WorldWideScience

Sample records for crystal structure mol-ecules

  1. Crystal water as the mol-ecular glue for obtaining different co-crystal ratios: the case of gallic acid tris-caffeine hexa-hydrate.

    Science.gov (United States)

    Vella-Zarb, L; Baisch, U

    2018-04-01

    The crystal structure of the hexa-hydrate co-crystal of gallic acid and caffeine, C 7 H 6 O 5 ·3C 8 H 10 N 4 O 2 ·6H 2 O or GAL3CAF·6H 2 O , is a remarkable example of the importance of hydrate water acting as structural glue to facilitate the crystallization of two components of different stoichiometries and thus to compensate an imbalance of hydrogen-bond donors and acceptors. The water mol-ecules provide the additional hydrogen bonds required to form a crystalline solid. Whereas the majority of hydrogen bonds forming the inter-molecular network between gallic acid and caffeine are formed by crystal water, only one direct classical hydrogen bond between two mol-ecules is formed between the carb-oxy-lic oxygen of gallic acid and the carbonyl oxygen of caffeine with d ( D ⋯ A ) = 2.672 (2) Å. All other hydrogen bonds either involve crystal water or utilize protonated carbon atoms as donors.

  2. The crystal structures of three pyrazine-2,5-dicarb-oxamides: three-dimensional supra-molecular structures.

    Science.gov (United States)

    Cati, Dilovan S; Stoeckli-Evans, Helen

    2017-05-01

    The complete mol-ecules of the title compounds, N 2 , N 5 -bis-(pyridin-2-ylmeth-yl)pyrazine-2,5-dicarboxamide, C 18 H 16 N 6 O 2 (I), 3,6-dimethyl- N 2 , N 5 -bis-(pyridin-2-yl-meth-yl)pyrazine-2,5-dicarboxamide, C 20 H 20 N 6 O 2 (II), and N 2 , N 5 -bis-(pyridin-4-ylmeth-yl)pyrazine-2,5-dicarboxamide, C 18 H 16 N 6 O 2 (III), are generated by inversion symmetry, with the pyrazine rings being located about centres of inversion. Each mol-ecule has an extended conformation with the pyridine rings inclined to the pyrazine ring by 89.17 (7)° in (I), 75.83 (8)° in (II) and by 82.71 (6)° in (III). In the crystal of (I), mol-ecules are linked by N-H⋯N hydrogen bonds, forming layers lying parallel to the bc plane. The layers are linked by C-H⋯O hydrogen bonds, forming a three-dimensional supra-molecular structure. In the crystal of (II), mol-ecules are also linked by N-H⋯N hydrogen bonds, forming layers lying parallel to the (10-1) plane. As in (I), the layers are linked by C-H⋯O hydrogen bonds, forming a three-dimensional supra-molecular structure. In the crystal of (III), mol-ecules are again linked by N-H⋯N hydrogen bonds, but here form corrugated sheets lying parallel to the bc plane. Within the sheets, neighbouring pyridine rings are linked by offset π-π inter-actions [inter-centroid distance = 3.739 (1) Å]. The sheets are linked by C-H⋯O hydrogen bonds, forming a three-dimensional supra-molecular structure. Compound (I) crystallizes in the monoclinic space group P 2 1 / c . Another monoclinic polymorph, space group C 2/ c , has been reported on by Cockriel et al. [ Inorg. Chem. Commun. (2008), 11 , 1-4]. The mol-ecular structures of the two polymorphs are compared.

  3. Crystal structure of bis-[(phenyl-methanamine-κN)(phthalocyaninato-κ(4) N)zinc] phenyl-methan-amine tris-olvate.

    Science.gov (United States)

    Shamsudin, Norzianah; Tan, Ai Ling; Wimmer, Franz L; Young, David J; Tiekink, Edward R T

    2015-09-01

    The asymmetric unit of the title compound, 2[Zn(C32H16N8)(C7H9N)]·3C7H9N, comprises two independent complex mol-ecules and three benzyl-amine solvent mol-ecules. Each complex mol-ecule features a penta-coordinated Zn(2+) ion within a square-pyramidal geometry, whereby the N5 donor set is defined by four atoms of the phthalocyaninate dianion (PC) and an N-bound benzyl-amine mol-ecule; it is the relative orientations of the latter that differentiate between the independent complex mol-ecules. The uncoordinated benzyl-amine mol-ecules display different conformations in the structure, with syn-Car-Car-Cm-N (ar = aromatic, m = methyl-ene) torsion angles spanning the range -28.7 (10) to 35.1 (14)°. In the crystal, N-H⋯N and N-H⋯π inter-actions lead to supra-molecular layers in the ab plane. The layers have a zigzag topology, have the coordinating and non-coordinating benzyl-amine mol-ecules directed to the inside, and present the essentially flat PC resides to the outside. This arrangement enables adjacent layers to associate via π-π inter-actions [inter-centroid distance between pyrrolyl and fused-benzene rings = 3.593 (2) Å] so that a three-dimensional architecture is formed.

  4. Crystal structure of 3-({[(morpholin-4-yl)carbono-thio-yl]sulfan-yl}acet-yl)phenyl benzoate.

    Science.gov (United States)

    Ambekar, Sachin P; Mahesh Kumar, K; Shirahatti, Arun Kumar M; Kotresh, O; Anil Kumar, G N

    2014-11-01

    In the title compound, C20H19NO4S2, the morpholine ring adopts the expected chair conformation. The central phenyl ring makes dihedral angles of 67.97 (4) and 7.74 (3)°, respectively, with the benzoate phenyl ring and the morpholine mean plane. In the crystal, mol-ecules are linked by C-H⋯O hydrogen bonds, forming zigzag chains along the b-axis direction. C-H⋯π inter-actions link centrosymmetrically related mol-ecules, reinforcing the three-dimensional structure.

  5. Crystal structure of 2-amino-4-methyl-pyridin-1-ium (2R,3R)-3-carb-oxy-2,3-di-hydroxy-propano-ate monohydrate.

    Science.gov (United States)

    Jovita, J V; Sathya, S; Usha, G; Vasanthi, R; Ramanand, A

    2014-09-01

    The title mol-ecular salt, C6H9N2 (+)·C4H5O6 (-)·H2O, crystallized with two 2-amino-4-methyl-pyridin-1-ium cations, two l-(+)-tartaric acid monoanions [systematic name: (2R,3R)-3-carb-oxy-2,3-di-hydroxy-propano-ate] and two water mol-ecules in the asymmetric unit. In the crystal, the cations, anions and water mol-ecules are linked via a number of O-H⋯O and N-H⋯O hydrogen bonds, and a C-H⋯O hydrogen bond, forming a three-dimensional structure.

  6. Crystal structure of 2-diazo-imidazole-4,5-dicarbo-nitrile.

    Science.gov (United States)

    Parrish, Damon A; Kramer, Stephanie; Windler, G Kenneth; Chavez, David E; Leonard, Philip W

    2015-07-01

    In the title compound, C5N6, all the atoms are approximately coplanar. In the crystal, mol-ecules are packed with short contact distances of 2.885 (2) (between the diazo N atom connected to the ring and a cyano N atom on a neighboring mol-ecule) and 3.012 (2) Å (between the terminal diazo N atom and an N atom of a neighboring imidazole ring).

  7. Crystal structure of the bora-benzene-2,6-lutidine adduct.

    Science.gov (United States)

    Kivijärvi, Lauri; Haukka, Matti

    2015-12-01

    In the title compound, C12H14BN, the complete mol-ecule is generated by a crystallographic twofold axis, with two C atoms, the B atom and the N atom lying on the rotation axis. The dihedral angle between the bora-benzene and pyridine rings is 81.20 (6)°. As well as dative electron donation from the N atom to the B atom [B-N = 1.5659 (18) Å], the methyl substituents on the lutidine ring shield the B atom, which further stabilizes the mol-ecule. In the crystal, weak aromatic π-π stacking between the pyridine rings [centroid-centroid separation = 3.6268 (9) Å] is observed, which generates [001] columns of mol-ecules.

  8. Crystal structure of olivetolic acid: a natural product from Cetrelia sanguinea (Schaer.).

    Science.gov (United States)

    Ismed, Friardi; Farhan, Aulia; Bakhtiar, Amri; Zaini, Erizal; Nugraha, Yuda Prasetya; Dwichandra Putra, Okky; Uekusa, Hidehiro

    2016-11-01

    The title compound, C 12 H 16 O 4 (systematic name: 2,4-dihy-droxy-6-pentyl-benzoic acid) is a natural product isolated from C. sanguinea (Schaer.) and is reported to have various pharmacological activities. The mol-ecule is approximately planar (r.m.s. deviation for the non-H atoms = 0.096 Å) and features an intra-molecular O-H⋯O hydrogen bond. In the crystal, each olivetolic acid mol-ecule is connected to three neighbours via O-H⋯O hydrogen bonds, generating (10-1) sheets. This crystal is essentially isostructural with a related resorcinolic acid with a longer alkyl chain.

  9. Crystal structures of three co-crystals of 1,2-bis-(pyridin-4-yl)ethane with 4-alk-oxy-benzoic acids: 4-eth-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), 4-n-propoxybenzoic acid-1,2-bis(pyridin-4-yl)ethane (2/1) and 4-n-but-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1).

    Science.gov (United States)

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2015-11-01

    The crystal structures of three hydrogen-bonded co-crystals of 4-alk-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), namely, 2C9H10O3·C12H12N2, (I), 2C10H12O3·C12H12N2, (II), and 2C11H14O3·C12H12N2, (III), have been determined at 93, 290 and 93 K, respectively. In (I), the asymmetric unit consists of one 4-eth-oxy-benzoic acid mol-ecule and one half-mol-ecule of 1,2-bis-(pyridin-4-yl)ethane, which lies on an inversion centre. In (II) and (III), the asymmetric units each comprise two crystallographically independent 4-alk-oxy-benzoic acid mol-ecules and one 1,2-bis-(pyridin-4-yl)ethane mol-ecule. In each crystal, the two components are linked by O-H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1unit of the acid and the base. Similar to the structure of 2:1 unit of (I), the units of (II) and (III) adopt nearly pseudo-inversion symmetry. The 2:1 units of (I), (II) and (III) are linked via C-H⋯O hydrogen bonds, forming tape structures.

  10. Crystal structure of 3-({[(morpholin-4-yl)carbono­thio­yl]sulfan­yl}acet­yl)phenyl benzoate

    Science.gov (United States)

    Ambekar, Sachin P.; Mahesh Kumar, K.; Shirahatti, Arun Kumar M.; Kotresh, O.; Anil Kumar, G. N.

    2014-01-01

    In the title compound, C20H19NO4S2, the morpholine ring adopts the expected chair conformation. The central phenyl ring makes dihedral angles of 67.97 (4) and 7.74 (3)°, respectively, with the benzoate phenyl ring and the morpholine mean plane. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming zigzag chains along the b-axis direction. C—H⋯π inter­actions link centrosymmetrically related mol­ecules, reinforcing the three-dimensional structure. PMID:25484757

  11. Crystal structure and Hirshfeld surface analysis of aqua-bis-(nicotinamide-κN)bis-(4-sulfamoylbenzoato-κO1)copper(II).

    Science.gov (United States)

    Hökelek, Tuncer; Yavuz, Vijdan; Dal, Hakan; Necefoğlu, Hacali

    2018-01-01

    In the crystal of the title complex, [Cu(C 7 H 6 NO 4 S) 2 (C 6 H 6 N 2 O) 2 (H 2 O)], the Cu II cation and the O atom of the coordinated water mol-ecule reside on a twofold rotation axis. The Cu II ion is coordinated by two carboxyl-ate O atoms of the two symmetry-related 4-sulfamoylbenzoate (SB) anions and by two N atoms of the two symmetry-related nicotinamide (NA) mol-ecules at distances of 1.978 (2) and 2.025 (3) Å, respectively, forming a slightly distorted square-planar arrangement. The distorted square-pyramidal coordination environment is completed by the water O atom in the axial position at a distance of 2.147 (4) Å. In the crystal, the mol-ecules are linked via O-H⋯O and N-H⋯O hydrogen bonds with R 2 2 (8) and R 2 2 (18) ring motifs, forming a three-dimensional architecture. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯O/O⋯H (42.2%), H⋯H (25.7%) and H⋯C/C⋯H (20.0%) inter-actions.

  12. Crystal structure and Hirshfeld surface analysis of aqua­bis­(nicotinamide-κN)bis­(4-sulfamoylbenzoato-κO 1)copper(II)

    Science.gov (United States)

    Hökelek, Tuncer; Yavuz, Vijdan; Dal, Hakan; Necefoğlu, Hacali

    2018-01-01

    In the crystal of the title complex, [Cu(C7H6NO4S)2(C6H6N2O)2(H2O)], the CuII cation and the O atom of the coordinated water mol­ecule reside on a twofold rotation axis. The CuII ion is coordinated by two carboxyl­ate O atoms of the two symmetry-related 4-sulfamoylbenzoate (SB) anions and by two N atoms of the two symmetry-related nicotinamide (NA) mol­ecules at distances of 1.978 (2) and 2.025 (3) Å, respectively, forming a slightly distorted square-planar arrangement. The distorted square-pyramidal coordination environment is completed by the water O atom in the axial position at a distance of 2.147 (4) Å. In the crystal, the mol­ecules are linked via O—H⋯O and N—H⋯O hydrogen bonds with R 2 2(8) and R 2 2(18) ring motifs, forming a three-dimensional architecture. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯O/O⋯H (42.2%), H⋯H (25.7%) and H⋯C/C⋯H (20.0%) inter­actions. PMID:29416889

  13. Crystal structure of 2-hy-droxy-imino-2-(pyridin-2-yl)-N'-[1-(pyridin-2-yl)ethyl-idene]acetohydrazide.

    Science.gov (United States)

    Plutenko, Maxym O; Lampeka, Rostislav D; Haukka, Matti; Nordlander, Ebbe

    2014-12-01

    The mol-ecule of the title compound, C14H13N5O2, is approximately planar (r.m.s deviation for all non-H atoms = 0.093 Å), with the planes of the two pyridine rings inclined to one another by 5.51 (7)°. The oxime group is syn to the amide group, probably due to the formation of an intra-molecular N-H⋯N hydrogen bond that forms an S(6) ring motif. In the crystal, mol-ecules are linked by pairs of bifurcated O-H⋯(O,N) hydrogen bonds, forming inversion dimers. The latter are linked via C-H⋯O and C-H⋯N hydrogen bonds, forming sheets lying parallel to (502). The sheets are linked via π-π stacking inter-actions [inter-centroid distance = 3.7588 (9) Å], involving the pyridine rings of inversion-related mol-ecules, forming a three-dimensional structure.

  14. Crystal structure of a new monoclinic polymorph of N-(4-methyl-phen-yl)-3-nitro-pyridin-2-amine.

    Science.gov (United States)

    Aznan, Aina Mardia Akhmad; Abdullah, Zanariah; Lee, Vannajan Sanghiran; Tiekink, Edward R T

    2014-08-01

    The title compound, C12H11N3O2, is a second monoclinic polymorph (P21, with Z' = 4) of the previously reported monoclinic (P21/c, with Z' = 2) form [Akhmad Aznan et al. (2010 ▶). Acta Cryst. E66, o2400]. Four independent mol-ecules comprise the asymmetric unit, which have the common features of a syn disposition of the pyridine N atom and the toluene ring, and an intra-molecular amine-nitro N-H⋯O hydrogen bond. The differences between mol-ecules relate to the dihedral angles between the rings which range from 2.92 (19) to 26.24 (19)°. The geometry-optimized structure [B3LYP level of theory and 6-311 g+(d,p) basis set] has the same features except that the entire mol-ecule is planar. In the crystal, the three-dimensional architecture is consolidated by a combination of C-H⋯O, C-H⋯π, nitro-N-O⋯π and π-π inter-actions [inter-centroid distances = 3.649 (2)-3.916 (2) Å].

  15. Crystal structure of 2-hy­droxy­imino-2-(pyridin-2-yl)-N′-[1-(pyridin-2-yl)ethyl­idene]acetohydrazide

    Science.gov (United States)

    Plutenko, Maxym O.; Lampeka, Rostislav D.; Haukka, Matti; Nordlander, Ebbe

    2014-01-01

    The mol­ecule of the title compound, C14H13N5O2, is approximately planar (r.m.s deviation for all non-H atoms = 0.093 Å), with the planes of the two pyridine rings inclined to one another by 5.51 (7)°. The oxime group is syn to the amide group, probably due to the formation of an intra­molecular N—H⋯N hydrogen bond that forms an S(6) ring motif. In the crystal, mol­ecules are linked by pairs of bifurcated O—H⋯(O,N) hydrogen bonds, forming inversion dimers. The latter are linked via C—H⋯O and C—H⋯N hydrogen bonds, forming sheets lying parallel to (502). The sheets are linked via π–π stacking inter­actions [inter-centroid distance = 3.7588 (9) Å], involving the pyridine rings of inversion-related mol­ecules, forming a three-dimensional structure. PMID:25552998

  16. Supra-molecular architecture in a co-crystal of the N(7)-H tautomeric form of N (6)-benzoyl-adenine with adipic acid (1/0.5).

    Science.gov (United States)

    Swinton Darious, Robert; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-06-01

    The asymmetric unit of the title co-crystal, C12H9N5O·0.5C6H10O4, consists of one mol-ecule of N (6)-benzoyl-adenine (BA) and one half-mol-ecule of adipic acid (AA), the other half being generated by inversion symmetry. The dihedral angle between the adenine and phenyl ring planes is 26.71 (7)°. The N (6)-benzoyl-adenine mol-ecule crystallizes in the N(7)-H tautomeric form with three non-protonated N atoms. This tautomeric form is stabilized by intra-molecular N-H⋯O hydrogen bonding between the carbonyl (C=O) group and the N(7)-H hydrogen atom on the Hoogsteen face of the purine ring, forming an S(7) ring motif. The two carboxyl groups of adipic acid inter-act with the Watson-Crick face of the BA mol-ecules through O-H⋯N and N-H⋯O hydrogen bonds, generating an R 2 (2)(8) ring motif. The latter units are linked by N-H⋯N hydrogen bonds, forming layers parallel to (10-5). A weak C-H⋯O hydrogen bond is also present, linking adipic acid mol-ecules in neighbouring layers, enclosing R (2) 2(10) ring motifs and forming a three-dimensional structure. C=O⋯π and C-H⋯π inter-actions are also present in the structure.

  17. Crystal structure of tri­chlorido­(4'-ferrocenyl-2,2':6',2''-terpyridine-[kappa]3N,N',N'')iridium(III) aceto­nitrile disolvate

    KAUST Repository

    Davaasuren, Bambar

    2015-02-25

    In the title compound, [FeIr(C5H5)(C20H14N3)Cl3]·2CH3CN, the central IrIII atom is sixfold coordinated by three chloride ligands and three terpyridine N atoms in a slightly distorted octa­hedral fashion. The terpyridine ligand is functionalized at the 4\\'-position with a ferrocenyl group, the latter being in an eclipsed conformation. In the crystal, mol­ecules are stacked in rows parallel to [001], with the aceto­nitrile solvent mol­ecules situated between the rows. An extensive network of intra- and inter­molecular C-H...Cl inter­actions is present, stabilizing the three-dimensional structure.

  18. The crystal structures of two isomers of 5-(phenyl-iso-thia-zol-yl)-1,3,4-oxa-thia-zol-2-one.

    Science.gov (United States)

    Zhu, Shuguang; Schriver, Melbourne J; Hendsbee, Arthur D; Masuda, Jason D

    2017-11-01

    The syntheses and crystal structures of two isomers of phenyl iso-thia-zolyl oxa-thia-zolone, C 11 H 6 N 2 O 2 S 2 , are described [systematic names: 5-(3-phenyl-iso-thia-zol-5-yl)-1,3,4-oxa-thia-zol-2-one, (I), and 5-(3-phenyl-iso-thia-zol-4-yl)-1,3,4-oxa-thia-zol-2-one, (II)]. There are two almost planar (r.m.s. deviations = 0.032 and 0.063 Å) mol-ecules of isomer (I) in the asymmetric unit, which form centrosymmetric tetra-mers linked by strong S⋯N [3.072 (2) Å] and S⋯O contacts [3.089 (1) Å]. The tetra-mers are π-stacked parallel to the a -axis direction. The single mol-ecule in the asymmetric unit of isomer (II) is twisted into a non-planar conformation by steric repulsion [dihedral angles between the central iso-thia-zolyl ring and the pendant oxa-thia-zolone and phenyl rings are 13.27 (6) and 61.18 (7)°, respectively], which disrupts the π-conjugation between the heteroaromatic iso-thia-zoloyl ring and the non-aromatic oxa-thia-zolone heterocycle. In the crystal of isomer (II), the strong S⋯O [3.020 (1) Å] and S⋯C contacts [3.299 (2) Å] and the non-planar structure of the mol-ecule lead to a form of π-stacking not observed in isomer (I) or other oxa-thia-zolone derivatives.

  19. Crystal structure of 1-meth-oxy-2,2,2-tris-(pyrazol-1-yl)ethane.

    Science.gov (United States)

    Lyubartseva, Ganna; Parkin, Sean; Coleman, Morgan D; Mallik, Uma Prasad

    2014-09-01

    The title compound, C12H14N6O, consists of three pyrazole rings bound via nitro-gen to the distal ethane carbon of meth-oxy ethane. The dihedral angles between the three pyrazole rings are 67.62 (14), 73.74 (14), and 78.92 (12)°. In the crystal, mol-ecules are linked by bifurcated C-H,H⋯N hydrogen bonds, forming double-stranded chains along [001]. The chains are linked via C-H⋯O hydrogen bonds, forming a three-dimensional framework structure. The crystal was refined as a perfect (0.5:0.5) inversion twin.

  20. Crystal structure of bis-(3-bromo-pyridine-κN)bis-(O-ethyl di-thio-carbonato-κ(2) S,S')nickel(II).

    Science.gov (United States)

    Kant, Rajni; Kour, Gurvinder; Anthal, Sumati; Neerupama; Sachar, Renu

    2015-01-01

    In the title mol-ecular complex, [Ni(C3H5OS2)2(C5H4BrN)2], the Ni(2+) cation is located on a centre of inversion and has a distorted octa-hedral N2S4 environment defined by two chelating xanthate ligands and two monodentate pyridine ligands. The C-S bond lengths of the thio-carboxyl-ate group are indicative of a delocalized bond and the O-Csp (2) bond is considerably shorter than the O-Csp (3) bond, consistent with a significant contribution of one resonance form of the xanthate anion that features a formal C=O+ unit and a negative charge on each of the S atoms. The packing of the mol-ecules is stabilized by C-H⋯S and C-H⋯π inter-actions. In addition, π-π inter-actions between the pyridine rings [centroid-to-centroid distance = 3.797 (3) Å] are also present. In the crystal structure, mol-ecules are arranged in rows along [100], forming layers parallel to (010) and (001).

  1. Crystal structures and Hirshfeld surface analyses of bis-[N,N-bis-(2-meth-oxy-eth-yl)di-thio-carbamato-κ2S,S']di-n-butyl-tin(IV) and [N-(2-meth-oxy-eth-yl)-N-methyl-dithio-carbamato-κ2S,S']tri-phenyl-tin(IV).

    Science.gov (United States)

    Mohamad, Rapidah; Awang, Normah; Kamaludin, Nurul Farahana; Jotani, Mukesh M; Tiekink, Edward R T

    2018-03-01

    The crystal and mol-ecular structures of the two title organotin di-thio-carbamate compounds, [Sn(C 4 H 9 ) 2 (C 7 H 14 NO 2 S 2 ) 2 ], (I), and [Sn(C 6 H 5 ) 3 (C 5 H 10 NOS 2 )], (II), are described. Both structures feature asymmetrically bound di-thio-carbamate ligands leading to a skew-trapezoidal bipyramidal geometry for the metal atom in (I) and a distorted tetra-hedral geometry in (II). The complete mol-ecule of (I) is generated by a crystallographic twofold axis (Sn site symmetry 2). In the crystal of (I), mol-ecules self-assemble into a supra-molecular array parallel to (10-1) via methyl-ene-C-H⋯O(meth-oxy) inter-actions. In the crystal of (II), supra-molecular dimers are formed via pairs of weak phenyl-C-H⋯π(phen-yl) contacts. In each of (I) and (II), the specified assemblies connect into a three-dimensional architecture without directional inter-actions between them. Hirshfeld surface analyses confirm the importance of H⋯H contacts in the mol-ecular packing of each of (I) and (II), and in the case of (I), highlight the importance of short meth-oxy-H⋯H(but-yl) contacts between layers.

  2. (E)-3-[4-(Pent-yloxy)phen-yl]-1-phenyl-prop-2-en-1-one.

    Science.gov (United States)

    Abbas, Asghar; Khawar Rauf, M; Bolte, Michael; Hasan, Aurangzeb

    2009-05-14

    The title compound, C(20)H(22)O(2), crystallizes with two independent mol-ecules in the asymmetric unit. In each mol-ecule, all the non-H atoms lie in a common plane (r.m.s. deviations of 0.098 and 0.079 Å). There is a π-π stacking inter-action in the crystal structure. The central aromatic rings of the two mol-ecules, which are stacked head-to-tail one above the other, are separated by centroid-to-centroid distances of 3.872 (13) and 3.999 (10) Å.

  3. Crystal structure of bis­(3-bromo­pyridine-κN)bis­(O-ethyl di­thio­carbonato-κ2 S,S′)nickel(II)

    Science.gov (United States)

    Kant, Rajni; Kour, Gurvinder; Anthal, Sumati; Neerupama; Sachar, Renu

    2015-01-01

    In the title mol­ecular complex, [Ni(C3H5OS2)2(C5H4BrN)2], the Ni2+ cation is located on a centre of inversion and has a distorted octa­hedral N2S4 environment defined by two chelating xanthate ligands and two monodentate pyridine ligands. The C—S bond lengths of the thio­carboxyl­ate group are indicative of a delocalized bond and the O—Csp 2 bond is considerably shorter than the O—Csp 3 bond, consistent with a significant contribution of one resonance form of the xanthate anion that features a formal C=O+ unit and a negative charge on each of the S atoms. The packing of the mol­ecules is stabilized by C—H⋯S and C—H⋯π inter­actions. In addition, π–π inter­actions between the pyridine rings [centroid-to-centroid distance = 3.797 (3) Å] are also present. In the crystal structure, mol­ecules are arranged in rows along [100], forming layers parallel to (010) and (001). PMID:25705471

  4. Crystal structure of di-bromo-meth-oxy-seselin (DBMS), a photobiologically active pyran-ocoumarin.

    Science.gov (United States)

    Bauri, A K; Foro, Sabine; Rahman, A F M M

    2017-05-01

    The title compound, C 15 H 14 Br 2 O 4 [systematic name: rac -(9 S ,10 R )-3,9-dibromo-10-methoxy-8,8-dimethyl-9,10-dihydropyrano[2,3- h ]chromen-2(8 H )-one], is a pyran-ocoumarin derivative formed by the bromination of seselin, which is a naturally occurring angular pyran-ocoumarin isolated from the Indian herb Trachyspermum stictocarpum . In the mol-ecule, the benzo-pyran ring system is essentially planar, with a maximum deviation of 0.044 (2) Å for the O atom. The di-hydro-pyran ring is in a half-chair conformation and the four essentially planar atoms of this ring form a dihedral angle of 4.6 (2)° with the benzo-pyran ring system. In the crystal, mol-ecules are linked by weak C-H⋯O hydrogen bonds, forming chains propagating along [010]. In addition, π-π stacking inter-actions, with centroid-centroid distances of 3.902 (2) and 3.908 (2) Å, link the hydrogen-bonded chains into layers parallel to (001).

  5. Crystal structure of 4-fluoro-N-[2-(4-fluoro-benzo-yl)hydra-zine-1-carbono-thio-yl]benzamide.

    Science.gov (United States)

    Firdausiah, Syadza; Salleh Huddin, Ameera Aqeela; Hasbullah, Siti Aishah; Yamin, Bohari M; Yusoff, Siti Fairus M

    2014-09-01

    In the title compound, C15H11F2N3O2S, the dihedral angle between the fluoro-benzene rings is 88.43 (10)° and that between the central semithiocarbazide grouping is 47.00 (11)°. The dihedral angle between the amide group and attached fluoro-benzene ring is 50.52 (11)°; the equivalent angle between the carbonyl-thio-amide group and its attached ring is 12.98 (10)°. The major twists in the mol-ecule occur about the C-N-N-C bonds [torsion angle = -138.7 (2)°] and the Car-Car-C-N (ar = aromatic) bonds [-132.0 (2)°]. An intra-molecular N-H⋯O hydrogen bond occurs, which generates an S(6) ring. In the crystal, the mol-ecules are linked by N-H⋯O and N-H⋯S hydrogen bonds, generating (001) sheets. Weak C-H⋯O and C-H⋯F inter-actions are also observed.

  6. MolProbity: all-atom structure validation for macromolecular crystallography

    International Nuclear Information System (INIS)

    Chen, Vincent B.; Arendall, W. Bryan III; Headd, Jeffrey J.; Keedy, Daniel A.; Immormino, Robert M.; Kapral, Gary J.; Murray, Laura W.; Richardson, Jane S.; Richardson, David C.

    2010-01-01

    MolProbity structure validation will diagnose most local errors in macromolecular crystal structures and help to guide their correction. MolProbity is a structure-validation web service that provides broad-spectrum solidly based evaluation of model quality at both the global and local levels for both proteins and nucleic acids. It relies heavily on the power and sensitivity provided by optimized hydrogen placement and all-atom contact analysis, complemented by updated versions of covalent-geometry and torsion-angle criteria. Some of the local corrections can be performed automatically in MolProbity and all of the diagnostics are presented in chart and graphical forms that help guide manual rebuilding. X-ray crystallography provides a wealth of biologically important molecular data in the form of atomic three-dimensional structures of proteins, nucleic acids and increasingly large complexes in multiple forms and states. Advances in automation, in everything from crystallization to data collection to phasing to model building to refinement, have made solving a structure using crystallography easier than ever. However, despite these improvements, local errors that can affect biological interpretation are widespread at low resolution and even high-resolution structures nearly all contain at least a few local errors such as Ramachandran outliers, flipped branched protein side chains and incorrect sugar puckers. It is critical both for the crystallographer and for the end user that there are easy and reliable methods to diagnose and correct these sorts of errors in structures. MolProbity is the authors’ contribution to helping solve this problem and this article reviews its general capabilities, reports on recent enhancements and usage, and presents evidence that the resulting improvements are now beneficially affecting the global database

  7. Crystal structure, solvothermal synthesis, thermogravimetric studies and DFT calculations of a five-coordinate cobalt(II) compound based on the N,N-bis-(2-hy-droxy-eth-yl)glycine anion.

    Science.gov (United States)

    Zhou, Yanling; Liu, Xianrong; Wang, Qijun; Wang, Lisheng; Song, Baoling

    2016-10-01

    The reaction of CoCl 2 ·6H 2 O, N , N -bis-(2-hy-droxy-eth-yl)glycine and tri-ethyl-amine (Et 3 N) in ethanol solution under solvothermal conditions produced crystals of [ N , N -bis-(2-hy-droxy-eth-yl)glycinato]chloridocobalt(II), [Co(C 6 H 12 NO 4 )Cl]. The Co II ion is coordinated in a slightly distorted trigonal-bipyramidal environment which is defined by three O atoms occupying the equatorial plane and the N and Cl atoms in the apical sites. In the crystal, two types of O-H⋯O hydrogen bonds connect the mol-ecules, forming a two-dimensional network parallel to (001). The mol-ecular structure of the title compound confirms the findings of FTIR, elemental analysis, ESI-MS analysis and TG analysis. By using the density functional theory (DFT) (B3LYP) method with 6-31G(d) basis set, the molecular structure has been calculated and optimized.

  8. Structure and spectroscopic properties of N,S-coordinating 2-methyl-sulfanyl-N-[(1H-pyrrol-2-yl)methyl-idene]aniline methanol monosolvate.

    Science.gov (United States)

    Richards, D Douglas; Ang, M Trisha C; McDonald, Robert; Bierenstiel, Matthias

    2015-10-01

    The reaction of pyrrole-2-carboxaldehyde and 2-(methyl-sulfan-yl)aniline in refluxing methanol gave an olive-green residue in which yellow crystals of the title compound, C12H12N2S·CH3OH, were grown from slow evaporation of methanol at 263 K. In the crystal, hydrogen-bonding inter-actions link the aniline mol-ecule and a nearby methanol solvent mol-ecule. These units are linked by a pair of weak C-H⋯Omethanol interactions, forming inversion dimers consisting of two main molecules and two solvent molecules.

  9. Structure and optical homogeneity of LiNbO3:Zn (0.03–4.5 mol.%) crystals

    International Nuclear Information System (INIS)

    Sidorov, Nikolay; Tepljakova, Natalja; Gabain, Aleksei; Yanichev, Aleksander; Palatnikov, Mikhail

    2014-01-01

    Structure and optical homogeneity of LiNbO 3 :Zn (0.03–4.5 mol.%) crystals were searched by photoinduced light scattering and by Raman spectroscopy. The photorefractive effect depends on Zn 2+ concentration nonmonotonically. Decrease of photorefractive effect is explained by decrease of structure defects with localized electrons. The Zn 2+ cations replace structure defects Nb Li and Li Nb , trapping levels appear near the bottom of the conduction band and photo electrons recombine with emission under laser radiation. By the Raman spectra the area of the high structure order is found. In this area the own alternation, the alternation of impurity cations and the vacancies along the polar axis is almost perfect

  10. Crystal structure of 4-meth-oxy-N-(piperidine-1-carbono-thio-yl)benzamide.

    Science.gov (United States)

    Suhud, Khairi; Hasbullah, Siti Aishah; Ahmad, Musa; Heng, Lee Yook; Kassim, Mohammad B

    2017-10-01

    In the title compound, C 14 H 18 N 2 O 2 S, the piperidine ring has a chair conformation. Its mean plane is twisted with respect to the 4-meth-oxy-benzoyl ring, with a dihedral angle of 63.0 (3)°. The central N-C(=S)-N(H)-C(=O) bridge is twisted with an N-C-N-C torsion angle of 74.8 (6)°. In the crystal, mol-ecules are linked by N-H⋯O and C-H⋯O hydrogen bonds, forming chains along the c -axis direction. Adjacent chains are linked by C-H⋯π inter-actions, forming layers parallel to the ac plane. The layers are linked by offset π-π inter-actions [inter-centroid distance = 3.927 (3) Å], forming a supra-molecular three-dimensional structure.

  11. Crystal structures of hibiscus acid and hibiscus acid dimethyl ester isolated from Hibiscus sabdariffa (Malvaceae).

    Science.gov (United States)

    Zheoat, Ahmed M; Gray, Alexander I; Igoli, John O; Kennedy, Alan R; Ferro, Valerie A

    2017-09-01

    The biologically active title compounds have been isolated from Hibiscus sabdariffa plants, hibiscus acid as a dimethyl sulfoxide monosolvate [systematic name: (2 S ,3 R )-3-hy-droxy-5-oxo-2,3,4,5-tetra-hydro-furan-2,3-di-carb-oxy-lic acid dimethyl sulfoxide monosolvate], C 6 H 6 O 7 ·C 2 H 6 OS, (I), and hibiscus acid dimethyl ester [systematic name: dimethyl (2 S ,3 R )-3-hy-droxy-5-oxo-2,3,4,5-tetra-hydro-furan-2,3-di-carboxyl-ate], C 8 H 10 O 7 , (II). Compound (I) forms a layered structure with alternating layers of lactone and solvent mol-ecules, that include a two-dimensional hydrogen-bonding construct. Compound (II) has two crystallographically independent and conformationally similar mol-ecules per asymmetric unit and forms a one-dimensional hydrogen-bonding construct. The known absolute configuration for both compounds has been confirmed.

  12. 1,5-Bis[(E)-cyclo-pentyl-idene]thio-carbono-hydrazide.

    Science.gov (United States)

    Guo, Qingliang; Sun, Junshan; Li, Jikun; Wu, Rentao; Duan, Wenzeng

    2009-03-25

    In the title mol-ecule, C(11)H(18)N(4)S, an intra-molecular N-H⋯N hydrogen bond [N⋯N = 2.558 (3)Å] is observed. The two cyclo-pentyl rings are disordered between two conformations in 1:1 and 2:1 ratios. In the crystal structure, weak inter-molecular N-H⋯S hydrogen bonds [N⋯S = 3.547 (3) Å] link pairs of mol-ecules into centrosymmetric dimers.

  13. Crystal structure of bis-(μ-3-nitro-benzoato)-κ3O,O':O;κ3O:O,O'-bis-[bis-(3-cyano-pyridine-κN1)(3-nitro-benzoato-κ2O,O')cadmium].

    Science.gov (United States)

    Hökelek, Tuncer; Akduran, Nurcan; Özen, Azer; Uğurlu, Güventürk; Necefoğlu, Hacali

    2017-03-01

    The asymmetric unit of the title compound, [Cd 2 (C 7 H 4 NO 4 ) 4 (C 6 H 4 N 2 ) 4 ], contains one Cd II atom, two 3-nitro-benzoate (NB) anions and two 3-cyano-pyridine (CPy) ligands. The two CPy ligands act as monodentate N(pyridine)-bonding ligands, while the two NB anions act as bidentate ligands through the carboxyl-ate O atoms. The centrosymmetric dinuclear complex is generated by application of inversion symmetry, whereby the Cd II atoms are bridged by the carboxyl-ate O atoms of two symmetry-related NB anions, thus completing the distorted N 2 O 5 penta-gonal-bipyramidal coordination sphere of each Cd II atom. The benzene and pyridine rings are oriented at dihedral angles of 10.02 (7) and 5.76 (9)°, respectively. In the crystal, C-H⋯N hydrogen bonds link the mol-ecules, enclosing R 2 2 (26) ring motifs, in which they are further linked via C-H⋯O hydrogen bonds, resulting in a three-dimensional network. In addition, π-π stacking inter-actions between parallel benzene rings and between parallel pyridine rings of adjacent mol-ecules [shortest centroid-to-centroid distances = 3.885 (1) and 3.712 (1) Å, respectively], as well as a weak C-H⋯π inter-action, may further stabilize the crystal structure.

  14. 4-Acetamido-N-(λ5-triphenyl­phospho­ranyl­idene)benzene­sulfonamide

    Science.gov (United States)

    Prugovečki, Biserka; Marinković, Marina; Vinković, Mladen; Dumić, Miljenko

    2010-01-01

    There are two independent mol­ecules per asymmetric unit of the title compound, C26H23N2O3PS. Their superposition shows that they differ in the conformation of the CH3CO– group and the benzene rings from the triphenyl­phospho­rane group. In the crystal structure, independent mol­ecules are inter­conected by strong N—H⋯O hydrogen bonds, forming infinite chains along the a axis. PMID:21579151

  15. Poly[[diaqua-μ(6)-succinato-di-μ(5)-succinato-didysprosium(III)] mono-hydrate].

    Science.gov (United States)

    Xu, Wei; Chang, Hai-Sheng; Guo, Xia-Xia

    2011-07-01

    The title compound, {[Dy(2)(C(4)H(4)O(4))(3)(H(2)O)(2)]·H(2)O}(n), is isostructural with other lanthanide succinates of the same formula. The Dy(III) atom is nine-coordinated in a tricapped trigonal-prismatic environment by eight O atoms, derived from six carboxyl-ate groups and a water mol-ecule. One of the independent succinate anions is located about a crystallographic inversion center and the uncoordinated water mol-ecule lies on a twofold axis. The crystal structure comprises edge-shared DyO(9) polyhedra linked by succinate bridges, forming a three-dimensional network architecture. Intra- and inter-molecular O-H⋯O hydrogen bonds are present in the crystal structure.

  16. Crystal structure of bis-[N-(2-hy-droxy-eth-yl)-N-methyl-dithio-carbamato-κ2S,S'](pyridine)-zinc(II) pyridine monosolvate and its N-ethyl analogue.

    Science.gov (United States)

    Poplaukhin, Pavel; Tiekink, Edward R T

    2017-07-01

    The common structural feature of the title compounds, [Zn(C 4 H 8 NOS 2 ) 2 (C 5 H 5 N)]·C 5 H 5 N (I) and [Zn(C 5 H 10 NOS 2 ) 2 (C 5 H 5 N)]·C 5 H 5 N (II), which differ by having di-thio-carbamate N-bound methyl (I) and ethyl (II) groups, is the coordination of each Zn II atom by two non-symmetrically chelating di-thio-carbamate ligands and by a pyridine ligand; in each case, the non-coordinating pyridine mol-ecule is connected to the Zn-containing mol-ecule via a (hy-droxy)O-H⋯N(pyridine) hydrogen bond. The resulting NS 4 coordination geometry is closer to a square-pyramid than a trigonal bipyramid in the case of (I), but almost inter-mediate between the two extremes in (II). The mol-ecular packing features (hy-droxy)O-H⋯O(hy-droxy) hydrogen bonds, leading to supra-molecular chains with a zigzag arrangement along [10-1] (I) or a helical arrangement along [010] (II). In (I), π-π [inter-centroid distances = 3.4738 (10) and 3.4848 (10) Å] between coordinating and non-coordinating pyridine mol-ecules lead to stacks comprising alternating rings along the a axis. In (II), weaker π-π contacts occur between centrosymmetrically related pairs of coordinating pyridine mol-ecules [inter-centroid separation = 3.9815 (14) Å]. Further inter-actions, including C-H⋯π(chelate) inter-actions in (I), lead to a three-dimensional architecture in each case.

  17. Crystal structure of 4-fluoro-N-[2-(4-fluoro­benzo­yl)hydra­zine-1-carbono­thio­yl]benzamide

    Science.gov (United States)

    Firdausiah, Syadza; Salleh Huddin, Ameera Aqeela; Hasbullah, Siti Aishah; Yamin, Bohari M.; Yusoff, Siti Fairus M.

    2014-01-01

    In the title compound, C15H11F2N3O2S, the dihedral angle between the fluoro­benzene rings is 88.43 (10)° and that between the central semithiocarbazide grouping is 47.00 (11)°. The dihedral angle between the amide group and attached fluoro­benzene ring is 50.52 (11)°; the equivalent angle between the carbonyl­thio­amide group and its attached ring is 12.98 (10)°. The major twists in the mol­ecule occur about the C—N—N—C bonds [torsion angle = −138.7 (2)°] and the Car—Car—C—N (ar = aromatic) bonds [−132.0 (2)°]. An intra­molecular N—H⋯O hydrogen bond occurs, which generates an S(6) ring. In the crystal, the mol­ecules are linked by N—H⋯O and N—H⋯S hydrogen bonds, generating (001) sheets. Weak C—H⋯O and C—H⋯F inter­actions are also observed. PMID:25309250

  18. Crystal structure of μ-oxalodi-hydroxamato-bis-[(2,2'-bipyrid-yl)(di-methyl sulfoxide-κO)copper(II)] bis-(perchlorate).

    Science.gov (United States)

    Odarich, Irina A; Pavlishchuk, Anna V; Kalibabchuk, Valentina A; Haukka, Matti

    2016-02-01

    The centrosymmetric binuclear complex, [Cu2(C2H2N2O4)(C10H8N2)2(C2H6OS)2](ClO4)2, contains two copper(II) ions, connected through an N-deprotonated oxalodi-hydroxamic acid dianion, two terminal 2,2'-bi-pyridine ligands, and two apically coordinating dimethylsulfoxide mol-ecules. Two non-coordinating perchlorate anions assure electrical neutrality. The copper(II) ions in the complex dication [Cu2(C10H8N2)2(μ-C2H2N2O4)(C2H6SO)2](2+) are in an O2N3 square-pyramidal donor environment, the Cu-Cu separation being 5.2949 (4) Å. Two hydroxamate groups in the deprotonated oxalodi-hydroxamic acid are located trans to one each other. In the crystal, O-H⋯O and C-H⋯O hydrogen bonds link the complex cations to the perchlorate anions. Further C-H⋯O hydrogen bonds combine with π-π contacts with a centroid-to-centroid separation of 3.6371 (12) Å to stack the mol-ecules along the a-axis direction.

  19. 1,5-Bis[(E)-cyclo­pentyl­idene]thio­carbono­hydrazide

    Science.gov (United States)

    Guo, Qingliang; Sun, Junshan; Li, Jikun; Wu, Rentao; Duan, Wenzeng

    2009-01-01

    In the title mol­ecule, C11H18N4S, an intra­molecular N—H⋯N hydrogen bond [N⋯N = 2.558 (3)Å] is observed. The two cyclo­pentyl rings are disordered between two conformations in 1:1 and 2:1 ratios. In the crystal structure, weak inter­molecular N—H⋯S hydrogen bonds [N⋯S = 3.547 (3) Å] link pairs of mol­ecules into centrosymmetric dimers. PMID:21582539

  20. Poly[[diaqua-μ6-succinato-di-μ5-succinato-didysprosium(III)] mono­hydrate

    Science.gov (United States)

    Xu, Wei; Chang, Hai-Sheng; Guo, Xia-Xia

    2011-01-01

    The title compound, {[Dy2(C4H4O4)3(H2O)2]·H2O}n, is isostructural with other lanthanide succinates of the same formula. The DyIII atom is nine-coordinated in a tricapped trigonal–prismatic environment by eight O atoms, derived from six carboxyl­ate groups and a water mol­ecule. One of the independent succinate anions is located about a crystallographic inversion center and the uncoordinated water mol­ecule lies on a twofold axis. The crystal structure comprises edge-shared DyO9 polyhedra linked by succinate bridges, forming a three-dimensional network architecture. Intra- and inter­molecular O—H⋯O hydrogen bonds are present in the crystal structure. PMID:21836969

  1. Crystal structure of 4-meth­oxy-N-(piperidine-1-carbono­thio­yl)benzamide

    Science.gov (United States)

    Suhud, Khairi; Hasbullah, Siti Aishah; Ahmad, Musa; Heng, Lee Yook

    2017-01-01

    In the title compound, C14H18N2O2S, the piperidine ring has a chair conformation. Its mean plane is twisted with respect to the 4-meth­oxy­benzoyl ring, with a dihedral angle of 63.0 (3)°. The central N—C(=S)—N(H)—C(=O) bridge is twisted with an N—C—N—C torsion angle of 74.8 (6)°. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains along the c-axis direction. Adjacent chains are linked by C—H⋯π inter­actions, forming layers parallel to the ac plane. The layers are linked by offset π–π inter­actions [inter­centroid distance = 3.927 (3) Å], forming a supra­molecular three-dimensional structure. PMID:29250374

  2. 3-Nitro-phenol-1,3,5-triazine-2,4,6-tri-amine (2/1).

    Science.gov (United States)

    Sangeetha, V; Kanagathara, N; Chakkaravarthi, G; Marchewka, M K; Anbalagan, G

    2013-06-01

    The asymmetric unit of the title compound, C3H6N6·2C6H5NO3, contains one melamine and two 3-nitro-phenol mol-ecules. The mean planes of the 3-nitro-phenol mol-ecules are almost orthogonal to the plane of melamine, making dihedral angles of 82.77 (4) and 88.36 (5)°. In the crystal, mol-ecules are linked via O-H⋯N, N-H⋯N and N-H⋯O hydrogen bonds, forming a three-dimensional network. The crystal also features weak C-H⋯π and π-π inter-actions [centroid-centroid distance = 3.9823 (9) Å].

  3. Crystal structure of di?methyl?ammonium hydrogen oxalate hemi(oxalic acid)

    OpenAIRE

    Diallo, Waly; Gueye, Ndongo; Crochet, Aur?lien; Plasseraud, Laurent; Cattey, H?l?ne

    2015-01-01

    Single crystals of the title salt, Me2NH2 +?HC2O4 ??0.5H2C2O4, were isolated as a side product from the reaction involving Me2NH, H2C2O4 and Sn(n-Bu)3Cl in a 1:2 ratio in methanol or by the reaction of the (Me2NH2)2C2O4 salt and Sn(CH3)3Cl in a 2:1 ratio in ethanol. The asymmetric unit comprises a di?methyl?ammonium cation (Me2NH2 +), an hydrogenoxalate anion (HC2O4 ?), and half a mol?ecule of oxalic acid (H2C2O4) situated about an inversion center. From a supra?molecular point of view, the t...

  4. Crystal structure of di­methyl­ammonium hydrogen oxalate hemi(oxalic acid)

    Science.gov (United States)

    Diallo, Waly; Gueye, Ndongo; Crochet, Aurélien; Plasseraud, Laurent; Cattey, Hélène

    2015-01-01

    Single crystals of the title salt, Me2NH2 +·HC2O4 −·0.5H2C2O4, were isolated as a side product from the reaction involving Me2NH, H2C2O4 and Sn(n-Bu)3Cl in a 1:2 ratio in methanol or by the reaction of the (Me2NH2)2C2O4 salt and Sn(CH3)3Cl in a 2:1 ratio in ethanol. The asymmetric unit comprises a di­methyl­ammonium cation (Me2NH2 +), an hydrogenoxalate anion (HC2O4 −), and half a mol­ecule of oxalic acid (H2C2O4) situated about an inversion center. From a supra­molecular point of view, the three components inter­act together via hydrogen bonding. The Me2NH2 + cations and the HC2O4 − anions are in close proximity through bifurcated N—H⋯(O,O) hydrogen bonds, while the HC2O4 − anions are organized into infinite chains via O—H⋯O hydrogen bonds, propagating along the a-axis direction. In addition, the oxalic acid (H2C2O4) mol­ecules play the role of connectors between these chains. Both the carbonyl and hydroxyl groups of each diacid are involved in four inter­molecular inter­actions with two Me2NH2 + and two HC2O4 − ions of four distinct polymeric chains, via two N—H⋯O and two O—H⋯O hydrogen bonds, respectively. The resulting mol­ecular assembly can be viewed as a two-dimensional bilayer-like arrangement lying parallel to (010), and reinforced by a C—H⋯O hydrogen bond. PMID:25995858

  5. 1,5-Bis(1-phenyl-ethyl-idene)thio-carbono-hydrazide.

    Science.gov (United States)

    Feng, Lei; Ji, Haiwei; Wang, Renliang; Ge, Haiyan; Li, Li

    2011-06-01

    The title mol-ecule, C(17)H(18)N(4)S, is not planar, as indicated by the dihedral angle of 27.24 (9)° between the two benzene rings. In the crystal, inter-molecular N-H⋯S hydrogen bonds link pairs of mol-ecules into inversion dimers.

  6. (R,S)-3-Carb-oxy-2-(isoquinolinium-2-yl)propanoate monohydrate.

    Science.gov (United States)

    Stilinović, Vladimir; Frkanec, Leo; Kaitner, Branko

    2010-05-22

    The title compound, C(13)H(11)NO(4)·H(2)O, is a monohydrate of a betaine exhibiting a positively charged N-substituted isoquino-line group and a deprotonated carboxyl group. In the crystal, mol-ecules are connected via short O-H⋯O hydrogen bonds between protonated and deprotonated carboxyl groups into chains of either R or S enanti-omers along [001]. These chains are additionally connected by hydrogen bonding between water mol-ecules and the deprotonated carb-oxy groups of neighbouring mol-ecules.

  7. 1-[1-(4-Chloro-phen-yl)ethyl-idene]carbono-hydrazide.

    Science.gov (United States)

    Du, Lingyun; Du, Lei; Wang, Shuhao

    2009-08-12

    The mol-ecular skeleton of the title mol-ecule, C(9)H(11)ClN(4)O, is essentially planar, the dihedral angle between the ring and the and N/N/C plane being 6.7 (3)°. In the crystal, inter-molecular N-H⋯O and N-H⋯N hydrogen bonds link the mol-ecules into ribbons propagated along [010].

  8. 5,11-Ditosyl-5H,11H-dibenzo[b,f][1,5]diazo­cine-6,12-dione acetic acid hemisolvate

    Science.gov (United States)

    Abbassi, Najat; Bassou, Oulemda; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    The mol­ecular structure of the title compound, C28H22N2O6S2·0.5CH3COOH, is built up from three fused rings, two six and one eight membered. The eight-membered ring shows a boat conformation and the dihedral angle between the two benzene groups attached thereto is 66.43 (11)°, resulting in a V-shaped geometry. Two tosyl substituents are bound to the N atoms. The planes through the tolyl rings are roughly perpendicular, as indicated by the dihedral angle of 82.44 (12)°. In the crystal, the mol­ecule and its inversion-related symmetry-equivalent are linked to the acetic acid solvent mol­ecule by non-classical O—H⋯O and C—H⋯O hydrogen bonds. Two half-occupied acetic acid solvent mol­ecules are disordered at the same site and linked by a center of symmetry. PMID:23634138

  9. 5,11-Ditosyl-5H,11H-dibenzo[b,f][1,5]diazo-cine-6,12-dione acetic acid hemisolvate.

    Science.gov (United States)

    Abbassi, Najat; Bassou, Oulemda; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen

    2013-04-01

    The mol-ecular structure of the title compound, C28H22N2O6S2·0.5CH3COOH, is built up from three fused rings, two six and one eight membered. The eight-membered ring shows a boat conformation and the dihedral angle between the two benzene groups attached thereto is 66.43 (11)°, resulting in a V-shaped geometry. Two tosyl substituents are bound to the N atoms. The planes through the tolyl rings are roughly perpendicular, as indicated by the dihedral angle of 82.44 (12)°. In the crystal, the mol-ecule and its inversion-related symmetry-equivalent are linked to the acetic acid solvent mol-ecule by non-classical O-H⋯O and C-H⋯O hydrogen bonds. Two half-occupied acetic acid solvent mol-ecules are disordered at the same site and linked by a center of symmetry.

  10. (R,S)-3-Carb­oxy-2-(isoquinolinium-2-yl)propanoate monohydrate

    Science.gov (United States)

    Stilinović, Vladimir; Frkanec, Leo; Kaitner, Branko

    2010-01-01

    The title compound, C13H11NO4·H2O, is a monohydrate of a betaine exhibiting a positively charged N-substituted isoquino­line group and a deprotonated carboxyl group. In the crystal, mol­ecules are connected via short O—H⋯O hydrogen bonds between protonated and deprotonated carboxyl groups into chains of either R or S enanti­omers along [001]. These chains are additionally connected by hydrogen bonding between water mol­ecules and the deprotonated carb­oxy groups of neighbouring mol­ecules. PMID:21579503

  11. 1,5-Bis(1-phenyl­ethyl­idene)thio­carbono­hydrazide

    Science.gov (United States)

    Feng, Lei; Ji, Haiwei; Wang, Renliang; Ge, Haiyan; Li, Li

    2011-01-01

    The title mol­ecule, C17H18N4S, is not planar, as indicated by the dihedral angle of 27.24 (9)° between the two benzene rings. In the crystal, inter­molecular N—H⋯S hydrogen bonds link pairs of mol­ecules into inversion dimers. PMID:21754879

  12. Crystal structure of ochraceolide A isolated from Elaeodendron trichotomum (Turcz.) Lundell

    Science.gov (United States)

    Herrera-España, Angel D.; Mena-Rejón, Gonzalo J.; Hernández-Ortega, Simón; Quijano, Leovigildo; Mirón-López, Gumersindo

    2017-01-01

    The title compound, C30H44O3 [systematic name: 6aR,6 bR,8aS,9aR,12aR,14bR)-4,4,6a,6;b,8a,14b-hexa­methyl-12-methyl­eneicosa­hydro-3H-phenanthro[1′,2′:6,7]indeno­[2,1-b]furan-3,11(2H)-dione], is a triterpene lactone, which was isolated from di­chloro­methane extract of Elaeodendron trichotomum (Turcz.) Lundell (celastraceae) stem bark. The compound has a lupane skeleton and consists of four fused six-membered rings and two five-membered rings. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds into a three-dimensional network. The configuration of ochraceolide A was proposed based on analogue compounds which belong to the lupane type. PMID:29250361

  13. 1-[1-(4-Chloro­phen­yl)ethyl­idene]carbono­hydrazide

    Science.gov (United States)

    Du, Lingyun; Du, Lei; Wang, Shuhao

    2009-01-01

    The mol­ecular skeleton of the title mol­ecule, C9H11ClN4O, is essentially planar, the dihedral angle between the ring and the and N/N/C plane being 6.7 (3)°. In the crystal, inter­molecular N—H⋯O and N—H⋯N hydrogen bonds link the mol­ecules into ribbons propagated along [010]. PMID:21577542

  14. 4-Bromo-N-(di-n-propyl-carbamothioyl)-benzamide.

    Science.gov (United States)

    Binzet, Gün; Flörke, Ulrich; Külcü, Nevzat; Arslan, Hakan

    2009-02-04

    The synthesis of the title compound, C(14)H(19)BrN(2)OS, involves the reaction of 4-bromo-benzoyl chloride with potassium thio-cyanate in acetone followed by condensation of the resulting 4-bromo-benzoyl isothio-cyanate with di-n-propyl-amine. Typical thio-urea carbonyl and thio-carbonyl double bonds, as well as shortened C-N bonds, are observed in the title compound. The short C-N bond lengths in the centre of the mol-ecule reveal the effects of resonance in this part of the mol-ecule. The asymmetric unit of the title compound contains two crystallographically independent mol-ecules, A and B. There is very little difference between the bond lengths and angles of these mol-ecules. In mol-ecule B, one di-n-propyl group is twisted in a -anti-periplanar conformation with C-C-C-H = -179.1 (3)° and the other adopts a -synclinal conformation with C-C-C-H = -56.7 (4)°; in mol-ecule A the two di-n-propyl groups are twisted in + and -anti-periplanar conformations, with C-C-C-H = -179.9 (3) and 178.2 (3)°, respectively. In the crystal, the mol-ecules are linked into dimeric pairs via pairs of N-H⋯S hydrogen bonds.

  15. Diaqua­bis­(pyridine-2-carboxyl­ato-κ2 N,O)manganese(II) dimethyl­formamide hemisolvate

    Science.gov (United States)

    Golenya, Irina A.; Boyko, Alexander N.; Kalibabchuk, Valentina A.; Haukka, Matti; Tomyn, Stefania V.

    2011-01-01

    There are two crystallographically independent complex mol­ecules with very similar geometries in the unit cell of the title compound, [Mn(C6H4NO2)2(H2O)2]·0.5C3H7NO. The central ion is situated in a distorted octa­hedral environment of two N- and four O-donor atoms from two pyridine-2-carboxyl­ate ligands and two cis-disposed water mol­ecules. The carboxyl­ate ligands are coordinated in a chelate fashion with the formation of two five-membered rings. In the crystal, the complex mol­ecules are connected by O—H⋯O hydrogen bonds between the coordinated water mol­ecules and the uncoordinated carboxyl­ate O atoms, thus forming hydrogen-bonded walls disposed perpendicularly to the bc plane. PMID:22219799

  16. Tetra­kis(aceto­nitrile)copper(I) hydrogen oxalate–oxalic acid–aceto­nitrile (1/0.5/0.5)

    Science.gov (United States)

    Royappa, A. Timothy; Stepherson, Jacob R.; Vu, Oliver D.; Royappa, Andrew D.; Stern, Charlotte L.; Müller, Peter

    2013-01-01

    In the title compound, [Cu(CH3CN)4](C2HO4)·0.5C2H2O4·0.5CH3CN, the CuI ion is coordinated by the N atoms of four aceto­nitrile ligands in a slightly distorted tetra­hedral environment. The oxalic acid mol­ecule lies across an inversion center. The aceto­nitrile solvent mol­ecule is disordered across an inversion center and was refined with half occupancy. In the crystal, the hydrogen oxalate anions and oxalic acid mol­ecules are linked via O—H⋯O hydrogen bonds, forming chains along [010]. PMID:24098175

  17. N,N′-Bis(3β-acet­oxy-5α-cholest-6-yl­idene)hydrazine

    Science.gov (United States)

    Tabassum, Zishan; Sulaiman, Othman; Ibrahim, M. N. Mohamad; Quah, Ching Kheng; Fun, Hoong-Kun

    2011-01-01

    The asymmetric unit of the title compound, C58H96N2O4, contains two crystallographically independent mol­ecules. All cyclohexane rings are in chair conformations, while the furan ring is in an envelope conformation in one mol­ecule and a twist conformation in the other. Two acetaldehyde and one isobutane groups are disordered over two orientations with refined site occupancies of 0.940 (4):0.060 (4) and 0.791 (7):0.209 (7), respectively. In the crystal, mol­ecules are stacked along the a axis through van der Waals inter­actions. PMID:21523172

  18. Distinguishing tautomerism in the crystal structure of (Z)-N-(5-ethyl-2,3-di-hydro-1,3,4-thiadiazol-2-ylidene) -4-methylbenzenesulfonamide using DFT-D calculations and {sup 13}C solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaozhou; Bond, Andrew D.; Johansson, Kristoffer E.; Van de Streek, Jacco, E-mail: jacco.vandestreek@sund.ku.dk [Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100 (Denmark)

    2014-08-01

    The crystal structure of (Z)-N-(5-ethyl-2,3-di-hydro-1,3,4-thiadiazol-2-ylidene) -4-methylbenzenesulfonamide contains an imine tautomer, rather than the previously reported amine tautomer. The tautomers can be distinguished using dispersion-corrected density functional theory calculations and by comparison of calculated and measured {sup 13}C solid-state NMR spectra. The crystal structure of the title compound, C{sub 11}H{sub 13}N{sub 3}O{sub 2}S{sub 2}, has been determined previously on the basis of refinement against laboratory powder X-ray diffraction (PXRD) data, supported by comparison of measured and calculated {sup 13}C solid-state NMR spectra [Hangan et al. (2010 ▶). Acta Cryst. B66, 615–621]. The mol@@ecule is tautomeric, and was reported as an amine tautomer [systematic name: N-(5-ethyl-1,3,4-thia@@diazol-2-yl)-p-toluene@@sulfonamide], rather than the correct imine tautomer. The protonation site on the mol@@ecule’s 1,3,4-thia@@diazole ring is indicated by the inter@@molecular contacts in the crystal structure: N—H⋯O hydrogen bonds are established at the correct site, while the alternative protonation site does not establish any notable inter molecular inter@@actions. The two tautomers provide essentially identical Rietveld fits to laboratory PXRD data, and therefore they cannot be directly distinguished in this way. However, the correct tautomer can be distinguished from the incorrect one by previously reported qu@@anti@@tative criteria based on the extent of structural distortion on optimization of the crystal structure using dispersion-corrected density functional theory (DFT-D) calculations. Calculation of the {sup 13}C SS-NMR spectrum based on the correct imine tautomer also provides considerably better agreement with the measured {sup 13}C SS-NMR spectrum.

  19. 1,3-Bis(chloro-meth-yl)-2-methyl-5-nitro-benzene.

    Science.gov (United States)

    Shao, Chang-Lun; Li, Chunyuan; Liu, Zhen; Wei, Mei-Yan; Wang, Chang-Yun

    2008-03-20

    The title compound, C(9)H(9)Cl(2)NO(2), is a natural product isolated from the endophytic fungus No. B77 of the mangrove tree from the South China Sea coast. In the crystal structure, the mol-ecules lie on twofold axes and form offset stacks through face-to-face π-π inter-actions. Adjacent mol-ecules in each stack are related by a centre of inversion and have an inter-planar separation of 3.53 (1) Å, with a centroid-centroid distance of 3.76 (1) Å. Between stacks, there are C-H⋯O inter-actions to the nitro groups and Cl⋯Cl contacts of 3.462 (1) Å.

  20. MolTalk--a programming library for protein structures and structure analysis.

    Science.gov (United States)

    Diemand, Alexander V; Scheib, Holger

    2004-04-19

    Two of the mostly unsolved but increasingly urgent problems for modern biologists are a) to quickly and easily analyse protein structures and b) to comprehensively mine the wealth of information, which is distributed along with the 3D co-ordinates by the Protein Data Bank (PDB). Tools which address this issue need to be highly flexible and powerful but at the same time must be freely available and easy to learn. We present MolTalk, an elaborate programming language, which consists of the programming library libmoltalk implemented in Objective-C and the Smalltalk-based interpreter MolTalk. MolTalk combines the advantages of an easy to learn and programmable procedural scripting with the flexibility and power of a full programming language. An overview of currently available applications of MolTalk is given and with PDBChainSaw one such application is described in more detail. PDBChainSaw is a MolTalk-based parser and information extraction utility of PDB files. Weekly updates of the PDB are synchronised with PDBChainSaw and are available for free download from the MolTalk project page http://www.moltalk.org following the link to PDBChainSaw. For each chain in a protein structure, PDBChainSaw extracts the sequence from its co-ordinates and provides additional information from the PDB-file header section, such as scientific organism, compound name, and EC code. MolTalk provides a rich set of methods to analyse and even modify experimentally determined or modelled protein structures. These methods vary in complexity and are thus suitable for beginners and advanced programmers alike. We envision MolTalk to be most valuable in the following applications:1) To analyse protein structures repetitively in large-scale, i.e. to benchmark protein structure prediction methods or to evaluate structural models. The quality of the resulting 3D-models can be assessed by e.g. calculating a Ramachandran-Sasisekharan plot.2) To quickly retrieve information for (a limited number of

  1. 1,2-Diiodo-4,5-dimethyl­benzene

    Science.gov (United States)

    Hathaway, Bruce A.; Kilgore, Uriah J.; Bond, Marcus R.

    2009-01-01

    The structure of the title compound, C8H8I2, conforms closely to the mm2 symmetry expected for the free mol­ecule and is the first reported structure of a diiodo­dimethyl­benzene. Repulsion by neighboring I atoms and the neighboring methyl groups opposite to them results in a slight elongation of the mol­ecule along the approximate twofold rotation axis that bis­ects the ring between the two I atoms. In the extended structure, the mol­ecules form inversion-related pairs which are organized in approximately hexa­gonal close-packed layers and the layers then stacked so that mol­ecules in neighboring layers abut head-to-tail in a manner that optimizes dipole–dipole inter­actions. PMID:21583089

  2. [1,2-Bis(diisopropyl-phosphan-yl)ethane-κ(2) P,P'](carbonato-κ(2) O,O')nickel(II).

    Science.gov (United States)

    Morales-Becerril, Illan; Flores-Alamo, Marcos; Garcia, Juventino J

    2013-04-01

    In the crystal of the title compound, [Ni(CO3)(C14H32P2)], the metal center in each of three independent mol-ecules shows slight tetra-hedral distortion from ideal square-planar coordination geometry, with angles between the normals to the planes defined by the cis-P-Ni-P and cis-O-Ni-O fragments of 3.92 (17), 0.70 (16) and 2.17 (14)° in the three mol-ecules. In the crystal, there are inter-molecular C-H⋯O hydrogen bonds that show a laminar growth in the ab plane.

  3. (Z)-N-[1-(Aziridin-1-yl)-2,2,2-tri­fluoro­ethyl­idene]-4-bromo­aniline

    OpenAIRE

    Bunev, Alexander S.; Vasiliev, Maksim A.; Ostapenko, Gennady I.; Peregudov, Alexander S.; Khrustalev, Victor N.

    2014-01-01

    The title compound, C10H8BrF3N2, crystallizes with two independent mol­ecules in the asymmetric unit, which can be considered as being related by a pseudo-inversion center, so their conformations are different; the corresponding N=C—N—C torsion angles are 54.6 (5) and −50.5 (5)°. In the crystal, mol­ecules related by translation in [001] inter­act through short inter­molecular Br⋯F contacts [3.276 (2) and 3.284 (2) Å], thus forming two types of crystallographically independent chains....

  4. Crystal structure of obscurine: a natural product isolated from the stem bark of B. obscura.

    Science.gov (United States)

    Lenta, Bruno N; Chouna, Rodolphe J; Neumann, Beate; Stammler, Hans-Georg; Sewald, Norbert

    2015-07-01

    The title compound, C24H31NO3 {systematic name: (E)-3-[(1R*,2S*,4aS*,8aR*)-2-(benzo[d][1,3]dioxol-5-yl)-1,2,4a,5,6,7,8,8a-octa-hydro-naphthalen-1-yl]-N-iso-butyl-acryl-amide}, is a natural product isolated from the stem bark of B. obscura. It is composed of an octa-hydro-naphthalene ring system substituted with an essentially planar benzodioxole ring system [r.m.s. deviation = 0.012 Å] and an extended iso-butyl-acryl-amide group. In the crystal, mol-ecules are linked by N-H⋯O hydrogen bonds, forming chains propagating along [100]. The chains are linked by pairs of C-H⋯O hydrogen bonds, involving inversion-related benzodioxole ring systems, forming ribbons lying parallel to (010). There are also C-H⋯π inter-actions present within the ribbons.

  5. 4′,5-Dihy­droxy-7-meth­oxy­flavanone dihydrate

    Science.gov (United States)

    Brito, Iván; Bórquez, Jorge; Simirgiotis, Mario; Cárdenas, Alejandro; López-Rodríguez, Matías

    2012-01-01

    The title compound, C16H14O5·2H2O [systematic name: 5-hy­droxy-2-(4-hy­droxy­phen­yl)-7-meth­oxy­chroman-4-one dihydrate], is a natural phytoalexin flavone isolated from the native chilean species Heliotropium taltalense and crystallizes with an organic mol­ecule and two water mol­ecules in the asymmetric unit. The 5-hy­droxy group forms a strong intra­molecular hydrogen bond with the carbonyl group, resulting in a six-membered ring. In the crystal, the components are linked by O—H⋯O hydrogen bonds, forming a three-dimensional network. The 4-hy­droxy­phenyl benzene ring is bonded equatorially to the pyrone ring, which adopts a slightly distorted sofa conformation. The title compound is the hydrated form of a previously reported structure [Shoja (1990 ▶). Acta Cryst. C46, 1969–1971]. There are only slight variations in the mol­ecular geometry between the two compounds. PMID:22259537

  6. Crystal structure of [(2R,3R,4S)-3,4-bis(acet-yloxy)-5-iodo-3,4-di-hydro-2H-pyran-2-yl]methyl acetate.

    Science.gov (United States)

    Zukerman-Schpector, Julio; Caracelli, Ignez; Stefani, Hélio A; Shamim, Anwar; Tiekink, Edward R T

    2015-01-01

    In the title compound, C12H15IO7, the 3,4-di-hydro-2H-pyran ring is in a distorted half-boat conformation with the atom bearing the acet-yloxy group adjacent to the C atom bearing the methyl-acetate group lying 0.633 (6) Å above the plane of the remaining ring atoms (r.m.s. deviation = 0.0907 Å). In the crystal, mol-ecules are linked into a supra-molecular chain along the a axis through two C-H⋯O inter-actions to the same acceptor carbonyl O atom; these chains pack with no specific inter-molecular inter-actions between them.

  7. Crystal structure and magnetism of UOsAl

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.V., E-mail: andreev@fzu.cz [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Daniš, S. [Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic); Šebek, J.; Henriques, M.S.; Vejpravová, J. [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Gorbunov, D.I. [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum, Dresden-Rossendorf, D-01314 Dresden (Germany); Havela, L. [Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic)

    2017-04-15

    Crystal structure, magnetization, and specific heat were studied on single crystal of uranium intermetallic compound UOsAl. It is a hexagonal Laves phase of MgZn{sub 2} type, space group P6{sub 3}/mmc, with lattice parameters a=536.4 pm, c=845.3 pm. Shortest inter-uranium distance 313 pm (along the c-axis) is considerably smaller than the Hill limit (340 pm). The compound is a weakly temperature-dependent paramagnet with magnetic susceptibility of ≈1.5*10{sup −8} m{sup 3} mol{sup −1} (at T=2 K), which is slightly higher with magnetic field along the a-axis compared to the c-axis. The Sommerfeld coefficient of electronic specific heat has moderate value of γ=36 mJ mol{sup −1} K{sup −2}. - Highlights: • Crystal structure and magnetic properties were studied on single crystal of UOsAl with hexagonal structure of MgZn{sub 2} type. • Shortest inter-uranium distance 313 pm (along the c-axis) is considerably smaller than the Hill limit (340 pm). • UOsAl has paramagnetic ground state as the compounds with T=Fe and Ru, i.e. 3d and 4d analogues of Os.

  8. Effect of ion nitriding on the crystal structure of 3 mol% Y2O3-doped ZrO2 thin-films prepared by the sol-gel method

    International Nuclear Information System (INIS)

    Ortiz, A.L.; Diaz-Parralejo, A.; Borrero-Lopez, O.; Guiberteau, F.

    2006-01-01

    We investigated the effect of ion nitriding on the crystal structure of 3 mol% Y 2 O 3 -doped ZrO 2 (3YSZ) thin-films prepared by the sol-gel method. For this purpose, we used X-ray diffractometry to determine the crystalline phases, the lattice parameters, the crystal sizes, and the lattice microstrains, and glow discharge-optical emission spectroscopy to obtain the depth profiles of the elemental chemical composition. We found that nitrogen atoms substitute oxygen atoms in the 3YSZ crystal, thus leading to the formation of unsaturated-substitutional solid solutions with reduced lattice parameters and Zr 0.94 Y 0.06 O 1.72 N 0.17 stoichiometric formula. We also found that ion nitriding does not affect the grain size, but does generate lattice microstrains due to the increase in point defects in the crystalline lattice

  9. MolTalk – a programming library for protein structures and structure analysis

    Science.gov (United States)

    Diemand, Alexander V; Scheib, Holger

    2004-01-01

    Background Two of the mostly unsolved but increasingly urgent problems for modern biologists are a) to quickly and easily analyse protein structures and b) to comprehensively mine the wealth of information, which is distributed along with the 3D co-ordinates by the Protein Data Bank (PDB). Tools which address this issue need to be highly flexible and powerful but at the same time must be freely available and easy to learn. Results We present MolTalk, an elaborate programming language, which consists of the programming library libmoltalk implemented in Objective-C and the Smalltalk-based interpreter MolTalk. MolTalk combines the advantages of an easy to learn and programmable procedural scripting with the flexibility and power of a full programming language. An overview of currently available applications of MolTalk is given and with PDBChainSaw one such application is described in more detail. PDBChainSaw is a MolTalk-based parser and information extraction utility of PDB files. Weekly updates of the PDB are synchronised with PDBChainSaw and are available for free download from the MolTalk project page following the link to PDBChainSaw. For each chain in a protein structure, PDBChainSaw extracts the sequence from its co-ordinates and provides additional information from the PDB-file header section, such as scientific organism, compound name, and EC code. Conclusion MolTalk provides a rich set of methods to analyse and even modify experimentally determined or modelled protein structures. These methods vary in complexity and are thus suitable for beginners and advanced programmers alike. We envision MolTalk to be most valuable in the following applications: 1) To analyse protein structures repetitively in large-scale, i.e. to benchmark protein structure prediction methods or to evaluate structural models. The quality of the resulting 3D-models can be assessed by e.g. calculating a Ramachandran-Sasisekharan plot. 2) To quickly retrieve information for (a limited

  10. MolTalk – a programming library for protein structures and structure analysis

    Directory of Open Access Journals (Sweden)

    Diemand Alexander V

    2004-04-01

    Full Text Available Abstract Background Two of the mostly unsolved but increasingly urgent problems for modern biologists are a to quickly and easily analyse protein structures and b to comprehensively mine the wealth of information, which is distributed along with the 3D co-ordinates by the Protein Data Bank (PDB. Tools which address this issue need to be highly flexible and powerful but at the same time must be freely available and easy to learn. Results We present MolTalk, an elaborate programming language, which consists of the programming library libmoltalk implemented in Objective-C and the Smalltalk-based interpreter MolTalk. MolTalk combines the advantages of an easy to learn and programmable procedural scripting with the flexibility and power of a full programming language. An overview of currently available applications of MolTalk is given and with PDBChainSaw one such application is described in more detail. PDBChainSaw is a MolTalk-based parser and information extraction utility of PDB files. Weekly updates of the PDB are synchronised with PDBChainSaw and are available for free download from the MolTalk project page http://www.moltalk.org following the link to PDBChainSaw. For each chain in a protein structure, PDBChainSaw extracts the sequence from its co-ordinates and provides additional information from the PDB-file header section, such as scientific organism, compound name, and EC code. Conclusion MolTalk provides a rich set of methods to analyse and even modify experimentally determined or modelled protein structures. These methods vary in complexity and are thus suitable for beginners and advanced programmers alike. We envision MolTalk to be most valuable in the following applications: 1 To analyse protein structures repetitively in large-scale, i.e. to benchmark protein structure prediction methods or to evaluate structural models. The quality of the resulting 3D-models can be assessed by e.g. calculating a Ramachandran-Sasisekharan plot. 2 To

  11. Crystal structure of bis-[(acetato-κO)(imidazolidine-2-thione-κS)bis-(tri-phenyl-phosphane-κP)silver(I)] di-μ-imidazol-idine-2-thione-κ(4) S:S-bis-[(imidazol-id-ine-2-thione-κS)bis-(tri-phenyl-phosphane-κP)silver(I)] di-acetate aceto-nitrile disolvate tetra-hydrate.

    Science.gov (United States)

    Nimthong-Roldán, Arunpatcha; Ratthiwan, Janejira; Lakmas, Sawanya; Wattanakanjana, Yupa

    2016-04-01

    In the title compound, [Ag2(C3H6N2S)4(C18H15P)2](C2H3O2)2·[Ag(C2H3O2)(C3H6N2S)(C18H15P)2]2·2C2H3N·4H2O, the Ag(I) ion in the mononuclear neutral complex exhibits a distorted tetra-hedral environment with coordination by two P atoms from tri-phenyl-phosphane (PPh3) ligands, one S atom of an imidazolidine-2-thione (etu) ligand and one O atom of an acetate anion. The binuclear cationic complex comprises two inversion-related [Ag(C3H6N2S)2(C18H15P)] units with Ag(I) ions bridged by two S atoms from etu ligands forming a four-membered Ag-S-Ag-S ring. Each Ag(I) ion is coordinated by a P atom of a PPh3 ligand, two S atoms of bridging etu ligands and the terminal S atom of an etu ligand in a distorted tetra-hedral environment. In the crystal, the mononuclear complex is linked to lattice water mol-ecules through O-H⋯O and N-H⋯O hydrogen bonds, forming a chain along [100]. In addition, the binuclear complex mol-ecules are connected to acetate anions and lattice water mol-ecules via O-H⋯O, N-H⋯O and O-H⋯S hydrogen bonds, also along [100].

  12. [1,2-Bis(diisopropyl­phosphan­yl)ethane-κ2 P,P′](carbonato-κ2 O,O′)nickel(II)

    Science.gov (United States)

    Morales-Becerril, Illan; Flores-Alamo, Marcos; Garcia, Juventino J.

    2013-01-01

    In the crystal of the title compound, [Ni(CO3)(C14H32P2)], the metal center in each of three independent mol­ecules shows slight tetra­hedral distortion from ideal square-planar coordination geometry, with angles between the normals to the planes defined by the cis-P—Ni—P and cis-O—Ni—O fragments of 3.92 (17), 0.70 (16) and 2.17 (14)° in the three mol­ecules. In the crystal, there are inter­molecular C—H⋯O hydrogen bonds that show a laminar growth in the ab plane. PMID:23633999

  13. A second monoclinic polymorph of 2-(3,5-dimethyl-1H-pyrazol-1-yl)-2-hy­droxy­imino-N′-[1-(pyridin-2-yl)ethyl­idene]acetohydrazide

    Science.gov (United States)

    Plutenko, Maxym O.; Lampeka, Rostislav D.; Haukka, Matti; Nordlander, Ebbe

    2013-01-01

    The title compound, C14H16N6O2, is a second monoclinic polymorph of 2-[1-(3,5-dimeth­yl)pyrazol­yl]-2-hy­droxy­imino-N′-[1-(2-pyrid­yl)ethyl­idene] acetohydrazide, with two crystallographically independent mol­ecules per asymmetric unit. The non-planar mol­ecules are chemically equal having similar geometric parameters. The previously reported polymorph [Plutenko et al. (2012 ▶). Acta Cryst. E68, o3281] was described in space group Cc (Z = 4). The oxime group and the O atom of the amide group are anti with respect to the C—C bond. In the crystal, mol­ecules are connected by N—H⋯N hydrogen bonds into zigzag chains extending along the b axis. PMID:23723911

  14. The bent crystal diffraction spectrometer at the BR2 reactor in Mol

    Science.gov (United States)

    Kaerts, E.; Jacobs, L.; Vandenput, G.; Van Assche, P. H. M.

    1988-05-01

    The DuMond-type bent crystal diffraction spectrometer installed at the BR2 reactor in Mol is presented. The spectrometer is mainly designed to study nuclear γ-transitions following thermal neutron capture. It covers the energy interval 25 ≦ Eγ ≦ 1500 keV. Instead of the traditionally used quartz crystals, a highly perfect silicium crystal is chosen as analysing crystal. Diffraction occurs from the (220) plane. The "quasi-mosaic" width, introduced by bending the crystal, is as small as 0.2″. The integrated reflecting power R of the bent crystal stays constant up to 1.5 MeV in first, 680 keV in second and 300 keV in third diffraction order. For higher photon energies, only an E-1 energy dependence is observed in second and third diffraction order. Consequently, besides improving the energy resolution, the use of these silicium crystals substantially increases the spectrometer efficiency and extends the high energy limit of bent crystal diffraction spectrometers. The diffraction angles are measured with a symmetrical interferometer system which covers an angular range of -6° to +6° with a precision of about 0.01″. Minimum diffraction line widths of 0.9″ have been measured, corresponding to an energy resolution ΔE = 1.35 × 10 -6E2n-1 keV -1. The dominant contribution to the observed line widths arises from the finite extent of the source.

  15. Prediction of molecular crystal structures

    International Nuclear Information System (INIS)

    Beyer, Theresa

    2001-01-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol -1 of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  16. Prediction of molecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Theresa

    2001-07-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol{sup -1} of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  17. Crystal structure of trans-di-chloridobis-[N-(5,5-di-methyl-4,5-di-hydro-3H-pyrrol-2-yl-κN)acetamide]palladium(II) dihydrate.

    Science.gov (United States)

    Lasri, Jamal; Eltayeb, Naser Eltaher; Haukka, Matti; Babgi, Bandar A

    2017-04-01

    The title complex, [PdCl 2 (C 8 H 14 N 2 O) 2 ]·2H 2 O, was obtained by N-O bond cleavage of the oxa-diazo-line rings of the trans -[di-chlorido-bis-(2,5,5-trimethyl-5,6,7,7a-tetra-hydro-pyrrolo-[1,2- b ][1,2,4]oxa-diazole- N 1 )]palladium(II) complex. The palladium(II) atom exhibits an almost square-planar coordination provided by two trans -arranged chloride anions and a nitro-gen atom from each of the two neutral organic ligands. In the crystal, N-H⋯O, O-H⋯O and O-H⋯Cl hydrogen bonds link complex mol-ecules into double layers parallel to the bc plane.

  18. Effect of ion nitriding on the crystal structure of 3 mol% Y{sub 2}O{sub 3}-doped ZrO{sub 2} thin-films prepared by the sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, A.L. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Badajoz 06071 (Spain)]. E-mail: alortiz@unex.es; Diaz-Parralejo, A. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Badajoz 06071 (Spain); Borrero-Lopez, O. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Badajoz 06071 (Spain); Guiberteau, F. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Badajoz 06071 (Spain)

    2006-06-30

    We investigated the effect of ion nitriding on the crystal structure of 3 mol% Y{sub 2}O{sub 3}-doped ZrO{sub 2} (3YSZ) thin-films prepared by the sol-gel method. For this purpose, we used X-ray diffractometry to determine the crystalline phases, the lattice parameters, the crystal sizes, and the lattice microstrains, and glow discharge-optical emission spectroscopy to obtain the depth profiles of the elemental chemical composition. We found that nitrogen atoms substitute oxygen atoms in the 3YSZ crystal, thus leading to the formation of unsaturated-substitutional solid solutions with reduced lattice parameters and Zr{sub 0.94}Y{sub 0.06}O{sub 1.72}N{sub 0.17} stoichiometric formula. We also found that ion nitriding does not affect the grain size, but does generate lattice microstrains due to the increase in point defects in the crystalline lattice.

  19. Crystal structures of 5-amino-N-phenyl-3H-1,2,4-di-thia-zol-3-iminium chloride and 5-amino-N-(4-chloro-phen-yl)-3H-1,2,4-di-thia-zol-3-iminium chloride monohydrate.

    Science.gov (United States)

    Yeo, Chien Ing; Tan, Yee Seng; Tiekink, Edward R T

    2015-10-01

    The crystal and mol-ecular structures of the title salt, C8H8N3S2 (+)·Cl(-), (I), and salt hydrate, C8H7ClN3S2 (+)·Cl(-)·H2O, (II), are described. The heterocyclic ring in (I) is statistically planar and forms a dihedral angle of 9.05 (12)° with the pendant phenyl ring. The comparable angle in (II) is 15.60 (12)°, indicating a greater twist in this cation. An evaluation of the bond lengths in the H2N-C-N-C-N sequence of each cation indicates significant delocalization of π-electron density over these atoms. The common feature of the crystal packing in (I) and (II) is the formation of charge-assisted amino-N-H⋯Cl(-) hydrogen bonds, leading to helical chains in (I) and zigzag chains in (II). In (I), these are linked by chains mediated by charge-assisted iminium-N(+)-H⋯Cl(-) hydrogen bonds into a three-dimensional architecture. In (II), the chains are linked into a layer by charge-assisted water-O-H⋯Cl(-) and water-O-H⋯O(water) hydrogen bonds with charge-assisted iminium-N(+)-H⋯O(water) hydrogen bonds providing the connections between the layers to generate the three-dimensional packing. In (II), the chloride anion and water mol-ecules are resolved into two proximate sites with the major component being present with a site occupancy factor of 0.9327 (18).

  20. Redetermination of 2-methyl-4-nitro­pyridine N-oxide

    Science.gov (United States)

    Peukert, Max; Seichter, Wilhelm; Weber, Edwin

    2014-01-01

    An improved crystal structure of the title compound, C6H6N2O3, is reported. The structure, previously solved [Li et al. (1987 ▶). Jiegou Huaxue (Chin. J. Struct. Chem.), 6, 20–24] in the ortho­rhom­bic space group Pca21 and refined to R = 0.067, has been solved in the ortho­rhom­bic space group Pbcm with data of enhanced quality, giving an improved structure (R = 0.0485). The mol­ecule adopts a planar conformation with all atoms lying on a mirror plane. The crystal structure is composed of mol­ecular sheets extending parallel to the ab plane and connected via C—H⋯O contacts involving ring H atoms and O atoms of the N-oxide and nitro groups, while van der Waals forces consolidate the stacking of the layers. PMID:24826136

  1. 1-{3-[1-(Hydroxyimino)ethyl]-4-methyl-1H-pyrazol-5-yl}ethanone

    Science.gov (United States)

    Malinkin, Sergey; Penkova, Larysa; Pavlenko, Vadim A.; Haukka, Matti; Pavlova, Svetlana V.

    2011-01-01

    In the title compound, C8H11N3O2, the oxime and the acetyl groups adopt a transoid conformation, while the pyrazole H atom is localized in the proximity of the acetyl group and is cis with respect to the acetyl O atom. In the crystal, dimers are formed as the result of hydrogen-bonding inter­actions involving the pyrazole NH group of one mol­ecule and the carbonyl O atom of another. The dimers are associated into sheets via O—H⋯N hydrogen bonds involving the oxime hydroxyl and the unprotonated pyrazole N atom, generating a macrocyclic motif with six mol­ecules. PMID:22058770

  2. Crystal structures of 2-[(4,6-di-amino-pyrimidin-2-yl)sulfan-yl]-N-(naphthalen-1-yl)acetamide and 2-[(4,6-di-amino-pyrimidin-2-yl)sulfan-yl]-N-(4-fluoro-phen-yl)acetamide.

    Science.gov (United States)

    Subasri, S; Kumar, Timiri Ajay; Sinha, Barij Nayan; Jayaprakash, Venkatesan; Viswanathan, Vijayan; Velmurugan, Devadasan

    2017-02-01

    The title compounds, C 16 H 15 N 5 OS, (I), and C 12 H 12 FN 5 OS, (II), are [(di-amino-pyrimidine)-sulfan-yl]acetamide derivatives. In (I), the pyrimidine ring is inclined to the naphthalene ring system by 55.5 (1)°, while in (II), the pyrimidine ring is inclined to the benzene ring by 58.93 (8)°. In (II), there is an intra-molecular N-H⋯N hydrogen bond and a short C-H⋯O contact. In the crystals of (I) and (II), mol-ecules are linked by pairs of N-H⋯N hydrogen bonds, forming inversion dimers with R 2 2 (8) ring motifs. In the crystal of (I), the dimers are linked by bifurcated N-H⋯(O,O) and C-H⋯O hydrogen bonds, forming layers parallel to (100). In the crystal of (II), the dimers are linked by N-H⋯O hydrogen bonds, also forming layers parallel to (100). The layers are linked by C-H⋯F hydrogen bonds, forming a three-dimensional architecture.

  3. (η(6)-Benzene)(carbonato-κ(2) O,O')[di-cyclohex-yl(naphthalen-1-ylmeth-yl)phosphane-κP]ruthenium(II) chloro-form tris-olvate.

    Science.gov (United States)

    Gowrisankar, Saravanan; Neumann, Helfried; Spannenberg, Anke; Beller, Matthias

    2014-07-01

    The title compound, [Ru(CO3)(η(6)-C6H6){(C6H11)2P(CH2C10H7)}]·3CHCl3, was synthesized by carbonation of [RuCl2(η(6)-C6H6){(C6H11)2P(CH2C10H7)}] with NaHCO3 in methanol at room temperature. The Ru(II) atom is surrounded by a benzene ligand, a chelating carbonate group and a phosphane ligand in a piano-stool configuration. The crystal packing is consolidated by C-H⋯O and C-H⋯Cl hydrogen-bonding inter-actions between adjacent metal complexes and between the complexes and the solvent mol-ecules. The asymmetric unit contains one metal complex and three chloro-form solvent mol-ecules of which only one was modelled. The estimated diffraction contributions of the other two strongly disordered chloro-form solvent mol-ecules were substracted from the observed diffraction data using the SQUEEZE procedure in PLATON [Spek (2009 ▶). Acta Cryst. D65, 148-155].

  4. (η6-Benzene)(carbonato-κ2 O,O′)[di­cyclohex­yl(naphthalen-1-ylmeth­yl)phosphane-κP]ruthenium(II) chloro­form tris­olvate

    Science.gov (United States)

    Gowrisankar, Saravanan; Neumann, Helfried; Spannenberg, Anke; Beller, Matthias

    2014-01-01

    The title compound, [Ru(CO3)(η6-C6H6){(C6H11)2P(CH2C10H7)}]·3CHCl3, was synthesized by carbonation of [RuCl2(η6-C6H6){(C6H11)2P(CH2C10H7)}] with NaHCO3 in methanol at room temperature. The RuII atom is surrounded by a benzene ligand, a chelating carbonate group and a phosphane ligand in a piano-stool configuration. The crystal packing is consolidated by C—H⋯O and C—H⋯Cl hydrogen-bonding inter­actions between adjacent metal complexes and between the complexes and the solvent mol­ecules. The asymmetric unit contains one metal complex and three chloro­form solvent mol­ecules of which only one was modelled. The estimated diffraction contributions of the other two strongly disordered chloro­form solvent mol­ecules were substracted from the observed diffraction data using the SQUEEZE procedure in PLATON [Spek (2009 ▶). Acta Cryst. D65, 148–155]. PMID:25161531

  5. A monoclinic polymorph of (1E,5E)-1,5-bis-(2-hy-droxy-benzyl-idene)thio-carbono-hydrazide.

    Science.gov (United States)

    Schmitt, Bonell; Gerber, Thomas; Hosten, Eric; Betz, Richard

    2011-08-01

    The title compound, C(15)H(14)N(4)O(2)S, is a derivative of thio-ureadihydrazide. In contrast to the previously reported polymorph (ortho-rhom-bic, space group Pbca, Z = 8), the current study revealed monoclinic symmetry (space group P2(1)/n, Z = 4). The mol-ecule shows non-crystallographic C(2) as well as approximate C(s) symmetry. Intra-molecular bifurcated O-H⋯(N,S) hydrogen bonds, are present. In the crystal, inter-molecular N-H⋯S hydrogen bonds and C-H⋯π contacts connect the mol-ecules into undulating chains along the b axis. The shortest centroid-centroid distance between two aromatic systems is 4.5285 (12) Å.

  6. (Carbonato-κO,O')bis-(1,10-phenan-throline-κN,N')cobalt(III) nitrate monohydrate.

    Science.gov (United States)

    Andaç, Omer; Yolcu, Zuhal; Büyükgüngör, Orhan

    2009-12-12

    The crystal structure of the title compound, [Co(CO(3))(C(12)H(8)N(2))(2)]NO(3)·H(2)O, consists of Co(III) complex cations, nitrate anions and uncoordinated water mol-ecules. The Co(III) cation is chelated by a carbonate anion and two phenanthroline ligands in a distorted octa-hedral coordination geometry. A three-dimensional supra-molecular structure is formed by O-H⋯O and C-H⋯O hydrogen bonding, C-H⋯π and aromatic π-π stacking [centroid-centroid distance = 3.995 (1)Å] inter-actions.

  7. 1-(3-Cyano­phen­yl)-3-(2-furo­yl)thio­urea

    Science.gov (United States)

    Theodoro, Jahyr E.; Mascarenhas, Yvonne; Ellena, Javier; Estévez-Hernández, Osvaldo; Duque, Julio

    2008-01-01

    The title compound, C13H9N3O2S, was synthesized from furoyl isothio­cyanate and 3-amino­benzonitrile in dry acetone. The thio­urea group is in the thio­amide form. The thio­urea fragment makes dihedral angles of 3.91 (16) and 37.83 (12)° with the ketofuran group and the benzene ring, respectively. The mol­ecular geometry is stabilized by N—H⋯O hydrogen bonds. In the crystal structure, centrosymmetrically related mol­ecules are linked by two inter­molecular N—H⋯S hydrogen bonds to form dimers. PMID:21202835

  8. μ-Hexa-thio-metadiphosphato-bis-[(1,4,7,10,13,16-hexa-oxa-cyclo-octa-decane-κ(6) O)rubidium] aceto-nitrile disolvate.

    Science.gov (United States)

    Gjikaj, Mimoza; Pook, Niels-Patrick; Qarri, Flora

    2013-12-01

    The asymmetric unit of the title compound, [Rb2(P2S6)(C12H24O6)2]·2CH3CN, contains one half of an [Rb(18-crown-6)2]2[P2S6] unit and one aceto-nitrile solvent mol-ecule. The [Rb(18-crown-6)]2[P2S6] unit is completed by inversion symmetry. Its Rb(+) ion is situated near the centre of the macrocyclic cavity, but is displaced by 0.8972 (1) Å from the O atoms of the crown in the direction of the [P2S6](2-) moiety. The overall coordination number of the cation is eight, defined by the six crown ether O atoms and by two terminal S atoms of the [P2S6](2-) anion. The hexa-thio-metadiphosphate anion is built up from two tetra-hedral PS4 units joined together by a common edge. The crystal structure is characterized by alternating layers of [Rb(18-crown-6)]2[P2S6] and aceto-nitrile solvent mol-ecules stacked along [010].

  9. Bis{2-hydroxy­imino-N′-[1-(2-pyrid­yl)ethyl­idene]propanohydrazidato}zinc(II) dihydrate

    Science.gov (United States)

    Moroz, Yurii S.; Znovjyak, Kateryna O; Golenya, Iryna O.; Pavlova, Svetlana V.; Haukka, Matti

    2010-01-01

    The title compound, [Zn(C10H11N4O2)2]·2H2O, was prepared by the reaction between Zn(CH3COO)2·2H2O and 2-hydroxy­imino-N′-[1-(2-pyrid­yl)ethyl­idene]propano­hydrazide (Hpop). The central ZnII atom has a distorted tetra­gonal-bipyramidal coordination geometry formed by two amide O atoms and four N atoms of two azomethine and two pyridine groups. In the crystal, complex mol­ecules form layers parallel to the crystallographic b direction. The layers are connected by O—H⋯N and O—H⋯O hydrogen bonds involving the solvent water mol­ecules. PMID:21579695

  10. A monoclinic polymorph of (1E,5E)-1,5-bis­(2-hy­droxy­benzyl­idene)thio­carbono­hydrazide

    Science.gov (United States)

    Schmitt, Bonell; Gerber, Thomas; Hosten, Eric; Betz, Richard

    2011-01-01

    The title compound, C15H14N4O2S, is a derivative of thio­ureadihydrazide. In contrast to the previously reported polymorph (ortho­rhom­bic, space group Pbca, Z = 8), the current study revealed monoclinic symmetry (space group P21/n, Z = 4). The mol­ecule shows non-crystallographic C 2 as well as approximate C s symmetry. Intra­molecular bifurcated O—H⋯(N,S) hydrogen bonds, are present. In the crystal, inter­molecular N—H⋯S hydrogen bonds and C—H⋯π contacts connect the mol­ecules into undulating chains along the b axis. The shortest centroid–centroid distance between two aromatic systems is 4.5285 (12) Å. PMID:22091213

  11. 1-(o-Tol­yl)thio­urea

    Science.gov (United States)

    Corrêa, Rodrigo S.; Ribeiro, Leandro; Ellena, Javier; Estévez-Hernández, Osvaldo; Duque, Julio

    2008-01-01

    In the title compound, C8H10N2S, the o-tolyl group and the thio­urea core are planar. The mean planes of the two groups are almost perpendicular [82.19 (8)°]. The thio­urea group is in the thio­amide form, in which resonance is present. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯S hydrogen bonds, forming two infinite chains parallel to the (110) and (10) planes. PMID:21201662

  12. Anatomia foliar de Maytenus Mol. emend Mol. (Celastraceae, ocorrente no Estado do Rio de Janeiro, Brasil Leaf anatomy of the Maytenus Mol. emend Mol. (Celastraceae in Rio de Janeiro State, Brazil

    Directory of Open Access Journals (Sweden)

    Ana Joffily

    2005-09-01

    Full Text Available Este trabalho aborda o estudo anatômico de cinco espécies do gênero Maytenus Mol. emend. Mol. (Celastraceae. O gênero é o maior da família, e está representado no Brasil por aproximadamente 80 espécies. Maytenus é um gênero polifilético, necessitando de trabalhos adicionais para nova circunscrição. Maytenus ardisiaefolia Reiss., M. brasiliensis Mart., M. cestrifolia Reiss., M. communis Reiss. e M. obtusifolia Mart. são de difícil identificação, devido à semelhança dos verticilos reprodutivos, e pela variação na forma e no tamanho das folhas. As estruturas anatômicas observadas nas diversas partes da folha mostraram-se muito semelhantes nas espécies estudadas, sendo de valor taxonômico e de provável importância filogenética para o gênero Maytenus. A organização da epiderme e estratos subepidérmicos em M. obtusifolia demonstrou ser caráter diagnóstico importante na comparação com M. ardisiaefolia, e a ocorrência de cristais aciculares nas células epidérmicas de M. communis e de M. ardisiaefolia, que as separam de M. cestrifolia, que não apresenta cristais, apontaram a anatomia como importante ferramenta a ser explorada nos estudos taxonômicos das demais espécies do gênero. A observação e descrição das verrugas suberosas na epiderme da lâmina foliar poderá contribuir para a taxonomia das Celastraceae.This paper describes anatomical approaches to study the Genus Maytenus Mol. Emnd. Mol. (Celastraceae. The genus is the largest in the family Celastraceae, and in Brazil is represented by approximately 80 species. Maytenus is a polyphyletic genus and additional research is required to better understand its taxonomy. Maytenus ardisiaefolia Reiss., M. brasiliensis Mart., M. cestrifolia Reiss., M. communis Reiss. and M. obtusifolia Mart. are difficult to identify because of similarities in their reproductive structures and variations in the size and shape of their leaves. The anatomical structures observed

  13. (Carbonato-κ2 O,O′)bis­(1,10-phenan­throline-κ2 N,N′)cobalt(III) nitrate monohydrate

    Science.gov (United States)

    Andaç, Ömer; Yolcu, Zuhal; Büyükgüngör, Orhan

    2010-01-01

    The crystal structure of the title compound, [Co(CO3)(C12H8N2)2]NO3·H2O, consists of CoIII complex cations, nitrate anions and uncoordinated water mol­ecules. The CoIII cation is chelated by a carbonate anion and two phenanthroline ligands in a distorted octa­hedral coordination geometry. A three-dimensional supra­molecular structure is formed by O—H⋯O and C—H⋯O hydrogen bonding, C—H⋯π and aromatic π–π stacking [centroid–centroid distance = 3.995 (1)Å] inter­actions. PMID:21579944

  14. Crystal structure of [1,1':3',1''-ter-phenyl]-2',3,3''-tri-carb-oxy-lic acid.

    Science.gov (United States)

    Decato, Daniel A; Berryman, Orion B

    2015-09-01

    The asymmetric unit of the title compound, C21H14O6, com-prises two symmetrically independent mol-ecules that form a locally centrosymmetric hydrogen-bonded dimer, with the planes of the corresponding carb-oxy-lic acid groups rotated by 15.8 (1) and 17.5 (1)° relative to those of the adjacent benzene rings. The crystal as a whole, however, exhibits a noncentrosymmetric packing, described by the polar space group Pca21. The dimers form layers along the ab plane, being inter-connected by hydrogen bonds involving the remaining carb-oxy-lic acid groups. The plane of the central carb-oxy-lic acid group forms dihedral angles of 62.5 (1) and 63.0 (1)° with those of the adjacent benzene rings and functions as a hydrogen-bond donor and acceptor. As a donor, it inter-connects adjacent layers, while as an acceptor it stabilizes the packing within the layers. The 'distal' carb-oxy-lic acid groups are nearly coplanar with the planes of the adjacent benzene rings, forming dihedral angles of 1.8 (1) and 7.1 (1)°. These groups also form intra- and inter-layer hydrogen bonds, but with 'reversed' functionality, as compared with the central carb-oxy-lic acid groups.

  15. Crystallization kinetics and growth mechanism of 8 mol% yttria-stabilized zirconia (8YSZ) nano-powders prepared by a sol-gel process

    International Nuclear Information System (INIS)

    Kuo, C.-W.; Lee, Y.-H.; Hung, I-M.; Wang, M.-C.; Wen, S.-B.; Fung, K.-Z.; Shih, C.-J.

    2008-01-01

    Eight mol% yttria-stabilized zirconia (8YSZ) gel powders were synthesized at 348 K for 2 h using ZrOCl 2 .8H 2 O and Y(NO 3 ) 3 .6H 2 O as starting materials in an ethanol-water solution by a sol-gel process. The crystallization kinetics and growth mechanism of the 8YSZ gel powders have been investigated using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The XRD results and SAED pattern show that the 8YSZ gel powders calcined at 773 K for 2 h is a cubic ZrO 2 . The activation energy for the crystallization of the cubic ZrO 2 formation in the 8YSZ gel powders is determined as 231.76 kJ/mol by a non-isothermal DTA method. Both growth morphology parameter (n) and crystallization mechanism index (m) are close to 3.0, indicating that the bulk nucleation is dominant in the cubic ZrO 2 formation. The TEM examination shows that the cubic ZrO 2 has a spherical-like morphology with a size ranging from 10 to 20 nm

  16. A one-dimensional ladder-like coordination polymer: poly[[hexa-aqua-bis(μ-5-nitro-benzene-1,3-dicarboxyl-ato-κO,O',O'')(μ-oxalato-κO,O':O'',O''')diyttrium(III)] trihydrate].

    Science.gov (United States)

    Fu, Zhong; Lin, Ying; Zhou, Yun-You; Zhang, Hong-Tao

    2007-12-06

    In the crystal structure of the title one-dimensional coordination polymer, [Y(2)(C(8)H(3)NO(6))(2)(C(2)O(4))(H(2)O)(6)]·3H(2)O, each Y(III) ion is bridged to its neighbours by two 5-nitro-benzene-1,3-dicarboxyl-ate (nbdc) dianions and one oxalate dianion (located on an inversion centre) to form a ladder-like polymeric structure. The two carboxylate groups of nbdc assume different modes of coordination, one is chelating whereas the other is monodentate. Three water mol-ecules coordinate to the Y(III) ion to complete an eight-coordinate distorted dodecahedral geometry. The ladder-like polymers are assembled together by hydrogen bonding and π-π stacking [centrio-centriod distance = 3.819 (9) Å] in the crystal structure.

  17. (N-Benzyl-N-ethyl­dithio­carbamato)di-tert-butyl­chloridotin(IV)

    OpenAIRE

    Abdul Muthalib, Amirah Faizah; Baba, Ibrahim; Mohamed Tahir, Mohamed Ibrahim; Tiekink, Edward R. T.

    2011-01-01

    The SnIV atom in the title diorganotin dithio­carbamate, [Sn(C4H9)2Cl(C10H12NS2)], is penta­coordinated by an asymmetrically coordinating dithio­carbamate ligand, a Cl and two C atoms of the Sn-bound tert-butyl groups. The resulting C2ClS2 donor set defines a coordination geometry inter­mediate between square pyramidal and trigonal bipyramidal with a slight tendency towards the former. In the crystal structure, C—H⋯π contacts link centrosymmetrically related mol­ecules into dimeric aggregates...

  18. (N-Benzyl-N-ethyl-dithio-carbamato)di-tert-butyl-chloridotin(IV).

    Science.gov (United States)

    Abdul Muthalib, Amirah Faizah; Baba, Ibrahim; Mohamed Tahir, Mohamed Ibrahim; Tiekink, Edward R T

    2011-02-26

    The Sn(IV) atom in the title diorganotin dithio-carbamate, [Sn(C(4)H(9))(2)Cl(C(10)H(12)NS(2))], is penta-coordinated by an asymmetrically coordinating dithio-carbamate ligand, a Cl and two C atoms of the Sn-bound tert-butyl groups. The resulting C(2)ClS(2) donor set defines a coordination geometry inter-mediate between square pyramidal and trigonal bipyramidal with a slight tendency towards the former. In the crystal structure, C-H⋯π contacts link centrosymmetrically related mol-ecules into dimeric aggregates.

  19. N′-(2-Hy­droxy­benzyl­idene)-2-(hy­droxy­imino)­propano­hydrazide

    Science.gov (United States)

    Plutenko, Maxym O.; Lampeka, Rostyslav D.; Moroz, Yurii S.; Haukka, Matti; Pavlova, Svetlana V.

    2011-01-01

    The mol­ecule of the title compound, C10H11N3O3, adopts an all-trans conformation and is approxomately planar, the largest deviation from the least-squares plane through all non-H atoms being 0.261 (1) Å. An intra­molecular O—H⋯N hydrogen bond occurs. In the crystal, the mol­ecules are packed into layers lying parallel to the ab plane by π-stacking inter­actions between the benzene ring of one molecule and the C—N bond of the oxime group of another molecule; the shortest inter­molecular C⋯C separation within the layer is 3.412 (1) Å. The layers are connected by O—H⋯O and N—H⋯O hydrogen bonds. PMID:22199788

  20. MolProbity for the masses–of data

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Vincent B. [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison, Biochemistry Department (United States); Wedell, Jonathan R.; Wenger, R. Kent; Ulrich, Eldon L. [University of Wisconsin-Madison, BioMagResBank, Biochemistry Department (United States); Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison, Biochemistry Department (United States)

    2015-09-15

    MolProbity is a powerful software program for validating structures of proteins and nucleic acids. Although MolProbity includes scripts for batch analysis of structures, because these scripts analyze structures one at a time, they are not well suited for the validation of a large dataset of structures. We have created a version of MolProbity (MolProbity-HTC) that circumvents these limitations and takes advantage of a high-throughput computing cluster by using the HTCondor software. MolProbity-HTC enables the longitudinal analysis of large sets of structures, such as those deposited in the PDB or generated through theoretical computation—tasks that would have been extremely time-consuming using previous versions of MolProbity. We have used MolProbity-HTC to validate the entire PDB, and have developed a new visual chart for the BioMagResBank website that enables users to easily ascertain the quality of each model in an NMR ensemble and to compare the quality of those models to the rest of the PDB.

  1. Crystallization kinetics and growth mechanism of 8 mol% yttria-stabilized zirconia (8YSZ) nano-powders prepared by a sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, C.-W. [Department of Resources Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Lee, Y.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hung, I-M. [Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Far-East Road, Chung-Li, Taoyuan, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Wen, S.-B. [Department of Resources Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Fung, K.-Z. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Shih, C.-J. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China)], E-mail: cjshih@kmu.edu.tw

    2008-04-03

    Eight mol% yttria-stabilized zirconia (8YSZ) gel powders were synthesized at 348 K for 2 h using ZrOCl{sub 2}.8H{sub 2}O and Y(NO{sub 3}){sub 3}.6H{sub 2}O as starting materials in an ethanol-water solution by a sol-gel process. The crystallization kinetics and growth mechanism of the 8YSZ gel powders have been investigated using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The XRD results and SAED pattern show that the 8YSZ gel powders calcined at 773 K for 2 h is a cubic ZrO{sub 2}. The activation energy for the crystallization of the cubic ZrO{sub 2} formation in the 8YSZ gel powders is determined as 231.76 kJ/mol by a non-isothermal DTA method. Both growth morphology parameter (n) and crystallization mechanism index (m) are close to 3.0, indicating that the bulk nucleation is dominant in the cubic ZrO{sub 2} formation. The TEM examination shows that the cubic ZrO{sub 2} has a spherical-like morphology with a size ranging from 10 to 20 nm.

  2. 2-[Anilino(phen-yl)meth-yl]cyclo-heptan-one.

    Science.gov (United States)

    Eftekhari-Sis, Bagher; Mohajer, Sahar; Zirak, Maryam; Mozaffarnia, Sakineh; Büyükgüngör, Orhan

    2013-01-01

    In the title compound, C20H23NO, the cyclo-hepta-none ring adopts a twist-chair conformation, with the amino-methyl substituent in an equatorial position. The relative configuration of the two stereocenters is R,R. In the crystal, mol-ecules are linked by N-H⋯O hydrogen bonds into chains along [100].

  3. μ-Hexa­thio­metadiphosphato-bis­[(1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane-κ6 O)rubidium] aceto­nitrile disolvate

    Science.gov (United States)

    Gjikaj, Mimoza; Pook, Niels-Patrick; Qarri, Flora

    2013-01-01

    The asymmetric unit of the title compound, [Rb2(P2S6)(C12H24O6)2]·2CH3CN, contains one half of an [Rb(18-crown-6)2]2[P2S6] unit and one aceto­nitrile solvent mol­ecule. The [Rb(18-crown-6)]2[P2S6] unit is completed by inversion symmetry. Its Rb+ ion is situated near the centre of the macrocyclic cavity, but is displaced by 0.8972 (1) Å from the O atoms of the crown in the direction of the [P2S6]2− moiety. The overall coordination number of the cation is eight, defined by the six crown ether O atoms and by two terminal S atoms of the [P2S6]2− anion. The hexa­thio­metadiphosphate anion is built up from two tetra­hedral PS4 units joined together by a common edge. The crystal structure is characterized by alternating layers of [Rb(18-crown-6)]2[P2S6] and aceto­nitrile solvent mol­ecules stacked along [010]. PMID:24860286

  4. Tris[(6S)-6-hy-droxy-4-epi-shikimic acid] monohydrate: an enanti-omerically pure hy-droxy-lated shikimic acid derived from methyl shikimate.

    Science.gov (United States)

    Griesbeck, Axel G; Miara, Claus; Neudörfl, Jörg-M

    2012-11-01

    The title compound, 3C(7)H(10)O(6)·H(2)O, is the enanti-omerically pure product of a multi-step synthesis from the enanti-omerically pure natural shikimic acid. The asymmetric unit contains three mol-ecules of the acid and one mol-ecule of water. The cyclo-hexene rings of the acids have half-chair conformations. The carboxyl-ate, the four hydroxide groups and the additional water mol-ecule form a complex three-dimensional hydrogen-bonding network.

  5. (N-Benzyl-N-ethyl­dithio­carbamato)di-tert-butyl­chloridotin(IV)

    Science.gov (United States)

    Abdul Muthalib, Amirah Faizah; Baba, Ibrahim; Mohamed Tahir, Mohamed Ibrahim; Tiekink, Edward R. T.

    2011-01-01

    The SnIV atom in the title diorganotin dithio­carbamate, [Sn(C4H9)2Cl(C10H12NS2)], is penta­coordinated by an asymmetrically coordinating dithio­carbamate ligand, a Cl and two C atoms of the Sn-bound tert-butyl groups. The resulting C2ClS2 donor set defines a coordination geometry inter­mediate between square pyramidal and trigonal bipyramidal with a slight tendency towards the former. In the crystal structure, C—H⋯π contacts link centrosymmetrically related mol­ecules into dimeric aggregates. PMID:21522295

  6. Dispersion corrected hartree-fock and density functional theory for organic crystal structure prediction.

    Science.gov (United States)

    Brandenburg, Jan Gerit; Grimme, Stefan

    2014-01-01

    We present and evaluate dispersion corrected Hartree-Fock (HF) and Density Functional Theory (DFT) based quantum chemical methods for organic crystal structure prediction. The necessity of correcting for missing long-range electron correlation, also known as van der Waals (vdW) interaction, is pointed out and some methodological issues such as inclusion of three-body dispersion terms are discussed. One of the most efficient and widely used methods is the semi-classical dispersion correction D3. Its applicability for the calculation of sublimation energies is investigated for the benchmark set X23 consisting of 23 small organic crystals. For PBE-D3 the mean absolute deviation (MAD) is below the estimated experimental uncertainty of 1.3 kcal/mol. For two larger π-systems, the equilibrium crystal geometry is investigated and very good agreement with experimental data is found. Since these calculations are carried out with huge plane-wave basis sets they are rather time consuming and routinely applicable only to systems with less than about 200 atoms in the unit cell. Aiming at crystal structure prediction, which involves screening of many structures, a pre-sorting with faster methods is mandatory. Small, atom-centered basis sets can speed up the computation significantly but they suffer greatly from basis set errors. We present the recently developed geometrical counterpoise correction gCP. It is a fast semi-empirical method which corrects for most of the inter- and intramolecular basis set superposition error. For HF calculations with nearly minimal basis sets, we additionally correct for short-range basis incompleteness. We combine all three terms in the HF-3c denoted scheme which performs very well for the X23 sublimation energies with an MAD of only 1.5 kcal/mol, which is close to the huge basis set DFT-D3 result.

  7. 2-[Anilino(phen­yl)meth­yl]cyclo­heptan­one

    Science.gov (United States)

    Eftekhari-Sis, Bagher; Mohajer, Sahar; Zirak, Maryam; Mozaffarnia, Sakineh; Büyükgüngör, Orhan

    2013-01-01

    In the title compound, C20H23NO, the cyclo­hepta­none ring adopts a twist-chair conformation, with the amino­methyl substituent in an equatorial position. The relative configuration of the two stereocenters is R,R. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into chains along [100]. PMID:23476371

  8. (2E)-3-[4-(Benz-yloxy)phen-yl]-1-(2,6-dichloro-3-fluoro-phen-yl)prop-2-en-1-one.

    Science.gov (United States)

    Praveen, Aletti S; Yathirajan, Hemmige S; Gerber, Thomas; van Brecht, Benjamin; Betz, Richard

    2012-12-01

    In the title compound, C22H15Cl2FO2, a chalcone derivative featuring a threefold-halogenated aromatic substituent, the conformation about the C=C bond is E. In the crystal C-H⋯F and C-H⋯Cl contacts connect the mol-ecules into undulating sheets parallel to (101). In addition, C-H⋯π inter-actions are also present.

  9. The crystal structure and morphology of NiO-YSZ composite that prepared from local zircon concentrate of Bangka Island

    Energy Technology Data Exchange (ETDEWEB)

    Rahmawati, F., E-mail: fitria@mipa.uns.ac.id; Apriyani, K.; Heraldy, E. [Research Group of Solid State Chemistry & Catalysis, Department of Chemistry, Sebelas Maret University, Jl. Ir. Sutami 36A Kentingan Surakarta (Indonesia); Soepriyanto, S. [Department of Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132 (Indonesia)

    2016-03-29

    In order to increase the economic value of local zircon concentrate from Bangka Island, NiO-YSZ was synthesized from Zirconia, ZrO{sub 2} that was prepared from local zircon concentrate. The NiO-YSZ composite was synthesized by solid state reaction method. XRD analysis equipped with Le Bail refinement was carried out to analyze the crystal structure and cell parameters of the prepared materials. The result showed that zirconia was crystallized in tetragonal structure with a space group of P42/NMC. Yttria-Stabilized-Zirconia (YSZ) was prepared by doping 8% mol yttrium oxide into zirconia and then sintered at 1250°C for 3 hours. Doping of 8% mol Yttria allowed phase transformation of zirconia from tetragonal into the cubic structure. Meanwhile, the composite of NiO-YSZ consists of two crystalline phases, i.e. the NiO with cubic structure and the YSZ with cubic structure. SEM analysis of the prepared materials shows that the addition of NiO into YSZ allows the morphology to become more roughness with larger grain size.

  10. Machine learning for the structure-energy-property landscapes of molecular crystals.

    Science.gov (United States)

    Musil, Félix; De, Sandip; Yang, Jack; Campbell, Joshua E; Day, Graeme M; Ceriotti, Michele

    2018-02-07

    Molecular crystals play an important role in several fields of science and technology. They frequently crystallize in different polymorphs with substantially different physical properties. To help guide the synthesis of candidate materials, atomic-scale modelling can be used to enumerate the stable polymorphs and to predict their properties, as well as to propose heuristic rules to rationalize the correlations between crystal structure and materials properties. Here we show how a recently-developed machine-learning (ML) framework can be used to achieve inexpensive and accurate predictions of the stability and properties of polymorphs, and a data-driven classification that is less biased and more flexible than typical heuristic rules. We discuss, as examples, the lattice energy and property landscapes of pentacene and two azapentacene isomers that are of interest as organic semiconductor materials. We show that we can estimate force field or DFT lattice energies with sub-kJ mol -1 accuracy, using only a few hundred reference configurations, and reduce by a factor of ten the computational effort needed to predict charge mobility in the crystal structures. The automatic structural classification of the polymorphs reveals a more detailed picture of molecular packing than that provided by conventional heuristics, and helps disentangle the role of hydrogen bonded and π-stacking interactions in determining molecular self-assembly. This observation demonstrates that ML is not just a black-box scheme to interpolate between reference calculations, but can also be used as a tool to gain intuitive insights into structure-property relations in molecular crystal engineering.

  11. Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Yu-Wei [Graduate Institute of Applied Science, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Yang, Ko-Ho, E-mail: yangkoho@cc.kuas.edu.tw [Graduate Institute of Applied Science, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Chang, Kuo-Ming [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Dental Materials Research Center, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Yeh, Sung-Wei [Metal Industries Research and Development Centre, 1001 Kaohsiung Highway, Kaohsiung 811, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100, Shihchuan 1st Road, Kaohsiung 80728, Taiwan (China)

    2011-06-16

    Highlights: > The thermal behavior of 3Y-TZP precursor powders had been investigated. > The crystallization behavior of 3Y-TZP nanopowders had been investigated. > The activation energy for crystallization of tetragonal ZrO{sub 2} was obtained. > The growth morphology parameter n is approximated as 2.0. > The crystallites show a plate-like morphology. - Abstract: The synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanopowders prepared using a simple co-precipitation process at 348 K and pH = 7 were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), an X-ray diffractometer (XRD), the Raman spectra, transmission electron microscopy (TEM), selected area electron diffraction (SAED), and an energy dispersive spectrometer (EDS). The activation energy of tetragonal ZrO{sub 2} crystallization from 3Y-TZP freeze-dried precursor powders using a non-isothermal method, namely, 169.2 {+-} 21.9 kJ mol{sup -1}, was obtained. The growth morphology parameter n was approximated as 2.0, which indicated that it had a plate-like morphology. The XRD, Raman spectra, and SAED patterns showed that the phase of the tetragonal ZrO{sub 2} was maintained at 1273 K. The crystallite size of 3Y-TZP freeze-dried precursor powders calcined at 1273 K for 5 min was 21.3 nm.

  12. Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process

    International Nuclear Information System (INIS)

    Hsu, Yu-Wei; Yang, Ko-Ho; Chang, Kuo-Ming; Yeh, Sung-Wei; Wang, Moo-Chin

    2011-01-01

    Highlights: → The thermal behavior of 3Y-TZP precursor powders had been investigated. → The crystallization behavior of 3Y-TZP nanopowders had been investigated. → The activation energy for crystallization of tetragonal ZrO 2 was obtained. → The growth morphology parameter n is approximated as 2.0. → The crystallites show a plate-like morphology. - Abstract: The synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanopowders prepared using a simple co-precipitation process at 348 K and pH = 7 were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), an X-ray diffractometer (XRD), the Raman spectra, transmission electron microscopy (TEM), selected area electron diffraction (SAED), and an energy dispersive spectrometer (EDS). The activation energy of tetragonal ZrO 2 crystallization from 3Y-TZP freeze-dried precursor powders using a non-isothermal method, namely, 169.2 ± 21.9 kJ mol -1 , was obtained. The growth morphology parameter n was approximated as 2.0, which indicated that it had a plate-like morphology. The XRD, Raman spectra, and SAED patterns showed that the phase of the tetragonal ZrO 2 was maintained at 1273 K. The crystallite size of 3Y-TZP freeze-dried precursor powders calcined at 1273 K for 5 min was 21.3 nm.

  13. Tris[(6S)-6-hy­droxy-4-epi-shikimic acid] monohydrate: an enanti­omerically pure hy­droxy­lated shikimic acid derived from methyl shikimate

    Science.gov (United States)

    Griesbeck, Axel G.; Miara, Claus; Neudörfl, Jörg-M.

    2012-01-01

    The title compound, 3C7H10O6·H2O, is the enanti­omerically pure product of a multi-step synthesis from the enanti­omerically pure natural shikimic acid. The asymmetric unit contains three mol­ecules of the acid and one mol­ecule of water. The cyclo­hexene rings of the acids have half-chair conformations. The carboxyl­ate, the four hydroxide groups and the additional water mol­ecule form a complex three-dimensional hydrogen-bonding network. PMID:23284468

  14. Structure and crystallization kinetics of Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Yin [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Xiao Hanning [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China)]. E-mail: zjbcy@126.com; Guo Wenming [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Guo Weiming [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China)

    2006-05-15

    The experimental IR (infrared spectra) and differential scanning calorimetry (DSC) curves of Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses, containing 30-60 mol% Bi{sub 2}O{sub 3}, have been investigated in the article. The composition dependence of IR absorption suggests that addition of Bi{sub 2}O{sub 3} results in a change in the short-range order structure of the borate matrix. The increase of Bi{sub 2}O{sub 3} content causes a progressive conversion of [BO{sub 3}] to [BO{sub 4}] units. Bi{sub 2}O{sub 3}, in the form of [BiO{sub 6}] octahedral units, plays the role of glass former. The crystallization kinetics of Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses were described by thermal stability indexes (k {sub gl}, {delta}T), activation energy (E) for crystallization and numerical factors(n, m) depending on the nucleation process and growth morphology, which were calculated by Satava method and the modified Ozawa-Chen method. When Bi{sub 2}O{sub 3} {<=} 45 mol%, the increase of Bi{sub 2}O{sub 3} tends to improve the thermal stabilities of the glasses. In this case, k {sub gl} may be more suitable for estimating the glass thermal stability in above composition range than {delta}T. A further increase of Bi{sub 2}O{sub 3} content will increase the crystallization trends of investigated glasses. Two possible kinds of growth mechanisms were involved in Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses: one-dimensional growth and two-dimensional growth. Moreover, structures of crystallized glasses were observed by X-ray diffraction (XRD). BiBO{sub 3} crystal with special non-linear optical properties can be obtained when Bi{sub 2}O{sub 3} {>=} 50 mol%.

  15. Diallyl 5-[(4-hexyl-oxyphen-yl)imino-meth-yl]-m-phenyl-ene dicarbonate.

    Science.gov (United States)

    Herrera-González, Ana María; López-Velázquez, Delia; Bernès, Sylvain

    2009-10-23

    The title mol-ecule, C(27)H(31)NO(7), an imine derivative bearing both carbonate and allyl functionalities, was synthesized in the hope of obtaining a mesogenic polymerizable material. The allyl-carbonate arms are fully disordered over two sets of sites, reflecting a large degree of rotational freedom about σ bonds [occupancies: 0.665 (9)/0.335 (9) for one substituent, 0.564 (9)/0.436 (9) for the other]. In contrast, the hexyl chain is ordered, and presents the common all-trans extended conformation. The benzene rings connected via the imine group make a dihedral angle of 9.64 (11)°. In the crystal, the Y-shaped mol-ecules are weakly associated into centrosymmetric dimers through pairs of C-H⋯O(hex-yl) contacts. The resulting layers of dimers, approximately parallel to (25), are closely packed in the crystal, allowing π⋯π inter-actions between benzene rings of neighboring layers: the separation between the centroid of the benzene ring substituted by allyl-carbonate and the centroid of the benzene ring bearing the hex-yloxy group in the adjacent layer is 3.895 (1) Å.

  16. 2'-Fluoro-3',5'-dimethoxy-acetanilide.

    Science.gov (United States)

    Xie, Kai; Lou, Yuan-Yuan; Zheng, Jin; Zhao, Qing-Jie; Wei, Ya-Bing

    2008-12-24

    Mol-ecules of the title compound, C(10)H(12)FNO(3), are nearly planar considering all non-H atoms with a mean deviation of 0.0288 Å. Mol-ecules are linked through inter-molecular N-H⋯O and N-H⋯F hydrogen bonds.

  17. Crystal structure determination and thermal behavior upon melting of p-synephrine

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Frédéric [Unité de Technologies Chimiques et Biologiques pour la Santé, U1022 INSERM, UMR8258 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l' Observatoire, 75006 Paris (France); Négrier, Philippe [Laboratoire Ondes et Matière d' Aquitaine, Université de Bordeaux, UMR CNRS 5798, 351 cours de la Libération, 33 405 Talence Cedex (France); Corvis, Yohann [Unité de Technologies Chimiques et Biologiques pour la Santé, U1022 INSERM, UMR8258 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l' Observatoire, 75006 Paris (France); Espeau, Philippe, E-mail: philippe.espeau@parisdescartes.fr [Unité de Technologies Chimiques et Biologiques pour la Santé, U1022 INSERM, UMR8258 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l' Observatoire, 75006 Paris (France)

    2016-05-20

    Highlights: • The refinement of the crystal structure is achieved from X-ray powder diffraction. • P-Synephrine is revealed to be a racemic compound. • Degradation during melting can be bypassed using high DSC scan rates. • The temperature and enthalpy of melting are then proposed for this compound. - Abstract: The crystal structure of p-synephrine was solved from a high-resolution X-ray powder diffraction pattern optimized by energy-minimization calculations using the Dreiding force field. The title compound crystallizes in a monoclinic system (space group P2{sub 1}/c, Z = 4, with a = 8.8504(11) Å, b = 12.1166(15) Å, c = 9.7820(11) Å, β = 122.551(2)°, V = 884.21(19) Å{sup 3} and d = 1.256 g cm{sup −3}). Since p-synephrine degrades upon melting, its melting data were determined from DSC experiments carried out as a function of the heating rate. This method allowed determining a melting temperature and enthalpy equal to 199.8 ± 1.3 °C and 57 ± 3 kJ mol{sup −1}, respectively.

  18. Bis(8-hy-droxy-1-methyl-quinolin-1-ium) bis-(1,2-dicyano-ethene-1,2-dithiol-ato)nickelate(II) dihydrate.

    Science.gov (United States)

    Guan, Zhi-Heng; Jiang, Zhang; Wang, Fang-Ming

    2011-12-01

    In the title ion-pair complex, (C(10)H(10)NO)(2)[Ni(C(4)N(2)S(2))(2)]·2H(2)O, the anion has crystallographically imposed centre of symmetry. The Ni(II) atom exhibits a slightly distorted square-planar coordination geometry. In the crystal, the water mol-ecule links anions and cations into a three-dimensional network via O-H⋯N, O-H⋯S and O-H⋯O hydrogen bonds. The structure is further stabilized by weak S⋯π contacts [S⋯centroid = 3.8047 (9) Å] and π-π stacking inter-actions [centriod-centroid distance = 3.8653 (7) Å].

  19. 3-Ethyl-5-(4-meth­oxy­phen­oxy)-2-(pyridin-4-yl)-3H-imidazo[4,5-b]pyridine

    Science.gov (United States)

    Ranjith, S.; SubbiahPandi, A.; Suresh, A. D.; Pitchumani, K.

    2011-01-01

    In the title compound, C20H18N4O2, the imidazopyridine fused ring system is almost perpendicular to the benzene ring [dihedral angle = 87.6 (5)°]. The pyridine ring makes a dihedral angle of 35.5 (5)° with the mean plane of the imidazopyridine fragment. The crystal structure is stabilized by an aromatic π–π stacking inter­action between the phenyl rings of neighbouring mol­ecules [centroid–centroid distance = 3.772 (2) Å, inter­planar distance = 3.546 (2) Å and slippage = 1.286 (2) Å]. PMID:21837144

  20. Structural evolution of plasma-sprayed nanoscale 3 mol% and 5 mol% yttria-stabilized zirconia coatings during sintering

    Science.gov (United States)

    Zhao, Yan; Gao, Yang

    2017-12-01

    The microstructure of plasma-sprayed nanostructured yttria-stabilized zirconia (YSZ) coatings may change during high-temperature exposure, which would influence the coating performance and service lifetime. In this study, the phase structure and the microstructural evolution of 3YSZ (zirconia-3 mol% yttria) and 5YSZ (zirconia-5 mol% yttria) nanostructured coatings were investigated by means of sintering at 1400 °C for 50-100 h. The microhardness, elastic moduli, and thermal shock cycles of the 3YSZ and 5YSZ nanostructured coatings were also investigated. The results showed that the redistribution of yttrium ions at 1400 °C caused the continuous increase of monoclinic-phase zirconia, but no obvious inter-splat cracking formed at the cross-sections, even after 100 h. Large voids appeared around the nanoporous zone because of the sintering of nanoscale granules upon high-temperature exposure. The microhardness and elastic moduli of the nanostructured coatings first increased and then decreased with increasing sintering times. The growth rate of the nanograins in the 3YSZ coating was lower than that in 5YSZ, which slowed the changes in 3YSZ coating porosity during sintering. Although the 3YSZ coating was prone to monoclinic phase transition, the experimental results showed that the thermal shock resistance of the 3YSZ coating was better than that of the 5YSZ coating.

  1. Structure and Chemical Durability of Lead Crystal Glass.

    Science.gov (United States)

    Angeli, Frédéric; Jollivet, Patrick; Charpentier, Thibault; Fournier, Maxime; Gin, Stéphane

    2016-11-01

    Silicate glasses containing lead, also called lead crystal glasses, are commonly used as food product containers, in particular for alcoholic beverages. Lead's health hazards require major attention, which can first be investigated through the understanding of Pb release mechanisms in solution. The behavior of a commercial crystal glass containing 10.6 mol % of PbO (28.3 wt %) was studied in a reference solution of 4% acetic acid at 22, 40, and 70 °C at early and advanced stages of reaction. High-resolution solid-state 17 O and 29 Si NMR was used to probe the local structure of the pristine and, for the first time, of the altered lead crystal glass. Inserted into the vitreous structure between the network formers as Si-O-Pb bonds, Pb does not form Pb-O-Pb clusters which are expected to be more easily leached. A part of K is located near Pb, forming mixed Si-O-(Pb,K) near the nonbridging oxygens. Pb is always released into the solution following a diffusion-controlled dissolution over various periods of time, at a rate between 1 and 2 orders of magnitude lower than the alkalis (K and Na). The preferential release of alkalis is followed by an in situ repolymerization of the silicate network. Pb is only depleted in the outermost part of the alteration layer. In the remaining part, it stays mainly surrounded by Si in a stable structural configuration similar to that of the pristine glass. A simple model is proposed to estimate the Pb concentration as a function of glass surface, solution volume, temperature, and contact time.

  2. Mol 7C/6; Mol 7C/6

    Energy Technology Data Exchange (ETDEWEB)

    Aberle, J.; Schleisiek, K.; Schmuck, I.; Schmidt, L.; Romer, O.; Weih, G.

    1995-08-01

    The Mol 7C/6 coolant blockage experiment in the Belgian BR2 reactor yielded results different from Mol 7C experiments with low burnup pins: At 10% burnup local failure is not self-limiting, but requires active systems for detection and scram. The Mol 7C series was finished in 1991. In each of the test bundles Mol 7C/4, /5 and /6, 30 Mk I pins pre-irradiated in KNK II were used. The central blockage consisted of enriched UO{sub 2} covering 30 percent of the bundle cross-section, with a height of 40 mm. The most important system for timely detection of coolant blockages of the type studied in Mol 7C/6 is based on DND. (orig.)

  3. cis-Tetra­chloridobis(1H-imidazole-κN 3)platinum(IV)

    Science.gov (United States)

    Bokach, Nadezhda A.; Kukushkin, Vadim Yu.; Izotova, Yulia A.; Usenko, Natalia I.; Haukka, Matti

    2012-01-01

    In the title complex, cis-[PtCl4(C3H4N2)2], the PtIV ion lies on a twofold rotation axis and is coordinated in a slightly distorted octa­hedral geometry. The dihedral angle between the imidazole rings is 69.9 (2)°. In the crystal, mol­ecules are linked by N—H⋯Cl hydrogen bonds, forming a three-dimensional network. PMID:22590070

  4. Di-tert-butyl-bis(N-isopropyl-N-methyl-dithio-carbamato-κS,S')tin(IV).

    Science.gov (United States)

    Muthalib, Amirah Faizah; Baba, Ibrahim; Samsudin, Mohd Wahid; Ng, Seik Weng

    2010-03-03

    The dithio-carbamate anions in the title compound, [Sn(C(4)H(9))(2)(C(5)H(10)NS(2))(2)], chelate to the Sn(IV) atom, which is six-coordinated in a skew-trapezoidal-bipyramidal geometry. The mol-ecule lies across a twofold rotation axis. The crystal studied was a non-merohedral twin, the ratio of the twin components being 0.82 (1):0.18 (1).

  5. cis-Aquabis(2,2'-bipyridine-κ2N,N')-fluoridochromium(III) bis(perchlorate) dihydrate

    DEFF Research Database (Denmark)

    Birk, Torben; Bendix, Jesper

    2010-01-01

    The title mixed aqua-fluoride complex, [CrF(C(10)H(8)N(2))(2)(H(2)O)](ClO(4))(2)·2H(2)O, has been synthesized by aqua-tion of the corresponding difluoride complex using lanthan-ide(III) ions as F(-) acceptors. The complex crystallizes with a Cr(III) ion at the center of a distorted octa-hedral co......-hedral coordination polyhedron with a cis arrangement of ligands. The crystal packing shows a hydrogen-bonding pattern involving water mol-ecules, the coordinated F atom and the perchlorate anions....

  6. Di-μ-cyanido-tetra-cyanido(5,5,7,12,12,14-hexa-methyl-1,4,8,11-tetra-aza-cyclo-tetra-decane)[N-(quinolin-8-yl)quinoline-2-carboxamidato]diiron(III)nickel(II) 2.07-hydrate.

    Science.gov (United States)

    Yang, Yuqi; Zhou, Hongbo; Shen, Xiaoping

    2013-05-01

    The asymmetric unit of the title complex, [Fe2Ni(C19H12N3O)2(CN)6(C16H36N4)]·2.07H2O, contains one [Fe(qcq)(CN)3](-) anion, half a [Ni(teta)](2+) cation and two partially occupied inter-stitial water mol-ecules [qcq(-) is the N-(quinolin-8-yl)quinoline-2-carboxamidate anion and teta is 5,5,7,12,12,14-hexa-methyl-1,4,8,11-tetra-aza-cyclo-tetra-deca-ne]. In the complex mol-ecule, two [Fe(qcq)(CN)3](-) anions additionally coordinate the central [Ni(teta)](2+) cation through cyanide groups in a trans mode, resulting in a trinuclear structure with the Ni(2+) cation lying on an inversion centre. The two inter-stitial water mol-ecules are partially occupied, with occupancy factors of 0.528 (10) and 0.506 (9). O-H⋯O and O-H⋯N hydrogen bonding involving the two lattice water molecules and the carbonyl function and a teta N atom in an adjacent cluster leads to the formation of layers extending parallel to (010).

  7. Tris(2,2′-bipyridine-κ2 N,N′)cobalt(III) bis­[bis­(pyridine-2,6-dicarboxyl­ato-κ3 O 2,N,O 6)cobaltate(III)] perchlorate dimethyl­formamide hemisolvate 1.3-hydrate

    Science.gov (United States)

    Golenya, Irina A.; Boyko, Alexander N.; Kotova, Natalia V.; Haukka, Matti; Iskenderov, Turganbay S.

    2012-01-01

    In the title compound, [Co(C10H8N2)3][Co(C7H3NO4)2]2(ClO4)·0.5C3H7NO·1.3H2O, the CoIII atom in the complex cation is pseudoocta­hedrally coordinated by six N atoms of three chelating bipyridine ligands. The CoIII atom in the complex anion is coordinated by two pyridine N atoms and four carboxyl­ate O atoms of two doubly deprotonated pyridine-2,6-dicarboxyl­ate ligands in a distorted octa­hedral geometry. One dimethyl­formamide solvent mol­ecule and two water mol­ecules are half-occupied and one water mol­ecule is 0.3-occupied. O—H⋯O hydrogen bonds link the water mol­ecules, the perchlorate anions and the complex anions. π–π inter­actions between the pyridine rings of the complex anions are also observed [centroid–centroid distance = 3.804 (3) Å]. PMID:23125573

  8. N-[5-Methyl-2-(2-nitro-phen-yl)-4-oxo-1,3-thia-zolidin-3-yl]pyridine-3-carboxamide monohydrate.

    Science.gov (United States)

    Akkurt, Mehmet; Celik, Ismail; Demir, Hale; Ozkırımlı, Sumru; Büyükgüngör, Orhan

    2011-01-08

    In the title compound, C(16)H(14)N(4)O(4)S·H(2)O, the benzene and pyridine rings make a dihedral angle of 85.8 (1)°. Both enanti-omers of the chiral title compound are statistically disordered over the same position in the unit cell. The methyl and carbonyl group attached to the stereogenic center (C(5) of the thia-zolidine ring) were therefore refined with common site-occupation factors of 0.531 (9) and 0.469 (9), respectively, for each stereoisomer. In the crystal, inter-molecular N-H⋯O, O-H⋯O and O-H⋯N hydrogen bonds link the mol-ecules, forming a three-dimensional supra-molecular network. The crystal structure further shows π-π stacking inter-actions [centroid-centroid distance = 3.5063 (13) Å] between the pyridine rings.

  9. 4-[(1E)-3-(2,6-Dichloro-3-fluoro-phen-yl)-3-oxoprop-1-en-1-yl]benzonitrile.

    Science.gov (United States)

    Praveen, Aletti S; Yathirajan, Hemmige S; Narayana, Badiadka; Gerber, Thomas; Hosten, Eric; Betz, Richard

    2012-05-01

    In the title mol-ecule, C(16)H(8)Cl(2)FNO, the benzene rings form a dihedral angle of 78.69 (8)°. The F atom is disordered over two positions in a 0.530 (3):0.470 (3) ratio. The crystal packing exhibits π-π inter-actions between dichloro-substituted rings [centroid-centroid distance = 3.6671 (10) Å] and weak inter-molecular C-H⋯F contacts.

  10. Di-tert-butyl­bis(N-isopropyl-N-methyl­dithio­carbamato-κ2 S,S′)tin(IV)

    Science.gov (United States)

    Muthalib, Amirah Faizah; Baba, Ibrahim; Samsudin, Mohd Wahid; Ng, Seik Weng

    2010-01-01

    The dithio­carbamate anions in the title compound, [Sn(C4H9)2(C5H10NS2)2], chelate to the SnIV atom, which is six-coordinated in a skew-trapezoidal-bipyramidal geometry. The mol­ecule lies across a twofold rotation axis. The crystal studied was a non-merohedral twin, the ratio of the twin components being 0.82 (1):0.18 (1). PMID:21580471

  11. N,N-Dimethyl-N-propyl-propan-1-aminium chloride monohydrate.

    Science.gov (United States)

    Kärnä, Minna; Lahtinen, Manu; Valkonen, Jussi

    2008-10-11

    The title compound, C(8)H(20)N(+)·Cl(-)·H(2)O, has been prepared by a simple one-pot synthesis route followed by anion exchange using resin. In the crystal structure, the cations are packed in such a way that channels exist parallel to the b axis. These channels are filled by the anions and water mol-ecules, which inter-act via O-H⋯Cl hydrogen bonds [O⋯Cl = 3.285 (3) and 3.239 (3) Å] to form helical chains. The cations are involved in weak inter-molecular C-H⋯Cl and C-H⋯O hydrogen bonds. The title compound is not isomorphous with the bromo or iodo analogues.

  12. Co3(PO4)2·4H2O

    Science.gov (United States)

    Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang

    2008-01-01

    Single crystals of Co3(PO4)2·4H2O, tricobalt(II) bis­[ortho­phosphate(V)] tetra­hydrate, were obtained under hydro­thermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO4)2·4H2O (mineral name hopeite) and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetra­hedral coordination, while the second, located on a mirror plane, has a distorted octa­hedral coordination environment. The tetra­hedrally coordinated Co2+ is bonded to four O atoms of four PO4 3− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water mol­ecules (two of which are located on mirror planes), forming a framework structure. In addition, hydrogen bonds of the type O—H⋯O are present throughout the crystal structure. PMID:21200978

  13. Synthesis and crystal structure of nanocrystalline phase: Ca1-xMxZr4P6O24 (M = Sr, Ba and x = 0.0-1.0)

    International Nuclear Information System (INIS)

    Rashmi, Ch.; Shrivastava, O.P.

    2011-01-01

    The structure of strontium and barium substituted nano crystalline calcium zirconium phosphate (CZP) was determined on the basis of crystal data of solid solutions. It was found that up to 2.42 mol % of strontium and 1.62 mol % of barium could be loaded into CZP formulations without significant changes of the three-dimensional framework structure. The crystal chemistry of Ca 1-x M x Zr 4 P 6 O 24 (M = Sr, Ba and x = 0.0-1.0) phases has been investigated using General Structure Analysis System (GSAS) programming. The Sr and Ba substituted CZP phases crystallize in the space group R-3 and Z = 6. Powder diffraction data have been subjected to Rietveld refinement to arrive at a satisfactory structural convergence of R-factors. The unit cell volume and polyhedral (ZrO 6 and PO 4 ) distortion increases with rise in the size and mole % of loaded cation in the CZP matrix. The PO 4 stretching and bending vibrations in the Infra red (IR) region have been assigned. SEM, TEM and EDAX analysis provide evidence of Sr and Ba in the matrix. (authors)

  14. Self-powdering and nonlinear optical domain structures in ferroelastic β'-Gd2(MoO4)3 crystals formed in glass

    International Nuclear Information System (INIS)

    Tsukada, Y.; Honma, T.; Komatsu, T.

    2009-01-01

    Ferroelastic β'-Gd 2 (MoO 4 ) 3 , (GMO), crystals are formed through the crystallization of 21.25Gd 2 O 3 -63.75MoO 3 -15B 2 O 3 glass (mol%), and two scientific curious phenomena are observed. (1) GMO crystals formed in the crystallization break into small pieces with a triangular prism or pyramid shape having a length of 50-500 μm spontaneously during the crystallizations in the inside of an electric furnace, not during the cooling in air after the crystallization. This phenomenon is called 'self-powdering phenomenon during crystallization' in this paper. (2) Each self-powdered GMO crystal grain shows a periodic domain structure with different refractive indices, and a spatially periodic second harmonic generation (SHG) depending on the domain structure is observed. It is proposed from polarized micro-Raman scattering spectra and the azimuthal dependence of second harmonic intensities that GMO crystals are oriented in each crystal grain and the orientation of (MoO 4 ) 2- tetrahedra in GMO crystals changes periodically due to spontaneous strains in ferroelastic GMO crystals. - Graphical abstract: This figure shows the polarized optical photograph at room temperature for a particle (piece) obtained by a heat treatment of the glass at 590 deg. C for 2 h in an electric furnace in air. This particle was obtained through the self-powdering behavior in the crystallization of glass. The periodic domain structure is observed. Ferroelastic β'-Gd 2 (MoO 4 ) 3 crystals are formed in the particle, and second harmonic generations are detected, depending on the domain structure.

  15. Crystal structure and magnetic susceptibility of UOSe single crystals

    International Nuclear Information System (INIS)

    Kaczorowski, D.; Muenster Univ.; Poettgen, R.; Jeitschko, W.; Gajek, Z.; Zygmunt, A.

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T N =100±2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author)

  16. Crystal structure and magnetic susceptibility of UOSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaczorowski, D. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Poettgen, R.; Jeitschko, W. (Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Gajek, Z.; Zygmunt, A. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research)

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T[sub N]=100[+-]2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author).

  17. Crystal structure of 2,5-di-methyl-anilinium salicylate.

    Science.gov (United States)

    Mani, A; Kumar, P Praveen; Chakkaravarthi, G

    2015-09-01

    The title mol-ecular salt, C8H12N(+)·C7H5O3 (-) arose from the proton-transfer reaction between 2,5-xylidine and salicylic acid. In the anion, the dihedral angle between the planes of the aromatic ring and the -CO2 (-) group is 11.08 (8)°; this near planarity is consolidated by an intra-molecular O-H⋯O hydrogen bond. In the crystal, the components are connected by N-H⋯O hydrogen bonds, with all three O atoms in the anion acting as acceptors; the result is a [100] chain. The structure also features weak C-H⋯O bonds and aromatic π-π stacking [centroid-to-centroid distance = 3.7416 (10) Å] inter-actions, which lead to a three-dimensional network.

  18. Di-μ-cyanido-tetra­cyanido(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane)[N-(quinolin-8-yl)quinoline-2-carboxamidato]diiron(III)nickel(II) 2.07-hydrate

    Science.gov (United States)

    Yang, Yuqi; Zhou, Hongbo; Shen, Xiaoping

    2013-01-01

    The asymmetric unit of the title complex, [Fe2Ni(C19H12N3O)2(CN)6(C16H36N4)]·2.07H2O, contains one [Fe(qcq)(CN)3]− anion, half a [Ni(teta)]2+ cation and two partially occupied inter­stitial water mol­ecules [qcq− is the N-(quinolin-8-yl)quinoline-2-carboxamidate anion and teta is 5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne]. In the complex mol­ecule, two [Fe(qcq)(CN)3]− anions additionally coordinate the central [Ni(teta)]2+ cation through cyanide groups in a trans mode, resulting in a trinuclear structure with the Ni2+ cation lying on an inversion centre. The two inter­stitial water mol­ecules are partially occupied, with occupancy factors of 0.528 (10) and 0.506 (9). O—H⋯O and O—H⋯N hydrogen bonding involving the two lattice water molecules and the carbonyl function and a teta N atom in an adjacent cluster leads to the formation of layers extending parallel to (010). PMID:23723777

  19. Crystal structure of 5-{4'-[(2-{2-[2-(2-ammonio-eth-oxy)eth-oxy]eth-oxy}eth-yl)carbamo-yl]-4-meth-oxy-[1,1'-biphen-yl]-3-yl}-3-oxo-1,2,5-thia-diazo-lidin-2-ide 1,1-dioxide: a potential inhibitor of the enzyme protein tyrosine phosphatase 1B (PTP1B).

    Science.gov (United States)

    Ruddraraju, Kasi Viswanatharaju; Hillebrand, Roman; Barnes, Charles L; Gates, Kent S

    2015-04-01

    The title compound, C24H32N4O8S, (I), crystallizes as a zwitterion. The terminal amine N atom of the [(2-{2-[2-(2-ammonio-eth-oxy)eth-oxy]eth-oxy}eth-yl)carbamo-yl] side chain is protonated, while the 1,2,5-thia-diazo-lidin-3-one 1,1-dioxide N atom is deprotonated. The side chain is turned over on itself with an intra-molecular N-H⋯O hydrogen bond. The 1,2,5-thia-diazo-lidin-3-one 1,1-dioxide ring has an envelope conformation with the aryl-substituted N atom as the flap. Its mean plane is inclined by 62.87 (8)° to the aryl ring to which it is attached, while the aryl rings of the biphenyl unit are inclined to one another by 20.81 (8)°. In the crystal, mol-ecules are linked by N-H⋯O and N-H⋯N hydrogen bonds, forming slabs lying parallel to (010). Within the slabs there are C-H⋯O and C-H⋯N hydrogen bonds and C-H⋯π inter-actions present.

  20. Crystal structure and physical properties of new Ca{sub 2}TGe{sub 3} (T = Pd and Pt) germanides

    Energy Technology Data Exchange (ETDEWEB)

    Klimczuk, T., E-mail: tomasz.klimczuk@pg.gda.pl [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80–233 Gdansk (Poland); Xie, Weiwei [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States); Winiarski, M.J.; Kozioł, R.; Litzbarski, L.S. [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80–233 Gdansk (Poland); Luo, Huixia; Cava, R.J. [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States)

    2016-11-15

    The crystallographic, electronic transport and thermal properties of Ca{sub 2}PdGe{sub 3} and Ca{sub 2}PtGe{sub 3} are reported. The compounds crystalize in an ordered variant of the AlB{sub 2} crystal structure, in space group P6/mmm, with the lattice parameters a = 8.4876(4) Å/8.4503(5) Å and c = 4.1911(3) Å/4.2302(3) Å for Ca{sub 2}PdGe{sub 3} and Ca{sub 2}PtGe{sub 3}, respectively. The resistivity data exhibit metallic behavior with residual-resistivity-ratios (RRR) of 13 for Ca{sub 2}PdGe{sub 3} and 6.5 for Ca{sub 2}PtGe{sub 3}. No superconducting transition is observed down to 0.4 K. Specific heat studies reveal similar values of the Debye temperatures and Sommerfeld coefficients: Θ{sub D} = 298 K, γ = 4.1 mJ mol{sup −1} K{sup −2} and Θ{sub D} = 305 K, γ = 3.2 mJ mol{sup −1} K{sup −2} for Ca{sub 2}PdGe{sub 3} and Ca{sub 2}PtGe{sub 3}, respectively. The low value of γ is in agreement with the electronic structure calculations.

  1. 1-(4-Methyl­phenyl­sulfon­yl)-5,6-di­nitro-1H-indazole

    Science.gov (United States)

    Oulemda, Bassou; Rakib, El Mostapha; Abbassi, Najat; Saadi, Mohamed; El Ammari, Lahcen

    2014-01-01

    In the title compound, C14H10N4O6S, the indazole ring system is almost perpendicular to the tosyl ring, as indicated by the dihedral angle of 89.40 (9)° between their planes. The dihedral angles between the indazole system and the nitro groups are 57.0 (3) and 31.9 (3)°. In the crystal, mol­ecules are linked by C—H⋯O inter­actions, forming chains running along [100]. PMID:24526962

  2. Amine free crystal structure: The crystal structure of d(CGCGCG)2 and methylamine complex crystal

    International Nuclear Information System (INIS)

    Ohishi, Hirofumi; Tsukamoto, Koji; Hiyama, Yoichi; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Ishida, Toshimasa

    2006-01-01

    We succeeded in the crystallization of d(CGCGCG) 2 and methylamine Complex. The crystal was clear and of sufficient size to collect the X-ray crystallographic data up to 1.0 A resolution using synchrotron radiation. As a result of X-ray crystallographic analysis of 2F o - F c map was much clear and easily traced. It is First time monoamine co-crystallizes with d(CGCGCG) 2 . However, methylamine was not found from the complex crystal of d(CGCGCG) 2 and methylamine. Five Mg ions were found around d(CGCGCG) 2 molecules. These Mg ions neutralized the anion of 10 values of the phosphate group of DNA with five Mg 2+ . DNA stabilized only by a metallic ion and there is no example of analyzing the X-ray crystal structure like this. Mg ion stabilizes the conformation of Z-DNA. To use monoamine for crystallization of DNA, we found that we can get only d(CGCGCG) 2 and Mg cation crystal. Only Mg cation can stabilize the conformation of Z-DNA. The method of using the monoamine for the crystallization of DNA can be applied to the crystallization of DNA of long chain of length in the future like this

  3. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    Science.gov (United States)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-09-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate ( I), bromo-(2-formylpyridinethiosemicarbazono)copper ( II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate ( III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I III at a concentration of 10-5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  4. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    International Nuclear Information System (INIS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-01-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate (I), bromo-(2-formylpyridinethiosemicarbazono)copper (II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate (III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I-III at a concentration of 10 -5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  5. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    Energy Technology Data Exchange (ETDEWEB)

    Chumakov, Yu. M., E-mail: chumakov.xray@phys.asm.md [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of); Tsapkov, V. I. [State University of Moldova (Moldova, Republic of); Jeanneau, E. [Universite Claude Bernard, Laboratoire des Multimateriaux et Interfaces (France); Bairac, N. N. [State University of Moldova (Moldova, Republic of); Bocelli, G. [National Research Council (IMEM-CNR), Institute of Materials for Electronics and Magnetism (Italy); Poirier, D.; Roy, J. [Centre Hospitalier Universitaire de Quebec (CHUQ) (Canada); Gulea, A. P. [State University of Moldova (Moldova, Republic of)

    2008-09-15

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate (I), bromo-(2-formylpyridinethiosemicarbazono)copper (II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate (III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I-III at a concentration of 10{sup -5} mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  6. EzMol: A Web Server Wizard for the Rapid Visualization and Image Production of Protein and Nucleic Acid Structures.

    Science.gov (United States)

    Reynolds, Christopher R; Islam, Suhail A; Sternberg, Michael J E

    2018-01-31

    EzMol is a molecular visualization Web server in the form of a software wizard, located at http://www.sbg.bio.ic.ac.uk/ezmol/. It is designed for easy and rapid image manipulation and display of protein molecules, and is intended for users who need to quickly produce high-resolution images of protein molecules but do not have the time or inclination to use a software molecular visualization system. EzMol allows the upload of molecular structure files in PDB format to generate a Web page including a representation of the structure that the user can manipulate. EzMol provides intuitive options for chain display, adjusting the color/transparency of residues, side chains and protein surfaces, and for adding labels to residues. The final adjusted protein image can then be downloaded as a high-resolution image. There are a range of applications for rapid protein display, including the illustration of specific areas of a protein structure and the rapid prototyping of images. Copyright © 2018. Published by Elsevier Ltd.

  7. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, B

    2004-01-01

    The authors discuss simulated photonic crystal structure designs for laser-driven particle acceleration. They focus on three-dimensional planar structures based on the so-called ''woodpile'' lattice, demonstrating guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice. They introduce a candidate geometry and discuss the properties of the accelerating mode. They also discuss the linear beam dynamics in the structure present a novelmethod for focusing the beam. In addition they describe ongoing investigations of photonic crystal fiber-based structures

  8. Crystal structure determination of Efavirenz

    International Nuclear Information System (INIS)

    Popeneciu, Horea; Dumitru, Ristoiu; Tripon, Carmen; Borodi, Gheorghe; Pop, Mihaela Maria

    2015-01-01

    Needle-shaped single crystals of the title compound, C 14 H 9 ClF 3 NO 2 , were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring

  9. Ternary and quaternary solid solutions in rare earth alloy phases with the CaCu5-type structure

    International Nuclear Information System (INIS)

    Malani, G.K.; Raman, A.; Mohanty, R.C.

    1992-01-01

    Crystal structural data were analyzed in seleced CaCu 5 -type ternary and quaternary solid solutions to assess the crystal chemical characteristics and stability features of the CaCu 5 -type structure in rare earth containing alloy phases. LaNi 5 was found to dissolve 100 mol% LaCu 5 , 100 mol% ErNi 5 , about 50 mol% LaIr 5 , 40 mol% 'LaMn 5 ', 20 mol% 'LaFe 5 ', and 25 mol% ErRh 5 . In contrast, LaCo 5 did not dissolve any Mn or any of the other elements other than Al - it dissolved about 20 mol% 'LaAl 5 '. LaCu 5 behaves similar to LaNi 5 in solid solutions. From the lack of solubility of any other element in LaFe 5 , LaCo 5 , LaRh 5 , and LaIr 5 and their great instability, these are inferred to be borderline cases in the realm of the CaCu 5 -type structure. In the CaCu 5 and related crystal structures, Ir is compatible with Ni, but not with Co or Rh, and Rh is not compatible with either Ni or Ir. (orig.) [de

  10. Bowl adamanzanes--bicyclic tetraamines: syntheses and crystal structures of complexes with cobalt(III) and chelating coordinated oxo-anions.

    Science.gov (United States)

    Broge, Louise; Søtofte, Inger; Jensen, Kristian; Jensen, Nicolai; Pretzmann, Ulla; Springborg, Johan

    2007-09-14

    Seven cobalt(III) complexes of the macrobicyclic tetraamine ligand [2(4).3(1)]adamanzane ([2(4).3(1)]adz) are reported along with the crystal structure of six of these complexes. The solid state and solution structures are discussed, and a detailed assignment of the NMR spectra of the sulfato complex is provided. Four of the seven complexes contain a chelate coordinating oxo-anion (sulfate, formiate, nitrate, carbonate). Equilibration of these species with the corresponding diaqua complex is generally slow. The rates of equilibration in 5 mol dm(-3) perchloric acid at 25 degrees C have been measured, yielding half lives of 20 min, 10 min and 3 h for the sulfato, formiato and carbonato species respectively. The corresponding reaction for the nitrato complex occurs with a half life of less than 3 min. The concentration acid dissociation constant for the Co([2(4).3(1)]adz)(HCO(3))(2+) ion has been measured to K(a) = 0.33 mol dm(-3) [25 degrees C, I = 2 mol dm(-3)] and K(a) = 0.15 mol dm(-3) [25 degrees C, I = 5 mol dm(-3)]. The propensity for coordination of sulfate was found to be large enough for a quantitative conversion of the carbonato complex to the sulfato complex to occur in 3 mol dm(-3) triflic acid containing a small sulfate contamination. On this basis the decarboxylation in 5 mol dm(-3) triflic acid of the corresponding cobalt(III) carbonato complex of the larger macrobicyclic tetraamine ligand [3(5)]adz was reinvestigated and found to lead to the sulfato complex as well. The difference in exchange rate of the oxo-anion ligands for the cobalt(III) complexes of the two adamanzane ligands is discussed and attributed to fundamental differences in the molecular structure where an inverted configuration of the secondary non-bridged amine groups is seen for the complexes of the larger [3(5)]adz ligand. The high affinity for chelating coordination of oxo-anions for these two cobalt(iii)-adamanzane-moieties is rationalised on basis of the N-Co-N angles. N

  11. Structure and crystallization behavior of La{sub 2}O{sub 3}⋅3B{sub 2}O{sub 3} metaborate glasses doped with Nd{sup 3+} or Eu{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Pytalev, D.S., E-mail: pytalev@isan.troitsk.ru [Institute of Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya St., 142190 Troitsk, Moscow (Russian Federation); Caurant, D.; Majérus, O.; Trégouët, H. [Institut de Recherche de Chimie Paris, CNRS – Chimie ParisTech, 11 Rue Pierre et Marie Curie, 75005 Paris (France); Charpentier, T. [CEA, IRAMIS, NIMBE, CEA-CNRS UMR 3299, Laboratoire de Structure et Dynamique par Résonance Magnétique, 91191 Gif-sur-Yvette (France); Mavrin, B.N. [Institute of Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya St., 142190 Troitsk, Moscow (Russian Federation)

    2015-08-25

    Highlights: • The structure and crystallization behavior of the La{sub 2}O{sub 3}⋅3B{sub 2}O{sub 3} glass are studied. • LaB{sub 3}O{sub 6} crystallizes congruently without intermediate but only from glass surface. • The structure of the amorphous and the crystalline phases differ significantly. • The activation energy of LaB{sub 3}O{sub 6} crystal growth is determined. - Abstract: The local structure and crystallization behavior of the stoichiometric La{sub 2}O{sub 3}⋅3B{sub 2}O{sub 3} (LaMB) metaborate glass doped with Nd{sup 3+} or Eu{sup 3+} ions are studied using differential thermal analysis (DTA), X-ray diffraction (XRD), Raman scattering and {sup 11}B magic-angle spinning nuclear magnetic resonance (MAS NMR), optical absorbance and luminescence techniques. In the crystallized samples, XRD, NMR and Raman spectroscopy have detected the formation of only one crystalline phase (congruent crystallization of LaB{sub 3}O{sub 6}). No intermediate metastable crystalline phase has been detected before LaB{sub 3}O{sub 6} crystals formation (single stage crystallization process). The observation of heat treated glass samples by scanning electron microscopy (SEM) and optical microscopy coupled with the study of the effect of varying the glass particle size on the DTA curves have both revealed that LaB{sub 3}O{sub 6} crystallization only occurs by a heterogeneous nucleation mechanism (needle-shape crystals) from glass surface. The activation energy E{sub c} of crystal growth has been determined by performing DTA experiments at different heating rates with the Kissinger (784 kJ/mol) and Ozawa (801 kJ/mol) equations than can be used for surface crystallization processes. The heterogeneous crystallization behavior and the spectroscopic results obtained in this work by comparing the LaMB glass with the LaB{sub 3}O{sub 6} crystalline phase suggest the existence of significant structural differences between the amorphous and the crystalline phases contrary to what

  12. Vinclozolin: 3-(3,5-di-chloro-phen-yl)-5-ethenyl-5-methyl-1,3-oxazolidine-2,4-dione.

    Science.gov (United States)

    Cho, Seonghwa; Kim, Jineun; Lee, Sangjin; Kim, Tae Ho

    2014-07-01

    In the title compound, C12H9Cl2NO3, which is the fungicide vinclozolin, the dihedral angle between the oxazolidine ring mean plane [r.m.s. deviation = 0.029 Å] and the benzene ring is 77.55 (8)°. In the crystal, mol-ecules are linked via C-H⋯O hydrogen bonds, forming chains along [010]. The chains are linked by short Cl⋯Cl contacts [3.4439 (3) and 3.5798 (3) Å], resulting in a three-dimensional architecture.

  13. (2E)-1-(2,6-Dichloro-3-fluoro-phen-yl)-3-phenyl-prop-2-en-1-one.

    Science.gov (United States)

    Praveen, Aletti S; Yathirajan, Hemmige S; Narayana, Badiadka; Gerber, Thomas; Hosten, Eric; Betz, Richard

    2012-04-01

    In the title compound, C(15)H(9)Cl(2)FO, the F atom shows positional disorder over two positions, with site-occupancy factors of 0.747 (4) and 0.253 (4). The dihedral angle between the rings is 86.37 (10)°. In the crystal, C-H⋯O contacts connect the mol-ecules into chains along the c axis. The shortest inter-centroid distance between two aromatic systems is 3.6686 (12) Å and is apparent between the halogenated rings.

  14. Effect of L-Cysteine doping on growth and some characteristics of potassium dihydrogen phosphate single crystals

    Science.gov (United States)

    Mahadik, Ashwini; Soni, P. H.; Desai, C. F.

    2017-12-01

    Among quite a number of technologically important NLO materials, Potassium Dihydrogen Phosphate (KDP) is one of the most favourable ones for second harmonic generation applications, such as in electro-optic modulators, parametric oscillators and harmonic generators. The authors report here their studies on KDP crystals doped with L-Cysteine (1 mol% and 2 mol%). The dopant inclusion in the crystals was confirmed using Fourier transform infrared (FT-IR) spectroscopy and Powder X-Ray Diffraction (XRD). The XRD results also confirm the tetragonal structure with lattice parameters a = b = 7.45 Å and c = 6.98 Å. The presence of functional groups of crystals was analyzed using the FTIR spectra. For band gap evaluation, UV-Vis spectra were used and it was found to be 3.41 eV, 4.40eVand 4.50 eV, respectively in the cases of pure KDP, 1 mol% and 2 mol% L-Cysteine dopings. The spectra quality indicates good transparency of the doped crystals in the visible region, a feature quite desirable for applications in optoelectronics.

  15. (Di­methyl­phosphor­yl)methanaminium hydrogen oxalate–oxalic acid (2/1)

    Science.gov (United States)

    Bialek, Sebastian; Clemens, Rebecca; Reiss, Guido J.

    2014-01-01

    The reaction of (di­methyl­phosphor­yl)methanamine (dpma) with oxalic acid in ethanol yielded the title solvated salt, C3H11NOP+·C2HO4 −·0.5C2H2O4. Its asymmetric unit consists of one dpmaH+ cation, one hydrogen oxalate anion and a half-mol­ecule of oxalic acid located around a twofold rotation axis. The H atom of the hydrogen oxalate anion is statistically disordered over two positions that are trans to each other. The hydrogen oxalate monoanion is not planar (bend angle ∼16°) whereas the oxalic acid molecule shows a significantly smaller bend angle (∼7°). In the crystal, the components are connected by strong O—H⋯O and much weaker N—H⋯O hydrogen bonds, leading to the formation of layers extending parallel to (001). The structure was refined from a racemically twinned crystal with twin components in an approximate 1:1 ratio. PMID:24765013

  16. (E)-Methyl 3-(3,4-dimeth-oxy-phen-yl)-2-[(1,3-dioxoisoindolin-2-yl)meth-yl]acrylate.

    Science.gov (United States)

    Kannan, D; Bakthadoss, M; Lakshmanan, D; Murugavel, S

    2012-04-01

    In the title compound, C(21)H(19)NO(6), the isoindole ring system is essentially planar [maximum deviation = 0.019 (2) Å for the N atom] and is oriented at a dihedral angle of 51.3 (1)° with respect to the benzene ring. The two meth-oxy groups are almost coplanar with the attached benzene ring [C-O-C-C = 3.7 (4) and 4.3 (4)°]. The mol-ecular conformation is stabilized by an intra-molecular C-H⋯O hydrogen bond, which generates an S(9) ring motif. In the crystal, mol-ecules are linked through bifurcated C-H⋯(O,O) hydrogen bonds having R(1) (2)(5) ring motifs, forming chains along the b-axis direction. The crystal packing is further stabilzed by π-π inter-actions [centriod-centroid distance = 3.463 (1) Å].

  17. Method of fabricating patterned crystal structures

    KAUST Repository

    Yu, Liyang

    2016-12-15

    A method of manufacturing a patterned crystal structure for includes depositing an amorphous material. The amorphous material is modified such that a first portion of the amorphous thin-film layer has a first height/volume and a second portion of the amorphous thin-film layer has a second height/volume greater than the first portion. The amorphous material is annealed to induce crystallization, wherein crystallization is induced in the second portion first due to the greater height/volume of the second portion relative to the first portion to form patterned crystal structures.

  18. (E)-6-Amino-1,3-dimethyl-5-[(pyridin-2-yl-methyl-idene)amino]-pyrimidine-2,4(1H,3H)-dione.

    Science.gov (United States)

    Booysen, Irvin; Hlela, Thulani; Ismail, Muhammed; Gerber, Thomas; Hosten, Eric; Betz, Richard

    2011-09-01

    In the title compound, C(12)H(13)N(5)O(2), a Schiff-base-derived chelate ligand, the non-aromatic heterocycle and its substituents essentially occupy one common plane (r.m.s. of fitted non-H atoms = 0.0503 Å). The N=C bond is E-configured. Intra-cyclic angles in the pyridine moiety cover the range 117.6 (2)-124.1 (2)°. Intra- and inter-molecular N-H⋯N and N-H⋯O hydrogen bonds are observed in the crystal structure, as are intra- and inter-molecular C-H⋯O contacts which, in total, connect the mol-ecules into a three-dimensional network. The shortest ring-centroid-to-ring-centroid distance of 3.5831 (14) Å is between the two different types of six-membered rings.

  19. Crystal Structure of the 30S Ribosomal Subunit from Thermus Thermophilus: Purification, Crystallization and Structure Determination

    International Nuclear Information System (INIS)

    Clemons, William M. Jr.; Brodersen, Ditlev E.; McCutcheonn, John P.; May, Joanna L.C.; Carter, Andrew P.; Morgan-Warren, Robert J.; Wimberly, Brian T.; Ramakrishnan, Venki

    2001-01-01

    We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 (angstrom) resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 (angstrom) resolution. Despite improvements in technology and methodology in the last decade, the structure determination of the 30 S subunit presented some very challenging technical problems because of the size of the asymmetric unit, crystal variability and sensitivity to radiation damage. Some steps that were useful for determination of the atomic structure were: the use of anomalous scattering from the LIII edges of osmium and lutetium to obtain the necessary phasing signal; the use of tunable, third-generation synchrotron sources to obtain data of reasonable quality at high resolution; collection of derivative data precisely about a mirror plane to preserve small anomalous differences between Bijvoet mates despite extensive radiation damage and multi-crystal scaling; the pre-screening of crystals to ensure quality, isomorphism and the efficient use of scarce third-generation synchrotron time; pre-incubation of crystals in cobalt hexaammine to ensure isomorphism with other derivatives; and finally, the placement of proteins whose structures had been previously solved in isolation, in conjunction with biochemical data on protein-RNA interactions, to map out the architecture of the 30 S subunit prior to the construction of a detailed atomic-resolution model.

  20. The crystal structure and twinning of neodymium gallium perovskite single crystals

    International Nuclear Information System (INIS)

    Ubizskii, S.B.; Vasylechko, L.O.; Savytskii, D.I.; Matkovskii, A.O.; Syvorotka, I.M.

    1994-01-01

    By means of X-ray structure analysis, the crystal structure of neodymium gallium perovskite (NGP) single crystals (NdGaO 3 ) being used as a substrate for HTSC film epitaxy has been refined and the position of atoms has been determined. The possibility of YBa 2 Cu 3 O 7-x film epitaxy on the plane (110) of NGP crystal as well as its advantages and pitfalls are analysed from structural data. The twinning types in the NGP crystal were established. The twinning structure of NGP substrates is found to be stable up to a temperature of 1173 K, as differentiated from the LaGaO 3 and LaAlO 3 substrates. It is intimated that the twinning in the NGP substrates oriented as (001) can result in creation of 90 degrees twin bonds in a film, and in the case of (110)-oriented plates it is possible to ignore the twinning presence in substrate completely. (author)

  1. Mol 7C/6

    International Nuclear Information System (INIS)

    Aberle, J.; Schleisiek, K.; Schmuck, I.; Schmidt, L.; Romer, O.; Weih, G.

    1995-01-01

    The Mol 7C/6 coolant blockage experiment in the Belgian BR2 reactor yielded results different from Mol 7C experiments with low burnup pins: At 10% burnup local failure is not self-limiting, but requires active systems for detection and scram. The Mol 7C series was finished in 1991. In each of the test bundles Mol 7C/4, /5 and /6, 30 Mk I pins pre-irradiated in KNK II were used. The central blockage consisted of enriched UO 2 covering 30 percent of the bundle cross-section, with a height of 40 mm. The most important system for timely detection of coolant blockages of the type studied in Mol 7C/6 is based on DND. (orig.)

  2. 4-Methyl-N-(1-methyl-1H-indazol-5-yl)benzene­sulfonamide

    Science.gov (United States)

    Chicha, Hakima; Oulemda, Bassou; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C15H15N3O2S, the fused ring system is close to planar, the largest deviation from the mean plane being 0.030 (2) Å, and makes a dihedral angle of 48.84 (9)° with the benzene ring belonging to the methyl­benzene­sulfonamide moiety. In the crystal, mol­ecules are ­connected through N—H⋯N hydrogen bonds and weak C—H⋯O contacts, forming a two-dimensional network parallel to (001). PMID:24427093

  3. Alignment structures in ferroelectric liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N.U

    1998-07-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S{sub C} phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes

  4. Alignment structures in ferroelectric liquid crystals

    International Nuclear Information System (INIS)

    Islam, N.U.

    1998-01-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S C phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes an

  5. Crystal structure and thermochemical properties of a novel coordination compound sodium pyruvate C3H3O3Na(s)

    International Nuclear Information System (INIS)

    Gao, Zhen-Fei; Di, You-Ying; Liu, Su-Zhou; Lu, Dong-Fei; Dou, Jian-Min

    2014-01-01

    Graphical abstract: A novel coordination compound sodium pyruvate C 3 H 3 O 3 Na(s) is synthesised. Elemental analysis and X-ray crystallography are used to characterise the composition and crystal structure of the compound. The lattice potential energy and ionic volume of the anion are obtained from crystallographic data. The standard molar enthalpy of formation of the compound is calculated by an isoperibol solution-reaction calorimeter. Molar enthalpies of dissolution of the compound at various molalities are measured at T = 298.15 K. According to Pitzer’s theory, molar enthalpy of dissolution of the title compound at infinite dilution is calculated. The values of relative apparent molar enthalpies and relative partial molar enthalpies of the solvent and the compound at different concentrations m/(mol · kg −1 ) are derived. - Highlights: • The sodium pyruvate was synthesised and crystal structure was determined. • The enthalpy change of the synthesis reaction was obtained. • Standard molar enthalpy of formation was obtained. • Molar enthalpy of dissolution at infinite dilution was calculated. - Abstract: A novel coordination compound sodium pyruvate C 3 H 3 O 3 Na(s) is synthesised by a liquid phase reaction. The compound has an obvious bioactivity and can be used as the biological carbon source and the chemical identification of primary and secondary alcohols. It can be also used to determinate transaminase. Elemental analysis and X-ray crystallography are used to characterise the composition and crystal structure of the compound. Single crystal X-ray analysis reveals that the compound is formed by one CH 3 COCOO − anion and one Na + cation. An obvious feature of the crystal structure is the formation of the five-membered chelate ring by the coordination of O1 of carboxylate and O3 of keto form with Na + cation, and it is good for the stability of the compound in structure. The lattice potential energy and ionic volume of the anion are obtained

  6. Review of Cytoskeleton Research in Cell Differentiation and Development.

    Science.gov (United States)

    1987-09-10

    tetrameric mol- molecule and the corresponding site on ecule of dumbbell-like structure. Plec - ,MAP’s underwent molecular coevolution and tin’s globular...coworkers as plectin’s interaction by dlffe~ent MAP’s. Limited proteolysis partners. Thus, Wiche suggests that plec - of tubulin and MAP’s to analyze the

  7. (E)-Methyl 3-(3,4-dimeth­oxy­phen­yl)-2-[(1,3-dioxoisoindolin-2-yl)meth­yl]acrylate

    Science.gov (United States)

    Kannan, D.; Bakthadoss, M.; Lakshmanan, D.; Murugavel, S.

    2012-01-01

    In the title compound, C21H19NO6, the isoindole ring system is essentially planar [maximum deviation = 0.019 (2) Å for the N atom] and is oriented at a dihedral angle of 51.3 (1)° with respect to the benzene ring. The two meth­oxy groups are almost coplanar with the attached benzene ring [C—O—C—C = 3.7 (4) and 4.3 (4)°]. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯O hydrogen bond, which generates an S(9) ring motif. In the crystal, mol­ecules are linked through bifurcated C—H⋯(O,O) hydrogen bonds having R 1 2(5) ring motifs, forming chains along the b-axis direction. The crystal packing is further stabilzed by π–π inter­actions [centriod–centroid distance = 3.463 (1) Å]. PMID:22589965

  8. Crystal structure of [1,1′:3′,1′′-ter­phenyl]-2′,3,3′′-tri­carb­oxy­lic acid

    Science.gov (United States)

    Decato, Daniel A.; Berryman, Orion B.

    2015-01-01

    The asymmetric unit of the title compound, C21H14O6, com­prises two symmetrically independent mol­ecules that form a locally centrosymmetric hydrogen-bonded dimer, with the planes of the corresponding carb­oxy­lic acid groups rotated by 15.8 (1) and 17.5 (1)° relative to those of the adjacent benzene rings. The crystal as a whole, however, exhibits a noncentrosymmetric packing, described by the polar space group Pca21. The dimers form layers along the ab plane, being inter­connected by hydrogen bonds involving the remaining carb­oxy­lic acid groups. The plane of the central carb­oxy­lic acid group forms dihedral angles of 62.5 (1) and 63.0 (1)° with those of the adjacent benzene rings and functions as a hydrogen-bond donor and acceptor. As a donor, it inter­connects adjacent layers, while as an acceptor it stabilizes the packing within the layers. The ‘distal’ carb­oxy­lic acid groups are nearly coplanar with the planes of the adjacent benzene rings, forming dihedral angles of 1.8 (1) and 7.1 (1)°. These groups also form intra- and inter-layer hydrogen bonds, but with ‘reversed’ functionality, as compared with the central carb­oxy­lic acid groups. PMID:26396894

  9. Effects of electric fields on the photonic crystal formation from block copolymers

    Science.gov (United States)

    Lee, Taekun; Ju, Jin-wook; Ryoo, Won

    2012-03-01

    Effects of electric fields on the self-assembly of block copolymers have been investigated for thin films of polystyrene-bpoly( 2-vinyl pyridine); PS-b-P2VP, 52 kg/mol-b-57 kg/mol and 133 kg/mol-b-132 kg/mol. Block copolymers of polystyrene and poly(2-vinyl pyridine) have been demonstrated to form photonic crystals of 1D lamellar structure with optical band gaps that correspond to UV-to-visible light. The formation of lamellar structure toward minimum freeenergy state needs increasing polymer chain mobility, and the self-assembly process is accelerated usually by annealing, that is exposing the thin film to solvent vapor such as chloroform and dichloromethane. In this study, thin films of block copolymers were spin-coated on substrates and placed between electrode arrays of various patterns including pin-points, crossing and parallel lines. As direct or alternating currents were applied to electrode arrays during annealing process, the final structure of thin films was altered from the typical 1D lamellae in the absence of electric fields. The formation of lamellar structure was spatially controlled depending on the shape of electrode arrays, and the photonic band gap also could be modulated by electric field strength. The spatial formation of lamellar structure was examined with simulated distribution of electrical potentials by finite difference method (FDM). P2VP layers in self-assembled film were quaternized with methyl iodide vapor, and the remaining lamellar structure was investigated by field emission scanning electron microscope (FESEM). The result of this work is expected to provide ways of fabricating functional structures for display devices utilizing photonic crystal array.

  10. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures, such as b......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  11. catena-Poly[bis-(sulfamethoxazolium) [[trichloridocadmate(II)]-μ-chlorido] monohydrate].

    Science.gov (United States)

    Subashini, Annamalai; Muthiah, Packianathan Thomas; Bocelli, Gabriele; Cantoni, Andrea

    2007-12-21

    In the title compound, {(C(10)H(12)N(3)O(3)S)(2)[CdCl(4)]·H(2)O}(n), the Cd(II) atom is five-coordinate with a distorted trigonal-bipyramidal geometry formed by chloride ions. The Cd atom and two of the Cl atoms lie on a mirror plane. The cation is protonated on the amino group N atom; it is not coordinated to cadmium, but is hydrogen bonded to the chlorido ligands. Each water mol-ecule bridges two chlorido ligands, generating ring motifs along the -Cd-Cl-Cd- chains. The isoxazole unit and the amide groups are linked through a pair of N-H⋯N hydrogen bonds. The crystal structure is stabilized by N-H⋯O, O-H⋯Cl, C-H⋯N, N-H⋯Cl and C-H⋯O hydrogen bonds.

  12. catena-Poly[bis­(sulfamethoxazolium) [[trichloridocadmate(II)]-μ-chlorido] monohydrate

    Science.gov (United States)

    Subashini, Annamalai; Muthiah, Packianathan Thomas; Bocelli, Gabriele; Cantoni, Andrea

    2008-01-01

    In the title compound, {(C10H12N3O3S)2[CdCl4]·H2O}n, the CdII atom is five-coordinate with a distorted trigonal–bipyramidal geometry formed by chloride ions. The Cd atom and two of the Cl atoms lie on a mirror plane. The cation is protonated on the amino group N atom; it is not coordinated to cadmium, but is hydrogen bonded to the chlorido ligands. Each water mol­ecule bridges two chlorido ligands, generating ring motifs along the –Cd—Cl—Cd– chains. The isoxazole unit and the amide groups are linked through a pair of N—H⋯N hydrogen bonds. The crystal structure is stabilized by N—H⋯O, O—H⋯Cl, C—H⋯N, N—H⋯Cl and C—H⋯O hydrogen bonds. PMID:21200590

  13. What makes a crystal structure report valid?

    NARCIS (Netherlands)

    Spek, Anthony L.|info:eu-repo/dai/nl/156517566

    2018-01-01

    Single crystal X-ray crystallography has developed into a unique, highly automated and accessible tool to obtain detailed information on molecular structures. Proper archival makes that referees, readers and users of the results of reported crystal structures no longer need to depend solely on the

  14. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURES ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    ABSTRACT. Reaction of [VO(acac)2] (acac = acetylacetonate) with ... Single crystal X-ray structural studies indicate that the hydrazone ligands coordinate to ..... Molecular structure of complex (1) at 30% probability displacement. Figure 4.

  15. The effects of moisture on LiD single crystals studied by temperature-programmed decomposition

    International Nuclear Information System (INIS)

    Dinh, L.N.; Cecala, C.M.; Leckey, J.H.; Balooch, M.

    2001-01-01

    Temperature-programmed decomposition (TPD) technique was performed on LiOH powders and LiD single crystals previously exposed to different moisture levels. Our results show that the LiOH decomposition process is rate-limited by an inward moving reaction front mechanism with an activation energy barrier of ∼122-149 kJ/mol. The LiOH structure is stable even if kept at 320 K. However, LiOH structures formed on the surface of LiD single crystals during moisture exposure at low dosages may have multiple activation energy barriers, some of which may be much lower than 122 kJ/mol. The rate-limiting mechanism for the decomposition of LiOH structures with reduced activation energy barriers is consistent with a unimolecular nucleation model. We attribute the lowering of the activation energy barrier for the LiOH decomposition to the existence of sub-stoichiometric Li(OH) x with x 2 O formation is observed. The release of H 2 O molecules from LiOH · H 2 O structure has small activation energy barriers in the range of 48-69 kJ/mol and follows a unimolecular nucleation process. The loosely bonded H 2 O molecules in the LiOH · H 2 O structure can be easily pumped away at room temperature in a reasonable amount of time. Our experiments also suggest that handling LiD single crystals at an elevated temperature of 340 K or more reduces the growth rate of LiOH and LiOH · H 2 O significantly

  16. Crystal structure from one-electron theory

    DEFF Research Database (Denmark)

    Skriver, H. L.

    1985-01-01

    The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated by the the......The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated...

  17. Lanthanite-(Nd), Nd2(CO3)3·8H2O

    Science.gov (United States)

    Morrison, Shaunna M.; Andrade, Marcelo B.; Wenz, Michelle D.; Domanik, Kenneth J.; Downs, Robert T.

    2013-01-01

    Lanthanite-(Nd), ideally Nd2(CO3)3·8H2O [dineodymium(III) tricarbonate octa­hydrate], is a member of the lanthanite mineral group characterized by the general formula REE 2(CO3)3·8H2O, where REE is a 10-coordinated rare earth element. Based on single-crystal X-ray diffraction of a natural sample from Mitsukoshi, Hizen-cho, Karatsu City, Saga Prefecture, Japan, this study presents the first structure determination of lanthanite-(Nd). Its structure is very similar to that of other members of the lanthanite group. It is composed of infinite sheets made up of corner- and edge-sharing of two NdO10-polyhedra (both with site symmetry ..2) and two carbonate triangles (site symmetries ..2 and 1) parallel to the ab plane, and stacked perpendicular to c. These layers are linked to one another only through hydrogen bonding involving the water mol­ecules. PMID:23476479

  18. 2,4,6-Tri-amino-1,3,5-triazin-1-ium 3-(prop-2-eno-yloxy)propano-ate acrylic acid monosolvate monohydrate.

    Science.gov (United States)

    Sangeetha, V; Kanagathara, N; Chakkaravarthi, G; Marchewka, M K; Anbalagan, G

    2013-05-01

    The asymmetric unit of the title salt, C3H7N6 (+)·C6H7O4 (-)·C3H4O2·H2O, contains a 2,4,6-tri-amino-1,3,5-triazin-1-ium cation, a 3-(prop-2-eno-yloxy)propano-ate anion and acrylic acid and water solvent mol-ecules in a 1:1:1:1 ratio and with each species in a general position. In the crystal, the components are linked into a supra-molecular layer in the bc plane via a combination of O-H⋯O, N-H⋯N and N-H⋯O hydrogen bonding. The crystal studied was a non-merohedral twin, the minor component contribution being approximately 26%.

  19. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    Preferred Customer

    Reaction of [MoO2(acac)2] (where acac = acetylacetonate) with N'-(2-hydroxy-4- ... Single crystal X-ray structural studies indicate that the hydrazone ligand coordinates .... Molecular structure of the complex at 30% probability displacement.

  20. Crystal structure refinement with SHELXL

    Energy Technology Data Exchange (ETDEWEB)

    Sheldrick, George M., E-mail: gsheldr@shelx.uni-ac.gwdg.de [Department of Structural Chemistry, Georg-August Universität Göttingen, Tammannstraße 4, Göttingen 37077 (Germany)

    2015-01-01

    New features added to the refinement program SHELXL since 2008 are described and explained. The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as ‘a CIF’) containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

  1. Two-dimensional photonic crystal accelerator structures

    Directory of Open Access Journals (Sweden)

    Benjamin M. Cowan

    2003-10-01

    Full Text Available Photonic crystals provide a method of confining a synchronous speed-of-light mode in an all-dielectric structure, likely a necessary feature in any optical accelerator. We explore computationally a class of photonic crystal structures with translational symmetry in a direction transverse to the electron beam. We demonstrate synchronous waveguide modes and discuss relevant parameters of such modes. We then explore how accelerator parameters vary as the geometry of the structure is changed and consider trade-offs inherent in the design of an accelerator of this type.

  2. 3,5-Dimethyl-4-nitroso-1H-pyrazole

    Science.gov (United States)

    Safyanova, Inna; Dudarenko, Nikolay M.; Pavlenko, Vadim A.; Iskenderov, Turganbay S.; Haukka, Matti

    2011-01-01

    In the unit cell of the title compound, C5H7N3O, there are two conformers (A and B) which differ in the position of the oxime group with respect to the protonated pyrazole nitro­gen (trans in the A conformer and cis in the B conformer) and in the geometric parameters. The oxime group exists in the nitroso form in both conformers. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and N—H⋯N hydrogen bonds into zigzag-like chains along the b axis. PMID:22059058

  3. Kinetics and enthalpy of crystallization of uric acid dihydrate

    International Nuclear Information System (INIS)

    Sádovská, Galina; Honcová, Pavla; Sádovský, Zdeněk

    2013-01-01

    Highlights: • The kinetic constant and growth order of crystallization of uric acid dihydrate was calculated. • The equation describing first-order crystal growth was derived. • The enthalpy of crystallization of uric acid dihydrate was determined. - Abstract: The kinetics of crystallization of uric acid dihydrate in aqueous solution with a constant ionic strength 0.3 mol dm −3 NaCl and at thermodynamic and physiological temperature (25 and 37 °C) was studied using isoperibolic reaction twin calorimeter. The enthalpy of crystallization Δ cr H = −47.3 ± 0.9 and −46.2 ± 1.4 kJ mol −1 and kinetic constant k g = 2.0 × 10 −8 and 9.6 × 10 −8 m 4 s −1 mol −1 were determined at 25 and 37 °C, respectively

  4. Photonics of liquid-crystal structures: A review

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Blinov, L M; Barnik, M I; Lazarev, V V; Umanskii, B A; Shtykov, N M [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2011-07-15

    The original results of studies of the electro-optical and laser effects which have been performed at the Laboratory of Liquid Crystals of the Institute of Crystallography, Russian Academy of Sciences, over the last few years are reviewed. Cholesteric liquid crystals as vivid representatives of photonic structures and their behavior in an electric field are considered in detail. The formation of higher harmonics in the periodic distribution of the director field in a helical liquid crystal structure and, correspondingly, the new (anharmonic) mode of electro-optical effects are discussed. Another group of studies is devoted to bistable light switching by an electric field in chiral nematics. Polarization diffraction gratings controlled by an electric field are also considered. The results of studies devoted to microlasers on various photonic structures with cholesteric and nematic liquid crystals are considered in detail. Particular attention is given to the new regime: leaky-mode lasing. Designs of liquid crystal light amplifiers and their polarization, field, and spectral characteristics are considered in the last section.

  5. Crystal structure and thermochemical properties of n-decylammonium ethyl sulfate (C10H21NH3SO4C2H5)(s)

    International Nuclear Information System (INIS)

    Zhang, Li-Jun; Di, You-Ying; Dou, Jian-Min

    2013-01-01

    Graphical abstract: Crystal structure of n-decylammonium ethyl sulfate was determined by X-ray crystallography. Lattice potential energy and molar volume of the solid compound and its anion were respectively obtained. Molar enthalpies of dissolution of the compound at different concentrations were measured by an isoperibol solution–reaction calorimeter. According to the Pitzer’s electrolyte solution theory, molar enthalpy of dissolution of the compound at infinite dilution and Pitzer parameters were obtained. The values of apparent relative molar enthalpies of the title compound and relative partial molar enthalpies of the solute and the solvent at different concentrations were derived. Finally, enthalpies of hydration of the compound and its anion were calculated. Highlights: ► Crystal structure of n-decylammonium ethyl sulfate was determined. ► Lattice potential energy was calculated. ► Molar enthalpy of dissolution at infinite dilution was determined. ► Enthalpies of hydration of the compound and its anion were derived. - Abstract: Crystal structure of n-decylammonium ethyl sulfate was determined by X-ray crystallography. Lattice potential energy and molar volume of the solid compound and its anion were respectively obtained. Ionic radius of the anion was calculated from the corresponding effective volume of the anion. Molar enthalpies of dissolution of the compound at different concentrations m /(mol · kg –1 ) were measured by an isoperibol solution–reaction calorimeter at T = 298.15 K. According to the Pitzer’s electrolyte solution theory, molar enthalpy of dissolution of the compound at infinite dilution (Δ sol H m ∞ ) was determined to be (21.284 ± 0.042) kJ·mol –1 , and enthalpy of hydration of the anion SO 4 C 2 H 5 − was calculated to be ΔH – = −340.68 kJ·mol –1 . The values of apparent relative molar enthalpies ( Φ L) of the title compound and relative partial molar enthalpies (L 2 ¯ and L 1 ¯ ) of the solute and

  6. Crystallic silver amalgam--a novel electrode material.

    Science.gov (United States)

    Danhel, Ales; Mansfeldova, Vera; Janda, Pavel; Vyskocil, Vlastimil; Barek, Jiri

    2011-09-21

    A crystallic silver amalgam was found to be a suitable working electrode material for voltammetric determination of electrochemically reducible organic nitro-compounds. Optimum conditions for crystal growth were found, the crystal surface was investigated by atomic force microscopy in tapping mode and single crystals were used for the preparation of quasi-cylindrical single crystal silver amalgam electrode (CAgAE). An electrochemical behavior of this alternative electrode material was investigated in aqueous media by direct current voltammetry, cyclic voltammetry (CV), differential pulse voltammetry (DPV) and adsorptive stripping voltammetry (AdSV) using 4-nitrophenol as a model compound. Applicable potential windows of the CAgAE were found comparable with those obtained at a hanging mercury drop electrode, providing high hydrogen overpotential, and polished silver solid amalgam electrode. Thanks to the smooth single crystal electrode surface, the effect of the passivation is not too pronounced, direct DPV determination of 100 μmol l(-1) of 4-nitrophenol at CAgAEs in 0.2 mol l(-1) acetate buffer pH 4.8 provides a RSD around 1.5% (n = 15). DPV calibration curves of 4-nitrophenol are linear in the whole concentration range 1-100 μmol l(-1) with a limit of quantification of 1.5 μmol l(-1). The attempt to increase sensitivity by application of AdSV was not successful. The mechanism of 4-nitrophenol reduction at CAgAE was investigated by CV.

  7. 4-Bromo-N-(di-n-propyl­carbamothioyl)­benzamide

    OpenAIRE

    Binzet, Gün; Flörke, Ulrich; Külcü, Nevzat; Arslan, Hakan

    2009-01-01

    The synthesis of the title compound, C14H19BrN2OS, involves the reaction of 4-bromo­benzoyl chloride with potassium thio­cyanate in acetone followed by condensation of the resulting 4-bromo­benzoyl isothio­cyanate with di-n-propyl­amine. Typical thio­urea carbonyl and thio­carbonyl double bonds, as well as shortened C—N bonds, are observed in the title compound. The short C—N bond lengths in the centre of the mol­ecule reveal the effects of resonance in this part of the mol­ecule. The asymmet...

  8. Comparison of multiple crystal structures with NMR data for engrailed homeodomain

    Energy Technology Data Exchange (ETDEWEB)

    Religa, Tomasz L. [MRC Centre for Protein Engineering (United Kingdom)], E-mail: tlr25@mrc-lmb.cam.ac.uk

    2008-03-15

    Two methods are currently available to solve high resolution protein structures-X-ray crystallography and nuclear magnetic resonance (NMR). Both methods usually produce highly similar structures, but small differences between both solutions are always observed. Here the raw NMR data as well as the solved NMR structure were compared to the multiple crystal structures solved for the WT 60 residue three helix bundle engrailed homeodomain (EnHD) and single point mutants. There was excellent agreement between TALOS-predicted and crystal structure-observed dihedral angles and a good agreement for the {sup 3}J(H{sup N}H{sup {alpha}}) couplings for the multiple crystal structures. Around 1% of NOEs were violated for any crystal structure, but no NOE was inconsistent with all of the crystal structures. Violations usually occurred for surface residues or for residues for which multiple discreet conformations were observed between the crystal structures. Comparison of the disorder shown in the multiple crystal structures shows little correlation with dynamics under native conditions for this protein.

  9. Kinetics and enthalpy of crystallization of uric acid dihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Sádovská, Galina, E-mail: galina.sadovska@upce.cz; Honcová, Pavla; Sádovský, Zdeněk

    2013-08-20

    Highlights: • The kinetic constant and growth order of crystallization of uric acid dihydrate was calculated. • The equation describing first-order crystal growth was derived. • The enthalpy of crystallization of uric acid dihydrate was determined. - Abstract: The kinetics of crystallization of uric acid dihydrate in aqueous solution with a constant ionic strength 0.3 mol dm{sup −3} NaCl and at thermodynamic and physiological temperature (25 and 37 °C) was studied using isoperibolic reaction twin calorimeter. The enthalpy of crystallization Δ{sub cr}H = −47.3 ± 0.9 and −46.2 ± 1.4 kJ mol{sup −1}and kinetic constant k{sub g} = 2.0 × 10{sup −8} and 9.6 × 10{sup −8} m{sup 4} s{sup −1} mol{sup −1} were determined at 25 and 37 °C, respectively.

  10. ThPt{sub 3+x}Be (x = 0.08): crystal structure and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Gumeniuk, Roman [Institut fuer Experimentelle Physik, TU Bergakademie Freiberg (Germany); Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Kohout, Miroslav; Schnelle, Walter; Burkhardt, Ulrich; Leithe-Jasper, Andreas [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Zschornak, Matthias [Institut fuer Experimentelle Physik, TU Bergakademie Freiberg (Germany)

    2017-01-03

    ThPt{sub 3+x}Be (x = 0.08) is synthesized by arc melting of a mixture of the elements. It crystallizes with its own type of structure [space group I4/mmm (No. 139), a = 7.7370(4), c = 11.4990(6) Aa], which can be related to the cubic Ru{sub 3}Sn{sub 7} and W{sub 2}Cr{sub 21}C{sub 6} types. Measurements of magnetic susceptibility, electrical resistivity and specific heat indicate ThPt{sub 3+x}Be (x = 0.08) to be a diamagnet [χ{sub 0} = -9.0(3) x 10{sup -6} emu mol{sup -1}] with metallic electrical resistivity, in good agreement with the calculated electronic structure [N(E{sub F}) = 3.2 states eV{sup -1} f.u.{sup -1}]. A chemical bonding analysis was performed by the QTAIM and ELI-D approaches. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Preparation of high purity metallic protactinium. Crystal structure and dissolution enthalpy of the metal

    International Nuclear Information System (INIS)

    Bohet, J.

    1977-01-01

    Some 300 mg of Pa have been produced in a high purity metallic state. Protactinium monocarbide has been obtained by the carboreduction of Pa 2 O 5 . Protactinium iodide, produced by the direct reaction of iodine on the carbide, has been sublimated at 420 0 C and thermally dissociated at 1200 0 C on a W wire. In these conditions Pa metal has been deposited with a yield greater than 85% and presents a bct structure stable at room temperature (a=3.921+-0.001A and c=3.235+-0.001A). The fcc phase (Fm3m type) (a=5.018+-0.001A) has been obtained by quenching metallic samples (bct) heated in argon at 1500 0 C. The chemical analysis and the transformation of the fcc into bct phase by controlled heat treatments show the presence of this high temperature phase in the metal. Protactinium mononitride (5.58% N) produced by direct reaction of N on Pa at 1100 0 C presents the same fcc crystal structure but the lattice parameter is higher (a=5.047+-0.001A). The dissolution heat of metallic Pa (bct) has been determined in the aqueous solution HCl 12M - HF 0.05M at 298.15+-0.05 K. The standard formation enthalpies of the ionic species Pa(IV) and Pa(V) are respectively equal to -672+-15 kJ.mol -1 and -821+-15 kJ.mol -1

  12. Structure analysis on synthetic emerald crystals

    Science.gov (United States)

    Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou

    2013-05-01

    Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.

  13. Reconnaissance de formes moléculaires dans les relations structure-activité

    OpenAIRE

    Mathis , Hervé

    1992-01-01

    Non disponible / Not available; Cette thèse présente un logiciel qui a pour but de mieux comprendre les relations entre caractéristiques structurales et propriétés thérapeutiques de molécules envisagées comme médicaments. L'idée majeure est de soumettre une famille de composés, d'une part à des calculs de chimie quantique, d'autre part à des méthodes de reconnaissance de formes, afin d'observer si certaines propriétés moléculaires sont discriminantes vis-à-vis d'une activité pharmacologique m...

  14. A first interpretation of the Mol 7C/l and Mol 7C/2 experiments

    International Nuclear Information System (INIS)

    Berthier, J.; Carluec, B.; Fortunato, M.; Lemmet, L.

    1983-01-01

    The interpretation of the two experiments MOL 7C/1 and MOL 7C/2 that has been performed at the CEA of Cadarache is presented here: one will find first a recall of the experimental conditions of the MOL experiments, then a short description of the codes that enable the interpretation and finally the results of this interpretation compared to the experimental results

  15. Crystal structure of poly[N,N-diethyl-2-hy-droxy-ethan-1-aminium [μ3-cyanido-κ(3) C:C:N-di-μ-cyanido-κ(4) C:N-dicuprate(I)

    Science.gov (United States)

    Corfield, Peter W R; Cleary, Emma; Michalski, Joseph F

    2016-07-01

    In the title compound, {(C6H16NO)[Cu2(CN)3]} n , the cyanide groups link the Cu(I) atoms into an open three-dimensional anionic network, with the mol-ecular formula Cu2(CN)3 (-). One Cu(I) atom is tetra-hedrally bound to four CN groups, and the other Cu(I) atom is bonded to three CN groups in an approximate trigonal-planar coordination. The tetra-hedrally coordinated Cu(I) atoms are linked into centrosymmetric dimers by the C atoms of two end-on bridging CN groups which bring the Cu(I) atoms into close contact at 2.5171 (7) Å. Two of the cyanide groups bonded to the Cu(I) atoms with trigonal-planar surrounding link the dimeric units into columns along the a axis, and the third links the columns together to form the network. The N,N-di-ethyl-ethano-lamine mol-ecules used in the synthesis have become protonated at the N atoms and are situated in cavities in the network, providing charge neutrality, with no covalent inter-actions between the cations and the anionic network.

  16. Studies on growth, crystal structure and characterization of novel organic nicotinium trifluoroacetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, P.V. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Sundar, J. Kalyana; Natarajan, S. [Department of Physics, Madurai Kamaraj University, Madurai 625 021 (India); Vinitha, G. [Department of Physics, Crescent Engineering College, Chennai 600 048 (India)

    2011-09-15

    Highlights: {yields} Good quality crystals of nicotinium trifluoroacetate in monoclinic system were grown for first time. {yields} Nicotinium trifluoroacetate crystal exhibits third order nonlinear optical properties. {yields} The optical spectrum of nicotinium trifluoroacetate crystal reveals the wide transmission in the entire range with cutoff wavelength at 286 nm. {yields} Nicotinium trifluoroacetate is a low dielectric constant material. - Abstract: An organic material, nicotinium trifluoroacetate (NTF) was synthesized and single crystals in monoclinic system were grown from aqueous solution for the first time. Its solubility and metastable zone width were estimated. The crystal structure of NTF was analyzed to reveal the molecular arrangements and the formation of hydrogen bonds in the crystal. High-resolution X-ray diffraction rocking curve measurements were performed to analyze the structural perfection of the grown crystals. Functional groups in NTF were identified by Fourier transform infrared spectral analysis. Thermal behaviour and stability of NTF were studied by thermogravimetric and differential thermal analysis and differential scanning calorimetry. Mechanical and dielectric properties of NTF crystals were analyzed. Optical studies reveal that NTF crystals are transparent in the wavelength range 286-1100 nm. The third order nonlinear optical parameters of NTF were derived by the Z-scan technique.

  17. The Crystal Structures of Two Novel Cadmium-Picolinic Acid ...

    African Journals Online (AJOL)

    The crystal structures of two novel cadmium-picolinic acid complexes grown in aqueous solutions at selected pH values are reported. The structures are compared to expected solution species under the same conditions. The crystal structure of complex 1 exhibits a seven coordinate structure which contains a protonated ...

  18. Band structures in fractal grading porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  19. Octa-akis(4-amino-pyridine)-1κN,2κN-aqua-2κO-μ-carbonato-1:2κO,O':O''-dinickel(II) dichloride penta-hydrate.

    Science.gov (United States)

    Fun, Hoong-Kun; Sinthiya, A; Jebas, Samuel Robinson; Ravindran Durai Nayagam, B; Alfred Cecil Raj, S

    2008-10-18

    In the title compound, [Ni(2)(CO(3))(C(5)H(6)N(2))(8)(H(2)O)]Cl(2)·5H(2)O, one of the the Ni(II) ions is six-coordinated in a distorted octa-hedral geometry, with the equatorial plane defined by four pyridine N atoms from four amino-pyridine ligands, the axial positions being occupied by one water O and a carbonate O atom. The other Ni(II) ion is also six-coordinated, by four other pyridine N atoms from four other amino-pyridine ligands and two carbonate O atoms to complete a distorted octa-hedral geometry. In the crystal structure, mol-ecules are linked into an infinite three-dimensional network by O-H⋯O, N-H⋯Cl, N-H⋯O, O-H⋯N, C-H⋯O, C-H⋯N and C/N-H⋯π inter-actions involving the pyridine rings.

  20. Construction of crystal structure prototype database: methods and applications.

    Science.gov (United States)

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-26

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  1. Construction of crystal structure prototype database: methods and applications

    International Nuclear Information System (INIS)

    Su, Chuanxun; Lv, Jian; Wang, Hui; Wang, Yanchao; Ma, Yanming; Li, Quan; Zhang, Lijun

    2017-01-01

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery. (paper)

  2. Synthesis, crystal structures, molecular docking and urease inhibition studies of Ni(II) and Cu(II) Schiff base complexes

    Science.gov (United States)

    Sangeeta, S.; Ahmad, K.; Noorussabah, N.; Bharti, S.; Mishra, M. K.; Sharma, S. R.; Choudhary, M.

    2018-03-01

    [Ni(L)2] 1 and [Cu(L)2] 2 [HL = 2-((E)-(2-methoxyphenylimino)methyl)-4,6-dichlorophenol] Schiff base complexes have been successfully synthesized and were characterized by FT-IR, UV-Vis, fluorescence spectroscopy and thermogravimetric analysis. The crystal structures of the two complexes were determined through X-ray crystallography. Its inhibitory activity against Helicobacter pylori urease was evaluated in vitro and showed strong inhibitory activity against H. pylori urease compared with acetohydroxamic acid (IC50 = 42.12 μmolL-1), which is a positive reference. A docking analysis using the AutoDock 4.0 program could explain the inhibitory activity of the complex against urease.

  3. Crystal engineering of ibuprofen compounds: From molecule to crystal structure to morphology prediction by computational simulation and experimental study

    Science.gov (United States)

    Zhang, Min; Liang, Zuozhong; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong

    2017-06-01

    We selected the crystal structures of ibuprofen with seven common space groups (Cc, P21/c, P212121, P21, Pbca, Pna21, and Pbcn), which was generated from ibuprofen molecule by molecular simulation. The predicted crystal structures of ibuprofen with space group P21/c has the lowest total energy and the largest density, which is nearly indistinguishable with experimental result. In addition, the XRD patterns for predicted crystal structure are highly consistent with recrystallization from solvent of ibuprofen. That indicates that the simulation can accurately predict the crystal structure of ibuprofen from the molecule. Furthermore, based on this crystal structure, we predicted the crystal habit in vacuum using the attachment energy (AE) method and considered solvent effects in a systematic way using the modified attachment energy (MAE) model. The simulation can accurately construct a complete process from molecule to crystal structure to morphology prediction. Experimentally, we observed crystal morphologies in four different polarity solvents compounds (ethanol, acetonitrile, ethyl acetate, and toluene). We found that the aspect ratio decreases of crystal habits in this ibuprofen system were found to vary with increasing solvent relative polarity. Besides, the modified crystal morphologies are in good agreement with the observed experimental morphologies. Finally, this work may guide computer-aided design of the desirable crystal morphology.

  4. Kinetic study of α-BZN crystallization obtained from chemical method

    Directory of Open Access Journals (Sweden)

    Ronaldo Rodrigues Pelá

    2008-09-01

    Full Text Available The crystallization kinetics of ceramics composed by Bi2O3-ZnO-Nb2O5 (BZN was studied using non-isothermal method. The BZN samples were prepared by the polymeric precursors method. Phase evolution was evaluated by X ray diffraction and the thermal events were evaluated by differential scanning calorimetry (DSC. The crystallization of BZN occurs from 500 to 700 °C, which corresponds to a secondary event in DSC curves. The principal exothermic event in these curves is related to the decomposition of organic material and was isolated from the crystallization peak by deconvolution into two Gaussian curves. Those related to crystallization processes were evaluated in terms of crystallized fraction. Kinetic parameters were determined from Ligero (E = 242 ± 7 kJ.mol-1 and Kissinger (E = 241 ± 24 kJ.mol-1 methodologies and they are very close. The activation energy Ea = (241 ± 24 kJ.mol-1 and (242 ± 7 kJ.mol-1 (by the Kissinger and Ligero methodology, respectively, frequency factor k0 =10(13.s-1 and exponent of Avrami n = (1.3 ± 0.1 were determined. The n value indicates that the crystallization is diffusion controlled, with decreasing nucleation rate. Scanning electronic microscopy showed the presence of nanoparticulated powder.

  5. Isolation, crystallization and crystal structure determination of bovine kidney Na(+),K(+)-ATPase.

    Science.gov (United States)

    Gregersen, Jonas Lindholt; Mattle, Daniel; Fedosova, Natalya U; Nissen, Poul; Reinhard, Linda

    2016-04-01

    Na(+),K(+)-ATPase is responsible for the transport of Na(+) and K(+) across the plasma membrane in animal cells, thereby sustaining vital electrochemical gradients that energize channels and secondary transporters. The crystal structure of Na(+),K(+)-ATPase has previously been elucidated using the enzyme from native sources such as porcine kidney and shark rectal gland. Here, the isolation, crystallization and first structure determination of bovine kidney Na(+),K(+)-ATPase in a high-affinity E2-BeF3(-)-ouabain complex with bound magnesium are described. Crystals belonging to the orthorhombic space group C2221 with one molecule in the asymmetric unit exhibited anisotropic diffraction to a resolution of 3.7 Å with full completeness to a resolution of 4.2 Å. The structure was determined by molecular replacement, revealing unbiased electron-density features for bound BeF3(-), ouabain and Mg(2+) ions.

  6. Crystal structure study of new lanthanide silicates with silico-carnotite structure

    International Nuclear Information System (INIS)

    Piccinelli, F.; Lausi, A.; Speghini, A.; Bettinelli, M.

    2012-01-01

    The crystal structures of new rare earth-based silicate compounds (Ca 3 Eu 2 Si 3 O 12 , Ca 3 Gd 2 Si 3 O 12 , Ca 3 Dy 2 Si 3 O 12 , Ca 3 Er 2 Si 3 O 12 and Ca 3 Lu 2 Si 3 O 12 ) have been determined using powder X-ray diffraction. From Rietveld refinement calculations on the collected powder patterns we observe a different distribution of the rare earth ions on the three available crystal sites characterized by different coordination numbers, depending on the ionic radius of the rare earth ion. The reasons of the instability of the silico-carnotite structure for lanthanide ions larger than Eu 3+ have been deduced. In addition, in order to detect crystal phase transitions, the powder patterns of Ca 3 Eu 2 Si 3 O 12 and Ca 3 Sm 2 Si 3 O 12 samples have been collected as a function of the temperature (RT-1000 °C range), but no phase transitions have been observed. - Graphical abstract: Synchrotron X-ray diffraction allows us the accurate determination of the RE 3+ ions distribution on the three available crystal sites of the silico-carnotite structure. Highlights: ► The structure of the Ca 3 M 2 Si 3 O 12 (M=Eu, Gd, Dy, Er and Lu) was determined. ► Different distribution of RE 3+ ions on the three available crystal sites was observed. ► The instability of the silico-carnotite structure for RE=La→Sm was discussed.

  7. 2,4,6-Tri­amino-1,3,5-triazin-1-ium 3-(prop-2-eno­yloxy)propano­ate acrylic acid monosolvate monohydrate

    Science.gov (United States)

    Sangeetha, V.; Kanagathara, N.; Chakkaravarthi, G.; Marchewka, M. K.; Anbalagan, G.

    2013-01-01

    The asymmetric unit of the title salt, C3H7N6 +·C6H7O4 −·C3H4O2·H2O, contains a 2,4,6-tri­amino-1,3,5-triazin-1-ium cation, a 3-(prop-2-eno­yloxy)propano­ate anion and acrylic acid and water solvent mol­ecules in a 1:1:1:1 ratio and with each species in a general position. In the crystal, the components are linked into a supra­molecular layer in the bc plane via a combination of O—H⋯O, N—H⋯N and N—H⋯O hydrogen bonding. The crystal studied was a non-merohedral twin, the minor component contribution being approximately 26%. PMID:23723892

  8. La esfera, el mol y la ciudad

    Directory of Open Access Journals (Sweden)

    Hernán Neira

    2010-06-01

    Full Text Available Apoyándonos en la noción de "esfera" de Slotedijk, analizamos la protección constituida por los moles. La libertad de elegir en el mol no tiene relación con la libertad individual propuesta por John Stuart Mill; ni con la anarco-individualista propuesta por Henry David Thoreau o incluso por Aldo Leopold en el elogio que éste realiza de la autonomía del pionero estadounidense. En la libertad de elegir en el mol han caducado todas las aventuras y las relaciones humanas se convierten en lo que Sloterdijk denomina "relaciones cristalizadas", bajo el proyecto del aburrimiento normativo poshistórico. La expresión económico-filosófica del mundo poshistórico es la idea de libertad de elegir, enunciada por Milton Friedman. El mol, actual Palacio de Cristal, es como una enciclopedia ilustrada, que exhibe, en orden y sin peligros, el conjunto, ya no del saber, sino de los bienes disponibles. Con ello, se modifica la condición humana.Based on the Sloterdijk's concept of sphere, we analyse the protection provided by the malls. Nevertheless, the freedom of choosing in a mall does not have any relation to liberty as it was proposed by John Stuart Mill, neither to the anarcho-individualist one proposed by Henry David Thoreau, nor even to that one proposed by Aldo Leopold, when he praises the authonomy of American pioneer. In the freedom process of choosing in the mall, all adventures perish and human relations become what Sloterdijk denominated "crystalised relations", under a post-historic normative boring project. The economic-philosophical expression of post-historic world is the idea of freedom of choosing, conceived by Milton Friedman. The mall, the current Crystal Palace, is like an enlightened encyclopaedia, which shows, in order and without dangers, the totality, no longer of knowledge, but of available goods. In this way, human condition has modified.

  9. Crystal structure of aspartame anhydrate from powder diffraction data. Structural aspects of the dehydration process of aspartame

    NARCIS (Netherlands)

    Guguta, C.; Meekes, H.L.M.; Gelder, R. de

    2006-01-01

    Aspartame has three pseudo-polymorphic forms, two hydrates and a hemi-hydrate, for which crystal structures were determined from single-crystal diffraction data. This paper presents the crystal structure of the anhydrate, which was obtained by dehydrating the hemi-hydrate. The crystal structure of

  10. Crystal structure of actinide metals at high compression

    International Nuclear Information System (INIS)

    Fast, L.; Soederlind, P.

    1995-08-01

    The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure

  11. Di-?-cyanido-tetra?cyanido(5,5,7,12,12,14-hexa?methyl-1,4,8,11-tetra?aza?cyclo?tetra?decane)[N-(quinolin-8-yl)quinoline-2-carboxamidato]diiron(III)nickel(II) 2.07-hydrate

    OpenAIRE

    Yang, Yuqi; Zhou, Hongbo; Shen, Xiaoping

    2013-01-01

    The asymmetric unit of the title complex, [Fe2Ni(C19H12N3O)2(CN)6(C16H36N4)]?2.07H2O, contains one [Fe(qcq)(CN)3]? anion, half a [Ni(teta)]2+ cation and two partially occupied inter?stitial water mol?ecules [qcq? is the N-(quinolin-8-yl)quinoline-2-carboxamidate anion and teta is 5,5,7,12,12,14-hexa?methyl-1,4,8,11-tetra?aza?cyclo?tetra?deca?ne]. In the complex mol?ecule, two [Fe(qcq)(CN)3]? anions additionally coordinate the central [Ni(teta)]2+ cation through cyanide groups in a trans mode,...

  12. Optical properties and crystal structure of Eu3+ -doped Y2O3 crystals prepared under different conditions and with different methods

    International Nuclear Information System (INIS)

    Chung, Yong Hwa; Jang, Ki Wan; Kim, Il Gon; Kim Sang Su; Lee, Yong Ill; Park, Seong Tae; Seo, Hyo Jin

    2003-01-01

    The optical properties and the crystal structure of 6-mol% Eu 3+ -doped Y 2 O 3 powders prepared under different conditions and with different methods were studied through emission spectroscopy and X-ray powder diffraction. All samples exhibited the normal fluorescence spectrum of Eu 3+ -doped cubic Y 2 O 3 powders. The peak positions of the 5 D 0 → 7 F 0 transitions of Eu 3+ ions were shifted to the short-wavelength direction as the sintering temperature was lowered or the size of the host particle itself was decreased. The dynamic properties, such as the rise or the decay time of the 5 D 0 → 7 F 2 transition, depended on other factors than the size of the grain contained in each particle and the size of host particle itself. The morphologies of the studied samples were also observed by using a scanning electron microscope

  13. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  14. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    Science.gov (United States)

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-04-05

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  15. 2-Acetyl-amino-1,3,4,6-tetra-O-(tri-methyl-silyl)-2-de-oxy-α-d-gluco-pyran-ose.

    Science.gov (United States)

    Cheng, Zhao-Dong; Cui, Yan-Li; Mao, Jian-Wei

    2013-06-01

    The title compound, C20H47NO6Si4, was synthesized by per-O-tri-methyl-silylation of N-acetyl-d-glucosa-mine using chloro-tri-methyl-silane in the presence of hexa-methyl-disiloxane. The tri-methyl-silyl group and acetamido group are located on the same side of the pyran ring, showing an α-configuration glycoside. One of the tri-methyl-silyl groups is disordered over two orientations, with site-occupancy factors of 0.625 (9) and 0.375 (9). In the crystal, N-H⋯O hydrogen bonds link the mol-ecules into supra-molecular chains along the a-axis direction.

  16. Crystal structure analysis of LaMnO_3 with x-ray diffraction technique using the Rietveld method

    International Nuclear Information System (INIS)

    Engkir Sukirman; Wisnu Ari Adi; Yustinus Purwamargapratala

    2010-01-01

    Crystal structure analysis of LaMnO_3 using the Rietveld method has been carried out. The LaMnO_3 sample was synthesized with high energy mechanical milling from the raw materials of La_2O_3 and MnO_2 with the appropriate mol ratio. Milling were performed for 10 hours, pelletized and hereinafter sintered at 1350 °C for 6 hours. The sample characterizations covered the crystal structure and electric-magnetic properties of the materials by X-ray diffraction technique using the Rietveld method and the four point probe, respectively. The Rietveld refinement results based on the X-rays diffraction data indicate that the sample of LaMnO_3 is single phase with the crystal system: orthorhombic, the space group: Pnma No. 62 and the lattice parameters: a = 55.4405(9) Å; b = 7.717(1) Å dan c = 5.537(1) Å. The material owns Magnetic Resonance (MR) respond of 7 %, the mean value of crystallite size, D = 17 nm and lattice strain, e = - 0.5 %. So, the material go through a compressive strain, and according to the Nanda's strain model, it becomes a type G antiferromagnetic insulator. Because the insulator properties of the material does not change although being hit by the external magnetic field, hence the MR respond is only caused by the order of electron spin. Therefore at room temperature, LaMnO_3_._0 just exhibits a small MR respond. (author)

  17. SYNTHESIS, CHARACTERIZATION, AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    a

    KEY WORDS: Barium, Crystal structure, 2,6-Pyridinedicarboxylic acid .... The rational design of novel metal-organic frameworks has attracted great ..... Bond, A.D.; Jones, W. Supramolecular Organization and Materials Design, Jones, W.; Rao,.

  18. Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals

    Science.gov (United States)

    Nakamura, Masaru; Higuchi, Shinji; Takekawa, Shunji; Terabe, Kazuya; Furukawa, Yasunori; Kitamura, Kenji

    2002-04-01

    Undoped and MgO (0.5 and 1.0-mol%)-doped near-stoichiometric LiTaO3 (SLT) crystals were grown from off-congruent Li-rich solutions (Li˜ 60 mol%) by the double-crucible Czochralski method using a continuous SLT ceramic grain charging system. Curie temperatures of the undoped and MgO (0.5 and 1.0-mol%)-doped SLT crystals are 688, 694 and 695°C, respectively. The ordinary and extraordinary refractive indices (no, ne) of these crystals were measured by the prism coupling technique in the wavelength range from 0.440 to 1.050 μm at room temperature, and the temperature-independent Sellmeier equations for each crystal were derived from the measured refractive index data. no of the SLT crystal was almost the same as that of a congruent-melt LiTaO3 (CLT) crystal, while ne of the SLT crystal was lower than that of the CLT crystal. ne was lower than no for the SLT crystal, similar to as in the case of the LiNbO3 crystal. The refractive indices of the SLT crystal, no and ne, were found to be almost independent of MgO concentration at the doping level of 0.5 and 1.0 mol%.

  19. Crystal structure of enolase from Drosophila melanogaster.

    Science.gov (United States)

    Sun, Congcong; Xu, Baokui; Liu, Xueyan; Zhang, Zhen; Su, Zhongliang

    2017-04-01

    Enolase is an important enzyme in glycolysis and various biological processes. Its dysfunction is closely associated with diseases. Here, the enolase from Drosophila melanogaster (DmENO) was purified and crystallized. A crystal of DmENO diffracted to 2.0 Å resolution and belonged to space group R32. The structure was solved by molecular replacement. Like most enolases, DmENO forms a homodimer with conserved residues in the dimer interface. DmENO possesses an open conformation in this structure and contains conserved elements for catalytic activity. This work provides a structural basis for further functional and evolutionary studies of enolase.

  20. Crystallization and Characterization of Galdieria sulphuraria RUBISCO in Two Crystal Forms: Structural Phase Transition Observed in P21 Crystal Form

    Directory of Open Access Journals (Sweden)

    Boguslaw Stec

    2007-10-01

    Full Text Available We have isolated ribulose-1,5-bisphosphate-carboxylase/oxygenase (RUBISCOfrom the red algae Galdieria Sulphuraria. The protein crystallized in two different crystalforms, the I422 crystal form being obtained from high salt and the P21 crystal form beingobtained from lower concentration of salt and PEG. We report here the crystallization,preliminary stages of structure determination and the detection of the structural phasetransition in the P21 crystal form of G. sulphuraria RUBISCO. This red algae enzymebelongs to the hexadecameric class (L8S8 with an approximate molecular weight 0.6MDa.The phase transition in G. sulphuraria RUBISCO leads from two hexadecamers to a singlehexadecamer per asymmetric unit. The preservation of diffraction power in a phasetransition for such a large macromolecule is rare.

  1. Nucleation and crystallization behaviors of nano-crystalline lithium–mica glass–ceramic prepared via sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Tohidifar, M.R. [Department of Materials Science and Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Alizadeh, P., E-mail: p-alizadeh@modares.ac.ir [Department of Materials Science and Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Riello, P. [Department of Molecular Sciences and Nanosystems, University of Ca’Foscari, Venice (Italy)

    2012-06-15

    Graphical abstract: The effects of nucleation and crystallization treatments on nano-crystalline lithium–mica glass–ceramic, synthesized by sol–gel technique, were investigated. It was found that MgF{sub 2} crystals act as nuclei centers for the mica crystallization so that a large quantity of mica crystallites was obtained following nucleation process. The crystallization activation energy for both the un-nucleated and nucleated samples was measured as 400.2 and 229.6 kJ mol{sup −1}, respectively. The calculated Avrami exponents demonstrated that the growth mechanism of mica crystallites changes from the needle-like to three-dimensional growth with applying the appropriate nucleation treatment ▪. Highlights: ► Crystallization temperature shifts to 625 from 680 °C following nucleation process. ► Activation energy of crystallization for the nucleated specimen is 229.6 kJ mol{sup −1}. ► Crystallization activation energy for the un-nucleated specimen is 400.2 kJ mol{sup −1}. ► Needle-like growth is predominant growth mechanism for un-nucleated sample. ► Three-dimensional growth is predominant growth mechanism for nucleated sample. -- Abstract: The paper investigates the effects of nucleation and crystallization treatments on nano-crystalline lithium–mica glass–ceramics, taking the composition LiMg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6x}F{sub 2} (x = 0.5) and 8 mass% MgF{sub 2} synthesized by sol–gel technique. Here, X-ray diffraction, thermal analysis and transmission electron microscopy were used to assess the structural evolutions of as-synthesized nano-crystalline lithium–mica glass–ceramics. It was found that MgF{sub 2} crystals perform as nuclei centers for the mica crystallization hence; a large quantity of mica crystallites obtained following the nucleation process at 400 °C for 12 h. For both the un-nucleated and nucleated samples, the crystallization activation energy was measured as 400.2 and 229.6 kJ mol{sup −1

  2. Synthesis and crystal structure analysis of uranyl triple acetates

    Energy Technology Data Exchange (ETDEWEB)

    Klepov, Vladislav V., E-mail: vladislavklepov@gmail.com [Institute for Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Department of Chemistry, Samara National Research University, 443086 Samara (Russian Federation); Serezhkina, Larisa B.; Serezhkin, Victor N. [Department of Chemistry, Samara National Research University, 443086 Samara (Russian Federation); Alekseev, Evgeny V., E-mail: e.alekseev@fz-juelich.de [Institute for Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Institut für Kristallographie, RWTH Aachen University, 52066 Aachen (Germany)

    2016-12-15

    Single crystals of triple acetates NaR[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O (R=Mg, Co, Ni, Zn), well-known for their use as reagents for sodium determination, were grown from aqueous solutions and their structural and spectroscopic properties were studied. Crystal structures of the mentioned phases are based upon (Na[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}){sup 2–} clusters and [R(H{sub 2}O){sub 6}]{sup 2+} aqua-complexes. The cooling of a single crystal of NaMg[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O from 300 to 100 K leads to a phase transition from trigonal to monoclinic crystal system. Intermolecular interactions between the structural units and their mutual packing were studied and compared from the point of view of the stereoatomic model of crystal structures based on Voronoi-Dirichlet tessellation. Using this method we compared the crystal structures of the triple acetates with Na[UO{sub 2}(CH{sub 3}COO){sub 3}] and [R(H{sub 2}O){sub 6}][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} and proposed reasons of triple acetates stability. Infrared and Raman spectra were collected and their bands were assigned. - Graphical abstract: Single crystals of uranium based triple acetates, analytical reagents for sodium determination, were synthesized and structurally, spectroscopically and topologically characterized. The structures were compared with the structures of compounds from preceding families [M(H{sub 2}O){sub 6})][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} (M = Mg, Co, Ni, Zn) and Na[UO{sub 2}(CH{sub 3}COO){sub 3}]. Analysis was performed with the method of molecular Voronoi-Dirichlet polyhedra to reveal a large contribution of the hydrogen bonds into intermolecular interactions which can be a reason of low solubility of studied complexes.

  3. Crystal structure of tris(hydroxylammonium orthophosphate

    Directory of Open Access Journals (Sweden)

    Malte Leinemann

    2015-11-01

    Full Text Available The crystal structure of the title salt, ([H3NOH]+3·[PO4]3−, consists of discrete hydroxylammonium cations and orthophosphate anions. The atoms of the cation occupy general positions, whereas the anion is located on a threefold rotation axis that runs through the phosphorus atom and one of the phosphate O atoms. In the crystal structure, cations and anions are linked by intermolecular O—H...O and N—H...O hydrogen bonds into a three-dimensional network. Altogether, one very strong O—H...O, two N—H...O hydrogen bonds of medium strength and two weaker bifurcated N—H...O interactions are observed.

  4. Investigating the nucleation of protein crystals with hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kadri, A [Departement ' Mecanismes et Macromolecules de la Synthese Proteique et Cristallogenese' UPR 9002, Institut de Biologie Moleculaire et Cellulaire du CNRS, 15 rue Rene Descartes, F-67084 Strasbourg Cedex (France); Damak, M [Laboratoire de Chimie des Substances Naturelles, Faculte des Sciences de Sfax, BP 802, 3018 Sfax (Tunisia); Jenner, G [Laboratoire de Piezochimie Organique, UMR 7123, Faculte de Chimie, Universite Louis Pasteur, 1 rue Blaise Pascal, F-67008 Strasbourg Cedex (France); Lorber, B [Departement ' Mecanismes et Macromolecules de la Synthese Proteique et Cristallogenese' UPR 9002, Institut de Biologie Moleculaire et Cellulaire du CNRS, 15 rue Rene Descartes, F-67084 Strasbourg Cedex (France); Giege, R [Departement ' Mecanismes et Macromolecules de la Synthese Proteique et Cristallogenese' UPR 9002, Institut de Biologie Moleculaire et Cellulaire du CNRS, 15 rue Rene Descartes, F-67084 Strasbourg Cedex (France)

    2003-12-17

    Hydrostatic pressure in the 0.1-75 MPa range has been used as a non-invasive tool to study the crystallization process of the tetragonal crystal form of the protein thaumatin (M{sub r} 22 200). Crystals were prepared within agarose gel and at temperatures in the range from 283 to 303 K. The solubility, i.e. the concentration of soluble macromolecules remaining in equilibrium with the crystals, decreases when the pressure increases and when the temperature decreases. High pressure was used to probe the nucleation behaviour of thaumatin. The pressure dependence of the nucleation rate leads to an activation volume of -46.5cm{sup 3} mol{sup -1}. It is shown that an increase in pressure decreases the enthalpy, the entropy and the free energy of crystallization of thaumatin. The data are discussed in the light of the results of crystallographic analyses and of the structure of the protein.

  5. Investigating the nucleation of protein crystals with hydrostatic pressure

    International Nuclear Information System (INIS)

    Kadri, A; Damak, M; Jenner, G; Lorber, B; Giege, R

    2003-01-01

    Hydrostatic pressure in the 0.1-75 MPa range has been used as a non-invasive tool to study the crystallization process of the tetragonal crystal form of the protein thaumatin (M r 22 200). Crystals were prepared within agarose gel and at temperatures in the range from 283 to 303 K. The solubility, i.e. the concentration of soluble macromolecules remaining in equilibrium with the crystals, decreases when the pressure increases and when the temperature decreases. High pressure was used to probe the nucleation behaviour of thaumatin. The pressure dependence of the nucleation rate leads to an activation volume of -46.5cm 3 mol -1 . It is shown that an increase in pressure decreases the enthalpy, the entropy and the free energy of crystallization of thaumatin. The data are discussed in the light of the results of crystallographic analyses and of the structure of the protein

  6. Ultrasmall-angle X-ray scattering analysis of photonic crystal structure

    International Nuclear Information System (INIS)

    Abramova, V. V.; Sinitskii, A. S.; Grigor'eva, N. A.; Grigor'ev, S. V.; Belov, D. V.; Petukhov, A. V.; Mistonov, A. A.; Vasil'eva, A. V.; Tret'yakov, Yu. D.

    2009-01-01

    The results of an ultrasmall-angle X-ray scattering study of iron(III) oxide inverse opal thin films are presented. The photonic crystals examined are shown to have fcc structure with amount of stacking faults varying among the samples. The method used in this study makes it possible to easily distinguish between samples with predominantly twinned fcc structure and nearly perfect fcc stacking. The difference observed between samples fabricated under identical conditions is attributed to random layer stacking in the self-assembled colloidal crystals used as templates for fabricating the inverse opals. The present method provides a versatile tool for analyzing photonic crystal structure in studies of inverse opals made of various materials, colloidal crystals, and three-dimensional photonic crystals of other types.

  7. Crystal structure and solid-state properties of discrete hexa cationic ...

    Indian Academy of Sciences (India)

    Subsequently, weight loss of 33% in two stages from 242 to 691◦C can be assigned to the decomposition of triazole ligands. 3.3 Description of the crystal structure. The solid-state structure of ZnT was unambiguously determined by the single crystal X-ray diffraction tech- nique (figures 2 and 3). Compound ZnT crystallizes in.

  8. Octa­akis(4-amino­pyridine)-1κ4 N 1,2κ4 N 1-aqua-2κO-μ-carbonato-1:2κ3 O,O′:O′′-dinickel(II) dichloride penta­hydrate

    Science.gov (United States)

    Fun, Hoong-Kun; Sinthiya, A; Jebas, Samuel Robinson; Ravindran Durai Nayagam, B.; Alfred Cecil Raj, S.

    2008-01-01

    In the title compound, [Ni2(CO3)(C5H6N2)8(H2O)]Cl2·5H2O, one of the the NiII ions is six-coordinated in a distorted octa­hedral geometry, with the equatorial plane defined by four pyridine N atoms from four amino­pyridine ligands, the axial positions being occupied by one water O and a carbonate O atom. The other NiII ion is also six-coordinated, by four other pyridine N atoms from four other amino­pyridine ligands and two carbonate O atoms to complete a distorted octa­hedral geometry. In the crystal structure, mol­ecules are linked into an infinite three-dimensional network by O—H⋯O, N—H⋯Cl, N—H⋯O, O—H⋯N, C—H⋯O, C—H⋯N and C/N—H⋯π inter­actions involving the pyridine rings. PMID:21580879

  9. A second polymorph with composition Co3(PO4)2·H2O

    Science.gov (United States)

    Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang

    2008-01-01

    Single crystals of Co3(PO4)2·H2O, tricobalt(II) bis­[ortho­phosphate(V)] monohydrate, were obtained under hydro­thermal conditions. The compound is the second polymorph of this composition and is isotypic with its zinc analogue, Zn3(PO4)2·H2O. Three independent Co2+ cations are bridged by two independent orthophosphate anions. Two of the metal cations exhibit a distorted tetra­hedral coordination while the third exhibits a considerably distorted [5 + 1] octa­hedral coordination environment with one very long Co—O distance of 2.416 (3) Å. The former cations are bonded to four different phosphate anions, and the latter cation is bonded to four anions (one of which is bidentate) and one water mol­ecule, leading to a framework structure. Additional hydrogen bonds of the type O—H⋯O stabilize this arrangement. PMID:21200979

  10. Programmatic conversion of crystal structures into 3D printable files using Jmol

    OpenAIRE

    Scalfani, Vincent F.; Williams, Antony J.; Tkachenko, Valery; Karapetyan, Karen; Pshenichnov, Alexey; Hanson, Robert M.; Liddie, Jahred M.; Bara, Jason E.

    2016-01-01

    Background Three-dimensional (3D) printed crystal structures are useful for chemistry teaching and research. Current manual methods of converting crystal structures into 3D printable files are time-consuming and tedious. To overcome this limitation, we developed a programmatic method that allows for facile conversion of thousands of crystal structures directly into 3D printable files. Results A collection of over 30,000 crystal structures in crystallographic information file (CIF) format from...

  11. Crystal structure and crystal growth of the polar ferrimagnet CaBaFe4O7

    Science.gov (United States)

    Perry, R. S.; Kurebayashi, H.; Gibbs, A.; Gutmann, M. J.

    2018-05-01

    Magnetic materials are a cornerstone for developing spintronic devices for the transport of information via magnetic excitations. To date, relatively few materials have been investigated for the purpose of spin transport, mostly due to the paucity of suitable candidates as these materials are often chemically complex and difficult to synthesize. We present the crystal growth and a structure solution on the high-temperature crystal structure of the layered, polar ferrimagnet CaBaFe4O7 , which is a possible new contender for spintronics research. The space group is identified as P 3 by refinement of single crystal and powder neutron diffraction data. At 400 K, the trigonal lattice parameters are a =11.0114 (11 )Å and c =10.330 (3 )Å . The structure is similar to the low-temperature phase with alternating layers of triangular and Kagome-arranged Fe-O tetrahedra. We also present details of the crystal growth by traveling solvent method.

  12. Solving crystal structures with the symmetry minimum function

    International Nuclear Information System (INIS)

    Estermann, M.A.

    1995-01-01

    Unravelling the Patterson function (the auto-correlation function of the crystal structure) (A.L. Patterson, Phys. Rev. 46 (1934) 372) can be the only way of solving crystal structures from neutron and incomplete diffraction data (e.g. powder data) when direct methods for phase determination fail. The negative scattering lengths of certain isotopes and the systematic loss of information caused by incomplete diffraction data invalidate the underlying statistical assumptions made in direct methods. In contrast, the Patterson function depends solely on the quality of the available diffraction data. Simpson et al. (P.G. Simpson et al., Acta Crystallogr. 18 (1965) 169) showed that solving a crystal structure with a particular superposition of origin-shifted Patterson functions, the symmetry minimum function, is advantageous over using the Patterson function alone, for single-crystal X-ray data.This paper describes the extension of the Patterson superposition approach to neutron data and powder data by (a) actively using the negative regions in the Patterson map caused by negative scattering lengths and (b) using maximum entropy Patterson maps (W.I.F. David, Nature 346 (1990) 731). Furthermore, prior chemical knowledge such as bond lengths and angles from known fragments have been included. Two successful structure solutions of a known and a previously unknown structure (M. Hofmann, J. Solid State Chem., in press) illustrate the potential of this new development. ((orig.))

  13. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  14. CCDC 1408042: Experimental Crystal Structure Determination : 6,13-dimesitylpentacene

    KAUST Repository

    Shi, Xueliang

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  15. CCDC 1475929: Experimental Crystal Structure Determination : trimethylammonium tribromo-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  16. CCDC 1475930: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  17. CCDC 1475931: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  18. CCDC 1482638: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  19. Nonlinear coherent structures in granular crystals

    Science.gov (United States)

    Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.

    2017-10-01

    The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.

  20. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    KAUST Repository

    Abe, Yuichiro

    2017-08-15

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  1. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    KAUST Repository

    Abe, Yuichiro; Savikhin, Victoria; Yin, Jun; Grimsdale, Andrew C.; Soci, Cesare; Toney, Michael F.; Lam, Yeng Ming

    2017-01-01

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  2. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  3. Pyroelectric properties of phosphoric acid-doped TGS single crystals

    International Nuclear Information System (INIS)

    Saxena, Aparna; Fahim, M; Gupta, Vinay; Sreenivas, K

    2003-01-01

    Pyroelectric properties of phosphoric acid (H 3 PO 4 )-doped triglycine sulfate (TGSP) single crystals grown from solutions containing 0.1-0.5 mol of H 3 PO 4 have been studied. Incorporation of H 3 PO 4 into the crystal lattice is found to induce an internal bias field (E b ) and is observed through the presence of a sustained polarization and pyroelectricity beyond the transition temperature. The internal bias field has been estimated theoretically by fitting the experimentally measured data on temperature dependence of the pyroelectric coefficient (λ), dielectric constant (ε') and polarization (P). A high E b value in the range 9 x 10 3 -15.5 x 10 4 V m -1 is obtained for crystals grown with 0.1-0.5 mol of H 3 PO 4 in the solution, and a specific concentration of 0.2-0.25 mol of H 3 PO 4 in the solution during crystal growth is found to be optimum for a high figure of merit for detectivity, F d = 428 μC m -2 K -1

  4. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cornaby, Sterling [School of Applied and Engineering Physics, Cornell University, Ithaca, New York (United States); CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States); Szebenyi, Doletha M. E. [MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York (United States); Smilgies, Detlef-M. [CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States); Schuller, David J.; Gillilan, Richard; Hao, Quan [MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York (United States); Bilderback, Donald H., E-mail: dhb2@cornell.edu [School of Applied and Engineering Physics, Cornell University, Ithaca, New York (United States); CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States)

    2010-01-01

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.

  5. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    International Nuclear Information System (INIS)

    Cornaby, Sterling; Szebenyi, Doletha M. E.; Smilgies, Detlef-M.; Schuller, David J.; Gillilan, Richard; Hao, Quan; Bilderback, Donald H.

    2010-01-01

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used

  6. CRYSTALLIZATION KINETICS OF GLASS-CERAMICS BY DIFFERENTIAL THERMAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    A. NOZAD

    2011-06-01

    Full Text Available The crystallization behavior of fluorphlogopite, a glass-ceramic in the MgO–SiO2–Al2O3–K2O–B2O3–F system, was studied by substitution of Li2O for K2O in the glass composition. DTA, XRD and SEM were used for the study of crystallization behavior, formed phases and microstructure of the resulting glass-ceramics. Crystallization kinetics of the glass was investigated under non-isothermal conditions, using the formal theory of transformations for heterogeneous nucleation. The crystallization results were analyzed, and both the activation energy of crystallization process as well as the crystallization mechanism were characterized. Calculated kinetic parameters indicated that the appropriate crystallization mechanism was bulk crystallization for base glass and the sample with addition of Li2O. Non-isothermal DTA experiments showed that the crystallization activation energies of base glasses was in the range of 234-246 KJ/mol and in the samples with addition of Li2O was changed to the range of 317-322 KJ/mol.

  7. Structural and morphological characterization of fullerite crystals prepared from the vapor phase

    International Nuclear Information System (INIS)

    Haluska, M.; Fejdi, P.; Vybornov, M.; Kuzmany, H.

    1993-01-01

    Crystal structure, habits and surface structures of fullerite crystals prepared from vapor phase were characterized by X-ray analysis, interfacial angle measurements and optical and scanning electron microscopy (SEM). The study of selected C 60 crystals confirmed the fcc structure at room temperature. The crystal habit is determined by two types of morphological faces, namely {100} and {111}. SEM was used for the observation of thermal etched surfaces. (orig.)

  8. NMR structure of the protein NP-247299.1: comparison with the crystal structure

    International Nuclear Information System (INIS)

    Jaudzems, Kristaps; Geralt, Michael; Serrano, Pedro; Mohanty, Biswaranjan; Horst, Reto; Pedrini, Bill; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    Comparison of the NMR and crystal structures of a protein determined using largely automated methods has enabled the interpretation of local differences in the highly similar structures. These differences are found in segments of higher B values in the crystal and correlate with dynamic processes on the NMR chemical shift timescale observed in solution. The NMR structure of the protein NP-247299.1 in solution at 313 K has been determined and is compared with the X-ray crystal structure, which was also solved in the Joint Center for Structural Genomics (JCSG) at 100 K and at 1.7 Å resolution. Both structures were obtained using the current largely automated crystallographic and solution NMR methods used by the JCSG. This paper assesses the accuracy and precision of the results from these recently established automated approaches, aiming for quantitative statements about the location of structure variations that may arise from either one of the methods used or from the different environments in solution and in the crystal. To evaluate the possible impact of the different software used for the crystallographic and the NMR structure determinations and analysis, the concept is introduced of reference structures, which are computed using the NMR software with input of upper-limit distance constraints derived from the molecular models representing the results of the two structure determinations. The use of this new approach is explored to quantify global differences that arise from the different methods of structure determination and analysis versus those that represent interesting local variations or dynamics. The near-identity of the protein core in the NMR and crystal structures thus provided a basis for the identification of complementary information from the two different methods. It was thus observed that locally increased crystallographic B values correlate with dynamic structural polymorphisms in solution, including that the solution state of the protein involves

  9. PDF analysis on re-crystallized structure from amorphous BiT

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Yasuhiro [Japan Atomic Energy Research Institute, Synchrotron Radiation Research Center, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)]. E-mail: yoneda@spring8.or.jp; Kohara, Shinji [Synchrotron Radiation Research Laboratory, Japan Synchrotron Radiation, Research Institute, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hamazaki, Shin' ichi [Department of Electronics, Iwaki Meisei University, Iino 5-5-1, Chuohdai, Fukushima 970-8551 (Japan); Takashige, Masaaki [Department of Electronics, Iwaki Meisei University, Iino 5-5-1, Chuohdai, Fukushima 970-8551 (Japan); Mizuki, Jun' ichiro [Japan Atomic Energy Research Institute, Synchrotron Radiation Research Center, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2005-08-15

    A glass sample of composition Bi{sub 4}Ti{sub 3}O{sub 12} was prepared by rapid quenching. The as-quenched sample was confirmed to be amorphous by synchrotron X-ray measurements. The crystallization process of the amorphous sample was also investigated by high-energy X-ray diffraction and by atomic pair distribution function analysis. The perovskite layer in the crystal Bi{sub 4}Ti{sub 3}O{sub 12} is transformed to a pyrochlore structure in the amorphous sample. The amorphous sample first crystallized to a metastable phase by acquiring long-range ordering of the pyrochlore structure at T {sub cryst1}, and then secondary crystallized into a reverted Bi{sub 4}Ti{sub 3}O{sub 12} structure at T {sub cryst2}.

  10. Nucleation of colloidal crystals on configurable seed structures

    NARCIS (Netherlands)

    Hermes, M; Vermolen, E.C.M.; Leunissen, M.E.; Vossen, D.L.J.; van Oostrum, P.D.J.; Dijkstra, M.; van Blaaderen, A.

    2011-01-01

    Nucleation is an important stage in the growth of crystals. During this stage, the structure and orientation of a crystal are determined. However, short time- and length-scales make nucleation poorly understood. Micrometer-sized colloidal particles form an ideal model system to study nucleation due

  11. Crystal structure of MboIIA methyltransferase.

    Science.gov (United States)

    Osipiuk, Jerzy; Walsh, Martin A; Joachimiak, Andrzej

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 A resolution the crystal structure of a beta-class DNA MTase MboIIA (M.MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M.MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M.MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M.RsrI. However, the cofactor-binding pocket in M.MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.

  12. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations.

    Science.gov (United States)

    van de Streek, Jacco; Neumann, Marcus A

    2010-10-01

    This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.

  13. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations

    International Nuclear Information System (INIS)

    Streek, Jacco van de; Neumann, Marcus A.

    2010-01-01

    The accuracy of a dispersion-corrected density functional theory method is validated against 241 experimental organic crystal structures from Acta Cryst. Section E. This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 Å either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect

  14. A unified picture of the crystal structures of metals

    Science.gov (United States)

    Söderlind, Per; Eriksson, Olle; Johansson, Börje; Wills, J. M.; Boring, A. M.

    1995-04-01

    THE crystal structures of the light actinides have intrigued physicists and chemists for several decades1. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic and hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry-tetragonal, orthorhombic and monoclinic. To understand these differences, we have performed total-energy calculations, as a function of volume, for both high-and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all of these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression.

  15. A unified picture of the crystal structures of metals

    International Nuclear Information System (INIS)

    Soederlind, P.; Eriksson, O.; Johansson, B.; Wills, J.M.; Boring, A.M.

    1995-01-01

    The crystal structures of the light actinides have intrigued physicists and chemists for several decades. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry -tetragonal, orthorhombic and monoclinic. To understand these differences, we have have performed total-energy calculations, as a function of volume, for both high- and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression. (author)

  16. HackaMol: An Object-Oriented Modern Perl Library for Molecular Hacking on Multiple Scales.

    Science.gov (United States)

    Riccardi, Demian; Parks, Jerry M; Johs, Alexander; Smith, Jeremy C

    2015-04-27

    HackaMol is an open source, object-oriented toolkit written in Modern Perl that organizes atoms within molecules and provides chemically intuitive attributes and methods. The library consists of two components: HackaMol, the core that contains classes for storing and manipulating molecular information, and HackaMol::X, the extensions that use the core. The core is well-tested, well-documented, and easy to install across computational platforms. The goal of the extensions is to provide a more flexible space for researchers to develop and share new methods. In this application note, we provide a description of the core classes and two extensions: HackaMol::X::Calculator, an abstract calculator that uses code references to generalize interfaces with external programs, and HackaMol::X::Vina, a structured class that provides an interface with the AutoDock Vina docking program.

  17. Hydrogen-bond coordination in organic crystal structures: statistics, predictions and applications.

    Science.gov (United States)

    Galek, Peter T A; Chisholm, James A; Pidcock, Elna; Wood, Peter A

    2014-02-01

    Statistical models to predict the number of hydrogen bonds that might be formed by any donor or acceptor atom in a crystal structure have been derived using organic structures in the Cambridge Structural Database. This hydrogen-bond coordination behaviour has been uniquely defined for more than 70 unique atom types, and has led to the development of a methodology to construct hypothetical hydrogen-bond arrangements. Comparing the constructed hydrogen-bond arrangements with known crystal structures shows promise in the assessment of structural stability, and some initial examples of industrially relevant polymorphs, co-crystals and hydrates are described.

  18. Multi-structure docking analysis of BACE1 crystal structures and non-peptidic ligands.

    Science.gov (United States)

    Haghighijoo, Zahra; Hemmateenejad, Bahram; Edraki, Najmeh; Miri, Ramin; Emami, Saeed

    2017-09-01

    In order to design novel non-peptidic inhibitors of BACE1, many research groups have attempted using computational studies including docking analyses. Since there are too many 3D structures for BACE1 in the protein database, the selection of suitable crystal structures is a key prerequisite for the successful application of molecular docking. We employed a multi-structure docking protocol. In which 615 ligands' structures were docked into 150 BACE1 structures. The large number of the resultant docking scores were post-processed by different data analysis methods including exploratory data analysis, regression analysis and discriminant analysis. It was found that using one crystal structure for docking did not result in high accuracy for predicting activity of the BACE1 inhibitors. Instead, using of the multi-structural docking scores, post-processed by chemometrics methods arrived to highly accurate predictive models. In this regards, the PDB accession codes of 4B70, 4DVF and 2WEZ could discriminate between active and inactive compounds, with higher accuracy. Clustering of the BACE1 structures based on principal component analysis of the crystallographic structures the revealed that the discriminant structures are in the center of the clusters. Thus, these structures can be selected as predominant crystal structures for docking studies of non-peptidic BACE1 inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Dehydration and crystallization kinetics of zirconia-yttria gels

    International Nuclear Information System (INIS)

    Ramanathan, S.; Muraleedharan, R.V.; Roy, S.K.; Nayar, P.K.K.

    1995-01-01

    Zirconia and zirconia-yttria gels containing 4 and 8 mol% yttria were obtained by coprecipitation and drying at 373 K. The dehydration and crystallization behavior of the dried gels was studied by DSC, TG, and XRD. The gels undergo elimination of water over a wide temperature range of 373--673 K. The peak temperature of the endotherm corresponding to dehydration and the kinetic constants for the process were not influenced by the yttria content of the gel. The enthalpy of dehydration observed was in good agreement with the heat of vaporization data. The dehydration was followed by a sharp exothermic crystallization process. The peak temperature of the exotherm and the activation energy of the process increased with an increase in yttria content, while the enthalpy of crystallization showed a decrease. The ''glow effect'' reduced with increasing yttria content. Pure zirconia crystallizes in the tetragonal form while the zirconia containing 4 and 8 mol% yttria appears to crystallize in the cubic form

  20. Crystal structure of isomeric boron difluoride acetylnaphtholates

    International Nuclear Information System (INIS)

    Bukvetskij, B.V.; Fedorenko, E.V.; Mirochnik, A.G.; Karasev, V.E.

    2006-01-01

    Crystal structures of luminescent isomeric acetylnaphtholates of boron difluoride are investigated. Full X-ray structural analysis is done at 293 K. Coordinated of atoms, bond angles, bond lengths, interatomic distances are determined. Results of comparative evaluations of the isomers are represented [ru

  1. Quiralidade em moléculas e cristais Chirality at molecules and crystals

    Directory of Open Access Journals (Sweden)

    Ayres Guimarães Dias

    2009-01-01

    Full Text Available The present contribution describes some concepts of stereochemistry and chirality in molecules and crystals. This paper also reports on the development of a simple and fast experiment to prepare and recognize conglomerate and true racemate of tartaric acid produced by mechanic mixture of commercial enantiomers and recristalization. Optical activity and melting point of mixtures are also used in the analysis.

  2. Structure of a second crystal form of Bence-Jones protein Loc: Strikingly different domain associations in two crystal forms of a single protein

    International Nuclear Information System (INIS)

    Schiffer, M.; Ainsworth, C.; Xu, Z.B.; Carperos, W.; Olsen, K.; Solomon, A.; Stevens, F.J.; Chang, C.H.

    1989-01-01

    The authors have determined the structure of the immunoglobulin light-chain dimer Loc in a second crystal form that was grown from distilled water. The crystal structure was determined to 2.8-angstrom resolution; the R factor is 0.22. The two variable domains are related by local 2-fold axes and form an antigen binding pocket. The variable domain-variable domain interaction observed in this crystal form differs from the one exhibited by the protein when crystallized from ammonium sulfate in which the two variable domains formed a protrusion. The structure attained in the distilled water crystals is similar to, but not identical with, the one observed for the Mcg light-chain dimer in crystals grown from ammonium sulfate. Thus, two strikingly different structures were attained by this multisubunit protein in crystals grown under two different, commonly used, crystallization techniques. The quaternary interactions exhibited by the protein in the two crystal forms are sufficiently different to suggest fundamentally different interpretations of the structural basis for the function of this protein. This observation may have general implications regarding the use of single crystallographic determinations for detailed identification of structural and functional relationships. On the other hand, proteins whose structures can be altered by manipulation of crystallization conditions may provide useful systems for study of fundamental structural chemistry

  3. Structure of initial crystals formed during human amelogenesis

    Science.gov (United States)

    Cuisinier, F. J. G.; Voegel, J. C.; Yacaman, J.; Frank, R. M.

    1992-02-01

    X-ray diffraction analysis revealed only the existence of carbonated hydroxyapatite (c.HA) during amelogenesis, whereas conventional transmission electron microscopy investigations showed that developing enamel crystals have a ribbon-like habit. The described compositional changes could be an indication for the presence of minerals different from c.HA. However, the absence of identification of such a mineral shows the need of studies by high resolution electron microscopy (HREM) of initial formed human enamel crystals. We demonstrate the existence of two crystal families involved in the early stages of biomineralization: (a) nanometer-size particles which appeared as a precursor phase; (b) ribbon-like crystals, with a structure closely related to c.HA, which by a progressive thickening process tend to attain the mature enamel crystal habit.

  4. Structures of the OmpF porin crystallized in the presence of foscholine-12.

    Science.gov (United States)

    Kefala, Georgia; Ahn, Chihoon; Krupa, Martin; Esquivies, Luis; Maslennikov, Innokentiy; Kwiatkowski, Witek; Choe, Senyon

    2010-05-01

    The endogenous Escherichia coli porin OmpF was crystallized as an accidental by-product of our efforts to express, purify, and crystallize the E. coli integral membrane protein KdpD in the presence of foscholine-12 (FC12). FC12 is widely used in membrane protein studies, but no crystal structure of a protein that was both purified and crystallized with this detergent has been reported in the Protein Data Bank. Crystallization screening for KdpD yielded two different crystals of contaminating protein OmpF. Here, we report two OmpF structures, the first membrane protein crystal structures for which extraction, purification, and crystallization were done exclusively with FC12. The first structure was refined in space group P21 with cell parameters a = 136.7 A, b = 210.5 A, c = 137 A, and beta = 100.5 degrees , and the resolution of 3.8 A. The second structure was solved at the resolution of 4.4 A and was refined in the P321 space group, with unit cell parameters a = 215.5 A, b = 215.5 A, c = 137.5 A, and gamma = 120 degrees . Both crystal forms show novel crystal packing, in which the building block is a tetrahedral arrangement of four trimers. Additionally, we discuss the use of FC12 for membrane protein crystallization and structure determination, as well as the problem of the OmpF contamination for membrane proteins overexpressed in E. coli.

  5. Unique Crystal Orientation of Poly(ethylene oxide) Thin Films by Crystallization Using a Thermal Gradient

    DEFF Research Database (Denmark)

    Gbabode, Gabin; Delvaux, Maxime; Schweicher, Guillaume

    2017-01-01

    Poly(ethylene oxide), (PEO), thin films of different thicknesses (220, 450, and 1500 nm) and molecular masses (4000, 8000, and 20000 g/mol) have been fabricated by spin-coating of methanol solutions onto glass substrates. All these samples have been recrystallized from the melt using a directional......, to significantly decrease the distribution of crystal orientation obtained after crystallization using the thermal gradient technique....

  6. Pyroelectric properties of phosphoric acid-doped TGS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Aparna; Fahim, M; Gupta, Vinay; Sreenivas, K [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2003-12-21

    Pyroelectric properties of phosphoric acid (H{sub 3}PO{sub 4})-doped triglycine sulfate (TGSP) single crystals grown from solutions containing 0.1-0.5 mol of H{sub 3}PO{sub 4} have been studied. Incorporation of H{sub 3}PO{sub 4} into the crystal lattice is found to induce an internal bias field (E{sub b}) and is observed through the presence of a sustained polarization and pyroelectricity beyond the transition temperature. The internal bias field has been estimated theoretically by fitting the experimentally measured data on temperature dependence of the pyroelectric coefficient ({lambda}), dielectric constant ({epsilon}') and polarization (P). A high E{sub b} value in the range 9 x 10{sup 3}-15.5 x 10{sup 4} V m{sup -1} is obtained for crystals grown with 0.1-0.5 mol of H{sub 3}PO{sub 4} in the solution, and a specific concentration of 0.2-0.25 mol of H{sub 3}PO{sub 4} in the solution during crystal growth is found to be optimum for a high figure of merit for detectivity, F{sub d} = 428 {mu}C m{sup -2} K{sup -1}.

  7. Crystal structure of vanadite: Refinement of anisotropic displacement parameters

    Czech Academy of Sciences Publication Activity Database

    Laufek, F.; Skála, Roman; Haloda, J.; Císařová, I.

    2006-01-01

    Roč. 51, 3-4 (2006), s. 271-275 ISSN 1210-8197 Institutional research plan: CEZ:AV0Z30130516 Keywords : anisotropic displacement parameter * crystal structure * single-crystal X-ray refinement * vanadinite Subject RIV: DB - Geology ; Mineralogy

  8. Crystal structure of N-(quinolin-6-ylhydroxylamine

    Directory of Open Access Journals (Sweden)

    Anuruddha Rajapakse

    2014-11-01

    Full Text Available The title compound, C9H8N2O, crystallized with four independent molecules in the asymmetric unit. The four molecules are linked via one O—H...N and two N—H...N hydrogen bonds, forming a tetramer-like unit. In the crystal, molecules are further linked by O—H...N and N—H...O hydrogen bonds forming layers parallel to (001. These layers are linked via C—H...O hydrogen bonds and a number of weak C—H...π interactions, forming a three-dimensional structure. The crystal was refined as a non-merohedral twin with a minor twin component of 0.319.

  9. Physicochemical and crystal structure analyses of the antidiabetic agent troglitazone.

    Science.gov (United States)

    Kobayashi, Katsuhiro; Fukuhara, Hiroshi; Hata, Tadashi; Sekine, Akiko; Uekusa, Hidehiro; Ohashi, Yuji

    2003-07-01

    The antidiabetic agent troglitazone has two asymmetric carbons located at the chroman ring and the thiazolidine ring and is produced as a mixture of equal amounts of four optical isomers, 2R-5S, 2S-5R, 2R-5R, and 2S-5S. The crystalline powdered drug substance consists of two diastereomer pairs, 2R-5R/2S-5S and 2R-5S/2S-5R. There are many types of crystals obtained from various crystallization conditions. The X-ray structure analysis and the physicochemical analyses of troglitazone were performed. The solvated crystals of the 2R-5R/2S-5S pair were crystallized from several solutions: methanol, ethanol, acetonitrile, and dichloromethane. The ratio of solvent and troglitazone was 1 : 2 (L1/2-form). The monohydrate crystals were obtained from aqueous acetone solution (L1-form). On the other hand, only an anhydrate crystal of the 2R-5S/2S-5R pair was crystallized from various solutions (H0-form). The dihydrous mixed crystal (MA2-form) was obtained from a mixture of the two diastereomer pairs of 2R-5R/2S-5S and 2R-5S/2S-5R in equal amounts by the slow evaporation of aqueous acetone solution. The crystal structure of the MA2-form is similar to the H0-form. When the MA2 crystal was kept under low humidity, it was converted into the dehydrated form (MA0-form) with retention of the single crystal form. The structure of the MA0-form is isomorphous to the H0-form. The MA2-form was converted into the MA0-form and vice versa with retention of the single crystal under low and high humidity, respectively. The crystallization and storage conditions of the drug substances were successfully analyzed.

  10. Two modifications of Y2Piv6(HPiv)6 crystals: synthesis and structures

    International Nuclear Information System (INIS)

    Kiseleva, E.A.; Troyanov, S.I.; Korenev, Yu.M.

    2006-01-01

    Crystal structure of solvate of yttrium pivalate YPiv 3 ·3HPiv is studied. Existing of two polymorphous modifications of the compound is detected. It is shown that α- and β-modifications of yttrium pivalate solvate have molecular crystal structures and are built of Y 2 Piv 6 (HPiv) 6 dimers. Difference of these two modifications is in package of dimer molecules and in center-symmetricity of dimers in α-modification structure. Molecular and crystal structure, crystal lattice parameters are determined [ru

  11. Single-crystal study of the charge density wave metal LuNiC2

    Science.gov (United States)

    Steiner, S.; Michor, H.; Sologub, O.; Hinterleitner, B.; Höfenstock, F.; Waas, M.; Bauer, E.; Stöger, B.; Babizhetskyy, V.; Levytskyy, V.; Kotur, B.

    2018-05-01

    We report on single-crystal growth, single-crystal x-ray diffraction, physical properties, and density functional theory (DFT) electronic structure as well as Fermi surface calculations for two ternary carbides, LuCoC2 and LuNiC2. Electrical resistivity measurements reveal for LuNiC2 a charge density wave (CDW) transition at TCDW≃450 K and, for T >TCDW , a significant anisotropy of the electrical resistivity, which is lowest along the orthorhombic a axis. The analysis of x-ray superstructure reflections suggest a commensurate CDW state with a Peierls-type distortion of the Ni atom periodicity along the orthorhombic a axis. DFT calculations based on the CDW modulated monoclinic structure model of LuNiC2 as compared to results of the orthorhombic parent type reveal the formation of a partial CDW gap at the Fermi level which reduces the electronic density of states from N (EF)=1.03 states/eV f.u. without CDW to N (EF)=0.46 states/eV f.u. in the CDW state. The corresponding bare DFT Sommerfeld value of the latter, γDFTCDW=0.90 mJ/mol K2, reaches reasonable agreement with the experimental value γ =0.83 (5 ) mJ/mol K2 of LuNiC2. LuCoC2 displays a simple metallic behavior with neither CDW ordering nor superconductivity above 0.4 K. Its experimental Sommerfeld coefficient, γ =5.9 (1) mJ/mol K2, is in realistic correspondence with the calculated, bare Sommerfeld coefficient, γDFT=3.82 mJ/mol K2, of orthorhombic LuCoC2.

  12. ANATOMIA DA MADEIRA E CASCA DO ESPINILHO, Acacia caven (Mol. Mol.

    Directory of Open Access Journals (Sweden)

    José Newton Cardoso Marchiori

    1992-12-01

    Full Text Available São descritos os aspectos anatômicos da madeira e casca de Acacia cavem (Mol. Mol. São apresentados dados quantitativos de 34 características do xilema secundário, bem como fotomicrografias das estruturas anatômicas da madeira e casca. A ausência de septos em fibras, a abundância de parênquima axial e a elevada percentagem de raios com 4 ou mais células de largura, são os caracteres mais importantes na estrutura do lenho. O arranjo das fibras floemáticas em feixes tangenciais regulares, rodeados por sériescristalíferas, é, por sua vez, o aspecto mais notável da casca. Este caráter ainda não havia sido reportado pela literatura anatômica das acácias sul-americanas, e pode ter valor taxonômico em nivel infra-genético.

  13. Anatomia da madeira e casca de espinilho, Acacia caven Mol.Mol.

    Directory of Open Access Journals (Sweden)

    José Newton Cardoso Marchiori

    2009-09-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 São descritos os aspectos anatômicos da madeira e casca de Acácia caven (Mol. Mol. São apresentados dados quantitativos de 34 caracteres do xilema secundário, bem como fotomicrografias das estruturas anatômicas da madeira e casca. A ausência de septos em fibras, a abundância de parênquima axial e a elevada percentagem de raios com 4 ou mais células de largura, são os caracteres mais importantes na estrutura do lenho. O arranjo das fibras floemáticas em feixes tangenciais regulares, rodeados por séries cristalíferas, é, por sua vez, o aspecto mais notável da casca. Este caráter ainda não havia sido reportado pela literatura anatômica das acácias sul-americanas, e pode ter valor taxonômico em nível infra-genérico.

  14. Crystal structure of human protein kinase CK2

    DEFF Research Database (Denmark)

    Niefind, K; Guerra, B; Ermakowa, I

    2001-01-01

    The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalyt...... as a docking partner for various protein kinases. Furthermore it shows an inter-domain mobility in the catalytic subunit known to be functionally important in protein kinases and detected here for the first time directly within one crystal structure.......The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalytic...... subunits, which make no direct contact with one another. Each catalytic subunit interacts with both regulatory chains, predominantly via an extended C-terminal tail of the regulatory subunit. The CK2 structure is consistent with its constitutive activity and with a flexible role of the regulatory subunit...

  15. Pyridinium bis­(pyridine-κN)tetra­kis­(thio­cyanato-κN)ferrate(III)–pyrazine-2-carbo­nitrile–pyridine (1/4/1)

    Science.gov (United States)

    Shylin, Sergii I.; Gural’skiy, Il’ya A.; Haukka, Matti; Golenya, Irina A.

    2013-01-01

    In the title compound, (C5H6N)[Fe(NCS)4(C5H5N)2]·4C5H3N3·C5H5N, the FeIII ion is located on an inversion centre and is six-coordinated by four N atoms of the thio­cyanate ligands and two pyridine N atoms in a trans arrangement, forming a slightly distorted octa­hedral geometry. A half-occupied H atom attached to a pyridinium cation forms an N—H⋯N hydrogen bond with a centrosymmetrically-related pyridine unit. Four pyrazine-2-carbo­nitrile mol­ecules crystallize per complex anion. In the crystal, π–π stacking inter­actions are present [centroid–centroid distances = 3.6220 (9), 3.6930 (9), 3.5532 (9), 3.5803 (9) and 3.5458 (8) Å]. PMID:23723782

  16. Crystallization Behavior of A Bulk Amorphous Mg62Cu26Y12 Alloy

    Science.gov (United States)

    Wu, Shyue-Sheng; Chin, Tsung-Shune; Su, Kuo-Chang

    1994-07-01

    The crystallization temperature, the associated activation energy and the crystallized structure of a bulk amorphous Mg62Cu26Y12 alloy with a diameter of 2.5 mm were studied. It possesses a one-step crystallization behavior. The crystallization reaction was found to be represented by: AM(MG62Cu26Y12)→Mg2Cu+MgY+CuY+Mg, ( Tx=188°C, Eac=134 kJ/mol) where AM represents the amorphous state, T x the crystallization temperature at an infinitesimal heating rate, and E ac the associated activation energy. The amount of crystalline phases were found to be Mg2Cu:MgY:CuY=76:17:7. The Mg phase is identifiable only by high resolution electron microscopy, not by X-ray diffraction. The crystallization leads to a sharp rise in electrical resistivity which is reversed to those of iron-based amorphous alloys.

  17. Crystal structure optimisation using an auxiliary equation of state

    Science.gov (United States)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron

    2015-11-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.

  18. Crystal structure optimisation using an auxiliary equation of state

    International Nuclear Information System (INIS)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of))" data-affiliation=" (Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of))" >Walsh, Aron

    2015-01-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy–volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other “beyond” density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu 2 ZnSnS 4 and the magnetic metal-organic framework HKUST-1

  19. Crystal structure optimisation using an auxiliary equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T. [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E" 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-11-14

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy–volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other “beyond” density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu{sub 2}ZnSnS{sub 4} and the magnetic metal-organic framework HKUST-1.

  20. Conversion of broadband thermal radiation in lithium niobate crystals of various compositions

    Science.gov (United States)

    Syuy, A. V.; Litvinova, M. N.; Goncharova, P. S.; Sidorov, N. V.; Palatnikov, M. N.; Krishtop, V. V.; Likhtin, V. V.

    2013-05-01

    The conversion of the broadband thermal radiation in stoichiometric ( R = 1) lithium niobate single crystals that are grown from melt with 58.6 mol % of LiO2, congruent ( R = Li/Nb = 0.946) melt with the K2O flux admixture (4.5 and 6.0 wt %), and congruent melt and in congruent single crystals doped with the Zn2+, Gd3+, and Er3+ cations is studied. It is demonstrated that the conversion efficiency of the stoichiometric crystal that is grown from the melt with 58.6 mol % of LiO2 is less than the conversion efficiency of congruent crystal. In addition, the stoichiometric and almost stoichiometric crystals and the doped congruent crystals exhibit the blue shift of the peak conversion intensity in comparison with a nominally pure congruent crystal. For the congruent crystals, the conversion intensities peak at 520 and 495 nm, respectively.

  1. CCDC 870534: Experimental Crystal Structure Determination : Dichloro-trimethyl-tantalum(v)

    KAUST Repository

    Chen, Yin; Callens, E.; Abou-Hamad, E.; Merle, N.; White, A.J.P.; Taoufik, M.; Coperet, C.; Le Roux, E.; Basset, J.-M.

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  2. CCDC 1475931: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  3. CCDC 1475929: Experimental Crystal Structure Determination : trimethylammonium tribromo-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  4. CCDC 1482638: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  5. CCDC 1475930: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  6. Crystal structure of clathrates of Hofmann dma-type

    International Nuclear Information System (INIS)

    NIshikiori, Sh.; Ivamoto, T.

    1999-01-01

    Seven new clathrates Cd(DMA) 2 Ni(CN) 4 ·xG (x=1, G=aniline, 2,3-xylidine, 2,4-xylidine, 2,5-xylidine, 2,6-xylidine, 3,5-xylidine, and x=2, G=2,4,6-trimethylaniline) of Hofmann type are synthesized by amine substitution for dimethylamine (DMA). On the base of x-ray diffraction data it is shown that geometry of guest molecule in cage-like hollow determines the structure of the host and crystal structure of clathrates. Two-dimension metallocomplex of the host of studied clathrates is characterized by elastic folded structure appearing as a result of angular deformation of bond between Cd atoms and host cyanide bridge. Guest molecule orientation is fixed by hydrogen bond. Structural elasticity of the host complex directs to differences in crystal structure of clathrates formed and to considerable variety of incorporated guests [ru

  7. Crystal structure mediates mode of cell death in TiO2 nanotoxicity

    International Nuclear Information System (INIS)

    Braydich-Stolle, Laura K.; Schaeublin, Nicole M.; Murdock, Richard C.; Jiang, Jingkun; Biswas, Pratim; Schlager, John J.; Hussain, Saber M.

    2009-01-01

    Certain properties that nanoparticles possess differentiate them from their bulk counterparts, and these characteristics must be evaluated prior to nanoparticle studies and include: size, shape, dispersion, physical and chemical properties, surface area, and surface chemistry. Early nanotoxicity studies evaluating TiO 2 have yielded conflicting data which identify either size or crystal structure as the mediating property for nano-TiO 2 toxicity. However, it is important to note that none of these studies examined size with the crystal structure composition controlled for or examined crystal structure while controlling the nanoparticle size. The goal of this study was to evaluate the role of size and crystal structure in TiO 2 nanotoxicity while controlling for as many other nanoproperties as possible using the HEL-30 mouse keratinocyte cell line as a model for dermal exposure. In the size-dependent studies, all the nanoparticles are 100% anatase, and aggregate sizes were determined in order to take into account the effect of agglomeration on size-dependent toxicity. In addition, varying crystal structures were assessed while the size of the nanoparticles was controlled. We were able to identify that both size and crystal structure contribute to cytotoxicity and that the mechanism of cell death varies based on crystal structure. The 100% anatase TiO 2 nanoparticles, regardless of size, induced cell necrosis, while the rutile TiO 2 nanoparticles initiated apoptosis through formation of reactive oxygen species (ROS).

  8. Results of postirradiation examination of the in-pile blockage experiments MOL-7C/4 and MOL-7C/5

    International Nuclear Information System (INIS)

    Weimar, P.; Schleisiek, K.

    1991-01-01

    The Mol-7C in-pile local blockage experiments are performed in the BR-2 reactor at Mol, Belgium as a joint project of Kernforchungszentrum Karlsruhe (KfK) and Studiecentrum voor Kernenergie/Centre d'Etude de l'Energie Nuclearire-Mol. The main objective is to investigate the consequences of local cooling disturbances in liquid-metal-cooled reactor (LMR) fuel subassemblies. In the tests Mol-7C/4 and MOL-7C/5, fuel pins from KNK II are used with a burnup of 5 and 1.7%, respectively. An active central porous blockage is used to simulate the cooling disturbance. During irradiation, the blockage causes significant local damage, including melting of cladding and fuel. Extensive postirradiation examinations (PIE) are performed to investigate the extent of damage. In this paper a description and interpretation of results of the destructive PIE performed at the Hot Cells Laboratory at KfK is given, along with some conclusions related to LMR safety

  9. Shear induced structures in crystallizing cocoa butter

    Science.gov (United States)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  10. Crystal structure and vibrational spectra of piperazinium bis(4-hydroxybenzenesulphonate) molecular-ionic crystal

    Science.gov (United States)

    Marchewka, M. K.; Pietraszko, A.

    2008-02-01

    The piperazinium bis(4-hydroxybenzenesulphonate) crystallizes from water solution at room temperature in P2 1/ c space group of monoclinic system. The crystals are built up of doubly protonated piperazinium cations and ionized 4-hydroxybenzenesulphonate anions that interact through weak hydrogen bonds of O-H⋯O and N-H⋯O type. Mutual orientation of anions is determined by non-conventional hydrogen bonds of C-H⋯π type. Room temperature powder FT IR and FT Raman measurements were carried out. The vibrational spectra are in full agreement with the structure obtained from X-ray crystallography. The big single crystals of the title salt can be grown.

  11. VSDMIP 1.5: an automated structure- and ligand-based virtual screening platform with a PyMOL graphical user interface.

    Science.gov (United States)

    Cabrera, Álvaro Cortés; Gil-Redondo, Rubén; Perona, Almudena; Gago, Federico; Morreale, Antonio

    2011-09-01

    A graphical user interface (GUI) for our previously published virtual screening (VS) and data management platform VSDMIP (Gil-Redondo et al. J Comput Aided Mol Design, 23:171-184, 2009) that has been developed as a plugin for the popular molecular visualization program PyMOL is presented. In addition, a ligand-based VS module (LBVS) has been implemented that complements the already existing structure-based VS (SBVS) module and can be used in those cases where the receptor's 3D structure is not known or for pre-filtering purposes. This updated version of VSDMIP is placed in the context of similar available software and its LBVS and SBVS capabilities are tested here on a reduced set of the Directory of Useful Decoys database. Comparison of results from both approaches confirms the trend found in previous studies that LBVS outperforms SBVS. We also show that by combining LBVS and SBVS, and using a cluster of ~100 modern processors, it is possible to perform complete VS studies of several million molecules in less than a month. As the main processes in VSDMIP are 100% scalable, more powerful processors and larger clusters would notably decrease this time span. The plugin is distributed under an academic license upon request from the authors. © Springer Science+Business Media B.V. 2011

  12. Composition and crystallization kinetics of R2O-Al2O3-SiO2 glass-ceramics

    International Nuclear Information System (INIS)

    Xiong, Dehua; Cheng, Jinshu; Li, Hong

    2010-01-01

    The crystallization behavior and microstructure of R 2 O-Al 2 O 3 -SiO 2 (R means K, Na and Li) glass were investigated by means of differential scanning calorimeter (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The crystallization kinetic parameters including the crystallization apparent activation energy (E a ), the Avrami parameter (n), glass transition temperature (T g ) and the activity energy of glass transition (E t ) were also measured with different methods. The results have shown that: the DSC traces of composition A parent glass have two different precipitation crystallization peaks corresponding to E a1 (A) = 151.4 kJ/mol (Li 2 SiO 3 ) and E a2 (A) = 623.1 kJ/mol (Li 2 Si 2 O 5 ), the average value of n = 1.70 (Li 2 Si 2 O 5 ) for the surface crystallization and E t (A) = 202.8 kJ/mol. And E a (B) = 50.7 kJ/mol (Li 2 SiO 3 ), the average value of n = 3.89 (Li 2 SiO 3 ) for the bulk crystallization and E t (B) = 220.4 kJ/mol for the composition B parent glass. Because of the content of R 2 O is bigger than composition A, composition B parent glass has a lower E a , T g and a larger n, E t .

  13. Local layer structure of smectic liquid crystals by X-ray micro-diffraction

    CERN Document Server

    Takanishi, Y

    2003-01-01

    The local layer structure of smectic liquid crystal has been measured using time-resolved synchrotron X-ray micro-diffraction. Typical layer disorders observed in surface stabilized (anti-) ferroelectric liquid crystals, i.e. a stripe texture, a needed-like defect and a zigzag defect, are directly analyzed. The detailed analysis slows that the surface anchoring force due to the interaction between the liquid crystal molecule and the alignment thin film plays an important role to realize both the static and dynamic local layer structures. The layer structure of the circular domain observed in the liquid crystal of bent-shaped molecules found to depend on the applied electric field though the optical micrograph shows little difference. The frustrated, double and single layer structures of the bent-shaped molecule liquid crystal are determined depending on the terminal alkyl chain length. (author)

  14. Prediction of inorganic superconductors with quasi-one-dimensional crystal structure

    International Nuclear Information System (INIS)

    Volkova, L M; Marinin, D V

    2013-01-01

    Models of superconductors having a quasi-one-dimensional crystal structure based on the convoluted into a tube Ginzburg sandwich, which comprises a layered dielectric–metal–dielectric structure, have been suggested. The critical crystal chemistry parameters of the Ginzburg sandwich determining the possibility of the emergence of superconductivity and the T c value in layered high-T c cuprates, which could have the same functions in quasi-one-dimensional fragments (sandwich-type tubes), have been examined. The crystal structures of known low-temperature superconductors, in which one can mark out similar quasi-one-dimensional fragments, have been analyzed. Five compounds with quasi-one-dimensional structures, which can be considered as potential parents of new superconductor families, possibly with high transition temperatures, have been suggested. The methods of doping and modification of these compounds are provided. (paper)

  15. Synthesis and crystal structures of three new benzotriazolylpropanamides

    Directory of Open Access Journals (Sweden)

    Donna S. Amenta

    2017-06-01

    Full Text Available The base-catalyzed Michael addition of 2-methylacrylamide to benzotriazole afforded 3-(1H-benzotriazol-1-yl-2-methylpropanamide, C10H12N4O (1, in 32% yield in addition to small amounts of isomeric 3-(2H-benzotriazol-2-yl-2-methylpropanamide, C10H12N4O (2. In a similar manner, 3-(1H-benzotriazol-1-yl-N,N-dimethylpropanamide, C11H14N4O (3, was prepared from benzotriazole and N,N-dimethylacrylamide. All three products have been structurally characterized by single-crystal X-ray diffraction. The crystal structures of 1 and 2 comprise infinite arrays formed by N—H...O and N—H...N bridges, as well as π–π interactions, while the molecules of 3 are aggregated to simple π-dimers in the crystal.

  16. Effects of thermo-order-mechanical coupling on band structures in liquid crystal nematic elastomer porous phononic crystals.

    Science.gov (United States)

    Yang, Shuai; Liu, Ying

    2018-08-01

    Liquid crystal nematic elastomers are one kind of smart anisotropic and viscoelastic solids simultaneously combing the properties of rubber and liquid crystals, which is thermal sensitivity. In this paper, the wave dispersion in a liquid crystal nematic elastomer porous phononic crystal subjected to an external thermal stimulus is theoretically investigated. Firstly, an energy function is proposed to determine thermo-induced deformation in NE periodic structures. Based on this function, thermo-induced band variation in liquid crystal nematic elastomer porous phononic crystals is investigated in detail. The results show that when liquid crystal elastomer changes from nematic state to isotropic state due to the variation of the temperature, the absolute band gaps at different bands are opened or closed. There exists a threshold temperature above which the absolute band gaps are opened or closed. Larger porosity benefits the opening of the absolute band gaps. The deviation of director from the structural symmetry axis is advantageous for the absolute band gap opening in nematic state whist constrains the absolute band gap opening in isotropic state. The combination effect of temperature and director orientation provides an added degree of freedom in the intelligent tuning of the absolute band gaps in phononic crystals. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Crystal structure and optical properties of silver nanorings

    Science.gov (United States)

    Zhou, Li; Fu, Xiao-Feng; Yu, Liao; Zhang, Xian; Yu, Xue-Feng; Hao, Zhong-Hua

    2009-04-01

    We report the polyol synthesis and crystal structure characterization of silver nanorings, which have perfect circular shape, smooth surface, and elliptical wire cross-section. The characterization results show that the silver nanorings have well-defined crystal of singly twinned along the whole ring. The spatial distribution of the scattering of a silver nanoring with slanted incidence reveals the unique focus effect of the nanoring, and the focus scattering varies with the incident wavelength. The silver nanorings with perfect geometry and well-defined crystal have potential applications in nanoscaled photonics, plasmonic devices, and optical manipulation.

  18. Crystal structure of PrRh4.8B2

    International Nuclear Information System (INIS)

    Higashi, Iwami; Shishido, Toetsu; Takei, Humihiko; Kobayashi, Takaaki

    1988-01-01

    The crystal structure of a new rare earth ternary boride PrRh 4.8 B 2 was investigated, by single-crystal X-ray diffractometry. PrRh 4.8 B 2 crystallizes in the orthorhombic space group Immm with a = 9.697(4), b = 5.577(2), c = 25.64(3) A, Z=12. The intensity data were collected on a four-circle diffractometer with graphite-monochromatized Mo Kα radiation. The structure was solved by the Patterson method and refined with a full-matrix least-squares program to an R value (equal to Σvertical strokeΔFvertical stroke/Σvertical strokeF 0 vertical stroke) of 0.055 for 1176 reflections. (orig.)

  19. PAK4 crystal structures suggest unusual kinase conformational movements.

    Science.gov (United States)

    Zhang, Eric Y; Ha, Byung Hak; Boggon, Titus J

    2018-02-01

    In order for protein kinases to exchange nucleotide they must open and close their catalytic cleft. These motions are associated with rotations of the N-lobe, predominantly around the 'hinge region'. We conducted an analysis of 28 crystal structures of the serine-threonine kinase, p21-activated kinase 4 (PAK4), including three newly determined structures in complex with staurosporine, FRAX486, and fasudil (HA-1077). We find an unusual motion between the N-lobe and C-lobe of PAK4 that manifests as a partial unwinding of helix αC. Principal component analysis of the crystal structures rationalizes these movements into three major states, and analysis of the kinase hydrophobic spines indicates concerted movements that create an accessible back pocket cavity. The conformational changes that we observe for PAK4 differ from previous descriptions of kinase motions, and although we observe these differences in crystal structures there is the possibility that the movements observed may suggest a diversity of kinase conformational changes associated with regulation. Protein kinases are key signaling proteins, and are important drug targets, therefore understanding their regulation is important for both basic research and clinical points of view. In this study, we observe unusual conformational 'hinging' for protein kinases. Hinging, the opening and closing of the kinase sub-domains to allow nucleotide binding and release, is critical for proper kinase regulation and for targeted drug discovery. We determine new crystal structures of PAK4, an important Rho-effector kinase, and conduct analyses of these and previously determined structures. We find that PAK4 crystal structures can be classified into specific conformational groups, and that these groups are associated with previously unobserved hinging motions and an unusual conformation for the kinase hydrophobic core. Our findings therefore indicate that there may be a diversity of kinase hinging motions, and that these may

  20. Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8

    KAUST Repository

    Zhang, Chen

    2014-09-04

    © 2014 American Chemical Society. Understanding the crystal-size dependence of both guest adsorption and structural transitions of nanoporous solids is crucial to the development of these materials. We find that nano-sized metal-organic framework (MOF) crystals have significantly different guest adsorption properties compared to the bulk material. A new methodology is developed to simulate the adsorption and transition behavior of entire MOF nanoparticles. Our simulations predict that the transition pressure significantly increases with decreasing particle size, in agreement with crystal-size-dependent experimental measurements of the N2-ZIF-8 system. We also propose a simple core-shell model to examine this effect on length scales that are inaccessible to simulations and again find good agreement with experiments. This study is the first to examine particle size effects on structural transitions in ZIFs and provides a thermodynamic framework for understanding the underlying mechanism.

  1. Structural and optical properties of WTe2 single crystals synthesized by DVT technique

    Science.gov (United States)

    Dixit, Vijay; Vyas, Chirag; Pathak, V. M.; Soalanki, G. K.; Patel, K. D.

    2018-05-01

    Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.

  2. A hybrid computational-experimental approach for automated crystal structure solution

    Science.gov (United States)

    Meredig, Bryce; Wolverton, C.

    2013-02-01

    Crystal structure solution from diffraction experiments is one of the most fundamental tasks in materials science, chemistry, physics and geology. Unfortunately, numerous factors render this process labour intensive and error prone. Experimental conditions, such as high pressure or structural metastability, often complicate characterization. Furthermore, many materials of great modern interest, such as batteries and hydrogen storage media, contain light elements such as Li and H that only weakly scatter X-rays. Finally, structural refinements generally require significant human input and intuition, as they rely on good initial guesses for the target structure. To address these many challenges, we demonstrate a new hybrid approach, first-principles-assisted structure solution (FPASS), which combines experimental diffraction data, statistical symmetry information and first-principles-based algorithmic optimization to automatically solve crystal structures. We demonstrate the broad utility of FPASS to clarify four important crystal structure debates: the hydrogen storage candidates MgNH and NH3BH3; Li2O2, relevant to Li-air batteries; and high-pressure silane, SiH4.

  3. Scintillation properties of pure and Ca-doped ZnWO4 crystals

    International Nuclear Information System (INIS)

    Danevich, F.A.; Shkulkova, O.G.; Henry, S.; Kraus, H.; McGowan, R.; Mikhailik, V.B.; Telfer, J.

    2008-01-01

    Following the investigations of the structure and scintillation properties of Ca-doped zinc tungstate powder [phys. stat. sol. (a) 204, 730 (2007)] a single-crystal of ZnWO 4 -Ca (0.5 mol%) was grown and characterised. The relative light output, energy resolution and decay characteristics were measured for pure and Ca-doped ZnWO 4 scintillators. An increase in the light yield of ∝40% compared with the undoped crystal, and an energy resolution 9.6% ( 137 Cs) were obtained for Ca-doped ZnWO 4 . The observed improvement is attributed to the reduction of self-absorption (bleaching) of the crystal. The cause of bleaching as well as the possible contribution of scattering is discussed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Raman spectroscopy used for structural investigations of anodically formed ZrO2

    International Nuclear Information System (INIS)

    Koneska, Zagorka; Arsova, Irena

    2003-01-01

    The structure of the oxide formed on Zr(99% + Hf) with anodic oxidation at different potentials in 1 mol/dm 3 H 3 PO 4 and 2 mol/dm 3 KOH solutions were investigated using Raman spectroscopy. Normally the anodic oxides of Zr form only crystals. Under certain circumstances, amorphous anodic ZrO 2 can be observed. Amorphous phase is observed for the anodically formed zirconium oxides in H 3 PO 4 . The oxide formed in KOH at potential of 80 V, where sparks appears on the Zr electrode showed crystalline structure. (Original)

  5. Gallium arsenide single crystal solar cell structure and method of making

    Science.gov (United States)

    Stirn, Richard J. (Inventor)

    1983-01-01

    A production method and structure for a thin-film GaAs crystal for a solar cell on a single-crystal silicon substrate (10) comprising the steps of growing a single-crystal interlayer (12) of material having a closer match in lattice and thermal expansion with single-crystal GaAs than the single-crystal silicon of the substrate, and epitaxially growing a single-crystal film (14) on the interlayer. The material of the interlayer may be germanium or graded germanium-silicon alloy, with low germanium content at the silicon substrate interface, and high germanium content at the upper surface. The surface of the interface layer (12) is annealed for recrystallization by a pulsed beam of energy (laser or electron) prior to growing the interlayer. The solar cell structure may be grown as a single-crystal n.sup.+ /p shallow homojunction film or as a p/n or n/p junction film. A Ga(Al)AS heteroface film may be grown over the GaAs film.

  6. First principles study of structural, electronic and optical properties of KCl crystal

    International Nuclear Information System (INIS)

    Chen, Z.J.; Xiao, H.Y.; Zu, X.T.

    2006-01-01

    The structural, electronic and optical properties of KCl crystal in B1, B2, B3 and T1 structures have been systematically studied using first-principle pseudopotential calculations. In addition, pressure-induced phase transition has also been investigated. It was found that when the pressure is below 2.8 GPa, the B1 structure is the most stable. Above 2.8 GPa KCl crystal will undergo a structural phase transition from the relatively open NaCl structure into the more dense CsCl atomic arrangement. Our results also suggested that at about 1.2 GPa structural phase transition from B3 to T1 will occur. When the pressure arrives at 39.9 GPa, the phase transition will occur from B2 to T1. In addition, we found KCl Crystal has indirect band gap in B2 structure and direct band gap in B1, B3 and T1 structures. The band gap value is the smallest in the T1 structure and is the largest in the B1 and B3 structures. Our calculations are found to be in good agreement with available experimental and theoretical results. The dielectric function and energy loss function of KCl crystal in four structures (B1, B2, B3 and T1) have been calculated as well as the anisotropy of the optical properties of KCl crystal in T1 structure

  7. Solvent effects on the crystal growth structure and morphology of the pharmaceutical dirithromycin

    Science.gov (United States)

    Wang, Yuan; Liang, Zuozhong

    2017-12-01

    Solvent effects on the crystal structure and morphology of pharmaceutical dirithromycin molecules were systematically investigated using both experimental crystallization and theoretical simulation. Dirithromycin is one of the new generation of macrolide antibiotics with two polymorphic forms (Form I and Form II) and many solvate forms. Herein, six solvates of the dirithromycin, including acetonitrile, acetonitrile/water, acetone, 1-propanol, N,N-dimethylformamide (DMF) and cyclohexane, were studied. Experimentally, we crystallized the dirithromycin molecules in different solvents by the solvent evaporating method and measured the crystal structures with the X-ray diffraction (XRD). We compared these crystal structures of dirithromycin solvates and analyzed the solvent property-determined structure evolution. The solvents have a strong interaction with the dirithromycin molecule due to the formation of inter-molecular interactions (such as the hydrogen bonding and close contacts (sum of vdW radii)). Theoretically, we calculated the ideal crystal habit based on the solvated structures with the attachment growth (AE) model. The predicted morphologies and aspect ratios of dirithromycin solvates agree well with the experimental results. This work could be helpful to better understand the structure and morphology evolution of solvates controlled by solvents and guide the crystallization of active pharmaceutical ingredients in the pharmaceutical industry.

  8. Cyclic saturation dislocation structures of multiple-slip-oriented copper single crystals

    International Nuclear Information System (INIS)

    Li, X.W.; Chinese Academy of Sciences, Shenyang; Umakoshi, Y.; Li, S.X.; Wang, Z.G.

    2001-01-01

    The dislocation structures of [011] and [ anti 111] multiple-slip-oriented Cu single crystals cyclically saturated at constant plastic strain amplitudes were investigated through transmission electron microscopy. The results obtained on [001] multiple-slip-oriented Cu single crystals were also included for summarization. Unlike the case for single-slip-oriented Cu single crystals, the crystallographic orientation has a strong effect on the saturation dislocation structure in these three multiple-slip-oriented crystals. For the [011] crystal, different dislocation patterns such as veins, PSB walls, labyrinths and PSB ladders were observed. The formation of PSB ladders is believed to be a major reason for the existence of a plateau region in the cyclic stress-strain (CSS) curve for the [011] crystal. The cyclic saturation dislocation structure of a [ anti 111] crystal cycled at a low applied strain amplitude γ pl of 2.0 x 10 -4 was found to consist of irregular cells, which would develop into a more regular arrangement (e. g. PSB ladder-like) and the scale of which tends to decrease with increasing γ pl . Finally, three kinds of representative micro-deformation mode were summarized and termed as labyrinth-mode (or [001]-mode), cell-mode (or [ anti 111]-mode) and PSB ladder-mode (or [011]-mode). (orig.)

  9. CRYSTAL STRUCTURE ANALYSIS OF A PUTATIVE OXIDOREDUCTASE FROM KLEBSIELLA PNEUMONIAE

    Energy Technology Data Exchange (ETDEWEB)

    Baig, M.; Brown, A.; Eswaramoorthy, S.; Swaminathan, S.

    2009-01-01

    Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.

  10. Crystal structure and thermal property of polyethylene glycol octadecyl ether

    International Nuclear Information System (INIS)

    Meng, Jie-yun; Tang, Xiao-fen; Li, Wei; Shi, Hai-feng; Zhang, Xing-xiang

    2013-01-01

    Highlights: ► The crystal structure of C18En for n ≥ 20 is a monoclinic system. ► Polyethylene glycol octadecyl ether crystallizes perfectly. ► The number of repeat units has significant effect on the melting, crystallizing temperature and enthalpy. ► The thermal stable temperature increases rapidly with increasing the number of repeat unit. - Abstract: The crystal structure, phase change property and thermal stable temperature (T d ) of polyethylene glycol octadecyl ether [HO(CH 2 CH 2 O) n C 18 H 37 , C18En] with various numbers of repeat units (n = 2, 10, 20 and 100) as phase change materials (PCMs) were investigated using temperature variable Fourier transformed infrared spectroscopy (FTIR), wide-angle X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). C18En crystallizes perfectly at 0 °C; and the crystal structure for n ≥ 20 is a monoclinic system. The number of repeat units has great effect on the phase change properties of C18En. The thermal stable temperature increases rapidly with increasing the number of repeat units. They approach to that of PEG-2000 as the number of repeat units is more than 10. T d increases rapidly with increasing the number of repeat units. C18En are a series of promising polymeric PCMs

  11. Classification of a Haemophilus influenzae ABC Transporter HI1470/71 through Its Cognate Molybdate Periplasmic Binding Protein, MolA

    Energy Technology Data Exchange (ETDEWEB)

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.; Pinkett, Heather W. (CIT); (NWU)

    2014-10-02

    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB{sub 2}C{sub 2} (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 {angstrom} resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The {approx}100 {mu}M binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.

  12. imide, crystal structure, thermal and dielectric studies

    Indian Academy of Sciences (India)

    methyl imidazolium methylidene bis(trifluoromethanesulfonyl)imide, crystal structure, thermal and dielectric studies. BOUMEDIENE HADDAD1,2,3,∗, TAQIYEDDINE MOUMENE2, DIDIER VILLEMIN1,. JEAN-FRANÇOIS LOHIER1 and EL-HABIB ...

  13. Structural characterization of framework-gas interactions in the metal-organic framework Co2(dobdc) by in situ single-crystal X-ray diffraction.

    Science.gov (United States)

    Gonzalez, Miguel I; Mason, Jarad A; Bloch, Eric D; Teat, Simon J; Gagnon, Kevin J; Morrison, Gregory Y; Queen, Wendy L; Long, Jeffrey R

    2017-06-01

    The crystallographic characterization of framework-guest interactions in metal-organic frameworks allows the location of guest binding sites and provides meaningful information on the nature of these interactions, enabling the correlation of structure with adsorption behavior. Here, techniques developed for in situ single-crystal X-ray diffraction experiments on porous crystals have enabled the direct observation of CO, CH 4 , N 2 , O 2 , Ar, and P 4 adsorption in Co 2 (dobdc) (dobdc 4- = 2,5-dioxido-1,4-benzenedicarboxylate), a metal-organic framework bearing coordinatively unsaturated cobalt(ii) sites. All these molecules exhibit such weak interactions with the high-spin cobalt(ii) sites in the framework that no analogous molecular structures exist, demonstrating the utility of metal-organic frameworks as crystalline matrices for the isolation and structural determination of unstable species. Notably, the Co-CH 4 and Co-Ar interactions observed in Co 2 (dobdc) represent, to the best of our knowledge, the first single-crystal structure determination of a metal-CH 4 interaction and the first crystallographically characterized metal-Ar interaction. Analysis of low-pressure gas adsorption isotherms confirms that these gases exhibit mainly physisorptive interactions with the cobalt(ii) sites in Co 2 (dobdc), with differential enthalpies of adsorption as weak as -17(1) kJ mol -1 (for Ar). Moreover, the structures of Co 2 (dobdc)·3.8N 2 , Co 2 (dobdc)·5.9O 2 , and Co 2 (dobdc)·2.0Ar reveal the location of secondary (N 2 , O 2 , and Ar) and tertiary (O 2 ) binding sites in Co 2 (dobdc), while high-pressure CO 2 , CO, CH 4 , N 2 , and Ar adsorption isotherms show that these binding sites become more relevant at elevated pressures.

  14. Magnetic assembly of nonmagnetic particles into photonic crystal structures.

    Science.gov (United States)

    He, Le; Hu, Yongxing; Kim, Hyoki; Ge, Jianping; Kwon, Sunghoon; Yin, Yadong

    2010-11-10

    We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks.

  15. Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field.

    Science.gov (United States)

    Kim, Seonah; Orendt, Anita M; Ferraro, Marta B; Facelli, Julio C

    2009-10-01

    This article describes the application of our distributed computing framework for crystal structure prediction (CSP) the modified genetic algorithms for crystal and cluster prediction (MGAC), to predict the crystal structure of flexible molecules using the general Amber force field (GAFF) and the CHARMM program. The MGAC distributed computing framework includes a series of tightly integrated computer programs for generating the molecule's force field, sampling crystal structures using a distributed parallel genetic algorithm and local energy minimization of the structures followed by the classifying, sorting, and archiving of the most relevant structures. Our results indicate that the method can consistently find the experimentally known crystal structures of flexible molecules, but the number of missing structures and poor ranking observed in some crystals show the need for further improvement of the potential. Copyright 2009 Wiley Periodicals, Inc.

  16. 2-Acetyl­amino-1,3,4,6-tetra-O-(tri­methyl­silyl)-2-de­oxy-α-d-gluco­pyran­ose

    Science.gov (United States)

    Cheng, Zhao-Dong; Cui, Yan-Li; Mao, Jian-Wei

    2013-01-01

    The title compound, C20H47NO6Si4, was synthesized by per-O-tri­methyl­silylation of N-acetyl-d-glucosa­mine using chloro­tri­methyl­silane in the presence of hexa­methyl­disiloxane. The tri­methyl­silyl group and acetamido group are located on the same side of the pyran ring, showing an α-configuration glycoside. One of the tri­methyl­silyl groups is disordered over two orientations, with site-occupancy factors of 0.625 (9) and 0.375 (9). In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into supra­molecular chains along the a-axis direction. PMID:23795087

  17. 2,3-Di­phenyl­male­imide 1-methyl­pyrrol­idin-2-one monosolvate

    Science.gov (United States)

    Bulatov, Evgeny; Boyarskaya, Dina; Chulkova, Tatiana; Haukka, Matti

    2014-01-01

    In the title compound, C16H11NO2·C5H9NO, the dihedral angles between the male­imide and phenyl rings are 34.7 (2) and 64.8 (2)°. In the crystal, the 2,3-di­phenyl­male­imide and 1-methyl­pyrrolidin-2-one mol­ecules form centrosymmetrical dimers via pairs of strong N—H⋯O hydrogen bonds and π–π stacking inter­actions between the two neighboring male­imide rings [centroid–centroid distance = 3.495 (2) Å]. The dimers are further linked by weak C—H⋯O and C—H⋯π hydrogen bonds into a three-dimensional framework. PMID:24764976

  18. Synthesis, Crystal Structure and Anti-ischaemic Activity of (E)-1-{4 ...

    African Journals Online (AJOL)

    chloro- phenyl)prop-2-en-1-one (C28H29ClN2O3, Mr = 476.98) (5) was synthesized and studied by the single crystal X-ray diffraction method. Its structure was confirmed by 1HNMR, 13CNMR,HRMSand X-ray single crystal structure ...

  19. Synthesis and structural characterization of bulk Sb2Te3 single crystal

    Science.gov (United States)

    Sultana, Rabia; Gahtori, Bhasker; Meena, R. S.; Awana, V. P. S.

    2018-05-01

    We report the growth and characterization of bulk Sb2Te3 single crystal synthesized by the self flux method via solid state reaction route from high temperature melt (850˚C) and slow cooling (2˚C/hour) of constituent elements. The single crystal X-ray diffraction pattern showed the 00l alignment and the high crystalline nature of the resultant sample. The rietveld fitted room temperature powder XRD revealed the phase purity and rhombohedral structure of the synthesized crystal. The formation and analysis of unit cell structure further verified the rhombohedral structure composed of three quintuple layers stacked one over the other. The SEM image showed the layered directional growth of the synthesized crystal carried out using the ZEISS-EVOMA-10 scanning electron microscope The electrical resistivity measurement was carried out using the conventional four-probe method on a quantum design Physical Property Measurement System (PPMS). The temperature dependent electrical resistivity plot for studied Sb2Te3 single crystal depicts metallic behaviour in the absence of any applied magnetic field. The synthesis as well as the structural characterization of as grown Sb2Te3 single crystal is reported and discussed in the present letter.

  20. Crystal Structure of Human Enterovirus 71

    Energy Technology Data Exchange (ETDEWEB)

    Plevka, Pavel; Perera, Rushika; Cardosa, Jane; Kuhn, Richard J.; Rossmann, Michael G. (Purdue); (Sentinext)

    2013-04-08

    Enterovirus 71 is a picornavirus associated with fatal neurological illness in infants and young children. Here, we report the crystal structure of enterovirus 71 and show that, unlike in other enteroviruses, the 'pocket factor,' a small molecule that stabilizes the virus, is partly exposed on the floor of the 'canyon.' Thus, the structure of antiviral compounds may require a hydrophilic head group designed to interact with residues at the entrance of the pocket.

  1. Crystal-Structure-Guided Design of Self-Assembling RNA Nanotriangles.

    Science.gov (United States)

    Boerneke, Mark A; Dibrov, Sergey M; Hermann, Thomas

    2016-03-14

    RNA nanotechnology uses RNA structural motifs to build nanosized architectures that assemble through selective base-pair interactions. Herein, we report the crystal-structure-guided design of highly stable RNA nanotriangles that self-assemble cooperatively from short oligonucleotides. The crystal structure of an 81 nucleotide nanotriangle determined at 2.6 Å resolution reveals the so-far smallest circularly closed nanoobject made entirely of double-stranded RNA. The assembly of the nanotriangle architecture involved RNA corner motifs that were derived from ligand-responsive RNA switches, which offer the opportunity to control self-assembly and dissociation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. CCDC 1515632: Experimental Crystal Structure Determination : hexakis(dimethyl sulfoxide)-manganese(ii) tetraiodide

    KAUST Repository

    Haque, M.A.; Davaasuren, Bambar; Rothenberger, Alexander; Wu, Tao

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  3. Hydrogen-bonded co-crystal structure of benzoic acid and zwitterionic l-proline

    Directory of Open Access Journals (Sweden)

    Aaron M. Chesna

    2017-03-01

    Full Text Available The title compound [systematic name: benzoic acid–pyrrolidin-1-ium-2-carboxylate (1/1], C7H6O2·C5H9NO2, is an example of the application of non-centrosymmetric co-crystallization for the growth of a crystal containing a typically centrosymmetric component in a chiral space group. It co-crystallizes in the space group P212121 and contains benzoic acid and l-proline in equal proportions. The crystal structure exhibits chains of l-proline zwitterions capped by benzoic acid molecules which form a C(5[R33(11] hydrogen-bonded network along [100]. The crystal structure is examined and compared to that of a similar co-crystal containing l-proline zwitterions and 4-aminobenzoic acid.

  4. Crystal structure of Sus scrofa quinolinate phosphoribosyltransferase in complex with nicotinate mononucleotide.

    Directory of Open Access Journals (Sweden)

    Hyung-Seop Youn

    Full Text Available We have determined the crystal structure of porcine quinolinate phosphoribosyltransferase (QAPRTase in complex with nicotinate mononucleotide (NAMN, which is the first crystal structure of a mammalian QAPRTase with its reaction product. The structure was determined from protein obtained from the porcine kidney. Because the full protein sequence of porcine QAPRTase was not available in either protein or nucleotide databases, cDNA was synthesized using reverse transcriptase-polymerase chain reaction to determine the porcine QAPRTase amino acid sequence. The crystal structure revealed that porcine QAPRTases have a hexameric structure that is similar to other eukaryotic QAPRTases, such as the human and yeast enzymes. However, the interaction between NAMN and porcine QAPRTase was different from the interaction found in prokaryotic enzymes, such as those of Helicobacter pylori and Mycobacterium tuberculosis. The crystal structure of porcine QAPRTase in complex with NAMN provides a structural framework for understanding the unique properties of the mammalian QAPRTase active site and designing new antibiotics that are selective for the QAPRTases of pathogenic bacteria, such as H. pylori and M. tuberculosis.

  5. catena-Poly[bis(1,3-benzo-thia-zol-3-ium) [[di-chlorido-anti-monate(III)]-di-μ-chlorido-μ-oxido-[chlorido-anti-monate(III)]-μ-chlorido

    Science.gov (United States)

    Chebout, Oussama; Boudraa, Mhamed; Bouacida, Sofiane; Merazig, Hocine; Boudaren, Chaouki

    2016-02-01

    The title compound, {(C7H6NS)2[Sb2Cl6O]} n , contains two benzo-thia-zolidium cations and one tri-μ-chlorido-tri-chlorido-μ-oxido-di-anti-monate(III) anion. The structure of the inorganic cation may be described as as being built up from two polyhedra, i.e. a square-pyramidal SbCl4O and a distorted octa-hedral SbOCl5 unit, sharing a common face (comprising the O atom and two Cl atoms). The two benzo-thia-zole cations are quasi-planar and subtend a dihedral angle of 19.93 (5)°. The crystal packing can be described by alternating (100) layers and [001] chains of the organic cations and inorganic anions connected through an extensive three-dimensional network of N-H⋯Cl, C-H⋯O and C-H⋯Cl hydrogen bonds. This is consolidated by slipped π-π stacking, with centroid-to-centroid distances between the benzo-thia-zole rings of 3.7111 (18)-3.8452 (16) Å. These inter-actions link the mol-ecules within the layers and also link the layers together and reinforce the cohesion of the ionic structure.

  6. Crystal structure mediates mode of cell death in TiO{sub 2} nanotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Braydich-Stolle, Laura K.; Schaeublin, Nicole M.; Murdock, Richard C. [Wright-Patterson AFB, Applied Biotechnology Branch, Human Effectiveness Directorate, Air Force Research Laboratory (United States); Jiang, Jingkun; Biswas, Pratim [Washington University in St. Louis, Department of Energy, Environmental, and Chemical Engineering (United States); Schlager, John J.; Hussain, Saber M., E-mail: Saber.Hussain@wpafb.af.mi [Wright-Patterson AFB, Applied Biotechnology Branch, Human Effectiveness Directorate, Air Force Research Laboratory (United States)

    2009-08-15

    Certain properties that nanoparticles possess differentiate them from their bulk counterparts, and these characteristics must be evaluated prior to nanoparticle studies and include: size, shape, dispersion, physical and chemical properties, surface area, and surface chemistry. Early nanotoxicity studies evaluating TiO{sub 2} have yielded conflicting data which identify either size or crystal structure as the mediating property for nano-TiO{sub 2} toxicity. However, it is important to note that none of these studies examined size with the crystal structure composition controlled for or examined crystal structure while controlling the nanoparticle size. The goal of this study was to evaluate the role of size and crystal structure in TiO{sub 2} nanotoxicity while controlling for as many other nanoproperties as possible using the HEL-30 mouse keratinocyte cell line as a model for dermal exposure. In the size-dependent studies, all the nanoparticles are 100% anatase, and aggregate sizes were determined in order to take into account the effect of agglomeration on size-dependent toxicity. In addition, varying crystal structures were assessed while the size of the nanoparticles was controlled. We were able to identify that both size and crystal structure contribute to cytotoxicity and that the mechanism of cell death varies based on crystal structure. The 100% anatase TiO{sub 2} nanoparticles, regardless of size, induced cell necrosis, while the rutile TiO{sub 2} nanoparticles initiated apoptosis through formation of reactive oxygen species (ROS).

  7. PIRAMID 1: a prime European CEC experiment in BR2 at Mol, Belgium

    International Nuclear Information System (INIS)

    Joly, C.; Simoni, O.

    1987-01-01

    In the event of a core disruptive accident in a Liquid Metal Fast Breeder Reactor (LMFBR), molten core materials interacting with liquid sodium may form debris beds to settle on the retention structures or on the reactor vessel. The decay heat of retained fission products can induce high temperatures or high thermal loads on the retention structures or the reactor vessel with consequent fission product release. To assess the long-term coolability of core debris beds the Commission of the European Communities (CEC) decided to coordinate and fund the European PAHR (Post-Accident Heat Removal) program. The first work carried out for the program resulted in PIRAMID 1 (Pahr IRradiation According to a Mol Integrated Device), a unique irradiation device, designed, constructed and tested at Mol

  8. Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites

    International Nuclear Information System (INIS)

    Serrano, Pedro; Pedrini, Bill; Geralt, Michael; Jaudzems, Kristaps; Mohanty, Biswaranjan; Horst, Reto; Herrmann, Torsten; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    Tools for systematic comparisons of NMR and crystal structures developed by the JCSG were applied to two proteins with known functions: the T. maritima anti-σ factor antagonist TM1081 and the mouse γ-glutamylamine cyclotransferase A2LD1 (gi:13879369). In an attempt to exploit the complementarity of crystal and NMR data, the combined use of the two structure-determination techniques was explored for the initial steps in the challenge of searching proteins of unknown functions for putative active sites. The JCSG has recently developed a protocol for systematic comparisons of high-quality crystal and NMR structures of proteins. In this paper, the extent to which this approach can provide function-related information on the two functionally annotated proteins TM1081, a Thermotoga maritima anti-σ factor antagonist, and A2LD1 (gi:13879369), a mouse γ-glutamylamine cyclotransferase, is explored. The NMR structures of the two proteins have been determined in solution at 313 and 298 K, respectively, using the current JCSG protocol based on the software package UNIO for extensive automation. The corresponding crystal structures were solved by the JCSG at 100 K and 1.6 Å resolution and at 100 K and 1.9 Å resolution, respectively. The NMR and crystal structures of the two proteins share the same overall molecular architectures. However, the precision of the structure determination along the amino-acid sequence varies over a significantly wider range in the NMR structures than in the crystal structures. Thereby, in each of the two NMR structures about 65% of the residues have displacements below the average and in both proteins the less well ordered residues include large parts of the active sites, in addition to some highly solvent-exposed surface areas. Whereas the latter show increased disorder in the crystal and in solution, the active-site regions display increased displacements only in the NMR structures, where they undergo local conformational exchange on the

  9. CCDC 1024814: Experimental Crystal Structure Determination : 1,3-Dimesitylimidazolidine-2-selenone

    KAUST Repository

    Vummaleti, Sai V. C.; Nelson, David J.; Poater, Albert; Gó mez-Suá rez, Adriá n; Cordes, David B.; Slawin, Alexandra M. Z.; Nolan, Steven P.; Cavallo, Luigi

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  10. CCDC 1446070: Experimental Crystal Structure Determination : tris(Pentafluorophenyl)-(triethylsilyl formate)-boron

    KAUST Repository

    Chen, Jiawei

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  11. CCDC 1446069: Experimental Crystal Structure Determination : tris(Pentafluorophenyl)-(triethylsilyl formate)-aluminium

    KAUST Repository

    Chen, Jiawei

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  12. Crystal and electronic structure study of Mn doped wurtzite ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    O.M. Ozkendir

    2016-08-01

    Full Text Available The change in the crystal and electronic structure properties of wurtzite ZnO nanoparticles was studied according to Mn doping in the powder samples. The investigations were conducted by X-ray Absorption Fine Structure Spectroscopy (XAFS technique for the samples prepared with different heating and doping processes. Electronic analysis was carried out by the collected data from the X-ray Absorption Near-Edge Structure Spectroscopy (XANES measurements. Additional crystal structure properties were studied by Extended-XAFS (EXAFS analysis. Longer heating periods for the undoped wurtzite ZnO samples were determined to own stable crystal geometries. However, for some doped samples, the distortions in the crystal were observed as a result of the low doping amounts of Mn which was treated as an impurity. Besides, the changes in oxygen locations were determined to create defects and distortions in the samples.

  13. Crystal structure analysis, overexpression and refolding behaviour of a DING protein with single mutation

    International Nuclear Information System (INIS)

    Gai, Zuoqi; Nakamura, Akiyoshi; Tanaka, Yoshikazu; Hirano, Nagisa; Tanaka, Isao; Yao, Min

    2013-01-01

    Crystals of a member of the DING protein family (HPBP) were obtained accidentally, and the structure was determined at 1.35 Å resolution. For further analysis, a system for preparation of HPBP was constructed and the structure of a prepared sample was confirmed by X-ray crystal structure analysis at 1.03 Å resolution. After crystallization of a certain protein–RNA complex, well diffracting crystals were obtained. However, the asymmetric unit of the crystal was too small to locate any components. Mass spectrometry and X-ray crystal structure analysis showed that it was a member of the DING protein family (HPBP). Surprisingly, the structure of HPBP reported previously was also determined accidentally as a contaminant, suggesting that HPBP has a strong tendency to crystallize. Furthermore, DING proteins were reported to relate in disease. These observations suggest that DING has potential for application in a wide range of research fields. To enable further analyses, a system for preparation of HPBP was constructed. As HPBP was expressed in insoluble form in Escherichia coli, it was unfolded chemically and refolded. Finally, a very high yield preparation method was constructed, in which 43 mg of HPBP was obtained from 1 L of culture. Furthermore, to evaluate the validity of refolding, its crystal structure was determined at 1.03 Å resolution. The determined structure was identical to the native structure, in which two disulfide bonds were recovered correctly and a phosphate ion was captured. Based on these results, it was concluded that the refolded HPBP recovers its structure correctly

  14. Crystal structure analysis, overexpression and refolding behaviour of a DING protein with single mutation

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Zuoqi; Nakamura, Akiyoshi [Hokkaido University, Sapporo 060-0810 (Japan); Tanaka, Yoshikazu, E-mail: tanaka@sci.hokudai.ac.jp [Hokkaido University, Sapporo 060-0810 (Japan); Hokkaido University, Sapporo 060-0810 (Japan); Hirano, Nagisa [Hokkaido University, Sapporo 060-0810 (Japan); Tanaka, Isao; Yao, Min [Hokkaido University, Sapporo 060-0810 (Japan); Hokkaido University, Sapporo 060-0810 (Japan)

    2013-11-01

    Crystals of a member of the DING protein family (HPBP) were obtained accidentally, and the structure was determined at 1.35 Å resolution. For further analysis, a system for preparation of HPBP was constructed and the structure of a prepared sample was confirmed by X-ray crystal structure analysis at 1.03 Å resolution. After crystallization of a certain protein–RNA complex, well diffracting crystals were obtained. However, the asymmetric unit of the crystal was too small to locate any components. Mass spectrometry and X-ray crystal structure analysis showed that it was a member of the DING protein family (HPBP). Surprisingly, the structure of HPBP reported previously was also determined accidentally as a contaminant, suggesting that HPBP has a strong tendency to crystallize. Furthermore, DING proteins were reported to relate in disease. These observations suggest that DING has potential for application in a wide range of research fields. To enable further analyses, a system for preparation of HPBP was constructed. As HPBP was expressed in insoluble form in Escherichia coli, it was unfolded chemically and refolded. Finally, a very high yield preparation method was constructed, in which 43 mg of HPBP was obtained from 1 L of culture. Furthermore, to evaluate the validity of refolding, its crystal structure was determined at 1.03 Å resolution. The determined structure was identical to the native structure, in which two disulfide bonds were recovered correctly and a phosphate ion was captured. Based on these results, it was concluded that the refolded HPBP recovers its structure correctly.

  15. Reversible Single-Crystal-to-Single-Crystal Structural Transformation in a Mixed-Ligand 2D Layered Metal-Organic Framework: Structural Characterization and Sorption Study

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Wang

    2017-12-01

    Full Text Available A 3D supramolecular network, [Cd(bipy(C4O4(H2O2]·3H2O (1 (bipy = 4,4′-bipyridine and C4O42− = dianion of H2C4O4, constructed by mixed-ligand two-dimensional (2D metal-organic frameworks (MOFs has been reported and structurally determined by the single-crystal X-ray diffraction method and characterized by other physicochemical methods. In 1, the C4O42− and bipy both act as bridging ligands connecting the Cd(II ions to form a 2D layered MOF, which are then extended to a 3D supramolecular network via the mutually parallel and interpenetrating arrangements among the 2D-layered MOFs. Compound 1 shows a two-step dehydration process with weight losses of 11.0% and 7.3%, corresponding to the weight-loss of three guest and two coordinated water molecules, respectively, and exhibits an interesting reversible single-crystal-to-single-crystal (SCSC structural transformation upon de-hydration and re-hydration for guest water molecules. The SCSC structural transformation have been demonstrated and monitored by single-crystal and X-ray powder diffraction, and thermogravimetic analysis studies.

  16. Crystallization kinetic study of the lithium-disilicate bioceramic obtained from rice-husk silica starting powder

    International Nuclear Information System (INIS)

    Santos, F.A.; Santos, C.; Pinatti, D.G.; Davim, E.; Fernandes, M.H.F.V.

    2011-01-01

    In this work, the study of crystallization of the lithium disilicate glass-ceramic produced for alternative source (rice husk silica), and comparatively by commercial source (commercial silica) it was carried through. The stoichiometry 66%.mol SiO_2: 33%.mol LiO_2 was used. The kinetic studies of crystallization and calculations had been carried through thermal analysis (DTA), and were possible to study the behavior of the curves in accordance with the variation of taxes (5; 10; 15; e 20°C/min), of the granulometries 63 μm, 250μm and 1mm), and for the influence of the substitution commercial SiO_2 by rice husk. The structural characterization was carried through by X-Ray diffractometry (DRX) and scanning electron microscopy (MEV), for chemical characterization used X-Ray fluorescence (FRX). The preliminary results show that the substitution of the silica source is sufficiently promising, since the gotten properties are similar. (author)

  17. Luminescence of the SrCl2:Pr crystals under high-energy excitation

    International Nuclear Information System (INIS)

    Antonyak, O.T.; Voloshinovskii, A.S.; Vistovskyy, V.V.; Stryganyuk, G.B.; Kregel, O.P.

    2014-01-01

    The present research was carried out in order to elucidate the mechanisms of energy transfer from the crystal lattice to Pr 3+ ions in SrCl 2 . The luminescence excitation and emission spectra as well as luminescence kinetics of the SrCl 2 :Pr single crystals containing 0.2 mol% Pr were investigated at 300 and 10 K using the vacuum ultraviolet (VUV) synchrotron radiation. The X-ray excited luminescence spectra of the SrCl 2 :Pr (C Pr =0.2 and 0.5 mol%) and SrCl 2 :Pr, K (C Pr =1.5 mol%; C K =1.5 mol%) crystals were studied at 294 and 80 K. Under optical excitation of the samples in the Pr 3+ absorption bands, there were observed five fast ultraviolet emissions assigned to the 4f 1 5d→4f 2 transitions, and two long-wave bands corresponding to the f–f transitions. Furthermore, the intrinsic emission bands of SrCl 2 were observed at 10 K. The X-ray excited luminescence spectrum of the SrCl 2 :Pr crystal containing 0.2 mol% Pr, besides intrinsic emission band near 400 nm, has got a long-wave band at about 490 nm of the Pr 3+ centers. There were not observed any emission bands of the Pr 3+ centers corresponding to the 4f 1 5d–4f 2 transitions in the X-ray excited luminescence spectrum of the SrCl 2 :Pr crystal. The possible mechanisms of energy transfer from the SrCl 2 matrix to the Pr 3+ centers are discussed. -- Highlights: • Spectral-luminescent properties of SrCl 2 :Pr have been investigated. • The identification of emission 4f–4f and 5d–4f bands of Pr 3+ ions was performed. • Adding of potassium prevents clustering of the Pr 3+ centers in the SrCl 2 :Pr, K crystals. • Under X-ray excitation at 80–300 K only Pr 3+ 4f–4f and intrinsic emission is observed

  18. Non-isothermal crystallization kinetics and fragility of (Cu46Zr47Al7)97Ti3 bulk metallic glass investigated by differential scanning calorimetry

    International Nuclear Information System (INIS)

    Zhu, Man; Li, Junjie; Yao, Lijuan; Jian, Zengyun; Chang, Fang’e; Yang, Gencang

    2013-01-01

    Highlights: • Non-isothermal crystallization kinetics of (Cu 46 Zr 47 Al 7 ) 97 Ti 3 BMGs was studied. • Two-stage of crystallization process is confirmed by DSC. • The nucleation process is difficult than growth process during crystallization. • The second crystallization process is the most sensitive to heating rate. • Kinetic fragility index is evaluated suggesting it is an intermediate glass. - Abstract: In this paper, bulk metallic glasses with the composition of (Cu 46 Zr 47 Al 7 ) 97 Ti 3 were prepared by copper mold casting technique. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) were used to investigate its structure and non-isothermal crystallization kinetics. DSC traces revealed that it undergoes two-stage crystallization. The activation energies corresponding to the characteristic temperatures have been calculated, and the results reveal that the as-cast alloys have a good thermal stability in thermodynamics. Based on Kissinger equation, the activation energies for glass transition, the first and second crystallization processes were obtained as 485 ± 16 kJ/mol, 331 ± 7 kJ/mol and 210 ± 3 kJ/mol, respectively, suggesting that the nucleation process is more difficult than the grain growth process. The fitting curves using Lasocka's empirical relation show that the influence of the heating rate for crystallization is larger than glass transition. Furthermore, the kinetic fragility for (Cu 46 Zr 47 Al 7 ) 97 Ti 3 bulk metallic glasses is evaluated. Depending on the fragility index, (Cu 46 Zr 47 Al 7 ) 97 Ti 3 bulk metallic glasses should be considered as “intermediate glasses”

  19. On structure of some laminated crystals with organic molecules

    International Nuclear Information System (INIS)

    Volodina, G.F.; Ivanova, V.Ya.; Malinovskij, T.I.

    1982-01-01

    A survey is made of papers dealing with intercalation of organic molecules into crystals of dihalcogenides of some transition metals (TaS 2 , TiS 2 , NbS 2 , ZrS 2 , TaSe 2 ), variation of their structure and physical properties. Among the used intercalates ammonia, pyridine, aniline and other aromatic amines proved to be most satisfactory from the viewpoint of reaction rate and product stability. A possibility is discussed of intercalation into PbI 2 and CdI 2 crystals that are of the same structural type as dihalcogenides

  20. Single crystal study of the heavy-fermion antiferromagnet CePt2In7

    International Nuclear Information System (INIS)

    Tobash, Paul H; Ronning, F; Thompson, J D; Scott, B L; Bauer, E D; Moll, P J W; Batlogg, B

    2012-01-01

    We report the synthesis, structure, and physical properties of single crystals of CePt 2 In 7 . Single crystal x-ray diffraction analysis confirms the tetragonal I4/mmm structure of CePt 2 In 7 with unit cell parameters a = 4.5886(6) Å, c = 21.530(6) Å and V = 453.32(14) Å 3 . The magnetic susceptibility, heat capacity, Hall effect and electrical resistivity measurements are all consistent with CePt 2 In 7 undergoing an antiferromagnetic order transition at T N = 5.5 K, which is field independent up to 9 T. Above T N , the Sommerfeld coefficient of specific heat is γ ≈ 300 mJ mol -1 K -2 , which is characteristic of an enhanced effective mass of itinerant charge carriers. The electrical resistivity is typical of heavy-fermion behavior and gives a residual resistivity ρ 0 ∼ 0.2 µΩ cm, indicating good crystal quality. CePt 2 In 7 also shows moderate anisotropy of the physical properties that is comparable to structurally related CeMIn 5 (M = Co, Rh, Ir) heavy-fermion superconductors. (paper)

  1. Theoretical Exploration of Various Lithium Peroxide Crystal Structures in a Li-Air Battery

    Directory of Open Access Journals (Sweden)

    Kah Chun Lau

    2015-01-01

    Full Text Available We describe a series of metastable Li2O2 crystal structures involving different orientations and displacements of the O22− peroxy ions based on the known Li2O2 crystal structure. Within the vicinity of the chemical potential ΔG ~ 0.20 eV/Li from the thermodynamic ground state of the Li2O2 crystal structure (i.e., Föppl structure, all of these newly found metastable Li2O2 crystal structures are found to be insulating and high-k materials, and they have a common unique signature of an O22− O-O vibration mode (ω ~ 799–865 cm−1, which is in the range of that commonly observed in Li-air battery experiments, regardless of the random O22− orientations and the symmetry in the crystal lattice. From XRD patterns analysis, the commercially available Li2O2 powder is confirmed to be the thermodynamic ground state Föppl-like structure. However, for Li2O2 compounds that are grown electrochemically under the environment of Li-O2 cells, we found that the XRD patterns alone are not sufficient for structural identification of these metastable Li2O2 crystalline phases due to the poor crystallinity of the sample. In addition, the commonly known Raman signal of O22− vibration mode is also found to be insufficient to validate the possible existence of these newly predicted Li2O2 crystal structures, as all of them similarly share the similar O22− vibration mode. However considering that the discharge voltage in most Li-O2 cells are typically several tenths of an eV below the thermodynamic equilibrium for the formation of ground state Föppl structure, the formation of these metastable Li2O2 crystal structures appears to be thermodynamically feasible.

  2. Polarization singularities of optical fields caused by structural dislocations in crystals

    International Nuclear Information System (INIS)

    Savaryn, V; Vasylkiv, Yu; Krupych, O; Skab, I; Vlokh, R

    2013-01-01

    We analyze polarization singularities of optical beams that propagate through crystals possessing structural dislocations. We show that screw dislocations of crystalline structure can lead to the appearance of purely screw-type dislocations of light wavefronts. This can happen only in crystals that belong to trigonal and cubic systems. These polarization singularities will give rise to optical vortices with the topological charge equal to ±1, whenever a crystal sample is placed between crossed circular polarizers. We have also found that edge dislocations present in the cubic and trigonal crystals, with the Burgers vector perpendicular to the three-fold symmetry axes, can impose mixed screw-edge dislocations in the wavefronts of optical beams and generate singly charged optical vortices. The results of our analysis can be applied for detecting and identifying dislocations of different types available in crystals. (paper)

  3. Hydrothermal synthesis, crystal structure and luminescence property ...

    Indian Academy of Sciences (India)

    The design and construction of ... dination polymers. It is difficult to design coordination .... The first endotherm at about 180 ... graphic data for coordination polymer 1. ... Sheldrick G M 1997 SHELXS-97: Program for solution of crystal structures ...

  4. Crystal structure of N′-hydroxypyrimidine-2-carboximidamide

    Directory of Open Access Journals (Sweden)

    Nithianantham Jeeva Jasmine

    2014-10-01

    Full Text Available The title compound, C5H6N4O, is approximately planar, with an angle of 11.04 (15° between the planes of the pyrimidine ring and the non-H atoms of the carboximidamide unit. The molecule adopts an E configuration about the C=N double bond. In the crystal, adjacent molecules are linked by pairs of N—H...O hydrogen bonds, forming inversion dimers with an R22(10 ring motif. The dimers are further linked via N—H...N and O—H...N hydrogen bonds into a sheet structure parallel to the ac plane. The crystal structure also features N—H...O and weak C—H...O hydrogen bonds and offset π–π stacking interactions between adjacent pyrimidine rings [centroid–centroid distance = 3.622 (1 Å].

  5. Structural templating in a nonplanar phthalocyanine using single crystal copper iodide

    OpenAIRE

    Rochford, L. A. (Luke A.); Ramadan, Alexandra J.; Keeble, Dean S.; Ryan, Mary P.; Heutz, Sandrine; Jones, T. S. (Tim S.)

    2015-01-01

    Solution-grown copper iodide crystals are used as substrates for the templated growth of the nonplanar vanadyl phthalocyanine using organic molecular beam deposition. Structural characterization reveals a single molecular orientation produced by the (111) Miller plane of the copper iodide crystals. These fundamental measurements show the importance of morphology and structure in templating interactions for organic electronics applications.

  6. High-Q microwave resonators with a photonic crystal structure

    International Nuclear Information System (INIS)

    Schuster, M.

    2001-08-01

    The localisation of electromagnetic energy at a defect in a photonic crystal is similar to a well known effect employed to construct high-Q microwave resonators: In a whispering gallery (WHG-) mode resonator the high Q-factor is achieved by localisation of the electromagnetic field energy by total reflection inside a disk made of dielectric material. The topic of this work is to demonstrate, that WHG-like modes can exist in an air defect in a photonic crystal that extends over several lattice periods; and that a high-Q microwave resonator can be made, utilizing these resonant modes. In numerical simulations, the transmission properties of a photonic crystal structure with hexagonal lattice symmetry have been investigated with a transfer-matrix-method. The eigenmodes of a defect structure in a photonic crystal have been calculated with a quasi-3d finite element integration technique. Experimental results confirm the simulated transmission properties and show the existence of modes inside the band gap, when a defect is introduced in the crystal. Resonator measurements show that a microwave resonator can be operated with those defect modes. It was found out that the main losses of the resonator were caused by bad microwave properties of the used dielectric material and by metal losses on the top and bottom resonator walls. Furthermore, it turned out that the detection of the photonic crystal defect mode was difficult because of a lack of simulation possibilities and high housing mode density in the resonator. (orig.)

  7. Ab initio molecular crystal structures, spectra, and phase diagrams.

    Science.gov (United States)

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  8. Crystallization Process of Protein Rv0731c from Mycobacterium Tuberculosis for a Successful Atomic Resolution Crystal Structure at 1.2 Angstrom

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang Cong

    2009-06-08

    Proteins are bio-macromolecules consisting of basic 20 amino acids and have distinct three-dimensional folds. They are essential parts of organisms and participate in every process within cells. Proteins are crucial for human life, and each protein within the body has a specific function, such as antibodies, contractile proteins, enzymes, hormonal proteins, structural proteins, storage proteins and transport proteins. Determining three-dimensional structure of a protein can help researchers discover the remarkable protein folding, binding site, conformation and etc, in order to understand well of protein interaction and aid for possible drug design. The research on protein structure by X-ray protein crystallography carried by Li-Wei Hung's research group in the Physical Bioscience Division at Lawrence Berkeley National Laboratory (LBNL) is focusing on protein crystallography. The research in this lab is in the process of from crystallizing the proteins to determining the three dimensional crystal structures of proteins. Most protein targets are selected from Mycobacterium Tuberculosis. TB (Tuberculosis) is a possible fatal infectious disease. By studying TB target protein can help discover antituberculer drugs, and find treatment for TB. The high-throughput mode of crystallization, crystal harvesting, crystal screening and data collection are applied to the research pipeline (Figure 1). The X-ray diffraction data by protein crystals can be processed and analyzed to result in a three dimensional representation of electron density, producing a detailed model of protein structure. Rv0731c is a conserved hypothetical protein with unknown function from Mycobacterium Tuberculosis. This paper is going to report the crystallization process and brief structure information of Rv0731c.

  9. Molecular Complex of Lumiflavin and 2-Aminobenzoic Acid : Crystal Structure, Crystal Spectra, and Solution Properties

    OpenAIRE

    Shieh, Huey-Sheng; Ghisla, Sandro; Hanson, Louise Karle; Ludwig, Martha L.; Nordman, Christer E.

    1981-01-01

    The molecular complex lumiflavin-2-aminobenzoic acid monohydrate (C13H12N402●C7H7N02●H2O)crystallizes from aqueous solution as red triclinic prisms. The space group is P1 with cell dimensions a = 9.660 A, b = 14.866 Å, c = 7.045 Å, α = 95.44°, β = 95.86°, and γ = 105.66°. The crystal structure was solved by direct methods and refined by block-diagonal least-squares procedures to an R value of 0.050 on the basis of 1338 observed reflections. The structure is composed of stacks of alternating l...

  10. Effect of oxalic acid on the optical, thermal, dielectric and mechanical behaviour of ADP crystals

    International Nuclear Information System (INIS)

    Rajesh, P.; Ramasamy, P.

    2009-01-01

    The effect of the addition, over a concentration range from 1 to 5 mol%, of oxalic acid on the growth rate, optical transparency, hardness, dielectric behaviour, and SHG efficiency of ammonium dihydrogen phosphate single crystals grown by slow evaporation method has been investigated. UV-Vis studies show that the transparency of the oxalic acid added crystals decreased gradually. Thermal studies indicate that the decomposition temperatures of the crystal are decreased in oxalic acid added ADP crystals. It is observed from the dielectric measurements that the dielectric constant and dielectric loss increase with increase in temperature for all the crystals. Vicker's microhardness study reveals that the addition of higher concentration of oxalic acid decreases the hardness of the crystal. SHG efficiency of 1 mol% of oxalic acid is higher than the pure ADP.

  11. Synthesis, crystal structure, physicochemical properties of hydrogen bonded supramolecular assembly of N,N-diethylanilinium-3, 5-dinitrosalicylate crystal

    Science.gov (United States)

    Rajkumar, M.; Chandramohan, A.

    2017-12-01

    An organic salt, N,N-diethylanilinium 3,5-dinitrosalicylate was synthesized and single crystals grown by employing the slow solvent evaporation solution growth technique in methanol-acetone (1:1) mixture. The electronic transitions of the salt crystal were studied by UV-Visible spectrum. The optical transmittance window and lower wavelength cut-off of grown crystal have been identified by UV-Vis-NIR studies. The FT-IR spectrum was recorded to confirm the presence of various functional groups in the grown crystal. 1H and 13C NMR spectrum were recorded to establish the molecular structure of the title crystal. Single crystal X-ray diffraction data indicated that the crystal belongs to monoclinic crystal system with P21/n space group. The thermal stability of the crystal was established by TG/DTA studies. The mechanical properties of the grown crystal were studied by Vickers' microhardness technique. The dielectric studies indicated that the dielectric constant and dielectric loss decrease exponentially with frequency at different temperatures.

  12. Investigation of melt structure and crystallization processes by high-temperature Raman spectroscopy method

    International Nuclear Information System (INIS)

    Voron'ko, Yu.K.; Kudryavtsev, A.B.; Osiko, V.V.; Sobol', A.A.

    1988-01-01

    A review of studies dealing with the melts of alkali, rare earth and other element phosphates, gallates, germanates, niobates and tungstates, which are carried out by the method of high-temperature Raman spectroscopy, is given. The effect of the melt structure on the mechanism of the substance cystallization is considered. It is shown that vitrification and supercooling of the melt, as well as its crystallization in the from of metastable structures, are related to the effect of nonconformity between the melt and crystal strucure. The effect of nonconformity between anion motives in the melt and crystal creates obstacles for equilibrium structure nucleation, which results in the formation mainly of metastable forms with lattice structure for from the structure of the melt, though cases of equilibrium phase crystallization are also possible. 37 refs.; 13 figs.; 2 tabs

  13. Confirming the Revised C-Terminal Domain of the MscL Crystal Structure

    OpenAIRE

    Maurer, Joshua A.; Elmore, Donald E.; Clayton, Daniel; Xiong, Li; Lester, Henry A.; Dougherty, Dennis A.

    2008-01-01

    The structure of the C-terminal domain of the mechanosensitive channel of large conductance (MscL) has generated significant controversy. As a result, several structures have been proposed for this region: the original crystal structure (1MSL) of the Mycobacterium tuberculosis homolog (Tb), a model of the Escherichia coli homolog, and, most recently, a revised crystal structure of Tb-MscL (2OAR). To understand which of these structures represents a physiological conformation, we measured the ...

  14. Crystal structure representations for machine learning models of formation energies

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Felix [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel Switzerland; Lindmaa, Alexander [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping Sweden; von Lilienfeld, O. Anatole [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel Switzerland; Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass Avenue Lemont Illinois 60439; Armiento, Rickard [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping Sweden

    2015-04-20

    We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a dataset of 3938 crystal structures obtained from the Materials Project. For training sets consisting of 3000 crystals, the generalization error in predicting formation energies of new structures corresponds to (i) 0.49, (ii) 0.64, and (iii) 0.37eV/atom for the respective representations.

  15. Theoretical modeling of zircon's crystal morphology according to data of atomistic calculations

    Science.gov (United States)

    Gromalova, Natalia; Nikishaeva, Nadezhda; Eremin, Nikolay

    2017-04-01

    potential. The other sets of interatomic potentials («Zircon 2, Zircon 3») differed from the first in that parameters was found with the help of quantum-chemical calculations of the structure «ab initio».The surface energies for different faces of zircon were calculated using Metadise code (Watson et al., 1996) at P4-3000 personal computer with Windows XP operating system. The computation time for one simple form was from 30 minutes to 12 hours. Calculations have shown that depending on the chosen model the surface energy of zircons faces several changes. For example, Esurf of face (331) obtained using models of potentials «Zircon 2», «Zircon 3» sufficiently similar (2.82 and 3.01 J/mol2 respectively). Meaning of Esurf of this face, calculated on the basis of set «Zircon 1» significantly lower (1,54 J/mol2). With regard to the face (100), it has low surface energies when selecting all three models, with a minimum value (1,14 J/mol2) in the model «Zircon 1». References: Gromalova N.A., Eremin N.N., Urusov V.S. Atomistic computer modeling of the crystal-morpology of corundum group minerals // Zapiski RMO. V. 144. №4. 2015. p. 84-92. Watson G.W., Kelsey E.T., de Leeuw N.H., Harris D.J, Parker S.C. Atomistic simulation of dislocations, surfaces and interfaces in MgO. Journal of the Chemical Society Faraday Transactions. 1996. V.92 P. 433-438.

  16. Crystal structure and thermochemical properties of 1-decylammonium hydrobromide (C10H21NH3Br)(s)

    International Nuclear Information System (INIS)

    Zhang Lijun; Di Youying; Lu Dongfei

    2011-01-01

    Highlights: → Crystal structure of 1-decylammonium hydrobromide was reported. → Lattice potential energy of the compound was obtained. → Molar volumes of the compound and its cation were obtained. → Ionic radius of its cation of the compound was calculated. → Molar enthalpy of dissolution at infinite dilution was determined. → Hydration enthalpies of the compound and its cation were calculated. - Abstract: The crystal structure of 1-decylammonium hydrobromide was determined by X-ray crystallography. Lattice potential energy and molar volumes of the solid compound and its cation were obtained respectively. The ionic radius of the cation can be calculated from the corresponding effective volume of the cation. The molar enthalpies of dissolution of the compound at different concentrations m/(mol . kg -1 ) at T = 298.15 K were measured by an isoperibol solution-reaction calorimeter at T = 298.15 K. According to the Pitzer's electrolyte solution theory, the molar enthalpy of dissolution of the compound at infinite dilution (Δ s H m ∞ ) and Pitzer parameters (β MX (0)L and β MX (1)L ) were obtained. The values of apparent relative molar enthalpies ( Φ L) of the title compound and relative partial molar enthalpies (L 2 -bar and L 1 -bar) of the solute and the solvent at different concentrations were derived from the experimental values of the enthalpy of dissolution of the compound. Finally, hydration enthalpies of the compound and its cation were calculated by designing a thermochemical cycle in accordance with lattice potential energy and the molar enthalpy of dissolution of the title compound at infinite dilution.

  17. Origin of the complex crystal structures of elements at intermediate pressure

    International Nuclear Information System (INIS)

    Ackland, G J; Macleod, I R

    2004-01-01

    We present a unifying theory for the observed complex structures of sp-bonded elements under pressure on the basis of nearly free electron picture. In the intermediate pressure regime, the dominant contribution to crystal structure arises from Fermi-surface Brillouin zone interactions-structures which allow this are favoured. This simple theory explains the observed crystal structures, transport properties and the evolution of internal and unit cell parameters with pressure and appears to hold for elements in groups I-VI. We illustrate it with experimental data for these elements and ab initio calculations for Li

  18. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  19. Potassium and magnesium succinatouranilates – Synthesis and crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, S.A., E-mail: serg.alex.novikov@gmail.com [Samara National Research University, 443086 Samara (Russian Federation); Grigoriev, M.S. [Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 119071 Moscow (Russian Federation); Serezhkina, L.B.; Serezhkin, V.N. [Samara National Research University, 443086 Samara (Russian Federation)

    2017-04-15

    Single crystal X-ray diffraction has been applied to determine the structures of two new uranyl coordination polymers: K{sub 2}[(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}] (1) and [Mg(H{sub 2}O){sub 6}] [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]·2H{sub 2}O (2), where C{sub 4}H{sub 4}O{sub 4}{sup 2-} is succinate anion. Crystals of 1 and 2 contain polymeric complex anions [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]{sup 2-} with the same A{sub 2}Q{sup 02}{sub 3} crystallochemical formula (A=UO{sub 2}{sup 2+}, Q{sup 02}=C{sub 4}O{sub 4}H{sub 4}{sup 2-}), and have layered (1) or chain (2) structure. It has been found, that conformation of succinate ions is one of the factors, which affects the structure of [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]{sup 2-} anions. IR spectra of these new compounds are in good agreement with crystallographic data. Topological analysis of the uranium dicarboxylates with A{sub 2}Q{sup 02}{sub 3} crystallochemical formula has shown the presence of five isomers which differ from each other in coordination sequences and / or dimensionality. - Graphical abstract: Crystal structures of two new uranium(VI) coordination polymers with succinate linkers, namely K{sub 2}[(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}] (1) and [Mg(H{sub 2}O){sub 6}][(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]·2H{sub 2}O (2), were determined by single-crystal XRD. Crystals of studied compounds are based on 2D or 1D structural units with the same composition and crystallochemical formula. Topological isomerism in A{sub 2}Q{sup 02}{sub 3} crystallochemical group and conformations of succinate anions in uranyl complexes are under discussion. - Highlights: • Two new uranium coordination polymers were synthesized. • Their structural units have the same composition and crystallochemical formula. • In spite the same composition and CCF dimensionality of units is different. • Structural features of uranyl CPs

  20. Molecular Dynamic Simulation of Space and Earth-Grown Crystal Structures of Thermostable T1 Lipase Geobacillus zalihae Revealed a Better Structure.

    Science.gov (United States)

    Ishak, Siti Nor Hasmah; Aris, Sayangku Nor Ariati Mohamad; Halim, Khairul Bariyyah Abd; Ali, Mohd Shukuri Mohamad; Leow, Thean Chor; Kamarudin, Nor Hafizah Ahmad; Masomian, Malihe; Rahman, Raja Noor Zaliha Raja Abd

    2017-09-25

    Less sedimentation and convection in a microgravity environment has become a well-suited condition for growing high quality protein crystals. Thermostable T1 lipase derived from bacterium Geobacillus zalihae has been crystallized using the counter diffusion method under space and earth conditions. Preliminary study using YASARA molecular modeling structure program for both structures showed differences in number of hydrogen bond, ionic interaction, and conformation. The space-grown crystal structure contains more hydrogen bonds as compared with the earth-grown crystal structure. A molecular dynamics simulation study was used to provide insight on the fluctuations and conformational changes of both T1 lipase structures. The analysis of root mean square deviation (RMSD), radius of gyration, and root mean square fluctuation (RMSF) showed that space-grown structure is more stable than the earth-grown structure. Space-structure also showed more hydrogen bonds and ion interactions compared to the earth-grown structure. Further analysis also revealed that the space-grown structure has long-lived interactions, hence it is considered as the more stable structure. This study provides the conformational dynamics of T1 lipase crystal structure grown in space and earth condition.

  1. Protein NMR Structures Refined with Rosetta Have Higher Accuracy Relative to Corresponding X-ray Crystal Structures

    Science.gov (United States)

    2014-01-01

    We have found that refinement of protein NMR structures using Rosetta with experimental NMR restraints yields more accurate protein NMR structures than those that have been deposited in the PDB using standard refinement protocols. Using 40 pairs of NMR and X-ray crystal structures determined by the Northeast Structural Genomics Consortium, for proteins ranging in size from 5–22 kDa, restrained Rosetta refined structures fit better to the raw experimental data, are in better agreement with their X-ray counterparts, and have better phasing power compared to conventionally determined NMR structures. For 37 proteins for which NMR ensembles were available and which had similar structures in solution and in the crystal, all of the restrained Rosetta refined NMR structures were sufficiently accurate to be used for solving the corresponding X-ray crystal structures by molecular replacement. The protocol for restrained refinement of protein NMR structures was also compared with restrained CS-Rosetta calculations. For proteins smaller than 10 kDa, restrained CS-Rosetta, starting from extended conformations, provides slightly more accurate structures, while for proteins in the size range of 10–25 kDa the less CPU intensive restrained Rosetta refinement protocols provided equally or more accurate structures. The restrained Rosetta protocols described here can improve the accuracy of protein NMR structures and should find broad and general for studies of protein structure and function. PMID:24392845

  2. Synthesis and Single Crystal X-Ray Structure Determination of 3,3',5 ...

    African Journals Online (AJOL)

    Single crystal structure determination at 100 K revealed needle-like crystals in an orthorhombic crystal system. The asymmetric unit of the cell consists of an isolated chloride ion, one half of a tetrahedral [MnCl4]2- anion, a [H2Me4bpz]2+ dication and one half of a molecule of water. Keywords: Crystal Engineering, Hydrogen ...

  3. Preparation and crystal structure of Ca4Sb2O

    International Nuclear Information System (INIS)

    Eisenmann, B.; Limartha, H.; Schaefer, H.

    1980-01-01

    The formerly described compound Ca 2 Sb is to be corrected to Ca 4 Sb 2 O as shown by X-ray diffractometer data of single crystals and neutron diffraction diagrams of powders. The compound crystallizes in the K 2 NiF 4 structure type. (orig.)

  4. Crystal structure and biochemical characterization of beta-keto thiolase B from polyhydroxyalkanoate-producing bacterium Ralstonia eutropha H16

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Jung; Son, Hyeoncheol Francis [Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701 (Korea, Republic of); Kim, Sangwoo [Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701 (Korea, Republic of); School of Nono-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Ahn, Jae-Woo [Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701 (Korea, Republic of); Kim, Kyung-Jin, E-mail: kkim@knu.ac.kr [Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701 (Korea, Republic of)

    2014-02-14

    Highlights: • We determined a crystal structure of β-keto thiolase from Ralstonia eutropha H16 (ReBktB). • Distinct substrate binding mode ReBktB was elucidated. • Enzymatic kinetic parameters of ReBktB were revealed. - Abstract: ReBktB is a β-keto thiolase from Ralstonia eutropha H16 that catalyzes condensation reactions between acetyl-CoA with acyl-CoA molecules that contains different numbers of carbon atoms, such as acetyl-CoA, propionyl-CoA, and butyryl-CoA, to produce valuable bioproducts, such as polyhydroxybutyrate, polyhydroxybutyrate-hydroxyvalerate, and hexanoate. We solved a crystal structure of ReBktB at 2.3 Å, and the overall structure has a similar fold to that of type II biosynthetic thiolases, such as PhbA from Zoogloea ramigera (ZrPhbA). The superposition of this structure with that of ZrPhbA complexed with CoA revealed the residues that comprise the catalytic and substrate binding sites of ReBktB. The catalytic site of ReBktB contains three conserved residues, Cys90, His350, and Cys380, which may function as a covalent nucleophile, a general base, and second nucleophile, respectively. For substrate binding, ReBktB stabilized the ADP moiety of CoA in a distinct way compared to ZrPhbA with His219, Arg221, and Asp228 residues, whereas the stabilization of β-mercaptoethyamine and pantothenic acid moieties of CoA was quite similar between these two enzymes. Kinetic study of ReBktB revealed that K{sub m}, V{sub max}, and K{sub cat} values of 11.58 μM, 1.5 μmol/min, and 102.18 s{sup −1}, respectively, and the catalytic and substrate binding sites of ReBktB were further confirmed by site-directed mutagenesis experiments.

  5. The crystal structure and the phase transitions of pyridinium trifluoromethanesulfonate

    International Nuclear Information System (INIS)

    Jesariew, Dominik; Ilczyszyn, Maria M; Pietraszko, Adam

    2014-01-01

    The calorimetric and optical studies and the structural properties of pyridinium trifluoromethanesulfonate (abbreviated as PyHOTf) are reported. A sequence of four fully reversible solid–solid phase transitions, at 223.0, 309.0, 359.9 and 394.3 K, has been discovered. The phase transition sequence was confirmed by x-ray diffraction data. The crystal structures of three phases (V, IV and III) have been determined from the single crystal x-ray diffraction data. Structural properties of the high temperature phases are characterized using powder x-ray diffraction data measured in the 290–425 K temperature range. The structural changes triggered by the temperature change are discussed in relation to the phase transitions. Two low temperature phases (V and IV) belong to the P4 3 2 1 2 space group of the tetragonal system. The intermediate phases (III and II) are monoclinic and the prototype high temperature phase (I) is a pseudo-cubic (tetragonal) one. The low temperature phases (V and IV) are well ordered. The crystal structure of intermediate (III and II) and prototype (I) phases are characterized by high disorder of the pyridinium cations and triflate anions. (papers)

  6. An arc detector for neutron crystal structure investigations

    Energy Technology Data Exchange (ETDEWEB)

    Habib, N [Reactor and Neutron Physics Dept., Nuclear Research Center. AEA, Cairo (Egypt)

    1997-12-31

    An arc detector for neutron structure investigations of powder crystals using time-of-flight technique is described. In order to enable the measurement of integral intensity from about 1/4 of the Debye-Scherrer ring and for simplicity reasons, the scattering angle 20-90 degree was chosen and a special arc collimator was built. The arc collimator-detector had a divergency of about 20 minutes of arc, and the distance between detector-sample was 64 cm. Four {sup 3} He detectors were fixed on the arc of the collimator. Both efficiency and space sensitivity of the detector were determined using a point neutron source. Results of measurements show that parameters of the arc detector are acceptable for high resolution crystal structure investigations. 6 figs.

  7. The Performance of Several Docking Programs at Reproducing Protein–Macrolide-Like Crystal Structures

    Directory of Open Access Journals (Sweden)

    Alejandro Castro-Alvarez

    2017-01-01

    Full Text Available The accuracy of five docking programs at reproducing crystallographic structures of complexes of 8 macrolides and 12 related macrocyclic structures, all with their corresponding receptors, was evaluated. Self-docking calculations indicated excellent performance in all cases (mean RMSD values ≤ 1.0 and confirmed the speed of AutoDock Vina. Afterwards, the lowest-energy conformer of each molecule and all the conformers lying 0–10 kcal/mol above it (as given by Macrocycle, from MacroModel 10.0 were subjected to standard docking calculations. While each docking method has its own merits, the observed speed of the programs was as follows: Glide 6.6 > AutoDock Vina 1.1.2 > DOCK 6.5 >> AutoDock 4.2.6 > AutoDock 3.0.5. For most of the complexes, the five methods predicted quite correct poses of ligands at the binding sites, but the lower RMSD values for the poses of highest affinity were in the order: Glide 6.6 ≈ AutoDock Vina ≈ DOCK 6.5 > AutoDock 4.2.6 >> AutoDock 3.0.5. By choosing the poses closest to the crystal structure the order was: AutoDock Vina > Glide 6.6 ≈ DOCK 6.5 ≥ AutoDock 4.2.6 >> AutoDock 3.0.5. Re-scoring (AutoDock 4.2.6//AutoDock Vina, Amber Score and MM-GBSA improved the agreement between the calculated and experimental data. For all intents and purposes, these three methods are equally reliable.

  8. Atomic structures and mechanical properties of single-crystal GaN nanotubes

    International Nuclear Information System (INIS)

    Xu, B.; Lu, A.J.; Pan, B.C.; Yu, Q.X.

    2005-01-01

    An approach is proposed to theoretically construct a realistic single-crystal GaN nanotube at atomic scale. The generated atomic structures of the single-crystal GaN nanotubes match the structural aspects from experiment very well. Our energetic calculations show that a single-crystal GaN nanotube with [100]-oriented lateral facets is more stable than that with [110]-oriented lateral facets, when they have around the same wall thickness. For a specified orientation of the lateral facets on the single-crystal GaN nanotubes, the energetic stabilities of the tubes obey a P rule, in which P is the ratio of the number of four-coordinated atoms to the number of three-coordinated atoms. Furthermore, the Young's modulus of the considered GaN nanotubes decrease with increasing the ratio of the number of bulk atoms to the number of surface atoms in each type of tube. Our calculations and analysis demonstrate that the surface effect of a single-crystal nanotube enhances its Young's modulus significantly

  9. Combined ion beam and hyperfine interaction studies of LiNbO3 single crystals

    International Nuclear Information System (INIS)

    Marques, J.G.; Kling, A.; Soares, J.C.; Rebouta, L.

    1999-01-01

    A review of recent studies of LiNbO 3 crystals doped with Hf and Mg,Hf combining high precision RBS/channelling, PIXE/channelling and hyperfine interaction techniques is presented. The lattice location of Hf was found to depend strongly on the dopant concentration, crystal stoichiometry and Mg co-doping level. At low concentrations Hf occupies Li sites in congruent crystals, while it occupies both Li and Nb sites for higher doping levels or in near-stoichiometric crystals. Co-doping with Mg also forces a split location of Hf in Li and Nb sites and when the MgO amount exceeds 4.5 mol% Hf occupies only Nb sites. Neutron irradiation of these crystals displaces Hf from its initial lattice site and leads to a strong decrease of the Nb site fraction. The results are discussed in the framework of the Li and Nb vacancy models currently proposed in the literature for the defect structure of LiNbO 3 . (author)

  10. Multi criteria decision analysis on a waste repository in Mol

    International Nuclear Information System (INIS)

    Carle, B.

    2005-01-01

    In Belgium, the management of radioactive waste is taken care of by ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials. Local partnerships with stakeholders from municipalities in existing nuclear zones were setup to facilitate the dialogue between the repository designers and the local community. Since the establishment of the partnership in Mol, MONA in February 2000, all aspects of a possible near-surface or a deep geological repository are discussed in 4 working groups by around 50 volunteer members. The outcome of the discussions in the partnership can be a shared project, supported by both local stakeholders and ONDRAF/NIRAS, in which the specifications and the conditions needed for establishing a repository in Mol are elaborated. MONA asked the Decision Strategy Research Department of SCK-CEN to organise a Multi Criteria Analysis (MCA) in the context of the deciding between a surface and a deep repository for low level radioactive waste. The objective of the multi criteria analysis is to support a number of representatives of the various working groups within MONA in their selection between two acceptable options for a repository of low level radioactive waste on the territory of Mol. The options are the surface repository developed by the working groups of MONA, and a deep repository in the clay layers underneath the nuclear site of Mol. This study should facilitate the selection between both options, or in case this appears to be difficult, at least to get a well-structured overview of all factors (criteria) of importance to the judgement, and to get insight into the degree in which the various criteria contribute to the selection

  11. Growth and structural, optical, and electrical properties of zincite crystals

    Science.gov (United States)

    Kaurova, I. A.; Kuz'micheva, G. M.; Rybakov, V. B.

    2013-03-01

    An X-ray diffraction study of ZnO crystals grown by the hydrothermal method has revealed reflections that give grounds to assign them to the sp. gr. P3 rather than to P63 mc. The distribution of Zn1, Zn2, O1, and O2 over structural positions, along with vacancies and incorporated zinc atoms, explains the dissymmetrization observed in terms of the kinetic (growth) phase transition of the order-disorder type, which is caused by ordering Zn and O atoms over structural positions. The color of crystals of refined compositions (Zn0.975□0.025)Zn i(0.015)(O0.990□0.010) (green) and (Zn0.965□0.035)Zn i(0.035)O (bright green) is related to different oxygen contents, which is confirmed by the results of electron probe X-ray microanalysis and absorption spectroscopy. The degree of the structural quality of crystals, their resistivity, and activation energy are also related to oxygen vacancies.

  12. Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models.

    Directory of Open Access Journals (Sweden)

    Catherine L Worth

    Full Text Available BACKGROUND: Up until recently the only available experimental (high resolution structure of a G-protein-coupled receptor (GPCR was that of bovine rhodopsin. In the past few years the determination of GPCR structures has accelerated with three new receptors, as well as squid rhodopsin, being successfully crystallized. All share a common molecular architecture of seven transmembrane helices and can therefore serve as templates for building molecular models of homologous GPCRs. However, despite the common general architecture of these structures key differences do exist between them. The choice of which experimental GPCR structure(s to use for building a comparative model of a particular GPCR is unclear and without detailed structural and sequence analyses, could be arbitrary. The aim of this study is therefore to perform a systematic and detailed analysis of sequence-structure relationships of known GPCR structures. METHODOLOGY: We analyzed in detail conserved and unique sequence motifs and structural features in experimentally-determined GPCR structures. Deeper insight into specific and important structural features of GPCRs as well as valuable information for template selection has been gained. Using key features a workflow has been formulated for identifying the most appropriate template(s for building homology models of GPCRs of unknown structure. This workflow was applied to a set of 14 human family A GPCRs suggesting for each the most appropriate template(s for building a comparative molecular model. CONCLUSIONS: The available crystal structures represent only a subset of all possible structural variation in family A GPCRs. Some GPCRs have structural features that are distributed over different crystal structures or which are not present in the templates suggesting that homology models should be built using multiple templates. This study provides a systematic analysis of GPCR crystal structures and a consistent method for identifying

  13. Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models.

    Science.gov (United States)

    Worth, Catherine L; Kleinau, Gunnar; Krause, Gerd

    2009-09-16

    Up until recently the only available experimental (high resolution) structure of a G-protein-coupled receptor (GPCR) was that of bovine rhodopsin. In the past few years the determination of GPCR structures has accelerated with three new receptors, as well as squid rhodopsin, being successfully crystallized. All share a common molecular architecture of seven transmembrane helices and can therefore serve as templates for building molecular models of homologous GPCRs. However, despite the common general architecture of these structures key differences do exist between them. The choice of which experimental GPCR structure(s) to use for building a comparative model of a particular GPCR is unclear and without detailed structural and sequence analyses, could be arbitrary. The aim of this study is therefore to perform a systematic and detailed analysis of sequence-structure relationships of known GPCR structures. We analyzed in detail conserved and unique sequence motifs and structural features in experimentally-determined GPCR structures. Deeper insight into specific and important structural features of GPCRs as well as valuable information for template selection has been gained. Using key features a workflow has been formulated for identifying the most appropriate template(s) for building homology models of GPCRs of unknown structure. This workflow was applied to a set of 14 human family A GPCRs suggesting for each the most appropriate template(s) for building a comparative molecular model. The available crystal structures represent only a subset of all possible structural variation in family A GPCRs. Some GPCRs have structural features that are distributed over different crystal structures or which are not present in the templates suggesting that homology models should be built using multiple templates. This study provides a systematic analysis of GPCR crystal structures and a consistent method for identifying suitable templates for GPCR homology modelling that will

  14. Visualization of Hyperconjugation and Subsequent Structural Distortions through 3D Printing of Crystal Structures.

    Science.gov (United States)

    Mithila, Farha J; Oyola-Reynoso, Stephanie; Thuo, Martin M; Atkinson, Manza Bj

    2016-01-01

    Structural distortions due to hyperconjugation in organic molecules, like norbornenes, are well captured through X-ray crystallographic data, but are sometimes difficult to visualize especially for those applying chemical knowledge and are not chemists. Crystal structure from the Cambridge database were downloaded and converted to .stl format. The structures were then printed at the desired scale using a 3D printer. Replicas of the crystal structures were accurately reproduced in scale and any resulting distortions were clearly visible from the macroscale models. Through space interactions or effect of through space hyperconjugation was illustrated through loss of symmetry or distortions thereof. The norbornene structures exhibits distortion that cannot be observed through conventional ball and stick modelling kits. We show that 3D printed models derived from crystallographic data capture even subtle distortions in molecules. We translate such crystallographic data into scaled-up models through 3D printing.

  15. Simulation and design of the photonic crystal microwave accelerating structure

    International Nuclear Information System (INIS)

    Song Ruiying; Wu Congfeng; He Xiaodong; Dong Sai

    2007-01-01

    The authors have derived the global band gaps for general two-dimensional (2D) photonic crystal microwave accelerating structures formed by square or triangular arrays of metal posts. A coordinate-space, finite-difference code was used to calculate the complete dispersion curves for the lattices. The fundamental and higher frequency global photonic band gaps were determined numerically. The structure formed by triangular arrays of metal posts with a missing rod at the center has advantages of higher-order-modes (HOM) suppression and main mode restriction under the condition of a/b<0.2. The relationship between the RF properties and the geometrical parameters have been studied for the 9.37 GHz photonic crystal accelerating structure. The Rs, Q, Rs/Q of the new structure may be comparable to the disk-loaded accelerating structure. (authors)

  16. Crystal structure of calcioburbankite and the characteristic features of the burbankite structure type

    International Nuclear Information System (INIS)

    Belovitskaya, Yu.V.; Pekov, I.V.; Gobechiya, E.R.; Kabalov, Yu.K.; Subbotin, V.V.

    2001-01-01

    The crystal structure of calcioburbankite (Na,Ca) 3 (Ca,RE,Sr,Ba) 3 (CO 3 ) 5 found in carbonatites from Vuoriyarvi (North Kareliya) was solved by the Rietveld method. The experimental data were collected on an ADP-2 diffractometer (λCuK α radiation; Ni filter; 16.00 deg. 1 + α 2 ) reflections was 455). All the calculations were performed within the sp. gr. P6 3 mc; a = 10.4974(1) A, c = 6.4309(1) A, V = 613.72(1) A 3 ; R wp = 2.49%. The structure was refined with the use of the anisotropic thermal parameters for the (Na,Ca) and (Sr,Ba,Ce) cations. The comparison of the crystal structures of all of the known hexagonal representatives of the burbankite family demonstrates that the burbankite structure type (sp. gr. P6 3 mc) is stable, irrespectively of the occupancy of the ten-vertex polyhedra predominantly with Ca, Sr, or Ba cations and the occupancies of the positions in the eight-vertex polyhedra

  17. MolPrint3D: Enhanced 3D Printing of Ball-and-Stick Molecular Models

    Science.gov (United States)

    Paukstelis, Paul J.

    2018-01-01

    The increased availability of noncommercial 3D printers has provided instructors and students improved access to printing technology. However, printing complex ball-and-stick molecular structures faces distinct challenges, including the need for support structures that increase with molecular complexity. MolPrint3D is a software add-on for the…

  18. Synthesis, crystal structure and Thermogravimetry of ortho-phthalic ...

    Indian Academy of Sciences (India)

    satisfied by two chelated carboxylates while fifth and sixth co-ordination positions are satisfied by monodentate ... Keywords. o-Phthalic acid; coordination polymer; X-ray crystal structure; Copper(II); EPR; TGA. 1. .... Absorption coefficient.

  19. GPCR crystal structures: Medicinal chemistry in the pocket.

    Science.gov (United States)

    Shonberg, Jeremy; Kling, Ralf C; Gmeiner, Peter; Löber, Stefan

    2015-07-15

    Recent breakthroughs in GPCR structural biology have significantly increased our understanding of drug action at these therapeutically relevant receptors, and this will undoubtedly lead to the design of better therapeutics. In recent years, crystal structures of GPCRs from classes A, B, C and F have been solved, unveiling a precise snapshot of ligand-receptor interactions. Furthermore, some receptors have been crystallized in different functional states in complex with antagonists, partial agonists, full agonists, biased agonists and allosteric modulators, providing further insight into the mechanisms of ligand-induced GPCR activation. It is now obvious that there is enormous diversity in the size, shape and position of the ligand binding pockets in GPCRs. In this review, we summarise the current state of solved GPCR structures, with a particular focus on ligand-receptor interactions in the binding pocket, and how this can contribute to the design of GPCR ligands with better affinity, subtype selectivity or efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The use of radionuclides for the study of crystal structure of solids

    International Nuclear Information System (INIS)

    Jech, C.

    1976-01-01

    It is well known that by the coordinated action of atoms arranged in rows and planes in the crystal lattice, the motion of charged particles such as protons, alpha particles and heavier ions can be influenced so that their range in the single crystals is considerably enhanced in low-index directions. A technique has been developed based on such enhanced penetration (channeling) of radioactive atoms ( 220 Rn) emitted by recoil with a 100 keV energy from a 224 Ra point source to record channeling patterns which show the crystal structure. The radioactive recoil atoms impinging from this source on the surface of a single crystal penetrate deeper in places where their direction of impact is identical with low index crystal directions and planes. These places can be visualized by autoradiography when having first stripped a thin layer from the surface corresponding to the random range of the atoms. This technique is generally applicable in close packed crystals and gives information about the crystal structure of very thin surface layers. (author)

  1. CCDC 1048727: Experimental Crystal Structure Determination : bis(2-(hydroxyimino)propanoato)-tin(ii)

    KAUST Repository

    Khanderi, Jayaprakash; Davaasuren, Bambar; Alshankiti, Buthainah; Rothenberger, Alexander

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  2. CCDC 1515632: Experimental Crystal Structure Determination : hexakis(dimethyl sulfoxide)-manganese(ii) tetraiodide

    KAUST Repository

    Haque, M.A.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  3. CCDC 1429311: Experimental Crystal Structure Determination : N-(5-Bromoquinolin-8-yl)benzamide

    KAUST Repository

    Xu, Jun; Shen, Chao; Zhu, Xiaolei; Zhang, Pengfei; Ajitha, Manjaly John; Huang, Kuo-Wei; An, Zhongfu; Liu, Xiaogang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  4. CCDC 1427126: Experimental Crystal Structure Determination : bis(1,10-Phenanthroline)-copper pentafluoropropanoate

    KAUST Repository

    Huang, Yangjie

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  5. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    International Nuclear Information System (INIS)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan

    2012-01-01

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, 1 H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  6. Moessbauer determination of magnetic structure of Fe3BO6 crystal

    International Nuclear Information System (INIS)

    Kovalenko, P.P.; Labushkin, V.G.; Ovsepyan, A.K.; Sarkisov, Eh.R.; Smirnov, E.V.; Prokopov, A.R.; Seleznev, V.N.

    1984-01-01

    The magnetic structure of a Fe 3 BO 6 crystal belonging to space group Dsub(2h)sup(16)(Psub(nma)) is determined by the Moessbauer γ-radiation diffraction. The bragg reflection (700) of Moessbauer 14.4 keV γ-quanta from the Fe 3 BO 6 monocrystal has been studied experimentally. A high sensitivity of the interference of γ-quantum diffraction scattering on Fe nuclei being in crystallographically non-equivalent 8d- and 4s-positions to the type of magnetic ordering in the crystal is used for determination of the magnetic structure. Agreement of the experimental results with the theoretical calculations, conducted for types of magnetic ordering resolved by the symmetry of the crystal, permitted to reliably determine the magnetic structure of this compound. The results obtained confirm the data of neutrondiffraction studies on magnetic ordering in Fe 3 BO 6 . Advantages of the Moessbauer-diffraction study, as compared to the magnetic neutrondiffraction method, in particular, for investigation of crystals, in which the hyperfine magnetic fields on Fe nuclei have different values, are revealed and discussed in detail

  7. The phase transformation and crystallization kinetics of (1 - x)Li2O-xNa2O-Al2O3-4SiO2 glasses

    International Nuclear Information System (INIS)

    Wang, Moo-Chin; Li, Wang-Long; Cheng, Chih-Wei; Chang, Kuo-Ming; Chen, Yong-Feng; Hsi, Chi-Shiung

    2010-01-01

    The phase transformation and crystallization kinetics of (1 - x)Li 2 O-xNa 2 O-Al 2 O 3 -4SiO 2 glasses have been studied by using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction (ED) analysis. The crystallization temperature at the exothermic peak increases from 1171 to 1212 K when the Na 2 O content increases from 0 to 0.6 mol. The crystalline phase is composed of spodumene crystallization when the Na 2 O content increases from 0 to 0.6 mol. The activation energy of spodumene crystallization decreases from 444.0 ± 22.2 to 284.0 ± 10.8 kJ mol -1 when the Na 2 O content increases from 0 to 0.4 mol. Moreover, the activation energy increases from 284.0 ± 10.8 to 446.0 ± 23.2 kJ mol -1 when the Na 2 O content increases from 0.4 to 0.6 mol. The crystallization parameters m and n approach 2, indicating that the surface nucleation and two-dimensional growth are dominant in (1 - x)Li 2 O-xNa 2 O-Al 2 O 3 -4SiO 2 glasses.

  8. Rapid X-ray crystal structure analysis in few second measurements using microstrip gas chamber

    CERN Document Server

    Ochi, A; Tanimori, T; Ohashi, Y; Toyokawa, H; Nishi, Y; Nishi, Y; Nagayoshi, T; Koishi, S

    2001-01-01

    X-ray crystal structure analysis using microstrip gas chamber was successfully carried out in a measurement time within a few seconds. The continuous rotation photograph method, in which most of the diffraction peaks can be obtained within one continuous rotation of the sample crystal (without stopping or oscillation), was applied for this measurement. As an example, the structure of a single crystal of ammonium bitartrate (r=1 mm, spherical) was measured. Diffraction spots from the sample, which were sufficient to obtain crystal structure, were successfully obtained by taking only 2 s measurements with a commercially available laboratory X-ray source.

  9. Welcome to Crystals: A New Open-Access, Multidisciplinary Forum for Growth, Structures and Properties of Crystals

    Directory of Open Access Journals (Sweden)

    Gerd Meyer

    2010-12-01

    Full Text Available The majority of the earth’s crust is made up of crystalline material. The research areas of mineralogy, petrology, chimie minerále (inorganic chemistry and, of course, crystallography outgrew from the fascination of mankind with the color and symmetry of crystals. Crystals have translational symmetry in two or three dimensions, quasicrystals have translational symmetry in higher spaces. Further symmetries may be observed by the eye, by microscopic techniques or by the diffraction of X-ray, electron, or neutron beams. Diffraction techniques are also used, due to Max von Laue’s eminent discovery a century ago, to determine crystal structures. [...

  10. Thio-phene-2-carbonyl azide.

    Science.gov (United States)

    Hsu, Gene C; Singer, Laci M; Cordes, David B; Findlater, Michael

    2013-01-01

    The title compound, C5H3N3OS, is almost planar (r.m.s. deviation for the ten non-H atoms = 0.018 Å) and forms an extended layer structure in the (100) plane, held together via hydrogen-bonding inter-actions between adjacent mol-ecules. Of particular note is the occurrence of RC-H⋯N(-)=N(+)=NR inter-actions between an aromatic C-H group and an azide moiety which, in conjunction with a complementary C-H⋯O=C inter-action, forms a nine-membered ring.

  11. Crystal structure of bile salt hydrolase from Lactobacillus salivarius.

    Science.gov (United States)

    Xu, Fuzhou; Guo, Fangfang; Hu, Xiao Jian; Lin, Jun

    2016-05-01

    Bile salt hydrolase (BSH) is a gut-bacterial enzyme that negatively influences host fat digestion and energy harvesting. The BSH enzyme activity functions as a gateway reaction in the small intestine by the deconjugation of glycine-conjugated or taurine-conjugated bile acids. Extensive gut-microbiota studies have suggested that BSH is a key mechanistic microbiome target for the development of novel non-antibiotic food additives to improve animal feed production and for the design of new measures to control obesity in humans. However, research on BSH is still in its infancy, particularly in terms of the structural basis of BSH function, which has hampered the development of BSH-based strategies for improving human and animal health. As an initial step towards the structure-function analysis of BSH, C-terminally His-tagged BSH from Lactobacillus salivarius NRRL B-30514 was crystallized in this study. The 1.90 Å resolution crystal structure of L. salivarius BSH was determined by molecular replacement using the structure of Clostridium perfringens BSH as a starting model. It revealed this BSH to be a member of the N-terminal nucleophile hydrolase superfamily. Crystals of apo BSH belonged to space group P21212, with unit-cell parameters a = 90.79, b = 87.35, c = 86.76 Å (PDB entry 5hke). Two BSH molecules packed perfectly as a dimer in one asymmetric unit. Comparative structural analysis of L. salivarius BSH also identified potential residues that contribute to catalysis and substrate specificity.

  12. Hierarchically structured photonic crystals for integrated chemical separation and colorimetric detection.

    Science.gov (United States)

    Fu, Qianqian; Zhu, Biting; Ge, Jianping

    2017-02-16

    A SiO 2 colloidal photonic crystal film with a hierarchical porous structure is fabricated to demonstrate an integrated separation and colorimetric detection of chemical species for the first time. This new photonic crystal based thin layer chromatography process requires no dyeing, developing and UV irradiation compared to the traditional TLC. The assembling of mesoporous SiO 2 particles via a supersaturation-induced-precipitation process forms uniform and hierarchical photonic crystals with micron-scale cracks and mesopores, which accelerate the diffusion of developers and intensify the adsorption/desorption between the analytes and silica for efficient separation. Meanwhile, the chemical substances infiltrated to the voids of photonic crystals cause an increase of the refractive index and a large contrast of structural colors towards the unloaded part, so that the sample spots can be directly recognized with the naked eye before and after separation.

  13. Photorefractive effect at 775 nm in doped lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nava, G.; Minzioni, P.; Cristiani, I.; Degiorgio, V. [Department of Electrical, Computer, and Biomedical Engineering, and CNISM, University of Pavia, 27100 Pavia (Italy); Argiolas, N.; Bazzan, M.; Ciampolillo, M. V.; Pozza, G.; Sada, C. [Physics and Astronomy Departement, University of Padova, 35131 Padova (Italy)

    2013-07-15

    The photorefractive effect induced by 775-nm laser light on doped lithium niobate crystals is investigated by the direct observation in the far field of the transmitted-beam distortion as a function of time. Measurements performed at various Zr-doping concentrations and different light intensities show that the 775-nm light beam induces a steady-state photorefractive effect comparable to that of 532-nm light, but the observed build-up time of the photovoltaic field is longer by three-orders of magnitude. The 775-nm photorefractivity of lithium niobate crystals doped with 3 mol. % ZrO{sub 2} or with 5.5 mol. % MgO is found to be negligible.

  14. Crystallization and structure of chromium cast iron with addition of Mo and Ni

    International Nuclear Information System (INIS)

    Pietrowski, S.

    1998-01-01

    The aim of the presented paper is to show the results of examination of the crystallization process using the method of thermal-derivative analysis (ATD) and the structure examination of chromium cast iron, chromium molybdenum c. i. and chromium molybdenum nickel c.i. It was found that molybdenum in amount over 2 wt % causes the crystallization of eutectic carbides M 23 C 6 and M 6 C. The M 23 C 6 carbide crystallizes upon the crystallization of eutectic carbides M 3 C and M 7 C 3 . It is shown that ATD method facilitates both interpretation and control of the crystallization as well as formation of the cast iron structure at the solid state. (author)

  15. Crystal structure, growth and nonlinear optical studies of isonicotinamide p-nitrophenol: A new organic crystal for optical limiting applications

    Science.gov (United States)

    Vijayalakshmi, A.; Vidyavathy, B.; Vinitha, G.

    2016-08-01

    Isonicotinamide p-nitrophenol (ICPNP), a new organic material, was synthesized using methanol solvent. Single crystals of ICPNP were grown using a slow evaporation solution growth technique. Crystal structure of ICPNP is elucidated by single crystal X-ray diffraction analysis. It belongs to monoclinic crystal system with space group of P21/c. It forms two dimensional networks by O-H…O, N-H…O and C-H…O hydrogen bonds. The molecular structure of ICPNP was further confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance range and the lower cut-off wavelength (421 nm) with the optical band gap (2.90 eV) of the ICPNP crystal were determined by UV-vis-NIR spectral study. Thermal behavior of ICPNP was studied by thermo gravimetric and differential thermal analyses (TG/DTA). The relative dielectric permittivity was calculated for various temperature ranges. Laser damage threshold of ICPNP crystal was found to be 1.9 GW/cm2 using an Nd:YAG laser. A Z-scan technique was employed to measure the nonlinear absorption coefficient, nonlinear refractive index and nonlinear optical susceptibility. Optical limiting behavior of ICPNP was observed at 35 mW input power.

  16. Crystal structure of Cryptosporidium parvum pyruvate kinase.

    Directory of Open Access Journals (Sweden)

    William J Cook

    Full Text Available Pyruvate kinase plays a critical role in cellular metabolism of glucose by serving as a major regulator of glycolysis. This tetrameric enzyme is allosterically regulated by different effector molecules, mainly phosphosugars. In response to binding of effector molecules and substrates, significant structural changes have been identified in various pyruvate kinase structures. Pyruvate kinase of Cryptosporidium parvum is exceptional among known enzymes of protozoan origin in that it exhibits no allosteric property in the presence of commonly known effector molecules. The crystal structure of pyruvate kinase from C. parvum has been solved by molecular replacement techniques and refined to 2.5 Å resolution. In the active site a glycerol molecule is located near the γ-phosphate site of ATP, and the protein structure displays a partially closed active site. However, unlike other structures where the active site is closed, the α6' helix in C. parvum pyruvate kinase unwinds and assumes an extended conformation. In the crystal structure a sulfate ion is found at a site that is occupied by a phosphate of the effector molecule in many pyruvate kinase structures. A new feature of the C. parvum pyruvate kinase structure is the presence of a disulfide bond cross-linking the two monomers in the asymmetric unit. The disulfide bond is formed between cysteine residue 26 in the short N-helix of one monomer with cysteine residue 312 in a long helix (residues 303-320 of the second monomer at the interface of these monomers. Both cysteine residues are unique to C. parvum, and the disulfide bond remained intact in a reduced environment. However, the significance of this bond, if any, remains unknown at this time.

  17. Tris(O-cyclo-hexyl dithio-carbonato-κS)anti-mony(III).

    Science.gov (United States)

    Li, Wenkuan; Yin, Handong; Wen, Liyuan; Wang, Daqi

    2008-12-10

    In the mol-ecule of the title compound, [Sb(C(7)H(11)OS(2))(3)], the anti-mony(III) is coordinated by the S atoms of three O-alkyl xanthate groups acting as monodentate ligands, forming a distorted trigonal-pyramidal coordination.

  18. Crystal Structure of a Eukaryotic GEN1 Resolving Enzyme Bound to DNA

    Directory of Open Access Journals (Sweden)

    Yijin Liu

    2015-12-01

    Full Text Available We present the crystal structure of the junction-resolving enzyme GEN1 bound to DNA at 2.5 Å resolution. The structure of the GEN1 protein reveals it to have an elaborated FEN-XPG family fold that is modified for its role in four-way junction resolution. The functional unit in the crystal is a monomer of active GEN1 bound to the product of resolution cleavage, with an extensive DNA binding interface for both helical arms. Within the crystal lattice, a GEN1 dimer interface juxtaposes two products, whereby they can be reconnected into a four-way junction, the structure of which agrees with that determined in solution. The reconnection requires some opening of the DNA structure at the center, in agreement with permanganate probing and 2-aminopurine fluorescence. The structure shows that a relaxation of the DNA structure accompanies cleavage, suggesting how second-strand cleavage is accelerated to ensure productive resolution of the junction.

  19. Mineralization Process of Biocemented Sand and Impact of Bacteria and Calcium Ions Concentrations on Crystal Morphology

    Directory of Open Access Journals (Sweden)

    Guobin Xu

    2017-01-01

    Full Text Available Microbial-induced calcite precipitation (MICP is a sustainable technique used to improve sandy soil. Analysis of the mineralization process, as well as different bacterial suspensions and calcium concentrations on the crystal morphology, revealed that the mineralization process included four stages: self-organised hydrolysis of microorganisms, molecular recognition and interface interaction, growth modulation, and epitaxial growth. By increasing bacterial suspensions and calcium concentrations, the crystal morphology changed from hexahedron to oblique polyhedron to ellipsoid; the best crystal structure occurs at OD600 = 1.0 and [Ca2+] = 0.75 mol/l. It should be noted that interfacial hydrogen bonding is the main force that binds the loose sand particles. These results will help in understanding the mechanism of MICP.

  20. The crystal structure of the phosphatidylinositol 4-kinase IIalpha

    Czech Academy of Sciences Publication Activity Database

    Bäumlová, Adriana; Chalupská, Dominika; Rozycki, B.; Jovic, M.; Wisniewski, E.; Klíma, Martin; Dubánková, Anna; Kloer, D. P.; Nencka, Radim; Balla, T.; Bouřa, Evžen

    2015-01-01

    Roč. 22, č. 1 (2015), s. 5 ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /13./. 19.03.2015-21.03.2015, Nové Hrady] EU Projects: European Commission(XE) 333916 - STARPI4K Institutional support: RVO:61388963 Keywords : PI4K IIalpha * crystal structure Subject RIV: CE - Biochemistry

  1. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan, E-mail: yangbq@nwu.edu.cn [Department of Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Northwest University, Shaanxi (China)

    2012-10-15

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, {sup 1}H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  2. Bismuth zinc vanadate, BiZn2VO6: New crystal structure type and electronic structure

    International Nuclear Information System (INIS)

    Eliziario Nunes, Sayonara; Wang, Chun-Hai; So, Karwei; Evans, John S.O.; Evans, Ivana Radosavljević

    2015-01-01

    We report a combined experimental and computational study of the crystal structure and electronic properties of bismuth zinc vanadate, BiZn 2 VO 6 , known for its visible light photocatalytic activity. The crystal structure has been solved from laboratory powder X-ray diffraction data using the repeated minimisations from random starting values method. BiZn 2 VO 6 adopts a new structure type, based on the following building blocks: corner- and edge-sharing ZnO 4 tetrahedra, ZnO 6 octahedra and VO 4 tetrahedra, and Bi 2 O 12 dimers. It is the only known member of the BiM 2 AO 6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family which does not appear to be structurally closely related to others. The electronic structure of BiZn 2 VO 6 , calculated by DFT methods, shows that it is an indirect gap semiconductor with a calculated band gap of 1.6 eV, which compares favourably to the experimentally measured value of 2.4 eV. - Graphical abstract: The crystal structure of BiZn 2 VO 6 , a new structure type in the BiM 2 AO 6 (M=Mg, Ca, Cd, Cu, Pb, Mn, Zn; A=V, P, As) family. - Highlights: • Structure solution from PXRD data by repeated minimisations from random starting values. • New structure type in the BiM 2 AO 6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family. • Electronic structure calculation

  3. Pseudosymmetric fac-di-aqua-trichlorido[(di-methyl-phosphor-yl)methanaminium-κO]manganese(II).

    Science.gov (United States)

    Reiss, Guido J

    2013-05-01

    In the title compound, [Mn(C3H11NOP)Cl3(H2O)2], the Mn(II) metal center has a distorted o-cta-hedral geometry, coordinated by the three chloride ligands showing a facial arrangement. Two water mol-ecules and the O-coordinated dpmaH cation [dpmaH = (di-methyl-phosphor-yl)methanaminium] complete the coordination sphere. Each complex mol-ecule is connected to its neighbours by O-H⋯Cl and N-H⋯Cl hydrogen bonds. Two of the chloride ligands and the two water ligands form a hydrogen-bonded polymeric sheet in the ab plane. Furthermore, these planes are connected to adjacent planes by hydrogen bonds from the aminium function of cationic dpmaH ligand. A pseudo-mirror plane perpendicular to the b axis in the chiral space group P21 is observed together with inversion twinning [ratio = 0.864 (5):0.136 (5)].

  4. (μ-3-Acetyl-5-carboxyl­ato-4-methyl­pyrazolido-1:2κ4 N 2,O 3:N 1,O 5)-μ-chlorido-tetra­pyridine-1κ2 N,2κ2 N-chlorido-1κCl-dicopper(II) propan-2-ol solvate

    Science.gov (United States)

    Malinkin, Sergey; Penkova, Larisa; Pavlenko, Vadim A.; Haukka, Matti; Fritsky, Igor O.

    2009-01-01

    The title compound, [Cu2(C7H6N2O3)Cl2(C5H5N)4]·C3H8O, is a binuclear pyrazolate complex, in which the two CuII atoms have different coordination numbers and are connected by a bridging Cl atom. One CuII atom has a distorted square-pyramidal coordination environment formed by two pyridine N atoms, one bridging Cl atom and an N,O-chelating pyrazolate ligand. The other CuII atom adopts an octa­hedral geometry defined by two pyridine N atoms at the axial positions, two Cl atoms and the coordinated pyrazolate ligand in the equatorial plane. An O—H⋯O hydrogen bond connects the complex mol­ecules and propan-2-ol solvent mol­ecules into pairs. These pairs form columns along the a axis. PMID:21577764

  5. Free-standing nanomechanical and nanophotonic structures in single-crystal diamond

    Science.gov (United States)

    Burek, Michael John

    Realizing complex three-dimensional structures in a range of material systems is critical to a variety of emerging nanotechnologies. This is particularly true of nanomechanical and nanophotonic systems, both relying on free-standing small-scale components. In the case of nanomechanics, necessary mechanical degrees of freedom require physically isolated structures, such as suspended beams, cantilevers, and membranes. For nanophotonics, elements like waveguides and photonic crystal cavities rely on light confinement provided by total internal reflection or distributed Bragg reflection, both of which require refractive index contrast between the device and surrounding medium (often air). Such suspended nanostructures are typically fabricated in a heterolayer structure, comprising of device (top) and sacrificial (middle) layers supported by a substrate (bottom), using standard surface nanomachining techniques. A selective, isotropic etch is then used to remove the sacrificial layer, resulting in free-standing devices. While high-quality, crystalline, thin film heterolayer structures are readily available for silicon (as silicon-on-insulator (SOI)) or III-V semiconductors (i.e. GaAs/AlGaAs), there remains an extensive list of materials with attractive electro-optic, piezoelectric, quantum optical, and other properties for which high quality single-crystal thin film heterolayer structures are not available. These include complex metal oxides like lithium niobate (LiNbO3), silicon-based compounds such as silicon carbide (SiC), III-V nitrides including gallium nitride (GaN), and inert single-crystals such as diamond. Diamond is especially attractive for a variety of nanoscale technologies due to its exceptional physical and chemical properties, including high mechanical hardness, stiffness, and thermal conductivity. Optically, it is transparent over a wide wavelength range (from 220 nm to the far infrared), has a high refractive index (n ~ 2.4), and is host to a vast

  6. NavMol 3.0: enabling the representation of metabolic reactions by blind users.

    Science.gov (United States)

    Binev, Yuri; Peixoto, Daniela; Pereira, Florbela; Rodrigues, Ian; Cavaco, Sofia; Lobo, Ana M; Aires-de-Sousa, João

    2018-01-01

    The representation of metabolic reactions strongly relies on visualization, which is a major barrier for blind users. The NavMol software renders the communication and interpretation of molecular structures and reactions accessible by integrating chemoinformatics and assistive technology. NavMol 3.0 provides a molecular editor for metabolic reactions. The user can start with templates of reactions and build from such cores. Atom-to-atom mapping enables changes in the reactants to be reflected in the products (and vice-versa) and the reaction centres to be automatically identified. Blind users can easily interact with the software using the keyboard and text-to-speech technology. NavMol 3.0 is free and open source under the GNU general public license (GPLv3), and can be downloaded at http://sourceforge.net/projects/navmol as a JAR file. joao@airesdesousa.com. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  7. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    Science.gov (United States)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  8. Effect of γ-radiation on crystallization of polycaprolactone

    International Nuclear Information System (INIS)

    Zhu Guangming; Xu, Qianyong; Qin Ruifeng; Yan Hongxia; Liang Guozheng

    2005-01-01

    The crystallization behavior of radiation cross-linked poly(ε-caprolactone) (PCL) was studied by DSC at different cooling rates. The crystallization process was analyzed by the Ozawa equation and the Mo-Zhishen method that is developed from combining the Avrami equation and the Ozawa equation. It was concluded that the crystallization of radiation crosslinked PCL is governed by heterogeneous nucleation and single-dimension growth; the crystal fraction and rates of crystallization are related to the radiation dose and degree of cross-linking; the relationship between relative crystallinity and time follows the Ozawa equation: The higher the degree of crosslinking, the less the crystal velocity constant. The activation energy of crystallization for irradiated PCL is between 65 and 54kJ/mol

  9. Rate constants and mechanisms for the crystallization of Al nano-goethite under environmentally relevant conditions

    Science.gov (United States)

    Bazilevskaya, Ekaterina; Archibald, Douglas D.; Martínez, Carmen Enid

    2012-07-01

    Mobile inorganic and organic nanocolloidal particles originate-from and interact-with bulk solid phases in soil and sediment environments, and as such, they contribute to the dynamic properties of environmental systems. In particular, ferrihydrite and (nano)goethite are the most abundant of nanocolloidal Fe oxy(hydr)oxides in these environments. We therefore investigated the ferrihydrite to goethite phase transformation using experimental reaction conditions that mimicked environmental conditions where the formation of nanocolloidal Fe oxy(hydr)oxides may occur: slow titration of dilute solutions to pH 5 at 25 °C with and without 2 mol% Al. Subsequently, the rate constants from 54-d nano-goethite aging/crystallization experiments at 50 °C were determined using aliquots pulled for vibrational spectroscopy (including multivariate curve resolution, MCR, analyses of infrared spectra) and synchrotron-based X-ray diffraction (XRD). We also present a mechanistic model that accounts for the nano-goethite crystallization observed by the aforementioned techniques, and particle structural characteristics observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In contrast to the common assumption that metastable ferrihydrite precipitates first, before it transforms to goethite, the presence of characteristic infrared bands in freshly synthesized nanoparticle suspensions indicate goethite can precipitate directly from solution under environmentally relevant conditions: low Fe concentration, ambient temperature, and pH maintained at 5. However, the presence of 2 mol% Al prevented direct goethite precipitation. Rate constants obtained by fitting the contributions from the MCR-derived goethite-like component to the OH-stretching region were (7.4 ± 1.1) × 10-7 s-1 for 0% Al and (4.2 ± 0.4) × 10-7 s-1 for 2 mol% Al suspensions. Rate constants derived from intensities of OH-bending infrared vibrations (795 and 895 cm-1) showed similar values

  10. Effect of crystal structure on optical properties of sol–gel derived zirconia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaodong, E-mail: xiaodong_wang@tongji.edu.cn [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China); Wu, Guangming; Zhou, Bin [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China); Shen, Jun, E-mail: shenjun67@tongji.edu.cn [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China)

    2013-04-15

    Highlights: ► ZrO{sub 2} films were deposited by sol–gel method. ► Crystal structures of the films were tuned by different thermal annealing methods. ► The refractive indices vary with the crystal structures of the films. ► Lattice-mismatch was found to reduce the refractive index of ZrO{sub 2} films. -- Abstract: The optical properties of sol–gel derived zirconia thin films and their relation to the crystal structure are studied in this paper. ZrO{sub 2} films were deposited on quartz glass and silicon wafer substrates by sol–gel method with conventional furnace annealing (CFA) and rapid thermal annealing (RTA). Crystal structures of the films were analyzed by X-ray diffraction (XRD) and Raman spectroscopy, while refractive indices of the films were determined from the reflectance and transmittance spectra. The refractive indices vary with the function of crystal structure and density of the films, which depends on annealing temperature and annealing technique. Lattice-mismatch between monoclinic phase and tetragonal phase was found to reduce the refractive index of ZrO{sub 2} films.

  11. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure

    International Nuclear Information System (INIS)

    Zhang, Y.W.; Li, S.J.; Obbard, E.G.; Wang, H.; Wang, S.C.; Hao, Y.L.; Yang, R.

    2011-01-01

    Research highlights: → The single crystals of Ti2448 alloy with the bcc crystal structure were prepared. → The elastic moduli and constants were measured by several resonant methods. → The crystal shows significant elastic asymmetry in tension and compression. → The crystal exhibits weak nonlinear elasticity with large elastic strain ∼2.5%. → The crystal has weak atomic interactions against crystal distortion to low symmetry. - Abstract: Single crystals of Ti2448 alloy (Ti-24Nb-4Zr-8Sn in wt.%) were grown successfully using an optical floating-zone furnace. Several kinds of resonant methods gave consistent Young's moduli of 27.1, 56.3 and 88.1 GPa and shear moduli of 34.8, 11.0 and 14.6 GPa for the , and oriented single crystals, and C 11 , C 12 and C 44 of 57.2, 36.1 and 35.9 GPa respectively. Uniaxial testing revealed asymmetrical elastic behaviors of the crystals: tension caused elastic softening with a large reversible strain of ∼4% and a stress plateau of ∼250 MPa, whereas compression resulted in gradual elastic stiffening with much smaller reversible strain. The crystals exhibited weak nonlinear elasticity with a large elastic strain of ∼2.5% and a high strength, approaching ∼20% and ∼30% of its ideal shear and ideal tensile strength respectively. The crystals showed linear elasticity with a small elastic strain of ∼1%. These elastic deformation characteristics have been interpreted in terms of weakened atomic interactions against crystal distortion to low crystal symmetry under external applied stresses. These results are consistent with the properties of polycrystalline Ti2448, including high strength, low elastic modulus, large recoverable strain and weak strengthening effect due to grain refinement.

  12. Band structures in Sierpinski triangle fractal porous phononic crystals

    International Nuclear Information System (INIS)

    Wang, Kai; Liu, Ying; Liang, Tianshu

    2016-01-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  13. Band structures in Sierpinski triangle fractal porous phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Liu, Ying, E-mail: yliu5@bjtu.edu.cn; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  14. Synthesis and Crystal Structure of 1-Chloro-2-methyl-4-nitrobenzene

    Directory of Open Access Journals (Sweden)

    Jim Simpson

    2012-03-01

    Full Text Available The title compound (3 was prepared from 4-chloroaniline in good yield on successive oxidation and methylation and its crystal and molecular structure is reported. The compound crystallizes in the monoclinic space group P 21/n with unit cell dimensions a = 13.5698(8, b = 3.7195 (3, c = 13.5967 (8 Å, ß = 91.703(3 °, V = 685.96 (10 Å3. The molecule is essentially planar with a dihedral angle of 6.2(3 ° between the nitro group and the phenyl ring. The crystal structure is stabilised by π...π contacts between adjacent benzene rings together with C–H...O hydrogen bonds and close Cl...O contacts.

  15. Structure of single-chain single crystals of isotactic polystyrene and their radiation resistance

    International Nuclear Information System (INIS)

    Bu Haishan; Cao Jie; Xu Shengyong; Zhang Ze

    1997-01-01

    The structure of the single-chain single crystals of isotactic polystyrene (i-PS) was investigated by electron diffraction (ED) and high resolution electron microscopy (HREM). The nano-scale single-chain single crystals were found to be very stable to electron irradiation. According to the unit cell of i-PS crystals, the reflection rings in ED pattern and the lattice fringes in HREM images could be indexed, but the lower-index diffractions were not found. It is proposed that the single-chain single crystals are very small, thus secondary electrons may be allowed to escape and radiation damage is highly reduced, and that there are less lower-index lattice planes in the single-chain single crystals to provide sufficient diffraction intensity for recording. HREM images can be achieved at room temperature in the case of single-chain single crystals because of its stability to electron irradiation, therefore, this might be a novel experimental approach to the study of crystal structure of macromolecules

  16. Crystal Structure of Tetragonal Form of La2NiO4+x

    Science.gov (United States)

    Kajitani, Tsuyoshi; Hosoya, Syoichi; Hirabayashi, Makoto; Fukuda, Tsuguo; Onozuka, Takashi

    1989-10-01

    The crystal structure of the title oxide was studied by means of the X-ray and neutron single crystal diffraction measurements. At room temperature, the tetragonal crystal structure is P42/ncm-type (No. 138), which is one of the subgroup of the space group I4/mmm. The lattice parameters of a sample annealed and slowly cooled in oxygen atmosphere from 673 K are a{=}b{=}5.4640(1) Å and c{=}12.6719(2) Å, while the oxygen content, x{=}0.10(4), was determined from obtained neutron data. The title oxide undergoes a tetragonal (P42/ncm)/tetragonal (I4/mmm) phase transition at about 560 K. The transition temperature is almost identical both in the annealed and as-grown crystals.

  17. eMolTox: prediction of molecular toxicity with confidence.

    Science.gov (United States)

    Ji, Changge; Svensson, Fredrik; Zoufir, Azedine; Bender, Andreas

    2018-03-07

    In this work we present eMolTox, a web server for the prediction of potential toxicity associated with a given molecule. 174 toxicology-related in vitro/vivo experimental datasets were used for model construction and Mondrian conformal prediction was used to estimate the confidence of the resulting predictions. Toxic substructure analysis is also implemented in eMolTox. eMolTox predicts and displays a wealth of information of potential molecular toxicities for safety analysis in drug development. The eMolTox Server is freely available for use on the web at http://xundrug.cn/moltox. chicago.ji@gmail.com or ab454@cam.ac.uk. Supplementary data are available at Bioinformatics online.

  18. High-brightness tapered laser diodes with photonic crystal structures

    Science.gov (United States)

    Li, Yi; Du, Weichuan; Kun, Zhou; Gao, Songxin; Ma, Yi; Tang, Chun

    2018-02-01

    Beam quality of tapered laser diodes is limited by higher order lateral mode. On purpose of optimizing the brightness of tapered laser diodes, we developed a novel design of tapered diodes. This devices based on InGaAs/AlGaAs asymmetry epitaxial structure, containing higher order lateral mode filtering schemes especially photonic crystal structures, which fabricated cost effectively by using standard photolithography and dry etch processes. Meanwhile, the effects of photonic crystal structures on mode control are also investigated theoretically by FDBPM (Finite-Difference Beam Propagation Method) calculation. We achieved a CW optical output power of 6.9W at 940nm for a single emitter with 4 mm cavity length. A nearly diffraction limited beam of M2 ≍1.9 @ 0.5W has been demonstrated, and a highest brightness of β =75MW/(cm2 ·sr) was reached.

  19. Solving crystal structures from neutron diffraction data

    International Nuclear Information System (INIS)

    Wilson, C.C.

    1987-07-01

    In order to pursue crystal structure determination using neutron diffraction data, and given the wide experience available of solving structures using X-ray data, the codes used in X-ray structural analysis should be adapted to the different requirements of a neutron experiment. Modifications have been made to a direct methods program MITHRIL and to a Patterson methods program PATMET to incorporate into these the features of neutron rather than X-ray diffraction. While to date these modifications have been fairly straightforward and many sophistications remain to be exploited, results obtained from the neutron versions of both programs are promising. (author)

  20. CRYSTAL AND MOLECULAR STRUCTURE OF 5-NITROPIRIDINE PIPERIDINE-SULFENAMIDE

    OpenAIRE

    Brito, Iván; León, Yasna; Arias, Mauricio; Vargas, Danitza; Carmona, Francisco; Ramírez, Eduardo; Restovic, Ambrosio; Cárdenas, Alejandro; Wittke, Oscar; López-Rodríguez, Matías

    2002-01-01

    The crystal and molecular structure of 5-nitropiridine piperidine-sulfenamide, C10H13N3O2 S is described and compared with other sulfenamides and with other similar compounds. This structure belongs to a type of divalent sulphur compound and crystallizes in the orthorhombic space group Pnma with a= 27.810(4), b=6.797(1), c=6.110(1)Å, and Dx =1.376 g cm-3 with Z=4. The S-N bond distance of 1.699(4) Å is shorter than a single S-N bond [1.74 Å]. The NO2-(C6H3N)-S-N(C 5H10) molecule lies on a cry...

  1. Protein crystal growth on board Shenzhou 3: a concerted effort improves crystal diffraction quality and facilitates structure determination

    International Nuclear Information System (INIS)

    Han, Y.; Cang, H.-X.; Zhou, J.-X.; Wang, Y.-P.; Bi, R.-C.; Colelesage, J.; Delbaere, L.T.J.; Nahoum, V.; Shi, R.; Zhou, M.; Zhu, D.-W.; Lin, S.-X.

    2004-01-01

    The crystallization of 16 proteins was carried out using 60 wells on board Shenzhou 3 in 2002. Although the mission was only 7 days, careful and concerted planning at all stages made it possible to obtain crystals of improved quality compared to their ground controls for some of the proteins. Significantly improved resolutions were obtained from diffracted crystals of 4 proteins. A complete data set from a space crystal of the PEP carboxykinase yielded significantly higher resolution (1.46 A vs. 1.87 A), I/sigma (22.4 vs. 15.5), and a lower average temperature factor (29.2 A 2 vs. 42.9 A 2 ) than the best ground-based control crystal. The 3-D structure of the enzyme is well improved with significant ligand density. It has been postulated that the reduced convection and absence of macromolecule sedimentation under microgravity have advantages/benefits for protein crystal growth. Improvements in experimental design for protein crystal growth in microgravity are ongoing

  2. Parallelization for X-ray crystal structural analysis program

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Tokyo (Japan); Minami, Masayuki; Yamamoto, Akiji

    1997-10-01

    In this report we study vectorization and parallelization for X-ray crystal structural analysis program. The target machine is NEC SX-4 which is a distributed/shared memory type vector parallel supercomputer. X-ray crystal structural analysis is surveyed, and a new multi-dimensional discrete Fourier transform method is proposed. The new method is designed to have a very long vector length, so that it enables to obtain the 12.0 times higher performance result that the original code. Besides the above-mentioned vectorization, the parallelization by micro-task functions on SX-4 reaches 13.7 times acceleration in the part of multi-dimensional discrete Fourier transform with 14 CPUs, and 3.0 times acceleration in the whole program. Totally 35.9 times acceleration to the original 1CPU scalar version is achieved with vectorization and parallelization on SX-4. (author)

  3. Re-investigation of the crystal structure of enstatite under high-pressure conditions

    DEFF Research Database (Denmark)

    Periotto, Benedetta; Balic Zunic, Tonci; Nestola, Fabrizio

    2012-01-01

    A synthetic single crystal of pure orthoenstatite (MgSiO3, space group Pbca) has been investigated at high pressure for structural determinations by in situ single-crystal X‑ray diffraction using a diamond-anvil cell. Ten complete intensity data collections were performed up to 9.36 GPa. This study...... with different compositions. The structural evolution determined in this work confirms the high-pressure evolution found previously for other orthopyroxenes and removes some ambiguities originating from the less accurate published data on the MgSiO3 structure at high pressure. The structural compression...

  4. Magnetic structure of URhSi single crystal

    Czech Academy of Sciences Publication Activity Database

    Prokeš, K.; Andreev, Alexander V.; Honda, F.; Sechovský, V.

    2003-01-01

    Roč. 261, - (2003), s. 131-138 ISSN 0304-8853 R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914 Keywords : URhSi single crystal * magnetization * neutron diffraction * magnetic structure determination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.910, year: 2003

  5. Band structures of two dimensional solid/air hierarchical phononic crystals

    International Nuclear Information System (INIS)

    Xu, Y.L.; Tian, X.G.; Chen, C.Q.

    2012-01-01

    The hierarchical phononic crystals to be considered show a two-order “hierarchical” feature, which consists of square array arranged macroscopic periodic unit cells with each unit cell itself including four sub-units. Propagation of acoustic wave in such two dimensional solid/air phononic crystals is investigated by the finite element method (FEM) with the Bloch theory. Their band structure, wave filtering property, and the physical mechanism responsible for the broadened band gap are explored. The corresponding ordinary phononic crystal without hierarchical feature is used for comparison. Obtained results show that the solid/air hierarchical phononic crystals possess tunable outstanding band gap features, which are favorable for applications such as sound insulation and vibration attenuation.

  6. Band structures of two dimensional solid/air hierarchical phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.L.; Tian, X.G. [State Key Laboratory for Mechanical Structure Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, C.Q., E-mail: chencq@tsinghua.edu.cn [Department of Engineering Mechanics, AML and CNMM, Tsinghua University, Beijing 100084 (China)

    2012-06-15

    The hierarchical phononic crystals to be considered show a two-order 'hierarchical' feature, which consists of square array arranged macroscopic periodic unit cells with each unit cell itself including four sub-units. Propagation of acoustic wave in such two dimensional solid/air phononic crystals is investigated by the finite element method (FEM) with the Bloch theory. Their band structure, wave filtering property, and the physical mechanism responsible for the broadened band gap are explored. The corresponding ordinary phononic crystal without hierarchical feature is used for comparison. Obtained results show that the solid/air hierarchical phononic crystals possess tunable outstanding band gap features, which are favorable for applications such as sound insulation and vibration attenuation.

  7. Crystallization and preliminary X-ray structural studies of adeno-associated virus serotype 6

    International Nuclear Information System (INIS)

    Xie, Qing; Ongley, Heather M.; Hare, Joan; Chapman, Michael S.

    2008-01-01

    Adeno-associated virus type 6, a human DNA virus that is being developed as a vector for gene therapy, has been crystallized in a form suitable for structure determination at about 3.2 Å resolution. Adeno-associated viruses are being developed as vectors for gene therapy and have been used in a number of clinical trials. Vectors to date have been based on the type species AAV-2, the structure of which was published in 2002. There is growing interest in modulating the cellular tropism and immune neutralization of AAV-2 with variants inspired by the properties of other serotypes. Towards the determination of a structure for AAV type 6, this paper reports the high-yield production, purification, crystallization and preliminary diffraction studies of infectious AAV-6 virions. The crystals diffracted to 3.2 Å resolution using synchrotron radiation. The most promising crystal form belonged to space group R3 and appeared to be suitable for initial structure determination

  8. Crystal Structure of Cocosin, A Potential Food Allergen from Coconut (Cocos nucifera).

    Science.gov (United States)

    Jin, Tengchuan; Wang, Cheng; Zhang, Caiying; Wang, Yang; Chen, Yu-Wei; Guo, Feng; Howard, Andrew; Cao, Min-Jie; Fu, Tong-Jen; McHugh, Tara H; Zhang, Yuzhu

    2017-08-30

    Coconut (Cocos nucifera) is an important palm tree. Coconut fruit is widely consumed. The most abundant storage protein in coconut fruit is cocosin (a likely food allergen), which belongs to the 11S globulin family. Cocosin was crystallized near a century ago, but its structure remains unknown. By optimizing crystallization conditions and cryoprotectant solutions, we were able to obtain cocosin crystals that diffracted to 1.85 Å. The cocosin gene was cloned from genomic DNA isolated from dry coconut tissue. The protein sequence deduced from the predicted cocosin coding sequence was used to guide model building and structure refinement. The structure of cocosin was determined for the first time, and it revealed a typical 11S globulin feature of a double layer doughnut-shaped hexamer.

  9. Low-Temperature Crystal Structures of the Hard Core Square Shoulder Model

    Directory of Open Access Journals (Sweden)

    Alexander Gabriëlse

    2017-11-01

    Full Text Available In many cases, the stability of complex structures in colloidal systems is enhanced by a competition between different length scales. Inspired by recent experiments on nanoparticles coated with polymers, we use Monte Carlo simulations to explore the types of crystal structures that can form in a simple hard-core square shoulder model that explicitly incorporates two favored distances between the particles. To this end, we combine Monte Carlo-based crystal structure finding algorithms with free energies obtained using a mean-field cell theory approach, and draw phase diagrams for two different values of the square shoulder width as a function of the density and temperature. Moreover, we map out the zero-temperature phase diagram for a broad range of shoulder widths. Our results show the stability of a rich variety of crystal phases, such as body-centered orthogonal (BCO lattices not previously considered for the square shoulder model.

  10. Chimie des interactions moléculaires

    OpenAIRE

    Lehn, Jean-Marie

    2010-01-01

    Le cours de l’année 2008-2009 a porté sur « Autoorganisation et dynamique moléculaires ». Des cours ont été donnés à l’Université de Strasbourg (3 h), à l’Université Charles de Prague (3 h) et à la City University de Hong Kong (3 h). Cours au Collège de France : Autoorganisation et dynamique moléculaires Introduction Le cours a porté sur l’évolution de la chimie supramoléculaire vers la chimie dynamique constitutionnelle (CDC) et la chimie adaptative. Du fait de la labilité des interactions n...

  11. X-ray crystal structure and small-angle X-ray scattering of sheep liver sorbitol dehydrogenase

    DEFF Research Database (Denmark)

    Yennawar, Hemant; Møller, Magda; Gillilan, Richard

    2011-01-01

    The X-ray crystal structure of sheep liver sorbitol dehydrogenase (slSDH) has been determined using the crystal structure of human sorbitol dehydrogenase (hSDH) as a molecular-replacement model. slSDH crystallized in space group I222 with one monomer in the asymmetric unit. A conserved tetramer...

  12. Laser stimulated third harmonic generation studies in ZnO-Ta2O5-B2O3 glass ceramics entrenched with Zn3Ta2O8 crystal phases

    Science.gov (United States)

    Siva Sesha Reddy, A.; Jedryka, J.; Ozga, K.; Ravi Kumar, V.; Purnachand, N.; Kityk, I. V.; Veeraiah, N.

    2018-02-01

    In this study zinc borate glasses doped with different concentrations Ta2O5 were synthesized and were crystallized by heat treatment for prolonged times. The samples were characterized by XRD, SEM, IR and Raman spectroscopy techniques. The SEM images of the crystallized samples have indicated that the samples contain randomly distributed crystal grains with size ∼1 μm entrenched in the residual amorphous phase. XRD studies have exhibited diffraction peaks identified as being due to the reflections from (1 1 1) planes of monoclinic Zn3Ta2O8 crystal phase that contains intertwined tetrahedral zinc and octahedral tantalate structural units. The concentration of such crystal phases in the bulk samples is observed to increase with increase of Ta2O5 up to 3.0 mol%. The IR and Raman spectroscopy studies have confirmed the presence of ZnO4 and TaO6 structural units in the glass network in addition to the conventional borate structural units. For measuring third harmonic generation (THG) in the samples, the samples were irradiated with 532 nm laser beam and the intensity of THG of probing beam (Nd:YAG λ = 1064 nm 20 ns pulsed laser (ω)) is measured as a function of fundamental beam power varying up to 200 J/m2. The intensity of THG is found to be increasing with increase of fundamental beam power and found to be the maximal for the glass crystallized with 3.0 mol% of Ta2O5. The intensity of THG of the ceramicized samples is found to be nearly 5 times higher with respect to that of pre-crystallized samples. The generation of 3ω is attributed to the perturbation/interaction between Zn3Ta2O8 anisotropic crystal grains and the incident probing beam.

  13. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams

    Science.gov (United States)

    Chen, Feng

    2009-10-01

    A range of ion beam techniques have been used to fabricate a variety of photonic guiding structures in the well-known lithium niobate (LiNbO3 or LN) crystals that are of great importance in integrated photonics/optics. This paper reviews the up-to-date research progress of ion-beam-processed LiNbO3 photonic structures and reports on their fabrication, characterization, and applications. Ion beams are being used with this material in a wide range of techniques, as exemplified by the following examples. Ion beam milling/etching can remove the selected surface regions of LiNbO3 crystals via the sputtering effects. Ion implantation and swift ion irradiation can form optical waveguide structures by modifying the surface refractive indices of the LiNbO3 wafers. Crystal ion slicing has been used to obtain bulk-quality LiNbO3 single-crystalline thin films or membranes by exfoliating the implanted layer from the original substrate. Focused ion beams can either generate small structures of micron or submicron dimensions, to realize photonic bandgap crystals in LiNbO3, or directly write surface waveguides or other guiding devices in the crystal. Ion beam-enhanced etching has been extensively applied for micro- or nanostructuring of LiNbO3 surfaces. Methods developed to fabricate a range of photonic guiding structures in LiNbO3 are introduced. Modifications of LiNbO3 through the use of various energetic ion beams, including changes in refractive index and properties related to the photonic guiding structures as well as to the materials (i.e., electro-optic, nonlinear optic, luminescent, and photorefractive features), are overviewed in detail. The application of these LiNbO3 photonic guiding structures in both micro- and nanophotonics are briefly summarized.

  14. Coefficient of crystal lattice matching as a parameter of substrate - crystal structure compatibility in silumins

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2009-07-01

    Full Text Available Adding high-melting point elements (Mo, Nb, Ni, Ti, W to complex silumins results in hardening of the latter ones, owing to the formation of new intermetallic phases of the AlxMey type, with refinement of dendrites in α solution and crystals in β phase. The hardening is also due to the effect of various inoculants. An addition of the inoculant is expected to form substrates, the crystal lattice of which, or some (privileged lattice planes and interatomic spaces should bear a strong resemblance to the crystal nucleus. To verify this statement, using binary phase equilibria systems, the coefficient of crystal lattice matching, being one of the measures of the crystallographic similarity, was calculated. A compatibility of this parameter (up to 20% may decide about the structure compatibility between the substrate and crystal which, in turn, is responsible for the effectiveness of alloy modification. Investigations have proved that, given the temperature range of their formation, the density, the lattice type, and the lattice parameter, some intermetallic phases of the AlxMey type can act as substrates for the crystallisation of aluminium and silicon, and some of the silumin hardening phases.

  15. Synthesis, characterization and crystal structure of a ...

    African Journals Online (AJOL)

    The Mo atom in the complex is in octahedral coordination. Thermal stability of the complex has also been studied. KEY WORDS: Molybdenum complex, Hydrazone ligand, Crystal structure, X-ray diffraction, Thermal property. Bull. Chem. Soc. Ethiop. 2014, 28(3), 409-414. DOI: http://dx.doi.org/10.4314/bcse.v28i3.10 ...

  16. Crystal structure of ethyl 2,4-dichloroquinoline-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Alberto Cabrera

    2015-12-01

    Full Text Available In the crystal structure of the title compound, C12H9Cl2NO2, the mean planes through the quinoline and carboxylate groups have r.m.s. deviations of 0.006 and 0.021 Å, respectively, and form a dihedral angle of 87.06 (19°. In the crystal, molecules are linked via very weak C—H...O hydrogen bonds, forming chains, which propagate along the c-axis direction.

  17. The crystal structure of bøgvadite (Na2SrBa2Al4F20)

    DEFF Research Database (Denmark)

    Balic Zunic, Tonci

    2014-01-01

    The crystal structure of bøgvadite, Na2SrBa2Al4F20, has been solved and refined to a R1 factor of 4.4% from single-crystal data (MoKα X-ray diffraction, CCD area detector) on a sample from the cryolite deposit at Ivittuut, SW Greenland. Bøgvadite is monoclinic, P21/n space group, with unit cell...... parameters a= 7.134(1), b= 19.996(3) and c= 5.3440(8) Å, β = 90.02(1)o. A close proximity of the crystal structure to an orthorhombic symmetry and the presence of the two twin components in a nearly 1:1 ratio suggest that the investigated bøgvadite crystal has originally formed as a high......-temperature orthorhombic polymorph which on cooling transformed to the stable low temperature monoclinic structure. The bøgvadite crystal structure has groupings of cation-fluoride coordination polyhedra similar to those found in the crystal structures of the genetically closely associated minerals jarlite...

  18. Synthesis, Crystal Structure, and DFT Calculations of 1,3-Diisobutyl Thiourea

    Directory of Open Access Journals (Sweden)

    Ataf A. Altaf

    2015-01-01

    Full Text Available 1,3-Diisobutyl thiourea was synthesized and characterized by single crystal X-ray diffraction. It gives a monoclinic (α = γ = 90 and β  ≠ 90 structure with the space group P21/c. The unit cell dimensions are a = 11.5131 (4 Å, b = 9.2355 (3 Å, c = 11.3093 (5 Å, α = 90°, β = 99.569° (2, γ = 90°, V = 1185.78 (8 Å3, and Z = 4. The crystal packing is stabilized by intermolecular (N–H⋯S hydrogen bonding in the molecules. The optimized geometry and Mullikan's charges of the said molecule calculated with the help of DFT using B3LYP-6-311G model support the crystal structure.

  19. The crystal structures of three pyrazine-2,5-dicarboxamides: three-dimensional supramolecular structures

    Directory of Open Access Journals (Sweden)

    Dilovan S. Cati

    2017-05-01

    Full Text Available The complete molecules of the title compounds, N2,N5-bis(pyridin-2-ylmethylpyrazine-2,5-dicarboxamide, C18H16N6O2 (I, 3,6-dimethyl-N2,N5-bis(pyridin-2-ylmethylpyrazine-2,5-dicarboxamide, C20H20N6O2 (II, and N2,N5-bis(pyridin-4-ylmethylpyrazine-2,5-dicarboxamide, C18H16N6O2 (III, are generated by inversion symmetry, with the pyrazine rings being located about centres of inversion. Each molecule has an extended conformation with the pyridine rings inclined to the pyrazine ring by 89.17 (7° in (I, 75.83 (8° in (II and by 82.71 (6° in (III. In the crystal of (I, molecules are linked by N—H...N hydrogen bonds, forming layers lying parallel to the bc plane. The layers are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. In the crystal of (II, molecules are also linked by N—H...N hydrogen bonds, forming layers lying parallel to the (10-1 plane. As in (I, the layers are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. In the crystal of (III, molecules are again linked by N—H...N hydrogen bonds, but here form corrugated sheets lying parallel to the bc plane. Within the sheets, neighbouring pyridine rings are linked by offset π–π interactions [intercentroid distance = 3.739 (1 Å]. The sheets are linked by C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. Compound (I crystallizes in the monoclinic space group P21/c. Another monoclinic polymorph, space group C2/c, has been reported on by Cockriel et al. [Inorg. Chem. Commun. (2008, 11, 1–4]. The molecular structures of the two polymorphs are compared.

  20. Structural analysis of xSrO–(50 − x)CaO–50P_2O_5 glasses with x = 0, 5, or 10 mol% for potential use in a local delivery system for osteomyelitis treatment

    International Nuclear Information System (INIS)

    Comeau, P.A.; Filiaggi, M.J.

    2016-01-01

    The introduction of ions into a local delivery matrix is one method of managing degradation and subsequent release of the incorporated therapeutic agents. Of interest in this study was whether we could modify the structural nature of calcium polyphosphate (CPP) glass and the subsequent therapeutic potential of this local delivery matrix with inclusion of strontium (Sr). We found that adding 10 mol% Sr significantly increased the density and chain length of the glass. There was no significant impact of Sr doping on the subsequent loading of vancomycin into the matrix, or the matrix porosity. The noted differences in structural stability, ion release, and vancomycin release between the un-doped CPP matrices and 10 mol% Sr-doped CPP matrices in vitro are likely a result of a decrease in glass disorder upon Sr addition to the glass and preferential retention of Sr over Ca during matrix degradation. This study has provided further evidence that Sr incorporation may serve to both manipulate antibiotic release from the amorphous CPP matrix and provide a potential source of therapeutic ions for enhanced bone regeneration. - Highlights: • A strontium-doped CPP glass was fabricated with a novel calcine-melt protocol. • The density and chain length of CPP glass increased upon 10 mol% Sr addition to CPP. • The phosphorous ion released in vitro was not dependent on 10 mol% Sr addition. • Doping CPP with 10 mol% Sr improved matrix short-term structural stability in vitro.

  1. Crystal structure of natural phaeosphaeride A

    Directory of Open Access Journals (Sweden)

    Victoria V. Abzianidze

    2015-08-01

    Full Text Available The asymmetric unit of the title compound, C15H23NO5, contains two independent molecules. Phaeosphaeride A contains two primary sections, an alkyl chain consisting of five C atoms and a cyclic system consisting of fused five- and six-membered rings with attached substituents. In the crystal, the molecules form layered structures. Nearly planar sheets, parallel to the (001 plane, form bilayers of two-dimensional hydrogen-bonded networks with the hydroxy groups located on the interior of the bilayer sheets. The network is constructed primarily of four O—H...O hydrogen bonds, which form a zigzag pattern in the (001 plane. The butyl chains interdigitate with the butyl chains on adjacent sheets. The crystal was twinned by a twofold rotation about the c axis, with refined major–minor occupancy fractions of 0.718 (6:0.282 (6.

  2. Molecular complex of lumiflavin and 2-aminobenzoic acid: crystal structure, crystal spectra, and solution properties.

    Science.gov (United States)

    Shieh, H S; Ghisla, S; Hanson, L K; Ludwig, M L; Nordman, C E

    1981-08-04

    The molecular complex lumiflavin-2-aminobenzoic acid monohydrate (C13H12N4O2.C7H7NO2.H2O) crystallizes from from aqueous solution as red triclinic prisms. The space group is P1 with cell dimensions a = 9.660 A, b = 14.866 A, c = 7.045 A, alpha = 95.44 degrees , beta = 95.86 degrees, and gamma = 105.66 degrees . The crystal structure was solved by direct methods and refined by block-diagonal least-squares procedures to an R value of 0.050 on the basis of 1338 observed reflections. The structure is composed of stacks of alternating lumiflavin adn un-ionized (neutral) 2-aminobenzoic acid molecules. Two different modes of stacking interaction are observed. In one, 2-aminobenzoic acid overlaps all three of the isoalloxazine rings, at a mean distance of 3.36 A; in the other, 2-aminobenzoic acid interacts distance of 3.36 A; in the other, 2-aminobenzoic acid interacts with the pyrazine and dimethylbenzene moieties, at a distance of 3.42 A. Perpendicular to the stacking direction, the molecules form a continuous sheet. Each flavin is hydrogen bonded via O(2) and NH(3) to two symmetrically related aminobenzoates; the water of crystallization forms three hydrogen bonds, bridging two flavins, via O(4) and N(5), and one aminobenzoic acid. The red color of the crystals results from a charge-transfer transition involving stacked flavin and 2-aminobenzoic acid. The red color of the crystals results from a charge-transfer transition involving stacked flavin and 2-aminobenzoic acid molecules. Measurements of the polarized optical absorption spectra of crystals show that the transition moment direction for the long wavelength absorbance (beyond 530 nm) contains an out-of-plane component which can only arise from a charge-transfer interaction. Since the amino N does not make exceptionally close interactions with isoalloxazine atoms in either stacking mode (minimum interatomic distance 3.52 A), the charge transfer is presumed to involve pi orbitals of the 2-aminobenzoic acid donor.

  3. Spectrophotometric determination of boron by solvent extraction with hydrobenzoin and crystal violet

    International Nuclear Information System (INIS)

    Sato, Shigeya; Uchikawa, Sumio

    1982-01-01

    A highly sensitive and simple method for the spectrophotometric determination of boron was developed. Boron was found to react with hydrobenzoin in weak alkaline medium to form a complex anion extractable into benzene with crystal violet, and the measurement of the absorbance of crystal violet in the extract at 600 nm enabled the determination of boron indirectly. The recommended procedure is as follows: Take an aliquot of the boron solution (2.0 x 10 - 4 mol l - 1 ) into a 10-ml test tube. Add 1 ml of carbonate buffer solution (pH 9.4) and 0.25 ml of crystal violet solution (1.0 x 10 - 2 mol l - 1 ), and dilute the mixed solution to 4 ml with deionized water. Shake the solution with 4 ml of benzene solution containing hydrobenzoin (2.0 x 10 - 2 mol l - 1 ) for 2 min. Measure the absorbance of the organic phase at 600 nm using a 10-mm glass cell against benzene. The calibration curve obeyed Beer's law on the concentration range from 2.5 x 10 - 6 mol l - 1 to 2.5 x 10 - 5 mol l - 1 of boron, and the apparent molar absorptivity was 3.0 x 10 4 l mol - 1 cm - 1 at 20 0 C. It was found that many kinds of co-existing ions interfered with the determination. However, this method was applicable to the determination of boron in sea water when chloride ion and cations such as Ca(II) and Mg(II) were previously eliminated by treating the sample solution with Ag 2 O and cation exchanger resin. The proposed method is a very simple and rapid one, because this method does not require apparatus other than common laboratories and the evaporation to dryness of sample or removal of the excess of reagent. (author)

  4. On the crystal structure of Z-phase Cr(V,Nb)N

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson; Hald, John; Grumsen, Flemming Bjerg

    2006-01-01

    The Z-phase Cr(YNb)N particles in various 9 to 12 pct Cr creep-resistant steels were investigated with electron diffraction, energy dispersive spectroscopy (EDS), and electron energy loss spectroscopy(EELS). In addition to the well-known tetragonal crystal structure for Z phase, a cubic crystal s...

  5. One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties

    Science.gov (United States)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur

    2016-11-01

    Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.

  6. Probing Zeolite Crystal Architecture and Structural Imperfections using Differently Sized Fluorescent Organic Probe Molecules.

    Science.gov (United States)

    Hendriks, Frank C; Schmidt, Joel E; Rombouts, Jeroen A; Lammertsma, Koop; Bruijnincx, Pieter C A; Weckhuysen, Bert M

    2017-05-05

    A micro-spectroscopic method has been developed to probe the accessibility of zeolite crystals using a series of fluorescent 4-(4-diethylaminostyryl)-1-methylpyridinium iodide (DAMPI) probes of increasing molecular size. Staining large zeolite crystals with MFI (ZSM-5) topology and subsequent mapping of the resulting fluorescence using confocal fluorescence microscopy reveal differences in structural integrity: the 90° intergrowth sections of MFI crystals are prone to develop structural imperfections, which act as entrance routes for the probes into the zeolite crystal. Polarization-dependent measurements provide evidence for the probe molecule's alignment within the MFI zeolite pore system. The developed method was extended to BEA (Beta) crystals, showing that the previously observed hourglass pattern is a general feature of BEA crystals with this morphology. Furthermore, the probes can accurately identify at which crystal faces of BEA straight or sinusoidal pores open to the surface. The results show this method can spatially resolve the architecture-dependent internal pore structure of microporous materials, which is difficult to assess using other characterization techniques such as X-ray diffraction. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Band structure and optical properties of opal photonic crystals

    Science.gov (United States)

    Pavarini, E.; Andreani, L. C.; Soci, C.; Galli, M.; Marabelli, F.; Comoretto, D.

    2005-07-01

    A theoretical approach for the interpretation of reflectance spectra of opal photonic crystals with fcc structure and (111) surface orientation is presented. It is based on the calculation of photonic bands and density of states corresponding to a specified angle of incidence in air. The results yield a clear distinction between diffraction in the direction of light propagation by (111) family planes (leading to the formation of a stop band) and diffraction in other directions by higher-order planes (corresponding to the excitation of photonic modes in the crystal). Reflectance measurements on artificial opals made of self-assembled polystyrene spheres are analyzed according to the theoretical scheme and give evidence of diffraction by higher-order crystalline planes in the photonic structure.

  8. Crystals structure of Na3Li(TiF6)2

    International Nuclear Information System (INIS)

    Popov, D.Yu.; Antokhina, T.F.; Gerasimenko, A.V.; Kajdalova, T.A.; Sergienko, V.I.

    2004-01-01

    Crystals of Na 3 Li(TiF 6 ) 2 (1) were synthesized in aqueous solution and characterized by the elementary and X-ray phase analysis methods. According to X-ray diffraction analysis data compound 1 is crystallized in a tetragonal crystal system with the following parameters: a=5.130(1), c=18.046(4) A, Z=2, space group P4-bar2 1 c. Alternating layers on the basis of dimers made up by octahedrons of TiF 6 and Na(1)F 6 constitute the frame of compound 1 crystal structure. The dimer layers are joined in a continuous frame by Na(2) and Li cations. Coordination polyhedron of Li atom is tetrahedron (Li-F 1.898(3) A) [ru

  9. CCDC 963856: Experimental Crystal Structure Determination : catena-[bis(mu2-2-methylimidazole)-zinc

    KAUST Repository

    Shekhah, Osama; Swaidan, Raja; Belmabkhout, Youssef; du Plessis, Marike; Jacobs, Tia; Barbour, Leonard J.; Pinnau, Ingo; Eddaoudi, Mohamed

    2014-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  10. CCDC 1477679: Experimental Crystal Structure Determination : (1,3-dimesitylimidazolidin-2-ylidene)-trimethyl-indium

    KAUST Repository

    Wu, Melissa M.; Gill, Arran M.; Yunpeng, Lu; Yongxin, Li; Ganguly, Rakesh; Falivene, Laura; Garcí a, Felipe

    2017-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  11. CCDC 1477678: Experimental Crystal Structure Determination : (1,3-dimesitylimidazolidin-2-ylidene)-trimethyl-gallium

    KAUST Repository

    Wu, Melissa M.; Gill, Arran M.; Yunpeng, Lu; Yongxin, Li; Ganguly, Rakesh; Falivene, Laura; Garcí a, Felipe

    2017-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  12. CCDC 1059905: Experimental Crystal Structure Determination : 7,13-dimesitylindeno[1,2-b]thioxanthene

    KAUST Repository

    Shi, Xueliang; Kueh, Weixiang; Zheng, Bin; Huang, Kuo-Wei; Chi, Chunyan

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  13. CCDC 844302: Experimental Crystal Structure Determination : N-1-Naphthyl-P,P-diphenylphosphinoselenoic amide

    KAUST Repository

    Al-Masri, H.T.; Emwas, Abdul-Hamid M.; Al-Talla, Zeyad; Al Kordi, Mohamed

    2012-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  14. CCDC 1010350: Experimental Crystal Structure Determination : dichloro-(methylenebis(di-t-butylphosphine))-palladium(ii)

    KAUST Repository

    Roesle, Philipp; Caporaso, Lucia; Schnitte, Manuel; Goldbach, Verena; Cavallo, Luigi; Mecking, Stefan

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  15. CCDC 721713: Experimental Crystal Structure Determination : Dichloro-(ethyl phenylalaninate)-tris(pyridine)-ruthenium(ii)

    KAUST Repository

    Reiner, Thomas; Jantke, Dominik; Miao, Xiao-He; Marziale, Alexander N.; Kiefer, Florian J.; Eppinger, Jö rg

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  16. CCDC 713130: Experimental Crystal Structure Determination : bis(2,5-Dihydrobenzylammonium) hexachloro-osmium(iv)

    KAUST Repository

    Reiner, T.

    2011-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  17. CCDC 1420581: Experimental Crystal Structure Determination : catena-[(mu-4,4'-sulfonyldibenzoato)-calcium ethylene

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  18. CCDC 1420582: Experimental Crystal Structure Determination : catena-[(mu-4,4'-sulfonyldibenzoato)-calcium ethane

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  19. CCDC 1420580: Experimental Crystal Structure Determination : catena-[(mu-4,4'-sulfonyldibenzoato)-calcium acetylene

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  20. CCDC 1048729: Experimental Crystal Structure Determination : bis(2-(hydroxyimino)-3-phenylpropanoato)-tin(ii)

    KAUST Repository

    Khanderi, Jayaprakash

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  1. Effect of antimony incorporation on structural properties of CuInS2 crystals

    International Nuclear Information System (INIS)

    Ben Rabeh, M.; Chaglabou, N.; Kanzari, M.

    2010-01-01

    CuInS 2 (CIS) single crystals doped with 1, 2, 3 and 4 atomic percent (at.%) of antimony (Sb) were grown by the horizontal Bridgman method. The effect of Sb doping on the structural properties of CIS crystal was studied by means of X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and PL measurements. X-ray diffraction data suggests that the doping of Sb in the CIS single crystals does not affect the tetragonal (chalcopyrite) crystal structure and exhibited a (1 1 2) preferred orientation. In addition, with increasing Sb concentration, the X-ray diffraction analysis show that Sb doped CIS crystals are more crystallized and the diffraction peaks of the CuInS 2 phase were more pronounced in particular the (1 1 2) plane. EDAX study revealed that Sb atoms can occupy the indium site and/or occupying the sulfur site to make an acceptor. PL spectra of undoped and Sb doped CIS crystals show two emission peaks at 1.52 and 1.62 eV, respectively which decreased with increasing atomic percent antimony. Sb doped CIS crystals show p-type conductivity.

  2. Optical properties of Mg2+, Yb3+, and Ho3+ tri-doped LiNbO3 crystals

    Science.gov (United States)

    Dai, Li; Liu, Chun-Rui; Tan, Chao; Yan, Zhe-Hua; Xu, Yu-Heng

    2017-04-01

    A series of LiNbO3 crystals tri-doped with Mg{}2+, Yb{}3+, and Ho{}3+ are grown by the conventional Czochraski technique. The concentrations of Mg{}2+, Yb{}3+, and Ho{}3+ ions in Mg:Yb:Ho:LiNbO3 crystals are measured by using an inductively coupled plasma atomic emission spectrometry. The x-ray diffraction is proposed to determine the lattice constant and analyze the internal structure of the crystal. The light-induced scattering of Mg:Yb:Ho:LiNbO3 crystal is quantitatively described via the threshold effect of incident exposure energy flux. The exposure energy ({E}{{r}}) is calculated to discuss the optical damage resistance ability. The exposure energy of Mg(7 mol):Yb:Ho:LiNbO3 crystal is 709.17 J/cm2, approximately 425 times higher than that of the Mg(1 mol):Yb:Ho:LiNbO3 crystal in magnitude. The blue, red, and very intense green bands of Mg:Yb:Ho:LiNbO3 crystal are observed under the 980-nm laser excitation to evaluate the up-conversion emission properties. The dependence of the emission intensity on pumping power indicates that the up-conversion emission is a two-photon process. The up-conversion emission mechanism is discussed in detail. This study indicates that Mg:Yb:Ho:LiNbO3 crystal can be applied to the fabrication of new multifunctional photoluminescence devices. Project supported by the National Natural Science Foundation of China (Grant No. 51301055), the Youth Science Fund of Heilongjiang Province, China (Grant No. QC2015061), the Special Funds of Harbin Innovation Talents in Science and Technology Research, China (Grant No. 2015RQQXJ045 ), and the Science Funds for the Young Innovative Talents of Harbin University of Science and Technology, China (Grant No. 201501).

  3. Crystal structures of two eukaryotic nucleases involved in RNA metabolism

    DEFF Research Database (Denmark)

    Jonstrup, Anette Thyssen; Midtgaard, Søren Fuglsang; Van, Lan Bich

    RNA serves a number of functions in the cell: mRNAs are the carriers of information between gene and protein, tRNAs and rRNAs are involved in the synthesis of proteins, whereas a number of additional RNA species are responsible for other functions in the cell. The quality of the different RNAs...... RNAs. We have solved the structures of two nucleases involved in 3'-5' degradation of RNA; the S. pombe Pop2p and the S. cerevisiae Rrp6p. Pop2p is part of the main cytoplasmatic deadenylation complex in yeast, which also contains the nuclease Ccr4p. Deadenylation, where the poly(A)-tail is removed...... specific transcripts. Here, we present the crystal structure of the S. pombe Pop2p protein to 1.4 Å resolution. The high resolution structure provides a clear picture of the active site architecture. Structural alignment of single nucleotides and poly(A)-oligonucleotides from earlier co-crystal structures...

  4. Development of a standard reference material containing 22 chlorinated hydrocarbon gases at 1 μmol/mol in nitrogen.

    Science.gov (United States)

    Li, Ning; Du, Jian; Yang, Jing; Fan, Qiang; Tian, Wen

    2017-11-01

    A gas standard mixture containing 22 chlorinated hydrocarbons in high purity nitrogen was prepared using a two-step weighing method and a gasifying apparatus developed in-house. The concentration of each component was determined using a gas chromatograph with flame ionization detection (GC/FID). Linear regression analysis of every component was performed using the gas standard mixture with concentrations ranging from 1 to 10 μmol/mol, showing the complete gasification of volatile organic compound (VOCs) species in a selected cylinder. Repeatability was also examined to ensure the reliability of the preparation method. In addition, no significant difference was observed between domestic treated and imported treated cylinders, which were conducive to reduction of the cost of raw materials. Moreover, the results of stability testing at different pressures and long-term stability tests indicated that the gas standard at 1 μmol/mol level with relative expanded uncertainties of 5% was stable above 2 MPa for a minimum of 12 months. Finally, a quantity comparison was conducted between the gas standard and a commercial gas standard from Scott Specialty Gases (now Air Liquide America Specialty Gases). The excellent agreement of every species suggested the favorable accuracy of our gas standard. Therefore, this reference material can be applied to routine observation of VOCs and for other purposes.

  5. Crystal structure, vibrational and DFT simulation studies of melaminium dihydrogen phosphite monohydrate

    Science.gov (United States)

    Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.

    2013-08-01

    The crystal structure investigations of melamine with phosphorous acid, namely melaminium dihydrogenphosphite monohydrate (C3N6H7·H2PO3·H2O) have been investigated by means of single crystal X-ray diffraction method. The title compound crystallizes in monoclinic crystal system, and the space group is P21/c with a = 10.069 Å, b = 21.592 Å, c = 12.409 Å and Z = 12. The vibrational assignments and analysis of melaminium dihydrogen phosphite monohydrate have also been performed by FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical simulations were performed with DFT (B3LYP) method using 6-31G**, cc-pVTZ, and 6-311++G** basis sets to determine the energy, structural, thermodynamic parameters and vibrational frequencies of melaminium dihydrogen phosphite monohydrate. The hydrogen atom from phosphorous acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H···O and Nsbnd H···O hydrogen bonds shows notable vibrational effects.

  6. Comparison of NMR and crystal structures for the proteins TM1112 and TM1367

    International Nuclear Information System (INIS)

    Mohanty, Biswaranjan; Serrano, Pedro; Pedrini, Bill; Jaudzems, Kristaps; Geralt, Michael; Horst, Reto; Herrmann, Torsten; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    NMR structures of the proteins TM1112 and TM1367 solved by the JCSG in solution at 298 K could be superimposed with the corresponding crystal structures at 100 K with r.m.s.d. values of <1.0 Å for the backbone heavy atoms. For both proteins the structural differences between multiple molecules in the asymmetric unit of the crystals correlated with structural variations within the bundles of conformers used to represent the NMR solution structures. A recently introduced JCSG NMR structure-determination protocol, which makes use of the software package UNIO for extensive automation, was further evaluated by comparison of the TM1112 structure obtained using these automated methods with another NMR structure that was independently solved in another PSI center, where a largely interactive approach was applied. The NMR structures of the TM1112 and TM1367 proteins from Thermotoga maritima in solution at 298 K were determined following a new protocol which uses the software package UNIO for extensive automation. The results obtained with this novel procedure were evaluated by comparison with the crystal structures solved by the JCSG at 100 K to 1.83 and 1.90 Å resolution, respectively. In addition, the TM1112 solution structure was compared with an NMR structure solved by the NESG using a conventional largely interactive methodology. For both proteins, the newly determined NMR structure could be superimposed with the crystal structure with r.m.s.d. values of <1.0 Å for the backbone heavy atoms, which provided a starting platform to investigate local structure variations, which may arise from either the methods used or from the different chemical environments in solution and in the crystal. Thereby, these comparative studies were further explored with the use of reference NMR and crystal structures, which were computed using the NMR software with input of upper-limit distance constraints derived from the molecular models that represent the results of structure

  7. On improvement of scintillation characteristics of Gd2SiO5:Ce crystals by thermal treatment

    International Nuclear Information System (INIS)

    Bondar, Valery G.; Grinyov, Boris V.; Katrunov, Konstantin A.; Lisetski, Longin N.; Nagornaya, Lyudmila L.; Ryzhikov, Vladimir D.; Spasov, Vladimir G.; Starzhinskiy, Nikolai; Tamulaitis, Gintautas

    2005-01-01

    Effects of thermal treatment of Gd 2 SiO 5 :Ce crystals at T∼0.7T m under low pressure on their optical and scintillation properties were studied. It is shown that thermal treatment in the atmosphere with the chemical potential of ∼40 J mol -1 decreases the absorption in the UV region and substantially improves the crystal transparency in the region of intrinsic emission peaked at 427 nm.Narrowing of the emission band due to suppression of the long-wave component in the range of 520-560 nm, light output increase by 7-10%, decrease of the emission decay time, and improvement of thermal stability of the luminescence yield were also observed. Transformations of the ensemble of structural defects in cerium-activated gadolinium oxyorthosilicate crystals are under discussion

  8. Crystal structures of two thiacalix[4]arene derivatives anchoring four ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The crystal structures of two thiacalixarene derivatives anchoring thiadiazole functional groups at lower rim, C60H72O4S12N8 (1), C64H80O4S12N8 (2), have been determined by single crystal X-ray diffraction. The thiacalix[4]arene framework in both 1 and 2 adopts the 1,3-alternate conformation. Com- pound 1 ...

  9. Crystal chemistry of nephelines from ijolites and nepheline-rich pegmatites: influence of composition and genesis on the crystal structure investigated by X-ray diffraction

    DEFF Research Database (Denmark)

    Vulić, Predrag; Balić-Žunić, Tonči; Belmonte, Louise Josefine

    2011-01-01

    Ten nepheline single crystals from five different localities representing rocks from nepheline-syenite pegmatites to urtite, ijolite and cancrinite-ijolite were investigated chemically and structurally. The chemical compositions were determined by electron microprobe, whereas the crystal structur...

  10. Tris(O-cyclo­hexyl dithio­carbonato-κS)anti­mony(III)

    Science.gov (United States)

    Li, Wenkuan; Yin, Handong; Wen, Liyuan; Wang, Daqi

    2009-01-01

    In the mol­ecule of the title compound, [Sb(C7H11OS2)3], the anti­mony(III) is coordinated by the S atoms of three O-alkyl xanthate groups acting as monodentate ligands, forming a distorted trigonal-pyramidal coordination. PMID:21581504

  11. Bis(N-ethyl-N-methyl?dithio?carbamato-?2 S,S?)diphenyl?tin(IV)

    OpenAIRE

    Muthalib, Amirah Faizah; Baba, Ibrahim; Ng, Seik Weng

    2010-01-01

    The dithio?carbamate anions in the title compound, [Sn(C6H5)2(C4H8NS2)2], chelate to the SnIV atom, which is six-coordinated in a skew-trapezoidal-bipyramidal geometry. The mol?ecule lies across a twofold rotation axis.

  12. Bis(N-isopropyl-N-methyl-dithio-carbamato-κS,S')diphenyl-tin(IV).

    Science.gov (United States)

    Muthalib, Amirah Faizah; Baba, Ibrahim; Farina, Yang; Ng, Seik Weng

    2010-03-03

    The dithio-carbamate anions in the title compound, [Sn(C(6)H(5))(2)(C(5)H(10)NS(2))(2)], chelate to the Sn(IV) atom, which is six-coordinated in a skew-trapezoidal-bipyramidal geometry. The mol-ecule lies across a twofold rotation axis.

  13. Bis(N-isopropyl-N-methyl?dithio?carbamato-?2 S,S?)diphenyl?tin(IV)

    OpenAIRE

    Muthalib, Amirah Faizah; Baba, Ibrahim; Farina, Yang; Ng, Seik Weng

    2010-01-01

    The dithio?carbamate anions in the title compound, [Sn(C6H5)2(C5H10NS2)2], chelate to the SnIV atom, which is six-coordinated in a skew-trapezoidal-bipyramidal geometry. The mol?ecule lies across a twofold rotation axis.

  14. Bis(N-ethyl-N-methyl-dithio-carbamato-κS,S')diphenyl-tin(IV).

    Science.gov (United States)

    Muthalib, Amirah Faizah; Baba, Ibrahim; Ng, Seik Weng

    2010-03-03

    The dithio-carbamate anions in the title compound, [Sn(C(6)H(5))(2)(C(4)H(8)NS(2))(2)], chelate to the Sn(IV) atom, which is six-coordinated in a skew-trapezoidal-bipyramidal geometry. The mol-ecule lies across a twofold rotation axis.

  15. Crystal Structure of Rat Carnitine Palmitoyltransferase II (CPT-II)

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao,Y.; Jogl, G.; Esser, V.; Tong, L.

    2006-01-01

    Carnitine palmitoyltransferase II (CPT-II) has a crucial role in the {beta}-oxidation of long-chain fatty acids in mitochondria. We report here the crystal structure of rat CPT-II at 1.9 Angstroms resolution. The overall structure shares strong similarity to those of short- and medium-chain carnitine acyltransferases, although detailed structural differences in the active site region have a significant impact on the substrate selectivity of CPT-II. Three aliphatic chains, possibly from a detergent that is used for the crystallization, were found in the structure. Two of them are located in the carnitine and CoA binding sites, respectively. The third aliphatic chain may mimic the long-chain acyl group in the substrate of CPT-II. The binding site for this aliphatic chain does not exist in the short- and medium-chain carnitine acyltransferases, due to conformational differences among the enzymes. A unique insert in CPT-II is positioned on the surface of the enzyme, with a highly hydrophobic surface. It is likely that this surface patch mediates the association of CPT-II with the inner membrane of the mitochondria.

  16. X-ray absorption spectroscopy investigation of structurally modified lithium niobate crystals

    International Nuclear Information System (INIS)

    Vitova, Tonya

    2008-02-01

    The type and concentration of impurity centers in different valence states are crucial for tuning the photorefractive properties of doped Lithium Niobate (LN) crystals. X-ray Absorption Spectroscopy (XAS) is an appropriate tool for studying the local structure of impurity centers. XAS combined with absorption in UV/VIS/IR and High Resolution X-ray Emission Spectroscopy (HRXES) provide information about the valence state of the dopant ions in as-grown, reduced or oxidized doped LN crystals. Cu (Cu 1+ and Cu 2+ ) and Fe (Fe 2+ and Fe 3+ ) atoms are found in two different valence states, whereas there are indications for a third Mn valency, in addition to Mn 2+ and Mn 3+ in manganese-doped LN crystals. One of the charge compensation mechanisms during reduction of copper- doped LN crystals is outgassing of oxygen atoms. Cu ions in the reduced crystals have at least two different site symmetries: twofold (Cu 1+ ) and sixfold (Cu 2+ ) coordinated by O atoms. Fe and Mn atoms are coordinated by six O atoms. Cu and Fe ions are found to occupy only Li sites, whereas Mn ions are also incorporated into Li and Nb sites. The refractive index change in LN crystals irradiated with 3 He 2+ ions is caused by structurally disordered centers, where Nb atoms are displaced from normal crystallographic sites and Li or/and O vacancies are present. (orig.)

  17. Shear effects on crystallization behaviors and structure transitions of isotactic poly-1-butene

    DEFF Research Database (Denmark)

    Li, Jingqing; Guan, Peipei; Zhang, Yao

    2014-01-01

    Different melt pre-shear conditions were applied to isotactic poly-1-butene (iP-1-B) and the effect on the crystallization behaviors and the crystalline structure transitions of iP-1-B were investigated. The polarized optical microscope observations during isothermal crystallization process...... revealed that the applied melt pre-shear within the experimental range could enhance the nucleation of crystal II and accelerate the diameter growth of the formed spherulites. If the applied melt pre-shear rate was large enough, Shish-Kebabs structure could be formed. After the isothermal crystallization...... was formed in the melt pre-sheared iP-1-B samples. Further investigations were applied with synchrotron radiation instruments. Wide angle X-ray scattering (WAXS) and small angle X-ray scattering (SAXS) after the crystal transition showed that the applied melt pre-shear could result in orientated fine...

  18. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.; Campbell, Elizabeth A.

    2017-07-13

    The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the αCTD may play a role in Mtb transcription regulation. Our results reveal the structure of an Actinobacteria-unique insert of the RNAP β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σA, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.

  19. NATO Advanced Study Institute on Electronic Structure of Polymers and Molecular Crystals

    CERN Document Server

    Ladik, János

    1975-01-01

    The NATO Advanced Study Institute on "Electronic Structure of Polymers and Molecular Crystals" was held at the Facultes Universi­ taires de Namur (F.U.N.) from September 1st till September 14th, 1974. We wish to express our appreciation to the NATO Scientific Affairs Division whose generous support made this Institute possible and to the Facultes Universitaires de Namur and the Societe Chimique de Belgique which provided fellowships and travel grants to a number of students. This volume contains the main lectures about the basic principles of the field and about different recent developments of the theory of the electronic structure of polymers and molecular crystals. The school started with the presentation of the basic SCF-LCAO theory of the electronic structure of periodic polymers and molecular crystals (contributions by Ladik, Andre & Delhalle) showing how a combination of quantum chemical and solid state physical methods can provide band structures for these systems. The numerical aspects of these ...

  20. High-throughput crystal-optimization strategies in the South Paris Yeast Structural Genomics Project: one size fits all?

    Science.gov (United States)

    Leulliot, Nicolas; Trésaugues, Lionel; Bremang, Michael; Sorel, Isabelle; Ulryck, Nathalie; Graille, Marc; Aboulfath, Ilham; Poupon, Anne; Liger, Dominique; Quevillon-Cheruel, Sophie; Janin, Joël; van Tilbeurgh, Herman

    2005-06-01

    Crystallization has long been regarded as one of the major bottlenecks in high-throughput structural determination by X-ray crystallography. Structural genomics projects have addressed this issue by using robots to set up automated crystal screens using nanodrop technology. This has moved the bottleneck from obtaining the first crystal hit to obtaining diffraction-quality crystals, as crystal optimization is a notoriously slow process that is difficult to automatize. This article describes the high-throughput optimization strategies used in the Yeast Structural Genomics project, with selected successful examples.

  1. The crystal structure of human GDP-L-fucose synthase.

    Science.gov (United States)

    Zhou, Huan; Sun, Lihua; Li, Jian; Xu, Chunyan; Yu, Feng; Liu, Yahui; Ji, Chaoneng; He, Jianhua

    2013-09-01

    Human GDP-l-fucose synthase, also known as FX protein, synthesizes GDP-l-fucose from its substrate GDP-4-keto-6-deoxy-d-mannose. The reaction involves epimerization at both C-3 and C-5 followed by an NADPH-dependent reduction of the carbonyl at C-4. In this paper, the first crystal structure of human FX protein was determined at 2.37 Å resolution. The asymmetric unit of the crystal structure contains four molecules which form two homodimers. Each molecule consists of two domains, a Rossmann-fold NADPH-binding motif and a carboxyl terminal domain. Compared with the Escherichia coli GDP-l-fucose synthase, the overall structures of these two enzymes have four major differences. There are four loops in the structure of human FX protein corresponding to two α-helices and two β-sheets in that of the E. coli enzyme. Besides, there are seven different amino acid residues binding with NAPDH comparing human FX protein with that from E. coli. The structure of human FX reveals the key catalytic residues and could be useful for the design of drugs for the treatment of inflammation, auto-immune diseases, and possibly certain types of cancer.

  2. Synthesis, crystal structure and electronic structure of the binary phase Rh{sub 2}Cd{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Koley, Biplab [Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Chatterjee, S. [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Jana, Partha P., E-mail: ppj@chem.iitkgp.ernet.in [Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2017-02-15

    A new phase in the Rh-Cd binary system - Rh{sub 2}Cd{sub 5} has been identified and characterized by single crystal X-ray diffraction and Energy dispersive X-ray analysis. The stoichiometric compound Rh{sub 2}Cd{sub 5} crystallizes with a unit cell containing 14 atoms, in the orthorhombic space group Pbam (55). The crystal structure of Rh{sub 2}Cd{sub 5} can be described as a defect form of the In{sub 3}Pd{sub 5} structure with ordered vacancies, formed of two 2D atomic layers with the stacking sequence: ABAB. The A type layers consist of (3.6.3.6)-Kagomé nets of Cd atoms while the B type layers consist of (3{sup 5}) (3{sup 7})- nets of both Cd and Rh atoms. The stability of this line phase is investigated by first principle electronic structure calculations on the model of ordered Rh{sub 2}Cd{sub 5}. - Graphical abstract: (3.6.3.6)-Kagomé nets of cadmium atoms (top) and (3{sup 5}) (3{sup 7})- nets of both cadmium and rhodium atoms (bottom) in the structure of Rh{sub 2}Cd{sub 5}.

  3. Crystal structure of di-( N-methylmorpholine betaine)- L(+)-tartrate

    Science.gov (United States)

    Dega-Szafran, Z.; Dutkiewicz, G.; Kosturkiewicz, Z.; Szafran, M.

    2002-11-01

    The crystal structure of di-( N-methylmorpholine betaine)- L(+)-tartrate has been determined by X-ray diffraction method. Crystals are orthorhombic, space group P2 12 12 1, a=9.580(1), b=12.208(1), c=18.677(1) Å, Z=4, R=0.037. The molecule of L(+)-tartaric acid appears in the extended form with the hydroxyl groups as well as carboxyl groups in anti positions. The molecule is involved in a number of the intra- and intermolecular hydrogen bonds. The COOH groups of the tartaric acid link two non-equivalent N-methylmorpholine betaine molecules by a short, intermolecular O-H⋯O bonds of the lengths 2.456(1) and 2.510(1) Å. The OH groups form two different bifurcated hydrogen bonds, the intramolecular with the CO oxygen atoms (2.641(2) and 2.638(2) Å) and the intermolecular (2.919(2) and 3.084(2) Å) with neighbouring tartaric acid molecules, and link complexes in the zigzag ribbon parallel to the x-axis. The morpholine rings of both betaine molecules are in chair conformation with methyl groups in an axial position and CH 2COO - substituents in an equatorial one. In the crystals and the PM3-optimized structures there is no symmetry, both in the tartrate and N-methylmorpholine betaine moieties. FTIR spectrum confirms the complex structure of the investigated molecule.

  4. Pseudosymmetric fac-di­aqua­trichlorido[(di­methyl­phosphor­yl)methanaminium-κO]manganese(II)

    Science.gov (United States)

    Reiss, Guido J.

    2013-01-01

    In the title compound, [Mn(C3H11NOP)Cl3(H2O)2], the MnII metal center has a distorted o­cta­hedral geometry, coordinated by the three chloride ligands showing a facial arrangement. Two water mol­ecules and the O-coordinated dpmaH cation [dpmaH = (di­methyl­phosphor­yl)methanaminium] complete the coordination sphere. Each complex mol­ecule is connected to its neighbours by O—H⋯Cl and N—H⋯Cl hydrogen bonds. Two of the chloride ligands and the two water ligands form a hydrogen-bonded polymeric sheet in the ab plane. Furthermore, these planes are connected to adjacent planes by hydrogen bonds from the aminium function of cationic dpmaH ligand. A pseudo-mirror plane perpendicular to the b axis in the chiral space group P21 is observed together with inversion twinning [ratio = 0.864 (5):0.136 (5)]. PMID:23723764

  5. Tunable alumina 2D photonic-crystal structures via biomineralization of peacock tail feathers

    Science.gov (United States)

    Jiang, Yonggang; Wang, Rui; Feng, Lin; Li, Jian; An, Zhonglie; Zhang, Deyuan

    2018-04-01

    Peacock tail feathers with subtle periodic nanostructures exhibit diverse striking brilliancy, which can be applied as natural templates to fabricate artificial photonic crystals (PhCs) via a biomineralization method. Alumina photonic-crystal structures are successfully synthesized via an immersion and two-step calcination process. The lattice constants of the artificial PhCs are greatly reduced compared to their natural matrices. The lattice constants are tunable by modifying the final annealing conditions in the biomineralization process. The reflection spectra of the alumina photonic-crystal structures are measured, which is related to their material and structural parameters. This work suggests a facile fabrication process to construct alumina PhCs with a high-temperature resistance.

  6. Twinning structures in near-stoichiometric lithium niobate single crystals

    International Nuclear Information System (INIS)

    Yao, Shuhua; Chen, Yanfeng

    2010-01-01

    A near-stoichiometric lithium niobate single crystal has been grown by the Czochralski method in a hanging double crucible with a continuous powder supply system. Twins were found at one of the three characteristic growth ridges of the as-grown crystal. The twin structure was observed and analyzed by transmission synchrotron topography. The image shifts ΔX and ΔY in the transmission synchrotron topograph were calculated for the 3 anti 2 anti 12 and 0 anti 222 reflections based on results from high-resolution X-ray diffractometry. It is confirmed that one of the {01 anti 1 anti 2} m planes is the composition face of the twin and matrix crystals. The formation mechanism of these twins is discussed. (orig.)

  7. The Effect of Ultrasound on the Crystallisation of Paracetamol in the Presence of Structurally Similar Impurities

    Directory of Open Access Journals (Sweden)

    Thai T. H. Nguyen

    2017-09-01

    Full Text Available Sono-crystallisation has been used to enhance crystalline product quality particularly in terms of purity, particle size and size distribution. In this work, the effect of impurities and ultrasound on crystallisation processes (nucleation temperature, yield and crystal properties (crystal size distribution determined by Focused Beam Reflectance Measurement (FBRM, crystal habit, filtration rate and impurity content in the crystal product by Liquid Chromatography-Mass Spectroscopy (LC-MS were investigated in bulk suspension crystallisation experiments with and without the use of ultrasound. The results demonstrate that ultrasonic intervention has a significant effect on both crystallisation and product crystal properties. It increases the nucleation rate resulting in smaller particles and a narrower Particle Size Distribution (PSD, the yield has been shown to be increase as has the product purity. The effect of ultrasound is to reduce the level acetanilide impurity incorporated during growth from a 2 mol% solution of the selected impurity from 0.85 mol% to 0.35 mol% and likewise ultrasound reduces the uptake of metacetamol from 1.88 mol% to 1.52 mol%.

  8. Crystal structure and spin state of mixed-crystals of iron with zinc and cobalt for the assembled complexes bridged by 1,3-bis(4-pyridyl)propanes

    Energy Technology Data Exchange (ETDEWEB)

    Dote, Haruka [Hiroshima University, Graduate School of Science (Japan); Nakashima, Satoru, E-mail: snaka@hiroshima-u.ac.jp [Hiroshima University, Natural Science Center for Basic Research and Development (Japan)

    2012-03-15

    Mixed crystals of cobalt and zinc were synthesized using 1,3-bis(4-pyridyl)propane (bpp) as bridging ligand and NCS{sup - } as anion. Red crystals and blue crystals were obtained. Powder X-ray diffraction patterns showed that the former is in 2D interpenetrated structure, while the latter has the same structure with Zn(NCS){sub 2}(bpp). Iron ion was introduced both into the red crystals and blue crystals of the mixed crystals of cobalt with zinc. {sup 57}Fe Moessbauer spectrum of the red crystals showed a main doublet of Fe{sup II} high-spin state at 78 K, while the spectrum of blue crystals did not show Fe{sup II} high-spin state at 78 K.

  9. Crystal structure and spin state of mixed-crystals of iron with zinc and cobalt for the assembled complexes bridged by 1,3-bis(4-pyridyl)propanes

    International Nuclear Information System (INIS)

    Dote, Haruka; Nakashima, Satoru

    2012-01-01

    Mixed crystals of cobalt and zinc were synthesized using 1,3–bis(4–pyridyl)propane (bpp) as bridging ligand and NCS  −  as anion. Red crystals and blue crystals were obtained. Powder X-ray diffraction patterns showed that the former is in 2D interpenetrated structure, while the latter has the same structure with Zn(NCS) 2 (bpp). Iron ion was introduced both into the red crystals and blue crystals of the mixed crystals of cobalt with zinc. 57 Fe Mössbauer spectrum of the red crystals showed a main doublet of Fe II high-spin state at 78 K, while the spectrum of blue crystals did not show Fe II high-spin state at 78 K.

  10. Photonic crystals, light manipulation, and imaging in complex nematic structures

    Science.gov (United States)

    Ravnik, Miha; Å timulak, Mitja; Mur, Urban; Čančula, Miha; Čopar, Simon; Žumer, Slobodan

    2016-03-01

    Three selected approaches for manipulation of light by complex nematic colloidal and non-colloidal structures are presented using different own custom developed theoretical and modelling approaches. Photonic crystals bands of distorted cholesteric liquid crystal helix and of nematic colloidal opals are presented, also revealing distinct photonic modes and density of states. Light propagation along half-integer nematic disclinations is shown with changes in the light polarization of various winding numbers. As third, simulated light transmission polarization micrographs of nematic torons are shown, offering a new insight into the complex structure characterization. Finally, this work is a contribution towards using complex soft matter in optics and photonics for advanced light manipulation.

  11. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    Directory of Open Access Journals (Sweden)

    Vasily F. Shabanov

    2013-08-01

    Full Text Available Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface.

  12. The crystal structure of tris(thenoyltrifluoroacetonato)bis(triphenylphosphine oxide)neodymium(III)

    International Nuclear Information System (INIS)

    Leipoldt, J.G.; Bok, L.D.C.; Laubscher, A.E.; Basson, S.S.

    1975-01-01

    The crystal structure of tris(thenoyltrifluoroacetonato)bis= x (triphenylphosphine oxide)neodymium(III), (Nd(TTa) 3 .2TPPO), has been determined by single crystal X-ray diffraction. A total number of 5505 independent reflections was used for the structure determination. The complex crystallized in the triclinic space group P 1 - with two molecules in the unit cell. The cell dimensions are a = 23.64 A, b Z= 12.15 A, C 11.19 A, α = 109.4 0 , β = 104.2 0 , γ = 90.8 0 . The final calculated R vale is 8.4%. The molecule is monomeric and the neodymium atom is coordinated to eight oxygen atoms (six from the three thenoyltrifluoroacetone groups and two from the two triphenylphosphine groups) which form a dodecahedron. The average neodymium-oxygen bond length is 2.44 A. (author)

  13. The effect of exchange-correlation on change and stability of crystal structure

    International Nuclear Information System (INIS)

    Yazdani, A.; Niazi, M.; Alimardan, V.

    2007-01-01

    Since exchange interaction energy has effect on band structure via polarization of spin of free electron, then can directly effects formation crystal structure. Therefore exchange-correlation is able to have an effect on determination of crystal structure or its change and stability. This energy is subject to fluctuation range of electrons between conduction band and valance band or density of electrons which due to increase the entropy of system, via Gibss Energy .We investigated these factors: 1) Size of ions 2) Density of States 3) Range of inter atomic and pair-potential.

  14. Crystal structure of the Al2CuIr phase

    International Nuclear Information System (INIS)

    Meshi, L.; Ezersky, V.; Kapush, D.; Grushko, B.

    2010-01-01

    A new ternary Al 2 CuIr phase was revealed in the Al-Cu-Ir system. It is formed below 1063 o C from the β-phase (CsCl-type structure) extending at elevated temperatures from AlIr. The crystal structure of the Al 2 CuIr phase was determined using a combination of precession electron diffraction and X-ray powder diffraction techniques. The phase has an orthorhombic C-centered unit cell with lattice parameters a = 8.1196(7) A, b = 5.0646(2) A and c = 5.18513(3) A; its crystal symmetry can be described by the Cmme (no. 67) space group (Pearson symbol oC16). The unit cell of the new phase contains 8 Al, 4 Cu and 4 Ir atoms and exhibits a new structure type. The reliability factors characterizing the Rietveld refinement procedure are: R p = 4.45%, R wp = 6.45%, R B = 3.69% and R f = 2.41%.

  15. On the crystal structure of colloidally prepared CsPbBr3 quantum dots.

    Science.gov (United States)

    Cottingham, Patrick; Brutchey, Richard L

    2016-04-18

    Colloidally synthesized quantum dots of CsPbBr3 are highly promising for light-emitting applications. Previous reports based on benchtop diffraction conflict as to the crystal structure of CsPbBr3 quantum dots. We present X-ray diffraction and PDF analysis of X-ray total scattering data that indicate that the crystal structure is unequivocally orthorhombic (Pnma).

  16. Synthesis and crystal structure of two lead (II) complexes with 1,10-phenanthroline ligand

    International Nuclear Information System (INIS)

    Olivera, Fiorella L.; Santillan, Guillermo A.

    2012-01-01

    Two coordination complexes have been synthesized by the reaction of lead nitrate (II) with 1,10-phenanthroline in methanol/water. The crystals of these complexes were obtained by using the diffusion method and structurally characterized by X-ray single crystal diffraction. Both complexes crystallized in the monoclinic space group P2 1 /c. The analysis by crystal X-ray diffraction reveals that in both complexes the coordination around the lead (II) ion is a distorted octahedral structure where the ion is bonded to the heterocyclic nitrogen atoms of chelating ligand 1,10-phenanthroline, three oxygen atoms of three nitrate groups and one oxygen from the water molecule. The difference between the complexes lies in the way of nitrate ion in presence of carboxylic acid aromatics. In addition, the crystal structure of complexes can be regarded as a 3D coordination polymer through Pb-O weak interactions, hydrogen bonds and π-π stacking interactions. (author).

  17. Crystal structure of new AsS2 compound

    International Nuclear Information System (INIS)

    Bolotina, N. B.; Brazhkin, V. V.; Dyuzheva, T. I.; Lityagina, L. M.; Kulikova, L. F.; Nikolaev, N. A.; Verin, I. A.

    2013-01-01

    AsS 2 single crystals have been obtained for the first time from an As 2 S 3 melt at pressures above 6 GPa and temperatures above 800 K in the As 2 S 3 → AsS + AsS 2 reaction. The monoclinic structure of the new high-pressure phase is solved by X-ray diffraction analysis and compared to the structure of high-pressure AsS phase, which was studied previously.

  18. Structure of the oxide film on Ti–6Ta alloy after immersion test in 8 mol/L boiling nitric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Dizi, E-mail: diziguo@126.com; Yang, Yingli; Wu, Jinping; Zhao, Bin; Zhao, Hengzhang; Su, Hangbiao; Lu, Yafeng

    2013-08-15

    Highlights: •Structure of the oxide film on Ti–6Ta alloy is studied by depth profile XPS. •TiO{sub 2} and Ta{sub 2}O{sub 5} are found in the top layer of the oxide film. •High valence oxide evolutes form Ti{sub 2}O{sub 3} and TaO. •Shielding effect of Ta{sub 2}O{sub 5} leads to the enhanced corrosion resistance of Ti–Ta alloy. -- Abstract: By using X-ray photoelectron spectroscopy (XPS), X-ray diffractometer (XRD) and scanning electron microscopy (SEM), we investigate the corrosion behavior and the structure of the oxide film of Ti–6Ta alloy that is subjected to the immersion corrosion test in 8 mol/L boiling nitric acid for 432 h. Based on the phase constitution indentified by depth profile XPS, the oxide film could be divided into three sub-layers along its thickness direction: the chemical stable TiO{sub 2} and Ta{sub 2}O{sub 5} are present in layer I; the sub-oxide Ti{sub 2}O{sub 3} and TaO are present in the layer II and layer III, and the high valence oxide evolutes from their sub-oxide gradually. Owing to the shielding effect of Ta{sub 2}O{sub 5}, the corrosion rate of the Ti–6Ta alloy decreases from 0.051 mm/y to 0.014 mm/y with increasing immersion time, showing an excellent corrosion resistance in 8 mol/L boiling nitric acid.

  19. Synthesis, crystal structure, thermal analysis and dielectric ...

    Indian Academy of Sciences (India)

    [13] Perry C H and Lowdes R P 1969 J. Chem. Phys. 51 3648. [14] Sheldrick G M 1997 SHELXS9, Program for the Refinement of Crystal Structures (Germany: University of Gottingen). [15] Loukil M, Kabadou A, Salles Ph and Ben Salah A 2004 Chem. Phys. 300 247. [16] Rolies M M and De Ranter C J 1978 Acta Crystallogr.

  20. Crystal growth and structure of KLnP/sub 4/O/sub 12/

    International Nuclear Information System (INIS)

    Guangyan, H.; Shuzhen, L.; Shuying, Y.; Mingyu, C.

    1985-01-01

    Potassium rare earth tetraphosphates KLnP/sub 4/O/sub 12/ are a kind of polyphosphates of rare earths with unique properties and structures. KNdP/sub 4/O/sub 12/ is a high-Nd-concentration laser material with a non-centrosymmetric space group P2, yielding linear and nonlinear optical properties. α-KErP/sub 4/O/sub 12/ might be used as a material for engineering device purpose. KTbP/sub 4/O/sub 12/ can emit strong green fluorescence, it might be a kind of a new crystal material for laser or luminescence. In order to search for new crystal materials and to study the correlations among the composition, structures and the properties of rare earth compounds, the crystal growth of KLnP/sub 4/O/sub 12/ and their structures are studied in this paper