WorldWideScience

Sample records for crystal toroidal defects

  1. Curvature-induced defect unbinding and dynamics in active nematic toroids

    Science.gov (United States)

    Ellis, Perry W.; Pearce, Daniel J. G.; Chang, Ya-Wen; Goldsztein, Guillermo; Giomi, Luca; Fernandez-Nieves, Alberto

    2018-01-01

    Nematic order on curved surfaces is often disrupted by the presence of topological defects, which are singular regions in which the orientational order is undefined. In the presence of force-generating active materials, these defects are able to migrate through space like swimming microorganisms. We use toroidal surfaces to show that despite their highly chaotic and non-equilibrium dynamics, pairs of defects unbind and segregate in regions of opposite Gaussian curvature. Using numerical simulations, we find that the degree of defect unbinding can be controlled by tuning the system activity, and even suppressed in strongly active systems. Furthermore, by using the defects as active microrheological tracers and quantitatively comparing our experimental and theoretical results, we are able to determine material properties of the active nematic. Our results illustrate how topology and geometry can be used to control the behaviour of active materials, and introduce a new avenue for the quantitative mechanical characterization of active fluids.

  2. Point defects and atomic transport in crystals

    International Nuclear Information System (INIS)

    Lidiard, A.B.

    1981-02-01

    There are two principle aspects to the theory of atomic transport in crystals as caused by the action of point defects, namely (1) the calculation of relevant properties of the point defects (energies and other thermodynamic characteristics of the different possible defects, activation energies and other mobility parameters) and (2) the statistical mechanics of assemblies of defects, both equilibrium and non-equilibrium assemblies. In the five lectures given here both these aspects are touched on. The first two lectures are concerned with the calculation of relevant point defect properties, particularly in ionic crystals. The first lecture is more general, the second is concerned particularly with some recent calculations of the free volumes of formation of defects in various ionic solids; these solve a rather long-standing problem in this area. The remaining three lectures are concerned with the kinetic theory of defects mainly in relaxation, drift and diffusion situations

  3. Diffuse scattering from crystals with point defects

    International Nuclear Information System (INIS)

    Andrushevsky, N.M.; Shchedrin, B.M.; Simonov, V.I.; Malakhova, L.F.

    2002-01-01

    The analytical expressions for calculating the intensities of X-ray diffuse scattering from a crystal of finite dimensions and monatomic substitutional, interstitial, or vacancy-type point defects have been derived. The method for the determination of the three-dimensional structure by experimental diffuse-scattering data from crystals with point defects having various concentrations is discussed and corresponding numerical algorithms are suggested

  4. TRANSMISSION ION CHANNELING IMAGES OF CRYSTAL DEFECTS

    NARCIS (Netherlands)

    KING, PJC; BREESE, MBH; WILSHAW, PR; SMULDERS, PJM; GRIME, GW

    This paper demonstrates how images of crystal defects can be produced using ion channeling. A focused, scanned beam of MeV protons from the University of Oxford Nuclear Microprobe has been used. With the beam aligned with a channeling direction of the crystal, protons transmitted through the thinned

  5. Multiscale crystal defect dynamics: A coarse-grained lattice defect model based on crystal microstructure

    Science.gov (United States)

    Lyu, Dandan; Li, Shaofan

    2017-10-01

    Crystal defects have microstructure, and this microstructure should be related to the microstructure of the original crystal. Hence each type of crystals may have similar defects due to the same failure mechanism originated from the same microstructure, if they are under the same loading conditions. In this work, we propose a multiscale crystal defect dynamics (MCDD) model that models defects by considering its intrinsic microstructure derived from the microstructure or material genome of the original perfect crystal. The main novelties of present work are: (1) the discrete exterior calculus and algebraic topology theory are used to construct a scale-up (coarse-grained) dual lattice model for crystal defects, which may represent all possible defect modes inside a crystal; (2) a higher order Cauchy-Born rule (up to the fourth order) is adopted to construct atomistic-informed constitutive relations for various defect process zones, and (3) an hierarchical strain gradient theory based finite element formulation is developed to support an hierarchical multiscale cohesive (process) zone model for various defects in a unified formulation. The efficiency of MCDD computational algorithm allows us to simulate dynamic defect evolution at large scale while taking into account atomistic interaction. The MCDD model has been validated by comparing of the results of MCDD simulations with that of molecular dynamics (MD) in the cases of nanoindentation and uniaxial tension. Numerical simulations have shown that MCDD model can predict dislocation nucleation induced instability and inelastic deformation, and thus it may provide an alternative solution to study crystal plasticity.

  6. Creation of radiation defects in KCl crystals

    International Nuclear Information System (INIS)

    Lushchik, A.Ch.; Pung, L.A.; Khaldre, Yu.Yu.; Kolk, Yu.V.

    1981-01-01

    Optical and EPR methods were used to study the creation of anion and cation Frenkel defects in KCl crystals irradiated by X-ray and VUV-radiation. The decay of excitons with the creation of charged Frenkel defects (α and I centres) was detected and investigated at 4.2 K. The decay of excitons as well as the recombination of electrons with self-trapped holes leads to the creation of neutral Frenkel defects (F and H centres). The creation of Cl 3 - and Vsub(F) centres (cation vacancy is a component of these centres) by X-irradiation at 80 K proves the possibility of cation defects creation in KCl [ru

  7. Optical defect modes in chiral liquid crystals

    International Nuclear Information System (INIS)

    Belyakov, V. A.; Semenov, S. V.

    2011-01-01

    An analytic approach to the theory of optical defect modes in chiral liquid crystals (CLCs) is developed. The analytic study is facilitated by the choice of the problem parameters. Specifically, an isotropic layer (with the dielectric susceptibility equal to the average CLC dielectric susceptibility) sandwiched between two CLC layers is studied. The chosen model allows eliminating the polarization mixing and reducing the corresponding equations to the equations for light of diffracting polarization only. The dispersion equation relating the defect mode (DM) frequency to the isotropic layer thickness and an analytic expression for the field distribution in the DM structure are obtained and the corresponding dependences are plotted for some values of the DM structure parameters. Analytic expressions for the transmission and reflection coefficients of the DM structure (CLC-defect layer-CLC) are presented and analyzed for nonabsorbing, absorbing, and amplifying CLCs. The anomalously strong light absorption effect at the DM frequency is revealed. The limit case of infinitely thick CLC layers is considered in detail. It is shown that for distributed feedback lasing in a defect structure, adjusting the lasing frequency to the DM frequency results in a significant decrease in the lasing threshold. The DM dispersion equations are solved numerically for typical values of the relevant parameters. Our approach helps clarify the physics of the optical DMs in CLCs and completely agrees with the corresponding results of the previous numerical investigations.

  8. Electrically Rotatable Polarizer Using One-Dimensional Photonic Crystal with a Nematic Liquid Crystal Defect Layer

    Directory of Open Access Journals (Sweden)

    Ryotaro Ozaki

    2015-09-01

    Full Text Available Polarization characteristics of defect mode peaks in a one-dimensional (1D photonic crystal (PC with a nematic liquid crystal (NLC defect layer have been investigated. Two different polarized defect modes are observed in a stop band. One group of defect modes is polarized along the long molecular axis of the NLC, whereas another group is polarized along its short axis. Polarizations of the defect modes can be tuned by field-induced in-plane reorientation of the NLC in the defect layer. The polarization properties of the 1D PC with the NLC defect layer is also investigated by the finite difference time domain (FDTD simulation.

  9. Dislocations and point defects in hydrostatically compressed crystal

    International Nuclear Information System (INIS)

    Kosevich, A.M.; Tokij, V.V.; Strel'tsov, V.A.

    1978-01-01

    Within the framework of the theory of finite deformations, the elastic fields are considered, which are induced by the sources of internal stresses in a crystal compressed under a high pressure. In the case of a hydrostatically compressed crystal with defects, the use of a variation principle is discussed. Using the smallness of distorsions, the linear theory of elastic fields of defects in the crystal compressed under a high pressure, is developed. An analysis of the main relationships of the theory results in the following conclusion: in a course of the linear approximation the taking into account of the hydrostatic pressure brings to the renorming of the elasticity moduli and to the replacing of the hydrostatic parameters of defects by their values in the compressed crystal. That conclusion allows the results of the elasticity linear theory of the crystal with defects to be used to the full extent

  10. Phononic crystals with one-dimensional defect as sensor materials

    Science.gov (United States)

    Aly, Arafa H.; Mehaney, Ahmed

    2017-09-01

    Recently, sensor technology has attracted great attention in many fields due to its importance in many engineering applications. In the present work, we introduce a study using the innovative properties of phononic crystals in enhancing a new type of sensors based on the intensity of transmitted frequencies inside the phononic band gaps. Based on the transfer matrix method and Bloch theory, the expressions of the reflection coefficient and dispersion relation are presented. Firstly, the influences of filling fraction ratio and the angle of incidence on the band gap width are discussed. Secondly, the localization of waves inside band gaps is discussed by enhancing the properties of the defected phononic crystal. Compared to the periodic structure, localization modes involved within the band structure of phononic crystals with one and two defect layers are presented and compared. Trapped localized modes can be detected easily and provide more information about defected structures. Such method could increase the knowledge of manufacturing defects by measuring the intensity of propagated waves in the resonant cavities and waveguides. Moreover, several factors enhance the role of the defect layer on the transmission properties of defected phononic crystals are presented. The acoustic band gap can be used to detect or sense the type of liquids filling the defect layer. The liquids make specific resonant modes through the phononic band gaps that related to the properties of each liquid. The frequency where the maximum resonant modes occur is correlated to material properties and allows to determine several parameters such as the type of an unknown material.

  11. International conference on defects in insulating crystals

    International Nuclear Information System (INIS)

    1977-01-01

    Short summaries of conference papers are presented. Some of the conference topics included transport properties, defect levels, superionic conductors, radiation effects, John-Teller effect, electron-lattice interactions, and relaxed excited states

  12. International conference on defects in insulating crystals

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Short summaries of conference papers are presented. Some of the conference topics included transport properties, defect levels, superionic conductors, radiation effects, John-Teller effect, electron-lattice interactions, and relaxed excited states. (SDF)

  13. Defect free single crystal thin layer

    KAUST Repository

    Elafandy, Rami Tarek Mahmoud

    2016-01-28

    A gallium nitride film can be a dislocation free single crystal, which can be prepared by irradiating a surface of a substrate and contacting the surface with an etching solution that can selectively etch at dislocations.

  14. Defect free single crystal thin layer

    KAUST Repository

    Elafandy, Rami Tarek Mahmoud; Ooi, Boon S.

    2016-01-01

    A gallium nitride film can be a dislocation free single crystal, which can be prepared by irradiating a surface of a substrate and contacting the surface with an etching solution that can selectively etch at dislocations.

  15. Instrinsic defect energies of lithium hydride and lithium deuteride crystals

    International Nuclear Information System (INIS)

    Pandey, R.; Stoneham, A.M.

    1985-01-01

    A theoretical study has been made of the defect structure of lithium hydride and lithium deuteride. A potential model is obtained describing the statics and dynamics of these crystals. Intrinsic defect energies are calculated using the Harwell HADES program which is based on a generalised Mott-Littleton method. The results are in good agreement with the experimental data, and suggest that the vacancy and interstitial migration mechanisms of anions and cations are all comparable in their contribution to ionic conduction. (author)

  16. Electron damage and defects in organic crystals

    International Nuclear Information System (INIS)

    Howitt, D.G.

    1976-06-01

    The nature of the defects discernable from and the radiation damage that is induced by high resolution electron microscopy is reported. The structural aspects of the radiation damage process can be correlated to the expected radiochemical decomposition of these materials and these effects identified. The types of local defect formed by radiation damage are often clearly distinguishable, in high resolution images, from those inherent in the microstructure. Techniques used in this type of electron microscopy and the limitations imposed by radiation damage are described as are the relevant radiochemical characteristics of these processes. In copper pthalocyanine, microstructural features distinct from those induced by radiation damage were identified which are consistent with those predicted and described by other workers in similar materials. The high resolution studies indicate that some of the microstructures observed are caused by structural rearrangements that can account, to some extent, for additional crystallographic forms that have been identified in this material and the photochemical behaviour of related structures

  17. Intrinsic thermal expansion of crystal defects

    International Nuclear Information System (INIS)

    Ganne, J.-P.

    1981-02-01

    Although the phenomenon of thermal expansion has long been known, the intrinsic thermal expansion coefficient (ITEC) βsub(d) of a point defect, derived from its formation volume vsub(d), has never been measured directly. The differential dilatometer by interferometry built by ASTY and GILDER is described. It has allowed βsub(d) to be measured for several defects. Vacancies and small interstitial loops were produced in aluminium by low temperature (20 K) fast neutron irradiation followed by an anneal up to the beginning of stage III (160 K). The very high value of the measured ratio βsub(d)/β 0 (12+-4) is comparable with a lattice statics calculated (42) value (11.5 0 [fr

  18. Induced defects in neutron irradiated GaN single crystals

    International Nuclear Information System (INIS)

    Park, I. W.; Koh, E. K.; Kim, Y. M.; Choh, S. H.; Park, S. S.; Kim, B. G.; Sohn, J. M.

    2005-01-01

    The local structure of defects in undoped, Si-doped, and neutron irradiated free standing GaN bulk crystals, grown by hydride vapor phase epitaxy, has been investigated by employing Raman scattering and cathodoluminescence. The GaN samples were irradiated to a dose of 2 x 10 17 neutrons in an atomic reactor at Korea Atomic Energy Research Institute. There was no appreciable change in the Raman spectra for undoped GaN samples before and after neutron irradiation. However, a forbidden transition, A 1 (TO) mode, appeared for a neutron irradiated Si-doped GaN crystal. Cathodoluminescence spectrum for the neutron irradiated Si-doped GaN crystal became much more broadened than that for the unirradiated one. The experimental results reveal the generation of defects with locally deformed structure in the wurtzite Si-doped GaN single crystal

  19. Defect reduction in seeded aluminum nitride crystal growth

    Science.gov (United States)

    Bondokov, Robert T.; Schowalter, Leo J.; Morgan, Kenneth; Slack, Glen A; Rao, Shailaja P.; Gibb, Shawn Robert

    2017-09-26

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  20. In Situ Observation of Antisite Defect Formation during Crystal Growth

    International Nuclear Information System (INIS)

    Kramer, M. J.; Napolitano, R. E.; Mendelev, M. I.

    2010-01-01

    In situ x-ray diffraction (XRD) coupled with molecular dynamics (MD) simulations have been used to quantify antisite defect trapping during crystallization. Rietveld refinement of the XRD data revealed a marked lattice distortion which involves an a axis expansion and a c axis contraction of the stable C11b phase. The observed lattice response is proportional in magnitude to the growth rate, suggesting that the behavior is associated with the kinetic trapping of lattice defects. MD simulations demonstrate that this lattice response is due to incorporation of 1% to 2% antisite defects during growth.

  1. Analysis of Bending Waves in Phononic Crystal Beams with Defects

    Directory of Open Access Journals (Sweden)

    Yongqiang Guo

    2018-01-01

    Full Text Available Existing investigations on imperfect phononic crystal beams mainly concern periodic multi-span beams carrying either one or two channel waves with random or deterministic disorder in span-length. This paper studies the two channel bending waves in phononic crystal beams consisting of many phases of materials with defects introduced as one structural segment having different cross-sectional dimensions or material parameters. The method of reverberation-ray matrix (MRRM based on the Timoshenko beam theory, which can conduct high-frequency analysis, is extended for the theoretical analysis of dispersion and transmission of bending waves. The supercell technique and the Floquet–Bloch theorem are adopted for modeling the dispersion characteristics, and the whole finite structural model is used to calculate the transmission spectra. Experimental measurements and numerical calculations are provided to validate the displacement transmission obtained by the proposed MRRM, with the effect of damping on transmission spectra being concerned. The high-frequency calculation applicability of the proposed MRRM is also confirmed by comparing the present results with the corresponding ones either using the transfer matrix method (TMM or MRRM based on Euler—Bernoulli beam theory. The influences of defect size, defect form, and unit-cell number on the transmission spectra and the band structures are discussed. The drawn conclusions may be useful for designing or evaluating the defected phononic crystal beams in bending wave control. In addition, our conclusions are especially potential for identifying the defect location through bending wave signals.

  2. Radiation defects in electron-irradiated InP crystals

    International Nuclear Information System (INIS)

    Brailovskii, E.Yu.; Karapetyan, F.K.; Megela, I.G.; Tartachnik, V.P.

    1982-01-01

    The results are presented of formation and annealing of defects in InP crystals at 1 to 50 MeV electron irradiation. The recovery of electrical properties in the range of 77 to 970 K during annealing processes is studied. Five low temperature annealing states in n-InP and the reverse annealing in p-InP are observed at 77 to 300 K. Four annealing stages at temperatures higher than 300 K are present. When the electron energy is increased more complicated thermostable defects are formed, and at 50 MeV electron energy besides of the point defect clusters are formed, which anneal at temperatures of 800 to 970 K. It is shown that the peculiarities of the Hall mobility at irradiation and annealing are caused by the scattering centres E/sub c/ - 0.2 eV. The 'limiting' position of the Fermi level in electron irradiated InP crystals is discussed. (author)

  3. Self-organized defect strings in two-dimensional crystals.

    Science.gov (United States)

    Lechner, Wolfgang; Polster, David; Maret, Georg; Keim, Peter; Dellago, Christoph

    2013-12-01

    Using experiments with single-particle resolution and computer simulations we study the collective behavior of multiple vacancies injected into two-dimensional crystals. We find that the defects assemble into linear strings, terminated by dislocations with antiparallel Burgers vectors. We show that these defect strings propagate through the crystal in a succession of rapid one-dimensional gliding and rare rotations. While the rotation rate decreases exponentially with the number of defects in the string, the diffusion constant is constant for large strings. By monitoring the separation of the dislocations at the end points, we measure their effective interactions with high precision beyond their spontaneous formation and annihilation, and we explain the double-well form of the dislocation interaction in terms of continuum elasticity theory.

  4. Crystal defect studies using x-ray diffuse scattering

    International Nuclear Information System (INIS)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above

  5. Crystal defect studies using x-ray diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.

  6. Evolution of the bonding defect reported on the tiles of the toroidal pumped limiter of the Tore Supra tokamak with infrared analysis

    International Nuclear Information System (INIS)

    Cai Laizhong; Gauthier, Eric; Corre, Yann; Loarer, Thierry; Missirlian, Marc; Martin, Vincent; Moncada, Victor

    2012-01-01

    The bonding of plasma-facing component (PFC) tiles and their possible defects need to be monitored to evaluate the safety during long pulse plasma operations and prevent critical failure, which is very important for ITER and next-step fusion devices. The defect evolutions of two toroidal pumped limiter (TPL) tiles are investigated by analysing the infrared images obtained during Tore Supra experiments from 2006 to 2010 (about 10 000 plasma discharges). The evolution of the defect is characterized by the surface temperature reached in stationary discharge conditions. The comparison of the defect tiles with neighbouring tiles (with no defect) and the evolutions are carried out through the thermal time constants of the tiles. The results show that the two tiles are slowly deteriorating during plasma operation and no plateau of the deterioration is observed in the considered period. By comparing the defect evolutions with the modelling results calculated by CAST3M, the current state of the defect tiles is identified. The defects are significant (about 30% of the tile length or area) and need to be followed and monitored further in the next experimental campaigns of Tore Supra.

  7. Radiation defects in electron-irradiated InP crystals

    Energy Technology Data Exchange (ETDEWEB)

    Brailovskii, E.Yu.; Karapetyan, F.K.; Megela, I.G.; Tartachnik, V.P. (AN Ukrainskoj SSR, Kiev. Inst. Yadernykh Issledovanij)

    1982-06-16

    The results are presented of formation and annealing of defects in InP crystals at 1 to 50 MeV electron irradiation. The recovery of electrical properties in the range of 77 to 970 K during annealing processes is studied. Five low temperature annealing states in n-InP and the reverse annealing in p-InP are observed at 77 to 300 K. Four annealing stages at temperatures higher than 300 K are present. When the electron energy is increased more complicated thermostable defects are formed, and at 50 MeV electron energy besides of the point defect clusters are formed, which anneal at temperatures of 800 to 970 K. It is shown that the peculiarities of the Hall mobility at irradiation and annealing are caused by the scattering centres E/sub c/ - 0.2 eV. The 'limiting' position of the Fermi level in electron irradiated InP crystals is discussed.

  8. Radiation effects and defects in lithium borate crystals

    Science.gov (United States)

    Ogorodnikov, Igor N.; Poryvay, Nikita E.; Pustovarov, Vladimir A.

    2010-11-01

    The paper presents the results of a study of the formation and decay of lattice defects in wide band-gap optical crystals of LiB3O5 (LBO), Li2B4O7 (LTB) and Li6Gd(BO3)3 (LGBO) with a sublattice of mobile lithium cations. By means of thermoluminescence techniques, and luminescent and absorption optical spectroscopy with a nanosecond time resolution under excitation with an electron beam, it was revealed that the optical absorption in these crystals in the visible and ultraviolet spectral ranges is produced by optical hole-transitions from the local defect level to the valence band states. The valence band density of the states determines mainly the optical absorption spectral profile, and the relaxation kinetics is rated by the interdefect non-radiative tunnel recombination between the trapped-hole center and the Li0 trapped-electron centers. At 290 K, the Li0 centers are subject to thermally stimulated migration. Based on experimental results, the overall picture of thermally stimulated recombination processes with the participation of shallow traps was established for these crystals.

  9. Radiation effects and defects in lithium borate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikov, Igor N; Poryvay, Nikita E; Pustovarov, Vladimir A, E-mail: igor.ogorodnikov@bk.ru [Ural Federal University, Mira Street, 19, Ekaterinburg 620002 (Russian Federation)

    2010-11-15

    The paper presents the results of a study of the formation and decay of lattice defects in wide band-gap optical crystals of LiB{sub 3}O{sub 5} (LBO), Li{sub 2}B{sub 4}O{sub 7} (LTB) and Li{sub 6}Gd(BO{sub 3}){sub 3} (LGBO) with a sublattice of mobile lithium cations. By means of thermoluminescence techniques, and luminescent and absorption optical spectroscopy with a nanosecond time resolution under excitation with an electron beam, it was revealed that the optical absorption in these crystals in the visible and ultraviolet spectral ranges is produced by optical hole-transitions from the local defect level to the valence band states. The valence band density of the states determines mainly the optical absorption spectral profile, and the relaxation kinetics is rated by the interdefect non-radiative tunnel recombination between the trapped-hole center and the Li{sup 0} trapped-electron centers. At 290 K, the Li{sup 0} centers are subject to thermally stimulated migration. Based on experimental results, the overall picture of thermally stimulated recombination processes with the participation of shallow traps was established for these crystals.

  10. Point defects in ZnO crystals grown by various techniques

    International Nuclear Information System (INIS)

    Čížek, J; Vlček, M; Hruška, P; Lukáč, F; Melikhova, O; Anwand, W; Selim, F; Hugenschmidt, Ch; Egger, W

    2017-01-01

    In the present work point defects in ZnO crystals were characterized by positron lifetime spectroscopy combined with back-diffusion measurement of slow positrons. Defects in ZnO crystals grown by various techniques were compared. Hydrothermally grown ZnO crystals contain defects characterized by lifetime of ≈181 ps. These defects were attributed to Zn vacancies associated with hydrogen. ZnO crystals prepared by other techniques (Bridgman, pressurized melt growth, and seeded chemical vapour transport) exhibit shorter lifetime of ≈165 ps. Positron back-diffusion studies revealed that hydrothermally grown ZnO crystals contain higher density of defects than the crystals grown by other techniques. The lowest concentration of defects was detected in the crystal grown by seeded chemical vapor transport. (paper)

  11. Defect production at exciton decay in ionic crystals

    International Nuclear Information System (INIS)

    Lushchik, Ch.B.

    1984-01-01

    On the example of alkali halide crystals experimentally detected phenomenon of structural point defect production in wide-gap nonmetallic solids at low-temperature radiationless decay of self-localizing excitons and recombination of electrons with self-localized holes is considered. Factors promoting radiationless transformation of electron excitations to not small oscillations of many atoms (heat release), but to separate ion large shifts, that determine one of the most important mechanisms of radiation instability of solids, used, in particular, for data recording, are discussed

  12. Dislocation-defect interactions and mechanical properties of crystals

    International Nuclear Information System (INIS)

    Granato, A.V.

    1975-01-01

    The influence of dislocation-defect interactions on mechanical properties of crystals is reviewed. Interactions are separated into those producing pinning and those producing viscous drag. Deformation behavior is classified according to the strength of the drag. For small drag, inertial effects become important. For intermediate drag, traditional theories resting on rate theory treatments become applicable. For large drag, viscoelastic behavior is obtained. Measurements are examined for information concerning the basic nature of different sources of short and long range pinning and of drag

  13. Radiation defects produced by neutron irradiation in germanium single crystals

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Honda, Makoto; Atobe, Kozo; Yamaji, Hiromichi; Ide, Mutsutoshi; Okada, Moritami.

    1992-01-01

    The nature of defects produced in germanium single crystals by neutron irradiation at 25 K was studied by measuring the electrical resistivity. It was found that two levels located at E c -0.06 eV and E c -0.13 eV were introduced in an arsenic-doped sample. Electron traps at E c -0.10eV were observed in an indium-doped sample. The change in electrical resistivity during irradiation was also studied. (author)

  14. Thermal analysis of line-defect photonic crystal lasers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Ottaviano, Luisa; Chen, Yaohui

    2015-01-01

    under CW optical pumping, whereas InGaAsP membranes only lase under pulsed conditions. By varying the duty cycle of the pump beam, we quantify the heating induced by optical pumping in the two material platforms and compare their thermal properties. Full 3D finite element simulations show the spatial......We report a systematic study of thermal effects in photonic crystal membrane lasers based on line-defect cavities. Two material platforms, InGaAsP and InP, are investigated experimentally and numerically. Lasers with quantum dot layers embedded in an InP membrane exhibit lasing at room temperature...

  15. AACSD: An atomistic analyzer for crystal structure and defects

    Science.gov (United States)

    Liu, Z. R.; Zhang, R. F.

    2018-01-01

    We have developed an efficient command-line program named AACSD (Atomistic Analyzer for Crystal Structure and Defects) for the post-analysis of atomic configurations generated by various atomistic simulation codes. The program has implemented not only the traditional filter methods like the excess potential energy (EPE), the centrosymmetry parameter (CSP), the common neighbor analysis (CNA), the common neighborhood parameter (CNP), the bond angle analysis (BAA), and the neighbor distance analysis (NDA), but also the newly developed ones including the modified centrosymmetry parameter (m-CSP), the orientation imaging map (OIM) and the local crystallographic orientation (LCO). The newly proposed OIM and LCO methods have been extended for all three crystal structures including face centered cubic, body centered cubic and hexagonal close packed. More specially, AACSD can be easily used for the atomistic analysis of metallic nanocomposite with each phase to be analyzed independently, which provides a unique pathway to capture their dynamic evolution of various defects on the fly. In this paper, we provide not only a throughout overview on various theoretical methods and their implementation into AACSD program, but some critical evaluations, specific testing and applications, demonstrating the capability of the program on each functionality.

  16. Defect sensitive etching of hexagonal boron nitride single crystals

    Science.gov (United States)

    Edgar, J. H.; Liu, S.; Hoffman, T.; Zhang, Yichao; Twigg, M. E.; Bassim, Nabil D.; Liang, Shenglong; Khan, Neelam

    2017-12-01

    Defect sensitive etching (DSE) was developed to estimate the density of non-basal plane dislocations in hexagonal boron nitride (hBN) single crystals. The crystals employed in this study were precipitated by slowly cooling (2-4 °C/h) a nickel-chromium flux saturated with hBN from 1500 °C under 1 bar of flowing nitrogen. On the (0001) planes, hexagonal-shaped etch pits were formed by etching the crystals in a eutectic mixture of NaOH and KOH between 450 °C and 525 °C for 1-2 min. There were three types of pits: pointed bottom, flat bottom, and mixed shape pits. Cross-sectional transmission electron microscopy revealed that the pointed bottom etch pits examined were associated with threading dislocations. All of these dislocations had an a-type burgers vector (i.e., they were edge dislocations, since the line direction is perpendicular to the [ 2 11 ¯ 0 ]-type direction). The pit widths were much wider than the pit depths as measured by atomic force microscopy, indicating the lateral etch rate was much faster than the vertical etch rate. From an Arrhenius plot of the log of the etch rate versus the inverse temperature, the activation energy was approximately 60 kJ/mol. This work demonstrates that DSE is an effective method for locating threading dislocations in hBN and estimating their densities.

  17. Investigation of the crystal lattice defects by means of the positrons annihilations

    International Nuclear Information System (INIS)

    Dryzek, J.

    1994-01-01

    In this report the positrons annihilation methods as a tool for the crystal defects studies is presented. The short description of the positron - crystal interactions and different positron capture models are discussed. 192 refs, 67 figs, 6 tabs

  18. Computer simulations of liquid crystals: Defects, deformations and dynamics

    Science.gov (United States)

    Billeter, Jeffrey Lee

    1999-11-01

    Computer simulations play an increasingly important role in investigating fundamental issues in the physics of liquid crystals. Presented here are the results of three projects which utilize the unique power of simulations to probe questions which neither theory nor experiment can adequately answer. Throughout, we use the (generalized) Gay-Berne model, a widely-used phenomenological potential which captures the essential features of the anisotropic mesogen shapes and interactions. First, we used a Molecular Dynamics simulation with 65536 Gay-Berne particles to study the behaviors of topological defects in a quench from the isotropic to the nematic phase. Twist disclination loops were the dominant defects, and we saw evidence for dynamical scaling. We observed the loops separating, combining and collapsing, and we also observed numerous non-singular type-1 lines which appeared to be intimately involved with many of the loop processes. Second, we used a Molecular Dynamics simulation of a sphere embedded in a system of 2048 Gay-Berne particles to study the effects of radial anchoring of the molecules at the sphere's surface. A saturn ring defect configuration was observed, and the ring caused a driven sphere (modelling the falling ball experiment) to experience an increased resistance as it moved through the nematic. Deviations from a linear relationship between the driving force and the terminal speed are attributed to distortions of the saturn ring which we observed. The existence of the saturn ring confirms theoretical predictions for small spheres. Finally, we constructed a model for wedge-shaped molecules and used a linear response approach in a Monte Carlo simulation to investigate the flexoelectric behavior of a system of 256 such wedges. Novel potential models as well as novel analytical and visualization techniques were developed for these projects. Once again, the emphasis throughout was to investigate questions which simulations alone can adequately answer.

  19. Auto-oscillations of temperature and defect density in impure crystals under irradiation

    International Nuclear Information System (INIS)

    Selishchev, P.A.; Sugakov, V.I.

    1990-01-01

    Appearance of auto-oscillations in temperature and defect density of impurity crystals under irradiation is studied. It is shown that at certain critical parameters stationary distribution of temperature and defect density of the sample irradiated becomes unstable as regards the formation of temporal dissipative structures: auto-oscillations of temperature and defect density. Critical parameters are determined (the rate of defect formation, temperature of crystal environment, etc.) and the frequency of appearing auto-oscillations, its dependence on irradiation conditions and crystal properties are found

  20. Hydrodynamics of defects in nematic liquid crystal films

    International Nuclear Information System (INIS)

    Kurz, G.

    1999-01-01

    In this thesis I propose a new theory to deal with the presence of a macroscopic density of defects or disclinations in two-dimensional systems of uniaxial nematic liquid crystal. The static part of the Abelian-Higgs model is the basis for a gauge covariant form of the Frank free energy for distortions in nematics, where the gauge field models the screening due to the presence of the defects. Certain results for vortices in the Abelian-Higgs model are reformulated for use in my theory. The model suggests disclinations with an isotropic core region. The covariant Frank free energy is used to derive a new form of the Ericksen-Leslie equations describing the hydrodynamics off nematics. These equations are set up according to the concept of thermodynamic fluxes and forces. Detailed analytic results are derived for the case where the dynamics is due to director reorientations, but no liquid flow. The hydrodynamic equations are reduced to dynamic equations for disclination points assuming a quasi-static motion in moduli space. The static form of the disclinations is based on solutions in the Bogomol'nyi limit, their quasi-static motion is induced through a deviation from this limit. The resulting equations are valid for a configuration containing disclinations with winding numbers of the same sign. These general equations require a, specific ansatz to yield further results. I consider two regimes, for defects close together and far apart from one another. A set of disclinations with winding numbers of the same sign which are close to one another, i.e. with overlapping cores, can result from disintegration of a larger disclination, and they repel one another. The results for this case predict how the disintegration could occur. The interaction of disclinations, with winding numbers of the same sign, which are far apart from one another is repulsive and decreases exponentially with the distances between them. Two such disclinations move on a straight line where their

  1. Production and recombination of radiation defects in argon and krypton crystals

    International Nuclear Information System (INIS)

    Giersberg, E.J.

    1981-01-01

    Relative changes in the lattice constants of argon and krypton crystals have been measured by X-ray diffraction. As a result X-ray irradiation is found to produce stable defects. The recombination behaviour of these defects can be determined by isochronous and isothermal annealing. The creation of primary defects can be explained by exciton excitation and double-ionisation. (orig.) [de

  2. Defect modes in silver-doped photonic crystals made by holography using dichromated gelatin

    Science.gov (United States)

    Dai, Rui; Chen, Shujing; Ren, Zhi; Wang, Zhaona; Liu, Dahe

    2012-10-01

    The defect mode in silver-doped photonic crystals is investigated. 1D and 3D photonic crystals were made by holography using dichromated gelatin mixed with silver nitrate. By controlling the concentration of the silver nitrate, the defect mode was observed in the bandgaps of the holographic photonic crystals. The numerical simulations were made, and the results showed the consistency with the experimental observations.

  3. Gamma-induced defect production in ZrO2-Y2O3 crystals with different defectiveness

    International Nuclear Information System (INIS)

    Ashurov, M.Kh.; Amonov, M.Z.; Rakov, A.F.

    2002-01-01

    Full text: The defectiveness degree of ZrO 2 -Y 2 O 3 crystals depends on stabilizer concentration. The work is aimed at study gamma-induced defect production in crystals with different concentration of stabilizer and defects generated by neutron irradiation. Absorption spectra were measured with Specord M-40. It was found, that after gamma-irradiation of as-grown crystals up to some dose the intensity of absorption band at 420 nm reaches the maximum level of saturation. The dose of saturation depends of the concentration of stabilizer. It means that gamma-radiation does not produce any additional defects of structure. The oxygen vacancies existing in as-grown crystals are filled by the radiation induced electrons. Since the number of oxygen vacancies depends on the stabilizer concentration, then all these vacancies can be occupied by electrons at different gamma-doses. In crystals pre-irradiated with different neutron fluences followed by gamma-irradiation, the intensity of absorption bands at 420 and 530 nm increases in two stages. The gamma-dose of the second stage beginning decreases as the neutron fluence grows. The first stage of the absorption increase is due to developing of vacancies existing in as-grown crystals. The second stage is caused by generation of additional vacancies as the result of non-radiative exciton decay near the existing structure damages. The decrease of the gamma-dose, when the second stage of vacancy accumulation begins, results from the neutron induced structure damage degree

  4. Steady distribution structure of point defects near crystal-melt interface under pulling stop of CZ Si crystal

    Science.gov (United States)

    Abe, T.; Takahashi, T.; Shirai, K.

    2017-02-01

    In order to reveal a steady distribution structure of point defects of no growing Si on the solid-liquid interface, the crystals were grown at a high pulling rate, which Vs becomes predominant, and the pulling was suddenly stopped. After restoring the variations of the crystal by the pulling-stop, the crystals were then left in prolonged contact with the melt. Finally, the crystals were detached and rapidly cooled to freeze point defects and then a distribution of the point defects of the as-grown crystals was observed. As a result, a dislocation loop (DL) region, which is formed by the aggregation of interstitials (Is), was formed over the solid-liquid interface and was surrounded with a Vs-and-Is-free recombination region (Rc-region), although the entire crystals had been Vs rich in the beginning. It was also revealed that the crystal on the solid-liquid interface after the prolonged contact with the melt can partially have a Rc-region to be directly in contact with the melt, unlike a defect distribution of a solid-liquid interface that has been growing. This experimental result contradicts a hypothesis of Voronkov's diffusion model, which always assumes the equilibrium concentrations of Vs and Is as the boundary condition for distribution of point defects on the growth interface. The results were disscussed from a qualitative point of view of temperature distribution and thermal stress by the pulling-stop.

  5. Toroidal rotation studies in KSTAR

    Science.gov (United States)

    Lee, S. G.; Lee, H. H.; Yoo, J. W.; Kim, Y. S.; Ko, W. H.; Terzolo, L.; Bitter, M.; Hill, K.; KSTAR Team

    2014-10-01

    Investigation of the toroidal rotation is one of the most important topics for the magnetically confined fusion plasma researches since it is essential for the stabilization of resistive wall modes and its shear plays an important role to improve plasma confinement by suppressing turbulent transport. The most advantage of KSTAR tokamak for toroidal rotation studies is that it equips two main diagnostics including the high-resolution X-ray imaging crystal spectrometer (XICS) and charge exchange spectroscopy (CES). Simultaneous core toroidal rotation and ion temperature measurements of different impurity species from the XICS and CES have shown in reasonable agreement with various plasma discharges in KSTAR. It has been observed that the toroidal rotation in KSTAR is faster than that of other tokamak devices with similar machine size and momentum input. This may due to an intrinsically low toroidal field ripple and error field of the KSTAR device. A strong braking of the toroidal rotation by the n = 1 non-resonant magnetic perturbations (NRMPs) also indicates these low toroidal field ripple and error field. Recently, it has been found that n = 2 NRMPs can also damp the toroidal rotation in KSTAR. The detail toroidal rotation studies will be presented. Work supported by the Korea Ministry of Science, ICT and Future Planning under the KSTAR project.

  6. TOROID II

    Science.gov (United States)

    2009-01-01

    three axis fluxgate magnetometer , CMOS sun and star sensors, and a Kalman filter. The work and tasks that have been accomplished on the TOROID... magnetometer . The problem was found to be a missing ferrite bead which connects the 12V power supply to the op-amps which are used to appropriately...establish an overall operational timeline for TOROID. Testing and calibration was performed on the three-axis magnetometer which is primary attitude

  7. Localized electromagnetic modes and transmission spectrum of one-dimensional photon crystal with lattice defects

    CERN Document Server

    Vetrov, S Y

    2001-01-01

    The properties of the localized electromagnetic modes in the one-dimensional photon crystal with a structural defective layer are studied. The anisotropic layer of the nematic liquid layer is considered as the defect. It is shown that the frequency and coefficient of the defective modes attenuation essentially depend on the defective layer thickness and nematic optical axis orientation. The spectrum of the photon crystal transmittance with one or two defects in the lattice is studied. The possibility of controlling the the photon crystal transmittance spectrum on the count of changing the orientation of the nematic optical axis, for example, through the external electric field is shown with an account of strong anisotropy of the dielectric permittivity

  8. Band gap control in a line-defect magnonic crystal waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Morozova, M. A., E-mail: mamorozovama@yandex.ru; Grishin, S. V.; Sadovnikov, A. V.; Romanenko, D. V.; Sharaevskii, Yu. P.; Nikitov, S. A. [Laboratory ' Metamaterials,' Saratov State University, Astrakhanskaya 83, Saratov 410012 (Russian Federation)

    2015-12-14

    We report on the experimental observation of the spin wave spectrum control in a line-defect magnonic crystal (MC) waveguide. We demonstrate the possibility to control the forbidden frequency band (band gap) for spin waves tuning the line-defect width. In particular, this frequency may be greater or lower than the one of 1D MC waveguide without line-defect. By means of space-resolved Brillouin light scattering technique, we study the localization of magnetization amplitude in the line-defect area. We show that the length of this localization region depends on the line-defect width. These results agree well with theoretical calculations of spin wave spectrum using the proposed model of two coupled magnonic crystal waveguides. The proposed simple geometry of MC with line-defect can be used as a logic and multiplexing block for application in the novel field of magnonic devices.

  9. Spin-wave dispersion of nanostructured magnonic crystals with periodic defects

    Directory of Open Access Journals (Sweden)

    V. L. Zhang

    2016-11-01

    Full Text Available The spin-wave dispersions in nanostructured magnonic crystals with periodic defects have been mapped by Brillouin light scattering. The otherwise perfect crystals are one-dimensional arrays of alternating 460nm-wide Ni80Fe20 stripes and 40nm-wide air gaps, where one in ten Ni80Fe20 stripes is a defect of width other than 460 nm. Experimentally, the defects are manifested as additional Brillouin peaks, lying within the first and second bandgaps of the perfect crystal, whose frequencies decrease with increasing defect stripe width. Finite-element calculations, based on a supercell comprising one defect and nine perfect Py stripes, show that the defect modes are localized about the defects, with the localization exhibiting an approximate U-shaped dependence on defect size. Calculations also reveal extra magnon branches and the opening of mini-bandgaps, within the allowed bands of the perfect crystal, arising from Bragg reflections at the boundaries of the shorter supercell Brillouin zone. Simulated magnetization profiles of the band-edge modes of the major and mini-bandgaps reveal their different symmetries and localization properties. The findings could find application in microwave magnonic devices like single-frequency passband spin-wave filters.

  10. Effects of crystal defects on the diffuse scattering of X-rays

    International Nuclear Information System (INIS)

    Kremser, R.

    1974-01-01

    This thesis concerns with the influence of crystal defects in germanium-drifted silicium and in α=quartz on the intensity of the diffuse X-ray scattering. The experiments were performed at low and high temperatures to show the effect of the atomic thermal motion on the intensity of the diffuse maxima. The comparison of the results for pure silicium and for the germanium-drifted crystal gives information about the relation between the frequency-spectra and the defects of the drifted silicium. For α-quarts it was not possible to relate unequivocally the observed changes in the intensity to individual defects. (C.R.)

  11. The fractal character of radiation defects aggregation in crystals

    International Nuclear Information System (INIS)

    Akylbekov, A.; Akimbekov, E.; Baktybekov, K.; Vasil'eva, I.

    2002-01-01

    In processes of self-organization, which characterize open systems, the source of ordering is a non-equilibrium. One of the samples of ordering system is radiation-stimulated aggregation of defects in solids. In real work the analysis of criterions of ordering defects structures in solid, which is continuously irradiate at low temperature is presented. The method of cellular automata used in simulation of irradiation. It allowed us to imitate processes of defects formation and recombination. The simulation realized on the surfaces up to 1000x1000 units with initial concentration of defects C n (the power of dose) 0.1-1 %. The number of iterations N (duration of irradiation) mounted to 10 6 cycles. The single centers, which are the sources of formation aggregates, survive in the result of probabilistic nature of formation and recombination genetic pairs of defects and with strictly fixed radius of recombination (the minimum inter anionic distance). For determination the character of same type defects distribution the potential of their interaction depending of defects type and reciprocal distance is calculated. For more detailed study of processes, proceeding in cells with certain sizes of aggregates, the time dependence of potential interaction is constructed. It is shown, that on primary stage the potential is negative, then it increase and approach the saturation in positive area. The minimum of interaction potential corresponds to state of physical chaos in system. Its increasing occurs with formation of same type defects aggregates. Further transition to saturation and 'undulating' character of curves explains by formation and destruction aggregates. The data indicated that - these processes occur simultaneously in cells with different sizes. It allows us to assume that the radiation defects aggregation have a fractal nature

  12. Modelling of thermal field and point defect dynamics during silicon single crystal growth using CZ technique

    Science.gov (United States)

    Sabanskis, A.; Virbulis, J.

    2018-05-01

    Mathematical modelling is employed to numerically analyse the dynamics of the Czochralski (CZ) silicon single crystal growth. The model is axisymmetric, its thermal part describes heat transfer by conduction and thermal radiation, and allows to predict the time-dependent shape of the crystal-melt interface. Besides the thermal field, the point defect dynamics is modelled using the finite element method. The considered process consists of cone growth and cylindrical phases, including a short period of a reduced crystal pull rate, and a power jump to avoid large diameter changes. The influence of the thermal stresses on the point defects is also investigated.

  13. Mesoscale martensitic transformation in single crystals of topological defects

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao; Martínez-González, José A.; Hernández-Ortiz, Juan P.; Ramírez-Hernández, Abelardo; Zhou, Ye; Sadati, Monirosadat; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.

    2017-09-05

    Liquid crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of doubletwisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with considerable precision by relying on chemically nano-patterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of meso-crystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local re-organization of the crystalline array, without diffusion of the double twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the sub-micron regime, is found to be martensitic in nature, with the diffusion-less feature associated to the collective behavior of the double twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal-nucleation and the controlled growth of soft matter.

  14. Radiation defects in oxide crystals doped with rare earth ions

    NARCIS (Netherlands)

    Matkovskii, A; Durygin, A; Suchocki, A; Sugak, D; Wallrafen, F; Vakiv, M

    1999-01-01

    The nature of stable and transient color centers in Y3Al5O12, Gd3Ca5O12, YAlO3 and LiNbO3 crystals is studied. The color centers are created by various types of irradiation. The effect of irradiation on crystal optical properties in visible and ultraviolet range is presented.

  15. Tunable single photonic defect-mode in cholesteric liquid crystals with laser-induced local modifications of helix

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Lee, Chee Heng; Fujii, Akihiko; Ozaki, Masanori

    2006-01-01

    The authors demonstrate a tunable single photonic defect-mode in a single cholesteric liquid crystal material based on a structural defect introduced by local modification of the helix. An unpolymerized region of cholesteric liquid crystal acting as the defect was left between two polymerized regions via a two-photon excitation laser-lithography process. Upon polymerization, the cholesteric liquid crystal helix elongated and became thermally stable, and a single photonic defect mode was exhibited due to the contrast in the helix pitch at the defect. The defect mode showed tunability upon heating, and a 36 nm redshift was seen over a temperature range of 30 deg. C

  16. On the law of interaction between charged defects in ionic crystals

    International Nuclear Information System (INIS)

    Varaksin, A.N.; Kolmogorov, Yu.N.

    1990-01-01

    Values of E int PC (R 12 ) interaction energy between dominant defects in NaCl- and CaF 2 -type crystals are calculated using Mott-Littleton method in harmonic approximation. It is shown, that interaction between cationic and anionic vacancies in NaCl type crystals is described using Coulomb law for charge interaction in dielectric up till R 12 smallest distances between vacancies. Good conformity of E int PC R 12 values with calculation made using Coulomb formula should be expected for Frenkel anionic pair in CaF 2 type crystals. Deviations from Coulomb law are possible for other defects at R 12 small distances; deviation degree depends on lattice type, defect type and on relative polarizability of crystal cationic and anionic sublattices. Calculations of E int PC (R 12 ) values using Mott-Littleton method are compared with calculations conducted by MOLSTAT program using molecular static method

  17. Influence of defects on positron transmission and annihilation in the lithium fluoride crystal

    International Nuclear Information System (INIS)

    Varisov, A.Z.; Kozlov, V.G.

    1984-01-01

    The positron implantation profile and the angular distribution of annihilation γ quanta were determined for a lithium fluoride crystal under β + and γ irradiation ( 22 Na source). The positron absorption coefficient of the irradiated crystal was α = 76.2 +- 1.5 cm -1 . The angular distribution had a strong narrow component. After thermal bleaching of the crystal, α = 91.9 +- 1.5 cm -1 , the narrow component made a smaller contribution to the angular distribution, and its half-width increased. The positron mobility was found to be μ = 18 +- 8 cm 2 x V -1 x sec -1 . It is suggested that defects influence in two ways the fate of positrons in the lithium fluoride crystal: free positrons may be trapped by some defects (cationic vacancies) or annihilated in collisions with others (F centers). The defect concentration is estimated

  18. Defects in silicon effect on device performance and relationship to crystal growth conditions

    Science.gov (United States)

    Jastrzebski, L.

    1985-01-01

    A relationship between material defects in silicon and the performance of electronic devices will be described. A role which oxygen and carbon in silicon play during the defects generation process will be discussed. The electronic properties of silicon are a strong function of the oxygen state in the silicon. This state controls mechanical properties of silicon efficiency for internal gettering and formation of defects in the device's active area. In addition, to temperature, time, ambience, and the cooling/heating rates of high temperature treatments, the oxygen state is a function of the crystal growth process. The incorporation of carbon and oxygen into silicon crystal is controlled by geometry and rotation rates applied to crystal and crucible during crystal growths. Also, formation of nucleation centers for oxygen precipitation is influenced by the growth process, although there is still a controversy which parameters play a major role. All these factors will be reviewed with special emphasis on areas which are still ambiguous and controversial.

  19. Study on growth techniques and macro defects of large-size Nd:YAG laser crystal

    Science.gov (United States)

    Quan, Jiliang; Yang, Xin; Yang, Mingming; Ma, Decai; Huang, Jinqiang; Zhu, Yunzhong; Wang, Biao

    2018-02-01

    Large-size neodymium-doped yttrium aluminum garnet (Nd:YAG) single crystals were grown by the Czochralski method. The extinction ratio and wavefront distortion of the crystal were tested to determine the optical homogeneity. Moreover, under different growth conditions, the macro defects of inclusion, striations, and cracking in the as-grown Nd:YAG crystals were analyzed. Specifically, the inclusion defects were characterized using scanning electron microscopy and energy dispersive spectroscopy. The stresses of growth striations and cracking were studied via a parallel plane polariscope. These results demonstrate that improper growth parameters and temperature fields can enhance defects significantly. Thus, by adjusting the growth parameters and optimizing the thermal environment, high-optical-quality Nd:YAG crystals with a diameter of 80 mm and a total length of 400 mm have been obtained successfully.

  20. Investigation of the growth defects in strontium titanate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kulagin, N A; Landar, S V; Podus, L P [Khar' kovskij Gosudarstvennyj Univ. (Ukrainian SSR)

    1981-02-01

    Investigation results of characteristics and reasons for formation of macroscopic growth defects in SrTiO/sub 3/ monocrystals grown up by Wernail method are presented. It is shown that blue colour occurring in the specimen volume is caused by shortage of oxygen during growing which results in transition of some ions from tetravalent to trivalent state. The defect of another type is characterized by increased content of Fe and Ni oxides.

  1. Ion channeling study of defects in compound crystals using Monte Carlo simulations

    Science.gov (United States)

    Turos, A.; Jozwik, P.; Nowicki, L.; Sathish, N.

    2014-08-01

    Ion channeling is a well-established technique for determination of structural properties of crystalline materials. Defect depth profiles have been usually determined basing on the two-beam model developed by Bøgh (1968) [1]. As long as the main research interest was focused on single element crystals it was considered as sufficiently accurate. New challenge emerged with growing technological importance of compound single crystals and epitaxial heterostructures. Overlap of partial spectra due to different sublattices and formation of complicated defect structures makes the two beam method hardly applicable. The solution is provided by Monte Carlo computer simulations. Our paper reviews principal aspects of this approach and the recent developments in the McChasy simulation code. The latter made it possible to distinguish between randomly displaced atoms (RDA) and extended defects (dislocations, loops, etc.). Hence, complex defect structures can be characterized by the relative content of these two components. The next refinement of the code consists of detailed parameterization of dislocations and dislocation loops. Defect profiles for variety of compound crystals (GaN, ZnO, SrTiO3) have been measured and evaluated using the McChasy code. Damage accumulation curves for RDA and extended defects revealed non monotonous defect buildup with some characteristic steps. Transition to each stage is governed by the different driving force. As shown by the complementary high resolution XRD measurements lattice strain plays here the crucial role and can be correlated with the concentration of extended defects.

  2. Study on sensing property of one-dimensional ring mirror-defect photonic crystal

    Science.gov (United States)

    Chen, Ying; Luo, Pei; Cao, Huiying; Zhao, Zhiyong; Zhu, Qiguang

    2018-02-01

    Based on the photon localization and the photonic bandgap characteristics of photonic crystals (PCs), one-dimensional (1D) ring mirror-defect photonic crystal structure is proposed. Due to the introduction of mirror structure, a defect cavity is formed in the center of the photonic crystal, and then the resonant transmission peak can be obtained in the bandgap of transmission spectrum. The transfer matrix method is used to establish the relationship model between the resonant transmission peak and the structure parameters of the photonic crystals. Using the rectangular air gate photonic crystal structure, the dynamic monitoring of the detected gas sample parameters can be achieved from the shift of the resonant transmission peak. The simulation results show that the Q-value can attain to 1739.48 and the sensitivity can attain to 1642 nm ṡ RIU-1, which demonstrates the effectiveness of the sensing structure. The structure can provide certain theoretical reference for air pollution monitoring and gas component analysis.

  3. Types of defect ordering in undoped and lanthanum-doped Bi2201 single crystals

    International Nuclear Information System (INIS)

    Martovitsky, V. P.

    2006-01-01

    Undoped and lanthanum-doped Bi2201 single crystals having a perfect average structure have been comparatively studied by x-ray diffraction. The undoped Bi2201 single crystals exhibit very narrow satellite reflections; their half-width is five to six times smaller than that of Bi2212 single crystals grown by the same technique. This narrowness indicates three-dimensional defect ordering in the former crystals. The lanthanumdoped Bi2201 single crystals with x = 0.7 and T c = 8-10 K exhibit very broad satellite reflections consisting of two systems (modulations) misoriented with respect to each other. The modulation-vector components of these two modulations are found to be q 1 = 0.237b* + 0.277c* and q 2 = 0.238b* + 0.037c*. The single crystals having a perfect average structure and a homogeneous average distribution of doping lanthanum consist of 70-to 80-A-thick layers that alternate along the c axis and have two different types of modulated superlattice. The crystals having a less perfect average structure also consist of alternating layers, but they have different lanthanum concentrations. The low value of T c in the undoped Bi2201 single crystals (9.5 K) correlates with three-dimensional defect ordering in them, and an increase in T c to 33 K upon lanthanum doping can be related to a thin-layer structure of these crystals and to partial substitution of lanthanum for the bismuth positions

  4. Application of triple-crystal diffractometry for study of ion implanted layer defects

    International Nuclear Information System (INIS)

    Shcherbachev, K.D.; Bublik, V.T.

    2000-01-01

    Application of a triple-crystal arrangement, unlike traditionally used double-crystal one, allowed one to separate coherent and incoherent scattering components and to improve a resolution significantly. Advantages of the triple-crystal X-ray diffractometry to study defects in ion-implanted layers are demonstrated by example of characterisation of Si-GaAs(100) wafers doped by Si + with energy of 50 keV and does of 1x10 15 and 1x10 14 cm -2 . To explain a behaviour of point defects after implantation and annealing the analysis of strain depth profile was used. Two processes are shown to play a key role in formation of the distorted layer during implantation. The first one is an annihilation of Frenkel pairs components that decreases the total point defects concentration. Another one is a sink of more mobile interstitials to the surface that leads to formation of the thin subsurface layer enriched by vacancies [ru

  5. The Faraday effect of an antiferromagnetic photonic crystal with a defect layer

    International Nuclear Information System (INIS)

    Wang Xuanzhang

    2005-01-01

    A theoretical calculation of the Faraday optical rotation effect of an antiferromagnetic (AF) photonic crystal is presented. This crystal is composed of AF and dielectric (D) layers and contains an AF defect layer. From the theoretical results for the FeF 2 -SiO 2 crystal, we see a defect mode with high transmission and a high Faraday rotation angle in the optical stop band for ω/2πc -1 . The Faraday rotation of the mode is about 28 deg. mm -1 and 15 times that of the single AF film. Another more striking property is that the rotation in the vicinity of the zero-field AF resonance frequency is even larger than that of the defect mode: about 250 times. The Faraday rotation can be tuned by changing the strength of the external static magnetic field

  6. Investigation of the crystal lattice defects by means of the positrons annihilations; Badania defektow sieci krystalicznej metoda anihilacji pozytonow

    Energy Technology Data Exchange (ETDEWEB)

    Dryzek, J [Institute of Nuclear Physics, Cracow (Poland)

    1994-12-31

    In this report the positrons annihilation methods as a tool for the crystal defects studies is presented. The short description of the positron - crystal interactions and different positron capture models are discussed. 192 refs, 67 figs, 6 tabs.

  7. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Zhang, Baile, E-mail: blzhang@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, Singapore 637371 (Singapore)

    2016-01-25

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find use in the design of integrated surface-wave devices with suppressed crosstalk.

  8. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    International Nuclear Information System (INIS)

    Gao, Zhen; Gao, Fei; Zhang, Baile

    2016-01-01

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find use in the design of integrated surface-wave devices with suppressed crosstalk

  9. Holographic Fabrication of Designed Functional Defect Lines in Photonic Crystal Lattice Using a Spatial Light Modulator

    Directory of Open Access Journals (Sweden)

    Jeffrey Lutkenhaus

    2016-04-01

    Full Text Available We report the holographic fabrication of designed defect lines in photonic crystal lattices through phase engineering using a spatial light modulator (SLM. The diffracted beams from the SLM not only carry the defect’s content but also the defect related phase-shifting information. The phase-shifting induced lattice shifting in photonic lattices around the defects in three-beam interference is less than the one produced by five-beam interference due to the alternating shifting in lattice in three beam interference. By designing the defect line at a 45 degree orientation and using three-beam interference, the defect orientation can be aligned with the background photonic lattice, and the shifting is only in one side of the defect line, in agreement with the theory. Finally, a new design for the integration of functional defect lines in a background phase pattern reduces the relative phase shift of the defect and utilizes the different diffraction efficiency between the defect line and background phase pattern. We demonstrate that the desired and functional defect lattice can be registered into the background lattice through the direct imaging of designed phase patterns.

  10. Origin of the defects-induced ferromagnetism in un-doped ZnO single crystals

    Science.gov (United States)

    Zhan, Peng; Xie, Zheng; Li, Zhengcao; Wang, Weipeng; Zhang, Zhengjun; Li, Zhuoxin; Cheng, Guodong; Zhang, Peng; Wang, Baoyi; Cao, Xingzhong

    2013-02-01

    We clarified, in this Letter, that in un-doped ZnO single crystals after thermal annealing in flowing argon, the defects-induced room-temperature ferromagnetism was originated from the surface defects and specifically, from singly occupied oxygen vacancies denoted as F+, by the optical and electrical properties measurements as well as positron annihilation analysis. In addition, a positive linear relationship was observed between the ferromagnetism and the F+ concentration, which is in support with the above clarification.

  11. Identification of a type of defects in CdTe crystals by the piezo spectroscopic method

    International Nuclear Information System (INIS)

    Tarbajev, M.Yi.

    1999-01-01

    The dependence of line shifts and the photoluminescence line intensity of bound exciton complexes on the direction of elastic deformation are studied for CdTe crystals at 4.2 K. On the basis of the found differences in piezo optic behavior of excitons bound to neutral donors and acceptors, the method of identification of a type of defects in CdTe crystals is proposed

  12. Tuning optical properties of opal photonic crystals by structural defects engineering

    Science.gov (United States)

    di Stasio, F.; Cucini, M.; Berti, L.; Comoretto, D.; Abbotto, A.; Bellotto, L.; Manfredi, N.; Marinzi, C.

    2009-06-01

    We report on the preparation and optical characterization of three dimensional colloidal photonic crystal (PhC) containing an engineered planar defect embedding photoactive push-pull dyes. Free standing polystyrene films having thickness between 0.6 and 3 mm doped with different dipolar chromophores were prepared. These films were sandwiched between two artificial opals creating a PhC structure with planar defect. The system was characterized by reflectance at normal incidence angle (R), variable angle transmittance (T) and photoluminescence spectroscopy (PL) Evidence of defect states were observed in T and R spectra which allow the light to propagate for selected frequencies within the pseudogap (stop band).

  13. Effect of reorientation of anisotropic point defects on relaxation of crystal elastic coefficients of high order

    International Nuclear Information System (INIS)

    Topchyan, I.I.; Dokhner, R.D.

    1977-01-01

    The effect of reorientation of anisotropic point defects in uniform fields of elastic stresses on the relaxation of the elastic coefficients of a crystal was investigated in the nonlinear elasticity theory approximation. In calculating the interaction of point defects with elastic-stress fields was taken into consideration. The expression for the relaxations of the elasticity coefficients are obtained in an analytical form. The relaxation of the second-order elasticity coefficients is due to the dimentional interaction of a point defect with an applied-stress field, whereas the relaxation of the higher-order elasticity coefficients is determined both by dimentional and module effects

  14. Point defects and magnetic properties of neutron irradiated MgO single crystal

    Directory of Open Access Journals (Sweden)

    Mengxiong Cao

    2017-05-01

    Full Text Available (100-oriented MgO single crystals were irradiated to introduce point defects with different neutron doses ranging from 1.0×1016 to 1.0×1020 cm-2. The point defect configurations were studied with X-ray diffuse scattering and UV-Vis absorption spectra. The isointensity profiles of X-ray diffuse scattering caused by the cubic and double-force point defects in MgO were theoretically calculated based on the Huang scattering theory. The magnetic properties at different temperature were measured with superconducting quantum interference device (SQUID. The reciprocal space mappings (RSMs of irradiated MgO revealed notable diffuse scattering. The UV-Vis spectra indicated the presence of O Frenkel defects in irradiated MgO. Neutron-irradiated MgO was diamagnetic at room temperature and became ferromagnetic at low temperature due to O Frenkel defects induced by neutron-irradiation.

  15. A magnetically tunable non-Bragg defect mode in a corrugated waveguide filled with liquid crystals

    Science.gov (United States)

    Zhang, Lu; Fan, Ya-Xian; Liu, Huan; Han, Xu; Lu, Wen-Qiang; Tao, Zhi-Yong

    2018-04-01

    A magnetically tunable, non-Bragg defect mode (NBDM) was created in the terahertz frequency range by inserting a defect in the middle of a periodically corrugated waveguide filled with liquid crystals (LCs). In the periodic waveguide, non-Bragg gaps beyond the Bragg ones, which appear in the transmission spectra, are created by different transverse mode resonances. The transmission spectra of the waveguide containing a defect showed that a defect mode was present inside the non-Bragg gap. The NBDM has quite different features compared to the Bragg defect mode, which includes more complex, high-order guided wave modes. In our study, we filled the corrugated waveguide with LCs to realize the tunability of the NBDM. The simulated results showed that the NBDM in a corrugated waveguide filled with LCs can be used in filters, sensors, switches, and other terahertz integrated devices.

  16. Subsurface defects structural evolution in nano-cutting of single crystal copper

    International Nuclear Information System (INIS)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Sun, Yazhou; Guo, Yongbo; Liang, Yingchun

    2015-01-01

    Highlights: • An innovative analysis method is adopted to analyze nano-cutting process accurately. • A characteristic SFT and stair-rod dislocation are found in subsurface defect layer. • The formation mechanism of stair-rod dislocation is investigated. • The local atomic structure of subsurface defects is introduced. - Abstract: In this work, molecular dynamics simulation is performed to study the subsurface defects structural distribution and its evolution during nano-cutting process of single crystal copper. The formation mechanism of chip and machined surface is interviewed by analyzing the dislocation evolution and atomic migration. The centro-symmetry parameter and spherical harmonics method are adopted to characterize the distribution and evolution of the subsurface defect structures and local atomic structures. The results show that stacking faults, dislocation loops, “V-shaped” dislocation loops, and plenty of point defects are formed during the machined surface being formed in shear-slip zone. In subsurface damage layers, stair-rod dislocation, stacking fault tetrahedra, atomic cluster defect, and vacancy defect are formed. And the formation mechanism of stair-rod dislocation is investigated by atomic-scale structure evolution. The local atomic structures of subsurface defects are icosahedrons, hexagonal close packed, body-centered cubic, and defect face center cubic, and the variations of local atomic structures are investigated

  17. Subsurface defects structural evolution in nano-cutting of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quanlong [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Bai, Qingshun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Chen, Jiaxuan, E-mail: wangquanlong0@hit.edu.cn [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Yazhou [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Guo, Yongbo [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Liang, Yingchun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-07-30

    Highlights: • An innovative analysis method is adopted to analyze nano-cutting process accurately. • A characteristic SFT and stair-rod dislocation are found in subsurface defect layer. • The formation mechanism of stair-rod dislocation is investigated. • The local atomic structure of subsurface defects is introduced. - Abstract: In this work, molecular dynamics simulation is performed to study the subsurface defects structural distribution and its evolution during nano-cutting process of single crystal copper. The formation mechanism of chip and machined surface is interviewed by analyzing the dislocation evolution and atomic migration. The centro-symmetry parameter and spherical harmonics method are adopted to characterize the distribution and evolution of the subsurface defect structures and local atomic structures. The results show that stacking faults, dislocation loops, “V-shaped” dislocation loops, and plenty of point defects are formed during the machined surface being formed in shear-slip zone. In subsurface damage layers, stair-rod dislocation, stacking fault tetrahedra, atomic cluster defect, and vacancy defect are formed. And the formation mechanism of stair-rod dislocation is investigated by atomic-scale structure evolution. The local atomic structures of subsurface defects are icosahedrons, hexagonal close packed, body-centered cubic, and defect face center cubic, and the variations of local atomic structures are investigated.

  18. Stabilization of primary mobile radiation defects in MgF{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lisitsyn, V.M. [National Research Tomsk Polytechnic University, pr. Lenina 30, Tomsk 634050 (Russian Federation); Lisitsyna, L.A. [State University of Architecture and Building, pl. Solyanaya 2, Tomsk 634003 (Russian Federation); Popov, A.I., E-mail: popov@ill.fr [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga (Latvia); Kotomin, E.A. [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga (Latvia); Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Abuova, F.U.; Akilbekov, A. [L.N. Gumilyov Eurasian National University, 3 Munaitpasova Str., Astana (Kazakhstan); Maier, J. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany)

    2016-05-01

    Non-radiative decay of the electronic excitations (excitons) into point defects (F–H pairs of Frenkel defects) is main radiation damage mechanism in many ionic (halide) solids. Typical time scale of the relaxation of the electronic excitation into a primary, short-lived defect pair is about 1–50 ps with the quantum yield up to 0.2–0.8. However, only a small fraction of these primary defects are spatially separated and survive after transformation into stable, long-lived defects. The survival probability (or stable defect accumulation efficiency) can differ by orders of magnitude, dependent on the material type; e.g. ∼10% in alkali halides with f.c.c. or b.c.c. structure, 0.1% in rutile MgF{sub 2} and <0.001% in fluorides MeF{sub 2} (Me: Ca, Sr, Ba). The key factor determining accumulation of stable radiation defects is stabilization of primary defects, first of all, highly mobile hole H centers, through their transformation into more complex immobile defects. In this talk, we present the results of theoretical calculations of the migration energies of the F and H centers in poorely studied MgF{sub 2} crystals with a focus on the H center stabilization in the form of the interstitial F{sub 2} molecules which is supported by presented experimental data.

  19. Optical properties of a defective one-dimensional photonic crystal containing graphene nanaolayers

    International Nuclear Information System (INIS)

    Entezar, S. Roshan; Saleki, Z.; Madani, A.

    2015-01-01

    The transmission properties of a defective one-dimensional photonic crystal containing graphene nanolayers have been investigated using the transfer matrix method. It is shown that two kinds of the defect modes can be found in the band gaps of the structure. One kind is the traditional defect mode which is created in the Bragg gaps of the structure and is due to the breaking of the periodicity of the dielectric lattice. The other one is created in the graphene induced band gap. Such a defect mode which we call it the graphene induced defect mode is due to the breaking of the periodicity of the graphene lattice. However, our investigations reveal that only in the case of wide defect layers one can obtain the graphene induced defect modes. The effects of many parameters such as the incident angle, the state of polarization and the chemical potential of the graphene nanolayers on the properties of the graphene induced defect modes are discussed. Moreover, the possibility of external control of the graphene induced defect modes using a gate voltage is shown.

  20. Structural defect generation in indium antimonide single crystals during electro-erosion cutting

    International Nuclear Information System (INIS)

    Kravetskij, M.Yu.; Matsas, E.P.; Skorokhod, M.Ya.; Fomin, A.V.; Khromyak, K.Ya.

    1990-01-01

    Using X-ray topography structural defects generating during electro-erosion cutting of InSb single crystals are studied. It is shown that dislocations, are introduced into so cut dislocation-free ingot plates, nucleation centers being located on their surfaces. It is detected that foreign phase inclusions in InSb are efficient sources of dislocations during cutting

  1. Antisite defects in γ-irradiated InP and InP crystals

    International Nuclear Information System (INIS)

    Aliev, M.I.; Rashidova, Sh.Sh.; Gusejnova, M.A.; Gadzhieva, N.N.

    2008-01-01

    By means of TL and IR spectroscopy methods, it has been found that γ-irradiation of lnP single crystals doped with Sn leads to TL peak appearance at 230 K with activation energy E a =0.19 eV. This peak is connected with vacancy-antisite donor-type doped defect complex formation under irradiation [ru

  2. Relation between the concentration of defects and the temperature on a crystal

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, A T.V.; Cilense, M [UNESP, Araraquara (Brazil). Inst. de Quimica; Garlipp, W [Sao Paulo Univ., Sao Carlos (Brazil). Escola de Engenharia

    1982-01-01

    Following the basic thermodynamics principles, the relation between the concentration of defects and the temperature on a crystal was established. In the case of vacancies, the relation between the changes in the resistivity and the absolute quench temperature was also obtained.

  3. Coupling reducing k-points for supercell models of defects in three-dimensional photonic crystals

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bjarklev, Anders Overgaard

    2004-01-01

    The optimum choice of k-point for supercell calculations of defect states in a three-dimensional photonic crystal is investigated for the case of a supercell with a simple cubic (SC) structure. By using the k-point (1/4,1/4,1/4) it is possible to eliminate the symmetric part of the repeated...

  4. Indium antimonide crystal defects formed by fast neutron irradiation

    International Nuclear Information System (INIS)

    Vitovskij, N.A.; Dolgolenko, A.P.; Mashovets, T.V.; Oganesyan, O.V.

    1979-01-01

    It is shown, that indium antimonide irradiation with fast neutrons of reactor results in the formation of disorded regions with a mean radius of approximately 130 A surrounded with space charge regions forming barriers for main carriers. But the found values of defect cluster depolarization coefficient (Lsub(x)sup(n)=0.18 and Lsub(x)sup(p)=0.29) show, that the clusters have marked conductivity for main charge carriers. The found position of the Fermi level in the disorded regions Esub(F)=Esub(c)-0.085 eV does not depend on the impurity type and its concentration in an initial material. The disorded regions play the main part in charge carrier scattering at low temperatures and markedly contribute to the change of mobility at 80 K. It is found, that irradiation temperature change in the range from 77 to 300 K does not effect practically on the disorded region parameters

  5. Morphological Analysis of White Cement Clinker Minerals: Discussion on the Crystallization-Related Defects

    Directory of Open Access Journals (Sweden)

    Mohamed Benmohamed

    2016-01-01

    Full Text Available The paper deals with a formation of artificial rock (clinker. Temperature plays the capital role in the manufacturing process. So, it is useful to analyze a poor clinker to identify the different phases and defects associated with their crystallization. X-ray fluorescence spectroscopy was used to determine the clinker’s chemical composition. The amounts of the mineralogical phases are measured by quantitative XRD analysis (Rietveld. Scanning electron microscopy (SEM was used to characterize the main phases of white Portland cement clinker and the defects associated with the formation of clinker mineral elements. The results of a study which focused on the identification of white clinker minerals and defects detected in these noncomplying clinkers such as fluctuation of the amount of the main phases (alite (C3S and belite (C2S, excess of the free lime, occurrence of C3S polymorphs, and occurrence of moderately-crystallized structures are presented in this paper.

  6. Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.

    Science.gov (United States)

    Dobrovolsky, Alexander; Merdasa, Aboma; Unger, Eva L; Yartsev, Arkady; Scheblykin, Ivan G

    2017-06-26

    Solution-processed organometal halide perovskites are hybrid crystalline semiconductors highly interesting for low-cost and efficient optoelectronics. Their properties are dependent on the crystal structure. Literature shows a variety of crystal phase transition temperatures and often a spread of the transition over tens of degrees Kelvin. We explain this inconsistency by demonstrating that the temperature of the tetragonal-to-orthorhombic phase transition in methylammonium lead triiodide depends on the concentration and nature of local defects. Phase transition in individual nanowires was studied by photoluminescence microspectroscopy and super-resolution imaging. We propose that upon cooling from 160 to 140 K, domains of the crystal containing fewer defects stay in the tetragonal phase longer than highly defected domains that readily transform to the high bandgap orthorhombic phase at higher temperatures. The existence of relatively pure tetragonal domains during the phase transition leads to drastic photoluminescence enhancement, which is inhomogeneously distributed across perovskite microcrystals.Understanding crystal phase transition in materials is of fundamental importance. Using luminescence spectroscopy and super-resolution imaging, Dobrovolsky et al. study the transition from the tetragonal to orthorhombic crystal phase in methylammonium lead triiodide nanowires at low temperature.

  7. Irradiation induced defects containing oxygen atoms in germanium crystal as studied by deep level transient spectroscopy

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Kambe, Yoshiyuki; Saito, Haruo; Matsuda, Koji.

    1984-05-01

    Deep level transient spectroscopy was applied to the electron trapping levels which are associated with the irradiation induced lattice defects in germanium crystals. The germanium crystals used in the study were doped with oxygen, antimony or arsenic and the defects were formed by electron irradiation of 1.5MeV or 10MeV. The nature of so called ''thermal defect'' formed by heat treatment at about 670K was also studied. The trapping levels at Esub(c)-0.13eV, Esub(c)-0.25eV and Esub(c)-0.29eV were found to be associated with defects containing oxygen atoms. From the experimental results the Esub(c)-0.25eV level was attributed to the germanium A-center (interstitial oxygen atom-vacancy pair). Another defect associated with the 715cm -1 infrared absorption band was found to have a trapping level at the same position at Esub(c)-0.25eV. The Esub(c)-0.23eV and Esub(c)-0.1eV levels were revealed to be associated with thermal donors formed by heat treatment at about 670K. Additional two peaks (levels) were observed in the DLTS spectrum. The annealing behavior of the levels suggests that the thermal donors originate from not a single type but several types of defects. (author)

  8. Optical transmission properties of an anisotropic defect cavity in one-dimensional photonic crystal

    Science.gov (United States)

    Ouchani, Noama; El Moussaouy, Abdelaziz; Aynaou, Hassan; El Hassouani, Youssef; El Boudouti, El Houssaine; Djafari-Rouhani, Bahram

    2018-01-01

    We investigate theoretically the possibility to control the optical transmission in the visible and infrared regions by a defective one dimensional photonic crystal formed by a combination of a finite isotropic superlattice and an anisotropic defect layer. The Green's function approach has been used to derive the reflection and the transmission coefficients, as well as the densities of states of the optical modes. We evaluate the delay times of the localized modes and we compare their behavior with the total densities of states. We show that the birefringence of an anisotropic defect layer has a significant impact on the behavior of the optical modes in the electromagnetic forbidden bands of the structure. The amplitudes of the defect modes in the transmission and the delay time spectrum, depend strongly on the position of the cavity layer within the photonic crystal. The anisotropic defect layer induces transmission zeros in one of the two components of the transmission as a consequence of a destructive interference of the two polarized waves within this layer, giving rise to negative delay times for some wavelengths in the visible and infrared light ranges. This property is a typical characteristic of the anisotropic photonic layer and is without analogue in their counterpart isotropic defect layers. This structure offers several possibilities for controlling the frequencies, transmitted intensities and the delay times of the optical modes in the visible and infrared regions. It can be a good candidate for realizing high-precision optical filters.

  9. Radiation defects in SrB4O7:Eu2+ crystals

    International Nuclear Information System (INIS)

    Yavetskiy, R.P.; Dolzhenkova, E.F.; Tolmachev, A.V.; Parkhomenko, S.V.; Baumer, V.N.; Prosvirnin, A.L.

    2007-01-01

    Radiation-induced defects in SrB 4 O 7 :Eu 2+ (0.033 at.%) single crystal irradiated with γ and X-ray quanta has been studied. The induced optical absorption in the 400-700 nm region has been ascribed to F + centers. The Eu 2+ ions have been shown to act simultaneously as traps and as radiative recombination centers of charge carriers. Basing on the thermally stimulated luminescence (TSL), optical absorption and photoluminescence studies of SrB 4 O 7 :Eu 2+ crystals, a TSL mechanism has been proposed associated with the decay of F + centers being in non-equivalent crystallographic positions followed by radiative recombination of charge carriers on europium ions. Various positions of localization of the radiation-induced defects in the SrB 4 O 7 crystal structure have been discussed

  10. Experimental study on slow flexural waves around the defect modes in a phononic crystal beam using fiber Bragg gratings

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Kuo-Chih, E-mail: chuangkc@zju.edu.cn; Zhang, Zhi-Qiang; Wang, Hua-Xin

    2016-12-09

    Highlights: • Slow waves around the defect modes in a phononic crystal beam are validated. • A fiber Bragg grating displacement sensing system can measure the defect mode. • The defect mode is analyzed by a transfer matrix method with a supercell technique. - Abstract: This work experimentally studies influences of the point defect modes on the group velocity of flexural waves in a phononic crystal Timoshenko beam. Using the transfer matrix method with a supercell technique, the band structures and the group velocities around the defect modes are theoretically obtained. Particularly, to demonstrate the existence of the localized defect modes inside the band gaps, a high-sensitivity fiber Bragg grating sensing system is set up and the displacement transmittance is measured. Slow propagation of flexural waves via defect coupling in the phononic crystal beam is then experimentally demonstrated with Hanning windowed tone burst excitations.

  11. Calculation of dynamic and electronic properties of perfect and defect crystals by semiempirical quantum mechanical methods

    International Nuclear Information System (INIS)

    Zunger, A.

    1975-07-01

    Semiempirical all-valence-electron LCAO methods, that were previously used to study the electronic structure of molecules are applied to three problems in solid state physics: the electronic band structure of covalent crystals, point defect problems in solids and lattice dynamical study of molecular crystals. Calculation methods for the electronic band structure of regular solids are introduced and problems regarding the computation of the density matrix in solids are discussed. Three models for treating the electronic eigenvalue problem in the solid, within the proposed calculation schemes, are discussed and the proposed models and calculation schemes are applied to the calculation of the electronic structure of several solids belonging to different crystal types. The calculation models also describe electronic properties of deep defects in covalent insulating crystals. The possible usefulness of the semieipirical LCAO methods in determining the first order intermolecular interaction potential in solids and an improved model for treating the lattice dynamics and related thermodynamical properties of molecular solids are presented. The improved lattice dynamical is used to compute phonon dispersion curves, phonon density of states, stable unit cell structure, lattice heat capacity and thermal crystal parameters, in α and γ-N 2 crystals, using the N 2 -N 2 intermolecular interaction potential that has been computed from the semiempirical LCAO methods. (B.G.)

  12. On the Enthalpy and Entropy of Point Defect Formation in Crystals

    Science.gov (United States)

    Kobelev, N. P.; Khonik, V. A.

    2018-03-01

    A standard way to determine the formation enthalpy H and entropy S of point defect formation in crystals consists in the application of the Arrhenius equation for the defect concentration. In this work, we show that a formal use of this method actually gives the effective (apparent) values of these quantities, which appear to be significantly overestimated. The underlying physical reason lies in temperature-dependent formation enthalpy of the defects, which is controlled by temperature dependence of the elastic moduli. We present an evaluation of the "true" H- and S-values for aluminum, which are derived on the basis of experimental data by taking into account temperature dependence of the formation enthalpy related to temperature dependence of the elastic moduli. The knowledge of the "true" activation parameters is needed for a correct calculation of the defect concentration constituting thus an issue of major importance for different fundamental and application issues of condensed matter physics and chemistry.

  13. Rectifiability of Line Defects in Liquid Crystals with Variable Degree of Orientation

    Science.gov (United States)

    Alper, Onur

    2018-04-01

    In [2], H ardt, L in and the author proved that the defect set of minimizers of the modified Ericksen energy for nematic liquid crystals consists locally of a finite union of isolated points and Hölder continuous curves with finitely many crossings. In this article, we show that each Hölder continuous curve in the defect set is of finite length. Hence, locally, the defect set is rectifiable. For the most part, the proof closely follows the work of D e L ellis et al. (Rectifiability and upper minkowski bounds for singularities of harmonic q-valued maps, arXiv:1612.01813, 2016) on harmonic Q-valued maps. The blow-up analysis in A lper et al. (Calc Var Partial Differ Equ 56(5):128, 2017) allows us to simplify the covering arguments in [11] and locally estimate the length of line defects in a geometric fashion.

  14. Defect studies of ZnO single crystals electrochemically doped with hydrogen

    Science.gov (United States)

    Čížek, J.; Žaludová, N.; Vlach, M.; Daniš, S.; Kuriplach, J.; Procházka, I.; Brauer, G.; Anwand, W.; Grambole, D.; Skorupa, W.; Gemma, R.; Kirchheim, R.; Pundt, A.

    2008-03-01

    Various defect studies of hydrothermally grown (0001) oriented ZnO crystals electrochemically doped with hydrogen are presented. The hydrogen content in the crystals is determined by nuclear reaction analysis and it is found that already 0.3at.% H exists in chemically bound form in the virgin ZnO crystals. A single positron lifetime of 182ps is detected in the virgin crystals and attributed to saturated positron trapping at Zn vacancies surrounded by hydrogen atoms. It is demonstrated that a very high amount of hydrogen (up to ˜30at.%) can be introduced into the crystals by electrochemical doping. More than half of this amount is chemically bound, i.e., incorporated into the ZnO crystal lattice. This drastic increase of the hydrogen concentration is of marginal impact on the measured positron lifetime, whereas a contribution of positrons annihilated by electrons belonging to O-H bonds formed in the hydrogen doped crystal is found in coincidence Doppler broadening spectra. The formation of hexagonal shape pyramids on the surface of the hydrogen doped crystals by optical microscopy is observed and discussed.

  15. Defects in TiO2 crystals produced by neutron irradiations at 20 K

    International Nuclear Information System (INIS)

    Okada, M.; Nakagawa, M.; Atobe, K.; Kawabata, Y.

    1994-01-01

    The single crystals rutile (TiO 2 ), cut parallel and perpendicular to the c-axis, are irradiated by reactor neutrons at 20 K (8.0x10 16 n/cm 2 ; E>0.1 MeV). By means of optical measurements an intense absorption band, which has a maximum peak near 1 μm (having FWHM similar 0.87 eV), is observed and is annealed out at about 220 K. Also, some kinds of defect centers can be distinguished by ESR measurements. The broad band has similar characteristics to that in reduced TiO 2 crystal, in which the band has a maximum peak at 1.5 μm. With heavy reduction, the intensity of the broad band enhances with increasing electrical conductivity. It has been proposed that the origin of the band in reduced crystals may be attributable to the absorption of donors due to the polaron effects. The evidence for the assignment to the defect in the irradiated crystals is obtained by optical, ESR, and electrical resistivity measurements. The results lead to quite a different origin for the irradiation produced defect centers. ((orig.))

  16. A harmonic transition state theory model for defect initiation in crystals

    International Nuclear Information System (INIS)

    Delph, T J; Cao, P; Park, H S; Zimmerman, J A

    2013-01-01

    We outline here a model for the initiation of defects in crystals based upon harmonic transition state theory (hTST). This model combines a previously developed model for zero-temperature defect initiation with a multi-dimensional hTST model that is capable of accurately predicting the effects of temperature and loading rate upon defect initiation. The model has several features that set it apart from previous efforts along these lines, most notably a straightforward method of determining the energy barrier between adjacent equilibrium states that does not depend upon a priori information concerning the nature of the defect. We apply the model to two examples, triaxial stretching of a perfect fcc crystal and nanoindentation of a gold substrate. Very good agreement is found between the predictions of the model and independent molecular dynamics (MD) simulations. Among other things, the model predicts a strong dependence of the defect initiation behavior upon the loading parameter. A very attractive feature of this model is that it is valid for arbitrarily slow loading rates, in particular loading rates achievable in the laboratory, and suffers from none of the limitations in this regard inherent in MD simulations. (paper)

  17. Structural peculiarities and point defects of bulk-ZnO single crystals

    International Nuclear Information System (INIS)

    Kaurova, I.A.; Kuz’micheva, G.M.; Rybakov, V.B.; Cousson, A.; Gayvoronsky, V.Ya.

    2014-01-01

    Highlights: • ZnO single crystals of different color were grown by the hydrothermal method. • Point defects in ZnO have been firstly investigated by neutron diffraction. • Presence of additional reflections caused by kinetic growth effects was revealed. • The relationship between the color and zinc and oxygen vacancies was found. • Photoinduced variation of transmittance versus the CW laser intensity was analyzed. - Abstract: ZnO single crystals are related to promising direct wide band gap semiconductor materials belonging to the A II B VI type of compounds with wurtzite structure. “Unintentional” n-type conductivity in ZnO may be caused by zinc and oxygen vacancies, and interstitial zinc atoms. To date, the comprehensive structural investigation and analysis of point defects in ZnO is absent in literature. Green, light green and almost colorless ZnO single crystals grown by the hydrothermal method in concentrated alkali solutions 4M(KOH) + 1M(LiOH) + 0.1M(NH 4 OH) on monohedral seeds [0 0 0 1] at crystallization temperatures in the range of 330–350 °C and pressures in the range of 30–50 MPa have been firstly investigated by neutron diffraction. It was revealed the presence of additional reflections (∼12–∼16%) for all the crystals caused by kinetic growth effects that give grounds to assign them to the space group P3 rather than to P6 3 mc. Analysis of the refined compositions together with the color of ZnO crystals does not rule out the relationship between the color and vacancies in the zinc and oxygen positions whose concentration decreases with the discoloration of the samples. The analysis of the photoinduced variation of the total and on-axis transmittance versus the CW laser intensity showed that the colored samples have profound deep defects related to oxygen vacancies

  18. Defect formation and magnetic properties of Co-doped GaN crystal and nanowire

    International Nuclear Information System (INIS)

    Shi, Li-Bin; Liu, Jing-Jing; Fei, Ying

    2013-01-01

    Theoretical calculation based on density functional theory (DFT) and generalized gradient approximation (GGA) has been carried out in studying defect formation and magnetic properties of Co doped GaN crystal and nanowire (NW). Co does not exhibit site preference in GaN crystal. However, Co occupies preferably surface sites in GaN NW. Transition level of the defect is also investigated in GaN crystal. We also find that Co Ga (S) in NW does not produce spin polarization and Co Ga (B) produces spontaneous spin polarization. Ferromagnetic (FM) and antiferromagnetic (AFM) couplings are analyzed by six different configurations. The results show that AFM coupling is more stable than FM coupling for Co doped GaN crystal. It is also found from Co doped GaN NW calculation that the system remains FM stability for majority of the configurations. Magnetic properties in Co doped GaN crystal can be mediated by N and Ga vacancies. The FM and AFM stability can be explained by Co 3d energy level coupling

  19. Characterisation of irradiation-induced defects in ZnO single crystals

    International Nuclear Information System (INIS)

    Prochazka, I; Cizek, J; Lukac, F; Melikhova, O; Valenta, J; Havranek, V; Anwand, W; Skuratov, V A; Strukova, T S

    2016-01-01

    Positron annihilation spectroscopy (PAS) combined with optical methods was employed for characterisation of defects in the hydrothermally grown ZnO single crystals irradiated by 167 MeV Xe 26+ ions to fluences ranged from 3×10 12 to 1×10 14 cm -2 . The positron lifetime (LT), Doppler broadening as well as slow-positron implantation spectroscopy (SPIS) techniques were involved. The ab-initio theoretical calculations were utilised for interpretation of LT results. The optical transmission and photoluminescence measurements were conducted, too. The virgin ZnO crystal exhibited a single component LT spectrum with a lifetime of 182 ps which is attributed to saturated positron trapping in Zn vacancies associated with hydrogen atoms unintentionally introduced into the crystal during the crystal growth. The Xe ion irradiated ZnO crystals have shown an additional component with a longer lifetime of ≈ 360 ps which comes from irradiation-induced larger defects equivalent in size to clusters of ≈10 to 12 vacancies. The concentrations of these clusters were estimated on the basis of combined LT and SPIS data. The PAS data were correlated with irradiation induced changes seen in the optical spectroscopy experiments. (paper)

  20. Characterisation of irradiation-induced defects in ZnO single crystals

    Science.gov (United States)

    Prochazka, I.; Cizek, J.; Lukac, F.; Melikhova, O.; Valenta, J.; Havranek, V.; Anwand, W.; Skuratov, V. A.; Strukova, T. S.

    2016-01-01

    Positron annihilation spectroscopy (PAS) combined with optical methods was employed for characterisation of defects in the hydrothermally grown ZnO single crystals irradiated by 167 MeV Xe26+ ions to fluences ranged from 3×1012 to 1×1014 cm-2. The positron lifetime (LT), Doppler broadening as well as slow-positron implantation spectroscopy (SPIS) techniques were involved. The ab-initio theoretical calculations were utilised for interpretation of LT results. The optical transmission and photoluminescence measurements were conducted, too. The virgin ZnO crystal exhibited a single component LT spectrum with a lifetime of 182 ps which is attributed to saturated positron trapping in Zn vacancies associated with hydrogen atoms unintentionally introduced into the crystal during the crystal growth. The Xe ion irradiated ZnO crystals have shown an additional component with a longer lifetime of ≈ 360 ps which comes from irradiation-induced larger defects equivalent in size to clusters of ≈10 to 12 vacancies. The concentrations of these clusters were estimated on the basis of combined LT and SPIS data. The PAS data were correlated with irradiation induced changes seen in the optical spectroscopy experiments.

  1. Defect types and room-temperature ferromagnetism in undoped rutile TiO2 single crystals

    Science.gov (United States)

    Li, Dong-Xiang; Qin, Xiu-Bo; Zheng, Li-Rong; Li, Yu-Xiao; Cao, Xing-Zhong; Li, Zhuo-Xin; Yang, Jing; Wang, Bao-Yi

    2013-03-01

    Room-temperature ferromagnetism has been experimentally observed in annealed rutile TiO2 single crystals when a magnetic field is applied parallel to the sample plane. By combining X-ray absorption near the edge structure spectrum and positron annihilation lifetime spectroscopy, Ti3+—VO defect complexes (or clusters) have been identified in annealed crystals at a high vacuum. We elucidate that the unpaired 3d electrons in Ti3+ ions provide the observed room-temperature ferromagnetism. In addition, excess oxygen ions in the TiO2 lattice could induce a number of Ti vacancies which obviously increase magnetic moments.

  2. Defect types and room-temperature ferromagnetism in undoped rutile TiO2 single crystals

    International Nuclear Information System (INIS)

    Li Dong-Xiang; Cao Xing-Zhong; Li Zhuo-Xin; Yang Jing; Wang Bao-Yi; Qin Xiu-Bo; Zheng Li-Rong; Li Yu-Xiao

    2013-01-01

    Room-temperature ferromagnetism has been experimentally observed in annealed rutile TiO 2 single crystals when a magnetic field is applied parallel to the sample plane. By combining X-ray absorption near the edge structure spectrum and positron annihilation lifetime spectroscopy, Ti 3+ —V O defect complexes (or clusters) have been identified in annealed crystals at a high vacuum. We elucidate that the unpaired 3d electrons in Ti 3+ ions provide the observed room-temperature ferromagnetism. In addition, excess oxygen ions in the TiO 2 lattice could induce a number of Ti vacancies which obviously increase magnetic moments

  3. High-Q Defect-Free 2D Photonic Crystal Cavity from Random Localised Disorder

    Directory of Open Access Journals (Sweden)

    Kelvin Chung

    2014-07-01

    Full Text Available We propose a high-Q photonic crystal cavity formed by introducing random disorder to the central region of an otherwise defect-free photonic crystal slab (PhC. Three-dimensional finite-difference time-domain simulations determine the frequency, quality factor, Q, and modal volume, V, of the localized modes formed by the disorder. Relatively large Purcell factors of 500–800 are calculated for these cavities, which can be achieved for a large range of degrees of disorders.

  4. Bottom-up photonic crystal approach with top-down defect and heterostructure fine-tuning.

    Science.gov (United States)

    Ding, Tao; Song, Kai; Clays, Koen; Tung, Chen-Ho

    2010-03-16

    We combine the most efficient (chemical) approach toward three-dimensional photonic crystals with the most convenient (physical) technique for creating non-close-packed crystalline structures. Self-assembly of colloidal particles in artificial opals is followed by a carefully tuned plasma etching treatment. By covering the resulting top layer of more open structure with original dense opal, embedded defect layers and heterostructures can be conveniently designed for advanced photonic band gap and band edge engineering.

  5. Pulse-height defect in single-crystal CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beliuskina, O.; Imai, N. [The University of Tokyo, Center for Nuclear Study, Wako, Saitama (Japan); Strekalovsky, A.O.; Aleksandrov, A.A.; Aleksandrova, I.A.; Ilich, S.; Kamanin, D.V.; Knyazheva, G.N.; Kuznetsova, E.A.; Mishinsky, G.V.; Pyatkov, Yu.V.; Strekalovsky, O.V.; Zhuchko, V.E. [JINR, Flerov Laboratory of Nuclear Reactions, Dubna, Moscow Region (Russian Federation); Devaraja, H.M. [Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Heinz, C. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); Heinz, S. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Hofmann, S.; Kis, M.; Kozhuharov, C.; Maurer, J.; Traeger, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Pomorski, M. [CEA, LIST, Diamond Sensor Laboratory, CEA/Saclay, Gif-sur-Yvette (France)

    2017-02-15

    The pulse-height versus deposited energy response of a single-crystal chemical vapor deposition (scCVD) diamond detector was measured for ions of Ti, Cu, Nb, Ag, Xe, Au, and of fission fragments of {sup 252} Cf at different energies. For the fission fragments, data were also measured at different electric field strengths of the detector. Heavy ions have a significant pulse-height defect in CVD diamond material, which increases with increasing energy of the ions. It also depends on the electrical field strength applied at the detector. The measured pulse-height defects were explained in the framework of recombination models. Calibration methods known from silicon detectors were modified and applied. A comparison with data for the pulse-height defect in silicon detectors was performed. (orig.)

  6. Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals.

    Science.gov (United States)

    Pyka, K; Keller, J; Partner, H L; Nigmatullin, R; Burgermeister, T; Meier, D M; Kuhlmann, K; Retzker, A; Plenio, M B; Zurek, W H; del Campo, A; Mehlstäubler, T E

    2013-01-01

    Symmetry breaking phase transitions play an important role in nature. When a system traverses such a transition at a finite rate, its causally disconnected regions choose the new broken symmetry state independently. Where such local choices are incompatible, topological defects can form. The Kibble-Zurek mechanism predicts the defect densities to follow a power law that scales with the rate of the transition. Owing to its ubiquitous nature, this theory finds application in a wide field of systems ranging from cosmology to condensed matter. Here we present the successful creation of defects in ion Coulomb crystals by a controlled quench of the confining potential, and observe an enhanced power law scaling in accordance with numerical simulations and recent predictions. This simple system with well-defined critical exponents opens up ways to investigate the physics of non-equilibrium dynamics from the classical to the quantum regime.

  7. Effect of irradiation temperature and initial crystal doping level on defect creation efficiency in silicon

    International Nuclear Information System (INIS)

    Korshunov, F.P.; Markevich, V.P.; Medvedeva, I.F.; Murin, L.I.

    1990-01-01

    The defect creation processes in n-type silicon irradiated by 60 Co gamma-rays or fast electrons (E = 4 MeV) have been investigated. Using electrical measurements the dependences of introduction efficiencies of the main radiation defects (A-, E-centres, carbon-related complexes) on the irradiation temperature (T irr = 77-470 K) and material doping level (N h = 2 x 10 12 - 2 x 10 15 cm -3 ) are obtained. It is shown that the efficiency of these defects formation is conditioned by the probability of the Frenkel pairs separation and depends strongly on the Fermi level position in crystals being irradiated. 9 refs.; 3 figs.; 1 tab

  8. Radiation-induced defect production in MgF2-Co crystals

    International Nuclear Information System (INIS)

    Nuritdinov, I.; Turdanov, K.; Mirinoyatova, N.M.; Rejterov, V.M.

    1996-01-01

    Impact of Co-admixture on structural radiation defects formation in the MgF 2 crystals is studied. It is found that the Co admixture facilitates the probability of generating the F- and m-type centers of radiation defects as well as creation of the F- and M-centers, perturbed by admixtures. The availability of structural defects leads in its turn to the admixture ions perturbation. It is reflected in the removal of prohibition on spin-prohibited transitions of the Co 2 + ions. It is assumed that creation of the M-centers is the main cause for removal of the prohibition on the spin-prohibited transitions. 8 refs., 4 figs

  9. Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor

    Science.gov (United States)

    Qinwen, XUE; Xiaohua, WANG; Chenglin, LIU; Youwen, LIU

    2018-03-01

    The tunable terahertz (THz) filter has been designed and studied, which is composed of 1D photonic crystal (PC) containing a defect layer of semiconductor GaAs. The analytical solution of 1D defective PC (1DDPC) is deduced based on the transfer matrix method, and the electromagnetic plane wave numerical simulation of this 1DDPC is performed by using the finite element method. The calculated and simulated results have confirmed that the filtering transmittance of this 1DDPC in symmetric structure of air/(Si/SiO2) N /GaAs/(SiO2/Si) N /air is far higher than in asymmetric structure of air/(Si/SiO2) N /GaAs/(Si/SiO2) N /air, where the filtering frequency can be tuned by the external pressure. It can provide a feasible route to design the external pressure-controlled THz filter based on 1DPC with a defective semiconductor.

  10. Study on control of defect mode in hybrid mirror chirped porous silicon photonic crystal

    Science.gov (United States)

    Chen, Ying; Luo, Pei; Han, Yangyang; Cui, Xingning; He, Lei

    2018-03-01

    Based on the optical resonance principle and the tight-binding theory, a hybrid mirror chirped porous silicon photonic crystal is proposed. The control of the defect mode in hybrid mirror chirped porous silicon photonic crystal is studied. Through the numerical simulation, the control regulations of the defect modes resulted by the number of the periodical layers for the fundamental unit and the cascading number of the chirped structures are analyzed, and the split and the degeneration of the defect modes resulted by the change of the relative location between the mirror structures and the quasi-mirror structures are discussed. The simulation results show that the band gap would be broadened with the increase of the chirp quantity and the layer number of unilateral chirp. Adjusting the structural parameters of the hybrid mirror structure, the multimode characteristics will occur in the band gap. The more the cascading number of the chirped units, the more the number of the filtering channels will be. In addition, with the increase of the relative location between the mirror structures and the quasi-mirror structures, the degeneration of the defect modes will occur and can obtain high Q value. The structure can provide effective theoretical references for the design the multi-channel filters and high Q value sensors.

  11. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    Science.gov (United States)

    To, C. K.; Yang, B.; Beling, C. D.; Fung, S.; Ling, C. C.; Gong, M.

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2MeV electrons with fluence of 6x1017cm-2. Isochronal annealing from 100°C-800°C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300°C and 600 °C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300°C and 600°C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300°C and 700°C.

  12. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    To, C K; Yang, B; Beling, C D; Fung, S; Ling, C C [Department of Physics, University of Hong Kong (Hong Kong); Gong, M, E-mail: sfung@hkucc.hku.h, E-mail: edwardto04@yahoo.com.h [Department of Physics, Sichuan University, Chengdu (China)

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2 MeV electrons with fluence of 6x10{sup 17}cm{sup -2}. Isochronal annealing from 100 deg. C - 800 deg. C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300 deg. C and 600 deg. C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300 deg. C and 600 deg. C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300 deg. C and 700 deg. C.

  13. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    International Nuclear Information System (INIS)

    To, C K; Yang, B; Beling, C D; Fung, S; Ling, C C; Gong, M

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2 MeV electrons with fluence of 6x10 17 cm -2 . Isochronal annealing from 100 deg. C - 800 deg. C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300 deg. C and 600 deg. C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300 deg. C and 600 deg. C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300 deg. C and 700 deg. C.

  14. Engineering a light-emitting planar defect within three-dimensional photonic crystals

    Directory of Open Access Journals (Sweden)

    Guiqiang Liu, Yan Chen and Zhiqing Ye

    2009-01-01

    Full Text Available Sandwich structures, constructed from a planar defect of rhodamine-B (RhB-doped titania (TiO2 and two photonic crystals, were synthesized via the self-assembly method combined with spin-coating. The modification of the spontaneous emission of RhB molecules in such structures was investigated experimentally. The spontaneous emission of RhB-doped TiO2 film with photonic crystals was reduced by a factor of 5.5 over a large bandwidth of 13% of the first-order Bragg diffraction frequency when compared with that of RhB-doped TiO2 film without photonic crystals. The angular dependence of the modification and the photoluminescence lifetime of RhB molecules demonstrate that the strong and wide suppression of the spontaneous emission of the RhB molecules is due to the presence of the photonic band gap.

  15. Engineering a light-emitting planar defect within three-dimensional photonic crystals

    Science.gov (United States)

    Liu, Guiqiang; Chen, Yan; Ye, Zhiqing

    2009-01-01

    Sandwich structures, constructed from a planar defect of rhodamine-B (RhB)-doped titania (TiO2) and two photonic crystals, were synthesized via the self-assembly method combined with spin-coating. The modification of the spontaneous emission of RhB molecules in such structures was investigated experimentally. The spontaneous emission of RhB-doped TiO2 film with photonic crystals was reduced by a factor of 5.5 over a large bandwidth of 13% of the first-order Bragg diffraction frequency when compared with that of RhB-doped TiO2 film without photonic crystals. The angular dependence of the modification and the photoluminescence lifetime of RhB molecules demonstrate that the strong and wide suppression of the spontaneous emission of the RhB molecules is due to the presence of the photonic band gap. PMID:27877309

  16. Imaging of surfaces and defects of crystals. Progress report, May 1, 1978--April 30, 1979

    International Nuclear Information System (INIS)

    Cowley, J.M.

    1979-04-01

    The possibility of obtaining electron diffraction patterns from very small specimen regions combined with high resolution imaging by use of scanning transmission electron microscopy (STEM) allows the detailed study of small nuclei of reaction products or of crystal defects. The capabilities of this method have been extended by the design and construction of a TV system for the viewing and recording of microdiffraction patterns from our STEM instrument so that clear patterns can be obtained from regions as small as 10A in diameter. This system has been applied to the study of initial stages of oxidation of chromium films, revealing the presence of very small oxide nuclei and identifying these crystals as having a previously unsuspected spinel structure. The further stages of growth of oxides on chromium are being investigated. Initial results have also been obtained on the surface structure of oxides such as MgO. The extension of previous work on the diffraction from, and imaging of crystal surfaces by the use of medium-to-low energy electrons (15 to 1 keV) has allowed a much more complete understanding of the contrast-producing mechanisms. Application to the study of pyrolytic graphite surfaces has given a clear picture of the mosaic structure and defect distribution and provided a basis for the more reliable and quantitative general use of these techniques in surface structure analysis

  17. Effect of grain defects on the mechanical behavior of nickel-based single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Haibin; Guo, Haiding [Nanjing Univ. of Aeronautics and Astronautics (China). Jiangsu Province Key Lab. of Aerospace Power System

    2017-03-15

    In this paper, a single crystal (SC) partition model, consisting of primary grains and grain defects, is proposed to simulate the weakening effect of grain defects generated at geometric discontinuities of SC materials. The plastic deformation of SC superalloy is described with the modified yield criterion, associated flow rule and hardening law. Then a bicrystal model containing only one group of misoriented grains under uniaxial loading is constructed and analyzed in the commercial finite element software ABAQUS. The simulation results indicate that the yield strength and elastic modulus of misoriented grains, which are determined by the crystallographic orientation, have a significant effect on the stress distribution of the bicrystal model. A critical stress, which is calculated by the stress state at critical regions, is proposed to evaluate the local stress rise at the sub-boundary of primary and misoriented grains.

  18. 16-channel DWDM based on 1D defect mode nonlinear photonic crystal

    Science.gov (United States)

    Kalhan, Abhishek; Sharma, Sanjeev; Kumar, Arun

    2018-05-01

    We propose a sixteen-channel Dense Wavelength Division Multiplexer (DWDM), using the 1-D defect mode nonlinear photonic crystal which is a function of intensity as well as wavelength. Here, we consider an alternate layer of two semiconductor materials in which we found the bandgap of materials when defect layer is introduced then 16-channel dense wavelength division multiplexer is obtained within bandgap. From the theoretical analysis, we can achieve average quality factor of 7800.4, the uniform spectral line-width of 0.2 nm, crosstalk of -31.4 dB, central wavelength changes 0.07 nm/(1GW/cm2) and 100% transmission efficiency. Thus, Sixteen-channel DWDM has very high quality factor, low crosstalk, near 100% power transmission efficiency and small channel spacing (1.44 nm).

  19. High temperature defect equilibrium in ZnS:Cu single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lott, K.; Shinkarenko, S.; Tuern, L.; Nirk, T.; Oepik, A. [Department of Materials Science, Tallinn University of Technology, Tallinn (Estonia); Kallavus, U. [Centre for Materials Research, Tallinn University of Technology, Tallinn (Estonia); Gorokhova, E. [Scientific Research and Technological Institute of Optical Material Science, S. I. Vavilov State Optical Institute, All-Russia Science Center, St. Petersburg (Russian Federation); Grebennik, A.; Vishnjakov, A. [Department of Physical Chemistry, D. Mendelejev University of Chemical Technology of Russia, Moscow (Russian Federation)

    2010-07-15

    High temperature investigations in ZnS:Cu crystals were performed under defined conditions. High temperature electrical conductivity and copper solubility data were obtained under different component vapour pressures and under different sample temperatures. The experimental data at sulphur vapour pressure can be explained by the inclusion of abnormal site occupation i.e. by antistructural disorder. Compensating association of copper with this antistructure defect may occur. Antistructure disorder disappears with increasing of zinc vapour pressure and with increasing role of holes in bipolar conductivity. The method for solving the system of quasichemical reactions without approximation was used to model high temperature defect equilibrium. This model contains antistructure disorder and copper solubility limitation. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Pair creation, motion, and annihilation of topological defects in two-dimensional nematic liquid crystals

    Science.gov (United States)

    Cortese, Dario; Eggers, Jens; Liverpool, Tanniemola B.

    2018-02-01

    We present a framework for the study of disclinations in two-dimensional active nematic liquid crystals and topological defects in general. The order tensor formalism is used to calculate exact multiparticle solutions of the linearized static equations inside a planar uniformly aligned state so that the total charge has to vanish. Topological charge conservation then requires that there is always an equal number of q =1 /2 and q =-1 /2 charges. Starting from a set of hydrodynamic equations, we derive a low-dimensional dynamical system for the parameters of the static solutions, which describes the motion of a half-disclination pair or of several pairs. Within this formalism, we model defect production and annihilation, as observed in experiments. Our dynamics also provide an estimate for the critical density at which production and annihilation rates are balanced.

  1. Tunable dual-channel filter based on the photonic crystal with air defects.

    Science.gov (United States)

    Zhao, Xiaodan; Yang, Yibiao; Wen, Jianhua; Chen, Zhihui; Zhang, Mingda; Fei, Hongming; Hao, Yuying

    2017-07-01

    We propose a tuning filter containing two channels by inserting a defect layer (Air/Si/Air/Si/Air) into a one-dimensional photonic crystal of Si/SiO 2 , which is on the symmetry of the defect. Two transmission peaks (1528.98 and 1564.74 nm) appear in the optical communication S-band and C-band, and the transmittance of these two channels is up to 100%. In addition, this design realizes multi-channel filtering to process large dynamic range or multiple independent signals in the near-infrared band by changing the structure. The tuning range will be enlarged, and the channels can be moved in this range through the easy control of air thickness and incident angle.

  2. Effect of grain defects on the mechanical behavior of nickel-based single crystal superalloy

    International Nuclear Information System (INIS)

    Tang, Haibin; Guo, Haiding

    2017-01-01

    In this paper, a single crystal (SC) partition model, consisting of primary grains and grain defects, is proposed to simulate the weakening effect of grain defects generated at geometric discontinuities of SC materials. The plastic deformation of SC superalloy is described with the modified yield criterion, associated flow rule and hardening law. Then a bicrystal model containing only one group of misoriented grains under uniaxial loading is constructed and analyzed in the commercial finite element software ABAQUS. The simulation results indicate that the yield strength and elastic modulus of misoriented grains, which are determined by the crystallographic orientation, have a significant effect on the stress distribution of the bicrystal model. A critical stress, which is calculated by the stress state at critical regions, is proposed to evaluate the local stress rise at the sub-boundary of primary and misoriented grains.

  3. The role of diffusion measurements in the study of crystal lattice defects

    Energy Technology Data Exchange (ETDEWEB)

    Kidson, G V

    1965-07-15

    Measurements of atomic mobility in solids are frequently of direct interest to those concerned with the design, development and utilization of materials in engineering. Increasing attention, however, is currently devoted to an under standing of such properties in terms of the occurrence and nature of point and line defects in the crystals. This paper reviews some recent diffusion studies conducted at C.R,N.L. that provide, in addition to data of interest in nuclear technology, a means of gaining some insight into the more fundamental nature of the lattice defects occurring in the materials. The systems discussed are (i) self diffusion in the high temperature phase of pure zirconium (ii) solute diffusion in lead and (iii) interdiffusion of aluminum and zirconium The unusual and at present incompletely understood results described in (i) are briefly reviewed. Evidence is given to suggest that diffusion occurs either through a dense dislocation network produced as a result of a martensitic phase transformation, or, alternatively, by excess vacancies introduced into the crystal by impurities. In (ii) the extraordinarily rapid diffusion of noble metal solutes in high purity lead single crystals will be discussed n terms of the state of solution of the solute atoms. It will be shown that their diffusion behaviour can be understood by assuming that a fraction f{sub i} of the dissolved solute atoms occupy interstitial sites, The measured diffusion coefficient D{sub m} is related to the interstitial diffusion coefficient by D{sub m} = f{sub i} D{sub i}. In (iii) the formation and rapid growth of single intermetallic compound ZrAl{sub 3} in the diffusion zone formed between pure zirconium and pure aluminum is described and the diffusion mechanism is interpreted in terms of the structure of the compound lattice. The results indicate that ZrAl{sub 3} forms a defect lattice, leading to the relatively rapid migration of aluminum atoms. (author)

  4. Temperature dependence of the defect luminescence in La2Be2O5 single crystals

    International Nuclear Information System (INIS)

    Ogorodnikov, I.N.; Pustovarov, V.A.

    2015-01-01

    Temperature quenching (TQ) curves in the temperature range of 80–500 K have been studied for both the undoped, and doped with RE 3+ -ions (RE = Ce, Eu, Er, Pr, Nd) lanthanum beryllate (BLO) single crystals. Photoluminescence spectra and TQ-curves were recorded upon excitation in the absorption bands of the lattice defects. The reaction rate model has been developed to describe the experimental results. The model includes two competing processes with characteristic temperatures: thermal quenching of intracenter PL (T 1 ) and thermally stimulated migration of electronic excitations (T 2 ). The competition between these two processes leads to the observed non-monotonic TQ-curves. The rationalized formulas using three parameters (intensity, activation energy, characteristic temperature), were developed to describe each of these processes. Within the framework of the unified model, all the experimental results were described and the best fit parameters were obtained. Classification of the investigated lanthanum beryllate crystals was carried out in line with the best fit parameters obtained for the TQ-curves. - Highlights: • We studied La 2 Be 2 O 5 (BLO) single crystals (pristine and RE 3+ -doped). • We studied PL emission spectra of defects in BLO and BLO:RE 3+ . • Temperature quenching of the defect PL emission was studied at 80–500 K. • We developed the reaction rate model to describe non-monotonic TQ-curves. • TQ-curves were parameterized for BLO, BLO:RE 3+ (RE = Ce, Pr, Eu, Nd, Er).

  5. Symmetrical analysis of the defect level splitting in two-dimensional photonic crystals

    International Nuclear Information System (INIS)

    Malkova, N; Kim, S; Gopalan, V

    2003-01-01

    In this paper doubly degenerate defect states in the band gap of the two-dimensional photonic crystal are studied. These states can be split by a convenient distortion of the lattice. Through analogy with the Jahn-Teller effect in solids, we present a group theoretical analysis of the lifting of the degeneracy of doubly degenerate states in a square lattice by different vibronic modes. The effect is supported by the supercell plane-wave model and by the finite difference time domain technique. We suggest ways for using the effect in photonic switching devices and waveguides

  6. Optical manipulation of photonic defect-modes in cholesteric liquid crystals induced by direct laser-lithography

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Lee, Chee Heng; Miura, Yusuke; Fujii, Akihiko; Ozaki, Masanori

    2008-01-01

    Manipulation of photonic defect-modes in cholesteric liquid crystals (ChLCs), which are one-dimensional pseudo photonic band-gap materials have been demonstrated by an external optical field. A structural defect in which the pitch length of the ChLC in the bulk and the defect are different was introduced by inducing local polymerization in a photo-polymerizable ChLC material by a direct laser-lithography process, and infiltrating a different ChLC material as the defect medium. When an azobenzene dye-doped ChLC was infiltrated in the defect, the trans-cis isomerization of the dye upon ultraviolet (UV) exposure caused the pitch to shorten, changing the contrast in the pitch lengths at the bulk and the defect, leading to a consequent shifting of the defect-mode. The all-optical manipulation was reversible and had high reproducibility

  7. Consolidation of nanometer-sized aluminum single crystals: Microstructure and defects evolutions

    KAUST Repository

    Afify, N. D.

    2014-04-01

    Deriving bulk materials with ultra-high mechanical strength from nanometer-sized single metalic crystals depends on the consolidation procedure. We present an accurate molecular dynamics study to quantify microstructure responses to consolidation. Aluminum single crystals with an average size up to 10.7 nm were hydrostatically compressed at temperatures up to 900 K and pressures up to 5 GPa. The consolidated material developed an average grain size that grew exponentially with the consolidation temperature, with a growth rate dependent on the starting average grain size and the consolidation pressure. The evolution of the microstructure was accompanied by a significant reduction in the concentration of defects. The ratio of vacancies to dislocation cores decreased with the average grain size and then increased after reaching a critical average grain size. The deformation mechanisms of poly-crystalline metals can be better understood in the light of the current findings. © 2013 Elsevier B.V. All rights reserved.

  8. Consolidation of nanometer-sized aluminum single crystals: Microstructure and defects evolutions

    KAUST Repository

    Afify, N. D.; Salem, H. G.; Yavari, A.; El Sayed, Tamer S.

    2014-01-01

    Deriving bulk materials with ultra-high mechanical strength from nanometer-sized single metalic crystals depends on the consolidation procedure. We present an accurate molecular dynamics study to quantify microstructure responses to consolidation. Aluminum single crystals with an average size up to 10.7 nm were hydrostatically compressed at temperatures up to 900 K and pressures up to 5 GPa. The consolidated material developed an average grain size that grew exponentially with the consolidation temperature, with a growth rate dependent on the starting average grain size and the consolidation pressure. The evolution of the microstructure was accompanied by a significant reduction in the concentration of defects. The ratio of vacancies to dislocation cores decreased with the average grain size and then increased after reaching a critical average grain size. The deformation mechanisms of poly-crystalline metals can be better understood in the light of the current findings. © 2013 Elsevier B.V. All rights reserved.

  9. Defects of diamond single crystal grown under high temperature and high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Su, Qingcai, E-mail: suqc@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials (Ministry of Education), Shandong University, Jinan, P. R. China, 250061 (China); School of Materials Science and Engineering, Shandong University, Jinan, P. R. China, 250061 (China); Shandong Engineering Research Center for Superhard Materials, Zoucheng, P. R. China 273500 (China); Zhang, Jianhua [School of Mechanical Engineering, Shandong University, Jinan, P. R. China, 250061 (China); Li, Musen [Key Laboratory of Liquid Structure and Heredity of Materials (Ministry of Education), Shandong University, Jinan, P. R. China, 250061 (China); School of Materials Science and Engineering, Shandong University, Jinan, P. R. China, 250061 (China); Shandong Engineering Research Center for Superhard Materials, Zoucheng, P. R. China 273500 (China)

    2013-11-01

    The diamond single crystal, synthesized with Fe–Ni–C–B system of catalyst under high temperature and high pressure, had been observed by field emission scanning electron microscope and transmission electron microscope. The presence of a cellular structure suggested that the diamond grew from melted catalyst solution and there existed a zone of component supercooling zone in front of the solid–liquid interface. The main impurities in the diamond crystal was (FeNi){sub 23}C{sub 6}. The triangle screw pit revealed on the (111) plane was generated by the screw dislocation meeting the diamond (111) plane at the points of emergence of dislocations. A narrow twin plane was formed between the two (111) plane. - Highlights: • High pressure, high temperature synthesis of diamond single crystal. • Fe–Ni–C–B used as catalyst, graphite as carbon source. • The main impurity in the diamond crystal was (FeNi){sub 23}C{sub 6}. • Surface defects arose from screw dislocations and stacking faults.

  10. CRYSTAL-QUASICHEMICAL ANALYSIS OF DEFECT SUBSYSTEM OF DOPED PbTe: Sb CRYSTALS AND Pb-Sb-Te SOLID SOLUTIONS

    Directory of Open Access Journals (Sweden)

    D.M. Freik

    2014-05-01

    Full Text Available Within crystalquasichemical formalism models of point defects of crystals in the Pb-Sb-Te system were specified. Based on proposed crystalquasichemical formulae of antimony doped crystals PbTe:Sb amphoteric dopant effect was explained. Mechanisms of solid solution formation for РbТе-Sb2Те3: replacement of antimony ions lead sites  with the formation of cation vacancies  (I or neutral interstitial tellurium atoms  (II were examined. Dominant point defects in doped crystals PbTe:Sb and РbТе-Sb2Те3 solid solutions based on p-PbTe were defined. Dependences of concentration of dominant point defects, current carriers and Hall concentration on content of dopant compound and the initial deviation from stoichiometry in the basic matrix were calculated.

  11. Effect of defects induced by doping and fast neutron irradiation on the thermal properties of lithium ammonium sulphate crystals

    International Nuclear Information System (INIS)

    Kandil, S.H.; Ramadan, T.A.; Darwish, M.M.; Kassem, M.E.; El-Khatib, A.M.

    1994-01-01

    Structural defects were introduced in lithium ammonium sulphate crystals (LAS) either in the process of crystal growth (in the form of foreign ions) or by neutron irradiation. The effect of such defects on the thermal properties of LAS crystals was studied in the temperature range 300-500 K. It was assumed that the doped LAS crystals are composed of a two-phase system having different thermal parameters in each phase. The specific heat at constant pressure, C p , of irradiated samples was found to decrease with increasing irradiation doses. The thermal expansion of LAS crystals was found to be dependent on neutron irradiation, and was attributed to two processes: the release of new species and the trapping process. (author)

  12. Effect of defects induced by doping and fast neutron irradiation on the thermal properties of lithium ammonium sulphate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kandil, S.H.; Ramadan, T.A.; Darwish, M.M. (Alexandria Univ. (Egypt). Dept. of Materials Science); Kassem, M.E.; El-Khatib, A.M. (Alexandria Univ. (Egypt). Dept. of Physics)

    1994-05-01

    Structural defects were introduced in lithium ammonium sulphate crystals (LAS) either in the process of crystal growth (in the form of foreign ions) or by neutron irradiation. The effect of such defects on the thermal properties of LAS crystals was studied in the temperature range 300-500 K. It was assumed that the doped LAS crystals are composed of a two-phase system having different thermal parameters in each phase. The specific heat at constant pressure, C[sub p], of irradiated samples was found to decrease with increasing irradiation doses. The thermal expansion of LAS crystals was found to be dependent on neutron irradiation, and was attributed to two processes: the release of new species and the trapping process. (author).

  13. Geometrically unrestricted, topologically constrained control of liquid crystal defects using simultaneous holonomic magnetic and holographic optical manipulation

    Science.gov (United States)

    Varney, Michael C. M.; Jenness, Nathan J.; Smalyukh, Ivan I.

    2014-02-01

    Despite the recent progress in physical control and manipulation of various condensed matter, atomic, and particle systems, including individual atoms and photons, our ability to control topological defects remains limited. Recently, controlled generation, spatial translation, and stretching of topological point and line defects have been achieved using laser tweezers and liquid crystals as model defect-hosting systems. However, many modes of manipulation remain hindered by limitations inherent to optical trapping. To overcome some of these limitations, we integrate holographic optical tweezers with a magnetic manipulation system, which enables fully holonomic manipulation of defects by means of optically and magnetically controllable colloids used as "handles" to transfer forces and torques to various liquid crystal defects. These colloidal handles are magnetically rotated around determined axes and are optically translated along three-dimensional pathways while mechanically attached to defects, which, combined with inducing spatially localized nematic-isotropic phase transitions, allow for geometrically unrestricted control of defects, including previously unrealized modes of noncontact manipulation, such as the twisting of disclination clusters. These manipulation capabilities may allow for probing topological constraints and the nature of defects in unprecedented ways, providing the foundation for a tabletop laboratory to expand our understanding of the role defects play in fields ranging from subatomic particle physics to early-universe cosmology.

  14. Non-stoichiometry defects and radiation hardness of lead tungstate crystals PbWO sub 4

    CERN Document Server

    Devitsin, E G; Potashov, S Yu; Terkulov, A R; Nefedov, V A; Polyansky, E V; Zadneprovski, B I; Kjellberg, P; Korbel, V

    2002-01-01

    It has been stated many times that the formation of radiation infringements in PbWO sub 4 is to a big extent stipulated by the non-stoichiometry defects of the crystals, arising in the process of their growth and annealing. To refine the idea of characteristics of the non-stoichiometry defects and their effect on the radiation hardness of PbWO sub 4 , the current study is aimed at the melt composition infringements during its evaporation and at optical transmission of crystals obtained in these conditions after their irradiation ( sup 1 sup 3 sup 7 Cs source). In the optical transmission measurements along with traditional techniques a method 'in situ' was used, which provided the measurements in fixed points of the spectrum (380, 470 and 535 nm) directly in the process of the irradiation. X-ray phase and fluorescence analysis of condensation products of vapours over PbWO sub 4 melt has found PbWO sub 4 phase in their content as well as compounds rich in lead PbO, Pb sub 2 WO sub 5 with overall ratio Pb/W (3....

  15. Non-stoichiometry Defects and Radiation Hardness of Lead Tungstate Crystals PbWO4

    CERN Document Server

    Devitsin, E G; Kozlov, V A; Nefedov, L; Polyansky, E V; Potashov, S Yu; Terkulov, A R; Zadneprovski, B I

    2001-01-01

    It has been stated many times that the formation of radiation infringements in PbWO4 is to big extent stipulated by non-stoichiometry defects of the crystals, arising in the process of their growth and annealing. To refine the idea of characteristics of non-stoichiometry defects and their effect on the radiation hardness of PbWO4 the current study is aimed at the melt composition infringements during its evaporation and at optical transmission of crystals obtained in these conditions after their irradiation (137Cs source). In the optical transmission measurements along with traditional techniques a method "in situ" was used, which provided the measurements in fixed points of the spectrum (380, 470 and 535 nm) directly in the process of the irradiation. X-ray phase and fluorescence analysis of condensation products of vapours over PbWO4 melt has found PbWO4 phase in their content as well as compounds rich in lead, PbO, Pb2WO5, with overall ratio Pb/W = 3.2. Correspondingly the lack of lead and variations in th...

  16. Effect of high temperature annealing on defects and optical properties of ZnO single crystals

    International Nuclear Information System (INIS)

    Jiang, M.; Wang, D.D.; Zou, B.; Chen, Z.Q.; Kawasuso, A.; Sekiguchi, T.

    2012-01-01

    Hydrothermal grown ZnO single crystals were annealed in N 2 or O 2 between 900 and 1300 C. Positron lifetime measurements reveal a single lifetime in all the ZnO samples before and after annealing. The positron lifetime is about 181 ps after annealing at 900 C in either N 2 or O 2 atmosphere. However, increase of the positron lifetime is observed after further annealing the sample at higher temperatures up to 1300 C, and it has a faster increase in O 2 ambient. Temperature dependence measurements show that the positron lifetime has very slight increase with temperature for the 900 C annealed sample, while it shows notable variation for the sample annealed at 1300 C. This implied that annealing at high temperature introduces additional defects. These defects are supposed to be Zn vacancy-related defects. Cathodoluminescence (CL) measurements indicates enhancement of both UV and green emission after annealing, and the enhancement of green emission is much stronger for the samples annealed in O 2 ambient. The possible origin of green emission is tentatively discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. A quantum-chemical study of oxygen-vacancy defects in PbTiO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stashans, Arvids [Laboratorio de Fisica, Escuela de Electronica y Telecomunicaciones, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)]. E-mail: arvids@utpl.edu.ec; Serrano, Sheyla [Centro de Investigacion en Fisica de Materia Condensada, Corporacion de Fisica Fundamental y Aplicada, Apartado 17-12-637, Quito (Ecuador); Escuela de Ingenierias, Universidad Politecnica Salesiana, Campus Sur, Rumichaca s/n y Moran Valverde, Apartado 17-12-536, Quito (Ecuador); Medina, Paul [Centro de Investigacion en Fisica de Materia Condensada, Corporacion de Fisica Fundamental y Aplicada, Apartado 17-12-637, Quito (Ecuador)

    2006-05-31

    Investigation of an oxygen vacancy and F center in the cubic and tetragonal lattices of PbTiO{sub 3} crystals is done by means of quantum-chemical simulations. Displacements of defect-surrounding atoms, electronic and optical properties, lattice relaxation energies and some new effects due to the defects presence are reported and analyzed. A comparison with similar studies is made and conclusions are drawn on the basis of the obtained results.

  18. A quantum-chemical study of oxygen-vacancy defects in PbTiO3 crystals

    International Nuclear Information System (INIS)

    Stashans, Arvids; Serrano, Sheyla; Medina, Paul

    2006-01-01

    Investigation of an oxygen vacancy and F center in the cubic and tetragonal lattices of PbTiO 3 crystals is done by means of quantum-chemical simulations. Displacements of defect-surrounding atoms, electronic and optical properties, lattice relaxation energies and some new effects due to the defects presence are reported and analyzed. A comparison with similar studies is made and conclusions are drawn on the basis of the obtained results

  19. Effect of the defect on the focusing in a two-dimensional photonic-crystal-based flat lens

    International Nuclear Information System (INIS)

    Feng Zhifang; Wang Xiuguo; Li Zhiyuan; Zhang Daozhong

    2008-01-01

    We have investigated in detail the influence of defect on the focusing of electromagnetic waves in a two-dimensional photonic-crystal flat lens by using the finite-difference time-domain method. The result shows that many focusings can be observed at the symmetrical positions when a defect is introduced into the lens. Furthermore, the wave-guides in the lens can confine the transmission wave effectively and improve the quality of the focusing

  20. Influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures and lattice defects accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Sedao, Xxx; Garrelie, Florence, E-mail: florence.garrelie@univ-st-etienne.fr; Colombier, Jean-Philippe; Reynaud, Stéphanie; Pigeon, Florent [Université de Lyon, CNRS, UMR5516, Laboratoire Hubert Curien, Université de Saint Etienne, Jean Monnet, F-42023 Saint-Etienne (France); Maurice, Claire; Quey, Romain [Ecole Nationale Supérieure des Mines de Saint-Etienne, CNRS, UMR5307, Laboratoire Georges Friedel, F-42023 Saint-Etienne (France)

    2014-04-28

    The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.

  1. Variation in the defect structure of p-CdTe single crystals at the passage of the laser shock wave

    International Nuclear Information System (INIS)

    Baidullaeva, A.; Vlasenko, A.I.; Gorkovenko, B.L.; Lomovtsev, A.V.; Mozol', P.E.

    2000-01-01

    Variations in the minority-carrier lifetime, photoluminescence spectra, dark current and photocurrent temperature dependences of high-resistivity p-CdTe crystals under the action of the laser shock wave are investigated. It is shown that the variations in the aforementioned characteristics during the passage of the shock wave are defined by the generation of the nonequilibrium carriers from deep centers, and, after that, the variations are defined by the formation of intrinsic defects and their subsequent interaction with the defects existing in the initial crystals

  2. Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap

    International Nuclear Information System (INIS)

    Povinelli, M. L.; Johnson, Steven G.; Fan, Shanhui; Joannopoulos, J. D.

    2001-01-01

    Using numerical simulations, we demonstrate the construction of two-dimensional- (2D-) like defect modes in a recently proposed 3D photonic crystal structure. These modes, which are confined in all three dimensions by a complete photonic band gap, bear a striking similarity to those in 2D photonic crystals in terms of polarization, field profile, and projected band structures. It is expected that these results will greatly facilitate the observation of widely studied 2D photonic-crystal phenomena in a realistic, 3D physical system

  3. Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap

    Energy Technology Data Exchange (ETDEWEB)

    Povinelli, M. L.; Johnson, Steven G.; Fan, Shanhui; Joannopoulos, J. D.

    2001-08-15

    Using numerical simulations, we demonstrate the construction of two-dimensional- (2D-) like defect modes in a recently proposed 3D photonic crystal structure. These modes, which are confined in all three dimensions by a complete photonic band gap, bear a striking similarity to those in 2D photonic crystals in terms of polarization, field profile, and projected band structures. It is expected that these results will greatly facilitate the observation of widely studied 2D photonic-crystal phenomena in a realistic, 3D physical system.

  4. Crystal growth, defects, and mechanical and spectral properties of a novel mixed laser crystal Nd:GdYNbO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shoujun; Dou, Renqin [Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, Anhui Province (China); University of Science and Technology of China, Hefei (China); Liu, Wenpeng; Zhang, Qingli; Peng, Fang; Luo, Jianqiao; Sun, Guihua; Sun, Dunlu [Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, Anhui Province (China)

    2017-01-15

    A mixed laser crystal of Nd-doped GYNO crystal was grown successfully by Czochralski method. The crystal belongs to monoclinic system with space group I2/a, the structural parameters are obtained by the X-ray Rietveld refinement method. The defects and dislocations along three crystallographic orientations were studied by using the chemical etching method with the phosphoric acid etchant. The mechanical properties (including hardness, yield strength, fracture toughness, and brittle index) of the crystal were estimated by Vickers hardness test. The transmission spectrum was measured at room temperature, and the absorption peaks were assigned. Spectral properties of the as-grown crystal were investigated by Judd-Ofelt theory, and the Judd-Ofelt intense parameters Ω{sub 2,4,6} were obtained to be 9.674 x 10{sup -20}, 2.092 x 10{sup -20}, and 4.061 x 10{sup -20} cm{sup 2}, respectively. (orig.)

  5. Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Machida, Emi [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192 (Japan); Research Fellowships of the Japan Society for the Promotion of Science, Japan Society for the Promotion of Science, 1-8 Chiyoda, Tokyo 102-8472 (Japan); Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192 (Japan); Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ikenoue, Hiroshi [Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan)

    2012-12-17

    We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 {mu}m, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

  6. Defect structure of TiS{sub 3} single crystals of the A-ZrSe{sub 3} type

    Energy Technology Data Exchange (ETDEWEB)

    Bolotina, N. B., E-mail: nb-bolotina@mail.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation); Gorlova, I. G. [Russian Academy of Sciences, Kotel’nikov Institute of Radioengineering and Electronics (Russian Federation); Verin, I. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation); Titov, A. N. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation); Arakcheeva, A. V. [Phase Solutions, Co Ltd. (Switzerland)

    2016-11-15

    The defect structure of TiS{sub 3} single crystals of the A-ZrSe{sub 3} type has been determined based on X-ray diffraction data. Shear defects manifest themselves as displacements of ab layers (which can imitate a twin) by ∼0.5a. Regular shears facilitate the formation of a superstructure along the c axis. A model of defect in the layer structure is proposed to explain the atomic displacements at an angle to the layer plane.

  7. Characterization of deep level defects in Tl6I4S single crystals by photo-induced current transient spectroscopy

    International Nuclear Information System (INIS)

    Peters, J A; Liu, Z; Sebastian, M; Wessels, B W; Im, J; Freeman, A J; Nguyen, S; Kanatzidis, M G

    2015-01-01

    Defect levels in semi-insulating Tl 6 I 4 S single crystals grown by the horizontal Bridgman technique have been characterized using photo-induced current transient spectroscopy (PICTS). These measurements revealed six electron traps located at (0.059  ±  0.007), (0.13  ±  0.012), (0.31  ±  0.074), (0.39  ±  0.019), (0.62  ±  0.110), and (0.597  ±  0.105). These defect levels are attributed to vacancies (V I , V S ) and antisite defects (I S , Tl S , Tl I ) upon comparison to calculations of native defect energy levels using density functional theory and defects recently reported from photoluminescence and photoconductivity measurements. (paper)

  8. Helium interaction with vacancy-type defects created in silicon carbide single crystal

    Science.gov (United States)

    Linez, F.; Gilabert, E.; Debelle, A.; Desgardin, P.; Barthe, M.-F.

    2013-05-01

    Generation of He bubbles or cavities in silicon carbide is an important issue for the use of this material in nuclear and electronic applications. To understand the mechanisms prior to the growth of these structures, an atomic-scale study has been conducted. 6H-SiC single crystals have been implanted with 50 keV-He ions at 2 × 1014 and 1015 cm-2 and successively annealed at various temperatures from 150 to 1400 °C. After each annealing, the defect distributions in the samples have been probed by positron annihilation spectroscopy. Four main evolution stages have been evidenced for the two investigated implantation fluences: at (1) 400 °C for both fluences, (2) at 850 °C for the low fluence and 950 °C for the high one, (3) at 950 °C for the low fluence and 1050 °C for the high one and (4) at 1300 °C for both fluences. The perfect correlation between the positron annihilation spectroscopy and the thermodesorption measurements has highlighted the He involvement in the first two stages corresponding respectively to its trapping by irradiation-induced divacancies and the detrapping from various vacancy-type defects generated by agglomeration processes.

  9. Helium interaction with vacancy-type defects created in silicon carbide single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Linez, F., E-mail: florence.linez@aalto.fi [CEMHTI CNRS, 3A rue de la Férollerie, 45071 Orléans (France); Gilabert, E. [CENBG, U.R.A. 451 CNRS, Université de Bordeaux I, BP120, Le Haut Vigneau, 33175 Gradignan Cedex (France); Debelle, A. [CSNSM, Univ. Paris-Sud, CNRS-IN2P3, 91405 Orsay Campus (France); Desgardin, P.; Barthe, M.-F. [CEMHTI CNRS, 3A rue de la Férollerie, 45071 Orléans (France)

    2013-05-15

    Generation of He bubbles or cavities in silicon carbide is an important issue for the use of this material in nuclear and electronic applications. To understand the mechanisms prior to the growth of these structures, an atomic-scale study has been conducted. 6H–SiC single crystals have been implanted with 50 keV-He ions at 2 × 10{sup 14} and 10{sup 15} cm{sup −2} and successively annealed at various temperatures from 150 to 1400 °C. After each annealing, the defect distributions in the samples have been probed by positron annihilation spectroscopy. Four main evolution stages have been evidenced for the two investigated implantation fluences: at (1) 400 °C for both fluences, (2) at 850 °C for the low fluence and 950 °C for the high one, (3) at 950 °C for the low fluence and 1050 °C for the high one and (4) at 1300 °C for both fluences. The perfect correlation between the positron annihilation spectroscopy and the thermodesorption measurements has highlighted the He involvement in the first two stages corresponding respectively to its trapping by irradiation-induced divacancies and the detrapping from various vacancy-type defects generated by agglomeration processes.

  10. New Toroid shielding design

    CERN Multimedia

    Hedberg V

    On the 15th of June 2001 the EB approved a new conceptual design for the toroid shield. In the old design, shown in the left part of the figure above, the moderator part of the shielding (JTV) was situated both in the warm and cold areas of the forward toroid. It consisted both of rings of polyethylene and hundreds of blocks of polyethylene (or an epoxy resin) inside the toroid vacuum vessel. In the new design, shown to the right in the figure above, only the rings remain inside the toroid. To compensate for the loss of moderator in the toroid, the copper plug (JTT) has been reduced in radius so that a layer of borated polyethylene can be placed around it (see figure below). The new design gives significant cost-savings and is easier to produce in the tight time schedule of the forward toroid. Since the amount of copper is reduced the weight that has to be carried by the toroid is also reduced. Outgassing into the toroid vacuum was a potential problem in the old design and this is now avoided. The main ...

  11. Toroid magnet test facility

    CERN Multimedia

    2002-01-01

    Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.

  12. Alfven continuum with toroidicity

    International Nuclear Information System (INIS)

    Riyopoulos, S.; Mahajan, S.M.

    1985-06-01

    The symmetry property of the MHD wave propagation operator is utilized to express the toroidal eigenmodes as a superposition of the mutually orthogonal cylindrical modes. Because of the degeneracy among cylindrical modes with the same frequency but resonant surfaces of different helicity the toroidal perturbation produces a zeroth order mixing of the above modes. The toroidal eigenmodes of frequency ω 0 2 have multiple resonant surfaces, with each surface shifted relative to its cylindrical position and carrying a multispectral content. Thus a single helicity toroidal antenna of frequency ω 0 couples strongly to all different helicity resonant surfaces with matching local Alfven frequency. Zeroth order coupling between modes in the continuum and global Alfven modes also results from toroidicity and degeneracy. Our perturbation technique is the MHD counterpart of the quantum mechanical methods and is applicable through the entire range of the MHD spectrum

  13. Moving toroidal limiter

    International Nuclear Information System (INIS)

    Ikuta, Kazunari; Miyahara, Akira.

    1983-06-01

    The concept of the limiter-divertor proposed by Mirnov is extended to a toroidal limiter-divertor (which we call moving toroidal limiter) using the stream of ferromagnetic balls coated with a low Z materials such as plastics, graphite and ceramics. An important advantage of the use of the ferromagnetic materials would be possible soft landing of the balls on a catcher, provided that the temperature of the balls is below Curie point. Moreover, moving toroidal limiter would work as a protector of the first wall not only against the vertical movement of plasma ring but also against the violent inward motion driven by major disruption because the orbit of the ball in the case of moving toroidal limiter distributes over the small major radius side of the toroidal plasma. (author)

  14. Samus Toroid Installation Fixture

    Energy Technology Data Exchange (ETDEWEB)

    Stredde, H.; /Fermilab

    1990-06-27

    The SAMUS (Small Angle Muon System) toroids have been designed and fabricated in the USSR and delivered to D0 ready for installation into the D0 detector. These toroids will be installed into the aperture of the EF's (End Toroids). The aperture in the EF's is 72-inch vertically and 66-inch horizontally. The Samus toroid is 70-inch vertically by 64-inch horizontally by 66-inch long and weighs approximately 38 tons. The Samus toroid has a 20-inch by 20-inch aperture in the center and it is through this aperture that the lift fixture must fit. The toroid must be 'threaded' through the EF aperture. Further, the Samus toroid coils are wound about the vertical portion of the aperture and thus limit the area where a lift fixture can make contact and not damage the coils. The fixture is designed to lift along a surface adjacent to the coils, but with clearance to the coil and with contact to the upper steel block of the toroid. The lift and installation will be done with the 50 ton crane at DO. The fixture was tested by lifting the Samus Toroid 2-inch off the floor and holding the weight for 10 minutes. Deflection was as predicted by the design calculations. Enclosed are sketches of the fixture and it relation to both Toroids (Samus and EF), along with hand calculations and an Finite Element Analysis. The PEA work was done by Kay Weber of the Accelerator Engineering Department.

  15. Benchmarking state-of-the-art numerical simulation techniques for analyzing large photonic crystal membrane line defect cavities

    DEFF Research Database (Denmark)

    Gregersen, Niels; de Lasson, Jakob Rosenkrantz; Frandsen, Lars Hagedorn

    2018-01-01

    In this work, we perform numerical studies of two photonic crystal membrane microcavities, a short line-defect L5 cavity with relatively low quality (Q) factor and a longer L9 cavity with high Q. We compute the cavity Q factor and the resonance wavelength λ of the fundamental M1 mode in the two...

  16. Atomic diffusion and point defects in crystals. Final report. Progress report, April 1, 1956--August 31, 1972

    International Nuclear Information System (INIS)

    Slifkin, L.M.

    1972-01-01

    Studies were made to elucidate the fundamental mechanisms of point defect transport in simple metals and in crystals of the silver halides. Experiments performed include: (a) effect of composition on diffusion in Ag-Au alloys and Ag-Cd alloys; (b) effect of a vacancy flux on diffusion; (c) diffusion of solutes in aluminum and its dilute alloys; (d) dislocation effects in Cu 3 Au; (e) role of electronic structure and ionic radius in diffusion of cations in AgCl; (f) effects of ionic radius on halide impurity ion diffusion in AgCl and AgBr; (g) production of excess point defects in AgCl by deformation and by quenching; (h) the kinetics of the pinning of dislocations by point defects in AgBr crystals. (auth)

  17. Effect of irradiation temperature on the efficiency of introduction of multivacancy defects into n-Si crystals

    International Nuclear Information System (INIS)

    Pagava, T. A.

    2006-01-01

    The n-Si single crystals are studied in order to gain insight into the effect of the temperature of irradiation T irr on the defect-production process. The samples under study were irradiated with 2-MeV electrons in the range T irr = 20-400 deg. C. Irradiated crystals were annealed isochronously in the temperature range from 80 to 600 deg. C. Measurements were carried out by the Hall method in the temperature range from 77 to 300 K. It is shown that the efficiency of introduction of radiation defects with a high thermal stability (T ann ≥ 350 deg. C) attains a maximum at T irr = 150 deg. C. The observed effect is accounted for by formation of multivacancy defects PV 2 on the basis of ionized E centers and nonequilibrium vacancies

  18. Three-dimensional interactive Molecular Dynamics program for the study of defect dynamics in crystals

    Science.gov (United States)

    Patriarca, M.; Kuronen, A.; Robles, M.; Kaski, K.

    2007-01-01

    The study of crystal defects and the complex processes underlying their formation and time evolution has motivated the development of the program ALINE for interactive molecular dynamics experiments. This program couples a molecular dynamics code to a Graphical User Interface and runs on a UNIX-X11 Window System platform with the MOTIF library, which is contained in many standard Linux releases. ALINE is written in C, thus giving the user the possibility to modify the source code, and, at the same time, provides an effective and user-friendly framework for numerical experiments, in which the main parameters can be interactively varied and the system visualized in various ways. We illustrate the main features of the program through some examples of detection and dynamical tracking of point-defects, linear defects, and planar defects, such as stacking faults in lattice-mismatched heterostructures. Program summaryTitle of program:ALINE Catalogue identifier:ADYJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYJ_v1_0 Program obtainable from: CPC Program Library, Queen University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Computers:DEC ALPHA 300, Intel i386 compatible computers, G4 Apple Computers Installations:Laboratory of Computational Engineering, Helsinki University of Technology, Helsinki, Finland Operating systems under which the program has been tested:True64 UNIX, Linux-i386, Mac OS X 10.3 and 10.4 Programming language used:Standard C and MOTIF libraries Memory required to execute with typical data:6 Mbytes but may be larger depending on the system size No. of lines in distributed program, including test data, etc.:16 901 No. of bytes in distributed program, including test data, etc.:449 559 Distribution format:tar.gz Nature of physical problem:Some phenomena involving defects take place inside three-dimensional crystals at times which can be hardly predicted. For this reason they are

  19. Spectrally resolved thermally stimulated luminescence of irradiated anion-defective alumina single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kortov, V., E-mail: vskortov@mail.ru [Ural Federal University, Mira Str. 19, 620002 Ekaterinburg (Russian Federation); Lushchik, A.; Nagirnyi, V. [Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu (Estonia); Ananchenko, D. [Ural Federal University, Mira Str. 19, 620002 Ekaterinburg (Russian Federation); Romet, I. [Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu (Estonia)

    2017-06-15

    Thermally stimulated luminescence (TSL) spectra in the 313–580 K temperature range have been studied in anion-defective alumina crystals (named in literature as Al{sub 2}O{sub 3}:C) exposed to different irradiation doses. The TSL curve features two peaks with the maxima at T{sub m1}=437 K and T{sub m2}=565 K. The TSL spectrum of the first peak contains the emission of F centers and the R line of Cr{sup 3+} impurity ions. The absence of the emission of F{sup +} centers indicates that electron traps are responsible for the first dosimetric TSL peak. The TSL spectrum of the second peak features emission bands of F, F{sup +} centers, R line as well as a wide band centered at 550 nm and associated with the formation of aggregate centers (F{sub 2} and F{sub 2}{sup 2+}) under irradiation. Possible excitation mechanisms of the TSL emission bands that involve both electron and hole traps related to anion vacancies and impurities are discussed. - Highlights: •TSL curve of alumina crystals features peaks at 437 and 565 K. •There are emission bands of 410 and 695 nm in the TSL spectrum of the first peak. •TSL spectrum of the second peak features bands of F, F{sub 2}-type centers and the R line of trivalent chromium. •Excitation mechanisms of the emission bands in TSL spectra are discussed.

  20. Effects of high-dose hydrogen implantation on defect formation and dopant diffusion in silver implanted ZnO crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yaqoob, Faisal [Department of Physics, State University of New York at Albany, Albany, New York 12222 (United States); Huang, Mengbing, E-mail: mhuang@sunypoly.edu [College of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, New York 12203 (United States)

    2016-07-28

    This work reports on the effects of a deep high-dose hydrogen ion implant on damage accumulation, defect retention, and silver diffusion in silver implanted ZnO crystals. Single-crystal ZnO samples were implanted with Ag ions in a region ∼150 nm within the surface, and some of these samples were additionally implanted with hydrogen ions to a dose of 2 × 10{sup 16 }cm{sup −2}, close to the depth ∼250 nm. Rutherford backscattering/ion channeling measurements show that crystal damage caused by Ag ion implantation and the amount of defects retained in the near surface region following post-implantation annealing were found to diminish in the case with the H implantation. On the other hand, the additional H ion implantation resulted in a reduction of substitutional Ag atoms upon post-implantation annealing. Furthermore, the presence of H also modified the diffusion properties of Ag atoms in ZnO. We discuss these findings in the context of the effects of nano-cavities on formation and annihilation of point defects as well as on impurity diffusion and trapping in ZnO crystals.

  1. Optical spectroscopy and microscopy of radiation-induced light-emitting point defects in lithium fluoride crystals and films

    Science.gov (United States)

    Montereali, R. M.; Bonfigli, F.; Menchini, F.; Vincenti, M. A.

    2012-08-01

    Broad-band light-emitting radiation-induced F2 and F3+ electronic point defects, which are stable and laser-active at room temperature in lithium fluoride crystals and films, are used in dosimeters, tuneable color-center lasers, broad-band miniaturized light sources and novel radiation imaging detectors. A brief review of their photoemission properties is presented, and their behavior at liquid nitrogen temperatures is discussed. Some experimental data from optical spectroscopy and fluorescence microscopy of these radiation-induced point defects in LiF crystals and thin films are used to obtain information about the coloration curves, the efficiency of point defect formation, the effects of photo-bleaching processes, etc. Control of the local formation, stabilization, and transformation of radiation-induced light-emitting defect centers is crucial for the development of optically active micro-components and nanostructures. Some of the advantages of low temperature measurements for novel confocal laser scanning fluorescence microscopy techniques, widely used for spatial mapping of these point defects through the optical reading of their visible photoluminescence, are highlighted.

  2. Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects

    Science.gov (United States)

    Oshima, Takayoshi; Hashiguchi, Akihiro; Moribayashi, Tomoya; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu; Oishi, Toshiyuki; Kasu, Makoto

    2017-08-01

    The electrical properties of Schottky barrier diodes (SBDs) on a (001) β-Ga2O3 substrate were characterized and correlated with wet etching-revealed crystal defects below the corresponding Schottky contacts. The etching process revealed etched grooves and etched pits, indicating the presence of line-shaped voids and small defects near the surface, respectively. The electrical properties (i.e., leakage currents, ideality factor, and barrier height) exhibited almost no correlation with the density of the line-shaped voids. This very weak correlation was reasonable considering the parallel positional relation between the line-shaped voids extending along the [010] direction and the (001) basal plane in which the voids are rarely exposed on the initial surface in contact with the Schottky metals. The distribution of small defects and SBDs with unusually large leakage currents showed similar patterns on the substrate, suggesting that these defects were responsible for the onset of fatal leak paths. These results will encourage studies on crystal defect management of (001) β-Ga2O3 substrates for the fabrication of devices with enhanced performance using these substrates.

  3. Procedure for growing Bi4Ge3O12 bismuth germanate single crystals with suppressed growth defects

    International Nuclear Information System (INIS)

    Zikmund, J.; Blazek, K.; Jarolimek, O.; Horak, J.

    1991-01-01

    The method developed allows high-quality scintillator material to be grown reproducibly by the Czochralski method. The crystals attain diameters up to 80 mm and lengths up to 200 mm. The growth is performed on instruments equipped with devices for continuous measurement of weight increments of the growing crystals with a precision better than 10 mg. The growth parameters are controlled with a computer and based on actual data. The crystals are grown using an axial temperature gradient within the range of 25 to 35 degC/cm and a constant drawing rate within the range of 0.5 to 1.2 mm/h. An interface shape suitable for the suppression of defect development is achieved through a combination of the weight increment and rotation of the crystal. (M.D.)

  4. Modeling Defects, Shape Evolution, and Programmed Auto-origami in Liquid Crystal Elastomers

    Science.gov (United States)

    Konya, Andrew; Gimenez-Pinto, Vianney; Selinger, Robin

    2016-06-01

    Liquid crystal elastomers represent a novel class of programmable shape-transforming materials whose shape change trajectory is encoded in the material’s nematic director field. Using three-dimensional nonlinear finite element elastodynamics simulation, we model a variety of different actuation geometries and device designs: thin films containing topological defects, patterns that induce formation of folds and twists, and a bas-relief structure. The inclusion of finite bending energy in the simulation model reveals features of actuation trajectory that may be absent when bending energy is neglected. We examine geometries with a director pattern uniform through the film thickness encoding multiple regions of positive Gaussian curvature. Simulations indicate that heating such a system uniformly produces a disordered state with curved regions emerging randomly in both directions due to the film’s up/down symmetry. By contrast, applying a thermal gradient by heating the material first on one side breaks up/down symmetry and results in a deterministic trajectory producing a more ordered final shape. We demonstrate that a folding zone design containing cut-out areas accommodates transverse displacements without warping or buckling; and demonstrate that bas-relief and more complex bent/twisted structures can be assembled by combining simple design motifs.

  5. Characteristics of Highly Birefringent Photonic Crystal Fiber with Defected Core and Equilateral Pentagon Architecture

    Directory of Open Access Journals (Sweden)

    Fei Yu

    2016-01-01

    Full Text Available A novel high birefringence and nearly zero dispersion-flattened photonic crystal fiber (PCF with elliptical defected core (E-DC and equilateral pentagonal architecture is designed. By applying the full-vector finite element method (FEM, the characteristics of electric field distribution, birefringence, and chromatic dispersion of the proposed E-DC PCF are numerically investigated in detail. The simulation results reveal that the proposed PCF can realize high birefringence, ranging from 10-3 to 10-2 orders of magnitude, owing to the embedded elliptical air hole in the core center. However, the existence of the elliptical air hole gives rise to an extraordinary electric field distribution, where a V-shaped notch appears and the size of the V-shaped notch varies at different operating wavelengths. Also, the mode field diameter is estimated to be about 2 μm, which implies the small effective mode area and highly nonlinear coefficient. Furthermore, the investigation of the chromatic dispersion characteristic shows that the introduction of the elliptical air hole is helpful to control the chromatic dispersion to be negative or nearly zero flattened over a wide wavelength bandwidth.

  6. Modeling Defects, Shape Evolution, and Programmed Auto-origami in Liquid Crystal Elastomers

    Directory of Open Access Journals (Sweden)

    Andrew eKonya

    2016-06-01

    Full Text Available Liquid crystal elastomers represent a novel class of programmable shape-transforming materials whose shape change trajectory is encoded in the material’s nematic director field. Using three-dimensional nonlinear finite element elastodynamics simulation, we model a variety of different actuation geometries and device designs: thin films containing topological defects, patterns that induce formation of folds and twists, and a bas-relief structure. The inclusion of finite bending energy in the simulation model reveals features of actuation trajectory that may be absent when bending energy is neglected. We examine geometries with a director pattern uniform through the film thickness encoding multiple regions of positive Gaussian curvature. Simulations indicate that heating such a system uniformly produces a disordered state with curved regions emerging randomly in both directions due to the film’s up/down symmetry. By contrast, applying a thermal gradient by heating the material first on one side breaks up/down symmetry and results in a deterministic trajectory producing a more ordered final shape. We demonstrate that a folding zone design containing cut-out areas accommodates transverse displacements without warping or buckling; and demonstrate that bas-relief and more complex bent/twisted structures can be assembled by combining simple design motifs.

  7. Improving the efficiency and directivity of THz photoconductive antennas by using a defective photonic crystal substrate

    Science.gov (United States)

    Rahmati, Ehsan; Ahmadi-Boroujeni, Mehdi

    2018-04-01

    One of the shortcomings of photoconductive (PC) antennas in terahertz (THz) generation is low effective radiated power in the desirable direction. In this paper, we propose a defective photonic crystal (DPC) substrate consisting of a customized 2D array of air holes drilled into a solid substrate in order to improve the radiation characteristics of THz PC antennas. The effect of the proposed structure on the performance of a conventional THz PC antenna has been examined from several aspects including radiation efficiency, directivity, and field distribution. By comparing the radiation performance of the THz antenna on the proposed DPC substrate to that of the conventional solid substrate, it is shown that the proposed technique can significantly improve the efficiency and directivity of the THz PC antenna over a wide frequency range. It is achieved by reducing the amount of power coupled to the substrate surface waves and limiting the radiation in undesirable directions. In addition, it is found that the sensitivity of directivity to the substrate thickness is considerably decreased and the adverse Fabry-Perot effects of the thick substrate are reduced by the application of the proposed DPC substrate.

  8. Positron annihilation and thermoluminescence studies of thermally induced defects in α-Al2O3 single crystals

    International Nuclear Information System (INIS)

    Muthe, K P; Gupta, S K; Sudarshan, K; Pujari, P K; Kulkarni, M S; Rawat, N S; Bhatt, B C

    2009-01-01

    α-Al 2 O 3 crystals were subjected to different thermal treatments at a temperature of 1500 deg. C in a strongly reducing ambience of carbon and vacuum. Positron annihilation spectroscopy (PAS) and thermally stimulated luminescence (TL) studies were carried out to understand the nature of defects generated. Results show the presence of aluminium vacancies in crystals annealed in vacuum. On annealing in the presence of graphite, ingress of carbon in these vacancies is indicated by different PAS measurements. A simultaneous enhancement of dosimetry properties has been observed. The study provides evidence that association of carbon with aluminium vacancies helps in creation of effective dosimetry traps.

  9. Radiation defect production in quartz crystals with various structure perfectness degree; Radiatsionnoe defektoobrazovanie v kristallakh kvartsa s razlichnoj stepen`yu sovershenstva struktury

    Energy Technology Data Exchange (ETDEWEB)

    Khushvakov, O B

    1992-01-01

    Radiation defects production processes in pure and doped quartz crystals with various structure defectness, caused by preliminary irradiation with neutrons, protons, deuterons and {alpha}-particles, during various electron excitation densities were investigated. The distribution of colour centres along the thickness of irradiated quartz crystals was measured. It was supposed that colour centres are produced on account of inelastic energy losses as the result of collective decay of two or more interacting excitons. It was shown that in quartz crystals under the actions of protons with overthreshold energy 18 MeV and electrons with subthreshold energy 100 keV the same structure defects are formed. It was established that radiation defect production process has two stages. The first stage reveals radiation defects produced by preliminary irradiation. The second one reveals additional intrinsic defects formed under the action of gamma-rays and electrons. The probability dependence of defect production on neutron fluence and masses of incident particles was studied. It was supposed that the creation of additional defects in preliminary irradiated crystals is due to non-radiative decay of electron excitations near radiation-induced defects. It was shown that increase of impurity concentration leads to rate growth of accumulation of radiation induced defects. (A.A.D.) 15 refs. 4 figs.

  10. Thermoluminescent and dosimetric properties of anion-defective a-Al2O3 single crystals with filled deep traps

    International Nuclear Information System (INIS)

    Kortov, V.S.; Milman, I.I.; Nikiforov, S.V.

    2002-01-01

    Some new experimental results illustrating the effect of deep traps on luminescent and dosimetric properties of anion-defective single crystals of a-Al 2 O 3 have been described. It was found that deep traps had an electronic origin. They were filled thanks to the photoionisation of F-centres and their filling was accompanied by the conversion of FF+ centres. The experiments revealed an interactive interaction of deep trapping centres. A model taking into account the thermal ionisation of excited states of F-centres was proposed. This model describes the trap filling process and mechanisms of the radio-, photo- and thermoluminescence, TSC and TSEE of the crystals under study. The sensitivity of TLD-500 detectors based on anion-defective a-Al 2 O 3 equalised when deep trapping centres were filled. (author)

  11. An all-silicon laser by coupling between electronic localized states and defect states of photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Huang Weiqi, E-mail: WQHuang2001@yahoo.com [Institute of Nanophotonic Physics, Key Laboratory of Photoelectron Technology and Application, Guizhou University, Guiyang 550025 (China); Huang Zhongmei; Miao Xinjiang; Cai Chenlan; Liu Jiaxin; Lue Quan [Institute of Nanophotonic Physics, Key Laboratory of Photoelectron Technology and Application, Guizhou University, Guiyang 550025 (China); Liu Shirong, E-mail: Shirong@yahoo.com [State Key Laboratory of Ore Deposit Geochemistry Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003 (China); Qin Chaojian [State Key Laboratory of Ore Deposit Geochemistry Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003 (China)

    2012-01-15

    In a nano-laser of Si quantum dots (QD), the smaller QD fabricated by nanosecond pulse laser can form the pumping level tuned by the quantum confinement (QC) effect. Coupling between the active centers formed by localized states of surface bonds and the two-dimensional (2D) photonic crystal is used to select model in the nano-laser. The experimental demonstration is reported in which the peaks of stimulated emission at about 600 nm and 700 nm were observed on the Si QD prepared in oxygen after annealing which improves the stimulated emission. It is interesting to make a comparison between the localized electronic states in gap due to defect formed by surface bonds and the localized photonic states in gap of photonic band due to defect of 2D photonic crystal.

  12. Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, Janik; Kewes, Guenter; Schell, Andreas W.; Aichele, Thomas; Benson, Oliver [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Nuesse, Nils; Schoengen, Max; Loechel, Bernd [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Hanke, Tobias; Leitenstorfer, Alfred [Department of Physics and Center for Applied Photonics, Universitaet Konstanz, Konstanz (Germany); Bratschitsch, Rudolf [Department of Physics and Center for Applied Photonics, Universitaet Konstanz, Konstanz (Germany); Technische Universitaet Chemnitz, Institut fuer Physik, Chemnitz (Germany)

    2012-05-15

    We demonstrate the ability to modify the emission properties and enhance the interaction strength of single-photon emitters coupled to nanophotonic structures based on metals and dielectrics. Assembly of individual diamond nanocrystals, metal nanoparticles, and photonic crystal cavities to meta-structures is introduced. Experiments concerning controlled coupling of single defect centers in nanodiamonds to optical nanoantennas made of gold bowtie structures are reviewed. By placing one and the same emitter at various locations with high precision, a map of decay rate enhancements was obtained. Furthermore, we demonstrate the formation of a hybrid cavity quantum electrodynamics system in which a single defect center is coupled to a single mode of a gallium phosphite photonic crystal cavity. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Study of Te Inclusion and Related Point Defects in THM-Growth CdMnTe Crystal

    Science.gov (United States)

    Mao, Yifei; Zhang, Jijun; Min, Jiahua; Liang, Xiaoyan; Huang, Jian; Tang, Ke; Ling, Liwen; Li, Ming; Zhang, Ying; Wang, Linjun

    2018-02-01

    This study establishes a model for describing the interaction between Te inclusions, dislocations and point defects in CdMnTe crystals. The role of the complex environment surrounding the formation of Te inclusions was analyzed. Images of Te inclusions captured by scanning electron microscope and infrared microscope were used to observe the morphology of Te inclusions. The morphology of Te inclusions is discussed in light of crystallography, from the crystal growth temperature at 900°C to the melting temperature of Te inclusions using the traveling heater method. The dislocation nets around Te inclusions were calculated by counting lattice mismatches between the Te inclusions and the bulk CdMnTe at 470°C. The point defects of Te antisites were found to be gathered around Te inclusions, with dislocation climb during the cooling phase of crystal growth from 470°C to room temperature. The Te inclusions, dislocation nets and surrounding point defects are considered to be an entirety for evaluating the effect of Te inclusions on CdMnTe detector performance, and an effective mobility-lifetime product (μτ) was obtained.

  14. Anisotropic diffusion of point defects in a two-dimensional crystal of streptavidin observed by high-speed atomic force microscopy

    International Nuclear Information System (INIS)

    Yamamoto, Daisuke; Uchihashi, Takayuki; Kodera, Noriyuki; Ando, Toshio

    2008-01-01

    The diffusion of individual point defects in a two-dimensional streptavidin crystal formed on biotin-containing supported lipid bilayers was observed by high-speed atomic force microscopy. The two-dimensional diffusion of monovacancy defects exhibited anisotropy correlated with the two crystallographic axes in the orthorhombic C 222 crystal; in the 2D plane, one axis (the a-axis) is comprised of contiguous biotin-bound subunit pairs whereas the other axis (the b-axis) is comprised of contiguous biotin-unbound subunit pairs. The diffusivity along the b-axis is approximately 2.4 times larger than that along the a-axis. This anisotropy is ascribed to the difference in the association free energy between the biotin-bound subunit-subunit interaction and the biotin-unbound subunit-subunit interaction. The preferred intermolecular contact occurs between the biotin-unbound subunits. The difference in the intermolecular binding energy between the two types of subunit pair is estimated to be approximately 0.52 kcal mol -1 . Another observed dynamic behavior of point defects was fusion of two point defects into a larger defect, which occurred much more frequently than the fission of a point defect into smaller defects. The diffusivity of point defects increased with increasing defect size. The fusion and the higher diffusivity of larger defects are suggested to be involved in the mechanism for the formation of defect-free crystals

  15. Point defects and electric compensation in gallium arsenide single crystals; Punktdefekte und elektrische Kompensation in Galliumarsenid-Einkristallen

    Energy Technology Data Exchange (ETDEWEB)

    Kretzer, Ulrich

    2007-12-10

    In the present thesis the point-defect budget of gallium arsenide single crystals with different dopings is studied. It is shown, in which way the concentration of the single point defects depende on the concentration of the dopants, the stoichiometry deviation, and the position of the Fermi level. For this serve the results of the measurement-technical characterization of a large number of samples, in the fabrication of which these parameters were directedly varied. The main topic of this thesis lies in the development of models, which allow a quantitative description of the experimentally studied electrical and optical properties of gallium arsenide single crystals starting from the point-defect concentrations. Because from point defects charge carriers can be set free, their concentration determines essentially the charge-carrier concentration in the bands. In the ionized state point defects act as scattering centers for free charge carriers and influence by this the drift mobility of the charge carriers. A thermodynamic modeling of the point-defect formation yields statements on the equilibrium concentrations of the point defects in dependence on dopant concentration and stoichiometry deviation. It is show that the electrical properties of the crystals observed at room temperature result from the kinetic suppression of processes, via which the adjustment of a thermodynamic equilibrium between the point defects is mediated. [German] In der vorliegenden Arbeit wird der Punktdefekthaushalt von Galliumarsenid-Einkristallen mit unterschiedlichen Dotierungen untersucht. Es wird gezeigt, in welcher Weise die Konzentration der einzelnen Punktdefekte von der Konzentration der Dotierstoffe, der Stoechiometrieabweichung und der Lage des Ferminiveaus abhaengen. Dazu dienen die Ergebnisse der messtechnischen Charakterisierung einer grossen Anzahl von Proben, bei deren Herstellung diese Parameter gezielt variiert wurden. Der Schwerpunkt der Arbeit liegt in der Entwicklung

  16. Defect dependence of the irreversibility line in Bi2Sr2CaCu2O8 single crystals

    Science.gov (United States)

    Lombardo, L. W.; Mitzi, D. B.; Kapitulnik, A.; Leone, A.

    1992-09-01

    The c-axis irreversibility line (IL) of pristine single-crystal Bi2Sr2CaCu2O8 is shown to exhibit three regimes: For fields less than 0.1 T, it obeys a power law, Hirr=H0(1-Tirr/Tc)μ, where μ and H0 vary with Tc. For fields greater than 2 T, the IL becomes linear with a slope of 0.7 T/K. For intermediate fields, there is a crossover region, which corresponds to the onset of collective vortex behavior. Defects produced by proton irradiation shift the IL in all three regimes: The high-field regime moves to higher temperatures, the low-field regime moves to lower temperatures, and the crossover to collective behavior becomes obscured. A maximal increase in the irreversibility temperature in the high-field regime is found to occur at a defect density of nearly one defect per vortex core disk.

  17. Electronic relaxations of radiative defects of the anion sublattice in cesium bromide crystals and exoemission of electrons

    CERN Document Server

    Galyij, P V

    2002-01-01

    The paper presents the results of investigations of thermostimulated exoelectron emission (TSEE) from CsBr crystal, excited by moderate doses (D <= 10 sup 4 Gy) of ultraviolet (h nu <= 7 eV) that selectively creates anion excitons and radiative defects in the anion sublattice. Having used the previously established connection between thermoactivated processes such as thermostimulated exoemission, electroconductivity, and luminescence in the irradiated crystal lattice, the concentrations of exoemission-active centers (EAC) and kinetics parameters of TSEE are calculated. The EAC concentration calculated on a base of the bulk, thermoactivated-recombinational, and band-gap Auger-like exoemission mechanisms, are in satisfactory agreement with the concentration of electron color centers in the irradiated crystals.

  18. Video Toroid Cavity Imager

    Energy Technology Data Exchange (ETDEWEB)

    Gerald, Rex E. II; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  19. Toroidal nuclear fusion device

    International Nuclear Information System (INIS)

    Ito, Yutaka; Kasahara, Tatsuo; Takizawa, Teruhiro.

    1975-01-01

    Object: To design a device so as to be formed into a large-size and to arrange ports, through which neutral particles enter, in inclined fashion. Structure: Toroidal coils are wound about vacuum vessels which are divided into plural number. In the outer periphery of the vacuum vessels, ports are disposed inclined in the peripheral direction of the vacuum vessels and communicated with the vacuum vessels, and wall surfaces opposed to the ports of the toroidal coils adjacent at least the inclined sides of the ports are inclined substantially simularly to the port wall surfaces. (Kamimura, M.)

  20. Toroidal Extrap Equilibria

    International Nuclear Information System (INIS)

    Scheffel, J.

    1982-04-01

    Ideal MHD-equilibria for the toroidal EXTRAP configuration have been computed with an equilibrium code. The free-boundary prob- lem is solved by using the condition that the current density is proportional to r on a flux surface. It is found that the toroidal Z-pinch, initially induced in the central zero-field region of a transverse octupole field, drifts radially outwards producing an inverse -D shaped cross-section. The plasma current of this high- beta equilibrium may be increased if the plasma is pushed back by altering the external confining magnetic field as demonstrated. (Author)

  1. Change of elastic constants induced by point defects in hop crystals

    International Nuclear Information System (INIS)

    Tome, C.

    1979-10-01

    An approximate model is developed to calculate the change of elastic constants induced by point defects in hcp metals, supposed the defect configuration is known. General expressions relating the change of elastic moduli to the final atomic coordinates and to the defect force field are derived using the specific symmetry of the defect. Explicit calculations are done for Mg. The predicted change of elastic moduli turns out to be negative for vacancies and trigonal interstitials while for hexagonal interstitials a positive change is predicted. Compatibility with experimental data would suggest that the trigonal configuration is the stable one. (author)

  2. Toroidal drift magnetic pumping

    International Nuclear Information System (INIS)

    Canobbio, E.

    1977-01-01

    A set of azimuthal coils which carry properly dephased rf-currents in the KHz frequency range can be used to heat toroidal plasmas by perpendicular Landau damping of subsonic Alfven waves. The heating mechanism and the rf-field structure are discussed in some detail

  3. BDA: A novel method for identifying defects in body-centered cubic crystals.

    Science.gov (United States)

    Möller, Johannes J; Bitzek, Erik

    2016-01-01

    The accurate and fast identification of crystallographic defects plays a key role for the analysis of atomistic simulation output data. For face-centered cubic (fcc) metals, most existing structure analysis tools allow for the direct distinction of common defects, such as stacking faults or certain low-index surfaces. For body-centered cubic (bcc) metals, on the other hand, a robust way to identify such defects is currently not easily available. We therefore introduce a new method for analyzing atomistic configurations of bcc metals, the BCC Defect Analysis (BDA). It uses existing structure analysis algorithms and combines their results to uniquely distinguish between typical defects in bcc metals. In essence, the BDA method offers the following features:•Identification of typical defect structures in bcc metals.•Reduction of erroneously identified defects by iterative comparison to the defects in the atom's neighborhood.•Availability as ready-to-use Python script for the widespread visualization tool OVITO [http://ovito.org].

  4. Defect modes caused by twinning in one-dimensional photonic crystals

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Duvillaret, L.; Quemeneur, F.; Kužel, Petr

    2004-01-01

    Roč. 21, č. 3 (2004), s. 548-553 ISSN 0740-3224 Institutional research plan: CEZ:AV0Z1010914 Keywords : photonic structures * twin-defect * defect levels * tuning Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.649, year: 2004

  5. In-plane confinement and waveguiding of surface acoustic waves through line defects in pillars-based phononic crystal

    Directory of Open Access Journals (Sweden)

    Abdelkrim Khelif

    2011-12-01

    Full Text Available We present a theoretical analysis of an in-plane confinement and a waveguiding of surface acoustic waves in pillars-based phononic crystal. The artificial crystal is made up of cylindrical pillars placed on a semi-infinite medium and arranged in a square array. With a well-chosen of the geometrical parameters, this pillars-based system can display two kinds of complete band gaps for guided waves propagating near the surface, a low frequency gap based on locally resonant mode of pillars as well as a higher frequency gap appearing at Bragg scattering regime. In addition, we demonstrate a waveguiding of surface acoustic wave inside an extended linear defect created by removing rows of pillars in the perfect crystal. We discuss the transmission and the polarization of such confined mode appearing in the higher frequency band gap. We highlight the strong similarity of such defect mode and the Rayleigh wave of free surface medium. An efficient finite element analysis is used to simulate the propagation of guided waves through silicon pillars on a silicon substrate.

  6. Time-domain vibrational study on defects in ion-irradiated crystal

    International Nuclear Information System (INIS)

    Kitajima, M.

    2003-01-01

    We have studied the effects of point defects on coherent phonons in ion-implanted bismuth and graphite. Ultrafast dynamics of coherent phonons and photo-generated carriers in the femtosecond time-domain have been investigated by means of pump-probe reflectivity measurements. Point defects are introduced by irradiating graphite with 5 keV He + ions. For Bi the dephasing rate of the A 1g phonon increases linearly with increasing ion dose, which is explained by the additional dephasing process of the coherent phonon originated from scattering of phonons by the defects. For graphite, introduction of the defects enhances the carrier relaxation by opening a decay channel via vacancy-states, which competes efficiently with carrier-phonon scattering. The coherent acoustic phonon relaxation is also accelerated due to an additional scattering by defects. The linear fluence-dependence of the decay rate is understood as scattering of propagating acoustic phonon by single vacancies. (author)

  7. Defect modelling

    International Nuclear Information System (INIS)

    Norgett, M.J.

    1980-01-01

    Calculations, drawing principally on developments at AERE Harwell, of the relaxation about lattice defects are reviewed with emphasis on the techniques required for such calculations. The principles of defect modelling are outlined and various programs developed for defect simulations are discussed. Particular calculations for metals, ionic crystals and oxides, are considered. (UK)

  8. The pinning property of Bi-2212 single crystals with columnar defects

    International Nuclear Information System (INIS)

    Okamura, Kazunori; Kiuchi, Masaru; Otabe, Edmund Soji; Yasuda, Takashi; Matsushita, Teruo; Okayasu, Satoru

    2004-01-01

    It is qualitatively understood that the condensation energy density in oxide superconductors, which is one of the essential parameters for determining their pinning strength, becomes large with increasing dimensionality of the superconductor. However, the condensation energy density has not yet been evaluated quantitatively. Its value can be estimated from the elementary pinning force of a known defect. Columnar defects created by heavy ion irradiation are candidates for being such defects. That is, the size and number density of columnar defects can be given. In addition, it is known that two-dimensional vortices like those in Bi-2212 are forced into three-dimensional states by these defects in a magnetic field parallel to the defects. Thus, the condensation energy density can be estimated from the pinning property of the columnar defects even for two-dimensional superconductors. A similar analysis was performed also for three-dimensional Y-123. A discussion is given of the relationship between the condensation energy density and the anisotropy parameter estimated from measurements of anisotropic resistivity and peak field

  9. Phase time delay and Hartman effect in a one-dimensional photonic crystal with four-level atomic defect layer

    Science.gov (United States)

    Jamil, Rabia; Ali, Abu Bakar; Abbas, Muqaddar; Badshah, Fazal; Qamar, Sajid

    2017-08-01

    The Hartman effect is revisited using a Gaussian beam incident on a one-dimensional photonic crystal (1DPC) having a defect layer doped with four-level atoms. It is considered that each atom of the defect layer interacts with three driving fields, whereas a Gaussian beam of width w is used as a probe light to study Hartman effect. The atom-field interaction inside the defect layer exhibits electromagnetically induced transparency (EIT). The 1DPC acts as positive index material (PIM) and negative index material (NIM) corresponding to the normal and anomalous dispersion of the defect layer, respectively, via control of the phase associated with the driving fields and probe detuning. The positive and negative Hartman effects are noticed for PIM and NIM, respectively, via control of the relative phase corresponding to the driving fields and probe detuning. The advantage of using four-level EIT system is that a much smaller absorption of the transmitted beam occurs as compared to three-level EIT system corresponding to the anomalous dispersion, leading to negative Hartman effect.

  10. Peculiarities of defect formation in InP single crystals doped with donor (S, Ge) and acceptor (Zn) impurities

    International Nuclear Information System (INIS)

    Morozov, A.N.; Mikryukova, E.V.; Bublik, V.T.; Berkova, A.V.; Nashel'skij, A.Ya.; Yakobson, S.V.

    1988-01-01

    Effect of alloying with donor (S,Ge) and acceptor (Zn) impurities on the concentration of proper point defects in monocrystals InP grown up from equiatomic (relative to In and P) melts by the Czochralski method under flux layer is investigated. Changes in boundary positions of the InP homogeneity region caused by alloying are analysed on the basis of experimental results according to the precision measurement of the lattice parameter and crystal density, as well as measurements of the Hall concentration of charge carriers and their mobility. The concentrations of Frenkel nonequilibrium (V in -In i ) defects formed in the initial stage of indium solid solution decomposition in InP are estimated

  11. Native defect changes in CdS single crystal platelets induced by vacuum heat treatments at temperatures up to 600/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Christmann, M H; Dierssen, G H; Salmon, O N; Taylor, A L; Thom, W H

    1975-12-01

    Physical properties of selected CdS single crystal platelets as-grown and after vacuum heat treatments at temperatures up to 600/sup 0/C were studied using uv excited edge emission, mass spectrometry, electrical resistivity, and electron paramagnetic resonance (EPR). It was found that sulfur leaves the crystal at temperatures as low as 100/sup 0/C creating a depletion layer. The native defect changes were monitored by edge emission studies at 4.2/sup 0/K in combination with etch treatments. The defect structure throughout the crystal is not only dependent upon the temperature and atmosphere of the treatments, but is also strongly dependent upon the cooling rate. (auth)

  12. Influence of microgravity on Ce-doped Bi12 SiO20 crystal defect

    Indian Academy of Sciences (India)

    TECS

    studied by comparing space grown BSO crystal with ground grown one. These results show ... fractive properties (Aldrich et al 1971; Peltier and. Micheron ... The shape of interface changes from concave to convex by suppressing ... cations. Figure 1. Parts of Ce doped BSO crystals: (a) space growth and (b) ground growth.

  13. Periodic order and defects in Ni-based inverse opal-like crystals on the mesoscopic and atomic scale

    OpenAIRE

    Chumakova, A. V.; Valkovskiy, G. A.; Mistonov, A. A.; Dyadkin, V. A.; Grigoryeva, N. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Petukhov, Andrei V.; Grigoriev, S. V.

    2014-01-01

    The structure of inverse opal crystals based on nickel was probed on the mesoscopic and atomic levels by a set of complementary techniques such as scanning electron microscopy and synchrotron microradian and wide-angle diffraction. The microradian diffraction revealed the mesoscopic-scale face-centered-cubic (fcc) ordering of spherical voids in the inverse opal-like structure with unit cell dimension of 750±10nm. The diffuse scattering data were used to map defects in the fcc structure as a f...

  14. Simultaneous sensing of light and sound velocities of fluids in a two-dimensional phoXonic crystal with defects

    Energy Technology Data Exchange (ETDEWEB)

    Amoudache, Samira [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria); Pennec, Yan, E-mail: yan.pennec@univ-lille1.fr; Djafari Rouhani, Bahram [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Khater, Antoine [Institut des Molécules et Matériaux du Mans UMR 6283 CNRS, Université du Maine, 72085 Le Mans (France); Lucklum, Ralf [Institute of Micro and Sensor Systems (IMOS), Otto-von-Guericke-University, Magdeburg (Germany); Tigrine, Rachid [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria)

    2014-04-07

    We theoretically investigate the potentiality of dual phononic-photonic (the so-called phoxonic) crystals for liquid sensing applications. We study the transmission through a two-dimensional (2D) crystal made of infinite cylindrical holes in a silicon substrate, where one row of holes oriented perpendicular to the propagation direction is filled with a liquid. The infiltrated holes may have a different radius than the regular holes. We show, in the defect structure, the existence of well-defined features (peaks or dips) in the transmission spectra of acoustic and optical waves and estimate their sensitivity to the sound and light velocity of the analyte. Some of the geometrical requirements behave in opposite directions when searching for an efficient sensing of either sound or light velocities. Hence, a compromise in the choice of the parameters may become necessary in making the phoxonic sensor.

  15. Luminescence and photothermally stimulated defects creation processes in PbWO4:La3+, Y3+ (PWO II) crystals

    International Nuclear Information System (INIS)

    Auffray, E.; Korjik, M.; Zazubovich, S.

    2015-01-01

    Photoluminescence and thermally stimulated luminescence (TSL) are studied for a PbWO 4 crystal grown by the Czochralski method at Bogoroditsk Technical Chemical Plant, Russia from the melt with a precise tuning of the stoichiometry and co-doped with La 3+ and Y 3+ ions (the PWO II crystal). Photothermally stimulated processes of electron and hole centers creation under selective UV irradiation of this crystal in the 3.5–5.0 eV energy range and the 85–205 K temperature range are clarified and the optically created electron and hole centers are identified. The electrons in PWO II are mainly trapped at the (WO 4 ) 2− groups located close to single La 3+ and Y 3+ ions, producing the electron {(WO 4 ) 3− –La 3+ } and {(WO 4 ) 3− –Y 3+ } centers. The holes are mainly trapped at the regular oxygen ions O 2− located close to La 3+ and Y 3+ ions associated with lead vacancies, producing the hole O − (I)-type centers. No evidence of single-vacancy-related centers has been observed in PWO II. The data obtained indicate that excellent scintillation characteristics of the PWO II crystal can be explained by a negligible concentration of single (non-compensated) oxygen and lead vacancies as the traps for electrons and holes, respectively. - Highlights: • Photoluminescence of the PbWO 4 :La 3+ , Y 3+ (PWO II) crystal is investigated. • Creation of defects under UV irradiation of PWO II is studied by TSL. • Origin of dominating electron and hole centers is ascertained. • Concentration of single-vacancy-related centers is found to be negligible. • Excellent scintillation characteristics of the PWO II crystal are explained.

  16. Toroidal Thermonuclear device

    International Nuclear Information System (INIS)

    Takizawa, Teruhiro; Shizuoka, Yoshihide.

    1982-01-01

    Purpose: To reduce the shielding capacity of a current breaker for a current transformer coil and to facilitate the manufacture and the assembly of the current transformer coil. Constitution: A first current transformer coil is provided between a vacuum container for enclosing a plasma and a toroidal magnetic field coil, and a secon current transformer coil is provided outside the toroidal magnetic field coil. The rise of the plasma current is performed by the variation in the current of the coil of the first transformer having high electromagnetic coupling with the plasma current, and the variation in the magnetic flux necessary for maintaining the plasma is performed by the variation in the current of the second transformer coil. In this manner, the current shielding capacity of the first transformer coil can be reduced to decrease the number of coil turns, thereby facilitating the manufacture and assembly. (Seki, T.)

  17. Heating in toroidal plasmas

    International Nuclear Information System (INIS)

    Knoepfel, H.; Mazzitelli, G.

    1984-01-01

    The article is a rather detailed report on the highlights in the area of the ''Heating in toroidal plasmas'', as derived from the presentations and discussions at the international symposium with the same name, held in Rome, March 1984. The symposium covered both the physics (experiments and theory) and technology of toroidal fusion plasma heating. Both large fusion devices (either already in operation or near completion) requiring auxiliary heating systems at the level of tens of megawatts, as well as physics of their heating processes and their induced side effects (as studied on smaller devices), received attention. Substantial progress was reported on the broad front of auxiliary plasma heating and Ohmic heating. The presentation of the main conclusions of the symposium is divided under the following topics: neutral-beam heating, Alfven wave heating, ion cyclotron heating, lower hybrid heating, RF current drive, electron cyclotron heating, Ohmic heating and special contributions

  18. Heating in toroidal plasmas

    International Nuclear Information System (INIS)

    Canobbio, E.

    1981-01-01

    This paper reports on the 2nd Joint Grenoble-Varenna International Symposium on Heating in Toroidal Plasmas, held at Como, Italy, from the 3-12 September 1980. Important problems in relation to the different existing processes of heating. The plasma were identified and discussed. Among others, the main processes discussed were: a) neutral beam heating, b) ion-(electron)-cyclotron resonance heating, c) hybrid resonance and low frequency heating

  19. Tokamak with liquid metal toroidal field coil

    International Nuclear Information System (INIS)

    Ohkawa, T.; Schaffer, M.J.

    1981-01-01

    Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof

  20. Interacting Frenkel defects at high concentration and the superionic transition in fluorite crystals

    International Nuclear Information System (INIS)

    March, N.H.; Tosi, M.P.

    1980-11-01

    A spherical cell model is proposed to account for the explicit concentration dependence of Frenkel defects in an ionic system. In the model, the linearized Debye-Hueckel equation is soluble exactly, subject to the boundary condition that the electric field is zero at the cell boundary R, related to the concentration α of defects by R proportional to csup(-1/3). This screened field is used to calculate the chemical potential, which in turn leads to a condition for the instability of the interacting defect assembly. This condition allows one to calculate the enhancement of the concentration of defects above its Arrhenius value at the point of instability in terms of (a) the critical concentration csub(c), (b) a/R, where a is the radius of defect and (c) the Debye-Hueckel screening length kappasub(c). It is clear from the cell model that this enhancement factor is reduced somewhat in the relevant range of parameters in some of the fluorites from its value in extended Debye-Hueckel theory. It is anticipated that the instability discussed here should afford an upper bound to csub(c) at the superionic transition, within the range of validity of the model. The excess he at capacity csub(p) is also discussed briefly. (author)

  1. Surface defect free growth of a spin dimer TlCuCl{sub 3} compound crystals and investigations on its optical and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Gihun, E-mail: G.Ryu@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Son, Kwanghyo [Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569 Stuttgart (Germany)

    2016-05-15

    A defect-free high quality single crystal of spin dimer TlCuCl{sub 3} compound is firstly synthesized at the optimal growth temperature using the vertical Bridgman method. In this study, we clearly found that the cupric chloride is easily decomposed into the Cl{sup −} deficient composition at ≥470 °C. The Cl{sup −}- related gas phase at the high temperature region also always gives rise to a pinhole-like surface defect at the surface of crystal. Therefore, we clearly verified an exotic anisotropic magnetic behavior (anisotropic ratio of M{sub b}/M{sub (201)} at 2 K, 7 T=10) using the defect-free TlCuCl{sub 3} crystals in this three-dimensional spin dimer TlCuCl{sub 3} compound, relatively stronger magnetic ordering in the H//b than that of H//(201) direction at above the transition magnetic field. - Graphical abstract: A single crystal of spin dimer TlCuCl{sub 3} compound with a defect free is successfully synthesized on the basis of TG/DTA result. We newly found that this cupric chloride compound is easily decomposed into the Cl{sup −} deficient composition at ≥470 °C and Cl{sup −} related gas phases also give rise to the defects like a pinhole on the surface of TlCuCl{sub 3} crystal. Using the crystals with a surface defect free, we also clearly verified the crystal structure of spin dimer TlCuCl{sub 3} compound.

  2. Influence of crystal defects on the chemical reactivity of recoil atoms in oxygen-containing chromium compounds

    International Nuclear Information System (INIS)

    Costea, T.

    1969-01-01

    The influence of crystal defects on the chemical reactivity of recoil atoms produced by the reaction 50 Cr (n,γ) 51 Cr in oxygen-containing chromium compounds has been studied. Three methods have been used to introduce the defects: doping (K 2 CrO 4 doped with BaCrO 4 ), irradiation by ionizing radiation (K 2 CrO 4 irradiated in the presence of Li 2 CO 3 ) and non-stoichiometry (the semi-conducting oxides of the CrO 3 -Cr 2 O 3 series). The thermal annealing kinetics of the irradiated samples have been determined, and the activation energy has been calculated. In all cases it has been observed that there is a decrease in the activation energy for thermal annealing in the presence of the defects. In order to explain the annealing process, an electronic mechanism has been proposed based on the interaction between the recoil species and the charge-carriers (holes or electrons). (author) [fr

  3. Correlation Between the Microstructural Defects and Residual Stress in a Single Crystal Nickel-Based Superalloy During Different Creep Stages

    Science.gov (United States)

    Mo, Fangjie; Wu, Erdong; Zhang, Changsheng; Wang, Hong; Zhong, Zhengye; Zhang, Jian; Chen, Bo; Hofmann, Michael; Gan, Weimin; Sun, Guangai

    2018-03-01

    The present work attempts to reveal the correlation between the microstructural defects and residual stress in the single crystal nickel-based superalloy, both of which play the significant role on properties and performance. Neutron diffraction was employed to investigate the microstructural defects and residual stresses in a single crystal (SC) nickel-based superalloy, which was subjected to creeping under 220 MPa and 1000 °C for different times. The measured superlattice and fundamental lattice reflections confirm that the mismatch and tetragonal distortions with c/a > 1 exist in the SC superalloy. At the initially unstrained state, there exists the angular distortion between γ and γ' phases with small triaxial compressive stresses, ensuring the structural stability of the superalloy. After creeping, the tetragonal distortion for the γ phase is larger than that for the γ' phase. With increasing the creeping time, the mismatch between γ and γ' phases increases to the maximum, then decreases gradually and finally remains unchanged. The macroscopic residual stress shows a similar behavior with the mismatch, indicating the correlation between them. Based on the model of shear and dislocations, the evolution of microstructural defects and residual stress are reasonably explained. The effect of shear is dominant at the primary creep stage, which greatly enlarges the mismatch and the residual stress. The dislocations weaken the effect of shear for the further creep stage, resulting in the decrease of the mismatch and relaxation of the residual stress. Those findings add some helpful understanding into the microstructure-performance relationship in the SC nickel-based superalloy, which might provide the insight to materials design and applications.

  4. Superconducting endcap toroid design report

    Energy Technology Data Exchange (ETDEWEB)

    Walters, C.R.; Baynham, D.E.; Holtom, E.; Coombs, R.C.

    1992-10-01

    The Atlas Experiment proposed for the LHC machine will use toroidal magnet systems to achieve high muon momentum resolutions. One of the options under consideration is an air cored superconducting toroidal magnet system consisting of a long barrel toroid with small and cap toroids inserted in it to provide high resolution at high pseudorapidity. The design of the barrel toroid has been studied over the past two years and the design outline is given in a Saclay Report. More recently consideration has been given to an end cap toroid system which is based on air cored superconducting coils. This report presents the basic engineering design of such a system, the proposals for fabrication, assembly and installation, and an outline cost estimate for one end cap is presented in Appendix 1.

  5. Supporting device for Toroidal coils

    International Nuclear Information System (INIS)

    Araki, Takao.

    1985-01-01

    Purpose: To reduce the response of a toroidal coil supporting device upon earthquakes and improve the earthquake proofness in a tokamak type thermonuclear device. Constitution: Structural materials having large longitudinal modulus and enduring great stresses, for example, stainless steels are used as the toroidal coil supporting legs and heat insulating structural materials are embedded in a nuclear reactor base mats below the supporting legs. Furthermore, heat insulating concretes are spiked around the heat insulating structural materials to prevent the intrusion of heat to the toroidal coils. The toroidal coils are kept at cryogenic state and superconductive state for the conductors. In this way, the period of proper vibrations of the toroidal coils and the toroidal coil supporting structures can be shortened thereby decreasing the seismic response. Furthermore, since the strength of the supporting legs is increased, the earthquake proofness of the coils can be improved. (Kamimura, M.)

  6. Modeling local structure using crystal field and spin Hamiltonian parameters: the tetragonal FeK3+-OI2- defect center in KTaO3 crystal

    International Nuclear Information System (INIS)

    Gnutek, P; Rudowicz, C; Yang, Z Y

    2009-01-01

    The local structure and the spin Hamiltonian (SH) parameters, including the zero-field-splitting (ZFS) parameters D and (a+2F/3), and the Zeeman g factors g || and g perpendicular , are theoretically investigated for the Fe K 3+ -O I 2- center in KTaO 3 crystal. The microscopic SH (MSH) parameters are modeled within the framework of the crystal field (CF) theory employing the CF analysis (CFA) package, which also incorporates the MSH modules. Our approach takes into account the spin-orbit interaction as well as the spin-spin and spin-other-orbit interactions omitted in previous studies. The superposition model (SPM) calculations are carried out to provide input CF parameters for the CFA/MSH package. The combined SPM-CFA/MSH approach is used to consider various structural models for the Fe K 3+ -O I 2- defect center in KTaO 3 . This modeling reveals that the off-center displacement of the Fe 3+ ions, Δ 1 (Fe 3+ ), combined with an inward relaxation of the nearest oxygen ligands, Δ 2 (O 2- ), and the existence of the interstitial oxygen O I 2- give rise to a strong tetragonal crystal field. This finding may explain the large ZFS experimentally observed for the Fe K 3+ -O I 2- center in KTaO 3 . Matching the theoretical MSH predictions with the available structural data as well as electron magnetic resonance (EMR) and optical spectroscopy data enables predicting reasonable ranges of values of Δ 1 (Fe 3+ ) and Δ 2 (O 2- ) as well as the possible location of O I 2- ligands around Fe 3+ ions in KTaO 3 . The defect structure model obtained using the SPM-CFA/MSH approach reproduces very well the ranges of the experimental SH parameters D, g || and g perpendicular and importantly yields not only the correct magnitude of D but also the sign, unlike previous studies. More reliable predictions may be achieved when experimental data on (a+2F/3) and/or crystal field energy levels become available. Comparison of our results with those arising from alternative models existing

  7. Time-domain terahertz study of defect formation in one-dimensional photonic crystals

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Kužel, Petr; Garet, F.; Duvillaret, L.

    2004-01-01

    Roč. 43, č. 9 (2004), s. 1965-1970 ISSN 0003-6935 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z1010914 Keywords : terhertz spectroscopy * photonic structure * reflectance phase * twinning defect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.799, year: 2004

  8. Laser profiling of defects in BaWO.sub.4./sub. crystals

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Boháček, Pavel; Nikl, Martin

    2012-01-01

    Roč. 23, č. 8 (2012), 1-4 ISSN 0957-0233 R&D Projects: GA MŠk LH12236; GA MŠk LH12186 Institutional research plan: CEZ:AV0Z10100521 Keywords : barium tungstate * laser scattering * defects * Czochralski method Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.435, year: 2012

  9. Periodic order and defects in Ni-based inverse opal-like crystals on the mesoscopic and atomic scale

    Science.gov (United States)

    Chumakova, A. V.; Valkovskiy, G. A.; Mistonov, A. A.; Dyadkin, V. A.; Grigoryeva, N. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Petukhov, A. V.; Grigoriev, S. V.

    2014-10-01

    The structure of inverse opal crystals based on nickel was probed on the mesoscopic and atomic levels by a set of complementary techniques such as scanning electron microscopy and synchrotron microradian and wide-angle diffraction. The microradian diffraction revealed the mesoscopic-scale face-centered-cubic (fcc) ordering of spherical voids in the inverse opal-like structure with unit cell dimension of 750±10nm. The diffuse scattering data were used to map defects in the fcc structure as a function of the number of layers in the Ni inverse opal-like structure. The average lateral size of mesoscopic domains is found to be independent of the number of layers. 3D reconstruction of the reciprocal space for the inverse opal crystals with different thickness provided an indirect study of original opal templates in a depth-resolved way. The microstructure and thermal response of the framework of the porous inverse opal crystal was examined using wide-angle powder x-ray diffraction. This artificial porous structure is built from nickel crystallites possessing stacking faults and dislocations peculiar for the nickel thin films.

  10. Crystal structure of tveitite-(Y): Fractionation of rare-earth elements between positions and the variety of defects

    International Nuclear Information System (INIS)

    Yakubovich, O. V.; Massa, W.; Pekov, I. V.; Gavrilenko, P. G.

    2007-01-01

    The crystal structure of the mineral tveitite-(Y) (Y 0.883 Na 0.106 ) (Ca 0.841 LREE 0.159 )(Ca 0.716 Na 0.204 HREE 0.080 )(Ca 0.092 Na 0.074 )F 6.952 from amazonite pegmatites of Rov-Gora Mountain (Keivy, Kola Peninsula) is determined using X-ray diffraction (Stoe IPDS diffractometer, λMoK α , graphite monochromator, 2θ max = 63.5 o , R = 0.051 for 1542 reflections). The main crystal data are as follows: a = 17.020(2) A, c = 9.679(2) A, V = 2428.2(4) A 3 , space group R3-bar, Z = 18, and ρ calcd = 4.00 g/cm 3 . The idealized structural formula of the mineral is represented as (Y,Na) 6 (Ca,LREE) 6 (Ca,Na,HREE) 6 (Ca,Na)F 42 (Z = 3). The defect structure of the mineral manifests itself in a mixed occupation of all four independent cation positions and in a randomly disordered distribution of fluorine atoms over the majority of anion positions. It is shown that the crystal structure of tveitite-(Y) fulfills the function of an 'Eratosthenes sieve' for yttrium cations and two groups of lanthanide cations, so that these cations are distributed over three different positions.

  11. Anisotropic frictional heating and defect generation in cyclotrimethylene-trinitramine molecular crystals

    Science.gov (United States)

    Rajak, Pankaj; Mishra, Ankit; Sheng, Chunyang; Tiwari, Subodh; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2018-05-01

    Anisotropic frictional response and corresponding heating in cyclotrimethylene-trinitramine molecular crystals are studied using molecular dynamics simulations. The nature of damage and temperature rise due to frictional forces is monitored along different sliding directions on the primary slip plane, (010), and on non-slip planes, (100) and (001). Correlations between the friction coefficient, deformation, and frictional heating are established. We find that the friction coefficients on slip planes are smaller than those on non-slip planes. In response to sliding on a slip plane, the crystal deforms easily via dislocation generation and shows less heating. On non-slip planes, due to the inability of the crystal to deform via dislocation generation, a large damage zone is formed just below the contact area, accompanied by the change in the molecular ring conformation from chair to boat/half-boat. This in turn leads to a large temperature rise below the contact area.

  12. Neoclassical transport in toroidal systems

    International Nuclear Information System (INIS)

    Wobig, H.

    1992-01-01

    The neoclassical theory of general toroidal equilibria is reformulated. The toroidal equilibrium of tokamaks and stellarators are described in Hamada coordinates. The relevant geometrical parameters are identified and it is shown how the reduction of Pfirsch-Schluter currents affects neoclassical transport and bootstrap effects. General flux-friction relations between thermodynamic forces and fluxes are derived. In drift-kinetic approximation the neoclassical transport coefficients are Onsager symmetric. Since a toroidal loop voltage is included, the theory is valid for all toroidal systems. (Author)

  13. Defects in Czochralski-grown silicon crystals investigated by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Ikari, Atsushi; Kawakami, Kazuto; Haga, Hiroyo [Nippon Steel Corp., Sagamihara, Kanagawa (Japan). Electronics Research Labs.; Uedono, Akira; Wei, Long; Kawano, Takao; Tanigawa, Shoichiro

    1994-10-01

    Positron lifetime and Doppler broadening experiments were performed on Czochralski-grown silicon crystals. A monoenergetic positron beam was also used to measure the diffusion length of positrons in the wafer. From the measurements, it was observed that the value of diffusion length of positrons decreased at the region where microdefects were formed during the crystal growth process. It was also found that the line shape parameter S decreased and the lifetime of positrons increased at the region. These results can be attributed to the annihilation of positrons trapped by vacancy oxygen complexes which are formed in association with the microdefects. (author).

  14. Toroidal simulation magnet tests

    International Nuclear Information System (INIS)

    Walstrom, P.L.; Domm, T.C.

    1975-01-01

    A number of different schemes for testing superconducting coils in a simulated tokamak environment are analyzed for their merits relative to a set of test criteria. Two of the concepts are examined in more detail: the so-called cluster test scheme, which employs two large background field coils, one on either side of the test coil, and the compact torus, a low-aspect ratio toroidal array of a small number of coils in which all of the coils are essentially test coils. Simulation of the pulsed fields of the tokamak is discussed briefly

  15. Correction for the twist and the conical defects of a sagittaly bent crystal

    CERN Document Server

    Ferrer, J L

    1999-01-01

    The symmetrical bending of the focusing crystal of a double X-ray monochromator is a difficult problem. Indeed, the slope due to the curvature is usually three orders of magnitude higher than the accepted slope error (typically, the Darwin width of the crystal). In these conditions, even a low parasitic slope error induced by the bending process may lead to quite a strong intensity decrease. When the bending moment is applied, the main parasitic distortions which may appear are typically the anticlastic curvature, the inhomogeneous sagittal curvature, the conical shape and the twist. On the D2AM beamline at the ESRF, a program called CHKC2 has been developed to correct on-line the latter two distortions: the conical shape and the twist. On this beamline the X-ray beam, which has been collimated by a grazing angle mirror, is monochromatized first by a flat silicon crystal, and then diffracted by the sagittaly curved crystal. A fluorescent screen gives an image of this diffracted beam. The CHKC2 program records...

  16. Defect characterization of Ga4Se3S layered single crystals by ...

    Indian Academy of Sciences (India)

    Trapping centres in undoped Ga 4 Se 3 S single crystals grown by Bridgman method were characterized for the first time by thermoluminescence (TL) measurements carried out in the low temperature range of 15−300 K. After illuminating the sample with blue light (∼470 nm) at 15 K, TL glow curve exhibited one peak ...

  17. Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Johnson, R.L.

    1985-01-01

    The Advanced Toroidal Facility (ATF) is a new magnetic confinement plasma device under construction at the Oak Ridge National Laboratory (ORNL) that will lead to improvements in toroidal magnetic fusion reactors. The ATF is a type of stellerator, known as a ''torsatron'' which theoretically has the capability to operate at greater than or equal to8% beta in steady state. The ATF plasma has a major radius of 2.1 m, an average minor radius of 0.3 m, and a field of 2 T for a 2 s duration or 1 T steady state. The ATF device consists of a helical field (HF) coil set, a set of poloidal field (PF) coils, an exterior shell structure to support the coils, and a thin, helically contoured vacuum vessel inside the coils. The ATF replaces the Impurities Studies Experiment (ISX-B) tokamak at ORNL and will use the ISX-B auxiliary systems including 4 MW of electron cyclotron heating. The ATF is scheduled to start operation in late 1986. An overview of the ATF device is presented, including details of the construction process envisioned. 9 refs., 7 figs., 3 tabs

  18. Advanced Toroidal Facility (ATF)

    International Nuclear Information System (INIS)

    Thompson, P.B.

    1985-01-01

    The Advanced Toroidal Facility (ATF) is a new magnetic plasma confinement device, under construction at Oak Ridge National Laboratory (ORNL), which will lead to improvements in toroidal magnetic fusion reactors. ATF is a type of stellarator known as a torsatron which theoretically has the capability at greater than or equal to8% beta in steady state. The ATF plasma has a major radius of 2.1 m, an average minor radius of 0.3 m, and a field of 2 T for a 5-s duration or 1 T steady state. The ATF device consists of a helical field (HF) coil set, a set of poloidal field (PF) coils, an exterior shell structure to support the coils, and a thin helically contoured vacuum vessel inside the coils. The ATF replaces the ISX-B tokamak at ORNL and will use the ISX-B auxiliary systems including 4 MW of neutral injection heating and 0.2 MW of electron cyclotron heating. ATF device is scheduled to start operation in the fall of 1986. An overview of the ATF device is presented including details of the construction process envisioned

  19. Defect types and room temperature ferromagnetism in N-doped rutile TiO2 single crystals

    Science.gov (United States)

    Qin, Xiu-Bo; Li, Dong-Xiang; Li, Rui-Qin; Zhang, Peng; Li, Yu-Xiao; Wang, Bao-Yi

    2014-06-01

    The magnetic properties and defect types of virgin and N-doped TiO2 single crystals are probed by superconducting quantum interference device (SQUID), X-ray photoelectron spectroscopy (XPS), and positron annihilation analysis (PAS). Upon N doping, a twofold enhancement of the saturation magnetization is observed. Apparently, this enhancement is not related to an increase in oxygen vacancy, rather to unpaired 3d electrons in Ti3+, arising from titanium vacancies and the replacement of O with N atoms in the rutile structure. The production of titanium vacancies can enhance the room temperature ferromagnetism (RTFM), and substitution of O with N is the onset of ferromagnetism by inducing relatively strong ferromagnetic ordering.

  20. The influence of defect drift in external electric field on green luminescence of ZnO single crystals

    International Nuclear Information System (INIS)

    Korsunska, N.O.; Borkovska, L.V.; Bulakh, B.M.; Khomenkova, L.Yu.; Kushnirenko, V.I.; Markevich, I.V.

    2003-01-01

    In nominally undoped Zn O single crystals, the influence of electric field on photoluminescence in visible wavelength range was investigated. A well-known broad unstructured band consisting of green and orange ones was observed. It was found that the action of direct electric field of about 100 V/cm at 600-700 deg. C resulted in the increase of green band intensity near the cathode and its decrease near the anode, while orange band intensity was not influenced by this treatment. The redistribution of green band intensity along the sample under electric field is accounted for by drift of zinc interstitials from the anode to the cathode. It is supposed that emitting centres responsible for green luminescence are complex defects including zinc interstitials

  1. One-dimensional photonic crystals with highly Bi-substituted iron garnet defect in reflection polar geometry

    International Nuclear Information System (INIS)

    Mikhailova, T V; Berzhansky, V N; Karavainikov, A V; Shaposhnikov, A N; Prokopov, A R; Lyashko, S D

    2016-01-01

    It is represented the results of modelling of magnetooptical properties in reflection polar geometry of one-dimensional photonic crystal, in which highly Bi-substituted iron garnet defect of composition Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 A l0.8 O 12 / Bi 2.8 Y 0.2 Fe 5 Oi 2 is located between the dielectric Bragg mirrors (SiO 2 / TiO 2 ) m (were m is number of layer pairs) and buffer SiO 2 and gold top layers of different thicknesses is placed on structure. The modification of spectral line- shapes of microcavity and Tamm plasmon-polariton modes depending on m is found. (paper)

  2. Critical current, pinning and resistive state of superconducting single-crystal niobium with different types of defect structure

    International Nuclear Information System (INIS)

    Sokolenko, V.I.; Starodubov, Ya.D.

    2005-01-01

    Critical current pinning and resistive state of single crystal niobium of texture orientation are studied for different structural states obtained by rolling at 20 K by 42% and polishing the surface layers. It is found that the heterogeneous structures typical of the strained sample even after its thinning down to approx 10% display a lower current-carrying capability due to an increase of the thermomagnetic instability within the fragmented structure sections in the near-surface layers. For a homogeneous defect structure of the sample core with the density of equilibrium distributed dislocations of 1.3 centre dot 10 11 cm -2 , a correlation between the normal current density and the critical current density in the resistive state is found, in agreement with the concepts of flux creep due to the scatter of local values of J c

  3. Quantum mechanics of toroidal anions

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.

    1990-01-01

    We consider a toroidal solenoid with an electric charge attached to it. It turns out that statistical properties of the wave function describing interacting toroidal anions depend on both their relative position and orientation. The influence of the particular gauge choice on the exchange properties of the wave function is studied. 30 refs.; 6 figs

  4. To the theory of X-ray and electron dynamic scattering in defect-containing crystals

    International Nuclear Information System (INIS)

    Chukhovskij, F.N.

    1982-01-01

    The novel approach to the X-ray and electron dynamic scattering theory based on the dynamic equations ''in the dispersion surface representation'' is formulated. The formally exact solution of two-wave diffraction scattering problem is obtained using the scattering matrix, the obvious expression for which is found. The general formulae describing the plane wave diffraction scattering in absorbing crystals in the weak distortion range has been obtained. The formulae allows one to determine the total change sign of the displacement function Δα(x,y)=2πg vectorx(R vector (r vector) 1 -R vector(r vector) 2 ) on the base of the known sign of the mean deflection magnitude in a crystal as a whole from the exact Bragg position (g vector - the inverse lattice vector, R vector - the displacement field vector, t - the crystal thickness, R vector(r vector) 1 =R vector (r) ar z=t, R vector(r vector) 2 =R(r) at z=0). In the quasiclassical approximation the formation of the diffraction image of a dislocation positioned in such a way that the dislocation axis is parallel to the diffraction reflection vector is considered for the incident plane and spherical waves

  5. Interaction of dislocations and point defects in high-purity molybdenum single crystals

    International Nuclear Information System (INIS)

    Polotskij, I.G.; Benieva, T.Ya.; Golub, T.V.

    1975-01-01

    The effect of the interstitial atoms distribution on dislocations mobility in extra pure molybdenum is studied. The amplitude relationships of the internal fraction were measured, which makes it possible to record energy dissipation associated with dislocation mobility in conditions of microdeformation. It was established that single crystals of extra pure molybdenum subjected to minor plastic deformation (1%) are characterized by high internal friction, which depends on the degree of crystall purification with regard to interstitial admixtures. Annealing at temperatures of 200 - 500 deg reduces the total level of damping and causes appearance of a sharp amplitude relationship. In this case, the reduction of damping is associated with diffusion of the interstitial atoms towards the dislocation line and its fixation. The irreversible nature of the internal friction amplitude relationship after development of high deformation amplitudes is explained by micro-plastic deformation processes. The amplitude. of deformation, after which the internal friction becomes irreversible, increases with the increase of the annealing temperature. The damping-deformation hysteresis reaches its maximum value after heat treatment at middle tempetatures. With the increase of the annealing temperature, the hysteresis becomes less. Thermal activation causes displacement of the critical amplitude corresponding to production of the delta-epsilon hysteresis to the region of lower values. Using the Pagen, Pare and Goben theory the amplitude-dependent internal friction data have been employed for calculation of the activation volume values which characterize the initial stages of plastic flow in extra pure single crystals of molybdenum

  6. A postprocessing method based on chirp Z transform for FDTD calculation of point defect states in two-dimensional phononic crystals

    International Nuclear Information System (INIS)

    Su Xiaoxing; Wang Yuesheng

    2010-01-01

    In this paper, a new postprocessing method for the finite difference time domain (FDTD) calculation of the point defect states in two-dimensional (2D) phononic crystals (PNCs) is developed based on the chirp Z transform (CZT), one of the frequency zooming techniques. The numerical results for the defect states in 2D solid/liquid PNCs with single or double point defects show that compared with the fast Fourier transform (FFT)-based postprocessing method, the method can improve the estimation accuracy of the eigenfrequencies of the point defect states significantly when the FDTD calculation is run with relatively few iterations; and furthermore it can yield the point defect bands without calculating all eigenfrequencies outside the band gaps. The efficiency and accuracy of the FDTD method can be improved significantly with this new postprocessing method.

  7. A postprocessing method based on chirp Z transform for FDTD calculation of point defect states in two-dimensional phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Su Xiaoxing, E-mail: xxsu@bjtu.edu.c [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang Yuesheng [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China)

    2010-09-01

    In this paper, a new postprocessing method for the finite difference time domain (FDTD) calculation of the point defect states in two-dimensional (2D) phononic crystals (PNCs) is developed based on the chirp Z transform (CZT), one of the frequency zooming techniques. The numerical results for the defect states in 2D solid/liquid PNCs with single or double point defects show that compared with the fast Fourier transform (FFT)-based postprocessing method, the method can improve the estimation accuracy of the eigenfrequencies of the point defect states significantly when the FDTD calculation is run with relatively few iterations; and furthermore it can yield the point defect bands without calculating all eigenfrequencies outside the band gaps. The efficiency and accuracy of the FDTD method can be improved significantly with this new postprocessing method.

  8. Device for supporting a toroidal coil in a toroidal type nuclear fusion device

    International Nuclear Information System (INIS)

    Kitazawa, Hakaru; Sato, Hiroshi.

    1975-01-01

    Object: To easily manufacture a center block having a strength sufficient to withstand an electromagnetic force exerted on the center of toroidal of a toroidal coil and to increase its reliability. Structure: In a device for supporting toroidal coils wherein the electromagnetic force exerted on the center of toroidal of a plurality of toroidal coils arranged in toroidal fashion, the contact surface between the toroidal coil and the center block is arranged parallel to the center axis of toroidal so as to receive the electromagnetic force exerted on the center of toroidal of the toroidal coil as the component of force in a radial direction. (Taniai, N.)

  9. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    Science.gov (United States)

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  10. Characterization and crystal defects of the new YBa2Cu3O7-x superconductor

    International Nuclear Information System (INIS)

    Boulesteix, C.; Ben Salem, M.; Mokrani, R.

    1987-01-01

    YBa 2 Cu 3 O 7-x superconductors from different origins have been studied by electron microscopy and X ray emission. This material has an easy clevage plane parallel to (001) making its observation easy. It has been shown that the preparation reaction was not complete for some superconducting materials. YBa 2 Cu 3 O 7-x crystals can be twinned (mechanical twins, ferroelastic material) but they are generally not, or have few twins. Another oxide has been encountered in epitaxial growth on YBa 2 Cu 3 O 7-x . A superlattice perpendicular to the common c axis has been observed probably due to a regular stacking of the both oxides [fr

  11. Anisotropic Defect-Mediated Melting of Two-Dimensional Colloidal Crystals

    Science.gov (United States)

    Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.

    2004-09-01

    The melting transition of anisotropic two-dimensional (2D) crystals is studied in a model system of superparamagnetic colloids. The anisotropy of the induced dipole-dipole interaction is varied by tilting the external magnetic field off the normal to the particle plane. By analyzing the time-dependent Lindemann parameter as well as translational and orientational order we observe a 2D smecticlike phase. The Kosterlitz-Thouless-Halperin-Nelson-Young scenario of isotropic melting is modified: dislocation pairs and dislocations appear with different probabilities depending on their orientation with respect to the in-plane field.

  12. Thermal, defects, mechanical and spectral properties of Nd-doped GdNbO{sub 4} laser crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shoujun [Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, Anhui Province (China); University of Science and Technology of China, Hefei (China); Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Wang, Xiaofei; Sun, Guihua; Li, Xiuli; Sun, Dunlu [Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, Anhui Province (China)

    2017-05-15

    A Nd-doped GdNbO{sub 4} crystal was grown successfully by Czochralski method. Its monoclinic structure was determined by X-ray diffraction; the unit-cell parameters are a = 5.38 Aa, b = 11.09 Aa, c = 5.11 Aa, and β = 94.56 . The morphological defects of Nd:GdNbO{sub 4} crystal were investigated using the chemical etching with the phosphoric acid etchant. For a new crystal, the physical properties are of great importance. The hardness and density of Nd:GdNbO{sub 4} were investigated first. Thermal properties of Nd:GdNbO{sub 4}, including thermal expansion coefficient and specific heat, were measured along a-, b-, and c-crystalline axes. Thermal properties indicate that the Nd:GdNbO{sub 4} pumped along c-axis can reduce the thermal lensing effect effectively. The specific heat is 0.53 J g{sup -1} K{sup -1} at 300 K, indicating a relatively high damage threshold of Nd:GdNbO{sub 4}. The transmission and emission spectrum of Nd:GdNbO{sub 4} were measured, and the absorption peaks were assigned. The strongest emission peak of Nd:GdNbO{sub 4} is located at 1065.3 nm in the spectral range of 850-1420 nm excited by 808 nm laser. The refractive index of Nd:GdNbO{sub 4} was calculated with the transmission spectrum and fitted with Sellmeier equation. All these obtained results is of great significance for the further research of Nd:GdNbO{sub 4}. (orig.)

  13. Luminescence and photo-thermally stimulated defect-creation processes in Bi.sup.3+./sup.-doped single crystals of lead tungstate

    Czech Academy of Sciences Publication Activity Database

    Buryi, Maksym; Boháček, Pavel; Chernenko, K.; Krasnikov, A.; Laguta, Valentyn; Mihóková, Eva; Nikl, Martin; Zazubovich, S.

    2016-01-01

    Roč. 123, č. 5 (2016), 895-910 ISSN 0370-1972 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : defects * EPR * excitons * PbWO 4 :Bi single crystals * photoluminescence * thermoluminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.674, year: 2016

  14. Luminescence and photo-thermally stimulated defect creation processes in PbWO.sub.4./sub.:Mo,La,Y (PWO III) crystals

    Czech Academy of Sciences Publication Activity Database

    Auffray, E.; Korjik, M.; Laguta, Valentyn; Zazubovich, S.

    2015-01-01

    Roč. 252, č. 10 (2015), s. 2259-2267 ISSN 0370-1972 Institutional support: RVO:68378271 Keywords : defects * ESR * PbWO4:Mo * La * Y crystals * photoluminescence * thermoluminescence Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.522, year: 2015

  15. Influence of filling fraction on the defect mode and gap closing of a one-dimensional photonic crystal: An analytical approach

    International Nuclear Information System (INIS)

    Ansari, N.; Tehranchi, M.M.

    2010-01-01

    Study of the optical properties of the one-dimensional defective photonic crystals using the gap map is improving through the emergence of new analytical methods, which are easy and without any physical restrictions. Gap map is able to monitor the changes in the defect mode frequencies and photonic band gap regions as a function of filling fractions, and all visible spectra in a single graphic presentation. In this paper, by utilizing a novel technique based on Green's function method for analyzing the defect modes, the gap map and gap closing point of a one-dimensional defective photonic crystal have been demonstrated. This method enables study of the defect modes inside the omnidirectional band gap, which is an important object in the designing of the optical filters. Moreover, as a designing criterion, obtaining the gap closing points inside the gap map enables finding of some filling fraction intervals that each one contains several distinct omnidirectional band gaps simultaneously, using a single photonic crystal. This method has been employed for the design of an optical filter at 1.3 and 1.55 μm, which is applicable for telecommunication.

  16. Formation and growth of crystal defects in directionally solidified multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryningen, Birgit

    2008-07-01

    Included in this thesis are five publications and one report. The common theme is characterisation of directionally solidified multicrystalline silicon for solar cells. Material characterisation of solar cell silicon is naturally closely linked to both the casting process and to the solar cell processing: Many of the material properties are determined by the casting process, and the solar cell processing will to some extend determine which properties will influence the solar cell performance. Solar grade silicon (SoG-Si) made by metallurgical refining route and supplied by Elkem Solar was directionally solidified and subsequently characterised, and a simple solar cell process was applied. Except from some metallic co-precipitates in the top of the ingot, no abnormalities were found, and it is suggested that within the limits of the tests performed in this thesis, the casting and the solar cell processing, rather than the assumed higher impurity content, was the limiting factor. It is suggested in this thesis that the main quality problem in multicrystalline silicon wafers is the existence of dislocation clusters covering large wafer areas. The clusters will reduce the effect of gettering and even if gettering could be performed successfully, the clusters will still reduce the minority carrier mobility and hence the solar cell performance. It has further been pointed out that ingots solidified under seemingly equal conditions might have a pronounced difference in minority carrier lifetime. Ingots with low minority carrier lifetime have high dislocation densities. The ingots with the substantially higher lifetime seem all to be dominated by twins. It is also found a link between a higher undercooling and the ingots dominated by twins. It is suggested that the two types of ingots are subject to different nucleation and crystal growth mechanisms: For the ingots dominated by dislocations, which are over represented, the crystal growth is randomly nucleated at the

  17. Study of the temperature evolution of defect agglomerates in neutron irradiated molybdenum single crystals

    International Nuclear Information System (INIS)

    Lambri, O.A.; Zelada-Lambri, G.I.; Cuello, G.J.; Bozzano, P.B.; Garcia, J.A.

    2009-01-01

    Small angle neutron scattering as a function of temperature, differential thermal analysis, electrical resistivity and transmission electron microscopy studies have been performed in low rate neutron irradiated single crystalline molybdenum, at room temperature, for checking the evolution of the defects agglomerates in the temperature interval between room temperature and 1200 K. The onset of vacancies mobility was found to happen in temperatures within the stage III of recovery. At around 550 K, the agglomerates of vacancies achieve the largest size, as determined from the Guinier approximation for spherical particles. In addition, the decrease of the vacancy concentration together with the dissolution of the agglomerates at temperatures higher than around 920 K was observed, which produce the release of internal stresses in the structure.

  18. Study of the temperature evolution of defect agglomerates in neutron irradiated molybdenum single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lambri, O.A. [Instituto de Fisica Rosario. Member of the CONICET' s Research Staff, Avda. Pellegrini 250, (2000) Rosario, Santa Fe (Argentina); Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avda. Pellegrini 250, (2000) Rosario, Santa Fe (Argentina)], E-mail: olambri@fceia.unr.edu.ar; Zelada-Lambri, G.I. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avda. Pellegrini 250, (2000) Rosario, Santa Fe (Argentina); Cuello, G.J. [Institut Laue Langevin, 6, rue Jules Horowitz, BP 156, 38042 Grenoble (France); Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain); Bozzano, P.B. [Laboratorio de Microscopia Electronica. Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avda. Gral. Paz 1499, (1650) San Martin (Argentina); Garcia, J.A. [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain)

    2009-04-15

    Small angle neutron scattering as a function of temperature, differential thermal analysis, electrical resistivity and transmission electron microscopy studies have been performed in low rate neutron irradiated single crystalline molybdenum, at room temperature, for checking the evolution of the defects agglomerates in the temperature interval between room temperature and 1200 K. The onset of vacancies mobility was found to happen in temperatures within the stage III of recovery. At around 550 K, the agglomerates of vacancies achieve the largest size, as determined from the Guinier approximation for spherical particles. In addition, the decrease of the vacancy concentration together with the dissolution of the agglomerates at temperatures higher than around 920 K was observed, which produce the release of internal stresses in the structure.

  19. A study of point defect aggregates in #betta#-irradiated LiF single crystals

    International Nuclear Information System (INIS)

    Frugoli, P.A.; Pimentel, C.A.F.

    1982-11-01

    Diffuse X-ray scattering near the Bragg Reflection and Bragg profile analaysis have been made in #betta#-irradiated LiF single crystal X-ray diffractometer. An estimate of the half-width of the diffraction patterns was done and preferential alteration in the profile parameters was observed. Clusters with mean parameter sizes from hundreds to thousands of angstroms were observed but each sample has presented a set of average size values. The nature of clusters was found to be dependent on the #betta#-dose: vacancy at low dose (approximately 10 MRad) and interstitial at high dose (approximately 50 MRad). Some process of coalescence at 50 MRad seems to occur. (Author) [pt

  20. High resolution electron microscopy. Visualization of crystal lattices and of their defects

    International Nuclear Information System (INIS)

    Desseaux, J.

    1981-10-01

    A great number of fault characterization results may be obtained without calculations simply by observing the pictures: determination of Burgers' vector of dislocations, dissociation of the dislocations, presence of precipitates in the heart of the dislocations, presence of micro-twin-crystals, phase boundaries, etc. Determining the position of the atoms will be facilitated if the phase system approximation can be applied. In those cases where it is necessary to use the calculated image-experimental image comparison, it is fundamental to check the parameters on which the image depends. For the simplicity of the interpretation it is always necessary to obtain images taken in conditions where the structure is the most directly projected and where the image contrast is as stable as possible for a small variation in the parameters: thickness, focusing and crystalline parameters. A few examples are given on silicon [fr

  1. Hydrodynamics of defects in the Abelian-Higgs model: An application to nematic liquid crystals

    International Nuclear Information System (INIS)

    Kurz, Guenter; Sarkar, Sarben

    2000-01-01

    The Abelian-Higgs model is the basis for a gauge covariant form of the distortion free energy for nematic liquid crystals. This is used to derive a new form of the Ericksen-Leslie equations incorporating the dynamics of disclinations in nematic films. The zero liquid flow case is treated in detail for simplicity. The equations are reduced to dynamic equations for disclination points in moduli space for a small deviation from the Bogomol'nyi limit. We are able to derive analytically the dynamics of disclinations with winding numbers of the same sign. A set of such disclinations close to one another, i.e., with overlapping cores, can result from the disintegration of a larger disclination, and they repel one another. For a pair of such dis- clinations far apart from one another we find that they move on a straight line where their separation increases logarithmically over time

  2. Crystal growth, structure, defects, mechanical and spectral properties of Nd{sub 0.01}:Gd{sub 0.89}La{sub 0.1}NbO{sub 4} mixed crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shoujun; Lu, Wancheng; Xu, Jinrui [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui Province (China); University of Science and Technology of China, Hefei (China); Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Sun, Guihua; Sun, Dunlu [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui Province (China)

    2017-10-15

    A novel mixed laser crystal of Nd:GdLaNbO{sub 4} (Nd:GLNO) was grown successfully by conventional Czochralski method. The unit cell parameters were obtained by Rietveld refinement method. The density of the as-grown crystal was measured by Archimedean buoyancy method and calculated in theory. Absorption spectrum of Nd:GLNO crystal was recorded at room temperature, and 11 absorption peaks were assigned. The defects of Nd:GLNO crystal were revealed by using chemical etching method with phosphoric acid as etchant. The mechanical properties (including hardness, yield strength, elastic stiffness constant, fracture toughness and brittleness index) were systemically estimated based on Vickers hardness test. All these obtained results play a quite important role in further investigation of Nd:GLNO crystal. (orig.)

  3. Luminescence and defects creation in Ce3+-doped YAlO3 and Lu0.3Y0.7AlO3 crystals

    International Nuclear Information System (INIS)

    Blazek, K.; Nejezchleb, K.; Krasnikov, A.; Savikhina, T.; Zazubovich, S.; Nikl, M.

    2005-01-01

    Luminescence, energy transfer and defects creation processes were studied for the Ce 3+ -doped YAlO 3 and Lu x Y 1-x AlO 3 (x=0.3) crystals in the temperature range 4.2-300 K under selective photoexcitation in the energy range 3.5-11.5 eV. For the first time, defects creation spectra were measured and analyzed. Influence of the charge and ionic radii of co-doping ions on the luminescence and defects creation efficiency was considered. The origin of the defects created and possible mechanisms of their formation were discussed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Defects in metal crystals. Progress report, May 1, 1975--April 30, 1976

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1976-02-01

    Emphasis was on use of different irradiating species (300-700 eV Xe + ions, 20-30 keV W + ions, 20-30 keV Mo + ions, and fast neutrons) to introduce both vacancies and interstitials in Mo, W, Au, Pt--(Au), W--(Re), Mo(Ti), Ni 4 Mo, and low-swelling and commercial 316 stainless steels. The following are reported: (A) an in-situ field-ion microscope study of ion-irradiated tungsten and tungsten alloys (W-Re) (recovery in Stages I and II); (B) a review of Stages I to IV of irradiated or quenched tungsten and tungsten alloys by field-ion microscopy; (C) a review of field-ion microscope studies of the defect structure of the primary state of damage of irradiated metals; (D) an in-situ field-ion microscope study of the recovery behavior of ion-irradiated molybdenum in Stages I and II; (E) a field-ion microscope study of the recovery behavior of Stage II in ion-irradiated platinum-0.10, 0.62 and 4.0 at. percent gold alloys; (F) a new technique for focused-collision sequence range measurements; (G) atom-probe field-ion microscopy (improvements, results on W alloys, Mo alloys [Mo, TZM, Mo--Ti], low-swelling stainless steel alloy); (H) range of a focused collision replacement sequence in ordered alloys; and (I) interaction of self-interstitial atoms with impurity gas solute atoms in refractory metals. 11 fig, 5 tables, 37 references

  5. Grinding Inside A Toroidal Cavity

    Science.gov (United States)

    Mayer, Walter; Adams, James F.; Burley, Richard K.

    1987-01-01

    Weld lines ground smooth within about 0.001 in. Grinding tool for smoothing longitudinal weld lines inside toroidal cavity includes curved tunnel jig to guide grinding "mouse" along weld line. Curvature of tunnel jig matched to shape of toroid so grinding ball in mouse follows circular arc of correct radius as mouse is pushed along tunnel. Tool enables precise control of grindout shape, yet easy to use.

  6. Equivelar toroids with few flag-orbits

    OpenAIRE

    Collins, José; Montero, Antonio

    2018-01-01

    An $(n+1)$-toroid is a quotient of a tessellation of the $n$-dimensional Euclidean space with a lattice group. Toroids are generalizations of maps in the torus on higher dimensions and also provide examples of abstract polytopes. Equivelar toroids are those that are induced by regular tessellations. In this paper we present a classification of equivelar $(n+1)$-toroids with at most $n$ flag-orbits; in particular, we discuss a classification of $2$-orbit toroids of arbitrary dimension.

  7. Next generation toroidal devices

    International Nuclear Information System (INIS)

    Yoshikawa, Shoichi

    1998-10-01

    A general survey of the possible approach for the next generation toroidal devices was made. Either surprisingly or obviously (depending on one's view), the technical constraints along with the scientific considerations lead to a fairly limited set of systems for the most favorable approach for the next generation devices. Specifically if the magnetic field strength of 5 T or above is to be created by superconducting coils, it imposes minimum in the aspect ratio for the tokamak which is slightly higher than contemplated now for ITER design. The similar technical constraints make the minimum linear size of a stellarator large. Scientifically, it is indicated that a tokamak of 1.5 times in the linear dimension should be able to produce economically, especially if a hybrid reactor is allowed. For the next stellarator, it is strongly suggested that some kind of helical axis is necessary both for the (almost) absolute confinement of high energy particles and high stability and equilibrium beta limits. The author still favors a heliac most. Although it may not have been clearly stated in the main text, the stability afforded by the shearless layer may be exploited fully in a stellarator. (author)

  8. Next generation toroidal devices

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Shoichi [Princeton Plasma Physics Lab., Princeton Univ., NJ (United States)

    1998-10-01

    A general survey of the possible approach for the next generation toroidal devices was made. Either surprisingly or obviously (depending on one`s view), the technical constraints along with the scientific considerations lead to a fairly limited set of systems for the most favorable approach for the next generation devices. Specifically if the magnetic field strength of 5 T or above is to be created by superconducting coils, it imposes minimum in the aspect ratio for the tokamak which is slightly higher than contemplated now for ITER design. The similar technical constraints make the minimum linear size of a stellarator large. Scientifically, it is indicated that a tokamak of 1.5 times in the linear dimension should be able to produce economically, especially if a hybrid reactor is allowed. For the next stellarator, it is strongly suggested that some kind of helical axis is necessary both for the (almost) absolute confinement of high energy particles and high stability and equilibrium beta limits. The author still favors a heliac most. Although it may not have been clearly stated in the main text, the stability afforded by the shearless layer may be exploited fully in a stellarator. (author)

  9. Tunable plasmonic toroidal terahertz metamodulator

    Science.gov (United States)

    Gerislioglu, Burak; Ahmadivand, Arash; Pala, Nezih

    2018-04-01

    Optical modulators are essential and strategic parts of micro- and nanophotonic circuits to encode electro-optical signals in the optical domain. Here, by using arrays of multipixel toroidal plasmonic terahertz (THz) metamolecules, we developed a functional plasmonic metamodulator with high efficiency and tunability. Technically, the dynamic toroidal dipole induces nonradiating charge-current arrangements leading to have an exquisite role in defining the inherent spectral features of various materials. By categorizing in a different family of multipoles far from the traditional electromagnetic multipoles, the toroidal dipole corresponds to poloidal currents flowing on the surface of a closed-loop torus. Utilizing the sensitivity of the optically driven toroidal momentum to the incident THz beam power and by employing both numerical tools and experimental analysis, we systematically studied the spectral response of the proposed THz plasmonic metadevice. In this Rapid Communication, we uncover a correlation between the existence and the excitation of the toroidal response and the incident beam power. This mechanism is employed to develop THz toroidal metamodulators with a strong potential to be employed for practical advanced and next-generation communication, filtering, and routing applications.

  10. Defects Identification and Effects of Annealing on Lu2(1-xY2xSiO5 (LYSO Single Crystals for Scintillation Application

    Directory of Open Access Journals (Sweden)

    Samuel Blahuta

    2011-07-01

    Full Text Available The nature, properties and relative concentrations of electronic defects were investigated by Thermoluminescence (TL in Lu2(1-xY2xSiO5 (LYSO single crystals. Ce and Tb-doped single crystals, grown by the Czochralski technique (CZ, revealed similar traps in TL. LYSO:Ce single crystals were grown by the Floating-Zone technique (FZ with increasing oxygen concentration in the growth atmosphere. TL intensity is strongly dependent on the oxygen content of the material, and oxygen vacancies are proven to be the main electronic defects in LYSO. The effects of oxidizing and reducing annealing post-treatment on these defects were investigated. While oxidizing treatments efficiently reduce the amount of electronic defects, reducing treatments increase the amount of existing traps. In a thermally assisted tunneling mechanism, the localization of oxygen vacancies around the dopant is discussed. They are shown to be in the close vicinity of the dopant, though not in first neighbor positions.

  11. One-dimensional photonic crystals with a planar oriented nematic layer: Temperature and angular dependence of the spectra of defect modes

    International Nuclear Information System (INIS)

    Arkhipkin, V. G.; Gunyakov, V. A.; Myslivets, S. A.; Gerasimov, V. P.; Zyryanov, V. Ya.; Vetrov, S. Ya.; Shabanov, V. F.

    2008-01-01

    Transmission spectra of a one-dimensional photonic crystal (PC) formed by two multilayer dielectric mirrors and a planar oriented layer of 5CB nematic liquid crystal (LC) that is sandwiched between these mirrors and serves as a structure defect are investigated experimentally. Specific features of the behavior of the spectrum of defect modes as a function of the angle of incidence of light on the crystal are studied for two polarizations: parallel and perpendicular to the director of the LC; the director either lies in the plane of incidence or is perpendicular to it. It is shown that, for the configurations considered, the maxima of the defect modes shift toward the short-wavelength region as the tilt angle of incidence radiation increases; this tendency is more manifest for the parallel-polarized component, when the director lies in the plane of incidence. In the latter case, the width of the photonic band gap (PBG) appreciably decreases. The temperature dependence of the polarization components of the transmission spectra of a PC is investigated in the case of normal incidence of light. The spectral shift of defect modes due to the variation of the refractive index of the LC at the nematic-isotropic liquid phase transition point is measured. It is shown that, in real PCs, the amplitude of defect modes decreases when approaching the center of the band gap, as well as when the number of layers in the dielectric mirrors increases. Theoretical transmission spectra of the PCs calculated by the method of recurrence relations with regard to the decay of defect modes are in good agreement with experimental data.

  12. Coupling of carbon monoxide molecules over oxygen-defected UO2(111) single crystal and thin film surfaces.

    Science.gov (United States)

    Senanayake, S D; Waterhouse, G I N; Idriss, H; Madey, Theodore E

    2005-11-22

    While coupling reactions of carbon-containing compounds are numerous in organometallic chemistry, they are very rare on well-defined solid surfaces. In this work we show that the reductive coupling of two molecules of carbon monoxide to C2 compounds (acetylene and ethylene) could be achieved on oxygen-defected UO2(111) single crystal and thin film surfaces. This result allows in situ electron spectroscopic investigation of a typical organometallic reaction such as carbon coupling and extends it to heterogeneous catalysis and solids. By using high-resolution photoelectron spectroscopy (HRXPS) it was possible to track the changes in surface states of the U and O atoms as well as identify the intermediate of the reaction. Upon CO adsorption U cations in low oxidation states are oxidized to U4+ ions; this was accompanied by an increase of the O-to-U surface ratios. The HRXPS C 1s lines show the presence of adsorbed species assigned to diolate species (-OCH=CHO-) that are most likely the reaction intermediate in the coupling of two CO molecules to acetylene and ethylene.

  13. Coupling of Carbon Monoxide Molecules over Oxygen Defected UO2 (111) Single Crystal and Thin Film Surfaces

    International Nuclear Information System (INIS)

    Senanayake, S.; Waterhouse, G.; Idriss, H.; Madey, T.

    2005-01-01

    While coupling reactions of carbon-containing compounds are numerous in organometallic chemistry, they are very rare on well-defined solid surfaces. In this work we show that the reductive coupling of two molecules of carbon monoxide to C 2 compounds (acetylene and ethylene) could be achieved on oxygen-defected UO 2 (111) single crystal and thin film surfaces. This result allows in situ electron spectroscopic investigation of a typical organometallic reaction such as carbon coupling and extends it to heterogeneous catalysis and solids. By using high-resolution photoelectron spectroscopy (HRXPS) it was possible to track the changes in surface states of the U and O atoms as well as identify the intermediate of the reaction. Upon CO adsorption U cations in low oxidation states are oxidized to U 4+ ions; this was accompanied by an increase of the O-to-U surface ratios. The HRXPS C 1s lines show the presence of adsorbed species assigned to diolate species (-OCH=CHO-) that are most likely the reaction intermediate in the coupling of two CO molecules to acetylene and ethylene

  14. Thermal equilibrium concentration of intrinsic point defects in heavily doped silicon crystals - Theoretical study of formation energy and formation entropy in area of influence of dopant atoms-

    Science.gov (United States)

    Kobayashi, K.; Yamaoka, S.; Sueoka, K.; Vanhellemont, J.

    2017-09-01

    It is well known that p-type, neutral and n-type dopants affect the intrinsic point defect (vacancy V and self-interstitial I) behavior in single crystal Si. By the interaction with V and/or I, (1) growing Si crystals become more V- or I-rich, (2) oxygen precipitation is enhanced or retarded, and (3) dopant diffusion is enhanced or retarded, depending on the type and concentration of dopant atoms. Since these interactions affect a wide range of Si properties ranging from as-grown crystal quality to LSI performance, numerical simulations are used to predict and to control the behavior of both dopant atoms and intrinsic point defects. In most cases, the thermal equilibrium concentrations of dopant-point defect pairs are evaluated using the mass action law by taking only the binding energy of closest pair to each other into account. The impacts of dopant atoms on the formation of V and I more distant than 1st neighbor and on the change of formation entropy are usually neglected. In this study, we have evaluated the thermal equilibrium concentrations of intrinsic point defects in heavily doped Si crystals. Density functional theory (DFT) calculations were performed to obtain the formation energy (Ef) of the uncharged V and I at all sites in a 64-atom supercell around a substitutional p-type (B, Ga, In, and Tl), neutral (C, Ge, and Sn) and n-type (P, As, and Sb) dopant atom. The formation (vibration) entropies (Sf) of free I, V and I, V at 1st neighboring site from B, C, Sn, P and As atoms were also calculated with the linear response method. The dependences of the thermal equilibrium concentrations of trapped and total intrinsic point defects (sum of free I or V and I or V trapped with dopant atoms) on the concentrations of B, C, Sn, P and As in Si were obtained. Furthermore, the present evaluations well explain the experimental results of the so-called ;Voronkov criterion; in B and C doped Si, and also the observed dopant dependent void sizes in P and As doped Si

  15. Tearing modes in toroidal geometry

    International Nuclear Information System (INIS)

    Connor, J.W.; Cowley, S.C.; Hastie, R.J.; Hender, T.C.; Hood, A.; Martin, T.J.

    1988-01-01

    The separation of the cylindrical tearing mode stability problem into a resistive resonant layer calculation and an external marginal ideal magnetohydrodynamic (MHD) calculation (Δ' calculation) is generalized to axisymmetric toroidal geometry. The general structure of this separation is analyzed and the marginal ideal MHD information (the toroidal generalization of Δ') required to discuss stability is isolated. This can then, in principle, be combined with relevant resonant layer calculations to determine tearing mode growth rates in realistic situations. Two examples are given: the first is an analytic treatment of toroidally coupled (m = 1, n = 1) and (m = 2, n = 1) tearing modes in a large aspect ratio torus; the second, a numerical treatment of the toroidal coupling of three tearing modes through finite pressure effects in a large aspect ratio torus. In addition, the use of a coupling integral approach for determining the stability of coupled tearing modes is discussed. Finally, the possibility of using initial value resistive MHD codes in realistic toroidal geometry to determine the necessary information from the ideal MHD marginal solution is discussed

  16. High current density toroidal pinch discharges with weak toroidal fields

    International Nuclear Information System (INIS)

    Brunsell, P.; Brzozowski, J.; Drake, J.R.; Hellblom, G.; Kaellne, E.; Mazur, S.; Nordlund, P.

    1990-01-01

    Toroidal discharges in the ultralow q regime (ULQ) have been studied in the rebuilt Extrap TI device. ULQ discharges are sustained for pulse lengths exceeding 1 ms, which corresponds to more than 10 resistiv shell times. Values for the safety factor at the vacuum vessel wall are between rational values: 1/(n+1) -2 . The magnetic fluctuation level increases during the transition between rational values of q(a). For very low values of q(a), the loop voltage increases and the toroidal field development in the discharge exhibits the characteristic behaviour of the setting-up phase of a field reversed pinch. (author) 1 ref., 2 figs., 1 tab

  17. Research Update: Point defects in CdTexSe1−x crystals grown from a Te-rich solution for applications in detecting radiation

    International Nuclear Information System (INIS)

    Gul, R.; Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Yang, G.; James, R. B.; Lee, W.; Cui, Y.; Burger, A.

    2015-01-01

    We investigated cadmium telluride selenide (CdTeSe) crystals, newly grown by the Traveling Heater Method (THM), for the presence and abundance of point defects. Current Deep Level Transient spectroscopy (I-DLTS) was used to determine the energies of the traps, their capture cross sections, and densities. The bias across the detectors was varied from 1 to 30 V. Four types of point defects were identified, ranging from 10 meV to 0.35 eV. Two dominant traps at energies of 0.18 eV and 0.14 eV were studied in depth. Cd vacancies are found at lower concentrations than other point defects present in the material

  18. Toroidal Trivelpiece-Gould modes

    International Nuclear Information System (INIS)

    Stoessel, F.P.

    1979-01-01

    Electron plasma waves are treated in quasi-electrostatic approximation in a toroidal cavity of rectangular cross-section in an infinitely strong azimuthal magnetic field. The differential equation for the electrostatic potential, derived from fluid equations, can be separated using cylindrical coordinates. The eigenvalue problem for the radial dependence is solved numerically by a shooting method. Eigenvalues are given for different aspect ratios. Comparison with appropriate modes of the straight geometry shows that the toroidal frequencies generally lie some percent above those for the straight case. Plots of the eigenfunctions demonstrate clearly the influence of toroidicity. The deviation from symmetry (which should appear for straight geometry) depends not only on the aspect ratio but also strongly on the mode numbers. (author)

  19. Toroidal helical quartz forming machine

    International Nuclear Information System (INIS)

    Hanks, K.W.; Cole, T.R.

    1977-01-01

    The Scyllac fusion experimental machine used 10 cm diameter smooth bore discharge tubes formed into a simple toroidal shape prior to 1974. At about that time, it was discovered that a discharge tube was required to follow the convoluted shape of the load coil. A machine was designed and built to form a fused quartz tube with a toroidal shape. The machine will accommodate quartz tubes from 5 cm to 20 cm diameter forming it into a 4 m toroidal radius with a 1 to 5 cm helical displacement. The machine will also generate a helical shape on a linear tube. Two sets of tubes with different helical radii and wavelengths have been successfully fabricated. The problems encountered with the design and fabrication of this machine are discussed

  20. MHD equilibrium with toroidal rotation

    International Nuclear Information System (INIS)

    Li, J.

    1987-03-01

    The present work attempts to formulate the equilibrium of axisymmetric plasma with purely toroidal flow within ideal MHD theory. In general, the inertial term Rho(v.Del)v caused by plasma flow is so complicated that the equilibrium equation is completely different from the Grad-Shafranov equation. However, in the case of purely toroidal flow the equilibrium equation can be simplified so that it resembles the Grad-Shafranov equation. Generally one arbitrary two-variable functions and two arbitrary single variable functions, instead of only four single-variable functions, are allowed in the new equilibrium equations. Also, the boundary conditions of the rotating (with purely toroidal fluid flow, static - without any fluid flow) equilibrium are the same as those of the static equilibrium. So numerically one can calculate the rotating equilibrium as a static equilibrium. (author)

  1. Compact toroid refueling of reactors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Hogan, J.T.; Milora, S.L.; Thomas, C.E.

    1988-04-01

    The feasibility of refueling fusion reactors and devices such as the International Thermonuclear Engineering Reactor (ITER) with high-velocity compact toroids is investigated. For reactors with reasonable limits on recirculating power, it is concluded that the concept is not economically feasible. For typical ITER designs, the compact toroid fueling requires about 15 MW of electrical power, with about 5 MW of thermal power deposited in the plasma. At these power levels, ideal ignition (Q = ∞) is not possible, even for short-pulse burns. The pulsed power requirements for this technology are substantial. 6 ref., 1 figs

  2. Prandtl number of toroidal plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.; Fukuyama, A.; Yagi, M.; Azumi, M.

    1993-06-01

    Theory of the L-mode confinement in toroidal plasmas is developed. The Prandtl number, the ratio between the ion viscosity and the thermal conductivity is obtained for the anomalous transport process which is caused by the self-sustained turbulence in the toroidal plasma. It is found that the Prandtl number is of order unity both for the ballooning mode turbulence in tokamaks and for the interchange mode turbulence in helical system. The influence on the anomalous transport and fluctuation level is evaluated. Hartmann number and magnetic Prandtl number are also discussed. (author)

  3. Characterization of a defective PbWO4 crystal cut along the a-c crystallographic plane: structural assessment and a novel photoelastic stress analysis

    Science.gov (United States)

    Montalto, L.; Natali, P. P.; Daví, F.; Mengucci., P.; Paone, N.; Rinaldi, D.

    2017-12-01

    Among scintillators, the PWO is one of the most widely used, for instance in CMS calorimeter at CERN and PANDA project. Crystallographic structure and chemical composition as well as residual stress condition, are indicators of homogeneity and good quality of the crystal. In this paper, structural characterization of a defective PbWO4 (PWO) crystal has been performed by X-ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS) and Photoelasticity in the unusual (a, c) crystallographic plane. XRD and EDS analysis have been used to investigate crystallographic orientation and chemical composition, while stress distribution, which indicates macroscopic inhomogeneities and defects, has been obtained by photoelastic approaches, in Conoscopic and Sphenoscopic configuration. Since the sample is cut along the (a, c) crystallographic plane, a new method is proposed for the interpretation of the fringe pattern. The structural analysis has detected odds from the nominal lattice dimension, which can be attributed to the strong presence of Pb and W. A strong inhomogeneity over the crystal sample has been revealed by the photoelastic inspection. The results give reliability to the proposed procedure which is exploitable in crystals with other structures.

  4. Toroidal current asymmetry in tokamak disruptions

    Science.gov (United States)

    Strauss, H. R.

    2014-10-01

    It was discovered on JET that disruptions were accompanied by toroidal asymmetry of the toroidal plasma current I ϕ. It was found that the toroidal current asymmetry was proportional to the vertical current moment asymmetry with positive sign for an upward vertical displacement event (VDE) and negative sign for a downward VDE. It was observed that greater displacement leads to greater measured I ϕ asymmetry. Here, it is shown that this is essentially a kinematic effect produced by a VDE interacting with three dimensional MHD perturbations. The relation of toroidal current asymmetry and vertical current moment is calculated analytically and is verified by numerical simulations. It is shown analytically that the toroidal variation of the toroidal plasma current is accompanied by an equal and opposite variation of the toroidal current flowing in a thin wall surrounding the plasma. These currents are connected by 3D halo current, which is π/2 radians out of phase with the n = 1 toroidal current variations.

  5. The complex and unique ATLAS Toroid family

    CERN Multimedia

    2002-01-01

    Big parts for the toroid magnets that will be used in the ATLAS experiment have been continuously arriving at CERN since March. These structures will create the largest superconducting toroid magnet ever.

  6. X-ray imaging with toroidal mirror

    International Nuclear Information System (INIS)

    Aoki, Sadao; Sakayanagi, Yoshimi

    1978-01-01

    X-ray imaging is made with a single toroidal mirror or two successive toroidal mirrors. Geometrical images at the Gaussian image plane are described by the ray trace. Application of a single toroidal mirror to small-angle scattering is presented. (author)

  7. Onsager relaxation of toroidal plasmas

    International Nuclear Information System (INIS)

    Samain, A.; Nguyen, F.

    1997-01-01

    The slow relaxation of isolated toroidal plasmas towards their thermodynamical equilibrium is studied in an Onsager framework based on the entropy metric. The basic tool is a variational principle, equivalent to the kinetic equation, involving the profiles of density, temperature, electric potential, electric current. New minimization procedures are proposed to obtain entropy and entropy production rate functionals. (author)

  8. Particle simulations in toroidal geometry

    International Nuclear Information System (INIS)

    Aydemir, A.Y.

    1992-09-01

    A computational tool to be used in kinetic simulations of toroidal plasmas is being developed. The initial goal of the project is to develop an electrostatic gyrokinetic model for studying transport and stability problems in tokamaks. In this brief report, preliminary results from the early stages of this effort are presented

  9. Lowering the first ATLAS toroid

    CERN Document Server

    Maximilien Brice

    2004-01-01

    The ATLAS detector on the LHC at CERN will consist of eight toroid magnets, the first of which was lowered into the cavern in these images on 26 October 2004. The coils are supported on platforms where they will be attached to form a giant torus. The platforms will hold about 300 tonnes of ATLAS' muon chambers and will envelop the inner detectors.

  10. Hybrid winding concept for toroids

    DEFF Research Database (Denmark)

    Schneider, Henrik; Andersen, Thomas; Knott, Arnold

    2013-01-01

    and placement machinery. This opens up the possibility for both an automated manufacturing process and an automated production process of toroidal magnetics such as power inductors, filtering inductors, air core inductors, transformers etc. Both the proposed hybrid and the common wire wound winding...

  11. Collapse analysis of toroidal shell

    International Nuclear Information System (INIS)

    Pomares, R.J.

    1990-01-01

    This paper describes a study performed to determine the collapse characteristics of a toroidal shell using finite element method (FEM) analysis. The study also included free drop testing of a quarter scale prototype to verify the analytical results. The full sized toroidal shell has a 24-inch toroidal diameter with a 24-inch tubal diameter. The shell material is type 304 strainless steel. The toroidal shell is part of the GE Model 2000 transportation packaging, and acts as an energy absorbing device. The analyses performed were on a full sized and quarter scaled models. The finite element program used in all analyses was the LIBRA code. The analytical procedure used both the elasto-plastic and large displacement options within the code. The loading applied in the analyses corresponded to an impact of an infinite rigid plane oriented normal to the drop direction vector. The application of the loading continued incrementally until the work performed by the deforming structure equalled the kinetic energy developed in the free fall. The comparison of analysis and test results showed a good correlation

  12. The effect of magnetic field on bistability in 1D photonic crystal doped by magnetized plasma and coupled nonlinear defects

    International Nuclear Information System (INIS)

    Mehdian, H.; Mohammadzahery, Z.; Hasanbeigi, A.

    2014-01-01

    In this work, we study the defect mode and bistability behavior of 1-D photonic band gap structure with magnetized plasma and coupled nonlinear defects. The transfer matrix method has been employed to investigate the magnetic field effect on defect mode frequency and bistability threshold. The obtained results show that the frequency of defect mode and bistability threshold can be altered, without changing the structure of the photonic multilayer. Therefore, the bistability behavior of the subjected structure in the presence of magnetized plasma can be utilized in manufacturing wide frequency range devices

  13. A study on density functional theory of the effect of pressure on the formation and migration enthalpies of intrinsic point defects in growing single crystal Si

    Science.gov (United States)

    Sueoka, Koji; Kamiyama, Eiji; Kariyazaki, Hiroaki

    2012-05-01

    In 1982, Voronkov presented a model describing point defect behavior during the growth of single crystal Si from a melt and derived an expression to predict if the crystal was vacancy- or self-interstitial-rich. Recently, Vanhellemont claimed that one should take into account the impact of compressive stress introduced by the thermal gradient at the melt/solid interface by considering the hydrostatic pressure dependence of the formation enthalpy of the intrinsic point defects. To evaluate the impact of thermal stress more correctly, the pressure dependence of both the formation enthalpy (Hf) and the migration enthalpy (Hm) of the intrinsic point defects should be taken into account. Furthermore, growing single crystal Si is not under hydrostatic pressure but almost free of external pressure (generally in Ar gas under reduced pressure). In the present paper, the dependence of Hf and Hm on the pressure P, or in other words, the pressure dependence of the formation energy (Ef) and the relaxation volume (vf), is quantified by density functional theory calculations. Although a large number of ab initio calculations of the properties of intrinsic point defects have been published during the last years, calculations for Si crystals under pressure are rather scarce. For vacancies V, the reported pressure dependences of HfV are inconsistent. In the present study, by using 216-atom supercells with a sufficient cut-off energy and mesh of k-points, the neutral I and V are found to have nearly constant formation energies EfI and EfV for pressures up to 1 GPa. For the relaxation volume, vfI is almost constant while vfV decreases linearly with increasing pressure P. In case of the hydrostatic pressure Ph, the calculated formation enthalpy HfI and migration enthalpy HmI at the [110] dumbbell site are given by HfI = 3.425 - 0.057 × Ph (eV) and HmI = 0.981 - 0.039 × Ph (eV), respectively, with Ph given in GPa. The calculated HfV and HmV dependencies on Ph given by HfV = 3.543 - 0

  14. Macroscopic and microscopic defects and nonlinear optical properties of KH{sub 2}PO{sub 4} crystals with embedded TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Grachev, Valentin G.; Vrable, Ian A.; Malovichko, Galina I. [Physics Department, Montana State University, Bozeman, Montana 59717 (United States); Pritula, Igor M.; Bezkrovnaya, Olga N.; Kosinova, Anna V. [Institute for Single Crystals, NAS of Ukraine, Kharkiv (Ukraine); Yatsyna, Vasyl O.; Gayvoronsky, Vladimir Ya. [Institute of Physics, NAS of Ukraine, 03680 Kiev (Ukraine)

    2012-07-01

    Results from the successful growth of high quality KH{sub 2}PO{sub 4} (KDP) crystals with incorporated TiO{sub 2} anatase nanoparticles and the characterization of these crystals using several complementary methods are presented. The study allowed the nature and distribution of macroscopic and microscopic defects in the KDP:TiO{sub 2} crystals to be clarified. The relationship between these defects and the distribution of TiO{sub 2} nanoparticles, and the influence of incorporated nanoparticles on the nonlinear optical properties of composite crystals in comparison with pure crystals were also elucidated. Visual observations, transmission and scanning electron microscopy have shown that the anatase nanoparticles were captured mainly by the pyramidal growth sector and, to a considerably lesser extent, by the prismatic growth sector. Energy dispersive x-ray analysis was able to confirm that the growth layer stacks contain the TiO{sub 2} particles. Fourier transformation infrared spectra have clearly shown the presence of an absorption band at about 800 cm{sup -1} in both KDP:TiO{sub 2} and TiO{sub 2}, and the disappearance of the band, associated with hydroxyl OH{sup -} groups on the TiO{sub 2} surface in KDP:TiO{sub 2}. Significant variation in the imaginary and real parts of the cubic nonlinear optical susceptibilities and refractive index changes at continuous wave excitation were found in prism and pyramid parts of pure KDP and KDP:TiO{sub 2} samples. Deciphering complicated electron paramagnetic resonance spectra in KDP:TiO{sub 2} and comparison with published data permitted the identification of paramagnetic defects along with their associated g-factors and zero-field splitting parameters (in some cases for the first time). It was found that the dominant lines belong to four different centers Fe{sub A}{sup 3+}, Fe{sub B}{sup 3+}, Cr{sub R}{sup 3+}, and Cr{sub GB}{sup 3+}. From analysis of line intensities it was concluded that the concentration of intrinsic

  15. Magnetic and optical holonomic manipulation of colloids, structures and topological defects in liquid crystals for characterization of mesoscale self-assembly and dynamics

    Science.gov (United States)

    Varney, Michael C. M.

    Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena encountered in atomic crystals and glasses; topics of great interest for physicists exploring a broad range of scientific, industrial and biomedical fields. The ability to accurately control particles of mesoscale size in various liquid host media is usually accomplished through optical trapping methods, which suffer limitations intrinsic to trap laser intensity and force generation. Other limitations are due to colloid properties, such as optical absorptivity, and host properties, such as viscosity, opacity and structure. Therefore, alternative and/or novel methods of colloidal manipulation are of utmost importance in order to advance the state of the art in technical applications and fundamental science. In this thesis, I demonstrate a magnetic-optical holonomic control system to manipulate magnetic and optical colloids in liquid crystals and show that the elastic structure inherent to nematic and cholesteric liquid crystals may be used to assist in tweezing of particles in a manner impossible in other media. Furthermore, I demonstrate the utility of this manipulation in characterizing the structure and microrheology of liquid crystals, and elucidating the energetics and dynamics of colloids interacting with these structures. I also demonstrate the utility of liquid crystal systems as a table top model system to probe topological defects in a manner that may lead to insights into topologically related phenomena in other fields, such as early universe cosmology, sub-atomic and high energy systems, or Skrymionic structures. I explore the interaction of colloid surface anchoring with the structure inherent in cholesteric liquid crystals, and how this affects the periodic dynamics and localization metastability of spherical colloids undergoing a "falling" motion within the sample. These so called "metastable states" cause colloidal dynamics to

  16. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  17. Effect of deep native defects on ultrasound propagation in TlInS{sub 2} layered crystal

    Energy Technology Data Exchange (ETDEWEB)

    Seyidov, MirHasan Yu., E-mail: smirhasan@gtu.edu.tr [Department of Physics, Gebze Technical University, 41400 Gebze, Kocaeli (Turkey); Institute of Physics of NAS of Azerbaijan, H. Javid Avenue, 33, AZ-1143 Baku (Azerbaijan); Suleymanov, Rauf A. [Department of Physics, Gebze Technical University, 41400 Gebze, Kocaeli (Turkey); Institute of Physics of NAS of Azerbaijan, H. Javid Avenue, 33, AZ-1143 Baku (Azerbaijan); Odrinsky, Andrei P. [Institute of Technical Acoustics, National Academy of Sciences of Belarus, Lyudnikov Avenue 13, Vitebsk 210717 (Belarus); Kırbaş, Cafer [Department of Physics, Gebze Technical University, 41400 Gebze, Kocaeli (Turkey); The Scientific and Technological Research Council of Turkey, National Metrology Institute (TUBITAK UME), PQ 54 41470 Gebze, Kocaeli (Turkey)

    2016-09-15

    We have investigated p-type semiconductor–ferroelectric TlInS{sub 2} by means of Photo-Induced Current Transient Spectroscopy (PICTS) technique in the temperature range 77–350 K for the detection of native deep defect levels in TlInS{sub 2}. Five native deep defect levels were detected and their energy levels and capture cross sections were evaluated. Focusing on these data, the influence of these defects on the longitudinal and transverse ultrasound waves propagation as well as the effect of electric field on ultrasound waves were studied at different temperatures. The acoustic properties were investigated by the pulse-echo method. The direct contribution of thermally activated charged defects to the acoustic properties of TlInS{sub 2} was demonstrated. The key role of charged native deep level defects in elastic properties of TlInS{sub 2} was shown.

  18. Position Dependent Spontaneous Emission Spectra of a Λ-Type Atomic System Embedded in a Defective Photonic Crystal

    International Nuclear Information System (INIS)

    Entezar, S. Roshan

    2012-01-01

    We investigate the position dependent spontaneous emission spectra of a Λ-type three-level atom with one transition coupled to the free vacuum reservoir and the other one coupled to a double-band photonic band gap reservoir with a defect mode in the band gap. It is shown that, for the atom at the defect location, we have a two-peak spectrum with a wide dark line due to the strong coupling between the atom and the defect mode. While, when the atom is far from the defect location (or in the absence of the defect mode), the spectrum has three peaks with two dark lines due to the coupling between the atom and the photonic band gap reservoir with the largest density of states near the band edges. On the other hand, we have a four-peak spectrum for the atom at the space in between. Moreover, the average spontaneous emission spectra of the atoms uniformly embedded in high dielectric or low dielectric regions are described. It is shown that the atoms embedded in high (low) dielectric regions far from the defect location, effectively couple to the modes of the lower (upper) photonic band. However, the atoms embedded in high dielectric or low dielectric regions at the defect location, are coupled mainly to the defect modes. While, the atoms uniformly embedded in high (low) dielectric regions with a normal distance from the defect location, are coupled to both of defect and lower (upper) photonic band modes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. An investigation of the role of defect levels on the radiation response of synthetic diamond crystals when used as sensors for the detection of mammography X-rays.

    Science.gov (United States)

    Ade, Nicholas

    2017-09-01

    This study evaluates the role of defects on the performances of synthetic diamond sensors on exposure to mammography X-rays. Through systematic investigations, the main cause of instability of response of examined sensors necessitating pre-irradiation was isolated and ascribed to the presence of ambient light which has the effect of emptying shallow trapping levels. The changes in response between measurements in light and dark conditions varied from 2.8 ± 1.2% to 63.0 ± 0.3%. Sensitivities between 0.4 and 6.7nCGy -1 mm -3 determined for the sensors varied with defect levels. The study indicates that differences in crystal quality due to the presence and influence of defects would cause a discrepancy in the dosimetric performances of various diamond detectors. Once a sensor plate is selected (based on the influence of defect levels) and coupled to the probe housing with the response of the diamond sensor stabilised and appropriately shielded from ambient light, daily priming is not needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Direct observation of gliding dislocations interactions with defects in irradiated niobium single crystals by means of the high voltage electronic microscopy (HVEM)

    International Nuclear Information System (INIS)

    Otero, M.P.

    1985-01-01

    The interactions of gliding dislocations with defects in irradiated niobium that result in the formation of dislocations channels. The effects in the mechanical behaviour of [941]- and [441]- oriented Nb single crystals due to oxygen addition, neutron and electron irradiation was observed either by macroscopic deformation in a Instron machine or 'in-situ' deformation in the HVEM-High Voltage Electron Microscope. Some specimens were irradiated at IPNS-Intense Pulsed Neutron Source, at 325 K, with 5 x 10 17 n/cm 2 , others were irradiated with electrons in the HVEM. The interactions between gliding dislocations with clusters point defects and dislocations were observed. The primary mechanism for removal of the clusters by the gliding dislocations was the 'sweeping' of the clusters along with the gliding dislocations. As to the point defects, they were 'swept' by the gliding dislocations and left as aligned loops close to the intersections of the gliding dislocations with the upper and lower specimen surfaces. For the illustration of this phenomena, a schematic drawing was made. The mechanism of 'bowing-out' interaction of dislocations with defect clusters was also observed. The reported anomalous slip observed to operate in the [941]- oriented Nb was also directly observed and a qualitive explanation along with a schematic drawing was proposed. This would explain the softenig observed after the yield stress in the [941]- oriented Nb deformed in the Instron machine. (Author) [pt

  1. Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy

    International Nuclear Information System (INIS)

    Al-Jarba, K.A.; Fuchs, G.E.

    2004-01-01

    In an effort to reduce grain defects in large single crystal Ni-base superalloy components, carbon is intentionally added. In this study, the effect of carbon additions on the microstructure and solidification defect formation of a model Ni-based superalloy, LMSX-1, was examined. The results show that the tendency of the alloy to form all types of solidification defects decreased as the carbon content increased. The as-cast microstructures also exhibited a decrease in the amount of γ-γ' eutectic structure and an increase in the volume fraction of carbides and porosity, as the carbon content was increased. The carbides formed in these alloys were mostly of script-type MC carbides which formed continuous, dendritic networks in the interdendritic region. Microprobe analysis of the as-cast structures showed that the partitioning coefficients did not change with carbon additions. Therefore, the reduction in defect formation with increasing carbon content could not be attributed to changes in segregation behavior of alloying elements. Instead, the presence of these carbides in the interdendritic regions of the alloy appeared to have prevented the thermosolutal fluid flow

  2. Classification of symmetric toroidal orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-09-15

    We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.

  3. Hollow nanotubular toroidal polymer microrings.

    Science.gov (United States)

    Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon

    2014-02-01

    Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

  4. TFTR toroidal field coil design

    International Nuclear Information System (INIS)

    Smith, G.E.; Punchard, W.F.B.

    1977-01-01

    The design of the Tokamak Fusion Test Reactor (TFTR) Toroidal Field (TF) magnetic coils is described. The TF coil is a 44-turn, spiral-wound, two-pancake, water-cooled configuration which, at a coil current of 73.3 kiloamperes, produces a 5.2-Tesla field at a major radius of 2.48 meters. The magnetic coils are installed in titanium cases, which transmit the loads generated in the coils to the adjacent supporting structure. The TFTR utilizes 20 of these coils, positioned radially at 18 0 intervals, to provide the required toroidal field. Because it is very highly loaded and subject to tight volume constraints within the machine, the coil presents unique design problems. The TF coil requirements are summarized, the coil configuration is described, and the problems highlighted which have been encountered thus far in the coil design effort, together with the development tests which have been undertaken to verify the design

  5. Experimental studies of compact toroids

    International Nuclear Information System (INIS)

    1991-01-01

    The Berkeley Compact Toroid Experiment (BCTX) device is a plasma device with a Marshall-gun generated, low aspect ratio toroidal plasma. The device is capable of producing spheromak-type discharges and may, with some modification, produce low-aspect ratio tokamak configurations. A unique aspect of this experimenal devie is its large lower hybrid (LH) heating system, which consists of two 450MHz klystron tubes generating 20 megawatts each into a brambilla-type launching structure. Successful operation with one klystron at virtually full power (18 MW) has been accomplished with 110 μs pulse length. A second klystron is currently installed in its socket and magnet but has not been added to the RF drive system. This report describes current activities and accomplishments and describes the anticipated results of next year's activity

  6. Prospects for toroidal fusion reactors

    International Nuclear Information System (INIS)

    Sheffield, J.; Galambos, J.D.

    1994-01-01

    Work on the International Thermonuclear Experimental Reactor (ITER) tokamak has refined understanding of the realities of a deuterium-tritium (D-T) burning magnetic fusion reactor. An ITER-like tokamak reactor using ITER costs and performance would lead to a cost of electricity (COE) of about 130 mills/kWh. Advanced tokamak physics to be tested in the Toroidal Physics Experiment (TPX), coupled with moderate components in engineering, technology, and unit costs, should lead to a COE comparable with best existing fission systems around 60 mills/kWh. However, a larger unit size, ∼2000 MW(e), is favored for the fusion system. Alternative toroidal configurations to the conventional tokamak, such as the stellarator, reversed-field pinch, and field-reversed configuration, offer some potential advantage, but are less well developed, and have their own challenges

  7. The effect of correlated and point defects on the vortex lattice melting transition in single-crystal YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Kwok, W.K.; Fendrich, J.; Fleshler, S.; Welp, U.; Downey, J.; Crabtree, G.W.; Giapintzakis, J.

    1994-01-01

    The vortex melting transition T m in several untwinned and twinned crystals is measured resistively in fields up to 8T. A Lindemann criterion for vortex lattice melting is obtained in addition to a sharp hysteresis in the magnetoresistance at B m supporting a first-order phase transition. The anisotropy of twin boundary pinning and its reduction of the 'kink' in ρ(T) associated with the first-order melting transition is discussed in samples with very dilute twin boundaries. We also report on the direct suppression of the the melting transition by intrinsic pinning for H parallel ab and by electron-irradiation-induced point defects. (orig.)

  8. The effect of correlated and point defects on the vortex lattice melting transition in single crystal YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Kwok, W.K.; Fleshler, S.; Welp, U.; Downey, J.; Crabtree, G.W.; Fendrich, J. Giapintzakis, J.

    1993-08-01

    The vortex melting transition T m in several untwinned and twinned crystals measured resistively in fields up to 8 Tesla. A Lindemann criterion for vortex lattice melting is obtained in addition to a sharp hysteresis in the magnetoresistance at B m supporting a first order phase transition. The anisotropy of twin boundary pinning and its reduction of the ''kink'' in ρ(T) associated with the first order melting transition is discussed in samples with very dilute twin boundaries. We also report on direct suppression of melting transition by intrinsic pinning for H parallel ab and by electron-irradiation-induced point defects

  9. Large effect of columnar defects on the thermodynamic properties of Bi2Sr2CaCu2O8 single crystals

    Science.gov (United States)

    van der Beek, C. J.; Konczykowski, M.; Li, T. W.; Kes, P. H.; Benoit, W.

    1996-07-01

    The introduction of columnar defects by irradiation with 5.8-GeV Pb ions is shown to affect significantly the reversible magnetic properties of Bi2Sr2CaCu2O8+δ single crystals. Notably, the suppression of superconducting fluctuations on length scales greater than the separation between columns leads to the disappearance of the ``crossing point'' in the critical fluctuation regime. At lower temperatures, the strong modification of the vortex energy due to pinning leads to an important change of the reversible magnetization. The analysis of the latter permits the direct determination of the pinning energy.

  10. Compact toroids with Alfvenic flows

    International Nuclear Information System (INIS)

    Wang Zhehui; Tang, X.Z.

    2004-01-01

    The Chandrasekhar equilibria form a class of stationary ideal magnetohydrodynamics equilibria stabilized by magnetic-field-aligned Alfvenic flows. Analytic solutions of the Chandrasekhar equilibria are explicitly constructed for both field-reversed configurations and spheromaks. Favorable confinement property of nested closed flux surfaces and the ideal magnetohydrodynamic stability of the compact toroids are of interest for both magnetic trapping of high energy electrons in astrophysics and confinement of high temperature plasmas in laboratory

  11. Luminescence and photothermally stimulated defects creation processes in PbWO{sub 4}:La{sup 3+}, Y{sup 3+} (PWO II) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Auffray, E. [CERN, Geneva 23, Geneva (Switzerland); Korjik, M. [Institute for Nuclear Problems, 11 Bobruiskaya, 220020 Minsk (Belarus); Zazubovich, S., E-mail: svetlana.zazubovits@ut.ee [Institute of Physics, University of Tartu, Ravila 14 c, 50411 Tartu (Estonia)

    2015-12-15

    Photoluminescence and thermally stimulated luminescence (TSL) are studied for a PbWO{sub 4} crystal grown by the Czochralski method at Bogoroditsk Technical Chemical Plant, Russia from the melt with a precise tuning of the stoichiometry and co-doped with La{sup 3+} and Y{sup 3+} ions (the PWO II crystal). Photothermally stimulated processes of electron and hole centers creation under selective UV irradiation of this crystal in the 3.5–5.0 eV energy range and the 85–205 K temperature range are clarified and the optically created electron and hole centers are identified. The electrons in PWO II are mainly trapped at the (WO{sub 4}){sup 2−} groups located close to single La{sup 3+} and Y{sup 3+} ions, producing the electron {(WO_4)"3"−–La"3"+} and {(WO_4)"3"−–Y"3"+} centers. The holes are mainly trapped at the regular oxygen ions O{sup 2−} located close to La{sup 3+} and Y{sup 3+} ions associated with lead vacancies, producing the hole O{sup −}(I)-type centers. No evidence of single-vacancy-related centers has been observed in PWO II. The data obtained indicate that excellent scintillation characteristics of the PWO II crystal can be explained by a negligible concentration of single (non-compensated) oxygen and lead vacancies as the traps for electrons and holes, respectively. - Highlights: • Photoluminescence of the PbWO{sub 4}:La{sup 3+}, Y{sup 3+} (PWO II) crystal is investigated. • Creation of defects under UV irradiation of PWO II is studied by TSL. • Origin of dominating electron and hole centers is ascertained. • Concentration of single-vacancy-related centers is found to be negligible. • Excellent scintillation characteristics of the PWO II crystal are explained.

  12. Adsorption, Desorption, Surface Diffusion, Lattice Defect Formation, and Kink Incorporation Processes of Particles on Growth Interfaces of Colloidal Crystals with Attractive Interactions

    Directory of Open Access Journals (Sweden)

    Yoshihisa Suzuki

    2016-07-01

    Full Text Available Good model systems are required in order to understand crystal growth processes because, in many cases, precise incorporation processes of atoms or molecules cannot be visualized easily at the atomic or molecular level. Using a transmission-type optical microscope, we have successfully observed in situ adsorption, desorption, surface diffusion, lattice defect formation, and kink incorporation of particles on growth interfaces of colloidal crystals of polystyrene particles in aqueous sodium polyacrylate solutions. Precise surface transportation and kink incorporation processes of the particles into the colloidal crystals with attractive interactions were observed in situ at the particle level. In particular, contrary to the conventional expectations, the diffusion of particles along steps around a two-dimensional island of the growth interface was not the main route for kink incorporation. This is probably due to the number of bonds between adsorbed particles and particles in a crystal; the number exceeds the limit at which a particle easily exchanges its position to the adjacent one along the step. We also found novel desorption processes of particles from steps to terraces, attributing them to the assistance of attractive forces from additionally adsorbing particles to the particles on the steps.

  13. Defect-property correlations in garnet crystals. III. The electrical conductivity and defect structure of luminescent nickel-doped yttrium aluminum garnet

    International Nuclear Information System (INIS)

    Rotman, S.R.; Tuller, H.L.

    1987-01-01

    The conduction mechanisms in nickel-doped yttrium aluminum garnet (Ni:YAG) have been studied as a function of temperature and partial pressue of oxygen. ac conductivity and ionic transference measurements show that Ni:YAG is a mixed ionic-electronic conductor with an ionic mobility characterized by an activation energy of 2.0--2.2 eV. The reduction of Ni +3 to Ni +2 causes an increase in the oxygen vacancy concentration and a concurrent rise in the magnitude of the ionic conductivity. Codoping with zirconium, on the other hand, fixes the nickel in the divalent state, increases the n-type conductivity, and lowers the degree of ionic conductivity. A defect model is presented which is consistent with all of these observations

  14. Point defects in solids

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The principal properties of point defects are studied: thermodynamics, electronic structure, interactions with etended defects, production by irradiation. Some measuring methods are presented: atomic diffusion, spectroscopic methods, diffuse scattering of neutron and X rays, positron annihilation, molecular dynamics. Then points defects in various materials are investigated: ionic crystals, oxides, semiconductor materials, metals, intermetallic compounds, carbides, nitrides [fr

  15. Crystal defects and related stress in Y2O3 thin films: Origin, modeling, and consequence on the stability of the C-type structure

    International Nuclear Information System (INIS)

    Lacroix, Bertrand; Paumier, Fabien; Gaboriaud, Rolly J.

    2011-01-01

    We study the impact that the crystal defects have on the C-type structure of rare earth sesquioxide thin films grown by ion-beam sputtering, through the example of Y 2 O 3 . By monitoring the energy of the argon beam used in the sputter deposition process (between 600 and 1200 eV), we show that it is possible to control the microstructure (defects concentration, stress state and phase) in the oxide layer. Two main types of defects, ascribed to the 'atomic peening effect', are evidenced by high-resolution transmission electron microscopy, Rutherford backscattering spectroscopy, and nuclear reaction analysis experiments: anti-Frenkel pairs, leading to a disorder on the oxygen-vacancy network, and oxygen-vacancy dislocations loops, to accommodate the strong nonstoichiometry. From a macroscopic measurement of the residual stresses in the as-deposited and the annealed layers, through x-ray diffraction and the sin 2 Ψ method, we have modeled the related stress state using an enhanced triaxial stress model. In the as-grown films, we evidence the coexistence of a biaxial and a hydrostatic stress, due to inclusions of atomic size defects. Quantitative information of the concentration and the nature of each type of defect (size effect) have also been determined, in good agreement with experiments. Interestingly, in the most energetic growth conditions corresponding to the highest degree of disorder on the oxygen-vacancy network and to the highest stress field in the film, we demonstrate that it is possible to stabilize an unexpected and metastable non equilibrium fluorite-like phase (X-type).

  16. Crystal-defect-induced facet-dependent electrocatalytic activity of 3D gold nanoflowers for the selective nanomolar detection of ascorbic acid.

    Science.gov (United States)

    De, Sandip Kumar; Mondal, Subrata; Sen, Pintu; Pal, Uttam; Pathak, Biswarup; Rawat, Kuber Singh; Bardhan, Munmun; Bhattacharya, Maireyee; Satpati, Biswarup; De, Amitabha; Senapati, Dulal

    2018-06-14

    Understanding and exploring the decisive factors responsible for superlative catalytic efficiency is necessary to formulate active electrode materials for improved electrocatalysis and high-throughput sensing. This research demonstrates the ability of bud-shaped gold nanoflowers (AuNFs), intermediates in the bud-to-blossom gold nanoflower synthesis, to offer remarkable electrocatalytic efficiency in the oxidation of ascorbic acid (AA) at nanomolar concentrations. Multicomponent sensing in a single potential sweep is measured using differential pulse voltammetry while the kinetic parameters are estimated using electrochemical impedance spectroscopy. The outstanding catalytic activity of bud-structured AuNF [iAuNFp(Bud)/iGCp ≅ 100] compared with other bud-to-blossom intermediate nanostructures is explained by studying their structural transitions, charge distributions, crystalline patterns, and intrinsic irregularities/defects. Detailed microscopic analysis shows that density of crystal defects, such as edges, terraces, steps, ledges, kinks, and dislocation, plays a major role in producing the high catalytic efficiency. An associated ab initio simulation provides necessary support for the projected role of different crystal facets as selective catalytic sites. Density functional theory corroborates the appearance of inter- and intra-molecular hydrogen bonding within AA molecules to control the resultant fingerprint peak potentials at variable concentrations. Bud-structured AuNF facilitates AA detection at nanomolar levels in a multicomponent pathological sample.

  17. Heating of toroidal plasmas by neutral injection

    International Nuclear Information System (INIS)

    Stix, T.H.

    1971-08-01

    This paper presents a brief review of the physics of ion acceleration, charge exchange and ionization, trajectories for fast ions in toroidal magnetic fields, and fast-ion thermalization. The injection of fast atoms is found to be a highly competitive method both for heating present-day experimental toroidal plasmas and for bringing full-scale toroidal CTR plasmas to low-density ignition. 13 refs., 9 figs

  18. Studies on the deep-level defects in CdZnTe crystals grown by travelling heater method

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Boru; Jie, Wanqi; Wang, Tao; Xu, Lingyan; Yang, Fan; Yin, Liying; Fu, Xu [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an (China); Key Laboratory of Radiation Detection Materials and Devices, Ministry of Industry and Information Technology, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi (China); Nan, Ruihua [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an (China); Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials and Chemical Engineering, Xi' an Technological University, Xi' an (China)

    2017-05-15

    The variation of deep level defects along the axis of CZT:In ingots grown by Travelling Heater Method was investigated by the means of thermally stimulated current (TSC) spectra. Models for the reaction among different defects In, Te{sub i}, and V{sub Cd} were used to analyze the variation of deep level defects along the growth direction. It was found that the density of In dopant-related defects is lower in the tip, but those of Te antisites and Te interstitials are higher in the tip. The density of cadmium vacancy exhibits an initial increase followed by a decrease from the tip to tail of the ingot. In PL spectra, the intensities of (D{sub 0}, X), (DAP) and D{sub complex} peaks obviously increase from the tip to the tail, due to the increase of the density of In dopant-related defects (IN{sup +}{sub CD}), Cd vacancies, and impurities. The low concentration of net free holes was found by Hall measurements, and high resistivity with p-type conduction was demonstrated from I-V analysis. The mobility for electrons was found to increase significantly from 634 ± 26 cm{sup 2} V{sup -1} s{sup -1} in the tip to 860 ± 10 cm{sup 2} V{sup -1} s{sup -1} in the tail, due to the decrease of the deep level defect densities. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Line defects on As2Se3-Chalcogenide photonic crystals for the design of all-optical power splitters and digital logic gates

    Science.gov (United States)

    Saghaei, Hamed; Zahedi, Abdulhamid; Karimzadeh, Rouhollah; Parandin, Fariborz

    2017-10-01

    In this paper, a triangular two-dimensional photonic crystal (PhC) of As2Se3-chalcogenide rods in air is presented and its photonic band diagram is calculated by plane wave method. In this structure, an optical waveguide is obtained by creating a line defect (eliminating rods) in diagonal direction of PhC. Numerical simulations based on finite difference time domain method show that when self-collimated beams undergo total internal reflection at the PhC-air interface, a total reflection of 90° occurs for the output beams. We also demonstrate that by decreasing the radius of As2Se3-chalcogenide instead of eliminating a diagonal line, a two-channel optical splitter will be designed. In this case, incoming self-collimated beams can be divided into the reflected and transmitted beams with arbitrary power ratio by adjusting the value of their radii. Based on these results, we propose a four-channel optical splitter using four line defects. The power ratio among output channels can be controlled systematically by varying the radius of rods in the line defects. We also demonstrate that by launching two optical sources with the same intensity and 90° phase difference from both perpendicular faces of the PhC, two logic OR and XOR gates will be achieved at the output channels. These optical devices have some applications in photonic integrated circuits for controlling and steering (managing) the light as desired.

  20. Observation of plasma toroidal-momentum dissipation by neoclassical toroidal viscosity.

    Science.gov (United States)

    Zhu, W; Sabbagh, S A; Bell, R E; Bialek, J M; Bell, M G; LeBlanc, B P; Kaye, S M; Levinton, F M; Menard, J E; Shaing, K C; Sontag, A C; Yuh, H

    2006-06-09

    Dissipation of plasma toroidal angular momentum is observed in the National Spherical Torus Experiment due to applied nonaxisymmetric magnetic fields and their plasma-induced increase by resonant field amplification and resistive wall mode destabilization. The measured decrease of the plasma toroidal angular momentum profile is compared to calculations of nonresonant drag torque based on the theory of neoclassical toroidal viscosity. Quantitative agreement between experiment and theory is found when the effect of toroidally trapped particles is included.

  1. Defect formation and desorption of metal atoms from alkali halide crystals under low energy electron bombardment studied by optical absorption and mass spectroscopy

    International Nuclear Information System (INIS)

    Seifert, N.R.

    1993-04-01

    This work presents an extensive investigation of electronically induced desorption of ground-state alkali atoms from alkali halides and for the first time correlates directly the desorption with the stability and spatial distribution of the defects formed during bombardment. The electron impact results in the formation of stable F-centers and F-center clusters in the bulk of the crystals. In striking contrast a significant metallization of the surface is observed. Even at temperatures as low as 90 deg C the metallization is achieved within the time resolution of our detection system, which can only be explained by the rapid diffusion of hot holes. Superimposed to the fast and short diffusion of hot holes is the slow F-center diffusion. Measuring the distribution of defects with low energy ion sputtering techniques indicates that at least in the case of LiF the observed diffusion constant of F-centers agrees with values derived by using methods different from that applied here. At low temperatures the formation of F-center clusters and metal on the surface dominates. Colloid formation clearly requires higher temperatures (typically around 200 deg C). This is a strong evidence that efficient F-center diffusion is necessary for the formation of metallic particles (colloids) in the bulk of the crystals. Desorption of alkali atoms from alkali halides at temperatures around room temperature is due to weakly bound alkali atoms. For elevated temperatures the stability of the metallic clusters in the bulk of the crystals (i.e. colloids) are the rate limiting process. (author)

  2. Femtometer toroidal structures in nuclei

    International Nuclear Information System (INIS)

    Forest, J.L.; Pandharipande, V.R.; Pieper, S.C.; Wiringa, R.B.; Schiavilla, R.; Arriaga, A.

    1996-01-01

    The two-nucleon density distributions in states with isospin T=0, spin S=1, and projection M S =0 and ±1 are studied in 2 H, 3,4 He, 6,7 Li, and 16 O. The equidensity surfaces for M S =0 distributions are found to be toroidal in shape, while those of M S =±1 have dumbbell shapes at large density. The dumbbell shapes are generated by rotating tori. The toroidal shapes indicate that the tensor correlations have near maximal strength at r 3 He, 4 He, and 6 Li. The toroidal distribution has a maximum-density diameter of ∼1 fm and a half-maximum density thickness of ∼0.9 fm. Many realistic models of nuclear forces predict these values, which are supported by the observed electromagnetic form factors of the deuteron, and also predicted by classical Skyrme effective Lagrangians, related to QCD in the limit of infinite colors. Due to the rather small size of this structure, it could have a revealing relation to certain aspects of QCD. Experiments to probe this structure and its effects in nuclei are suggested. Pair distribution functions in other T,S channels are also discussed; those in T,S=1,1 have anisotropies expected from one-pion-exchange interactions. The tensor correlations in T,S=0,1 states are found to deplete the number of T,S=1,0 pairs in nuclei and cause a reduction in nuclear binding energies via many-body effects. copyright 1996 The American Physical Society

  3. Plasma Discharge in Toroidal System

    International Nuclear Information System (INIS)

    Usada, Widdi; Suryadi; Purwadi, Agus; Kasiyo

    1996-01-01

    A toroidal discharge apparatus has been made as an initial research in magnetic confinement system. This system consists of a capacitor, a RF source, an igniter system, a primary coil, a torus, and completed by Rogowski probe as a current detector. In this system, the discharge occurs when the minimum voltage is operated at 5 kV. The experiment result shows that the coupling factor is 0.35, it is proved that there is an equality between estimated and measurement results of the primary inductance i.e 8.5 μH

  4. Overview of toroidal momentum transport

    International Nuclear Information System (INIS)

    Peeters, A.G.; Hornsby, W.A.; Angioni, C.; Hein, T.; Kluy, N.; Strintzi, D.; Tardini, G.; Bortolon, A.; Camenen, Y.; Casson, F.J.; Snodin, A.P.; Szepesi, G.; Duval, B.; Fiederspiel, L.; Idomura, Y.; Mantica, P.; Parra, F.I.; Tala, T.; De Vries, P.; Weiland, J.

    2011-01-01

    Toroidal momentum transport mechanisms are reviewed and put in a broader perspective. The generation of a finite momentum flux is closely related to the breaking of symmetry (parity) along the field. The symmetry argument allows for the systematic identification of possible transport mechanisms. Those that appear to lowest order in the normalized Larmor radius (the diagonal part, Coriolis pinch, E x B shearing, particle flux, and up-down asymmetric equilibria) are reasonably well understood. At higher order, expected to be of importance in the plasma edge, the theory is still under development.

  5. Pellet injection and toroidal confinement

    International Nuclear Information System (INIS)

    1989-12-01

    The proceedings of a technical committee meeting on pellet injection and toroidal confinement, held in Gut Ising, Federal Republic of Germany, 24-26 October, 1988, are given in this report. Most of the major fusion experiments are using pellet injectors; these were reported at this meeting. Studies of confinement, which is favorably affected, impurity transport, radiative energy losses, and affects on the ion temperature gradient instability were given. Studies of pellet ablation and effects on plasma profiles were presented. Finally, several papers described present and proposed injection guns. Refs, figs and tabs

  6. Kinetic Monte Carlo studies of the reaction kinetics of crystal defects that diffuse one-dimensionally with occasional transverse migration

    DEFF Research Database (Denmark)

    Heinisch, H.L.; Trinkaus, H.; Singh, Bachu Narain

    2007-01-01

    The reaction kinetics of the various species of mobile defects in irradiated materials are crucially dependent on the dimensionality of their migration. Sink strengths for one-dimensionally (1D) gliding interstitial loops undergoing occasional direction changes have been described analytically...

  7. Effect of structural defects on the magnetic properties of the EuBaCo1.90O5.36 single crystal

    Science.gov (United States)

    Arbuzova, T. I.; Naumov, S. V.; Telegin, S. V.

    2018-01-01

    The effect of structural defects in cobalt and oxygen sublattices with the constant average oxidation level 3+ of all cobalt ions on the magnetic properties of the EuBaCo1.90O5.36 single crystal has been studied. The magnetic properties of the single crystal and the polycrystalline sample of the corresponding composition are compared in the range T = 200-650 K. The results show that the cobalt-deficient EuBaCo2- x O5.5-δ samples demonstrate a three-dimensional XY ferromagnetic ordering of magnetic sublattices. The values of the effective magnetic moment at T > 480 K indicate the existence of the IS and HS states of Co3+ ions. The large difference of values of μeff of the EuBaCo1.90O5.36 single crystal and polycrystal can be due to that the magnetic ion spins lie in plane ab. The magnetic field directed along plane ab substantially influences the magnetic ordering at T < 300 K.

  8. Effect of [Li]/[Nb] ratio on composition and defect structure of Zr:Yb:Tm:LiNbO3 crystals

    Science.gov (United States)

    Liu, Chunrui; Dai, Li; Wang, Luping; Shao, Yu; Yan, Zhehua; Xu, Yuheng

    2018-04-01

    Zr:Yb:Tm:LiNbO3 crystals with various [Li]/[Nb] ratios (0.946, 1.05, 1.20 and 1.38) were grown by the Czochralski technique. Distribution coefficients of Zr4+, Yb3+ and Tm3+ ions were analyzed by the inductively coupled plasma-atomic emission spectrometer (ICP-AES). The influence of [Li]/[Nb] ratio on the composition and defect structure of Zr:Yb:Tm:LiNbO3 crystals was investigated by X-ray diffraction and IR transmission spectrum. The results show that as the [Li]/[Nb] ratio increases in the melt, the distribution coefficients of Yb3+ and Tm3+ ions both increase while that of Zr4+ ion deceases. When the [Li]/[Nb] ratio increases to 1.20 in the melt, Zr:Yb:Tm:LiNbO3 crystal is nearly stoichiometric. In addition, when the [Li]/[Nb] ratio reaches up to 1.38, NbLi4+ are completely replaced and Li+ starts to impel the Zr4+, Yb3+ and Tm3+ into the normal Li sites.

  9. VO{sub 2}-like thermo-optical switching effect in one-dimensional nonlinear defective photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Juan, E-mail: juanzhang@staff.shu.edu.cn, E-mail: ywang@siom.ac.cn; Zhang, Rongjun [Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai 200072 (China); Wang, Yang, E-mail: juanzhang@staff.shu.edu.cn, E-mail: ywang@siom.ac.cn [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-06-07

    A new approach to achieve VO{sub 2}-like thermo-optical switching in a one-dimensional photonic crystal by the combination of thermo-optical and optical Kerr effects was proposed and numerically demonstrated in this study. The switching temperature and the hysteresis width can be tuned in a wide temperature range. Steep transition, high optical contrast, and low pumping power can be achieved at the same time. This kind of one-dimensional photonic crystal-based bistable switch will be low-cost, easy-to-fabricate, and versatile in practical applications compared with traditional VO{sub 2}-type one.

  10. BPX toroidal field coil design

    International Nuclear Information System (INIS)

    Heitzenvoeder, D.J.

    1992-01-01

    This paper reports on the toroidal field (TF) coil system of the Burning Plasma Experiment (BPX) which consists of (18) beryllium copper magnets arrayed in a wedged configuration with a major radius of 2.6 meters and a field strength capability on axis of 9.0 Tesla. The toroidal array is constructed from six (3)-coil modules to facilitate remote recovery in the event of a magnet failure after nuclear activation precludes hands-on servicing. The magnets are of a modified Bitter plate design with partial cases of type 316-LN stainless steel welded with Inconel 182 weld wire. The coil turn plates are fabricated from CDA C17510 beryllium copper with optimized mechanical, thermal, and electrical characteristics. joints within the turns and between turns are made by welding with C17200 filler wire. Cryogenic cooling is employed to reduce power dissipation and to enhance performance. The magnets are cooled between experimental pulses by pressurized liquid nitrogen flowing through channels in the edges of the coil turns. This arrangement makes possible one full-power pulse per hour. Electrical insulation consists of polyimide-glass sheets bonded in place with vacuum-pressure impregnated epoxy/glass

  11. Periodic order and defects in Ni-based inverse opal-like crystals on the mesoscopic and atomic scale

    NARCIS (Netherlands)

    Chumakova, A. V.; Valkovskiy, G. A.; Mistonov, A. A.; Dyadkin, V. A.; Grigoryeva, N. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Petukhov, Andrei V.; Grigoriev, S. V.

    2014-01-01

    The structure of inverse opal crystals based on nickel was probed on the mesoscopic and atomic levels by a set of complementary techniques such as scanning electron microscopy and synchrotron microradian and wide-angle diffraction. The microradian diffraction revealed the mesoscopic-scale

  12. Electric-field-tunable defect mode in one-dimensional photonic crystal operating in the terahertz range

    Czech Academy of Sciences Publication Activity Database

    Skoromets, Volodymyr; Němec, Hynek; Kadlec, Christelle; Fattakhova-Rohlfing, D.; Kužel, Petr

    2013-01-01

    Roč. 102, č. 24 (2013), "241106-1"-"241106-5" ISSN 0003-6951 R&D Projects: GA ČR GA13-12386S Grant - others:AVČR(CZ) M100101218 Institutional support: RVO:68378271 Keywords : terahertz spectroscopy * strontium titanate * dielectric properties * photonic crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.515, year: 2013

  13. Electrostatics of a Family of Conducting Toroids

    Science.gov (United States)

    Lekner, John

    2009-01-01

    An exact solution is found for the electrostatic potential of a family of conducting charged toroids. The toroids are characterized by two lengths "a" and "b", with "a" greater than or equal to "2b". They are closed, with no hole in the "doughnut". The results are obtained by considering the potential of two equal charges, displaced from the…

  14. Fast Dump of the ATLAS Toroids

    CERN Document Server

    Dudarev, A; Volpini, Giovanni; Dudarev, Alexey; Kate, Herman Ten

    2010-01-01

    The toroidal magnet system of the ATLAS Detector at CERN consists of a Barrel Toroid (BT) and two End Cap Toroids (ECT-A and ECT-C). Each toroid is built up from eight racetrack coils wound with an aluminum stabilized NbTi conductor and indirectly cooled by forced flow liquid helium. The three toroids operate in series at 20.5 kA with a total stored energy of 1.5 GJ. In order to verify the reliability and effectiveness of the quench protection system, series of fast dump tests have been performed first of the single toroids and finally of the entire toroidal magnet system. In this paper a model to simulate the fast dump of the ATLAS toroids in single mode operation and in full system configuration is presented. The model is validated through comparison with measured data extracted from the ramp-and-quench runs. The calculated energy dissipation in the various coils is in very good agreement (within 1-2\\%) with the enthalpy changes estimated from the temperature measurements of the different parts of the cold ...

  15. OCLATOR (One Coil Low Aspect Toroidal Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, S.

    1980-02-01

    A new approach to construct a tokamak-type reactor(s) is presented. Basically the return conductors of toroidal field coils are eliminated and the toroidal field coil is replaced by one single large coil, around which there will be placed several tokamaks or other toroidal devices. The elimination of return conductors should, in addition to other advantages, improve the accessibility and maintainability of the tokamaks and offer a possible alternative to the search for special materials to withstand large neutron wall loading, as the frequency of changeover would be increased due to minimum downtime. It also makes it possible to have a low aspect ratio tokamak which should improve the ..beta.. limit, so that a low toroidal magnetic field strength might be acceptable, meaning that the NbTi superconducting wire could be used. This system is named OCLATOR (One Coil Low Aspect Toroidal Reactor).

  16. Toroidal effects on drift wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.

    1992-09-23

    The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling.

  17. Toroidal effects on drift wave turbulence

    International Nuclear Information System (INIS)

    LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.

    1992-01-01

    The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling

  18. Development of Toroidal Core Transformers

    Energy Technology Data Exchange (ETDEWEB)

    de Leon, Francisco [New York Univ. (NYU), Brooklyn, NY (United States). Dept. of Electrical and Computer Engineering

    2014-08-01

    The original objective of this project was to design, build and test a few prototypes of single-phase dry-type distribution transformers of 25 kVA, 2.4 kV primary to 120 V transformers using cores made of a continuous steel strip shaped like a doughnut (toroid). At different points during the development of the project, the scope was enhanced to include the more practical case of a 25 kVA transformer for a 13.8 kV primary system voltage. Later, the scope was further expanded to design and build a 50 kVA unit to transformer voltage from 7.62 kV to 2x120 V. This is a common transformer used by Con Edison of New York and they are willing to test it in the field. The project officially started in September 2009 and ended in May 2014. The progress was reported periodically to DOE in eighteen quarterly reports. A Continuation Application was submitted to DOE in June 2010. In May 2011 we have requested a non-cost extension of the project. In December 2011, the Statement of Project Objectives (SOPO) was updated to reflect the real conditions and situation of the project as of 2011. A second Continuation Application was made and funding was approved in 2013 by DOE and the end date was extended to May 2014. The technical challenges that were overcome in this project include: the development of the technology to pass the impulse tests, derive a model for the thermal performance, produce a sound mechanical design, and estimate the inrush current. However, the greatest challenge that we faced during the development of the project was the complications of procuring the necessary parts and materials to build the transformers. The actual manufacturing process is relatively fast, but getting all parts together is a very lengthy process. The main products of this project are two prototypes of toroidal distribution transformers of 7.62 kV (to be used in a 13.8 kV system) to 2x120 V secondary (standard utilization voltage); one is rated at 25 kVA and the other at 50 kVA. The 25 k

  19. Phase control of spin waves based on a magnetic defect in a one-dimensional magnonic crystal

    Science.gov (United States)

    Baumgaertl, Korbinian; Watanabe, Sho; Grundler, Dirk

    2018-04-01

    Magnonic crystals are interesting for spin-wave based data processing. We investigate one-dimensional magnonic crystals (1D MCs) consisting of bistable Co 20 Fe 60 B 20 nanostripes separated by 75 nm wide air gaps. By adjusting the magnetic history, we program a single stripe of opposed magnetization in an otherwise saturated 1D MC. Its influence on propagating spin waves is studied via broadband microwave spectroscopy. Depending on an in-plane bias magnetic field, we observe spin wave phase shifts of up to almost π and field-controlled attenuation attributed to the reversed nanostripe. Our findings are of importance for magnetologics, where the control of spin wave phases is essential.

  20. A novel lithium copper iron phosphate with idealized formula Li5Cu22+Fe3+(PO44: crystal structure and distribution of defects

    Directory of Open Access Journals (Sweden)

    Shailesh Upreti

    2011-05-01

    Full Text Available Gray–green single crystals were obtained under high-pressure, high-temperature hydrothermal conditions. A refinement of atom occupancies gave the composition Li3.68Cu2+Fe3+(Cu0.55Li0.452Fe2+0.15(PO44. The structure is built from triplets of edge-sharing (Cu,LiO5–FeO6–(Cu,LiO5 polyhedra, CuO4 quadrilaterals and PO4 tetrahedra. In the (Cu,LiO5 polyhedra the Cu and Li positions are statistically occupied in a 0.551 (2:0.449 (2 ratio. Both FeO6 and CuO4 polyhedra exhibit overline1 symmetry. The positions of additional Li atoms with vacancy defects are in the interstices of the framework.

  1. Efficient infrared (≈1.9-2.0 μm) laser operation in color-defect-free Tm:NaGd(MoO4)2 crystal

    Science.gov (United States)

    Han, X.; Rico, M.; Serrano, M. D.; Cascales, C.; Zaldo, C.

    2013-04-01

    Color-defect-free 5 at.% Tm:NaGd(MoO4)2 crystals have been grown in a Na2MoO4/Na2Mo2O7 flux. Using a hemispherical optical cavity and pumping at λ = 794.5 nm with a Ti-sapphire laser, up to 850 mW of output power at λ ≈ 1900 nm was obtained at 300 K with an output coupler transmission of 8%. In the cw regime, the slope efficiency versus absorbed power was η = 45% and the pump power laser threshold was ≈180 mW. The laser was tunable from 1875 to 1975 nm and the emission had a FWHM bandwidth ≈20 nm, indicating the potential for ultrashort laser pulse generation.

  2. Quantitative assessment of slit Mura defect in a thin film transistor-liquid crystal display based on chromaticity and optical density

    International Nuclear Information System (INIS)

    Tzu, Fu-Ming; Chou, Jung-Hua

    2010-01-01

    An innovative non-contact optical inspection method is developed to quantify slit Mura defects for thin film transistor–liquid crystal displays (TFT-LCDs). From the measurements of both chromaticity and optical densities across the slit Mura, the results indicate that the optical density profile is a concave shape and the chromaticity distribution is a convex shape. A linear relation with a negative slope exists between the chromaticity and optical density. A larger colour difference has a steeper slope, and vice versa. All of the measurements with uncertainties of a 99.7% confidence interval satisfy the requirements of the flat panel display industry. The proposed method can accurately quantify the pattern of blue slit Mura of TFT-LCDs; even the perceptibility is below the just noticeable difference

  3. International Conference on Defects in Insulating Crystals Held at Parma, Italy on August 29th September 2nd, 1988

    Science.gov (United States)

    1988-09-01

    Divisione Fisica Applicata Centro Ricerche Energia Frascati, C.P. 65, 00044 Frascati, Italy F. De Matteis, A. Scacco, and F. Somma Dipartimento di...Various attractive potential applications, in solar energy conversion or in coherent optic technology for instance, are widely correlated to the optical...2) the solarization of LMA, which is the tendency for the crystals to color during optical excitation or exposure to ionizing radiation

  4. NCSX Toroidal Field Coil Design

    International Nuclear Information System (INIS)

    Kalish M; Rushinski J; Myatt L; Brooks A; Dahlgren F; Chrzanowski J; Reiersen W; Freudenberg K.

    2005-01-01

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements

  5. Quasistatic evolution of compact toroids

    International Nuclear Information System (INIS)

    Sgro, A.G.; Spencer, R.L.; Lilliequist, C.

    1981-01-01

    Some results are presented of simulations of the post formation evolution of compact toroids. The simulations were performed with a 1-1/2 D transport code. Such a code makes explicit use of the fact that the shapes of the flux surfaces in the plasma change much more slowly than do the profiles of the physical variables across the flux surfaces. Consequently, assuming that the thermodynamic variables are always equilibrated on a flux surface, one may calculate the time evolution of these profiles as a function of a single variable that labels the flux surfaces. Occasionally, during the calculation these profiles are used to invert the equilibrium equation to update the shapes of the flux surfaces. In turn, these shapes imply certain geometric cofficients, such as A = 2 >, which contain the geometric information required by the 1-D equations

  6. Runaway electrons in toroidal discharges

    International Nuclear Information System (INIS)

    Knoepfel, H.

    1979-01-01

    Experimental and theoretical studies of runaway electrons in toroidal devices are reviewed here, with particular reference to tokamaks. The complex phenomenology of runaway effects, which have been the subject of research for the past twenty years, is organized within the framework of a number of physical models. The mechanisms and rates for runaway production are discussed first, followed by sections on runaway-driven kinetic relaxation processes and runaway orbit confinement. Next, the equilibrium and stability of runaway-dominated discharges are reviewed. Models for runaway production at early times in the discharge and the scaling of runaway phenomena to larger devices are also discussed. Finally, detection techniques and possible applications of runaways are mentioned. (author)

  7. Quantifying He-point defect interactions in Fe through coordinated experimental and modeling studies of He-ion implanted single-crystal Fe

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xunxiang, E-mail: xunxianghu@berkeley.edu [Department of Nuclear Engineering, University of California, Berkeley, CA 94720-1730 (United States); Xu, Donghua; Wirth, Brian D. [Department of Nuclear Engineering, University of California, Berkeley, CA 94720-1730 (United States); Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996-2300 (United States)

    2013-11-15

    Understanding the effects of helium on the microstructural evolution and mechanical properties of structural materials are among the most challenging issues in fusion materials research. In this work, we combine thermal helium desorption spectroscopy (THDS) with positron annihilation spectroscopy (PAS) and a spatially dependent cluster dynamics model to investigate the energetics of helium-point defect interactions in helium-implanted single-crystal iron. The combination of modeling and thermal desorption measurements allows identification of the binding energies of small He–V clusters, the migration energy of single vacancy and possible mechanisms (e.g., shrinkage of He{sub 3}V{sub 2} clusters) responsible for measured Helium desorption peaks, and the effect of impurities (e.g., carbon) on these values. Furthermore, the model predicts the depth dependence of the helium and helium–vacancy clusters as a function of time and temperature during the thermal desorption measurement. Here, we report the THDS measurement results as a function of He implantation energy from 10 to 40 keV at a fluence level of 1 × 10{sup 15} He/cm{sup 2}, along with selected PAS measurements. The experimental results are compared to the modeling predictions to evaluate the extent to which self-consistent values of the He-point defect binding and interaction energies and diffusivities can explain the data.

  8. Semiconductors Under Ion Radiation: Ultrafast Electron-Ion Dynamics in Perfect Crystals and the Effect of Defects

    Science.gov (United States)

    Lee, Cheng-Wei; Schleife, André

    Stability and safety issues have been challenging difficulties for materials and devices under radiation such as solar panels in outer space. On the other hand, radiation can be utilized to modify materials and increase their performance via focused-ion beam patterning at nano-scale. In order to grasp the underlying processes, further understanding of the radiation-material and radiation-defect interactions is required and inevitably involves the electron-ion dynamics that was traditionally hard to capture. By applying Ehrenfest dynamics based on time-dependent density functional theory, we have been able to perform real-time simulation of electron-ion dynamics in MgO and InP/GaP. By simulating a high-energy proton penetrating the material, the energy gain of electronic system can be interpreted as electronic stopping power and the result is compared to existing data. We also study electronic stopping in the vicinity of defects: for both oxygen vacancy in MgO and interface of InP/GaP superlattice, electronic stopping shows strong dependence on the velocity of the proton. To study the energy transfer from electronic system to lattice, simulations of about 100 femto-seconds are performed and we analyze the difference between Ehrenfest and Born-Oppenheimer molecular dynamics.

  9. Structure of the radial electric field and toroidal/poloidal flow in high temperature toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi

    2001-01-01

    The structure of the radial electric field and toroidal/poloidal flow is discussed for the high temperature plasma in toroidal systems, tokamak and Heliotron type magnetic configurations. The spontaneous toroidal and poloidal flows are observed in the plasma with improved confinement. The radial electric field is mainly determined by the poloidal flow, because the contribution of toroidal flow to the radial electric field is small. The jump of radial electric field and poloidal flow are commonly observed near the plasma edge in the so-called high confinement mode (H-mode) plasmas in tokamaks and electron root plasma in stellarators including Heliotrons. In general the toroidal flow is driven by the momentum input from neutral beam injected toroidally. There is toroidal flow not driven by neutral beam in the plasma and it will be more significant in the plasma with large electric field. The direction of these spontaneous toroidal flows depends on the symmetry of magnetic field. The spontaneous toroidal flow driven by the ion temperature gradient is in the direction to increase the negative radial electric field in tokamak. The direction of spontaneous toroidal flow in Heliotron plasmas is opposite to that in tokamak plasma because of the helicity of symmetry of the magnetic field configuration. (author)

  10. Probing vacancy-type free-volume defects in Li2B4O7 single crystal by positron annihilation lifetime spectroscopy

    Science.gov (United States)

    Shpotyuk, O.; Adamiv, V.; Teslyuk, I.; Ingram, A.; Demchenko, P.

    2018-01-01

    Vacancy-type free-volume defects in lithium tetraborate Li2B4O7 single crystal, grown by the Czochralski technique, are probed with positron annihilation spectroscopy in the lifetime measuring mode. The experimental positron lifetime spectrum is reconstructed within the three-component fitting, involving channels of positron and positronium Ps trapping, as well as within the two-component fitting with a positronium-compensating source input. Structural configurations of the most efficient positron traps are considered using the crystallographic specificity of lithium tetraborate with the main accent on cation-type vacancies. Possible channels of positron trapping are visualized using the electronic structure calculations with density functional theory at the basis of structural parameters proper to Li2B4O7. Spatially-extended positron-trapping complexes involving singly-ionized lithium vacancies, with character lifetime close to 0.32 ns, are responsible for positron trapping in the nominally undoped lithium tetraborate Li2B4O7 crystal.

  11. Defects in N{sup +} ion-implanted ZnO single crystals studied by positron annihilation and Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, G.; Anwand, W.; Skorupa, W. [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Rossendorf, Dresden (Germany); Kuriplach, J.; Melikhova, O.; Cizek, J.; Prochazka, I. [Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles Univ., Prague (Czech Republic); Wenckstern, H. von; Brandt, M.; Lorenz, M.; Grundmann, M. [Institut fuer Experimentelle Physik II, Universitaet Leipzig (Germany)

    2007-07-01

    High quality ZnO single crystals of dimensions 10 x 10 x 0.5 mm{sup 3}, grown by a hydrothermal approach, have been implanted by 40 keV N{sup +} ions to a fluence of 1 x 10{sup 15} cm{sup -2} at room temperature. Their properties revealed by positron annihilation and Hall effect measurements are given in the as-grown and as-irradiated states, and after post-implantation annealing in an oxygen ambient at 200 C and 500 C. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Compact toroid formation, compression, and acceleration

    International Nuclear Information System (INIS)

    Degnan, J.H.; Peterkin, R.E. Jr.; Baca, G.P.; Beason, J.D.; Bell, D.E.; Dearborn, M.E.; Dietz, D.; Douglas, M.R.; Englert, S.E.; Englert, T.J.; Hackett, K.E.; Holmes, J.H.; Hussey, T.W.; Kiuttu, G.F.; Lehr, F.M.; Marklin, G.J.; Mullins, B.W.; Price, D.W.; Roderick, N.F.; Ruden, E.L.; Sovinec, C.R.; Turchi, P.J.; Bird, G.; Coffey, S.K.; Seiler, S.W.; Chen, Y.G.; Gale, D.; Graham, J.D.; Scott, M.; Sommars, W.

    1993-01-01

    Research on forming, compressing, and accelerating milligram-range compact toroids using a meter diameter, two-stage, puffed gas, magnetic field embedded coaxial plasma gun is described. The compact toroids that are studied are similar to spheromaks, but they are threaded by an inner conductor. This research effort, named MARAUDER (Magnetically Accelerated Ring to Achieve Ultra-high Directed Energy and Radiation), is not a magnetic confinement fusion program like most spheromak efforts. Rather, the ultimate goal of the present program is to compress toroids to high mass density and magnetic field intensity, and to accelerate the toroids to high speed. There are a variety of applications for compressed, accelerated toroids including fast opening switches, x-radiation production, radio frequency (rf) compression, as well as charge-neutral ion beam and inertial confinement fusion studies. Experiments performed to date to form and accelerate toroids have been diagnosed with magnetic probe arrays, laser interferometry, time and space resolved optical spectroscopy, and fast photography. Parts of the experiment have been designed by, and experimental results are interpreted with, the help of two-dimensional (2-D), time-dependent magnetohydrodynamic (MHD) numerical simulations. When not driven by a second discharge, the toroids relax to a Woltjer--Taylor equilibrium state that compares favorably to the results of 2-D equilibrium calculations and to 2-D time-dependent MHD simulations. Current, voltage, and magnetic probe data from toroids that are driven by an acceleration discharge are compared to 2-D MHD and to circuit solver/slug model predictions. Results suggest that compact toroids are formed in 7--15 μsec, and can be accelerated intact with material species the same as injected gas species and entrained mass ≥1/2 the injected mass

  13. Unified kinetic theory in toroidal systems

    International Nuclear Information System (INIS)

    Hitchcock, D.A.; Hazeltine, R.D.

    1980-12-01

    The kinetic theory of toroidal systems has been characterized by two approaches: neoclassical theory which ignores instabilities and quasilinear theory which ignores collisions. In this paper we construct a kinetic theory for toroidal systems which includes both effects. This yields a pair of evolution equations; one for the spectrum and one for the distribution function. In addition, this theory yields a toroidal generalization of the usual collision operator which is shown to have many similar properties - conservation laws, H theorem - to the usual collision operator

  14. Numerical determination of axisymmetric toroidal magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Johnson, J.L.; Dalhed, H.E.; Greene, J.M.

    1978-07-01

    Numerical schemes for the determination of stationary axisymmetric toroidal equilibria appropriate for modeling real experimental devices are given. Iterative schemes are used to solve the elliptic nonlinear partial differential equation for the poloidal flux function psi. The principal emphasis is on solving the free boundary (plasma-vacuum interface) equilibrium problem where external current-carrying toroidal coils support the plasma column, but fixed boundary (e.g., conducting shell) cases are also included. The toroidal current distribution is given by specifying the pressure and either the poloidal current or the safety factor profiles as functions of psi. Examples of the application of the codes to tokamak design at PPPL are given

  15. Rotating bubble and toroidal nuclei and fragmentation

    International Nuclear Information System (INIS)

    Royer, G.; Haddad, F.; Jouault, B.

    1995-01-01

    The energy of rotating bubble and toroidal nuclei predicted to be formed in central heavy-ion collisions at intermediate energies is calculated within the generalized rotating liquid drop model. The potential barriers standing in these exotic deformation paths are compared with the three dimensional and plane fragmentation barriers. In the toroidal deformation path of the heaviest systems exists a large potential pocket localised below the plane fragmentation barriers. This might allow the temporary survival of heavy nuclear toroids before the final clusterization induced by the surface and proximity tension. (author)

  16. Toroidal field ripple effects in large tokamaks

    International Nuclear Information System (INIS)

    Uckan, N.A.; Tsang, K.T.; Callen, J.D.

    1975-01-01

    In an experimental power reactor, the ripple produced by the finite number of toroidal field coils destroys the ideal axisymmetry of the configuration and is responsible for additional particle trapping, loss regions and plasma transport. The effects of toroidal field ripple on the plasma transport coefficient, the loss of alpha particles and energetic injection ions, and the relaxation of toroidal flows are investigated in a new and systematic way. The relevant results are applied to the ORNL-EPR reference design; the maximum ripple there of about 2.2 percent at the outer edge of the plasma column is found to be tolerable from plasma physics considerations

  17. Molecular dynamics study on the interaction of a dislocation and radiation induced defect clusters in Fcc crystals

    International Nuclear Information System (INIS)

    Hideo, Kaburaki; Tomoko, Kadoyoshi; Futoshi, Shimizu; Hajime; Kimizuka; Shiro, Jitsukawa

    2003-01-01

    Irradiation of high-energy neutrons and charged particles into solids is known to cause a significant change in mechanical properties, in particular, hardening of metals. Hardening of solids arises as a result of interactions of dislocations with irradiation induced defect clusters. Molecular dynamics method combined with the visualization method has been used to elucidate these complex pinning structures in details. In particular, we have successfully observed the transient process for the formation of a super-jog from an edge dislocation and interstitial and vacancy clusters under irradiation cascade conditions. Parallel molecular dynamics programs, called as Parallel Molecular Dynamics Stencil (PMDS), have been developed in order to perform these large scale simulations for materials simulations. The contents of the program and its parallel performance are also reported. (authors)

  18. Persistent photoconductivity and photo-responsible defect in 30 MeV-electron irradiated single crystal ZnO

    International Nuclear Information System (INIS)

    Kuriyama, K.; Matsumoto, K.; Kushida, K.; Xu, Q.

    2010-01-01

    Persistent photoconductivity (PPC) in 30-MeV electron irradiated ZnO single crystals is studied by excitation using light emitting diodes (LEDs) with various wavelengths. The decay transient of the photoconductivity shows relaxation times in the range of a few ten days for the illumination at 90 K and a few hours at room temperature. An electron paramagnetic resonance (EPR) signal with g-value = 2.005 appears after illumination of blue LED, suggesting the transfer from the artificially introduced oxygen vacancy of 2+ charge state to the metastable + charge state. Once generated, the metastable state does not immediately decay into the 2+ charge state because of energetic barriers of ∼190 meV, supporting the mechanism of PPC proposed by Van de Walle.

  19. OCLATOR (One Coil Low Aspect Toroidal Reactor)

    International Nuclear Information System (INIS)

    Yoshikawa, S.

    1980-02-01

    A new approach to construct a tokamak-type reactor(s) is presented. Basically the return conductors of toroidal field coils are eliminated and the toroidal field coil is replaced by one single large coil, around which there will be placed several tokamaks or other toroidal devices. The elimination of return conductors should, in addition to other advantages, improve the accessibility and maintainability of the tokamaks and offer a possible alternative to the search for special materials to withstand large neutron wall loading, as the frequency of changeover would be increased due to minimum downtime. It also makes it possible to have a low aspect ratio tokamak which should improve the β limit, so that a low toroidal magnetic field strength might be acceptable, meaning that the NbTi superconducting wire could be used. This system is named OCLATOR

  20. Steady state compact toroidal plasma production

    Science.gov (United States)

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  1. LASL toroidal reversed-field pinch programme

    International Nuclear Information System (INIS)

    Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.

    1979-01-01

    The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show that over half the energy loss is accounted for by this mechanism. Thomson-scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced, indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport is needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low-temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given. (author)

  2. LASL toroidal reversed-field pinch program

    International Nuclear Information System (INIS)

    Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.

    1978-01-01

    The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show over half of the energy loss is accounted for by this mechanism. Thomson scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport are needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given

  3. Influence of toroidal rotation on tearing modes

    Science.gov (United States)

    Cai, Huishan; Cao, Jintao; Li, Ding

    2017-10-01

    Tearing modes stability analysis including toroidal rotation is studied. It is found that rotation affects the stability of tearing modes mainly through the interaction with resistive inner region of tearing mode. The coupling of magnetic curvature with centrifugal force and Coriolis force provides a perturbed perpendicular current, and a return parallel current is induced to affect the stability of tearing modes. Toroidal rotation plays a stable role, which depends on the magnitude of Mach number and adiabatic index Γ, and is independent on the direction of toroidal rotation. For Γ >1, the scaling of growth rate is changed for typical Mach number in present tokamaks. For Γ = 1 , the scaling keeps unchanged, and the effect of toroidal rotation is much less significant, compared with that for Γ >1. National Magnetic Confinement Fusion Science Program and National Science Foundation of China under Grants No. 2014GB106004, No. 2013GB111000, No. 11375189, No. 11075161 and No. 11275260, and Youth Innovation Promotion Association CAS.

  4. Bow-shaped toroidal field coils

    International Nuclear Information System (INIS)

    Bonanos, P.

    1981-05-01

    Design features of Bow-Shaped Toroidal Field Coils are described and compared with circular and D shaped coils. The results indicate that bow coils can produce higher field strengths, store more energy and be made demountable. The design offers the potential for the production of ultrahigh toroidal fields. Included are representative coil shapes and their engineering properties, a suggested structural design and an analysis of a specific case

  5. Unstable universal drift eigenmodes in toroidal plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Chen, L.

    1979-08-01

    The eigenmode equation describing ballooning collisionless drift instabilities is analyzed both analytically and numerically. A new branch of eigenmodes, which corresponds to quasi-bound states due to the finite toroidicity, is shown to be destabilized by electron Landau damping for typical Tokamak parameters. This branch cannot be understood by the strong coupling approximation. However, the slab-like (Pearlstein-Berk type) branch is found to remain stable and experience enhanced shear damping due to finite toroidicity

  6. Spherical tokamak without external toroidal fields

    International Nuclear Information System (INIS)

    Kaw, P.K.; Avinash, K.; Srinivasan, R.

    2001-01-01

    A spherical tokamak design without external toroidal field coils is proposed. The tokamak is surrounded by a spheromak shell carrying requisite force free currents to produce the toroidal field in the core. Such equilibria are constructed and it is indicated that these equilibria are likely to have robust ideal and resistive stability. The advantage of this scheme in terms of a reduced ohmic dissipation is pointed out. (author)

  7. Viscous damping of toroidal angular momentum in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W. M. [Georgia Tech Fusion Research Center, Atlanta, Georgia 30332 (United States)

    2014-09-15

    The Braginskii viscous stress tensor formalism was generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry in order to provide a representation for the viscous damping of toroidal rotation in tokamaks arising from various “neoclassical toroidal viscosity” mechanisms. In the process, it was verified that the parallel viscosity contribution to damping toroidal angular momentum still vanishes even in the presence of toroidal asymmetries, unless there are 3D radial magnetic fields.

  8. Low-n shear Alfven spectra in axisymmetric toroidal plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Chance, M.S.

    1985-11-01

    In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs

  9. Celebrating the Barrel Toroid commissioning

    CERN Multimedia

    Peter Jenni

    ATLAS invited Funding Agency representatives and Laboratory Heads directly related to the funding and construction of the Barrel Toroid for a small ceremony on 13th December 2006 at Point 1, in order to mark the successful first full excitation of the BT (see last eNews). On that date, which was during the December CERN Council week, several of the Funding Agency Heads or their representatives could be present, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. Speeches were delivered by the ATLAS spokesperson Peter Jenni thanking the Funding Partners in the name of the Collaboration, by Magnet Project Leader Herman ten Kate tracing the BT construction history, and by the CERN Director-General Robert Aymar congratulating all those who have contributed to the successful project. Herman ten Kate addressing the delegates. The text of the introductory address by Peter Jenni is reproduced here. "It is a great pleasure for me to welcome you all here...

  10. Anomalous transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Punjabi, A.

    1989-12-01

    When the magnetic moment of particle is conserved, there are three mechanisms which cause anomalous transport. These are: variation of magnetic field strength in flux surface, variation of electrostatic potential in flux surface, and destruction of flux surface. The anomalous transport of different groups of particles resulting from each of these mechanisms is different. This fact can be exploited to determine the cause of transport operative in an experimental situation. This approach can give far more information on the transport than the standard confinement time measurements. To implement this approach, we have developed Monte Carlo codes for toroidal geometries. The equations of motion are developed in a set of non-canonical, practical Boozer co-ordinates by means of Jacobian transformations of the particle drift Hamiltonian equations of motion. Effects of collisions are included by appropriate stochastic changes in the constants of motion. Effects of the loop voltage on particle motions are also included. We plan to apply our method to study two problems: the problem of the hot electron tail observed in edge region of ZT-40, and the energy confinement time in TOKAPOLE II. For the ZT-40 problem three situations will be considered: a single mode in the core, a stochastic region that covers half the minor radius, a stochastic region that covers the entire plasma. A turbulent spectrum of perturbations based on the experimental data of TOKAPOLE II will be developed. This will be used to simulate electron transport resulting from ideal instabilities and resistive instabilities in TOKAPOLE II

  11. Anomalous transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Punjabi, A.

    1991-01-01

    We have developed a Monte Carlo method to estimate the transport of different groups of particles for plasmas in toroidal geometries. This method can determine the important transport mechanisms driving the anomalous transport by comparing the numerical results with the experimental data. The important groups of particles whose transport can be estimated by this method include runaway electrons, thermal electrons, both passing and trapped diagnostic beam ions etc. The three basic mechanisms driving the anomalous transport are: spatial variation of magnetic field strength, spatial variation of electrostatic potential within the flux surfaces, and the loss of flux surfaces. The equation of motion are obtained from the drift hamiltonian. The equations of motion are developed in the canonical and in the non-canonical, practical co-ordinates as well. The effects of collisions are represented by appropriate stochastic changes in the constants of motion at each time-step. Here we present the results of application of this method to three cases: superathermal alphas in the rippled field of tokamaks, motion in the magnetic turbulence of takapole II, and transport in the stochastic fields of ZT40. This work is supported by DOE OFE and ORAU HBCU program

  12. Self-organized TiO2 nanotubular arrays for photoelectrochemical hydrogen generation: effect of crystallization and defect structures

    International Nuclear Information System (INIS)

    Mahajan, V K; Misra, M; Raja, K S; Mohapatra, S K

    2008-01-01

    The effect of crystallization and surface chemistry of nanotubular titanium dioxide (TiO 2 ) in connection with the photoelectrochemical process is reported in this investigation. TiO 2 nanotubular arrays were synthesized by a simple anodization process in an acidified fluoride electrolyte at room temperature. The TiO 2 nanotubes were amorphous in as-anodized condition; their transformation to crystalline phases was a function of annealing temperature and gaseous environment. The anatase phase was observed predominantly after annealing in non-oxidizing atmospheres, whereas annealing in an oxygen environment showed a mixture of anatase and rutile phases. X-ray photoelectron spectroscopy was used to determine the chemical environment of the surface, which revealed the presence of phosphate, oxygen vacancies and pentacoordinated Ti in hydrogen annealed samples. Diffuse reflectance photospectrometry of non-oxygen annealed samples showed long absorption tails extending in the visible region. The photoelectrochemical response of the TiO 2 nanotubes annealed in different conditions was investigated. Photoelectrochemical performance under simulated solar light was improved by annealing the nanotubular TiO 2 samples in non-oxidizing environment

  13. High figure of merit ultra-compact 3-channel parallel-connected photonic crystal mini-hexagonal-H1 defect microcavity sensor array

    Science.gov (United States)

    Wang, Chunhong; Sun, Fujun; Fu, Zhongyuan; Ding, Zhaoxiang; Wang, Chao; Zhou, Jian; Wang, Jiawen; Tian, Huiping

    2017-08-01

    In this paper, a photonic crystal (PhC) butt-coupled mini-hexagonal-H1 defect (MHHD) microcavity sensor is proposed. The MHHD microcavity is designed by introducing six mini-holes into the initial H1 defect region. Further, based on a well-designed 1 ×3 PhC Beam Splitter and three optimal MHHD microcavity sensors with different lattice constants (a), a 3-channel parallel-connected PhC sensor array on monolithic silicon on insulator (SOI) is proposed. Finite-difference time-domain (FDTD) simulations method is performed to demonstrate the high performance of our structures. As statistics show, the quality factor (Q) of our optimal MHHD microcavity attains higher than 7×104, while the sensitivity (S) reaches up to 233 nm/RIU(RIU = refractive index unit). Thus, the figure of merit (FOM) >104 of the sensor is obtained, which is enhanced by two orders of magnitude compared to the previous butt-coupled sensors [1-4]. As for the 3-channel parallel-connected PhC MHHD microcavity sensor array, the FOMs of three independent MHHD microcavity sensors are 8071, 8250 and 8250, respectively. In addition, the total footprint of the proposed 3-channel parallel-connected PhC sensor array is ultra-compactness of 12.5 μm ×31 μm (width × length). Therefore, the proposed high FOM sensor array is an ideal platform for realizing ultra-compact highly parallel refractive index (RI) sensing.

  14. Anisotropy of electrical conductivity in dc due to intrinsic defect formation in α-Al{sub 2}O{sub 3} single crystal implanted with Mg ions

    Energy Technology Data Exchange (ETDEWEB)

    Tardío, M., E-mail: mtardio@fis.uc3m.es [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III, Avda. de la Universidad, 30, 28911 Leganés (Madrid) (Spain); Egaña, A.; Ramírez, R.; Muñoz-Santiuste, J.E. [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III, Avda. de la Universidad, 30, 28911 Leganés (Madrid) (Spain); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela (Portugal)

    2016-07-15

    The electrical conductivity in α-Al{sub 2}O{sub 3} single crystals implanted with Mg ions in two different crystalline orientations, parallel and perpendicular to c axis, was investigated. The samples were implanted at room temperature with energies of 50 and 100 keV and fluences of 1 × 10{sup 15}, 5 × 10{sup 15} and 5 × 10{sup 16} ions/cm{sup 2}. Optical characterization reveals slight differences in the absorption bands at 6.0 and 4.2 eV, attributed to F type centers and Mie scattering from Mg precipitates, respectively. DC electrical measurements using the four and two-point probe methods, between 295 and 490 K, were used to characterize the electrical conductivity of the implanted area (Meshakim and Tanabe, 2001). Measurements in this temperature range indicate that: (1) the electrical conductivity is thermally activated independently of crystallographic orientation, (2) resistance values in the implanted region decrease with fluence levels, and (3) the I–V characteristic of electrical contacts in samples with perpendicular c axis orientation is clearly ohmic, whereas contacts are blocking in samples with parallel c axis. When thin layers are sequentially removed from the implanted region by immersing the sample in a hot solution of nitric and fluorhydric acids the electrical resistance increases until reaching the values of non-implanted crystal (Jheeta et al., 2006). We conclude that the enhancement in conductivity observed in the implanted regions is related to the intrinsic defects created by the implantation rather than to the implanted Mg ions (da Silva et al., 2002; Tardío et al., 2001; Tardío et al., 2008).

  15. Microstructure modeling and crystal plasticity simulations for the evaluation of fatigue crack initiation in α-iron specimen including an elliptic defect

    Energy Technology Data Exchange (ETDEWEB)

    Briffod, Fabien, E-mail: briffod@rme.mm.t.u-tokyo.ac.jp; Shiraiwa, Takayuki; Enoki, Manabu

    2017-05-17

    In this study, fatigue crack initiation in pure α-iron is investigated through a microstructure-sensitive framework. At first, synthetic microstructures are modeled based on an anisotropic tessellation that accounts for the information of the grains morphology extracted from electron backscatter diffraction (EBSD) analysis. Low-cycle fatigue experiments under strain-controlled conditions are conducted in order to calibrate a crystal plasticity model and a J{sub 2} model including isotropic and kinematic hardening. A critical plane fatigue indicator parameter (FIP) based on the Tanaka-Mura model is then presented to evaluate the location and quantify the driving force for the formation of a crack. The FIP is averaged over several potential crack paths within each grain defined by the intersection between a given slip plane and the plane of the model thus accounting for both the lattice orientation and morphology of the grain. Several fatigue simulations at various stress amplitudes are conducted using a sub-modeling technique for the attribution of boundary conditions on the polycrystalline aggregate models including an elliptic defect. The influence of the microstructure attributes and stress level on the location and amplitude of the FIP are then quantified and discussed.

  16. Evidence for low temperature line-like behaviour of vortices in columnar defected Bi2Sr2CaCu2O8 single crystals

    International Nuclear Information System (INIS)

    Hebert, S; Perkins, G K; El-Salam, M Abd; Caplin, A D

    2003-01-01

    The interaction between vortices and columnar defects has been investigated in detail in Bi 2 Sr 2 CaCu 2 O 8 crystals irradiated with heavy ions along one direction, in one sample at 45 deg. from the c-axis, and in another at 75 deg. At all temperatures down to ∼30 K the irreversible magnetization is a maximum when the field is aligned with columns, although this peak is much more prominent at high temperatures and when the irreversibility field is approached. In the temperature-field-angle regime where the effect of the columns is dominant, the creep rate is close to 0.3, with little field or temperature dependence. These results can be understood in terms of line-like vortices, pinned both by columns and by point-like disorder, with much of the latter arising from collateral damage by the irradiation. The narrowness of the peak in the angular dependences is consistent with a locked state of the vortices to the columns

  17. Long-wavelength microinstabilities in toroidal plasmas

    International Nuclear Information System (INIS)

    Tang, W.W.; Rewoldt, G.

    1993-01-01

    Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,θ) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in TFTR L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities

  18. Effects of toroidicity on resistive tearing modes

    International Nuclear Information System (INIS)

    Izzo, R.; Monticello, D.A.; Manickam, J.; Strauss, H.R.; Grimm, R.; McGuire, K.

    1983-03-01

    A reduced set of resistive MHD equations is solved numerically in three dimensions to study the stability of tokamak plasmas. Toroidal effects are included self-consistently to leading and next order in inverse aspect ratio, epsilon. The equations satisfy an energy integral. In addition, the momentum equation yields the Grad-Shafranov equation correct to all orders in epsilon. Low beta plasma are studied using several different q-profiles. In all cases, the linear growth rates are reduced by finite toroidicity. Excellent agreement with resistive PEST is obtianed. In some cases, toroidal effects lead to complete stabilization of the mode. Nonlinear results show smaller saturated island widths for finite aspect ratio compared to the cylindrical limit. If the current channel is wide enough so as to produce steep gradients towards the outside of the plasma, both the finite aspect ratio cases and cylindrical cases disrupt

  19. PDX toroidal field coils stress analysis

    International Nuclear Information System (INIS)

    Nikodem, Z.D.; Smith, R.A.

    1975-01-01

    A method used in the stress analysis of the PDX toroidal field coil is developed. A multilayer coil design of arbitrary dimensions in the shape of either a circle or an oval is considered. The analytical model of the coil and the supporting coil case with connections to the main support structure is analyzed using the finite element technique. The three dimensional magnetic fields and the non-uniform body forces which are a loading condition on a coil due to toroidal and poloidal fields are calculated. The method of analysis permits rapid and economic evaluations of design changes in coil geometry as well as in coil support structures. Some results pertinent to the design evolution and their comparison are discussed. The results of the detailed stress analysis of the final coil design due to toroidal field, poloidal field and temperature loads are presented

  20. Toroidal mode-conversion in the ICRF

    International Nuclear Information System (INIS)

    Jaun, A.; Hellsten, T.; Chiu, S.C.

    1997-08-01

    Mode-conversion is studied in the ion-cyclotron range of frequencies (ICRF) taking into account the toroidal geometry relevant for tokamaks. The global wavefields obtained using the gyrokinetic toroidal PENN code illustrate how the fast wave propagates to the neighborhood of the ion-ion hybrid resonance, where it is converted to a slow wave which deposits the wave energy through resonant interactions with the particles. The power deposition profiles obtained are dramatically different from the toroidal resonance absorption, showing that Budden's model is not a good approximation in the torus. Radially and poloidally localized wavefield structures characteristic of slow wave eigenmodes are predicted and could in experiments be driven to large amplitudes so as to interact efficiently with fast particles. (author) 5 figs., 1 tab., 48 refs

  1. Models for large superconducting toroidal magnet systems

    International Nuclear Information System (INIS)

    Arendt, F.; Brechna, H.; Erb, J.; Komarek, P.; Krauth, H.; Maurer, W.

    1976-01-01

    Prior to the design of large GJ toroidal magnet systems it is appropriate to procure small scale models, which can simulate their pertinent properties and allow to investigate their relevant phenomena. The important feature of the model is to show under which circumstances the system performance can be extrapolated to large magnets. Based on parameters such as the maximum magnetic field and the current density, the maximum tolerable magneto-mechanical stresses, a simple method of designing model magnets is presented. It is shown how pertinent design parameters are changed when the toroidal dimensions are altered. In addition some conductor cost estimations are given based on reactor power output and wall loading

  2. Guiding Center Equations in Toroidal Equilibria

    International Nuclear Information System (INIS)

    White, Roscoe; Zakharov, Leonid

    2002-01-01

    Guiding center equations for particle motion in a general toroidal magnetic equilibrium configuration are derived using magnetic coordinates. Previous derivations made use of Boozer coordinates, in which the poloidal and toroidal angle variables are chosen so that the Jacobian is inversely proportional to the square of the magnetic field. It is shown that the equations for guiding center motion in any equilibrium possessing nested flux surfaces have exactly the same simple form as those derived in this special case. This allows the use of more spatially uniform coordinates instead of the Boozer coordinates, greatly increasing the accuracy of calculations in large beta and strongly shaped equilibria

  3. Current control necessary for toroidal plasma equilibrium

    International Nuclear Information System (INIS)

    Nagao, S.

    1987-01-01

    It is shown that a significant amount of dipole current is necessary for the plasma equilibrium of toroidal configurations in general. Through the vector product with the poloidal field, this dipole current force has to balance with the hoop force of plasma pressure itself of the annular shape. The measurement of such a current of dipole type may be interesting for the confirmation of the plasma equilibrium in the toroidal system. Moreover it is certained that there is a new mode of a tokamak operation with such a dipole current component and with smaller vertical field than that based on the classical tokamak theory. (author) [pt

  4. Toroidal Precession as a Geometric Phase

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Burby and H. Qin

    2012-09-26

    Toroidal precession is commonly understood as the orbit-averaged toroidal drift of guiding centers in axisymmetric and quasisymmetric configurations. We give a new, more natural description of precession as a geometric phase effect. In particular, we show that the precession angle arises as the holonomy of a guiding center's poloidal trajectory relative to a principal connection. The fact that this description is physically appropriate is borne out with new, manifestly coordinate-independent expressions for the precession angle that apply to all types of orbits in tokamaks and quasisymmetric stellarators alike. We then describe how these expressions may be fruitfully employed in numerical calculations of precession.

  5. A model for the neoclassical toroidal viscosity effect on Edge plasma toroidal rotation

    Energy Technology Data Exchange (ETDEWEB)

    Miron, I.G. [National Institute for Laser, Plasma and Radiation Physics, Euratom-MEdC Association, Bucharest (Romania)

    2013-11-15

    A semianalytic expression for the edge plasma angular toroidal rotation frequency that includes the neoclassical toroidal viscosity braking influence is obtained. Based on the model presented in a previous paper [I.G. Miron, Contrib. Plasma Phys. 53, 214 (2013)], the less destabilizing error field spectrum is found in order to minimize the nonlinear effect of the NTV on the toroidal rotation of the edge of the plasma. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hegna, C. C. [Departments of Engineering Physics and Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-05-15

    The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.

  7. Quench propagation and protection analysis of the ATLAS Toroids

    OpenAIRE

    Dudarev, A; Gavrilin, A V; ten Kate, H H J; Baynham, D Elwyn; Courthold, M J D; Lesmond, C

    2000-01-01

    The ATLAS superconducting magnet system consists of the Barrel Toroid, two End Cap Toroids and the Central Solenoid. However, the Toroids of eight coils each are magnetically separate systems to the Central Solenoid. The Toroids are electrically connected in series and energized by a single power supply. The quench protection system is based on the use of relatively small external dump resistances in combination with quench-heaters activated after a quench event detection to initiate the inte...

  8. New material equations for electromagnetism with toroid polarizations

    International Nuclear Information System (INIS)

    Dubovik, V.M.; Martsenyuk, M.A.; Saha, B.

    1999-09-01

    With regard to the toroid contributions, a modified system of equations of electrodynamics moving continuous media has been obtained. Alternative formalisms to introduce the toroid moment contributions in the equations of electromagnetism has been worked out. The two four-potential formalism has been developed. Lorentz transformation laws for the toroid polarizations has been given. Covariant form of equations of electrodynamics of continuous media with toroid polarizations has been written. (author)

  9. System for calibration of SPEAR transport line toroids

    International Nuclear Information System (INIS)

    Huang, T.V.; Smith, H.; Crook, K.

    1977-01-01

    A one nanosecond pulse generator was developed for calibration of the intensity monitors (toroids) in the SPEAR transport lines. The generator, located at the toroid, is simple, low cost and resistant to radiation. The generator and its connection to the standard SLAC toroid calibration system are described

  10. Toroidal groups line bundles, cohomology and quasi-Abelian varieties

    CERN Document Server

    Kopfermann, Klaus

    2001-01-01

    Toroidal groups are the connecting link between torus groups and any complex Lie groups. Many properties of complex Lie groups such as the pseudoconvexity and cohomology are determined by their maximal toroidal subgroups. Quasi-Abelian varieties are meromorphically separable toroidal groups. They are the natural generalisation of the Abelian varieties. Nevertheless, their behavior can be completely different as the wild groups show.

  11. On the stabilization of toroidal pinches by finite larmor radius effects and toroidal magnetic field

    International Nuclear Information System (INIS)

    Singh, R.; Weiland, J.

    1989-01-01

    The radial eigenvalue problem for internal modes in a large aspect ratio toriodal pinch has been solved. A particularly stable regime for a weak but nonzero toroidal magnetic field has been found. (31 refs.)

  12. Anisotropic diffusion in a toroidal geometry

    International Nuclear Information System (INIS)

    Fischer, Paul F

    2005-01-01

    As part of the Department of Energy's applications oriented SciDAC project, three model problems have been proposed by the Center for Extended Magnetohydrodynamics Modeling to test the potential of numerical algorithms for challenging magnetohydrodynamics (MHD) problems that are required for future fusion development. The first of these, anisotropic diffusion in a toroidal geometry, is considered in this note

  13. A steady-state axisymmetric toroidal system

    International Nuclear Information System (INIS)

    Hirano, K.

    1984-01-01

    Conditions for achieving a steady state in an axisymmetric toroidal system are studied with emphasis on a very-high-beta field-reversed configuration. The analysis is carried out for the electromotive force produced by the Ohkawa current that is induced by neutral-beam injection. It turns out that, since the perpendicular component of the current j-vectorsub(perpendicular) to the magnetic field can be generated automatically by the diamagnetic effect, only the parallel component j-vectorsub(parallel) must be driven by the electromotive force. The drive of j-vectorsub(parallel) generates shear in the field line so that the pure toroidal field on the magnetic axis is rotated towards the plasma boundary and matched to the external field lines. This matching condition determines the necessary amount of injection beam current and power. It is demonstrated that a very-high-beta field-reversed configuration requires only a small amount of current-driving beam power because almost all the toroidal current except that close to the magnetic axis is carried by the diamagnetic current due to high beta. A low-beta tokamak, on the other hand, needs very high current-driving power since most of the toroidal current is composed of j-vectorsub(parallel) which must be driven by the beam. (author)

  14. Trapped ion mode in toroidally rotating plasmas

    International Nuclear Information System (INIS)

    Artun, M.; Tang, W.M.; Rewoldt, G.

    1995-04-01

    The influence of radially sheared toroidal flows on the Trapped Ion Mode (TIM) is investigated using a two-dimensional eigenmode code. These radially extended toroidal microinstabilities could significantly influence the interpretation of confinement scaling trends and associated fluctuation properties observed in recent tokamak experiments. In the present analysis, the electrostatic drift kinetic equation is obtained from the general nonlinear gyrokinetic equation in rotating plasmas. In the long perpendicular wavelength limit k τ ρ bi much-lt 1, where ρ bi is the average trapped-ion banana width, the resulting eigenmode equation becomes a coupled system of second order differential equations nmo for the poloidal harmonics. These equations are solved using finite element methods. Numerical results from the analysis of low and medium toroidal mode number instabilities are presented using representative TFTR L-mode input parameters. To illustrate the effects of mode coupling, a case is presented where the poloidal mode coupling is suppressed. The influence of toroidal rotation on a TFTR L-mode shot is also analyzed by including a beam species with considerable larger temperature. A discussion of the numerical results is presented

  15. Design of the TPX outboard toroidal limiters

    International Nuclear Information System (INIS)

    Schaubel, K.M.; Anderson, P.M.; Baxi, C.B.

    1995-01-01

    The Tokamak Physics Experiment outboard limiter system incorporates the passive stabilizer plates, the ripple armor, the toroidal break and the support structures. These components are designed to withstand substantial steady state heat loads and high mechanical forces caused by plasma disruptions. The design of these components has been developed to deal with the challenging thermal, structural and remote handling requirements

  16. Escape of magnetic toroids from the Sun

    International Nuclear Information System (INIS)

    Bieber, John W.; Rust, David M.

    1996-01-01

    Analysis of heliospheric magnetic fields at 1 AU shows that 10 24 Mx of net toroidal flux escapes from the Sun per solar cycle. This rate is compared with the apparent rate of flux emergence at the solar surface, and it is concluded that escaping toroids will remove at least 20% of the emerging flux, and may remove as much as 100% of emerging flux if multiple eruptions occur on the toroids. The data imply that flux escapes the Sun with an efficiency far exceeding Parker's upper limit estimate of 3%. Toroidal flux escape is almost certainly the source of the observed overwinding of the interplanetary magnetic field spiral. Two mechanisms to facilitate net flux escape are discussed: helicity charging to push open the fields and flux transport with reconnection to close them off. We estimate the Sun will shed ∼2x10 45 Mx 2 of magnetic helicity per solar cycle, leading to a mean helicity density of 100 Mx 2 cm -3 at 1 AU, which agrees well with observations

  17. Toroidal 12 cavity klystron : a novel approach

    International Nuclear Information System (INIS)

    Hazarika, A.B.R.

    2013-01-01

    A toroidal 12 cavity klystron is designed to provide with high energy power with the high frequency microwave RF- plasma generated from it. The cavities are positioned in clock hour positions. The theoretical modeling and designing is done to study the novel approach. (author)

  18. Celebration for the ATLAS Barrel Toroid magnet

    CERN Multimedia

    2007-01-01

    Representatives from Funding Agencies and Barrel Toroid Magnet Laboratories during the ceremony. From left to right: Jean Zinn-Justin (Head of DAPNIA/CEA/Saclay), CERN Director-General Robert Aymar, and Roberto Petronzio (President INFN).Allan Clark (DPNC University Geneva) and Enrique Fernandez (IFAE Barcelona) were among the guests visiting the ATLAS cavern. The barrel toroid is visible in the background. A celebration took place at Point 1 on 13 December to toast the recent powering-up of the ATLAS barrel toroid magnet to full field (Bulletin No. 47-48/06). About 70 guests were invited to attend, mainly composed of representatives from funding partners and key members of the laboratory management teams of the barrel toroid magnet, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. An introductory speech by ATLAS spokesperson Peter Jenni the scene for evening. This was followed by the ATLAS magnet system project leader Herman Ten Kate's account of the...

  19. Curvature driven instabilities in toroidal plasmas

    International Nuclear Information System (INIS)

    Andersson, P.

    1986-11-01

    The electromagnetic ballooning mode, the curvature driven trapped electron mode and the toroidally induced ion temperature gradient mode have been studies. Eigenvalue equations have been derived and solved both numerically and analytically. For electromagnetic ballooning modes the effects of convective damping, finite Larmor radius, higher order curvature terms, and temperature gradients have been investigated. A fully toroidal fluid ion model has been developed. It is shown that a necessary and sufficient condition for an instability below the MHD limit is the presence of an ion temperature gradient. Analytical dispersion relations giving results in good agreement with numerical solutions are also presented. The curvature driven trapped electron modes are found to be unstable for virtually all parameters with growth rates of the order of the diamagnetic drift frequency. Studies have been made, using both a gyrokinetic ion description and the fully toroidal ion model. Both analytical and numerical results are presented and are found to be in good agreement. The toroidally induced ion temperature gradients modes are found to have a behavior similar to that of the curvature driven trapped electron modes and can in the electrostatic limit be described by a simple quadratic dispersion equation. (author)

  20. Discussion of discrete D shape toroidal coil

    International Nuclear Information System (INIS)

    Kaiho, Katsuyuki; Ohara, Takeshi; Agatsuma, Ko; Onishi, Toshitada

    1988-01-01

    A novel design for a toroidal coil, called the D shape coil, was reported by J. File. The coil conductors are in pure tension and then subject to no bending moment. This leads to a smaller number of emf supports in a simpler configuration than that with the conventional toroidal coil of circular cross-section. The contours of the D shape are given as solutions of a differential equation. This equation includes the function of the magnetic field distribution in the conductor region which is inversely proportional to the winding radius. It is therefore important to use the exact magnetic field distribution. However the magnetic field distribution becomes complicated when the D shape toroidal coil is comprised of discrete coils and also depends on the D shape configuration. A theory and a computer program for designing the practical pure-tension toroidal coil are developed. Using this computer code, D shape conductors are calculated for various numbers of discrete coils and the results are compared. Electromagnetic forces in the coils are also calculated. It is shown that the hoop stress in the conductors depends only on the total ampere-turns of the coil when the contours of the D shape are similar. (author)

  1. Toroidal vortices in resistive magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Montgomery, D.; Bates, J.W.; Li, S.

    1997-01-01

    When a time-independent electric current flows toroidally in a uniform ring of electrically conducting fluid, a Lorentz force results, jxB, where j is the local electric current density, and B is the magnetic field it generates. Because of purely geometric effects, the curl of jxB is nonvanishing, and so jxB cannot be balanced by the gradient of any scalar pressure. Taking the curl of the fluid close-quote s equation of motion shows that the net effect of the jxB force is to generate toroidal vorticity. Allowed steady states necessarily contain toroidal vortices, with flows in the poloidal directions. The flow pattern is a characteristic open-quotes double smoke ringclose quotes configuration. The effect seems quite general, although it is analytically simple only in special limits. One limit described here is that of high viscosity (low Reynolds number), with stress-free wall boundary conditions on the velocity field, although it is apparent that similar mechanical motions will result for no-slip boundaries and higher Reynolds numbers. A rather ubiquitous connection between current-carrying toroids and vortex rings seems to be implied, one that disappears in the open-quotes straight cylinderclose quotes limit. copyright 1997 American Institute of Physics

  2. Neoclassical poloidal and toroidal rotation in tokamaks

    International Nuclear Information System (INIS)

    Kim, Y.B.; Diamond, P.H.; Groebner, R.J.

    1991-01-01

    Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H-mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite to that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non-negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation

  3. ATLAS Barrel Toroid magnet reached nominal field

    CERN Multimedia

    2006-01-01

     On 9 November the barrel toroid magnet reached its nominal field of 4 teslas, with an electrical current of 21 000 amperes (21 kA) passing through the eight superconducting coils as shown on this graph

  4. ATLAS: Full power for the toroid magnet

    CERN Multimedia

    2006-01-01

    The 9th of November was a memorable day for ATLAS. Just before midnight, the gigantic Barrel toroid magnet reached its nominal field of 4 teslas in the coil windings, with an electrical current of 21000 amperes (21 kA) passing through the eight superconducting coils (as seen on the graph). This achievement was obtained after several weeks of commissioning. The ATLAS Barrel Toroid was first cooled down for about six weeks in July-August to -269°C (4.8 K) and then powered up step-by-step in successive test sessions to 21 kA. This is 0.5 kA above the current required to produce the nominal magnetic field. Afterwards, the current was safely switched off and the stored magnetic energy of 1.1 gigajoules was dissipated in the cold mass, raising its temperature to a safe -218°C (55 K). 'We can now say that the ATLAS Barrel Toroid is ready for physics,' said Herman ten Kate, project leader for the ATLAS magnet system. The ATLAS barrel toroid magnet is the result of a close collaboration between the magnet la...

  5. Long-wavelength microinstabilities in toroidal plasmas

    International Nuclear Information System (INIS)

    Tang, W.M.; Rewoldt, G.

    1993-01-01

    Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,θ) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Res. (International Atomic Energy Agency, Vienna, 1985), Vol. 1, p. 29] L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities

  6. Relativistic stars with purely toroidal magnetic fields

    International Nuclear Information System (INIS)

    Kiuchi, Kenta; Yoshida, Shijun

    2008-01-01

    We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The basic equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these basic equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows: (1) For the nonrotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.

  7. Development of compact toroids injector for direct plasma controls

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, K. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Oda, Y. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Onozuka, M. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Uyama, T. [Himeji Inst. of Tech. (Japan); Nagata, M. [Himeji Inst. of Tech. (Japan); Fukumoto, N. [Himeji Inst. of Tech. (Japan)

    1995-12-31

    The application of the compact toroids injector for direct plasma controls has been investigated. The compact toroids injection can fuel particles directly into the core of the plasma and modify the plasma profiles at the desired locations. The acceleration tests of the compact toroids have been conducted at Himeji Institute of Technology. The tests showed that the hydrogen compact toroid was accelerated up to 80km/s and the plasma density of the compact toroid was compressed to 1.2 x 10{sup 21}m{sup -3}. (orig.).

  8. Development of compact toroids injector for direct plasma controls

    International Nuclear Information System (INIS)

    Azuma, K.; Oda, Y.; Onozuka, M.; Uyama, T.; Nagata, M.; Fukumoto, N.

    1995-01-01

    The application of the compact toroids injector for direct plasma controls has been investigated. The compact toroids injection can fuel particles directly into the core of the plasma and modify the plasma profiles at the desired locations. The acceleration tests of the compact toroids have been conducted at Himeji Institute of Technology. The tests showed that the hydrogen compact toroid was accelerated up to 80km/s and the plasma density of the compact toroid was compressed to 1.2 x 10 21 m -3 . (orig.)

  9. Low-frequency dielectric relaxation near the Curie temperature in triglycine sulfate crystals containing radiation-induced defects and α-alanine impurity

    International Nuclear Information System (INIS)

    Bradulina, L.G.; Lotonov, A.M.; Gavrilova, N.D.

    2001-01-01

    The comparison of dielectric characteristics of the triglycine sulfate (TGS) polydomain crystal in the area of the Curie point with the parameters of the TGS monodomain crystals with the α-alanine admixture (ATGS) and gamma-irradiated TGS is carried out. No differences in the relaxation spectra of the TGS mono- and polydomain crystals is determined. The opinion is rejected, that only domain boundaries and processes, connected with the domain structure rebuilding by transition from the para- into the ferro phase, determined the character of the TGS crystal relaxation spectrum [ru

  10. Generation of toroidal pre-heat plasma

    International Nuclear Information System (INIS)

    Ikeda, Nagayasu; Tamaru, Ken; Nagata, Akiyoshi.

    1979-01-01

    The characteristics of toroidal plasma in the initial stage of electric discharge were investigated. A small toroidal-pinch system was used for the present work. A magnetic probe was used to measure the magnetic field. The time of beginning of discharge was determined by observing the variation of the magnetic field. The initial gas pressure dependence of the induced electric field regions, in which electric discharge can be caused, was studied. It is necessary to increase the initial induced electric field for starting discharge. The delay time of large current discharge was measured, and it was about 2 microsecond. Dependences of the electric fields at the beginning of discharge on the charging voltage of capacitors, on the initial gas pressure, and on the discharge frequency were studied. The formation mechanism of plasma column was analyzed. (Kato, T.)

  11. Toroidal charge exchange recombination spectroscopy on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Minyou, E-mail: yemy@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Li, Yingying [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Yu, Yi [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shi, Yuejiang [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); WCI for Fusion Theory, National Fusion Research Institute, 52 Eoeun-Dong, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Lyu, Bo; Fu, Jia [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Du, Xuewei; Yin, Xianghui; Zhang, Yi; Wang, Qiuping [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wan, Baonian [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-10-15

    A toroidal charge exchange recombination spectroscopy (CXRS) diagnostic, on the basis of a heating neutral beam injector (NBI), is constructed on EAST tokamak. Simulation of Spectra (SOS) code is used to design and evaluate the diagnostic performance. 30 spatial channels work simultaneously in recent experiment, which covers a radial region from 1.55 m to 2.30 m in the cross section. The CXRS has a radial resolution of 1–3.5 cm from core to edge. The acquisition time is typically 10 ms, limited by the poor photon statistics. The diagnostic can observe not only the normal C{sup 5+} emission line at 529.1 nm but also any interested wavelength in the range of 400–700 nm. In this work, a brief overview on the R&D and the instrument performance for the toroidal CXRS diagnostic is described, together with first results.

  12. Form coefficient of helical toroidal solenoids

    International Nuclear Information System (INIS)

    Amelin, V.Z.; Kunchenko, V.B.

    1982-01-01

    For toroidal solenoids with continuous spiral coil, winded according to the laws of equiinclined and simple cylindrical spirals with homogeneous, linearly increasing to the coil periphery and ''Bitter'' distribution of current density, the analytical expressions for the dependence between capacity consumed and generated magnetic field, expressions for coefficients of form similar to Fabry coefficient for cylindrical solenoids are obtained and dependence of the form coefficient and relative volume of solenoid conductor on the number of revolutions of screw line per one circumvention over the large torus radius is also investigated. Analytical expressions of form coefficients and graphical material permit to select the optimum geometry as to capacity consumed both for spiral (including ''force-free'') and conventional toroidal solenoids of magnetic systems in thermonulear installations

  13. Reynolds stress of localized toroidal modes

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1995-02-01

    An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at π/2 (or -π/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stress (a possible source of poloidal flow) can be significant

  14. Ballooning instabilities in toroidally linked mirror systems

    International Nuclear Information System (INIS)

    Hastie, R.J.; Watson, C.J.H.

    1977-01-01

    This paper examines the stability against ballooning modes of plasma equilibria in toroidally linked mirror configurations consisting of a number of quadrupole minimum-B mirrors linked toroidally. On the basis of the Kruskal-Oberman energy principle, a class of displacements is identified which are potentially unstable, and a necessary criterion for stability is derived. The criterion is obtained from the eigenvalues of an ordinary differential equation, which determines the variation of the displacement along a field line. The coefficients in the equation are determined by the configuration, and by inserting various model configurations, estimates are obtained of the maximum value of β consistent with stability. In cases of interest, quite high β-values are obtained. (author)

  15. Reynolds stress of localized toroidal modes

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1995-01-01

    An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at π/2 (or -π/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stress (a possible source of poloidal flow) can be significant. (author). 15 refs

  16. TORFA - toroidal reactor for fusion applications

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1980-09-01

    The near-term goal of the US controlled fusion program should be the development, for practical applications, of an intense, quasi-steady, reliable 14-MeV neutron source with an electrical utilization efficiency at least 10 times larger than the value characterizing beam/solid-target neutron generators. This report outlines a method for implementing that goal, based on tokamak fusion reactors featuring resistive toroidal-field coils designed for ease of demountability

  17. METHODS TO DEVELOP A TOROIDAL SURFACE

    Directory of Open Access Journals (Sweden)

    DANAILA Ligia

    2017-05-01

    Full Text Available The paper work presents two practical methods to draw the development of a surface unable to be developed applying classical methods of Descriptive Geometry, the toroidal surface, frequently met in technical practice. The described methods are approximate ones; the development is obtained with the help of points. The accuracy of the methods is given by the number of points used when drawing. As for any other approximate method, when practically manufactured the development may need to be adjusted on site.

  18. Unstable universal drift eigenmodes in toroidal plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Chen, L.

    1980-01-01

    The eigenmode equation describing ballooning collisionless drift instabilities is analyzed both analytically and numerically. A new branch of eigenmodes, which corresponds to quasi-bound states due to toroidal coupling effects such as ion delB drifts, is shown to be destabilized by electron Landau damping for typical tokamak parameters. This branch cannot be understood by the strong coupling approximation. However, the slab-like (Pearlstein--Berk-type) branch is found to remain stable and experience enhanced shear damping

  19. Stellarator approach to toroidal plasma confinement

    International Nuclear Information System (INIS)

    Johnson, J.L.

    1981-12-01

    An overview is presented of the development and current status of the stellarator approach to controlled thermonuclear confinement. Recent experimental, theoretical, and systems developments have made this concept a viable option for the evolution of the toroidal confinement program. Some experimental study of specific problems associated with departure from two-dimensional symmetry must be undertaken before the full advantages and opportunities of steady-state, net-current-free operation can be realized

  20. Finite toroidal flow generated by unstable tearing mode in a toroidal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hao, G. Z., E-mail: haogz@swip.ac.cn; Wang, A. K.; Xu, Y. H.; He, H. D.; Xu, M.; Qu, H. P.; Peng, X. D.; Xu, J. Q.; Qiu, X. M. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Liu, Y. Q. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Sun, Y. [Institute of Plasma Physics, Chinese Academic of Sciences, P.O. Box 1126, Hefei 230031 (China); Cui, S. Y. [School of Mathematics and Statistics Science, Ludong University, Yantai 264025 (China)

    2014-12-15

    The neoclassical toroidal plasma viscosity torque and electromagnetic torque, generated by tearing mode (TM) in a toroidal plasma, are numerically investigated using the MARS-Q code [Liu et al., Phys. Plasmas 20, 042503 (2013)]. It is found that an initially unstable tearing mode can intrinsically drive a toroidal plasma flow resulting in a steady state solution, in the absence of the external momentum input and external magnetic field perturbation. The saturated flow is in the order of 0.5%ω{sub A} at the q=2 rational surface in the considered case, with q and ω{sub A} being the safety factor and the Alfven frequency at the magnetic axis, respectively. The generation of the toroidal flow is robust, being insensitive to the given amplitude of the perturbation at initial state. On the other hand, the flow amplitude increases with increasing the plasma resistivity. Furthermore, the initially unstable tearing mode is fully stabilized by non-linear interaction with the self-generated toroidal flow.

  1. Mirror theory applied to toroidal systems

    International Nuclear Information System (INIS)

    Cohen, R.H.

    1987-01-01

    Central features of a mirror plasma are strong departures from Maxwellian distribution functions, ambipolar potentials and densities which vary along a field line, and losses, and the mirror field itself. To examine these features, mirror theorists have developed analytical and numerical techniques to solve the Fokker-Planck equation, evaluate the potentials consistent with the resulting distribution functions, and assess the microstability of these distributions. Various combinations of mirror-plasma fetures are present and important in toroidal plasmas as well, particularly in the edge region and in plasmas with strong r.f. heating. In this paper we survey problems in toroidal plasmas where mirror theory and computational techniques are applicable, and discuss in more detail three specific examples: calculation of the toroidal generalization of the Spitzer-Haerm distribution function (from which trapped-particle effects on current drive can be calculated), evaluation of the nonuniform potential and density set up by pulsed electron-cyclotron heating, and calculation of steady-state distribution functions in the presence of strong r.f. heating and collisions. 37 refs., 3 figs

  2. Mirror theory applied to toroidal systems

    International Nuclear Information System (INIS)

    Cohen, R.H.

    1987-01-01

    Central features of a mirror plasma are strong departures from Maxwellian distribution functions, ambipolar potentials and densities which vary along a field line, end losses, and the mirror field itself. To examine these features, mirror theorists have developed analytical and numerical techniques to solve the Fokker-Planck equation, evaluate the potentials consistent with the resulting distribution functions, and assess the microstability of these distributions. Various combinations of mirror-plasma features are present and important in toroidal plasmas as well, particularly in the edge region and in plasmas with strong rf heating. In this paper we survey problems in toroidal plasmas where mirror theory and computational techniques are applicable, and discuss in more detail three specific examples: calculation of the toroidal generalization of the Spitzer-Haerm distribution function (from which trapped-particle effects on current drive can be calculated), evaluation of the nonuniform potential and density set up by pulsed electron-cyclotron heating, and calculation of steady-state distribution functions in the presence of strong rf heating and collisions. 37 refs

  3. Superconducting magnets for toroidal fusion reactors

    International Nuclear Information System (INIS)

    Haubenreich, P.N.

    1980-01-01

    Fusion reactors will soon be employing superconducting magnets to confine plasma in which deuterium and tritium (D-T) are fused to produce usable energy. At present there is one small confinement experiment with superconducting toroidal field (TF) coils: Tokamak 7 (T-7), in the USSR, which operates at 4 T. By 1983, six different 2.5 x 3.5-m D-shaped coils from six manufacturers in four countries will be assembled in a toroidal array in the Large Coil Test Facility (LCTF) at Oak Ridge National Laboratory (ORNL) for testing at fields up to 8 T. Soon afterwards ELMO Bumpy Torus (EBT-P) will begin operation at Oak Ridge with superconducting TF coils. At the same time there will be tokamaks with superconducting TF coils 2 to 3 m in diameter in the USSR and France. Toroidal field strength in these machines will range from 6 to 9 T. NbTi and Nb 3 Sn, bath cooling and forced flow, cryostable and metastable - various designs are being tried in this period when this new application of superconductivity is growing and maturing

  4. Heterogeneous activation of H{sub 2}O{sub 2} by defect-engineered TiO{sub 2−x} single crystals for refractory pollutants degradation: A Fenton-like mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ai-Yong, E-mail: ayzhang@hfut.edu.cn; Lin, Tan; He, Yuan-Yi; Mou, Yu-Xuan

    2016-07-05

    Highlights: • Facet- and defect-engineered TiO{sub 2} is proposed for water treatment as Fenton-like catalyst. • The =Ti(III) center serves as lattice shuttle for electron transfer in H{sub 2}O{sub 2} activation. • TiO{sub 2} is promising due to low cost, high abundance, no toxicity and stable performance. - Abstract: The heterogeneous catalyst plays a key role in Fenton-like reaction for advanced oxidation of refractory pollutants in water treatment. Titanium dioxide (TiO{sub 2}) is a typical semiconductor with high industrial importance due to its earth abundance, low cost and no toxicity. In this work, it is found that TiO{sub 2} can heterogeneously activate hydrogen peroxide (H{sub 2}O{sub 2}, E° = 1.78 eV), a common chemical oxidant, to efficiently generate highly-powerful hydroxyl radical, ·OH (E{sup 0} = 2.80 eV), for advanced water treatment, when its crystal shape, exposed facet and oxygen-stoichiometry are finely tuned. The defect-engineered TiO{sub 2} single crystals exposed by high-energy {0 0 1} facets exhibited an excellent Fenton-like activity and stability for degrading typical refractory organic pollutants such as methyl orange and p-nitrophenol. Its defect-centered Fenton-like superiority is mainly attributed to the crystal oxygen-vacancy, single-crystalline structure and exposed polar {0 0 1} facet. Our findings could provide new chance to utilize TiO{sub 2} for Fenton-like technology, and develop novel heterogeneous catalyst for advanced water treatment.

  5. Heterogeneous activation of H_2O_2 by defect-engineered TiO_2_−_x single crystals for refractory pollutants degradation: A Fenton-like mechanism

    International Nuclear Information System (INIS)

    Zhang, Ai-Yong; Lin, Tan; He, Yuan-Yi; Mou, Yu-Xuan

    2016-01-01

    Highlights: • Facet- and defect-engineered TiO_2 is proposed for water treatment as Fenton-like catalyst. • The =Ti(III) center serves as lattice shuttle for electron transfer in H_2O_2 activation. • TiO_2 is promising due to low cost, high abundance, no toxicity and stable performance. - Abstract: The heterogeneous catalyst plays a key role in Fenton-like reaction for advanced oxidation of refractory pollutants in water treatment. Titanium dioxide (TiO_2) is a typical semiconductor with high industrial importance due to its earth abundance, low cost and no toxicity. In this work, it is found that TiO_2 can heterogeneously activate hydrogen peroxide (H_2O_2, E° = 1.78 eV), a common chemical oxidant, to efficiently generate highly-powerful hydroxyl radical, ·OH (E"0 = 2.80 eV), for advanced water treatment, when its crystal shape, exposed facet and oxygen-stoichiometry are finely tuned. The defect-engineered TiO_2 single crystals exposed by high-energy {0 0 1} facets exhibited an excellent Fenton-like activity and stability for degrading typical refractory organic pollutants such as methyl orange and p-nitrophenol. Its defect-centered Fenton-like superiority is mainly attributed to the crystal oxygen-vacancy, single-crystalline structure and exposed polar {0 0 1} facet. Our findings could provide new chance to utilize TiO_2 for Fenton-like technology, and develop novel heterogeneous catalyst for advanced water treatment.

  6. Electron microscopic in situ study of phase and defect formation in Bi2Sr2CaCu2Oy single crystals in heating

    International Nuclear Information System (INIS)

    Goncharov, V.A.; Ignat'eva, E.Yu.; Osip'yan, Yu.A.; Suvorov, Eh.V.

    1997-01-01

    The nonthermal effect of electron irradiation on generating of new phases and structural defects has been uncovered during the investigation of structural variations of monocrystals Bi 2 Sr 2 CaCu 2 O y on heating in situ. The stability of the modulated structure and the package defects to heating under the electron beam action and in the absence of the irradiation has been studied

  7. Birth Defects

    Science.gov (United States)

    A birth defect is a problem that happens while a baby is developing in the mother's body. Most birth defects happen during the first 3 months of ... in the United States is born with a birth defect. A birth defect may affect how the ...

  8. Motion of a compact toroid inside a cylindrical flux conserver

    Energy Technology Data Exchange (ETDEWEB)

    Jarboe, T.R.; Henins, I.; Hoida, H.W.; Linford, R.K.; Marshall, J.; Platts, D.A.; Sherwood, A.R.

    1980-10-13

    Compact toroids have been generated in a cylindrical resistive flux conserver. They are observed to rotate so that their major axis is perpendicular to the axis of the flux conserver. Subsequently they remain stationary and their magnetic fields decay with a time constant of about 100 ..mu..s. This is the first observation of the predicted tipping mode and its saturation when no external fields are present. The compact toroids contain toroidal fields and are initially prolate in shape.

  9. Motion of a compact toroid inside a cylindrical flux conserver

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Henins, I.; Hoida, H.W.; Linford, R.K.; Marshall, J.; Platts, D.A.; Sherwood, A.R.

    1980-01-01

    Compact toroids have been generated in a cylindrical resistive flux conserver. They are observed to rotate so that their major axis is perpendicular to the axis of the flux conserver. Subsequently they remain stationary and their magnetic fields decay with a time constant of about 100 μs. This is the first observation of the predicted tipping mode and its saturation when no external fields are present. The compact toroids contain toroidal fields and are initially prolate in shape

  10. Application of plasma focus device to compression of toroidal plasma

    International Nuclear Information System (INIS)

    Ikuta, Kazunari

    1980-01-01

    A new concept of compressing a toroidal plasma using a plasma focus device is considered. Maximum compression ratio of toroidal plasma is determined merely by the initial density ratio of the toroidal plasma to a sheet plasma in a focus device because of the Rayleigh-Taylor instability. An initiation senario of plasma-linear is also proposed with a possible application of this concepts to the creation of a burning plasma in reversed field configurations, i.e., burning plasma vortex. (author)

  11. Influence of Li/Nb ratios on defect structure and photorefractive properties of Zn: In: Fe: LiNbO 3 crystals

    Science.gov (United States)

    Dai, Li; Su, Yan-Qing; Wu, Shi-Ping; Guo, Jing-Jie; Xu, Chao; Xu, Yu-Heng

    2011-04-01

    A series of Zn: In: Fe: LiNbO3 crystals are grown by the Czochralski technique with various ratios of Li/Nb = 0.94, 1.05, 1.20 and 1.38 in the melt. The Zn, In, Fe, Nb and Li concentrations in the crystals are analyzed by inductively coupled plasma (ICP) spectrometry. The results indicate that with increasing the [Li]/[Nb] ratio in melt, [Li]/[Nb] ratio increases and goes up continuously in the crystal, the segregation coefficients of both Zn and In ions decrease. The absorption spectra measurement and two-wave coupling experiment are employed to study the effect of [Li]/[Nb] ratio on photorefractive properties of Zn: In: Fe: LiNbO3 crystals. It is found that the [Li]/[Nb] ratio increases, the write time is shortened and the photorefractive sensitivity is improved.

  12. Structure of DNA toroids and electrostatic attraction of DNA duplexes

    International Nuclear Information System (INIS)

    Cherstvy, A G

    2005-01-01

    DNA-DNA electrostatic attraction is considered as the driving force for the formation of DNA toroids in the presence of DNA condensing cations. This attraction comes from the DNA helical charge distribution and favours hexagonal toroidal cross-sections. The latter is in agreement with recent cryo-electron microscopy studies on DNA condensed with cobalt hexammine. We treat the DNA-DNA interactions within the modern theory of electrostatic interaction between helical macromolecules. The size and thickness of the toroids is calculated within a simple model; other models of stability of DNA toroids are discussed and compared

  13. The SSC superconducting air core toroid design development

    International Nuclear Information System (INIS)

    Fields, T.; Carroll, A.; Chiang, I.H.; Frank, J.S.; Haggerty, J.; Littenberg, L.; Morse, W.; Strand, R.C.; Lau, K.; Weinstein, R.; McNeil, R.; Friedman, J.; Hafen, E.; Haridas, P.; Kendall, H.W.; Osborne, L.; Pless, I.; Rosenson, L.; Pope, B.; Jones, L.W.; Luton, J.N.; Bonanos, P.; Marx, M.; Pusateri, J.A.; Favale, A.; Gottesman, S.; Schneid, E.; Verdier, R.

    1990-01-01

    Superconducting air core toroids show great promise for use in a muon spectrometer for the SSC. Early studies by SUNY at Stony Brook funded by SSC Laboratory, have established the feasibility of building magnets of the required size. The toroid spectrometer consists of a central toroid with two end cap toroids. The configuration under development provides for muon trajectory measurement outside the magnetic volume. System level studies on support structure, assembly, cryogenic material selection, and power are performed. Resulting selected optimal design and assembly is described. 4 refs., 6 figs

  14. Form factor of some types of toroidal solenoids

    International Nuclear Information System (INIS)

    Koryavko, V.I.; Litvinenko, Yu.A.

    1979-01-01

    Obtained were the type of dependence between consumed power and formed field for toroidal helical-wound solenoids and the expression for the form factor analogous to the Fabry coefficient for cylindrical solenoids. Determined were optimum dimensions of the helical winding of ''forceless'' toroidal solenoids satisfying the condition of the formation of maximum field at minimum consumed power. Investigations also covered some types of conventional toroidal solenoids. Presented in the paper diagrams permitted to chose dimensions of the considered toroidal solenoids according to their consumed power and winding material volume

  15. Toroidal plasma enhanced CVD of diamond films

    International Nuclear Information System (INIS)

    Zvanya, John; Cullen, Christopher; Morris, Thomas; Krchnavek, Robert R.; Holber, William; Basnett, Andrew; Basnett, Robert; Hettinger, Jeffrey

    2014-01-01

    An inductively coupled toroidal plasma source is used as an alternative to microwave plasmas for chemical vapor deposition of diamond films. The source, operating at a frequency of 400 kHz, synthesizes diamond films from a mixture of argon, methane, and hydrogen. The toroidal design has been adapted to create a highly efficient environment for diamond film deposition: high gas temperature and a short distance from the sample to the plasma core. Using a toroidal plasma geometry operating in the medium frequency band allows for efficient (≈90%) coupling of AC line power to the plasma and a scalable path to high-power and large-area operation. In test runs, the source generates a high flux of atomic hydrogen over a large area, which is favorable for diamond film growth. Using a deposition temperature of 900–1050 °C and a source to sample distance of 0.1–2.0 cm, diamond films are deposited onto silicon substrates. The results showed that the deposition rate of the diamond films could be controlled using the sample temperature and source to sample spacing. The results also show the films exhibit good-quality polycrystalline diamond as verified by Raman spectroscopy, x-ray diffraction, and scanning electron microscopy. The scanning electron microscopy and x-ray diffraction results show that the samples exhibit diamond (111) and diamond (022) crystallites. The Raman results show that the sp 3 peak has a narrow spectral width (FWHM 12 ± 0.5 cm −1 ) and that negligible amounts of the sp 2 band are present, indicating good-quality diamond films

  16. Liquid toroidal drop under uniform electric field

    Science.gov (United States)

    Zabarankin, Michael

    2017-06-01

    The problem of a stationary liquid toroidal drop freely suspended in another fluid and subjected to an electric field uniform at infinity is addressed analytically. Taylor's discriminating function implies that, when the phases have equal viscosities and are assumed to be slightly conducting (leaky dielectrics), a spherical drop is stationary when Q=(2R2+3R+2)/(7R2), where R and Q are ratios of the phases' electric conductivities and dielectric constants, respectively. This condition holds for any electric capillary number, CaE, that defines the ratio of electric stress to surface tension. Pairam and Fernández-Nieves showed experimentally that, in the absence of external forces (CaE=0), a toroidal drop shrinks towards its centre, and, consequently, the drop can be stationary only for some CaE>0. This work finds Q and CaE such that, under the presence of an electric field and with equal viscosities of the phases, a toroidal drop having major radius ρ and volume 4π/3 is qualitatively stationary-the normal velocity of the drop's interface is minute and the interface coincides visually with a streamline. The found Q and CaE depend on R and ρ, and for large ρ, e.g. ρ≥3, they have simple approximations: Q˜(R2+R+1)/(3R2) and CaE∼3 √{3 π ρ / 2 } (6 ln ⁡ρ +2 ln ⁡[96 π ]-9 )/ (12 ln ⁡ρ +4 ln ⁡[96 π ]-17 ) (R+1 ) 2/ (R-1 ) 2.

  17. Review of the Advanced Toroidal Facility program

    International Nuclear Information System (INIS)

    Lyon, J.F.; Murakami, M.

    1987-01-01

    This report summarizes the history and design goals of the Advanced Toroidal Facility (ATF). The ATF is nearing completion at ORNL with device completion expected in May 1987 and first useful plasma operation in June/July 1987. ATF is a moderate-aspect-ratio torsatron, the world's largest stellarator facility with R = 2.1 m, α bar = 0.3 m and B = 2 T (5-s pulse) or 1 T (steady-state capability). It has been specifically designed to support the US tokamak program by studying important toroidal confinement issues in a similar magnetic geometry that allows external control of the magnetic configuration properties and their radial profiles: transform, shear, well depth, shaping, axis topology, etc. ATF will operate in a current-free model which allows separation of current-driven and pressure-driven plasma behavior. It also complements the world stellarator program in its magnetic configuration (between Heliotron-E and W VII-AS) and its capabilities (large size, good access, steady state capability, second stability access, etc.). For both roles ATF will require high-power long-pulse heating to carry out its physics goals since the high power NBI pulse is limited to 0.3 s. The ATF program focuses on demonstrating the principles of high-beta, steady-state operation in toroidal geometry through its study of: (1) scaling of beta limits with magnetic configuration properties and the plasma behavior in the second stability regime; (2) transport scaling at low collisionality and the role/control of electric field; (3) control of plasma density and impurities using divertors; (4) plasma heating with NBI, ECH, ICH, and plasma fueling with gas puffing and pellet injection; and (5) optimization of the magnetic configuration

  18. Investigations of toroidal wave numbers of the kink instabilities in a toroidal pinch plasma

    International Nuclear Information System (INIS)

    Hamajima, Takataro; Irisawa, Juichi; Tsukada, Tokuaki; Sugito, Osamu; Maruyama, Hideaki

    1979-01-01

    The axial toroidal wave numbers of the kink instability of toroidal pinch plasma were measured and investigated with a specially designed coil, and the results were compared with the MHD theory. The schematic figure and the particulars of the experimental apparatus are briefly illustrated in the first part. The method of generating theta-Z pinch plasma, the wave form of the magnetic flux density in Z-direction and the plasma current are also explained. The 360 deg stereoscopic framing photographs were taken with an image converter camera at the intervals of 0.5 μs after the initiation of the main electric discharge in Z-circuit. From these photographs, the growth of the kink instability was observed. The measured magnetic field distribution at t = 2 μs is presented. In the second part, the radial displacement of plasma and toroidal wave number were measured from the above framing photographs. Then the spectra of plasma displacement were analyzed by the Fourier analysis. The measured results of toroidal wave number was analyzed by both the skin current model and the diffuse current model. Many new results obtained from the present study were mainly derived from the observation of the framing photographs, and they are summarized in the final part of this paper. (Aoki, K.)

  19. Toroidal equilibrium of a non-neutral plasma with toroidal current, inertia and pressure

    International Nuclear Information System (INIS)

    Bhattacharyya, S.N.; Avinash, K.

    1992-01-01

    Equilibrium of non-neutral clouds in a toroidal vessel with toroidal magnetic field is demonstrated in the presence of a toroidal current, finite mass and finite pressure. With a toroidal current, it is shown that in a large-aspect-ratio conducting torus the equilibrium is governed by competition between forces produced by image charges and image currents. When μ 0 ε 0 E r 2 >B θ 2 (whe re E r and B θ are the self electrostatic and self magnetic fields of the cloud), the confinement is electrostatic and plasma shifts inwards; when μ 0 ε 0 E r 2 θ 2 , the confinement is magnetic and plasma shifts outwards. For μ 0 ε 0 E r 2 = B θ 2 there is no equilibrium. With finite mass or finite pressure, it is shown, in a large-aspect-ratio approximation, that the fluid drift surfaces and equipotential surfaces are displaced with respect to each other. In both cases the fluid drift surfaces are shifted inwards from the equipotential surfaces. (author)

  20. 3D Printing the ATLAS' barrel toroid

    CERN Document Server

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  1. Linear mode conversion in a toroidal plasma

    International Nuclear Information System (INIS)

    Hellsten, T.

    1980-05-01

    Linear mode conversion at the perpendicular ion cyclotron resonance has been treated for an axially symmetric toroidal plasma. The mode conversion appears between a fast electromagnetic wave and a slow-quasi electrostatic wave, due to finite electron inertia. The problem reduces to the Orr-Sommerfeld equation where the coefficients determining the reflectron, transmission and conversion are functions of the arc length along a poloidal intersection of the resonance surface. These coefficients can be determined from eigenfunctions of an ordinary differential equation. (author)

  2. General Atomic's superconducting toroidal field coil concept

    International Nuclear Information System (INIS)

    Alcorn, J.; Purcell, J.

    1978-01-01

    General Atomic's concept for a superconducting toroidal field coil is presented. The concept is generic for large tokamak devices, while a specific design is indicated for a 3.8 meter (major radius) ignition/burn machine. The concept utilizes bath cooled NbTi conductor to generate a peak field of 10 tesla at 4.2 K. The design is simple and straightforward, requires a minimum of developmental effort, and draws extensively upon the perspective of past experience in the design and construction of large superconducting magnets for high energy physics. Thus, the primary emphasis is upon economy, reliability, and expeditious construction scheduling. (author)

  3. ICRH experiments in a toroidal octupole

    International Nuclear Information System (INIS)

    Barter, J.D.; Sprott, J.C.

    1974-01-01

    A 100 kW, 144 μsec pulse of 1.4 MHz rf is used to heat plasmas with densities less than or equal to 3 x 10 12 cm -3 at the ion cyclotron frequency in a toroidal octupole. The rf is coupled to the plasma by a single turn, electrostatically shielded hoop coaxial to the four main hoops and located near the wall. Absorbed power is inferred from plasma loading of the hoop and measured directly with an electrostatic ion energy analyzer and compared to single particle resonance heating theory

  4. Electrical disruption in toroidal plasma of hydrogen

    International Nuclear Information System (INIS)

    Roberto, M.; Silva, C.A.B.; Goes, L.C.S.; Sudano, J.P.

    1991-01-01

    The initial phase of ionization of a toroidal plasma produced in hydrogen was investigated using zero-dimensional model. The model describes the temporal evolution of plasma by spatial medium of particle density and temperature, on whole plasma volume. The energy and particle (electrons and ions) balance equations are considered. The electron loss is due to ambipolar diffusion in the presence of magnetic field. The electron energy loss involves ionization, Coulomb interaction and diffusion. The ohmic heating converter gives the initial voltage necessary to disruption. (M.C.K.)

  5. Impurity studies in the advanced toroidal facility

    International Nuclear Information System (INIS)

    Isler, R.C.; Horton, L.D.; Crume, E.C.; Howe, H.C.; Voronov, G.S.

    1989-01-01

    Impurities have played an important role in the initial stages of operation of the Advanced Toroidal Facility. Cleanup practices have been adequate enough that plasmas heated by ECH only can be operated in a quasi-steady state; however, neutral beam injected plasmas always collapse to a low temperature. It is not clear whether impurity radiation is actually responsible for initiating the collapse, but at the time the stored energy reaches a maximum, there are indications of poloidal asymmetries in radiation from low ionization stages, such as observed in marfes, which could play a dominant role in the plasma evolution. 3 refs., 5 figs

  6. Convective cells and transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Hassam, A.B.; Kulsrud, R.M.

    1978-12-01

    The properties of convective cells and the diffusion resulting from such cells are significantly influenced by an inhomogeneity in the extermal confining magnetic field, such as that in toroidal plasmas. The convective diffusion in the presence of a field inhomogeneity is estimated. For a thermal background, this diffusion is shown to be substantially smaller than classical collisional diffusion. For a model nonthermal background, the diffusion is estimated, for typical parameters, to be at most of the order of collisional diffusion. The model background employed is based on spectra observed in numerical simulations of drift-wave-driven convective cells

  7. Bifurcation theory for toroidal MHD instabilities

    International Nuclear Information System (INIS)

    Maschke, E.K.; Morros Tosas, J.; Urquijo, G.

    1992-01-01

    Using a general representation of magneto-hydrodynamics in terms of stream functions and potentials, proposed earlier, a set of reduced MHD equations for the case of toroidal geometry had been derived by an appropriate ordering with respect to the inverse aspect ratio. When all dissipative terms are neglected in this reduced system, it has the same linear stability limits as the full ideal MHD equations, to the order considered. When including resistivity, thermal conductivity and viscosity, we can apply bifurcation theory to investigate nonlinear stationary solution branches related to various instabilities. In particular, we show that a stationary solution of the internal kink type can be found

  8. Some remarks on defects and T-duality

    DEFF Research Database (Denmark)

    Sarkissian, Gor; Schweigert, Christoph

    2009-01-01

    The equations of motion for a conformal field theory in the presence of defect lines can be derived from an action that includes contributions from bibranes. For T-dual toroidal compactifications, they imply a direct relation between Poincaré line bundles and the action of T-duality on boundary...

  9. Propulsion using the electron spiral toroid

    International Nuclear Information System (INIS)

    Seward, Clint

    1998-01-01

    A new propulsion method is proposed which could potentially reduce propellant needed for space travel by three orders of magnitude. It uses the newly patented electron spiral toroid (EST), which stores energy as magnetic field energy. The EST is a hollow toroid of electrons, all spiraling in parallel paths in a thin outer shell. The electrons satisfy the coupling condition, forming an electron matrix. Stability is assured as long as the coupling condition is satisfied. The EST is held in place with a small external electric field; without an external magnetic field. The EST system is contained in a vacuum chamber. The EST can be thought of as an energetic entity, with electrons at 10,000 electron volts. Propulsion would not use combustion, but would heat propellant through elastic collisions with the EST surface and eject them for thrust. Chemical rocket combustion heats propellant to 4000 deg. C; an EST will potentially heat the propellant 29,000 times as much, reducing propellant needs accordingly. The thrust can be turned ON and OFF. The EST can be recharged as needed

  10. Compact toroid formation, compression, and acceleration

    International Nuclear Information System (INIS)

    Degnan, J.H.; Bell, D.E.; Baca, G.P.; Dearborn, M.E.; Douglas, M.R.; Englert, S.E.; Englert, T.J.; Holmes, J.H.; Hussey, T.W.; Kiuttu, G.F.; Lehr, F.M.; Marklin, G.J.; Mullins, B.W.; Peterkin, R.E.; Price, D.W.; Roderick, N.F.; Ruden, E.L.; Turchi, P.J.; Coffey, S.K.; Seiler, S.W.; Bird, G.

    1992-01-01

    Research on the formation, compression, and acceleration of milligram Compact Toroids (CTs) will be discussed. This includes experiments with 2-stage coaxial gun discharges and calculations including 2D- MHD. The CTs are formed by 110 μf, 70 KV, 2 MA, 3 μs rise time discharges into 2 mg gas puffs in a 90 cm inner diameter, 7.6 cm gap coaxial gun with approximately 0.15 Tesla of radial-axial initial magnetic field. Reconnection at the neck of the toroidal magnetized plasma bubble extracted from the first stage gun forms the CT. Trapping, relaxation to a minimum energy Taylor state is observed with magnetic probe arrays. Low energy (few hundred KJ, 2 MA) acceleration in straight coaxial geometry, and high energy acceleration using a conical compression stage are discussed. The Phillips Laboratory 1,300 μf, 120 KV, 9.4 MJ SHIVA STAR capacitor bank is used for the acceleration discharge. The charging and triggering of the 36-module bank has been modified to permit use of any multiple of three modules. Highlights of fast photography, current, voltage, magnetic probe array, optical spectroscopy, interferometry, VUV, and higher energy radiation data and 2D-MHD calculations will be presented. Considerably more detail is presented in companion papers

  11. Toroidal Simulations of Sawteeth with Diamagnetic Effects

    Science.gov (United States)

    Beidler, Matthew; Cassak, Paul; Jardin, Stephen

    2014-10-01

    The sawtooth crash in tokamaks limits the core temperature, adversely impacts confinement, and seeds disruptions. Adequate knowledge of the physics governing the sawtooth crash and a predictive capability of its ramifications has been elusive, including an understanding of incomplete reconnection, i.e., why sawteeth often cease prematurely before processing all available magnetic flux. There is an indication that diamagnetic suppression could play an important role in this phenomenon. While computational tools to study toroidal plasmas have existed for some time, extended-MHD physics have only recently been integrated. Interestingly, incomplete reconnection has been observed in simulations when diamagnetic effects are present. In the current study, we employ the three-dimensional, extended-MHD code M3D-C1 to study the sawtooth crash in a toroidal geometry. In particular, we describe how magnetic reconnection at the q = 1 rational surface evolves when self-consistently increasing diamagnetic effects are present. We also explore how the termination of reconnection may lead to core-relaxing ideal-MHD instabilities.

  12. Microwave produced plasma in a Toroidal Device

    Science.gov (United States)

    Singh, A. K.; Edwards, W. F.; Held, E. D.

    2010-11-01

    A currentless toroidal plasma device exhibits a large range of interesting basic plasma physics phenomena. Such a device is not in equilibrium in a strict magneto hydrodynamic sense. There are many sources of free energy in the form of gradients in plasma density, temperature, the background magnetic field and the curvature of the magnetic field. These free energy sources excite waves and instabilities which have been the focus of studies in several devices in last two decades. A full understanding of these simple plasmas is far from complete. At Utah State University we have recently designed and installed a microwave plasma generation system on a small tokamak borrowed from the University of Saskatchewan, Saskatoon, Canada. Microwaves are generated at 2.45 GHz in a pulsed dc mode using a magnetron from a commercial kitchen microwave oven. The device is equipped with horizontal and vertical magnetic fields and a transformer to impose a toroidal electric field for current drive. Plasmas can be obtained over a wide range of pressure with and without magnetic fields. We present some preliminary measurements of plasma density and potential profiles. Measurements of plasma temperature at different operating conditions are also presented.

  13. Transport and Dynamics in Toroidal Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schnack, Dalton D

    2006-05-16

    This document reports the successful completion of the OFES Theory Milestone for FY2005, namely, Perform parametric studies to better understand the edge physics regimes of laboratory experiments. Simulate at increased resolution (up to 20 toroidal modes), with density evolution, late into the nonlinear phase and compare results from different types of edge modes. Simulate a single case including a study of heat deposition on nearby material walls. The linear stability properties and nonlinear evolution of Edge Localized Modes (ELMs) in tokamak plasmas are investigated through numerical computation. Data from the DIII-D device at General Atomics (http://fusion.gat.com/diii-d/) is used for the magnetohydrodynamic (MHD) equilibria, but edge parameters are varied to reveal important physical effects. The equilibrium with very low magnetic shear produces an unstable spectrum that is somewhat insensitive to dissipation coefficient values. Here, linear growth rates from the non-ideal NIMROD code (http://nimrodteam.org) agree reasonably well with ideal, i.e. non-dissipative, results from the GATO global linear stability code at low toroidal mode number (n) and with ideal results from the ELITE edge linear stability code at moderate to high toroidal mode number. Linear studies with a more realistic sequence of MHD equilibria (based on DIII-D discharge 86166) produce more significant discrepancies between the ideal and non-ideal calculations. The maximum growth rate for the ideal computations occurs at toroidal mode index n=10, whereas growth rates in the non-ideal computations continue to increase with n unless strong anisotropic thermal conduction is included. Recent modeling advances allow drift effects associated with the Hall electric field and gyroviscosity to be considered. A stabilizing effect can be observed in the preliminary results, but while the distortion in mode structure is readily apparent at n=40, the growth rate is only 13% less than the non-ideal MHD

  14. Magnetophotonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, M [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Fujikawa, R [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Baryshev, A [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Khanikaev, A [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Lim, P B [CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan (Japan); Uchida, H [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Aktsipetrov, O [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation); Fedyanin, A [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation); Murzina, T [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation); Granovsky, A [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation)

    2006-04-21

    When the constitutive materials of photonic crystals (PCs) are magnetic, or even only a defect introduced in PCs is magnetic, the resultant PCs exhibit very unique optical and magneto-optical properties. The strong photon confinement in the vicinity of magnetic defects results in large enhancement in linear and nonlinear magneto-optical responses of the media. Novel functions, such as band Faraday effect, magnetic super-prism effect and non-reciprocal or magnetically controllable photonic band structure, are predicted to occur theoretically. All the unique features of the media arise from the existence of magnetization in media, and hence they are called magnetophotonic crystals providing the spin-dependent nature in PCs. (topical review)

  15. Magnetophotonic crystals

    International Nuclear Information System (INIS)

    Inoue, M; Fujikawa, R; Baryshev, A; Khanikaev, A; Lim, P B; Uchida, H; Aktsipetrov, O; Fedyanin, A; Murzina, T; Granovsky, A

    2006-01-01

    When the constitutive materials of photonic crystals (PCs) are magnetic, or even only a defect introduced in PCs is magnetic, the resultant PCs exhibit very unique optical and magneto-optical properties. The strong photon confinement in the vicinity of magnetic defects results in large enhancement in linear and nonlinear magneto-optical responses of the media. Novel functions, such as band Faraday effect, magnetic super-prism effect and non-reciprocal or magnetically controllable photonic band structure, are predicted to occur theoretically. All the unique features of the media arise from the existence of magnetization in media, and hence they are called magnetophotonic crystals providing the spin-dependent nature in PCs. (topical review)

  16. Study of optical absorption in the ultraviolet region of mixed crystals ADA/ADP aiming to investigate defects and centers formed by ionizing radiation

    International Nuclear Information System (INIS)

    Schneider, S.

    1978-01-01

    The development of a crystal model to explain the ionizing radiation effect on the color centers is presented. The methods of crystal growth used in the sample preparation and the requirements necessary for an efficient optical study, such as area, thickness purity, etc, are described. The processes of color center production are analysed and the techniques used in the study of color centers, such as optical absorption, spectrometry and spin resonance, are described. The computer programs used in curve adjustment and the approximated calculation of centers per cm 3 are also presented. (M.C.K.) [pt

  17. Low-frequency fluctuations in a pure toroidal magnetized plasma

    Indian Academy of Sciences (India)

    A magnetized, low- plasma in pure toroidal configuration is formed and extensively studied with ion mass as control parameter. Xenon, krypton and argon plasmas are formed at a fixed toroidal magnetic field of 0.024 T, with a peak density of ∼ 1011 cm-3, ∼ 4 × 1010 cm-3 and ∼ 2 × 1010 cm−3 respectively.

  18. Toroidal asymmetries in divertor impurity influxes in NSTX

    Directory of Open Access Journals (Sweden)

    F. Scotti

    2017-08-01

    Full Text Available Toroidal asymmetries in divertor carbon and lithium influxes were observed in NSTX, due to toroidal differences in surface composition, tile leading edges, externally-applied three-dimensional (3D fields and toroidally-localized edge plasma modifications due to radio frequency heating. Understanding toroidal asymmetries in impurity influxes is critical for the evaluation of total impurity sources, often inferred from measurements with a limited toroidal coverage. The toroidally-asymmetric lithium deposition induced asymmetries in divertor lithium influxes. Enhanced impurity influxes at the leading edge of divertor tiles were the main cause of carbon toroidal asymmetries and were enhanced during edge localized modes. Externally-applied 3D fields led to strike point splitting and helical lobes observed in divertor impurity emission, but marginal changes to the toroidally-averaged impurity influxes. Power coupled to the scrape-off layer SOL plasma during radio frequency (RF heating of H-mode discharges enhanced impurity influxes along the non-axisymmetric divertor footprint of flux tubes connecting to plasma in front of the RF antenna.

  19. 2-D skin-current toroidal-MHD-equilibrium code

    International Nuclear Information System (INIS)

    Feinberg, B.; Niland, R.A.; Coonrod, J.; Levine, M.A.

    1982-09-01

    A two-dimensional, toroidal, ideal MHD skin-current equilibrium computer code is described. The code is suitable for interactive implementation on a minicomptuer. Some examples of the use of the code for design and interpretation of toroidal cusp experiments are presented

  20. Creep of crystals

    International Nuclear Information System (INIS)

    Poirier, J.-P.

    1988-01-01

    Creep mechanisms for metals, ceramics and rocks, effect of pressure and temperature on deformation processes are considered. The role of crystal defects is analysed, different models of creep are described. Deformation mechanisms maps for different materials are presented

  1. Formation of a compact torus using a toroidal plasma gun

    International Nuclear Information System (INIS)

    Levine, M.A.; Pincosy, P.A.

    1981-01-01

    Myers, Levine and Pincosy earlier reported results using a toroidal plasma gun. The device differs from the usual coaxial plasma gun in the use of a strong toroidal bias current for enhanced efficiency, a pair of disk-like accelerating electrodes for reduced viscosity and a fast pulsed toroidal gas valve for more effective use of the injected gas sample. In addition, a technique is used for generating a toroidal current in the plasma ring. The combination offers an opportunity to deliver a plasma with a large amount of energy and to vary the density and relative toroidal and poloidal magnetic field intensities over a range of values. It is the purpose of this paper to report further experimental results, to project the gun's applications to the formation of a compact torus, and to propose a simple modification of the present apparatus as a test

  2. Formation of a compact toroid for enhanced efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mozgovoy, A. G. [P.N. Lebedev Physical Institute, Moscow 119991 (Russian Federation); Romadanov, I. V.; Ryzhkov, S. V., E-mail: ryzhkov@power.bmstu.ru [Bauman Moscow State Technical University, Moscow 105005 (Russian Federation)

    2014-02-15

    We report here our results on the formation of a plasma configuration with the generic name of compact toroid (CT). A method of compact toroid formation to confine, heat and compress a plasma is investigated. Formation of a compact torus using an additional toroidal magnetic field helps to increase the plasma current to a maintainable level of the original magnetic field. We design the Compact Toroid Challenge (CTC) experiment in order to improve the magnetic flux trapping during field reversal in the formation of a compact toroid. The level of the magnetic field immersed in the plasma about 70% of the primary field is achieved. The CTC device and scheme of high level capturing of magnetic flux are presented.

  3. Mechanical Commissioning of the ATLAS Barrel Toroid Magnet

    CERN Document Server

    Foussat, A; Dudarev, A; Bajas, H; Védrine, P; Berriaud, C; Sun, Z; Sorbi, M

    2008-01-01

    ATLAS is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider. Its features include the 4 T Barrel Toroid magnet, the largest superconducting magnet (25 m long, 20 m diameter) that provides the magnetic field for the ATLAS muon spectrometer. The coils integrated at CERN, were tested individually at maximum current of 22 kA in 2005. Following the mechanical assembly of the Barrel Toroid in the ATLAS underground cavern, the test of the full Barrel Toroid was performed in October 2006. Further tests are foreseen at the end 2007 when the system will include the two End Cap Toroids (ECT). The paper gives an overview of the good mechanical test results achieved in comparison with model predictions and the experience gained in the mechanical behavior of the ATLAS Toroidal coils is discussed.

  4. Analysis of MHD equilibria by toroidal multipolar expansions

    International Nuclear Information System (INIS)

    Alladio, F.; Crisanti, F.

    1986-01-01

    The use of fully toroidal co-ordinates permits the two-dimensional problem of the axisymmetric plasma toroidal equilibrium to be reduced to the one-dimensional problem of determining a limited number of its toroidal multipolar moments. This has allowed the creation of a fast semi-analytic predictive equilibrium code that can be used in both free and fixed boundary conditions for plasmas with circular or mildly non-circular cross-section. The concept of toroidal multipoles is also particularly suitable for the analysis of experimental data from magnetic probe measurements and clarifies the conditions under which the plasma thermal and electrical self-inductances βsub(p) and lsub(i) can be estimated separately. Finally, the interpretation of the magnetic equilibrium measurements in terms of toroidal multipoles can directly provide the boundary conditions for a fast equilibrium reconstruction code. Examples of the application of such a code to the JET magnetic measurements are reported. (author)

  5. Fundamental studies of the effect of crystal defects on CuInSe{sub 2}/CdS heterojunction behavior: Final report, 28 June 1993--30 June 1998

    Energy Technology Data Exchange (ETDEWEB)

    Rockett, A.

    1999-11-17

    This report describes the work performed by the University of Illinois at Urbana-Champaign. The following results were obtained under the work funded by this subcontract: (1) Point defects and electronic properties of Cu(In{sub 1-x}Ga{sub x})Se{sub 2}: New record results for hole mobilities in Cu(In{sub 1-x}Ga{sub x})Se{sub 2} based on single crystals grown by Rockett's group; Demonstrated the role of Ga in determining hole concentrations; Showed that Ga does not affect the hole mobility in this material and why this is the case; Determined the diffusion coefficient for Ga in single-crystal Cu(In{sub 1-x}Ga{sub x})Se{sub 2}; Demonstrated the structure and optoelectronic properties of the CuIn{sub 3}Se{sub 5} ordered-defect phase of CuInSe{sub 2}; Characterized the detailed effects of Na on Cu(In{sub 1-x}Ga{sub x})Se{sub 2} solar cells and on the fundamental properties of the material itself (reduces compensating donors in p-type materials); and In collaboration with groups at the Universities of Salford and Liverpool in the United Kingdom, studied the effect of ion implantation damage on Cu(In{sub 1-x}Ga{sub x})Se{sub 2} single-crystals. (2) Materials for and characterization of devices: Developed a novel contact metallurgy that improves adhesion to the underlying Mo back-contact in solar cells made with Cu(In{sub 1-x}Ga{sub x})Se{sub 2}; (This material has also yielded substantial novel materials science behaviors, including grain rotation and growth prior to phase separation in a metastable binary alloy.) Characterized the electroluminescence as a function of temperature and Ga content in Cu(In{sub 1-x}Ga{sub x})Se{sub 2} solar cells and showed that the radiative recombination pathways are not band-to-band as in normal semiconductors, but rather, proceed through defect states; and Working with a group at the University of Uppsala in Sweden, demonstrated novel aspects of the bonding and chemistry of dip-coated CdS heterojunction materials used as

  6. Fundamental studies of the effect of crystal defects on CuInSe (sub 2)/CdS heterojunction behavior: Final report, 28 June 1993--30 June 1998; FINAL

    International Nuclear Information System (INIS)

    Rockett, A.

    1999-01-01

    This report describes the work performed by the University of Illinois at Urbana-Champaign. The following results were obtained under the work funded by this subcontract: (1) Point defects and electronic properties of Cu(In(sub 1-x)Ga(sub x))Se(sub 2): New record results for hole mobilities in Cu(In(sub 1-x)Ga(sub x))Se(sub 2) based on single crystals grown by Rockett's group; Demonstrated the role of Ga in determining hole concentrations; Showed that Ga does not affect the hole mobility in this material and why this is the case; Determined the diffusion coefficient for Ga in single-crystal Cu(In(sub 1-x)Ga(sub x))Se(sub 2); Demonstrated the structure and optoelectronic properties of the CuIn(sub 3)Se(sub 5) ordered-defect phase of CuInSe(sub 2); Characterized the detailed effects of Na on Cu(In(sub 1-x)Ga(sub x))Se(sub 2) solar cells and on the fundamental properties of the material itself (reduces compensating donors in p-type materials); and In collaboration with groups at the Universities of Salford and Liverpool in the United Kingdom, studied the effect of ion implantation damage on Cu(In(sub 1-x)Ga(sub x))Se(sub 2) single-crystals. (2) Materials for and characterization of devices: Developed a novel contact metallurgy that improves adhesion to the underlying Mo back-contact in solar cells made with Cu(In(sub 1-x)Ga(sub x))Se(sub 2); (This material has also yielded substantial novel materials science behaviors, including grain rotation and growth prior to phase separation in a metastable binary alloy.) Characterized the electroluminescence as a function of temperature and Ga content in Cu(In(sub 1-x)Ga(sub x))Se(sub 2) solar cells and showed that the radiative recombination pathways are not band-to-band as in normal semiconductors, but rather, proceed through defect states; and Working with a group at the University of Uppsala in Sweden, demonstrated novel aspects of the bonding and chemistry of dip-coated CdS heterojunction materials used as heterojunction

  7. Evaluation of mechanical strength of the joints in JT-60 toroidal field coil conductors

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Ohkubo, Monoru; Sasajima, Hiroshi

    1980-04-01

    Toroidal field (TF) coils of JT-60 produce a toroidal field of 45 kG at a plasma axis, they have an inner bore of 3.90 m and a weight of about 80 metric tons per coil. Eighteen TF coils are located around a torus axis at regular intervals. TF coil conductors are mostly jointed by high frequency induction brazing, the rest jointed by welding. In deciding the details of the jointing procedures, the conductor size and the requested mechanical strength are mainly taken into consideration. Described are non-destructive inspection methods for the brazed joints, strength evaluation, and the inspection criteria. Ultrasonic testing method is found to be the most effective in evaluation of mechanical properties of the brazed joints especially in terms of fatigue strength. In section 1, specifications of the TF coils are given. In section 2, the ultrasonic inspection method and the detectability of this apparatus are described in detail, the defects of known size are compared with the indication values and display figures. The apparatus developed for JT-60 is operated automatically also recording the inspectionresults. In section 3, mechanical strength of the brazed joints with initial defects is discussed on the basis of Fracture Mechanics theory and results of the fatigue crack growth test. The inspection criteria in accordance with the descriptions of section 2 and 3 are given in section 4. (author)

  8. Nonideal magnetohydrodynamic instabilities and toroidal magnetic confinement

    International Nuclear Information System (INIS)

    Furth, H.P.

    1985-05-01

    The marked divergence of experimentally observed plasma instability phenomena from the predictions of ideal magnetohydrodynamics led in the early 1960s to the formulations of finite-resistivity stability theory. Beginning in the 1970s, advanced plasma diagnostics have served to establish a detailed correspondence between the predictions of the finite-resistivity theory and experimental plasma behavior - particularly in the case of the resistive kink mode and the tokamak plasma. Nonlinear resistive-kink phenomena have been found to govern the transport of magnetic flux and plasma energy in the reversed-field pinch. The other predicted finite-resistivity instability modes have been more difficult to identify directly and their implications for toroidal magnetic confinement are still unresolved

  9. Design considerations for ITER toroidal field coils

    International Nuclear Information System (INIS)

    Kalsi, S.S.; Lousteau, D.C.; Miller, J.R.

    1987-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Europe, Japan, the Union of Soviet Socialist Republics (U.S.S.R.), and the United States. This paper describes a magnetic and mechanical design methodology for toroidal field (TF) coils that employs Nb 3 Sn superconductor technology. Coil winding is sized by using conductor concepts developed for the U.S. TIBER concept. Manifold concepts are presented for the complete cooling system. Also included are concepts for the coil structural arrangement. The effects of in-plane and out-of-plane loads are included in the design considerations for the windings and case. Concepts are presented for reacting these loads with a minimum amount of additional structural material. Concepts discussed in this paper could be considered for the ITER TF coils

  10. Magnetohydrodynamic Stability of a Toroidal Plasma's Separatrix

    International Nuclear Information System (INIS)

    Webster, A. J.; Gimblett, C. G.

    2009-01-01

    Large tokamaks capable of fusion power production such as ITER, should avoid large edge localized modes (ELMs), thought to be triggered by an ideal magnetohydrodynamic instability due to current at the plasma's separatrix boundary. Unlike analytical work in a cylindrical approximation, numerical work finds the modes are stable. The plasma's separatrix might stabilize modes, but makes analytical and numerical work difficult. We generalize a cylindrical model to toroidal separatrix geometry, finding one parameter Δ ' determines stability. The conformal transformation method is generalized to allow nonzero derivatives of a function on a boundary, and calculation of the equilibrium vacuum field allows Δ ' to be found analytically. As a boundary more closely approximates a separatrix, we find the energy principle indicates instability, but the growth rate asymptotes to zero

  11. Three dimensional transport model for toroidal plasmas

    International Nuclear Information System (INIS)

    Copenhauer, C.

    1980-12-01

    A nonlinear MHD model, developed for three-dimensional toroidal geometries (asymmetric) and for high β (β approximately epsilon), is used as a basis for a three-dimensional transport model. Since inertia terms are needed in describing evolving magnetic islands, the model can calculate transport, both in the transient phase before nonlinear saturation of magnetic islands and afterwards on the resistive time scale. In the β approximately epsilon ordering, the plasma does not have sufficient energy to compress the parallel magnetic field, which allows the Alfven wave to be eliminated in the reduced nonlinear equations, and the model then follows the slower time scales. The resulting perpendicular and parallel plasma drift velocities can be identified with those of guiding center theory

  12. ATF [Advanced Toroidal Facility] data management

    International Nuclear Information System (INIS)

    Kannan, K.L.; Baylor, L.R.

    1988-01-01

    Data management for the Advanced Toroidal Facility (ATF), a stellarator located at Oak Ridge National Laboratory (ORNL), is provided by DMG, a locally developed, VAX-based software system. DMG is a data storage and retrieval software system that provides the user interface to ATF raw and analyzed data. Data are described in terms of data models and data types and are organized as signals into files, which are internally documented. The system was designed with user accessibility, software maintainability, and extensibility as primary goals. Extensibility features include compatibility with ATF as it moves from pulsed to steady-state operation and capability for use of the DMG system with experiments other than ATF. DMG is implemented as a run-time library of routines available as a shareable image. General-purpose and specialized data acquisition and analysis applications have been developed using the DMG system. This paper describes the DMG system and the interfaces to it. 4 refs., 2 figs

  13. Calculation of a toroidal labyrinth shields

    International Nuclear Information System (INIS)

    Sul'kin, A.G.

    1979-01-01

    Calculation of protective case with a toroidal labyrinth channel, being one of the main design elements of hose gamma-devices, is presented. The case provides relative isotropic distribution of radiation outside protection limits. The main geometric parameters of the channel are determined: r-radius of the channel hole, rho-bend radius of the channel axis, β-angle of the channel bend. General exposure dose rate of γ-radiation in the detection point at l distance (usually l=100 m during calculations), is also calculated. Differential current dose albedo values have been found for certain combinations of parameters of the labyrinth channel. It is considered for simplification of labyrinth channel calculations, that backward radiation scattering passes, without energy change and isotropically, due to which differential current albedo values of γ-radiation for any incidence angle may be determined from integral albedo current values by the empirie formula

  14. Advanced toroidal facility vaccuum vessel stress analyses

    International Nuclear Information System (INIS)

    Hammonds, C.J.; Mayhall, J.A.

    1987-01-01

    The complex geometry of the Advance Toroidal Facility (ATF) vacuum vessel required special analysis techniques in investigating the structural behavior of the design. The response of a large-scale finite element model was found for transportation and operational loading. Several computer codes and systems, including the National Magnetic Fusion Energy Computer Center Cray machines, were implemented in accomplishing these analyses. The work combined complex methods that taxed the limits of both the codes and the computer systems involved. Using MSC/NASTRAN cyclic-symmetry solutions permitted using only 1/12 of the vessel geometry to mathematically analyze the entire vessel. This allowed the greater detail and accuracy demanded by the complex geometry of the vessel. Critical buckling-pressure analyses were performed with the same model. The development, results, and problems encountered in performing these analyses are described. 5 refs., 3 figs

  15. The theory of toroidally confined plasmas

    CERN Document Server

    White, Roscoe B

    2014-01-01

    This graduate level textbook develops the theory of magnetically confined plasma, with the aim of bringing the reader to the level of current research in the field of thermonuclear fusion. It begins with the basic concepts of magnetic field description, plasma equilibria and stability, and goes on to derive the equations for guiding center particle motion in an equilibrium field. Topics include linear and nonlinear ideal and resistive modes and particle transport. It is of use to workers in the field of fusion both for its wide-ranging account of tokamak physics and as a kind of handbook or formulary. This edition has been extended in a number of ways. The material on mode-particle interactions has been reformulated and much new information added, including methodology for Monte Carlo implementation of mode destabilization. These results give explicit means of carrying out mode destabilization analysis, in particular for the dangerous fishbone mode. A new chapter on cyclotron motion in toroidal geometry has ...

  16. Progress in toroidal confinement and fusion research

    International Nuclear Information System (INIS)

    Furth, H.P.

    1987-10-01

    During the past 30 years, the characteristic T/sub i/n tau/sub E/-value of toroidal-confinement experiments has advanced by more than seven orders of magnitude. Part of this advance has been due to an increase of gross machine parameters. Most of this advance has been due to an increase of gross machine parameters. Most of the advance is associated with improvements in the ''quality of plasma confinement.'' The combined evidence of spherator and tokamak research clarifies the role of magnetic-field geometry in determining confinement and points to the importance of shielding out plasma edge effects. A true physical understanding of anomalous transport remains to be achieved. 39 refs., 11 figs., 1 tab

  17. Toroidal microinstability studies of high temperature tokamaks

    International Nuclear Information System (INIS)

    Rewoldt, G.; Tang, W.M.

    1989-07-01

    Results from comprehensive kinetic microinstability calculations are presented showing the effects of toroidicity on the ion temperature gradient mode and its relationship to the trapped-electron mode in high-temperature tokamak plasmas. The corresponding particle and energy fluxes have also been computed. It is found that, although drift-type microinstabilities persist over a wide range of values of the ion temperature gradient parameter η i ≡ (dlnT i /dr)/(dlnn i /dr), the characteristic features of the dominant mode are those of the η i -type instability when η i > η ic ∼1.2 to 1.4 and of the trapped-electron mode when η i ic . 16 refs., 7 figs

  18. Resonant MHD modes with toroidal coupling

    International Nuclear Information System (INIS)

    Connor, J.W.; Hastie, R.J.; Taylor, J.B.

    1990-07-01

    This is part 2 of a study of resonant perturbations, such as resistive tearing and ballooning modes, in a torus. These are described by marginal ideal mhd equations in the regions between resonant surfaces; matching across these surfaces provides the dispersion relation. In part 1 we described how all the necessary information from the ideal mhd calculations could be represented by a so-called E-matrix. We also described the calculation of this E-matrix for tearing modes (even parity in perturbed magnetic field) in a large aspect ratio torus. There the toroidal modes comprise coupled cylinder tearing modes and the E-matrix is a generalization of the familiar Δ' quantity in a cylinder. In the present paper we discuss resistive ballooning, or twisting-modes, which have odd-parity in perturbed magnetic field. We show that, unlike the tearing modes, these odd-parity modes are instrinsically toroidal and are not directly related to the odd-parity modes in a cylinder. This is evident from the analysis of the high-n limit in ballooning-space, where a transition from a stable Δ' to an unstable Δ' occurs for the twisting mode when the ballooning effect exceeds the interchange effect, which can occur even at large aspect ratio (as in a tokamak). Analysis of the high-n limit in coordinate space, rather than ballooning space, clarifies this singular behaviour and indicates how one may define twisting-mode Δ'. It also yields a prescription for treating low-n twisting modes and a method for calculating an E-matrix for resistive ballooning modes in a large aspect ratio tokamak. The elements of this matrix are given in terms of cylindrical tearing mode solutions

  19. Progress on large superconducting toroidal field coils

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Luton, J.N.; Thompson, P.B.; Beard, D.S.

    1979-01-01

    Large superconducting toroidal field coils of competing designs are being produced by six major industrial teams. In the US, teams headed by General Dynamics Convair, General Electric, and Westinghouse are under contract to design and fabricate one coil each to specifications established by the Large Coil Program. A facility for testing 6 coils in a toroidal array at fields to 8 to 12 tesla is under construction at Oak Ridge. Through an international agreement, EURATOM, Japan, and Switzerland will produce one coil each for testing with the US coils. Each test coil will have a 2.5 x 3.5 m D-shape winding bore and is designed to operate at a current of 10 to 18 kA at a peak field of 8T while subjected to pulsed fields of 0.14 T applied in 1.0 s. There are significant differences among the six coil designs: five use NbTi, one Nb 3 Sn; three are cooled by pool boiling helium, three by forced flow; five have welded or bolted stainless steel coil cases, one has aluminum plate structure. All are designed to be cryostable at 8T, with structural margin for extended operation. The three US coil teams are almost or completely finished with detailed design and are now procuring materials and setting up manufacturing equipment. The non-US teams are at various stages of verification testing and design. The GDC and GE coils are scheduled for delivery in the spring of 1981 and the others will be completed a year later. The 11-m diameter vessel at the test facility has been completed and major components of the test stand are being procured. Engineering and procurement to upgrade the helium liquifier-refrigerator system are under way

  20. The Simulation of Bragg-Case Section Images of Dislocations and Inclusions in Aspect of Identification of Defects in SiC Crystals

    International Nuclear Information System (INIS)

    Balcer, T.; Wierzchowski, W.; Wieteska, K.

    2010-01-01

    The numerical simulation has been applied for studying of Bragg-case section topographic images of dislocation and rod-like inclusions. The validity of simple approximation of extinction contrast was confirmed in the case of screw dislocations in silicon carbide crystals. A procedure for approximate calculation of the strain field of rod-like inclusion was constructed, consisting of adding the contributions from a very large number of point-like inclusions uniformly distributed inside the assumed volume of the inclusion. The procedure ensured a reasonable similarity between the simulated topographs and experimental Bragg-case section topographic images of some pipe-formed cavities in silicon carbide crystals. The method is useful for some other materials, e.g. it enabled to compute realistic simulation of plane-wave topographs of the rod-like inclusions in YAG. (authors)

  1. Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on (\\bar{2}01) β-Ga2O3

    Science.gov (United States)

    Kasu, Makoto; Oshima, Takayoshi; Hanada, Kenji; Moribayashi, Tomoya; Hashiguchi, Akihiro; Oishi, Toshiyuki; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu

    2017-09-01

    A pixel array of vertical Schottky-barrier diodes (SBDs) was fabricated and measured on the surface of a (\\bar{2}01) β-Ga2O3 single crystal. Subsequently, etch pits and patterns were observed on the same surface. Three types of etch pits were discovered: (1) a line-shaped etch pattern originating from a void and extending toward the [010] direction, (2) an arrow-shaped etch pit whose arrow’s head faces toward the [102] direction and, (3) a gourd-shaped etch pit whose point head faces toward the [102] direction. Their average densities were estimated to be 5 × 102, 7 × 104, and 9 × 104 cm-2, respectively. We confirmed no clear relationship between the leakage current in SBDs and these crystalline defects. Such results are obtained because threading dislocations run mainly in the [010] growth direction and do not go through the (\\bar{2}01) sample plate.

  2. Optical trapping of colloidal particles and measurement of the defect line tension and colloidal forces in a thermotropic nematic liquid crystal

    International Nuclear Information System (INIS)

    Smalyukh, I.I.; Kuzmin, A.N.; Kachynski, A.V.; Prasad, P.N.; Lavrentovich, O.D.

    2005-01-01

    We demonstrate optical trapping and manipulation of transparent microparticles suspended in a thermotropic nematic liquid crystal with low birefringence. We employ the particle manipulation to measure line tension of a topologically stable disclination line and to determine colloidal interaction of particles with perpendicular surface anchoring of the director. The three-dimensional director fields and positions of the particles manipulated by laser tweezers are visualized by fluorescence confocal polarizing microscopy

  3. Defect model of a tetragonal Sm sup 3 sup + center found from EPR measurements in CaF sub 2 and SrF sub 2 crystals

    CERN Document Server

    Zheng Wen Chen; Wu Shao Yi; Tang Sheng

    2003-01-01

    The EPR parameters (g factors g sub p sub a sub r sub a sub l sub l sub e sub l , g sub p sub e sub r sub p sub e sub n sub d sub i sub c sub u sub l sub a sub r sub t sub o and hyperfine structure constants A sub p sub a sub r sub a sub l sub l sub e sub l , A sub p sub e sub r sub p sub e sub n sub d sub i sub c sub u sub l sub a sub r sub t sub o) of a tetragonal (C sub 4 sub v) Sm sup 3 sup + center in CaF sub 2 and SrF sub 2 crystals are calculated by considering the crystal-field J-mixing among the ground sup 6 H sub 5 sub / sub 2 , the first excited sup 6 H sub 7 sub / sub 2 and second excited sup 6 H sub 9 sub / sub 2 state multiplets. In the calculations the free-ion and crystal-field parameters of the tetragonal Sm sup 3 sup + -F sup - center obtained from polarized laser-selective excitation spectroscopy are used. The calculated results suggest that the tetragonal Sm sup 3 sup + -F sup - center is the Sm sup 3 sup + center found by later EPR measurements. The g factors g sub p sub a sub r sub a sub...

  4. Commissioning Test of ATLAS End-Cap Toroidal Magnets

    CERN Document Server

    Dudarev, A; Foussat, A; Benoit, P; Jeckel, M; Olyunin, A; Kopeykin, N; Stepanov, V; Deront, L; Olesen, G; Ponts, X; Ravat, S; Sbrissa, K; Barth, J; Bremer, J; Delruelle, J; Metselaar, J; Pengo, R; Pirotte, O; Buskop, J; Baynham, D E; Carr, F S; Holtom, E

    2009-01-01

    The system of superconducting toroids in the ATLAS experiment at CERN consists of three magnets. The Barrel Toroid was assembled and successfully tested in 2006. Next, two End-Cap Toroids have been tested on surface at 77 K and installed in the cavern, 100-m underground. The End Cap Toroids are based on Al stabilized Nb-Ti/Cu Rutherford cables, arranged in double pancake coils and conduction cooled at 4.6 K. The nominal current is 20.5 kA at 4.1 T peak field in the windings and the stored energy is 250 MJ per toroid. Prior to final testing of the entire ATLAS Toroidal system, each End Cap Toroid passed a commissioning test up to 21 kA to guarantee a reliable performance in the final assembly. In this paper the test results are described. It includes the stages of test preparation, isolation vacuum pumping and leak testing, cooling down, step-by-step charging to full current, training quenches and quench recovery. By fast discharges the quench detection and protection system was checked to demonstrate a safe e...

  5. Kinetic energy principle and neoclassical toroidal torque in tokamaks

    International Nuclear Information System (INIS)

    Park, Jong-Kyu

    2011-01-01

    It is shown that when tokamaks are perturbed, the kinetic energy principle is closely related to the neoclassical toroidal torque by the action invariance of particles. Especially when tokamaks are perturbed from scalar pressure equilibria, the imaginary part of the potential energy in the kinetic energy principle is equivalent to the toroidal torque by the neoclassical toroidal viscosity. A unified description therefore should be made for both physics. It is also shown in this case that the potential energy operator can be self-adjoint and thus the stability calculation can be simplified by minimizing the potential energy.

  6. Toroidal field effects on the stability of Heliotron E

    International Nuclear Information System (INIS)

    Carreras, B.A.; Garcia, L.; Lynch, V.E.

    1986-02-01

    The addition of a small toroidal field to the Heliotron E configuration improves the stability of the n = 1 mode and increases the value of the stability beta critical. Total stabilization of this mode can be achieved with added toroidal fields between 5 and 15% of the total field. In this situation, the plasma can have direct access to the second stability regime. For the Heliotron E configuration, the self-stabilization effect is due to the shear, not to the magnetic well. The toroidal field threshold value for stability depends strongly on the pressure profile and the plasma radius. 21 refs., 15 figs

  7. Poloidal variations in toroidal fusion reactor wall power loadings

    International Nuclear Information System (INIS)

    Carroll, M.C.; Miley, G.H.

    1985-01-01

    A geometric formulation is developed by the authors for determining poloidal variations in bremmstrahlung, cyclotron radiation, and neutron wall power loadings in toroidal fusion devices. Assuming toroidal symmetry and utilizing a numerical model which partitions the plasma into small cells, it was generally found that power loadings are highest on the outer surface of the torus, although variations are not as large as some have predicted. Results are presented for various plasma power generation configurations, plasma volume fractions, and toroidal aspect ratios, and include plasma and wall blockage effects

  8. 1D equation for toroidal momentum transport in a tokamak

    International Nuclear Information System (INIS)

    Rozhansky, V A; Senichenkov, I Yu

    2010-01-01

    A 1D equation for toroidal momentum transport is derived for a given set of turbulent transport coefficients. The averaging is performed taking account of the poloidal variation of the toroidal fluxes and is based on the ambipolar condition of the zero net radial current through the flux surface. It is demonstrated that taking account of the Pfirsch-Schlueter fluxes leads to a torque in the toroidal direction which is proportional to the gradient of the ion temperature. This effect is new and has not been discussed before. The boundary condition at the separatrix, which is based on the results of the 2D simulations of the edge plasma, is formulated.

  9. Deformation energy of a toroidal nucleus and plane fragmentation barriers

    International Nuclear Information System (INIS)

    Fauchard, C.; Royer, G.

    1996-01-01

    The path leading to pumpkin-like configurations and toroidal shapes is investigated using a one-parameter shape sequence. The deformation energy is determined within the analytical expressions obtained for the various shape-dependent functions and the generalized rotating liquid drop model taking into account the proximity energy and the temperature. With increasing mass and angular momentum, a potential well appears in the toroidal shape path. For the heaviest systems, the pocket is large and locally favourable with respect to the plane fragmentation barriers which might allow the formation of evanescent toroidal systems which would rapidly decay in several fragments to minimize the surface tension. (orig.)

  10. Performance of a Folded-Strip Toroidally Wound Induction Machine

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Jack, Alan G.; Atkinson, Glynn J.

    2011-01-01

    This paper presents the measured experimental results from a four-pole toroidally wound induction machine, where the stator is constructed as a pre-wound foldable strip. It shows that if the machine is axially restricted in length, the toroidally wound induction machine can have substantially...... shorter stator end-windings than conventionally wound induction machines, and hence that a toroidally wound induction machine can have lower losses and a higher efficiency. The paper also presents the employed construction method, which emphasizes manufacturability, and highlights the advantages...

  11. Progress in gyrokinetic simulations of toroidal ITG turbulence

    International Nuclear Information System (INIS)

    Nevins, W.M.; Dimits, A.M.; Cohen, B.I.; Shumaker, D.E.

    2001-01-01

    The 3-D nonlinear toroidal gyrokinetic simulation code PG3EQ is used to study toroidal ion temperature gradient (ITG) driven turbulence - a key cause of the anomalous transport that limits tokamak plasma performance. Systematic studies of the dependence of ion thermal transport on various parameters and effects are presented, including dependence on E-vectorxB-vector and toroidal velocity shear, sensitivity to the force balance in simulations with radial temperature gradient variation, and the dependences on magnetic shear and ion temperature gradient. (author)

  12. Laser-induced production of large carbon-based toroids

    International Nuclear Information System (INIS)

    Lyn, M. Elizabeth; He Jibao; Koplitz, Brent

    2005-01-01

    We report on the production of large carbon-based toroids (CBTs) from fullerenes. The process involves two-step laser irradiation of a mixed fullerene target (76% C 60 , 22% C 70 ). Transmission electron microscopy (TEM) clearly identifies toroidal-shaped structures as well as Q-shaped constructs. The typical diameters of the CBTs are ∼0.2-0.3 μm with tubular diameters of ∼50-100 nm, but toroids as wide as 0.5 μm are observed making them nanostructures on the verge of being microstructures

  13. Laser-induced positive ion and neutral atom/molecule emissions from single-crystal CaHPO4 center dot 2H20: The role of electron-beam-induced defects

    International Nuclear Information System (INIS)

    Dawes, Mary L.; Hess, Wayne P.; Kawaguchi, Yuji; Langford, S C.; Dickinson, J. Tom

    1998-01-01

    We examine laser-induced ion and neutral emissions from single-crystal CaHPO4 center dot 2H2O (brushite), a wide-band-gap, hydrated inorganic single crystal, with 248-nm excimer laser radiation. Both laser-induced ion and neutral emissions are several orders magnitude higher following exposure to 2keV electrons at current densities of 200 uA/cm2 and doses of 1 C/cm2. In addition to intense Ca+ signals, electron-irradiated surfaces yield substantial CaO+, PO+, and P+ signals. As-grown and as-cleaved brushite show only weak neutral O2 and Ca emissions, whereas electron-irradiated surfaces yield enhanced O2, Ca, PO, PO2, and P emissions. Electron irradiation (i) significantly heats the sample, leading to thermal dehydration (CaHPO4 formation) and pyrolysis (Ca2P2O7 formation)and (ii) chemically reduces the surface via electron stimulated desorption. The thermal effects are accompanied by morphological changes, including recrystallization. Although complex, these changes lead to high defect densities, which are responsible for the dramatic enhancements in the observed laser desorption

  14. Quasimetallic silicon micromachined photonic crystals

    International Nuclear Information System (INIS)

    Temelkuran, B.; Bayindir, Mehmet; Ozbay, E.; Kavanaugh, J. P.; Sigalas, M. M.; Tuttle, G.

    2001-01-01

    We report on fabrication of a layer-by-layer photonic crystal using highly doped silicon wafers processed by semiconductor micromachining techniques. The crystals, built using (100) silicon wafers, resulted in an upper stop band edge at 100 GHz. The transmission and defect characteristics of these structures were found to be analogous to metallic photonic crystals. We also investigated the effect of doping concentration on the defect characteristics. The experimental results agree well with predictions of the transfer matrix method simulations

  15. Luminescence and photo-thermally stimulated defects creation processes in PbWO{sub 4} crystals doped with trivalent rare-earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Fabeni, P. [Institute of Applied Physics “N.Carrara” (IFAC) of CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Krasnikov, A.; Kärner, T. [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Laguta, V.V.; Nikl, M. [Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Pazzi, G.P. [Institute of Applied Physics “N.Carrara” (IFAC) of CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Zazubovich, S., E-mail: svet@fi.tartu.ee [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia)

    2013-04-15

    In PbWO{sub 4} crystals, doped with various trivalent rare-earth A{sup 3+} ions (A{sup 3+}: La{sup 3+}, Lu{sup 3+}, Y{sup 3+}, Ce{sup 3+}, Gd{sup 3+}), electron (WO{sub 4}){sup 3−} and {(WO_4)"3"−–A"3"+} centers can be created under UV irradiation not only in the host absorption region but also in the energy range around 3.85 eV (Böhm et al., 1999; Krasnikov et al., 2010). Under excitation in the same energy range, the UV emission peak at 3.05–3.20 eV is observed. In the present work, the origin of this emission is investigated in detail by low-temperature time-resolved luminescence methods. Photo-thermally stimulated creation of (WO{sub 4}){sup 3−} and {(WO_4)"3"−–A"3"+} centers is studied also in PbWO{sub 4}:Mo,A{sup 3+} crystals. Various processes, which could explain both the appearance of the UV emission and the creation of the {(WO_4)"3"−–A"3"+}-type centers under irradiation of PbWO{sub 4}: A{sup 3+} crystals in the 3.85±0.35 eV energy range, are discussed. The radiative and non-radiative decay of the excitons localized near A{sup 3+} ions is considered as the most probable mechanism to explain the observed features. -- Highlights: ► UV emission of PbWO{sub 4}: A{sup 3+} (A{sup 3+}: La{sup 3+}, Lu{sup 3+}, Y{sup 3+}, Ce{sup 3+}, and Gd{sup 3+}) crystals is studied. ► The emission is ascribed to the radiative decay of excitons localized near A{sup 3+} ions. ► The excitons are created at 3.85 eV excitation by a two-step process. ► Non-radiative decay of the excitons leads to the creation of (WO{sub 4}){sup 3−}–A{sup 3+} centers.

  16. Channeling studies of impurity-defect interactions in silicon

    International Nuclear Information System (INIS)

    Wiggers, L.W.

    1978-01-01

    This thesis deals with the mechanism of defect production and interaction of introduced defects with impurity atoms in silicon single crystals. Defects are created by irradiation with energetic light particles (.2 - 3 MeV H + or He + ions). Mostly simple defects like vacancies and interstitials are produced during bombardment. (Auth.)

  17. Paramagnetic defects in KH{sub 2}PO{sub 4} crystals with high concentration of embedded TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Grachev, Valentin G., E-mail: grachev@physics.montana.edu; Tse, Romand; Malovichko, Galina I. [Physics Department, Montana State University, Bozeman, Montana 59717 (United States); Pritula, Igor M.; Bezkrovnaya, Olga N.; Kosinova, Anna V. [Institute for Single Crystals, NAS of Ukraine, Kharkiv (Ukraine)

    2016-01-21

    Qualitative transformations of spectra of Electron Paramagnetic Resonance, EPR, were found in KH{sub 2}PO{sub 4} crystals grown from liquor with 10{sup −5}–10{sup −1 }wt. % of anatase TiO{sub 2} nanoparticles in comparison with nominally pure KH{sub 2}PO{sub 4}. The nanoparticles have larger segregation coefficient for prismatic parts of the crystals than for pyramidal ones. Significant decrease in resonance absorption, complete disappearance of EPR lines of Fe{sup 3+} and Cr{sup 3+} centers, and appearance of four weak lines of equal intensities together with broad asymmetric lines with g-factors about 2.07–2.5 was observed in pyramidal parts grown with concentration of TiO{sub 2} nanoparticles larger than the threshold value 10{sup −2 }wt. %. The four lines were attributed to non-controlled impurity As substituted for P. In the presence of TiO{sub 2} nanoparticles, non-paramagnetic AsO{sub 4}{sup 3−} clusters trap electrons becoming AsO{sub 4}{sup 4−}. Disappearance of Fe{sup 3+} and Cr{sup 3+} centers was explained by their recharge to “EPR-silent” states and/or pairing at the surface of TiO{sub 2} nanoparticles.

  18. Structural design of the superconducting toroidal field coils for ITER

    International Nuclear Information System (INIS)

    Wong, F.M.G.; Sborchia, C.; Thome, R.J.; Malkov, A.; Titus, P.H.

    1995-01-01

    Structural design issues and features of the superconducting toroidal field (TF) coils for the International Thermonuclear Experimental Reactor (ITER) will be discussed. Selected analyses of the structural and mechanical behavior of the ITER TF coils will also be presented. (orig.)

  19. System and method of operating toroidal magnetic confinement devices

    Science.gov (United States)

    Chance, M.S.; Jardin, S.C.; Stix, T.H.; Grimm, R.C.; Manickam, J.; Okabayashi, M.

    1984-08-30

    This invention pertains to methods and arrangements for attaining high beta values in plasma confinement devices. More specifically, this invention pertains to methods for accessing the second stability region of operation in toroidal magnetic confinement devices.

  20. Influence of toroidal rotation on resistive tearing modes in tokamaks

    International Nuclear Information System (INIS)

    Wang, S.; Ma, Z. W.

    2015-01-01

    Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τ R /τ V  ≫ 1, where τ R and τ V represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τ R /τ V  ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large

  1. Influence of toroidal rotation on resistive tearing modes in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Ma, Z. W., E-mail: zwma@zju.edu.cn [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China)

    2015-12-15

    Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τ{sub R}/τ{sub V} ≫ 1, where τ{sub R} and τ{sub V} represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τ{sub R}/τ{sub V} ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.

  2. Confinement time exceeding one second for a toroidal electron plasma.

    Science.gov (United States)

    Marler, J P; Stoneking, M R

    2008-04-18

    Nearly steady-state electron plasmas are trapped in a toroidal magnetic field for the first time. We report the first results from a new toroidal electron plasma experiment, the Lawrence Non-neutral Torus II, in which electron densities on the order of 10(7) cm(-3) are trapped in a 270-degree toroidal arc (670 G toroidal magnetic field) by application of trapping potentials to segments of a conducting shell. The total charge inferred from measurements of the frequency of the m=1 diocotron mode is observed to decay on a 3 s time scale, a time scale that approaches the predicted limit due to magnetic pumping transport. Three seconds represents approximately equal to 10(5) periods of the lowest frequency plasma mode, indicating that nearly steady-state conditions are achieved.

  3. Effect of toroidicity during lower hybrid mode conversion

    International Nuclear Information System (INIS)

    Riyopoulos, S.; Mahajan, S.

    1985-11-01

    The effect of toroidicity during lower hybrid mode conversion is examined by treating the wave propagation in an inhomogeneous medium as an eigenvalue problem for ω 2 (m,n),m,n poloidal and toroidal wave numbers. Since the frequency regime near ω 2 = ω/sub LH/ 2 is an accumulation point for the eigenvalue spectrum, the degenerate perturbation technique must be applied. The toroidal eigenmodes are constructed by a zeroth order superposition of monochromatic solutions with different poloidal dependence m, thus they generically exhibit a wide spectrum in k/sub parallel/ for given fixed ω 2 even for small inverse aspect ratio epsilon. In case that the average is in the neighborhood of k/sub min/, the minimum wave number for accessibility of the mode conversion regime, it is expected that excitation of toroidal modes rather than geometric optics will determine the wave coupling to the plasma

  4. Toroidal and rotating bubble nuclei and the nuclear fragmentation

    International Nuclear Information System (INIS)

    Royer, G.; Fauchard, C.; Haddad, F.; Jouault, B.

    1997-01-01

    The energy of rotating bubble and toroidal nuclei predicted to be formed in central heavy ion collisions at intermediate energies is calculated within the generalized rotating liquid drop model. Previously, a one-parameter shape sequence has been defined to describe the path leading to pumpkin-like configurations and toroidal shapes. New analytical expressions for the shape dependent functions have been obtained. The potential barriers standing in these exotic deformation paths are compared with the three-dimensional and plane-fragmentation barriers. Metastable bubble-like minima only appear at very high angular momentum and above the three dimensional fragmentation barriers. In the toroidal deformation path of the heaviest systems exists a large potential pocket localized below the plane-fragmentation barriers. This might allow the temporary survival of heavy nuclear toroids before the final clusterization induced by the surface and proximity tension

  5. Calculation of toroidal fusion reactor blankets by Monte Carlo

    International Nuclear Information System (INIS)

    Macdonald, J.L.; Cashwell, E.D.; Everett, C.J.

    1977-01-01

    A brief description of the calculational method is given. The code calculates energy deposition in toroidal geometry, but is a continuous energy Monte Carlo code, treating the reaction cross sections as well as the angular scattering distributions in great detail

  6. Turbulent and neoclassical toroidal momentum transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Abiteboul, J.

    2012-10-01

    The goal of magnetic confinement devices such as tokamaks is to produce energy from nuclear fusion reactions in plasmas at low densities and high temperatures. Experimentally, toroidal flows have been found to significantly improve the energy confinement, and therefore the performance of the machine. As extrinsic momentum sources will be limited in future fusion devices such as ITER, an understanding of the physics of toroidal momentum transport and the generation of intrinsic toroidal rotation in tokamaks would be an important step in order to predict the rotation profile in experiments. Among the mechanisms expected to contribute to the generation of toroidal rotation is the transport of momentum by electrostatic turbulence, which governs heat transport in tokamaks. Due to the low collisionality of the plasma, kinetic modeling is mandatory for the study of tokamak turbulence. In principle, this implies the modeling of a six-dimensional distribution function representing the density of particles in position and velocity phase-space, which can be reduced to five dimensions when considering only frequencies below the particle cyclotron frequency. This approximation, relevant for the study of turbulence in tokamaks, leads to the so-called gyrokinetic model and brings the computational cost of the model within the presently available numerical resources. In this work, we study the transport of toroidal momentum in tokamaks in the framework of the gyrokinetic model. First, we show that this reduced model is indeed capable of accurately modeling momentum transport by deriving a local conservation equation of toroidal momentum, and verifying it numerically with the gyrokinetic code GYSELA. Secondly, we show how electrostatic turbulence can break the axisymmetry and generate toroidal rotation, while a strong link between turbulent heat and momentum transport is identified, as both exhibit the same large-scale avalanche-like events. The dynamics of turbulent transport are

  7. Toroidal high-spin isomers in the nucleus 304120

    Science.gov (United States)

    Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.

    2017-05-01

    Background: Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis with I =Iz . The toroidal high-K isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. Purpose: We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus 120304184. Method: Our method consists of three steps: First, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations, we apply an additional cranking constraint of a large angular momentum I =Iz about the symmetry z axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with I =Iz is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Results: We have theoretically located two toroidal high-spin isomeric states of 120304184 with an angular momentum I =Iz=81 ℏ (proton 2p-2h, neutron 4p-4h excitation) and I =Iz=208 ℏ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations Q20=-297.7 b and Q20=-300.8 b with energies 79.2 and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers 120304184(Iz=81 ℏ and 208 ℏ ) have the maximum density close to the nuclear matter density, 0.16 fm-3, and a torus major to minor radius aspect ratio R /d =3.25 . Conclusions: We demonstrate that aligned angular momenta of Iz=81 ℏ and 208 ℏ arising from

  8. Radiation-induced defects in LiAlO{sub 2} crystals: Holes trapped by lithium vacancies and their role in thermoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Holston, M.S.; McClory, J.W.; Giles, N.C. [Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433 (United States); Halliburton, L.E., E-mail: Larry.Halliburton@mail.wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States)

    2015-04-15

    Electron paramagnetic resonance (EPR) is used to identify the primary hole trap in undoped lithium aluminate (LiAlO{sub 2}) crystals. Our interest in this material arises because it is a candidate for radiation detection applications involving either optically stimulated luminescence (OSL) or thermoluminescence (TL). During an x-ray irradiation at room temperature, holes are trapped at oxygen ions adjacent to lithium vacancies. Large concentrations of these lithium vacancies are introduced into the crystal during growth. With the magnetic field along the [001] direction, the EPR spectrum from these trapped-hole centers consists of eleven lines, evenly spaced but with varying intensities, caused by nearly equal hyperfine interactions with two {sup 27}Al nuclei (I=5/2, 100% abundant). The g matrix is determined from the angular dependence of the EPR spectrum and has principal values of 2.0130, 2.0675, and 2.0015. These g shifts strongly support the model of a hole in a p orbital on an oxygen ion. The adjacent lithium vacancy stabilizes the hole on the oxygen ion. A sequence of pulsed thermal anneals above room temperature shows that the EPR spectrum from the holes trapped adjacent to the lithium vacancies disappears in the 90–120 °C range. The thermal decay of these hole centers directly correlates with an intense TL peak near 105 °C. Signals at lower magnetic field in the 9.4 GHz EPR spectra suggest that the electron trap associated with this TL peak at 105 °C may be a transition-metal-ion impurity, most likely Fe, located at a cation site. Additional less intense TL peaks are observed near 138, 176, and 278 °C. - Highlights: • Undoped LiAlO{sub 2} crystals are irradiated at room temperature with x-rays. • EPR is used to identify holes trapped at oxygen ions adjacent to lithium vacancies. • Thermal decay of the EPR spectrum correlates with an intense TL peak at 105 °C.

  9. Polymer- and salt-induced toroids of hexagonal DNA.

    OpenAIRE

    Ubbink, J; Odijk, T

    1995-01-01

    A model is proposed for polymer- and salt-induced toroidal condensates of DNA, based on a recent theory of the undulation enhancement of the electrostatic interaction in the bulk hexagonal phase of semiflexible polyions. In a continuum approximation, the thermodynamic potential of a monomolecular toroid may be split up in bulk, surface, and curvature contributions. With the help of an approximate analytical minimization procedure, the optimal torus dimensions are calculated as a function of t...

  10. Transport in the high temperature core of toroidal confinement systems

    International Nuclear Information System (INIS)

    Weiland, J.

    1994-01-01

    Recent theoretical and experimental results on confinement of hot plasmas in toroidal devices, particularly tokamaks, are discussed from general principal points of view and related to predictions from a toroidal drift wave model using a full transport matrix including off diagonal terms. A reactive fluid model corresponding to a two pole approximation of the kinetic response is used. This model has the ability to reproduce both adiabatic and isothermal limits of the perpendicular dynamics. 106 refs, 8 figs, 1 tab

  11. Crystal structure and defects of Zr4Co4Si7( V-phase) investigated by high resolution transmission electron microscope

    International Nuclear Information System (INIS)

    Mao, J.F.; Ye, H.Q.; Ning, X.G.; He, L.L.; Yang, D.Z.

    1997-01-01

    The results of high resolution transmission electron microscope (HRTEM) observation and image simulation show that Zr 4 Co 4 Si 7 possesses the same structure type of Zr 4 Co 4 Ge 7 . Adding of Fe or Ni into the Zr 4 Co 4 Si 7 compound, except that the dimensions changed slightly, does not change the lattice type and coordination in the crystal structure, maintaining the V-phase structure. Also, twins with coherent boundaries and with partially coherent at interfaces are observed. The image conditions of Zr 4 Co 4 Si 7 and the structure differences between Zr 4 Co 4 Si 7 and tetrahedral close-packed phases are also discussed. copyright 1997 Materials Research Society

  12. Confinement and heating of high beta plasma with emphasis on compact toroids. Compact toroid research

    International Nuclear Information System (INIS)

    Vlases, G.C.; Pietrzyk, Z.A.

    1984-11-01

    Two older projects associated with very high energy density plasmas, specifically the High Density Field Reversed Configuration and the Liner Plasma Compression Experiment, have been completed. Attention has been turned to compact toroid experiments of more conventional density, and three experiments have been initiated. These include the Coaxial Slow Source Experiment, the Variable Length FRC Experiment, and Variable Angle CthetaP Experiment. In each case, the project was begun in order to provide basic plasma physics information on specific unresolved issues of progammatic importance to the national CT Program

  13. Compact toroid injection into C-2U

    Science.gov (United States)

    Roche, Thomas; Gota, H.; Garate, E.; Asai, T.; Matsumoto, T.; Sekiguchi, J.; Putvinski, S.; Allfrey, I.; Beall, M.; Cordero, M.; Granstedt, E.; Kinley, J.; Morehouse, M.; Sheftman, D.; Valentine, T.; Waggoner, W.; the TAE Team

    2015-11-01

    Sustainment of an advanced neutral beam-driven FRC for a period in excess of 5 ms is the primary goal of the C-2U machine at Tri Alpha Energy. In addition, a criteria for long-term global sustainment of any magnetically confined fusion reactor is particle refueling. To this end, a magnetized coaxial plasma-gun has been developed. Compact toroids (CT) are to be injected perpendicular to the axial magnetic field of C-2U. To simulate this environment, an experimental test-stand has been constructed. A transverse magnetic field of B ~ 1 kG is established (comparable to the C-2U axial field) and CTs are fired across it. As a minimal requirement, the CT must have energy density greater than that of the magnetic field it is to penetrate, i.e., 1/2 ρv2 >=B2 / 2μ0 . This criteria is easily met and indeed the CTs traverse the test-stand field. A preliminary experiment on C-2U shows the CT also capable of penetrating into FRC plasmas and refueling is observed resulting in a 20 - 30% increase in total particle number per single-pulsed CT injection. Results from test-stand and C-2U experiments will be presented.

  14. Chaotic magnetic field line in toroidal plasmas

    International Nuclear Information System (INIS)

    Hatori, Tadatsugu; Abe, Yoshihiko; Urata, Kazuhiro; Irie, Haruyuki.

    1989-05-01

    This is an introductory review of chaotic magnetic field line in plasmas, together with some new results, with emphasis on the long-time tail and the fractional Brownian motion of the magnetic field line. The chaotic magnetic field line in toroidal plasmas is a typical chaotic phenomena in the Hamiltonian dynamical systems. The onset of stochasticity induced by a major magnetic perturbation is thought to cause a macroscopic rapid phenomena called the current disruption in the tokamak discharges. Numerical simulations on the basis of magnetohydrodynamics reveal in fact the disruptive phenomena. Some dynamical models which include the area-preserving mapping such as the standard mapping, and the two-wave Hamiltonian system can model the stochastic magnetic field. Theoretical results with use of the functional integral representation are given regarding the long-time tail on the basis of the radial twist mapping. It is shown that application of renormalization group technique to chaotic orbit in the two-wave Hamiltonian system proves decay of the velocity autocorrelation function with the power law. Some new numerical results are presented which supports these theoretical results. (author)

  15. ''Turbulent Equipartition'' Theory of Toroidal Momentum Pinch

    International Nuclear Information System (INIS)

    Hahm, T.S.; Diamond, P.H.; Gurcan, O.D.; Rewaldt, G.

    2008-01-01

    The mode-independent part of magnetic curvature driven turbulent convective (TuroCo) pinch of the angular momentum density (Hahm et al., Phys. Plasmas 14,072302 (2007)) which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of 'magnetically weighted angular momentum density', nm i U # parallel# R/B 2 , and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustrated that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms which exist in a simpler geometry.

  16. Toroidal plasmoid generation via extreme hydrodynamic shear.

    Science.gov (United States)

    Gharib, Morteza; Mendoza, Sean; Rosenfeld, Moshe; Beizai, Masoud; Alves Pereira, Francisco J

    2017-11-28

    Saint Elmo's fire and lightning are two known forms of naturally occurring atmospheric pressure plasmas. As a technology, nonthermal plasmas are induced from artificially created electromagnetic or electrostatic fields. Here we report the observation of arguably a unique case of a naturally formed such plasma, created in air at room temperature without external electromagnetic action, by impinging a high-speed microjet of deionized water on a dielectric solid surface. We demonstrate that tribo-electrification from extreme and focused hydrodynamic shear is the driving mechanism for the generation of energetic free electrons. Air ionization results in a plasma that, unlike the general family, is topologically well defined in the form of a coherent toroidal structure. Possibly confined through its self-induced electromagnetic field, this plasmoid is shown to emit strong luminescence and discrete-frequency radio waves. Our experimental study suggests the discovery of a unique platform to support experimentation in low-temperature plasma science. Copyright © 2017 the Author(s). Published by PNAS.

  17. Experimental study of high beta toroidal plasmas

    International Nuclear Information System (INIS)

    Kellman, A.G.

    1983-09-01

    Experiments on the Wisconsin Levitated Toroidal Octupole have produced a wide range of stable high β plasmas with β significantly above single fluid MHD theory predictions. A stable β approx. 8% plasma, twice the fluid limit, is obtained with 5 rho/sub i/ approx. L/sub n/ and tau/sub β/ approx. = 6000 tau/sub Alfven/ = 600 μsec. The enhanced stability is explained with a kinetic treatment that includes the effect of finite ion gyroradius which couples the ballooning mode to an ion drift wave. In a more collisional, large gyroradius (2 rho/sub i/ approx. L/sub n/) regime, a stable β approx. 35% plasma is obtained with a decay time of 1000 Alfven times. Measurement of the equilibrium magnetic field in this regime indicates that the diamagnetic current density is five times smaller than predicted by ideal MHD, probably due to ion gyroviscosity. Particle transport is anomalous and ranges from agreement with the classical diffusion rate at the highest beta, lowest field plasma (B/sub P/ = 200 G), to thirteen times the classical rate in a β=11%, high field plasma (B/sub P/ = 860 G) where the level of enhancement increase with magnetic field. Fluctuations in density, electrostatic potential, and magnetic field have been studied in plasmas with β from 0.1% to 40%

  18. The BNL toroidal volume H- source

    International Nuclear Information System (INIS)

    Alessi, J.G.; Prelec, K.

    1991-01-01

    The BNL toroidal volume H - ion source, in pulsed operation is now producing up to 35 mA with an electron to H - ratio of less than 5, and a ratio of less than 3 for currents up to 20 mA. This improvement came about by increasing the strength of the conical filter field. The source has also been operated steady state at low arc currents, where up to 6 mA of H - was extracted. The electron to H - ratio is 2--3 times larger for dc operation. For dc currents up to 5 mA, the arc power efficiency was 5 mA/kW. Pulsed performance with Ta and W filaments were very similar, except for the large gas pumping observed with the Ta filament. In dc operation, the Ta filament performed somewhat better than W. Extraction from 7 apertures having a total area of 1 cm 2 produced the same results as a single 1 cm 2 aperture. 5 refs., 4 figs

  19. An important step for the ATLAS toroid magnet

    CERN Multimedia

    2000-01-01

    The ATLAS experiment's prototype toroid coil arrives at CERN from the CEA laboratory in Saclay on 6 October. The world's largest superconducting toroid magnet is under construction for the ATLAS experiment. A nine-metre long fully functional prototype coil was delivered to CERN at the beginning of October and has since been undergoing tests in the West Area. Built mainly by companies in France and Italy under the supervision of engineers from the CEA-Saclay laboratory near Paris and Italy's INFN-LASA, the magnet is a crucial step forward in the construction of the ATLAS superconducting magnet system. Unlike any particle detector that has gone before, the ATLAS detector's magnet system consists of a large toroidal system enclosing a small central solenoid. The barrel part of the toroidal system will use eight toroid coils, each a massive 25 metres in length. These will dwarf the largest toroids in the world when ATLAS was designed, which measure about six metres. So the ATLAS collaboration decided to build a...

  20. Turbulent transport of toroidal angular momentum in low flow gyrokinetics

    International Nuclear Information System (INIS)

    Parra, Felix I; Catto, Peter J

    2010-01-01

    We derive a self-consistent equation for the turbulent transport of toroidal angular momentum in tokamaks in the low flow ordering that only requires solving gyrokinetic Fokker-Planck and quasineutrality equations correct to second order in an expansion on the gyroradius over scale length. We also show that according to our orderings the long wavelength toroidal rotation and the long wavelength radial electric field satisfy the neoclassical relation that gives the toroidal rotation as a function of the radial electric field and the radial gradients of pressure and temperature. Thus, the radial electric field can be solved for once the toroidal rotation is calculated from the transport of toroidal angular momentum. Unfortunately, even though this methodology only requires a gyrokinetic model correct to second order in gyroradius over scale length, current gyrokinetic simulations are only valid to first order. To overcome this difficulty, we exploit the smallish ratio B p /B, where B is the total magnetic field and B p is its poloidal component. When B p /B is small, the usual first order gyrokinetic equation provides solutions that are accurate enough to employ for our expression for the transport of toroidal angular momentum. We show that current δf and full f simulations only need small corrections to achieve this accuracy. Full f simulations, however, are still unable to determine the long wavelength, radial electric field from the quasineutrality equation.