WorldWideScience

Sample records for crystal structure features

  1. Unusual Features of Crystal Structures of Some Simple Copper Compounds

    Science.gov (United States)

    Douglas, Bodie

    2009-01-01

    Some simple copper compounds have unusual crystal structures. Cu[subscript 3]N is cubic with N atoms at centers of octahedra formed by 6 Cu atoms. Cu[subscript 2]O (cuprite) is also cubic; O atoms are in tetrahedra formed by 4 Cu atoms. These tetrahedra are linked by sharing vertices forming two independent networks without linkages between them.…

  2. Structural features of Ge(Ga) single crystals grown by the floating zone method in microgravity

    Science.gov (United States)

    Prokhorov, I. A.; Zakharov, B. G.; Senchenkov, A. S.; Egorov, A. V.; Camel, D.; Tison, P.

    2008-11-01

    Structural features of the Ge(Ga) single crystal grown by the floating zone (FZ) method in microgravity environment aboard the FOTON-9 spacecraft are investigated by methods of X-ray topography, double-crystal diffractometry, selective chemical etching and spreading resistance measurements. It is established that the crystal structure is characterized by the presence of an incompletely melted region and defects caused by its formation. Growth striations revealed in regrown part of the crystal, testify to development of non-stationary capillary Marangoni convection in melt at the realized parameters of FZ remelting under space conditions. Periodicity of the growth striations is compared to frequency characteristics of heat flux pulsations through the crystallization front, found as a result of numerical simulation of melt hydrodynamics.

  3. The crystal structure of phosphorylated MAPK13 reveals common structural features and differences in p38 MAPK family activation

    OpenAIRE

    Yurtsever, Zeynep; Scheaffer, Suzanne M.; Romero, Arthur G.; Holtzman, Michael J.; Brett, Tom J.

    2015-01-01

    The p38 MAP kinases are an important family of drug targets for a myriad of inflammatory, as well as other, diseases. Presented here is the crystal structure of the active form of MAPK13 (p38d) as well as a comprehensive analysis of all known apo inactive and active p38 MAPK structures, revealing a common mode of activation as well as some unique structural features.

  4. Topological features in crystal structures: a quotient graph assisted analysis of underlying nets and their embeddings.

    Science.gov (United States)

    Eon, Jean Guillaume

    2016-05-01

    Topological properties of crystal structures may be analysed at different levels, depending on the representation and the topology that has been assigned to the crystal. Considered here is the combinatorial or bond topology of the structure, which is independent of its realization in space. Periodic nets representing one-dimensional complexes, or the associated graphs, characterize the skeleton of chemical bonds within the crystal. Since periodic nets can be faithfully represented by their labelled quotient graphs, it may be inferred that their topological features can be recovered by a direct analysis of the labelled quotient graph. Evidence is given for ring analysis and structure decomposition into building units and building networks. An algebraic treatment is developed for ring analysis and thoroughly applied to a description of coesite. Building units can be finite or infinite, corresponding to 1-, 2- or even 3-periodic subnets. The list of infinite units includes linear chains or sheets of corner- or edge-sharing polyhedra. Decomposing periodic nets into their building units relies on graph-theoretical methods classified as surgery techniques. The most relevant operations are edge subdivision, vertex identification, edge contraction and decoration. Instead, these operations can be performed on labelled quotient graphs, evidencing in almost a mechanical way the nature and connection mode of building units in the derived net. Various examples are discussed, ranging from finite building blocks to 3-periodic subnets. Among others, the structures of strontium oxychloride, spinel, lithiophilite and garnet are addressed.

  5. Structural Feature and Molecular Interaction of Basic Amino Acid-Picric Acid Complexes by X-Ray Crystal Analyses

    National Research Council Canada - National Science Library

    長田, 裕臣; 尹, 康子; 友尾, 幸司; 土井, 光暢; 石田, 寿昌; 若原, 章男

    1995-01-01

    As a part of elucidating the structural features of a host molecule necessary for the recognition of basic amino acids, the crystal structures of the picrates of DL-arginine (1), L-arginine (2), L-lysine (3), and L-ornitine (4...

  6. Novel Features of Eukaryotic Photosystem II Revealed by Its Crystal Structure Analysis from a Red Alga.

    Science.gov (United States)

    Ago, Hideo; Adachi, Hideyuki; Umena, Yasufumi; Tashiro, Takayoshi; Kawakami, Keisuke; Kamiya, Nobuo; Tian, Lirong; Han, Guangye; Kuang, Tingyun; Liu, Zheyi; Wang, Fangjun; Zou, Hanfa; Enami, Isao; Miyano, Masashi; Shen, Jian-Ren

    2016-03-11

    Photosystem II (PSII) catalyzes light-induced water splitting, leading to the evolution of molecular oxygen indispensible for life on the earth. The crystal structure of PSII from cyanobacteria has been solved at an atomic level, but the structure of eukaryotic PSII has not been analyzed. Because eukaryotic PSII possesses additional subunits not found in cyanobacterial PSII, it is important to solve the structure of eukaryotic PSII to elucidate their detailed functions, as well as evolutionary relationships. Here we report the structure of PSII from a red alga Cyanidium caldarium at 2.76 Å resolution, which revealed the structure and interaction sites of PsbQ', a unique, fourth extrinsic protein required for stabilizing the oxygen-evolving complex in the lumenal surface of PSII. The PsbQ' subunit was found to be located underneath CP43 in the vicinity of PsbV, and its structure is characterized by a bundle of four up-down helices arranged in a similar way to those of cyanobacterial and higher plant PsbQ, although helices I and II of PsbQ' were kinked relative to its higher plant counterpart because of its interactions with CP43. Furthermore, two novel transmembrane helices were found in the red algal PSII that are not present in cyanobacterial PSII; one of these helices may correspond to PsbW found only in eukaryotic PSII. The present results represent the first crystal structure of PSII from eukaryotic oxygenic organisms, which were discussed in comparison with the structure of cyanobacterial PSII.

  7. Novel Features of Eukaryotic Photosystem II Revealed by Its Crystal Structure Analysis from a Red Alga*

    Science.gov (United States)

    Ago, Hideo; Adachi, Hideyuki; Umena, Yasufumi; Tashiro, Takayoshi; Kawakami, Keisuke; Kamiya, Nobuo; Tian, Lirong; Han, Guangye; Kuang, Tingyun; Liu, Zheyi; Wang, Fangjun; Zou, Hanfa; Enami, Isao; Miyano, Masashi; Shen, Jian-Ren

    2016-01-01

    Photosystem II (PSII) catalyzes light-induced water splitting, leading to the evolution of molecular oxygen indispensible for life on the earth. The crystal structure of PSII from cyanobacteria has been solved at an atomic level, but the structure of eukaryotic PSII has not been analyzed. Because eukaryotic PSII possesses additional subunits not found in cyanobacterial PSII, it is important to solve the structure of eukaryotic PSII to elucidate their detailed functions, as well as evolutionary relationships. Here we report the structure of PSII from a red alga Cyanidium caldarium at 2.76 Å resolution, which revealed the structure and interaction sites of PsbQ′, a unique, fourth extrinsic protein required for stabilizing the oxygen-evolving complex in the lumenal surface of PSII. The PsbQ′ subunit was found to be located underneath CP43 in the vicinity of PsbV, and its structure is characterized by a bundle of four up-down helices arranged in a similar way to those of cyanobacterial and higher plant PsbQ, although helices I and II of PsbQ′ were kinked relative to its higher plant counterpart because of its interactions with CP43. Furthermore, two novel transmembrane helices were found in the red algal PSII that are not present in cyanobacterial PSII; one of these helices may correspond to PsbW found only in eukaryotic PSII. The present results represent the first crystal structure of PSII from eukaryotic oxygenic organisms, which were discussed in comparison with the structure of cyanobacterial PSII. PMID:26757821

  8. X-Ray Crystal Structure of the Full Length Human Chitotriosidase (CHIT1 Reveals Features of Its Chitin Binding Domain.

    Directory of Open Access Journals (Sweden)

    Firas Fadel

    Full Text Available Chitinases are enzymes that catalyze the hydrolysis of chitin. Human chitotriosidase (CHIT1 is one of the two active human chitinases, involved in the innate immune response and highly expressed in a variety of diseases. CHIT1 is composed of a catalytic domain linked by a hinge to its chitin binding domain (ChBD. This latter domain belongs to the carbohydrate-binding module family 14 (CBM14 family and facilitates binding to chitin. So far, the available crystal structures of the human chitinase CHIT1 and the Acidic Mammalian Chitinase (AMCase comprise only their catalytic domain. Here, we report a crystallization strategy combining cross-seeding and micro-seeding cycles which allowed us to obtain the first crystal structure of the full length CHIT1 (CHIT1-FL at 1.95 Å resolution. The CHIT1 chitin binding domain (ChBDCHIT1 structure shows a distorted β-sandwich 3D fold, typical of CBM14 family members. Accordingly, ChBDCHIT1 presents six conserved cysteine residues forming three disulfide bridges and several exposed aromatic residues that probably are involved in chitin binding, including the highly conserved Trp465 in a surface- exposed conformation. Furthermore, ChBDCHIT1 presents a positively charged surface which may be involved in electrostatic interactions. Our data highlight the strong structural conservation of CBM14 family members and uncover the structural similarity between the human ChBDCHIT1, tachycitin and house mite dust allergens. Overall, our new CHIT1-FL structure, determined with an adapted crystallization approach, is one of the few complete bi-modular chitinase structures available and reveals the structural features of a human CBM14 domain.

  9. X-Ray Crystal Structure of the Full Length Human Chitotriosidase (CHIT1) Reveals Features of Its Chitin Binding Domain

    Science.gov (United States)

    Fadel, Firas; Zhao, Yuguang; Cousido-Siah, Alexandra; Ruiz, Francesc X.; Mitschler, André; Podjarny, Alberto

    2016-01-01

    Chitinases are enzymes that catalyze the hydrolysis of chitin. Human chitotriosidase (CHIT1) is one of the two active human chitinases, involved in the innate immune response and highly expressed in a variety of diseases. CHIT1 is composed of a catalytic domain linked by a hinge to its chitin binding domain (ChBD). This latter domain belongs to the carbohydrate-binding module family 14 (CBM14 family) and facilitates binding to chitin. So far, the available crystal structures of the human chitinase CHIT1 and the Acidic Mammalian Chitinase (AMCase) comprise only their catalytic domain. Here, we report a crystallization strategy combining cross-seeding and micro-seeding cycles which allowed us to obtain the first crystal structure of the full length CHIT1 (CHIT1-FL) at 1.95 Å resolution. The CHIT1 chitin binding domain (ChBDCHIT1) structure shows a distorted β-sandwich 3D fold, typical of CBM14 family members. Accordingly, ChBDCHIT1 presents six conserved cysteine residues forming three disulfide bridges and several exposed aromatic residues that probably are involved in chitin binding, including the highly conserved Trp465 in a surface- exposed conformation. Furthermore, ChBDCHIT1 presents a positively charged surface which may be involved in electrostatic interactions. Our data highlight the strong structural conservation of CBM14 family members and uncover the structural similarity between the human ChBDCHIT1, tachycitin and house mite dust allergens. Overall, our new CHIT1-FL structure, determined with an adapted crystallization approach, is one of the few complete bi-modular chitinase structures available and reveals the structural features of a human CBM14 domain. PMID:27111557

  10. Crystal structures and inhibitor binding properties of plant class V chitinases: the cycad enzyme exhibits unique structural and functional features.

    Science.gov (United States)

    Umemoto, Naoyuki; Kanda, Yuka; Ohnuma, Takayuki; Osawa, Takuo; Numata, Tomoyuki; Sakuda, Shohei; Taira, Toki; Fukamizo, Tamo

    2015-04-01

    A class V (glycoside hydrolase family 18) chitinase from the cycad Cycas revoluta (CrChiA) is a plant chitinase that has been reported to possess efficient transglycosylation (TG) activity. We solved the crystal structure of CrChiA, and compared it with those of class V chitinases from Nicotiana tabacum (NtChiV) and Arabidopsis thaliana (AtChiC), which do not efficiently catalyze the TG reaction. All three chitinases had a similar (α/β)8 barrel fold with an (α + β) insertion domain. In the acceptor binding site (+1, +2 and +3) of CrChiA, the Trp168 side chain was found to stack face-to-face with the +3 sugar. However, this interaction was not found in the identical regions of NtChiV and AtChiC. In the DxDxE motif, which is essential for catalysis, the carboxyl group of the middle Asp (Asp117) was always oriented toward the catalytic acid Glu119 in CrChiA, whereas the corresponding Asp in NtChiV and AtChiC was oriented toward the first Asp. These structural features of CrChiA appear to be responsible for the efficient TG activity. When binding of the inhibitor allosamidin was evaluated using isothermal titration calorimetry, the changes in binding free energy of the three chitinases were found to be similar to each other, i.e. between -9.5 and -9.8 kcal mol(-1) . However, solvation and conformational entropy changes in CrChiA were markedly different from those in NtChiV and AtChiC, but similar to those of chitinase A from Serratia marcescens (SmChiA), which also exhibits significant TG activity. These results provide insight into the molecular mechanism underlying the TG reaction and the molecular evolution from bacterial chitinases to plant class V chitinases.

  11. Synthesis, characterisation and crystal structures of two bi-oxadiazole derivatives featuring the trifluoromethyl group.

    Science.gov (United States)

    Kettner, Marcos A; Klapötke, Thomas M; Witkowski, Tomasz G; von Hundling, Felix

    2015-03-01

    The synthesis, characterisation, and crystal structure determination of the closely related compounds 3,3'-bi-(5-trifluoromethyl-1,2,4-oxadiazole) and 5,5'-bi-(2-trifluoromethyl-1,3,4-oxadiazole) are reported. These two compounds are known for their bioactivity; however, in this study they serve as model compounds to evaluate the suitability of the heterocyclic oxadiazole ring system for energetic materials when the fluorine atoms in the exocyclic CF3 groups are substituted successively by nitro groups. Quantum chemical calculations for the bi-1,3,4-oxadiazole derivatives with difluoronitromethyl, fluorodinitromethyl, and trinitromethyl groups have been carried out and predict promising energetic performances for both explosive and propulsive applications.

  12. Elucidating features that drive the design of selective antifolates using crystal structures of human dihydrofolate reductase.

    Science.gov (United States)

    Lamb, Kristen M; G-Dayanandan, Narendran; Wright, Dennis L; Anderson, Amy C

    2013-10-15

    The pursuit of antimicrobial drugs that target dihydrofolate reductase (DHFR) exploits differences in sequence and dynamics between the pathogenic and human enzymes. Here, we present five crystal structures of human DHFR bound to a new class of antimicrobial agents, the propargyl-linked antifolates (PLAs), with a range of potency (IC50 values of 0.045-1.07 μM) for human DHFR. These structures reveal that interactions between the ligands and Asn 64, Phe 31, and Phe 34 are important for increased affinity for human DHFR and that loop residues 58-64 undergo ligand-induced conformational changes. The utility of these structural studies was demonstrated through the design of three new ligands that reduce the number of contacts with Asn 64, Phe 31, and Phe 34. Synthesis and evaluation show that one of the designed inhibitors exhibits the lowest affinity for human DHFR of any of the PLAs (2.64 μM). Comparisons of structures of human and Staphylococcus aureus DHFR bound to the same PLA reveal a conformational change in the ligand that enhances interactions with residues Phe 92 (Val 115 in huDHFR) and Ile 50 (Ile 60 in huDHFR) in S. aureus DHFR, yielding selectivity. Likewise, comparisons of human and Candida glabrata DHFR bound to the same ligand show that hydrophobic interactions with residues Ile 121 and Phe 66 (Val 115 and Asn 64 in human DHFR) yield selective inhibitors. The identification of residue substitutions that are important for selectivity and the observation of active site flexibility will help guide antimicrobial antifolate development for the inhibition of pathogenic species.

  13. Crystal structure of a 2:1 piroxicam–gentisic acid co-crystal featuring neutral and zwitterionic piroxicam molecules

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Horstman

    2016-12-01

    Full Text Available A new 2:1 co-crystal of piroxicam and gentisic acid [systematic name: 4-hydroxy-1,1-dioxo-N-(pyridin-2-yl-2H-1λ6,2-benzothiazine-3-carboxamide–2-(4-oxido-1,1-dioxo-2H-1λ6,2-benzothiazine-3-amidopyridin-1-ium–2,5-dihydroxybenzoic acid, 2C15H13N3O4S·C7H6O4] has been synthesized using a microfluidic platform and initially identified using Raman spectroscopy. In the co-crystal, one piroxicam molecule is in its neutral form and an intramolecular O—H...O hydrogen bond is observed. The other piroxicam molecule is zwitterionic (proton transfer from the OH group to the pyridine N atom and two intramolecular N—H...O hydrogen bonds occur. The gentisic acid molecule shows whole-molecule disorder over two sets of sites in a 0.809 (2:0.191 (2 ratio. In the crystal, extensive hydrogen bonding between the components forms layers propagating in the ab plane.

  14. The crystal structure of phosphorylated MAPK13 reveals common structural features and differences in p38 MAPK family activation.

    Science.gov (United States)

    Yurtsever, Zeynep; Scheaffer, Suzanne M; Romero, Arthur G; Holtzman, Michael J; Brett, Tom J

    2015-04-01

    The p38 MAP kinases (p38 MAPKs) represent an important family centrally involved in mediating extracellular signaling. Recent studies indicate that family members such as MAPK13 (p38δ) display a selective cellular and tissue expression and are therefore involved in specific diseases. Detailed structural studies of all p38 MAPK family members are crucial for the design of specific inhibitors. In order to facilitate such ventures, the structure of MAPK13 was determined in both the inactive (unphosphorylated; MAPK13) and active (dual phosphorylated; MAPK13/pTpY) forms. Here, the first preparation, crystallization and structure determination of MAPK13/pTpY are presented and the structure is compared with the previously reported structure of MAPK13 in order to facilitate studies for structure-based drug design. A comprehensive analysis of inactive versus active structures for the p38 MAPK family is also presented. It is found that MAPK13 undergoes a larger interlobe configurational rearrangement upon activation compared with MAPK14. Surprisingly, the analysis of activated p38 MAPK structures (MAP12/pTpY, MAPK13/pTpY and MAPK14/pTpY) reveals that, despite a high degree of sequence similarity, different side chains are used to coordinate the phosphorylated residues. There are also differences in the rearrangement of the hinge region that occur in MAPK14 compared with MAPK13 which would affect inhibitor binding. A thorough examination of all of the active (phosphorylated) and inactive (unphosphorylated) p38 MAPK family member structures was performed to reveal a common structural basis of activation for the p38 MAP kinase family and to identify structural differences that may be exploited for developing family member-specific inhibitors.

  15. Novel structural features in the GMC family of oxidoreductases revealed by the crystal structure of fungal aryl-alcohol oxidase.

    Science.gov (United States)

    Fernández, Israel S; Ruíz-Dueñas, Francisco J; Santillana, Elena; Ferreira, Patricia; Martínez, María Jesús; Martínez, Angel T; Romero, Antonio

    2009-11-01

    Lignin biodegradation, a key step in carbon recycling in land ecosystems, is carried out by white-rot fungi through an H(2)O(2)-dependent process defined as enzymatic combustion. Pleurotus eryngii is a selective lignin-degrading fungus that produces H(2)O(2) during redox cycling of p-anisylic compounds involving the secreted flavoenzyme aryl-alcohol oxidase (AAO). Here, the 2.4 A resolution X-ray crystal structure of this oxidoreductase, which catalyzes dehydrogenation reactions on various primary polyunsaturated alcohols, yielding the corresponding aldehydes, is reported. The AAO crystal structure was solved by single-wavelength anomalous diffraction of a selenomethionine derivative obtained by Escherichia coli expression and in vitro folding. This monomeric enzyme is composed of two domains, the overall folding of which places it into the GMC (glucose-methanol-choline oxidase) oxidoreductase family, and a noncovalently bound FAD cofactor. However, two additional structural elements exist in the surroundings of its active site that modulate the access of substrates; these are absent in the structure of the model GMC oxidoreductase glucose oxidase. The folding of these novel elements gives rise to a funnel-like hydrophobic channel that connects the solvent region to the buried active-site cavity of AAO. This putative active-site cavity is located in front of the re side of the FAD isoalloxazine ring and near two histidines (His502 and His546) that could contribute to alcohol activation as catalytic bases. Moreover, three aromatic side chains from two phenylalanines (Phe397 and Phe502) and one tyrosine (Tyr92) at the inner region of the channel form an aromatic gate that may regulate the access of the enzyme substrates to the active site as well as contribute to the recognition of the alcohols that can effectively be oxidized by AAO.

  16. Crystal structure of the papain-like protease of MERS coronavirus reveals unusual, potentially druggable active-site features.

    Science.gov (United States)

    Lei, Jian; Mesters, Jeroen R; Drosten, Christian; Anemüller, Stefan; Ma, Qingjun; Hilgenfeld, Rolf

    2014-09-01

    The Middle-East Respiratory Syndrome coronavirus (MERS-CoV) causes severe acute pneumonia and renal failure. The MERS-CoV papain-like protease (PL(pro)) is a potential target for the development of antiviral drugs. To facilitate these efforts, we determined the three-dimensional structure of the enzyme by X-ray crystallography. The molecule consists of a ubiquitin-like domain and a catalytic core domain. The catalytic domain displays an extended right-hand fold with a zinc ribbon and embraces a solvent-exposed substrate-binding region. The overall structure of the MERS-CoV PL(pro) is similar to that of the corresponding SARS-CoV enzyme, but the architecture of the oxyanion hole and of the S3 as well as the S5 specificity sites differ from the latter. These differences are the likely reason for reduced in vitro peptide hydrolysis and deubiquitinating activities of the MERS-CoV PL(pro), compared to the homologous enzyme from the SARS coronavirus. Introduction of a side-chain capable of oxyanion stabilization through the Leu106Trp mutation greatly enhances the in vitro catalytic activity of the MERS-CoV PL(pro). The unique features observed in the crystal structure of the MERS-CoV PL(pro) should allow the design of antivirals that would not interfere with host ubiquitin-specific proteases.

  17. Crystal structures of two transcriptional regulators from Bacillus cereus define the conserved structural features of a PadR subfamily.

    Directory of Open Access Journals (Sweden)

    Guntur Fibriansah

    Full Text Available PadR-like transcriptional regulators form a structurally-related family of proteins that control the expression of genes associated with detoxification, virulence and multi-drug resistance in bacteria. Only a few members of this family have been studied by genetic, biochemical and biophysical methods, and their structure/function relationships are still largely undefined. Here, we report the crystal structures of two PadR-like proteins from Bacillus cereus, which we named bcPadR1 and bcPadR2 (products of gene loci BC4206 and BCE3449 in strains ATCC 14579 and ATCC 10987, respectively. BC4206, together with its neighboring gene BC4207, was previously shown to become significantly upregulated in presence of the bacteriocin AS-48. DNA mobility shift assays reveal that bcPadR1 binds to a 250 bp intergenic region containing the putative BC4206-BC4207 promoter sequence, while in-situ expression of bcPadR1 decreases bacteriocin tolerance, together suggesting a role for bcPadR1 as repressor of BC4206-BC4207 transcription. The function of bcPadR2 (48% identical in sequence to bcPadR1 is unknown, but the location of its gene just upstream from genes encoding a putative antibiotic ABC efflux pump, suggests a role in regulating antibiotic resistance. The bcPadR proteins are structurally similar to LmrR, a PadR-like transcription regulator in Lactococcus lactis that controls expression of a multidrug ABC transporter via a mechanism of multidrug binding and induction. Together these proteins define a subfamily of conserved, relatively small PadR proteins characterized by a single C-terminal helix for dimerization. Unlike LmrR, bcPadR1 and bcPadR2 lack a central pore for ligand binding, making it unclear whether the transcriptional regulatory roles of bcPadR1 and bcPadR2 involve direct ligand recognition and induction.

  18. Crystal structures of two transcriptional regulators from Bacillus cereus define the conserved structural features of a PadR subfamily.

    Science.gov (United States)

    Fibriansah, Guntur; Kovács, Ákos T; Pool, Trijntje J; Boonstra, Mirjam; Kuipers, Oscar P; Thunnissen, Andy-Mark W H

    2012-01-01

    PadR-like transcriptional regulators form a structurally-related family of proteins that control the expression of genes associated with detoxification, virulence and multi-drug resistance in bacteria. Only a few members of this family have been studied by genetic, biochemical and biophysical methods, and their structure/function relationships are still largely undefined. Here, we report the crystal structures of two PadR-like proteins from Bacillus cereus, which we named bcPadR1 and bcPadR2 (products of gene loci BC4206 and BCE3449 in strains ATCC 14579 and ATCC 10987, respectively). BC4206, together with its neighboring gene BC4207, was previously shown to become significantly upregulated in presence of the bacteriocin AS-48. DNA mobility shift assays reveal that bcPadR1 binds to a 250 bp intergenic region containing the putative BC4206-BC4207 promoter sequence, while in-situ expression of bcPadR1 decreases bacteriocin tolerance, together suggesting a role for bcPadR1 as repressor of BC4206-BC4207 transcription. The function of bcPadR2 (48% identical in sequence to bcPadR1) is unknown, but the location of its gene just upstream from genes encoding a putative antibiotic ABC efflux pump, suggests a role in regulating antibiotic resistance. The bcPadR proteins are structurally similar to LmrR, a PadR-like transcription regulator in Lactococcus lactis that controls expression of a multidrug ABC transporter via a mechanism of multidrug binding and induction. Together these proteins define a subfamily of conserved, relatively small PadR proteins characterized by a single C-terminal helix for dimerization. Unlike LmrR, bcPadR1 and bcPadR2 lack a central pore for ligand binding, making it unclear whether the transcriptional regulatory roles of bcPadR1 and bcPadR2 involve direct ligand recognition and induction.

  19. Crystal structure of BamB from Pseudomonas aeruginosa and functional evaluation of its conserved structural features.

    Directory of Open Access Journals (Sweden)

    Katarina Bartoš Jansen

    Full Text Available The assembly of β-barrel Outer Membrane Proteins (OMPs in the outer membrane is essential for gram-negative bacteria. The process requires the β-Barrel Assembly Machine (BAM, a multiprotein complex that, in E. coli, is composed of the OMP BamA and four lipoproteins BamB-E. Whereas BamA and BamD are essential, deletion of BamB, C or E produce membrane permeability defects. Here we present the high-resolution structure of BamB from Pseudomonas aeruginosa. This protein can complement the deletion of bamB in E. coli indicating that they are functionally equivalent. Conserved structural features include an eight-bladed β-propeller fold stabilized by tryptophan docking motifs with a central pore about 8 Å in diameter at the narrowest point. This pore distinguishes BamB from related β-propellers, such as quinoprotein dehydrogenases. However, a double mutation designed to block this pore was fully functional indicating that the opening is not essential. Two loops protruding from the bottom of the propeller are conserved and mediate binding to BamA. Conversely, an additional loop only present in E. coli BamB is not required for function. A cluster of highly conserved residues in a groove between blades 6 and 7 is crucial for proper BamB folding or biogenesis. It has been proposed that BamB may bind nascent OMPs by β-augmentation to its propeller outer strands, or recognize the aromatic residue signature at the C-terminus of OMPs. However, Isothermal Titration Calorimetry experiments and structural analysis do not support these proposals. The structural and mutagenesis analysis suggests that the main function of BamB is to bind and modulate BamA, rather than directly interact with nascent OMPs.

  20. Specific features of the formation of dislocation structure in gallium arsenide single crystals obtained by the Czochralski method

    Science.gov (United States)

    Parfenteva, I. B.; Pugachev, B. V.; Pavlov, V. F.; Kozlova, Yu. P.; Knyazev, C. N.; Yugova, T. G.

    2017-03-01

    The influence of the deviation of seed orientation from the [100] direction on the formation of a dislocation structure of gallium arsenide single crystals grown by the Czochralski method has been revealed. The intensive multiplication of dislocations and formation of a block structure occur at deviation by an angle of more than 3° in the region that is radially shifted to one of crystal sides. The linear density of dislocations in the walls changes from 1 × 104 cm-1 in low-angle boundaries to 6 × 104 cm-1 in subboundaries.

  1. Crystal structure and prediction.

    Science.gov (United States)

    Thakur, Tejender S; Dubey, Ritesh; Desiraju, Gautam R

    2015-04-01

    The notion of structure is central to the subject of chemistry. This review traces the development of the idea of crystal structure since the time when a crystal structure could be determined from a three-dimensional diffraction pattern and assesses the feasibility of computationally predicting an unknown crystal structure of a given molecule. Crystal structure prediction is of considerable fundamental and applied importance, and its successful execution is by no means a solved problem. The ease of crystal structure determination today has resulted in the availability of large numbers of crystal structures of higher-energy polymorphs and pseudopolymorphs. These structural libraries lead to the concept of a crystal structure landscape. A crystal structure of a compound may accordingly be taken as a data point in such a landscape.

  2. Some Features of Raman Scattering by Molecules Adsorbed on Metal Crystal Faces and a Fine Light Structure

    OpenAIRE

    Polubotko, A. M.

    2013-01-01

    The paper analyzes some experiments on Raman scattering by molecules adsorbed on the face (111) of silver monocrystals performed by A. Campion et al. From the existence of the forbidden line of benzene, the conclusion about existence of the surface field, caused by atomic structure of the surface is made. The relatively large intensity of this line allows to make a conclusion about large influence of the electromagnetic field spatial inhomogeneity in crystals on their optical properties. The ...

  3. Crystal Structures of Two Transcriptional Regulators from Bacillus cereus Define the Conserved Structural Features of a PadR Subfamily

    NARCIS (Netherlands)

    Fibriansah, Guntur; Kovacs, Akos T.; Pool, Trijntje J.; Boonstra, Mirjam; Kuipers, Oscar P.; Thunnissen, Andy-Mark W. H.

    2012-01-01

    PadR-like transcriptional regulators form a structurally-related family of proteins that control the expression of genes associated with detoxification, virulence and multi-drug resistance in bacteria. Only a few members of this family have been studied by genetic, biochemical and biophysical method

  4. Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Amin Yavari, S., E-mail: s.aminyavari@tudelft.nl [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); FT Innovations BV, Braamsluiper 1, 5831 PW Boxmeer (Netherlands); Wauthle, R. [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); LayerWise NV, Kapeldreef 60, Leuven (Belgium); Böttger, A.J. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Schrooten, J. [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB 2450, 3001 Heverlee (Belgium); Weinans, H. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Orthopedics and Department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Zadpoor, A.A. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2014-01-30

    Porous titanium biomaterials manufactured using additive manufacturing techniques such as selective laser melting are considered promising materials for orthopedic applications where the biomaterial needs to mimic the properties of bone. Despite their appropriate mechanical properties and the ample pore space they provide for bone ingrowth and osseointegration, porous titanium structures have an intrinsically bioinert surface and need to be subjected to surface bio-functionalizing procedures to enhance their in vivo performance. In this study, we used a specific anodizing process to build a hierarchical oxide layer on the surface of porous titanium structures made by selective laser melting of Ti6Al4V ELI powder. The hierarchical structure included both nanotopographical features (nanotubes) and micro-features (micropits). After anodizing, the biomaterial was heat treated in Argon at different temperatures ranging between 400 and 600 °C for either 1 or 2 h to improve its bioactivity. The effects of applied heat treatment on the crystal structure of TiO{sub 2} nanotubes and the nanotopographical features of the surface were studied using scanning electron microscopy and X-ray diffraction. It was shown that the transition from the initial crystal structure, i.e. anatase, to rutile occurs between 500 and 600 °C and that after 2 h of heat treatment at 600 °C the crystal structure is predominantly rutile. The nanotopographical features of the surface were found to be largely unchanged for heat treatments carried out at 500 °C or below, whereas they were partially or largely disrupted after heat treatment at 600 °C. The possible implications of these findings for the bioactivity of porous titanium structures are discussed.

  5. Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting

    Science.gov (United States)

    Amin Yavari, S.; Wauthle, R.; Böttger, A. J.; Schrooten, J.; Weinans, H.; Zadpoor, A. A.

    2014-01-01

    Porous titanium biomaterials manufactured using additive manufacturing techniques such as selective laser melting are considered promising materials for orthopedic applications where the biomaterial needs to mimic the properties of bone. Despite their appropriate mechanical properties and the ample pore space they provide for bone ingrowth and osseointegration, porous titanium structures have an intrinsically bioinert surface and need to be subjected to surface bio-functionalizing procedures to enhance their in vivo performance. In this study, we used a specific anodizing process to build a hierarchical oxide layer on the surface of porous titanium structures made by selective laser melting of Ti6Al4V ELI powder. The hierarchical structure included both nanotopographical features (nanotubes) and micro-features (micropits). After anodizing, the biomaterial was heat treated in Argon at different temperatures ranging between 400 and 600 °C for either 1 or 2 h to improve its bioactivity. The effects of applied heat treatment on the crystal structure of TiO2 nanotubes and the nanotopographical features of the surface were studied using scanning electron microscopy and X-ray diffraction. It was shown that the transition from the initial crystal structure, i.e. anatase, to rutile occurs between 500 and 600 °C and that after 2 h of heat treatment at 600 °C the crystal structure is predominantly rutile. The nanotopographical features of the surface were found to be largely unchanged for heat treatments carried out at 500 °C or below, whereas they were partially or largely disrupted after heat treatment at 600 °C. The possible implications of these findings for the bioactivity of porous titanium structures are discussed.

  6. Some features of raman scattering by molecules adsorbed on metal crystal faces and a fine light structure

    Science.gov (United States)

    Polubotko, A. M.

    2013-07-01

    The paper analyzes some experiments on Raman scattering by molecules adsorbed on the face (111) of silver monocrystals performed by A. Campion et al. From the existence of the forbidden line A 2 u of benzene, the conclusion about existence of the surface field, caused by atomic structure of the surface is made. The relatively large intensity of this line allows to make a conclusion about large influence of the electromagnetic field spatial inhomogeneity in crystals on their optical properties. The difference between this field and a regular plane wave, which usually describes propagation of electromagnetic field in solids is named as a fine light structure. The influence of this structure on optical properties of solids is pointed out.

  7. Some Features of Raman Scattering by Molecules Adsorbed on Metal Crystal Faces and a Fine Light Structure

    CERN Document Server

    Polubotko, A M

    2013-01-01

    The paper analyzes some experiments on Raman scattering by molecules adsorbed on the face (111) of silver monocrystals performed by A. Campion et al. From the existence of the forbidden line of benzene, the conclusion about existence of the surface field, caused by atomic structure of the surface is made. The relatively large intensity of this line allows to make a conclusion about large influence of the electromagnetic field spatial inhomogeneity in crystals on their optical properties. The difference between this field and a regular plane wave, which usually describes propagation of electromagnetic field in solids is named as a fine light structure. The influence of this structure on optical properties of solids is pointed out.

  8. Glassy features of crystal plasticity

    Science.gov (United States)

    Lehtinen, Arttu; Costantini, Giulio; Alava, Mikko J.; Zapperi, Stefano; Laurson, Lasse

    2016-08-01

    Crystal plasticity occurs by deformation bursts due to the avalanchelike motion of dislocations. Here we perform extensive numerical simulations of a three-dimensional dislocation dynamics model under quasistatic stress-controlled loading. Our results show that avalanches are power-law distributed and display peculiar stress and sample size dependence: The average avalanche size grows exponentially with the applied stress, and the amount of slip increases with the system size. These results suggest that intermittent deformation processes in crystalline materials exhibit an extended critical-like phase in analogy to glassy systems instead of originating from a nonequilibrium phase transition critical point.

  9. Crystal structure of propaquizafop

    Directory of Open Access Journals (Sweden)

    Youngeun Jeon

    2014-12-01

    Full Text Available The title compound, C22H22ClN3O5 {systematic name: 2-(propan-2-ylideneaminooxyethyl (R-2-[4-(6-chloroquinoxalin-2-yloxyphenoxy]propionate}, is a herbicide. The asymmetric unit comprises two independent molecules in which the dihedral angles between the phenyl ring and the quinoxaline ring plane are 75.93 (7 and 82.77 (8°. The crystal structure features C—H...O, C—H...N, and C—H...Cl hydrogen bonds, as well as weak π–π interactions [ring-centroid separation = 3.782 (2 and 3.5952 (19 Å], resulting in a three-dimensional architecture.

  10. Crystal structure refinement with SHELXL

    Energy Technology Data Exchange (ETDEWEB)

    Sheldrick, George M., E-mail: gsheldr@shelx.uni-ac.gwdg.de [Department of Structural Chemistry, Georg-August Universität Göttingen, Tammannstraße 4, Göttingen 37077 (Germany)

    2015-01-01

    New features added to the refinement program SHELXL since 2008 are described and explained. The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as ‘a CIF’) containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

  11. Photonic crystals: features and applications (physics research and technology)

    CERN Document Server

    2013-01-01

    The present book is focused on the study of unprecedented control and manipulation of light by photonic crystals (PCs) and their applications. These are micro- or usually nano-structures composed of periodic indexes of refraction of dielectrics with high refractive index contrast. They exhibit optical frequency band gaps in analogy to electronic bands for a periodic potential of a semiconductor crystal lattice. The gemstone opal and butterflys feathers colours are already referred to as natural examples of photonic crystals. The characteristics of such supper-lattices were first reported by Yablonovitch in 1987. The exploitation of photonic crystals is a promising tool in communication, sensors, optical computing, and nanophotonics. Discussed are the various features of one-dimensional (1D) and two-dimensional (2D) photonic crystals, photonic quasi crystals, heterostuctures and PC fibres under a variety of conditions using several materials, and metamaterials. It also focuses on the applications of PCs in opt...

  12. Crystal Structures of Furazanes

    OpenAIRE

    Klapötke, Thomas; Schmid, Philipp; Stierstorfer, Jörg

    2015-01-01

    Several nitrogen-rich salts of 3-nitramino-4-nitrofurazane and dinitraminoazoxyfurazane were synthesized and characterized by various spectroscopic methods. The crystal structures were determined by low temperature single crystal X-ray diffraction. Moreover the sensitivities toward thermal and mechanical stimuli were determined by differential thermal analysis (DTA) and BAM (Bundesanstalt für Materialforschung und -prüfung) methods. The standard enthalpies of formation were calculated for all...

  13. Crystal structure of a 2:1 piroxicam–gentisic acid co-crystal featuring neutral and zwitterionic piroxicam mol­ecules

    Science.gov (United States)

    Horstman, Elizabeth M.; Bertke, Jeffery A.; Woods, Toby J.; Kenis, Paul J. A.

    2016-01-01

    A new 2:1 co-crystal of piroxicam and gentisic acid [systematic name: 4-hy­droxy-1,1-dioxo-N-(pyridin-2-yl)-2H-1λ6,2-benzo­thia­zine-3-carboxamide–2-(4-oxido-1,1-dioxo-2H-1λ6,2-benzo­thia­zine-3-amido)­pyridin-1-ium–2,5-di­hydroxy­benzoic acid, 2C15H13N3O4S·C7H6O4] has been synthesized using a microfluidic platform and initially identified using Raman spectroscopy. In the co-crystal, one piroxicam mol­ecule is in its neutral form and an intra­molecular O—H⋯O hydrogen bond is observed. The other piroxicam mol­ecule is zwitterionic (proton transfer from the OH group to the pyridine N atom) and two intra­molecular N—H⋯O hydrogen bonds occur. The gentisic acid mol­ecule shows whole-mol­ecule disorder over two sets of sites in a 0.809 (2):0.191 (2) ratio. In the crystal, extensive hydrogen bonding between the components forms layers propagating in the ab plane. PMID:27980814

  14. Crystal structure of a 2:1 piroxicam-gentisic acid co-crystal featuring neutral and zwitterionic piroxicam mol-ecules.

    Science.gov (United States)

    Horstman, Elizabeth M; Bertke, Jeffery A; Woods, Toby J; Kenis, Paul J A

    2016-12-01

    A new 2:1 co-crystal of piroxicam and gentisic acid [systematic name: 4-hy-droxy-1,1-dioxo-N-(pyridin-2-yl)-2H-1λ(6),2-benzo-thia-zine-3-carboxamide-2-(4-oxido-1,1-dioxo-2H-1λ(6),2-benzo-thia-zine-3-amido)-pyridin-1-ium-2,5-di-hydroxy-benzoic acid, 2C15H13N3O4S·C7H6O4] has been synthesized using a microfluidic platform and initially identified using Raman spectroscopy. In the co-crystal, one piroxicam mol-ecule is in its neutral form and an intra-molecular O-H⋯O hydrogen bond is observed. The other piroxicam mol-ecule is zwitterionic (proton transfer from the OH group to the pyridine N atom) and two intra-molecular N-H⋯O hydrogen bonds occur. The gentisic acid mol-ecule shows whole-mol-ecule disorder over two sets of sites in a 0.809 (2):0.191 (2) ratio. In the crystal, extensive hydrogen bonding between the components forms layers propagating in the ab plane.

  15. Lung Injury Induced by TiO2 Nanoparticles Depends on Their Structural Features: Size, Shape, Crystal Phases, and Surface Coating

    Directory of Open Access Journals (Sweden)

    Jiangxue Wang

    2014-12-01

    Full Text Available With the rapid development of nanotechnology, a variety of engineered nanoparticles (NPs are being produced. Nanotoxicology has become a hot topic in many fields, as researchers attempt to elucidate the potential adverse health effects of NPs. The biological activity of NPs strongly depends on physicochemical parameters but these are not routinely considered in toxicity screening, such as dose metrics. In this work, nanoscale titanium dioxide (TiO2, one of the most commonly produced and widely used NPs, is put forth as a representative. The correlation between the lung toxicity and pulmonary cell impairment related to TiO2 NPs and its unusual structural features, including size, shape, crystal phases, and surface coating, is reviewed in detail. The reactive oxygen species (ROS production in pulmonary inflammation in response to the properties of TiO2 NPs is also briefly described. To fully understand the potential biological effects of NPs in toxicity screening, we highly recommend that the size, crystal phase, dispersion and agglomeration status, surface coating, and chemical composition should be most appropriately characterized.

  16. Crystal Structures of Furazanes

    Directory of Open Access Journals (Sweden)

    Thomas M. Klapötke

    2015-09-01

    Full Text Available Several nitrogen-rich salts of 3-nitramino-4-nitrofurazane and dinitraminoazoxyfurazane were synthesized and characterized by various spectroscopic methods. The crystal structures were determined by low temperature single crystal X-ray diffraction. Moreover the sensitivities toward thermal and mechanical stimuli were determined by differential thermal analysis (DTA and BAM (Bundesanstalt für Materialforschung und -prüfung methods. The standard enthalpies of formation were calculated for all compounds at the CBS-4M level of theory, and the energetic performance was predicted with the EXPLO5 V6.02 computer code.

  17. 1.45 A resolution crystal structure of recombinant PNP in complex with a pM multisubstrate analogue inhibitor bearing one feature of the postulated transition state

    Energy Technology Data Exchange (ETDEWEB)

    Chojnowski, Grzegorz [Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw (Poland); International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw (Poland); Breer, Katarzyna; Narczyk, Marta; Wielgus-Kutrowska, Beata [Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw (Poland); Czapinska, Honorata [International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw (Poland); Hashimoto, Mariko; Hikishima, Sadao; Yokomatsu, Tsutomu [School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Bochtler, Matthias [International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw (Poland); Schools of Chemistry and Biosciences, Park Place, CF10 3AT Cardiff (United Kingdom); Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden (Germany); Girstun, Agnieszka; Staron, Krzysztof [Department of Molecular Biology, Institute of Biochemistry, University of Warsaw, Miecznikowa 1, 02-096 Warsaw (Poland); Bzowska, Agnieszka, E-mail: abzowska@biogeo.uw.edu.pl [Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw (Poland)

    2010-01-01

    Low molecular mass purine nucleoside phosphorylases (PNPs, E.C. 2.4.2.1) are homotrimeric enzymes that are tightly inhibited by immucillins. Due to the positive charge on the ribose like part (iminoribitol moiety) and protonation of the N7 atom of the purine ring, immucillins are believed to act as transition state analogues. Over a wide range of concentrations, immucillins bind with strong negative cooperativity to PNPs, so that only every third binding site of the enzyme is occupied (third-of-the-sites binding). 9-(5',5'-difluoro-5'-phosphonopentyl)-9-deazaguanine (DFPP-DG) shares with immucillins the protonation of the N7, but not the positive charge on the ribose like part of the molecule. We have previously shown that DFPP-DG interacts with PNPs with subnanomolar inhibition constant. Here, we report additional biochemical experiments to demonstrate that the inhibitor can be bound with the same K{sub d} ({approx}190 pM) to all three substrate binding sites of the trimeric PNP, and a crystal structure of PNP in complex with DFPP-DG at 1.45 A resolution, the highest resolution published for PNPs so far. The crystals contain the full PNP homotrimer in the asymmetric unit. DFPP-DG molecules are bound in superimposable manner and with full occupancies to all three PNP subunits. Thus the postulated third-of-the-sites binding of immucillins should be rather attribute to the second feature of the transition state, ribooxocarbenium ion character of the ligand or to the coexistence of both features characteristic for the transition state. The DFPP-DG/PNP complex structure confirms the earlier observations, that the loop from Pro57 to Gly66 covering the phosphate-binding site cannot be stabilized by phosphonate analogues. The loop from Glu250 to Gln266 covering the base-binding site is organized by the interactions of Asn243 with the Hoogsteen edge of the purine base of analogues bearing one feature of the postulated transition state (protonated N7 position).

  18. Distinctive features of a crystal, crystal-like properties of a liquid and atomic quantum effects

    Science.gov (United States)

    Pavlov, V. V.

    2008-02-01

    It is believed that 'a crystal is similar to the crowd which is tightly compressed within enclosed space' and its structure in the simplest case is similar to the closest ball packing. Based on this assumption the strength of a crystal, long range ordering, the granular structure, capability for polymorphic transformation etc. were deduced. In a liquid such properties are impossible even in feebly marked form. However some of crystal-like features of melts are revealed in experiments and they frequently remain unacknowledged with a theory. From the other hand, computer model of crystal does not give even listed distinctive features of a crystal state. In the classical model the solidification more than to sunflower oil consistence was not obtained. It is possible to reach the real solidification if quantum 'freezing' of a part of atomic degrees of freedom would taken into account and any movement would stopped at zero energy level. There are some reasons to believe that another crystal properties and corresponding crystal-like features of liquids also can be got basing on these atomic quantum effects. In this case the reasons of many discussions on 'heredity', 'memory' of liquid and its microheterogeneity disappear.

  19. Catalytic features and crystal structure of a tau class glutathione transferase from Glycine max specifically upregulated in response to soybean mosaic virus infections.

    Science.gov (United States)

    Skopelitou, Katholiki; Muleta, Abdi W; Papageorgiou, Anastassios C; Chronopoulou, Evangelia; Labrou, Nikolaos E

    2015-02-01

    The plant tau class glutathione transferases (GSTs) play important roles in biotic and abiotic stress tolerance in crops and weeds. In this study, we systematically examined the catalytic and structural features of a GST isoenzyme from Glycine max (GmGSTU10-10). GmGSTU10-10 is a unique isoenzyme in soybean that is specifically expressed in response to biotic stress caused by soybean mosaic virus (SMV) infections. GmGSTU10-10 was cloned, expressed in Escherichia coli, purified and characterized. The results showed that GmGSTU10-10 catalyzes several different reactions and exhibits wide substrate specificity. Of particular importance is the finding that the enzyme shows high antioxidant catalytic function and acts as hydroperoxidase. In addition, its Km for GSH is significantly lower, compared to other plant GSTs, suggesting that GmGSTU10-10 is able to perform efficient catalysis under conditions where the concentration of reduced glutathione is low (e.g. oxidative stress). The crystal structure of GmGSTU10-10 was solved by molecular replacement at 1.6Å resolution in complex with glutathione sulfenic acid (GSOH). Structural analysis showed that GmGSTU10-10 shares the same overall fold and domain organization as other plant cytosolic GSTs; however, major variations were identified in helix H9 and the upper part of helix H4 that affect the size of the active site pockets, substrate recognition and the catalytic mechanism. The results of the present study provide new information into GST diversity and give further insights into the complex regulation and enzymatic functions of this plant gene superfamily.

  20. Effect of Electron Beam on the Structure and Crystallization Features of BaO-SrO-TiO2-SiO2 Glass

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Glasses of BaO-SrO-TiO2-SiO2 after electronic radiation treatment of 50-1000 kgy were studied by means of IR spectra, DTA and visible light absorption method.The result shows that the glass structure is changed due to the formation of structure defect from oxygen vacancy and E′ color center,which resultsd in the crystallization process and new precursors,and decreasement of Tg temperature and crystallization peaks by 20-50℃.

  1. Frustrated polymer crystal structures

    Science.gov (United States)

    Lotz, B.; Strasbourg, 67083

    1997-03-01

    Several crystal structures or polymorphs of chiral or achiral polymers and biopolymers with three fold conformation of the helix have been found to conform to a common and -with one exception(Puterman, M. et al, J. Pol. Sci., Pol. Phys. Ed., 15, 805 (1977))- hitherto unsuspected packing scheme. The trigonal unit-cell contains three isochiral helices; the azimuthal setting of one helix differs significantly from that of the other two, leading to a so-called frustrated packing scheme, in which the environment of conformationally identical helices differs. Two variants of the frustrated scheme are analyzed. Similarities with frustrated two dimensional magnetic systems are underlined. Various examples of frustration in polymer crystallography are illustrated via the elucidation or reinterpretation of crystal phases or polymorphs of polyolefins, polyesters, cellulose derivatives and polypeptides. Structural manifestations (including AFM evidence) and morphological consequences of frustration are presented, which help diagnose the existence of this original packing of polymers.(Work done with L. Cartier, D. Dorset, S. Kopp, T. Okihara, M. Schumacher, W. Stocker.)

  2. Inorganic Crystal Structure Database (ICSD)

    Science.gov (United States)

    SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase)   The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.

  3. Crystal structure of ruthenocenecarbonitrile

    Directory of Open Access Journals (Sweden)

    Frank Strehler

    2015-04-01

    Full Text Available The molecular structure of ruthenocenecarbonitrile, [Ru(η5-C5H4C[triple-bond]N(η5-C5H5], exhibits point group symmetry m, with the mirror plane bisecting the molecule through the C[triple-bond]N substituent. The RuII atom is slightly shifted from the η5-C5H4 centroid towards the C[triple-bond]N substituent. In the crystal, molecules are arranged in columns parallel to [100]. One-dimensional intermolecular π–π interactions [3.363 (3 Å] between the C[triple-bond]N carbon atom and one carbon of the cyclopentadienyl ring of the overlaying molecule are present.

  4. Determining crystal structures through crowdsourcing and coursework

    OpenAIRE

    2016-01-01

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit pla...

  5. Determining crystal structures through crowdsourcing and coursework

    OpenAIRE

    Horowitz, Scott; Koepnick, Brian; Jain, Neha; Pikkanen, Petri; Shehzad, Raafay; Viosca, Randy; James Fraser, Robert; Leduc, Robert; Madala, Roman; Shnider, Scott; de Boisblanc, Sharon; Butkovich, Slava; Bliven, Spencer; Koldewey, Philipp; Hettler, Stephen

    2016-01-01

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit pla...

  6. Features and Recursive Structure

    Directory of Open Access Journals (Sweden)

    Kuniya Nasukawa

    2015-01-01

    Full Text Available Based on the cross-linguistic tendency that weak vowels are realized with a central quality such as ə, ɨ, or ɯ, this paper attempts to account for this choice by proposing that the nucleus itself is one of the three monovalent vowel elements |A|, |I| and |U| which function as the building blocks of melodic structure. I claim that individual languages make a parametric choice to determine which of the three elements functions as the head of a nuclear expression. In addition, I show that elements can be freely concatenated to create melodic compounds. The resulting phonetic value of an element compound is determined by the specific elements it contains and by the head-dependency relations between those elements. This concatenation-based recursive mechanism of melodic structure can also be extended to levels above the segment, thus ultimately eliminating the need for syllabic constituents. This approach reinterprets the notion of minimalism in phonology by opposing the string-based flat structure.

  7. Photonic Crystal Laser Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Benjamin M

    2003-05-21

    Photonic crystals have great potential for use as laser-driven accelerator structures. A photonic crystal is a dielectric structure arranged in a periodic geometry. Like a crystalline solid with its electronic band structure, the modes of a photonic crystal lie in a set of allowed photonic bands. Similarly, it is possible for a photonic crystal to exhibit one or more photonic band gaps, with frequencies in the gap unable to propagate in the crystal. Thus photonic crystals can confine an optical mode in an all-dielectric structure, eliminating the need for metals and their characteristic losses at optical frequencies. We discuss several geometries of photonic crystal accelerator structures. Photonic crystal fibers (PCFs) are optical fibers which can confine a speed-of-light optical mode in vacuum. Planar structures, both two- and three-dimensional, can also confine such a mode, and have the additional advantage that they can be manufactured using common microfabrication techniques such as those used for integrated circuits. This allows for a variety of possible materials, so that dielectrics with desirable optical and radiation-hardness properties can be chosen. We discuss examples of simulated photonic crystal structures to demonstrate the scaling laws and trade-offs involved, and touch on potential fabrication processes.

  8. Crystal structure of fipronil

    Directory of Open Access Journals (Sweden)

    Hyunjin Park

    2017-10-01

    Full Text Available The title compound, C12H4Cl2F6N4OS {systematic name: 5-amino-1-[2,6-dichloro-4-(trifluoromethylphenyl]-4-[(trifluoromethanesulfinyl]-1H-pyrazole-3-carbonitrile}, is a member of the phenylpyrazole group of acaricides, and one of the phenylpyrazole group of insecticides. The dihedral angle between the planes of the pyrazole and benzene rings is 89.03 (9°. The fluorine atoms of the trifluoromethyl substituent on the benzene ring are disordered over two sets of sites, with occupancy ratios 0.620 (15:0.380 (15. In the crystal, C—N...π interactions [N...ring centroid = 3.607 (4 Å] together with N—H...N and C—H...F hydrogen bonds form a looped chain structure along [10\\overline{1}]. Finally, N—H...O hydrogen bonds and C—Cl...π interactions [Cl...ring centroid = 3.5159 (16 Å] generate a three-dimensional structure. Additionally, there are a short intermolecular F... F contacts present.

  9. Prediction of molecular crystal structures

    CERN Document Server

    Beyer, T

    2001-01-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of parac...

  10. THE CRYSTAL STRUCTURE OF DIPHENYLTELLURIUM DIBROMIDE,

    Science.gov (United States)

    TELLURIUM COMPOUNDS, *ORGANOMETALLIC COMPOUNDS, CRYSTAL STRUCTURE , CRYSTAL STRUCTURE , BROMIDES, SYMMETRY(CRYSTALLOGRAPHY), X RAY DIFFRACTION, FOURIER ANALYSIS, LEAST SQUARES METHOD, MOLECULAR STRUCTURE, CHEMICAL BONDS.

  11. REFINEMENT OF THE CRYSTAL STRUCTURE OF GUANIDINIUM ALUMINUM SULFATE HEXAHYDRATE.

    Science.gov (United States)

    FERROELECTRIC CRYSTALS, * CRYSTAL STRUCTURE ), (*GUANIDINES, CRYSTAL STRUCTURE ), (*ALUMINUM COMPOUNDS, CRYSTAL STRUCTURE ), SULFATES, HYDRATES, X RAY DIFFRACTION, CHROMIUM COMPOUNDS, CRYSTAL LATTICES, CHEMICAL BONDS

  12. Demonstration of Crystal Structure.

    Science.gov (United States)

    Neville, Joseph P.

    1985-01-01

    Describes an experiment where equal parts of copper and aluminum are heated then cooled to show extremely large crystals. Suggestions are given for changing the orientation of crystals by varying cooling rates. Students are more receptive to concepts of microstructure after seeing this experiment. (DH)

  13. Crystal structure of oxamyl

    Directory of Open Access Journals (Sweden)

    Eunjin Kwon

    2016-12-01

    Full Text Available The title compound, C7H13N3O3S [systematic name: (Z-methyl 2-dimethylamino-N-(methylcarbamoyloxy-2-oxoethanimidothioate], is an oxime carbamate acaride, insecticide and nematicide. The asymmetric unit comprises two independent molecules, A and B. The dihedral angles between the mean planes [r.m.s. deviations = 0.0017 (A and 0.0016 Å (B] of the acetamide and oxyimino groups are 88.80 (8° for A and 87.05 (8° for B. In the crystal, N/C—H...O hydrogen bonds link adjacent molecules, forming chains along the a axis. The chains are further linked by C—H...O hydrogen bonds, resulting in a three-dimensional network with alternating rows of A and B molecules in the bc plane stacked along the a-axis direction. The structure was refined as an inversion twin with a final BASF parameter of 0.16 (9.

  14. Geophysical Features - STRUCTURAL_FEATURES_IN: Structural Features of Indiana (Indiana Geological Survey, Line Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — STRUCTURAL_FEATURES_IN is a line shapefile that shows the location of known structural features in Indiana; source data scales range from 1:12,000 to 1:500,000 (only...

  15. Prediction of molecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Theresa

    2001-07-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol{sup -1} of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  16. Growth features of ammonium hydrogen -tartrate single crystals

    Indian Academy of Sciences (India)

    G Sajeevkumar; R Raveendran; B S Remadevi; Alexander Varghese Vaidyan

    2004-08-01

    Ammonium hydrogen -tartrate (-AHT) single crystals were grown in silica gel. The growth features of these crystals with variation of parameters like specific gravity of the gel, gel pH, acid concentrations, concentration of the feed solution and gel age were studied in detail.

  17. Crystal Structures of Xanthomonas campestris OleA Reveal Features That Promote Head-to-Head Condensation of Two Long-Chain Fatty Acids

    Energy Technology Data Exchange (ETDEWEB)

    Goblirsch, Brandon R.; Frias, Janice A.; Wackett, Lawrence P.; Wilmot, Carrie M. (UMM)

    2012-10-25

    OleA is a thiolase superfamily enzyme that has been shown to catalyze the condensation of two long-chain fatty acyl-coenzyme A (CoA) substrates. The enzyme is part of a larger gene cluster responsible for generating long-chain olefin products, a potential biofuel precursor. In thiolase superfamily enzymes, catalysis is achieved via a ping-pong mechanism. The first substrate forms a covalent intermediate with an active site cysteine that is followed by reaction with the second substrate. For OleA, this conjugation proceeds by a nondecarboxylative Claisen condensation. The OleA from Xanthomonas campestris has been crystallized and its structure determined, along with inhibitor-bound and xenon-derivatized structures, to improve our understanding of substrate positioning in the context of enzyme turnover. OleA is the first characterized thiolase superfamily member that has two long-chain alkyl substrates that need to be bound simultaneously and therefore uniquely requires an additional alkyl binding channel. The location of the fatty acid biosynthesis inhibitor, cerulenin, that possesses an alkyl chain length in the range of known OleA substrates, in conjunction with a single xenon binding site, leads to the putative assignment of this novel alkyl binding channel. Structural overlays between the OleA homologues, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and the fatty acid biosynthesis enzyme FabH, allow assignment of the two remaining channels: one for the thioester-containing pantetheinate arm and the second for the alkyl group of one substrate. A short {beta}-hairpin region is ordered in only one of the crystal forms, and that may suggest open and closed states relevant for substrate binding. Cys143 is the conserved catalytic cysteine within the superfamily, and the site of alkylation by cerulenin. The alkylated structure suggests that a glutamic acid residue (Glu117{beta}) likely promotes Claisen condensation by acting as the catalytic base. Unexpectedly

  18. Crystal Structures of Xanthomonas campestris OleA Reveal Features That Promote Head-to-Head Condensation of Two Long-Chain Fatty Acids

    Energy Technology Data Exchange (ETDEWEB)

    Goblirsch, BR; Frias, JA; Wackett, LP; Wilmot, CM

    2012-05-22

    OleA is a thiolase superfamily enzyme that has been shown to catalyze the condensation of two long-chain fatty acylcoenzyme A (CoA) substrates. The enzyme is part of a larger gene cluster responsible for generating long-chain olefin products, a potential biofuel precursor. In thiolase superfamily enzymes, catalysis is achieved via a ping-pong mechanism. The first substrate forms a covalent intermediate with an active site cysteine that is followed by reaction with the second substrate. For OleA, this conjugation proceeds by a nondecarboxylative Claisen condensation. The OleA from Xanthomonas campestris has been crystallized and its structure determined, along with inhibitor-bound and xenon-derivatized structures, to improve our understanding of substrate positioning in the context of enzyme turnover. OleA is the first characterized thiolase superfamily member that has two long-chain alkyl substrates that need to be bound simultaneously and therefore uniquely requires an additional alkyl binding channel. The location of the fatty acid biosynthesis inhibitor, cerulenin, that possesses an alkyl chain length in the range of known OleA substrates, in conjunction with a single xenon binding site, leads to the putative assignment of this novel alkyl binding channel. Structural overlays between the OleA homologues, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and the fatty acid biosynthesis enzyme FabH, allow assignment of the two remaining channels: one for the thioester-containing pantetheinate arm and the second for the alkyl group of one substrate. A short beta-hairpin region is ordered in only one of the crystal forms, and that may suggest open and closed states relevant for substrate binding. Cys143 is the conserved catalytic cysteine within the superfamily, and the site of alkylation by cerulenin. The alkylated structure suggests that a glutamic acid residue (Glu117 beta) likely promotes Claisen condensation by acting as the catalytic base. Unexpectedly, Glu117

  19. Crystal structure of cafenstrole

    Directory of Open Access Journals (Sweden)

    Gihaeng Kang

    2015-08-01

    Full Text Available The title compound (systematic name: N,N-diethyl-3-mesitylsulfonyl-1H-1,2,4-triazole-1-carboxamide, C16H22N4O3S, is a triazole herbicide. The dihedral angle between the planes of the triazole and benzene ring planes is 88.14 (10°. In the crystal, C—H...O hydrogen bonds and weak C—H...π interactions link adjacent molecules, forming one-dimensional chains along the a axis.

  20. Crystal structure of pseudoguainolide

    Directory of Open Access Journals (Sweden)

    Noureddine Beghidja

    2015-03-01

    Full Text Available The lactone ring in the title molecule, C15H22O3 (systematic name: 3,4a,8-trimethyldodecahydroazuleno[6,5-b]furan-2,5-dione, assumes an envelope conformation with the methine C atom adjacent to the the methine C atom carrying the methyl substituent being the flap atom. The other five-membered ring adopts a twisted conformation with the twist being about the methine–methylene C—C bond. The seven-membered ring is based on a twisted boat conformation. No specific interactions are noted in the the crystal packing.

  1. Crystal structure of the eukaryotic ribosome.

    Science.gov (United States)

    Ben-Shem, Adam; Jenner, Lasse; Yusupova, Gulnara; Yusupov, Marat

    2010-11-26

    Crystal structures of prokaryotic ribosomes have described in detail the universally conserved core of the translation mechanism. However, many facets of the translation process in eukaryotes are not shared with prokaryotes. The crystal structure of the yeast 80S ribosome determined at 4.15 angstrom resolution reveals the higher complexity of eukaryotic ribosomes, which are 40% larger than their bacterial counterparts. Our model shows how eukaryote-specific elements considerably expand the network of interactions within the ribosome and provides insights into eukaryote-specific features of protein synthesis. Our crystals capture the ribosome in the ratcheted state, which is essential for translocation of mRNA and transfer RNA (tRNA), and in which the small ribosomal subunit has rotated with respect to the large subunit. We describe the conformational changes in both ribosomal subunits that are involved in ratcheting and their implications in coordination between the two associated subunits and in mRNA and tRNA translocation.

  2. Crystal structure of nuarimol

    Directory of Open Access Journals (Sweden)

    Gihaeng Kang

    2015-08-01

    Full Text Available The title compound [systematic name: (RS-(2-chlorophenyl(4-fluorophenyl(pyrimidin-5-ylmethanol], C17H12ClFN2O, is a pyrimidine fungicide. The asymmetric unit comprises two independent molecules, A and B, in which the dihedral angles between the plane of the pyrimidine ring and those of the chlorophenyl and fluorophenyl rings are 71.10 (6 and 70.04 (5° in molecule A, and 73.24 (5 and 89.30 (5° in molecule B. In the crystal, O—H...N hydrogen bonds link the components into [010] chains of alternating A and B molecules. The chains are cross-linked by C—H...F hydrogen bonds and weak C—H...π and C—Cl...π [Cl...ring centroid = 3.7630 (8 Å] interactions, generating a three-dimensional network.

  3. Crystal structure refinement with SHELXL.

    Science.gov (United States)

    Sheldrick, George M

    2015-01-01

    The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as `a CIF') containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

  4. Crystal structure of pymetrozine

    Directory of Open Access Journals (Sweden)

    Youngeun Jeon

    2015-07-01

    Full Text Available The title compound, C10H11N5O {systematic name: 6-methyl-4-[(E-(pyridin-3-ylmethylideneamino]-4,5-dihydro-1,2,4-triazin-3(2H-one}, C10H11N5O, is used as an antifeedant in pest control. The asymmetric unit comprises two independent molecules, A and B, in which the dihedral angles between the pyridinyl and triazinyl ring planes [r.m.s. deviations = 0.0132 and 0.0255 ] are 11.60 (6 and 18.06 (4°, respectively. In the crystal, N—H...O, N—H...N, C—H...N and C—H...O hydrogen bonds, together with weak π–π interactions [ring-centroid separations = 3.5456 (9 and 3.9142 (9 Å], link the pyridinyl and triazinyl rings of A molecules, generating a three-dimensional network.

  5. Crystal structures of the fungal pathogen Aspergillus fumigatus protein farnesyltransferase complexed with substrates and inhibitors reveal features for antifungal drug design.

    Science.gov (United States)

    Mabanglo, Mark F; Hast, Michael A; Lubock, Nathan B; Hellinga, Homme W; Beese, Lorena S

    2014-03-01

    Species of the fungal genus Aspergillus are significant human and agricultural pathogens that are often refractory to existing antifungal treatments. Protein farnesyltransferase (FTase), a critical enzyme in eukaryotes, is an attractive potential target for antifungal drug discovery. We report high-resolution structures of A. fumigatus FTase (AfFTase) in complex with substrates and inhibitors. Comparison of structures with farnesyldiphosphate (FPP) bound in the absence or presence of peptide substrate, corresponding to successive steps in ordered substrate binding, revealed that the second substrate-binding step is accompanied by motions of a loop in the catalytic site. Re-examination of other FTase structures showed that this motion is conserved. The substrate- and product-binding clefts in the AfFTase active site are wider than in human FTase (hFTase). Widening is a consequence of small shifts in the α-helices that comprise the majority of the FTase structure, which in turn arise from sequence variation in the hydrophobic core of the protein. These structural effects are key features that distinguish fungal FTases from hFTase. Their variation results in differences in steady-state enzyme kinetics and inhibitor interactions and presents opportunities for developing selective anti-fungal drugs by exploiting size differences in the active sites. We illustrate the latter by comparing the interaction of ED5 and Tipifarnib with hFTase and AfFTase. In AfFTase, the wider groove enables ED5 to bind in the presence of FPP, whereas in hFTase it binds only in the absence of substrate. Tipifarnib binds similarly to both enzymes but makes less extensive contacts in AfFTase with consequently weaker binding.

  6. Determining crystal structures through crowdsourcing and coursework

    Science.gov (United States)

    Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A.; Cooper, Seth; Flatten, Jeff; Rogawski, David S.; Koropatkin, Nicole M.; Hailu, Tsinatkeab T.; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S.; Chapman, Matthew R.; Sikkema, Andrew P.; Skiba, Meredith A.; Maloney, Finn P.; Beinlich, Felix R. M.; Caglar, Ahmet; Coral, Alan; Jensen, Alice Elizabeth; Lubow, Allen; Boitano, Amanda; Lisle, Amy Elizabeth; Maxwell, Andrew T.; Failer, Barb; Kaszubowski, Bartosz; Hrytsiv, Bohdan; Vincenzo, Brancaccio; de Melo Cruz, Breno Renan; McManus, Brian Joseph; Kestemont, Bruno; Vardeman, Carl; Comisky, Casey; Neilson, Catherine; Landers, Catherine R.; Ince, Christopher; Buske, Daniel Jon; Totonjian, Daniel; Copeland, David Marshall; Murray, David; Jagieła, Dawid; Janz, Dietmar; Wheeler, Douglas C.; Cali, Elie; Croze, Emmanuel; Rezae, Farah; Martin, Floyd Orville; Beecher, Gil; de Jong, Guido Alexander; Ykman, Guy; Feldmann, Harald; Chan, Hugo Paul Perez; Kovanecz, Istvan; Vasilchenko, Ivan; Connellan, James C.; Borman, Jami Lynne; Norrgard, Jane; Kanfer, Jebbie; Canfield, Jeffrey M.; Slone, Jesse David; Oh, Jimmy; Mitchell, Joanne; Bishop, John; Kroeger, John Douglas; Schinkler, Jonas; McLaughlin, Joseph; Brownlee, June M.; Bell, Justin; Fellbaum, Karl Willem; Harper, Kathleen; Abbey, Kirk J.; Isaksson, Lennart E.; Wei, Linda; Cummins, Lisa N.; Miller, Lori Anne; Bain, Lyn; Carpenter, Lynn; Desnouck, Maarten; Sharma, Manasa G.; Belcastro, Marcus; Szew, Martin; Szew, Martin; Britton, Matthew; Gaebel, Matthias; Power, Max; Cassidy, Michael; Pfützenreuter, Michael; Minett, Michele; Wesselingh, Michiel; Yi, Minjune; Cameron, Neil Haydn Tormey; Bolibruch, Nicholas I.; Benevides, Noah; Kathleen Kerr, Norah; Barlow, Nova; Crevits, Nykole Krystyne; Dunn, Paul; Silveira Belo Nascimento Roque, Paulo Sergio; Riber, Peter; Pikkanen, Petri; Shehzad, Raafay; Viosca, Randy; James Fraser, Robert; Leduc, Robert; Madala, Roman; Shnider, Scott; de Boisblanc, Sharon; Butkovich, Slava; Bliven, Spencer; Hettler, Stephen; Telehany, Stephen; Schwegmann, Steven A.; Parkes, Steven; Kleinfelter, Susan C.; Michael Holst, Sven; van der Laan, T. J. A.; Bausewein, Thomas; Simon, Vera; Pulley, Warwick; Hull, William; Kim, Annes Yukyung; Lawton, Alexis; Ruesch, Amanda; Sundar, Anjali; Lawrence, Anna-Lisa; Afrin, Antara; Maheshwer, Bhargavi; Turfe, Bilal; Huebner, Christian; Killeen, Courtney Elizabeth; Antebi-Lerrman, Dalia; Luan, Danny; Wolfe, Derek; Pham, Duc; Michewicz, Elaina; Hull, Elizabeth; Pardington, Emily; Galal, Galal Osama; Sun, Grace; Chen, Grace; Anderson, Halie E.; Chang, Jane; Hewlett, Jeffrey Thomas; Sterbenz, Jennifer; Lim, Jiho; Morof, Joshua; Lee, Junho; Inn, Juyoung Samuel; Hahm, Kaitlin; Roth, Kaitlin; Nair, Karun; Markin, Katherine; Schramm, Katie; Toni Eid, Kevin; Gam, Kristina; Murphy, Lisha; Yuan, Lucy; Kana, Lulia; Daboul, Lynn; Shammas, Mario Karam; Chason, Max; Sinan, Moaz; Andrew Tooley, Nicholas; Korakavi, Nisha; Comer, Patrick; Magur, Pragya; Savliwala, Quresh; Davison, Reid Michael; Sankaran, Roshun Rajiv; Lewe, Sam; Tamkus, Saule; Chen, Shirley; Harvey, Sho; Hwang, Sin Ye; Vatsia, Sohrab; Withrow, Stefan; Luther, Tahra K.; Manett, Taylor; Johnson, Thomas James; Ryan Brash, Timothy; Kuhlman, Wyatt; Park, Yeonjung; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C. A.

    2016-09-01

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality.

  7. Statistical analysis of crystallization database links protein physico-chemical features with crystallization mechanisms.

    Directory of Open Access Journals (Sweden)

    Diana Fusco

    Full Text Available X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical understanding remains elusive because of the large number of variables involved, hence little guidance is available to systematically identify solution conditions that promote crystallization. To help determine relationships between macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182 proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization, the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide macromolecular crystallization toward a more rational basis.

  8. High resolution crystal structure of human β-glucuronidase reveals structural basis of lysosome targeting

    National Research Council Canada - National Science Library

    Hassan, Md Imtaiyaz; Waheed, Abdul; Grubb, Jeffery H; Klei, Herbert E; Korolev, Sergey; Sly, William S

    2013-01-01

    ...). Here we report a high resolution crystal structure of human GUS at 1.7 Å resolution and present an extensive analysis of the structural features, unifying recent findings in the field of lysosome targeting and glycosyl hydrolases...

  9. High Resolution Crystal Structure of Human [beta]-Glucuronidase Reveals Structural Basis of Lysosome Targeting

    National Research Council Canada - National Science Library

    Hassan, Md; Waheed, Abdul; Grubb, Jeffery; Klei, Herbert; Korolev, Sergey; Sly, William

    2013-01-01

    ...). Here we report a high resolution crystal structure of human GUS at 1.7 Å resolution and present an extensive analysis of the structural features, unifying recent findings in the field of lysosome targeting and glycosyl hydrolases...

  10. Constraining Cometary Crystal Shapes from IR Spectral Features

    Science.gov (United States)

    Wooden, Diane H.; Lindsay, Sean; Harker, David E.; Kelley, Michael S. P.; Woodward, Charles E.; Murphy, James Richard

    2013-01-01

    A major challenge in deriving the silicate mineralogy of comets is ascertaining how the anisotropic nature of forsterite crystals affects the spectral features' wavelength, relative intensity, and asymmetry. Forsterite features are identified in cometary comae near 10, 11.05-11.2, 16, 19, 23.5, 27.5 and 33 microns [1-10], so accurate models for forsterite's absorption efficiency (Qabs) are a primary requirement to compute IR spectral energy distributions (SEDs, lambdaF lambda vs. lambda) and constrain the silicate mineralogy of comets. Forsterite is an anisotropic crystal, with three crystallographic axes with distinct indices of refraction for the a-, b-, and c-axis. The shape of a forsterite crystal significantly affects its spectral features [13-16]. We need models that account for crystal shape. The IR absorption efficiencies of forsterite are computed using the discrete dipole approximation (DDA) code DDSCAT [11,12]. Starting from a fiducial crystal shape of a cube, we systematically elongate/reduce one of the crystallographic axes. Also, we elongate/reduce one axis while the lengths of the other two axes are slightly asymmetric (0.8:1.2). The most significant grain shape characteristic that affects the crystalline spectral features is the relative lengths of the crystallographic axes. The second significant grain shape characteristic is breaking the symmetry of all three axes [17]. Synthetic spectral energy distributions using seven crystal shape classes [17] are fit to the observed SED of comet C/1995 O1 (Hale-Bopp). The Hale-Bopp crystalline residual better matches equant, b-platelets, c-platelets, and b-columns spectral shape classes, while a-platelets, a-columns and c-columns worsen the spectral fits. Forsterite condensation and partial evaporation experiments demonstrate that environmental temperature and grain shape are connected [18-20]. Thus, grain shape is a potential probe for protoplanetary disk temperatures where the cometary crystalline

  11. Structural colours through photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    McPhedran, R.C.; Nicorovici, N.A.; McKenzie, D.R.; Rouse, G.W.; Botten, L.C.; Welch, V.; Parker, A.R.; Wohlgennant, M.; Vardeny, V

    2003-10-01

    We discuss two examples of living creatures using photonic crystals to achieve iridescent colouration. The first is the sea mouse (Aphroditidae, Polychaeta), which has a hexagonal close packed structure of holes in its spines and lower-body felt, while the second is the jelly fish Bolinopsis infundibulum, which has an oblique array of high index inclusions in its antennae. We show by measurements and optical calculations that both creatures can achieve strong colours despite having access only to weak refractive index contrast.

  12. THE CRYSTAL STRUCTURE OF ANTIMONY (III) SULFOBROMIDE, SBSBR,

    Science.gov (United States)

    ANTIMONY COMPOUNDS, *SULFUR COMPOUNDS, CRYSTAL STRUCTURE , CRYSTAL STRUCTURE , BROMIDES, SYMMETRY(CRYSTALLOGRAPHY), FOURIER ANALYSIS, MOLECULAR STRUCTURE, CRYSTAL LATTICES, CHEMICAL BONDS, X RAY DIFFRACTION.

  13. Pattern information extraction from crystal structures

    OpenAIRE

    Okuyan, Erhan

    2005-01-01

    Cataloged from PDF version of article. Determining crystal structure parameters of a material is a quite important issue in crystallography. Knowing the crystal structure parameters helps to understand physical behavior of material. For complex structures, particularly for materials which also contain local symmetry as well as global symmetry, obtaining crystal parameters can be quite hard. This work provides a tool that will extract crystal parameters such as primitive vect...

  14. Crystal structure of gold hydride

    Energy Technology Data Exchange (ETDEWEB)

    Degtyareva, Valentina F., E-mail: degtyar@issp.ac.ru

    2015-10-05

    Highlights: • Volume expansion of metal hydrides is due to the increase in the s-band filling. • AuH structure is similar to that of Hg having one more s electron compared to Au. • Structure stability of both Hg and AuH is governed by the Hume-Rothery rule. - Abstract: A number of transition metal hydrides with close-packed metal sublattices of fcc or hcp structures with hydrogen in octahedral interstitial positions were obtained by the high-pressure-hydrogen technique described by Ponyatovskii et al. (1982). In this paper we consider volume increase of metals by hydrogenation and possible crystal structure of gold hydride in relation with the structure of mercury, the nearest neighbor of Au in the Periodic table. Suggested structure of AuH has a basic tetragonal body-centered cell that is very similar to the mercury structure Hg-t I 2. The reasons of stability for this structure are discussed within the model of Fermi sphere–Brillouin zone interactions.

  15. Crystal structure of an archaeal actin homolog.

    Science.gov (United States)

    Roeben, Annette; Kofler, Christine; Nagy, István; Nickell, Stephan; Hartl, F Ulrich; Bracher, Andreas

    2006-04-21

    Prokaryotic homologs of the eukaryotic structural protein actin, such as MreB and ParM, have been implicated in determination of bacterial cell shape, and in the segregation of genomic and plasmid DNA. In contrast to these bacterial actin homologs, little is known about the archaeal counterparts. As a first step, we expressed a predicted actin homolog of the thermophilic archaeon Thermoplasma acidophilum, Ta0583, and determined its crystal structure at 2.1A resolution. Ta0583 is expressed as a soluble protein in T.acidophilum and is an active ATPase at physiological temperature. In vitro, Ta0583 forms sheets with spacings resembling the crystal lattice, indicating an inherent propensity to form filamentous structures. The fold of Ta0583 contains the core structure of actin and clearly belongs to the actin/Hsp70 superfamily of ATPases. Ta0583 is approximately equidistant from actin and MreB on the structural level, and combines features from both eubacterial actin homologs, MreB and ParM. The structure of Ta0583 co-crystallized with ADP indicates that the nucleotide binds at the interface between the subdomains of Ta0583 in a manner similar to that of actin. However, the conformation of the nucleotide observed in complex with Ta0583 clearly differs from that in complex with actin, but closely resembles the conformation of ParM-bound nucleotide. On the basis of sequence and structural homology, we suggest that Ta0583 derives from a ParM-like actin homolog that was once encoded by a plasmid and was transferred into a common ancestor of Thermoplasma and Ferroplasma. Intriguingly, both genera are characterized by the lack of a cell wall, and therefore Ta0583 could have a function in cellular organization.

  16. Crystal structures of the fungal pathogen Aspergillus fumigatus protein farnesyltransferase complexed with substrates and inhibitors reveal features for antifungal drug design

    OpenAIRE

    Mabanglo, Mark F.; Hast, Michael A.; Lubock, Nathan B; Hellinga, Homme W.; Beese, Lorena S.

    2014-01-01

    Species of the fungal genus Aspergillus are significant human and agricultural pathogens that are often refractory to existing antifungal treatments. Protein farnesyltransferase (FTase), a critical enzyme in eukaryotes, is an attractive potential target for antifungal drug discovery. We report high-resolution structures of A. fumigatus FTase (AfFTase) in complex with substrates and inhibitors. Comparison of structures with farnesyldiphosphate (FPP) bound in the absence or presence of peptide ...

  17. Crystal Structure of the Cystic Fibrosis Transmembrane Conductance Regulator Inhibitory Factor Cif Reveals Novel Active-Site Features of an Epoxide Hydrolase Virulence Factor▿ †

    Science.gov (United States)

    Bahl, Christopher D.; Morisseau, Christophe; Bomberger, Jennifer M.; Stanton, Bruce A.; Hammock, Bruce D.; O'Toole, George A.; Madden, Dean R.

    2010-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is a virulence factor secreted by Pseudomonas aeruginosa that reduces the quantity of CFTR in the apical membrane of human airway epithelial cells. Initial sequence analysis suggested that Cif is an epoxide hydrolase (EH), but its sequence violates two strictly conserved EH motifs and also is compatible with other α/β hydrolase family members with diverse substrate specificities. To investigate the mechanistic basis of Cif activity, we have determined its structure at 1.8-Å resolution by X-ray crystallography. The catalytic triad consists of residues Asp129, His297, and Glu153, which are conserved across the family of EHs. At other positions, sequence deviations from canonical EH active-site motifs are stereochemically conservative. Furthermore, detailed enzymatic analysis confirms that Cif catalyzes the hydrolysis of epoxide compounds, with specific activity against both epibromohydrin and cis-stilbene oxide, but with a relatively narrow range of substrate selectivity. Although closely related to two other classes of α/β hydrolase in both sequence and structure, Cif does not exhibit activity as either a haloacetate dehalogenase or a haloalkane dehalogenase. A reassessment of the structural and functional consequences of the H269A mutation suggests that Cif's effect on host-cell CFTR expression requires the hydrolysis of an extended endogenous epoxide substrate. PMID:20118260

  18. Crystal Structure of the Cystic Fibrosis Transmembrane Conductance Regulator Inhibitory Factor Cif Reveals Novel Active-Site Features of an Epoxide Hydrolase Virulence Factor

    Energy Technology Data Exchange (ETDEWEB)

    Bahl, C.; Morisseau, C; Bomberger, J; Stanton, B; Hammock, B; O& apos; Toole, G; Madden, D

    2010-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is a virulence factor secreted by Pseudomonas aeruginosa that reduces the quantity of CFTR in the apical membrane of human airway epithelial cells. Initial sequence analysis suggested that Cif is an epoxide hydrolase (EH), but its sequence violates two strictly conserved EH motifs and also is compatible with other {alpha}/{beta} hydrolase family members with diverse substrate specificities. To investigate the mechanistic basis of Cif activity, we have determined its structure at 1.8-{angstrom} resolution by X-ray crystallography. The catalytic triad consists of residues Asp129, His297, and Glu153, which are conserved across the family of EHs. At other positions, sequence deviations from canonical EH active-site motifs are stereochemically conservative. Furthermore, detailed enzymatic analysis confirms that Cif catalyzes the hydrolysis of epoxide compounds, with specific activity against both epibromohydrin and cis-stilbene oxide, but with a relatively narrow range of substrate selectivity. Although closely related to two other classes of {alpha}/{beta} hydrolase in both sequence and structure, Cif does not exhibit activity as either a haloacetate dehalogenase or a haloalkane dehalogenase. A reassessment of the structural and functional consequences of the H269A mutation suggests that Cif's effect on host-cell CFTR expression requires the hydrolysis of an extended endogenous epoxide substrate.

  19. Crystal structure of the cystic fibrosis transmembrane conductance regulator inhibitory factor Cif reveals novel active-site features of an epoxide hydrolase virulence factor.

    Science.gov (United States)

    Bahl, Christopher D; Morisseau, Christophe; Bomberger, Jennifer M; Stanton, Bruce A; Hammock, Bruce D; O'Toole, George A; Madden, Dean R

    2010-04-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is a virulence factor secreted by Pseudomonas aeruginosa that reduces the quantity of CFTR in the apical membrane of human airway epithelial cells. Initial sequence analysis suggested that Cif is an epoxide hydrolase (EH), but its sequence violates two strictly conserved EH motifs and also is compatible with other alpha/beta hydrolase family members with diverse substrate specificities. To investigate the mechanistic basis of Cif activity, we have determined its structure at 1.8-A resolution by X-ray crystallography. The catalytic triad consists of residues Asp129, His297, and Glu153, which are conserved across the family of EHs. At other positions, sequence deviations from canonical EH active-site motifs are stereochemically conservative. Furthermore, detailed enzymatic analysis confirms that Cif catalyzes the hydrolysis of epoxide compounds, with specific activity against both epibromohydrin and cis-stilbene oxide, but with a relatively narrow range of substrate selectivity. Although closely related to two other classes of alpha/beta hydrolase in both sequence and structure, Cif does not exhibit activity as either a haloacetate dehalogenase or a haloalkane dehalogenase. A reassessment of the structural and functional consequences of the H269A mutation suggests that Cif's effect on host-cell CFTR expression requires the hydrolysis of an extended endogenous epoxide substrate.

  20. Crystal structure of fiber structured pentacene thin films

    OpenAIRE

    2007-01-01

    This PhD thesis presents a technique based on the grazing incidence crystal truncation rod (GI-CTR) X-ray diffraction method used to solve the crystal structure of substrate induced fiber structured organic thin films. The crystal structures of pentacene thin films grown on technologically relevant gate dielectric substrates are reported. It is widely recognized, that the intrinsic charge transport properties in organic thin film transistors (OTFTs) depend strongly on the crystal structur...

  1. Crystal growth and structural analysis of zirconium sulphoselenide single crystals

    Indian Academy of Sciences (India)

    K R Patel; R D Vaidya; M S Dave; S G Patel

    2008-08-01

    A series of zirconium sulphoselenide (ZrSSe3–, where = 0, 0.5, 1, 1.5, 2, 2.5, 3) single crystals have been grown by chemical vapour transport technique using iodine as a transporting agent. The optimum condition for the growth of these crystals is given. The stoichiometry of the grown crystals were confirmed on the basis of energy dispersive analysis by X-ray (EDAX) and the structural characterization was accomplished by X-ray diffraction (XRD) studies. The crystals are found to possess monoclinic structure. The lattice parameters, volume, particle size and X-ray density have been carried out for these crystals. The effect of sulphur proportion on the lattice parameter, unit cell volume and X-ray density in the series of ZrSSe3– single crystals have been studied and found to decrease in all these parameters with rise in sulphur proportion. The grown crystals were examined under optical zoom microscope for their surface topography study. Hall effect measurements were carried out on grown crystals at room temperature. The negative value of Hall coefficient implies that these crystals are -type in nature. The conductivity is found to decrease with increase of sulphur content in the ZrSSe3– series. The electrical resistivity parallel to c-axis as well as perpendicular to -axis have been carried out in the temperature range 303–423 K. The results obtained are discussed in detail.

  2. Influence of microgravity on protein crystal structures

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Structural determination and comparison of microgravity and ground grown protein crystals have been carried out in order to investigate the effect of microgravity on the structure of protein crystals. Following the structural studies on the hen egg-white lysozyme cystals grown in space and on the ground, the same kind of comparative studies was performed with acidic phospholipase A2 crystals grown in different gravities. Based on the results obtained so far, a conclusion could be made that microgravity might not be strong enough to change the conformation of polypeptide chain of proteins, but it may improve the bound waters' structure, and this might be an important factor for microgravity to improve the protein crystal quality. In addition, the difference in the improvement between the two kinds of protein crystals may imply that the degree of improvement of a protein crystal in microgravity may be related to the solvent content in the protein crystal.

  3. Crystal structure of Cryptosporidium parvum pyruvate kinase.

    Directory of Open Access Journals (Sweden)

    William J Cook

    Full Text Available Pyruvate kinase plays a critical role in cellular metabolism of glucose by serving as a major regulator of glycolysis. This tetrameric enzyme is allosterically regulated by different effector molecules, mainly phosphosugars. In response to binding of effector molecules and substrates, significant structural changes have been identified in various pyruvate kinase structures. Pyruvate kinase of Cryptosporidium parvum is exceptional among known enzymes of protozoan origin in that it exhibits no allosteric property in the presence of commonly known effector molecules. The crystal structure of pyruvate kinase from C. parvum has been solved by molecular replacement techniques and refined to 2.5 Å resolution. In the active site a glycerol molecule is located near the γ-phosphate site of ATP, and the protein structure displays a partially closed active site. However, unlike other structures where the active site is closed, the α6' helix in C. parvum pyruvate kinase unwinds and assumes an extended conformation. In the crystal structure a sulfate ion is found at a site that is occupied by a phosphate of the effector molecule in many pyruvate kinase structures. A new feature of the C. parvum pyruvate kinase structure is the presence of a disulfide bond cross-linking the two monomers in the asymmetric unit. The disulfide bond is formed between cysteine residue 26 in the short N-helix of one monomer with cysteine residue 312 in a long helix (residues 303-320 of the second monomer at the interface of these monomers. Both cysteine residues are unique to C. parvum, and the disulfide bond remained intact in a reduced environment. However, the significance of this bond, if any, remains unknown at this time.

  4. Predicting crystal structures of organic compounds.

    Science.gov (United States)

    Price, Sarah L

    2014-04-07

    Currently, organic crystal structure prediction (CSP) methods are based on searching for the most thermodynamically stable crystal structure, making various approximations in evaluating the crystal energy. The most stable (global minimum) structure provides a prediction of an experimental crystal structure. However, depending on the specific molecule, there may be other structures which are very close in energy. In this case, the other structures on the crystal energy landscape may be polymorphs, components of static or dynamic disorder in observed structures, or there may be no route to nucleating and growing these structures. A major reason for performing CSP studies is as a complement to solid form screening to see which alternative packings to the known polymorphs are thermodynamically feasible.

  5. Crystal fingerprint space--a novel paradigm for studying crystal-structure sets.

    Science.gov (United States)

    Valle, Mario; Oganov, Artem R

    2010-09-01

    The initial aim of the crystal fingerprint project was to solve a very specific problem: to classify and remove duplicate crystal structures from the results generated by the evolutionary crystal-structure predictor USPEX. These duplications decrease the genetic diversity of the population used by the evolutionary algorithm, potentially leading to stagnation and, after a certain time, reducing the likelihood of predicting essentially new structures. After solving the initial problem, the approach led to unexpected discoveries: unforeseen correlations, useful derived quantities and insight into the structure of the overall set of results. All of these were facilitated by the project's underlying idea: to transform the structure sets from the physical configuration space to an abstract, high-dimensional space called the fingerprint space. Here every structure is represented as a point whose coordinates (fingerprint) are computed from the crystal structure. Then the space's distance measure, interpreted as structure 'closeness', enables grouping of structures into similarity classes. This model provides much flexibility and facilitates access to knowledge and algorithms from fields outside crystallography, e.g. pattern recognition and data mining. The current usage of the fingerprint-space model is revealing interesting properties that relate to chemical and crystallographic attributes of a structure set. For this reason, the mapping of structure sets to fingerprint space could become a new paradigm for studying crystal-structure ensembles and global chemical features of the energy landscape.

  6. Crystal structure analysis of intermetallic compounds

    Science.gov (United States)

    Conner, R. A., Jr.; Downey, J. W.; Dwight, A. E.

    1968-01-01

    Study concerns crystal structures and lattice parameters for a number of new intermetallic compounds. Crystal structure data have been collected on equiatomic compounds, formed between an element of the Sc, Ti, V, or Cr group and an element of the Co or Ni group. The data, obtained by conventional methods, are presented in an easily usable tabular form.

  7. THE CRYSTAL STRUCTURE OF ALPHA-DIMETHYLTELLURIUM DICHLORIDE,

    Science.gov (United States)

    TELLURIUM COMPOUNDS, *ORGANOMETALLIC COMPOUNDS, CRYSTAL STRUCTURE , CRYSTAL STRUCTURE , CHLORIDES, SYMMETRY(CRYSTALLOGRAPHY), MOLECULAR STRUCTURE, CHEMICAL BONDS, X RAY DIFFRACTION, ANISOTROPY, FOURIER ANALYSIS.

  8. Crystal Structure of Isoquinoline Derivatives

    Institute of Scientific and Technical Information of China (English)

    LUO Mei; ZHANG Jia-Hai; ZHOU Shi-Ming; SUN Jie; YIN Hao; HU Ke-Liang

    2011-01-01

    The chiral compound 5H-imidazol[2,3-b]isoquinoline-l-ethanol-5-one-1,2, 3, 10b-tetrahydro- β(S)-phenyl-3(S)-phenyl was synthesized from the direct condensation of 2- cyanophenyacetonitrile with optically active (S)-(+)-2-phenylglycinol in chlorobenzene under dry, anaerobic conditions. ZnCl2 was used as a Lewis acid catalyst in this reaction, and the structure of this compound was determined by X-ray diffraction, NMR, MS and IR. Crystal data of the title compound: C25H22N2O2, Mr = 382.45, P 21 21 21, a = 5.341(5), b = 16.735(5), c = 22.129(5) A, γ = 90°, V = 1978(2)A^3, Z = 4, Dc = 1.284 g/cm^3, the final R = 0.0321 for 2269 observed reflections with I 〉 2 σ(I) and Rw = 0.0771 for all data.

  9. Crystal structure of 2-pentyloxybenzamide

    Directory of Open Access Journals (Sweden)

    Bernhard Bugenhagen

    2014-10-01

    Full Text Available In the title molecule, C12H17NO2, the amide NH2 group is oriented toward the pentyloxy substituent and an intramolecular N—H...O hydrogen bond is formed with the pentyloxy O atom. The benzene ring forms dihedral angles of 2.93 (2 and 5.60 (2° with the amide group and the pentyloxy group mean planes, respectively. In the crystal, molecules are linked by pairs of N—H...O hydrogen bonds, forming inversion dimers with their molecular planes parallel, but at an offset of 0.45 (1 Å to each other. These dimers are ordered into two types of symmetry-related columns extended along the a axis, with the mean plane of one set of dimers in a column approximately parallel to (121 and the other in a column approximately parallel to (1-21. The two planes form a dihedral angle of 85.31 (2°, and are linked via C—H...O hydrogen bonds and C—H...π interactions, forming a three-dimensional framework structure.

  10. Method of fabricating patterned crystal structures

    KAUST Repository

    Yu, Liyang

    2016-12-15

    A method of manufacturing a patterned crystal structure for includes depositing an amorphous material. The amorphous material is modified such that a first portion of the amorphous thin-film layer has a first height/volume and a second portion of the amorphous thin-film layer has a second height/volume greater than the first portion. The amorphous material is annealed to induce crystallization, wherein crystallization is induced in the second portion first due to the greater height/volume of the second portion relative to the first portion to form patterned crystal structures.

  11. 8-(Dimethylamino)naphthylcopper(I), a novel stable organocopper compound with unusual structural features. A study concerning its synthesis, structure (X-ray) and reactivity. Its synthesis, crystal structure (X-ray) and reactivity

    NARCIS (Netherlands)

    Koten, G. van; Wehman, E.; Knotter, M.; Spelten, H.; Heijdenrijk, D.; Mak, A.N.S.; Stam, C.H.

    1987-01-01

    The synthesis and isolation of a hydrocarbon- and ether-insoluble organocopper compound containing the rigid 8-(dimethylamino)naphthyl group is described. An X-ray determination of its structure revealed a tetranuclear copper aggregate, in which the Cu atoms are arranged in a parallelogram (Cu...Cu

  12. Crystal Structure Representations for Machine Learning Models of Formation Energies

    CERN Document Server

    Faber, Felix; von Lilienfeld, O Anatole; Armiento, Rickard

    2015-01-01

    We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an Ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix by using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a data set of 3938 crystal structures obtained from the Materials Project. For training sets consi...

  13. High Resolution Crystal Structure of Human [beta]-Glucuronidase Reveals Structural Basis of Lysosome Targeting: e79687

    National Research Council Canada - National Science Library

    Md Imtaiyaz Hassan; Abdul Waheed; Jeffery H Grubb; Herbert E Klei; Sergey Korolev; William S Sly

    2013-01-01

    ...). Here we report a high resolution crystal structure of human GUS at 1.7 Å resolution and present an extensive analysis of the structural features, unifying recent findings in the field of lysosome targeting and glycosyl hydrolases...

  14. Crystallization features of normal alkanes in confined geometry.

    Science.gov (United States)

    Su, Yunlan; Liu, Guoming; Xie, Baoquan; Fu, Dongsheng; Wang, Dujin

    2014-01-21

    How polymers crystallize can greatly affect their thermal and mechanical properties, which influence the practical applications of these materials. Polymeric materials, such as block copolymers, graft polymers, and polymer blends, have complex molecular structures. Due to the multiple hierarchical structures and different size domains in polymer systems, confined hard environments for polymer crystallization exist widely in these materials. The confined geometry is closely related to both the phase metastability and lifetime of polymer. This affects the phase miscibility, microphase separation, and crystallization behaviors and determines both the performance of polymer materials and how easily these materials can be processed. Furthermore, the size effect of metastable states needs to be clarified in polymers. However, scientists find it difficult to propose a quantitative formula to describe the transition dynamics of metastable states in these complex systems. Normal alkanes [CnH2n+2, n-alkanes], especially linear saturated hydrocarbons, can provide a well-defined model system for studying the complex crystallization behaviors of polymer materials, surfactants, and lipids. Therefore, a deeper investigation of normal alkane phase behavior in confinement will help scientists to understand the crystalline phase transition and ultimate properties of many polymeric materials, especially polyolefins. In this Account, we provide an in-depth look at the research concerning the confined crystallization behavior of n-alkanes and binary mixtures in microcapsules by our laboratory and others. Since 2006, our group has developed a technique for synthesizing nearly monodispersed n-alkane containing microcapsules with controllable size and surface porous morphology. We applied an in situ polymerization method, using melamine-formaldehyde resin as shell material and nonionic surfactants as emulsifiers. The solid shell of microcapsules can provide a stable three-dimensional (3-D

  15. synthesis, characterization and crystal structure of a ...

    African Journals Online (AJOL)

    Preferred Customer

    Crystal and molecular structure of the complex ... Coordination chemistry of molybdenum(VI) has attracted considerable attention due to its biochemical significance [1-3] as well as for the efficient catalytic properties in several organic.

  16. Pattern information extraction from crystal structures

    Science.gov (United States)

    Okuyan, Erhan; Güdükbay, Uğur; Gülseren, Oğuz

    2007-04-01

    Determining the crystal structure parameters of a material is an important issue in crystallography and material science. Knowing the crystal structure parameters helps in understanding the physical behavior of material. It can be difficult to obtain crystal parameters for complex structures, particularly those materials that show local symmetry as well as global symmetry. This work provides a tool that extracts crystal parameters such as primitive vectors, basis vectors and space groups from the atomic coordinates of crystal structures. A visualization tool for examining crystals is also provided. Accordingly, this work could help crystallographers, chemists and material scientists to analyze crystal structures efficiently. Program summaryTitle of program: BilKristal Catalogue identifier: ADYU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYU_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Programming language used: C, C++, Microsoft .NET Framework 1.1 and OpenGL Libraries Computer: Personal Computers with Windows operating system Operating system: Windows XP Professional RAM: 20-60 MB No. of lines in distributed program, including test data, etc.:899 779 No. of bytes in distributed program, including test date, etc.:9 271 521 Distribution format:tar.gz External routines/libraries: Microsoft .NET Framework 1.1. For visualization tool, graphics card driver should also support OpenGL Nature of problem: Determining crystal structure parameters of a material is a quite important issue in crystallography. Knowing the crystal structure parameters helps to understand physical behavior of material. For complex structures, particularly, for materials which also contain local symmetry as well as global symmetry, obtaining crystal parameters can be quite hard. Solution method: The tool extracts crystal parameters such as primitive vectors, basis vectors and identify the space group from

  17. Photonic-crystal fibre: Mapping the structure

    DEFF Research Database (Denmark)

    Markos, Christos

    2015-01-01

    The demonstration of real-time and non-destructive Doppler-assisted tomography of the internal structure of photonic-crystal fibres could aid the fabrication of high-quality fibres with enhanced performance.......The demonstration of real-time and non-destructive Doppler-assisted tomography of the internal structure of photonic-crystal fibres could aid the fabrication of high-quality fibres with enhanced performance....

  18. FEATURES OF FORMATION OF REGIONAL CLUSTER STRUCTURES

    Directory of Open Access Journals (Sweden)

    Ekaterina V. Andreyeva

    2016-01-01

    Full Text Available In article is considered features of formation of cluster structures for increase of efficiency of economic entities and growth of investment and innovative appeal of the region. Cluster structures are described as a specialized product oriented commands, which were created for common decision making about production, nancial and organizational questions.

  19. Crystal structure of meteoritic schreibersites: determination of absolute structure

    Science.gov (United States)

    Skála, Roman; Císařová, Ivana

    Minerals of the schreibersite nickelphosphide series (Fe,Ni)3P crystallize in the non-centrosymmetric space group Ibar 4. As a consequence, they can possess two different spatial arrangements of the constituting atoms within the unit cell, related by the inversion symmetry operation. Here, we present the crystal structure refinements from single crystal X-ray diffraction data for schreibersite grains from iron meteorites Acuña, Carlton, Hex River Mts. (three different crystals), Odessa (two different crystals), Sikhote Alin, and Toluca aiming for the determination of the absolute structure of the examined crystals. The crystals studied cover the composition range from 58 mol% to 80 mol% Fe3P end-member. Unit-cell parameter a and volume of the unit cell V, as well as certain topological structural parameters tightly correlate with Fe3P content. Unit-cell parameter c, on the other hand, does not show such strong correlation. Eight of the nine crystal structure refinements allowed unambiguous absolute structure assignment. The single crystal extracted from Toluca is, however, of poor quality and consequently the structure refinement did not provide as good results as the rest of the materials. Also, this crystal has only weak inversion distinguishing power to provide unequivocal absolute structure determination. Six of the eight unambiguous absolute structure determinations indicated inverted atomic arrangement compared to that reported in earlier structure refinements (here called standard). Only two grains, one taken from Odessa iron and the other from the Hex River Mts. meteorite, reveal the dominance of standard crystal structure setting.

  20. A novel crystal structure of {tris[4-(1H-pyrazol-3-yl-κN(2))-3-azabut-3-enyl]amine-κN}iron(II) bis(tetrafluoridoborate) methanol monosolvate featuring a low-spin configuration.

    Science.gov (United States)

    Struch, Niklas; Schnakenburg, Gregor; Lützen, Arne

    2015-12-01

    Mononuclear complexes are good model systems for evaluating the effects of different ligand systems on the magnetic properties of iron(II) centres. A novel crystal structure of the title compound, [Fe(C18H24N10)](BF4)2·CH3OH, with one molecule of methanol per formula unit exhibits a strictly sixfold coordination sphere associated with a low-spin configuration at the metal centre. The incorporated methanol solvent molecule promotes extended hydrogen-bonding networks between the tetrafluoridoborate anions and the cationic units. A less constrained crystal structure regarding close contacts between the tetrafluoridoborate anions and the cationic units allows a spin transition which is inhibited in the previously published hydrate of the title compound.

  1. Crystal structures of barley thioredoxin h isoforms HvTrxh1 and HvTrxh2 reveal features involved in protein recognition and possibly in discriminating the isoform specificity

    DEFF Research Database (Denmark)

    Maeda, Kenji; Hägglund, Per; Finnie, Christine;

    2008-01-01

    H-type thioredoxins (Trxs) constitute a particularly large Trx sub-group in higher plants. Here, the crystal structures are determined for the two barley Trx h isoforms, HvTrxh1 and HvTrxh2, in the partially radiation-reduced state to resolutions of 1.7 angstrom, and for HvTrxh2 in the oxidized...... state to 2.0 angstrom. The two Trxs have a sequence identity of 51% and highly similar fold and active-site architecture. Interestingly, the four independent molecules in the crystals of HvTrxh1 form two relatively large and essentially identical protein-protein interfaces. In each interface, a loop......) of the bound loop segment in the proximity of the Cys40 thiol. The interaction involves three characteristic backbone-backbone hydrogen bonds in an antiparallel beta-sheet-like arrangement, similar to the arrangement observed in the structure of an engineered, covalently bound complex between Trx...

  2. Structures of cyano-biphenyl liquid crystals

    Science.gov (United States)

    Chu, Yuan-Chao; Tsang, Tung; Rahimzadeh, E.; Yin, L.

    1989-01-01

    The structures of p-alkyl- p'-cyano- bicyclohexanes, C(n)H(2n+1) (C6H10)(C6H10) CN (n-CCH), and p-alkyl- p'-cyano- biphenyls, C(n)H(2n+1) (C6H4)(C6H4) CN (n-CBP), were studied. It is convenient to use an x ray image intensification device to search for symmetric x ray diffraction patterns. Despite the similarities in molecular structures of these compounds, very different crystal structures were found. For the smectic phase of 2CCH, the structure is close to rhombohedral with threefold symmetry. In contrast, the structure is close to hexagonal close-packed with two molecules per unit cell for 4CCH. Since intermolecular forces may be quite weak for these liquid crystals systems, it appears that crystal structures change considerably when the alkyl chain length is slightly altered. Different structures were also found in the crystalline phase of n-CBP for n = 6 to 9. For n = 7 to 9, the structures are close to monclinic. The structures are reminiscent of the smectic-A liquid crystal structures with the linear molecules slightly tilted away from the c-axis. In contrast, the structure is quite different for n = 6 with the molecules nearly perpendicular to the c-axis.

  3. Feature extraction for structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois [Los Alamos National Laboratory; Farrar, Charles [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Nishio, Mayuko [UNIV OF TOKYO; Worden, Keith [UNIV OF SHEFFIELD; Takeda, Nobuo [UNIV OF TOKYO

    2010-11-08

    This study focuses on defining and comparing response features that can be used for structural dynamics model validation studies. Features extracted from dynamic responses obtained analytically or experimentally, such as basic signal statistics, frequency spectra, and estimated time-series models, can be used to compare characteristics of structural system dynamics. By comparing those response features extracted from experimental data and numerical outputs, validation and uncertainty quantification of numerical model containing uncertain parameters can be realized. In this study, the applicability of some response features to model validation is first discussed using measured data from a simple test-bed structure and the associated numerical simulations of these experiments. issues that must be considered were sensitivity, dimensionality, type of response, and presence or absence of measurement noise in the response. Furthermore, we illustrate a comparison method of multivariate feature vectors for statistical model validation. Results show that the outlier detection technique using the Mahalanobis distance metric can be used as an effective and quantifiable technique for selecting appropriate model parameters. However, in this process, one must not only consider the sensitivity of the features being used, but also correlation of the parameters being compared.

  4. Nucleation and structural growth of cluster crystals

    CERN Document Server

    Leitold, Christian

    2016-01-01

    We study the nucleation of crystalline cluster phases in the generalized exponential model with exponent n=4. Due to the finite value of this pair potential for zero separation, at high densities the system forms cluster crystals with multiply occupied lattice sites. Here, we investigate the microscopic mechanisms that lead to the formation of cluster crystals from a supercooled liquid in the low-temperature region of the phase diagram. Using molecular dynamics and umbrella sampling, we calculate the free energy as a function of the size of the largest crystalline nucleus in the system, and compare our results with predictions from classical nucleation theory. Employing bond-order parameters based on a Voronoi tessellation to distinguish different crystal structures, we analyze the average composition of crystalline nuclei. We find that even for conditions where a multiply-occupied fcc crystal is the thermodynamically stable phase, the nucleation into bcc cluster crystals is strongly preferred. Furthermore, w...

  5. Crystal structure from one-electron theory

    DEFF Research Database (Denmark)

    Skriver, H. L.

    1985-01-01

    The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated by the the......The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated...... by the theory, the predicted crystal structures are in accord with experiment in all cases except 79Au. In addition, they have investigated the effect of pressure upon the alkali metals (3Li, 11Na, 37Rb, 55Cs) and selected lanthanide metals (57La, 58Ce, 71Lu) and actinide metals (90Th, 91Pa). In these cases...

  6. Structure of crystals of hard colloidal spheres

    Energy Technology Data Exchange (ETDEWEB)

    Pusey, P.N.; van Megen, W.; Bartlett, P.; Ackerson, B.J.; Rarity, J.G.; Underwood, S.M. (Royal Signals and Radar Establishment, Malvern, WR14 3PS, United Kingsom (GB) Department of Applied Physics, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia School of Chemistry, Bristol University, Bristol, BS8 1TS, United Kingdom Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078)

    1989-12-18

    We report light-scattering measurements of powder diffraction patterns of crystals of essentially hard colloidal spheres. These are consistent with structures formed by stacking close-packed planes of particles in a sequence of permitted lateral positions, {ital A},{ital B},{ital C}, which shows a high degree of randomness. Crystals grown slowly, while still containing many stacking faults, show a tendency towards face-centered-cubic packing: possible explanations for this observation are discussed.

  7. Crystal Structure of Macrocalyxin J

    Institute of Scientific and Technical Information of China (English)

    HE Shan; WU Bin; SHI Hao; SUN Cui-Rong

    2007-01-01

    The title compound, (1α,6β, 1 1β, 14α)-1,7:6,20-diepoxy-6,1 1-dihydroxy- 6,7-secoent- kaur-1 6-ene-7,15-dione-14-acetate (macrocalyxin J), is a diterpenoid which was isolated from the leaves of Rabdosia macrocalyx and characterized by single-crystal X-ray diffraction. It crystallizes in orthorhombic, spac e group P212121 with a = 9.3608(8), b = 14.9787(12), c = 15.5750(13)(A), Z = 4, V = 2183.8(3) (A)3, C22H30O9, Mr = 438.46, Dc = 1.334 g/m3, μ(MoKα) = 0.103 mm-1,F(000) = 936, the final R = 0.0532 and wR = 0.1262 for 2252 observed reflections (I > 2σ(I)). In the molecule, three six-membered rings adopt chair, boat and slightly distorted boat conformations,respectively, while both five-membered rings have approximate envelope conformations.

  8. Synthesis and spectral features of Ag{sub 2}SnS{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fedorchuk, A.O. [Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies, Pekarska St., 50, 79010 Lviv (Ukraine); Zhbankov, O.Ye. [Department of Inorganic and Physical Chemistry, Volyn National University, 13 Voli Ave., 43025 Lutsk (Ukraine); Lakshminarayana, G., E-mail: glnphysics@rediffmail.com [Materials Science and Technology Division (MST-7), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Kityk, I.V. [Electrical Engineering Department, Czestochowa Technological University, Al. Armii Krajowej 17, Czestochowa (Poland); Tokaichuk, Y. [Department of Inorganic Chemistry, Ivan Franko National University of Lviv, 6 Kyryla and Mefodiya St., 79005 L' viv (Ukraine); Myronchuk, G.L.; Davydyuk, G.Ye.; Yakymchuk, O.V. [Department of Solid State Physics, Volyn National University, 13 Voli Ave., 43025 Lutsk (Ukraine); Parasyuk, O.V. [Department of Inorganic and Physical Chemistry, Volyn National University, 13 Voli Ave., 43025 Lutsk (Ukraine)

    2012-08-15

    The crystal structure of the Ag{sub 2}SnS{sub 3} compound was determined by the single crystal method in the anisotropic approximation in the space group C/2c (Pearson symbol mS52-3.8) with the unit cell parameters a = 0.66323(11), b = 1.14626(13), c = 1.32381(23) nm, {beta} = 98.008(14) Degree-Sign based on 1767 measured reflections (R{sub F} = 6.96%, GOF = 1.030). The compound crystallizes in its own structure type. The lattice is composed of SnS{sub 6} octahedra combined into layers, with the silver atoms situated in the channels between them. For the titled crystals, thermo-EMF, electrophysical and optical properties were determined. -- Highlights: Black-Right-Pointing-Pointer Ag{sub 2}SnS{sub 3} compound was synthesized. Black-Right-Pointing-Pointer Thermo-EMF, electrophysical and optical properties were determined. Black-Right-Pointing-Pointer Ag{sub 2}SnS{sub 3} samples exhibit the promising optoelectronic features.

  9. Modeling liquid crystal bilayer structures with minimal surfaces.

    Science.gov (United States)

    Enlow, J D; Enlow, R L; McGrath, K M; Tate, M W

    2004-01-22

    This paper describes a new convenient and accurate method of calculating x-ray diffraction integrated intensities from detailed cubic bilayer structures. The method is employed to investigate the structure of a particular surfactant system (didodecyldimethylammonium bromide in a solution of oil and heavy water), for which single-crystal experimental data have recently been collected. The diffracted peak intensities correlate well with theoretical structures based on mathematical minimal surfaces. Optimized electron density profiles of the bilayer are presented, providing new insight into key features of the bilayer structure.

  10. Extracting Conceptual Feature Structures from Text

    DEFF Research Database (Denmark)

    Andreasen, Troels; Bulskov, Henrik; Lassen, Tine;

    2011-01-01

    This paper describes an approach to indexing texts by their conceptual content using ontologies along with lexico-syntactic information and semantic role assignment provided by lexical resources. The conceptual content of meaningful chunks of text is transformed into conceptual feature structures...

  11. Crystal structure of levomepromazine maleate

    Directory of Open Access Journals (Sweden)

    Gyula Tamás Gál

    2016-05-01

    Full Text Available The asymmetric unit of the title salt, C19H25N2OS+·C4H3O4− [systematic name: (S-3-(2-methoxyphenothiazin-10-yl-N,N,2-trimethylpropanaminium hydrogen maleate], comprises two (S-levomepromazine cations and two hydrogen maleate anions. The conformations of the two cations are similar. The major difference relates to the orientation of the methoxy substituent at the phenothiazine ring system. The crystal components form a three-dimensional supramolecular network via N—H...O, C—H...O and C—H...π interactions. A comparison of the conformations of the levomepromazine cations with those of the neutral molecule and similar protonated molecules reveals significant conformational flexibility of the phenothiazine ring system and the substituent at the phenothiazine N atom.

  12. Crystal structure of 3-(hydroxymethylchromone

    Directory of Open Access Journals (Sweden)

    Yoshinobu Ishikawa

    2015-07-01

    Full Text Available In the title compound, C10H8O3 (systematic name 3-hydroxymethyl-4H-chromen-4-one, the fused-ring system is slightly puckered [dihedral angle between the rings = 3.84 (11°]. The hydroxy O atom deviates from the heterocyclic ring by 1.422 (1 Å. In the crystal, inversion dimers linked by pairs of O—H...O hydrogen bonds generate R22(12 loops. The dimers are linked by aromatic π–π stacking [shortest centroid–centroid distance = 3.580 (3 Å], and C—H...O hydrogen bonds, generating a three-dimensional network.

  13. Crystal structure of 9-methacryloylanthracene

    Directory of Open Access Journals (Sweden)

    Aditya Agrahari

    2015-04-01

    Full Text Available In the title compound, C18H14O, with systematic name 1-(anthracen-9-yl-2-methylprop-2-en-1-one, the ketonic C atom lies 0.2030 (16 Å out of the anthryl-ring-system plane. The dihedral angle between the planes of the anthryl and methacryloyl moieties is 88.30 (3° and the stereochemistry about the Csp2—Csp2 bond in the side chain is transoid. In the crystal, the end rings of the anthryl units in adjacent molecules associate in parallel–planar orientations [shortest centroid–centroid distance = 3.6320 (7 Å]. A weak hydrogen bond is observed between an aromatic H atom and the O atom of a molecule displaced by translation in the a-axis direction, forming sheets of parallel-planar anthryl groups packing in this direction.

  14. The crystal structure and crystal chemistry of fernandinite and corvusite

    Science.gov (United States)

    Evans, H.T.; Post, J.E.; Ross, D.R.; Nelen, J.A.

    1994-01-01

    Using type material of fernandinite from Minasragra, Peru, and corvusite from the Jack Claim, La Sal Mountains, Utah, the properties and crystal chemistry of these minerals have been determined by Rietveld analysis of the powder X-ray-diffraction patterns. The crystal structure of both species is isotypic with the V2O5 -type layer first found for ??-Ag0.68V2O5; it consists of chains of VO6 octahedra linked by opposite corners (parallel to b) condensed by edge-sharing to form the layer. The vanadium has average valence 4.8, and the resulting layer-charge is balanced by varying amounts of Ca, Na, and K in the interlayer region accompanied by labile water. This study has confirmed the validity of fernandinite as a unique mineral species. It is closely related to corvusite, from which it is distinguished on the basis of the dominant interlayer cation: Ca for fernandinite, Na for curvusite. -Authors

  15. Crystal structures of the staphylococcal toxin SSL5 in complex with sialyl Lewis X reveal a conserved binding site that shares common features with viral and bacterial sialic acid binding proteins.

    Science.gov (United States)

    Baker, Heather M; Basu, Indira; Chung, Matthew C; Caradoc-Davies, Tom; Fraser, John D; Baker, Edward N

    2007-12-14

    Staphylococcus aureus is a significant human pathogen. Among its large repertoire of secreted toxins is a group of staphylococcal superantigen-like proteins (SSLs). These are homologous to superantigens but do not have the same activity. SSL5 is shown here to bind to human granulocytes and to the cell surface receptors for human IgA (Fc alphaRI) and P-selectin [P-selectin glycoprotein ligand-1 (PSGL-1)] in a sialic acid (Sia)-dependent manner. Co-crystallization of SSL5 with the tetrasaccharide sialyl Lewis X (sLe(X)), a key determinant of PSGL-1 binding to P-selectin, led to crystal structures of the SSL5-sLe(X) complex at resolutions of 1.65 and 2.75 A for crystals at two pH values. In both structures, sLe(X) bound to a specific site on the surface of the C-terminal domain of SSL5 in a conformation identical with that bound by P-selectin. Conservation of the key carbohydrate binding residues indicates that this ability to bind human glycans is shared by a substantial subgroup of the SSLs, including SSL2, SSL3, SSL4, SSL5, SSL6, and SSL11. This indicates that the ability to target human glycans is an important property of this group of toxins. Structural comparisons also showed that the Sia binding site in SSL5 contains a substructure that is shared by other Sia binding proteins from bacteria as well as viruses and represents a common binding motif.

  16. Crystal Structures of the Staphylococcal Toxin SSL5 in Complex With Sialyl-Lewis X Reveal a Conserved Binding Site That Shares Common Features With Viral And Bacterial Sialic Acid-Binding Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Baker, H.M.; Basu, I.; Chung, M.C.; Caradoc-Davies, T.; Fraser, J.D.; Baker, E.N.

    2009-06-02

    Staphylococcus aureus is a significant human pathogen. Among its large repertoire of secreted toxins is a group of staphylococcal superantigen-like proteins (SSLs). These are homologous to superantigens but do not have the same activity. SSL5 is shown here to bind to human granulocytes and to the cell surface receptors for human IgA (Fc alphaRI) and P-selectin [P-selectin glycoprotein ligand-1 (PSGL-1)] in a sialic acid (Sia)-dependent manner. Co-crystallization of SSL5 with the tetrasaccharide sialyl Lewis X (sLe(X)), a key determinant of PSGL-1 binding to P-selectin, led to crystal structures of the SSL5-sLe(X) complex at resolutions of 1.65 and 2.75 A for crystals at two pH values. In both structures, sLe(X) bound to a specific site on the surface of the C-terminal domain of SSL5 in a conformation identical with that bound by P-selectin. Conservation of the key carbohydrate binding residues indicates that this ability to bind human glycans is shared by a substantial subgroup of the SSLs, including SSL2, SSL3, SSL4, SSL5, SSL6, and SSL11. This indicates that the ability to target human glycans is an important property of this group of toxins. Structural comparisons also showed that the Sia binding site in SSL5 contains a substructure that is shared by other Sia binding proteins from bacteria as well as viruses and represents a common binding motif.

  17. Lessons from crystal structures of kainate receptors

    DEFF Research Database (Denmark)

    Møllerud, Stine; Frydenvang, Karla Andrea; Pickering, Darryl S

    2017-01-01

    structure and how they bind agonists, antagonists and ions. The first structure of the ligand-binding domain of the GluK1 subunit was reported in 2005, seven years after publication of the crystal structure of a soluble construct of the ligand-binding domain of the AMPA-type subunit GluA2. Today, a full......-length structure has been determined of GluK2 by cryo electron microscopy to 7.6 Å resolution as well as 84 high-resolution crystal structures of N-terminal domains and ligand-binding domains, including agonist and antagonist bound structures, modulatory ions and mutations. However, there are still many unanswered...

  18. Crystal structure of putrescine aspartic acid complex

    OpenAIRE

    Ramaswamy, S.; Murthy, MRN

    1990-01-01

    Polyamines, putrescine, spermidine and spermine are ubiquitous biogenic cations believed to be important for a variety of cellular processes. In order to obtain structural information on the interaction of these amines with other biomolecules, the structure of a complex of putrescine with aspartic acid was determined using single crystal X-ray diffraction methods. The crystals belong monoclinic space group $C_2$ with $a = 21.504 \\AA$, $b = 4.779 \\AA$, $c = 8.350 \\AA$ and $\\beta = {97.63}^{\\ci...

  19. Crystal structure of canagliflozin hemihydrate

    Directory of Open Access Journals (Sweden)

    Kai-Hang Liu

    2016-05-01

    Full Text Available There are two canagliflozin molecules (A and B and one water molecule in the asymmetric unit of the title compound, C24H25FO5S·0.5H2O [systematic name: (2S,3R,4R,5S,6R-2-(3-{[5-(4-fluorophenylthiophen-2-yl]methyl}-4-methylphenyl-6-(hydroxymethyl-3,4,5,6-tetrahydro-2H-pyran-3,4,5-triol hemihydrate]. The dihedral angles between the methylbenzene and thiophene rings are 115.7 (4 and 111.7 (4°, while the dihedral angles between the fluorobenzene and thiophene rings are 24.2 (6 and 20.5 (9° in molecules A and B, respectively. The hydropyran ring exhibits a chair conformation in both canagliflozin molecules. In the crystal, the canagliflozin molecules and lattice water molecules are connected via O—H...O hydrogen bonds into a three-dimensional supramolecular architecture.

  20. Crystal structure of canagliflozin hemihydrate.

    Science.gov (United States)

    Liu, Kai-Hang; Gu, Jian-Ming; Hu, Xiu-Rong; Tang, Gu-Ping

    2016-05-01

    There are two canagliflozin mol-ecules (A and B) and one water mol-ecule in the asymmetric unit of the title compound, C24H25FO5S·0.5H2O [systematic name: (2S,3R,4R,5S,6R)-2-(3-{[5-(4-fluoro-phen-yl)thio-phen-2-yl]meth-yl}-4-methylphen-yl)-6-(hy-droxy-meth-yl)-3,4,5,6-tetra-hydro-2H-pyran-3,4,5-triol hemihydrate]. The dihedral angles between the methyl-benzene and thio-phene rings are 115.7 (4) and 111.7 (4)°, while the dihedral angles between the fluoro-benzene and thio-phene rings are 24.2 (6) and 20.5 (9)° in mol-ecules A and B, respectively. The hydro-pyran ring exhibits a chair conformation in both canagliflozin mol-ecules. In the crystal, the canagliflozin mol-ecules and lattice water mol-ecules are connected via O-H⋯O hydrogen bonds into a three-dimensional supra-molecular architecture.

  1. Crystal Structure of 8-Demethoxyrunanine

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Ling

    2008-01-01

    A new hasubanane-type alkaloid, 8-demethoxyrunanine, was isolated from Sino- menium acutum and characterized by melting point, HREIMS, 1H NMR, and X-ray diffraction analysis. X-ray diffraction reveals that the title compound crystallizes in the orthorhombic system, space group P212121 with a = 7.308(1), b = 21.742(5), c = 22.893(4) ?, V = 3637.5(11) ?3, Z = 8, Dx = 1.254 g/cm3, F(000) = 1472, μ(MoKα) = 0.087 mm-1, the final R = 0.0438 and wR = 0.0575 for 4497 independent reflections with Rint = 0.0192 and 2091 observed reflections with I > 2σ(I). Four rings (ring A: one benzene ring, ring B: one hexagon carbon ring in a half-chair conformation, ring C: one hexagon carbon ring with α,β-unsaturated ketone segment (-CR2=CR1-C=O) in a screw-boat conformation, and ring D: one nonplanar tetrahydropyrrole) form a hasubanane-type alkaloid.

  2. Crystal structure determination of Jatrorrhizine chloride

    Institute of Scientific and Technical Information of China (English)

    LEI XianRong; YANG JianHua; LIN Xiang; DAI Qin; CHENG Qiang; GUO LingHong; LI Hui

    2009-01-01

    Optimum resolution data of powder X-ray diffraction (PXRD) for Jatrorrhizine (Jat) were collected by an X' Pert Pro MPD diffractometer with an X'celerator detector under the stepwise scanning condition as 8.255 ms and 0.00836°per step,2θrange of 50°-80° and total scanning period of 8-10 min. Indexing of the crystal system and a search of the space group from the powder X-ray diffraction data were conducted by the computational crystallography method. The pilot crystal models of Jat were globally optimized with Monte Carlo method and then refined with the Rietveld method. In parallel with PXRD test,single crystals of Jat were cultured in an aqueous solution by a slow-decreasing temperature method,then its crystal structure was determined by single crystal X-ray diffraction (SCXRD). Both crystal structures from PXRD and SCXRD are identical. The results show that the crystal structure of Jat belongs to a monoclinic system and the space group P21/c. The parameters of cell dimensions from PXRD are a=7.69(A),b= 12.55(A),c=20.89(A),β=106.53°,Z=4,and V=1933.4(A)3,meanwhile the parameters from SCXRD are a=7.72(A),b=12.61(A),c=20.99(A),β=106.38°,Z=4,and V=1961.3(A)3.

  3. Modular crystals as modulated structures

    DEFF Research Database (Denmark)

    Elcoro, L.; Perez-Mato, J.M.; Friese, K.;

    2008-01-01

    The use of the superspace formalism is extended to the description and refinement of the homologous series of modular structures with two symmetry-related modules with different orientations. The lillianite homologous series has been taken as a study case. Starting from a commensurate modulated c...

  4. Online Farsi Character Recognition Using Structural Features

    Directory of Open Access Journals (Sweden)

    Vahid Ghods

    2012-04-01

    Full Text Available In this paper, grouping and recognition of online Farsi discrete characters are presented according to their structural features. The letters are divided into 9 groups based on the form and structure of their main bodies. After feature extraction, grouping is performed using a decision tree. Final recognition of letters is carried out in each group by delayed strokes. The proposed method is a rapid method in character recognition because time-consuming methods have not been used. Our proposed method was tested on TMU-OFS dataset, and a recognition rate of 94% and 92% was achieved for character grouping and recognition, respectively. The mean processing time for recognizing a letter was 3ms.

  5. Shear induced structures in crystallizing cocoa butter

    Science.gov (United States)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  6. Feature Extraction for Structural Dynamics Model Validation

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles [Los Alamos National Laboratory; Nishio, Mayuko [Yokohama University; Hemez, Francois [Los Alamos National Laboratory; Stull, Chris [Los Alamos National Laboratory; Park, Gyuhae [Chonnam Univesity; Cornwell, Phil [Rose-Hulman Institute of Technology; Figueiredo, Eloi [Universidade Lusófona; Luscher, D. J. [Los Alamos National Laboratory; Worden, Keith [University of Sheffield

    2016-01-13

    As structural dynamics becomes increasingly non-modal, stochastic and nonlinear, finite element model-updating technology must adopt the broader notions of model validation and uncertainty quantification. For example, particular re-sampling procedures must be implemented to propagate uncertainty through a forward calculation, and non-modal features must be defined to analyze nonlinear data sets. The latter topic is the focus of this report, but first, some more general comments regarding the concept of model validation will be discussed.

  7. Structural features of protein folding nuclei.

    Science.gov (United States)

    Garbuzynskiy, S O; Kondratova, M S

    2008-03-05

    A crucial event of protein folding is the formation of a folding nucleus. We demonstrate the presence of a considerable coincidence between the location of folding nuclei and the location of so-called "root structural motifs", which have unique overall folds and handedness. In the case of proteins with a single root structural motif, the involvement in the formation of a folding nucleus is in average significantly higher for amino acids residues that are in root structural motifs, compared to residues in other parts of the protein. The tests carried out revealed that the observed difference is statistically reliable. Thus, a structural feature that corresponds to the protein folding nucleus is now found.

  8. Structure analysis on synthetic emerald crystals

    Science.gov (United States)

    Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou

    2013-05-01

    Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.

  9. Troublesome Crystal Structures: Prevention, Detection, and Resolution.

    Science.gov (United States)

    Harlow, Richard L

    1996-01-01

    A large number of incorrect crystal structures is being published today. These structures are proving to be a particular problem to those of us who are interested in comparing structural moieties found in the databases in order to develop structure-property relationships. Problems can reside in the input data, e.g., wrong unit cell or low quality intensity data, or in the structural model, e.g., wrong space group or atom types. Many of the common mistakes are, however, relatively easy to detect and thus should be preventable; at the very least, suspicious structures can be flagged, if not by the authors then by the referees and, ultimately, the crystallographic databases. This article describes some of the more common mistakes and their effects on the resulting structures, lists a series of tests that can be used to detect incorrect structures, and makes a strong plea for the publication of higher quality structures.

  10. Supramolecular Multiblock Copolymers Featuring Complex Secondary Structures.

    Science.gov (United States)

    Elacqua, Elizabeth; Manning, Kylie B; Lye, Diane S; Pomarico, Scott K; Morgia, Federica; Weck, Marcus

    2017-09-06

    This contribution introduces main-chain supramolecular ABC and ABB'A block copolymers sustained by orthogonal metal coordination and hydrogen bonding between telechelic polymers that feature distinct secondary structure motifs. Controlled polymerization techniques in combination with supramolecular assembly are used to engineer heterotelechelic π-sheets that undergo high-fidelity association with both helical and coil-forming synthetic polymers. Our design features multiple advances to achieve our targeted structures, in particular, those emulating sheet-like structural aspects using poly(p-phenylenevinylene)s (PPVs). To engineer heterotelechelic PPVs in a sheet-like design, we engineer an iterative one-pot cross metathesis-ring-opening metathesis polymerization (CM-ROMP) strategy that affords functionalized Grubbs-II initiators that subsequently polymerize a paracyclophanediene. Supramolecular assembly of two heterotelechelic PPVs is used to realize a parallel π-sheet, wherein further orthogonal assembly with helical motifs is possible. We also construct an antiparallel π-sheet, wherein terminal PPV blocks are adjacent to a flexible coil-like poly(norbornene) (PNB). The PNB is designed, through supramolecular chain collapse, to expose benzene and perfluorobenzene motifs that promote a hairpin turn via charge-transfer-aided folding. We demonstrate that targeted helix-(π-sheet)-helix and helix-(π-sheet)-coil assemblies occur without compromising intrinsic helicity, while both parallel and antiparallel β-sheet-like structures are realized. Our main-chain orthogonal assembly approach allows the engineering of multiblock copolymer scaffolds featuring diverse secondary structures via the directional assembly of telechelic building blocks. The targeted assemblies, a mix of sequence-defined helix-sheet-coil and helix-sheet-helix architectures, are Nature-inspired synthetic mimics that expose α/β and α+β protein classes via de novo design and cooperative assembly

  11. Crystal Structure of Human Enterovirus 71

    Energy Technology Data Exchange (ETDEWEB)

    Plevka, Pavel; Perera, Rushika; Cardosa, Jane; Kuhn, Richard J.; Rossmann, Michael G. (Purdue); (Sentinext)

    2013-04-08

    Enterovirus 71 is a picornavirus associated with fatal neurological illness in infants and young children. Here, we report the crystal structure of enterovirus 71 and show that, unlike in other enteroviruses, the 'pocket factor,' a small molecule that stabilizes the virus, is partly exposed on the floor of the 'canyon.' Thus, the structure of antiviral compounds may require a hydrophilic head group designed to interact with residues at the entrance of the pocket.

  12. THE CRYSTAL STRUCTURE OF 2,7-DIACETOXYTRANS-15,16-DIMETHYL-15,16-DIHYDROPYRENE,

    Science.gov (United States)

    AROMATIC COMPOUNDS, CRYSTAL STRUCTURE ), (*POLYCYCLIC COMPOUNDS, CRYSTAL STRUCTURE ), (* CRYSTAL STRUCTURE , POLYCYCLIC COMPOUNDS), ESTERS, MOLECULAR STRUCTURE, CHEMICAL BONDS, X RAY DIFFRACTION, SCINTILLATION COUNTERS, CANADA

  13. Structural features that distinguish kinetically distinct biomineralization polypeptides.

    Science.gov (United States)

    Collino, Sebastiano; Evans, John Spencer

    2007-05-01

    AP7 and AP24 are mollusk shell proteins which are responsible for aragonite polymorph formation and stabilization within the nacre layer of the Pacific red abalone, Haliotis rufescens. It is known that the 30-AA N-terminal mineral modification domains of both proteins (AP7N, AP24N) possess identical multifunctional mineralization capabilities within in vitro assays but differ in terms of rate kinetics, with AP24N > AP7N. In this report, we identify previously unreported molecular features of AP24N and contrast the lowest energy polypeptide backbone structures of AP24N (planar configuration) with that of AP7N ("bent paper clip" configuration) using NMR data and simulated annealing molecular dynamics structure refinement. Like AP7N, we find that AP24N possesses an unfolded conformation, can sequester Ca(II) and other multivalent metal ions, can adsorb onto or within calcite crystals, and possesses anionic and cationic electrostatic "pocket" regions on its molecular surfaces. However, AP24N has some unique features: greater conformational responsiveness to Ca(II), the tendency to form a more planar backbone configuration, and longer anionic and hydrogen-bonding donor/acceptor sequence blocks. We conclude that the presence of unfolded polypeptide conformation, electrostatic surface pockets, and interactive sequence clustering endow both AP7N and AP24N with similar features that lead to comparable effects on crystal morphology and nucleation. However, AP24N possesses longer anionic and hydrogen-bonding sequence clusters and exhibits a tendency to adopt a more planar backbone configuration than AP7N does. We believe that these features facilitate peptide-mineral, peptide-ion, or water cluster interactions, thereby enhancing the mineralization kinetics of AP24N over AP7N.

  14. Photonic Crystal Laser-Driven Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Benjamin M.

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  15. Synthesis and Crystal Structure of Dehydroandrographolide Dipolycyclophosphate

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The title compound was synthesized and characterized by IR, NMR, H R S I-M S and MS, and its crystal structure was determined by single-crystal X-ray diffraction. The crystal is of orthorhombic system (C4oH52O11P2, Mr= 770.76), space group P21212, with a = 22.562(5), b =29.224(6), c = 7.1953(14) A, V = 4744.2(16) A3, Z = 4, Dc = 1.079 g/cm3, F(000) = 1640 andμ =0.141 mm-1. The final R = 0.0758 and wR = 0.1778 for 2794 observed reflections with I > 2o(I).Intermolecular hydrogen bonds are found between the O atom of carbonyl group and H atoms of olefinic carbon. The absolute configuration of this molecule was confirmed by comparison with that of the original material.

  16. Crystal structure of N-(4-hydroxybenzylacetone thiosemicarbazone

    Directory of Open Access Journals (Sweden)

    Saray Argibay-Otero

    2017-09-01

    Full Text Available The structure of the title compound, C11H15N3OS, shows the flexibility due to the methylene group at the thioamide N atom in the side chain, resulting in the molecule being non-planar. The dihedral angle between the plane of the benzene ring and that defined by the atoms of the thiosemicarbazide arm is 79.847 (4°. In the crystal, the donor–acceptor hydrogen-bond character of the –OH group dominates the intermolecular associations, acting as a donor in an O—H...S hydrogen bond, as well as being a double acceptor in a centrosymmetric cyclic bridging N—H...O,O′ interaction [graph set R22(4]. The result is a one-dimensional duplex chain structure, extending along [111]. The usual N—H...S hydrogen-bonding association common in thiosemicarbazone crystal structures is not observed.

  17. Crystal structure and biochemical features of dye-decolorizing peroxidase YfeX from Escherichia coli O157 Asp(143) and Arg(232) play divergent roles toward different substrates.

    Science.gov (United States)

    Liu, Xiuhua; Yuan, Zenglin; Wang, Jiaxu; Cui, Yaqi; Liu, Shuang; Ma, Yinliang; Gu, Lichuan; Xu, Sujuan

    2017-02-26

    YfeX from Escherichia coli O157 is a bacterial dye-decolorizing peroxidase that represents both dye-decoloring activity and typical peroxidase activity. We reported the crystal structure of YfeX bound to heme at 2.09 Å resolution. The YfeX monomer resembles a ferredoxin-like fold and contains two domains. The three conserved residues surrounding the heme group are His(215), Asp(143) and Arg(232). His(215) functions as the proximal axial ligand of the heme iron atom. Biochemical data show that the catalytic significance of the conserved Asp(143) and Arg(232) depends on the substrate types and that YfeX may adopt various catalytic mechanisms toward divergent substrates. In addition, it is observed that an access tunnel spans from the protein molecular surface to the heme distal region, it serves as the passageway for the entrance and binding of the H2O2.

  18. Crystal structure of low-symmetry rondorfite

    Science.gov (United States)

    Rastsvetaeva, R. K.; Zadov, A. E.; Chukanov, N. V.

    2008-03-01

    The crystal structure of an aluminum-rich variety of the mineral rondorfite with the composition Ca16[Mg2(Si7Al)(O31OH)]Cl4 from the skarns of the Verkhne-Chegemskoe plateau (the Kabardino-Balkarian Republic, the Northern Caucasus Region, Russia) was solved in the triclinic space group with the unit-cell parameters a = 15.100(2) Å, b = 15.110(2) Å, c = 15.092(2) Å, α = 90.06(1)°, β = 90.01(1)°, γ = 89.93(1)°, Z = 4, sp. gr. P1. The structural model consisting of 248 independent atoms was determined by the phase-correction method and refined to R = 3.8% with anisotropic displacement parameters based on all 7156 independent reflections with 7156 F > 3σ( F). The crystal structure is based on pentamers consisting of four Si tetrahedra linked by the central Mg tetrahedron. The structure can formally be refined in the cubic space group ( a = 15.105 Å, sp. gr. Fd overline 3 , seven independent positions) with anisotropic displacement parameters to R = 2.74% based on 579 reflections with F > 3σ( F) without accounting for more than 1000 observed reflections, which are inconsistent with the cubic symmetry of the crystal structure.

  19. Holographic liquid crystal polarization grating with Fabry-Perot structure.

    Science.gov (United States)

    Sakamoto, Moritsugu; Yamaguchi, Haruki; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2016-03-15

    A holographic liquid crystal polarization grating with a Fabry-Perot structure was developed. Because of its resonant structure, the device offers high levels of control of the diffraction properties of incident-polarized light beams, depending on the resonance conditions. The diffracted light beams are emitted in both the reflection and transmission directions, and the device thus works as a multibranch polarization grating with double optical paths, unlike a conventional polarization grating. These device features were experimentally demonstrated and were also explained theoretically.

  20. Structure sensitive properties of KTP-type crystals

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Adding various dopants during the growth of the parent KTiOPO4 (KTP) crystal has given rise to an extensive series of KTP-type crystals. The doped KTP or KTP-type crystals often have very subtle structural variations from pure KTP crystals. As a result of these structural changes the KTP-type crystals often exhibit different physical properties, which may be referred to as structure sensitive properties. It is possible to fine-tune the nonlinear optical properties of KTP crystals through doping. This results in a broad range of applications for KTP-type crystals.

  1. Lessons from crystal structures of kainate receptors

    DEFF Research Database (Denmark)

    Møllerud, Stine; Frydenvang, Karla Andrea; Pickering, Darryl S;

    2017-01-01

    synaptic transmission and modulate network excitability by regulating neurotransmitter release. Dysfunction of kainate receptors has been implicated in several neurological disorders such as epilepsy, schizophrenia and depression. Here we provide a review on the current understanding of kainate receptor...... structure and how they bind agonists, antagonists and ions. The first structure of the ligand-binding domain of the GluK1 subunit was reported in 2005, seven years after publication of the crystal structure of a soluble construct of the ligand-binding domain of the AMPA-type subunit GluA2. Today, a full...

  2. Orientational dynamics and energy landscape features of thermotropic liquid crystals: An analogy with supercooled liquids

    Indian Academy of Sciences (India)

    Biman Jana; Biman Bagchi

    2007-09-01

    Recent optical kerr effect (OKE) studies have revealed that orientational relaxation of rodlike nematogens near the isotropic-nematic (I-N) phase boundary and also in the nematic phase exhibit temporal power law decay at intermediate times. Such behaviour has drawn an intriguing analogy with supercooled liquids. Here, we have investigated the single-particle and collective orientational dynamics of a family of model system of thermotropic liquid crystals using extensive computer simulations. Several remarkable features of glassy dynamics are on display including non-exponential relaxation, dynamical heterogeneity, and non-Arrhenius temperature dependence of the orientational relaxation time. Over a temperature range near the I-N phase boundary, the system behaves like a fragile glass-forming liquid. Using proper scaling, we construct the usual relaxation time versus inverse temperature plot and explicitly demonstrate that one can successfully define a density dependent fragility of liquid crystals. The fragility of liquid crystals shows a temperature and density dependence which is remarkably similar to the fragility of glass forming supercooled liquids. Energy landscape analysis of inherent structures shows that the breakdown of the Arrhenius temperature dependence of relaxation rate occurs at a temperature that marks the onset of the growth of the depth of the potential energy minima explored by the system.

  3. Crystal structure of tris(hydroxylammonium orthophosphate

    Directory of Open Access Journals (Sweden)

    Malte Leinemann

    2015-11-01

    Full Text Available The crystal structure of the title salt, ([H3NOH]+3·[PO4]3−, consists of discrete hydroxylammonium cations and orthophosphate anions. The atoms of the cation occupy general positions, whereas the anion is located on a threefold rotation axis that runs through the phosphorus atom and one of the phosphate O atoms. In the crystal structure, cations and anions are linked by intermolecular O—H...O and N—H...O hydrogen bonds into a three-dimensional network. Altogether, one very strong O—H...O, two N—H...O hydrogen bonds of medium strength and two weaker bifurcated N—H...O interactions are observed.

  4. Crystal Structures of New Ammonium 5-Aminotetrazolates

    Directory of Open Access Journals (Sweden)

    Martin Lampl

    2014-11-01

    Full Text Available The crystal structures of three salts of anionic 5-aminotetrazole are described. The tetramethylammonium salt (P forms hydrogen-bonded ribbons of anions which accept weak C–H···N contacts from the cations. The cystamine salt (C2/c shows wave-shaped ribbons of anions linked by hydrogen bonds to screw-shaped dications. The tetramethylguanidine salt (P21/c exhibits layers of anions hydrogen-bonded to the cations.

  5. Crystal Structure of a New Cembranolide Diterpene

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new cembranoide deterpene was isolated from the soft coral Sinularia Tenella. The crystal and chemical structure of the title compound were determined by means of spectroscopic methods and X-ray diffraction analysis as (1R* , 4R* , 5S* , 12S* , 12R* )-9-acetoxy-cembr-8E, 15 (17)-dien-16,4-olide. It shows a moderate cytotoxicity against P 388 and L 1210 cell lines.

  6. Crystal structure of eukaryotic ribosome and its complexes with inhibitors.

    Science.gov (United States)

    Yusupova, Gulnara; Yusupov, Marat

    2017-03-19

    A high-resolution structure of the eukaryotic ribosome has been determined and has led to increased interest in studying protein biosynthesis and regulation of biosynthesis in cells. The functional complexes of the ribosome crystals obtained from bacteria and yeast have permitted researchers to identify the precise residue positions in different states of ribosome function. This knowledge, together with electron microscopy studies, enhances our understanding of how basic ribosome processes, including mRNA decoding, peptide bond formation, mRNA, and tRNA translocation and cotranslational transport of the nascent peptide, are regulated. In this review, we discuss the crystal structure of the entire 80S ribosome from yeast, which reveals its eukaryotic-specific features, and application of X-ray crystallography of the 80S ribosome for investigation of the binding mode for distinct compounds known to inhibit or modulate the protein-translation function of the ribosome. We also refer to a challenging aspect of the structural study of ribosomes, from higher eukaryotes, where the structures of major distinctive features of higher eukaryote ribosome-the high-eukaryote-specific long ribosomal RNA segments (about 1MDa)-remain unresolved. Presently, the structures of the major part of these high-eukaryotic expansion ribosomal RNA segments still remain unresolved.This article is part of the themed issue 'Perspectives on the ribosome'.

  7. Crystal Structure Refinement of Synthetic Pure Gyrolite

    Directory of Open Access Journals (Sweden)

    Arūnas Baltušnikas

    2015-03-01

    Full Text Available Pure calcium silicate hydrate – gyrolite was prepared under the saturated steam pressure at 473 K temperature in rotating autoclave. The crystal structure of synthetic gyrolite was investigated by X-ray diffraction and refined using Le Bail, Rietveld and crystal structure modelling methods. Background, peak shape parameters and verification of the space group were performed by the Le Bail full pattern decomposition. Peculiarities of interlayer sheet X of gyrolite unit cell were highlighted by Rietveld refinement. Possible atomic arrangement in interlayer sheet X was solved by global optimization method. Most likelihood crystal structure model of gyrolite was calculated by final Rietveld refinement. It was crystallographically showed, that cell parameters are: a = 0.9713(2 nm, b = 0.9715(2 nm, c = 2.2442(3 nm and alfa = 95.48(2 º, beta = 91.45(2 °, gamma = l20.05(3 °.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5460

  8. Lessons from crystal structures of kainate receptors.

    Science.gov (United States)

    Møllerud, Stine; Frydenvang, Karla; Pickering, Darryl S; Kastrup, Jette Sandholm

    2017-01-01

    Kainate receptors belong to the family of ionotropic glutamate receptors. These receptors assemble from five subunits (GluK1-5) into tetrameric ion channels. Kainate receptors are located at both pre- and postsynaptic membranes in the central nervous system where they contribute to excitatory synaptic transmission and modulate network excitability by regulating neurotransmitter release. Dysfunction of kainate receptors has been implicated in several neurological disorders such as epilepsy, schizophrenia and depression. Here we provide a review on the current understanding of kainate receptor structure and how they bind agonists, antagonists and ions. The first structure of the ligand-binding domain of the GluK1 subunit was reported in 2005, seven years after publication of the crystal structure of a soluble construct of the ligand-binding domain of the AMPA-type subunit GluA2. Today, a full-length structure has been determined of GluK2 by cryo electron microscopy to 7.6 Å resolution as well as 84 high-resolution crystal structures of N-terminal domains and ligand-binding domains, including agonist and antagonist bound structures, modulatory ions and mutations. However, there are still many unanswered questions and challenges in front of us. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.

  9. One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties

    Science.gov (United States)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur

    2016-11-01

    Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.

  10. Crystal structure prediction and electronic properties of Li-based ternary compounds

    Energy Technology Data Exchange (ETDEWEB)

    Vergniory, Maia G.; Sanna, Antonio; Ernst, Arthur; Romero, Aldo H.; Gross, Eberhard K.U. [Max Planck Institute of Microstructure Physics, 06120 Halle (Germany); Marques, Miguel A.L.; Botti, Silvana; Valencia, Irais [Universite de Lyon, F-69000 Lyon, France and LPMCN, CNRS, UMR 5586, Universite Lyon 1, F-69622 Villeurbanne (France); Amsler, Max; Goedecker, Stefan [Department of Physics, Universitaet Basel, Klingelbergstr. 82, 4056 Basel (Switzerland); Chulkov, Evgueni V. [Donostia International Physics Center, 20018 Donostia-San Sebastian (Spain)

    2013-07-01

    On the basis of ab initio first principles and using the Minimal Hopping Algorithm we predict the crystal structure of non synthesized LiYZ (Y=Au,Ag, Z=Te,Se) based ternary compounds. We find that, as distinct from expectation, the crystal structure depends strongly on the composition, thus every compound belongs to a different symmetry group and has complexly different electronic properties. We analyze the fundamental physics below these features considering the calculated ground state structure.

  11. A DIRECT DETERMINATION OF THE CRYSTAL STRUCTURE OF 2,3,4,6-TETRANITROANILINE,

    Science.gov (United States)

    ORGANIC NITROGEN COMPOUNDS, CRYSTAL STRUCTURE ), (* CRYSTAL STRUCTURE , EXPLOSIVES), (*EXPLOSIVES, CRYSTAL STRUCTURE ), AROMATIC COMPOUNDS, AMINES, NITRATES, LEAST SQUARES METHOD, FOURIER ANALYSIS, CHEMICAL BONDS.

  12. First-Principles Study on Electronic Structures and Optical Properties of Doped Ag Crystal

    Institute of Scientific and Technical Information of China (English)

    CAO Can; CHEN Ling-Na; JIA Shu-Ting; ZHANG Dan; XU Hui

    2012-01-01

    By using the first-principles calculation based on density functional theory,we investigate the electronic structures and optical properties of Cl-doped Ag crystal. The results show that the electronic structure of Cl-doped Ag crystal depends on the doped concentration and the site of impurity defect.Interestingly,the calculated adsorption spectra of Cl-doped Ag crystal show isotropy or anisotropy coincide with the symmetry of Ag crystal. These features are discussed to provide guidance to experimental efforts for Ag-based nanoeletronic devices.

  13. Fourier Analysis and Structure Determination--Part III: X-ray Crystal Structure Analysis.

    Science.gov (United States)

    Chesick, John P.

    1989-01-01

    Discussed is single crystal X-ray crystal structure analysis. A common link between the NMR imaging and the traditional X-ray crystal structure analysis is reported. Claims that comparisons aid in the understanding of both techniques. (MVL)

  14. Structural Features of Caspase-Activating Complexes

    Directory of Open Access Journals (Sweden)

    Hyun Ho Park

    2012-04-01

    Full Text Available Apoptosis, also called programmed cell death, is an orderly cellular suicide program that is critical for the development, immune regulation and homeostasis of a multi-cellular organism. Failure to control this process can lead to serious human diseases, including many types of cancer, neurodegenerative diseases, and autoimmununity. The process of apoptosis is mediated by the sequential activation of caspases, which are cysteine proteases. Initiator caspases, such as caspase-2, -8, -9, and -10, are activated by formation of caspase-activating complexes, which function as a platform to recruit caspases, providing proximity for self-activation. Well-known initiator caspase-activating complexes include (1 DISC (Death Inducing Signaling Complex, which activates caspases-8 and 10; (2 Apoptosome, which activates caspase-9; and (3 PIDDosome, which activates caspase-2. Because of the fundamental biological importance of capases, many structural and biochemical studies to understand the molecular basis of assembly mechanism of caspase-activating complexes have been performed. In this review, we summarize previous studies that have examined the structural and biochemical features of caspase-activating complexes. By analyzing the structural basis for the assembly mechanism of the caspase-activating complex, we hope to provide a comprehensive understanding of caspase activation by these important oligomeric complexes.

  15. THE CRYSTAL STRUCTURE OF 2-(4’-AMINO-5’AMINO PYRIMIDY) -2-PENTENE-4-ONE.

    Science.gov (United States)

    NITROGEN HETEROCYCLIC COMPOUNDS, CRYSTAL STRUCTURE ), (*AMINES, CRYSTAL STRUCTURE ), (*KETONES, CRYSTAL STRUCTURE ), CRYSTAL LATTICES, FOURIER ANALYSIS, LEAST SQUARES METHOD, MOLECULAR STRUCTURE, PYRIMIDINES, CHEMICAL BONDS

  16. Crystal structure of natural phaeosphaeride A

    Directory of Open Access Journals (Sweden)

    Victoria V. Abzianidze

    2015-08-01

    Full Text Available The asymmetric unit of the title compound, C15H23NO5, contains two independent molecules. Phaeosphaeride A contains two primary sections, an alkyl chain consisting of five C atoms and a cyclic system consisting of fused five- and six-membered rings with attached substituents. In the crystal, the molecules form layered structures. Nearly planar sheets, parallel to the (001 plane, form bilayers of two-dimensional hydrogen-bonded networks with the hydroxy groups located on the interior of the bilayer sheets. The network is constructed primarily of four O—H...O hydrogen bonds, which form a zigzag pattern in the (001 plane. The butyl chains interdigitate with the butyl chains on adjacent sheets. The crystal was twinned by a twofold rotation about the c axis, with refined major–minor occupancy fractions of 0.718 (6:0.282 (6.

  17. Automated High Throughput Protein Crystallization Screening at Nanoliter Scale and Protein Structural Study on Lactate Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fenglei [Iowa State Univ., Ames, IA (United States)

    2006-08-09

    , evaporation rate can be controlled or adjusted in this method during the crystallization process to favor either nucleation or growing processes for optimizing crystallization process. The protein crystals gotten by this method were experimentally proven to possess high x-ray diffraction qualities. Finally, we crystallized human lactate dehydrogenase 1 (H4) complexed with NADH and determined its structure by x-ray crystallography. The structure of LDH/NADH displays a significantly different structural feature, compared with LDH/NADH/inhibitor ternary complex structure, that subunits in LDH/NADH complex show open conformation or two conformations on the active site while the subunits in LDH/NADH/inhibitor are all in close conformation. Multiple LDH/NADH crystals were obtained and used for x-ray diffraction experiments. Difference in subunit conformation was observed among the structures independently solved from multiple individual LDH/NADH crystals. Structural differences observed among crystals suggest the existence of multiple conformers in solution.

  18. Synthesis and structural characterization of a single-crystal to single-crystal transformable coordination polymer.

    Science.gov (United States)

    Tian, Yuyang; Allan, Phoebe K; Renouf, Catherine L; He, Xiang; McCormick, Laura J; Morris, Russell E

    2014-01-28

    A single-crystal to single-crystal transformable coordination polymer compound was hydrothermally synthesized. The structural rearrangement is induced by selecting a ligand that contains both strong and weaker coordinating groups. Both hydrated and dehydrated structures were determined by single crystal X-ray analysis.

  19. Nanoscale structural features determined by AFM for single virus particles

    Science.gov (United States)

    Chen, Shu-Wen W.; Odorico, Michael; Meillan, Matthieu; Vellutini, Luc; Teulon, Jean-Marie; Parot, Pierre; Bennetau, Bernard; Pellequer, Jean-Luc

    2013-10-01

    In this work, we propose ``single-image analysis'', as opposed to multi-image averaging, for extracting valuable information from AFM images of single bio-particles. This approach allows us to study molecular systems imaged by AFM under general circumstances without restrictions on their structural forms. As feature exhibition is a resolution correlation, we have performed AFM imaging on surfaces of tobacco mosaic virus (TMV) to demonstrate variations of structural patterns with probing resolution. Two AFM images were acquired with the same tip at different probing resolutions in terms of pixel width, i.e., 1.95 and 0.49 nm per pixel. For assessment, we have constructed an in silico topograph based on the three-dimensional crystal structure of TMV as a reference. The prominent artifacts observed in the AFM-determined shape of TMV were attributed to tip convolutions. The width of TMV rod was systematically overestimated by ~10 nm at both probing resolutions of AFM. Nevertheless, the effects of tip convolution were less severe in vertical orientation so that the estimated height of TMV by AFM imaging was in close agreement with the in silico X-ray topograph. Using dedicated image processing algorithms, we found that at low resolution (i.e., 1.95 nm per pixel), the extracted surface features of TMV can be interpreted as a partial or full helical repeat (three complete turns with ~7.0 nm in length), while individual protein subunits (~2.5 nm) were perceivable only at high resolution. The present study shows that the scales of revealed structural features in AFM images are subject to both probing resolution and processing algorithms for image analysis.

  20. Nanoscale structural features determined by AFM for single virus particles.

    Science.gov (United States)

    Chen, Shu-wen W; Odorico, Michael; Meillan, Matthieu; Vellutini, Luc; Teulon, Jean-Marie; Parot, Pierre; Bennetau, Bernard; Pellequer, Jean-Luc

    2013-11-21

    In this work, we propose "single-image analysis", as opposed to multi-image averaging, for extracting valuable information from AFM images of single bio-particles. This approach allows us to study molecular systems imaged by AFM under general circumstances without restrictions on their structural forms. As feature exhibition is a resolution correlation, we have performed AFM imaging on surfaces of tobacco mosaic virus (TMV) to demonstrate variations of structural patterns with probing resolution. Two AFM images were acquired with the same tip at different probing resolutions in terms of pixel width, i.e., 1.95 and 0.49 nm per pixel. For assessment, we have constructed an in silico topograph based on the three-dimensional crystal structure of TMV as a reference. The prominent artifacts observed in the AFM-determined shape of TMV were attributed to tip convolutions. The width of TMV rod was systematically overestimated by ~10 nm at both probing resolutions of AFM. Nevertheless, the effects of tip convolution were less severe in vertical orientation so that the estimated height of TMV by AFM imaging was in close agreement with the in silico X-ray topograph. Using dedicated image processing algorithms, we found that at low resolution (i.e., 1.95 nm per pixel), the extracted surface features of TMV can be interpreted as a partial or full helical repeat (three complete turns with ~7.0 nm in length), while individual protein subunits (~2.5 nm) were perceivable only at high resolution. The present study shows that the scales of revealed structural features in AFM images are subject to both probing resolution and processing algorithms for image analysis.

  1. Diterbium heptanickel: a crystal structure redetermination

    Directory of Open Access Journals (Sweden)

    Volodymyr Levytskyy

    2014-08-01

    Full Text Available The crystal structure of the title compound, Tb2Ni7, was redetermined from single-crystal X-ray diffraction data. In comparison with previous studies based on powder X-ray diffraction data [Lemaire et al. (1967. C. R. Acad. Sci. Ser. B, 265, 1280–1282; Lemaire & Paccard (1969. Bull. Soc. Fr. Mineral. Cristallogr. 92, 9–16; Buschow & van der Goot (1970. J. Less-Common Met. 22, 419–428], the present redetermination affords refined coordinates and anisotropic displacement parameters for all atoms. A partial occupation for one Tb atom results in the non-stoichiometric composition Tb1.962 (4Ni7. The title compound adopts the Ce2Ni7 structure type and can also be derived from the CaCu5 structure type as an intergrowth structure. The asymmetric unit contains two Tb sites (both site symmetries 3m. and five Ni sites (.m., mm2, 3m., 3m., -3m.. The two different coordination polyhedra of Tb are a Frank–Kasper polyhedron formed by four Tb and 12 Ni atoms and a pseudo Frank–Kasper polyhedron formed by two Tb and 18 Ni atoms. The four different coordination polyhedra of Ni are Frank–Kasper icosahedra formed by five Tb and seven Ni atoms, four Tb and eight Ni atoms, three Tb and nine Ni atoms, and six Tb and six Ni atoms, respectively.

  2. Crystal structure of dichloridobis(dimethyl N-cyanodithioiminocarbonatecobalt(II

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2016-01-01

    Full Text Available The structure of the mononuclear title complex, [{(H3CS2C=NC[triple-bond] N}2CoCl2], consists of a CoII atom coordinated in a distorted tetrahedral manner by two Cl− ligands and the terminal N atoms of two dimethyl N-cyanodithioiminocarbonate ligands. The two organic ligands are almost coplanar, with a dihedral angle of 5.99 (6° between their least-squares planes. The crystal packing features pairs of inversion-related complexes that are held together through C—H...Cl and C—H...S interactions and π–π stacking [centroid-to-centroid distance = 3.515 (su? Å]. Additional C—H...Cl and C—H...S interactions, as well as Cl...S contacts < 3.6 Å, consolidate the crystal packing.

  3. Prion protein: structural features and related toxicity

    Institute of Scientific and Technical Information of China (English)

    Ping Ping Hu; Cheng Zhi Huang

    2013-01-01

    Transmissible spongiform encephalopathies,or prion diseases,is a group of infectious neurodegenerative disorders.The conformational conversion from cellular form (PrPC) to disease-causing isoform (PrPSc) is considered to be the most important and remarkable event in these diseases,while accumulation of PrPSc is thought to be the main reason for cell death,inflammation and spongiform degeneration observed in infected individuals.Although these rare but unique neurodegenerative disorders have attracted much attention,there are still many questions that remain to be answered.Knowledge of the scrapie agent structures and the toxic species may have significance for understanding the causes of the diseases,and could be helpful for rational design of novel therapeutic and diagnostic methods.In this review,we summarized the available experimental evidence concerning the relationship among the structural features,aggregation status of misfolded PrP and related neurotoxicity in the course of prion diseases development.In particular,most data supports the idea that the smaller oligomeric PrPSc aggregates,rather than the mature amyloid fibers,exhibit the highest toxicity to the host.

  4. Nanoconfinement-induced structures in chiral liquid crystals.

    Science.gov (United States)

    Melle, Michael; Theile, Madlona; Hall, Carol K; Schoen, Martin

    2013-08-28

    We employ Monte Carlo simulations in a specialized isothermal-isobaric and in the grand canonical ensemble to study structure formation in chiral liquid crystals as a function of molecular chirality. Our model potential consists of a simple Lennard-Jones potential, where the attractive contribution has been modified to represent the orientation dependence of the interaction between a pair of chiral liquid-crystal molecules. The liquid crystal is confined between a pair of planar and atomically smooth substrates onto which molecules are anchored in a hybrid fashion. Hybrid anchoring allows for the formation of helical structures in the direction perpendicular to the substrate plane without exposing the helix to spurious strains. At low chirality, we observe a cholesteric phase, which is transformed into a blue phase at higher chirality. More specifically, by studying the unit cell and the spatial arrangement of disclination lines, this blue phase can be established as blue phase II. If the distance between the confining substrates and molecular chirality are chosen properly, we see a third structure, which may be thought of as a hybrid, exhibiting mixed features of a cholesteric and a blue phase.

  5. Nanoconfinement-Induced Structures in Chiral Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Carol K. Hall

    2013-08-01

    Full Text Available We employ Monte Carlo simulations in a specialized isothermal-isobaric and in the grand canonical ensemble to study structure formation in chiral liquid crystals as a function of molecular chirality. Our model potential consists of a simple Lennard-Jones potential, where the attractive contribution has been modified to represent the orientation dependence of the interaction between a pair of chiral liquid-crystal molecules. The liquid crystal is confined between a pair of planar and atomically smooth substrates onto which molecules are anchored in a hybrid fashion. Hybrid anchoring allows for the formation of helical structures in the direction perpendicular to the substrate plane without exposing the helix to spurious strains. At low chirality, we observe a cholesteric phase, which is transformed into a blue phase at higher chirality. More specifically, by studying the unit cell and the spatial arrangement of disclination lines, this blue phase can be established as blue phase II. If the distance between the confining substrates and molecular chirality are chosen properly, we see a third structure, which may be thought of as a hybrid, exhibiting mixed features of a cholesteric and a blue phase.

  6. Crystal structure prediction from first principles: The crystal structures of glycine

    Science.gov (United States)

    Lund, Albert M.; Pagola, Gabriel I.; Orendt, Anita M.; Ferraro, Marta B.; Facelli, Julio C.

    2015-04-01

    Here we present the results of our unbiased searches of glycine polymorphs obtained using the genetic algorithms search implemented in MGAC, modified genetic algorithm for crystals, coupled with the local optimization and energy evaluation provided by Quantum Espresso. We demonstrate that it is possible to predict the crystal structures of a biomedical molecule using solely first principles calculations. We were able to find all the ambient pressure stable glycine polymorphs, which are found in the same energetic ordering as observed experimentally and the agreement between the experimental and predicted structures is of such accuracy that the two are visually almost indistinguishable.

  7. Tailoring quantum structures for active photonic crystals

    DEFF Research Database (Denmark)

    Kuznetsova, Nadezda

    This work is dedicated to the tailoring of quantum structures, with particular attention to the integration of selective area grown (SAG) active material into photonic crystal (PhC) slabs. The platform based on active PhC is vital to the realization of highly efficient elements with low energy...... consumption for on-chip and chip-to-chip optical communication. In order to develop metal-organic vapor phase epitaxial selective area etching and growth, a mask was fabricated in the HSQ e-beam resist including optimization of exposure and development conditions. By use of CBr4 as an etchant, in situ etching...... area and between the structures oriented along the [0-1-1] and [0-11] directions. Strong wavelength dependence with variations of the mask width of a few μm and opening sizes of hundreds of nanometers was observed. Incorporation of an active medium into PhC structures has showed promising results...

  8. Isolation and Crystal Structure of Horminone

    Institute of Scientific and Technical Information of China (English)

    陈晓; 廖仁安; 翁林红; 谢庆兰; 邓锋杰

    2000-01-01

    The horminone (C20H28O4, Mr= 332.85) was first isolated from the leaves of Rabdosia Serra (Maxim) Hara and its crystal structure was determined by X-ray diffraction method. Horminone is orthorhombic with space group P21P21P21, a=7.7186(7), b=9.5506(9), c=24.227(2) A, V=1785.9(3) A3, Z=4, Dc=1.236g/cm3, λ=0. 71073 A , μ(MoKα)=0. 085mm-1, F(000)=720. The structure was refined to R=0. 0369, wR=0.0978 for 2446 reflections with I>2σ(Ⅰ). X-ray diffraction analysis reveals that there are three six-membered rings in the title molecule. Ring A is in the chair conformation, ring C has the structure of quinone and there are two intermolecular hydrogen bonds between two molecules.

  9. Space-Filling Curves as a Novel Crystal Structure Representation for Machine Learning Models

    CERN Document Server

    Jasrasaria, Dipti; Rappoport, Dmitrij; Aspuru-Guzik, Alan

    2016-01-01

    A fundamental problem in applying machine learning techniques for chemical problems is to find suitable representations for molecular and crystal structures. While the structure representations based on atom connectivities are prevalent for molecules, two-dimensional descriptors are not suitable for describing molecular crystals. In this work, we introduce the SFC-M family of feature representations, which are based on Morton space-filling curves, as an alternative means of representing crystal structures. Latent Semantic Indexing (LSI) was employed in a novel setting to reduce sparsity of feature representations. The quality of the SFC-M representations were assessed by using them in combination with artificial neural networks to predict Density Functional Theory (DFT) single point, Ewald summed, lattice, and many-body dispersion energies of 839 organic molecular crystal unit cells from the Cambridge Structural Database that consist of the elements C, H, N, and O. Promising initial results suggest that the S...

  10. Crystal structure of (ferrocenylmethyldimethylammonium hydrogen oxalate

    Directory of Open Access Journals (Sweden)

    Mamadou Ndiaye

    2015-08-01

    Full Text Available The crystal structure of the title salt, [Fe(C5H5(C8H13N](HC2O4, consists of discrete (ferrocenylmethyldimethylammonium cations and hydrogen oxalate anions. The anions are connected through a strong O—H...O hydrogen bond, forming linear chains running parallel to [100]. The cations are linked to the anions through bifurcated N—H...(O,O′ hydrogen bonds. Weak C—H...π interactions between neighbouring ferrocenyl moieties are also observed.

  11. [Crystal and molecular structure of cytisine salts].

    Science.gov (United States)

    Niedźwiecka, Julia; Przybył, Anna K; Kubicki, Maciej

    2012-01-01

    Cytisine is an alkaloid of plant origin. It is a toxic substance, obtained on an industrial scale from Laburnum anagyroides also known as common laburnum. Today is used in the preparation of anti-smoking products as an agonist of nicotinic receptors nAChR-alpha4beta2. Thanks to crystallographic methods we can examine and describe with high accuracy the actual structure of complex chemical compounds. This work aims to present a series of tests carried out on crystals of cytisine salts, after a prior isolation of cytisine from the seeds of laburnum anagyroides.

  12. Crystal structure of hexaaquadichloridoytterbium(III chloride

    Directory of Open Access Journals (Sweden)

    Kevin M. Knopf

    2015-06-01

    Full Text Available The crystal structure of the title compound, [YbCl2(H2O6]Cl, was determined at 110 K. Samples were obtained from evaporated acetonitrile solutions containing the title compound, which consists of a [YbCl2(H2O6]+ cation and a Cl− anion. The cations in the title compound sit on a twofold axis and form O—H...Cl hydrogen bonds with the nearby Cl− anion. The coordination geometry around the metal centre forms a distorted square antiprism. The ytterbium complex is isotypic with the europium complex [Tambrornino et al. (2014. Acta Cryst. E70, i27].

  13. Crystal Structure of Marburg Virus VP24

    OpenAIRE

    Zhang, Adrianna P. P.; Bornholdt, Zachary A.; Abelson, Dafna M.; Saphire, Erica Ollmann

    2014-01-01

    The VP24 protein plays an essential, albeit poorly understood role in the filovirus life cycle. VP24 is only 30% identical between Marburg virus and the ebolaviruses. Furthermore, VP24 from the ebolaviruses is immunosuppressive, while that of Marburg virus is not. The crystal structure of Marburg virus VP24, presented here, reveals that although the core is similar between the viral genera, Marburg VP24 is distinguished by a projecting β-shelf and an alternate conformation of the N-terminal p...

  14. Crystal structure of Marburg virus VP24.

    Science.gov (United States)

    Zhang, Adrianna P P; Bornholdt, Zachary A; Abelson, Dafna M; Saphire, Erica Ollmann

    2014-05-01

    The VP24 protein plays an essential, albeit poorly understood role in the filovirus life cycle. VP24 is only 30% identical between Marburg virus and the ebolaviruses. Furthermore, VP24 from the ebolaviruses is immunosuppressive, while that of Marburg virus is not. The crystal structure of Marburg virus VP24, presented here, reveals that although the core is similar between the viral genera, Marburg VP24 is distinguished by a projecting β-shelf and an alternate conformation of the N-terminal polypeptide.

  15. Elasticity of some mantle crystal structures. II.

    Science.gov (United States)

    Wang, H.; Simmons, G.

    1973-01-01

    The single-crystal elastic constants are determined as a function of pressure and temperature for rutile structure germanium dioxide (GeO2). The data are qualitatively similar to those of rutile TiO2 measured by Manghnani (1969). The compressibility in the c direction is less than one-half that in the a direction, the pressure derivative of the shear constant is negative, and the pressure derivative of the bulk modulus has a relatively high value of about 6.2. According to an elastic strain energy theory, the negative shear modulus derivative implies that the kinetic barrier to diffusion decreases with increasing pressure.

  16. Crystal structure of a DNA catalyst.

    Science.gov (United States)

    Ponce-Salvatierra, Almudena; Wawrzyniak-Turek, Katarzyna; Steuerwald, Ulrich; Höbartner, Claudia; Pena, Vladimir

    2016-01-14

    Catalysis in biology is restricted to RNA (ribozymes) and protein enzymes, but synthetic biomolecular catalysts can also be made of DNA (deoxyribozymes) or synthetic genetic polymers. In vitro selection from synthetic random DNA libraries identified DNA catalysts for various chemical reactions beyond RNA backbone cleavage. DNA-catalysed reactions include RNA and DNA ligation in various topologies, hydrolytic cleavage and photorepair of DNA, as well as reactions of peptides and small molecules. In spite of comprehensive biochemical studies of DNA catalysts for two decades, fundamental mechanistic understanding of their function is lacking in the absence of three-dimensional models at atomic resolution. Early attempts to solve the crystal structure of an RNA-cleaving deoxyribozyme resulted in a catalytically irrelevant nucleic acid fold. Here we report the crystal structure of the RNA-ligating deoxyribozyme 9DB1 (ref. 14) at 2.8 Å resolution. The structure captures the ligation reaction in the post-catalytic state, revealing a compact folding unit stabilized by numerous tertiary interactions, and an unanticipated organization of the catalytic centre. Structure-guided mutagenesis provided insights into the basis for regioselectivity of the ligation reaction and allowed remarkable manipulation of substrate recognition and reaction rate. Moreover, the structure highlights how the specific properties of deoxyribose are reflected in the backbone conformation of the DNA catalyst, in support of its intricate three-dimensional organization. The structural principles underlying the catalytic ability of DNA elucidate differences and similarities in DNA versus RNA catalysts, which is relevant for comprehending the privileged position of folded RNA in the prebiotic world and in current organisms.

  17. Syntheses and Crystal Structures of Pyrazoline Derivants

    Institute of Scientific and Technical Information of China (English)

    SHI Hai-Bin; JI Shun-Jun; ZHANG Yong

    2005-01-01

    Two pyrazoline derivants 1-(2-benzothiazole)-3-phenyl-5-(3-thiophene)-2- pyrazoline (BPTP) and 1-(2-benzothiazole)-3-(2-thiophene)-5-phenyl-2-pyrazoline (BTPP) have been synthe- sized and their crystal structures were determined by X-ray single-crystal diffraction.Crystal of BPTP belongs to triclinic, space group P with a = 9.4430(11), b = 9.9384(13), c = 9.9394(13) (A), α = 83.107(10), β = 79.947(10), γ = 70.221(7)o, V = 862.42(19) (A)3, Z = 2, Dc = 1.392 g/cm3, μ(MoKα) = 0.316 mm-1, F(000) = 376, λ = 0.71070 (A), (Δρ)max = 0.348, (Δρ)min = -0.481 e/(A)3, the final R = 0.0407 and wR = 0.1055 for 2844 observed reflections with I > 2σ(I).Crystal of BTPP is of monoclinic, space group P21/c with a = 11.6158(17), b = 11.2796(18), c = 13.082(2) (A), α = 90, β = 91.087(4), γ = 90o, V = 1713.7(5) (A)3, Z = 4, Dc = 1.401 g/cm3, μ(MoKα) = 0.318 mm-1, Mr = 361.07, F(000) = 752, λ = 0.71070 (A), (Δρ)max = 0.322, (Δρ)min = -0.330 e/(A)3, the final R = 0.0563 and wR = 0.1058 for 3434 observed reflections with I > 2σ(I).

  18. Crystal structure of 1-(4-formylbenzylidenethiosemicarbazone

    Directory of Open Access Journals (Sweden)

    Rosa Carballo

    2014-09-01

    Full Text Available The asymmetric unit of the title compound, C9H9N3OS, contains two approximately planar molecules (r.m.s. deviations for 14 non-H atoms = 0.094 and 0.045 Å, with different conformations. In one of them, the C=O group is syn to the S atom and in the other it is anti. Each molecule features an intramolecular N—H...N hydrogen bond, which generates an S(5 ring. In the crystal, molecules are linked by N—H...O and N—H...S hydrogen bonds, generating discrete networks; the syn molecules form [010] chains and the anti molecules form (100 sheets.

  19. Band structure characteristics of T-square fractal phononic crystals

    Institute of Scientific and Technical Information of China (English)

    Liu Xiao-Jian; Fan You-Hua

    2013-01-01

    The T-square fractal two-dimensional phononic crystal model is presented in this article.A comprehensive study is performed for the Bragg scattering and locally resonant fractal phononic crystal.We find that the band structures of the fractal and non-fractal phononic crystals at the same filling ratio are quite different through using the finite element method.The fractal design has an important impact on the band structures of the two-dimensional phononic crystals.

  20. Crystal structure of yeast Sco1

    Energy Technology Data Exchange (ETDEWEB)

    Abajian, Carnie; Rosenzweig, Amy C. (NWU)

    2010-03-05

    The Sco family of proteins are involved in the assembly of the dinuclear CuA site in cytochrome c oxidase (COX), the terminal enzyme in aerobic respiration. These proteins, which are found in both eukaryotes and prokaryotes, are characterized by a conserved CXXXC sequence motif that binds copper ions and that has also been proposed to perform a thiol:disulfide oxidoreductase function. The crystal structures of Saccharomyces cerevisiae apo Sco1 (apo-ySco1) and Sco1 in the presence of copper ions (Cu-ySco1) were determined to 1.8- and 2.3-{angstrom} resolutions, respectively. Yeast Sco1 exhibits a thioredoxin-like fold, similar to that observed for human Sco1 and a homolog from Bacillus subtilis. The Cu-ySco1 structure, obtained by soaking apo-ySco1 crystals in copper ions, reveals an unexpected copper-binding site involving Cys181 and Cys216, cysteine residues present in ySco1 but not in other homologs. The conserved CXXXC cysteines, Cys148 and Cys152, can undergo redox chemistry in the crystal. An essential histidine residue, His239, is located on a highly flexible loop, denoted the Sco loop, and can adopt positions proximal to both pairs of cysteines. Interactions between ySco1 and its partner proteins yeast Cox17 and yeast COX2 are likely to occur via complementary electrostatic surfaces. This high-resolution model of a eukaryotic Sco protein provides new insight into Sco copper binding and function.

  1. Modeling of photonic crystal waveguide structures

    Science.gov (United States)

    Richter, Ivan; Kwiecien, Pavel; Šiňor, Milan; Haiduk, Adam

    2007-05-01

    Photonic crystal (PhC) structures and photonic structures based on them represent nowadays very promising structures of artificial origin. Since they exhibit very specific properties and characteristics that can be very difficult (or even impossible) to realize by other means, they represent a significant part of new artificially made metamaterial classes. For studying and modeling properties of PhC structures, we have applied, implemented and partially improved various complementary techniques: the 2D plane wave expansion (PWE) method, and the 2D finite-difference time-domain (FDTD) method with perfectly matched layers. Also, together with these in-house methods, other tools available in the field have been applied, including, e.g. MIT MPB (PWE), F2P (FDTD) and CAMFR (bidirectional expansion and propagation mode matching method) packages. We have applied these methods to several PhC waveguide structure examples, studying the effects of varying the key parameters and geometry. Such a study is relevant for proper understanding of physical mechanisms and for optimization and fabrication recommendations. Namely, in this contribution, we have concentrated on several examples of PhC waveguide structure simulations, of two types of guides (dielectric-rode type and air-hole type), with several geometries: rectangular lattice with either rectangular or chessboard inclusions. The modeling results are compared and discussed.

  2. Temperature dependent spin structures in Hexaferrite crystal

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Y.C. [Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan (China); Lin, J.G., E-mail: jglin@ntu.edu.tw [Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan (China); Chun, S.H.; Kim, K.H. [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2016-01-01

    In this work, the Hexaferrite Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22} (BSZFO) is studied due to its interesting characteristics of long-wavelength spin structure. Ferromagnetic resonance (FMR) is used to probe the magnetic states of BSZFO single crystal and its temperature dependence behavior is analyzed by decomposing the multiple lines of FMR spectra into various phases. Distinguished phase transition is observed at 110 K for one line, which is assigned to the ferro(ferri)-magnetic transition from non-collinear to collinear spin state. - Highlights: • For the first time Ferromagnetic Resonance is used to probe the local magnetic structure of Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22.} • The multiphases in the single crystal is identified, which provides important information toward its future application for the magnetoelectric devices.

  3. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations.

    Science.gov (United States)

    van de Streek, Jacco; Neumann, Marcus A

    2010-10-01

    This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.

  4. Syntheses and Crystal Structures of Ferrocenoindenes

    Directory of Open Access Journals (Sweden)

    Gerhard Laus

    2013-02-01

    Full Text Available Ferrocenoindenes display planar chirality and thus represent valuable ligands for asymmetric catalysis. Here, we report on the synthesis of novel 3-(1,1-dibromomethyleneferroceno[1,2-a]indene, (Z-3-(1-bromomethylene-6-iodoferroceno[1,2-a]indene, and benzo[5,6-f]ferroceno[2,3,a]inden-1-one. Any application-oriented design of chiral catalysts requires fundamental knowledge about the ligands involved, not only in terms of atom-connectivity, but also in terms of their three-dimensional structure and steric demand. Therefore, the crystal structures of 2-ferrocenylbenzoic acid, ferroceno[1,2-a]indene, and (Z-3-(1-bromomethylene-6-iodoferroceno[1,2-a]indene have been determined. The bond-lengths that can be retrieved therefrom also allow for an estimation of the reactivity of the aryl-iodo, bromo-methylidene and dibromomethylidene moieties.

  5. Crystal structure of human nicotinamide riboside kinase.

    Science.gov (United States)

    Khan, Javed A; Xiang, Song; Tong, Liang

    2007-08-01

    Nicotinamide riboside kinase (NRK) has an important role in the biosynthesis of NAD(+) as well as the activation of tiazofurin and other NR analogs for anticancer therapy. NRK belongs to the deoxynucleoside kinase and nucleoside monophosphate (NMP) kinase superfamily, although the degree of sequence conservation is very low. We report here the crystal structures of human NRK1 in a binary complex with the reaction product nicotinamide mononucleotide (NMN) at 1.5 A resolution and in a ternary complex with ADP and tiazofurin at 2.7 A resolution. The active site is located in a groove between the central parallel beta sheet core and the LID and NMP-binding domains. The hydroxyl groups on the ribose of NR are recognized by Asp56 and Arg129, and Asp36 is the general base of the enzyme. Mutation of residues in the active site can abolish the catalytic activity of the enzyme, confirming the structural observations.

  6. Crystal Structure of Human Nicotinamide Riboside Kinase

    Energy Technology Data Exchange (ETDEWEB)

    Khan,J.; Xiang, S.; Tong, L.

    2007-01-01

    Nicotinamide riboside kinase (NRK) has an important role in the biosynthesis of NAD{sup +} as well as the activation of tiazofurin and other NR analogs for anticancer therapy. NRK belongs to the deoxynucleoside kinase and nucleoside monophosphate (NMP) kinase superfamily, although the degree of sequence conservation is very low. We report here the crystal structures of human NRK1 in a binary complex with the reaction product nicotinamide mononucleotide (NMN) at 1.5 {angstrom} resolution and in a ternary complex with ADP and tiazofurin at 2.7 {angstrom} resolution. The active site is located in a groove between the central parallel {beta} sheet core and the LID and NMP-binding domains. The hydroxyl groups on the ribose of NR are recognized by Asp56 and Arg129, and Asp36 is the general base of the enzyme. Mutation of residues in the active site can abolish the catalytic activity of the enzyme, confirming the structural observations.

  7. The Crystal Structure of Human Argonaute2

    Energy Technology Data Exchange (ETDEWEB)

    Schirle, Nicole T.; MacRae, Ian J. (Scripps)

    2012-07-18

    Argonaute proteins form the functional core of the RNA-induced silencing complexes that mediate RNA silencing in eukaryotes. The 2.3 angstrom resolution crystal structure of human Argonaute2 (Ago2) reveals a bilobed molecule with a central cleft for binding guide and target RNAs. Nucleotides 2 to 6 of a heterogeneous mixture of guide RNAs are positioned in an A-form conformation for base pairing with target messenger RNAs. Between nucleotides 6 and 7, there is a kink that may function in microRNA target recognition or release of sliced RNA products. Tandem tryptophan-binding pockets in the PIWI domain define a likely interaction surface for recruitment of glycine-tryptophan-182 (GW182) or other tryptophan-rich cofactors. These results will enable structure-based approaches for harnessing the untapped therapeutic potential of RNA silencing in humans.

  8. Crystal Structure of the DFNKF Segment of Human Calcitonin Unveils Aromatic Interactions between Phenylalanines.

    Science.gov (United States)

    Bertolani, Arianna; Pizzi, Andrea; Pirrie, Lisa; Gazzera, Lara; Morra, Giulia; Meli, Massimiliano; Colombo, Giorgio; Genoni, Alessandro; Cavallo, Gabriella; Terraneo, Giancarlo; Metrangolo, Pierangelo

    2017-02-10

    Although intensively studied, the high-resolution crystal structure of the peptide DFNKF, the core-segment of human calcitonin, has never been described. Here we report how the use of iodination as a strategy to promote crystallisation and facilitate phase determination, allowed us to solve, for the first time, the single-crystal X-ray structure of a DFNKF derivative. Computational studies suggest that both the iodinated and the wild-type peptides populate very similar conformations. Furthermore, the conformer found in the solid-state structure is one of the most populated in solution, making the crystal structure a reliable model for the peptide in solution. The crystal structure of DFNKF(I) confirms the overall features of the amyloid cross-β spine and highlights how aromatic-aromatic interactions are important structural factors in the self-assembly of this peptide. A detailed analysis of such interactions is reported.

  9. Structural Transitions in Cholesteric Liquid Crystal Droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye; Bukusoglu, Emre; Martinez-Gonzalez, Jose A.; Rahimi, Mohammad; Roberts, Tyler F.; Zhang, Rui; Wang, Xiaoguang; Abbott, Nicholas L.; de Pablo, Juan J.

    2016-07-01

    Confinement of cholesteric liquid crystals (ChLC) into droplets leads to a delicate interplay between elasticity, chirality, and surface energy. In this work, we rely on a combination of theory and experiments to understand the rich morphological behavior that arises from that balance. More specifically, a systematic study of micrometer-sized ChLC droplets is presented as a function of chirality and surface energy (or anchoring). With increasing chirality, a continuous transition is observed from a twisted bipolar structure to a radial spherical structure, all within a narrow range of chirality. During such a transition, a bent structure is predicted by simulations and confirmed by experimental observations. Simulations are also able to capture the dynamics of the quenching process observed in experiments. Consistent with published work, it is found that nanoparticles are attracted to defect regions on the surface of the droplets. For weak anchoring conditions at the nanoparticle surface, ChLC droplets adopt a morphology similar to that of the equilibrium helical phase observed for ChLCs in the bulk. As the anchoring strength increases, a planar bipolar structure arises, followed by a morphological transition to a bent structure. The influence of chirality and surface interactions are discussed in the context of the potential use of ChLC droplets as stimuli-responsive materials for reporting molecular adsorbates.

  10. Crystal structure and conformational analysis of angiotensinogen fragments.

    Science.gov (United States)

    Benkoulouche, M; Cotrait, M; Geoffre, S; Precigoux, G

    1989-12-01

    The tripeptide acetyl-L-prolyl-L-phenylalanyl-L-histidine crystallizes in the orthorhombic space group P2(1)2(1)2(1) with eight molecules in a unit cell of dimensions a = 9.028(2), b = 140.54(6) and c = 42.41(1)A. The structure has been solved by direct methods and refined to an R value of 0.056 for 2904 observed reflections. The molecule exists as a zwitterion with terminal (His)CO2- and (imidazole)H+ as charged groups. The two peptide molecules in the structure adopt a type I beta-turn with Pro and Phe as the corner residues. The main conformational difference between the two crystallographically independent molecules is seen to be in the histidine side-chain orientations. The molecules arrange themselves in sheets perpendicular to the c axis. All hydrophobic side chains lie on one side of the sheets thus generated, whereas the hydrophilic groups are located on the other side. An interesting feature of the crystal structure is the existence of a water layer between adjacent peptide sheets. The conformational study of the isolated Ac-His-Pro-Phe-His-MA using energy calculations gives a rather limited number of stable conformers. The most stable corresponds to a type I beta-turn stabilized through two hydrogen bonds, followed by a less stable type II beta-turn (delta E = 2.0 kcal) and a partly helical structure (delta E = 2.6 kcal).

  11. What are the structural features that drive partitioning of proteins in aqueous two-phase systems?

    Science.gov (United States)

    Wu, Zhonghua; Hu, Gang; Wang, Kui; Zaslavsky, Boris Yu; Kurgan, Lukasz; Uversky, Vladimir N

    2017-01-01

    Protein partitioning in aqueous two-phase systems (ATPSs) represents a convenient, inexpensive, and easy to scale-up protein separation technique. Since partition behavior of a protein dramatically depends on an ATPS composition, it would be highly beneficial to have reliable means for (even qualitative) prediction of partitioning of a target protein under different conditions. Our aim was to understand which structural features of proteins contribute to partitioning of a query protein in a given ATPS. We undertook a systematic empirical analysis of relations between 57 numerical structural descriptors derived from the corresponding amino acid sequences and crystal structures of 10 well-characterized proteins and the partition behavior of these proteins in 29 different ATPSs. This analysis revealed that just a few structural characteristics of proteins can accurately determine behavior of these proteins in a given ATPS. However, partition behavior of proteins in different ATPSs relies on different structural features. In other words, we could not find a unique set of protein structural features derived from their crystal structures that could be used for the description of the protein partition behavior of all proteins in all ATPSs analyzed in this study. We likely need to gain better insight into relationships between protein-solvent interactions and protein structure peculiarities, in particular given limitations of the used here crystal structures, to be able to construct a model that accurately predicts protein partition behavior across all ATPSs. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Crystal structure of strontium dinickel iron orthophosphate

    Directory of Open Access Journals (Sweden)

    Said Ouaatta

    2015-10-01

    Full Text Available The title compound, SrNi2Fe(PO43, synthesized by solid-state reaction, crystallizes in an ordered variant of the α-CrPO4 structure. In the asymmetric unit, two O atoms are in general positions, whereas all others atoms are in special positions of the space group Imma: the Sr cation and one P atom occupy the Wyckoff position 4e (mm2, Fe is on 4b (2/m, Ni and the other P atom are on 8g (2, one O atom is on 8h (m and the other on 8i (m. The three-dimensional framework of the crystal structure is built up by [PO4] tetrahedra, [FeO6] octahedra and [Ni2O10] dimers of edge-sharing octahedra, linked through common corners or edges. This structure comprises two types of layers stacked alternately along the [100] direction. The first layer is formed by edge-sharing octahedra ([Ni2O10] dimer linked to [PO4] tetrahedra via common edges while the second layer is built up from a strontium row followed by infinite chains of alternating [PO4] tetrahedra and FeO6 octahedra sharing apices. The layers are held together through vertices of [PO4] tetrahedra and [FeO6] octahedra, leading to the appearance of two types of tunnels parallel to the a- and b-axis directions in which the Sr cations are located. Each Sr cation is surrounded by eight O atoms.

  13. Crystal structures of five 6-mercaptopurine derivatives

    Directory of Open Access Journals (Sweden)

    Lígia R. Gomes

    2016-03-01

    Full Text Available The crystal structures of five 6-mercaptopurine derivatives, viz. 2-[(9-acetyl-9H-purin-6-ylsulfanyl]-1-(3-methoxyphenylethan-1-one (1, C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-ylsulfanyl]-1-(4-methoxyphenylethan-1-one (2, C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-ylsulfanyl]-1-(4-chlorophenylethan-1-one (3, C15H11ClN4O2S, 2-[(9-acetyl-9H-purin-6-ylsulfanyl]-1-(4-bromophenylethan-1-one (4, C15H11BrN4O2S, and 1-(3-methoxyphenyl-2-[(9H-purin-6-ylsulfanyl]ethan-1-one (5, C14H12N4O2S. Compounds (2, (3 and (4 are isomorphous and accordingly their molecular and supramolecular structures are similar. An analysis of the dihedral angles between the purine and exocyclic phenyl rings show that the molecules of (1 and (5 are essentially planar but that in the case of the three isomorphous compounds (2, (3 and (4, these rings are twisted by a dihedral angle of approximately 38°. With the exception of (1 all molecules are linked by weak C—H...O hydrogen bonds in their crystals. There is π–π stacking in all compounds. A Cambridge Structural Database search revealed the existence of 11 deposited compounds containing the 1-phenyl-2-sulfanylethanone scaffold; of these, only eight have a cyclic ring as substituent, the majority of these being heterocycles.

  14. Crystal Structures of Respiratory Pathogen Neuraminidases

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Y.; Parker, D; Ratner, A; Prince, A; Tong, L

    2009-01-01

    Currently there is pressing need to develop novel therapeutic agents for the treatment of infections by the human respiratory pathogens Pseudomonas aeruginosa and Streptococcus pneumoniae. The neuraminidases of these pathogens are important for host colonization in animal models of infection and are attractive targets for drug discovery. To aid in the development of inhibitors against these neuraminidases, we have determined the crystal structures of the P. aeruginosa enzyme NanPs and S. pneumoniae enzyme NanA at 1.6 and 1.7 {angstrom} resolution, respectively. In situ proteolysis with trypsin was essential for the crystallization of our recombinant NanA. The active site regions of the two enzymes are strikingly different. NanA contains a deep pocket that is similar to that in canonical neuraminidases, while the NanPs active site is much more open. The comparative studies suggest that NanPs may not be a classical neuraminidase, and may have distinct natural substrates and physiological functions. This work represents an important step in the development of drugs to prevent respiratory tract colonization by these two pathogens.

  15. Extraction and Crystal Structure of Karounidiol

    Institute of Scientific and Technical Information of China (English)

    巢志茂; 王诚

    2003-01-01

    The title compound of karounidiol (C30H48O2), a main active triterpene component of snakegourd seed, was isolated from unsaponifiable matter of the seed oil of Trichosanthes kirilowii Maxim., and characterized by X-ray diffraction analysis. It crystallizes in orthorhombic system, space group P212121 with C30H48O2·CH3OH·H2O (C31H54O4), a = 7.515(1), b = 14.407(1), c = 27.799(2) (A。), V = 3009.8(5)(A。)3, Z = 4, Dx = 1.087 g/cm3, Mr = 490.77, F(000) = 1088 and μ = 0.086 mm-1. The final R = 0.0840 and wR = 0.2289 for 2752 observed reflections (|F|2 ≥ 2σ|F|2). The molecular crystal structure of karounidiol shows relative stereochemistry of (3α,13α,14β, 20α)-3,29-dihydroxy-13-methyl-26-norolean-7,9(11)-diene. The molecule is composed of five six- membered rings with ring junctures of A/B trans, C/D trans and D/E cis.

  16. Crystal and molecular structure of aflatrem

    Directory of Open Access Journals (Sweden)

    Bruno N. Lenta

    2015-11-01

    Full Text Available The crystal structure of the title compound, C32H39NO4, confirms the absolute configuration of the seven chiral centres in the molecule. The molecule has a 1,1-dimethylprop-2-enyl substituent on the indole nucleus and this nucleus shares one edge with the five-membered ring which is, in turn, connected to a sequence of three edge-shared fused rings. The skeleton is completed by the 7,7-trimethyl-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one group connected to the terminal cyclohexene ring. The two cyclohexane rings adopt chair and half-chair conformations, while in the dioxabicyclo[3.2.1]oct-3-en-2-one unit, the six-membered ring has a half-chair conformation. The indole system of the molecule exhibits a tilt of 2.02 (1° between its two rings. In the crystal, O—H...O hydrogen bonds connect molecules into chains along [010]. Weak N—H...π interactions connect these chains, forming sheets parallel to (10-1.

  17. The crystal structure Escherichia coli Spy.

    Science.gov (United States)

    Kwon, Eunju; Kim, Dong Young; Gross, Carol A; Gross, John D; Kim, Kyeong Kyu

    2010-11-01

    Escherichia coli spheroplast protein y (EcSpy) is a small periplasmic protein that is homologous with CpxP, an inhibitor of the extracytoplasmic stress response. Stress conditions such as spheroplast formation induce the expression of Spy via the Cpx or the Bae two-component systems in E. coli, though the function of Spy is unknown. Here, we report the crystal structure of EcSpy, which reveals a long kinked hairpin-like structure of four α-helices that form an antiparallel dimer. The dimer contains a curved oval shape with a highly positively charged concave surface that may function as a ligand binding site. Sequence analysis reveals that Spy is highly conserved over the Enterobacteriaceae family. Notably, three conserved regions that contain identical residues and two LTxxQ motifs are placed at the horizontal end of the dimer structure, stabilizing the overall fold. CpxP also contains the conserved sequence motifs and has a predicted secondary structure similar to Spy, suggesting that Spy and CpxP likely share the same fold.

  18. Crystal structure of zirconia by Rietveld refinement

    Institute of Scientific and Technical Information of China (English)

    王大宁; 郭永权; 梁开明; 陶琨

    1999-01-01

    The crystal structures and phase transformation of zirconia ceramics have been investigated by means of X-ray powder diffraction and Rietveld powder diffraction profile fitting technique. A structural transition from monoclinic to tetragonal occurs when Y2O3 and CeO2 are doped into zirconia. The space group of the tetragonal structure is P42/nmc, Z=2. The lattice parameters are α=0.362 6(5) nm, c=0.522 6(3)nm for CeO2 doped zirconia and α=0. 360 2(8)nm, c=0. 517 9(1)nm for Y2O3 doped zirconia, respectively. In each unit cell, there are two kinds of equivalent positions, i. e. 2b and 4d, which are occupied by Zr4+, M(M=Y3+, Ce4+) cations and O2- anions, respectively. The crystallographic correlation among the cubic, tetragonal and monoclinic structures of ZrO2 is discussed.

  19. Crystal structure of phenyl N-(4-nitrophenylcarbamate

    Directory of Open Access Journals (Sweden)

    Y. AaminaNaaz

    2015-12-01

    Full Text Available The asymmetric unit of the title compound, C13H10N2O4, contains two independent molecules (A and B. The dihedral angle between the aromatic rings is 48.18 (14° in molecule A and 45.81 (14° in molecule B. The mean plane of the carbamate N—C(=O—O group is twisted slightly from the attached benzene and phenyl rings, making respective dihedral angles of 12.97 (13 and 60.93 (14° in A, and 23.11 (14 and 59.10 (14° in B. In the crystal, A and B molecules are arranged alternately through N—H...O hydrogen bonds and C—H...π interactions, forming chains along the a axis. The chains are further linked by C—H...O hydrogen bonds into a double-chain structure.

  20. New Tricks of the Trade for Crystal Structure Refinement.

    Science.gov (United States)

    Li, Jinjin; Abramov, Yuriy A; Doherty, Michael F

    2017-07-26

    Accurate crystal structures and their experimental uncertainties, determined by X-ray diffraction/neutron diffraction techniques, are vital for crystal engineering studies, such as polymorph stability and crystal morphology calculations. Because of differences in crystal growth and data measurement conditions, crystallographic databases often contain multiple entries of varying quality of the same compound. The choice of the most reliable and best quality crystal structure from many very similar structures remains an unresolved problem, especially for nonexperts. In addition, while crystallographers can make use of some professional software (i.e., Materials Studio) for structure refinement, noncrystallographers may not have access to it. In the present paper, we propose a simple method to study the sensitivity of the crystal lattice energy to changes in the structural parameters, which creates a diagnostic tool to test the quality of crystal structure files and to improve the low-quality structures based on lattice energy distribution. Thus, noncrystallographers could take the proposed idea and program/optimize crystal structure by themselves. They can have their in-house program to determine the reliability of the selected crystal data and then use the best quality data or carry out structural optimization for low-quality data. The proposed method will benefit a broad cross-section of scientific researchers, especially those in solid-state and physical chemistry.

  1. Stability of orientationally disordered crystal structures of colloidal hard dumbbells.

    Science.gov (United States)

    Marechal, Matthieu; Dijkstra, Marjolein

    2008-06-01

    We study the stability of orientationally disordered crystal phases in a suspension of colloidal hard dumbbells using Monte Carlo simulations. For dumbbell bond length L/sigmafcc structure for a large part of the stable plastic crystal regime. In addition, we study the stability of an orientationally disordered aperiodic crystal structure in which the spheres of the dumbbells are on a random-hexagonal-close-packed lattice, and the dumbbells are formed by taking random pairs of neighboring spheres. Using free-energy calculations, we determine the fluid-aperiodic crystal and periodic-aperiodic crystal coexistence regions for L/sigma>0.88 .

  2. Affine structures and a tableau model for E_6 crystals

    CERN Document Server

    Jones, Brant

    2009-01-01

    We provide the unique affine crystal structure for type E_6^{(1)} Kirillov-Reshetikhin crystals corresponding to the multiples of fundamental weights s Lambda_1, s Lambda_2, and s Lambda_6 for all s \\geq 1 (in Bourbaki's labeling of the Dynkin nodes, where 2 is the adjoint node). Our methods introduce a generalized tableaux model for classical highest weight crystals of type E and use the order three automorphism of the affine E_6^{(1)} Dynkin diagram. In addition, we provide a conjecture for the affine crystal structure of type E_7^{(1)} Kirillov-Reshetikhin crystals corresponding to the adjoint node.

  3. Crystal structure of a family 80 chitosanase from Mitsuaria chitosanitabida.

    Science.gov (United States)

    Yorinaga, Yutaka; Kumasaka, Takashi; Yamamoto, Masaki; Hamada, Kensaku; Kawamukai, Makoto

    2017-02-01

    Chitosanases belong to glycoside hydrolase families 5, 7, 8, 46, 75 and 80 and hydrolyse glucosamine polymers produced by partial or full deacetylation of chitin. Herein, we determined the crystal structure of chitosanase from the β-proteobacterium, Mitsuaria chitosanitabida, (McChoA) at 1.75 Å resolution; the first structure of a family 80 chitosanase. McChoA is a 34 kDa extracellular protein of 301 amino acids that fold into two (upper and lower) globular domains with an active site cleft between them. Key substrate-binding features are conserved with family 24 lysozymes and family 46 chitosanases. The distance between catalytic residues E41 and E61 (10.8 Å) indicates an inverting type mechanism. Uniquely, three disulphide bridges and the C terminus might contribute to enzyme activity.

  4. Isomorph invariance of the structure and dynamics of classical crystals

    DEFF Research Database (Denmark)

    Albrechtsen, Dan; Olsen, Andreas Elmerdahl; Pedersen, Ulf Rørbæk

    2014-01-01

    of a defective fcc crystal is also shown to be isomorph invariant. In contrast, a NaCl crystal model does not exhibit isomorph invariances. Other systems simulated, though in less detail, are the Wahnström binary Lennard-Jones crystal with the MgZn2 Laves crystal structure, monatomic fcc crystals of particles......This paper shows by computer simulations that some crystalline systems have curves in their thermodynamic phase diagrams, so-called isomorphs, along which structure and dynamics in reduced units are invariant to a good approximation. The crystals are studied in a classical-mechanical framework......, which is generally a good description except significantly below melting. The existence of isomorphs for crystals is validated by simulations of particles interacting via the Lennard-Jones pair potential arranged into a face-centered cubic (fcc) crystalline structure; the slow vacancy-jump dynamics...

  5. Structure damage detection based on random forest recursive feature elimination

    Science.gov (United States)

    Zhou, Qifeng; Zhou, Hao; Zhou, Qingqing; Yang, Fan; Luo, Linkai

    2014-05-01

    Feature extraction is a key former step in structural damage detection. In this paper, a structural damage detection method based on wavelet packet decomposition (WPD) and random forest recursive feature elimination (RF-RFE) is proposed. In order to gain the most effective feature subset and to improve the identification accuracy a two-stage feature selection method is adopted after WPD. First, the damage features are sorted according to original random forest variable importance analysis. Second, using RF-RFE to eliminate the least important feature and reorder the feature list each time, then get the new feature importance sequence. Finally, k-nearest neighbor (KNN) algorithm, as a benchmark classifier, is used to evaluate the extracted feature subset. A four-storey steel shear building model is chosen as an example in method verification. The experimental results show that using the fewer features got from proposed method can achieve higher identification accuracy and reduce the detection time cost.

  6. Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals.

    Science.gov (United States)

    Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J

    2009-12-24

    In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure.

  7. Some Lower Valence Vanadium Fluorides: Their Crystal Distortions, Domain Structures, Modulated Structures, Ferrimagnetism, and Composition Dependence.

    Science.gov (United States)

    Hong, Y. S.; And Others

    1980-01-01

    Describes some contemporary concepts unique to the structure of advanced solids, i.e., their crystal distortions, domain structures, modulated structures, ferrimagnetism, and composition dependence. (Author/CS)

  8. Crystal Structure of Cold Compressed Graphite

    Science.gov (United States)

    Amsler, Maximilian; Flores-Livas, José A.; Lehtovaara, Lauri; Balima, Felix; Ghasemi, S. Alireza; Machon, Denis; Pailhès, Stéphane; Willand, Alexander; Caliste, Damien; Botti, Silvana; San Miguel, Alfonso; Goedecker, Stefan; Marques, Miguel A. L.

    2012-02-01

    Through a systematic structural search we found an allotrope of carbon with Cmmm symmetry which we predict to be more stable than graphite for pressures above 10 GPa. This material, which we refer to as Z-carbon, is formed by pure sp3 bonds and it provides an explanation to several features in experimental x-ray diffraction and Raman spectra of graphite under pressure. The transition from graphite to Z-carbon can occur through simple sliding and buckling of graphene sheets. Our calculations predict that Z-carbon is a transparent wide band-gap semiconductor with a hardness comparable to diamond.

  9. Synthesis and X-ray Crystal Structure of a New Molecular Clip

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The synthesis and X-ray crystal structure of a new molecular clip 2 was reported.It (C24H24N4O2, Mr = 400.47) crystallizes in the space group C2/c with a = 15.587(2), b =8.5805(12), c = 15.259(2)(A),β= 102.448(3)°, V = 1992.9 (5)(A)3, Z= 4, Dc = 1.335 g/cm3,μ= 0.087mm-1 and F(000) = 848.It remains monomeric in the crystal and a tape-like structure is formed in the crystal structure of molecular clip.The most unusual structural feature of 2 is the boat conformation of its cyclohexyl ring imposed by the ring fusion at C(9)-C(9a).

  10. Polymorphic crystal structures of an all-AT DNA dodecamer.

    Science.gov (United States)

    Acosta-Reyes, Francisco J; Subirana, Juan A; Pous, Joan; Sánchez-Giraldo, Raquel; Condom, Núria; Baldini, Roberto; Malinina, Lucy; Campos, J Lourdes

    2015-03-01

    In this work, we explore the influence of different solvents and ions on the crystallization behavior of an all-AT dodecamer d(AATAAATTTATT)2 In all cases, the oligonucleotides are found as continuous columns of stacked duplexes. The spatial organization of such columns is variable; consequently we have obtained seven different crystal forms. The duplexes can be made to crystallize in either parallel or crossed columns. Such versatility in the formation of a variety of crystal forms is characteristic for this sequence. It had not been previously reported for any other sequence. In all cases, the oligonucleotide duplexes have been found to crystallize in the B form. The crystallization conditions determine the organization of the crystal, although no clear local interactions have been detected. Mg(2+) and Ni(2+) can be used in order to obtain compact crossed structures. DNA-DNA interactions in the crystals of our all-AT duplexes present crossovers which are different from those previously reported for mixed sequence oligonucleotides. Our results demonstrate that changes in the ionic atmosphere and the crystallization solvent have a strong influence on the DNA-DNA interactions. Similar ionic changes will certainly influence the biological activity of DNA. Modulation of the crystal structure by ions should also be explored in DNA crystal engineering. Liquid crystals with a peculiar macroscopic shape have also been observed.

  11. Crystallization and Structure Determination of Superantigens and Immune Receptor Complexes.

    Science.gov (United States)

    Rödström, Karin E J; Lindkvist-Petersson, Karin

    2016-01-01

    Structure determination of superantigens and the complexes they form with immune receptors have over the years provided insight in their modes of action. This technique requires growing large and highly ordered crystals of the superantigen or receptor-superantigen complex, followed by exposure to X-ray radiation and data collection. Here, we describe methods for crystallizing superantigens and superantigen-receptor complexes using the vapor diffusion technique, how the crystals may be optimized, and lastly data collection and structure determination.

  12. Crystal structure refinement a crystallographers guide to SHELXL

    CERN Document Server

    2006-01-01

    A crystallographers guide to SHELXL, covering various aspects of practical crystal structure refinement, from the treatment of hydrogen atoms to the assignment of atom types, and more. After an introduction to SHELXL, a brief survey of crystal structure refinement is provided.

  13. The Crystal Structure of Cu4Bi4Se9

    DEFF Research Database (Denmark)

    Makovicky, E.; Søtofte, Inger; Karup-Møller, S.

    2002-01-01

    The crystal structure Of Cu4Bi4Se9,, synthesized at 400 degreesC, was determined from single crystal X-ray diffraction data and refined to the R, value of 0.05. The compound is orthorhombic, with a = 32.692 Angstrom, b = 4.120 Angstrom, and c = 12.202 Angstrom, space group Pnma. The structure...

  14. Undergraduates Improve upon Published Crystal Structure in Class Assignment

    Science.gov (United States)

    Horowitz, Scott; Koldewey, Philipp; Bardwell, James C.

    2014-01-01

    Recently, 57 undergraduate students at the University of Michigan were assigned the task of solving a crystal structure, given only the electron density map of a 1.3 Å crystal structure from the electron density server, and the position of the N-terminal amino acid. To test their knowledge of amino acid chemistry, the students were not given the…

  15. The Crystal Structure of Cu4Bi4Se9

    DEFF Research Database (Denmark)

    Makovicky, E.; Søtofte, Inger; Karup-Møller, S.

    2002-01-01

    The crystal structure Of Cu4Bi4Se9,, synthesized at 400 degreesC, was determined from single crystal X-ray diffraction data and refined to the R, value of 0.05. The compound is orthorhombic, with a = 32.692 Angstrom, b = 4.120 Angstrom, and c = 12.202 Angstrom, space group Pnma. The structure...

  16. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  17. Use of Pom Pons to Illustrate Cubic Crystal Structures.

    Science.gov (United States)

    Cady, Susan G.

    1997-01-01

    Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)

  18. 108 Generic Structure Potential Analysis of Feature Articles in ...

    African Journals Online (AJOL)

    articles in four Nigerian newspapers: The Punch, The Nation, ... three optional elements: Feature Lead, Proffering a Solution and ... of feature articles is to entertain and connect people on an ... paper studied the feature article in order to find out its generic structure and the way rhetorical strategies are employed in this.

  19. High-speed prediction of crystal structures for organic molecules

    Science.gov (United States)

    Obata, Shigeaki; Goto, Hitoshi

    2015-02-01

    We developed a master-worker type parallel algorithm for allocating tasks of crystal structure optimizations to distributed compute nodes, in order to improve a performance of simulations for crystal structure predictions. The performance experiments were demonstrated on TUT-ADSIM supercomputer system (HITACHI HA8000-tc/HT210). The experimental results show that our parallel algorithm could achieve speed-ups of 214 and 179 times using 256 processor cores on crystal structure optimizations in predictions of crystal structures for 3-aza-bicyclo(3.3.1)nonane-2,4-dione and 2-diazo-3,5-cyclohexadiene-1-one, respectively. We expect that this parallel algorithm is always possible to reduce computational costs of any crystal structure predictions.

  20. Evolutionary crystal structure prediction and novel high-pressure phases

    OpenAIRE

    Oganov, A. R.; Ma, Y.; Lyakhov, A. O.; Valle, M.; C. Gatti

    2010-01-01

    Prediction of stable crystal structures at given pressure-temperature conditions, based only on the knowledge of the chemical composition, is a central problem of condensed matter physics. This extremely challenging problem is often termed "crystal structure prediction problem", and recently developed evolutionary algorithm USPEX (Universal Structure Predictor: Evolutionary Xtallography) made an important progress in solving it, enabling efficient and reliable prediction of structures with up...

  1. Crystal structure of 2,5-dimethylanilinium salicylate

    Directory of Open Access Journals (Sweden)

    A. Mani

    2015-09-01

    Full Text Available The title molecular salt, C8H12N+·C7H5O3− arose from the proton-transfer reaction between 2,5-xylidine and salicylic acid. In the anion, the dihedral angle between the planes of the aromatic ring and the –CO2− group is 11.08 (8°; this near planarity is consolidated by an intramolecular O—H...O hydrogen bond. In the crystal, the components are connected by N—H...O hydrogen bonds, with all three O atoms in the anion acting as acceptors; the result is a [100] chain. The structure also features weak C—H...O bonds and aromatic π–π stacking [centroid-to-centroid distance = 3.7416 (10 Å] interactions, which lead to a three-dimensional network.

  2. PLANAR OPTICAL WAVEGUIDES WITH PHOTONIC CRYSTAL STRUCTURE

    DEFF Research Database (Denmark)

    2003-01-01

    Planar optical waveguide comprising a core region and a cladding region comprising a photonic crystal material, said photonic crystal material having a lattice of column elements, wherein at least a number of said column elements are elongated substantially in an axial direction for said core reg...

  3. Crystal structure of Clostridium difficile toxin A

    Energy Technology Data Exchange (ETDEWEB)

    Chumbler, Nicole M.; Rutherford, Stacey A.; Zhang, Zhifen; Farrow, Melissa A.; Lisher, John P.; Farquhar, Erik; Giedroc, David P.; Spiller, Benjamin W.; Melnyk, Roman A.; Lacy, D. Borden

    2016-01-11

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon. The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host. The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics.

  4. Anisotropic domain structure of KTiOPO4 crystals

    Science.gov (United States)

    Urenski, P.; Lesnykh, M.; Rosenwaks, Y.; Rosenman, G.; Molotskii, M.

    2001-08-01

    Highly anisotropic ferroelectric domain structure is observed in KTiOPO4 (KTP) crystals reversed by low electric field. The applied Miller-Weinreich model for sidewise motion of domain walls indicates that this anisotropy results from the peculiarities of KTP crystal lattice. The domain nuclei of dozen nanometer size, imaged by atomic force microscopy method, demonstrate regular hexagonal forms. The orientation of domain walls of the elementary nuclei coincides with the orientation of the facets of macroscopic KTP crystals. The observed strong domain elongation along one principal crystal axis allows us to improve tailoring of ferroelectric domain engineered structures for nonlinear optical converters.

  5. Spectroscopic, thermal and structural studies on manganous malate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J., E-mail: smartlabindia@gmail.com; Lincy, A., E-mail: lincymaria@gmail.com; Mahalakshmi, V.; Saban, K. V. [Smart Materials Analytic Research and Technology (SMART), Department of Physics, St. Berchmans College (India)

    2013-01-15

    Prismatic crystals of manganous malate have been prepared by controlled ionic diffusion in hydrosilica gel. The structure was elucidated using single crystal X-ray diffraction. The crystals are orthorhombic with space group Pbca. Vibrations of the functional groups were identified by the FTIR spectrum. Thermogravimetric and differential thermal analyses (TG-DTA) were carried out to explore the thermal decomposition pattern of the material. Structural information derived from FTIR and TG-DTA studies is in conformity with the single crystal XRD data.

  6. submitter Light Extraction From Scintillating Crystals Enhanced by Photonic Crystal Structures Patterned by Focused Ion Beam

    CERN Document Server

    Modrzynski, Pawel; Knapitsch, Arno; Kunicki, Piotr; Lecoq, Paul; Moczala, Magdalena; Papakonstantinou, Ioannis; Auffray, Etiennette

    2016-01-01

    “Photonic Crystals (PhC)” have been used in a variety of fields as a structure for improving the light extraction efficiency from materials with high index of refraction. In previous work we already showed the light extraction improvement of several PhC covered LYSO crystals in computer simulations and practical measurements. In this work, new samples are made using different materials and techniques which allows further efficiency improvements. For rapid prototyping of PhC patterns on scintillators we tested a new method using “Focused Ion Beam (FIB)” patterning. The FIB machine is a device similar to a “Scanning Electron Microscope (SEM)”, but it uses ions (mainly gallium) instead of electrons for the imaging of the samples' surface. The additional feature of FIB devices is the option of surface patterning in nano-scale which was exploited for our samples. Three samples using FIB patterning have been produced. One of them is a direct patterning of the extraction face of a 0.8×0.8×10 $mm^3$ LYS...

  7. SiBr4--prediction and determination of crystal structures.

    Science.gov (United States)

    Wolf, Alexandra K; Glinnemann, Jürgen; Schmidt, Martin U; Tong, Jianwei; Dinnebier, Robert E; Simon, Arndt; Köhler, Jürgen

    2009-06-01

    For SiBr4 no crystal structures have been reported yet. In this work the crystal structures of SiBr4 were predicted by global lattice-energy minimizations using force-field methods. Over an energy range of 5 kJ mol(-1) above the global minimum ten possible structures were found. Two of these structures were experimentally determined from X-ray synchrotron powder diffraction data: The low-temperature beta phase crystallizes in P2(1)/c, the high-temperature alpha phase in Pa3. Temperature-dependant X-ray powder diffraction shows that the phase transition occurs at 168 K.

  8. SiBr4 - Prediction and Determination of Crystal Structures

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.; Glinnemann, J; Schmidt, M; Tong, J; Dinnebier, R; Simon, A; Kohler, J

    2009-01-01

    For SiBr4 no crystal structures have been reported yet. In this work the crystal structures of SiBr4 were predicted by global lattice-energy minimizations using force-field methods. Over an energy range of 5 kJ mol-1 above the global minimum ten possible structures were found. Two of these structures were experimentally determined from X-ray synchrotron powder diffraction data: The low-temperature [beta] phase crystallizes in P21/c, the high-temperature [alpha] phase in Pa overline3. Temperature-dependant X-ray powder diffraction shows that the phase transition occurs at 168 K.

  9. Crystallization and Characterization of Galdieria sulphuraria RUBISCO in Two Crystal Forms: Structural Phase Transition Observed in P21 Crystal Form

    Directory of Open Access Journals (Sweden)

    Boguslaw Stec

    2007-10-01

    Full Text Available We have isolated ribulose-1,5-bisphosphate-carboxylase/oxygenase (RUBISCOfrom the red algae Galdieria Sulphuraria. The protein crystallized in two different crystalforms, the I422 crystal form being obtained from high salt and the P21 crystal form beingobtained from lower concentration of salt and PEG. We report here the crystallization,preliminary stages of structure determination and the detection of the structural phasetransition in the P21 crystal form of G. sulphuraria RUBISCO. This red algae enzymebelongs to the hexadecameric class (L8S8 with an approximate molecular weight 0.6MDa.The phase transition in G. sulphuraria RUBISCO leads from two hexadecamers to a singlehexadecamer per asymmetric unit. The preservation of diffraction power in a phasetransition for such a large macromolecule is rare.

  10. Origin and structure of polar domains in doped molecular crystals

    Science.gov (United States)

    Meirzadeh, E.; Azuri, I.; Qi, Y.; Ehre, D.; Rappe, A. M.; Lahav, M.; Kronik, L.; Lubomirsky, I.

    2016-11-01

    Doping is a primary tool for the modification of the properties of materials. Occlusion of guest molecules in crystals generally reduces their symmetry by the creation of polar domains, which engender polarization and pyroelectricity in the doped crystals. Here we describe a molecular-level determination of the structure of such polar domains, as created by low dopant concentrations (<0.5%). The approach comprises crystal engineering and pyroelectric measurements, together with dispersion-corrected density functional theory and classical molecular dynamics calculations of the doped crystals, using neutron diffraction data of the host at different temperatures. This approach is illustrated using centrosymmetric α-glycine crystals doped with minute amounts of different L-amino acids. The experimentally determined pyroelectric coefficients are explained by the structure and polarization calculations, thus providing strong support for the local and global understanding of how different dopants influence the properties of molecular crystals.

  11. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    Science.gov (United States)

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-02-09

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  12. Lasing with conical diffraction feature in the KGd(WO4)2:Nd biaxial crystal

    Science.gov (United States)

    Brenier, Alain

    2016-09-01

    With an experimental set-up designed to record simultaneously the far-field and the near-field patterns, we got lasing with feature of conical diffraction in the biaxial Nd3+-doped KGd(WO4)2 crystal. The key-point is that the lasing direction is not single and is constituted by an angular distribution including the optical axis. Very slight changes of crystal orientation leads to crescent shape 1068-nm light distributions in the near-field. The beam launched towards the biaxial crystal is mainly linear polarized with its intensity in agreement with the Nd fluorescence angular distribution. A theoretical background is provided, including the monoclinic and triclinic symmetries and laser amplification including elliptical modes and cavity round trip.

  13. Novel photonic crystal cavities and related structures.

    Energy Technology Data Exchange (ETDEWEB)

    Luk, Ting Shan

    2007-11-01

    The key accomplishment of this project is to achieve a much more in-depth understanding of the thermal emission physics of metallic photonic crystal through theoretical modeling and experimental measurements. An improved transfer matrix technique was developed to enable incorporation of complex dielectric function. Together with microscopic theory describing emitter radiative and non-radiative relaxation dynamics, a non-equilibrium thermal emission model is developed. Finally, experimental methodology was developed to measure absolute emissivity of photonic crystal at high temperatures with accuracy of +/-2%. Accurate emissivity measurements allow us to validate the procedure to treat the effect of the photonic crystal substrate.

  14. Nanoconfinement-Induced Structures in Chiral Liquid Crystals

    OpenAIRE

    2013-01-01

    We employ Monte Carlo simulations in a specialized isothermal-isobaric and in the grand canonical ensemble to study structure formation in chiral liquid crystals as a function of molecular chirality. Our model potential consists of a simple Lennard-Jones potential, where the attractive contribution has been modified to represent the orientation dependence of the interaction between a pair of chiral liquid-crystal molecules. The liquid crystal is confined between a pair of planar and atomicall...

  15. Structural features of reconstituted wheat wax films.

    Science.gov (United States)

    Pambou, Elias; Li, Zongyi; Campana, Mario; Hughes, Arwel; Clifton, Luke; Gutfreund, Philipp; Foundling, Jill; Bell, Gordon; Lu, Jian R

    2016-07-01

    Cuticular waxes are essential for the well-being of all plants, from controlling the transport of water and nutrients across the plant surface to protecting them against external environmental attacks. Despite their significance, our current understanding regarding the structure and function of the wax film is limited. In this work, we have formed representative reconstituted wax film models of controlled thicknesses that facilitated an ex vivo study of plant cuticular wax film properties by neutron reflection (NR). Triticum aestivum L. (wheat) waxes were extracted from two different wheat straw samples, using two distinct extraction methods. Waxes extracted from harvested field-grown wheat straw using supercritical CO2 are compared with waxes extracted from laboratory-grown wheat straw via wax dissolution by chloroform rinsing. Wax films were produced by spin-coating the two extracts onto silicon substrates. Atomic force microscopy and cryo-scanning electron microscopy imaging revealed that the two reconstituted wax film models are ultrathin and porous with characteristic nanoscale extrusions on the outer surface, mimicking the structure of epicuticular waxes found upon adaxial wheat leaf surfaces. On the basis of solid-liquid and solid-air NR and ellipsometric measurements, these wax films could be modelled into two representative layers, with the diffuse underlying layer fitted with thicknesses ranging from approximately 65 to 70 Å, whereas the surface extrusion region reached heights exceeding 200 Å. Moisture-controlled NR measurements indicated that water penetrated extensively into the wax films measured under saturated humidity and under water, causing them to hydrate and swell significantly. These studies have thus provided a useful structural basis that underlies the function of the epicuticular waxes in controlling the water transport of crops.

  16. Structural features of sequential weak measurements

    Science.gov (United States)

    Diósi, Lajos

    2016-07-01

    We discuss the abstract structure of sequential weak measurement (WM) of general observables. In all orders, the sequential WM correlations without postselection yield the corresponding correlations of the Wigner function, offering direct quantum tomography through the moments of the canonical variables. Correlations in spin-1/2 sequential weak measurements coincide with those in strong measurements, they are constrained kinematically, and they are equivalent with single measurements. In sequential WMs with postselection, an anomaly occurs, different from the weak value anomaly of single WMs. In particular, the spread of polarization σ ̂ as measured in double WMs of σ ̂ will diverge for certain orthogonal pre- and postselected states.

  17. Crystal Structure of the Human Cannabinoid Receptor CB1.

    Science.gov (United States)

    Hua, Tian; Vemuri, Kiran; Pu, Mengchen; Qu, Lu; Han, Gye Won; Wu, Yiran; Zhao, Suwen; Shui, Wenqing; Li, Shanshan; Korde, Anisha; Laprairie, Robert B; Stahl, Edward L; Ho, Jo-Hao; Zvonok, Nikolai; Zhou, Han; Kufareva, Irina; Wu, Beili; Zhao, Qiang; Hanson, Michael A; Bohn, Laura M; Makriyannis, Alexandros; Stevens, Raymond C; Liu, Zhi-Jie

    2016-10-20

    Cannabinoid receptor 1 (CB1) is the principal target of Δ(9)-tetrahydrocannabinol (THC), a psychoactive chemical from Cannabis sativa with a wide range of therapeutic applications and a long history of recreational use. CB1 is activated by endocannabinoids and is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders. Here, we present the 2.8 Å crystal structure of human CB1 in complex with AM6538, a stabilizing antagonist, synthesized and characterized for this structural study. The structure of the CB1-AM6538 complex reveals key features of the receptor and critical interactions for antagonist binding. In combination with functional studies and molecular modeling, the structure provides insight into the binding mode of naturally occurring CB1 ligands, such as THC, and synthetic cannabinoids. This enhances our understanding of the molecular basis for the physiological functions of CB1 and provides new opportunities for the design of next-generation CB1-targeting pharmaceuticals.

  18. Crystal structure and characterization of pyrroloquinoline quinone disodium trihydrate

    Directory of Open Access Journals (Sweden)

    Ikemoto Kazuto

    2012-06-01

    Full Text Available Abstract Background Pyrroloquinoline quinone (PQQ, a tricarboxylic acid, has attracted attention as a growth factor, and its application to supplements and cosmetics is underway. The product used for these purposes is a water-soluble salt of PQQ disodium. Although in the past, PQQ disodiumpentahydrates with a high water concentration were used, currently, low hydration crystals of PQQ disodiumpentahydrates are preferred. Results We prepared a crystal of PQQ disodium trihydrate in a solution of ethanol and water, studied its structure, and analyzed its properties. In the prepared crystal, the sodium atom interacted with the oxygen atom of two carboxylic acids as well as two quinones of the PQQ disodium trihydrate. In addition, the hydration water of the prepared crystal was less than that of the conventional PQQ disodium crystal. From the results of this study, it was found that the color and the near-infrared (NIR spectrum of the prepared crystal changed depending on the water content in the dried samples. Conclusions The water content in the dried samples was restored to that in the trihydrate crystal by placing the samples in a humid environment. In addition, the results of X-ray diffraction (XRD and X-ray diffraction-differential calorimetry (XRD-DSC analyses show that the phase of the trihydrate crystal changed when the crystallization water was eliminated. The dried crystal has two crystalline forms that are restored to the original trihydrate crystals in 20% relative humidity (RH. This crystalline (PQQ disodium trihydrate is stable under normal environment.

  19. Structure and Properties of Liquid Crystals

    CERN Document Server

    Blinov, Lev M

    2011-01-01

    This book by Lev M. Blinov is ideal to guide researchers from their very first encounter with liquid crystals to the level where they can perform independent experiments on liquid crystals with a thorough understanding of their behaviour also in relation to the theoretical framework. Liquid crystals can be found everywhere around us. They are used in virtually every display device, whether it is for domestic appliances of for specialized technological instruments. Their finely tunable optical properties make them suitable also for thermo-sensing and laser technologies. There are many monographs written by prominent scholars on the subject of liquid crystals. The majority of them presents the subject in great depth, sometimes focusing on a particular research aspect, and in general they require a significant level of prior knowledge. In contrast, this books aims at an audience of advanced undergraduate and graduate students in physics, chemistry and materials science. The book consists of three parts: the firs...

  20. The crystal structure of some rhenium and technetium dichalcogenides

    NARCIS (Netherlands)

    Lamfers, H.J; Meetsma, A.; Wiegers, G.A; deBoer, J.L.

    1996-01-01

    The crystal structures of ReSe2,ReS2, ReSSe and TcS2 are determined using single crystal X-ray diffraction. The compounds are triclinic with space group P (1) over bar. ReSe2, Res(2) and ReSSe have a distorted CdCl2-type structure; TcS2 has a distorted Cd(OH)(2)-type structure. In the case of Res,

  1. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    Directory of Open Access Journals (Sweden)

    Ke-Qin Zhang

    2013-03-01

    Full Text Available Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors.

  2. Studies on growth, crystal structure and characterization of novel organic nicotinium trifluoroacetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, P.V. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Sundar, J. Kalyana; Natarajan, S. [Department of Physics, Madurai Kamaraj University, Madurai 625 021 (India); Vinitha, G. [Department of Physics, Crescent Engineering College, Chennai 600 048 (India)

    2011-09-15

    Highlights: {yields} Good quality crystals of nicotinium trifluoroacetate in monoclinic system were grown for first time. {yields} Nicotinium trifluoroacetate crystal exhibits third order nonlinear optical properties. {yields} The optical spectrum of nicotinium trifluoroacetate crystal reveals the wide transmission in the entire range with cutoff wavelength at 286 nm. {yields} Nicotinium trifluoroacetate is a low dielectric constant material. - Abstract: An organic material, nicotinium trifluoroacetate (NTF) was synthesized and single crystals in monoclinic system were grown from aqueous solution for the first time. Its solubility and metastable zone width were estimated. The crystal structure of NTF was analyzed to reveal the molecular arrangements and the formation of hydrogen bonds in the crystal. High-resolution X-ray diffraction rocking curve measurements were performed to analyze the structural perfection of the grown crystals. Functional groups in NTF were identified by Fourier transform infrared spectral analysis. Thermal behaviour and stability of NTF were studied by thermogravimetric and differential thermal analysis and differential scanning calorimetry. Mechanical and dielectric properties of NTF crystals were analyzed. Optical studies reveal that NTF crystals are transparent in the wavelength range 286-1100 nm. The third order nonlinear optical parameters of NTF were derived by the Z-scan technique.

  3. Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials.

    Science.gov (United States)

    Price, Sarah L; Leslie, Maurice; Welch, Gareth W A; Habgood, Matthew; Price, Louise S; Karamertzanis, Panagiotis G; Day, Graeme M

    2010-08-14

    Crystal structure prediction for organic molecules requires both the fast assessment of thousands to millions of crystal structures and the greatest possible accuracy in their relative energies. We describe a crystal lattice simulation program, DMACRYS, emphasizing the features that make it suitable for use in crystal structure prediction for pharmaceutical molecules using accurate anisotropic atom-atom model intermolecular potentials based on the theory of intermolecular forces. DMACRYS can optimize the lattice energy of a crystal, calculate the second derivative properties, and reduce the symmetry of the spacegroup to move away from a transition state. The calculated terahertz frequency k = 0 rigid-body lattice modes and elastic tensor can be used to estimate free energies. The program uses a distributed multipole electrostatic model (Q, t = 00,...,44s) for the electrostatic fields, and can use anisotropic atom-atom repulsion models, damped isotropic dispersion up to R(-10), as well as a range of empirically fitted isotropic exp-6 atom-atom models with different definitions of atomic types. A new feature is that an accurate model for the induction energy contribution to the lattice energy has been implemented that uses atomic anisotropic dipole polarizability models (alpha, t = (10,10)...(11c,11s)) to evaluate the changes in the molecular charge density induced by the electrostatic field within the crystal. It is demonstrated, using the four polymorphs of the pharmaceutical carbamazepine C(15)H(12)N(2)O, that whilst reproducing crystal structures is relatively easy, calculating the polymorphic energy differences to the accuracy of a few kJ mol(-1) required for applications is very demanding of assumptions made in the modelling. Thus DMACRYS enables the comparison of both known and hypothetical crystal structures as an aid to the development of pharmaceuticals and other speciality organic materials, and provides a tool to develop the modelling of the

  4. Features of plastic strain localization at the yield plateau in Hadfield steel single crystals

    Science.gov (United States)

    Barannikova, S. A.; Zuev, L. B.

    2008-07-01

    Spatiotemporal distributions of local components of the plastic distortion tensor in Hadfield steel single crystals oriented for single twinning have been studied under active tensile straining conditions using the double-exposure speckle photography technique. Features of the macroscopically inhomogeneous strain localization at the yield plateau are considered. Relations between local components of the plastic distortion tensor in the zone of strain localization are analyzed.

  5. Functional substitution of coordination polyhedron in crystal structure of silicates

    Institute of Scientific and Technical Information of China (English)

    叶大年; 马哲生; 赫伟; 李哲; 施倪承; D.Pushcharovsky

    2002-01-01

    On the bases of the study of comparative crystal chemistry of silicates it has been concluded that the octahedra and square pyramids of Ti-0 and Zr-O play functional role of tetrahedra of Si-O in the construction of crystal structures. Therefore, those silicates may be named titano-and zircono-silicates. Because of the functional similarity of coordination polyhedra, the structures of cristobalite and feldspar have been compared with those of perovskite and garnet, respectively. As a new concept, the functional replacement of tetrahedra by octahedra and/or pyramids is defined by the authors of this paper for favorable comparison of relative crystal structures.

  6. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    , such as body-centered cubic and face-centered cubic, can be suppressed by a proper choice of the potential depth and periodicity. Furthermore, by varying the harmonic trap parameters and/or the optical potential in time, controlled transitions between crystal structures can be obtained with close to unit......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  7. Influence of crystal structure on the compaction properties of n-alkyl 4-hydroxybenzoate esters (parabens).

    Science.gov (United States)

    Feng, Yushi; Grant, David J W

    2006-07-01

    The aim of the study is to examine the influence of slip planes on the nanoindentation hardness and compaction properties of methyl, ethyl, n-propyl, and n-butyl 4-hydroxybenzoate (parabens). Molecular modeling calculations, embodying the attachment energy concept, were performed to predict the slip planes in the crystal lattices, whereas the nanoindentation hardness of the crystals and the tensile strength of directly compressed compacts were measured. Unlike the other three parabens, methyl paraben has no slip planes in its crystal lattice, and its crystals showed greater nanoindentation hardness, corresponding to lower plasticity, whereas its tablets exhibited substantially lower tensile strength than those of ethyl, propyl, or butyl paraben. The nanoindentation hardness of the crystals and the tensile strength of directly compressed tablets were each found to correlate directly with the absence or presence of slip planes in the crystal structures of the parabens because slip planes confer greater plasticity. This work presents a molecular insight into the influence of crystal structural features on the tableting performance of molecular crystals in general and of crystalline pharmaceuticals in particular.

  8. X-Ray structural investigation of VAS-393 crystals

    CERN Document Server

    Martirosian, A H; Harurtjunian, V S

    2001-01-01

    X-ray structural study of VAS-393 crystals was performed. Investigations were carried out with the use of the Weissenberg rotating and powder (employing the Bjornstrem diagrams) methods. The lattice constants ''c'' and ''a''are calculated. The crystal is shown to belong to the trigonal syngony (medium category)

  9. Missing strings of residues in protein crystal structures.

    Science.gov (United States)

    Djinovic-Carugo, Kristina; Carugo, Oliviero

    2015-01-01

    A large fraction of the protein crystal structures deposited in the Protein Data Bank are incomplete, since the position of one or more residues is not reported, despite these residues are part of the material that was analyzed. This may bias the use of the protein crystal structures by molecular biologists. Here we observe that in the large majority of the protein crystal structures strings of residues are missing. Polar residues incline to occur in missing strings together with glycine, while apolar and aromatic residues tend to avoid them. Particularly flexible residues, as shown by their extremely high B-factors, by their exposure to the solvent and by their secondary structures, flank the missing strings. These data should be a helpful guideline for crystallographers that encounter regions of flat and uninterpretable electron density as well as end-users of crystal structures.

  10. Growth morphology and structural characteristic of C70single crystals

    Institute of Scientific and Technical Information of China (English)

    周维亚; 解思深; 吴源; 常保和; 王刚; 钱露茜

    1999-01-01

    Large size C70 single crystals with the dimension of more than 5 mm are grown from the vapor phase by controlling nucleation. X-ray diffraction and electron diffraction confirm that in the C70 single crystal a phase of the hexagonal close-packed (hcp) structure coexists with a minor face-center-cubic (fcc) phase at room temperature. The morphologies and their formation mechanism of the C70 single crystals are investigated by means of scanning electron microscopy and optical microscopy. The influence of growth conditions on the morphologies of C70 single crystals is discussed.

  11. Structural and mechanical studies of cadmium manganese thiocyanate crystal

    Science.gov (United States)

    Manikandan, M. R.; Vijayaprasath, G.; babu, G. Anandha; Bhagavannarayan, G.; Vijayan, N.; Ravi, G.

    2012-06-01

    Single crystals of cadmium manganese thiocyanate (CMTC) have been synthesized successfully and grown by slow evaporation method. The structural perfection of the grown crystals has been analyzed by High resolution X-ray diffraction (HRXRD), which shows the crystalline perfection of the grown crystal is quite good. Optical behavior was assessed by UV-Vis analysis and found that no absorption in the UV visible region and it may be useful for second harmonic applications. The mechanical hardness of the grown crystals was studied and Vicker's microhardness, Stiffness constant was calculated.

  12. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.; Campbell, Elizabeth A.

    2017-07-13

    The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the αCTD may play a role in Mtb transcription regulation. Our results reveal the structure of an Actinobacteria-unique insert of the RNAP β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σA, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.

  13. Cutting Edge: Il-1 Receptor-Associated Kinase 4 Structures Reveal Novel Features And Multiple Conformations

    Energy Technology Data Exchange (ETDEWEB)

    Kuglstatter, A.; Villasenor, A.G.; Shaw, D.; Lee, S.W.; Tsing, S.; Niu, L.; Song, K.W.; Barnett, J.W.; Browner, M.F.

    2007-07-09

    L-1R-associated kinase (IRAK)4 plays a central role in innate and adaptive immunity, and is a crucial component in IL-1/TLR signaling. We have determined the crystal structures of the apo and ligand-bound forms of human IRAK4 kinase domain. These structures reveal several features that provide opportunities for the design of selective IRAK4 inhibitors. The N-terminal lobe of the IRAK4 kinase domain is structurally distinctive due to a loop insertion after an extended N-terminal helix. The gatekeeper residue is a tyrosine, a unique feature of the IRAK family. The IRAK4 structures also provide insights into the regulation of its activity. In the apo structure, two conformations coexist, differing in the relative orientation of the two kinase lobes and the position of helix C. In the presence of an ATP analog only one conformation is observed, indicating that this is the active conformation.

  14. Construction of crystal structure prototype database: methods and applications.

    Science.gov (United States)

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-26

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  15. Construction of crystal structure prototype database: methods and applications

    Science.gov (United States)

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-01

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  16. Molecular and Crystal Structures of Three Berberine Derivatives

    OpenAIRE

    Jiří Dostál; Zdirad Žák; Marek NeÄÂas; Milan PotáÄÂek; Stanislav Man

    2001-01-01

    Berberine azide, berberine thiocyanate, and 8-cyano-8H-berberine were prepared from berberine chloride, a quaternary protoberberine alkaloid. The molecular and crystal structures of all compounds are reported and discussed.

  17. Determination of channeling perspectives for complex crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Allen, W.R.

    1993-03-01

    Specification of the atomic arrangement for axes and planes of high symmetry is essential for crystal alignment using Rutherford backscattering and for studies of the lattice location of impurities in single crystals. By rotation of an inscribed orthogonal coordinate system, a visual image for a given perspective of a crystal structure can be specified. Knowledge of the atomic arrangement permits qualitative channeling perspectives to be visualized and calculation of continuum potentials for channeling. Channeling angular-yield profiles can then be analytically modeled and, subsequently, shadowing by host atoms of positions within the unit cell predicted. Software to calculate transformed atom positions for a channeling perspective in a single crystal are described and illustrated for the spinel crystal structure.

  18. Detecting Lo cal Manifold Structure for Unsup ervised Feature Selection

    Institute of Scientific and Technical Information of China (English)

    FENG Ding-Cheng; CHEN Feng; XU Wen-Li

    2014-01-01

    Unsupervised feature selection is fundamental in statistical pattern recognition, and has drawn persistent attention in the past several decades. Recently, much work has shown that feature selection can be formulated as nonlinear dimensionality reduction with discrete constraints. This line of research emphasizes utilizing the manifold learning techniques, where feature selection and learning can be studied based on the manifold assumption in data distribution. Many existing feature selection methods such as Laplacian score, SPEC (spectrum decomposition of graph Laplacian), TR (trace ratio) criterion, MSFS (multi-cluster feature selection) and EVSC (eigenvalue sensitive criterion) apply the basic properties of graph Laplacian, and select the optimal feature subsets which best preserve the manifold structure defined on the graph Laplacian. In this paper, we propose a new feature selection perspective from locally linear embedding (LLE), which is another popular manifold learning method. The main difficulty of using LLE for feature selection is that its optimization involves quadratic programming and eigenvalue decomposition, both of which are continuous procedures and different from discrete feature selection. We prove that the LLE objective can be decomposed with respect to data dimensionalities in the subset selection problem, which also facilitates constructing better coordinates from data using the principal component analysis (PCA) technique. Based on these results, we propose a novel unsupervised feature selection algorithm, called locally linear selection (LLS), to select a feature subset representing the underlying data manifold. The local relationship among samples is computed from the LLE formulation, which is then used to estimate the contribution of each individual feature to the underlying manifold structure. These contributions, represented as LLS scores, are ranked and selected as the candidate solution to feature selection. We further develop a

  19. Improving nanocavity switching using Fano resonances in photonic crystal structures

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Elesin, Yuriy;

    2013-01-01

    We present a simple design for achieving Fano resonances in photonic crystal coupled waveguide-cavity structures. A coupled mode theory analysis shows an order of magnitude reduction in switching energy compared to conventional Lorentz resonances.......We present a simple design for achieving Fano resonances in photonic crystal coupled waveguide-cavity structures. A coupled mode theory analysis shows an order of magnitude reduction in switching energy compared to conventional Lorentz resonances....

  20. Unique Structural Features of Influenza Virus H15 Hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Tzarum, Netanel; McBride, Ryan; Nycholat, Corwin M.; Peng, Wenjie; Paulson, James C.; Wilson, Ian A. (Scripps)

    2017-04-12

    Influenza A H15 viruses are members of a subgroup (H7-H10-H15) of group 2 hemagglutinin (HA) subtypes that include H7N9 and H10N8 viruses that were isolated from humans during 2013. The isolation of avian H15 viruses is, however, quite rare and, until recently, geographically restricted to wild shorebirds and waterfowl in Australia. The HAs of H15 viruses contain an insertion in the 150-loop (loop beginning at position 150) of the receptor-binding site common to this subgroup and a unique insertion in the 260-loop compared to any other subtype. Here, we show that the H15 HA has a high preference for avian receptor analogs by glycan array analyses. The H15 HA crystal structure reveals that it is structurally closest to H7N9 HA, but the head domain of the H15 trimer is wider than all other HAs due to a tilt and opening of the HA1 subunits of the head domain. The extended 150-loop of the H15 HA retains the conserved conformation as in H7 and H10 HAs. Furthermore, the elongated 260-loop increases the exposed HA surface and can contribute to antigenic variation in H15 HAs. Since avian-origin H15 HA viruses have been shown to cause enhanced disease in mammalian models, further characterization and immune surveillance of H15 viruses are warranted.

    IMPORTANCEIn the last 2 decades, an apparent increase has been reported for cases of human infection by emerging avian influenza A virus subtypes, including H7N9 and H10N8 viruses isolated during 2013. H15 is the other member of the subgroup of influenza A virus group 2 hemagglutinins (HAs) that also include H7 and H10. H15 viruses have been restricted to Australia, but recent isolation of H15 viruses in western Siberia suggests that they could be spread more globally via the avian flyways that converge and emanate from this region. Here we report on characterization of the three-dimensional structure and receptor specificity of the H15 hemagglutinin, revealing distinct features and specificities that can

  1. Crystal structure of S-(4-methylbenzyl piperidinedithiocarbamate

    Directory of Open Access Journals (Sweden)

    Z. A. Rahima

    2015-09-01

    Full Text Available The title compound, C14H19NS2, crystallizes in the thione form with the presence of a C=S bond. The piperidine ring adopts a chair conformation. The dihedral angle between the essentially planar dithiocarbamate and p-tolyl fragments is 74.46 (10°

  2. Allophycocyanin and phycocyanin crystal structures reveal facets of phycobilisome assembly.

    Science.gov (United States)

    Marx, Ailie; Adir, Noam

    2013-03-01

    X-ray crystal structures of the isolated phycobiliprotein components of the phycobilisome have provided high resolution details to the description of this light harvesting complex at different levels of complexity and detail. The linker-independent assembly of trimers into hexamers in crystal lattices of previously determined structures has been observed in almost all of the phycocyanin (PC) and allophycocyanin (APC) structures available in the Protein Data Bank. In this paper we describe the X-ray crystal structures of PC and APC from Synechococcus elongatus sp. PCC 7942, PC from Synechocystis sp. PCC 6803 and PC from Thermosynechococcus vulcanus crystallized in the presence of urea. All five structures are highly similar to other PC and APC structures on the levels of subunits, monomers and trimers. The Synechococcus APC forms a unique loose hexamer that may show the structural requirements for core assembly and rod attachment. While the Synechococcus PC assembles into the canonical hexamer, it does not further assemble into rods. Unlike most PC structures, the Synechocystis PC fails to form hexamers. Addition of low concentrations of urea to T. vulcanus PC inhibits this proteins propensity to form hexamers, resulting in a crystal lattice composed of trimers. The molecular source of these differences in assembly and their relevance to the phycobilisome structure is discussed.

  3. Crystal structure of ferroelectric Bi{sub 2}VO{sub 5.5}

    Energy Technology Data Exchange (ETDEWEB)

    Sooryanarayana, K.; Guru Row, T.N.; Varma, K.B.R. [Indian Inst. of Science, Bangalore (India)

    1997-12-01

    The structure of the {alpha}-phase of bismuth vanadate Bi{sub 2}VO{sub 5.5} has been determined using single crystal X-ray diffraction data in the space group Aba2. The refinement involves a well defined disorder at the vanadium site, which incorporates the features of the superlattice structure with vanadium tetrahedra and oxygen-deficient octahedra that is displaced about the twofold axis.

  4. Icosahedral symmetry described by an incommensurately modulated crystal structure model

    DEFF Research Database (Denmark)

    Wolny, Janusz; Lebech, Bente

    1986-01-01

    A crystal structure model of an incommensurately modulated structure is presented. Although six different reciprocal vectors are used to describe the model, all calculations are done in three dimensions making calculation of the real-space structure trivial. Using this model, it is shown that both...

  5. Homodiselenacalix[4]arenes: Molecules with Unique Channelled Crystal Structures.

    Science.gov (United States)

    Thomas, Joice; Dobrzańska, Liliana; Van Meervelt, Luc; Quevedo, Mario Alfredo; Woźniak, Krzysztof; Stachowicz, Marcin; Smet, Mario; Maes, Wouter; Dehaen, Wim

    2016-01-18

    A synthetic route towards homodiselenacalix[4]arene macrocycles is presented, based on the dynamic covalent chemistry of diselenides. The calixarene inner rim is decorated with either alkoxy or tert-butyl ester groups. Single-crystal X-ray analysis of two THF solvates with methoxy and ethoxy substituents reveals the high similarity of their molecular structures and alterations on the supramolecular level. In both crystal structures, solvent channels are present and differ in both shape and capacity. Furthermore, the methoxy-substituted macrocycle undergoes a single-crystal-to-single-crystal transformation during which the molecular structure changes its conformation from 1,3-alternate (loaded with THF/water) to 1,2-alternate (apohost form). Molecular modelling techniques were applied to explore the conformational and energetic behaviour of the macrocycles.

  6. Crystal Structure of an LSD-Bound Human Serotonin Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Wacker, Daniel; Wang, Sheng; McCorvy, John D.; Betz, Robin M.; Venkatakrishnan, A.J.; Levit, Anat; Lansu, Katherine; Schools, Zachary L.; Che, Tao; Nichols, David E.; Shoichet, Brian K.; Dror, Ron O.; Roth, Bryan L. (UNCSM); (UNC); (Stanford); (Stanford-MED); (UCSF)

    2017-01-01

    The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT2B. The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD’s key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT2BR and 5-HT2AR—a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD’s slow binding kinetics may be due to a “lid” formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD’s binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD’s actions at human serotonin receptors.

  7. Crystal Structure of an LSD-Bound Human Serotonin Receptor.

    Science.gov (United States)

    Wacker, Daniel; Wang, Sheng; McCorvy, John D; Betz, Robin M; Venkatakrishnan, A J; Levit, Anat; Lansu, Katherine; Schools, Zachary L; Che, Tao; Nichols, David E; Shoichet, Brian K; Dror, Ron O; Roth, Bryan L

    2017-01-26

    The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT2B. The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD's key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT2BR and 5-HT2AR-a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD's slow binding kinetics may be due to a "lid" formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD's binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD's actions at human serotonin receptors. PAPERCLIP. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Chiral Liquid Crystals: Structures, Phases, Effects

    Directory of Open Access Journals (Sweden)

    Ingo Dierking

    2014-06-01

    Full Text Available The introduction of chirality, i.e., the lack of mirror symmetry, has a profound effect on liquid crystals, not only on the molecular scale but also on the supermolecular scale and phase. I review these effects, which are related to the formation of supermolecular helicity, the occurrence of novel thermodynamic phases, as well as electro-optic effects which can only be observed in chiral liquid crystalline materials. In particular, I will discuss the formation of helical superstructures in cholesteric, Twist Grain Boundary and ferroelectric phases. As examples for the occurrence of novel phases the Blue Phases and Twist Grain Boundary phases are introduced. Chirality related effects are demonstrated through the occurrence of ferroelectricity in both thermotropic as well as lyotropic liquid crystals. Lack of mirror symmetry is also discussed briefly for some biopolymers such as cellulose and DNA, together with its influence on liquid crystalline behavior.

  9. Synthesis and Crystal Structure of a New Manganese Complex

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; LIU Ping; CHEN Yun

    2003-01-01

    @@ In order to study the relationship between the manganese ion and the biological coordination agent, the role ofmanganese ion in the active sites and the structure of the active sites in the manganese enzymes, small molecule complexes are often applied to modeling the structure and the properties of reaction in the active centers. In this pa per, we will report the synthesis and crystal structure of a new manganese(Ⅱ) complex, catena[ aqua-(p-methoxybenzoato- O, O′ ) - (p-methoxybenzoato- O )- (2,2′-bipyridine)-manganese (Ⅱ) ] (p-methoxybenzoic acid). The crystal structure was confirmeded by X-ray crystallography analysis.

  10. Anisotropic crystal structure of magnetized neutron star crust

    Science.gov (United States)

    Baiko, D. A.; Kozhberov, A. A.

    2017-09-01

    Although crystallized neutron star crust is responsible for many fascinating observational phenomena, its actual microscopic structure in tremendous gravitational and magnetic fields is not understood. Here we show that in a non-uniform magnetic field, three-dimensional ionic Coulomb crystals comprising the crust may stretch or shrink while their electrostatic pressure becomes anisotropic. The pressure depends non-linearly on the magnitude of the stretch, so that a continuous magnetic field evolution may result in an abrupt crystal elongation or contraction. This may provide a trigger for magnetar activity. A phonon mode instability is revealed, which sets the limits of magnetic field variation beyond which the crystal is destroyed. These limits sometimes correspond to surprisingly large deformations. It is not known what happens to crust matter subject to a pressure anisotropy exceeding these limits. We hypothesize that the ion system then possesses a long-range order only in one or two dimensions, that is becomes a liquid crystal.

  11. Structure of initial crystals formed during human amelogenesis

    Science.gov (United States)

    Cuisinier, F. J. G.; Voegel, J. C.; Yacaman, J.; Frank, R. M.

    1992-02-01

    X-ray diffraction analysis revealed only the existence of carbonated hydroxyapatite (c.HA) during amelogenesis, whereas conventional transmission electron microscopy investigations showed that developing enamel crystals have a ribbon-like habit. The described compositional changes could be an indication for the presence of minerals different from c.HA. However, the absence of identification of such a mineral shows the need of studies by high resolution electron microscopy (HREM) of initial formed human enamel crystals. We demonstrate the existence of two crystal families involved in the early stages of biomineralization: (a) nanometer-size particles which appeared as a precursor phase; (b) ribbon-like crystals, with a structure closely related to c.HA, which by a progressive thickening process tend to attain the mature enamel crystal habit.

  12. STRUCTURAL FEATURES OF PLANT CHITINASES AND CHITIN-BINDING PROTEINS

    NARCIS (Netherlands)

    BEINTEMA, JJ

    1994-01-01

    Structural features of plant chitinases and chitin-binding proteins are discussed. Many of these proteins consist of multiple domains,of which the chitin-binding hevein domain is a predominant one. X-ray and NMR structures of representatives of the major classes of these proteins are available now,

  13. Nonparametric statistical structuring of knowledge systems using binary feature matches

    DEFF Research Database (Denmark)

    Mørup, Morten; Glückstad, Fumiko Kano; Herlau, Tue

    2014-01-01

    statistical support and how this approach generalizes to the structuring and alignment of knowledge systems. We propose a non-parametric Bayesian generative model for structuring binary feature data that does not depend on a specific choice of similarity measure. We jointly model all combinations of binary......Structuring knowledge systems with binary features is often based on imposing a similarity measure and clustering objects according to this similarity. Unfortunately, such analyses can be heavily influenced by the choice of similarity measure. Furthermore, it is unclear at which level clusters have...

  14. Atomic density functional and diagram of structures in the phase field crystal model

    Science.gov (United States)

    Ankudinov, V. E.; Galenko, P. K.; Kropotin, N. V.; Krivilyov, M. D.

    2016-02-01

    The phase field crystal model provides a continual description of the atomic density over the diffusion time of reactions. We consider a homogeneous structure (liquid) and a perfect periodic crystal, which are constructed from the one-mode approximation of the phase field crystal model. A diagram of 2D structures is constructed from the analytic solutions of the model using atomic density functionals. The diagram predicts equilibrium atomic configurations for transitions from the metastable state and includes the domains of existence of homogeneous, triangular, and striped structures corresponding to a liquid, a body-centered cubic crystal, and a longitudinal cross section of cylindrical tubes. The method developed here is employed for constructing the diagram for the homogeneous liquid phase and the body-centered iron lattice. The expression for the free energy is derived analytically from density functional theory. The specific features of approximating the phase field crystal model are compared with the approximations and conclusions of the weak crystallization and 2D melting theories.

  15. Structural health monitoring feature design by genetic programming

    Science.gov (United States)

    Harvey, Dustin Y.; Todd, Michael D.

    2014-09-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.

  16. Single-Crystal Structure of a Covalent Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, YB; Su, J; Furukawa, H; Yun, YF; Gandara, F; Duong, A; Zou, XD; Yaghi, OM

    2013-11-06

    The crystal structure of a new covalent organic framework, termed COF-320, is determined by single-crystal 3D electron diffraction using the rotation electron diffraction (RED) method for data collection. The COF crystals are prepared by an imine condensation of tetra-(4-anilyl)methane and 4,4'-biphenyldialdehyde in 1,4-dioxane at 120 degrees C to produce a highly porous 9-fold interwoven diamond net. COF-320 exhibits permanent porosity with a Langmuir surface area of 2400 m(2)/g and a methane total uptake of 15.0 wt % (176 cm(3)/cm(3)) at 25 degrees C and 80 bar. The successful determination of the structure of COF-320 directly from single-crystal samples is an important advance in the development of COF chemistry.

  17. Nonlinear feature identification of impedance-based structural health monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, A. C. (Amanda C.); Park, G. H. (Gyu Hae); Sohn, H. (Hoon); Farrar, C. R. (Charles R.)

    2004-01-01

    The impedance-based structural health monitoring technique, which utilizes electromechanical coupling properties of piezoelectric materials, has shown feasibility for use in a variety of structural health monitoring applications. Relying on high frequency local excitations (typically > 30 kHz), this technique is very sensitive to minor changes in structural integrity in the near field of piezoelectric sensors. Several damage sensitive features have been identified and used coupled with the impedance methods. Most of these methods are, however, limited to linearity assumptions of a structure. This paper presents the use of experimentally identified nonlinear features, combined with impedance methods, for structural health monitoring. Their applicability to damage detection in various frequency ranges is demonstrated using actual impedance signals measured from a portal frame structure. The performance of the nonlinear feature is compared with those of conventional impedance methods. This paper reinforces the utility of nonlinear features in structural health monitoring and suggests that their varying sensitivity in different frequency ranges may be leveraged for certain applications.

  18. Crystal structure of 4-(4-methoxyphenoxybenzaldehyde

    Directory of Open Access Journals (Sweden)

    Andreas Schäfer

    2015-12-01

    Full Text Available The title compound, C14H12O3, was synthesized via the nucleophilic addition of 4-methoxyphenol to 4-fluorobenzaldehyde. The dihedral angle between the least-squares planes of the benzene rings is 71.52 (3° and the C—O—C angle at the central O atom is 118.82 (8°. In the crystal, weak C—H...O hydrogen bonds link the molecules to generate supramolecular layers in the bc plane. The layers are linked by weak C—H...π interactions.

  19. Molecular modeling of mechanosensory ion channel structural and functional features.

    Science.gov (United States)

    Gessmann, Renate; Kourtis, Nikos; Petratos, Kyriacos; Tavernarakis, Nektarios

    2010-09-16

    The DEG/ENaC (Degenerin/Epithelial Sodium Channel) protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1). MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex.

  20. Molecular modeling of mechanosensory ion channel structural and functional features.

    Directory of Open Access Journals (Sweden)

    Renate Gessmann

    Full Text Available The DEG/ENaC (Degenerin/Epithelial Sodium Channel protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1. MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex.

  1. The different conformations and crystal structures of dihydroergocristine

    Science.gov (United States)

    Mönch, B.; Kraus, W.; Köppen, R.; Emmerling, F.

    2016-02-01

    The identification of different forms of dihydroergocristine (DHEC) was carried out by crystallization from different organic solvents. DHEC was identified as potential template for molecularly imprinted polymers (MIPs) for the epimeric specific analysis of ergot alkaloids (EAs) in food. DHEC was crystallized from different solvents in order to mimic the typical MIP synthesis conditions. Four new solvatomorphs of DHEC were obtained. All solvatomorphs contain a water molecule in the crystal structure, whereas three compounds contain an additional solvent molecule. Based on the conformation of DHEC a comparison with typical EA molecules was possible. The analysis showed that DHEC is a suitable template for MIPs for EAs.

  2. Crystal structure of ethyl 2,4-dichloroquinoline-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Alberto Cabrera

    2015-12-01

    Full Text Available In the crystal structure of the title compound, C12H9Cl2NO2, the mean planes through the quinoline and carboxylate groups have r.m.s. deviations of 0.006 and 0.021 Å, respectively, and form a dihedral angle of 87.06 (19°. In the crystal, molecules are linked via very weak C—H...O hydrogen bonds, forming chains, which propagate along the c-axis direction.

  3. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  4. Band structures and localization properties of aperiodic layered phononic crystals

    Science.gov (United States)

    Yan, Zhi-Zhong; Zhang, Chuanzeng

    2012-03-01

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  5. Protein dynamics derived from clusters of crystal structures.

    OpenAIRE

    van Aalten, D M; Conn, D A; de Groot, B L; Berendsen, H J; Findlay, J B; Amadei, A

    1997-01-01

    A method is presented to mathematically extract concerted structural transitions in proteins from collections of crystal structures. The "essential dynamics" procedure is used to filter out small-amplitude fluctuations from such a set of structures; the remaining large conformational changes describe motions such as those important for the uptake/release of substrate/ligand and in catalytic reactions. The method is applied to sets of x-ray structures for a number of proteins, and the results ...

  6. Crystal Structure of the Vanadate-Inhibited Ca2+-ATPase

    DEFF Research Database (Denmark)

    Clausen, Johannes D.; Bublitz, Maike; Arnou, Bertrand Jean-Paul;

    2016-01-01

    Vanadate is the hallmark inhibitor of the P-type ATPase family; however, structural details of its inhibitory mechanism have remained unresolved. We have determined the crystal structure of sarcoplasmic reticulum Ca2+-ATPase with bound vanadate in the absence of Ca2+. Vanadate is bound...

  7. Optimization of liquid crystal structures for real time holography applications.

    Science.gov (United States)

    Sahraoui, B; Anczykowska, A; Bartkiewicz, S; Mysliwiec, J

    2011-11-21

    In this paper we present results of experiments designed to increase our understanding of the photorefractive effect occurring during processes of dynamic hologram generation in Hybrid Photorefractive Liquid Crystal Structures (HPLCS). We also propose equivalent mathematical model which can be used to optimize those structures in order to obtain the highest diffraction efficiency in possibly shortest time.

  8. Heterogeneous Crystallization on Pairs of Pre-Structured Seeds.

    Science.gov (United States)

    Jungblut, Swetlana; Dellago, Christoph

    2016-09-01

    Studying the effects of small pre-structured seeds on the crystallization transition in an undercooled monodisperse Lennard-Jones fluid with transition interface path sampling combined with molecular dynamics simulations, we analyze the impact of the simultaneous presence of two seeds with various structures. In the presence of seeds with face- and body-centered cubic structures, we find that decreasing the seed-to-seed distance enhances the probability of the crystalline clusters formed on one of the seeds to grow beyond the critical size, thus, increasing the crystal nucleation rates. In contrast, when seeds have an icosahedral structure, the crystalline clusters form mostly in the bulk. The crystal nucleation rate, however, is also determined by the distance between the seeds with regular structure in which the lattice spacing is equal to the bulk lattice constant, pointing to a heterogeneous crystal nucleation that occurs away from the icosahedrally structured seeds. For slightly squeezed seeds, the effects of the presence of seeds with face- and body-centered cubic structures are reduced in comparison to the regular seeds, and we do not see any effect of the presence of the second seed for seeds with squeezed icosahedral structure.

  9. The Structure and Rainfall Features of Tropical Cyclone Rammasun (2002)

    Institute of Scientific and Technical Information of China (English)

    马雷鸣; 端义宏; 朱永褆

    2004-01-01

    Tropical Rainfall Measuring Mission (TRMM) data [TRMM Microwave Imager/Precipitation Radar/Visible and Infrared Scanner (TMI/PR/VIRS)] and a numerical model are used to investigate the structure and rainfall features of Tropical Cyclone (TC) Rammasun (2002). Based on the analysis of TRMM data, which are diagnosed together with NCEP/AVN [Aviation (global model)] analysis data,some typical features of TC structure and rainfall are preliminary discovered. Since the limitations of TRMM data are considered for their time resolution and coverage, the world observed by TRMM at several moments cannot be taken as the representation of the whole period of the TC lifecycle, therefore the picture should be reproduced by a numerical model of high quality. To better understand the structure and rainfall features of TC Rammasun, a numerical simulation is carried out with mesoscale model MM5in which the validations have been made with the data of TRMM and NCEP/AVN analysis.

  10. Crystal structure and phase transition of thermoelectric SnSe.

    Science.gov (United States)

    Sist, Mattia; Zhang, Jiawei; Brummerstedt Iversen, Bo

    2016-06-01

    Tin selenide-based functional materials are extensively studied in the field of optoelectronic, photovoltaic and thermoelectric devices. Specifically, SnSe has been reported to have an ultrahigh thermoelectric figure of merit of 2.6 ± 0.3 in the high-temperature phase. Here we report the evolution of lattice constants, fractional coordinates, site occupancy factors and atomic displacement factors with temperature by means of high-resolution synchrotron powder X-ray diffraction measured from 100 to 855 K. The structure is shown to be cation defective with a Sn content of 0.982 (4). The anisotropy of the thermal parameters of Sn becomes more pronounced approaching the high-temperature phase transition (∼ 810 K). Anharmonic Gram-Charlier parameters have been refined, but data from single-crystal diffraction appear to be needed to firmly quantify anharmonic features. Based on modelling of the atomic displacement parameters the Debye temperature is found to be 175 (4) K. Conflicting reports concerning the different coordinate system settings in the low-temperature and high-temperature phases are discussed. It is also shown that the high-temperature Cmcm phase is not pseudo-tetragonal as commonly assumed.

  11. Crystal structure of 4-methylsulfanyl-2-phenylquinazoline

    Directory of Open Access Journals (Sweden)

    Mohammed B. Alshammari

    2014-08-01

    Full Text Available In the title compound, C15H12N2S, the methylthioquinazoline group is planar with the methyl C displaced by only 0.116 (3 Å from the plane of the quinazoline moiety. The dihedral angle between the phenyl ring and the quinazoline ring system is 13.95 (5°. In the crystal, each molecule is linked by π–π stacking between to two adjacent inversion-related molecules. On one side, the inverted quinazoline groups interact with a centroid–centroid distance of 3.7105 (9 Å. On the other side, the quinazoline group interacts with the pyrimidine and phenyl rings of the second neighbour with centroid–centroid distances of 3.5287 (8 and 3.8601 (9 Å, respectively.

  12. Crystal structure of 1-bromo-2-(phenylselenylbenzene

    Directory of Open Access Journals (Sweden)

    Bronte J. Charette

    2015-03-01

    Full Text Available In the title compound, C12H9BrSe, the Se atom exhibits a bent geometry, with a C—Se—C bond angle of 99.19 (6°. The ortho Se and Br atoms are slightly displaced from opposite faces of the mean plane of the benzene ring [by 0.129 (2 and 0.052 (2 Å, respectively]. The planes of the benzene and phenyl rings form a dihedral angle of 72.69 (5°. In the crystal, π-stacking interactions between inversion-related phenyl rings are observed, with a centroid–centroid distance of 3.630 (1 Å.

  13. Crystal structure of 2-aminopyridinium 6-chloronicotinate

    Directory of Open Access Journals (Sweden)

    N. Jeeva Jasmine

    2015-09-01

    Full Text Available In the title salt, C5H7N+·C6H3ClNO−, the 2-aminopyridinium cation interacts with the carboxylate group of the 6-chloronicotinate anion through a pair of independent N—H...O hydrogen bonds, forming an R22(8 ring motif. In the crystal, these dimeric units are connected further via N—H...O hydrogen bonds, forming chains along [001]. In addition, weak C—H...N and C—H...O hydrogen bonds, together with weak π–π interactions, with centroid–centroid distances of 3.6560 (5 and 3.6295 (5 Å, connect the chains, forming a two-dimensional network parallel to (100.

  14. Feature Comparison in Structural Health Monitoring of a Vehicle Crane

    Directory of Open Access Journals (Sweden)

    J. Kullaa

    2008-01-01

    Full Text Available Vibration-based structural health monitoring of a vehicle crane was studied. The performance of different features to detect damage was investigated after eliminating the normal operational variations using factor analysis. Using eight accelerometers, ten AR parameters from each record were identified for damage detection. Also transmissibilities between sensors were estimated. Damage was introduced with additional masses at different locations of the structure. All damage cases could be detected from either features using control charts, but transmissibilities proved to be more sensitive to damage than the AR coefficients.

  15. Photoluminescence polarization anisotropy for studying long-range structural ordering within semiconductor multi-atomic alloys and organic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Prutskij, T.; Percino, J. [Instituto de Ciencias, BUAP, Privada 17 Norte, No 3417, col. San Miguel Huyeotlipan, 72050, Puebla, Pue. (Mexico); Orlova, T. [Department of Chemical and Biochemical Engineering, University of Notre Dame, Notre Dame, IN (United States); Vavilova, L. [Ioffe Physical-Technical Institute, 26 Polytekhnicheskaya, St Petersburg 194021, Russian Federation (Russian Federation)

    2013-12-04

    Long-range structural ordering within multi-component semiconductor alloys and organic crystals leads to significant optical anisotropy and, in particular, to anisotropy of the photoluminescence (PL) emission. The PL emission of ternary and quaternary semiconductor alloys is polarized if there is some amount of the atomic ordering within the crystal structure. We analyze the polarization of the PL emission from the quaternary GaInAsP semiconductor alloy grown by Liquid Phase Epitaxy (LPE) and conclude that it could be caused by low degree atomic ordering within the crystal structure together with the thermal biaxial strain due to difference between the thermal expansion coefficients of the layer and the substrate. We also study the state of polarization of the PL from organic crystals in order to identify different features of the crystal PL spectrum.

  16. Structure and properties of MTiOXO sub 4 crystals

    CERN Document Server

    Latham, T J

    2000-01-01

    linked to chains of particular atoms along the three crystallographic axes. Dielectric measurements of a series of arsenate crystals and various doped phosphate crystals demonstrate that MTiOXO sub 4 isomorphs exhibit dielectric relaxation of a non-Debye type and appear to conform to the hopping charge-carrier and low frequency dispersion response models. A reduction in the ionic conductivity is observed in the arsenate crystals and phosphate crystals doped with trivalent ions. Arrhenius plots indicate that the activation energies of the mixed cation arsenate crystals are significantly higher than the other KTiOPO sub 4 isomorphs. This observation suggests that the modified oxygen framework in these mixed arsenate crystals contributes intrinsically to the large activation energies required for ionic conduction. This thesis is a study of the structural, optical and electrical properties of MTiOXO sub 4 crystals, where M is a monovalent cation such as K, Rb etc and X is P or As. Low and high-temperature single-...

  17. Functional substitution of coordination polyhedron in crystal structure of silicates

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    On the bases of the study of comparative crystal chemistry of silicates it has been concluded that the octahedra and square pyramids of Ti-O and Zr-O play functional role of tetrahedra of Si-O in the construction of crystal structures.Therefore,those silicates may be named titano- and zircono-silicates.Because of the functional similarity of coordination polyhedra,the structures of cristobalite and feldspar have been compared with those of perovskite and garnet,respectively.As a new concept,the functional replacement of tetrahedra by octahedra and/or pyramids is defined by the authors of this paper for favorable comparison of relative crystal structures.

  18. Electron Crystallographic Study on Structure Determination for Minute Crystals

    Institute of Scientific and Technical Information of China (English)

    LI Fanghua; FAN Haifu; WAN Zhenghua; HU Jianjun; TANG Dong

    2007-01-01

    @@ In the 1970s the development of high-resolution electron microscopy (HREM) provided a new approach to structure determination for minute crystals, which is thoroughly different from the diffraction methods.However, the previous method of trial and error has its own limits, such as some preliminary structural information must be known in advance; the crystals must be sufficient strong under the electron beam irradiation;and not all atoms can be seen in the image. Two ideas were proposed to initiate the present research project:one is to transform an arbitrary image into the crystal structure map, and the other is to enhance the image resolution by combining the information contained in the image and the corresponding electron diffraction pattern. These ideas have been realized via the combination of electron microscopy and diffraction crystallography.

  19. High resolution crystal structure of human β-glucuronidase reveals structural basis of lysosome targeting.

    Directory of Open Access Journals (Sweden)

    Md Imtaiyaz Hassan

    Full Text Available Human β-glucuronidase (GUS cleaves β-D-glucuronic acid residues from the non-reducing termini of glycosaminoglycan and its deficiency leads to mucopolysaccharidosis type VII (MPSVII. Here we report a high resolution crystal structure of human GUS at 1.7 Å resolution and present an extensive analysis of the structural features, unifying recent findings in the field of lysosome targeting and glycosyl hydrolases. The structure revealed several new details including a new glycan chain at Asn272, in addition to that previously observed at Asn173, and coordination of the glycan chain at Asn173 with Lys197 of the lysosomal targeting motif which is essential for phosphotransferase recognition. Analysis of the high resolution structure not only provided new insights into the structural basis for lysosomal targeting but showed significant differences between human GUS, which is medically important in its own right, and E. coli GUS, which can be selectively inhibited in the human gut to prevent prodrug activation and is also widely used as a reporter gene by plant biologists. Despite these differences, both human and E. coli GUS share a high structure homology in all three domains with most of the glycosyl hydrolases, suggesting that they all evolved from a common ancestral gene.

  20. Structural variability of E. coli thioredoxin captured in the crystal structures of single-point mutants

    Science.gov (United States)

    Noguera, Martín E.; Vazquez, Diego S.; Ferrer-Sueta, Gerardo; Agudelo, William A.; Howard, Eduardo; Rasia, Rodolfo M.; Manta, Bruno; Cousido-Siah, Alexandra; Mitschler, André; Podjarny, Alberto; Santos, Javier

    2017-02-01

    Thioredoxin is a ubiquitous small protein that catalyzes redox reactions of protein thiols. Additionally, thioredoxin from E. coli (EcTRX) is a widely-used model for structure-function studies. In a previous paper, we characterized several single-point mutants of the C-terminal helix (CTH) that alter global stability of EcTRX. However, spectroscopic signatures and enzymatic activity for some of these mutants were found essentially unaffected. A comprehensive structural characterization at the atomic level of these near-invariant mutants can provide detailed information about structural variability of EcTRX. We address this point through the determination of the crystal structures of four point-mutants, whose mutations occurs within or near the CTH, namely L94A, E101G, N106A and L107A. These structures are mostly unaffected compared with the wild-type variant. Notably, the E101G mutant presents a large region with two alternative traces for the backbone of the same chain. It represents a significant shift in backbone positions. Enzymatic activity measurements and conformational dynamics studies monitored by NMR and molecular dynamic simulations show that E101G mutation results in a small effect in the structural features of the protein. We hypothesize that these alternative conformations represent samples of the native-state ensemble of EcTRX, specifically the magnitude and location of conformational heterogeneity.

  1. A crystal structure prediction enigma solved

    DEFF Research Database (Denmark)

    Hoser, Anna Agnieszka; Sovago, Ioana; Lanzac, A.

    2017-01-01

    The seemingly unpredictable structure of gallic acid monohydrate form IV has been investigated using accurate X-ray diffraction measurements at temperatures of 10 and 123 K. The measurements demonstrate that the structure is commensurately modulated at 10 K and disordered at higher temperatures. ...

  2. Solving Crystal Structures from Powder Diffraction Data

    DEFF Research Database (Denmark)

    Christensen, A. Nørlund; Lehmann, M. S.; Nielsen, Mogens

    1985-01-01

    High resolution powder data from both neutron and X-ray (synchrotron) sources have been used to estimate the possibility of direct structure determination from powder data. Two known structures were resolved by direct methods with neutron and X-ray data. With synchrotron X-ray data, the measured...... range of data was insufficient for a structure analysis, but the R-factor calculations showed the intensities extracted from the profile data to be of acceptable quality. The results were used to estimate the largest structure that might be solved using routine techniques. It was found that the limit...... would be near twenty atoms in the asymmetric part of a centro-symmetric structure....

  3. FeatureMap3D - a tool to map protein features and sequence conservation onto homologous structures in the PDB

    DEFF Research Database (Denmark)

    Wernersson, Rasmus; Rapacki, Krzysztof; Stærfeldt, Hans Henrik

    2006-01-01

    FeatureMap3D is a web-based tool that maps protein features onto 3D structures. The user provides sequences annotated with any feature of interest, such as post-translational modifications, protease cleavage sites or exonic structure and FeatureMap3D will then search the Protein Data Bank (PDB...... without sequence annotation, to evaluate the quality of the alignment of the input sequences to the most homologous structures in the PDB, through the sequence conservation colored 3D structure visualization tool. FeatureMap3D is available at: http://www.cbs.dtu.dk/services/FeatureMap3D/....

  4. Crystal structure of aspartame anhydrate from powder diffraction data. Structural aspects of the dehydration process of aspartame

    NARCIS (Netherlands)

    Guguta, C.; Meekes, H.L.M.; Gelder, R. de

    2006-01-01

    Aspartame has three pseudo-polymorphic forms, two hydrates and a hemi-hydrate, for which crystal structures were determined from single-crystal diffraction data. This paper presents the crystal structure of the anhydrate, which was obtained by dehydrating the hemi-hydrate. The crystal structure of a

  5. Polymorph identification and crystal structure determination by a combined crystal structure prediction and transmission electron microscopy approach.

    Science.gov (United States)

    Eddleston, Mark D; Hejczyk, Katarzyna E; Bithell, Erica G; Day, Graeme M; Jones, William

    2013-06-10

    Electron diffraction offers advantages over X-ray based methods for crystal structure determination because it can be applied to sub-micron sized crystallites, and picogram quantities of material. For molecular organic species, however, crystal structure determination with electron diffraction is hindered by rapid crystal deterioration in the electron beam, limiting the amount of diffraction data that can be collected, and by the effect of dynamical scattering on reflection intensities. Automated electron diffraction tomography provides one possible solution. We demonstrate here, however, an alternative approach in which a set of putative crystal structures of the compound of interest is generated by crystal structure prediction methods and electron diffraction is used to determine which of these putative structures is experimentally observed. This approach enables the advantages of electron diffraction to be exploited, while avoiding the need to obtain large amounts of diffraction data or accurate reflection intensities. We demonstrate the application of the methodology to the pharmaceutical compounds paracetamol, scyllo-inositol and theophylline. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. TargetCrys: protein crystallization prediction by fusing multi-view features with two-layered SVM.

    Science.gov (United States)

    Hu, Jun; Han, Ke; Li, Yang; Yang, Jing-Yu; Shen, Hong-Bin; Yu, Dong-Jun

    2016-11-01

    The accurate prediction of whether a protein will crystallize plays a crucial role in improving the success rate of protein crystallization projects. A common critical problem in the development of machine-learning-based protein crystallization predictors is how to effectively utilize protein features extracted from different views. In this study, we aimed to improve the efficiency of fusing multi-view protein features by proposing a new two-layered SVM (2L-SVM) which switches the feature-level fusion problem to a decision-level fusion problem: the SVMs in the 1st layer of the 2L-SVM are trained on each of the multi-view feature sets; then, the outputs of the 1st layer SVMs, which are the "intermediate" decisions made based on the respective feature sets, are further ensembled by a 2nd layer SVM. Based on the proposed 2L-SVM, we implemented a sequence-based protein crystallization predictor called TargetCrys. Experimental results on several benchmark datasets demonstrated the efficacy of the proposed 2L-SVM for fusing multi-view features. We also compared TargetCrys with existing sequence-based protein crystallization predictors and demonstrated that the proposed TargetCrys outperformed most of the existing predictors and is competitive with the state-of-the-art predictors. The TargetCrys webserver and datasets used in this study are freely available for academic use at: http://csbio.njust.edu.cn/bioinf/TargetCrys .

  7. Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8

    KAUST Repository

    Zhang, Chen

    2014-09-04

    © 2014 American Chemical Society. Understanding the crystal-size dependence of both guest adsorption and structural transitions of nanoporous solids is crucial to the development of these materials. We find that nano-sized metal-organic framework (MOF) crystals have significantly different guest adsorption properties compared to the bulk material. A new methodology is developed to simulate the adsorption and transition behavior of entire MOF nanoparticles. Our simulations predict that the transition pressure significantly increases with decreasing particle size, in agreement with crystal-size-dependent experimental measurements of the N2-ZIF-8 system. We also propose a simple core-shell model to examine this effect on length scales that are inaccessible to simulations and again find good agreement with experiments. This study is the first to examine particle size effects on structural transitions in ZIFs and provides a thermodynamic framework for understanding the underlying mechanism.

  8. Models for guidance in kagome-structured hollow-core photonic crystal fibres.

    Science.gov (United States)

    Pearce, G J; Wiederhecker, G S; Poulton, C G; Burger, S; St J Russell, P

    2007-10-01

    We demonstrate by numerical simulation that the general features of the loss spectrum of photonic crystal fibres (PCF) with a kagome structure can be explained by simple models consisting of thin concentric hexagons or rings of glass in air. These easily analysed models provide increased understanding of the mechanism of guidance in kagome PCF, and suggest ways in which the high-loss resonances in the loss spectrum may be shifted.

  9. XTALOPT Version r10: An open-source evolutionary algorithm for crystal structure prediction

    Science.gov (United States)

    Avery, Patrick; Falls, Zackary; Zurek, Eva

    2017-08-01

    A new version of XTALOPT, an evolutionary algorithm for crystal structure prediction, is available for download from the CPC library or the XTALOPT website, http://xtalopt.github.io. XTALOPT is published under the Gnu Public License (GPL), which is an open source license that is recognized by the Open Source Initiative. The new version incorporates many bug-fixes and new features, as detailed below.

  10. Photonic crystals, light manipulation, and imaging in complex nematic structures

    Science.gov (United States)

    Ravnik, Miha; Å timulak, Mitja; Mur, Urban; Čančula, Miha; Čopar, Simon; Žumer, Slobodan

    2016-03-01

    Three selected approaches for manipulation of light by complex nematic colloidal and non-colloidal structures are presented using different own custom developed theoretical and modelling approaches. Photonic crystals bands of distorted cholesteric liquid crystal helix and of nematic colloidal opals are presented, also revealing distinct photonic modes and density of states. Light propagation along half-integer nematic disclinations is shown with changes in the light polarization of various winding numbers. As third, simulated light transmission polarization micrographs of nematic torons are shown, offering a new insight into the complex structure characterization. Finally, this work is a contribution towards using complex soft matter in optics and photonics for advanced light manipulation.

  11. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan, E-mail: yangbq@nwu.edu.cn [Department of Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Northwest University, Shaanxi (China)

    2012-10-15

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, {sup 1}H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  12. Synthesis and Crystal Structure of Metronidazole-derived Compound

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A MET-OH derivative, MET-OTs 1, was designed, prepared and structurally charac- terized by single-crystal X-ray diffraction. X-ray structure analysis reveals that 1 crystallizes in the monoclinic system, space group P21/c, with a = 16.1178(14), b = 7.5473(6), c = 13.4161(11) (A), V = 1520.3(2) (A)3, β = 111.3210(10)o, Z = 4, Dc = 1.421 g/cm3 and F(000) = 680.

  13. Fine structure of fields in 2D photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Volkov, V. S.; Bozhevolnyi, S. I.

    2006-01-01

    We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis.......We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis....

  14. Clathrate Structure Determination by Combining Crystal Structure Prediction with Computational and Experimental (129) Xe NMR Spectroscopy.

    Science.gov (United States)

    Selent, Marcin; Nyman, Jonas; Roukala, Juho; Ilczyszyn, Marek; Oilunkaniemi, Raija; Bygrave, Peter J; Laitinen, Risto; Jokisaari, Jukka; Day, Graeme M; Lantto, Perttu

    2017-01-23

    An approach is presented for the structure determination of clathrates using NMR spectroscopy of enclathrated xenon to select from a set of predicted crystal structures. Crystal structure prediction methods have been used to generate an ensemble of putative structures of o- and m-fluorophenol, whose previously unknown clathrate structures have been studied by (129) Xe NMR spectroscopy. The high sensitivity of the (129) Xe chemical shift tensor to the chemical environment and shape of the crystalline cavity makes it ideal as a probe for porous materials. The experimental powder NMR spectra can be used to directly confirm or reject hypothetical crystal structures generated by computational prediction, whose chemical shift tensors have been simulated using density functional theory. For each fluorophenol isomer one predicted crystal structure was found, whose measured and computed chemical shift tensors agree within experimental and computational error margins and these are thus proposed as the true fluorophenol xenon clathrate structures.

  15. Synthesis, crystal structure, crystal growth and physical properties of N,N-diethyl anilinium picrate

    Science.gov (United States)

    Subramaniyan @ Raja, R.; Anandha Babu, G.; Ramasamy, P.

    2011-11-01

    Crystalline substance of N,N-diethyl anilinium picrate (NNDEAP) has been synthesized and single crystals of NNDEAP were successfully grown for the first time by the slow evaporation solution growth technique at room temperature with dimensions 14×10×10 mm3. The formation of the new crystal has been confirmed by single crystal X-ray diffraction studies. The structural perfection of the grown crystal was analyzed by high resolution X-ray diffraction (HRXRD) measurements. The functional groups of NNDEAP have been identified by Fourier transform infrared spectral studies. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) have also been carried out and the thermal behavior of NNDEAP has been studied. The UV-vis-NIR studies have been carried out to identify the optical transmittance and the cut off wavelength of NNDEAP is identified. The dielectric loss and the dielectric constant as a function of frequency and temperature were measured for the grown crystal and the nature of variation of dielectric constant εr and dielectric losses (tan δ) were studied. Vicker's hardness test has been carried out on NNDEAP to measure the load dependent hardness. The laser induced surface damage threshold for the grown crystal was measured using Nd:YAG laser.

  16. Crystal structure of 2-methoxy-1-nitronaphthalene

    Directory of Open Access Journals (Sweden)

    Hasna Yassine

    2015-10-01

    Full Text Available The asymmetric unit of the title compound, C11H9NO3, contains two molecules, A and B. In molecule A, the dihedral angle between the planes of the naphthalene ring system (r.m.s. deviation = 0.003 Å and the nitro group is 89.9 (2°, and the C atom of the methoxy group deviates from the naphthyl plane by 0.022 (2 Å. Equivalent data for molecule B are 0.008 Å, 65.9 (2° and −0.198 (2 Å, respectively. In the crystal, molecules are linked by weak C—H...O interactions, forming [100] chains of alternating A and B molecules. Weak aromatic π–π stacking contacts, with a range of centroid–centroid distances from 3.5863 (9 to 3.8048 (9 Å, are also observed.

  17. Synthesis and Crystal Structure of Isosteviol Derivatives

    Institute of Scientific and Technical Information of China (English)

    Tao Jing-Chao; Tian Guo-Qiang; Zhang Yan-Bing; Wu Ya; Liu Hong-Min

    2004-01-01

    Isosteviol (ent-16-ketobeyeran-19-oic acid, I) is a tetracyclic diterpenoid with a beyerane skeleton obtained by acid hydrolysis of stevioside.1 Several tetracyclic diterpenoids, specially the kaurenes, have important biological activities. Recent studies on the microbial transformation of isosteviol have revealed that it is metabolized by Cunninghamella bainieri, Actinoplanes sp., Mucor recurvatus, and Cunninghamella blackesleeana to yield five new metabolites.2 The hydroxylation pattern of these bioactive compounds may influence their binding on to the receptors, as was proposed for the Rabdosia diterpenoids. Therefore, the introduction of hydroxyl groups or unsaturated bonds in saturated and non-hydroxylated diterpenoids, like isosteviol, may enhance existing properties or lead to new biological activities. Although some beyeranes have been subjected to biotransformations by fungi,4 there are few report in the literature related the chemical transformation of Isosteviol. In the present study, we try to develop the chemical transformation of isosteviol and other beyeranes in order to obtaining some bioactive compounds with beyerane skeleton. Seven isosteviol derivatives, Ⅱ-Ⅷ, were therefore synthesized and characterized. The X-ray crystal strcture of H(R = H) was also determined.

  18. Photonics of liquid-crystal structures: A review

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Blinov, L. M.; Barnik, M. I.; Lazarev, V. V.; Umanskii, B. A.; Shtykov, N. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2011-07-15

    The original results of studies of the electro-optical and laser effects which have been performed at the Laboratory of Liquid Crystals of the Institute of Crystallography, Russian Academy of Sciences, over the last few years are reviewed. Cholesteric liquid crystals as vivid representatives of photonic structures and their behavior in an electric field are considered in detail. The formation of higher harmonics in the periodic distribution of the director field in a helical liquid crystal structure and, correspondingly, the new (anharmonic) mode of electro-optical effects are discussed. Another group of studies is devoted to bistable light switching by an electric field in chiral nematics. Polarization diffraction gratings controlled by an electric field are also considered. The results of studies devoted to microlasers on various photonic structures with cholesteric and nematic liquid crystals are considered in detail. Particular attention is given to the new regime: leaky-mode lasing. Designs of liquid crystal light amplifiers and their polarization, field, and spectral characteristics are considered in the last section.

  19. The crystal structure and twinning of neodymium gallium perovskite single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ubizskii, S.B.; Vasylechko, L.O.; Savytskii, D.I.; Matkovskii, A.O.; Syvorotka, I.M. [Res. Production Amalgamation Carat, L' viv (Ukraine)

    1994-10-01

    By means of X-ray structure analysis, the crystal structure of neodymium gallium perovskite (NGP) single crystals (NdGaO{sub 3}) being used as a substrate for HTSC film epitaxy has been refined and the position of atoms has been determined. The possibility of YBa{sub 2}Cu{sub 3}O{sub 7-x} film epitaxy on the plane (110) of NGP crystal as well as its advantages and pitfalls are analysed from structural data. The twinning types in the NGP crystal were established. The twinning structure of NGP substrates is found to be stable up to a temperature of 1173 K, as differentiated from the LaGaO{sub 3} and LaAlO{sub 3} substrates. It is intimated that the twinning in the NGP substrates oriented as (001) can result in creation of 90 degrees twin bonds in a film, and in the case of (110)-oriented plates it is possible to ignore the twinning presence in substrate completely. (author)

  20. CRYSTAL STRUCTURE ANALYSIS OF A PUTATIVE OXIDOREDUCTASE FROM KLEBSIELLA PNEUMONIAE

    Energy Technology Data Exchange (ETDEWEB)

    Baig, M.; Brown, A.; Eswaramoorthy, S.; Swaminathan, S.

    2009-01-01

    Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.

  1. STRUCTURE FORMATION OF COLLOIDS IN NEMATIC LIQUID CRYSTALS

    Directory of Open Access Journals (Sweden)

    B.I.Lev

    2003-01-01

    Full Text Available We investigated the behaviour of colloidal particles suspended in nematic liquid crystals. These colloidal particles interact through elastic deformation of the nematic director field which can result in nontrivial collective behavior, leading to the formation of spatially modulated structures. In this paper, the formation of lattice structures is described both by computer simulations and by analytical theory. Effective interactions of the pairs of spherical macroparticles suspended in nematic liquid crystals have been suggested by many authors. Using these pairwise interactions, spatial structures are obtained by means of dynamic simulations. We have suggested a number of possible structures, which may be formed in multi-macroparticle systems. Regions of temperatures and concentrations are determined in which such a structure might appear.

  2. The crystal structure of samarosporin I at atomic resolution.

    Science.gov (United States)

    Gessmann, Renate; Axford, Danny; Evans, Gwyndaf; Brückner, Hans; Petratos, Kyriacos

    2012-11-01

    The atomic resolution structures of samarosporin I have been determined at 100 and 293 K. This is the first crystal structure of a natural 15-residue peptaibol. The amino acid sequence in samarosporin I is identical to emerimicin IV and stilbellin I. Samarosporin is a peptide antibiotic produced by the ascomycetous fungus Samarospora rostrup and belongs to peptaibol subfamily 2. The structures at both temperatures are very similar to each other adopting mainly a 3₁₀-helical and a minor fraction of α-helical conformation. The helices are significantly bent and packed in an antiparallel fashion in the centered monoclinic lattice leaving among them an approximately 10-Å channel extending along the crystallographic twofold axis. Only two ordered water molecules per peptide molecule were located in the channel. Comparisons have been carried out with crystal structures of subfamily 2 16-residue peptaibols antiamoebin and cephaibols. The repercussion of the structural analysis of samarosporin on membrane function is discussed.

  3. Systematic comparison of crystal and NMR protein structures deposited in the protein data bank.

    Science.gov (United States)

    Sikic, Kresimir; Tomic, Sanja; Carugo, Oliviero

    2010-09-03

    Nearly all the macromolecular three-dimensional structures deposited in Protein Data Bank were determined by either crystallographic (X-ray) or Nuclear Magnetic Resonance (NMR) spectroscopic methods. This paper reports a systematic comparison of the crystallographic and NMR results deposited in the files of the Protein Data Bank, in order to find out to which extent these information can be aggregated in bioinformatics. A non-redundant data set containing 109 NMR - X-ray structure pairs of nearly identical proteins was derived from the Protein Data Bank. A series of comparisons were performed by focusing the attention towards both global features and local details. It was observed that: (1) the RMDS values between NMR and crystal structures range from about 1.5 Å to about 2.5 Å; (2) the correlation between conformational deviations and residue type reveals that hydrophobic amino acids are more similar in crystal and NMR structures than hydrophilic amino acids; (3) the correlation between solvent accessibility of the residues and their conformational variability in solid state and in solution is relatively modest (correlation coefficient = 0.462); (4) beta strands on average match better between NMR and crystal structures than helices and loops; (5) conformational differences between loops are independent of crystal packing interactions in the solid state; (6) very seldom, side chains buried in the protein interior are observed to adopt different orientations in the solid state and in solution.

  4. Crystal Structure of the Human Astrovirus Capsid Protein

    Science.gov (United States)

    Toh, Yukimatsu; Harper, Justin; Dryden, Kelly A.; Yeager, Mark; Méndez, Ernesto

    2016-01-01

    , HAstV exhibits an intriguing feature in that its maturation requires extensive proteolytic processing of the astrovirus capsid protein (CP) both inside and outside the host cell. Mature HAstV contains three predominant protein species, but the mechanism for acquired infectivity upon maturation is unclear. We have solved the crystal structure of VP9071–415 of human astrovirus serotype 8. VP9071–415 encompasses the conserved N-terminal domain of the viral CP. Fitting of the VP9071–415 structure into the cryo-EM maps of HAstV produced an atomic model for the T=3 icosahedral capsid. Our model of the HAstV capsid provides valuable insights into intermolecular interactions required for capsid assembly and trypsin-mediated proteolytic maturation. Such information has potential applications in the development of a VLP vaccine as well as small-molecule drugs targeting astrovirus assembly/maturation. PMID:27466429

  5. Temperature dependence of crystal structure and digestibility of roasted diaspore

    Institute of Scientific and Technical Information of China (English)

    周秋生; 李小斌; 彭志宏; 刘桂华

    2004-01-01

    Through X-ray diffraction patterns and scanning electronic micrographs, temperature dependence of the crystal structure of roasted diasporic bauxite at different temperatures and the digestibility of roasting production were investigated systematically. The lattice parameters of unit cell for chemically purified diaspore and unequilibrium alumina-contained oxide obtained from the diaspore roasted at different temperatures were determined. It is found that, with roasting temperature increasing, the roasting production changes from the original dense and perfect diaspore crystal into imperfect corundum with many microcracks and small pores on its surface and then into perfect corundum with low digestibility. The optimum roasting temperature with best digestibility is approximately 525 ℃ when residence time is about 25 min. It is thought that the change of crystal structure, formation of microcracks and small pores in the temperature field are the main essential reasons for improving digestibility of diasporic bauxite and its roasting production.

  6. Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals

    Science.gov (United States)

    Kozlov, M. E.; Murthy, N. S.; Udod, I.; Khayrullin, I. I.; Baughman, R. H.; Zakhidov, A. A.

    2007-03-01

    We report preparation and characterization of novel bicomponent metal-based photonic crystals having submicron three-dimensional (3D) periodicity. Fabricated photonic crystals include SiO2 sphere lattices infiltrated interstitially with metals, carbon inverse lattices filled with metal or metal alloy spheres, Sb inverse lattices, and Sb inverse lattices filled with Bi spheres. Starting from a face centered SiO2 lattice template, these materials were obtained by sequences of either templating and template extraction or templating, template extraction, and retemplating. Surprising high fidelity was obtained for all templating and template extraction steps. Scanning electron microscopy (SEM), small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) were used to characterize the structure and the effects of the structure on calorimetric properties. To the best of our knowledge, SAXS data on metallic photonic crystals were collected for first time.

  7. Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, M.E.; Baughman, R.H.; Zakhidov, A.A. [The University of Texas at Dallas, NanoTech Institute, Richardson, TX (United States); Murthy, N.S. [University of Vermont, Department of Physics, Burlington, VT (United States); Udod, I. [Teva Pharmaceuticals USA, Fairfield, NJ (United States); Khayrullin, I.I. [eMagin Corporation, Hopewell Junction, NY (United States)

    2007-03-15

    We report preparation and characterization of novel bicomponent metal-based photonic crystals having submicron three-dimensional (3D) periodicity. Fabricated photonic crystals include SiO{sub 2} sphere lattices infiltrated interstitially with metals, carbon inverse lattices filled with metal or metal alloy spheres, Sb inverse lattices, and Sb inverse lattices filled with Bi spheres. Starting from a face centered SiO{sub 2} lattice template, these materials were obtained by sequences of either templating and template extraction or templating, template extraction, and retemplating. Surprising high fidelity was obtained for all templating and template extraction steps. Scanning electron microscopy (SEM), small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) were used to characterize the structure and the effects of the structure on calorimetric properties. To the best of our knowledge, SAXS data on metallic photonic crystals were collected for first time. (orig.)

  8. Synthesis and crystal structures of three new benzotriazolylpropanamides

    Directory of Open Access Journals (Sweden)

    Donna S. Amenta

    2017-06-01

    Full Text Available The base-catalyzed Michael addition of 2-methylacrylamide to benzotriazole afforded 3-(1H-benzotriazol-1-yl-2-methylpropanamide, C10H12N4O (1, in 32% yield in addition to small amounts of isomeric 3-(2H-benzotriazol-2-yl-2-methylpropanamide, C10H12N4O (2. In a similar manner, 3-(1H-benzotriazol-1-yl-N,N-dimethylpropanamide, C11H14N4O (3, was prepared from benzotriazole and N,N-dimethylacrylamide. All three products have been structurally characterized by single-crystal X-ray diffraction. The crystal structures of 1 and 2 comprise infinite arrays formed by N—H...O and N—H...N bridges, as well as π–π interactions, while the molecules of 3 are aggregated to simple π-dimers in the crystal.

  9. Diamond-Structured Photonic Crystals with Graded Air Spheres Radii

    Directory of Open Access Journals (Sweden)

    Dichen Li

    2012-05-01

    Full Text Available A diamond-structured photonic crystal (PC with graded air spheres radii was fabricated successfully by stereolithography (SL and gel-casting process. The graded radii in photonic crystal were formed by uniting different radii in photonic crystals with a uniform radius together along the Г‑Х direction. The stop band was observed between 26.1 GHz and 34.3 GHz by reflection and transmission measurements in the direction. The result agreed well with the simulation attained by the Finite Integration Technique (FIT. The stop band width was 8.2 GHz and the resulting gap/midgap ratio was 27.2%, which became respectively 141.4% and 161.9% of the perfect PC. The results indicate that the stop band width of the diamond-structured PC can be expanded by graded air spheres radii along the Г‑Х direction, which is beneficial to develop a multi bandpass filter.

  10. Electrophysical properties and structural features of shungite (natural nanostructured carbon)

    Science.gov (United States)

    Golubev, E. A.

    2013-05-01

    This paper presents the results of investigations of the electrical conductive properties with a nanoscale locality at nanoampere currents and the results of an analysis of the correlation between the electrical conductivity and structural features of natural glassy carbon, i.e., shungite. The investigations have been performed using atomic force microscopy, electric force spectroscopy, scanning spreading resistance microscopy, X-ray spectroscopic analysis, and Raman spectroscopy. It has been found that there are differences in electrical conductive properties of the structurally similar shungite samples formed under different PT conditions. Based on the analysis of the structural parameters and specific features of the shungite compositions, it has been shown that the effect of intercalation of impurities into boundary layers of graphene sheets has the most significant influence on the electrical and physical properties of the shungites. The differences in types and values of conductivity of the shungite samples are determined by the different degrees of intercalation.

  11. Automated analysis of fundamental features of brain structures.

    Science.gov (United States)

    Lancaster, Jack L; McKay, D Reese; Cykowski, Matthew D; Martinez, Michael J; Tan, Xi; Valaparla, Sunil; Zhang, Yi; Fox, Peter T

    2011-12-01

    Automated image analysis of the brain should include measures of fundamental structural features such as size and shape. We used principal axes (P-A) measurements to measure overall size and shape of brain structures segmented from MR brain images. The rationale was that quantitative volumetric studies of brain structures would benefit from shape standardization as had been shown for whole brain studies. P-A analysis software was extended to include controls for variability in position and orientation to support individual structure spatial normalization (ISSN). The rationale was that ISSN would provide a bias-free means to remove elementary sources of a structure's spatial variability in preparation for more detailed analyses. We studied nine brain structures (whole brain, cerebral hemispheres, cerebellum, brainstem, caudate, putamen, hippocampus, inferior frontal gyrus, and precuneus) from the 40-brain LPBA40 atlas. This paper provides the first report of anatomical positions and principal axes orientations within a standard reference frame, in addition to "shape/size related" principal axes measures, for the nine brain structures from the LPBA40 atlas. Analysis showed that overall size (mean volume) for internal brain structures was preserved using shape standardization while variance was reduced by more than 50%. Shape standardization provides increased statistical power for between-group volumetric studies of brain structures compared to volumetric studies that control only for whole brain size. To test ISSN's ability to control for spatial variability of brain structures we evaluated the overlap of 40 regions of interest (ROIs) in a standard reference frame for the nine different brain structures before and after processing. Standardizations of orientation or shape were ineffective when not combined with position standardization. The greatest reduction in spatial variability was seen for combined standardizations of position, orientation and shape. These

  12. Single crystal surface structure by bragg scattering

    DEFF Research Database (Denmark)

    Nielsen, Mogens

    1985-01-01

    X-ray diffraction is becoming an important tool in the measurements of surface structures. Single crystalline samples are used as in Low Energy Electron Diffraction (LEED)-studies. The X-ray technique is somewhat more involved due to the need of bright, collimated photon sources, in general...... synchrotron X-rays, and of very accurate angular settings in the ultrahigh-vacuum environment of the sample. We present the technique and discuss examples of experimental results....

  13. Fine structure of fields in 2D photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Volkov, V. S.; Bozhevolnyi, S. I.

    2006-01-01

    We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis....

  14. Crystal and molecular structure of lancerodiol-p-hydroxybenzoate

    Directory of Open Access Journals (Sweden)

    Mohamed H Abd El-Razek

    2010-01-01

    Full Text Available Lancerodiol-p-hydroxybenzoate was isolated from the leaves of Ferula sinaica L. (Apiaceae as light needle crystals. This work reports for the first time the molecular structure and relative configuration of compound 1, established by X-ray analysis.

  15. Ultrafast investigations of slow light in photonic crystal structures

    NARCIS (Netherlands)

    Engelen, Rob Jacques Paul

    2008-01-01

    Optical structures with dimensions down to nanometer length scales have been a topic for investigation for an increasing number of researchers, due to their intriguing physical properties and their possible new optical applications. In this thesis, waveguides in two-dimensional photonic crystals are

  16. Topology optimization for transient response of photonic crystal structures

    DEFF Research Database (Denmark)

    Matzen, René; Jensen, Jakob Søndergaard; Sigmund, Ole

    2010-01-01

    An optimization scheme based on topology optimization for transient response of photonic crystal structures is developed. The system response is obtained by a finite-element time-domain analysis employing perfectly matched layers as an absorbing boundary condition. As an example a waveguide...

  17. Redetermination of the Crystal Structure of Al2Br6

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Poulsen, Finn W.; Nielsen, Kurt

    1997-01-01

    The structure of aluminium bromide has been reinvestigated by X-ray diffraction in three different ways: (a) on a single crystal grown in a glass capillary, (b) on powder in a Debye-Scherrer glass capillary and (c) on an area of powder placed in a protective container for Bragg-Brentano geometry....

  18. Crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis.

    NARCIS (Netherlands)

    Sprogoe, D.; Broek, van den L.A.M.; Mirza, O.; Kastrup, J.S.; Voragen, A.G.J.; Gajhede, M.; Skov, L.K.

    2004-01-01

    Around 80 enzymes are implicated in the generic starch and sucrose pathways. One of these enzymes is sucrose phosphorylase, which reversibly catalyzes the conversion of sucrose and orthophosphate to d-Fructose and a-d-glucose 1-phosphate. Here, we present the crystal structure of sucrose phosphoryla

  19. Crystal structure of the sodium-potassium pump

    DEFF Research Database (Denmark)

    Morth, J Preben; Pedersen, Bjørn Panyella; Toustrup-Jensen, Mads S;

    2007-01-01

    The Na+,K+-ATPase generates electrochemical gradients for sodium and potassium that are vital to animal cells, exchanging three sodium ions for two potassium ions across the plasma membrane during each cycle of ATP hydrolysis. Here we present the X-ray crystal structure at 3.5 A resolution of the...

  20. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    , such as body-centered cubic and face-centered cubic, can be suppressed by a proper choice of the potential depth and periodicity. Furthermore, by varying the harmonic trap parameters and/or the optical potential in time, controlled transitions between crystal structures can be obtained with close to unit...

  1. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    Science.gov (United States)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  2. A unified picture of the crystal structures of metals

    Science.gov (United States)

    Söderlind, Per; Eriksson, Olle; Johansson, Börje; Wills, J. M.; Boring, A. M.

    1995-04-01

    THE crystal structures of the light actinides have intrigued physicists and chemists for several decades1. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic and hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry-tetragonal, orthorhombic and monoclinic. To understand these differences, we have performed total-energy calculations, as a function of volume, for both high-and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all of these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression.

  3. VO{sub 2} (A): Reinvestigation of crystal structure, phase transition and crystal growth mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Rao Popuri, Srinivasa [ICMCB, CNRS, UPR 9048, F-33608 Pessac (France); University of Bordeaux, ICMCB, UPR 9048, F-33608 Pessac (France); National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Plautius Andronescu Str. No. 1, 300224 Timisoara (Romania); Artemenko, Alla [ICMCB, CNRS, UPR 9048, F-33608 Pessac (France); University of Bordeaux, ICMCB, UPR 9048, F-33608 Pessac (France); Labrugere, Christine [CeCaMA, University of Bordeaux 1, ICMCB, 87 Avenue du Dr. A. Schweitzer, F-33608 Pessac (France); Miclau, Marinela [National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Plautius Andronescu Str. No. 1, 300224 Timisoara (Romania); Villesuzanne, Antoine [ICMCB, CNRS, UPR 9048, F-33608 Pessac (France); University of Bordeaux, ICMCB, UPR 9048, F-33608 Pessac (France); Pollet, Michaël, E-mail: pollet@icmcb-bordeaux.cnrs.fr [ICMCB, CNRS, UPR 9048, F-33608 Pessac (France); University of Bordeaux, ICMCB, UPR 9048, F-33608 Pessac (France)

    2014-05-01

    Well crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal reaction in the presence of V{sub 2}O{sub 5} and oxalic acid. With the advantage of high crystalline samples, we propose P4/ncc as an appropriate space group at room temperature. From morphological studies, we found that the oriented attachment and layer by layer growth mechanisms are responsible for the formation of VO{sub 2} (A) micro rods. The structural and electronic transitions in VO{sub 2} (A) are strongly first order in nature, and a marked difference between the structural transition temperatures and electronic transitions temperature was evidenced. The reversible intra- (LTP-A to HTP-A) and irreversible inter- (HTP-A to VO{sub 2} (M1)) structural phase transformations were studied by in-situ powder X-ray diffraction. Attempts to increase the size of the VO{sub 2} (A) microrods are presented and the possible formation steps for the flower-like morphologies of VO{sub 2} (M1) are described. - Graphical abstract: Using a single step and template free hydrothermal synthesis, well crystallized VO{sub 2} (A) microrods were prepared and the P4/ncc space group was assigned to the room temperature crystal structure. Reversible and irreversible phase transitions among different VO{sub 2} polymorphs were identified and their progressive nature was highlighted. Attempts to increase the microrods size, involving layer by layer formation mechanisms, are presented. - Highlights: • Highly crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal process. • The P4/ncc space group was determined for VO{sub 2} (A) at room temperature. • The electronic structure and progressive nature of the structural phase transition were investigated. • A weak coupling between structural and electronic phase transitions was identified. • Different crystallite morphologies were discussed in relation with growth mechanisms.

  4. Calculation and analysis of complex band structure in dispersive and dissipative two-dimensional photonic crystals

    CERN Document Server

    Brûlé, Yoann; Gralak, Boris

    2015-01-01

    Numerical calculation of modes in dispersive and absorptive systems is performed using the finite element method. The dispersion is tackled in the frame of an extension of Maxwell's equations where auxiliary fields are added to the electromagnetic field. This method is applied to multi-domain cavities and photonic crystals including Drude and Drude-Lorentz metals. Numerical results are compared to analytical solutions for simple cavities and to previous results of the literature for photonic crystals, showing excellent agreement. The advantages of the developed method lie on the versatility of the finite element method regarding geometries, and in sparing the use of tedious complex poles research algorithm. Hence the complex spectrum of resonances of non-hermitian operators and dissipative systems, like two-dimensional photonic crystal made of absorbing Drude metal, can be investigated in detail. The method is used to reveal unexpected features of their complex band structures.

  5. Crystal structure and magnetization of a Co3B2O6 single crystal

    Science.gov (United States)

    Kazak, N. V.; Platunov, M. S.; Ivanova, N. B.; Knyazev, Yu. V.; Bezmaternykh, L. N.; Eremin, E. V.; Vasil'ev, A. D.; Bayukov, O. A.; Ovchinnikov, S. G.; Velikanov, D. A.; Zubavichus, Ya. V.

    2013-07-01

    The crystal structure and magnetic properties of Co3B2O6 single crystals are studied. Orthorhombic symmetry with space group Pnnm is detected at room temperature. The measurements of static magnetization and dynamic magnetic susceptibility reveal two magnetic anomalies at T 1 = 33 K and T 2 = 10 K and an easy-axis magnetic anisotropy. The effective magnetic moment indicates a high-spin state of the Co2+ ion. A spin-flop transition is found at low temperatures and H sf = 23 kOe. EXAFS spectra of the K-edge absorption of Co are recorded at various temperatures, the temperature-induced changes in the parameters of the local environment of cobalt are analyzed, and the effective Co-Co and Co-O distances are determined. The magnetic interactions in the crystal are analyzed in terms of an indirect coupling model.

  6. Band structures in Sierpinski triangle fractal porous phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Liu, Ying, E-mail: yliu5@bjtu.edu.cn; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  7. Crystal structure and stereochemistry study of 2-substituted benzoxazole derivatives.

    Science.gov (United States)

    Mabied, Ahmed F; Shalaby, Elsayed M; Zayed, Hamdia A; El-Kholy, Esmat; Farag, Ibrahim S A; Ahmed, Naima A

    2014-01-01

    The structure of 2-[(4-chlorophenylazo) cyanomethyl] benzoxazole, C15H9ClN4O (I), has triclinic ([Formula: see text]) symmetry. The structure displays N-H ⋯ N hydrogen bonding. The structure of 2-[(arylidene) cyanomethyl] benzoxazoles, C17H10N2O3 (II), has triclinic ([Formula: see text]) symmetry. The structure displays C-H ⋯ N, C-H ⋯ C hydrogen bonding. In (I), the chlorophenyl and benzoxazole groups adopt a trans configuration with respect to the central cyanomethyle hydrazone moiety. Compound (II) crystallized with two molecules in the asymmetric unit shows cisoid conformation between cyano group and benzoxazole nitrogen, contrary to (I). In (II) the benzodioxole has an envelope conformation (the C17 atom is the flap atom). The molecular geometry obtained using molecular mechanics (MM) calculations has been discussed along with the results of single crystal analysis.

  8. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    Directory of Open Access Journals (Sweden)

    Vasily F. Shabanov

    2013-08-01

    Full Text Available Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface.

  9. Microprobe of structure of crystal/liquid interface boundary layers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The molecular structures and its evolutive regularities within the boundary layers in the crystal growth of KDP and DKDP have been studied in real time by using holography and Raman microprobe. The experiments show that the molecular structure of mother solution within the boundary layers is distinctly different from that of the solutions alone. In this paper, the effects of cations within the boundary layers on the structure of solution are considered. Within the characteristic boundary layers, the effects of cations cause the changes in O-P-O bond angle, electronic density redistribution of the phosphate groups, and significant changes in the bond intensity, thus leading to the breaking of partial hydrogen bonds of the phosphate associations, the readjustment of geometry of anionic phosphate groups and desolvation, and the forming of the smectic ordering structure of the anions_cations. Finally, the crystallization unit of anion_cation should be formed at the proximate interface.

  10. Crystal structures at high pressures and temperatures

    Science.gov (United States)

    Caldwell, Wendel Alexander

    2000-10-01

    The diamond anvil cell (DAC) is a unique instrument that can generate pressures equivalent to those inside planetary interiors (pressures on the order of 1 million atmospheres) under sustained conditions. When combined with a bright source of collimated x-rays, the DAC can be used to probe the structure of materials in-situ at ultra-high pressures. An understanding of the high-pressure structure of materials is important in determining what types of processes may take place in the Earth at great depths. Motivated by previous studies showing that xenon becomes metallic at pressures above ˜1 megabar (100 GPa), we examined the stable structures and reactivity of xenon at pressures approaching that of the core-mantle boundary in the Earth. Our findings indicate the transformation of xenon from face-centered cubic (fcc) to hexagonal close-packed (hcp) structures is kinetically hindered at room temperature, with the equilibrium fcc--hcp phase boundary at 21 (+/-3) gigapascals, a pressure lower than was previously thought. Additionally, we find no tendency on the part of xenon to form a metal alloy with iron or platinum to at least 100 to 150 gigapascals, making it unlikely that the Earth's core serves as a reservoir for primordial xenon. Measurements of the compressibility of natural (Mg.75,Fe .25)2SiO4 gamma-spinel at pressures of the Earth's transition zone yield a pressure derivative of the bulk modulus K0 ' = 6.3 (+/-0.3). As gamma-spinel is considered to be a dominant mineral phase of the transition-zone of the Earth's mantle (400--670 km depth), the relatively high value of K0' for gamma-spinel may help explain the rapid increase with depth of seismic velocities through the transition zone. The thermodynamics, mechanisms and kinetics of pressure-induced amorphization are not well understood. We report here new studies indicating little or no entropy difference between the crystalline and glassy states of Ca(OH) 2 (portlandite). Additional work on the pressure

  11. Crystal chemistry of layered structures formed by linear rigid silyl-capped molecules

    Directory of Open Access Journals (Sweden)

    Daniel Lumpi

    2015-09-01

    Full Text Available The crystallization behavior of methylthio- or methylsulfonyl-containing spacer extended Z,Z-bis-ene–yne molecules capped with trimethylsilyl groups obtained by (tandem thiophene ring fragmentation and of two non-spacer extended analogs were investigated. The rigid and linear molecules generally crystallized in layers whereby the flexibility of the layer interfaces formed by the silyl groups leads to a remarkably rich crystal chemistry. The molecules with benzene and thiophene spacers both crystallized with C2/c symmetry and can be considered as merotypes. Increasing the steric bulk of the core by introduction of ethylenedioxythiophene (EDOT gave a structure incommensurately modulated in the [010] direction. Further increase of steric demand in the case of a dimethoxythiophene restored periodicity along [010] but resulted in a doubling of the c vector. Two different polytypes were observed, which feature geometrically different layer interfaces (non-OD, order–disorder, polytypes, one with a high stacking fault probability. Oxidation of the methylthio groups of the benzene-based molecule to methylsulfonyl groups led to three polymorphs (two temperature-dependent, which were analyzed by Hirshfeld surface de/di fingerprint plots. The analogously oxidized EDOT-based molecule crystallized as systematic twins owing to its OD polytypism. Shortening of the backbone by removal of the aryl core resulted in an enantiomorphic structure and a further shortening by removal of a methylthio-ene fragment again in a systematically twinned OD polytype.

  12. Single Crystal Structure Determination of Alumina to 1 Mbar

    Science.gov (United States)

    Dong, H.; Zhang, L.; Prakapenka, V.; Mao, H.

    2014-12-01

    Aluminum oxide (Al2O3) is an important ceramic material and a major oxide in the earth. Additionally, alumina is a widely used pressure standard in static high-pressure experiments (Cr3+-bearing corundum, ruby). The changes of its crystal structure with pressure (P) and temperature (T) are important for its applications and understanding its physical properties in the deep Earth. There have been numerous reports on the high P-T polymorphs of alumina. Previous theoretical calculations and experiments suggest that the crystal structure of Al2O3 evolves greatly at high P-T. In this study, we used the newly developed multigrain crystallography method combined with single-crystal x-ray diffraction analysis technique for the structure determination of alumina at high P-T to provide single-crystal structure refinement for high-pressure phases of Al2O3. Alumina powder was mixed with ~10% Pt and Ne was used as both pressure transmitting media and thermal insulating layers during laser-heating. Coarse-grained aggregates of Al2O3 were synthesized in a laser-heated diamond anvil cell. The structure change of Al2O3 was monitored by in situ x-ray diffraction at ~1 Mbar and 2700 K. The results allow us to distinguish the structural differences between the Rh2O3 (II) structure (space group Pbcn) and perovskite structure (space group Pbnm) for the first high-pressure phase of Al2O3. More detailed results will be discussed in the later work.

  13. Thermodynamics of sublimation, crystal lattice energies, and crystal structures of racemates and enantiomers: (+)- and (+/-)-ibuprofen.

    Science.gov (United States)

    Perlovich, German L; Kurkov, Sergey V; Hansen, Lars Kr; Bauer-Brandl, Annette

    2004-03-01

    Thermodynamic differences between ibuprofen (IBP) racemate and the (+)-enantiomer were studied by X-ray diffraction, thermoanalysis, and crystal energy calculations. The thermodynamic functions of sublimation (as a measure of crystal lattice energy) were obtained by the transpiration method. The sublimation enthalpies (DeltaH(sub)) of (+/-)-IBP and (+)-IBP are 115.8 +/- 0.6 and 107.4 +/- 0.5 kJ. mol(-1), respectively. Using the temperature dependency of the saturated vapor pressure, the relative fractions of enthalpy and entropy of the sublimation process were calculated, and the sublimation process for both the racemate and the enantiomer was found to be enthalpy driven (62%). Two different force fields, Mayo et al. (M) and Gavezzotti (G), were used for comparative analysis of crystal lattice energies. Both force fields revealed that the van der Waals term contributes more to the packing energy in (+)-IBP than in (+/-)-IBP. The hydrogen bonding energy, however, contributes at 29.7 and 32.3% to the total crystal lattice energy in (+)-IBP and (+/-)-IBP (M), respectively. Furthermore, different structure fragments of the IBP molecule were analyzed with respect to their contribution to nonbonded van der Waals interactions. The effect of the C-H distance on the van der Waals term of the crystal lattice energy was also studied.

  14. Coefficient of crystal lattice matching as a parameter of substrate - crystal structure compatibility in silumins

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2009-07-01

    Full Text Available Adding high-melting point elements (Mo, Nb, Ni, Ti, W to complex silumins results in hardening of the latter ones, owing to the formation of new intermetallic phases of the AlxMey type, with refinement of dendrites in α solution and crystals in β phase. The hardening is also due to the effect of various inoculants. An addition of the inoculant is expected to form substrates, the crystal lattice of which, or some (privileged lattice planes and interatomic spaces should bear a strong resemblance to the crystal nucleus. To verify this statement, using binary phase equilibria systems, the coefficient of crystal lattice matching, being one of the measures of the crystallographic similarity, was calculated. A compatibility of this parameter (up to 20% may decide about the structure compatibility between the substrate and crystal which, in turn, is responsible for the effectiveness of alloy modification. Investigations have proved that, given the temperature range of their formation, the density, the lattice type, and the lattice parameter, some intermetallic phases of the AlxMey type can act as substrates for the crystallisation of aluminium and silicon, and some of the silumin hardening phases.

  15. Structural evolution in the crystallization of rapid cooling silver melt

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z.A., E-mail: ze.tian@gmail.com [School of Physics and Electronics, Hunan University, Changsha 410082 (China); Laboratory for Simulation and Modelling of Particulate Systems School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Dong, K.J.; Yu, A.B. [Laboratory for Simulation and Modelling of Particulate Systems School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2015-03-15

    The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald’s rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperature range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid–solid phase transition. - Highlights: • A comprehensive structural analysis is conducted focusing on crystallization. • The involved atoms in our analysis are more than 90% for all samples concerned. • A series of distinct intermediate states are found in crystallization of silver melt. • A novelty icosahedron-saturated state breeds the metastable bcc state.

  16. Tailor-made force fields for crystal-structure prediction.

    Science.gov (United States)

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom.

  17. Crystal structure of alpha poly-p-xylylene.

    Science.gov (United States)

    Kubo, S.; Wunderlich, B.

    1971-01-01

    A crystal structure of alpha poly-p-xylylene is proposed with the help of data of oriented crystals grown during polymerization. The unit cell is monoclinic with the parameters a = 8.57 A, b = 10.62 A, c = 6.54 A (chain axis), and beta = 101.3 deg. Four repeating units per cell lead to a calculated density of 1.185 g/cu cm and a packing density of 0.71. The probable space group is P2 sub 1/m.

  18. Modulation mechanism and disorder structure in hollandite-type crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xiaojing; Fujiki, Yoshiki; Horiuchi, Shigeo (National Inst. for Research in Inorganic Materials, Ibaraki (Japan)); Ishigame, Mareo (Research Inst. for Scientific Measurements, Tohoku Univ., Sendai (Japan))

    1991-07-01

    The structural modulation in some hollandite-type crystals is explained by a vacancy-displacive modulation model. In this model the large cations located in the tetragonal channels along the c axis deviate from the average position to form a modulation wave. Three types of disorder in the initial phase of the modulation wave have been introduced to interpret apparently different diffraction patterns in hollandite-type crystals. A mathematical analysis as well as optical diffraction give results similar to those experimentally observed. High-resolution transmission electron microscope images have been observed to confirm the discussion further. (orig.).

  19. Crystal Structure of Triosephosphate Isomerase from Trypanosoma cruzi in Hexane

    Science.gov (United States)

    Gao, Xiu-Gong; Maldonado, Ernesto; Perez-Montfort, Ruy; Garza-Ramos, Georgina; Tuena de Gomez-Puyou, Marietta; Gomez-Puyou, Armando; Rodriguez-Romero, Adela

    1999-08-01

    To gain insight into the mechanisms of enzyme catalysis in organic solvents, the x-ray structure of some monomeric enzymes in organic solvents was determined. However, it remained to be explored whether the structure of oligomeric proteins is also amenable to such analysis. The field acquired new perspectives when it was proposed that the x-ray structure of enzymes in nonaqueous media could reveal binding sites for organic solvents that in principle could represent the starting point for drug design. Here, a crystal of the dimeric enzyme triosephosphate isomerase from the pathogenic parasite Trypanosoma cruzi was soaked and diffracted in hexane and its structure solved at 2- angstrom resolution. Its overall structure and the dimer interface were not altered by hexane. However, there were differences in the orientation of the side chains of several amino acids, including that of the catalytic Glu-168 in one of the monomers. No hexane molecules were detected in the active site or in the dimer interface. However, three hexane molecules were identified on the surface of the protein at sites, which in the native crystal did not have water molecules. The number of water molecules in the hexane structure was higher than in the native crystal. Two hexanes localized at <4 angstrom from residues that form the dimer interface; they were in close proximity to a site that has been considered a potential target for drug design.

  20. Crystal structure of N-(quinolin-6-ylhydroxylamine

    Directory of Open Access Journals (Sweden)

    Anuruddha Rajapakse

    2014-11-01

    Full Text Available The title compound, C9H8N2O, crystallized with four independent molecules in the asymmetric unit. The four molecules are linked via one O—H...N and two N—H...N hydrogen bonds, forming a tetramer-like unit. In the crystal, molecules are further linked by O—H...N and N—H...O hydrogen bonds forming layers parallel to (001. These layers are linked via C—H...O hydrogen bonds and a number of weak C—H...π interactions, forming a three-dimensional structure. The crystal was refined as a non-merohedral twin with a minor twin component of 0.319.

  1. Crystal structure and density of helium to 232 kbar

    Science.gov (United States)

    Mao, H. K.; Wu, Y.; Jephcoat, A. P.; Hemley, R. J.; Bell, P. M.; Bassett, W. A.

    1988-01-01

    The properties of helium and hydrogen at high pressure are topics of great interest to the understanding of planetary interiors. These materials constitute 95 percent of the entire solar system. A technique was presented for the measurement of X-ray diffraction from single-crystals of low-Z condenses gases in a diamond-anvil cell at high pressure. The first such single-crystal X-ray diffraction measurements on solid hydrogen to 26.5 GPa were presented. The application of this technique to the problem of the crystal structure, equation of state, and phase diagram of solid helium is reported. Crucial for X-ray diffraction studies of these materials is the use of a synchrotron radiation source which provides high brillance, narrow collimation of the incident and diffracted X-ray beams to reduce the background noise, and energy-dispersive diffraction techniques with polychromatic (white) radiation, which provides high detection efficiency.

  2. Crystal structure of bis(1-ethylpyridinium dioxonium hexacyanidoferrate(II

    Directory of Open Access Journals (Sweden)

    Rikako Tanaka

    2017-02-01

    Full Text Available The title compound, (C7H10N2(H3O2[Fe(CN6] or (Etpy2(H3O2[Fe(CN6] (Etpy+ is 1-ethylpyridinium, crystallizes in the space group Pnnm. The FeII atom of the [Fe(CN6]4− anion lies on a site with site symmetry ..2/m, and has an octahedral coordination sphere defined by six cyanido ligands. Both the Etpy+ and the oxonium cations are located on a mirror plane. In the crystal, electron-donor anions of [Fe(CN6]4− and electron-acceptor cations of Etpy+ are each stacked parallel to the b axis, resulting in a columnar structure with segregated moieties. The crystal packing is stabilized by a three-dimensional O—H...N hydrogen-bonding network between the oxonium ions and the cyanide ligands of [Fe(CN6]4−.

  3. Crystal Growth, Structure and Morphology of Rifapentine Methanol Solvate

    Institute of Scientific and Technical Information of China (English)

    周堃; 李军; 罗建洪; 金央

    2012-01-01

    Rifapentine, an important antibiotic, was crystallized from methanol solvent in the form of its methanol solvate. The crystal structure of rifapentine methanol solvate belongs to monoclinic, space group P21, with the unit cell parameters of a = 1.2278(3) nm, b = 1.9768(4) rim, c = 1.2473(3) nm, Z= 2, and β = 112.35(3). The parallelepiped.morphology was also predicted by Materials Studio simulation program.. The influence of intermolecular in-teraction was taken into account in the attachment energy model. The crystal shape fits the calculated morphology well, which was performed on the potential energy minimized model using a generic DREIDING 2.21 force fieldand developed minimization protocol with derived'partial charges.

  4. Synthesis and Crystal Structure of Tetranuclear Zinc Benzoate

    Institute of Scientific and Technical Information of China (English)

    YIN Ming-cai; WANG Chi-wei; AI Chang-chun; YUAN Liang-jie; SUN Ju-tang

    2004-01-01

    A tetranuclear zinc benzoate Zn4O(C6H5CO2)6 was synthesized and characterized by X-ray single crystal determination. It crystallizes in cubic, space group Ia-3d. Its crystal cell is very large, a=4.100 63(18) nm, V=68.953(5) nm3 and Z = 48. The structure is composed of discrete Zn4O(C6H5CO2)6 molecules. In each molecule, four zinc atoms are held together by a central oxygen atom, which results in the formation of a regular tetrahedron. All benzoate ligands coordinate to zinc atoms in a bidentate bridging mode. Each zinc atom is in a slightly distorted tetrahedral geometry, coordinated by three benzoate oxygen atoms and the central oxygen atom. The intermolecular interactions result in the formation of a three-dimensional supramolecular framework, with non-intersecting parallel channels.

  5. Structural features of plastic deformation in bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Scudino, S., E-mail: s.scudino@ifw-dresden.de; Shakur Shahabi, H.; Stoica, M.; Kühn, U. [IFW Dresden, Institut für Komplexe Materialien, D-01069 Dresden (Germany); Kaban, I.; Escher, B.; Eckert, J. [IFW Dresden, Institut für Komplexe Materialien, D-01069 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany); Vaughan, G. B. M. [European Synchrotron Radiation Facilities ESRF, BP220, 38043 Grenoble (France)

    2015-01-19

    Spatially resolved strain maps of a plastically deformed bulk metallic glass (BMG) have been created by using high-energy X-ray diffraction. The results reveal that plastic deformation creates a spatially heterogeneous atomic arrangement, consisting of strong compressive and tensile strain fields. In addition, significant shear strain is introduced in the samples. The analysis of the eigenvalues and eigenvectors of the strain tensor indicates that considerable structural anisotropy occurs in both the magnitude and direction of the strain. These features are in contrast to the behavior observed in elastically deformed BMGs and represent a distinctive structural sign of plastic deformation in metallic glasses.

  6. Structural features of carbon materials synthesized by different methods

    Science.gov (United States)

    Streletskii, O. A.; Ivanenko, I. P.; Khvostov, V. V.; Savchenko, N. F.; Nishchak, O. Yu.; Aleksandrov, A. F.

    2016-10-01

    This paper presents the results of investigations of three types of carbon structures synthesized by different methods, such as arc discharge plasma enhanced chemical vapor deposition of carbon in a magnetic field, chemical dehydrohalogenation of the poly(vinyl chloride)/poly(vinylidene chloride) precursor, and pulsed plasma ion assisted deposition. It has been found that the samples prepared by different methods have a common feature, i.e., the presence of three-dimensional clusters based on sp 2- or sp 3-bonds surrounded by quasi-one-dimensional carbon chains. It has been shown that the structure of carbon materials changes depending on the synthesis conditions.

  7. Feature Analysis and Modeling of the Network Community Structure

    Institute of Scientific and Technical Information of China (English)

    袁超; 柴毅; 魏善碧

    2012-01-01

    Community structure has an important influence on the structural and dynamic characteristics of the complex systems.So it has attracted a large number of researchers.However,due to its complexity,the mechanism of action of the community structure is still not clear to this day.In this paper,some features of the community structure have been discussed.And a constraint model of the community has been deduced.This model is effective to identify the communities.And especially,it is effective to identify the overlapping nodes between the communities.Then a community detection algorithm,which has linear time complexity,is proposed based on this constraint model,a proposed node similarity model and the Modularity Q.Through some experiments on a series of real-world and synthetic networks,the high performances of the algorithm and the constraint model have been illustrated.

  8. GPCR crystal structures: Medicinal chemistry in the pocket.

    Science.gov (United States)

    Shonberg, Jeremy; Kling, Ralf C; Gmeiner, Peter; Löber, Stefan

    2015-07-15

    Recent breakthroughs in GPCR structural biology have significantly increased our understanding of drug action at these therapeutically relevant receptors, and this will undoubtedly lead to the design of better therapeutics. In recent years, crystal structures of GPCRs from classes A, B, C and F have been solved, unveiling a precise snapshot of ligand-receptor interactions. Furthermore, some receptors have been crystallized in different functional states in complex with antagonists, partial agonists, full agonists, biased agonists and allosteric modulators, providing further insight into the mechanisms of ligand-induced GPCR activation. It is now obvious that there is enormous diversity in the size, shape and position of the ligand binding pockets in GPCRs. In this review, we summarise the current state of solved GPCR structures, with a particular focus on ligand-receptor interactions in the binding pocket, and how this can contribute to the design of GPCR ligands with better affinity, subtype selectivity or efficacy.

  9. Crystal structure of cytotoxin protein suilysin from Streptococcus suis.

    Science.gov (United States)

    Xu, Lingfeng; Huang, Bo; Du, Huamao; Zhang, Xuejun C; Xu, Jianguo; Li, Xuemei; Rao, Zihe

    2010-01-01

    Cholesterol-dependent cytolysins (CDC) are pore forming toxins. A prototype of the CDC family members is perfringolysin O (PFO), which directly binds to the cell membrane enriched in cholesterol, causing cell lysis. However, an exception of this general observation is intermedilysin (ILY) of Streptococcus intermedius, which requires human CD59 as a receptor in addition to cholesterol for its hemolytic activity. A possible explanation of this functional difference is the conformational variation between the C-terminal domains of the two toxins, particularly in the highly conserved undecapeptide termed tryptophan rich motif. Here, we present the crystal structure of suilysin, a CDC toxin from the infectious swine pathogen Streptococcus suis. Like PFO, suilysin does not require a host receptor for hemolytic activity; yet the crystal structure of suilysin exhibits a similar conformation in the tryptophan rich motif to ILY. This observation suggests that the current view of the structure-function relationship between CDC proteins and membrane association is far from complete.

  10. Determination of organic crystal structures by X ray powder diffraction

    CERN Document Server

    McBride, L

    2000-01-01

    The crystal structure of Ibuprofen has been solved from synchrotron X-ray powder diffraction data using a genetic algorithm (GA). The performance of the GA is improved by incorporating prior chemical information in the form of hard limits on the values that can be taken by the flexible torsion angles within the molecule. Powder X-ray diffraction data were collected for the anti-convulsant compounds remacemide, remacemide nitrate and remacemide acetate at 130 K on BM 16 at the X-ray European Synchrotron Radiation Facility (ESRF) at Grenoble. High quality crystal structures were obtained using data collected to a resolution of typically 1.5 A. The structure determinations were performed using a simulated annealing (SA) method and constrained Rietveld refinements for the structures converged to chi sup 2 values of 1.64, 1.84 and 1.76 for the free base, nitrate and acetate respectively. The previously unknown crystal structure of the drug famotidine Form B has been solved using X-ray powder diffraction data colle...

  11. Features of electro-optical characteristics of composite liquid crystal media (a review)

    Science.gov (United States)

    Amosova, L. P.; Venediktov, V. Yu.

    2016-11-01

    Main patterns of structure formation of composite liquid crystal (LC) media and their classification according to the percentage content of liquid crystal and polymer are considered. Their properties are compared with the properties of homogeneous LC layers and the opportunities of their practical use in optical modulators are discussed. It is shown that, at small (10 wt %) monomer concentrations in the composite, its polymerization leads to formation of a thin-wall network which separates the liquid crystal into domains and provides an uniform orientation in the bulk. The polymer network increases the elasticity of the layer and decreases the relaxation time, but the devices usually work in polarized light and use the same principle as the devices filled with pure LC; i.e. the phase of the light or its polarization changes due to a change in the effective refraction index. However, the division of the LC volume into relatively autonomous domains also allows one to create a polarization-independent device based on the scattering effect. By increasing the relative content of the monomer, it is possible to ensure formation of a porous polymer matrix with inclusions of isolated from each other LC droplets. Such polymer-dispersed LC in its initial state either scatter the light of any polarization and becomes transparent state when an electric field is applied, or, with the use of special methods, the switch-off and switch-on states are swapped ("reverse mode" devices). The main advantages of the composite media are independence of polarization, mechanical strength, and small relaxation times, while the main disadvantages are increased power consumption, high polarization-independent optical losses, and significantly lower contrast. Possible ways to increase the contrast are described.

  12. Structural, elastic and electronic Properties of isotropic cubic crystals of carbon and silicon nanotubes : Density functional based tight binding calculations.

    Directory of Open Access Journals (Sweden)

    Alexander L. Ivanovskii

    2008-01-01

    Full Text Available Atomic models of cubic crystals (CC of carbon and graphene-like Si nanotubes are offered and their structural, cohesive, elastic and electronic properties are predicted by means of the DFTB method. Our main findings are that the isotropic crystals of carbon nanotubes adopt a very high elastic modulus B and low compressibility β, namely B = 650 GPa, β = 0.0015 1/GPa. In addition, these crystals preserve the initial conductivity type of their “building blocks”, i.e. isolated carbon and Si nanotubes. This feature may be important for design of materials with the selected conductivity type.

  13. Structural properties of prokaryotic promoter regions correlate with functional features.

    Science.gov (United States)

    Meysman, Pieter; Collado-Vides, Julio; Morett, Enrique; Viola, Roberto; Engelen, Kristof; Laukens, Kris

    2014-01-01

    The structural properties of the DNA molecule are known to play a critical role in transcription. In this paper, the structural profiles of promoter regions were studied within the context of their diversity and their function for eleven prokaryotic species; Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, Pseudomonas auroginosa, Geobacter sulfurreducens Helicobacter pylori, Chlamydophila pneumoniae, Synechocystis sp., Synechoccocus elongates, Bacillus anthracis, and the archaea Sulfolobus solfataricus. The main anchor point for these promoter regions were transcription start sites identified through high-throughput experiments or collected within large curated databases. Prokaryotic promoter regions were found to be less stable and less flexible than the genomic mean across all studied species. However, direct comparison between species revealed differences in their structural profiles that can not solely be explained by the difference in genomic GC content. In addition, comparison with functional data revealed that there are patterns in the promoter structural profiles that can be linked to specific functional loci, such as sigma factor regulation or transcription factor binding. Interestingly, a novel structural element clearly visible near the transcription start site was found in genes associated with essential cellular functions and growth in several species. Our analyses reveals the great diversity in promoter structural profiles both between and within prokaryotic species. We observed relationships between structural diversity and functional features that are interesting prospects for further research to yet uncharacterized functional loci defined by DNA structural properties.

  14. Structural properties of prokaryotic promoter regions correlate with functional features.

    Directory of Open Access Journals (Sweden)

    Pieter Meysman

    Full Text Available The structural properties of the DNA molecule are known to play a critical role in transcription. In this paper, the structural profiles of promoter regions were studied within the context of their diversity and their function for eleven prokaryotic species; Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, Pseudomonas auroginosa, Geobacter sulfurreducens Helicobacter pylori, Chlamydophila pneumoniae, Synechocystis sp., Synechoccocus elongates, Bacillus anthracis, and the archaea Sulfolobus solfataricus. The main anchor point for these promoter regions were transcription start sites identified through high-throughput experiments or collected within large curated databases. Prokaryotic promoter regions were found to be less stable and less flexible than the genomic mean across all studied species. However, direct comparison between species revealed differences in their structural profiles that can not solely be explained by the difference in genomic GC content. In addition, comparison with functional data revealed that there are patterns in the promoter structural profiles that can be linked to specific functional loci, such as sigma factor regulation or transcription factor binding. Interestingly, a novel structural element clearly visible near the transcription start site was found in genes associated with essential cellular functions and growth in several species. Our analyses reveals the great diversity in promoter structural profiles both between and within prokaryotic species. We observed relationships between structural diversity and functional features that are interesting prospects for further research to yet uncharacterized functional loci defined by DNA structural properties.

  15. Critical Features of Fragment Libraries for Protein Structure Prediction.

    Science.gov (United States)

    Trevizani, Raphael; Custódio, Fábio Lima; Dos Santos, Karina Baptista; Dardenne, Laurent Emmanuel

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction.

  16. Critical Features of Fragment Libraries for Protein Structure Prediction

    Science.gov (United States)

    dos Santos, Karina Baptista

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction. PMID:28085928

  17. Three-Dimentional Structures of Autophosphorylation Complexes in Crystals of Protein Kinases

    KAUST Repository

    Dumbrack, Roland

    2016-01-26

    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Several autophosphorylation complexes have been identified in crystals of protein kinases, with a known serine, threonine, or tyrosine autophosphorylation site of one kinase monomer sitting in the active site of another monomer of the same protein in the crystal. We utilized a structural bioinformatics method to identify all such autophosphorylation complexes in X-ray crystallographic structures in the Protein Data Bank (PDB) by generating all unique kinase/kinase interfaces within and between asymmetric units of each crystal and measuring the distance between the hydroxyl oxygen of potential autophosphorylation sites and the oxygen atoms of the active site aspartic acid residue side chain. We have identified 15 unique autophosphorylation complexes in the PDB, of which 5 complexes have not previously been described in the relevant publications on the crystal structures (N-terminal juxtamembrane regions of CSF1R and EPHA2, activation loop tyrosines of LCK and IGF1R, and a serine in a nuclear localization signal region of CLK2. Mutation of residues in the autophosphorylation complex interface of LCK either severely impaired autophosphorylation or increased it. Taking the autophosphorylation complexes as a whole and comparing them with peptide-substrate/kinase complexes, we observe a number of important features among them. The novel and previously observed autophosphorylation sites are conserved in many kinases, indicating that by homology we can extend the relevance of these complexes to many other clinically relevant drug targets.

  18. OR TEP-II: a FORTRAN Thermal-Ellipsoid Plot Program for crystal structure illustrations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.K.

    1976-03-01

    A computer program is described for drawing crystal structure illustrations using a mechanical plotter. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal-motion probability ellipsoids on the atomic sites. The program can produce stereoscopic pairs of illustrations which aid in the visualization of complex packing arrangements of atoms and thermal motion patterns. Interatomic distances, bond angles, and principal axes of thermal motion are also calculated to aid the structural study. The most recent version of the program, OR TEP-II, has a hidden-line-elimination feature to omit those portions of atoms or bonds behind other atoms or bonds.

  19. Structural engineering of three-dimensional phononic crystals

    Science.gov (United States)

    Delpero, Tommaso; Schoenwald, Stefan; Zemp, Armin; Bergamini, Andrea

    2016-02-01

    Artificially-structured materials are attracting the research interest of a growing community of scientists for the possibility to develop novel materials with advantageous properties that arise from the ability to tailor the propagation of elastic waves, and thus energy, through them. In this work, we propose a three-dimensional phononic crystal whose unit cell has been engineered to obtain a strong wave-attenuation band in the middle of the acoustic frequency range. The combination of its acoustic properties with the dimensions of the unit cell and its static mechanical properties makes it an interesting material for possibly several applications in civil and mechanical engineering, for instance as the core of an acoustically insulating sandwich panel. A sample of this crystal has been manufactured and experimentally tested with respect to its acoustic transmissibility. The performance of the phononic crystal core is remarkable both in terms of amplitude reduction in the transmissibility and width of the attenuation band. A parametric study has been finally conducted on selected geometrical parameters of the unit cell and on their effect on the macroscopic properties of the crystal. This work represents an application-oriented example of how the macroscopic properties of an artificially-structured material can be designed, according to specific needs, by a conventional engineering of its unit cell.

  20. Crystal structure of hexagonal RE(CO{sub 3})OH

    Energy Technology Data Exchange (ETDEWEB)

    Michiba, Kiyonori; Tahara, Takeshi; Nakai, Izumi [Tokyo Univ. of Science, Shinjuku (Japan). Faculty of Science; Miyawaki, Ritsuro; Matsubara, Satoshi [National Museum of Nature and Science, Tokyo (Japan). Dept. of Geology and Paleontology

    2011-07-01

    Hexagonal rare earth carbonate hydroxides, RE(CO{sub 3})OH, where RE = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er, were hydrothermally synthesized from formic acid and hydroxide gels of rare earth elements. The crystals exhibited bicephalous hexagonal prisms with lengths of several tens of micrometers. The crystal structures of a series of hexagonal RE(CO{sub 3})OH were solved using the single crystal CCD-XRD intensity data sets. The space groups of the synthetic hexagonal RE(CO{sub 3})OH crystals are all P- anti 6. The present study has cast doubt upon the space group P- anti 62c previously reported for the natural Ce(CO{sub 3})OH, hydroxylbastnaesite-(Ce). The cell parameters decreased linearly with decreases in the ionic radii of the rare earth elements. La(CO{sub 3})OH showed the largest unit cell (a = 12.6752(6), c = 10.0806(10) A), while Er(CO{sub 3})OH showed the smallest (a = 11.8977(4), c = 9.6978(8) A). The rare earth atoms are in ninefold coordination with oxygen atoms to form a tricapped trigonal prism. The structure consists of layers of {sup 2}{infinity}[(OH)RE{sub 3/3}]{sup 2+} ions linked by carbonate ions. Raman spectra indicate the presence of carbonate and hydroxide groups. An evolutionary shift was observed from La to Er towards higher frequency, which was associated with a decreasing RE-O bond length. (orig.)

  1. Photonic crystal type structure in bivalve ligament of Pinctada maxima

    Institute of Scientific and Technical Information of China (English)

    ZHANG GangSheng

    2007-01-01

    The dry ligament of Pinctada maxima normally appears black; however, it can exhibit striking blue structural colors after being wetted by water. The field-mission SEM investigation shows that the ligament is made of lamellae, which, about 35 μm thick, are made of proteins and aragonite fibers of about 78 nm in diameter. In each single lamella, the fibers are highly aligned characterized by a 2D photonic crystal type structure. According to measured reflective spectra and theoretical simulations, the dry and wet ligaments possess photonic stop band at ultraviolet and blue wavelengths, respectively, which are responsible for structural colorations of ligament.

  2. Crystal structure of inactive form of Rab3B

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Shen, Yang; Jiao, Ronghong; Liu, Yanli; Deng, Lingfu; Qi, Chao (Hebei); (Toronto); (Huazhong)

    2012-06-28

    Rab proteins are the largest family of ras-related GTPases in eukaryotic cells. They act as directional molecular switches at membrane trafficking, including vesicle budding, cargo sorting, transport, tethering, and fusion. Here, we generated and crystallized the Rab3B:GDP complex. The structure of the complex was solved to 1.9 {angstrom} resolution and the structural base comparison with other Rab3 members provides a structural basis for the GDP/GTP switch in controlling the activity of small GTPase. The comparison of charge distribution among the members of Rab3 also indicates their different roles in vesicular trafficking.

  3. Crystal structure of four-stranded Oxytricha telomeric DNA

    Science.gov (United States)

    Kang, C.; Zhang, X.; Ratliff, R.; Moyzis, R.; Rich, A.

    1992-01-01

    The sequence d(GGGGTTTTGGGG) from the 3' overhang of the Oxytricha telomere has been crystallized and its three-dimensional structure solved to 2.5 A resolution. The oligonucleotide forms hairpins, two of which join to make a four-stranded helical structure with the loops containing four thymine residues at either end. The guanine residues are held together by cyclic hydrogen bonding and an ion is located in the centre. The four guanine residues in each segment have a glycosyl conformation that alternates between anti and syn. There are two four-stranded molecules in the asymmetric unit showing that the structure has some intrinsic flexibility.

  4. Improved switching using Fano resonances in photonic crystal structures

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Elesin, Yuriy;

    2013-01-01

    We present a simple and robust structure for realizing asymmetric Fano transmission characteristics in photonic crystal waveguide-cavity structures. The use of Fano resonances for optical switching is analyzed using temporal coupled mode theory in combination with three-dimensional finite...... difference time domain simulations taking into account the signal bandwidth. The results suggest a significant energy reduction by employing Fano resonances compared to more well established Lorentzian resonance structures. A specific example of a Kerr nonlinearity shows an order of magnitude energy...

  5. Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maskaly, Karlene Rosera [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2005-06-01

    Dielectric reflectors that are periodic in one or two dimensions, also known as 1D and 2D photonic crystals, have been widely studied for many potential applications due to the presence of wavelength-tunable photonic bandgaps. However, the unique optical behavior of photonic crystals is based on theoretical models of perfect analogues. Little is known about the practical effects of dielectric imperfections on their technologically useful optical properties. In order to address this issue, a finite-difference time-domain (FDTD) code is employed to study the effect of three specific dielectric imperfections in 1D and 2D photonic crystals. The first imperfection investigated is dielectric interfacial roughness in quarter-wave tuned 1D photonic crystals at normal incidence. This study reveals that the reflectivity of some roughened photonic crystal configurations can change up to 50% at the center of the bandgap for RMS roughness values around 20% of the characteristic periodicity of the crystal. However, this reflectivity change can be mitigated by increasing the index contrast and/or the number of bilayers in the crystal. In order to explain these results, the homogenization approximation, which is usually applied to single rough surfaces, is applied to the quarter-wave stacks. The results of the homogenization approximation match the FDTD results extremely well, suggesting that the main role of the roughness features is to grade the refractive index profile of the interfaces in the photonic crystal rather than diffusely scatter the incoming light. This result also implies that the amount of incoherent reflection from the roughened quarterwave stacks is extremely small. This is confirmed through direct extraction of the amount of incoherent power from the FDTD calculations. Further FDTD studies are done on the entire normal incidence bandgap of roughened 1D photonic crystals. These results reveal a narrowing and red-shifting of the normal incidence bandgap with

  6. Crystal structure optimisation using an auxiliary equation of state.

    Science.gov (United States)

    Jackson, Adam J; Skelton, Jonathan M; Hendon, Christopher H; Butler, Keith T; Walsh, Aron

    2015-11-14

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.

  7. Crystal structure optimisation using an auxiliary equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T. [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E" 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-11-14

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy–volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other “beyond” density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu{sub 2}ZnSnS{sub 4} and the magnetic metal-organic framework HKUST-1.

  8. Isolation and Crystal Structure of Xanthones from Swertia Chirayita

    Institute of Scientific and Technical Information of China (English)

    史高峰; 鲁润华; 杨云裳; 李春雷; 杨爱梅; 蔡立祥

    2004-01-01

    In order to study the relationship between biological and pharmacological activities with their structures, a series of tri- and tetra-oxygenated xanthones including 1-hydroxyl-2,3,4,7- tetramethoxy xanthone 1, 1-hydroxyl-2,3,4,5-tetramethoxyl xanthone 2, 1-hydroxyl-3,5-dimethoxy- xanthone 3, 1,8-dihydroxyl-3,5-dimethoxyl xanthone 4 and 1,5,8-trihydroxyl-3-methoxy xanthone 5 have been isolated from Swertia chirayita. Their structures were established on the basis of spectral and chemical evidences. The crystal structure of 5 was also investigated by single-crystal X-ray diffraction analysis. It crystallizes in the triclinic system, space group Pī with a = 7.1540(10), b = 7.520(2), c = 10.671(2) (A), V = 562.7(2) (A)3 , α = 86.50(3), β = 80.06(3) , γ = 85.00(3)°, Z = 2, Dc = 1.618 g/m3, R = 0.0405, wR = 0.1028 and F(000) = 284. The molecular structure of 5 is nearly planar and four substituents are much closer to the plane. Compound 5 contains three intermolecular hydro- gen bonds. A recent study shows that phenolic hydroxyls in xanthones are the main active groups capable of scavenging ·OH and O2·.

  9. Schizoid and narcissistic features in personality structure diagnosis.

    Science.gov (United States)

    Geiser, F; Lieberz, K

    2000-01-01

    This study examines the relationship between schizoid and narcissistic personality features. While the schizoid personality disorder seems widely accepted as a diagnostic category, the utility of the narcissistic personality disorder construct is under discussion. We regard schizoidism as a primary, structural disturbance of interaction with the world, whereas narcissism appears as a secondary phenomenon of self-organization and self-regulation. This study focuses on the question, whether these features are correlated or interact with each other in personality structure. A standardized narcissism inventory is being applied to a group of schizoid and nonschizoid patients. Only 1 of 18 narcissism scales differentiates significantly between these patient groups. By cluster analysis, the group of schizoid patients is divided into two subgroups characterized by their higher or lower narcissism scores. These are contiguous to existing descriptions of an active/fighting and a passive/evading schizoid subtype. 'Schizoid' and 'narcissistic' personality features can be regarded as distinct, but complementary personality conditions. Copyright 2000 S. Karger AG, Basel

  10. Functional characterization and crystal structure of thermostable amylase from Thermotoga petrophila, reveals high thermostability and an unusual form of dimerization

    DEFF Research Database (Denmark)

    Hameed, Uzma; Price, Ian; Ikram-Ul-Haq

    2017-01-01

    Thermostable α-amylases have many industrial applications and are therefore continuously explored from novel sources. We present the characterization of a novel putative α-amylase gene product (Tp-AmyS) cloned from Thermotoga petrophila. The purified recombinant enzyme is highly thermostable and ...... of salivary amylase from a previous crystal structure, and thus could be a functional feature of some amylases....

  11. Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line

    Science.gov (United States)

    Sesé, Luis M.

    2016-03-01

    Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) that can be useful to characterize freezing.

  12. The crystal structure of synthetic kutinaite, Cu14Ag6As7

    DEFF Research Database (Denmark)

    Karanovic, Ljiljana; Poleti, Dejan; Makovicky, Emil;

    2002-01-01

    kutinaite, X-ray diffraction, powder method, crystal structure, icosahedral alloy, arsenide, metal clusters......kutinaite, X-ray diffraction, powder method, crystal structure, icosahedral alloy, arsenide, metal clusters...

  13. 'Weird' crystal structures of elements at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kolobyanina, Tat' yana N [L.F. Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow region (Russian Federation)

    2002-12-31

    New crystal structures, in particular incommensurate composite crystals, discovered in the high-pressure phases of Group I, II, IV, and V elements are described, and their intermetallic and other binary structural analogs are discussed. (reviews of topical problems)

  14. How evolutionary crystal structure prediction works--and why.

    Science.gov (United States)

    Oganov, Artem R; Lyakhov, Andriy O; Valle, Mario

    2011-03-15

    Once the crystal structure of a chemical substance is known, many properties can be predicted reliably and routinely. Therefore if researchers could predict the crystal structure of a material before it is synthesized, they could significantly accelerate the discovery of new materials. In addition, the ability to predict crystal structures at arbitrary conditions of pressure and temperature is invaluable for the study of matter at extreme conditions, where experiments are difficult. Crystal structure prediction (CSP), the problem of finding the most stable arrangement of atoms given only the chemical composition, has long remained a major unsolved scientific problem. Two problems are entangled here: search, the efficient exploration of the multidimensional energy landscape, and ranking, the correct calculation of relative energies. For organic crystals, which contain a few molecules in the unit cell, search can be quite simple as long as a researcher does not need to include many possible isomers or conformations of the molecules; therefore ranking becomes the main challenge. For inorganic crystals, quantum mechanical methods often provide correct relative energies, making search the most critical problem. Recent developments provide useful practical methods for solving the search problem to a considerable extent. One can use simulated annealing, metadynamics, random sampling, basin hopping, minima hopping, and data mining. Genetic algorithms have been applied to crystals since 1995, but with limited success, which necessitated the development of a very different evolutionary algorithm. This Account reviews CSP using one of the major techniques, the hybrid evolutionary algorithm USPEX (Universal Structure Predictor: Evolutionary Xtallography). Using recent developments in the theory of energy landscapes, we unravel the reasons evolutionary techniques work for CSP and point out their limitations. We demonstrate that the energy landscapes of chemical systems have an

  15. Feature and Statistical Model Development in Structural Health Monitoring

    Science.gov (United States)

    Kim, Inho

    All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing its service life. Although previous studies of Structural Health Monitoring (SHM) have revealed extensive prior knowledge on the parts of SHM processes, such as the operational evaluation, data processing, and feature extraction, few studies have been conducted from a systematical perspective, the statistical model development. The first part of this dissertation, the characteristics of inverse scattering problems, such as ill-posedness and nonlinearity, reviews ultrasonic guided wave-based structural health monitoring problems. The distinctive features and the selection of the domain analysis are investigated by analytically searching the conditions of the uniqueness solutions for ill-posedness and are validated experimentally. Based on the distinctive features, a novel wave packet tracing (WPT) method for damage localization and size quantification is presented. This method involves creating time-space representations of the guided Lamb waves (GLWs), collected at a series of locations, with a spatially dense distribution along paths at pre-selected angles with respect to the direction, normal to the direction of wave propagation. The fringe patterns due to wave dispersion, which depends on the phase velocity, are selected as the primary features that carry information, regarding the wave propagation and scattering. The following part of this dissertation presents a novel damage-localization framework, using a fully automated process. In order to construct the statistical model for autonomous damage localization deep-learning techniques, such as restricted Boltzmann machine and deep belief network

  16. Crystal structure of Pb3(IO4(OH22

    Directory of Open Access Journals (Sweden)

    Matthias Weil

    2014-07-01

    Full Text Available The structure of the title compound, trilead(II bis[dihydroxidotetraoxidoiodate(VII], was determined from a crystal twinned by non-merohedry with two twin domains present [twin fraction 0.73 (1:0.27 (1]. It contains three Pb2+ cations and two IO4(OH23− anions in the asymmetric unit. Each of the Pb2+ cations is surrounded by eight O atoms (cut-off value = 3.1 Å in the form of a distorted polyhedron. The octahedral IO4(OH23− anions are arranged in rows extending parallel to [021], forming a distorted hexagonal rod packing. The cations and anions are linked into a framework structure. Although H-atom positions could not be located, O...O distances suggest medium-strength hydrogen-bonding interactions between the IO4(OH2 octahedra, further consolidating the crystal packing.

  17. Solid State Synthesis and Crystal Structure of K3SI

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhen-Qian; LIU Xi; CHEN Wen-Tong; LI Yan; WU A-Qing; ZENG Hui-Yi; GUO Guo-Cong; HUANG Jin-Shun

    2006-01-01

    A new ternary alkali metal chalcogenide halide, K3SI, has been synthesized by solid state reaction method and structurally characterized by X-ray crystallography. The crystal belongs to hexagonal, space group P63cm with a = 11.699(1), c = 5.8279(9) (A), Mr = 276.26, V = 690.8(1)(A)3, Z = 6, Dc = 3.985 g/cm3, F(000) = 756, μ= 9.913 mm-1, S = 1.004, R = 0.0719 and wR = 0.2204. The title compound is the first example containing S anion in the ternary alkali metal chalcogenide halides family M3QX (M = alkali metal, Q = chalcogenide, X = halide), which crystallizes in the hexagonal anti-perovskite structure type.

  18. Crystal structure of tris-(hydroxyl-ammonium) orthophosphate.

    Science.gov (United States)

    Leinemann, Malte; Jess, Inke; Boeckmann, Jan; Näther, Christian

    2015-11-01

    The crystal structure of the title salt, ([H3NOH](+))3·[PO4](3-), consists of discrete hydroxyl-ammonium cations and ortho-phos-phate anions. The atoms of the cation occupy general positions, whereas the anion is located on a threefold rotation axis that runs through the phospho-rus atom and one of the phosphate O atoms. In the crystal structure, cations and anions are linked by inter-molecular O-H⋯O and N-H⋯O hydrogen bonds into a three-dimensional network. Altogether, one very strong O-H⋯O, two N-H⋯O hydrogen bonds of medium strength and two weaker bifurcated N-H⋯O inter-actions are observed.

  19. Crystal Structure of the Human Laminin Receptor Precursor

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson,K.; Wu, J.; Hubbard, S.; Meruelo, D.

    2008-01-01

    The human laminin receptor (LamR) interacts with many ligands, including laminin, prions, Sindbis virus, and the polyphenol (-)-epigallocatechin-3-gallate (EGCG), and has been implicated in a number of diseases. LamR is overexpressed on tumor cells, and targeting LamR elicits anti-cancer effects. Here, we report the crystal structure of human LamR, which provides insights into its function and should facilitate the design of novel therapeutics targeting LamR.

  20. Crystal structure of dichloridobis(dimethyl N-cyanodithioiminocarbonatezinc

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2016-03-01

    Full Text Available The ZnII atom in the title complex, [ZnCl2(C4H6N2S22], is coordinated in a distorted tetrahedral manner by two Cl atoms and two terminal N atoms of two dimethyl N-cyanodithioiminocarbonate ligands. In the crystal, the complex molecules are connected through C—H...Cl hydrogen bonds and Cl...S contacts, leading to a two-dimensional structure extending parallel to the ab plane.

  1. Dispersion Based Photonic-Crystal Structures for RF Applications

    Science.gov (United States)

    2006-06-01

    dimensional FDTD simulation. In our experiment, we fabricated the device using a computer numerically controlled ( CNC ) router . A tapered planar structure is...millimeter-wave photonic crystals are fabricated in Rexolite slabs by a computer numerically controlled ( CNC ) micro-milling system. Using the millimeter...loss, and low cost. In particular, it can be fabricated using a CNC micro-milling machine. Also, its low index provides a weaker confinement in the

  2. Programmatic conversion of crystal structures into 3D printable files using Jmol

    OpenAIRE

    Scalfani, Vincent F.; Williams, Antony J.; Tkachenko, Valery; Karapetyan, Karen; Pshenichnov, Alexey; Hanson, Robert M; Liddie, Jahred M.; Bara, Jason E.

    2016-01-01

    Background Three-dimensional (3D) printed crystal structures are useful for chemistry teaching and research. Current manual methods of converting crystal structures into 3D printable files are time-consuming and tedious. To overcome this limitation, we developed a programmatic method that allows for facile conversion of thousands of crystal structures directly into 3D printable files. Results A collection of over 30,000 crystal structures in crystallographic information file (CIF) format from...

  3. Crystal Structures of Aedes Aegypt Alanine Glyoxylate Aminotransferase

    Energy Technology Data Exchange (ETDEWEB)

    Han,Q.; Robinson, H.; Gao, Y.; Vogelaar, N.; Wilson, S.; Rizzi, M.; Li, J.

    2006-01-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75{angstrom} high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1{angstrom} resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  4. Crystal structures of Aedes aegypti alanine glyoxylate aminotransferase.

    Science.gov (United States)

    Han, Qian; Robinson, Howard; Gao, Yi Gui; Vogelaar, Nancy; Wilson, Scott R; Rizzi, Menico; Li, Jianyong

    2006-12-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75A high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1A resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  5. Structural considerations on acridine/acridinium derivatives: Synthesis, crystal structure, Hirshfeld surface analysis and computational studies

    Science.gov (United States)

    Wera, Michał; Storoniak, Piotr; Serdiuk, Illia E.; Zadykowicz, Beata

    2016-02-01

    This article describes a detailed study of the molecular packing and intermolecular interactions in crystals of four derivatives of acridine, i.e. 9-methyl-, 9-ethyl, 9-bromomethyl- and 9-piperidineacridine (1, 2, 3 and 4, respectively) and three 10-methylacridinium salts containing the trifluoromethanesulphonate anion and 9-vinyl-, 9-bromomethyl, and 9-phenyl-10-methylacridinium cations (5, 6 and 7, respectively). The crystal structures of all of the compounds are stabilized by long-range electrostatic interactions, as well as by a network of short-range C-HṡṡṡO (in hydrates and salts 3 and 5-7, respectively), C-Hṡṡṡπ, π-π, C-Fṡṡṡπ and S-Oṡṡṡπ (in salts 5-7) interactions. Hirshfeld surface analysis shows that various intermolecular contacts play an important role in the crystal packing, graphically exhibiting the differences in spatial arrangements of the acridine/acridinium derivatives under scrutiny here. Additionally, computational methods have been used to compare the intermolecular interactions in the crystal structures of the investigated compounds. Computations have confirmed the great contribution of dispersive interactions for crystal lattice stability in the case of 9-substituted acridine and electrostatic interactions for the crystal lattice stability in the case of 9-substituted 10-methylacridinium trifluoromethanesulphonates. The value of crystal lattice energy and the electrostatic contribution in the crystal lattice energy of monohydrated acridine derivatives have confirmed that these compounds have behave as acridinium derivatives.

  6. Crystal structure of lead(II tartrate: a redetermination

    Directory of Open Access Journals (Sweden)

    Matthias Weil

    2015-01-01

    Full Text Available Single crystals of poly[μ4-tartrato-κ6O1,O3:O1′:O2,O4:O4′-lead], [Pb(C4H4O6]n, were grown in a gel medium. In comparison with the previous structure determination of this compound from laboratory powder X-ray diffraction data [De Ridder et al. (2002. Acta Cryst. C58, m596–m598], the redetermination on the basis of single-crystal data reveals the absolute structure, all atoms with anisotropic displacement parameters and a much higher accuracy in terms of bond lengths and angles. It could be shown that a different space group or incorporation of water as reported for similarly gel-grown lead tartrate crystals is incorrect. In the structure, each Pb2+ cation is bonded to eight O atoms of five tartrate anions, while each tartrate anion links four Pb2+ cations. The resulting three-dimensional framework is stabilized by O—H...O hydrogen bonds between the OH groups of one tartrate anion and the carboxylate O atoms of adjacent anions.

  7. Pressure effects on crystal and electronic structure of bismuth tellurohalides

    Science.gov (United States)

    Rusinov, I. P.; Menshchikova, T. V.; Sklyadneva, I. Yu; Heid, R.; Bohnen, K.-P.; Chulkov, E. V.

    2016-11-01

    We study the possibility of pressure-induced transitions from a normal semiconductor to a topological insulator (TI) in bismuth tellurohalides using density functional theory and tight-binding method. In BiTeI this transition is realized through the formation of an intermediate phase, a Weyl semimetal, that leads to modification of surface state dispersions. In the topologically trivial phase, the surface states exhibit a Bychkov-Rashba type dispersion. The Weyl semimetal phase exists in a narrow pressure interval of 0.2 GPa. After the Weyl semimetal-TI transition occurs, the surface electronic structure is characterized by gapless states with linear dispersion. The peculiarities of the surface states modification under pressure depend on the band-bending effect. We have also calculated the frequencies of Raman active modes for BiTeI in the proposed high-pressure crystal phases in order to compare them with available experimental data. Unlike BiTeI, in BiTeBr and BiTeCl the topological phase transition does not occur. In BiTeBr, the crystal structure changes with pressure but the phase remains a trivial one. However, the transition appears to be possible if the low-pressure crystal structure is retained. In BiTeCl under pressure, the topological phase does not appear up to 18 GPa due to a relatively large band gap width in this compound.

  8. Crystal structural studies of destripeptide (B28-B30) insulin

    Institute of Scientific and Technical Information of China (English)

    叶军; 茅毓新; 桂璐璐; 常文瑞; 梁栋材

    2000-01-01

    Single crystals of destripeptide (B28-B30) insulin (DTRI) in three forms were obtained by hanging-drop vapor diffusion method. Form 1 belongs to P21 space group with cell parameters a-4.77 nm, b=6.19 nm, c=6.12 nm, β=110.3°. Form 2 belongs to P4122 or P4322 space group with cell parameters a= 6.45 nm, c=12.07 nm. Form 3 belongs to P212121 space group with cell parameters a=4.98 nm, b=5.16 nm, c=10.06 nm. The structure of form 1 crystal was determined by molecular replacement method and refined at 0.23 nm resolution. The R-factor of the final model is 18.8% with r.m.s. deviations of 0.001 5 nm and 3.3?for the bond lengths and the bond angles, respectively. Studies on the crystal structure show that the removal of B28 Pro has brought DTRI structural changes which made it dissociate more easily than native insulin although DTRI can still form a hexamer.

  9. Crystal structure of lead(II) tartrate: a redetermination.

    Science.gov (United States)

    Weil, Matthias

    2015-01-01

    Single crystals of poly[μ4-tartrato-κ(6) O (1),O (3):O (1'):O (2),O (4):O (4')-lead], [Pb(C4H4O6)] n , were grown in a gel medium. In comparison with the previous structure determination of this compound from laboratory powder X-ray diffraction data [De Ridder et al. (2002 ▶). Acta Cryst. C58, m596-m598], the redetermination on the basis of single-crystal data reveals the absolute structure, all atoms with anisotropic displacement parameters and a much higher accuracy in terms of bond lengths and angles. It could be shown that a different space group or incorporation of water as reported for similarly gel-grown lead tartrate crystals is incorrect. In the structure, each Pb(2+) cation is bonded to eight O atoms of five tartrate anions, while each tartrate anion links four Pb(2+) cations. The resulting three-dimensional framework is stabilized by O-H⋯O hydrogen bonds between the OH groups of one tartrate anion and the carboxyl-ate O atoms of adjacent anions.

  10. A novel characterization of organic molecular crystal structures for the purpose of crystal engineering.

    Science.gov (United States)

    Thomas, Noel W

    2015-08-01

    A novel analytical approach is proposed for the characterization of organic molecular crystal structures where close packing is an important factor. It requires the identification of a unique reference axis within the crystal, along which three-dimensional space is divided into close-packed blocks (CPB) and junction zones (JZ). The degree of close packing along the reference axis is quantified by a two-dimensional packing function, ϕ2D, of symmetry determined by the space group. Values of ϕ2D reflect the degree of area-filling in planes perpendicular to this axis. The requirement of close packing within CPB allows the planar structures perpendicular to the reference axis to be analysed as tessellations of area-filling molecular-based cells (MBC), which are generally hexagonal. The form of these cells reflects the molecular shape in the cross-section, since their vertices are given by the centres of the voids between molecules. There are two basic types of MBC, Type 1, of glide or pseudo-glide symmetry, and Type 2, which is formed by lattice translations alone and generally requires a short unit-cell axis. MBC at layers of special symmetry are used to characterize the structures in terms of equivalent ellipses with parameters aell, bell and χell. The ratio aell/bell allows the established α, β, γ classification to be integrated into the current framework. The values of parameters aell and bell arising from all the structures considered, polynuclear aromatic hydrocarbons (PAH), substituted anthracenes and anthraquinones (SAA) and 2-benzyl-5-benzylidene (BBCP) are mapped onto a universal curve. The division of three-dimensional space into CPB and JZ is fundamentally useful for crystal engineering, since the structural perturbations brought about by substitution at hydrogen positions located within JZ are minimal. A contribution is also made to ongoing debate concerning the adoption of polar space groups, isomorphism and polymorphism.

  11. Ab initio molecular crystal structures, spectra, and phase diagrams.

    Science.gov (United States)

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  12. Understanding Protein-Protein Interactions Using Local Structural Features

    DEFF Research Database (Denmark)

    Planas-Iglesias, Joan; Bonet, Jaume; García-García, Javier;

    2013-01-01

    Protein-protein interactions (PPIs) play a relevant role among the different functions of a cell. Identifying the PPI network of a given organism (interactome) is useful to shed light on the key molecular mechanisms within a biological system. In this work, we show the role of structural features...... (loops and domains) to comprehend the molecular mechanisms of PPIs. A paradox in protein-protein binding is to explain how the unbound proteins of a binary complex recognize each other among a large population within a cell and how they find their best docking interface in a short timescale. We use...

  13. Fourier transform infrared transmission microspectroscopy of photonic crystal structures.

    Science.gov (United States)

    Kilby, Gregory R; Gaylord, Thomas K

    2009-07-01

    The detailed microscopic characterization of photonic crystal (PC) structures is challenging due to their small sizes. Generally, only the gross macroscopic behavior can be determined. This leaves in question the performance at the basic structure level. The single-incident-angle plane-wave transmittances of one-dimensional photonic crystal (PC) structures are extracted from multiple-incident-angle, focused-beam measurements. In the experimental apparatus, an infrared beam is focused by a reflecting microscope objective to produce an incident beam. This beam can be modeled as multiple, variable-intensity plane waves incident on the PC structure. The transmittance of the structure in response to a multiple-incident-angle composite beam is measured. The composite beam measurement is repeated at various incident angle orientations with respect to the sample normal so that, at each angular orientation, the included set of single-angle plane-wave components is unique. A set of measurements recorded over a range of angular orientations results in an underspecified matrix algebra problem. Regularization techniques can be applied to the problem to extract the single-angle plane-wave response of the structure from the composite measurements. Experimental results show very good agreement between the measured and theoretical single-angle plane-wave transmittances.

  14. Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Preidel, V., E-mail: veit.preidel@helmholtz-berlin.de; Amkreutz, D.; Haschke, J.; Wollgarten, M.; Rech, B.; Becker, C. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Division Renewable Energy, Kekuléstr. 5, 12489 Berlin (Germany)

    2015-06-14

    Liquid phase crystallized Si thin-film solar cells on nanoimprint textured glass substrates exhibiting two characteristic, but distinct different surface structures are presented. The impact of the substrate texture on light absorption, the structural Si material properties, and the resulting solar cell performance is analyzed. A pronounced periodic substrate texture with a vertical feature size of about 1 μm enables excellent light scattering and light trapping. However, it also gives rise to an enhanced Si crystal defect formation deteriorating the solar cell performance. In contrast, a random pattern with a low surface roughness of 45 nm allows for the growth of Si thin films being comparable to Si layers on planar reference substrates. Amorphous Si/crystalline Si heterojunction solar cells fabricated on the low-roughness texture exhibit a maximum open circuit voltage of 616 mV and internal quantum efficiency peak values exceeding 90%, resulting in an efficiency potential of 13.2%. This demonstrates that high quality crystalline Si thin films can be realized on nanoimprint patterned glass substrates by liquid phase crystallization inspiring the implementation of tailor-made nanophotonic light harvesting concepts into future liquid phase crystallized Si thin film solar cells on glass.

  15. Crystal structure of inactive form of Rab3B

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei [Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Huazhong Normal University, Wuhan 430079 (China); Shen, Yang [Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, Ontario, Canada M5G 1L7 (Canada); Jiao, Ronghong [Department of Function Inspection, Hebei Provincial People' s Hospital, Shijiazhuang 050051 (China); Liu, Yanli; Deng, Lingfu [Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Huazhong Normal University, Wuhan 430079 (China); Qi, Chao, E-mail: qichao@mail.ccnu.edu.cn [Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Huazhong Normal University, Wuhan 430079 (China)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer This is the first structural information of human Rab3B. Black-Right-Pointing-Pointer To provides a structural basis for the GDP/GTP switch in controlling the activity of Rab3. Black-Right-Pointing-Pointer The charge distribution of Rab3B indicates its unique roles in vesicular trafficking. -- Abstract: Rab proteins are the largest family of ras-related GTPases in eukaryotic cells. They act as directional molecular switches at membrane trafficking, including vesicle budding, cargo sorting, transport, tethering, and fusion. Here, we generated and crystallized the Rab3B:GDP complex. The structure of the complex was solved to 1.9 A resolution and the structural base comparison with other Rab3 members provides a structural basis for the GDP/GTP switch in controlling the activity of small GTPase. The comparison of charge distribution among the members of Rab3 also indicates their different roles in vesicular trafficking.

  16. Xenoestrogenic gene expression: structural features of active polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Schultz, T Wayne; Sinks, Glendon D

    2002-04-01

    Estrogenicity was assessed using the Saccharomyces cerevisiae-based Lac-Z reporter assay and was reported as the logarithm of the inverse of the 50% molar beta-galactosidase activity (log[EC50(-1)]). In an effort to quantify the relationship between molecular structure of polycyclic aromatic hydrocarbons (PAHs) and estrogenic gene expression, a series of PAHs were evaluated. With noted exceptions, the results of these studies indicate that the initial two-dimensional structural warning for estrogenicity, the superpositioning of a hydroxylated aromatic system on the phenolic A-ring of 17-beta-estradiol, can be extended to the PAHs. This two-dimensional-alignment criterion correctly identified estrogenicity of 22 of the 29 PAHs evaluated. Moreover, the estrogenic potency of these compounds was directly related to the size of the hydrophobic backbone. The seven compounds classified incorrectly by this structural feature were either dihydroxylated naphthalenes or aromatic nitrogen-heterocyclic compounds; all such compounds were false positives. Results with dihydroxylated naphthalenes reveal derivatives that were nonestrogenic when superimposed on the phenolic A-ring of 17-beta-estradiol had the second hydroxyl group in the position of the C-ring or were catechol-like in structure. Structural alerts for nitrogen-heterocyclic compounds must take into account the position of the hydroxyl group and the in-ring nitrogen atom; compounds with the hydroxyl group and nitrogen atom involved with the same ring were observed to be nonactive.

  17. Effect of Crystal Growth Direction on Domain Structure of Mn-Doped (Na,K)NbO3 Crystal

    Science.gov (United States)

    Tsuchida, Kohei; Kakimoto, Ken-ichi; Kagomiya, Isao

    2013-09-01

    Single crystals of (Na0.55K0.45)(Nb0.995Mn0.005)O3 have been grown by a floating zone method in N2 and decompression atmosphere to avoid alkaline metal volatilization on the SrTiO3 material base. The variation of their ferroelectric domain structure and the chemical composition of the grown crystal in the growth direction were evaluated. In the crystal grown in N2 atmosphere, the Na and K are not distributed homogeneously. In addition, the phase transition temperature TC and TO-T showed different values between the grown crystal and raw material. By using laser scanning confocal microscope, the domain structures of the grown crystal revealed random patterns in the initial growth stage and lamellar patterns in the progressing crystal growth. In decompression atmosphere, the TC and TO-T values of the grown crystal were similar to those of the raw material and the domain structures showed a constant domain size. The electrical property of the crystal became stable and the domain structure was easily switched against applied electrical field because the oriented lamellar domain was created during cooling of the crystal.

  18. Iron-Ion Implantation into the Structure of Rock Crystal

    Directory of Open Access Journals (Sweden)

    A.V. Mukhametshin

    2017-03-01

    Full Text Available Iron ions with the energy of 40 keV have been implanted into colorless natural rock crystals to high fluencies of 1.0∙1017 and 1.5∙1017 ion/cm2. These crystals were selected from Svetlinsky deposits of the Southern Urals, which are well-known as minerals with high quality and low content of impurities. A radical change in the color of the crystals after iron-ion implantation and subsequent high-temperature annealing in air has been revealed. The origin of color changes has been studied by using optical methods, as well as Mössbauer and X-ray photoelectron spectroscopy. It has been established that the high-dose and high-energy flow of ions results in the formation of various kinds of structural defects on the surface layer of the matrix, such as electron-hole centers, as well as in the formation at a specific depth of the irradiated matrix of the ultrafine iron-containing phases with a structure, which is non-coherent to the structure of the original matrix. The subsequent high-temperature annealing of the implanted quartz has changed the color of the samples to orange-yellow. This color is similar to the color of natural citrine. The orange color richness of the heat-treated samples grew with increasing amounts of embedded iron impurity in the crystal. The nature of orange-yellow coloration of the implanted and annealed quartz plates can be explained by the formation of ultrafine hematite nanoparticles located in a layer at a depth of ~15 nm. The possibility of refining the color of minerals by ion-beam exposure has been discussed.

  19. Crystal Structure of an Ammonia-Permeable Aquaporin

    DEFF Research Database (Denmark)

    Kirscht, Andreas; Kaptan, Shreyas S; Bienert, Gerd Patrick;

    2016-01-01

    the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals...... an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity...

  20. Unified approach for determining tetragonal tungsten bronze crystal structures.

    Science.gov (United States)

    Smirnov, M; Saint-Grégoire, P

    2014-05-01

    Tetragonal tungsten bronze (TTB) oxides are one of the most important classes of ferroelectrics. Many of these framework structures undergo ferroelastic transformations related to octahedron tilting deformations. Such tilting deformations are closely related to the rigid unit modes (RUMs). This paper discusses the whole set of RUMs in an ideal TTB lattice and possible crystal structures which can emerge owing to the condensation of some of them. Analysis of available experimental data for the TTB-like niobates lends credence to the obtained theoretical predictions.

  1. Crystal structure of 3-bromo-2-hydroxybenzoic acid

    Directory of Open Access Journals (Sweden)

    Gerhard Laus

    2015-05-01

    Full Text Available Mutual carboxyl–carboxyl O—H...O hydrogen bonds link the molecules of the title compound, C7H5BrO3, into centrosymmetric dimers which display a central R22(8 ring motif. In addition, there is an intramolecular hydroxyl–carboxyl O—H...O interaction present. A comparison with the crystal structures of 59 other substituted derivatives of salicylic acid shows that both the centrosymmetric carboxyl–carboxyl O—H...O dimer and the stacking mode of molecules along the short a axis observed in the title structure are frequent packing motifs in this set.

  2. Fusion proteins as alternate crystallization paths to difficult structure problems

    Science.gov (United States)

    Carter, Daniel C.; Rueker, Florian; Ho, Joseph X.; Lim, Kap; Keeling, Kim; Gilliland, Gary; Ji, Xinhua

    1994-01-01

    The three-dimensional structure of a peptide fusion product with glutathione transferase from Schistosoma japonicum (SjGST) has been solved by crystallographic methods to 2.5 A resolution. Peptides or proteins can be fused to SjGST and expressed in a plasmid for rapid synthesis in Escherichia coli. Fusion proteins created by this commercial method can be purified rapidly by chromatography on immobilized glutathione. The potential utility of using SjGST fusion proteins as alternate paths to the crystallization and structure determination of proteins is demonstrated.

  3. Crystal structure of seleno-l-cystine dihydrochloride

    OpenAIRE

    Carl Henrik Görbitz; Vladimir Levchenko; Jevgenijs Semjonovs; Mohamed Yusuf Sharif

    2015-01-01

    Numerous crystal structures are available for the dimeric amino acid cystine. In proteins it is formed by oxidation of the –SH thiol groups of two closely spaced cysteine residues, resulting in the formation of a familiar disulfide bridge. The title compound [systematic name: (R,R)-1,1′-dicarboxy-2,2′-(diselanediyl)diethanaminium dichloride], C6H14N2O4Se22+·2Cl−, is the first example of a small molecule structure of the biologically important analogue with a —CH2—Se—Se—CH2— bridging unit. Bon...

  4. Band structures in the nematic elastomers phononic crystals

    Science.gov (United States)

    Yang, Shuai; Liu, Ying; Liang, Tianshu

    2017-02-01

    As one kind of new intelligent materials, nematic elastomers (NEs) represent an exciting physical system that combines the local orientational symmetry breaking and the entropic rubber elasticity, producing a number of unique physical phenomena. In this paper, the potential application of NEs in the band tuning is explored. The band structures in two kinds of NE phononic crystals (PCs) are investigated. Through changing NE intrinsic parameters, the influence of the porosity, director rotation and relaxation on the band structures in NE PCs are analyzed. This work is a meaningful try for application of NEs in acoustic field and proposes a new intelligent strategy in band turning.

  5. Multi-modal image registration using structural features.

    Science.gov (United States)

    Kasiri, Keyvan; Clausi, David A; Fieguth, Paul

    2014-01-01

    Multi-modal image registration has been a challenging task in medical images because of the complex intensity relationship between images to be aligned. Registration methods often rely on the statistical intensity relationship between the images which suffers from problems such as statistical insufficiency. The proposed registration method works based on extracting structural features by utilizing the complex phase and gradient-based information. By employing structural relationships between different modalities instead of complex similarity measures, the multi-modal registration problem is converted into a mono-modal one. Therefore, conventional mono-modal similarity measures can be utilized to evaluate the registration results. This new registration paradigm has been tested on magnetic resonance (MR) brain images of different modes. The method has been evaluated based on target registration error (TRE) to determine alignment accuracy. Quantitative results demonstrate that the proposed method is capable of achieving comparable registration accuracy compared to the conventional mutual information.

  6. Structures of coxsackievirus, rhinovirus, and poliovirus polymerase elongation complexes solved by engineering RNA mediated crystal contacts.

    Science.gov (United States)

    Gong, Peng; Kortus, Matthew G; Nix, Jay C; Davis, Ralph E; Peersen, Olve B

    2013-01-01

    RNA-dependent RNA polymerases play a vital role in the growth of RNA viruses where they are responsible for genome replication, but do so with rather low fidelity that allows for the rapid adaptation to different host cell environments. These polymerases are also a target for antiviral drug development. However, both drug discovery efforts and our understanding of fidelity determinants have been hampered by a lack of detailed structural information about functional polymerase-RNA complexes and the structural changes that take place during the elongation cycle. Many of the molecular details associated with nucleotide selection and catalysis were revealed in our recent structure of the poliovirus polymerase-RNA complex solved by first purifying and then crystallizing stalled elongation complexes. In the work presented here we extend that basic methodology to determine nine new structures of poliovirus, coxsackievirus, and rhinovirus elongation complexes at 2.2-2.9 Å resolution. The structures highlight conserved features of picornaviral polymerases and the interactions they make with the template and product RNA strands, including a tight grip on eight basepairs of the nascent duplex, a fully pre-positioned templating nucleotide, and a conserved binding pocket for the +2 position template strand base. At the active site we see a pre-bound magnesium ion and there is conservation of a non-standard backbone conformation of the template strand in an interaction that may aid in triggering RNA translocation via contact with the conserved polymerase motif B. Moreover, by engineering plasticity into RNA-RNA contacts, we obtain crystal forms that are capable of multiple rounds of in-crystal catalysis and RNA translocation. Together, the data demonstrate that engineering flexible RNA contacts to promote crystal lattice formation is a versatile platform that can be used to solve the structures of viral RdRP elongation complexes and their catalytic cycle intermediates.

  7. Structures of coxsackievirus, rhinovirus, and poliovirus polymerase elongation complexes solved by engineering RNA mediated crystal contacts.

    Directory of Open Access Journals (Sweden)

    Peng Gong

    Full Text Available RNA-dependent RNA polymerases play a vital role in the growth of RNA viruses where they are responsible for genome replication, but do so with rather low fidelity that allows for the rapid adaptation to different host cell environments. These polymerases are also a target for antiviral drug development. However, both drug discovery efforts and our understanding of fidelity determinants have been hampered by a lack of detailed structural information about functional polymerase-RNA complexes and the structural changes that take place during the elongation cycle. Many of the molecular details associated with nucleotide selection and catalysis were revealed in our recent structure of the poliovirus polymerase-RNA complex solved by first purifying and then crystallizing stalled elongation complexes. In the work presented here we extend that basic methodology to determine nine new structures of poliovirus, coxsackievirus, and rhinovirus elongation complexes at 2.2-2.9 Å resolution. The structures highlight conserved features of picornaviral polymerases and the interactions they make with the template and product RNA strands, including a tight grip on eight basepairs of the nascent duplex, a fully pre-positioned templating nucleotide, and a conserved binding pocket for the +2 position template strand base. At the active site we see a pre-bound magnesium ion and there is conservation of a non-standard backbone conformation of the template strand in an interaction that may aid in triggering RNA translocation via contact with the conserved polymerase motif B. Moreover, by engineering plasticity into RNA-RNA contacts, we obtain crystal forms that are capable of multiple rounds of in-crystal catalysis and RNA translocation. Together, the data demonstrate that engineering flexible RNA contacts to promote crystal lattice formation is a versatile platform that can be used to solve the structures of viral RdRP elongation complexes and their catalytic cycle

  8. The Cambridge Structural Database: a quarter of a million crystal structures and rising.

    Science.gov (United States)

    Allen, Frank H

    2002-06-01

    The Cambridge Structural Database (CSD) now contains data for more than a quarter of a million small-molecule crystal structures. The information content of the CSD, together with methods for data acquisition, processing and validation, are summarized, with particular emphasis on the chemical information added by CSD editors. Nearly 80% of new structural data arrives electronically, mostly in CIF format, and the CCDC acts as the official crystal structure data depository for 51 major journals. The CCDC now maintains both a CIF archive (more than 73,000 CIFs dating from 1996), as well as the distributed binary CSD archive; the availability of data in both archives is discussed. A statistical survey of the CSD is also presented and projections concerning future accession rates indicate that the CSD will contain at least 500,000 crystal structures by the year 2010.

  9. Crystal structure and crystal chemistry of melanovanadite, a natural vanadium bronze.

    Science.gov (United States)

    Konnert, J.A.; Evans, H.T.

    1987-01-01

    The crystal structure of melanovanadite from Minas Ragra, Peru, has been determined in space group P1. The triclinic unit cell (non-standard) has a 6.360(2), b 18.090(9), c 6.276(2) A, alpha 110.18(4)o, beta 101.62(3)o, gamma 82.86(4)o. A subcell with b' = b/2 was found by crystal-structure analysis to contain CaV4O10.5H2O. The subcell has a layer structure in which the vanadate sheet consists of corner-shared tetrahedral VO4 and double square-pyramidal V2O8 groups, similar to that previously found in synthetic CsV2O5. Refinement of the full structure (R = 0.056) showed that the Ca atom, which half-occupies a general position in the subcell, is 90% ordered at one of these sites in the whole unit cell. Bond length-bond strength estimates indicate that the tetrahedra contain V5+, and the square pyramids, V4+.-J.A.Z.

  10. Incorporating secondary structural features into sequence information for predicting protein structural class.

    Science.gov (United States)

    Liao, Bo; Peng, Ting; Chen, Haowen; Lin, Yaping

    2013-10-01

    Knowledge of structural classes is applied in numerous important predictive tasks that address structural and functional features of proteins, although the prediction accuracy of the protein structural classes is not high. In this study, 45 different features were rationally designed to model the differences between protein structural classes, among which, 30 of them reflect the combined protein sequence information. In terms of correlation function, the protein sequence can be converted to a digital signal sequence, from which we can generate 20 discrete Fourier spectrum numbers. According to the segments of amino with different characteristics occurring in protein sequences, the frequencies of the 10 kinds of segments of amino acid (motifs) in protein are calculated. Other features include the secondary structural information :10 features were proposed to model the strong adjacent correlations in the secondary structural elements and capture the long-range spatial interactions between secondary structures, other 5 features were designed to differentiate α/β from α+β classes , which is a major problem of the existing algorithm. The methods were proposed based on a large set of low-identity sequences for which secondary structure is predicted from their sequence (based on PSI-PRED). By means of this method, the overall prediction accuracy of four benchmark datasets were all improved. Especially for the dataset FC699, 25PDB and D1189 which are 1.26%, 1% and 0.85% higher than the best previous method respectively.

  11. Crystal structure of the 80S yeast ribosome.

    Science.gov (United States)

    Jenner, Lasse; Melnikov, Sergey; Garreau de Loubresse, Nicolas; Ben-Shem, Adam; Iskakova, Madina; Urzhumtsev, Alexandre; Meskauskas, Arturas; Dinman, Jonathan; Yusupova, Gulnara; Yusupov, Marat

    2012-12-01

    The first X-ray structure of the eukaryotic ribosome at 3.0Å resolution was determined using ribosomes isolated and crystallized from the yeast Saccharomyces cerevisiae (Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M: The structure of the eukaryotic ribosome at 3.0 A resolution. Science 2011, 334:1524-1529). This accomplishment was possible due to progress in yeast ribosome biochemistry as well as recent advances in crystallographic methods developed for structure determination of prokaryotic ribosomes isolated from Thermus thermophilus and Escherichia coli. In this review we will focus on the development of isolation procedures that allowed structure determination (both cryo-EM and X-ray crystallography) to be successful for the yeast S. cerevisiae. Additionally we will introduce a new nomenclature that facilitates comparison of ribosomes from different species and kingdoms of life. Finally we will discuss the impact of the yeast 80S ribosome crystal structure on perspectives for future investigations.

  12. From Protein Structure to Function via Single Crystal Optical Spectroscopy

    Directory of Open Access Journals (Sweden)

    Luca eRonda

    2015-04-01

    Full Text Available The more than 100.000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic artifacts, including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density map, thus limiting the relevance of structure determinations. Moreover, for most of these structures no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in the inference for protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5’-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms.

  13. The crystal structure of human GDP-L-fucose synthase.

    Science.gov (United States)

    Zhou, Huan; Sun, Lihua; Li, Jian; Xu, Chunyan; Yu, Feng; Liu, Yahui; Ji, Chaoneng; He, Jianhua

    2013-09-01

    Human GDP-l-fucose synthase, also known as FX protein, synthesizes GDP-l-fucose from its substrate GDP-4-keto-6-deoxy-d-mannose. The reaction involves epimerization at both C-3 and C-5 followed by an NADPH-dependent reduction of the carbonyl at C-4. In this paper, the first crystal structure of human FX protein was determined at 2.37 Å resolution. The asymmetric unit of the crystal structure contains four molecules which form two homodimers. Each molecule consists of two domains, a Rossmann-fold NADPH-binding motif and a carboxyl terminal domain. Compared with the Escherichia coli GDP-l-fucose synthase, the overall structures of these two enzymes have four major differences. There are four loops in the structure of human FX protein corresponding to two α-helices and two β-sheets in that of the E. coli enzyme. Besides, there are seven different amino acid residues binding with NAPDH comparing human FX protein with that from E. coli. The structure of human FX reveals the key catalytic residues and could be useful for the design of drugs for the treatment of inflammation, auto-immune diseases, and possibly certain types of cancer.

  14. Natural Cr3+-rich ettringite: occurrence, properties, and crystal structure

    Science.gov (United States)

    Seryotkin, Yurii V.; Sokol, Ella V.; Kokh, Svetlana N.; Murashko, Mikhail N.

    2017-08-01

    Cr3+-rich ettringite with Cr3+→Al substitution and Cr/(Cr + Al) ratios up to 0.40-0.50 was found in mineral assemblages of the Ma'aleh Adumim area of Mottled Zone (Judean Desert). The Cr3+-rich compositions were the latest in the thaumasite → ettringite-thaumasite solid solution → ettringite → ettringite-bentorite solid solution series. The mineral-forming solution was enriched in Cr3+ and had a pH buffered by afwillite at 11-12. Chromium was inherited from larnite rocks produced by high-temperature combustion metamorphic alteration of bioproductive calcareous sediments. The Cr/(Cr + Al) ratios are within 0.10-0.15 in most of the analysed crystals. This degree of substitution imparts pink colouration to the crystals, but does not affect their habit (a combination of monohedra and a prism). The habit changes to pyramid faces in coarse and later Cr3+-bearing crystals as Cr/(Cr + Al) ratios increase abruptly to 0.40-0.50. Single-crystal XRD analysis of one Cr-free and two Cr3+-rich samples and their structure determination and refinement indicate that the Cr-rich crystals (with Cr/(Cr + Al) to 0.3) preserve the symmetry and metrics of ettringite. The Ca-O bonding network undergoes differentiation with increase of Cr3+ concentration at octahedral M sites. The compression of Ca2 and expansion of Ca1 polyhedra sub-networks correlates with the degree of Cr3+→Al substitution.

  15. Crystal structures of three (trichloromethyl)(carbamoyl)disulfanes.

    Science.gov (United States)

    Goldenberg, Barbara L; Young, Victor G; Barany, George

    2015-10-01

    The present paper reports crystallographic studies on three related compounds that were of inter-est as precursors for synthetic and mechanistic work in organosulfur chemistry, as well as to model nitro-gen-protecting groups: (N-methyl-carbamo-yl)(tri-chloro-meth-yl)disulfane, C3H4Cl3NOS2, (1), (N-benzyl-carbamo-yl)(tri-chloro-meth-yl)disulfane, C9H8Cl3NOS2, (2), and (N-methyl-N-phenyl-carbamo-yl)(tri-chloro-meth-yl)disulfane, C9H8Cl3NOS2, (3). Their mol-ecular structures, with similar bond lengths and angles for the CCl3SS(C=O)N moieties, are confirmed. Compounds (1) and (3) both crystallized with two independent mol-ecules in the asymmetric unit. Classical hydrogen bonding, as well as chlorine-dense regions, are evident in the crystal packing for (1) and (2). In the crystal of (1), mol-ecules are linked via N-H⋯O hydrogen bonds forming chains along [110], which are linked by short Cl⋯Cl and S⋯O contacts forming sheets parallel to (001). In the crystal of (2), mol-ecules are linked via N-H⋯O hydrogen bonds forming chains along [001], which in turn are linked by pairs of short O⋯Cl contacts forming ribbons along the c-axis direction. In the crystal of (3), there are no classical hydrogen bonds present and the chlorine-dense regions observed in (1) and (2) are lacking.

  16. Relation between photochromic properties and molecular structures in salicylideneaniline crystals.

    Science.gov (United States)

    Johmoto, Kohei; Ishida, Takashi; Sekine, Akiko; Uekusa, Hidehiro; Ohashi, Yuji

    2012-06-01

    The crystal structures of the salicylideneaniline derivatives N-salicylidene-4-tert-butyl-aniline (1), N-3,5-di-tert-butyl-salicylidene-3-methoxyaniline (2), N-3,5-di-tert-butyl-salicylidene-3-bromoaniline (3), N-3,5-di-tert-butyl-salicylidene-3-chloroaniline (4), N-3,5-di-tert-butyl-salicylidene-4-bromoaniline (5), N-3,5-di-tert-butyl-salicylidene-aniline (6), N-3,5-di-tert-butyl-salicylidene-4-carboxyaniline (7) and N-salicylidene-2-chloroaniline (8) were analyzed by X-ray diffraction analysis at ambient temperature to investigate the relationship between their photochromic properties and molecular structures. A clear correlation between photochromism and the dihedral angle of the two benzene rings in the salicylideneaniline derivatives was observed. Crystals with dihedral angles less than 20° were non-photochromic, whereas those with dihedral angles greater than 30° were photochromic. Crystals with dihedral angles between 20 and 30° could be either photochromic or non-photochromic. Inhibition of the pedal motion by intra- or intermolecular steric hindrance, however, can result in non-photochromic behaviour even if the dihedral angle is larger than 30°.

  17. Synthesis and Crystal Structure of a New Adamantane Amide Derivative

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ying-Hua; LV Qi-Chun; ZHANG Qian; CHENG Yong; SHENG En-Hong

    2012-01-01

    A novel adamantane acyl amide derivative containing two phthalimido pendant groups(C31H31N3O5) has been synthesized,and its structure was characterized by elemental analysis,IR,1 H NMR spectra,and single-crystal X-ray diffraction.The crystal belongs to triclinic,space group P1 with a=7.3158(10),b=13.2405(18),c=14.378(2),α=72.419(2),β=84.496(2),γ=81.799(2)o,V=1312.0(3)3,Z=2,Dc=1.330 g/cm 3,μ=0.09 mm-1,Mr=525.59,F(000)=556,S=1.001,R=0.0523 and wR=0.0707 for 5901 unique reflections with 2363 observed ones(I〉2σ(I)).π-π stacking interactions(offset face-to-face) exist between the two rings of phthalimides from the neighboring molecules in the title crystal structure.The intermolecular dihedral angle between the two rings of neighboring phthalic amides is 6.26° and the distance is 4.008.

  18. Crystal structure of the Fe-member of usovite

    Directory of Open Access Journals (Sweden)

    Matthias Weil

    2015-06-01

    Full Text Available Crystals of the title compound, with the idealized composition Ba2CaFeAl2F14, dibarium calcium iron(II dialuminium tetradecafluoride, were obtained serendipitously by reacting a mixture of the binary fluorides BaF2, CaF2 and AlF3 in a leaky steel reactor. The compound crystallizes in the usovite structure type (Ba2CaMgAl2F14, with Fe2+ cations replacing the Mg2+ cations. The principal building units are distorted [CaF8] square-antiprisms (point group symmetry 2, [FeF6] octahedra (point group symmetry -1 and [AlF6] octahedra that are condensed into undulating 2∞[CaFeAl2F14]4− layers parallel (100. The Ba2+ cations separate the layers and exhibit a coordination number of 12. Two crystal structure models with a different treatment of the disordered Fe site [mixed Fe/Ca occupation, model (I, versus underoccupation of Fe, model (II], are discussed, leading to different refined formulae Ba2Ca1.310 (15Fe0.690 (15Al2F14 [model (I] and Ba2CaFe0.90 (1Al2F14 [model (II].

  19. Effect of crystal packing on the structures of polymeric metallocenes.

    Science.gov (United States)

    Dinnebier, R E; van Smaalen, Sander; Olbrich, F; Carlson, S

    2005-02-21

    The pressure dependencies of the crystal structures of the polymeric metallocenes lithium cyclopentadienide (LiCp) and potassium cyclopentadienide (KCp) have been determined by synchrotron X-ray powder diffraction. The decrease of the volume of LiCp by 34% up to a pressure of p = 12.2 GPa and of KCp by 23% at p = 5.3 GPa as well as the bulk moduli of K = 7.7 GPa for LiCp and 4.9 GPa for KCp indicate a high compressibility for these compounds. The crystal structures of KCp have been determined up to p = 3.9 GPa. An increase of the bend angle is found from 45 degrees at p = 0 GPa up to 51 degrees at p = 3.9 GPa. This variation is completely explained by a model invoking attractive K+ Cp- interaction and repulsive nonbonded carbon-carbon interactions. It is proposed that the bend angle in the polymeric alkali metal metallocenes is the result of the optimization of the crystal packing.

  20. PredPPCrys: accurate prediction of sequence cloning, protein production, purification and crystallization propensity from protein sequences using multi-step heterogeneous feature fusion and selection.

    Directory of Open Access Journals (Sweden)

    Huilin Wang

    Full Text Available X-ray crystallography is the primary approach to solve the three-dimensional structure of a protein. However, a major bottleneck of this method is the failure of multi-step experimental procedures to yield diffraction-quality crystals, including sequence cloning, protein material production, purification, crystallization and ultimately, structural determination. Accordingly, prediction of the propensity of a protein to successfully undergo these experimental procedures based on the protein sequence may help narrow down laborious experimental efforts and facilitate target selection. A number of bioinformatics methods based on protein sequence information have been developed for this purpose. However, our knowledge on the important determinants of propensity for a protein sequence to produce high diffraction-quality crystals remains largely incomplete. In practice, most of the existing methods display poorer performance when evaluated on larger and updated datasets. To address this problem, we constructed an up-to-date dataset as the benchmark, and subsequently developed a new approach termed 'PredPPCrys' using the support vector machine (SVM. Using a comprehensive set of multifaceted sequence-derived features in combination with a novel multi-step feature selection strategy, we identified and characterized the relative importance and contribution of each feature type to the prediction performance of five individual experimental steps required for successful crystallization. The resulting optimal candidate features were used as inputs to build the first-level SVM predictor (PredPPCrys I. Next, prediction outputs of PredPPCrys I were used as the input to build second-level SVM classifiers (PredPPCrys II, which led to significantly enhanced prediction performance. Benchmarking experiments indicated that our PredPPCrys method outperforms most existing procedures on both up-to-date and previous datasets. In addition, the predicted crystallization

  1. Crystal structure of pentapeptide-independent chemotaxis receptor methyltransferase (CheR) reveals idiosyncratic structural determinants for receptor recognition.

    Science.gov (United States)

    Batra, Monu; Sharma, Rajesh; Malik, Anjali; Dhindwal, Sonali; Kumar, Pravindra; Tomar, Shailly

    2016-12-01

    Chemotactic methyltransferase, CheR catalyse methylation of specific glutamate residues in the cytoplasmic domain of methyl-accepting chemotactic protein receptors (MCPRs). The methylation of MCPRs is essential for the chemical sensing and chemotactic bacterial mobility towards favorable chemicals or away from unfavorable ones. In this study, crystal structure of B. subtilis CheR (BsCheR) in complex with S-adenosyl-l-homocysteine (SAH) has been determined to 1.8Å resolution. This is the first report of crystal structure belonging to the pentapeptide-independent CheR (PICheR) class. Till date, only one crystal structure of CheR from S. typhimurium (StCheR) belonging to pentapeptide-dependent CheR (PDCheR) class is available. Structural analysis of BsCheR reveals a helix-X-helix motif (HXH) with Asp53 as the linker residue in the N-terminal domain. The key structural features of the PDCheR β-subdomain involved in the formation of a tight complex with the pentapeptide binding motif in MCPRs were found to be absent in the structure of BsCheR. Additionally, isothermal titration calorimetry (ITC) experiments were performed to investigate S-adenosyl-(l)-methionine (SAM) binding affinity and KD was determined to be 0.32mM. The structure of BsCheR reveals that mostly residues of the large C-terminal domain contribute to SAH binding, with contributions of few residues from the linker region and the N-terminal domain. Structural investigations and sequence analysis carried out in this study provide critical insights into the distinct receptor recognition mechanism of the PDCheR and PICheR methyltransferase classes.

  2. Crystal Structure of Ethanolamine 5-Nitrosalicylic Acid Organic Adduct

    Institute of Scientific and Technical Information of China (English)

    金轶; 车云霞; 魏荣敏; 郑吉民

    2004-01-01

    The title adduct (C18H24N4O12, Mr = 488.41) crystallizes in monoclinic, space group P21/c with a = 4.0514(19), b = 25.193(11), c = 10.751(5)(A), β = 95.070(8)o, V = 1093.0(9)(A)3, Z = 4, Dc = 1.484 g/cm3, F(000) = 512, μ(MoKα) = 1.26 cm-1, T = 293 K, the final R = 0.0593 and wR = 0.0862 for 956 observed reflections with I > 2(I). The compound is a 1:1 adduct of ethanolamine and 5-nitrosalicylic acid. The nitrogen atom of ethanolamine is protonated. In this crystal there exist a number of hydrogen bonds which link the ethanolamine and 5-nitrosalicylic acid molecules to form a three-dimensional infinite network structure.

  3. Synthesis and crystal structure of ethyl benzimidazole-2-yl phosphonate

    Institute of Scientific and Technical Information of China (English)

    HU, Fang-Zhong; WENG, Lin-Hong; YANG, Hua-Zheng; ZOU, Xiao-Mao

    2000-01-01

    When N-cyanoimido- ( O, O-diethyl ) phosphonyl/ S-methyl thiocarbonate (1) was treated with o-phenylenediamine in the presence of Et3N in ethanol, diethyl benzimidazole-2-yl recrys phonate(2) was obtained and hydrolyzed during the recrys tallization in MeOH/H2O, generating ethyl benzimidazole-2-yl phosphonate(3). The crystal structure of compound 3 was determined by X-ray diffraction method. The crystals belong to monoclinic, space rgoup C2/c, a=1.78408(18), b=O. 83725(9), c=1.67401(18) nm, β= 118.997(2)°, v=2. 1870(4) nm3, z=8, Dc=1.374g/cm3, F(000)=944.The final R and wR are 0.0499 and 0.1436, respectively. The mechanism of the above reaction is also discussed.

  4. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE OF BIS-(2-HYDROXYBENZALDEHYDEDIAMINOGUANIZONE

    Directory of Open Access Journals (Sweden)

    Diana Dragancea, Vladimir B. Arion, Sergiu Shova

    2008-12-01

    Full Text Available The new ligand, bis(2-hydroxybenzaldehydediaminoguanizone (1 has been synthesized and characterized by elemental analysis, IR and 1H NMR spectroscopies. The crystal structure of the compound was determined by X-ray diffraction. The ligand C15H15N5O2·C2H5OH crystallizes in the monoclinic space group P21/c with unit cell parameters a = 8.9102(3, b = 10.0357(3, c = 19.7618(6 Å, β = 98.385(2°, Z = 4, V = 1748.21(9 Å3, R1 = 0.040. The amino form of the ligand adopts a planar conformation stabilized by two intramolecular hydrogen bonds of the type O–H···N, in which the H atoms of the central amino group are directed to the lone-pair regions of the azomethine nitrogen atoms.

  5. Crystal structure and magnetism of UOsAl

    Science.gov (United States)

    Andreev, A. V.; Daniš, S.; Šebek, J.; Henriques, M. S.; Vejpravová, J.; Gorbunov, D. I.; Havela, L.

    2017-04-01

    Crystal structure, magnetization, and specific heat were studied on single crystal of uranium intermetallic compound UOsAl. It is a hexagonal Laves phase of MgZn2 type, space group P63/mmc, with lattice parameters a=536.4 pm, c=845.3 pm. Shortest inter-uranium distance 313 pm (along the c-axis) is considerably smaller than the Hill limit (340 pm). The compound is a weakly temperature-dependent paramagnet with magnetic susceptibility of ≈1.5*10-8 m3 mol-1 (at T=2 K), which is slightly higher with magnetic field along the a-axis compared to the c-axis. The Sommerfeld coefficient of electronic specific heat has moderate value of γ=36 mJ mol-1 K-2.

  6. Morphology, crystal structure and hydration of calcined and modified anhydrite

    Institute of Scientific and Technical Information of China (English)

    Xiao-qing Niu; Ji-chun Chen

    2014-01-01

    The effects of calcination and modification on the morphology (shapes and textures) and crystal structure of anhydrite powders were studied. The results show that, calcination at 100°C causes anhydrite to disintegrate into smaller crystals, accompanied by a slight in-crease in d-spacing. Without calcination and modification, the solidification time and curing time of anhydrite are 15 and 77 h, respectively. After the treatment, however, the solidification time and curing time are shortened significantly to 9.5 and 14 min, respectively. The com-pressive and flexural strengths of hydration products made from the treated anhydrite reach 10.2 and 2.0 MPa, respectively. The much shorter solidification and curing time make it possible to use anhydrite as a building and construction material.

  7. Crystal structures and conformers of CyMe4-BTBP

    Directory of Open Access Journals (Sweden)

    Lyczko Krzysztof

    2015-12-01

    Full Text Available The crystal structure of new conformation of the CyMe4-BTBP ligand (ttc has been presented. The ttt conformer of this compound in a form of THF solvate has been also crystallized. The geometries of six possible conformations (ttt, ttc, tct, tcc, ctc and ccc of the CyMe4-BTBP ligand have been modeled in the gas phase and in solutions (MeOH and H2O by DFT calculations using B3LYP/6-31G(d,p method. According to the calculations, in the three different media the conformers with trans orientation of the N atoms in the bipyridyl moiety are the most stable.

  8. Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Wang, Xiaoqiang; He, Xianzhi; Lin, Jianqiao; Shao, Hui; Chang, Zhenzhan; Dixon, Richard A

    2006-05-19

    Isoflavonoids play important roles in plant defense and exhibit a range of mammalian health-promoting activities. Isoflavone reductase (IFR) specifically recognizes isoflavones and catalyzes a stereospecific NADPH-dependent reduction to (3R)-isoflavanone. The crystal structure of Medicago sativa IFR with deletion of residues 39-47 has been determined at 1.6A resolution. Structural analysis, molecular modeling and docking, and comparison with the structures of other NADPH-dependent enzymes, defined the putative binding sites for co-factor and substrate and potential key residues for enzyme activity and substrate specificity. Further mutagenesis has confirmed the role of Lys144 as a catalytic residue. This study provides a structural basis for understanding the enzymatic mechanism and substrate specificity of IFRs as well as the functions of IFR-like proteins.

  9. Temperature evolution of the crystal structure of Bi1 - xPrxFeO3 solid solutions

    Science.gov (United States)

    Karpinsky, D. V.; Troyanchuk, I. O.; Sikolenko, V. V.; Efimov, V.; Efimova, E.; Silibin, M. V.; Chobot, G. M.; Willinger, E.

    2014-11-01

    The crystal structure of solid solutions in the Bi1 - xPrxFeO3 system near the structural transition between the rhombohedral and orthorhombic phases (0.125 ≤ x ≤ 0.15) has been studied. The structural phase transitions induced by changes in the concentration of praseodymium ions and in the temperature have been investigated using X-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. It has been established that the sequence of phase transformations in the crystal structure of Bi1 - xPrxFeO3 solid solutions with variations in the temperature differs significantly from the evolution of the crystal structure of the BiFeO3 compounds with the substitution of other rare-earth elements for bismuth ions. The regions of the existence of the single-phase structural state and regions of the coexistence of the structural phases have been determined in the investigation of the crystal structure of the Bi1 - xPrxFeO3 solid solutions. A three-phase structural state has been revealed for the solid solution with x = 0.125 at temperatures near 400°C. The specific features of the structural phase transitions of the compounds in the vicinity of the morphotropic phase boundary have been determined by analyzing the obtained results. It has been found that the solid solutions based on bismuth ferrite demonstrate a significant improvement in their physical properties.

  10. Synthesis, crystal growth, solubility, structural, optical, dielectric and microhardness studies of Benzotriazole-4-hydroxybenzoic acid single crystals

    Science.gov (United States)

    Silambarasan, A.; Krishna Kumar, M.; Thirunavukkarasu, A.; Mohan Kumar, R.; Umarani, P. R.

    2015-06-01

    Organic Benzotriazole-4-hydroxybenzoic acid (BHBA), a novel second-order nonlinear optical single crystal was grown by solution growth method. The solubility and nucleation studies were performed for BHBA crystal at different temperatures 30, 35, 40 45 and 50 °C. Single crystal X-ray diffraction study reveals that the BHBA belongs to Pna21 space group of orthorhombic crystal system. The crystal perfection of BHBA was examined from powder and high resolution X-ray diffraction analysis. UV-visible and photoluminescence spectra were recorded to study its transmittance and excitation, emission behaviors respectively. Kurtz powder second harmonic generation test reveals that, the frequency conversion efficiency of BHBA is 3.7 times higher than that of potassium dihydrogen phosphate (KDP) crystal. The dielectric constant and dielectric loss values were estimated for BHBA crystal at various temperatures and frequencies. The mechanical property of BHBA crystal was studied on (110), (010) and (012) planes by using Vicker's microhardness test. The chemical etching study was performed on (012) facet of BHBA crystal to analyze its growth feature.

  11. Crystal Structure of the Japanese Encephalitis Virus Envelope Protein

    Energy Technology Data Exchange (ETDEWEB)

    Luca, Vincent C.; AbiMansour, Jad; Nelson, Christopher A.; Fremont, Daved H. (WU-MED)

    2012-03-13

    Japanese encephalitis virus (JEV) is the leading global cause of viral encephalitis. The JEV envelope protein (E) facilitates cellular attachment and membrane fusion and is the primary target of neutralizing antibodies. We have determined the 2.1-{angstrom} resolution crystal structure of the JEV E ectodomain refolded from bacterial inclusion bodies. The E protein possesses the three domains characteristic of flavivirus envelopes and epitope mapping of neutralizing antibodies onto the structure reveals determinants that correspond to the domain I lateral ridge, fusion loop, domain III lateral ridge, and domain I-II hinge. While monomeric in solution, JEV E assembles as an antiparallel dimer in the crystal lattice organized in a highly similar fashion as seen in cryo-electron microscopy models of mature flavivirus virions. The dimer interface, however, is remarkably small and lacks many of the domain II contacts observed in other flavivirus E homodimers. In addition, uniquely conserved histidines within the JEV serocomplex suggest that pH-mediated structural transitions may be aided by lateral interactions outside the dimer interface in the icosahedral virion. Our results suggest that variation in dimer structure and stability may significantly influence the assembly, receptor interaction, and uncoating of virions.

  12. The optical Tamm states in a photonic-crystal Structure based on the cholesteric liquid crystal

    CERN Document Server

    Vetrov, Stepan Ya; Timofeev, Ivan V

    2015-01-01

    We investigate the localized surface modes in a structure consisting of the cholesteric liquid crystal layer, a phase plate, and a metal layer. These modes are analogous to the optical Tamm states. The anisotropy of transmission of light propagating the forward and backward directions is established. It is demonstrated that the transmission spectrum can be controlled by external fields acting on the cholesteric and by varying the plane of polarization of the incident light. [The text is presented both in English (pp 1-10) and in Russian (pp 11-20)

  13. Structure, Hydrodynamics, and Phase Transition of Freely Suspended Liquid Crystals

    Science.gov (United States)

    Clark, Noel A.

    2000-01-01

    Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enable the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable condensed phase fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new liquid crystal physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and

  14. Structural chemistry and number theory amalgamized: crystal structure of Na11Hg52.

    Science.gov (United States)

    Hornfeck, Wolfgang; Hoch, Constantin

    2015-12-01

    The recently elucidated crystal structure of the technologically important amalgam Na11Hg52 is described by means of a method employing some fundamental concept of number theory, namely modular arithmetical (congruence) relations observed between a slightly idealized set of atomic coordinates. In combination with well known ideas from group theory, regarding lattice-sublattice transformations, these allow for a deeper mutual understanding of both and provide the structural chemist with a slightly different kind of spectacles, thus enabling a distinct viw on complex crystal structures in general.

  15. Bismuth zinc vanadate, BiZn2VO6 : new crystal structure type and electronic structure.

    OpenAIRE

    Nunes, Sayonara Eliziario; Wang, Chun-Hai; So, Karwei; Evans, John S. O.; Evans, Ivana Radosavljevic

    2015-01-01

    We report a combined experimental and computational study of the crystal structure and electronic properties of bismuth zinc vanadate, BiZn2VO6, known for its visible light photocatalytic activity. The crystal structure has been solved from laboratory powder X-ray diffraction data using the repeated minimisations from random starting values method. BiZn2VO6 adopts a new structure type, based on the following building blocks: corner- and edge-sharing ZnO4 tetrahedra, ZnO6 octahedra and VO4 tet...

  16. Study of crystal structure at high temperature phase in KIO sub 3 crystal by synchrotron powder X-ray diffraction

    CERN Document Server

    Kasatani, H; Kuroiwa, Y; Yagi, K; Katayama, R; Terauchi, H

    2003-01-01

    The accurate crystal structure of the I-phase in KIO sub 3 crystal has been obtained at 530 K, for the first time, by the MEM/Rietveld analysis from high-energy X-ray powder-diffraction data. The crystal structure of the I-phase is the rhombohedral perovskite structure (space group R3m; Z=1). The MEM charge-density distributions reveal that the shorter I-O bond exhibits a covalent bonding character and others (I-K, K-O and longer I-O bonds) an ionic.

  17. Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry

    DEFF Research Database (Denmark)

    Yu, Yi; Chen, Yaohui; Hu, Hao;

    2015-01-01

    Nanostructures that feature nonreciprocal light trans- mission are highly desirable building blocks for realizing photonic integrated circuits. Here, a simple and ultracompact photonic-crystal structure, where a waveguide is coupled to a single nanocavity, is proposed and experimentally demon- st...... tunability. The nonlinearity of the device relies on ultrafast carrier dynamics, rather than the thermal effects usually considered, allowing the demonstration of nonreciprocal operation at a bit-rate of 10 Gbit s − 1 with a low energy consumption of 4.5 fJ bit − 1...

  18. A porous Cu(II) metal-organic framework: Synthesis, crystal structure and gas adsorption properties

    Science.gov (United States)

    Li, Wu-Wu; Guo, Ying; Zhang, Wei-Hong

    2017-09-01

    Presented here is a new porous Cu(II) metal-organic framework, namely [Cu(tdc)(H2O)]n·n(DMA) (1 H2tdc = thiophene-2,5-dicarboxylic acid, DMA = N,N‧-dimethylacetamide), which was obtained by the self-assembly reaction of CuCl2 and H2tdc under solvothermal conditions. Single crystal X-ray diffraction analysis revealed that compound 1 features a 3D porous framework based on 1D chain structure subunits, and the 1D rhombohedral channels are occupied by the lattice DMA molecules. Gas adsorption studies reveal that this desolvated sample exhibit high uptake capacity for light hydrocarbons.

  19. Revisit of alpha-chitin crystal structure using high resolution X-ray diffraction data.

    Science.gov (United States)

    Sikorski, Pawel; Hori, Ritsuko; Wada, Masahisa

    2009-05-11

    High resolution synchrotron X-ray fiber diffraction data recorded from crab tendon chitin have been used to describe the crystal structure of alpha-chitin. Crystal structures at 100 and 300 K have been solved using restrained crystallographic refinement against diffraction intensities measured from the fiber diffraction patterns. The unit cell contains two polymer chains in a 2(1) helix conformation and in the antiparallel orientation. The best agreement between predicated and observed X-ray diffraction intensities is obtained for a model that includes two distinctive conformations of C6-O6 hydroxymethl group. Those conformations are different from what is proposed in the generally accepted alpha-chitin crystal structure (J. Mol. Biol. 1978, 120, 167-181). Based on refined positions of the O6 atoms, a network of hydrogen bonds involving O6 is proposed. This network of hydrogen bonds can explain the main features of the polarized FTIR spectra of alpha-chitin and sheds some light on the origin of splitting of the amide I band observed on alpha-chitin IR spectra.

  20. Microfabricated structures and devices featuring nanostructured titania thin films

    Science.gov (United States)

    Monkowski, Adam J.

    2007-05-01

    When titanium reacts with hydrogen peroxide at 80°C--100°C, a nanostructured titania (NST) thin film is formed on the titanium surface. This nanostructured film is particularly suited for integration with thin film and bulk microfabrication techniques. The ability to manufacture devices in a batch format is a principal advantage of microfabrication-based production. To reliably produce arrays of micro-patterned NST thin films on the wafer scale, a patterning guideline must be considered. The formation of NST relies on a re-deposition process; adequate ti-peroxo species must be generated and remain at the solid-solution interface. Numerical analysis of the characteristic transient diffusion behavior for various micro-patterns has been compared with experimental data to generate a criterion to guide the design of NST micro-patterns. Wafer scale arrays of NST micro gas-sensors have been fabricated using standard thin film techniques. Sensing elements are 20 mum on a side. High sensitivity to hydrogen is achieved by modification of the sensors with platinum nanoparticles. When exposed to a 10 mT partial pressure of hydrogen at 250°C, the functionalized devices exhibit more than one order of magnitude resistance decrease with a response time of approximately 7 sec. Titanium microstructures formed using the titanium ICP deep etch (TIDE) process have been integrated with NST films to produce an ordered nanostructure-microstructure composite (3D-NST). The process developed allows for the incorporation of a planar top surface, advantageous for bonding and sealing applications, in which the nanostructured thin film is formed only on feature sidewalls and floors. When titanium microstructures are spaced less than 1 mum apart, titania nanostructures bridge adjacent features. NST and 3D-NST structures have been assembled and tested in a dye-sensitized solar cell (DSSC) device. The NST film is approximately 900nm thick; this yielded a DSSC with an efficiency of 1.8%, similar

  1. Crystal structure of the single-stranded RNA binding protein HutP from Geobacillus thermodenitrificans.

    Science.gov (United States)

    Thiruselvam, Viswanathan; Sivaraman, Padavattan; Kumarevel, Thirumananseri; Ponnuswamy, Mondikalipudur Nanjappagounder

    2014-04-18

    RNA binding proteins control gene expression by the attenuation/antitermination mechanism. HutP is an RNA binding antitermination protein. It regulates the expression of hut operon when it binds with RNA by modulating the secondary structure of single-stranded hut mRNA. HutP necessitates the presence of l-histidine and divalent metal ion to bind with RNA. Herein, we report the crystal structures of ternary complex (HutP-l-histidine-Mg(2+)) and EDTA (0.5 M) treated ternary complex (HutP-l-histidine-Mg(2+)), solved at 1.9 Å and 2.5 Å resolutions, respectively, from Geobacillus thermodenitrificans. The addition of 0.5 M EDTA does not affect the overall metal-ion mediated ternary complex structure and however, the metal ions at the non-specific binding sites are chelated, as evidenced from the results of structural features.

  2. In situ proteolysis to generate crystals for structure determination: an update.

    Directory of Open Access Journals (Sweden)

    Amy Wernimont

    Full Text Available For every 100 purified proteins that enter crystallization trials, an average of 30 form crystals, and among these only 13-15 crystallize in a form that enables structure determination. In 2007, Dong et al reported that the addition of trace amounts of protease to crystallization trials--in situ proteolysis--significantly increased the number of proteins in a given set that produce diffraction quality crystals. 69 proteins that had previously resisted structure determination were subjected to crystallization with in situ proteolysis and ten crystallized in a form that led to structure determination (14.5% success rate. Here we apply in situ proteolysis to over 270 new soluble proteins that had failed in the past to produce crystals suitable for structure determination. These proteins had produced no crystals, crystals that diffracted poorly, or produced twinned and/or unmanageable diffraction data. The new set includes yeast and prokaryotic proteins, enzymes essential to protozoan parasites, and human proteins such as GTPases, chromatin remodeling proteins, and tyrosine kinases. 34 proteins yielded deposited crystal structures of 2.8 A resolution or better, for an overall 12.6% success rate, and at least ten more yielded well-diffracting crystals presently in refinement. The success rate among proteins that had previously crystallized was double that of those that had never before yielded crystals. The overall success rate is similar to that observed in the smaller study, and appears to be higher than any other method reported to rescue stalled protein crystallography projects.

  3. Engineering the light propagating features through the two-dimensional coupled-cavity photonic crystal waveguides

    Institute of Scientific and Technical Information of China (English)

    Feng shuai; Wang Yi-Quan

    2011-01-01

    This paper studies the propagating characteristics of the electromagnetic waves through the coupled-resonator optical waveguides based on the two-dimensional square-lattice photonic crystals by the finite-difference time-domain method. When the traditional circular rods adjacent to the centre of the cavities are replaced by the oval rods, the simulated results show that the waveguide mode region can be adjusted only by the alteration of the oval rods' obliquity.When the obliquity of the oval rods around one cavity is different from the obliquity of that around the adjacent cavities,the group velocities of the waveguide modes can be greatly reduced and the information of different frequencies can be shared and chosen at the same time by the waveguide branches with different structures. If the obliquities of the oval rods around two adjacent cavities are equal and they alternate between two values, the group velocities can be further reduced and a maximum value of 0.0008c (c is the light velocity in vacuum) can be acquired.

  4. Synthesis, crystal structure, electronic structure, and photoelectric response properties of KCu2SbS3.

    Science.gov (United States)

    Wang, Ruiqi; Zhang, Xian; He, Jianqiao; Zheng, Chong; Lin, Jianhua; Huang, Fuqiang

    2016-02-28

    Copper thioantimonates have received enormous attention due to their potential for applications in photovoltaic devices. In this work, a new layered compound KCu2SbS3 was synthesized via a reactive flux method using thiourea as a reactive flux. The compound crystallizes in the triclinic space group P1[combining macron]. The structure features two-dimensional [Cu2SbS3](-) layers stacking along the c axis with K(+) ions intercalated between the layers. Each [Cu2SbS3](-) layer is composed of two single graphene-like layers connected via interlayer Cu-S bonds and CuSb contacts. The optical measurements indicate that the compound has a band gap of 1.7 eV. The Hall effect measurement shows that KCu2SbS3 is a p-type semiconductor with a carrier concentration of 7 × 10(16) cm(-3). First-principles calculations reveal that the direct transition occurs between Cu-3d-S-3p orbitals (VBM) to Sb-5p-S-3p orbitals (CBM). The photoelectric response properties of KCu2SbS3 under visible light irradiation were analyzed. The photocurrent is 3.7 μA cm(-2) at 10 V bias, demonstrating its potential for applications in photoelectric devices.

  5. Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise

    Science.gov (United States)

    Bindel, Thomas H.

    2008-01-01

    A crystal model laboratory exercise is presented that allows students to examine relations among the microscopic-macroscopic-symbolic levels, using crystalline mineral samples and corresponding crystal models. Students explore the relationship between solid-state structure and crystal form. Other structure-property relationships are explored. The…

  6. Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise

    Science.gov (United States)

    Bindel, Thomas H.

    2008-01-01

    A crystal model laboratory exercise is presented that allows students to examine relations among the microscopic-macroscopic-symbolic levels, using crystalline mineral samples and corresponding crystal models. Students explore the relationship between solid-state structure and crystal form. Other structure-property relationships are explored. The…

  7. Evaluation of feature detection algorithms for structure from motion

    CSIR Research Space (South Africa)

    Govender, N

    2009-11-01

    Full Text Available such as Harris corner detectors and feature descriptors such as SIFT (Scale Invariant Feature Transform) and SURF (Speeded Up Robust Features) given a set of input images. This paper implements state-of-the art feature detection algorithms and evaluates...

  8. Crystal Structure of Borophosphate with 61 Screw Axis Helices

    Institute of Scientific and Technical Information of China (English)

    石恒真; 单永奎; 戴立益; 刘煜炎; 翁林红

    2003-01-01

    A brilliant purple octahedral single crystal is hydrothermally synthesized by the reaction of CoCl2·6H2O, H3BO3 and H3PO4 in NaOH aqueous solution of CH3(CH2)15N(CH3)3Br, and its crystal structure has been characterized by single-crystal X-ray diffraction. The compound, NaCo(H2O)2BP2O8·H2O (Mr = 336.72), belongs to hexagonal, space group P6122 with a = 9.447(5), c = 15.83(1) (A。), V = 1223(1) (A。)3, Dc = 2.742 g/cm3, Z = 6, F(000) = 1002 and β= 2.606 mm-1. The three-dimensional framework in the compound is built up from the linkage tetrahedral ribbons, in which the BO4 and PO4 tetrahedra alternate with CoO6 octahedra. The sodium ions and water molecules are located within the free thread of the helical ribbons.

  9. Structural and magnetic studies on copper succinate dihydrate single crystals

    Indian Academy of Sciences (India)

    M P BINITHA; P P PRADYUMNAN

    2017-09-01

    Single crystals of copper succinate dihydrate were grown in silica gel by slow diffusion of copper chloride tosodium metasilicate gel impregnated with succinic acid. The grown crystal was subjected to single crystal X-ray diffractionstudies. In its structure each copper atom is penta co-ordinated to oxygen atoms of four succinate oxygens and oxygenof co-ordinated water molecule. The four bis-bidendate succinate anions form syn–syn bridges among two copper atomsto form a polymeric two-dimensional chain. From room temperature vibrating sample magnetometer (VSM) studies themagnetic moment of the material is calculated as 1.35 Bohr magneton (BM), indicating antiferromagnetic interaction betweencopper atoms and can be explained as due to the orbital overlap of the bridging ligand and the two copper atoms in syn-synorientation. A strong bonding of the magnetic orbital of equatorially oriented Cu atom on both sides of the exchange pathway(Cu–O-C-O–Cu) leads to the anti-ferromagnetic interaction.

  10. Crystal structures of ethylene glycol and ethylene glycol monohydrate.

    Science.gov (United States)

    Fortes, A Dominic; Suard, Emmanuelle

    2011-12-21

    We have carried out a neutron powder diffraction study of deuterated ethylene glycol (1,2-ethanediol), and deuterated ethylene glycol monohydrate with the D2B high-resolution diffractometer at the Institut Laue-Langevin. Using these data, we have refined the complete structure, including all hydrogen atoms, of the anhydrous phase at 220 K. In addition, we have determined the structure of ethylene glycol monohydrate at 210 K using direct space methods. Anhydrous ethylene glycol crystallizes in space-group P2(1)2(1)2(1) with four formula units in a unit-cell of dimensions a = 5.0553(1) Å, b = 6.9627(1) Å, c = 9.2709(2) Å, and V = 326.319(8) Å(3) [ρ(calc)(deuterated) = 1386.26(3) kg m(-3)] at 220 K. Ethylene glycol monohydrate crystallizes in space-group P2(1)/c with four formula units in a unit-cell of dimensions a = 7.6858(3) Å, b = 7.2201(3) Å, c = 7.7356(4) Å, β = 92.868(3)°, and V = 428.73(2) Å(3) [ρ(calc)(deuterated) = 1365.40(7) kg m(-3)] at 210 K. Both the structures are characterized by the gauche conformation of the ethylene glycol molecule; however, the anhydrous phase contains the tGg' rotamer (or its mirror, g'Gt), whereas the monohydrate contains the gGg' rotamer. In the monohydrate, each water molecule is tetrahedrally coordinated, donating two hydrogen bonds to, and accepting two hydrogen bonds from the hydroxyl groups of neighboring ethylene glycol molecules. There are substantial differences in the degree of weak C-D···O hydrogen bonding between the two crystals, which calls into question the role of these interactions in determining the conformation of the ethylene glycol molecule.

  11. Crystal structure of the bacteriophage P2 integrase catalytic domain.

    Science.gov (United States)

    Skaar, Karin; Claesson, Magnus; Odegrip, Richard; Högbom, Martin; Haggård-Ljungquist, Elisabeth; Stenmark, Pål

    2015-11-30

    Bacteriophage P2 is a temperate phage capable of integrating its DNA into the host genome by site-specific recombination upon lysogenization. Integration and excision of the phage genome requires P2 integrase, which performs recognition, cleavage and joining of DNA during these processes. This work presents the high-resolution crystal structure of the catalytic domain of P2 integrase, and analysis of the structure-function relationship of several previously identified non-functional P2 integrase mutants. The DNA binding area is characterized by a large positively charged patch, harboring key residues. The structure reveals potential for large dimer flexibility, likely essential for rearrangement of DNA strands upon integration and excision of the phage DNA.

  12. Crystal structure of Homo sapiens protein LOC79017

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Euiyoung; Bingman, Craig A.; Aceti, David J.; Phillips, Jr., George N. (UW)

    2010-02-08

    LOC79017 (MW 21.0 kDa, residues 1-188) was annotated as a hypothetical protein encoded by Homo sapiens chromosome 7 open reading frame 24. It was selected as a target by the Center for Eukaryotic Structural Genomics (CESG) because it did not share more than 30% sequence identity with any protein for which the three-dimensional structure is known. The biological function of the protein has not been established yet. Parts of LOC79017 were identified as members of uncharacterized Pfam families (residues 1-95 as PB006073 and residues 104-180 as PB031696). BLAST searches revealed homologues of LOC79017 in many eukaryotes, but none of them have been functionally characterized. Here, we report the crystal structure of H. sapiens protein LOC79017 (UniGene code Hs.530024, UniProt code O75223, CESG target number go.35223).

  13. The crystal structure and superconducting properties of monatomic bromine.

    Science.gov (United States)

    Duan, Defang; Meng, Xing; Tian, Fubo; Chen, Changbo; Wang, Liancheng; Ma, Yanming; Cui, Tian; Liu, Bingbing; He, Zhi; Zou, Guangtian

    2010-01-13

    The crystal structure and superconducting properties of monatomic bromine under high pressure have been studied by first-principles calculations. We have found the following phase transition sequence with increasing pressure: from body-centered orthorhombic (bco, phase II) to body-centered tetragonal structure (bct, phase III) at 126 GPa, then to face-centered cubic structure (fcc, phase IV) at 157 GPa, which is stable at least up to 300 GPa. The calculated superconducting critical temperature T(c) = 1.46 K at 100 GPa is consistent with the experimental value of 1.5 K. In addition, our results of T(c) decrease with increasing pressure in all the monatomic phases of bromine, similar to monatomic iodine. Further calculations show that the decrease of λ with pressure in phase IV is mainly attributed to the weakening of the 'soft' vibrational mode caused by pressure.

  14. Crystal structure of Ca5Nb5O17

    Science.gov (United States)

    Guevarra, J.; van Smaalen, S.; Rotiroti, N.; Paulmann, C.; Lichtenberg, F.

    2005-09-01

    The crystal structure of Ca5Nb5O17, an n=5 member of the homologous series AnBnO, at room temperature has been determined by single-crystal X-ray diffraction using synchrotron radiation with a CCD area detector. The structure is monoclinic with spacegroup P21/c ( b unique) and lattice parameters a=7.7494(3) Å, b=5.4928(1) Å, c=32.241(1) Å, and β=96.809(4)∘. It consists of perovskite-like slabs of corner-sharing NbO6 octahedra separated by an interslab region, where the octahedra on opposite sides of the gap do not share oxygen atoms resulting in an extra layer of oxygen atoms with respect to the ideal perovskite structure. The slabs are five octahedra wide. Ca atoms within the slabs occupy 12-fold coordinated sites whereas those at the borders show irregular coordination environments. The distortion of the octahedra increases from the center to the borders of the slabs. The computed valences for the Nb ions are very close to 5 at the borders while smaller values were obtained for sites in the middle of the slabs which suggests that the electrical conduction takes place predominantly in the middle of the slabs.

  15. Potassium and magnesium succinatouranilates - Synthesis and crystal structure

    Science.gov (United States)

    Novikov, S. A.; Grigoriev, M. S.; Serezhkina, L. B.; Serezhkin, V. N.

    2017-04-01

    Single crystal X-ray diffraction has been applied to determine the structures of two new uranyl coordination polymers: K2[(UO2)2(C4H4O4)3] (1) and [Mg(H2O)6] [(UO2)2(C4H4O4)3]·2H2O (2), where C4H4O42- is succinate anion. Crystals of 1 and 2 contain polymeric complex anions [(UO2)2(C4H4O4)3]2- with the same A2Q023 crystallochemical formula (A=UO22+, Q02=C4O4H42-), and have layered (1) or chain (2) structure. It has been found, that conformation of succinate ions is one of the factors, which affects the structure of [(UO2)2(C4H4O4)3]2- anions. IR spectra of these new compounds are in good agreement with crystallographic data. Topological analysis of the uranium dicarboxylates with A2Q023 crystallochemical formula has shown the presence of five isomers which differ from each other in coordination sequences and / or dimensionality.

  16. Origins of Water Molecules in the Photosystem II Crystal Structure.

    Science.gov (United States)

    Sakashita, Naoki; Watanabe, Hiroshi C; Ikeda, Takuya; Saito, Keisuke; Ishikita, Hiroshi

    2017-06-20

    The cyanobacterial photosystem II (PSII) crystal structure includes more than 1300 water molecules in each monomer unit; however, their precise roles in water oxidation are unclear. To understand the origins of water molecules in the PSII crystal structure, the accessibility of bulk water molecules to channel inner spaces in PSII was investigated using the water-removed PSII structure and molecular dynamics (MD) simulations. The inner space of the channel that proceeds toward the D1-Glu65/D2-Glu312 pair (E65/E312 channel) was entirely filled with water molecules from the bulk region. In the same channel, a diamond-shaped cluster of water molecules formed near redox-active TyrZ in MD simulations. Reorientation of the D2-Leu352 side chain resulted in formation of a hexagonal water network at the Cl(-)2 binding site. Water molecules could not enter the main region of the O4-water chain, which proceeds from the O4 site of the Mn4CaO5 cluster. However, in the O4-water chain, the two water binding sites that are most distant from the protein bulk surface were occupied by water molecules that approached along the E65/E312 channel, one of which formed an H-bond with the O4 site. These findings provide key insights into the significance of the channel ends, which may utilize water molecules during the PSII photocycle.

  17. Crystal structure of rofecoxib bound to human cyclooxygenase-2

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, Benjamin J.; Malkowski, Michael G. (Buffalo)

    2016-10-26

    Rofecoxib (Vioxx) was one of the first selective cyclooxygenase-2 (COX-2) inhibitors (coxibs) to be approved for use in humans. Within five years after its release to the public, Vioxx was withdrawn from the market owing to the adverse cardiovascular effects of the drug. Despite the widespread knowledge of the development and withdrawal of Vioxx, relatively little is known at the molecular level about how the inhibitor binds to COX-2. Vioxx is unique in that the inhibitor contains a methyl sulfone moiety in place of the sulfonamide moiety found in other coxibs such as celecoxib and valdecoxib. Here, new crystallization conditions were identified that allowed the structural determination of human COX-2 in complex with Vioxx and the structure was subsequently determined to 2.7- Å resolution. The crystal structure provides the first atomic level details of the binding of Vioxx to COX-2. As anticipated, Vioxx binds with its methyl sulfone moiety located in the side pocket of the cyclooxygenase channel, providing support for the isoform selectivity of this drug.

  18. Crystal structure of rofecoxib bound to human cyclooxygenase-2.

    Science.gov (United States)

    Orlando, Benjamin J; Malkowski, Michael G

    2016-10-01

    Rofecoxib (Vioxx) was one of the first selective cyclooxygenase-2 (COX-2) inhibitors (coxibs) to be approved for use in humans. Within five years after its release to the public, Vioxx was withdrawn from the market owing to the adverse cardiovascular effects of the drug. Despite the widespread knowledge of the development and withdrawal of Vioxx, relatively little is known at the molecular level about how the inhibitor binds to COX-2. Vioxx is unique in that the inhibitor contains a methyl sulfone moiety in place of the sulfonamide moiety found in other coxibs such as celecoxib and valdecoxib. Here, new crystallization conditions were identified that allowed the structural determination of human COX-2 in complex with Vioxx and the structure was subsequently determined to 2.7 Å resolution. The crystal structure provides the first atomic level details of the binding of Vioxx to COX-2. As anticipated, Vioxx binds with its methyl sulfone moiety located in the side pocket of the cyclooxygenase channel, providing support for the isoform selectivity of this drug.

  19. Crystal Structure of the Vanadate-Inhibited Ca(2+)-ATPase.

    Science.gov (United States)

    Clausen, Johannes D; Bublitz, Maike; Arnou, Bertrand; Olesen, Claus; Andersen, Jens Peter; Møller, Jesper Vuust; Nissen, Poul

    2016-04-05

    Vanadate is the hallmark inhibitor of the P-type ATPase family; however, structural details of its inhibitory mechanism have remained unresolved. We have determined the crystal structure of sarcoplasmic reticulum Ca(2+)-ATPase with bound vanadate in the absence of Ca(2+). Vanadate is bound at the catalytic site as a planar VO3(-) in complex with water and Mg(2+) in a dephosphorylation transition-state-like conformation. Validating bound VO3(-) by anomalous difference Fourier maps using long-wavelength data we also identify a hitherto undescribed Cl(-) site near the dephosphorylation site. Crystallization was facilitated by trinitrophenyl (TNP)-derivatized nucleotides that bind with the TNP moiety occupying the binding pocket that normally accommodates the adenine of ATP, rationalizing their remarkably high affinity for E2P-like conformations of the Ca(2+)-ATPase. A comparison of the configurations of bound nucleotide analogs in the E2·VO3(-) structure with that in E2·BeF3(-) (E2P ground state analog) reveals multiple binding modes to the Ca(2+)-ATPase.

  20. The sequence, structure and evolutionary features of HOTAIR in mammals

    Science.gov (United States)

    2011-01-01

    . Conclusions HOTAIR exists in mammals, has poorly conserved sequences and considerably conserved structures, and has evolved faster than nearby HoxC genes. Exons of HOTAIR show distinct evolutionary features, and a 239 bp domain in the 1804 bp exon6 is especially conserved. These features, together with the absence of some exons and sequences in mouse, rat and kangaroo, suggest ab initio generation of HOTAIR in marsupials. Structure prediction identifies two fragments in the 5' end exon1 and the 3' end domain B of exon6, with sequence and structure invariably occurring in various predicted structures of exon1, the domain B of exon6 and the full HOTAIR. PMID:21496275

  1. Crystal Structure of the Pseudomonas aeruginosa Virulence Factor Regulator

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, Timothy J.; Worzalla, Gregory A.; Ginster, Aaron M.; Forest, Katrina T. (UW)

    2012-09-07

    Virulence factor regulator (Vfr) enhances Pseudomonas aeruginosa pathogenicity through its role as a global transcriptional regulator. The crystal structure of Vfr shows that it is a winged-helix DNA-binding protein like its homologue cyclic AMP receptor protein (CRP). In addition to an expected primary cyclic AMP-binding site, a second ligand-binding site is nestled between the N-terminal domain and the C-terminal helix-turn-helix domain. Unlike CRP, Vfr is a symmetric dimer in the absence of DNA. Removal of seven disordered N-terminal residues of Vfr prvents the growth of P. aeruginosa.

  2. Photonic crystal digital alloys and their band structure properties.

    Science.gov (United States)

    Lee, Jeongkug; Kim, Dong-Uk; Jeon, Heonsu

    2011-09-26

    We investigated semi-disordered photonic crystals (PCs), digital alloys, and made thorough comparisons with their counterparts, random alloys. A set of diamond lattice PC digital alloys operating in a microwave regime were prepared by alternately stacking two kinds of sub-PC systems composed of alumina and silica spheres of the same size. Measured transmission spectra as well as calculated band structures revealed that when the digital alloy period is short, band-gaps of the digital alloys are practically the same as those of the random alloys. This study indicates that the concept of digital alloys holds for photons in PCs as well.

  3. Crystal structure of pure ZrO{sub 2} nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Lamas, D.G. [CINSO - Centro de Investigaciones en Solidos, CITEFA-CONICET, J.B. de La Salle 4397 (1603) Villa Martelli, Pcia. de Buenos Aires (Argentina)]. E-mail: dlamas@citefa.gov.ar; Rosso, A.M. [CINSO - Centro de Investigaciones en Solidos, CITEFA-CONICET, J.B. de La Salle 4397 (1603) Villa Martelli, Pcia. de Buenos Aires (Argentina); Anzorena, M. Suarez [CINSO - Centro de Investigaciones en Solidos, CITEFA-CONICET, J.B. de La Salle 4397 (1603) Villa Martelli, Pcia. de Buenos Aires (Argentina); Fernandez, A. [DEICOR - Departamento de Investigaciones en Corrosion, CITEFA, J.B. de La Salle 4397 (1603) Villa Martelli, Pcia. de Buenos Aires (Argentina); Bellino, M.G. [CINSO - Centro de Investigaciones en Solidos, CITEFA-CONICET, J.B. de La Salle 4397 (1603) Villa Martelli, Pcia. de Buenos Aires (Argentina); Cabezas, M.D. [CINSO - Centro de Investigaciones en Solidos, CITEFA-CONICET, J.B. de La Salle 4397 (1603) Villa Martelli, Pcia. de Buenos Aires (Argentina); Walsoee de Reca, N.E. [CINSO - Centro de Investigaciones en Solidos, CITEFA-CONICET, J.B. de La Salle 4397 (1603) Villa Martelli, Pcia. de Buenos Aires (Argentina); Craievich, A.F. [Instituto de Fisica, FAP, USP, Travessa R da Rua do Matao, No.187, Cidade Universitaria (05508-900) Sao Paulo (Brazil)

    2006-09-15

    The crystal structure of pure (undoped) zirconia nanopowders synthesized by different wet-chemical routes has been investigated by synchrotron X-ray diffraction. Whereas some previous authors reported the retention of the cubic phase in similar materials, we demonstrate here that pure zirconia nanopowders with average crystallite sizes ranging from 5 to 10 nm exhibit the tetragonal phase. In addition, our results suggest that a tetragonal-to-cubic transition for decreasing crystallite size could eventually occur at a very small critical crystallite size.

  4. Crystal structure determination of anti-DNA Fab A52.

    Science.gov (United States)

    Stanfield, Robyn L; Eilat, Dan

    2014-08-01

    A52 is a murine monoclonal antibody isolated from autoimmune New Zealand Black/New Zealand White F1 mice that recognizes single and double stranded DNA. This mouse strain spontaneously develops systemic lupus erythematosus-like symptoms and has served as a model for that disease for many years. The 1.62 Å crystal structure of the A52 Fab fragment reveals an H3 complementarity determining region with four closely spaced arginine residues, creating a positively charged surface to accommodate bound DNA.

  5. Crystal structure of hexa-aqua-dichlorido-ytterbium(III) chloride.

    Science.gov (United States)

    Knopf, Kevin M; Crundwell, Guy; Westcott, Barry L

    2015-06-01

    The crystal structure of the title compound, [YbCl2(H2O)6]Cl, was determined at 110 K. Samples were obtained from evaporated aceto-nitrile solutions containing the title compound, which consists of a [YbCl2(H2O)6](+) cation and a Cl(-) anion. The cations in the title compound sit on a twofold axis and form O-H⋯Cl hydrogen bonds with the nearby Cl(-) anion. The coordination geometry around the metal centre forms a distorted square anti-prism. The ytterbium complex is isotypic with the europium complex [Tambrornino et al. (2014 ▶). Acta Cryst. E70, i27].

  6. 9R structure in drawn industrial single crystal copper wires

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian; YAN Wen; FAN Xin-hui

    2009-01-01

    By using transmission electron microscopy, the microstructures of drawn industrial single crystal copper wires produced by Ohno Continuous Casting(OCC) process were analyzed. The results show that the typical microstructures in the wires mainly include extended planar dislocation boundaries, a small fraction of twins and some dislocation cells sharing boundaries parallel to drawn direction. Besides the typical microstructures, 9R structure configurations were observed in the wires. The formation of 9R polytypes may be caused by the coupled emission of Shockley dislocations from a boundary.

  7. Topological Structure of Knotted Vortex Lines in Liquid Crystals

    Institute of Scientific and Technical Information of China (English)

    DUAN Yi-Shi; ZHAO Li; ZHANG Xin-Hui

    2007-01-01

    In this paper, a novel decomposition expression for the U(1) gauge field in liquid crystals (LCs) is derived.Using this decomposition expression and the φ-mapping topological current theory,.we investigate the topological structure of the vortex lines in LCs in detail. A topological invariant, i.e., the Chern-Simons (CS) action for the knotted vortex lines is presented, and the CS action is shown to be the total sum of all the self-linking and linking numbers of the knot family. Moreover, it is pointed out that the CS action is preserved in the branch processes of the knotted vortex lines.

  8. Synthesis, Crystal Structural Investigations, and DFT Calculations of Novel Thiosemicarbazones

    Directory of Open Access Journals (Sweden)

    Brian J. Anderson

    2016-02-01

    Full Text Available The crystal and molecular structures of three new thiosemicarbazones, 2-[1-(2-hydroxy-5-methoxyphenylethylidene]-N-methyl-hydrazinecarbothioamide monohydrate (1, 2-[1-(2-hydroxy-5-methoxyphenylethylidene]-N-ethyl-hydrazinecarbothioamide (2 and 2-[1-(2-hydroxy-4-methoxyphenylethylidene]-N-ethyl-hydrazinecarbothioamide acetonitrile solvate (3, are reported and confirmed by single crystal X-ray diffraction, NMR and UV-vis spectroscopic data. Compound (1, C11H15N3O2S·H2O, crystallizes in the monoclinic with space group P21/c, with cell parameters a = 8.2304(3 Å, b = 16.2787(6 Å, c = 9.9708(4 Å, and β = 103.355(4°. Compound (2, C12H17N3O2S, crystallizes in the C2/c space group with cell parameters a = 23.3083(6 Å, b = 8.2956(2 Å, c = 13.5312(3 Å, β = 91.077(2°. Compound (3, C11H15N3O2S·C2H3N, crystallizes in the triclinic P-1 space group with cell constants a = 8.9384(7 Å, b = 9.5167(8 Å, c = 10.0574(8 Å, α = 110.773(7°, β = 92.413(6°, and γ = 90.654(7°. DFT B3LYP/6-31(G geometry optimized molecular orbital calculations were also performed and frontier molecular orbitals of each compound are displayed. The correlations between the calculated molecular orbital energies (eV for the surfaces of the frontier molecular orbitals to the electronic excitation transitions from the absorption spectra of each compound have been proposed. Additionally, similar correlations observed among three closely related compounds, (4, 2-[1-(2-hydroxy-4-methoxyphenylethylidene]-N-methyl-hydrazinecarbothioamide, (5, 2-[1-(2-hydroxy-6-methoxyphenylethylidene]-N-methyl-hydrazinecarbothioamide acetonitrile monosolvate and (6, 2-[1-(2-hydroxy-6-methoxyphenylethylidene]-N-ethyl-hydrazinecarbothioamide, examining structural differences from the substitution of the methoxy group from the phenyl ring (4, 5, or 6 position and the substitution of the terminal amine (methyl or ethyl to their frontier molecular orbital surfaces and from their Density Functional

  9. Syntheses, Crystal Structures and Bioactivities of Two Novel Isatin Derivatives

    Institute of Scientific and Technical Information of China (English)

    SHANG Jian-li; LI Hui-dong; SHANG Jun; SONG Hai-bin; LI Zheng-ming; WANG Jian-guo

    2011-01-01

    Two novel compoundsl-(4-fluorobenzyl)-4-chloro-(Z)-3-benzoylhydrazono-2-indolinone(1) and 1-(4-methoxybenzyl)-(Z)-3-benzoylhydrazono-2-indolinone(2) were synthesized and their crystal structures were determined by single-crystal X-ray diffraction.Compound 1(C22H15ClFN3O2) crystallized in the triclinic system,space group P1- with a=0.94198(19) nm,b=1.4339(3) nm,c=1.5018(3) nm,a=101.58(3)°,β=102.96(3)°,γ=102.73°,V=1.8602(6) nm3,Mr=407.82,Dc=1.456 g/cm3,μ=0.240 mm-1,F(000)=840,Z=4,R1=0.0442 and wR2=0.1064.Compound 2(C23H19N3O3) crystallized in the triclinic system,space group P1- with a=1.0022(2) nm,b=1.0192(2) nm,c=1.0461(2) nm,a=99.86(3)°,β=117.30(3)°,γ=94.13(3)°,V=0.9215(3) nm3,Mr=385.41,Dc=1.389 g/cm3,μ=0.094mm-1,F(000)=404,Z=2,R1=0.0403 and wR2=0.1142.The preliminary herbicidal activities of the two compounds were also evaluated.

  10. Crystal structure analysis reveals functional flexibility in the selenocysteine-specific tRNA from mouse.

    Directory of Open Access Journals (Sweden)

    Oleg M Ganichkin

    Full Text Available BACKGROUND: Selenocysteine tRNAs (tRNA(Sec exhibit a number of unique identity elements that are recognized specifically by proteins of the selenocysteine biosynthetic pathways and decoding machineries. Presently, these identity elements and the mechanisms by which they are interpreted by tRNA(Sec-interacting factors are incompletely understood. METHODOLOGY/PRINCIPAL FINDINGS: We applied rational mutagenesis to obtain well diffracting crystals of murine tRNA(Sec. tRNA(Sec lacking the single-stranded 3'-acceptor end ((ΔGCCARNA(Sec yielded a crystal structure at 2.0 Å resolution. The global structure of (ΔGCCARNA(Sec resembles the structure of human tRNA(Sec determined at 3.1 Å resolution. Structural comparisons revealed flexible regions in tRNA(Sec used for induced fit binding to selenophosphate synthetase. Water molecules located in the present structure were involved in the stabilization of two alternative conformations of the anticodon stem-loop. Modeling of a 2'-O-methylated ribose at position U34 of the anticodon loop as found in a sub-population of tRNA(Secin vivo showed how this modification favors an anticodon loop conformation that is functional during decoding on the ribosome. Soaking of crystals in Mn(2+-containing buffer revealed eight potential divalent metal ion binding sites but the located metal ions did not significantly stabilize specific structural features of tRNA(Sec. CONCLUSIONS/SIGNIFICANCE: We provide the most highly resolved structure of a tRNA(Sec molecule to date and assessed the influence of water molecules and metal ions on the molecule's conformation and dynamics. Our results suggest how conformational changes of tRNA(Sec support its interaction with proteins.

  11. Structure and Dynamics of Freely Suspended Liquid Crystals

    Science.gov (United States)

    Clark, Noel A.

    2004-01-01

    Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1 D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline or quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enables the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new LC physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and Kosterlitz Thouless phase

  12. Crystal structure of triphenylphosphonium-meth-yl-enetrifluoroborate.

    Science.gov (United States)

    Bateman, Christopher M; Zakharov, Lev N; Abbey, Eric R

    2017-07-01

    The title compound, C19H17BF3P {alternative name: triphen-yl[(tri-fluoro-boran-yl)meth-yl]phosphanium}, was formed by the reaction of tri-phenyl-phosphine with potassium iodo-methyl-tri-fluoro-borate. The mol-ecule features a nearly staggered conformation along the P-C bond and a less than staggered conformation along the C-B bond. In the crystal, weak C-H⋯F hydrogen bonds between the meta-phenyl C-H groups and the tri-fluoro-borate B-F groups form chains of R2(2)(16) rings along [100]. These chains are are further stabilized by weak C-H⋯π inter-actions. A weak intra-molecular C-H⋯F hydrogen bond is also observed.

  13. Synthesis, crystal structure and electronic structure of the binary phase Rh2Cd5

    Science.gov (United States)

    Koley, Biplab; Chatterjee, S.; Jana, Partha P.

    2017-02-01

    A new phase in the Rh-Cd binary system - Rh2Cd5 has been identified and characterized by single crystal X-ray diffraction and Energy dispersive X-ray analysis. The stoichiometric compound Rh2Cd5 crystallizes with a unit cell containing 14 atoms, in the orthorhombic space group Pbam (55). The crystal structure of Rh2Cd5 can be described as a defect form of the In3Pd5 structure with ordered vacancies, formed of two 2D atomic layers with the stacking sequence: ABAB. The A type layers consist of (3.6.3.6)-Kagomé nets of Cd atoms while the B type layers consist of (35) (37)- nets of both Cd and Rh atoms. The stability of this line phase is investigated by first principle electronic structure calculations on the model of ordered Rh2Cd5.

  14. Effect of incongruent crystallization on glass–liquid transition features of a bulk metal glass

    Energy Technology Data Exchange (ETDEWEB)

    Aji, D.P.B.; Johari, G.P., E-mail: joharig@mcmaster.ca

    2015-09-10

    Highlights: • Ce{sub 66}Al{sub 10}Cu{sub 20}Co{sub 4} glass did not crystallize during aging for nine years. • Crystallization's onset temperature was higher for the aged glass. • Incongruent melt embedding the crystals had higher viscosity and T{sub g}. • Increase in crystallization increased the T{sub g} and broadened the T{sub g}-endotherm. - Abstract: It is known that most multi-component glasses cold-crystallize incongruently on heating through the temperature range of their ultraviscous melt. If the incongruent melt's composition changes with time, its viscosity, η, and the glass–liquid transition temperature, T{sub g}, would change. Since the η, relaxation time, and expansion coefficient of a liquid in its partially crystallized mixture cannot be determined, we used scanning calorimetry to study the liquid–glass–liquid transition during thermal cycling of the incongruently crystallizing Ce{sub 66}Al{sub 10}Cu{sub 20}Co{sub 4} glass. Its T{sub g} is 358 K for 20 K/min and 354 K for 10 K/min heating rates, and its ultraviscous melt crystallized incongruently when heated beyond the hysteresis peak of its heat capacity scan. Its sample that had been aged for nine years at ambient conditions had a higher crystallization-onset temperature than an un-aged sample. Delayed enthalpy gain on heating of the aged glass is ∼1/5th of the enthalpy lost on its crystallization. Crystallization of the melt occurred on both the heating and cooling paths of a thermal cycle and T{sub g} of the un-aged glass increased as the volume fraction of the compositionally different glass, f{sub gl}, decreased. The increase was by 8 K after the 24th cycle of 20 K/min, and by 11 K after the 13th cycle of 10 K/min cooling-heating. The highest T{sub g} values reached differed by ∼1 K, which indicates that closely similar T{sub g}s may be reached if the total time period for thermal cycling (at different rates) is kept the same. As f{sub gl} approached its limiting

  15. Positrons, Positronium, Positron and Positronium Complexes in Crystal. Features of Their Properties in Phonon Atmosphere

    Directory of Open Access Journals (Sweden)

    Eugene P. Prokopev

    2012-10-01

    Full Text Available The article, Basing on the example of ionic crystals shows that polarization of crystal framework by oppositely charged polarons (positronium atom (ps invokes the change of positronium binding energy and leads to the renormalization of electron and positron effective masses as well. Such interaction of electron and positronium atom of positron with optical phonons leads to additional repelling interaction, besides coulomb attractive. Furthermore, the existence of positronium atom with major and minor radius is possible in the atmosphere of crystal phonons.

  16. Are the Crystal Structures of Enantiopure and Racemic Mandelic Acids Determined by Kinetics or Thermodynamics?

    Science.gov (United States)

    Hylton, Rebecca K; Tizzard, Graham J; Threlfall, Terence L; Ellis, Amy L; Coles, Simon J; Seaton, Colin C; Schulze, Eric; Lorenz, Heike; Seidel-Morgenstern, Andreas; Stein, Matthias; Price, Sarah L

    2015-09-02

    Mandelic acids are prototypic chiral molecules where the sensitivity of crystallized forms (enantiopure/racemic compound/polymorphs) to both conditions and substituents provides a new insight into the factors that may allow chiral separation by crystallization. The determination of a significant number of single crystal structures allows the analysis of 13 enantiopure and 30 racemic crystal structures of 21 (F/Cl/Br/CH3/CH3O) substituted mandelic acid derivatives. There are some common phenyl packing motifs between some groups of racemic and enantiopure structures, although they show very different hydrogen-bonding motifs. The computed crystal energy landscape of 3-chloromandelic acid, which has at least two enantiopure and three racemic crystal polymorphs, reveals that there are many more possible structures, some of which are predicted to be thermodynamically more favorable as well as slightly denser than the known forms. Simulations of mandelic acid dimers in isolation, water, and toluene do not differentiate between racemic and enantiopure dimers and also suggest that the phenyl ring interactions play a major role in the crystallization mechanism. The observed crystallization behavior of mandelic acids does not correspond to any simple "crystal engineering rules" as there is a range of thermodynamically feasible structures with no distinction between the enantiopure and racemic forms. Nucleation and crystallization appear to be determined by the kinetics of crystal growth with a statistical bias, but the diversity of the mandelic acid crystallization behavior demonstrates that the factors that influence the kinetics of crystal nucleation and growth are not yet adequately understood.

  17. Structure removal: An argument for feature-driven Merge

    Directory of Open Access Journals (Sweden)

    Gereon Müller

    2017-04-01

    Full Text Available Assuming that it needs to be decided at some point whether a given Merge('α','β' operation is legitimate, there are two basic options. The first possibility is that one of the two categories is equipped with an intrinsic formal property (typically encoded as a feature requiring the other one to combine with it. The second possibility is that Merge applies freely throughout, and that filters check the output representation and decide about the legitimacy of the operation. The two approaches are often extensionally equivalent. In this paper, I provide an argument for the first view that is based on the hypothesis that in addition to the Merge operation that 'builds 'structure, there is also a mirror image operation Remove that 'removes 'structure: If such an operation exists, the legitimacy of the original Merge operation cannot be checked by output filters anymore. Empirical evidence for an elementary syntactic operation Remove is drawn from four domains of German syntax: passive, applicative, restructuring, and complex prefields. This article is part of the special collection: What drives syntactic computation?

  18. Single crystal structures of thallium (I) thorium fluorides and crystal chemistry of monovalent tetravalent cation pentafluorides

    Science.gov (United States)

    Oudahmane, Abdelghani; El-Ghozzi, Malika; Jouffret, Laurent; Avignant, Daniel

    2015-12-01

    Two thallium (I) thorium (IV) fluorides, TlTh3F13 and TlThF5 were obtained by solid state synthesis and their crystal structures determined from single crystal X-ray diffraction data recorded at room temperature with an APEX-II CCD diffractometer. TlTh3F13 is orthorhombic, space group Pmc21, with a=8.1801(2) Å, b=7.4479(2) Å, c=8.6375(2) Å, V=526.24(2) Å3, Z=2 and TlThF5 is monoclinic, space group P21/n, with a=8.1128(5) Å, b=7.2250(4) Å, c=8.8493(6) Å, β=116.683(3)°, V=463.46(5) Å3, Z=4. The structure of TlTh3F13 comprises layers of corner and edge-sharing ThF9 polyhedra further linked by chains of trans connected tricapped trigonal prisms ThF9 through corners and edges. The three dimensional thorium frameworks delimits channels parallel to [0 0 1] where the 11-coordinated Tl+ ions are arranged into double columns located in mirror planes of the structure. TlTh3F13 is isotypic with RbTh3F13, RbU3F13 and with one of the two polymorphs of CsTh3F13. The structure of TlThF5 may be regarded as a layer structure built up from the regular succession of 2∞[ M ‧F5 ] - corrugated layers further held by the Tl+ ions along the [1 0 1 ̅] direction. The layers are built up from edge and corner-sharing thorium polyhedra where each (ThF9)5- monocapped square antiprism is connected to five others by sharing three edges and two corners. TlThF5 is isostructural with β-NH4UF5 and with one of the polymorphs of CsThF5. A comparison of the different structural types of MM‧F5 pentafluorides is presented and a diagram of repartition of their structures is given. From the comparison of the Tl structures with their Rb or Cs homologs, where very similar monovalent cation environments are observed it should be concluded to a stereochemically inactivity of the 6s2 lone pair of Tl(I) in both TlTh3F13 and TlThF5, contrary to what is observed in richer Tl(I) content Tl3ThF7 fluorothorate.

  19. Photochemical manipulation of colloidal structures in liquid-crystal colloids

    Science.gov (United States)

    Yamamoto, T.; Tabe, Y.; Yokoyama, H.

    2007-05-01

    We investigated photochemical manipulation of physical properties and colloidal structures in liquid-crystal (LC) colloids containing azobenzene compounds. In a LC suspension where polymeric particles were dispersed in a host LC, we achieved photochemical control of light-scattering properties of the suspension. In a nematic phase, when the suspension was sandwiched with two glass plates, the film became opaque. This would be attributable to an appearance of both multidomain structures of LC alignment and mismatches of refractive indices between the materials. The opaque state turned into a transparent one when a nematic-to-isotropic phase transition was induced by the trans-to-cis photoisomerization of the azo-dye. This will result from a disappearance of both the multidomain structures and the refractive-index mismatches in the isotropic phase. The transparent film went back into the initial opaque film when the nematic phase was obtained by the cis-to-trans photoisomerization. In a LC emulsion in which glycerol or water droplets were dispersed in liquid crystals, we examined photochemical change of defect structures and inter-droplet distances by the photochemical manner. At the initial state, Saturn ring and hedgehog defects were formed around the droplets. For the glycerol droplets, we observed structural transformations between Saturn ring and boojums on irradiation with ultra-violet and visible light. For the water droplets, the inter-droplet distances varied by changing defect size on the irradiation. These phenomena would result from modulation of anchoring conditions of the droplets by the photoisomerization of the azo-dyes.

  20. Crystal structure of zwitterionic 4-(ammoniomethylbenzoate: a simple molecule giving rise to a complex supramolecular structure

    Directory of Open Access Journals (Sweden)

    Ana María Atria

    2014-11-01

    Full Text Available The asymmetric unit of the title compound, C8H9NO2·H2O consists of an isolated 4-(ammoniomethylbenzoate zwitterion derived from 4-aminomethylbenzoic acid through the migration of the acidic proton, together with a water molecule of crystallization that is disordered over three sites with occupancy ratios (0.50:0.35:0.15. In the crystal structure, N—H...O hydrogen bonds together with π–π stacking of the benzene rings [centroid–centroid distance = 3.8602 (18 Å] result in a strongly linked, compact three-dimensional structure.