and octane-assisted reverse micellar dyeing. First, the calibration of dyeing databases for both dyeing methods was established. Standard samples were dyed with known dye concentrations. Computer colour matching was conducted by using the colour difference formula of International Commission on Illumination (CIE L*a*b*. Experimental results revealed that the predicted concentrations were nearly the same as the expected known concentrations for both dyeing methods. This indicates that octane-assisted reverse micellar dyeing system can achieve colour matching as good as the conventional water-based dyeing system. In addition, when comparing the colour produced by the conventional water-based dyeing system and the octane-assisted reverse micellar dyeing system, the colour difference (ΔE is ≤1, which indicates that the reverse micellar dyeing system could be applied for industrial dyeing with CCM.

  4. APPLICATION OF NATURAL DYES ON TEXTILE: A REVIEW

    OpenAIRE

    Tassew Alemayehu, Zenebesh Teklemariam

    2017-01-01

    This paper reviews the characterization and chemical/biochemical analysis of natural dyes. Extraction of colorants from different natural sources, effects of different mordents and application of binary mixture of natural dyes. Natural dyes are different sources such as plant dyes animal dyes mineral dyes etc. and characteristics of natural dyes such as chemical/biochemical analysis by using UV-visible spectroscopic and chromatographic analysis.

  5. Adsorption Properties of Lac Dyes on Wool, Silk, and Nylon

    OpenAIRE

    Wei, Bo; Chen, Qiu-Yuan; Chen, Guoqiang; Tang, Ren-Cheng; Zhang, Jun

    2013-01-01

    There has been growing interest in the dyeing of textiles with natural dyes. The research about the adsorption properties of natural dyes can help to understand their adsorption mechanism and to control their dyeing process. This study is concerned with the kinetics and isotherms of adsorption of lac dyes on wool, silk, and nylon fibers. It was found that the adsorption kinetics of lac dyes on the three fibers followed the pseudosecond-order kinetic model, and the adsorption rate of lac dyes ...

  6. Nonlinear continuous-wave optical propagation in nematic liquid crystals: Interplay between reorientational and thermal effects.

    Science.gov (United States)

    Alberucci, Alessandro; Laudyn, Urszula A; Piccardi, Armando; Kwasny, Michał; Klus, Bartlomiej; Karpierz, Mirosław A; Assanto, Gaetano

    2017-07-01

    We investigate nonlinear optical propagation of continuous-wave (CW) beams in bulk nematic liquid crystals. We thoroughly analyze the competing roles of reorientational and thermal nonlinearity with reference to self-focusing/defocusing and, eventually, the formation of nonlinear diffraction-free wavepackets, the so-called spatial optical solitons. To this extent we refer to dye-doped nematic liquid crystals in planar cells excited by a single CW beam in the highly nonlocal limit. To adjust the relative weight between the two nonlinear responses, we employ two distinct wavelengths, inside and outside the absorption band of the dye, respectively. Different concentrations of the dye are considered in order to enhance the thermal effect. The theoretical analysis is complemented by numerical simulations in the highly nonlocal approximation based on a semi-analytic approach. Theoretical results are finally compared to experimental results in the Nematic Liquid Crystals (NLC) 4-trans-4'-n-hexylcyclohexylisothiocyanatobenzene (6CHBT) doped with Sudan Blue dye.

  7. COMPARATIVE STUDY OF TWO DYEING METHODS USING REACTIVE DYE

    Directory of Open Access Journals (Sweden)

    HINOJOSA Belén

    2016-05-01

    Full Text Available Environment preservation is a common worry not only for people but for companies as well. Industry is more and more concern about the necessity of developing new and more respectful processes. Dye is one of the most important processes in the textile industry but it is also considered as no too safe regarding environment issues. This process uses large amounts of water and generates big volumes of wastewater. Following this issue, new regulations and laws emerge to control the waste generated. This leads to the companies and increased costs in terms of wastewater treatments and high water consumption. In this research we compare two systems on garment finishing application, the conventional bath process and the new Ecofinish system that is able to save water and product. To compare these processes, we carried out a reactive dyeing using both systems in order to determine the quality differences in the final product. For this purpose, the samples have been tested to washing and rubbing fastness, according to UNE EN ISO 105 C10 and UNE- EN ISO 105 X12 standards, respectively. This study confirms that this system achieves water savings and reduces the wastewater produced, getting a good dyeing. This process can be considered as an alternative to the conventional one.

  8. Artificial evolution of coumarin dyes for dye sensitized solar cells.

    Science.gov (United States)

    Venkatraman, Vishwesh; Abburu, Sailesh; Alsberg, Bjørn Kåre

    2015-11-07

    The design and discovery of novel molecular structures with optimal properties has been an ongoing effort for materials scientists. This field has in general been dominated by experiment driven trial-and-error approaches that are often expensive and time-consuming. Here, we investigate if a de novo computational design methodology can be applied to the design of coumarin-based dye sensitizers with improved properties for use in Grätzel solar cells. To address the issue of synthetic accessibility of the designed compounds, a fragment-based assembly is employed, wherein the combination of chemical motifs (derived from the existing databases of structures) is carried out with respect to user-adaptable set of rules. Rather than using computationally intensive density functional theory (DFT)/ab initio methods to screen candidate dyes, we employ quantitative structure-property relationship (QSPR) models (calibrated from empirical data) for rapid estimation of the property of interest, which in this case is the product of short circuit current (Jsc) and open circuit voltage (Voc). Since QSPR models have limited validity, pre-determined applicability domain criteria are used to prevent unacceptable extrapolation. DFT analysis of the top-ranked structures provides supporting evidence of their potential for dye sensitized solar cell applications.

  9. Monodispersed Zinc Oxide Nanoparticle-Dye Dyads and Triads

    Energy Technology Data Exchange (ETDEWEB)

    Gladfelter, Wayne L. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry; Blank, David A. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry; Mann, Kent R. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry

    2017-06-22

    The overall energy conversion efficiency of photovoltaic cells depends on the combined efficiencies of light absorption, charge separation and charge transport. Dye-sensitized solar cells are photovoltaic devices in which a molecular dye absorbs light and uses this energy to initiate charge separation. The most efficient dye-sensitized solar cells (DSSCs) use nanocrystal titanium dioxide films to which are attached ruthenium complexes. Numerous studies have provided valuable insight into the dynamics of these and analogous photosystems, but the lack of site homogeneity in binding dye molecules to metal oxide films and nanocrystals (NCs) is a significant impediment to extracting fundamental details about the electron transfer across the interface. Although zinc oxide is emerging as a potential semiconducting component in DSSCs, there is less known about the factors controlling charge separation across the dye/ZnO interface. Zinc oxide crystallizes in the wurtzite lattice and has a band gap of 3.37 eV. One of the features that makes ZnO especially attractive is the remarkable ability to control the morphology of the films. Using solution deposition processes, one can prepare NCs, nanorods and nanowires having a variety of shapes and dimensions. This project solved problems associated with film heterogeneity through the use of dispersible sensitizer/ZnO NC ensembles. The overarching goal of this research was to study the relationship between structure, energetics and dynamics in a set of synthetically controlled donor-acceptor dyads and triads. These studies provided access to unprecedented understanding of the light absorption and charge transfer steps that lie at the heart of DSSCs, thus enabling significant future advances in cell efficiencies. The approach began with the construction of well-defined dye-NC dyads that were sufficiently dispersible to allow the use of state of the art pulsed laser spectroscopic and kinetic methods to understand the charge transfer

  10. Microwave assisted spectrophotometric method for the ...

    African Journals Online (AJOL)

    The proposed method is based on the reaction of copper(II) with potassium iodide in acid medium to liberate iodine, which oxidizes leucocrystal violet to crystal violet dye having absorption maximum at 590 nm. The reaction between copper and potassium iodide is accelerated by irradiating the mixture with microwave ...

  11. Induction, purification and characterization of a novel manganese peroxidase from Irpex lacteus CD2 and its application in the decolorization of different types of dye.

    Directory of Open Access Journals (Sweden)

    Xing Qin

    Full Text Available Manganese peroxidase (MnP is the one of the important ligninolytic enzymes produced by lignin-degrading fungi which has the great application value in the field of environmental biotechnology. Searching for new MnP with stronger tolerance to metal ions and organic solvents is important for the maximization of potential of MnP in the biodegradation of recalcitrant xenobiotics. In this study, it was found that oxalic acid, veratryl alcohol and 2,6-Dimehoxyphenol could stimulate the synthesis of MnP in the white-rot fungus Irpex lacteus CD2. A novel manganese peroxidase named as CD2-MnP was purified and characterized from this fungus. CD2-MnP had a strong capability for tolerating different metal ions such as Ca2+, Cd2+, Co2+, Mg2+, Ni2+ and Zn2+ as well as organic solvents such as methanol, ethanol, DMSO, ethylene glycol, isopropyl alcohol, butanediol and glycerin. The different types of dyes including the azo dye (Remazol Brilliant Violet 5R, Direct Red 5B, anthraquinone dye (Remazol Brilliant Blue R, indigo dye (Indigo Carmine and triphenylmethane dye (Methyl Green as well as simulated textile wastewater could be efficiently decolorized by CD2-MnP. CD2-MnP also had a strong ability of decolorizing different dyes with the coexistence of metal ions and organic solvents. In summary, CD2-MnP from Irpex lacteus CD2 could effectively degrade a broad range of synthetic dyes and exhibit a great potential for environmental biotechnology.

  12. Induction, Purification and Characterization of a Novel Manganese Peroxidase from Irpex lacteus CD2 and Its Application in the Decolorization of Different Types of Dye

    Science.gov (United States)

    Qin, Xing; Zhang, Jie; Zhang, Xiaoyu; Yang, Yang

    2014-01-01

    Manganese peroxidase (MnP) is the one of the important ligninolytic enzymes produced by lignin-degrading fungi which has the great application value in the field of environmental biotechnology. Searching for new MnP with stronger tolerance to metal ions and organic solvents is important for the maximization of potential of MnP in the biodegradation of recalcitrant xenobiotics. In this study, it was found that oxalic acid, veratryl alcohol and 2,6-Dimehoxyphenol could stimulate the synthesis of MnP in the white-rot fungus Irpex lacteus CD2. A novel manganese peroxidase named as CD2-MnP was purified and characterized from this fungus. CD2-MnP had a strong capability for tolerating different metal ions such as Ca2+, Cd2+, Co2+, Mg2+, Ni2+ and Zn2+ as well as organic solvents such as methanol, ethanol, DMSO, ethylene glycol, isopropyl alcohol, butanediol and glycerin. The different types of dyes including the azo dye (Remazol Brilliant Violet 5R, Direct Red 5B), anthraquinone dye (Remazol Brilliant Blue R), indigo dye (Indigo Carmine) and triphenylmethane dye (Methyl Green) as well as simulated textile wastewater could be efficiently decolorized by CD2-MnP. CD2-MnP also had a strong ability of decolorizing different dyes with the coexistence of metal ions and organic solvents. In summary, CD2-MnP from Irpex lacteus CD2 could effectively degrade a broad range of synthetic dyes and exhibit a great potential for environmental biotechnology. PMID:25412169

  13. Intraoperative sentinel lymph node detection by vital dye through laparoscopy or laparotomy in early endometrial cancer.

    Science.gov (United States)

    Mais, Valerio; Peiretti, Michele; Gargiulo, Tigellio; Parodo, Giuseppina; Cirronis, Maria Giuseppina; Melis, Gian Benedetto

    2010-04-01

    Recent studies reported the feasibility of intraoperative lymphatic mapping in women with endometrial cancer but none of these studies compared the sentinel lymph nodes (SLNs) detection rates obtainable through laparoscopy or laparotomy. The purpose of this study was to address this issue. Thirty-four patients with clinical stage I-II endometrial cancer were enrolled in this prospective comparative trial. Four milliliters of Patent Blue Violet were injected into the cervix after the induction of general anesthesia. The assessment of SLNs was done in 17 patients through laparoscopy and in 17 patients through laparotomy as first step of systematic pelvic lymphadenectomy. Both SLNs and non-SLNs were evaluated for micrometastases. The SLNs detection rate was significantly higher (82%) for laparoscopy than for laparotomy (41%; P = 0.008). Pelvic lymph node metastases were present in 6 out of 34 patients (18%) but only 3 (50%) of these patients were correctly identified. SLNs detection rate is significantly higher through laparoscopy than through laparotomy after vital dye pericervical injection but intraoperative vital dye pericervical injection is not reliable as part of standard care for predicting lymphatic spread in women with early stage endometrial cancer. (c) 2010 Wiley-Liss, Inc.

  14. Synthesis, characterization and fluorescence performance of a waterborne polyurethane-based polymeric dye

    Energy Technology Data Exchange (ETDEWEB)

    Xianhai, Hu, E-mail: hxyh@aiai.edu.cn [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); School of Materials and Chemical Engineering, Building Energy Efficiency Research Institute, Anhui University of Architecture, Hefei 230022 (China); Zhang, Xingyuan, E-mail: zxym@ustc.edu.cn [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Liu, Jin [School of Materials and Chemical Engineering, Building Energy Efficiency Research Institute, Anhui University of Architecture, Hefei 230022 (China); Dai, Jiabing [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026 (China)

    2013-10-15

    A novel anionic waterborne polyurethane-based fluorescent dye WPU-DV26 was synthesized by incorporating the molecular structure of disperse violet 26 (DV26) into the polyurethane chain. The structure of WPU-DV26 was confirmed by means of Fourier transform infrared spectroscopy and UV–vis absorption analysis. Comparing to the UV–vis spectrum of DV26, WPU-DV26 showed a hypsochromic shift from the absorption maxima of 518, 558, 609 nm to 510, 548, 586 nm, respectively. WPU-DV26 can form stable latex in water. The number average molecular weight and its distribution index, and average latex particle size for WPU-DV26 were determined to be 2.33×10{sup 4}, 1.36 and 80 nm, respectively. The improved thermal stability of WPU-DV26 can be attributed to the embedded anthraquinone unit of DV26. It was found that both the intensity and stability of the fluorescence of WPU-DV26 latex were improved significantly compared with those of DV26. -- Highlights: ► A waterborne polyurethane-based polymeric dye was synthesized. ► The fluorescence intensity of WPU-DV26 emulsion was enhanced greatly compared with that of DV26. ► The fluorescence stability of WPU-DV26 emulsion was fine not only for long term storage but also for fluorescence quencher.

  15. Biochemical study of some environmental pollutants dyes Part II: disperse dyes

    International Nuclear Information System (INIS)

    Shakra, S.; Ahmed, F.A.; Fetyan, N.A.

    2005-01-01

    This work was aimed to develop a method for removal of the dyes color from the textile wastewater that is well be much less costly than the other chemical or physical methods used. It therefore included: 1. Preparation of three disperses dyes. 2. Isolation of dyes degradable microorganisms from wastewater effluents and soil after adding 200 ppm of each dye individually. 3. Decolorisation and biodegradation of the dyes in liquid culture of the isolated bacteria (Bacillus thuringiensis). 4. Identification of the probable byproducts by different instruments. 5. Toxicity assessment of the dyes and their biodegraded products

  16. Fabrication of SnO₂-reduced graphite oxide monolayer-ordered porous film gas sensor with tunable sensitivity through ultra-violet light irradiation.

    Science.gov (United States)

    Xu, Shipu; Sun, Fengqiang; Yang, Shumin; Pan, Zizhao; Long, Jinfeng; Gu, Fenglong

    2015-03-11

    A new graphene-based composite structure, monolayer-ordered macroporous film composed of a layer of orderly arranged macropores, was reported. As an example, SnO2-reduced graphite oxide monolayer-ordered macroporous film was fabricated on a ceramic tube substrate under the irradiation of ultra-violet light (UV), by taking the latex microsphere two-dimensional colloid crystal as a template. Graphite oxide sheets dispersed in SnSO4 aqueous solution exhibited excellent affinity with template microspheres and were in situ incorporated into the pore walls during UV-induced growth of SnO2. The growing and the as-formed SnO2, just like other photocatalytic semiconductor, could be excited to produce electrons and holes under UV irradiation. Electrons reduced GO and holes adsorbed corresponding negative ions, which changed the properties of the composite film. This film was directly used as gas-sensor and was able to display high sensitivity in detecting ethanol gas. More interestingly, on the basis of SnO2-induced photochemical behaviours, this sensor demonstrated tunable sensitivity when UV irradiation time was controlled during the fabrication process and post in water, respectively. This study provides efficient ways of conducting the in situ fabrication of a semiconductor-reduced graphite oxide film device with uniform surface structure and controllable properties.

  17. Morphological influence of TiO{sub 2} nanostructures (nanozigzag, nanohelics and nanorod) on photocatalytic degradation of organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sadaf Bashir; Hou, Mengjing; Shuang, Shuang; Zhang, Zhengjun, E-mail: zjzhang@tsinghua.edu.cn

    2017-04-01

    Highlights: • Glancing angle deposition technique is used to fabricate various columnar nanostructures in a single step to tune physiochemical properties. • Enhanced surface area induces porosity, with dispersion of active sites at different length scales of pores. • The increase interface between nanostructures and organic dye is promising factor to enhance photocatalytic degradation. • Morphologies having high surface to volume ratio increases the number of catalytic reaction sites to facilitate organic molecules adsorption favorable for reaction kinetics. - Abstract: Hierarchical nanostructures have drawn significant attention and incredible performance in photodriven chemical conversion area due to its unique physicochemical properties. Herein, we study the morphological influence of TiO{sub 2} nanostructures on photocatalytic degradation of different organic dyes methyl blue, methyl violet and methyl orange present in industrial wastewater. Nanorod, nanohelics and nanozigzag TiO{sub 2} nanofilms were fabricated by using galancing angle deposition technique (GLAD). TiO{sub 2} nanofilms were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and raman analysis. BET surface area analysis were carried out by using nitrogen adsorption desorption curves. The results show that TiO{sub 2} morphology had great influence on photocatalytic degradation of organic dyes due to difference in specific surface area and pore volume of nanostructures. The photocatalytic degradation experiments were carried out for three hours under UV–vis light irradiation. Catalysis recycling and organic dyes concentration influence were also studied. In case of high concentration of organic dyes, negligible degradation rate is observed. TiO{sub 2} nanozigzag films show better degradation performance than nanohelics and nanorod due to presence of large surface area for reaction, higher porosity with dispersion of active sites at different length

  18. [Benzidine dyes and risk of bladder cancer].

    Science.gov (United States)

    Miyakawa, M; Yoshida, O

    1989-12-01

    Until the early 1970's there was little concern about dyes which contain benzidine as an integral part of their chemical structure. Furthermore, use of the finished dyes was not considered dangerous. To ascertain whether azo dyes are associated with risk of development of bladder tumors in workers who handpaint Yuzen-type silk kimonos in Kyoto, we investigated the disintegration of dyes to benzidine. In these studies, we found that in rats and mice benzidine-based dyes are metabolized to benzidine and that the azo linkage of benzidine dyes is reduced by Escherichia coli and soil bacteria. These experimental findings were reported previously. In this report, we outline an approach to these studies. Many of the dyes used to color paper, textiles, lipstick, bait used by fishermen, as well as hair dyes, and dyes used in research, for pharmaceutical products, and by defence personnel for the detection of liquid chemical warfare agents, have been shown to be potentially mutagenic or carcinogenic. We review the literature on these dyes.

  19. Pneumatically tunable optofluidic dye laser

    OpenAIRE

    Song, W.; Psaltis, D.

    2010-01-01

    We presented a tunable optofluidic dye laser with integrated elastomeric air-gap etalon controlled by air pressure. The chip was fabricated with polydimethylsiloxane (PDMS) via replica molding. It comprises a liquid waveguide and microscale air-gap mirrors providing the feedback. The lasing wavelength is chosen by the interference between two parallel PDMS-air interfaces inside the internal tunable air-gap etalon, of which pneumatic tuning can be realized by inflating the air-gap etalon with ...

  20. Broad band exciplex dye lasers

    International Nuclear Information System (INIS)

    Dienes, A.; Shank, C.V.; Trozzolo, A.M.

    1975-01-01

    The disclosure is concerned with exciplex dye lasers, i.e., lasers in which the emitting species is a complex formed only from a constituent in an electronically excited state. Noting that an exciplex laser, favorable from the standpoint of broad tunability, results from a broad shift in the peak emission wavelength for the exciplex relative to the unreacted species, a desirable class resulting in such broad shift is described. Preferred classes of laser media utilizing specified resonant molecules are set forth. (auth)

  1. Complementary ion and extreme ultra-violet spectrometer for laser-plasma diagnosis.

    Science.gov (United States)

    Ter-Avetisyan, S; Ramakrishna, B; Doria, D; Sarri, G; Zepf, M; Borghesi, M; Ehrentraut, L; Stiel, H; Steinke, S; Priebe, G; Schnürer, M; Nickles, P V; Sandner, W

    2009-10-01

    Simultaneous detection of extreme ultra-violet (XUV) and ion emission along the same line of sight provides comprehensive insight into the evolution of plasmas. This type of combined spectroscopy is applied to diagnose laser interaction with a spray target. The use of a micro-channel-plate detector assures reliable detection of both XUV and ion signals in a single laser shot. The qualitative analysis of the ion emission and XUV spectra allows to gain detailed information about the plasma conditions, and a correlation between the energetic proton emission and the XUV plasma emission can be suggested. The measured XUV emission spectrum from water spray shows efficient deceleration of laser accelerated electrons with energies up to keV in the initially cold background plasma and the collisional heating of the plasma.

  2. Complementary ion and extreme ultra-violet spectrometer for laser-plasma diagnosis

    International Nuclear Information System (INIS)

    Ter-Avetisyan, S.; Ramakrishna, B.; Doria, D.; Sarri, G.; Zepf, M.; Borghesi, M.; Ehrentraut, L.; Stiel, H.; Steinke, S.; Schnuerer, M.; Nickles, P. V.; Sandner, W.; Priebe, G.

    2009-01-01

    Simultaneous detection of extreme ultra-violet (XUV) and ion emission along the same line of sight provides comprehensive insight into the evolution of plasmas. This type of combined spectroscopy is applied to diagnose laser interaction with a spray target. The use of a micro-channel-plate detector assures reliable detection of both XUV and ion signals in a single laser shot. The qualitative analysis of the ion emission and XUV spectra allows to gain detailed information about the plasma conditions, and a correlation between the energetic proton emission and the XUV plasma emission can be suggested. The measured XUV emission spectrum from water spray shows efficient deceleration of laser accelerated electrons with energies up to keV in the initially cold background plasma and the collisional heating of the plasma.

  3. Exploring the temporally resolved electron density evolution in extreme ultra-violet induced plasmas

    International Nuclear Information System (INIS)

    Van der Horst, R M; Beckers, J; Nijdam, S; Kroesen, G M W

    2014-01-01

    We measured the electron density in an extreme ultra-violet (EUV) induced plasma. This is achieved in a low-pressure argon plasma by using a method called microwave cavity resonance spectroscopy. The measured electron density just after the EUV pulse is 2.6 × 10 16  m −3 . This is in good agreement with a theoretical prediction from photo-ionization, which yields a density of 4.5 × 10 16  m −3 . After the EUV pulse the density slightly increases due to electron impact ionization. The plasma (i.e. electron density) decays in tens of microseconds. (fast track communication)

  4. Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR.

    Science.gov (United States)

    Joshi, Deepti; Kumar, Deepak; Maini, Anil K; Sharma, Ramesh C

    2013-08-01

    This review has been written to highlight the threat of biological warfare agents, their types and detection. Bacterial biological agent Bacillus anthracis (bacteria causing the disease anthrax) which is most likely to be employed in biological warfare is being discussed in detail. Standoff detection of biological warfare agents in aerosol form using Ultra violet-Laser Induced Fluorescence (UV-LIF) spectroscopy method has been studied. Range-resolved detection and identification of biological aerosols by both nano-second and non-linear femto-second LIDAR is also discussed. Calculated received fluorescence signal for a cloud of typical biological agent Bacillus globigii (Simulants of B. anthracis) at a location of ~5.0 km at different concentrations in presence of solar background radiation has been described. Overview of current research efforts in internationally available working UV-LIF LIDAR systems are also mentioned briefly. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Electronic structure, excitation properties, and chemical transformations of extreme ultra-violet resist materials

    Science.gov (United States)

    Rangan, Sylvie; Bartynski, Robert A.; Narasimhan, Amrit; Brainard, Robert L.

    2017-07-01

    The electronic structure of extreme ultra violet resist materials and of their individual components, two polymers and two photoacid generators (PAGs), is studied using a combination of x-ray and UV photoemission spectroscopies, electron energy loss spectroscopy, and ab-initio techniques. It is shown that simple molecular models can be used to understand the electronic structure of each sample and describe the experimental data. Additionally, effects directly relevant to the photochemical processes are observed: low energy loss processes are observed for the phenolic polymer containing samples that should favor thermalization of electrons; PAG segregation is measured at the surface of the resist films that could lead to surface inhomogeneities; both PAGs are found to be stable upon irradiation in the absence of the polymer, contrasting with a high reactivity that can be followed upon x-ray irradiation of the full resist.

  6. Disinfection of deionised water inoculated with enterobacter using ultra violet light

    International Nuclear Information System (INIS)

    Mathrani, M.

    2001-01-01

    For the first time the enterobacter, not the escherichia coli,was used as a model bacteria to asses the disinfection of microorganisms in water by UV (Ultra Violet) irradiation. The cell density of the liquid culture was followed by optical density of 1.837 at 600 nm on spectrometer. For the disinfection purpose, a laboratory scale batch reactor (10 cm wide, 20 cm long, and 10 cm height), containing 250 ml sterilised deionized water inoculated with enterobacter,was run under supra-band gap light (wavelength < 400 nm, peaking between 340 and 365 nm with a maximum of 350 nm). After carrying out seven batch experiments it is concluded that the complete inactivation of Enterobacter ( approx. equal to x 10/sup 6/ CFU/ml) in the water can be achieved by UV irradiation for 2 hours. (author)

  7. Diamond-made matrix photosensitive elements of ultra-violet range

    Directory of Open Access Journals (Sweden)

    Altukhov A. A.

    2008-06-01

    Full Text Available Principles of construction and technology of creation of matrix photodetecting devices of ultra-violet radiation on the basis of natural diamond are considered. Measurements of spectral, volt-ampere characteristics, of dark current and leakage currents were carried out at various voltages for linear (2×64 and matrix (64×64 photodetecting devices. The basic opportunity of creation of such multielement structures possessing high sensitivity is shown for the first time. It is shown, that surface leakage currents play the dominating role in restriction of photosensivity of the given structures. It is found the significant dispersion of dark current and a photocurrent of matrix photodetectors on the basis of the natural diamond, concerned with heterogeneity of defective structure.

  8. Conservation assessment for great-spurred violet in the Black Hills National Forest, South Dakota and Wyoming

    Science.gov (United States)

    J. Hope Hornbeck; Carolyn Hull Sieg; Deanna J. Reyher

    2003-01-01

    Great-spurred violet (Viola selkirkii Pursh ex Goldie; Violaceae) is an early spring flowering herb that occurs in the boreal and Rocky Mountain regions of North America, and cool temperate regions of Eurasia, eastern China and Japan. In the Black Hills, the species is restricted to spruce-dominated forests in cold, shady ravines from 5,400 to 7,000...

  9. Extreme ultra-violet emission spectroscopy of highly charged gadolinium ions with an electron beam ion trap

    International Nuclear Information System (INIS)

    Ohashi, Hayato; Nakamura, Nobuyuki; Sakaue, Hiroyuki A

    2013-01-01

    We present extreme ultra-violet emission spectra of highly charged gadolinium ions obtained with an electron beam ion trap at electron energies of 0.53–1.51 keV. The electron energy dependence of the spectra in the 5.7–11.3 nm range is compared with calculation with the flexible atomic code. (paper)

  10. Terrific Trichomes (and Other Specialised Cells) in African Violets: How to Get a Lot from One Plant in the Classroom

    Science.gov (United States)

    Cottrell, Vicki M.

    2013-01-01

    African violet (genus "Saintpaulia") was identified as a particularly suitable genus for the study of specialised plant cells in the classroom using microscopes. The techniques described here involve simple preparation without staining. The cells and structures that can be investigated include: trichomes (hairs); stomata; guard cells and…

  11. Sterilization of African Violet in the in Vitro Culture Using Synthesized Silver Nanoparticles by Two Plant Extracts

    Directory of Open Access Journals (Sweden)

    M. Solgi

    2015-12-01

    Full Text Available One of the major advantages of in vitro culture of African violet (Saintpaulha ionantha is production of new cultivars and propagation of their chimera which might not be propagated by the other methods. In this study, we tested the effects of silver nanoparticles on the sterilization rate (antifungal and antibacterial activity, regeneration and shoot formation of African violet "Pink Amiss" explants. These nanoparticles were synthesized from pomegranate peels and Damask rose petals extracts. We used a completely randomized design test with factorial arrangement to investigate various volumetric ratios of plant extracts to silver nitrate (1:20, 1:10, 1:5 and 1:1 on the culture contaminations. Using silver nanoparticles synthesized by the plant extracts, especially Damask rose petals extract resulted in no fungal and bacterial contamination in the African violet explants after 1 and 3 weeks as compared to the control, and silver nitrate (1mM. All tested concentrations of the silver nanoparticles significantly (P &le 0.05 controlled both bacterial and fungal contaminations. The 1:20 ratio of plant extracts to silver nitrate showed the best control. In addition, the highest regeneration (%52 and shoot regeneration (%38 was observed in this treatment. In conclusion, we suggest using silver nanoparticles synthesized by plant extracts for sterilization of in Vitro Culture for African Violet rather than using other chemicals such as silver nitrate.

  12. Large-area growth of multi-layered MoS{sub 2} for violet (∝405 nm) photodetector applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Hyun; Kim, Sanghun; Lee, Seunghyun; Yu, Jae Su [Department of Electronic Engineering, Kyung Hee University, Gyeonggi-do (Korea, Republic of)

    2017-10-15

    The two-dimensional multi-layered molybdenum disulfide (MoS{sub 2}) was grown over a large area by chemical vapor deposition process for violet (∝405 nm) photodetector (PD) applications. The high-quality MoS{sub 2} layers were successfully fabricated and transferred on HfO{sub 2}/Si substrate. The inherent surface structure originated from the surface oxidation was also analyzed. The electrical properties of the multi-layered MoS{sub 2}-based violet PDs with various channel widths (W{sub ch}) were measured and compared under dark state and violet illumination operating at 405 nm. For the device with W{sub ch} of 4 μm, at the bias of -5 V, the photocurrent and on/off ratio were obtained to be 54.0 nA and 55.2, respectively. Under violet illumination, the photocurrent was ∝4.6 times higher compared to green illumination. At the bias of -5 V, the photoresponse properties of the device were characterized with average rise time and reset time of ∝55.7 and 46.0 s, respectively, during four cycles of operation. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Violet diode laser-induced chlorophyll fluorescence: a tool for assessing mosaic disease severity in cassava (Manihot esculenta Crantz) cultivars.

    Science.gov (United States)

    Anderson, Benjamin; Eghan, Moses J; Asare-Bediako, Elvis; Buah-Bassuah, Paul K

    2012-01-01

    Violet diode laser-induced chlorophyll fluorescence was used in agronomical assessment (disease severity and average yield per plant). Because cassava (Manihot esculenta Crantz) is of economic importance, improved cultivars with various levels of affinity for cassava mosaic disease were investigated. Fluorescence data correlated with cassava mosaic disease severity levels and with the average yield per plant.

  14. Visual function improvement using photocromic and selective blue-violet light filtering spectacle lenses in patients affected by retinal diseases.

    Science.gov (United States)

    Colombo, L; Melardi, E; Ferri, P; Montesano, G; Samir Attaalla, S; Patelli, F; De Cillà, S; Savaresi, G; Rossetti, L

    2017-08-22

    To evaluate functional visual parameters using photocromic and selective blue-violet light filtering spectacle lenses in patients affected by central or peripheral scotoma due to retinal diseases. Sixty patients were enrolled in this study: 30 patients affected by central scotoma, group 1, and 30 affected by peripheral scotoma, group 2. Black on White Best Corrected Visual Acuity (BW-BCVA), White on Black Best Corrected Visual Acuity (WB-BCVA), Mars Contrast Sensitivity (CS) and a Glare Test (GT) were performed to all patients. Test results with blue-violet filter, a short-pass yellow filter and with no filters were compared. All scores from test results increased significantly with blue-violet filters for all patients. The mean BW-BCVA increased from 0.30 ± 0.20 to 0.36 ± 0.21 decimals in group 1 and from 0.44 ± 0.22 to 0.51 ± 0.23 decimals in group 2 (Mean ± SD, p Blue filter compared to Yellow filter in all tests (p blue-violet light filter showed functional benefit in all evaluated patients.

  15. 75 FR 13257 - Carbazole Violet Pigment 23 from India: Final Results of the Expedited Five-year (Sunset) Review...

    Science.gov (United States)

    2010-03-19

    ... International Trade Administration Carbazole Violet Pigment 23 from India: Final Results of the Expedited Five... Pigment 23 (CVP-23) ] from India pursuant to section 751(c) of the Tariff Act of 1930, as amended (the Act... merchandise includes the crude pigment in any form (e.g., dry powder, paste, wet cake) and finished pigment in...

  16. Adsorption of methyl violet from aqueous solution using gum xanthan/Fe3O4 based nanocomposite hydrogel

    CSIR Research Space (South Africa)

    Mittal, H

    2016-08-01

    Full Text Available This research paper reports the utilization of gum xanthan-grafted-polyacrylic acid and Fe(sub3)O(sub4) magnetic nanoparticles based nanocomposite hydrogel (NCH) for the highly effective adsorption of methyl violet (MV) from aqueous solution...

  17. Dataset on analysis of dyeing property of natural dye from Thespesia populnea bark on different fabrics

    Directory of Open Access Journals (Sweden)

    Kuchekar Mohini

    2018-02-01

    Full Text Available The natural dyes separated from plants are of gaining interest as substitutes for synthetic dyes in food and cosmetics. Thespesia populnea (T. populnea is widely grown plant and used in the treatment of various diseases. This study was aimed to separate natural dye from T. populnea bark and analysis of its dyeing property on different fabrics. In this investigation pharmacognostic study was carried out. The pharmacognostic study includes morphological study, microscopical examination, proximate analysis along with the phytochemical study. The dyeing of different fabric was done with a natural dye extracted from T. populnea bark. The fabrics like cotton, butter crep, polymer, chiken, lone, ulene and tarakasa were dye with plant extract. The various evaluation parameters were studied. It includes effect of washing with water, effect of soap, effect of sunlight, effect of alum, effect of Cupric sulphate, microscopical study of fabrics and visual analysis of dyeing by common people were studied. In results, natural dye isolated from T. populnea bark could be used for dyeing fabrics with good fastness properties. The studies reveals that, the dyeing property of fabrics after washing with water and soap, exposed to sunlight does not get affected. It was observed that cotton and tarakasa stains better as compared with other fabrics. It was concluded that the ethanolic extract having good dyeing property. Keywords: Plant, Thespesia populnea, Bark, Natural dye, Fabrics

  18. Batchwise dyeing of bamboo cellulose fabric with reactive dye using ultrasonic energy.

    Science.gov (United States)

    Larik, Safdar Ali; Khatri, Awais; Ali, Shamshad; Kim, Seong Hun

    2015-05-01

    Bamboo is a regenerated cellulose fiber usually dyed with reactive dyes. This paper presents results of the batchwise dyeing of bamboo fabric with reactive dyes by ultrasonic (US) and conventional (CN) dyeing methods. The study was focused at comparing the two methods for dyeing results, chemicals, temperature and time, and effluent quality. Two widely used dyes, CI Reactive Black 5 (bis-sulphatoethylsulphone) and CI Reactive Red 147 (difluorochloropyrimidine) were used in the study. The US dyeing method produced around 5-6% higher color yield (K/S) in comparison to the CN dyeing method. A significant savings in terms of fixation temperature (10°C) and time (15 min), and amounts of salt (10 g/L) and alkali (0.5-1% on mass of fiber) was realized. Moreover, the dyeing effluent showed considerable reductions in the total dissolved solids content (minimum around 29%) and in the chemical oxygen demand (minimum around 13%) for the US dyebath in comparison to the CN dyebath. The analysis of colorfastness tests demonstrated similar results by US and CN dyeing methods. A microscopic examination on the field emission scanning electron microscope revealed that the US energy did not alter the surface morphology of the bamboo fibers. It was concluded that the US dyeing of bamboo fabric produces better dyeing results and is a more economical and environmentally sustainable method as compared to CN dyeing method. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Raman gains of ADP and KDP crystals

    Science.gov (United States)

    Zhou, Hai-Liang; Zhang, Qing-Hua; Wang, Bo; Xu, Xin-Guang; Wang, Zheng-Ping; Sun, Xun; Zhang, Fang; Zhang, Li-Song; Liu, Bao-An; Chai, Xiang-Xu

    2015-04-01

    In this paper, the Raman gain coefficients of ammonium dihydrogen phosphate (ADP) and potassium dihydrogen phosphate (KDP) crystals are measured. By using a pump source of a 30-ps, 532-nm laser, the gain coefficients of ADP and KDP are 1.22 cm/GW, and 0.91 cm/GW, respectively. While for a 20-ps, 355-nm pump laser, the gain coefficients of these two crystals are similar, which are 1.95 cm/GW for ADP and 1.86 for KDP. The present results indicate that for ultra-violet frequency conversion, the problem of stimulated Raman scattering for ADP crystal will not be more serious than that for KDP crystal. Considering other advantages such the larger nonlinear optical coefficient, higher laser damage threshold, and lower noncritical phase-matching temperature, it can be anticipated that ADP will be a powerful competitor to KDP in large aperture, high energy third-harmonic generation or fourth-harmonic generation applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51323002 and 51402173), the Independent Innovation Foundation of Shandong University, China (Grant Nos. IIFSDU and 2012JC016), the Program for New Century Excellent Talents in University, China (Grant No. NCET-10-0552), the Fund from the Key Laboratory of Neutron Physics, China Academy of Engineering Physics (Grant No. 2014BB07), and the Natural Science Foundation for Distinguished Young Scholar of Shandong Province, China (Grant No. JQ201218).

  20. Crystal Data

    Science.gov (United States)

    SRD 3 NIST Crystal Data (PC database for purchase)   NIST Crystal Data contains chemical, physical, and crystallographic information useful to characterize more than 237,671 inorganic and organic crystalline materials. The data include the standard cell parameters, cell volume, space group number and symbol, calculated density, chemical formula, chemical name, and classification by chemical type.

  1. Vacuum Ultra-Violet Spectroscopy of Laboratory-Simulated Astrophysical Ices

    Science.gov (United States)

    Davis, M. P.; Dawes, A.; Holtom, P. D.; Mukerji, R. J.; Sivaraman, B.; Webb, S. M.; Hoffmann, S. V.; Shaw, D. A.; Mason, N. J.

    Over recent years it has become clear that solid phase processes in the interstellar medium (ISM) are responsible for a significant amount of molecular formation in these regions. A combination of astronomical spectroscopy and laboratory-based simulations has greatly enhanced our understanding of those molecules which are present in the ISM and provided information on their formation mechanisms. Although infra-red spectroscopy has been widely used in these studies and is a common observational tool other spectroscopic techniques are now being developed. We have carried out a number of experiments looking at the electronic structure of simple molecular ices (such as H2O, NH3, CO, CO2, SO2 and CH4) using vacuum ultra-violet (VUV) spectroscopy. In addition to complementing existing infra-red spectra, knowing the electronic structure of ices allows us to understand the processes which take place during irradiation by ultra-violet photons, a common source of ice surface modification in the interstellar medium. In our experiments we have used synchrotron beam-lines at Daresbury Laboratory (UK) and Aarhus University (Denmark) as the irradiating source providing UV light at wavelengths between 120nm and 350nm. A small ultra-high vacuum chamber with an in-built cryostat system was attached to the beam-line (for more information see Dawes, Holtom & Mason (2003)). A magnesium fluoride or calcium fluoride substrate was cooled to between 20K and 100K allowing the sample molecules to physisorb upon it. Typical ice thicknesses range from 0.1μm and 3μm, depending on the UV absorption properties of the ice involved. In this poster we present VUV spectra of several typical astrochemical molecules showing how the electronic structures of different ice systems are affected by their temperature and deposition speed. The importance of VUV spectroscopy as an astrochemical and possible observation technique will be discussed at the meeting.

  2. Biological wastewater treatment of azo dyes

    Energy Technology Data Exchange (ETDEWEB)

    Shaul, G.M.; Dempsey, C.R.; Dostal, K.A. (Environmental Protection Agency, Cincinnati, OH (USA))

    1988-09-01

    EPA Water Engineering Research Laboratory, Office of Research and Development, undertook a study to determine the fate of specific water soluble azo dye compounds in the activated sludge process (ASP). The study was approached by dosing the feed to the pilot ASP systems with various water soluble azo dyes and by monitoring each dye compound through the system, analyzing both liquid and sludge samples. The fate of the parent dye compound was assessed via mass balance calculations. These data could determine if the compound was removed by adsorption, apparent biodegradation, or not removed at all. The paper presents results for 18 dye compounds tested from June 1985 through August 1987. The study was conducted at EPAs Test and Evaluation Facility in Cincinnati, Ohio. The objective of this study was to determine the partitioning of water soluble azo dyes in the ASP.

  3. Azo dyes and human health: A review.

    Science.gov (United States)

    Chung, King-Thom

    2016-10-01

    Synthetic azo dyes are widely used in industries. Gerhardt Domagk discovered that the antimicrobial effect of red azo dye Prontosil was caused by the reductively cleaved (azo reduction) product sulfanilamide. The significance of azo reduction is thus revealed. Azo reduction can be accomplished by human intestinal microflora, skin microflora, environmental microorganisms, to a lesser extent by human liver azoreductase, and by nonbiological means. Some azo dyes can be carcinogenic without being cleaved into aromatic amines. However, the carcinogenicity of many azo dyes is due to their cleaved product such as benzidine. Benzidine induces various human and animal tumors. Another azo dye component, p-phenylenediamine, is a contact allergen. Many azo dyes and their reductively cleaved products as well as chemically related aromatic amines are reported to affect human health, causing allergies and other human maladies.

  4. Rationalizing the photophysical properties of BODIPY laser dyes via aromaticity and electron-donor-based structural perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, Paul G.; Liu, Xiaogang; Zhao, Teng; Cole, Jacqueline M.

    2015-05-01

    The absorption and fluorescence properties of six boron dipyrromethene (BODIPY) laser dyes with simple non-aromatic substituents are rationalized by relating them to observable structural perturbations within the molecules of the dyes. An empirical relationship involving the structure and the optical properties is derived using a combination of single-crystal X-ray diffraction data, quantum chemical calculations and electronic constants: i.e. the tendency of the pyrrole bond lengths towards aromaticity and the UV-vis absorption and fluorescence wavelengths correlating with the electron-donor properties of the substituents. The effect of molecular conformation on the solid-state optical properties of the dyes is also discussed. The findings in this study also demonstrate the usefulness and limitations of using crystal structure data to develop structure-property relationships in this class of optical materials, contributing to the growing effort to design optoelectronic materials with tunable properties via molecular engineering.

  5. Treatment of oral thrush in HIV/AIDS patients with lemon juice and lemon grass (Cymbopogon citratus) and gentian violet.

    Science.gov (United States)

    Wright, S C; Maree, J E; Sibanyoni, M

    2009-03-01

    The purpose of the study was to investigate the safety and efficacy of lemon juice and lemon grass (Cymbopogon citratus) in the treatment of oral thrush in HIV/AIDS patients when compared with the control group using gentian violet aqueous solution 0.5%. Oral thrush is a frequent complication of HIV infection. In the Moretele Hospice, due to financial constraints, the treatment routinely given to patients with oral thrush is either lemon juice directly into the mouth or a lemon grass infusion made from lemon grass (Cymbopogon citratus) grown and dried at the hospice. These two remedies have been found to be very efficacious therefore are used extensively. Gentian violet, the first line medication for oral thrush in South Africa, is not preferred by the primary health clinic patients due to the visible purple stain which leads them to being stigmatized as HIV-positive. Cymbopogon citratus and Citrus limon have known antifungal properties. The study design was a randomised controlled trial. Ninety patients were randomly assigned to one of three groups: gentian violet, lemon juice or lemon grass. Inclusion criteria included being HIV-positive with a diagnosis of oral thrush. The study period was 11 days and patients were followed up every second day. International ethical principles were adhered to during the study. Of the 90 patients, 83 completed the study. In the intention-to-treat analysis, none of the p-values were significant therefore the null hypothesis could not be rejected. In the analysis of the participants who actually completed the trial, the lemon juice showed better results than the gentian violet aqueous solution 0.5% in the treatment of oral thrush in an HIV-positive population (plemon grass and gentian violet could also be rejected on the basis of the Chi-square test and the likelihood ratio test (plemon juice and lemon grass for the treatment of oral candidiasis in an HIV population was validated by the randomised controlled trial.

  6. Increased light harvesting in dye-sensitized solar cells with energy relay dyes

    KAUST Repository

    Hardin, Brian E.

    2009-06-21

    Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near-infrared domain and consequently have lower short-circuit photocurrent densities than inorganic photovoltaic devices. Here, we present a new design where high-energy photons are absorbed by highly photoluminescent chromophores unattached to the titania and undergo Förster resonant energy transfer to the sensitizing dye. This novel architecture allows for broader spectral absorption, an increase in dye loading, and relaxes the design requirements for the sensitizing dye. We demonstrate a 26% increase in power conversion efficiency when using an energy relay dye (PTCDI) with an organic sensitizing dye (TT1). We estimate the average excitation transfer efficiency in this system to be at least 47%. This system offers a viable pathway to develop more efficient dye-sensitized solar cells.

  7. Disperse Dyes Based on Thiazole, Their Dyeing Application on Polyester Fiber and Their Antimicrobial Activity

    OpenAIRE

    Zadafiya, S. K.; Tailor, J. H.; Malik, G. M.

    2013-01-01

    Various diazotized aryl amines were coupled with N-(4-nitrophenyl)-2-[(4-phenyl-1,3-thiazol-2-yl)amino]acetamide to give the corresponding various azo disperse dyes (D1-D13). These dyes were applied to polyester fiber by HTHP method and their fastness properties were evaluated. Dyes were characterized by IR, elemental analysis, and NMR spectral studies. These dyes showed very good antibacterial and antifungal activities.

  8. Tunable Optofluidic Third Order DFB Dye Laser

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We present a low-threshold polymer-based nanofluidic dye laser. By employing a third order DFB laser resonator, we demonstrate a threshold fluence of ~7 muJ/mm2 and a tunability of 45 nm using a single laser dye......We present a low-threshold polymer-based nanofluidic dye laser. By employing a third order DFB laser resonator, we demonstrate a threshold fluence of ~7 muJ/mm2 and a tunability of 45 nm using a single laser dye...

  9. Micro-Cavity Fluidic Dye Laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  10. The microbial degradation of azo dyes: minireview.

    Science.gov (United States)

    Chengalroyen, M D; Dabbs, E R

    2013-03-01

    The removal of dyes in wastewater treatment plants still involves physical or chemical processes. Yet numerous studies currently exist on degradation based on the use of microbes-which is a well-studied field. However progress in the use of biological methods to deal with this environmentally noxious waste is currently lacking. This review focuses on the largest dye class, that is azo dyes and their biodegradation. We summarize the bacteria identified thus far which have been implicated in dye decolorization and discuss the enzymes involved and mechanisms by which these colorants are broken down.

  11. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Tehrani-Bagha

    2013-02-01

    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  12. Solvent-free fluidic organic dye lasers.

    Science.gov (United States)

    Choi, Eun Young; Mager, Loic; Cham, Tran Thi; Dorkenoo, Kokou D; Fort, Alain; Wu, Jeong Weon; Barsella, Alberto; Ribierre, Jean-Charles

    2013-05-06

    We report on the demonstration of liquid organic dye lasers based on 9-(2-ethylhexyl)carbazole (EHCz), so-called liquid carbazole, doped with green- and red-emitting laser dyes. Both waveguide and Fabry-Perot type microcavity fluidic organic dye lasers were prepared by capillary action under solvent-free conditions. Cascade Förster-type energy transfer processes from liquid carbazole to laser dyes were employed to achieve color-variable amplified spontaneous emission and lasing. Overall, this study provides the first step towards the development of solvent-free fluidic organic semiconducting lasers and demonstrates a new kind of optoelectronic applications for liquid organic semiconductors.

  13. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes

    Science.gov (United States)

    Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.

  14. Ultrasonic assisted dyeing: dyeing of acrylic fabrics C.I. Astrazon Basic Red 5BL 200%.

    Science.gov (United States)

    Kamel, M M; Helmy, H M; Mashaly, H M; Kafafy, H H

    2010-01-01

    The dyeing of acrylic fabrics using C.I. Astrazon Basic Red 5BL 200% has been studied with both conventional and ultrasonic techniques. The effect of dye concentration, dye bath pH, ultrasonic power, dyeing time and temperature were studied and the resulting shades obtained by dyeing with both techniques were compared. Colour strength values obtained were found to be higher with ultrasonic than with conventional heating. The results of fastness properties of the dyed fabrics were studied. X-ray and Scanning Electron Microscope SEM were carried out on dyed samples using both methods of dyeing to find out an explanation for the better dyeability of acrylic fabrics with (US) method. Dyeing kinetics of acrylic fabrics using C.I. Astrazon Basic Red 5BL 200% using conventional and ultrasonic conditions were compared. The time/dye-uptake isotherms are revealing the enhanced dye-uptake in the second phase of dyeing. The values of dyeing rate constant, half-time of dyeing and standard affinity and ultrasonic efficiency have been calculated and discussed.

  15. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes.

    Science.gov (United States)

    Abdou, E M; Hafez, H S; Bakir, E; Abdel-Mottaleb, M S A

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k=1.6, 2.1 and 1.9×10(-3)min(-1) for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100mWcm(-2), reveals highly stable DSSCs. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Adapting vat dye as an alternate dyeing agent for vegetable tanned ...

    African Journals Online (AJOL)

    The research explores the use of vat dye, a selected dye that is available locally in the Ghanaian market in large quantities, with varied colour ranges to identify their suitability as effective colourants on vegetable tanned leather. Four different experiments were performed with vat dye, and two others were tried with suede ...

  17. In-situ investigation of adsorption of dye and coadsorbates on TiO 2 films using QCM-D, fluorescence and AFM techniques

    KAUST Repository

    Harms, Hauke A.

    2013-09-11

    Simultaneous adsorption of dye molecules and coadsorbates is important for the fabrication of high-efficiency dyesensitized solar cells, but its mechanism is not well understood. Herein, we use a quartz crystal microbalance with dissipation technique (QCM-D) to study dynamically and quantitatively the sensitization of TiO2 in situ. We investigate dye loading for a ruthenium(II) polypyridyl complex (Z907), of a triphenylamine-based D-π-A dye (Y123), and of a ullazine sensitizer (JD21), as well as the simultaneous adsorption of the latter two with the coadsorbate chenodeoxycholic acid. By combining the QCM-D technique with fluorescence measurements, we quantify molar ratios between the dye and coadsorbate. Furthermore, we will present first studies using liquid-phase AFM on the adsorbed dye monolayer, thus obtaining complementary microscopic information that may lead to understanding of the adsorption mechanism on the molecular scale. © 2013 SPIE.

  18. In-situ investigation of adsorption of dye and coadsorbates on TiO2 films using QCM-D, fluorescence and AFM techniques

    Science.gov (United States)

    Harms, Hauke A.; Tétreault, Nicolas; Voitchovsky, Kislon; Stellacci, Francesco; Grätzel, Michael

    2013-09-01

    Simultaneous adsorption of dye molecules and coadsorbates is important for the fabrication of high-efficiency dyesensitized solar cells, but its mechanism is not well understood. Herein, we use a quartz crystal microbalance with dissipation technique (QCM-D) to study dynamically and quantitatively the sensitization of TiO2 in situ. We investigate dye loading for a ruthenium(II) polypyridyl complex (Z907), of a triphenylamine-based D-π-A dye (Y123), and of a ullazine sensitizer (JD21), as well as the simultaneous adsorption of the latter two with the coadsorbate chenodeoxycholic acid. By combining the QCM-D technique with fluorescence measurements, we quantify molar ratios between the dye and coadsorbate. Furthermore, we will present first studies using liquid-phase AFM on the adsorbed dye monolayer, thus obtaining complementary microscopic information that may lead to understanding of the adsorption mechanism on the molecular scale.

  19. Characterization of pore-expanded amino-functionalized mesoporous silicas directly synthesized with dimethyldecylamine and its application for decolorization of sulphonated azo dyes

    International Nuclear Information System (INIS)

    Yang Hong; Feng Qiyan

    2010-01-01

    With dimethyldecylamine (DMDA) as the expander, a new kind of pore-expanded amino-functionalized mesoporous silicas (PEAFMS) was directly synthesized under mild alkali condition. The characteristics of PEAFMS sample demonstrated that the presence of DMDA markedly augmented the average pore diameter (19.04 nm) and strongly enhanced its decolorization ability. Subsequently, acid mordant dark yellow GG (YGG) and reactive red violet X-2R (RVX) were chosen to assess its adsorption capacity for sulphonated azo dyes. The effect of initial pH was investigated and the decolorization mechanism was illuminated. Three isotherms were conducted and the goodness of fit increased as the following order: Freundlich < Langmuir < Redlich-Peterson. The maximum adsorption capacities of YGG and RVX onto PEAFMS were 1.967 and 0.957 mmol/g, respectively. Adsorption kinetic processes were better predicted by the pseudo-second-order rate equation than the pseudo-first-order one. Adsorption thermodynamic results suggested that the adsorption behavior of both dyes onto PEAFMS was spontaneous with the chemical nature. In addition, the regeneration of PEAFMS was proved to be feasible using NaOH as the strippant. After five cycles, PEAFMS still possessed a favorable adsorption capacity for dyes. It is safely concluded that PEAFMS could be a potential adsorbent for the dye removal from wastewater.

  20. High conversion efficiency distributed feedback laser from a dye-doped holographic transmission grating

    Science.gov (United States)

    Liu, Lijuan; Zhang, Guiyang; Kong, Xiaobo; Liu, Yonggang; Xuan, Li

    2018-01-01

    A high conversion efficiency distributed feedback (DFB) laser from a dye-doped holographic polymer dispersed liquid crystal (HPDLC) transmission grating structure was reported. The alignment polyimide (PI) films were used to control the orientation of the phase separated liquid crystals (LCs) to increase the refractive index difference between the LC and the polymer, so it can provide better light feedback. The lasing wavelength located at 645.8 nm near the maximum of the amplified spontaneous emission (ASE) spectrum with the lowest threshold 0.97 μ J/pulse and the highest conversion efficiency 1.6% was obtained. The laser performance under electric field were also investigated and illustrated. The simple configuration, one-step fabrication organic dye laser shows the potential to realize ultra-low cost plastic lasers.