WorldWideScience

Sample records for crystal packing stability

  1. Structure and stability of designed TPR protein superhelices: unusual crystal packing and implications for natural TPR proteins.

    Science.gov (United States)

    Kajander, Tommi; Cortajarena, Aitziber L; Mochrie, Simon; Regan, Lynne

    2007-07-01

    The structure and stability of repeat proteins has been little studied in comparison to the properties of the more familiar globular proteins. Here, the structure and stability of designed tetratricopeptide-repeat (TPR) proteins is described. The TPR is a 34-amino-acid motif which adopts a helix-turn-helix structure and occurs as tandem repeats. The design of a consensus TPR motif (CTPR) has previously been described. Here, the crystal structures and stabilities of proteins that contain eight or 20 identical tandem repeats of the CTPR motif (CTPR8 and CTPR20) are presented. Both CTPR8 and CTPR20 adopt a superhelical overall structure. The structures of the different-length CTPR proteins are compared with each other and with the structures of natural TPR domains. Also, the unusual and perhaps unique crystal-packing interactions resulting in pseudo-infinite crystalline superhelices observed in the different crystal forms of CTPR8 and CTPR20 are discussed. Finally, it is shown that the thermodynamic behavior of CTPR8 and CTPR20 can be predicted from the behavior of other TPRs in this series using an Ising model-based analysis. The designed protein series CTPR2-CTPR20 covers the natural size repertoire of TPR domains and as such is an excellent model system for natural TPR proteins.

  2. Crystal packing effects on protein loops.

    Science.gov (United States)

    Rapp, Chaya S; Pollack, Rena M

    2005-07-01

    The effects of crystal packing on protein loop structures are examined by (1) a comparison of loops in proteins that have been crystallized in alternate packing arrangements, and (2) theoretical prediction of loops both with and without the inclusion of the crystal environment. Results show that in a minority of cases, loop geometries are dependent on crystal packing effects. Explicit representation of the crystal environment in a loop prediction algorithm can be used to model these effects and to reconstruct the structures, and relative energies, of a loop in alternative packing environments. By comparing prediction results with and without the inclusion of the crystal environment, the loop prediction algorithm can further be used to identify cases in which a crystal structure does not represent the most stable state of a loop in solution. We anticipate that this capability has implications for structural biology.

  3. Packing interface energetics in different crystal forms of the λ Cro dimer.

    Science.gov (United States)

    Ahlstrom, Logan S; Miyashita, Osamu

    2014-07-01

    Variation among crystal structures of the λ Cro dimer highlights conformational flexibility. The structures range from a wild type closed to a mutant fully open conformation, but it is unclear if each represents a stable solution state or if one may be the result of crystal packing. Here we use molecular dynamics (MD) simulation to investigate the energetics of crystal packing interfaces and the influence of site-directed mutagenesis on them in order to examine the effect of crystal packing on wild type and mutant Cro dimer conformation. Replica exchange MD of mutant Cro in solution shows that the observed conformational differences between the wild type and mutant protein are not the direct consequence of mutation. Instead, simulation of Cro in different crystal environments reveals that mutation affects the stability of crystal forms. Molecular Mechanics Poisson-Boltzmann Surface Area binding energy calculations reveal the detailed energetics of packing interfaces. Packing interfaces can have diverse properties in strength, energetic components, and some are stronger than the biological dimer interface. Further analysis shows that mutation can strengthen packing interfaces by as much as ∼5 kcal/mol in either crystal environment. Thus, in the case of Cro, mutation provides an additional energetic contribution during crystal formation that may stabilize a fully open higher energy state. Moreover, the effect of mutation in the lattice can extend to packing interfaces not involving mutation sites. Our results provide insight into possible models for the effect of crystallization on Cro conformational dynamics and emphasize careful consideration of protein crystal structures.

  4. An effective packing density of binary cubic crystals

    Science.gov (United States)

    Eremin, I. E.; Eremina, V. V.; Sychev, M. S.; Moiseenko, V. G.

    2015-04-01

    The methodology of effective macroscopic calculation of numerical values of internuclear distances in binary crystals of a cubic crystal system is based on the use of coefficients of the structural packing density of the crystal lattice. The possibility of combining the reference data on the main physicochemical parameters of the substance is implemented by synthesis of the corresponding mathematical models.

  5. Mechanical stability of ordered droplet packings in microfluidic channels

    Science.gov (United States)

    Fleury, Jean-Baptiste; Claussen, Ohle; Herminghaus, Stephan; Brinkmann, Martin; Seemann, Ralf

    2011-12-01

    The mechanical response and stability of one and two-row packing of monodisperse emulsion droplets are studied in quasi 2d microchannels under longitudinal compression. Depending on the choice of parameter, a considered droplet arrangement is either transformed continuously into another packing under longitudinal compression or becomes mechanically unstable and segregates into domains of higher and lower packing fraction. Our experimental results are compared to analytical calculations for 2d-droplet arrangements with good quantitative agreement. This study also predicts important consequences for the stability of droplet arrangements in flowing systems.

  6. Crystal packing in two pH-dependent crystal forms of rhamnogalacturonan acetylesterase

    DEFF Research Database (Denmark)

    Mølgaard, Anne; Larsen, S.

    2004-01-01

    The glycoprotein rhamnogalacturonan acetylesterase from Aspergillus aculeatus has been crystallized in two crystal forms, an orthorhombic and a trigonal crystal form. In the orthorhombic crystal form, the covalently bound carbohydrate at one of the two N-glycosylation sites is involved in crystal...... contacts. The orthorhombic crystal form was obtained at pH 5.0 and the trigonal crystal form at pH 4.5. In one case, the two crystal forms were found in the same drop at pH 4.7. The differences in crystal packing in the two crystal forms can be explained by the pH-dependent variation in the protonation...

  7. Stability of orientationally disordered crystal structures of colloidal hard dumbbells.

    Science.gov (United States)

    Marechal, Matthieu; Dijkstra, Marjolein

    2008-06-01

    We study the stability of orientationally disordered crystal phases in a suspension of colloidal hard dumbbells using Monte Carlo simulations. For dumbbell bond length L/sigmafcc structure for a large part of the stable plastic crystal regime. In addition, we study the stability of an orientationally disordered aperiodic crystal structure in which the spheres of the dumbbells are on a random-hexagonal-close-packed lattice, and the dumbbells are formed by taking random pairs of neighboring spheres. Using free-energy calculations, we determine the fluid-aperiodic crystal and periodic-aperiodic crystal coexistence regions for L/sigma>0.88 .

  8. Atom interaction propensities of oxygenated chemical functions in crystal packings

    Directory of Open Access Journals (Sweden)

    Christian Jelsch

    2017-03-01

    Full Text Available The crystal contacts of several families of hydrocarbon compounds substituted with one or several types of oxygenated chemical groups were analyzed statistically using the Hirshfeld surface methodology. The propensity of contacts to occur between two chemical types is described with the contact enrichment descriptor. The systematic large enrichment ratios of some interactions like the O—H...O hydrogen bonds suggests that these contacts are a driving force in the crystal packing formation. The same statement holds for the weaker C—H...O hydrogen bonds in ethers, esters and ketones, in the absence of polar H atoms. The over-represented contacts in crystals of oxygenated hydrocarbons are generally of two types: electrostatic attractions (hydrogen bonds and hydrophobic interactions. While Cl...O interactions are generally avoided, in a minority of chloro-oxygenated hydrocarbons, significant halogen bonding does occur. General tendencies can often be derived for many contact types, but outlier compounds are instructive as they display peculiar or rare features. The methodology also allows the detection of outliers which can be structures with errors. For instance, a significant number of hydroxylated molecules displaying over-represented non-favorable oxygen–oxygen contacts turned out to have wrongly oriented hydroxyl groups. Beyond crystal packings with a single molecule in the asymmetric unit, the behavior of water in monohydrate compounds and of crystals with Z′ = 2 (dimers are also investigated. It was found in several cases that, in the presence of several oxygenated chemical groups, cross-interactions between different chemical groups (e.g. water/alcohols; alcohols/phenols are often favored in the crystal packings. While some trends in accordance with common chemical principles are retrieved, some unexpected results can however appear. For example, in crystals of alcohol–phenol compounds, the strong O—H...O hydrogen bonds between

  9. Hydrogen Bonding: Between Strengthening the Crystal Packing and Improving Solubility of Three Haloperidol Derivatives

    Directory of Open Access Journals (Sweden)

    Hardeep Saluja

    2016-06-01

    Full Text Available The purpose of this study is to confirm the impact of polar functional groups on inter and intra-molecular hydrogen bonding in haloperidol (HP and droperidol (DP and, hence, their effects on dissolution using a new approach. To confirm our theory, a new molecule: deshydroxy-haloperidol (DHP was designed and its synthesis was requested from a contract laboratory. The molecule was then studied and compared to DP and HP. Unlike DHP, both the HP and DP molecules have hydrogen donor groups, therefore, DHP was used to confirm the relative effects of the hydrogen donor group on solubility and crystal packing. The solid dispersions of the three structurally related molecules: HP, DP, and DHP were prepared using PVPK30, and characterized using XRPD and IR. A comparative dissolution study was carried out in aqueous medium. The absence of a hydrogen bonding donor group in DHP resulted in an unexpected increase in its aqueous solubility and dissolution rate from solid dispersion, which is attributed to weaker crystal pack. The increased dissolution rate of HP and DP from solid dispersions is attributed to drug-polymer hydrogen bonding that interferes with the drug-drug intermolecular hydrogen bonding and provides thermodynamic stability of the dispersed drug molecules. The drug-drug intermolecular hydrogen bond is the driving force for precipitation and crystal packing.

  10. Effect of crystal packing on the structures of polymeric metallocenes.

    Science.gov (United States)

    Dinnebier, R E; van Smaalen, Sander; Olbrich, F; Carlson, S

    2005-02-21

    The pressure dependencies of the crystal structures of the polymeric metallocenes lithium cyclopentadienide (LiCp) and potassium cyclopentadienide (KCp) have been determined by synchrotron X-ray powder diffraction. The decrease of the volume of LiCp by 34% up to a pressure of p = 12.2 GPa and of KCp by 23% at p = 5.3 GPa as well as the bulk moduli of K = 7.7 GPa for LiCp and 4.9 GPa for KCp indicate a high compressibility for these compounds. The crystal structures of KCp have been determined up to p = 3.9 GPa. An increase of the bend angle is found from 45 degrees at p = 0 GPa up to 51 degrees at p = 3.9 GPa. This variation is completely explained by a model invoking attractive K+ Cp- interaction and repulsive nonbonded carbon-carbon interactions. It is proposed that the bend angle in the polymeric alkali metal metallocenes is the result of the optimization of the crystal packing.

  11. Polymorphism in two biologically active dihydropyrimidinium hydrochloride derivatives: quantitative inputs towards the energetics associated with crystal packing.

    Science.gov (United States)

    Panini, Piyush; Venugopala, K N; Odhav, Bharti; Chopra, Deepak

    2014-08-01

    A new polymorph belonging to the tetrahydropyrimidinium class of compounds, namely 6-(4-chlorophenyl)-5-(methoxycarbonyl)-4-methyl-2-(3-(trifluoromethylthio)phenylamino)-3,6-dihydropyrimidin-1-ium chloride, and a hydrate of 2-(3-bromophenylamino)-6-(4-chlorophenyl)-5-(methoxycarbonyl)-4-methyl-3,6-dihydropyrimidin-1-ium chloride, have been isolated and characterized using single-crystal X-ray diffraction (XRD). A detailed comprehensive analysis of the crystal packing in terms of the associated intermolecular interactions and a quantification of their interaction energies have been performed for both forms of the two different organic salts (A and B) using X-ray crystallography and computational methods such as density functional theory (DFT) quantum mechanical calculations, PIXEL lattice-energy calculations (with decomposition of total lattice energy into the Coulombic, polarization, dispersion and repulsion contribution), the calculation of the Madelung constant (the EUGEN method), Hirshfeld and two-dimensional fingerprint plots. The presence of ionic [N-H](+)···Cl(-) and [C-H](+)···Cl(-) hydrogen bonds mainly stabilizes the crystal packing in both forms A and B, while in the case of B·H2O [N-H](+)···O(water) and O(water)-H···Cl(-) hydrogen bonds along with [N-H](+)···Cl(-) and [C-H](+)···Cl(-) provide stability to the crystal packing. The lattice-energy calculations from both PIXEL and EUGEN methods revealed that in the case of A, form (I) (monoclinic) is more stable whereas for B it is the anhydrous form that is more stable. The analysis of the `Madelung mode' of crystal packing of two forms of A and B and its hydrates suggest that differences exist in the position of the charged ions/atoms in the organic solid state. The R/E (distance-energy) plots for all the crystal structures show that the molecular pairs in their crystal packing are connected with either highly stabilizing (due to the presence of organic R(+) and Cl(-)) or highly

  12. Temperature-mediated polymorphism in molecular crystals: The impact on crystal packing and charge transport

    KAUST Repository

    Stevens, Loah A.

    2015-01-13

    We report a novel synthesis to ultra high purity 7,14-bis((trimethylsilyl)ethynyl)dibenzo[b,def]-chrysene (TMS-DBC) and the use of this material in the growth of single crystals by solution and vapor deposition techniques. We observe that the substrate temperature has a dramatic impact on the crystal growth, producing two distinct polymorphs of TMS-DBC; low temperature (LT) fine red needles and high temperature (HT) large yellow platelets. Single crystal X-ray crystallography confirms packing structures where the LT crystals form a 1D slipped-stack structure, while the HT crystals adopt a 2D brickwork motif. These polymorphs also represent a rare example where both are extremely stable and do not interconvert to the other crystal structure upon solvent or thermal annealing. Single crystal organic field-effect transistors of the LT and HT crystals show that the HT 2D brickwork motif produces hole mobilities as high as 2.1 cm2 V-1 s-1, while the mobility of the 1D structure is significantly lower, at 0.028 cm2 V-1 s-1. Electronic-structure calculations indicate that the superior charge transport in the brickwork polymorph in comparison to the slipped-stack polymorph is due to the presence of an increased dimensionality of the charge migration pathways.

  13. On plastic flow in notched hexagonal close packed single crystals

    Science.gov (United States)

    Selvarajou, Balaji; Kondori, Babak; Benzerga, A. Amine; Joshi, Shailendra P.

    2016-09-01

    The micromechanics of anisotropic plastic flow by combined slip and twinning is investigated computationally in single crystal notched specimens. Constitutive relations for hexagonal close packed materials are used which take into account elastic anisotropy, thirty potential deformation systems, various hardening mechanisms and rate-sensitivity. The specimens are loaded perpendicular to the c-axis but the presence of a notch generates three-dimensional triaxial stress states. The study is motivated by recent experiments on a polycrystalline magnesium alloy. To enable comparisons with these where appropriate, three sets of activation thresholds for the various deformation systems are used. For the conditions that most closely mimic the alloy material, attention is focused on the relative roles of pyramidal and prismatic slip, as well as on the emergence of {1012bar}[101bar1] extension twinning at sufficiently high triaxiality. In all cases, the spatial variations of stress triaxiality and plastic strain, inclusive of various system activities, are quantified along with their evolution upon straining. The implications of these findings in fundamental understanding of ductile failure of HCP alloys in general and Mg alloys in particular are discussed.

  14. Stabilizing the hexagonal close packed structure of hard spheres with polymers: Phase diagram, structure, and dynamics

    Science.gov (United States)

    Edison, John R.; Dasgupta, Tonnishtha; Dijkstra, Marjolein

    2016-08-01

    We study the phase behaviour of a binary mixture of colloidal hard spheres and freely jointed chains of beads using Monte Carlo simulations. Recently Panagiotopoulos and co-workers predicted [Nat. Commun. 5, 4472 (2014)] that the hexagonal close packed (HCP) structure of hard spheres can be stabilized in such a mixture due to the interplay between polymer and the void structure in the crystal phase. Their predictions were based on estimates of the free-energy penalty for adding a single hard polymer chain in the HCP and the competing face centered cubic (FCC) phase. Here we calculate the phase diagram using free-energy calculations of the full binary mixture and find a broad fluid-solid coexistence region and a metastable gas-liquid coexistence region. For the colloid-monomer size ratio considered in this work, we find that the HCP phase is only stable in a small window at relatively high polymer reservoir packing fractions, where the coexisting HCP phase is nearly close packed. Additionally we investigate the structure and dynamic behaviour of these mixtures.

  15. Stability of Satellites in Closely Packed Planetary Systems

    CERN Document Server

    Payne, Matthew J; Holman, Matthew J; Perets, Hagai B

    2013-01-01

    We perform numerical integrations of four-body (star, planet, planet, satellite) systems to investigate the stability of satellites in planetary Systems with Tightly-packed Inner Planets (STIPs). We find that the majority of closely-spaced stable two-planet systems can stably support satellites across a range of parameter-space which is only slightly decreased compared to that seen for the single-planet case. In particular, circular prograde satellites remain stable out to $\\sim 0.4 R_H$ (where $R_H$ is the Hill Radius) as opposed to $\\sim 0.5 R_H$ in the single-planet case. A similarly small restriction in the stable parameter-space for retrograde satellites is observed, where planetary close approaches in the range 2.5 to 4.5 mutual Hill radii destabilize most satellites orbits only if $a\\sim 0.65 R_H$. In very close planetary pairs (e.g. the 12:11 resonance) the addition of a satellite frequently destabilizes the entire system, causing extreme close-approaches and the loss of satellites over a range of cir...

  16. Can Crystal Symmetry and Packing Influence the Active Site Conformation of Homohexameric Purine Nucleoside Phosphorylases?

    Directory of Open Access Journals (Sweden)

    Marija Luić

    2016-06-01

    Full Text Available It is generaly believed that enzymes retain most of their functionality in the crystal form due to the large solvent content of protein crystals. This is facilitated by the fact that their natural environment in solution is not too far from the one found in the crystal form. Nevertheless, if the nature of the enzyme is such to require conformational changes, overcoming of the crystal packing constraints may prove to be too difficult. Such conformational change is present in one class of enzymes (purine nucleoside phosphorylases, that is the subject of our scientific interest for many years. The influence of crystal symmetry and crystal packing on the conformation of the active sites in the case of homohexameric purine nucleoside phosphorylases is presented and analysed. This work is licensed under a Creative Commons Attribution 4.0 International License.

  17. Substituent effect on the thermodynamic solubility of structural analogs: relative contribution of crystal packing and hydration.

    Science.gov (United States)

    Ozaki, Shunsuke; Nakagawa, Yoshiaki; Shirai, Osamu; Kano, Kenji

    2014-11-01

    Thermodynamic analysis of the solubility of benzoylphenylurea (BPU) derivatives was conducted to investigate the relative importance of crystal packing and hydration for improving solubility with minor structural modification. The contribution of crystal packing to solubility was evaluated from the change in Gibbs energy on the transition from the crystalline to liquid state. Hydration Gibbs energy was estimated using a linear free-energy relationship between octanol-water partition coefficients and gas-water partition coefficients. The established solubility model satisfactorily explained the relative thermodynamic solubility of the model compounds and revealed that crystal packing and hydration equally controlled solubility of the structural analogs. All hydrophobic substituents were undesirable for solubility in terms of hydration, as expected. On the other hand, some of these hydrophobic substituents destabilized crystal packing and improved the solubility of the BPU derivatives when their impact on crystal packing exceeded their negative influence on hydration. The replacement of a single substituent could cause more than a 10-fold enhancement in thermodynamic solubility; this degree of improvement was comparable to that generally achieved by amorphous formulations. Detailed analysis of thermodynamic solubility will allow us to better understand the true substituent effect and design drug-like candidates efficiently.

  18. Polyhedral (in-)stability of protein crystals

    Science.gov (United States)

    Nanev, Christo N.; Penkova, Anita N.

    2002-04-01

    The polyhedral (in-)stability of monoclinic hen-egg white lysozyme (HEWL) crystals, grown by means of PEG-6000, and that of orthorhombic trypsin crystals has been investigated experimentally. On the basis of a quantitative theoretical analysis, it is compared with the polyhedral (in-)stability of tetragonal HEWL and cubic ferritin crystals. The unambiguous conclusion is that the phenomenon is due to the diffusive supply of matter. This conclusion is also supported by the fact that the phenomenon has common features for both proteins and small molecular crystals.

  19. Solution Coating of Superior Large-Area Flexible Perovskite Thin Films with Controlled Crystal Packing

    KAUST Repository

    Li, Jianbo

    2017-05-08

    Solution coating of organohalide lead perovskites offers great potential for achieving low-cost manufacturing of large-area flexible optoelectronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of crystal packing. Herein, this study reports using solution shearing to confine crystal nucleation and growth in large-area printed MAPbI3 thin films. Near single-crystalline perovskite microarrays are demonstrated with a high degree of controlled macroscopic alignment and crystal orientation, which exhibit significant improvements in optical and optoelectronic properties comparing with their random counterparts, spherulitic, and nanograined films. In particular, photodetectors based on the confined films showing intense anisotropy in charge transport are fabricated, and the device exhibits significantly improved performance in all aspects by one more orders of magnitude relative to their random counterparts. It is anticipated that perovskite films with controlled crystal packing may find applications in high-performance, large-area printed optoelectronics, and solar cells.

  20. Tetrel Bonds in Infinite Molecular Chains by Electronic Structure Theory and Their Role for Crystal Stabilization.

    Science.gov (United States)

    George, Janine; Dronskowski, Richard

    2017-02-16

    Intermolecular bonds play a crucial role in the rational design of crystal structures, dubbed crystal engineering. The relatively new term tetrel bonds (TBs) describes a long-known type of such interactions presently in the focus of quantum chemical cluster calculations. Here, we energetically explore the strengths and cooperativity of these interactions in infinite chains, a possible arrangement of such tetrel bonds in extended crystals, by periodic density functional theory. In the chains, the TBs are amplified due to cooperativity by up to 60%. Moreover, we computationally take apart crystals stabilized by infinite tetrel-bonded chains and assess the importance of the TBs for the crystal stabilization. Tetrel bonds can amount to 70% of the overall interaction energy within some crystals, and they can also be energetically decisive for the taken crystal structure; their individual strengths also compete with the collective packing within the crystal structures.

  1. A novel opal closest-packing photonic crystal for naked-eye glucose detection.

    Science.gov (United States)

    Hong, Xiaodi; Peng, Yuan; Bai, Jialei; Ning, Baoan; Liu, Yuanyuan; Zhou, Zhijiang; Gao, Zhixian

    2014-04-09

    A novel opal closest-packing (OCP) photonic crystal (PC) is successfully prepared for naked-eye glucose detection. This PC is fabricated via a vertical convective self-assembly method with a new type of monodisperse microsphere polymerized by co-monomers, namely, methyl methacrylate (MMA), N-isopropylacrylamide (NIPA), and 3-acrylamidophenylboronic acid (AAPBA). The OCP PC has high stability and periodically-ordered structure, showing the desired structural color. The proposed PC material displays a red shift and reduced reflection intensity when detecting glucose molecules. The red-shift wavelength reaches 75 nm, which clearly changes the structural color from brilliant blue to emerald green. This visually distinguishable color change facilitates the detection of the glucose concentrations from 3 to 20 mm, which demonstrates the potential of the opal PC material for naked-eye detection. Thus, the novel PMMA–NIPA–AAPBA OCP PC is a simply prepared and sensitive material, which shows promising use in the diagnosis of diabetes mellitus and in real-time monitoring of diabetes. Different types of appropriated recognition groups are expected to be introduced into the 3D OCP PC to form new functional materials or chemical sensors, which will extensively broaden the PC material application.

  2. Low-density crystal packing of human protein kinase CK2 catalytic subunit in complex with resorufin or other ligands

    DEFF Research Database (Denmark)

    Klopffleisch, Karsten; Issinger, Olaf Georg; Niefind, Karsten

    2012-01-01

    adopts a closed conformation correlating to a canonically established catalytic spine as is typical for eukaryotic protein kinases. In the corresponding crystal packing the hinge/helix αD region is nearly unaffected by crystal contacts, so that largely unbiased conformational adaptions are possible....... This is documented by published human CK2α structures with the same crystal packing but with an open hinge/helix αD region, one of which has been redetermined here with a higher symmetry. An overview of all published human CK2α crystal packings serves as the basis for a discussion of the factors that determine...

  3. A Machine Learns to Predict the Stability of Tightly Packed Planetary Systems

    Science.gov (United States)

    Tamayo, Daniel; Silburt, Ari; Valencia, Diana; Menou, Kristen; Ali-Dib, Mohamad; Petrovich, Cristobal; Huang, Chelsea X.; Rein, Hanno; van Laerhoven, Christa; Paradise, Adiv; Obertas, Alysa; Murray, Norman

    2016-12-01

    The requirement that planetary systems be dynamically stable is often used to vet new discoveries or set limits on unconstrained masses or orbital elements. This is typically carried out via computationally expensive N-body simulations. We show that characterizing the complicated and multi-dimensional stability boundary of tightly packed systems is amenable to machine-learning methods. We find that training an XGBoost machine-learning algorithm on physically motivated features yields an accurate classifier of stability in packed systems. On the stability timescale investigated (107 orbits), it is three orders of magnitude faster than direct N-body simulations. Optimized machine-learning classifiers for dynamical stability may thus prove useful across the discipline, e.g., to characterize the exoplanet sample discovered by the upcoming Transiting Exoplanet Survey Satellite. This proof of concept motivates investing computational resources to train algorithms capable of predicting stability over longer timescales and over broader regions of phase space.

  4. A Machine Learns to Predict the Stability of Tightly Packed Planetary Systems

    CERN Document Server

    Tamayo, Daniel; Valencia, Diana; Menou, Kristen; Ali-Dib, Mohamad; Petrovich, Cristobal; Huang, Chelsea X; Rein, Hanno; van Laerhoven, Christa; Paradise, Adiv; Obertas, Alysa; Murray, Norman

    2016-01-01

    The requirement that planetary systems be dynamically stable is often used to vet new discoveries or set limits on unconstrained masses or orbital elements. This is typically carried out via computationally expensive N-body simulations. We show that characterizing the complicated and multi-dimensional stability boundary of tightly packed systems is amenable to machine learning methods. We find that training a state-of-the-art machine learning algorithm on physically motivated features yields an accurate classifier of stability in packed systems. On the stability timescale investigated ($10^7$ orbits), it is 3 orders of magnitude faster than direct N-body simulations. Optimized machine learning classifiers for dynamical stability may thus prove useful across the discipline, e.g., to characterize the exoplanet sample discovered by the upcoming Transiting Exoplanet Survey Satellite (TESS).

  5. Stability of melt crystal growth under microgravity conditions

    Science.gov (United States)

    Tatarchenko, V. A.

    The conception of dynamic stability of melt crystal growth has been developed. The method based on the Lyapunov stability theory has been used to the study stability of crystallization by capillary shaping techniques including Czokhralsky, Stepanov, Kiropoulos, Verneuil and floating zone methods. Preliminary results of the stability analysis of crystallization by floating zone technique under microgravity conditions are presented here.

  6. Temperature stabilization of optofluidic photonic crystal cavities

    DEFF Research Database (Denmark)

    Kamutsch, Christian; Smith, Cameron L.C.; Graham, Alexandra;

    2009-01-01

    We present a principle for the temperature stabilization of photonic crystal (PhC) cavities based on optofluidics. We introduce an analytic method enabling a specific mode of a cavity to be made wavelength insensitive to changes in ambient temperature. Using this analysis, we experimentally demon...

  7. Packing schemes of cavities in selected clathrasils and zeolites and the analogous packings of atoms in crystal structures

    DEFF Research Database (Denmark)

    Hem, Caroline Piper; Makovicky, Emil; Balic Zunic, Tonci

    2010-01-01

    Sizes of cavities and their packing schemes in selected zeolites and clathrasils were studied by means of least squares fitting of circumscribed spheres to them. Resulting packing of spheres of different diameters was analyzed by the coordinates of their centers, their volumes and sphericity...

  8. Packing schemes of cavities in selected clathrasils and zeolites and the analogous packings of atoms in crystal structures

    DEFF Research Database (Denmark)

    Hem, Caroline Piper; Makovicky, Emil; Balic Zunic, Tonci

    2010-01-01

    Sizes of cavities and their packing schemes in selected zeolites and clathrasils were studied by means of least squares fitting of circumscribed spheres to them. Resulting packing of spheres of different diameters was analyzed by the coordinates of their centers, their volumes and sphericity, and...

  9. Close-packed polymer crystals from two-monomer-connected precursors

    Science.gov (United States)

    Lee, Hong-Joon; Jo, Yong-Ryun; Kumar, Santosh; Yoo, Seung Jo; Kim, Jin-Gyu; Kim, Youn-Joong; Kim, Bong-Joong; Lee, Jae-Suk

    2016-09-01

    The design of crystalline polymers is intellectually stimulating and synthetically challenging, especially when the polymerization of any monomer occurs in a linear dimension. Such linear growth often leads to entropically driven chain entanglements and thus is detrimental to attempts to realize the full potential of conjugated molecular structures. Here we report the polymerization of two-monomer-connected precursors (TMCPs) in which two pyrrole units are linked through a connector, yielding highly crystalline polymers. The simultaneous growth of the TMCP results in a close-packed crystal in polypyrrole (PPy) at the molecular scale with either a hexagonal close-packed or face-centred cubic structure, as confirmed by high-voltage electron microscopy, and the structure that formed could be controlled by simply changing the connector. The electrical conductivity of the TMCP-based PPy is almost 35 times that of single-monomer-based PPy, demonstrating its promise for application in diverse fields.

  10. Interrelation between crystal packing and small-molecule organic solar cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, Roland; Reinold, Egon; Mena-Osteritz, Elena; Baeuerle, Peter [Institut fuer Organische Chemie II und Neue Materialien, Universitaet Ulm (Germany); Elschner, Chris; Koerner, Christian; Riede, Moritz; Leo, Karl [Institut fuer Angewandte Photophysik, TU Dresden (Germany); Weil, Matthias [Institut fuer Chemische Technologien und Analytik, Abteilung Strukturchemie, TU Wien, Vienna (Austria); Uhrich, Christian; Pfeiffer, Martin [Heliatek GmbH, Dresden (Germany)

    2012-02-02

    X-ray investigations on single crystals of a series of terminally dicyanovinyl-substituted quaterthiophenes and co-evaporated blend layers with C{sub 60} give insight into molecular packing behavior and morphology, which are crucial parameters in the field of organic electronics. Structural characteristics on various levels and length scales are correlated with the photovoltaic performance of bulk heterojunction small-molecule organic solar cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Probing crystal packing of uniformly (13)C-enriched powder samples using homonuclear dipolar coupling measurements.

    Science.gov (United States)

    Mollica, Giulia; Dekhil, Myriam; Ziarelli, Fabio; Thureau, Pierre; Viel, Stéphane

    2015-02-01

    The relationship between the crystal packing of powder samples and long-range (13)C-(13)C homonuclear dipolar couplings is presented and illustrated for the case of uniformly (13)C-enriched L-alanine and L-histidine·HCl·H2O. Dipolar coupling measurement is based on the partial reintroduction of dipolar interactions by spinning the sample slightly off-magic-angle, while the coupling of interest for a given spin pair is isolated with a frequency-selective pulse. A cost function is used to correlate the so-derived dipolar couplings to trial crystal structures of the samples under study. This procedure allowed for the investigation of the l-alanine space group and L-histidine·HCl·H2O space group and unit-cell parameters.

  12. Taxol crystals can masquerade as stabilized microtubules.

    Directory of Open Access Journals (Sweden)

    Margit Foss

    Full Text Available Taxol is a potent anti-mitotic drug used in chemotherapy, angioplastic stents, and cell biology research. By binding and stabilizing microtubules, Taxol inhibits their dynamics, crucial for cell division, motility, and survival. The drug has also been reported to induce formation of asters and bundles composed of stabilized microtubules. Surprisingly, at commonly used concentrations, Taxol forms crystals that rapidly bind fluorescent tubulin subunits, generating structures with an uncanny resemblance to microtubule asters and bundles. Kinetic and topological considerations suggest that tubulin subunits, rather than microtubules, bind the crystals. This sequestration of tubulin from the subunit pool would be expected to shift the equilibrium of free to polymerized tubulin to disfavor assembly. Our results imply that some previously reported Taxol-induced asters or bundles could include or be composed of tubulin-decorated Taxol crystals. Thus, reevaluation of certain morphological, chemical, and physical properties of Taxol-treated microtubules may be necessary. Moreover, our findings suggest a novel mechanism for chemotherapy-induced cytotoxicity in non-dividing cells, with far-reaching medical implications.

  13. Absolute configuration and crystal packing for three chiral drugs prone to spontaneous resolution: Guaifenesin, methocarbamol and mephenesin

    Science.gov (United States)

    Bredikhin, Alexander A.; Gubaidullin, Aidar T.; Bredikhina, Zemfira A.; Krivolapov, Dmitry B.; Pashagin, Alexander V.; Litvinov, Igor A.

    2009-02-01

    Popular chiral drugs, guaifenesin, methocarbamol, and mephenesin were investigated by single-crystal X-ray analysis both for enantiopure and racemic samples. The absolute configurations for all substances were established through Flack parameter method. The conglomerate-forming nature for the compounds was confirmed by equivalence of crystal characteristics of enantiopure and racemic samples. The molecular structures and crystal packing details were evaluated and compared with one another for all three investigated substances.

  14. Differential Effects of Hydrophobic Core Packing Residues for Thermodynamic and Mechanical Stability of a Hyperthermophilic Protein.

    Science.gov (United States)

    Tych, Katarzyna M; Batchelor, Matthew; Hoffmann, Toni; Wilson, Michael C; Hughes, Megan L; Paci, Emanuele; Brockwell, David J; Dougan, Lorna

    2016-07-26

    Proteins from organisms that have adapted to environmental extremes provide attractive systems to explore and determine the origins of protein stability. Improved hydrophobic core packing and decreased loop-length flexibility can increase the thermodynamic stability of proteins from hyperthermophilic organisms. However, their impact on protein mechanical stability is not known. Here, we use protein engineering, biophysical characterization, single-molecule force spectroscopy (SMFS), and molecular dynamics (MD) simulations to measure the effect of altering hydrophobic core packing on the stability of the cold shock protein TmCSP from the hyperthermophilic bacterium Thermotoga maritima. We make two variants of TmCSP in which a mutation is made to reduce the size of aliphatic groups from buried hydrophobic side chains. In the first, a mutation is introduced in a long loop (TmCSP L40A); in the other, the mutation is introduced on the C-terminal β-strand (TmCSP V62A). We use MD simulations to confirm that the mutant TmCSP L40A shows the most significant increase in loop flexibility, and mutant TmCSP V62A shows greater disruption to the core packing. We measure the thermodynamic stability (ΔGD-N) of the mutated proteins and show that there is a more significant reduction for TmCSP L40A (ΔΔG = 63%) than TmCSP V62A (ΔΔG = 47%), as might be expected on the basis of the relative reduction in the size of the side chain. By contrast, SMFS measures the mechanical stability (ΔG*) and shows a greater reduction for TmCSP V62A (ΔΔG* = 8.4%) than TmCSP L40A (ΔΔG* = 2.5%). While the impact on the mechanical stability is subtle, the results demonstrate the power of tuning noncovalent interactions to modulate both the thermodynamic and mechanical stability of a protein. Such understanding and control provide the opportunity to design proteins with optimized thermodynamic and mechanical properties.

  15. Effect of the packing structure of silicon chunks on the melting process and carbon reduction in Czochralski silicon crystal growth

    Science.gov (United States)

    Liu, Xin; Nakano, Satoshi; Kakimoto, Koichi

    2017-06-01

    Carbon (C) contamination in Czochralski silicon (CZ-Si) crystal growth mainly originates from carbon monoxide (CO) generation on the graphite components, which reaches a maximum during the melting stage. Loading a crucible with poly-Si feedstock includes many technical details for optimization of the melting and growth processes. To investigate the effect of the packing structure of Si chunks on C accumulation in CZ-Si crystal growth, transient global simulations of heat and mass transport were performed for the melting process with different packing structures of poly-Si. The heat transport modeling took into account the effective thermal conductivity (ETC) of the Si feedstock, which is affected by the packing structure. The effect of the chunk size on the melting process and C accumulation were investigated by parametric studies of different packing structures. The heat transport and melting process in the crucible were affected by the ETC and the emissivity of the Si feedstock. It was found that smaller Si chunks packed in the upper part could speed up the melting process and smooth the power profile. Decreasing the duration of the melting process is favorable for reduction of C contamination in the Si feedstock. Parametric studies indicated that optimization of the melting process by the packing structure is possible and essential for C reduction in CZ-Si crystal growth.

  16. Evaluation of Physicochemical, Microbiological and Sensory Stability of Frozen Stored Vacuum-Packed Lamb Meat

    Institute of Scientific and Technical Information of China (English)

    Rafaella de Paula Paseto Fernandes; Maria Teresa de Alvarenga Freire; Celso da Costa Carrer; Marco Antonio Trindade

    2013-01-01

    Nowadays, lamb meat represents only 7% of all meat produced in the world. In recent years the demand for standardized lamb meat cuts has been considered of great importance and the marketing occurs predominantly in the form of frozen cuts. Herewith, the main of this work was to evaluate the stability and safety of lamb meat during frozen storage. Meats were vacuum packed in high barrier multilayer plastic iflms and stored during 12 mon at (-18±1)ºC. The meat stability was assessed by physical and chemical (lipid oxidation, objective color, pH value, cooking losses and instrumental texture), microbiological (total count of psychrotrophic, coliform count at 45°C, coagulase-positive staphylococci and the presence of Salmonella) and sensory analysis (acceptance test and visual evaluation). The vacuum packed lamb meat remained stable as to most physical and chemical indexes. Microbiological indexes showed good stability throughout the storage period according to Brazilian legislation standards to pathogenic microorganisms. Although a signiifcant reduction in tenderness (shear force increase from 3 to 8 kg), it showed a good sensorial acceptance for all attributes tested, including texture, with scores of around 7 (like moderately) during the 12 mon of storage. Therefore, it can be concluded that, under the conditions applied in this study, lamb meat presents a shelf life of at least 12 mon when stored at-18°C.

  17. Two-phase modelling of equiaxed crystal sedimentation and thermomechanic stress development in the sedimented packed bed

    Science.gov (United States)

    Ludwig, A.; Vakhrushev, A.; Holzmann, T.; Wu, M.; Kharicha, A.

    2015-06-01

    During many industrial solidification processes equiaxed crystals form, grow and move. When those crystals are small they are carried by the melt, whereas when getting larger they sediment. As long as the volume fraction of crystals is below the packing limit, they are able to move relatively free. Crystals being backed in a so called packed bed form a semi-solid slurry, which may behave like a visco-plastic material. In addition, cooling-induced density increase of both, liquid and solid phases might lead to shrinkage of the whole casting domain. So deformation happens and gaps between casting and mold occur. In the present work, a two-phase Eulerian-Eulerian volume averaging model for describing the motion of equiaxed crystals in the melt is combined with a similar two-phase model for describing the dynamic of the packed bed. As constitutive equation for the solid skeleton in the packed bed Norton-Hoff law is applied. Shrinkage induced by density changes in the liquid or the solid phase is explicitly taken into account and handled by remeshing the calculation domain accordantly.

  18. Organic Semiconductor-Containing Supramolecules: Effect of Small Molecule Crystallization and Molecular Packing

    KAUST Repository

    Rancatore, Benjamin J.

    2016-01-21

    © 2016 American Chemical Society. Small molecules (SMs) with unique optical or electronic properties provide an opportunity to incorporate functionality into block copolymer (BCP)-based supramolecules. However, the assembly of supramolecules based on these highly crystalline molecules differs from their less crystalline counterparts. Here, two families of organic semiconductor SMs are investigated, where the composition of the crystalline core, the location (side- vs end-functionalization) of the alkyl solubilizing groups, and the constitution (branched vs linear) of the alkyl groups are varied. With these SMs, we present a systematic study of how the phase behavior of the SMs affects the overall assembly of these organic semiconductor-based supramolecules. The incorporation of SMs has a large effect on the interfacial curvature, the supramolecular periodicity, and the overall supramolecular morphology. The crystal packing of the SM within the supramolecule does not necessarily lead to the assembly of the comb block within the BCP microdomains, as is normally observed for alkyl-containing supramolecules. An unusual lamellar morphology with a wavy interface between the microdomains is observed due to changes in the packing structure of the small molecule within BCP microdomains. Since the supramolecular approach is modular and small molecules can be readily switched out, present studies provide useful guidance toward access supramolecular assemblies over several length scales using optically active and semiconducting small molecules.

  19. The body-centered cubic structure of methyllithium tetramer crystal: staggered methyl conformation by electrostatic stabilization via intratetramer multipolarization.

    Science.gov (United States)

    Ohta, Yusuke; Demura, Akimitsu; Okamoto, Takuya; Hitomi, Haruko; Nagaoka, Masataka

    2006-06-29

    The methyllithium tetramer (CH3Li)4 structure in the bcc crystal has been theoretically optimized with the use of density functional theory calculations under the periodic boundary condition. The X-ray structure shows that the methyl-group conformation in tetramer in crystal takes the staggered form rather than the eclipsed form that is taken in the isolated tetramer, i.e., the crystal packing effect, and this has been reproduced for the first time. It is concluded that the staggered form is advantageous in crystal, as a whole, due to the larger electrostatic stabilization via the induced intratetramer multipolarization, although it should cause, simultaneously, smaller destabilization in intratetramer electronic energy.

  20. Modulating two-dimensional non-close-packed colloidal crystal arrays by deformable soft lithography.

    Science.gov (United States)

    Li, Xiao; Wang, Tieqiang; Zhang, Junhu; Yan, Xin; Zhang, Xuemin; Zhu, Difu; Li, Wei; Zhang, Xun; Yang, Bai

    2010-02-16

    We report a simple method to fabricate two-dimensional (2D) periodic non-close-packed (ncp) arrays of colloidal microspheres with controllable lattice spacing, lattice structure, and pattern arrangement. This method combines soft lithography technique with controlled deformation of polydimethylsiloxane (PDMS) elastomer to convert 2D hexagonal close-packed (hcp) silica microsphere arrays into ncp ones. Self-assembled 2D hcp microsphere arrays were transferred onto the surface of PDMS stamps using the lift-up technique, and then their lattice spacing and lattice structure could be adjusted by solvent swelling or mechanical stretching of the PDMS stamps. Followed by a modified microcontact printing (microcp) technique, the as-prepared 2D ncp microsphere arrays were transferred onto a flat substrate coated with a thin film of poly(vinyl alcohol) (PVA). After removing the PVA film by calcination, the ncp arrays that fell on the substrate without being disturbed could be lifted up, deformed, and transferred again by another PDMS stamp; therefore, the lattice feature could be changed step by step. Combining isotropic solvent swelling and anisotropic mechanical stretching, it is possible to change hcp colloidal arrays into full dimensional ncp ones in all five 2D Bravais lattices. This deformable soft lithography-based lift-up process can also generate patterned ncp arrays of colloidal crystals, including one-dimensional (1D) microsphere arrays with designed structures. This method affords opportunities and spaces for fabrication of novel and complex structures of 1D and 2D ncp colloidal crystal arrays, and these as-prepared structures can be used as molds for colloidal lithography or prototype models for optical materials.

  1. Irradiated vacuum-packed lamb meat stored under refrigeration: microbiology, physicochemical stability and sensory acceptance.

    Science.gov (United States)

    Fregonesi, R P; Portes, R G; Aguiar, A M M; Figueira, L C; Gonçalves, C B; Arthur, V; Lima, C G; Fernandes, A M; Trindade, M A

    2014-06-01

    Reducing spoilage and indicator bacteria is important for microbiological stability in meat and meat products. The objective was to evaluate the effect of different doses of gamma radiation on the shelf-life of lamb meat, vacuum-packed and stored under refrigeration, by assessing the microbiological safety, physicochemical stability and sensory quality. Lamb loin cuts (Longissimus dorsi) were irradiated with 1.5kGy and 3.0kGy. The samples, including control, were stored at 1±1°C during 56days. Samples were analyzed on zero, 14, 28, 42 and 56days by their microbiological and physicochemical characteristics. Sensory quality was carried out on day zero. The results showed a reduction (p0.05) by the radiation doses. Thus gamma irradiation at 3.0kGy was effective in reducing the content of microorganisms, without harming the physicochemical characteristics evaluated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Heat Sinking, Cross Talk, and Temperature Stability for Large, Close-Packed Arrays of Microcalorimeters

    Science.gov (United States)

    Imoto, Naoko; Bandler, SImon; Brekosky, Regis; Chervenak, James; Figueroa-Felicano, Enectali; Finkbeiner, Frederick; Kelley, Richard; Kilbourne, Caroline; Porter, Frederick; Sadleir, Jack; Smith, Stephen

    2007-01-01

    We are developing large, close-packed arrays of x-ray transition-edge sensor (TES) microcalorimeters. In such a device, sufficient heat sinking is important to to minimize thermal cross talk between pixels and to stabilize the bath temperature for all pixels. We have measured cross talk on out 8 x 8 arrays and studied the shape and amount of thermal crosstalk as a function of pixel location and efficiency of electrothermal feedback. In this presentation, we will compare measurements made on arrays with and without a backside, heat-sinking copper layer, as well as results of devices on silicon-nitride membranes and on solid substrates, and we will discuss the implications for energy resolution and maximum count rate. We will also discuss the dependence of pulse height upon bath temperature, and the measured and required stability of the bath temperature.

  3. Crystal structures of two bis-(iodo-meth-yl)benzene derivatives: similarities and differences in the crystal packing.

    Science.gov (United States)

    McAdam, C John; Hanton, Lyall R; Moratti, Stephen C; Simpson, Jim

    2015-12-01

    The isomeric derivatives 1,2-bis-(iodo-meth-yl)benzene, (I), and 1,3-bis-(iodo-meth-yl)benzene (II), both C8H8I2, were prepared by metathesis from their di-bromo analogues. The ortho-derivative, (I), lies about a crystallographic twofold axis that bis-ects the C-C bond between the two iodo-methyl substituents. The packing in (I) relies solely on C-H⋯I hydrogen bonds supported by weak parallel slipped π-π stacking inter-actions [inter-centroid distance = 4.0569 (11) Å, inter-planar distance = 3.3789 (8) Å and slippage = 2.245 Å]. While C-H⋯I hydrogen bonds are also found in the packing of (II), type II, I⋯I halogen bonds [I⋯I = 3.8662 (2) Å] and C-H⋯π contacts feature prominently in stabilizing the three-dimensional structure.

  4. Steric stabilization of nonaqueous silicon slips. I - Control of particle agglomeration and packing. II - Pressure casting of powder compacts

    Science.gov (United States)

    Kerkar, Awdhoot V.; Henderson, Robert J. M.; Feke, Donald L.

    1990-01-01

    The application of steric stabilization to control particle agglomeration and packing of silicon powder in benzene and trichloroethylene is reported. The results provide useful guidelines for controlling unfavorable particle-particle interactions during nonaqueous processing of silicon-based ceramic materials. The application of steric stabilization to the control and improvement of green processing of nonaqueous silicon slips in pressure consolidation is also demonstrated.

  5. Double hexagonal close-packed structure revealed in a single colloidal crystal grain by Bragg rod analysis

    NARCIS (Netherlands)

    Meijer, J. M.; Shabalin, A.; Dronyak, R.; Yefanov, O. M.; Singer, A.; Kurta, R. P.; Lorenz, U.; Gorobstov, O.; Dzhigaev, D.; Gulden, J.; Byelov, D. V.; Zozulya, A. V.; Sprung, M.; Vartanyants, I. A.; Petukhov, Andrei V.

    2014-01-01

    A coherent X-ray diffraction study of a single colloidal crystal grain composed of silica spheres is reported. The diffraction data contain Bragg peaks and additional features in the form of Bragg rods, which are related to the stacking of the hexagonally close-packed layers. The profile of the Brag

  6. The fourth crystallographic closest packing unveiled in the gold nanocluster crystal

    Science.gov (United States)

    Gan, Zibao; Chen, Jishi; Wang, Juan; Wang, Chengming; Li, Man-Bo; Yao, Chuanhao; Zhuang, Shengli; Xu, An; Li, Lingling; Wu, Zhikun

    2017-03-01

    Metal nanoclusters have recently attracted extensive interest not only for fundamental scientific research, but also for practical applications. For fundamental scientific research, it is of major importance to explore the internal structure and crystallographic arrangement. Herein, we synthesize a gold nanocluster whose composition is determined to be Au60S6(SCH2Ph)36 by using electrospray ionization mass spectrometry and single crystal X-ray crystallography (SCXC). SCXC also reveals that Au60S6(SCH2Ph)36 consists of a fcc-like Au20 kernel protected by a pair of giant Au20S3(SCH2Ph)18 staple motifs, which contain 6 tetrahedral-coordinate μ4-S atoms not previously reported in the Au-S interface. Importantly, the fourth crystallographic closest-packed pattern, termed 6H left-handed helical (6HLH) arrangement, which results in the distinct loss of solid photoluminescence of amorphous Au60S6(SCH2Ph)36, is found in the crystals of Au60S6(SCH2Ph)36. The solvent-polarity-dependent solution photoluminescence is also demonstrated. Overall, this work provides important insights about the structure, Au-S bonding and solid photoluminescence of gold nanoclusters.

  7. Stability of Disclinations in Nematic Liquid Crystals

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-Sheng; YANG Guo-Hong; TIAN Li-Jun; DUAN Yi-Shi

    2006-01-01

    In the light of φ-mapping method and topological current theory, the stability of disclinations around a spherical particle in nematic liquid crystals is studied. We consider two different defect structures around a spherical particle: disclination ring and point defect at the north or south pole of the particle. We calculate the free energy of these different defects in the elastic theory. It is pointed out that the total Frank free energy density can be divided into two parts. One is the distorted energy density of director field around the disclinations. The other is the free energy density of disclinations themselves, which is shown to be concentrated at the defect and to be topologically quantized in the unit of (k -k24)π/2. It is shown that in the presence of saddle-splay elasticity a dipole (radial and hyperbolic hedgehog) configuration that accompanies a particle with strong homeotropic anchoring takes the structure of a small disclination ring, not a point defect.

  8. Fabrication of size-controllable hexagonal non-close-packed colloidal crystals and binary colloidal crystals by pyrolysis combined with plasma-electron coirradiation of polystyrene colloidal monolayer.

    Science.gov (United States)

    Kim, Jae Joon; Li, Yue; Lee, Eun Je; Cho, Sung Oh

    2011-03-15

    We present an unprecedented and systematic route to controllably fabricate hexagonal non-close-packed (hncp) monolayer colloidal crystals and binary colloidal crystals (BCCs) based on plasma-electron coirradiation of polystyrene colloidal monolayers followed by thermal decomposition. Hncp colloidal crystals with tunable particle sizes and periods could be fabricated by changing the pristine colloidal particle size and the thermal decomposition time. In addition, BCCs and trimodal colloidal crystals that are composed of different-sized colloidal particles can also be fabricated by adding small particles on the prepared hncp colloidal crystals. Both the particle size ratio and the volume fraction of the BCCs can be widely tuned. These hncp colloidal crystals and BCCs have various potential applications as optical and photonic materials as well as in catalysis and sensors.

  9. Insight to the thermodynamic stability of molecular crystals through crystallographic studies of a multipolymorph system.

    Science.gov (United States)

    Ng, Alicia T; Lai, Chiajen; Dabros, Marta; Gao, Qi

    2014-11-01

    Five solvent-free polymorphs of a pharmaceutical compound were discovered during polymorph screening. Out of the five polymorphs, only one has strong intermolecular N-H···N hydrogen bonding, whereas the others exhibit only weak C-H···N and π-π stacking interactions in addition to all the other weak C-H···X and van der Waals interactions. The relative thermodynamic stability relationships among the polymorphs are not intuitive and quite complex due to enantiotropic phase behavior. For instance, the polymorph with the most efficient packing (i.e., highest density) is not always the most thermodynamically stable form, and the polymorph with strong intermolecular interactions is not thermodynamically more stable than the polymorph with weak intermolecular interactions at all temperatures. Nevertheless, systematic examination and comparison of the molecular packing and intermolecular interactions of these polymorphs provide insight into the importance of H-bonding and packing efficiency to the thermodynamic stability of a crystalline form, and how these effects are dependent on temperature. This study seeks to correlate single-crystal structure features with experimentally established thermodynamic stability, and provides an example where a polymorph with only van der Waals forces and weak intermolecular interactions can be more stable than a polymorph that displays strong H-bonding in its structural make-up.

  10. Understanding Packing Patterns in Crystals by Analysis of Small Aggregates: A Case Study of CS2.

    Science.gov (United States)

    Singh, Gurmeet; Verma, Rahul; Gadre, Shridhar R

    2015-12-31

    The molecular electrostatic potential (MESP) of the CS2 molecule, in conjunction with the cluster building algorithm, is utilized for generating trial geometries of medium-sized (CS2)n (n = 5-8) aggregates. MESP features suggest crossed, parallel stacked, T-shaped and L-shaped geometries for CS2 clusters. These initial geometries are subjected to geometry optimization employing second-order Møller-Plesset (MP2) theory, with correlation consistent aug-cc-pvDZ (aDZ) basis set. Single-point energies at MP2/aTZ levels are calculated for the estimation of binding energies at complete basis set (CBS) limit. The minimal nature of the reported structures is confirmed by doing vibrational frequency run at MP2/aDZ level of theory using the molecular tailoring approach (MTA). The two- and three-body interaction energies are computed for clusters with n = 5, 6, and 7 and these are suggestive of change in contact patterns with increasing n. Such an analysis is found to offer a qualitative explanation of the packing pattern found in the crystal structure.

  11. Role of intermolecular interaction in crystal packing: A competition between halogen bond and electrostatic interaction

    Science.gov (United States)

    Chen, Peng-Yuan; Zhang, Lin; Zhu, Shun-Guan; Cheng, Guang-Bin

    2017-03-01

    To investigate the competition between halogen bond and electrostatic interaction and their influence on the crystal packing, four novel solvates of 1,3,5-trichloro-2,4,6-trinitrobenzene (TCTNB) and 1,3,5-tribromo-2,4,6-trinitrobenzene (TBTNB) were synthesized while the intermolecular forces and the contribution of each interaction were analyzed quantitatively. The electrostatic interaction is the main link between TCTNB, TBTNB and 1,4-dioxane respectively, while π-π interaction dominates in these two solvates of TCTNB/1,4-dimethylbenzene (PX) and TCTNB/mesitylene. The solvate interaction changes and varieties were illuminated by Hirshfeld surface analysis, and the group contributions were illustrated respectively. Molecular electrostatic potential surface (MEPs) with density functional theory (DFT) calculation was performed to compare the relative strength of electrostatic interaction and halogen bond. The result shows that MEPs can be used as a descriptor for determining the most possible intermolecular interaction under certain circumstances. The study presented here may provide the guidance for the design and synthesis of the complex with desired properties.

  12. How the Molecular Packing Affects the Room Temperature Phosphorescence in Pure Organic Compounds: Ingenious Molecular Design, Detailed Crystal Analysis, and Rational Theoretical Calculations.

    Science.gov (United States)

    Xie, Yujun; Ge, Yuwei; Peng, Qian; Li, Conggang; Li, Qianqian; Li, Zhen

    2017-02-21

    Long-lived phosphorescence at room temperature (RTP) from pure organic molecules is rare. Recent research reveals various crystalline organic molecules can realize RTP with lifetimes extending to the magnitude of second. There is little research on how molecular packing affecting RTP. Three compounds are designed with similar optical properties in solution, but tremendously different solid emission characteristics. By investigating the molecular packing arrangement in single crystals, it is found that the packing style of the compact face to face favors of long phosphorescence lifetime and high photoluminescence efficiency, with the lifetime up to 748 ms observed in the crystal of CPM ((9H-carbazol-9-yl)(phenyl)methanone). Theoretical calculation analysis also reveals this kind of packing style can remarkably reduce the singlet excited energy level and prompt electron communication between dimers. Surprisingly, CPM has two very similar single crystals, labeled as CPM and CPM-A, with almost identical crystal data, and the only difference is that molecules in CPM-A crystal take a little looser packing arrangement. X-ray diffraction and cross-polarization under magic spinning (13) C NMR spectra double confirm that they are different crystals. Interestingly, CPM-A crystal shows negligible RTP compared to the CPM crystal, once again proving that the packing style is critical to the RTP property.

  13. One more chiral drug prone to spontaneous resolution: Binary phase diagram, absolute configuration, and crystal packing of bevantolol hydrochloride

    Science.gov (United States)

    Bredikhina, Zemfira A.; Zakharychev, Dmitry V.; Gubaidullin, Aidar T.; Bredikhin, Alexander A.

    2009-11-01

    Spontaneous resolution of cardioselective β1-adrenergic blocker bevantolol hydrochloride1·HCl was established by IR spectroscopy, differential scanning calorimetry, and by single crystal X-ray analysis both for enantiopure and racemic samples. The absolute configuration of 1·HCl was evaluated through Flack parameter method. The molecular structure and crystal packing details were evaluated; the symmetry independent fragment of the P1 unit cell consists of two molecules which have almost identical spatial arrangement, but differ sufficiently in the nature of nitrogen atoms: quaternary form in one case and free amine form in the other.

  14. Vibrational stability of a cryocooled horizontal double-crystal monochromator

    Science.gov (United States)

    Kristiansen, Paw; Johansson, Ulf; Ursby, Thomas; Jensen, Brian Norsk

    2016-01-01

    The vibrational stability of a horizontally deflecting double-crystal monochromator (HDCM) is investigated. Inherently a HDCM will preserve the vertical beam stability better than a ‘normal’ vertical double-crystal monochromator as the vibrations of a HDCM will almost exclusively affect the horizontal stability. Here both the relative pitch vibration between the first and second crystal and the absolute pitch vibration of the second crystal are measured. All reported measurements are obtained under active cooling by means of flowing liquid nitrogen (LN2). It is found that it is favorable to circulate the LN2 at high pressures and low flow rates (up to 5.9 bar and down to 3 l min−1 is tested) to attain low vibrations. An absolute pitch stability of the second crystal of 18 nrad RMS, 2–2500 Hz, and a relative pitch stability between the two crystals of 25 nrad RMS, 1–2500 Hz, is obtained under cryocooling conditions that allow for 1516 W to be adsorbed by the LN2 before it vaporizes. PMID:27577758

  15. Silver-cemented frit formation for the stabilization of the packing structure in the microchannel of electrochromatographic microchips.

    Science.gov (United States)

    Park, Jongman; Oh, Hyejin; Jeon, In-Sun

    2011-10-28

    A simple but effective frit formation technique was developed to stabilize the packing structure inside the microchannel of capillary electrochromatographic microchips, utilizing the electroless plating technique. A Ag(NH(3))(2)(+) solution was allowed to diffuse through the colloidal silica packing in the microchannel from the reservoir of the microchip for a limited amount of time, and then it was reduced by an excess amount of formaldehyde solution. A frit structure of ~70 μm in length was formed at the entrance of the microchannel without clogging when treated with 1mM Ag(NH(3))(2)(+) ion and formaldehyde for 30s and 150 s, respectively. The formation of the frit structure was confirmed by a scanning electron microscopy. The stability of the packing structure was tested rigorously and then confirmed by applying alternating electroosmotic flows back and forth with pulsed potential steps on both sides of the frit structure. The effect of the treatment on the electrochromatograms was evaluated after the microchips were repeatedly used and stored for a long period of time. The results indicated that the silver-cemented frit structure extended the lifetime of the fully packed CEC microchips distinctly.

  16. Bisindeno-annulated pentacenes with exceptionally high photo-stability and ordered molecular packing: Simple synthesis by a regio-selective Scholl reaction

    KAUST Repository

    Naibi Lakshminarayana, Arun

    2015-01-01

    Bisindeno-annulated pentacenes 3a and 3b were synthesized by a simple regio-selective, FeCl3-mediated Scholl reaction from the corresponding 6,13-diaryl pentacene precursors. The fusion of two indeno-units dramatically changes the electronic properties and chemical reactivity of pentacene and the obtained compounds exhibited exceptionally high photo-stability in the solution, with a half-life time of 11.2 (3a) and 32.0 (3b) days under ambient light and air conditions. Ordered molecular packing with a small π-π stacking distance was observed in the single crystals of 3a and 3b. Our research provides a promising strategy to access stable higher order acenes with controlled molecular order. This journal is

  17. Holographic Reversed-Mode Polymer-Stabilized Liquid Crystal Grating

    Institute of Scientific and Technical Information of China (English)

    MA Ji; SONG Jing; LIU Yong-Gang; RUAN Sheng-Ping; XUAN Li

    2005-01-01

    @@ We demonstrate the "reversed-mode" polymer-stabilized liquid crystal device. The incidence light goes through the film without the applied voltage and is diffracted with it. Because of relatively high liquid crystal percentage of 94%, the operating voltage of the device is less than 20 V. We explain this phenomenon using the molecularorientation model and the refractive index profile. The device can be used as display, optical switch, optical modulator and especially optical cross-connect deflector.

  18. Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Joanna Ptasinski

    2014-03-01

    Full Text Available In this work we explore the negative thermo-optic properties of liquid crystal claddings for passive temperature stabilization of silicon photonic integrated circuits. Photonic circuits are playing an increasing role in communications and computing, but they suffer from temperature dependent performance variation. Most existing techniques aimed at compensation of thermal effects rely on power hungry Joule heating. We show that integrating a liquid crystal cladding helps to minimize the effects of a temperature dependent drift. The advantage of liquid crystals lies in their high negative thermo-optic coefficients in addition to low absorption at the infrared wavelengths.

  19. Tuning solubility and stability of hydrochlorothiazide co-crystals.

    Science.gov (United States)

    Sanphui, Palash; Rajput, Lalit

    2014-02-01

    Hydrochlorothiazide (HCT), C7H8ClN3O4S2, is a diuretic BCS (Biopharmaceutics Classification System) class IV drug which has primary and secondary sulfonamide groups. To modify the aqueous solubility of the drug, co-crystals with biologically safe co-formers were screened. Multi-component molecular crystals of HCT were prepared with nicotinic acid, nicotinamide, succinamide, p-aminobenzoic acid, resorcinol and pyrogallol using liquid-assisted grinding. The co-crystals were characterized by FT-IR spectroscopy, powder X-ray diffraction (PXRD) and differential scanning calorimetry. Single crystal structures were obtained for four of them. The N-H...O sulfonamide catemer synthons found in the stable polymorph of pure HCT are replaced in the co-crystals by drug-co-former heterosynthons. Isostructural co-crystals with nicotinic acid and nicotinamide are devoid of the common sulfonamide dimer/catemer synthons. Solubility and stability experiments were carried out for the co-crystals in water (neutral pH) under ambient conditions. Among the six binary systems, the co-crystal with p-aminobenzoic acid showed a sixfold increase in solubility compared with pure HCT, and stability up to 24 h in an aqueous medium. The co-crystals with nicotinamide, resorcinol and pyrogallol showed only a 1.5-2-fold increase in solubility and transformed to HCT within 1 h of the dissolution experiment. An inverse correlation is observed between the melting points of the co-crystals and their solubilities.

  20. Closely packed Ge quantum dots in ITO matrix: influence of Ge crystallization on optical and electrical properties

    Science.gov (United States)

    Car, Tihomir; Nekić, Nikolina; Jerčinović, Marko; Salamon, Krešimir; Bogdanović-Radović, Iva; Delač Marion, Ida; Dasović, Jasna; Dražić, Goran; Ivanda, Mile; Bernstorff, Sigrid; Pivac, Branko; Kralj, Marko; Radić, Nikola; Buljan, Maja

    2016-06-01

    In the present work, a method for the low-temperature production of the material consisting of closely packed Ge QDs embedded in ITO matrix is described. The films are produced by magnetron sputtering deposition followed by thermal annealing. It is shown that the conductivity and optical properties of the films depend on the structure, Ge content in the ITO matrix as well as on the annealing conditions. The conductivity of the films changes up to seven orders of magnitude in dependence on the annealing conditions, and it shows transformation from semiconductor to metallic behavior. The optical properties are also strongly affected by the preparation and annealing conditions, so both conductivity and optical properties can be controllably manipulated. In addition, the crystallization of Ge is found to occur already at 300 °C, which is significantly lower than the crystallization temperature of Ge produced by the same method in silica and alumina matrices.

  1. Photorefractivity in polymer-stabilized nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wiederrecht, G.P. [Argonne National Lab., IL (United States). Chemistry Div.; Wasielewski, M.R. [Argonne National Lab., IL (United States). Chemistry Div.]|[Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry

    1998-07-01

    Polymer-stabilized liquid crystals, consisting of low concentrations of a polymeric electron acceptor, are shown to exhibit significantly enhanced photorefractive properties. The charge generation and transport properties of these composite systems are strongly modified from nematic liquid crystals doped with electron donors and acceptors. The new composites are produced by polymerizing a small quantity of a 1,4:5,8-naphthalenediimide electron acceptor functionalized with an acrylate group in an aligned nematic liquid crystal. Photopolymerization creates an anisotropic gel-like medium in which the liquid crystal is free to reorient in the presence of a space charge field, while maintaining charge trapping sites in the polymerized regions of the material. The presence of these trapping sites results in the observation of longer lived, higher resolution holographic gratings in the polymer-stabilized liquid crystals than observed in nematic liquid crystals alone. These gratings display Bragg regime diffraction. Asymmetric beam coupling, photo-conductivity, and four-wave mixing experiments are performed to characterize the photophysics of these novel materials.

  2. Continuous, packed-bed, enzymatic bioreactor production and stability of feruloyl soy glycerides

    Science.gov (United States)

    The synthesis of feruloyl soy glycerides was demonstrated on a pilot-scale (1 metric ton/year) in a continuous, four-column series, packed-bed, enzymatic bioreactor. Ethyl ferulate and soybean oil were combined and converted at 3.5 kg/d over Candida antartica lipase B immobilized on an acrylic rein ...

  3. Conformational Stability of Mammalian Prion Protein Amyloid Fibrils Is Dictated by a Packing Polymorphism within the Core Region*

    Science.gov (United States)

    Cobb, Nathan J.; Apostol, Marcin I.; Chen, Shugui; Smirnovas, Vytautas; Surewicz, Witold K.

    2014-01-01

    Mammalian prion strains are believed to arise from the propagation of distinct conformations of the misfolded prion protein PrPSc. One key operational parameter used to define differences between strains has been conformational stability of PrPSc as defined by resistance to thermal and/or chemical denaturation. However, the structural basis of these stability differences is unknown. To bridge this gap, we have generated two strains of recombinant human prion protein amyloid fibrils that show dramatic differences in conformational stability and have characterized them by a number of biophysical methods. Backbone amide hydrogen/deuterium exchange experiments revealed that, in sharp contrast to previously studied strains of infectious amyloid formed from the yeast prion protein Sup35, differences in β-sheet core size do not underlie differences in conformational stability between strains of mammalian prion protein amyloid. Instead, these stability differences appear to be dictated by distinct packing arrangements (i.e. steric zipper interfaces) within the amyloid core, as indicated by distinct x-ray fiber diffraction patterns and large strain-dependent differences in hydrogen/deuterium exchange kinetics for histidine side chains within the core region. Although this study was limited to synthetic prion protein amyloid fibrils, a similar structural basis for strain-dependent conformational stability may apply to brain-derived PrPSc, especially because large strain-specific differences in PrPSc stability are often observed despite a similar size of the PrPSc core region. PMID:24338015

  4. Conformational stability of mammalian prion protein amyloid fibrils is dictated by a packing polymorphism within the core region.

    Science.gov (United States)

    Cobb, Nathan J; Apostol, Marcin I; Chen, Shugui; Smirnovas, Vytautas; Surewicz, Witold K

    2014-01-31

    Mammalian prion strains are believed to arise from the propagation of distinct conformations of the misfolded prion protein PrP(Sc). One key operational parameter used to define differences between strains has been conformational stability of PrP(Sc) as defined by resistance to thermal and/or chemical denaturation. However, the structural basis of these stability differences is unknown. To bridge this gap, we have generated two strains of recombinant human prion protein amyloid fibrils that show dramatic differences in conformational stability and have characterized them by a number of biophysical methods. Backbone amide hydrogen/deuterium exchange experiments revealed that, in sharp contrast to previously studied strains of infectious amyloid formed from the yeast prion protein Sup35, differences in β-sheet core size do not underlie differences in conformational stability between strains of mammalian prion protein amyloid. Instead, these stability differences appear to be dictated by distinct packing arrangements (i.e. steric zipper interfaces) within the amyloid core, as indicated by distinct x-ray fiber diffraction patterns and large strain-dependent differences in hydrogen/deuterium exchange kinetics for histidine side chains within the core region. Although this study was limited to synthetic prion protein amyloid fibrils, a similar structural basis for strain-dependent conformational stability may apply to brain-derived PrP(Sc), especially because large strain-specific differences in PrP(Sc) stability are often observed despite a similar size of the PrP(Sc) core region.

  5. Single molecule force spectroscopy reveals critical roles of hydrophobic core packing in determining the mechanical stability of protein GB1.

    Science.gov (United States)

    Bu, Tianjia; Wang, Hui-Chuan Eileen; Li, Hongbin

    2012-08-21

    Understanding molecular determinants of protein mechanical stability is important not only for elucidating how elastomeric proteins are designed and functioning in biological systems but also for designing protein building blocks with defined nanomechanical properties for constructing novel biomaterials. GB1 is a small α/β protein and exhibits significant mechanical stability. It is thought that the shear topology of GB1 plays an important role in determining its mechanical stability. Here, we combine single molecule atomic force microscopy and protein engineering techniques to investigate the effect of side chain reduction and hydrophobic core packing on the mechanical stability of GB1. We engineered seven point mutants and carried out mechanical φ-value analysis of the mechanical unfolding of GB1. We found that three mutations, which are across the surfaces of two subdomains that are to be sheared by the applied stretching force, in the hydrophobic core (F30L, Y45L, and F52L) result in significant decrease in mechanical unfolding force of GB1. The mechanical unfolding force of these mutants drop by 50-90 pN compared with wild-type GB1, which unfolds at around 180 pN at a pulling speed of 400 nm/s. These results indicate that hydrophobic core packing plays an important role in determining the mechanical stability of GB1 and suggest that optimizing hydrophobic interactions across the surfaces that are to be sheared will likely be an efficient method to enhance the mechanical stability of GB1 and GB1 homologues.

  6. A Review of Polymer-Stabilized Ferroelectric Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Ingo Dierking

    2014-05-01

    Full Text Available The polymer stabilized state of ferroelectric liquid crystals (FLC is reviewed; and the effect of a dispersed polymer network in an FLC outlined and discussed. All fundamental material aspects are demonstrated; such as director tilt angle; spontaneous polarization; response time and viscosity; as well as the dielectric modes. It was found that the data can largely be explained by assuming an elastic interaction between the polymer network strands and the liquid crystal molecules. The elastic interaction parameter was determined; and increases linearly with increasing polymer concentration.

  7. The stability of polarisation singularities in disordered photonic crystal waveguides

    CERN Document Server

    Lang, Ben; Young, Andrew B; Rarity, John G; Oulton, Ruth

    2015-01-01

    The effects of short range disorder on the polarisation characteristics of light in photonic crystal waveguides were investigated using finite difference time domain simulations with a view to investigating the stability of polarisation singularities. It was found that points of local circular polarisation (C-points) and contours of linear polarisation (L-lines) continued to appear even in the presence of high levels of disorder, and that they remained close to their positions in the ordered crystal. These results are a promising indication that devices exploiting polarisation in these structures are viable given current fabrication standards.

  8. Crystal-Structure Analysis with Moments of the Density-of-States: Application to Intermetallic Topologically Close-Packed Phases

    Directory of Open Access Journals (Sweden)

    Thomas Hammerschmidt

    2016-02-01

    Full Text Available The moments of the electronic density-of-states provide a robust and transparent means for the characterization of crystal structures. Using d-valent canonical tight-binding, we compute the moments of the crystal structures of topologically close-packed (TCP phases as obtained from density-functional theory (DFT calculations. We apply the moments to establish a measure for the difference between two crystal structures and to characterize volume changes and internal relaxations. The second moment provides access to volume variations of the unit cell and of the atomic coordination polyhedra. Higher moments reveal changes in the longer-ranged coordination shells due to internal relaxations. Normalization of the higher moments leads to constant (A15,C15 or very similar (χ, C14, C36, μ, and σ higher moments of the DFT-relaxed TCP phases across the 4d and 5d transition-metal series. The identification and analysis of internal relaxations is demonstrated for atomic-size differences in the V-Ta system and for different magnetic orderings in the C14-Fe 2 Nb Laves phase.

  9. Microbial stability and quality of seasoned cracked green Aloreña table olives packed in diverse chloride salt mixtures.

    Science.gov (United States)

    Bautista-Gallego, J; Arroyo-López, F N; Romero-Gil, V; Rodríguez-Gómez, F; García-García, P; Garrido-Fernández, A

    2013-11-01

    This work was conducted to determine the effect of the partial replacement of NaCl by KCl and CaCl2 (expressed as percentages, wt/vol) on the microbial stability and physicochemical characteristics of seasoned cracked olives using a simplex centroid mixture design. Neither Enterobacteriaceae nor lactic acid bacteria were found during the 50 days that olive packages were monitored. Therefore, microbial instability was considered due to the growth of yeasts, which were the only detected microorganisms; Saccharomyces cerevisiae and Pichia membranifaciens were the most relevant species. Yeasts decreased during the first 21 to 30 days after packing, but their populations rose to 3.5 log CFU/ml by the end of the storage period, clearly causing product deterioration. The partial substitution of NaCl with the other chloride salts slightly altered the phase of microbial inhibition and regrowth. Most of the quality characteristics were not affected by the use of the alternative salt mixtures, but the pH values and Cl(-) concentrations in brine decreased as the CaCl2 concentration increased. Hence, seasoned cracked table olives can be produced using a lower proportion of NaCl without causing significant changes in the shelf life and product quality, although further detailed studies are necessary to guarantee the stability of products packed with specific salt mixtures.

  10. Stability limits for the horizontal ribbon growth of silicon crystals

    Science.gov (United States)

    Daggolu, Parthiv; Yeckel, Andrew; Bleil, Carl E.; Derby, Jeffrey J.

    2013-01-01

    A rigorous, thermal-capillary model, developed to couple heat transfer, melt convection and capillary physics, is employed to assess stability limits of the HRG system for growing silicon ribbons. Extending the prior understanding of this process put forth by Daggolu et al. [Thermal-capillary analysis of the horizontal ribbon growth of silicon crystals, Journal of Crystal Growth 355 (2012) 129-139], model results presented here identify additional failure mechanisms, including the bridging of crystal onto crucible, the spilling of melt from the crucible, and the undercooling of melt at the ribbon tip, that are consistent with prior experimental observations. Changes in pull rate, pull angle, melt height, and other parameters are shown to give rise to limits, indicating that only narrow operating windows exist in multi-dimensional parameter space for stable growth conditions that circumvent these failure mechanisms.

  11. The dominant role of chalcogen bonding in the crystal packing of 2D/3D aromatics.

    Science.gov (United States)

    Fanfrlík, Jindřich; Přáda, Adam; Padělková, Zdeňka; Pecina, Adam; Macháček, Jan; Lepšík, Martin; Holub, Josef; Růžička, Aleš; Hnyk, Drahomír; Hobza, Pavel

    2014-09-15

    The chalcogen bond is a nonclassical σ-hole-based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2D aromatics, but has so far never been observed in 3D aromatic inorganic boron hydrides. Thiaboranes, harboring a sulfur heteroatom in the icosahedral cage, are candidates for the formation of chalcogen bonds. The phenyl-substituted thiaborane, synthesized and crystalized in this study, forms sulfur⋅⋅⋅π type chalcogen bonds. Quantum chemical analysis revealed that these interactions are considerably stronger than both in their organic counterparts and in the known halogen bond. The reason is the existence of a highly positive σ-hole on the positively charged sulfur atom. This discovery expands the possibilities of applying substituted boron clusters in crystal engineering and drug design.

  12. The quaternary structure of the amidase from Geobacillus pallidus RAPc8 is revealed by its crystal packing

    Energy Technology Data Exchange (ETDEWEB)

    Agarkar, Vinod B. [Advanced Research Centre for Applied Microbiology, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Kimani, Serah W. [Department of Molecular and Cell Biology, University of Cape Town, Rondebosch (South Africa); Cowan, Donald A.; Sayed, Muhammed F.-R. [Advanced Research Centre for Applied Microbiology, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Sewell, B. Trevor, E-mail: sewell@uctvms.uct.ac.za [Electron Microscope Unit, University of Cape Town, Rondebosch (South Africa); Advanced Research Centre for Applied Microbiology, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2006-12-01

    The amidase from G. pallidus RAPc8, a moderate thermophile, converts amides to the corresponding acids and ammonia and has application as an industrial catalyst. RAPc8 amidase has been cloned, expressed and purified, and then crystallized using the hanging-drop vapour-diffusion method. The amidase from Geobacillus pallidus RAPc8, a moderate thermophile, is a member of the nitrilase enzyme superfamily. It converts amides to the corresponding acids and ammonia and has application as an industrial catalyst. RAPc8 amidase has been cloned and functionally expressed in Escherichia coli and has been purified by heat treatment and a number of chromatographic steps. The enzyme was crystallized using the hanging-drop vapour-diffusion method. Crystals produced in the presence of 1.2 M sodium citrate, 400 mM NaCl, 100 mM sodium acetate pH 5.6 were selected for X-ray diffraction studies. A data set having acceptable statistics to 1.96 Å resolution was collected under cryoconditions using an in-house X-ray source. The space group was determined to be primitive cubic P4{sub 2}32, with unit-cell parameter a = 130.49 (±0.05) Å. The structure was solved by molecular replacement using the backbone of the hypothetical protein PH0642 from Pyrococcus horikoshii (PDB code 1j31) with all non-identical side chains substituted with alanine as a probe. There is one subunit per asymmetric unit. The subunits are packed as trimers of dimers with D3 point-group symmetry around the threefold axis in such a way that the dimer interface seen in the homologues is preserved.

  13. Effect of packing motifs on the energy ranking and electronic properties of putative crystal structures of tricyano-1,4-dithiino[c]-isothiazole.

    Science.gov (United States)

    Curtis, Farren; Wang, Xiaopeng; Marom, Noa

    2016-08-01

    We present an analysis of putative structures of tricyano-1,4-dithiino[c]-isothiazole (TCS3), generated within the sixth crystal structure prediction blind test. Typical packing motifs are identified and characterized in terms of distinct patterns of close contacts and regions of electrostatic and dispersion interactions. We find that different dispersion-inclusive density functional theory (DFT) methods systematically favor specific packing motifs, which may affect the outcome of crystal structure prediction efforts. The effect of crystal packing on the electronic and optical properties of TCS3 is investigated using many-body perturbation theory within the GW approximation and the Bethe-Salpeter equation (BSE). We find that a structure with Pna21 symmetry and a bilayer packing motif exhibits intermolecular bonding patterns reminiscent of π-π stacking and has markedly different electronic and optical properties than the experimentally observed P21/n structure with a cyclic dimer motif, including a narrower band gap, enhanced band dispersion and broader optical absorption. The Pna21 bilayer structure is close in energy to the observed structure and may be feasible to grow.

  14. Chromophore fluorination enhances crystallization and stability of soluble anthradithiophene semiconductors.

    Science.gov (United States)

    Subramanian, Sankar; Park, Sung Kyu; Parkin, Sean R; Podzorov, Vitaly; Jackson, Thomas N; Anthony, John E

    2008-03-05

    We report dramatic improvements in the stability and crystallinity arising from partial fluorination of soluble anthradithiophene derivatives. These fluorinated materials still behave as p-type semiconductors but with dramatic increases in thermal and photostability compared to the non-fluorinated derivatives. The triethylsilyl-substituted material forms highly crystalline films even from spin-cast solutions, leading to devices with maximum hole mobility greater than 1.0 cm(2)/V s. In contrast, the triisopropylsilyl derivative forms large, high-quality crystals that could serve as the substrate for transistor fabrication. For this compound, mobility as high as 0.1 cm(2)/V s was measured on the free-standing crystal.

  15. Binary functionalization of H:Si(111) surfaces by alkyl monolayers with different linker atoms enhances monolayer stability and packing.

    Science.gov (United States)

    Arefi, Hadi H; Nolan, Michael; Fagas, Giorgos

    2016-05-14

    Alkyl monolayer modified Si forms a class of inorganic-organic hybrid materials with applications across many technologies such as thin-films, fuel/solar-cells and biosensors. Previous studies have shown that the linker atom, through which the monolayer binds to the Si substrate, and any tail group in the alkyl chain, can tune the monolayer stability and electronic properties. In this paper we study the H:Si(111) surface functionalized with binary SAMs: these are composed of alkyl chains that are linked to the surface by two different linker groups. Aiming to enhance SAM stability and increase coverage over singly functionalized Si, we examine with density functional theory simulations that incorporate vdW interactions, a range of linker groups which we denote as -X-(alkyl) with X = CH2, O(H), S(H) or NH(2) (alkyl = C6 and C12 chains). We show how the stability of the SAM can be enhanced by adsorbing alkyl chains with two different linkers, e.g. Si-[C, NH]-alkyl, through which the adsorption energy is increased compared to functionalization with the individual -X-alkyl chains. Our results show that it is possible to improve stability and optimum coverage of alkyl functionalized SAMs linked through a direct Si-C bond by incorporating alkyl chains linked to Si through a different linker group, while preserving the interface electronic structure that determines key electronic properties. This is important since any enhancement in stability and coverage to give more densely packed monolayers will result in fewer defects. We also show that the work function can be tuned within the interval of 3.65-4.94 eV (4.55 eV for bare H:Si(111)).

  16. Molecular Packing and Arrangement Govern the Photo-Oxidative Stability of Organic Photovoltaic Materials

    KAUST Repository

    Mateker, William R.

    2015-08-19

    For long-term performance chemically robust materials are desired for organic solar cells (OSCs). Illuminating neat films of OSC materials in air and tracking the rate of absorption loss, or photobleaching, can quickly screen a material’s photo-chemical stability. In this report, we photobleach neat films of OSC materials including polymers, solution-processed oligomers, solution-processed small molecules, and vacuum-deposited small molecules. Across the materials we test, we observe photobleaching rates that span seven orders of magnitude. Furthermore, we find that the film morphology of any particular material impacts the observed photobleaching rate, and that amorphous films photobleach faster than crystalline ones. In an extreme case, films of amorphous rubrene photobleach at a rate 2500 times faster than polycrystalline films. When we compare density to photobleaching rate, we find that stability increases with density. We also investigate the relationship between backbone planarity and chemical reactivity. The polymer PBDTTPD is more photostable than it’s more twisted and less ordered furan derivitative, PBDFTPD. Finally, we relate our work to what is known about the chemical stability of structural polymers, organic pigments, and organic light emitting diode materials. For the highest chemical stability, planar materials that form dense, crystalline film morphologies should be designed for OSCs.

  17. Switching of polymer-stabilized vertical alignment liquid crystal cell.

    Science.gov (United States)

    Huang, Chi-Yen; Jhuang, Wen-Yi; Hsieh, Chia-Ting

    2008-03-17

    This work investigates the switching characteristics of the polymer-stabilized vertical alignment (VA) liquid crystal (LC) cell. The experimental results reveal that the fall time of the cell declines as the monomer concentration increases because the vertically-aligned polymer networks accelerate the relaxation of the LC molecules. Furthermore, the formed polymer networks impede the growth and annihilation of LC defects, suppressing the optical bounce in the time dependent transmittance curve of the cell when the voltage is applied to the cell, substantially reducing the rise time of the cell. A step-voltage driving scheme is demonstrated to eliminate completely the optical bounce and hence improve further the rise time of the VA LC cell. The rise times of the pristine and the polymer-stabilized VA LC cells under the step-voltage driving scheme are less than 50% of those under the conventional driving scheme.

  18. Packing of crystalline structures of binary hard spheres: An analytical approach and application to amorphization

    NARCIS (Netherlands)

    Brouwers, H.J.H.

    2007-01-01

    The geometrical stability of the three lattices of the cubic crystal system, viz. face-centered cubic (fcc), body-centered cubic (bcc), and simple cubic (sc), consisting of bimodal discrete hard spheres, and the transition to amorphous packing is studied. First, the random close packing (rcp) fracti

  19. Packing of crystalline structures of binary hard spheres: an analytical approach and application to amorphisation

    NARCIS (Netherlands)

    Brouwers, Jos

    2007-01-01

    The geometrical stability of the three lattices of the cubic crystal system, viz. face-centered cubic (fcc), body-centered cubic (bcc), and simple cubic (sc), consisting of bimodal discrete hard spheres, and the transition to amorphous packing is studied. First, the random close packing (rcp)

  20. Molecular imprinted opal closest-packing photonic crystals for the detection of trace 17β-estradiol in aqueous solution.

    Science.gov (United States)

    Sai, Na; Wu, Yuntang; Sun, Zhong; Huang, Guowei; Gao, Zhixian

    2015-11-01

    A novel opal closest-packing (OCP) photonic crystal (PC) was prepared by the introduction of molecular imprinting technique into the OCP PC. This molecular imprinted (MI)-OCP PC was fabricated via a vertical convective self-assembly method using 17β-estradiol (E2) as template molecules for monitoring E2 in aqueous solution. Morphology characterization showed that the MI-OCP PC possessed a highly ordered three-dimensional (3D) periodically-ordered structure, showing the desired structural color. The proposed PC material displayed a reduced reflection intensity when detecting E2 in water environment, because the molecular imprinting recognition events make the optical characteristics of PC change. The Bragg diffraction intensity decreased by 19.864 a.u. with the increase of E2 concentration from 1.5 ng mL(-1) to 364.5 ng mL(-1) within 6 min, whereas there were no obvious peak intensity changes for estriol, estrone, cholesterol, testosterone and diethylstilbestrol, indicating that the MI-OCP PC had selective and rapid response for E2 molecules. The adsorption results showed that the OCP structure and homogeneous layers were created in the MI-OCP PC with higher adsorption capacity. Thus, it was learned the MI-OCP PC is a simple prepared, sensitive, selective, and easy operative material, which shows promising use in routine supervision for residue detection in food and environment.

  1. Z-score biological significance of binding hot spots of protein interfaces by using crystal packing as the reference state.

    Science.gov (United States)

    Liu, Qian; Wong, Limsoon; Li, Jinyan

    2012-12-01

    Characterization of binding hot spots of protein interfaces is a fundamental study in molecular biology. Many computational methods have been proposed to identify binding hot spots. However, there are few studies to assess the biological significance of binding hot spots. We introduce the notion of biological significance of a contact residue for capturing the probability of the residue occurring in or contributing to protein binding interfaces. We take a statistical Z-score approach to the assessment of the biological significance. The method has three main steps. First, the potential score of a residue is defined by using a knowledge-based potential function with relative accessible surface area calculations. A null distribution of this potential score is then generated from artifact crystal packing contacts. Finally, the Z-score significance of a contact residue with a specific potential score is determined according to this null distribution. We hypothesize that residues at binding hot spots have big absolute values of Z-score as they contribute greatly to binding free energy. Thus, we propose to use Z-score to predict whether a contact residue is a hot spot residue. Comparison with previously reported methods on two benchmark datasets shows that this Z-score method is mostly superior to earlier methods. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction.

  2. Understanding the Cubic Phase Stabilization and Crystallization Kinetics in Mixed Cations and Halides Perovskite Single Crystals.

    Science.gov (United States)

    Xie, Li-Qiang; Chen, Liang; Nan, Zi-Ang; Lin, Hai-Xin; Wang, Tan; Zhan, Dong-Ping; Yan, Jia-Wei; Mao, Bing-Wei; Tian, Zhong-Qun

    2017-03-08

    The spontaneous α-to-δ phase transition of the formamidinium-based (FA) lead halide perovskite hinders its large scale application in solar cells. Though this phase transition can be inhibited by alloying with methylammonium-based (MA) perovskite, the underlying mechanism is largely unexplored. In this Communication, we grow high-quality mixed cations and halides perovskite single crystals (FAPbI3)1-x(MAPbBr3)x to understand the principles for maintaining pure perovskite phase, which is essential to device optimization. We demonstrate that the best composition for a perfect α-phase perovskite without segregation is x = 0.1-0.15, and such a mixed perovskite exhibits carrier lifetime as long as 11.0 μs, which is over 20 times of that of FAPbI3 single crystal. Powder XRD, single crystal XRD and FT-IR results reveal that the incorporation of MA(+) is critical for tuning the effective Goldschmidt tolerance factor toward the ideal value of 1 and lowering the Gibbs free energy via unit cell contraction and cation disorder. Moreover, we find that Br incorporation can effectively control the perovskite crystallization kinetics and reduce defect density to acquire high-quality single crystals with significant inhibition of δ-phase. These findings benefit the understanding of α-phase stabilization behavior, and have led to fabrication of perovskite solar cells with highest efficiency of 19.9% via solvent management.

  3. Fabrication of size-controllable hexagonal non-close-packed colloidal crystals and binary colloidal crystals by pyrolysis combined with plasma-electron co-irradiation of polystyrene colloidal monolaye

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Joon

    2011-02-15

    We present an unprecedented and systematic route to controllably fabricate hexagonal non-close-packed (HNCP) monolayer colloidal crystals and binary colloidal crystals (BCCs) based on plasma-electron co-irradiation of polystyrene colloidal monolayers followed by thermal decomposition. HNCP colloidal crystals with tunable particle sizes and periods could be fabricated by changing the pristine colloidal particle size and the thermal decomposition time. In addition, BCCs and trimodal colloidal crystals that are composed of different-sized colloidal particles can also be fabricated by adding small particles on the prepared HNCP colloidal crystals. Both the particle size ratio and the volume fraction of the BCCs can be widely tuned. These HNCP colloidal crystals and BCCs have various potential applications as optical and photonic materials as well as in catalysis and sensors.

  4. Sent packing: protein engineering generates a new crystal form of Pseudomonas aeruginosa DsbA1 with increased catalytic surface accessibility

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Roisin M., E-mail: r.mcmahon1@uq.edu.au; Coinçon, Mathieu; Tay, Stephanie; Heras, Begoña [University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072 (Australia); Morton, Craig J. [Biota Holdings Limited, Unit 10, 585 Blackburn Road, Notting Hill, Victoria 3168 (Australia); Scanlon, Martin J. [Monash University, 381 Royal Parade, Parkville, Victoria 3052 (Australia); Martin, Jennifer L. [University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072 (Australia)

    2015-11-26

    The crystal structure of a P. aeruginosa DsbA1 variant is more suitable for fragment-based lead discovery efforts to identify inhibitors of this antimicrobial drug target. In the reported structures the active site of the protein can simultaneously bind multiple ligands introduced in the crystallization solution or via soaking. Pseudomonas aeruginosa is an opportunistic human pathogen for which new antimicrobial drug options are urgently sought. P. aeruginosa disulfide-bond protein A1 (PaDsbA1) plays a pivotal role in catalyzing the oxidative folding of multiple virulence proteins and as such holds great promise as a drug target. As part of a fragment-based lead discovery approach to PaDsbA1 inhibitor development, the identification of a crystal form of PaDsbA1 that was more suitable for fragment-soaking experiments was sought. A previously identified crystallization condition for this protein was unsuitable, as in this crystal form of PaDsbA1 the active-site surface loops are engaged in the crystal packing, occluding access to the target site. A single residue involved in crystal-packing interactions was substituted with an amino acid commonly found at this position in closely related enzymes, and this variant was successfully used to generate a new crystal form of PaDsbA1 in which the active-site surface is more accessible for soaking experiments. The PaDsbA1 variant displays identical redox character and in vitro activity to wild-type PaDsbA1 and is structurally highly similar. Two crystal structures of the PaDsbA1 variant were determined in complex with small molecules bound to the protein active site. These small molecules (MES, glycerol and ethylene glycol) were derived from the crystallization or cryoprotectant solutions and provide a proof of principle that the reported crystal form will be amenable to co-crystallization and soaking with small molecules designed to target the protein active-site surface.

  5. Tuning of intermolecular interactions results in packing diversity in imidazolin-5-ones

    Indian Academy of Sciences (India)

    Ashish Singh; Basanta Kumar Rajbongshi; Gurunath Ramanathan

    2014-09-01

    Crystal structures of four green fluorescent protein (GFP) chromophore analogues with different packing interactions could be tuned by appropriate substitutions around the imidazolin-5-one ring are reported here. Compound 1 was crystallized from tetrahydrofuran at room temperature while compounds 2-4 have been crystallized from a mixture of methanol and dichloromethane in 3:1 ratio. Molecule 1, 2 and 3 crystallized in monoclinic lattice while molecule 4 preferred to crystallize in a triclinic crystal system. The crystal packing of these molecules was stabilized by C-H$\\ldots$ stacking and C-H $\\ldots$ O type of supramolecular interactions. The results reveal that packing diversity can be easily accomplished in these molecules by tuning the substituents around the imidazolin-5-one ring. Photophysical studies also reveal that all have good quantum yield and fluoresce typically in red region due to presence of electron donating groups around the imidazolin-5-one ring.

  6. Real-Time Packing Behavior of Core-Shell Silica@Poly(N-isopropylacrylamide Microspheres as Photonic Crystals for Visualizing in Thermal Sensing

    Directory of Open Access Journals (Sweden)

    Karthikeyan Manivannan

    2016-12-01

    Full Text Available We grafted thermo-responsive poly(N-isopropylacrylamide (PNIPAM brushes from monodisperse SiO2 microspheres through surface-initiated atom transfer radical polymerization (SI ATRP to generate core-shell structured SiO2@PNIPAM microspheres (SPMs. Regular-sized SPMs dispersed in aqueous solution and packed as photonic crystals (PCs in dry state. Because of the microscale of the SPMs, the packing behavior of the PCs in water can be observed by optical microscopy. By increasing the temperature above the lower critical solution temperature (LCST of PNIPAM, the reversible swelling and shrinking of the PNIPAM shell resulted in dispersion and precipitation (three-dimensional aggregation of the SPM in aqueous solution. The SPMs were microdispersed in a water layer to accommodate the aggregation along two dimensions. In the microdispersion, the SPMs are packed as PCs with microscale spacing between SPMs below the LCST. When the temperature is increased above the LCST, the microdispersed PCs exhibited a close-packed arrangement along two dimensions with decreased spacing between SPMs. The change in spacing with increasing temperature above the LCST resulted in a color change from red to blue, which could be observed by the naked eye at an incident angle. Thus, the SPM array could be applied as a visual temperature sensor.

  7. Solving the non-oriented three-dimensional bin packing problem with stability and load bearing constraints

    DEFF Research Database (Denmark)

    Hansen, Jesper

    2003-01-01

    The three-dimensional bin packing problem is concerned with packing a given set of rectangular items into rectangular bins. We are interested in solving real-life problems where rotations of items are allowed and the packings must be packable and stable. Load bearing of items is taken into account...... as well. An on-line heuristic and an exact method have been developed and compared on real-life instances and as well on some benchmark instances. The on-line algorithm consistently reaches good solutions within a few seconds. The exact method is able to improve the solutions, but a significant amount...

  8. Crystal engineering of energetic materials: co-crystals of Ethylenedinitramine (EDNA) with modified performance and improved chemical stability.

    Science.gov (United States)

    Aakeröy, Christer B; Wijethunga, Tharanga K; Desper, John

    2015-07-27

    In the area of energetic materials, co-crystallization is emerging as a new technology for modifying or enhancing the properties of existing energetic substances. Ethylenedinitramine (EDNA) is a known energetic material which requires attention partly due to its chemical instability originating with its two highly acidic protons. In order to stabilize EDNA, a co-crystallization approach targeting the acidic protons using a series of co-crystallizing agents with suitable hydrogen-bond acceptors was employed. Fifteen attempted co-crystallizations resulted in eight successful outcomes and six of these were crystallographically characterized and all showed evidence of hydrogen bonds to the intended protons. Calculated detonation properties and experimental thermal and impact data for the co-crystals were obtained and compared with those of pure EDNA. The co-crystal of EDNA and 1,2-bis(4-pyridyl)ethylene was recognized as a more thermally stable alternative to EDNA while the co-crystal of EDNA and pyrazine N,N'-dioxide showed comparable detonation strengths (and much improved chemical stability) compared with that of EDNA. The co-crystals EDNA:4,4'-bipyridine and EDNA:pyrazine N,N'-dioxide were found to be about 50 % less impact sensitive than EDNA, all of which illustrate how co-crystallizations can be utilized for successfully modifying specific aspects of energetic materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Liquid Crystal Formation from Sunflower Oil: Long Term Stability Studies.

    Science.gov (United States)

    da Rocha-Filho, Pedro Alves; Maruno, Mônica; Ferrari, Márcio; Topan, José Fernando

    2016-06-09

    The Brazilian biodiversity offers a multiplicity of raw materials with great potential in cosmetics industry applications. Some vegetable oils and fatty esters increase skin hydration by occlusivity, keeping the skin hydrated and with a shiny appearance. Sunflower (Helianthus annus L.) oil is widely employed in cosmetic emulsions in the form of soaps, creams, moisturizers and skin cleansers due to the presence of polyphenols and its high vitamin E content. Liquid crystals are systems with many applications in both pharmaceutical and cosmetic formulations and are easily detected by microscopy under polarized light due to their birefringence properties. The aim of this research was to develop emulsions from natural sunflower oil for topical uses. Sunflower oil (75.0% w/w) was combined with liquid vaseline (25.0% w/w) employing a natural self-emulsifying base (SEB) derivative. The high temperature of the emulsification process did not influence the antioxidant properties of sunflower oil. Fatty esters were added to cosmetic formulations and extended stability tests were performed to characterize the emulsions. Fatty esters like cetyl palmitate and cetyl ester increase the formation of anisotropic structures. O/W emulsions showed acidic pH values and pseudoplastic behavior. The presence of a lamellar phase was observed after a period of 90 days under different storage conditions.

  10. Liquid Crystal Formation from Sunflower Oil: Long Term Stability Studies

    Directory of Open Access Journals (Sweden)

    Pedro Alves da Rocha-Filho

    2016-06-01

    Full Text Available The Brazilian biodiversity offers a multiplicity of raw materials with great potential in cosmetics industry applications. Some vegetable oils and fatty esters increase skin hydration by occlusivity, keeping the skin hydrated and with a shiny appearance. Sunflower (Helianthus annus L. oil is widely employed in cosmetic emulsions in the form of soaps, creams, moisturizers and skin cleansers due to the presence of polyphenols and its high vitamin E content. Liquid crystals are systems with many applications in both pharmaceutical and cosmetic formulations and are easily detected by microscopy under polarized light due to their birefringence properties. The aim of this research was to develop emulsions from natural sunflower oil for topical uses. Sunflower oil (75.0% w/w was combined with liquid vaseline (25.0% w/w employing a natural self-emulsifying base (SEB derivative. The high temperature of the emulsification process did not influence the antioxidant properties of sunflower oil. Fatty esters were added to cosmetic formulations and extended stability tests were performed to characterize the emulsions. Fatty esters like cetyl palmitate and cetyl ester increase the formation of anisotropic structures. O/W emulsions showed acidic pH values and pseudoplastic behavior. The presence of a lamellar phase was observed after a period of 90 days under different storage conditions.

  11. Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymer-fullerene bimolecular crystal

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Nichole Cates; Gysel, Roman; Sweetnam, Sean; McGehee, Michael D. [Department of Materials Science and Engineering, Stanford University, Stanford, CA (United States); Cho, Eunkyung [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Junk, Matthias J.N.; Chmelka, Bradley F. [Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA (United States); Risko, Chad; Kim, Dongwook; Bredas, Jean-Luc [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA (United States); Miller, Chad E. [Department of Materials Science and Engineering, Stanford University, Stanford, CA (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Richter, Lee J.; Kline, R. Joseph [National Institute of Standards and Technology, Gaithersburg, MD (United States); Heeney, Martin; McCulloch, Iain [Department of Chemistry, Imperial College London (United Kingdom); Amassian, Aram [King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Thuwal (Saudi Arabia); Acevedo-Feliz, Daniel; Knox, Christopher [King Abdullah University of Science and Technology (KAUST), Visualization Core Laboratory, Thuwal (Saudi Arabia); Hansen, Michael Ryan; Dudenko, Dmytro [Max Planck Institute for Polymer Research, Mainz (Germany); Toney, Michael F. [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States)

    2012-11-27

    The molecular packing in a polymer: fullerene bimolecular crystal is determined using X-ray diffraction (XRD), molecular mechanics (MM) and molecular dynamics (MD) simulations, 2D solid-state NMR spectroscopy, and IR absorption spectroscopy. The conformation of the electron-donating polymer is significantly disrupted by the incorporation of the electron-accepting fullerene molecules, which introduce twists and bends along the polymer backbone and 1D electron-conducting fullerene channels. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymer-fullerene bimolecular crystal

    KAUST Repository

    Miller, Nichole Cates

    2012-09-05

    The molecular packing in a polymer: fullerene bimolecular crystal is determined using X-ray diffraction (XRD), molecular mechanics (MM) and molecular dynamics (MD) simulations, 2D solid-state NMR spectroscopy, and IR absorption spectroscopy. The conformation of the electron-donating polymer is significantly disrupted by the incorporation of the electron-accepting fullerene molecules, which introduce twists and bends along the polymer backbone and 1D electron-conducting fullerene channels. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Industrial growth of yttria-stabilized cubic zirconia crystals by skull melting process

    Institute of Scientific and Technical Information of China (English)

    徐家跃; 雷秀云; 蒋新; 何庆波; 房永征; 张道标; 何雪梅

    2009-01-01

    We reported the development of a Ф100 cm growth apparatus for skull melting growth of yttria-stabilized cubic zirconia(YSZ) crystals and more than 1000 kg crystals have been grown in the furnace each time.The growth conditions were optimized and the structure of the as-grown crystals was characterized by X-ray diffraction.The transmittance of 15 mol.% yttria-stabilized cubic zirconia crystal was nearly 80% in the range of 400-1600 nm.The refractive indices were measured and fitted the Sellmeier equation whi...

  14. Using Latex Balls and Acrylic Resin Plates to Investigate the Stacking Arrangement and Packing Efficiency of Metal Crystals

    Science.gov (United States)

    Ohashi, Atsushi

    2015-01-01

    A high-school third-year or undergraduate first-semester general chemistry laboratory experiment introducing simple-cubic, face-centered cubic, body-centered cubic, and hexagonal closest packing unit cells is presented. Latex balls and acrylic resin plates are employed to make each atomic arrangement. The volume of the vacant space in each cell is…

  15. Facet stability of crystals I. Factors determining the polyhedral (in)-stability of silver single crystals during electrocrystallization at high current densities

    Science.gov (United States)

    Nanev, Chr. N.; Rashkov, R. St.

    1992-06-01

    Loss of the polyhedral stability as a result of emerging depressions on crystal faces has been observed during both vapour and solution growth under diffusion control, as well as by electrocrystallization at high current densities. A difference was found only when a quantitative comparison of the stability of the crystal shapes with the existing theoretical predictions was attempted. With the growth of zinc and cadmium single crystals from the vapour phase this phenomenon appears earlier, i.e. at smaller sizes than the expected figures, while the silver single crystals are more steady — they withstand one order of magnitude higher of current densities than the calculated values before the appearance of the depressions, in spite of the fact that the presence of an (inhomogeneous) electrical field in the second case has to decrease the polyhedral stability. One possible explanation of this fact is that the electrocrystallization of silver proceeds in highly concentrated solutions, for which Seeger's equation, laying in the base of the quantitative elucidations in this case, does not hold true. Correspondingly, here (part I of the paper) we are trying a more general approach, while part II represents a new, alternative way for explaining the higher stability of the faceted forms of the silver single crystals.

  16. COMPARISON BETWEEN DYNAMIC MUSCULAR STABILIZATION TECHNIQUE (DMST, YOGA THERAPY AND HOT PACKS IN IMPROVING GENERAL HEALTH STATUS OF POSTURAL LOW BACK PAIN PATIENTS

    Directory of Open Access Journals (Sweden)

    Deepak Chhabra

    2015-06-01

    Full Text Available Background: Different interventions can reduce the burden of postural low back pain. For example the use of Dynamic Muscular Stabilization Technique(DMST, Yoga Therapy and Hot Packs, which aids patients by muscle strengthening and relaxation. This study is aimed to evaluate to what extent the above techniques can improve the quality of life in those who suffer from the condition. Materials and Methods: This was a randomized controlled trial. Thirty subjects (15 male and 15 females with postural low back pain (n=30 were randomly divided into three groups. Group A (DMST Group; n = 10, Group B (Yoga Group; n = 10 and Group C (Control Group; n = 10. Then General Health Status using SF – 36 QOL was assessed at 0, 1st and 2nd week. The values were compared between the three groups. Results: The Dynamic Muscular Stabilization Technique was effective in improving general health status; significant differences were found on both physical and mental health components of SF – 36 QOL. Yoga Therapy was found effective over Hot Packs. The mean improvement overall on general health status was significantly better to Dynamic Muscular Stabilization Technique. Conclusion: The Dynamic Muscular Stabilization Technique is an effective intervention improving general health status over a period of 1 month in patients who experience postural low back pain.

  17. Design of a high-resolution high-stability positioning mechanism for crystal optics

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D.; Toellner, T. S.; Alp, E. E.

    1999-10-11

    The authors present a novel miniature multi-axis driving structure that will allow positioning of two crystals with better than 50-nrad angular resolution and nanometer linear driving sensitivity.The precision and stability of this structure allow the user to align or adjust an assembly of crystals to achieve the same performance as does a single channel-cut crystal, so they call it an artificial channel-cut crystal. In this paper, the particular designs and specifications, as well as the test results,for a two-axis driving structure for a high-energy-resolution artificial channel-cut crystal monochromator are presented

  18. Advanced Protein Crystallization Facility (APCF)

    Science.gov (United States)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication contains articles entitled: (1) Crystallization of EGFR-EGF; (2) Crystallization of Apocrustacyanin C1; (3) Crystallization and X-ray Analysis of 5S rRNA and the 5S rRNA Domain A; (4) Growth of Lysozyme Crystals at Low Nucleation Density; (5) Comparative Analysis of Aspartyl tRNA-synthetase and Thaumatin Crystals Grown on Earth and In Microgravity; (6) Lysosome Crystal Growth in the Advanced Protein Crystallization Facility Monitored via Mach-Zehnder Interferometry and CCD Video; (7) Analysis of Thaumatin Crystals Grown on Earth and in Microgravity; (8) Crystallization of the Nucleosome Core Particle; (9) Crystallization of Photosystem I; (10) Mechanism of Membrane Protein Crystal Growth: Bacteriorhodopsin-mixed Micelle Packing at the Consolution Boundary, Stabilized in Microgravity; (11) Crystallization in a Microgravity Environment of CcdB, a Protein Involved in the Control of Cell Death; and (12) Crystallization of Sulfolobus Solfataricus

  19. Packing in protein cores

    Science.gov (United States)

    Gaines, J. C.; Clark, A. H.; Regan, L.; O'Hern, C. S.

    2017-07-01

    Proteins are biological polymers that underlie all cellular functions. The first high-resolution protein structures were determined by x-ray crystallography in the 1960s. Since then, there has been continued interest in understanding and predicting protein structure and stability. It is well-established that a large contribution to protein stability originates from the sequestration from solvent of hydrophobic residues in the protein core. How are such hydrophobic residues arranged in the core; how can one best model the packing of these residues, and are residues loosely packed with multiple allowed side chain conformations or densely packed with a single allowed side chain conformation? Here we show that to properly model the packing of residues in protein cores it is essential that amino acids are represented by appropriately calibrated atom sizes, and that hydrogen atoms are explicitly included. We show that protein cores possess a packing fraction of φ ≈ 0.56 , which is significantly less than the typically quoted value of 0.74 obtained using the extended atom representation. We also compare the results for the packing of amino acids in protein cores to results obtained for jammed packings from discrete element simulations of spheres, elongated particles, and composite particles with bumpy surfaces. We show that amino acids in protein cores pack as densely as disordered jammed packings of particles with similar values for the aspect ratio and bumpiness as found for amino acids. Knowing the structural properties of protein cores is of both fundamental and practical importance. Practically, it enables the assessment of changes in the structure and stability of proteins arising from amino acid mutations (such as those identified as a result of the massive human genome sequencing efforts) and the design of new folded, stable proteins and protein-protein interactions with tunable specificity and affinity.

  20. Graphitic packing removal tool

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, K.E.; Kolsun, G.J.

    1996-12-31

    Graphitic packing removal tools are described for removal of the seal rings in one piece from valves and pumps. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  1. Linear Stability Analysis of Double Diffusive Convection in a Horizontal Sparsely Packed Rotating Anisotropic Porous Layer in Presence of Soret Effect

    Directory of Open Access Journals (Sweden)

    S.N. Gaikwad

    2014-01-01

    Full Text Available In this paper, we have investigated theoretically the effect of Soret parameter on the onset of double diffusive rotating anisotropic convection in a horizontal sparsely packed porous layer using linear stability theory which is based on the usual normal mode technique. The Brinkman model that includes the Coriolis term is employed for the momentum equation. The effect of anisotropy parameters, Soret parameter, solute Rayleigh number, Taylor number, Lewis number, Darcy and Darcy Prandtl number on stationary and oscillatory convection is shown graphically.

  2. HEXAGONAL CLOSE-PACKED C-60

    NARCIS (Netherlands)

    de Boer, Jan; van Smaalen, Sander; Petricek, Vaclav; Dusek, Michal P.; Verheijen, Marcel A.; Meijer, G.

    1994-01-01

    C60 crystals were grown from purified powder material with a multiple sublimation technique. In addition to crystals wit a cubic close-packed (ccp) arrangement, crystals were found with a hexagonal close-packed (hcp) structure. Detailed crystallographic evidence is given, including complete refineme

  3. Stress-induced stabilization of crystals in shape memory natural rubber.

    Science.gov (United States)

    Heuwers, Benjamin; Quitmann, Dominik; Hoeher, Robin; Reinders, Frauke M; Tiemeyer, Sebastian; Sternemann, Christian; Tolan, Metin; Katzenberg, Frank; Tiller, Joerg C

    2013-01-25

    In contrast to all known shape memory polymers, the melting temperature of crystals in shape memory natural rubber (SMNR) can be greatly manipulated by the application of external mechanical stress. As shown previously, stress perpendicular to the prior programming direction decreases the melting temperature by up to 40 K. In this study, we investigated the influence of mechanical stress parallel to prior stretching direction during programming on the stability of the elongation-stabilizing crystals. It was found that parallel stress stabilizes the crystals, which is indicated by linear increase of the trigger temperature by up to 17 K. The crystal melting temperature can be increased up to 126.5 °C under constrained conditions as shown by X-ray diffraction measurements.

  4. Br...Br and van der Waals interactions along a homologous series: crystal packing of 1,2-dibromo-4,5-dialkoxybenzenes.

    Science.gov (United States)

    Suarez, Sebastián A; Muller, Federico; Gutiérrez Suburu, Matías E; Fonrouge, Ana; Baggio, Ricardo F; Cukiernik, Fabio D

    2016-10-01

    The crystalline structures of four homologues of the 1,2-dibromo-4,5-dialkoxybenzene series [Br2C6H2(OCnH2n + 1)2 for n = 2, 12, 14 and 18] have been solved by means of single-crystal crystallography. Comparison along the series, including the previously reported n = 10 and n = 16 derivatives, shows a clear metric trend (b and c essentially fixed along the series and a growing linearly with n), in spite of some subtle differences in space groups and/or packing modes. A uniform packing pattern for the aliphatic chains has been found for the n = 12 to 18 homologues, which slightly differs from that of the n = 10 derivative. The crystalline structures of all the higher homologues (n = 10-18) seem to arise from van der Waals interchain interactions and, to a lesser extent, type II Br...Br interactions. The dominant role of interchain interactions provides direct structural support for the usual interpretation of melting point trends like that found along this series. Atoms in Molecules (AIM) analysis allows a comparison of the relative magnitude of the interchain and Br...Br interactions, an analysis validated by the measured melting enthalpies.

  5. An Investigation into the Polymorphism and Crystallization of Levetiracetam and the Stability of its Solid Form.

    Science.gov (United States)

    Xu, Kailin; Xiong, Xinnuo; Guo, Liuqi; Wang, Lili; Li, Shanshan; Tang, Peixiao; Yan, Jin; Wu, Di; Li, Hui

    2015-12-01

    Levetiracetam (LEV) crystals were prepared using different solvents at different temperatures. The LEV crystals were systematically characterized by X-ray powder diffraction (XRPD) and morphological analysis. The results indicated that many kinds of crystal habits exist in a solid form of LEV. To investigate the effects of LEV concentration, crystallization temperature, and crystallization type on crystallization and solid phase transformation of LEV, multiple methods were performed for LEV aqueous solution to determine if a new solid form exists in solid-state LEV. However, XRPD data demonstrate that the LEV solid forms possess same spatial arrangements that are similar to the original solid form. This result indicates that the LEV concentration, crystallization temperature, and crystallization type in aqueous solution have no influence on the crystallization and solid phase transformation of LEV. Moreover, crystallization by sublimation, melt cooling, and quench cooling, as well as mechanical effect, did not result in the formation of new LEV solid state. During melt cooling, the transformation of solid form LEV is a direct process from melting amorphous phase to the original LEV crystal phase, and the conversion rate is very quick. In addition, stability investigation manifested that LEV solid state is very stable under various conditions.

  6. H-Bond stabilized columnar discotic liquid crystals

    NARCIS (Netherlands)

    Paraschiv, I.

    2007-01-01

    Since 1977, more than 2300 publications on discotic (disk-like) liquid crystalline materials have appeared. Discotic liquid crystals, which usually consist of polyaromatic molecules surrounded by long peripheral alkyl tails, can form liquid crystalline mesophases in a wide temperature range. Within

  7. H-Bond stabilized columnar discotic liquid crystals

    NARCIS (Netherlands)

    Paraschiv, I.

    2007-01-01

    Since 1977, more than 2300 publications on discotic (disk-like) liquid crystalline materials have appeared. Discotic liquid crystals, which usually consist of polyaromatic molecules surrounded by long peripheral alkyl tails, can form liquid crystalline mesophases in a wide temperature range. Within

  8. Cationic cobaltammine as anion receptor: Synthesis, characterization, single crystal X-ray structure and packing analysis of hexaamminecobalt(III) chloride ( R, R)-tartrate monohydrate

    Science.gov (United States)

    Bala, Ritu; Sharma, Raj Pal; Venugopalan, Paloth; Harrison, William T. A.

    2007-03-01

    In an effort to utilize the [Co(NH 3) 6] 3+ cation as a new anion receptor (binding agent) for dihydroxy dicarboxylate anion i.e., tartrate, orange single crystals of hexaamminecobalt(III) chloride ( R, R)-tartrate monohydrate, [Co(NH 3) 6]Cl(C 4H 4O 6)·H 2O, were obtained by reacting hexaamminecobalt(III) chloride with potassium-sodium tartrate tetrahydrate in a 1:1 molar ratio in hot water. The single crystal X-ray structure determination of [Co(NH 3) 6]Cl(C 4H 4O 6)·H 2O revealed that a distinctive network of hydrogen bonding interactions (N-H⋯O, N-H⋯Cl -, O-H⋯O) stabilize the crystal lattice. This is the first complex salt of hexaamminecobalt(III) with dihydroxy dicarboxylate anion i.e., tartrate.

  9. The key to the extraordinary thermal stability of P. furiosus holo-rubredoxin: iron binding-guided packing of a core aromatic cluster responsible for high kinetic stability of the native structure.

    Science.gov (United States)

    Prakash, Satya; Sundd, Monica; Guptasarma, Purnananda

    2014-01-01

    Pyrococcus furiosus rubredoxin (PfRd), a small, monomeric, 53 residues-long, iron-containing, electron-transfer protein of known structure is sometimes referred to as being the most structurally-stable protein known to man. Here, using a combination of mutational and spectroscopic (CD, fluorescence, and NMR) studies of differently made holo- and apo-forms of PfRd, we demonstrate that it is not the presence of iron, or even the folding of the PfRd chain into a compact well-folded structure that causes holo-PfRd to display its extraordinary thermal stability, but rather the correct iron binding-guided packing of certain residues (specifically, Trp3, Phe29, Trp36, and also Tyr10) within a tight aromatic cluster of six residues in PfRd's hydrophobic core. Binding of the iron atom appears to play a remarkable role in determining subtle details of residue packing, forcing the chain to form a hyper-thermally stable native structure which is kinetically stable enough to survive (subsequent) removal of iron. On the other hand, failure to bind iron causes the same chain to adopt an equally well-folded native-like structure which, however, has a differently-packed aromatic cluster in its core, causing it to be only as stable as any other ordinary mesophile-derived rubredoxin. Our studies demonstrate, perhaps for the very first time ever that hyperthermal stability in proteins can owe to subtle differences in residue packing vis a vis mesostable proteins, without there being any underlying differences in either amino acid sequence, or bound ligand status.

  10. Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer-stabilized vertical alignment liquid crystal displays

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Jae Jin; Lee, Jun Hyup; Kim, Kyeong Hyeon [Development Center, LCD Business, SAMSUNG Electronics Co. LTD., Tangjeong-Myeon, Asan, Chungnam 336-741 (Korea, Republic of); Kikuchi, Hirotsuku; Higuchi, Hiroki [Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga 816-8580 (Japan); Kim, Dae Hyun; Lee, Seung Hee, E-mail: jsquare.lyu@samsung.com, E-mail: lsh1@chonbuk.ac.kr [Department of BIN Fusion Technology and Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2011-08-17

    The polymer-stabilized vertically aligned (PS-VA) liquid crystal display (LCD) driving mode has high potential for manufacturing low power consuming displays due to the higher transmittance and fast response as compared with the existing patterned vertically aligned and multi-domain vertically aligned modes. In this paper we have investigated the reaction mechanisms of monomer-liquid crystal blends to form a surface pre-tilt angle of liquid crystal in vertical alignment LCD associated with a fishbone electrode structure. The observed sizes of polymer bumps formed on the substrates were found to be dependent on the exposed UV wavelength and were almost equal in both top and bottom substrates. When a large UV wavelength was used, the phase separation mechanism of monomer in PS-VA mode was found nearly isotropic rather than anisotropic in contrast to the previous studies.

  11. Nature of packs used in propellant modeling.

    Science.gov (United States)

    Maggi, F; Stafford, S; Jackson, T L; Buckmaster, J

    2008-04-01

    In recent years we have constructed closely packed spheres using the Lubachevsky-Stillinger algorithm to generate morphological models of heterogeneous solid propellants. Improvements to the algorithm now allow us to create large polydisperse packs on a laptop computer, and to create monodisperse packs with packing fractions greater than 70% which display significant crystal order. The use of these models in the physical context motivates efforts to examine in some detail the nature of the packs, including certain statistical properties. We compare packing fractions for binary packs with long-known experimental data. Also, we discuss the near-neighbor number and the radial distribution function (RDF) for monodisperse packs and make comparisons with experimental data. We also briefly discuss the RDF for bidisperse packs. We also consider bounded monodisperse packs, and pay particular attention to the near-wall structure where we identify significant order.

  12. Crystal structures of MBi{sub 2}Br{sub 7} (M = Rb, Cs) - filled variants of AX{sub 7} sphere packing

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jen-Hui; Wolff, Alexander [Fachrichtung Chemie und Lebensmittelchemie, Technische Universitaet Dresden, 01062 Dresden (Germany); Ruck, Michael [Fachrichtung Chemie und Lebensmittelchemie, Technische Universitaet Dresden, 01062 Dresden (Germany); Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Str. 40, 01187 Dresden (Germany)

    2016-03-15

    The reinvestigation of the pseudo-binary systems MBr-BiBr{sub 3} (M = Rb, Cs) revealed two new phases with composition MBi{sub 2}Br{sub 7}. Both compounds are hygroscopic and show brilliant yellow color. The crystal structures were solved from X-ray single crystal diffraction data. The isostructural compounds adopt a new structure type in the triclinic space group P anti 1. The lattice parameters are a = 755.68(3) pm, b = 952.56(3) pm, c = 1044.00(4) pm, α = 76.400(2) , β = 84.590(2) , γ = 76.652(2) for RbBi{sub 2}Br{sub 7} and a = 758.71(5) pm, b = 958.23(7) pm, c = 1060.24(7) pm, α = 76.194(3) , β = 83.844(4) , γ = 76.338(3) for CsBi{sub 2}Br{sub 7}. The crystal structures consist of M{sup +} cations in anticuboctahedral coordination by bromide ions and bromidobismuthate(III) layers {sup 2}{sub ∞}[Bi{sub 2}Br{sub 7}]{sup -}. The 2D layers comprise pairs of BiBr{sub 6} octahedra sharing a common edge. The Bi{sub 2}Br{sub 10} double octahedra are further connected by common vertices. The bismuth(III) atoms increase their mutual distance in the double octahedra by off-centering so that the BiBr{sub 6} octahedra are distorted. The CsBi{sub 2}Br{sub 7} type can be interpreted as a common hexagonal close sphere packing of M and Br atoms, in which 1/4 of the octahedral voids are filled by Bi atoms. The structure type was systematically analyzed and compared with alternative types of common packings. The existence of a compound with the suggested composition CsBiBr{sub 4} could not be verified experimentally. (Copyright copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Morphological stability criterion for a spherical crystallization front in a multicomponent system with chemical reactions

    Science.gov (United States)

    Kukushkin, S. A.; Osipov, A. V.; Redkov, A. V.

    2014-12-01

    The morphological stability of a spherical crystal growing from a multicomponent medium due to the chemical reaction has been investigated. The approach used in this study is applicable to the case where the chemical compound forming the crystal does not exist in a gaseous (dissolved) form (for example, GaN). The investigation has been performed according to the classical scheme by the expansion of an infinitesimal deviation of the crystallization front from the initial shape into a series with the subsequent calculation of the time dependence of the coefficients of the expansion. It has been found that there is a similarity of the stability criteria for single-component and multicomponent crystals. In a multicomponent system, the single-component supersaturation analog determining the stability of a particle is the affinity of the chemical reaction. It has been shown that the morphological stability can also depend on the formation of other phases on the surface of the initial crystal, which is excluded in a single-component medium.

  14. Relation between stabilization energy, crystal field coefficient and themagnetic exchange interaction for Tb3+ ion

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiangmu; MA Wenjuan; CUI Shuwen; WANG Lihua

    2006-01-01

    Based on a single ion model, Hamiltonian of the simplest form about magnetocrystalline anisotropy for Tb3+ ion was solved by using the numerical method. The relation between the stabilization energy, crystal field coefficient B20 and the magnetic exchange interaction was studied as temperature approaches to 0K. The results show that the stabilization energy contributed by Tb3+ is linear with crystal field coefficient B20 approximately, but it is insensitive to the change of magnetic exchange interaction for the strong magnetic substancessuch as TbCo5, Tb2Co17 and Tb2Fe14B compounds.

  15. Dynamic stability of fcc crystals under isotropic loading from first principles.

    Science.gov (United States)

    Rehák, Petr; Cerný, Miroslav; Pokluda, Jaroslav

    2012-05-30

    Lattice dynamics and stability of four fcc crystals (Al, Ir, Pt and Au) under isotropic (hydrostatic) tensile loading are studied from first principles using the linear response method and the harmonic approximation. The results reveal that, contrary to former expectations, strengths of all the studied crystals are limited by instabilities related to soft phonons with finite or vanishing wavevectors. The critical strains associated with such instabilities are remarkably lower than those related to the volumetric instability. On the other hand, the corresponding reduction of the tensile strength is by 20% at the most. An analysis of elastic stability conditions is also performed and the results obtained by means of both approaches are compared.

  16. Electrically switchable Fresnel lenses in polymer-stabilized ferroelectric liquid crystals

    Science.gov (United States)

    Yeh, Hui-Chen; Ke, Ming-Wei; Liu, Yu-Mei

    2017-01-01

    In this study, we demonstrate the fabrication of an electrically switchable Fresnel lens based on surface-stabilized ferroelectric liquid crystals (SSFLCs) with polymer networks. The Fresnel lens was fabricated by injecting a monomer-doped ferroelectric liquid crystal into an extremely thin cell and exposing the cell to ultraviolet light through a Fresnel-zone-plate mask. The fabricated Fresnel lens consisted of the SSFLC and polymer-stabilized SSFLC structures. The focusing effect can be switched on by applying an appropriate voltage, and the characteristics of FLCs enable a rapid response on the order of milliseconds.

  17. Layering, melting, and recrystallization of a close-packed micellar crystal under steady and large-amplitude oscillatory shear flows

    Energy Technology Data Exchange (ETDEWEB)

    López-Barrón, Carlos R., E-mail: carlos.r.lopez-barron@exxonmobil.com [ExxonMobil Chemical Company, Baytown Technology and Engineering Complex, Baytown, Texas 77520 (United States); Wagner, Norman J. [Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716 (United States); Porcar, Lionel [Institute Laue-Langevin, BP 156, F38042 Grenoble Cedex 9 (France)

    2015-05-15

    The rheology and three-dimensional microstructure of a concentrated viscoelastic solution of the triblock copolymer poly(ethylene oxide){sub 106}-poly(propylene oxide){sub 68}-poly(ethylene oxide){sub 106} (Pluronic F127) in the protic ionic liquid ethylammonium nitrate are measured by small angle neutron scattering (SANS) under flow in three orthogonal planes. This solution's shear-thinning viscosity is due to the formation of two-dimensional hexagonal close-packed (HCP) sliding layer structure. Shear-melting of the crystalline structure is observed without disruption of the self-assembled micelles, resulting in a change in flow properties. Spatially resolved measurements in the 1–2 plane reveal that both shear-melting and sliding are not uniform across the Couette gap. Melting and recrystallization of the HCP layers occur cyclically during a single large amplitude oscillatory shear (LAOS) cycle, in agreement with the “stick-slip” flow mechanism proposed by Hamley et al. [Phys. Rev. E 58, 7620–7628 (1998)]. Analysis of 3D “structural” Lissajous curves show that the cyclic melting and sliding are direct functions of the strain rate amplitude and show perfect correlation with the cyclic stress response during LAOS. Both viscosity and structural order obey the Delaware–Rutgers rule. Combining rheology with in situ spatiotemporally resolved SANS is demonstrated to elucidate the structural origins of the nonlinear rheology of complex fluids.

  18. Magnetically induced crystal structure and phase stability in Fe1-cCoc

    DEFF Research Database (Denmark)

    Abrikosov, I.A.; James, P.; Eriksson, O.

    1996-01-01

    diagram. We demonstrate that for the Pe-rich random alloys magnetism-stabilizes the bce phase relative to the close-packed fee and hcp phases. Magnetism also favors the partially ordered alpha' phase relative to the random bce alloy. This unique relation between magnetism and phase stability for the Fe......We present an ab initio determination of the crystallographic phase stability of Fe-Co alloys as a function of concentration, using the coherent potential approximation. A bcc --> hcp phase transition is found at a concentration of 85 at.% of Co, in good agreement with the experimental phase......-Co alloys is analyzed by a spin-polarized canonical d-band model....

  19. Polymer stabilized liquid crystals: Topology-mediated electro-optical behavior and applications

    Science.gov (United States)

    Weng, Libo

    There has been a wide range of liquid crystal polymer composites that vary in polymer concentration from as little as 3 wt.% (polymer stabilized liquid crystal) to as high as 60 wt.% (polymer dispersed liquid crystals). In this dissertation, an approach of surface polymerization based on a low reactive monomer concentration about 1 wt.% is studied in various liquid crystal operation modes. The first part of dissertation describes the development of a vertical alignment (VA) mode with surface polymer stabilization, and the effects of structure-performance relationship of reactive monomers (RMs) and polymerization conditions on the electro-optical behaviors of the liquid crystal device has been explored. The polymer topography plays an important role in modifying and enhancing the electro-optical performance of stabilized liquid crystal alignment. The enabling surface-pinned polymer stabilized vertical alignment (PSVA) approach has led to the development of high-performance and fast-switching displays with controllable pretilt angle, increase in surface anchoring energy, high optical contrast and fast response time. The second part of the dissertation explores a PSVA mode with in-plane switching (IPS) and its application for high-efficiency and fast-switching phase gratings. The diffraction patterns and the electro-optical behaviors including diffraction efficiency and response time are characterized. The diffraction grating mechanism and performance have been validated by computer simulation. Finally, the advantages of surface polymerization approach such as good optical contrast and fast response time have been applied to the fringe-field switching (FFS) system. The concentration of reactive monomer on the electro-optical behavior of the FFS cells is optimized. The outstanding electro-optical results and mechanism of increase in surface anchoring strength are corroborated by the director field simulation. The density and topology of nanoscale polymer protrusions

  20. Molecular Structure and Crystal Packing of n-Type Semiconducting Material 3′,3′-(1,4-Phenylene)bis{2′-(4′′-trifluoromethyl)phenyl}acrylonitrile

    OpenAIRE

    Tetsuji Moriguchi; Shuichi Nagamatsu; Tatsuo Okauchi; Akihiko Tsuge; Wataru Takashima; Shuji Hayase

    2014-01-01

    The exact molecular structure and the crystal packing of the n-type semiconducting material 3′,3′-(1,4-phenylene)bis{2′-(4′′-trifluoromethyl)phenyl}acrylonitrile was determined by a single crystal X-ray diffraction with twin treatment technique. The air-stable product was crystallized from dichloromethane-hexane mixed solution. The solid-state structure is the example of a typical π-π stacking with side intermolecular CN–H short contact networks.

  1. Packing of crystalline structures of binary hard spheres: an analytical approach and application to amorphization.

    Science.gov (United States)

    Brouwers, H J H

    2007-10-01

    The geometrical stability of the three lattices of the cubic crystal system, viz. face-centered cubic (fcc), body-centered cubic (bcc), and simple cubic (sc), consisting of bimodal discrete hard spheres, and the transition to amorphous packing is studied. First, the random close packing (rcp) fraction of binary mixtures of amorphously packed spheres is recapitulated. Next, the packing of a binary mixture of hard spheres in randomly disordered cubic structures is analyzed, resulting in original analytical expressions for the unit cell volume and the packing fraction, and which are also valid for the other five crystal systems. The bimodal fcc lattice parameter appears to be in close agreement with empirical hard sphere data from literature, and this parameter could be used to distinguish the size mismatch effect from all other effects in distorted binary lattices of materials. Here, as a first model application, bimodal amorphous and crystalline fcc/bcc packing fractions are combined, yielding the optimum packing configuration, which depends on mixture composition and diameter ratio only. Maps of the closest packing mode are established and applied to colloidal mixtures of polydisperse spheres and to binary alloys of bcc, fcc, and hcp metals. The extensive comparison between the analytical expressions derived here and the published numerical and empirical data yields good agreement. Hence, it is seen that basic space-filling theories on "simple" noninteracting hard spheres are a valuable tool for the study of crystalline materials.

  2. Packing of crystalline structures of binary hard spheres: An analytical approach and application to amorphization

    Science.gov (United States)

    Brouwers, H. J. H.

    2007-10-01

    The geometrical stability of the three lattices of the cubic crystal system, viz. face-centered cubic (fcc), body-centered cubic (bcc), and simple cubic (sc), consisting of bimodal discrete hard spheres, and the transition to amorphous packing is studied. First, the random close packing (rcp) fraction of binary mixtures of amorphously packed spheres is recapitulated. Next, the packing of a binary mixture of hard spheres in randomly disordered cubic structures is analyzed, resulting in original analytical expressions for the unit cell volume and the packing fraction, and which are also valid for the other five crystal systems. The bimodal fcc lattice parameter appears to be in close agreement with empirical hard sphere data from literature, and this parameter could be used to distinguish the size mismatch effect from all other effects in distorted binary lattices of materials. Here, as a first model application, bimodal amorphous and crystalline fcc/bcc packing fractions are combined, yielding the optimum packing configuration, which depends on mixture composition and diameter ratio only. Maps of the closest packing mode are established and applied to colloidal mixtures of polydisperse spheres and to binary alloys of bcc, fcc, and hcp metals. The extensive comparison between the analytical expressions derived here and the published numerical and empirical data yields good agreement. Hence, it is seen that basic space-filling theories on “simple” noninteracting hard spheres are a valuable tool for the study of crystalline materials.

  3. Stability of immobilized Rhizomucor miehei lipase for the synthesis of pentyl octanoate in a continuous packed bed bioreactor

    Directory of Open Access Journals (Sweden)

    E. Skoronski

    2014-09-01

    Full Text Available The enzymatic synthesis of organic compounds in continuous bioreactors is an efficient way to obtain industrially important chemicals. However, few works have focused on the study of the operational conditions and the bioprocess performance. In this work, the aliphatic ester pentyl octanoate was obtained by direct esterification using a continuous packed bed bioreactor containing the immobilized enzyme Lipozyme® RM IM as catalyst. Enzymatic deactivation was evaluated under different conditions for the operational parameters substrate/enzyme ratio (5.00, 1.67, 0.83 and 0.55 mmol substrate∙min-1∙g-1enzyme and temperature (30, 40, 50 and 60 °C. The optimal condition was observed at 30 ºC, which gave the minimum enzymatic deactivation rate and the maximum conversion to the desired product, yielding approximately 60 mmols of ester for an enzyme loading of 0.5 g into the bioreactor. A first-order deactivation model showed good agreement with the experimental data.

  4. Oxygen diffusion in the Ti3X alloys with elements from the IIIA or IVA groups and stability of their DO19 crystal structure

    Science.gov (United States)

    Bilić, Ante; Gibson, Mark A.; Wilson, Nick; McGregor, Kathie

    2017-01-01

    Oxygen diffusion in Ti3X binary alloys, where X = Al, Ga, In, Si, Ge, or Sn, with the hexagonal close-packed DO19 crystal structure has been investigated in the 600-1200 K temperature range by kinetic Monte Carlo simulations, using the activation energies and exponential prefactors obtained from the literature. The results predict a vastly reduced oxygen mobility relative to that in α-Ti, in particular, along the basal directions, with the most notable reduction in the diffusivity evaluated for the alloys with heavier elements In and Sn. However, an insight from the crystal structure prediction based on the USPEX evolutionary optimization algorithm and first principles total energy calculations, suggests that the DO19 type crystal lattice is not the most stable for the elements in the carbon group. Rather, a distorted lattice with an orthorhombic crystal and spacegroup number 63 is predicted to be stable in the case of Sn, whereas larger tetragonal structures are predicted to be stable for Si and Ge. The dynamic stability of their lattices has been confirmed from the calculated vibrational normal mode spectra in the harmonic approximation.

  5. Citrate effects on amorphous calcium carbonate (ACC) structure, stability, and crystallization

    DEFF Research Database (Denmark)

    Tobler, Dominique Jeanette; Rodriguez Blanco, Juan Diego; Dideriksen, Knud;

    2015-01-01

    Understanding the role of citrate in the crystallization kinetics of amorphous calcium carbonate (ACC) is essential to explain the formation mechanisms, stabilities, surface properties, and morphologies of CaCO3 biominerals. It also contributes to deeper insight into fluid-mineral inte...

  6. Stability of Coulomb crystals in a linear Paul trap with storage-ring-like confinement

    DEFF Research Database (Denmark)

    Kjærgaard, Niels; Mølhave, Kristian; Drewsen, Michael

    2002-01-01

    We report experiments on the stability of ion Coulomb crystals in a linear Paul trap with storage-ring-like confinement. The transverse dynamics of charged particles in a trap of this type is analogous to that of a fast beam traveling through a channel with periodic, magnetic alternating gradient...

  7. Enrofloxacinium citrate monohydrate: Preparation, crystal structure, thermal stability and IR-characterization

    Science.gov (United States)

    Golovnev, Nicolay N.; Vasiliev, Alexander D.; Kirik, Sergei D.

    2012-08-01

    Enrofloxacinium citrate monohydrate (I), CHFNO3+·CHO7-·HO, [C19H22FN3O3 - enrofloxacin, EnrH] has been crystallized from the mutual solution of citric acid and enrofloxacin in ambient conditions. The colorless crystals have been investigated using X-ray single crystal and powder techniques, and characterized by differential scanning calorimetry, thermogravimetry and infrared spectroscopy. The obtained compound can be considered as a salt with enrofloxacinium in the role of a cation and citrate as an anion. The ions ratio equals to 1:1. The compound crystallizes in the triclinic lattice with a = 9.0489(8) Å, b = 9.6531(8) Å, c = 14.913(1) Å, α = 98.813(1)°, β = 92.029(1)°, γ = 91.013(1)°, Z = 2, V = 1286.1(2) Å3, S.G. P1¯. The crystal structure determination reveals the importance of inter- and intramolecular interactions in the crystal formation. The EnrH2+ and HCit molecular ions are packed in alternating layers with water molecules inserted into the citrate layers. A citrate ion in the layer is linked via H-bondings with two adjacent ones and three water molecules. Enrofloxacinium cations are packaged by means of a benched mode and every cation is linked by three intermolecular thymus type H-bondings with nitrogens of adjacent cations and by two links with the oxygen of the citrate ions. The infrared spectra gave the evidence of H-bonding formation in the obtained salt. The π-stacking interactions are observed between the aromatic cycles of the adjacent cations which are located in an antiparallel style in a layer.

  8. Electronic tera-order stabilization of photoinduced metastable species: structure of the photochromic product of spiropyran determined with in situ single crystal X-ray photodiffraction.

    Science.gov (United States)

    Naumov, Pance; Yu, Pei; Sakurai, Kenji

    2008-07-03

    The extraordinary stability of the photoinduced red form of a cationic spiropyran ( k approximately 10 (-6) s (-1) in water and approximately 10 (-6) to less than 10 (-8) s (-1) in the solid state) was employed to obtain in situ X-ray diffraction evidence of its molecular structure. By UV excitation under selected experimental conditions, on average, approximately one third of the cations in a single crystal of spiropyran iodide salt was converted and retained as the red form during the experiment. According to the structure of the mixed crystal, the ring opening, which is due to increased distance between the spiro oxygen and carbon atoms, is associated with slight molecular flattening caused by concurrent out-of-plane shift (11.2(5) degrees ) of the pyranopyridinium half and in-plane shift (4.8(7) degrees ) of the indoline half. The overall geometry change of the cation fits the steric requirements imposed by the ion packing in the crystal and can be viewed as molecular flattening caused by breaking of the spiroconjugation. The structure of the cation confirms that (at least in the case of cationic spiropyrans) the product is confined in the crystal mainly as a zwitterionic resonance structure in cis configuration similar to the (early) transition state. Although the positive charge of the closed form facilitates the ring-opening reaction by moving the reactant closer to the transition state, neither the weakening of the spiropyran C-O bond nor the space provided by the iodide alone can account for the stability of the product. Instead, the density functional theory calculations indicate that the stabilization of the red form of the cationic relative to the neutral spiropyran is thermodynamically controlled, probably through compensation of the charge within the zwitterion by the methylpyridinium group.

  9. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification

    Science.gov (United States)

    Arpin, Kevin A.; Losego, Mark D.; Cloud, Andrew N.; Ning, Hailong; Mallek, Justin; Sergeant, Nicholas P.; Zhu, Linxiao; Yu, Zongfu; Kalanyan, Berç; Parsons, Gregory N.; Girolami, Gregory S.; Abelson, John R.; Fan, Shanhui; Braun, Paul V.

    2013-10-01

    Selective thermal emission in a useful range of energies from a material operating at high temperatures is required for effective solar thermophotovoltaic energy conversion. Three-dimensional metallic photonic crystals can exhibit spectral emissivity that is modified compared with the emissivity of unstructured metals, resulting in an emission spectrum useful for solar thermophotovoltaics. However, retention of the three-dimensional mesostructure at high temperatures remains a significant challenge. Here we utilize self-assembled templates to fabricate high-quality tungsten photonic crystals that demonstrate unprecedented thermal stability up to at least 1,400 °C and modified thermal emission at solar thermophotovoltaic operating temperatures. We also obtain comparable thermal and optical results using a photonic crystal comprising a previously unstudied material, hafnium diboride, suggesting that refractory metallic ceramic materials are viable candidates for photonic crystal-based solar thermophotovoltaic devices and should be more extensively studied.

  10. Controllable crystallization and enhanced amorphous stability of Sb-Te films modified by Ag-doping

    Science.gov (United States)

    Zhong, Juechen; Luo, Yang; Gu, Ting; Wang, Zhenglai; Jiang, Kefeng; Wang, Guoxiang; Lu, Yegang

    2016-10-01

    Ag-doped Sb-Te films were deposited by magnetron co-sputtering and the structure, electrical, optical and thermal properties were analyzed. The results show that Ag-doping restrains crystal grain size, and changes a preferred orientation of the crystalline phase. The crystallization temperature is increased due to the Ag addition. Both amorphous resistance and crystalline resistance are enhanced and the resistance ratio reaches ˜104. Compared with Ge2Sb2Te5, Ag26.82(Sb3Te)73.18 film exhibits a better amorphous thermal stability, a higher crystallization temperature (˜166 °C), a wider optical band gap (0.515 eV), a larger crystallization activation energy (3.17 eV) as well as a better 10 years data retention at 92 °C.

  11. Crystallization behavior of supercooled smectic cholesteryl myristate nanoparticles containing phospholipids as stabilizers

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Koch, Michel; Drechsler, M;

    2005-01-01

    Supercooled smectic nanoparticles based on physiological cholesterol esters are under investigation as a potential novel carrier system for lipophilic drugs. The present study investigates the very complex crystallization behavior of such nanoparticles stabilized with the aid of phospholipids....... Phospholipid and phospholipid/bile salt stabilized cholesteryl myristate dispersions were prepared by high-pressure melt homogenization and characterized by particle size measurements, differential scanning calorimetry, X-ray diffraction and electron microscopy. To obtain fractions with very small smectic...... nanoparticles, selected dispersions were ultracentrifuged. A mixture of cholesteryl myristate and the phospholipid used for the stabilization of the dispersions was also investigated by light microscopy. The nanoparticles usually display a bimodal crystallization event which depends on the thermal treatment...

  12. Polyelectrolyte-stabilized graphene oxide liquid crystals against salt, pH, and serum.

    Science.gov (United States)

    Zhao, Xiaoli; Xu, Zhen; Xie, Yang; Zheng, Bingna; Kou, Liang; Gao, Chao

    2014-04-08

    Stabilization of colloids is of great significance in nanoscience for their fundamental research and practical applications. Electrostatic repulsion-stabilized anisotropic colloids, such as graphene oxide (GO), can form stable liquid crystals (LCs). However, the electrostatic field would be screened by ions. To stabilize colloidal LCs against electrolyte is an unsolved challenge. Here, an effective strategy is proposed to stabilize GO LCs under harsh conditions by association of polyelectrolytes onto GO sheets. Using sodium poly(styrene sulfonate) (PSS) and poly[2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (PMEDSAH), a kind of polyzwitterion, GO LCs were well-maintained in the presence of NaCl (from 0 M to saturated), extreme pH (from 1 to 13), and serum. Moreover, PSS- or PMEDSAH-coated chemically reduced GO (rGO) also showed stability against electrolyte.

  13. Vitamin K 3 family members - Part II: Single crystal X-ray structures, temperature-induced packing polymorphism, magneto-structural correlations and probable anti-oncogenic candidature

    Science.gov (United States)

    Rane, Sandhya; Ahmed, Khursheed; Salunke-Gawali, Sunita; Zaware, Santosh B.; Srinivas, D.; Gonnade, Rajesh; Bhadbhade, Mohan

    2008-12-01

    Temperature-induced packing polymorphism is observed for vitamin K 3 (menadione, 3-methyl-1,4-naphthoquinone, 1). Form 1a crystallizes at 300 K and 1b at 277 K both in the same space group P2 1/ c. Form 1b contains one molecule per asymmetric unit, performing anisotropy in g-factor viz. g z = 2.0082, g y = 2.0055 and g x = 2.0025, whereas form 1a contains two molecules in its asymmetric unit. Vitamin K 3 family members 2, [2-hydroxy vitamin K 3] and 3, [2-hydroxy-1-oximino vitamin K 3] also perform intrinsic neutral active naphthosemiquinone valence tautomers even in dark having spin concentrations due to hydrogen bonding and aromatic stacking interactions which are compared to vitamin K 3. The significant lateral C-H⋯O and O-H⋯π bifurcated or π-π ∗ interactions are discussed for molecular associations and radical formations. X-ray structure of 3 revealed π-π ∗ stack dimers as radicals signatured in EPR as triplet with five hyperfine splits [ Ā( 14N) = 11.9 G]. The centrosymmetric biradicals in 3 show diamagnetism at high temperature but below 10 K it shows paramagnetism with μeff as 0.19 B.M. Vitamin K 3 and its family members inhibit biological activities of acid phosphatase ( APase), which are proportional to their spin concentrations. This may relate to their probable anti-oncogenic candidature in future.

  14. Packing Smart

    Centers for Disease Control (CDC) Podcasts

    2011-08-22

    In this podcast for kids, the Kidtastics talk about packing a lunch that's not boring and is full of the power and energy kids need to make it through the day.  Created: 8/22/2011 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/22/2011.

  15. Power Packing

    Centers for Disease Control (CDC) Podcasts

    2011-08-16

    In this podcast for kids, the Kidtastics talk about how to pack a lunch safely, to help keep you from getting sick.  Created: 8/16/2011 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/16/2011.

  16. High thermal stability and sluggish crystallization kinetics of high-entropy bulk metallic glasses

    Science.gov (United States)

    Yang, M.; Liu, X. J.; Ruan, H. H.; Wu, Y.; Wang, H.; Lu, Z. P.

    2016-06-01

    Metallic glasses are metastable and their thermal stability is critical for practical applications, particularly at elevated temperatures. The conventional bulk metallic glasses (BMGs), though exhibiting high glass-forming ability (GFA), crystallize quickly when being heated to a temperature higher than their glass transition temperature. This problem may potentially be alleviated due to the recent developments of high-entropy (or multi-principle-element) bulk metallic glasses (HE-BMGs). In this work, we demonstrate that typical HE-BMGs, i.e., ZrTiHfCuNiBe and ZrTiCuNiBe, have higher kinetic stability, as compared with the benchmark glass Vitreoy1 (Zr41.2Ti13.8Cu12.5Ni10Be22.5) with a similar chemical composition. The measured activation energy for glass transition and crystallization of the HE-BMGs is nearly twice that of Vitreloy 1. Moreover, the sluggish crystallization region ΔTpl-pf, defined as the temperature span between the last exothermic crystallization peak temperature Tpl and the first crystallization exothermic peak temperature Tpf, of all the HE-BMGs is much wider than that of Vitreloy 1. In addition, high-resolution transmission electron microscopy characterization of the crystallized products at different temperatures and the continuous heating transformation diagram which is proposed to estimate the lifetime at any temperature below the melting point further confirm high thermal stability of the HE-BMGs. Surprisingly, all the HE-BMGs show a small fragility value, which contradicts with their low GFA, suggesting that the underlying diffusion mechanism in the liquid and the solid of HE-BMGs is different.

  17. Electro-optical properties of polymer stabilized cholesteric liquid crystal film

    Institute of Scientific and Technical Information of China (English)

    Ma Ji; Zheng Zhi-Gang; Liu Yong-Gang; Xuan Li

    2011-01-01

    Liquid crystals (LCs) and polymers are extensively used in various electro-optical applications. In this paper, normal mode polymer stabilized cholesteric LC film is prepared and studied. The effects of chiral dopant and monomer concentrations on the electro-optical properties, such as contrast ratio, driving voltage, hysteresis width and response time, are investigated. The reasons of electro-optical properties influenced by the concentrations of the materials are discussed. Through the proper material recipe, the electro-optical properties of polymer stabilized cholesteric LC film can be optimized.

  18. Stabilizing the body centered cubic crystal in titanium alloys by a nano-scale concentration modulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. L.; Shah, S. A. A.; Hao, Y. L.; Prima, F.; Li, T.; Cairney, J. M.; Wang, Y. D.; Wang, Y.; Obbard, E. G.; Li, S. J.; Yang, R.

    2017-04-01

    It is well-known that the body centered cubic (bcc) crystal in titanium alloys reaches its stability limit as the electron-to-atom (e/a) ratio of the alloy drops down to ~4.24. This critical value, however, is much higher than that of a multifunctional bcc type alloy (e/a = 4.15). Here we demonstrate that a nano-scale concentration modulation created by spinodal decomposition is what stabilizes the bcc crystal of the alloy. Aided by such a nano-scale concentration heterogeneity, unexpected properties from its chemically homogeneous counterpart are obtained. This provides a new strategy to design functional titanium alloys by tuning the spinodal decomposition.

  19. Numerical computation of the linear stability of the diffusion model for crystal growth simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Sorensen, D.C. [Rice Univ., Houston, TX (United States); Meiron, D.I.; Wedeman, B. [California Institute of Technology, Pasadena, CA (United States)

    1996-12-31

    We consider a computational scheme for determining the linear stability of a diffusion model arising from the simulation of crystal growth. The process of a needle crystal solidifying into some undercooled liquid can be described by the dual diffusion equations with appropriate initial and boundary conditions. Here U{sub t} and U{sub a} denote the temperature of the liquid and solid respectively, and {alpha} represents the thermal diffusivity. At the solid-liquid interface, the motion of the interface denoted by r and the temperature field are related by the conservation relation where n is the unit outward pointing normal to the interface. A basic stationary solution to this free boundary problem can be obtained by writing the equations of motion in a moving frame and transforming the problem to parabolic coordinates. This is known as the Ivantsov parabola solution. Linear stability theory applied to this stationary solution gives rise to an eigenvalue problem of the form.

  20. The stability of a crystal with diamond structure for patchy particles with tetrahedral symmetry.

    Science.gov (United States)

    Noya, Eva G; Vega, Carlos; Doye, Jonathan P K; Louis, Ard A

    2010-06-21

    The phase diagram of model anisotropic particles with four attractive patches in a tetrahedral arrangement has been computed at two different values of the range of the potential, with the aim of investigating the conditions under which a diamond crystal can be formed. We find that the diamond phase is never stable for our longer-ranged potential. At low temperatures and pressures, the fluid freezes into a body-centered-cubic solid that can be viewed as two interpenetrating diamond lattices with a weak interaction between the two sublattices. Upon compression, an orientationally ordered face-centered-cubic crystal becomes more stable than the body-centered-cubic crystal, and at higher temperatures, a plastic face-centered-cubic phase is stabilized by the increased entropy due to orientational disorder. A similar phase diagram is found for the shorter-ranged potential, but at low temperatures and pressures, we also find a region over which the diamond phase is thermodynamically favored over the body-centered-cubic phase. The higher vibrational entropy of the diamond structure with respect to the body-centered-cubic solid explains why it is stable even though the enthalpy of the latter phase is lower. Some preliminary studies on the growth of the diamond structure starting from a crystal seed were performed. Even though the diamond phase is never thermodynamically stable for the longer-ranged model, direct coexistence simulations of the interface between the fluid and the body-centered-cubic crystal and between the fluid and the diamond crystal show that at sufficiently low pressures, it is quite probable that in both cases the solid grows into a diamond crystal, albeit involving some defects. These results highlight the importance of kinetic effects in the formation of diamond crystals in systems of patchy particles.

  1. Stabilizing subnanometer Ag(0) nanoclusters by thiolate and diphosphine ligands and their crystal structures

    Science.gov (United States)

    Yang, Huayan; Wang, Yu; Zheng, Nanfeng

    2013-03-01

    The combined use of thiolate and diphosphine as surface ligands helps to stabilize subnanometer Ag(0) nanoclusters, resulting in the successful crystallization of two Ag(0)-containing nanoclusters (Ag16 and Ag32) for X-ray single crystal analysis. Both clusters have core-shell structures with Ag86+ and Ag2212+ as their cores, which are not simply either fragments of face-centered cubic metals or their five-fold twinned counterparts. The clusters display UV-Vis absorption spectra consisting of molecule-like optical transitions.The combined use of thiolate and diphosphine as surface ligands helps to stabilize subnanometer Ag(0) nanoclusters, resulting in the successful crystallization of two Ag(0)-containing nanoclusters (Ag16 and Ag32) for X-ray single crystal analysis. Both clusters have core-shell structures with Ag86+ and Ag2212+ as their cores, which are not simply either fragments of face-centered cubic metals or their five-fold twinned counterparts. The clusters display UV-Vis absorption spectra consisting of molecule-like optical transitions. Electronic supplementary information (ESI) available: Experimental details, more pictures of the structure and XPS spectra of the clusters. CCDC 916463 and 916464. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3nr34328f

  2. Thermodynamic stability and structural properties of cluster crystals formed by amphiphilic dendrimers

    Science.gov (United States)

    Lenz, Dominic A.; Mladek, Bianca M.; Likos, Christos N.; Blaak, Ronald

    2016-05-01

    We pursue the goal of finding real-world examples of macromolecular aggregates that form cluster crystals, which have been predicted on the basis of coarse-grained, ultrasoft pair potentials belonging to a particular mathematical class [B. M. Mladek et al., Phys. Rev. Lett. 46, 045701 (2006)]. For this purpose, we examine in detail the phase behavior and structural properties of model amphiphilic dendrimers of the second generation by means of monomer-resolved computer simulations. On augmenting the density of these systems, a fluid comprised of clusters that contain several overlapping and penetrating macromolecules is spontaneously formed. Upon further compression of the system, a transition to multi-occupancy crystals takes place, the thermodynamic stability of which is demonstrated by means of free-energy calculations, and where the FCC is preferred over the BCC-phase. Contrary to predictions for coarse-grained theoretical models in which the particles interact exclusively by effective pair potentials, the internal degrees of freedom of these molecules cause the lattice constant to be density-dependent. Furthermore, the mechanical stability of monodisperse BCC and FCC cluster crystals is restricted to a bounded region in the plane of cluster occupation number versus density. The structural properties of the dendrimers in the dense crystals, including their overall sizes and the distribution of monomers are also thoroughly analyzed.

  3. Heuristics for Multidimensional Packing Problems

    DEFF Research Database (Denmark)

    Egeblad, Jens

    for a minimum height container required for the items. The main contributions of the thesis are three new heuristics for strip-packing and knapsack packing problems where items are both rectangular and irregular. In the two first papers we describe a heuristic for the multidimensional strip-packing problem...... for a three-dimensional knapsack packing problem involving furniture is presented in the fourth paper. The heuristic is based on a variety of techniques including tree-search, wall-building, and sequential placement. The solution process includes considerations regarding stability and load bearing strength...... paper. Ensuring that a loaded consignment of items are balanced throughout a container can reduce fuel consumption and prolong the life-span of vehicles. The heuristic can be used as a post-processing tool to reorganize an existing solution to a packing problem. A method for optimizing the placement...

  4. Effect of Pressure on Thermal Stability and Decomposition of KDP Crystal

    Institute of Scientific and Technical Information of China (English)

    DING Jian-Xu; WANG Tao; WANG Sheng-Lai; CUI De-Liang; MU Xiao-Ming; XU Xin-Guang

    2011-01-01

    @@ Effect of pressure on thermal behavior of KDP crystals is investigated by using the in-situ infrared reflective spectra.Compared with that under normal atmosphere, the onset temperature of decomposition under pressure of 1 MPa is improved to from 210℃ to 213℃, suggesting that the thermal stability of KDP is enhanced.Under pressure of 2 MPa, the thermal stability is deteriorated and KDP begins to decompose at 183℃.Under normal atmosphere KDP decomposes in route of translating to K4P2O7 firstly, and then to KPO3.Under pressures of 1 MPa and 2MPa, KDP translates to KPO3 directly without any other polymeric intermediates.%Effect of pressure on thermal behavior of KDP crystals is investigated by using the in-situ infrared reflective spectra.Compared with that under normal atmosphere, the onset temperature of decomposition under pressure of 1 MPa is improved to from 210 ℃ to 213℃, suggesting that the thermal stability of KDP is enhanced.Under pressure of 2 MPa, the thermal stability is deteriorated and KDP begins to decompose at 183℃.Under normal atmosphere KDP decomposes in route of translating to K4P2O7 firstly, and then to KPO3.Under pressures of 1 MPa and 2 MPa, KDP translates to KPO3 directly without any other polymeric intermediates.

  5. A Rate-Dependent Crystal Plasticity Analysis of Orientation Stability in Biaxial Tension of Magnesium

    Institute of Scientific and Technical Information of China (English)

    Donghong Zhang; Saiyi Li

    2011-01-01

    The development of texture during plastic deformation plays an important role in determining the stretch formability of magnesium alloy sheets. In this study, the orientation stability during equibiaxial tension of magnesium was analyzed based on three dimensional lattice rotations calculated by using a rate-dependent crystal plasticity model and assuming five different combinations of slip modes. The results show that no orientations can satisfy the stability criteria with both zero rotation velocity and convergent orientation flow in all dimensions. However, relatively stable orientations with zero rotation velocity and an overall convergence are found. They are featured by characteristic alignments of specific crystallographic directions in the macroscopic axis of contraction, depending on the slip modes involved in the deformation. It is also shown that the orientation stability varies significantly with the deviation of deformation mode from equibiaxial tension. The simulation results are briefly discussed in comparison with pre-existing experiments.

  6. Valve Packing

    Science.gov (United States)

    1992-01-01

    "S Glass" yarn was originally developed by NASA for high temperature space and aeronautical applications. When John Crane, Inc. required material that would withstand temperatures higher than 1,200 degrees Fahrenheit, they contacted Owens-Corning, which had developed a number of applications for the material. John Crane combines the yarn with other components to make Style 287-I packing. The product can be used in chemical processing operations, nuclear power stations, petroleum products, etc. Advantages include increased service life and reduced maintenance costs.

  7. Protein packing quality using Delaunay complexes

    DEFF Research Database (Denmark)

    Fonseca, Rasmus; Winter, Pawel; Karplus, Kevin

    2011-01-01

    A new method for estimating the packing quality of protein structures is presented. Atoms in high quality protein crystal structures are very uniformly distributed which is difficult to reproduce using structure prediction methods. Packing quality measures can therefore be used to assess structures...... of low quality and even to refine them. Previous methods mainly use the Voronoi cells of atoms to assess packing quality. The presented method uses only the lengths of edges in the Delaunay complex which is faster to compute since volumes of Voronoi cells are not evaluated explicitly. This is a novel...... application of the Delaunay complex that can improve the speed of packing quality computations. Doing so is an important step for, e.g., integrating packing measures into structure refinement methods. High- and low-resolution X-ray crystal structures were chosen to represent well- and poorly-packed structures...

  8. Polymer-stabilized blue phase liquid crystal display with slanted wall-shaped electrodes

    Institute of Scientific and Technical Information of China (English)

    Feng Zhou; Qionghua Wang; Di Wu; Jianpeng Cui

    2012-01-01

    A polymer-stabilized blue phase liquid crystal display (BPLCD) with slanted wall-shaped electrodes is proposed. Compared with the traditional BPLCD with wall-shaped electrodes, the electrodes of the proposed BPLCD are slightly angled to obtain phase retardation in the entire cell even at the position of electrodes. The proposed BPLCD demonstrates a relatively higher average transmittance and overall brightness than the traditional BPLCD.%A polymer-stabilized blue phase liquid crystal display (BPLCD) with slanted wall-shaped electrodes is proposed.Compared with the traditional BPLCD with wall-shaped electrodes,the electrodes of the proposed BPLCD are slightly angled to obtain phase retardation in the entire cell even at the position of electrodes.The proposed BPLCD demonstrates a relatively higher average transmittance and overall brightness than the traditional BPLCD.Owing to the continuous improvement in image quality of liquid crystal displays (LCDs),they have been widely employed in desktop monitors,TVs,and mobile displays at present[1-5].With the development of LCDs the polymer-stabilized blue phase LCDs (BPLCDs)[6-11]can replace the conventional LCDs and become the nextgeneration display technology.The polymer-stabilized BPLCDs have numerous attractive features,such as submillisecond gray-to-gray response time,alignmentlayer-free process optically isotropic dark state and cell gap insensitivity[12-14].Because of these advantages,the fabrication processes of the BPLCDs are simplified,motion-image blurs are reduced,and color-sequential displays using RGB LEDs are enabled.

  9. Capillary stability of vapor-liquid-solid crystallization processes and their comparison to Czochralski and Stepanov growth methods

    Science.gov (United States)

    Nebol'sin, Valery A.; Suyatin, Dmitry B.; Dunaev, Alexander I.; Tatarenkov, Alexander F.

    2017-04-01

    Epitaxial semiconductor nanowires grown with vapor-liquid-solid crystallization processes are very attractive nanoscale objects for many different applications. Despite extensive studies of the growth mechanism, there is still a lack of understanding of the growth process; in particular, the stability of the vapor-liquid-solid crystallization process has not previously been studied. Here we examine the capillary stability of the vapor-liquid-solid growth of nanowires and filamentary crystals with different diameters and demonstrate that the growth is stable for small Bond numbers when the meniscus height is linearly dependent on catalyst diameter. The capillary stability of vapor-liquid-solid growth is also compared with capillary stability in the Stepanov and Czochralski crystal growth methods; it is shown that capillary stability is not possible in the Czochralski method, although it is possible in the Stepanov growth method when the ratio of crystal diameter to shaper diameter is >1/2. These findings are important for better understanding and improved control of the growth of nanowires and filamentary crystals and indicate, for example, that large diameter filamentary crystals can be grown via a vapor-liquid-solid mechanism if the influence of gravity forces on the liquid catalytic particle shape can be reduced.

  10. Stability and plasticizing and crystallization effects of vitamins in amorphous sugar systems.

    Science.gov (United States)

    Zhou, Yankun; Roos, Yrjö H

    2012-02-01

    Increased molecular mobility and structural changes resulting from water plasticization of glassy solids may lead to loss of the entrapped compounds from encapsulant systems. In the present study, the stability of water-soluble vitamins, vitamin B(1) (vB(1), thiamin hydrochloride) and vitamin C (vC, ascorbic acid), in freeze-dried lactose and trehalose at various water activities was studied. Water sorption of lactose-vB(1), lactose-vC, trehalose-vB(1), and trehalose-vC systems was determined gravimetrically. Glass transition and crystallization of anhydrous and plasticized sugar-vitamin systems were determined using thermal analysis. Critical water activity was calculated using water sorption and glass transition data. The retention of the vitamins was measured spectrophotometrically. The results showed that the amorphous structure protected the entrapped vitamins at low a(w). Crystallization of lactose accelerated vitamin degradation, whereas trehalose retained much higher amounts of the vitamins. Glass transition and critical water activity of solids and crystallization of component sugars should be considered in the stabilization of sensitive components.

  11. The stability of travelling waves induced by crossed electric and magnetic fields in nematic liquid crystals

    Science.gov (United States)

    Stewart, I. W.; Faulkner, T. R.

    A theoretical study is carried out into the stability of travelling wave solutions to an approximate dynamic equation for the problem in which a nematic liquid crystal is subjected to crossed electric and magnetic fields. The authors recently found three types of travelling wave solutions for this problem [2], each characterised by the control parameter q which describes the relationship between the magnitudes of the fields and their crossed angle. Two types of stability are ex amined: the first considers perturbations which vanish outside some finite interval in the moving coordinate of the travelling wave, while the second considers quite general perturbations belonging to a weighted L2( R) space, the weighting function being determined by the particular solution and the control parameter q. When the first type of stability occurs, perturbations decay to zero as time increases. In the second type of stability perturbations may eith er decay to zero or induce a small phase shift to the original travelling wave. Both these versions of stability depend crucially on q and on the type of travelling wave solution being considered.

  12. INFLUENCE OF ELECTRON BEAM TREATMENT ON THE CRYSTALLIZATION AND THERMAL STABILITY OF LDPE/EPDM BLENDS

    Directory of Open Access Journals (Sweden)

    Bhuwanesh Kumar Sharma

    2014-01-01

    Full Text Available The effect of blend composition and Electron Beam (EB irradiation on the crystallization and thermal behavior of Low Density Polyethylene (LDPE/Ethylene-Propylene-Diene elastomer (EPDM blends had been studied. Melting temperatures were found to remain unchanged upon variation of blend composition as well as irradiation dose. But the degree of crystallinity and Tc (crystallization temperature were decreased with increase in EPDM content and EB dose. On the other hand, thermal stability (in terms of onset temperature and degradation temperature and activation energy were increased with increase in EPDM content and irradiation dose. But the speed of degradation slowed down with increasing EPDM content and EB dose. Interestingly, once Trimethylolpropane Triacrylate (TMPTA and Triallyl Cynuerate (TAC were incorporated into the blends, the degrees of change of these properties were more in same direction upon irradiation. At higher irradiation dose properties were demoted due to chain scission.

  13. Crowded Star Mesogens: Guest-Controlled Stability of Mesophases from Unconventional Liquid-Crystal Molecules.

    Science.gov (United States)

    Lehmann, Matthias; Maier, Philipp; Grüne, Matthias; Hügel, Markus

    2017-01-23

    The molecular design of crowded hexasubstituted star mesogens based on a benzene core and alternating substitution with oligo(phenylenevinylene) arms and aryl units generates free space between the conjugated arm scaffolds. Various arylcarboxy building blocks, decorated with alkoxy chains, have been incorporated in the void by mixing, hydrogen bonding or covalent bonds to the aryl groups. The mesogens assemble in columnar stacks ranging from soft crystals to rectangular and hexagonal columnar liquid crystals, revealed by polarized optical microscopy, differential scanning calorimetry, X-ray scattering and modelling. The stability of the mesophases is crucially influenced by the binding mode of the arylcarboxy guest building blocks. The origin of the variation in clearing temperature is unravelled by modelling, cohesive energy density considerations and solid-state NMR spectroscopy. The control over the transition temperature is important for the formation of aligned thin films and thus for potential applications.

  14. Electric field induced domain formation in surface stabilized ferroelectric liquid crystal cells

    OpenAIRE

    Dierking, Ingo; Gießelmann, Frank; Schacht, Jochen; Zugenmaier, Peter

    1994-01-01

    Two types of domains have been observed for S sub(C) ferroelectric liquid crystals in surface stabilized cells (SSFLC) by application of a high electric field with the smectic layers tilted by the amount of the chevron angle with respect to the normal of the rubbing direction in the substrate plane. The layer structure resembles that of a chevron configuration in the plane of the substrate similar to the recently reported stripe-shaped SSFLC structure. The two domain types 'appear' to switch ...

  15. Observation of blue phase in chiral nematic liquid crystal and its stabilization by silica nanoparticles

    Science.gov (United States)

    Singh, Arshdeep; Malik, Praveen; Jayoti, Divya

    2016-01-01

    In the present work, we report the blue phase (BP) in a binary mixture of cholesteryl nonanoate (CN) and N-(4-ethoxybenzylidene)-4-butylaniline (EBBA). The mixture exhibits BP over a temperature range of 2.3 K at optimum composition (50:50) of liquid crystals (LCs). The effect of silica nanoparticles (SNPs) doping on thermal stability of BPs has also been demonstrated and nearly 6 K wide BP temperature range was achieved at 0.5 wt.% of SNPs. A porous type texture was also observed during the BP formation process in the doped samples.

  16. Effect of Saddle-Splay Elasticity on Stability of Disclination Rings in Nematic Liquid Crystals

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-Sheng; YUAN Bao-He; YANG Guo-Hong

    2008-01-01

    In this paper, the stability of disclination ring in nematic liquid crystals is studied. In the presence of saddle-splay elasticity (characterized by k24) the disclination ring has a universal equilibrium radius. Depending on the values of the saddle-splay constant k24, the universal equilibrium radius is altered. When k24 > 0.92k (m=1/2) and k24>0.88k (m = -1/2), the disclination will be a point rather than a ring, where k is the Frank elastic constant in the one-constant approximation.

  17. Crystallization of Self-Propelled Hard Discs

    Science.gov (United States)

    Briand, G.; Dauchot, O.

    2016-08-01

    We experimentally study the crystallization of a monolayer of vibrated discs with a built-in polar asymmetry, a model system of active liquids, and contrast it with that of vibrated isotropic discs. Increasing the packing fraction ϕ , the quasicontinuous crystallization reported for isotropic discs is replaced by a transition, or a crossover, towards a "self-melting" crystal. Starting from the liquid phase and increasing the packing fraction, clusters of dense hexagonal-ordered packed discs spontaneously form, melt, split, and merge, leading to a highly intermittent and heterogeneous dynamics. For a packing fraction larger than ϕ*, a few large clusters span the system size. The cluster size distribution is monotonically decreasing for ϕ ϕ*, and is a power law at the transition. The system is, however, never dynamically arrested. The clusters permanently melt from place to place, forming droplets of an active liquid which rapidly propagate across the system. This self-melting crystalline state subsists up to the highest possible packing fraction, questioning the stability of the crystal for active discs unless it is at ordered close packing.

  18. Structural stability and theoretical strength of Cu crystal under equal biaxial loading

    Indian Academy of Sciences (India)

    Jian-Min Zhang; Zhong-Liang Lin; Yan Zhang; Vincent Ji

    2010-02-01

    Cu has been used extensively to replace Al as interconnects in ULSI and MEMS devices. However, because of the difference in the thermal expansion coefficients between the Cu film and the Si substrate, large biaxial stresses will be generated in the Cu film. Thus, the Cu film becomes unstable and even changes its morphologies which affects the device manufacturing yield and ultimate reliability. The structural stability and theoretical strength of Cu crystal under equal biaxial loading have been investigated by combining the MAEAM with Milstein-modified Born stability criteria. The results indicate that, under sufficient tension, there exists a stress-free BCC phase which is unstable and slips spontaneously to a stress-free metastable BCT phase by consuming internal energy. The stable region ranges from −15.131 GPa to 2.803 GPa in the theoretical strength or from −5.801% to 4.972% in the strain respectively.

  19. Development of valsartan-loaded gelatin microcapsule without crystal change using hydroxypropylmethylcellulose as a stabilizer.

    Science.gov (United States)

    Li, Dong Xun; Yan, Yi Dong; Oh, Dong Hoon; Yang, Kwan Yeol; Seo, Yoon Gi; Kim, Jong Oh; Kim, Yong-Il; Yong, Chul Soon; Choi, Han-Gon

    2010-07-01

    To develop a valsartan-loaded gelatin microcapsule using hydroxypropylmethylcellulose (HPMC) as a stabilizer, which could improve the physical stability and bioavailability of valsartan, the gelatin microcapsules were prepared with various ratios of gelatin and HPMC using a spray-drying technique. Their solubility, dissolution, thermal characteristics, crystallinity, and physical stability were investigated. The bioavailability of drug in valsartan-loaded microcapsule was then evaluated compared to drug powder and commercial product in rats. The microcapsule with gelatin and/or HPMC enhanced the solubility and dissolution of drug compared to valsartan powder. Among the formulations tested, the valsartan-loaded gelatin microcapsule at the weight ratio of valsartan/gelatin/HPMC of 1/2/1 gave excellent drug solubility of approximately 2 microg/ml and dissolution of 70% at 1 h. The crystal state of valsartan in this microcapsule was changed from crystalline to amorphous form during the spray-drying process and maintained as an amorphous form at 40 degrees C for at least 3 months, indicating that it was physically stable. HPMC in this microcapsule could inhibit the recrystallization, resulting in stabilizing the amorphous form of valsartan. Furthermore, it improved the oral bioavailability of valsartan compared to valsartan powder and gave the similar AUC, C(max), and T(max) values to commercial product, suggesting that it was bioequivalent to commercial product in rats. Thus, the gelatin microcapsule with HPMC would be a more effective and stable oral delivery system of poorly water-soluble valsartan.

  20. Density functional theory calculations of stability and diffusion mechanisms of impurity atoms in Ge crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maeta, Takahiro [Graduate School of System Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan); GlobalWafers Japan Co., Ltd., Higashikou, Seirou-machi, Kitakanbara-gun, Niigata 957-0197 (Japan); Sueoka, Koji [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan)

    2014-08-21

    Ge-based substrates are being developed for applications in advanced nano-electronic devices because of their higher intrinsic carrier mobility than Si. The stability and diffusion mechanism of impurity atoms in Ge are not well known in contrast to those of Si. Systematic studies of the stable sites of 2nd to 6th row element impurity atoms in Ge crystal were undertaken with density functional theory (DFT) and compared with those in Si crystal. It was found that most of the impurity atoms in Ge were stable at substitutional sites, while transition metals in Si were stable at interstitial sites and the other impurity atoms in Si were stable at substitutional sites. Furthermore, DFT calculations were carried out to clarify the mechanism responsible for the diffusion of impurity atoms in Ge crystals. The diffusion mechanism for 3d transition metals in Ge was found to be an interstitial-substitutional diffusion mechanism, while in Si this was an interstitial diffusion mechanism. The diffusion barriers in the proposed diffusion mechanisms in Ge and Si were quantitatively verified by comparing them to the experimental values in the literature.

  1. Enol-enamine tautomerism in crystals of 1,3-bis(pyridin-2-yl) propan-2-one: a combined crystallographic and quantum-chemical investigation of the effect of packing on tautomerization processes.

    Science.gov (United States)

    Godsi, Oded; Turner, Boaz; Suwinska, Kinga; Peskin, Uri; Eichen, Yoav

    2004-10-20

    The enolpyridine, OH-ketoenamime, NH equilibrium in crystals of 1,3-bis(pyridin-2-yl)propan-2-one was studied using temperature-dependent single-crystal X-ray diffraction. The relative population of the different tautomers was found to be sensitive to the temperature in the range of 100-300 K, illustrating the small thermodynamic difference between these two tautomers. This energy resemblance is partially attributed to the molecular packing in the crystal, where the molecules are arranged in the form of dimers. Ab initio electronic energy calculations (HF/6-31G** and MP2/6-31G**) reveal the effect of dimerization in the crystal on the electronic energy levels. Several tautomeric states were identified in the dimer of 1,3-bis(pyridin-2-yl)propan-2-one. A model is proposed in which four of these dimer states are populated in the crystal at ambient temperatures. The crystallographic data were treated according to this four-state dimer model, suggesting that the free energy of the OH-NH dimers is higher than that of the OH-OH dimers by 120 +/- 10 cal mol(-1) and that the NH-NH dimers are yet higher in free energy by 50 +/- 10 cal mol(-1).

  2. Body-centered cubic dissipative crystal formation in a dispersive and diffractive optical parametric oscillator.

    Science.gov (United States)

    Tlidi, M; Pieroux, D; Mandel, Paul

    2003-09-15

    We show that coupling diffraction and chromatic dispersion lead to body-centered cubic and hexagonally packed cylinders of dissipative optical crystals in a degenerate optical parametric oscillator. The stabilization of these crystals is a direct consequence of the interaction between the modulational and the quasi-neutral modes.

  3. Silica nanoparticles for fines stabilization in Ottawa sand packed beds; Uso de nanopartículas de sílice para la estabilización de finos en lechos empacados de arena Ottawa

    Directory of Open Access Journals (Sweden)

    Farid Bernardo Cortes

    Full Text Available To determine the problem of fines migration on packed beds and offer a possible solution for this issue, an adsorptive system of packed beds was developed for experimental simulation of fines migration and stabilization by using silica nanoparticles. The adsorbent beds were prepared with Ottawa sand and glass spheres (average radius of 0.53 mm. Three different sand beds were used in the investigation: clean sand (water- wet system, sand submitted to a damage process using an extra-heavy Colombian crude oil (oil-wet system and sand treated with silica nanoparticles (5-15 nm. Fines suspension was prepared with alumina nanoparticles (50 nm and distilled water. Results show that beds treated with silica nanoparticles present idealized patterns for the rupture curve, indicating that silica nanoparticles capture and retain fines, decreasing fines migration due to their adsorption capacity.

  4. Stabilizing control of crystal size distribution in continuous crystallization processes; Renzoku shoseki purosesu ni okeru kessho ryukei bunpu no anteika seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Naito, K.; Sotowa, K.; Kano, M.; Hasebe, S.; Hashimoto, I. [Kyoto Univ. (Japan). Faculty of Engineering

    1998-03-01

    The sustained oscillation of the crystal size distribution (CSD) in continuous crystallization process is analyzed by simulation using a detailed model. CSD can not be used as a controlled variable because of its distributed nature. Therefore, the method of selecting representability indices for CSD and the stabilizing control of CSD based on those indices are investigated. A multi-loop scheme is proposed, wherein a system with the third moment of large crystal and the rate of product flow from the continuous crystallizer used as the controlled variable and the operating variable, respectively, is added to the SISO control system which employs microcrystal population density as the controlled variable and the microcrystal flow rate as the operating variable. The controlling performances of the newly proposed multi-loop scheme and the SISO control scheme are compared. It is confirmed that the proposed controlling method is effective when the constrain from the microcrystal flow rate is strict. 6 refs., 14 figs., 2 tabs.

  5. The pursuit of perfect packing

    CERN Document Server

    Weaire, Denis

    2000-01-01

    In 1998 Thomas Hales dramatically announced the solution of a problem that has long teased eminent mathematicians: what is the densest possible arrangement of identical spheres? The Pursuit of Perfect Packing recounts the story of this problem and many others that have to do with packing things together. The examples are taken from mathematics, physics, biology, and engineering, including the arrangement of soap bubbles in foam, atoms in a crystal, the architecture of the bee''s honeycomb, and the structure of the Giant''s Causeway. Using an informal style and with key references, the book also includes brief accounts of the lives of many of the scientists who devoted themselves to problems of packing over many centuries, together with wry comments on their efforts. It is an entertaining introduction to the field for both specialists and the more general public.

  6. Novel Gyroscopic Mounting for Crystal Oscillators to Increase Short and Medium Term Stability under Highly Dynamic Conditions

    OpenAIRE

    2015-01-01

    In this paper, a gyroscopic mounting method for crystal oscillators to reduce the impact of dynamic loads on their output stability has been proposed. In order to prove the efficiency of this mounting approach, each dynamic load-induced instability has been analyzed in detail. A statistical study has been performed on the elevation angle of the g-sensitivity vector of Stress Compensated-cut (SC-cut) crystals. The analysis results show that the proposed gyroscopic mounting method gives good p...

  7. Research on the low speed stability control technology of fly-cutting machine for KDP crystals

    Science.gov (United States)

    Chen, Dongsheng; Ji, Fang; Chen, Hua

    2014-08-01

    In the paper, The problem about stability in low speed of the air bearing stage driven by a linear motor was investigated to satisfy the ultra-precision fly-cutting of KDP crystals. First of all, the modal of the servo system with the permanent magnet synchronous linear motor was analyzed. In the system of the low speed linear motor driver, the main interferences came from cutting force f Load , the friction of chain and cable f n , the ripple thrust f ripp , and motor friction f fric . Secondly, the factors about low speed stability were analyzed: the key to improve the system's stability is to control the interference forces; Another important issue is to develop an advanced control strategy. Thirdly, some optimization experiments about low speed stability were developed as follows: the influence of feedback element, the influence of Power converter, speed optimization of damping feed-forward control, speed optimization of Spindle vibration, speed optimization based on disturbance observer. Finally the experimental results: the lowest speed of the stage can reach 0.2 mm/min; the error of the speed is less than 0.06mm/min when running between 1mm/min and 10 mm/min. The cutting experiment of KDP with the size of 330mm × 330mm × 10mm, was proceeded on the Fly-cutting machine by the feeding velocity of 1mm/min. The results about the surface roughness show that the value of Rq is 3.3nm and the value of Ra is 2.6nm.

  8. Temperature dependence of hardness in yttria-stabilized zirconia single crystals

    Science.gov (United States)

    Morscher, Gregory N.; Pirouz, Pirouz; Heuer, Arthur H.

    1991-01-01

    The temperature dependence of hardness and microcracking in single-crystal 9.5-mol pct-Y2O3-fully-stabilized cubic-ZrO2 was studied as a function of orientation. Crack lengths increased with increased temperature up to 500 C; above 800 C, no cracks were found, indicating an indentation brittle-to-ductile transition of about 800 C. The temperature dependence of hardness was reduced around 500 C. Etching studies to delineate the plastic zone around and below indents identified the operative slip systems. The role of dislocations and their interactions within the plastic zone on the hardness and indentation fracture behavior of cubic-ZrO2 are discussed.

  9. Fabrication of Fe nanowires on yittrium-stabilized zirconia single crystal substrates by thermal CVD methods

    Energy Technology Data Exchange (ETDEWEB)

    Kawahito, A. [Graduate School of Chemical Science and Engineering, Hokkaido University, Kita-ku, Sapporo 060-8628 (Japan); Yanase, T. [Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo 060-8628 (Japan); Endo, T.; Nagahama, T.; Shimada, T., E-mail: shimadat@eng.hokudai.ac.jp [Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo 060-8628 (Japan)

    2015-05-07

    Magnetic nanowires (NWs) are promising as material for use in spintronics and as the precursor of permanent magnets because they have unique properties due to their high aspect ratio. The growth of magnetic Fe whiskers was reported in the 1960s, but the diameter was not on a nanoscale level and the growth mechanism was not fully elucidated. In the present paper, we report the almost vertical growth of Fe NWs on a single crystal yttrium-stabilized zirconia (Y{sub 0.15}Zr{sub 0.85}O{sub 2}) by a thermal CVD method. The NWs show a characteristic taper part on the bottom growing from a trigonal pyramidal nucleus. The taper angle and length can be controlled by changing the growth condition in two steps, which will lead to obtaining uniformly distributed thin Fe NWs for applications.

  10. Fabrication of Fe nanowires on yittrium-stabilized zirconia single crystal substrates by thermal CVD methods

    Science.gov (United States)

    Kawahito, A.; Yanase, T.; Endo, T.; Nagahama, T.; Shimada, T.

    2015-05-01

    Magnetic nanowires (NWs) are promising as material for use in spintronics and as the precursor of permanent magnets because they have unique properties due to their high aspect ratio. The growth of magnetic Fe whiskers was reported in the 1960s, but the diameter was not on a nanoscale level and the growth mechanism was not fully elucidated. In the present paper, we report the almost vertical growth of Fe NWs on a single crystal yttrium-stabilized zirconia (Y0.15Zr0.85O2) by a thermal CVD method. The NWs show a characteristic taper part on the bottom growing from a trigonal pyramidal nucleus. The taper angle and length can be controlled by changing the growth condition in two steps, which will lead to obtaining uniformly distributed thin Fe NWs for applications.

  11. Tungsten Incorporation into Gallium Oxide: Crystal Structure, Surface and Interface Chemistry, Thermal Stability and Interdiffusion

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, E. J.; Mates, T. E.; Manandhar, S.; Nandasiri, M.; Shutthanandan, V.; Ramana, C. V.

    2016-12-01

    Tungsten (W) incorporated gallium oxide (Ga2O3) (GWO) thin films were deposited by radio-frequency magnetron co-sputtering of W-metal and Ga2O3-ceramic targets. Films were produced by varying sputtering power applied to the W-target in order to achieve variable W-content (0-12 at%) into Ga2O3 while substrate temperature was kept constant at 500 °C. Chemical composition, chemical valence states, microstructure and crystal structure of as-deposited and annealed GWO films were evaluated as a function of W-content. The structural and chemical analyses indicate that the samples deposited without any W-incorporation are stoichiometric, nanocrystalline Ga2O3 films, which crystallize in β-phase monoclinic structure. While GWO films also crystallize in monoclinic β-Ga2O3 phase, W-incorporation induces surface amorphization as revealed by structural studies. The chemical valence state of Ga ions probed by X-ray photoelectron spectroscopic (XPS) analyses is characterized by the highest oxidation state i.e., Ga3+. No changes in Ga chemical state are noted for variable W-incorporation in the range of 0-12 at%. Rutherford backscattering spectrometry (RBS) analyses indicate the uniform distribution of W-content in the GWO films. However, XPS analyses indicate the formation of mixed valence states for W ions, which may be responsible for surface amorphization in GWO films. GWO films were stable up to 900 oC, at which point thermally induced secondary phase (W-oxide) formation was observed. A transition to mesoporous structure coupled with W interdiffusion occurs due to thermal annealing as derived from the chemical analyses at the GWO films’ surface as well as depth-profiling towards the GWO-Si interface. A model has been formulated to account for the mechanism of W-incorporation, thermal stability and interdiffusion via pore formation in GWO films.

  12. Enabling structure-based drug design of Tyk2 through co-crystallization with a stabilizing aminoindazole inhibitor

    Directory of Open Access Journals (Sweden)

    Argiriadi Maria A

    2012-09-01

    Full Text Available Abstract Background Structure-based drug design (SBDD can accelerate inhibitor lead design and optimization, and efficient methods including protein purification, characterization, crystallization, and high-resolution diffraction are all needed for rapid, iterative structure determination. Janus kinases are important targets that are amenable to structure-based drug design. Here we present the first mouse Tyk2 crystal structures, which are complexed to 3-aminoindazole compounds. Results A comprehensive construct design effort included N- and C-terminal variations, kinase-inactive mutations, and multiple species orthologs. High-throughput cloning and expression methods were coupled with an abbreviated purification protocol to optimize protein solubility and stability. In total, 50 Tyk2 constructs were generated. Many displayed poor expression, inadequate solubility, or incomplete affinity tag processing. One kinase-inactive murine Tyk2 construct, complexed with an ATP-competitive 3-aminoindazole inhibitor, provided crystals that diffracted to 2.5–2.6 Å resolution. This structure revealed initial “hot-spot” regions for SBDD, and provided a robust platform for ligand soaking experiments. Compared to previously reported human Tyk2 inhibitor crystal structures (Chrencik et al. (2010 J Mol Biol 400:413, our structures revealed a key difference in the glycine-rich loop conformation that is induced by the inhibitor. Ligand binding also conferred resistance to proteolytic degradation by thermolysin. As crystals could not be obtained with the unliganded enzyme, this enhanced stability is likely important for successful crystallization and inhibitor soaking methods. Conclusions Practical criteria for construct performance and prioritization, the optimization of purification protocols to enhance protein yields and stability, and use of high-throughput construct exploration enable structure determination methods early in the drug discovery process

  13. Non-covalent interactions in 2-methylimidazolium copper(II) complex (MeImH)2[Cu(pfbz)4]: Synthesis, characterization, single crystal X-ray structure and packing analysis

    Science.gov (United States)

    Sharma, Raj Pal; Saini, Anju; Kumar, Santosh; Kumar, Jitendra; Sathishkumar, Ranganathan; Venugopalan, Paloth

    2017-01-01

    A new anionic copper(II) complex, (MeImH)2 [Cu(pfbz)4] (1) where, MeImH = 2-methylimidazolium and pfbz = pentafluorobenzoate has been isolated by reacting copper(II) sulfate pentahydrate, pentafluorobenzoic acid and 2-methylimidazole in ethanol: water mixture in 1:2:2 molar ratio. This complex 1 has been characterized by elemental analysis, thermogravimetric analysis, spectroscopic techniques (UV-Vis, FT-IR) and conductance measurements. The complex salt crystallizes in monoclinic crystal system with space group C2/c. Single crystal X-ray structure determination revealed the presence of discrete ions: [Cu(pfbz)4]2- anion and two 2-methylimidazolium cation (C4H7N2)+. The crystal lattice is stabilized by strong hydrogen bonding and F⋯F interactions between cationic-anionic and the anionic-anionic moieties respectively, besides π-π interactions.

  14. Crystal structure and stability of gyrase–fluoroquinolone cleaved complexes from Mycobacterium tuberculosis

    Science.gov (United States)

    Williamson, Benjamin H.; Kerns, Robert J.; Berger, James M.

    2016-01-01

    Mycobacterium tuberculosis (Mtb) infects one-third of the world’s population and in 2013 accounted for 1.5 million deaths. Fluoroquinolone antibacterials, which target DNA gyrase, are critical agents used to halt the progression from multidrug-resistant tuberculosis to extensively resistant disease; however, fluoroquinolone resistance is emerging and new ways to bypass resistance are required. To better explain known differences in fluoroquinolone action, the crystal structures of the WT Mtb DNA gyrase cleavage core and a fluoroquinolone-sensitized mutant were determined in complex with DNA and five fluoroquinolones. The structures, ranging from 2.4- to 2.6-Å resolution, show that the intrinsically low susceptibility of Mtb to fluoroquinolones correlates with a reduction in contacts to the water shell of an associated magnesium ion, which bridges fluoroquinolone–gyrase interactions. Surprisingly, the structural data revealed few differences in fluoroquinolone–enzyme contacts from drugs that have very different activities against Mtb. By contrast, a stability assay using purified components showed a clear relationship between ternary complex reversibility and inhibitory activities reported with cultured cells. Collectively, our data indicate that the stability of fluoroquinolone/DNA interactions is a major determinant of fluoroquinolone activity and that moieties that have been appended to the C7 position of different quinolone scaffolds do not take advantage of specific contacts that might be made with the enzyme. These concepts point to new approaches for developing quinolone-class compounds that have increased potency against Mtb and the ability to overcome resistance. PMID:26792525

  15. Crystal structure and stability of gyrase-fluoroquinolone cleaved complexes from Mycobacterium tuberculosis.

    Science.gov (United States)

    Blower, Tim R; Williamson, Benjamin H; Kerns, Robert J; Berger, James M

    2016-02-16

    Mycobacterium tuberculosis (Mtb) infects one-third of the world's population and in 2013 accounted for 1.5 million deaths. Fluoroquinolone antibacterials, which target DNA gyrase, are critical agents used to halt the progression from multidrug-resistant tuberculosis to extensively resistant disease; however, fluoroquinolone resistance is emerging and new ways to bypass resistance are required. To better explain known differences in fluoroquinolone action, the crystal structures of the WT Mtb DNA gyrase cleavage core and a fluoroquinolone-sensitized mutant were determined in complex with DNA and five fluoroquinolones. The structures, ranging from 2.4- to 2.6-Å resolution, show that the intrinsically low susceptibility of Mtb to fluoroquinolones correlates with a reduction in contacts to the water shell of an associated magnesium ion, which bridges fluoroquinolone-gyrase interactions. Surprisingly, the structural data revealed few differences in fluoroquinolone-enzyme contacts from drugs that have very different activities against Mtb. By contrast, a stability assay using purified components showed a clear relationship between ternary complex reversibility and inhibitory activities reported with cultured cells. Collectively, our data indicate that the stability of fluoroquinolone/DNA interactions is a major determinant of fluoroquinolone activity and that moieties that have been appended to the C7 position of different quinolone scaffolds do not take advantage of specific contacts that might be made with the enzyme. These concepts point to new approaches for developing quinolone-class compounds that have increased potency against Mtb and the ability to overcome resistance.

  16. Planet Packing in Circumbinary Systems

    CERN Document Server

    Kratter, Kaitlin M

    2013-01-01

    The recent discovery of planets orbiting main sequence binaries will provide crucial constraints for theories of binary and planet formation. The formation pathway for these planets is complicated by uncertainties in the formation mechanism of the host stars. In this paper, we compare the dynamical states of single and binary star planetary systems. Specifically, we pose two questions: (1) What does it mean for a circumbinary system to be dynamically packed? (2) How many systems are required to differentiate between a population of packed or sparse planets? We determine when circumbinary systems become dynamically unstable as a function of the separation between the host-stars and the inner planet, and the first and second planets. We show that these represent unique stability constraints compared to single-star systems. We find that although the existing Kepler data is insufficient to distinguish between a population of packed or sparse circumbinary systems, a more thorough study of circumbinary TTVs combine...

  17. Evaluation of stability difference between asymmetric homochiral dimer in (S)-thalidomide crystal and symmetric heterochiral dimer in (RS)-thalidomide crystal

    Science.gov (United States)

    Suzuki, Toshiya; Tanaka, Masahito; Shiro, Motoo; Shibata, Norio; Osaka, Tetsuya; Asahi, Toru

    2010-03-01

    This article discusses differences in physicochemical properties such as solubility and melting point between (S)-thalidomide and (RS)-thalidomide based on crystal structures determined by X-ray diffraction experiments. Investigation of such differences is of great importance because thalidomide has attracted considerable attention again due to its wide-range bioactivity for intractable diseases. In this article, structures of hydrogen-bonded rings were compared between asymmetric homochiral dimers in (S)-thalidomide crystal and symmetric heterochiral dimers in (RS)-thalidomide crystal. The heterochiral dimer was evaluated to be more stable than the homochiral dimer by the energy calculations for hydrogen-bonded rings in those dimers. These results indicate that differences in physicochemical properties between enantiomeric and racemic thalidomides originate from the difference of structural stability between homochiral and heterochiral dimers.

  18. Vibrational Collapse of Hexapod Packings

    Science.gov (United States)

    Zhao, Yuchen; Ding, Jingqiu; Barés, Jonathan; Dierichs, Karola; Behringer, Robert

    2016-11-01

    Columns made of convex noncohesive grains like sand collapse after being released from a confining container. However, structures built from concave grains can be stable without external support. Previous research show that the stability of the columns depends on column diameter and height, by observing column stability after carefully lifting their confinement tubes. Thinner and taller columns collapse with higher probability. While the column stability weakly depends on packing density, it strongly depends on inter-particle friction. Experiments that cause the column to collapse also reveal similar trends, as more effort (such as heavier loading or shearing) is required to destabilize columns that are intrinsically more stable. In the current experiments, we invesitage the effect of vibration on destructing a column. Short columns collapse following the relaxation dynamics of disorder systems, which coincides with similar experiments on staple packings. However, tall columns collapse faster at the beginning, in addition to the relaxation process coming after. Using high-speed imaging, we analyze column collapse data from different column geometries. Ongoing work is focusing on characterizing the stability of hexapod packings to vibration. We thanks NSF-DMR-1206351 and the William M. Keck Foundation.

  19. Stability of LS and LS2 crystal structures in binary mixtures of hard and charged spheres.

    Science.gov (United States)

    Hynninen, A-P; Filion, L; Dijkstra, M

    2009-08-14

    We study by computer simulations the stability of various crystal structures in a binary mixture of large and small spheres interacting either with a hard sphere or a screened-Coulomb potential. In the case of hard-core systems, we consider structures that have atomic prototypes CrB, gammaCuTi, alphaIrV, HgBr2, AuTe2, Ag2Se and the Laves phases (MgCu2, MgNi2, and MgZn2) as well as a structure with space group symmetry 74. By utilizing Monte Carlo simulations to calculate Gibbs free energies, we determine composition versus pressure and constant volume phase diagrams for diameter ratios of q=0.74, 0.76, 0.8, 0.82, 0.84, and 0.85 for the small and large spheres. For diameter ratios 0.76 mixture. By extrapolating to the thermodynamic limit, we show that the MgZn2 structure is the most stable one of the Laves structures. We also calculate phase diagrams for equally and oppositely charged spheres for size ratio of 0.73 taking into consideration the Laves phases and CsCl. In the case of equally charged spheres, we find a pocket of stable Laves phases, while in the case of oppositely charged spheres, Laves phases are found to be metastable with respect to the CsCl and fluid phases.

  20. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth.

    Science.gov (United States)

    Ghosh, Indrajit; Bose, Sonali; Vippagunta, Radha; Harmon, Ferris

    2011-05-16

    The purpose of this study was to develop a nanosuspension of a poorly soluble drug by nanomilling process using wet media milling to achieve superior in vitro dissolution and high in vivo exposure in pharmacokinetic studies. A promising nanosuspension was developed with Vitamin E TPGS based formulation with particle size in the nano range. Although the formulation showed significant improvement during in vitro dissolution and in vivo plasma level, probably due to the strong hydrophobic interaction between Vitamin TPGS and the drug molecule, crystal growth was observed during stability studies. A systematic study was done with different combinations of solubilizer/stabilizer system in order to obtain a more stable nanosuspension. Hydroxypropyl methylcellulose (HPMC 3 cps) was found to stabilize the nanosuspension by better surface coverage due to stronger interaction with the drug as compared to other stabilizers used in this study.

  1. Perfectly matched layer stability in 3-D finite-difference time-domain simulation of electroacoustic wave propagation in piezoelectric crystals with different symmetry class.

    Science.gov (United States)

    Nova, Omar; Peña, Néstor; Ney, Michel

    2015-03-01

    Perfectly matched layer stability in 3-D finite-difference time-domain simulations is demonstrated for two piezoelectric crystals: barium sodium niobate and bismuth germanate. Stability is achieved by adapting the discretization grid to meet a central-difference scheme. Stability is demonstrated by showing that the total energy of the piezoelectric system remains constant in the steady state.

  2. The diffraction of X-rays by close-packed polytypic crystals containing single stacking faults. Pt. 3. Measurements of diffraction effects caused by stacking faults in plate or film form samples

    Energy Technology Data Exchange (ETDEWEB)

    Michalski, E. [Military Acad. of Technol., Warsaw (Poland). Inst. of Tech. Phys.; Piecek, W. [Military Acad. of Technol., Warsaw (Poland). Inst. of Tech. Phys.; Demianiuk, M. [Military Acad. of Technol., Warsaw (Poland). Inst. of Tech. Phys.

    1995-07-01

    A theory that describes the diffraction effects from stacking faults in close-packed polytypic crystal structures was developed in two previous papers of this series. In this paper, attention is paid to the measurement of these diffraction effects for the cases where needle-shaped or rod-like specimens cannot be made from the given sample (e.g. thin films) or when single-crystal samples should not be destroyed for preparing such specimens. For this purpose, methods of measurement based on standard X-ray diffraction equipment such as oscillation or Weissenberg cameras and a powder diffraction diffractometer have been developed A complete description of the limitation of the area of the reciprocal lattice that can intersect the Ewald sphere has been provided. Examples of the results obtained by these methods are given. The diffractometer two-dimensional scanning method, which allows an undistorted reciprocal lattice to be recorded and higher precision and results more convenient for mathematical treatment than in photographic methods to be obtained, seems to be especially interesting. (orig.).

  3. Anharmonic and Quantum Fluctuations in Molecular Crystals: A First-Principles Study of the Stability of Paracetamol

    CERN Document Server

    Rossi, Mariana; Ceriotti, Michele

    2016-01-01

    Molecular crystals often exist in multiple competing polymorphs, showing significantly different physico-chemical properties. Computational crystal structure prediction is key to interpret and guide the search for the most stable or useful form: A real challenge due to the combinatorial search space, and the complex interplay of subtle effects that work together to determine the relative stability of different structures. Here we take a comprehensive approach based on different flavors of thermodynamic integration in order to estimate all contributions to the free energies of these systems with density-functional theory, including the oft-neglected anharmonic contributions and nuclear quantum effects. We take the two main stable forms of paracetamol as a paradigmatic example. We find that anharmonic contributions, different descriptions of van der Waals interactions, and nuclear quantum effects all matter to quantitatively determine the stability of different phases. Our analysis highlights the many challenge...

  4. A triclinic crystal structure of the carboxy-terminal domain of HIV-1 capsid protein with four molecules in the asymmetric unit reveals a novel packing interface

    Science.gov (United States)

    Lampel, Ayala; Yaniv, Oren; Berger, Or; Bacharach, Eran; Gazit, Ehud; Frolow, Felix

    2013-01-01

    The Gag precursor is the major structural protein of the virion of human immunodeficiency virus-1 (HIV-1). Capsid protein (CA), a cleavage product of Gag, plays an essential role in virus assembly both in Gag-precursor multimerization and in capsid core formation. The carboxy-terminal domain (CTD) of CA contains 20 residues that are highly conserved across retroviruses and constitute the major homology region (MHR). Genetic evidence implies a role for the MHR in interactions between Gag precursors during the assembly of the virus, but the structural basis for this role remains elusive. This paper describes a novel triclinic structure of the HIV-1 CA CTD at 1.6 Å resolution with two canonical dimers of CA CTD in the asymmetric unit. The canonical dimers form a newly identified packing interface where interactions of four conserved MHR residues take place. This is the first structural indication that these MHR residues participate in the putative CTD–CTD interactions. These findings suggest that the molecules forming this novel interface resemble an intermediate structure that participates in the early steps of HIV-1 assembly. This interface may therefore provide a novel target for antiviral drugs. PMID:23722834

  5. Theoretical approach to study the effect of free volumes on the physical behavior of polymer stabilized ferroelectric liquid crystal molecules

    Science.gov (United States)

    Lahiri, T.; Majumder, T. Pal

    2011-06-01

    It was clearly indicative that the polymer chains make a tremendous interaction with the tilt angle in case of a polymer stabilized ferroelectric liquid crystal (PSFLC). After suitable consideration of such interaction, we expanded the Landau free energy for a PSFLC system. We theoretically demonstrated the effect of free volumes, which expected to create bulk self-energy, on the physical functionalities of a PSFLC system. Then we obtained spontaneous polarization, tilt angle, rotational viscosity and dielectric constant strongly correlated with the assumed interactions. We also observed a shift of transition temperature highly influenced by this interaction between polymer network and liquid crystal molecules. A microscopical picture of this polymer-liquid crystal interaction is provided in view of the free volume charge density present in the composite system.

  6. Anharmonic and Quantum Fluctuations in Molecular Crystals: A First-Principles Study of the Stability of Paracetamol

    Science.gov (United States)

    Rossi, Mariana; Gasparotto, Piero; Ceriotti, Michele

    2016-09-01

    Molecular crystals often exist in multiple competing polymorphs, showing significantly different physicochemical properties. Computational crystal structure prediction is key to interpret and guide the search for the most stable or useful form, a real challenge due to the combinatorial search space, and the complex interplay of subtle effects that work together to determine the relative stability of different structures. Here we take a comprehensive approach based on different flavors of thermodynamic integration in order to estimate all contributions to the free energies of these systems with density-functional theory, including the oft-neglected anharmonic contributions and nuclear quantum effects. We take the two main stable forms of paracetamol as a paradigmatic example. We find that anharmonic contributions, different descriptions of van der Waals interactions, and nuclear quantum effects all matter to quantitatively determine the stability of different phases. Our analysis highlights the many challenges inherent in the development of a quantitative and predictive framework to model molecular crystals. However, it also indicates which of the components of the free energy can benefit from a cancellation of errors that can redeem the predictive power of approximate models, and suggests simple steps that could be taken to improve the reliability of ab initio crystal structure prediction.

  7. Polytype Stabilization of High-purity Semi-insulating 4H-SiC Crystal via the PVT Method

    Directory of Open Access Journals (Sweden)

    Kai-li MAO

    2016-05-01

    Full Text Available Because the conditions under which semi-insulating 4H-SiC crystals can grow are so specific, other polytypes such as 15R and 6H can easily emerge during the growth process. In this work, a polytype stabilization technology was developed by altering the following parameters: growth temperature, temperature field distribution, and C/Si ratio. In the growth process of high-purity semi-insulating 4H-SiC crystals, the generation of undesirable polytypes was prevented, and a crystal 100 % 4H-SiC polytype was obtained. A high C/Si ratio in powder source was shown to be advantageous for the stabilization of the 4H polytype. Several methods were applied to evaluate the quality of crystals precisely; these methods include Raman mapping, X-ray diffraction, and resistivity mapping. Results showed that the 3inch-wafer was entirely made of 4H polytype, the mean value of FWHM was approximately 40 arcsec, and the distribution of the resistivity value was between 106 Ω×cm and 107 Ω×cm.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12914

  8. Effect of SiO2 on the Crystal Structure Stability of SFC at 1473 K (1200 °C)

    Science.gov (United States)

    Ding, Xiang; Guo, Xing-Min; Ma, Chen-Yan; Tang, Kun; Zhao, Yi-Dong

    2015-03-01

    Silico-ferrite of calcium (SFC) is a key intermediate phase in the sintering process of fine iron ores, and SiO2 plays an important role in the formation of SFC. In this work, the crystal structure stability of SFC synthesized at 1473 K (1200 °C) has been determined by X-ray diffraction, field-emission scanning electron microscopy, and X-ray absorption spectra. Synthesis of SFC was carried out under air at 1473 K (1200 °C) by mixing different amounts of SiO2 with Fe2O3 and CaCO3. The results show that the maximum solid solubility of SiO2 in the crystal structure of SFC does not exceed 6.11 wt pct at 1473 K (1200 °C); under these conditions, Fe2O3 begins to appear. The process of Si solution is closely related to the presence of a Ca channel composed of Ca octahedron in the crystal structure of SFC based on the results from the measurements of Ca K-edge X-ray absorption spectra. Si mainly occupies the center positions of the upper and lower tetrahedron adjacent to Ca channel. The length of Ca-Ca bond in Ca channel increases with the increasing of Si content. The crystal structure stability of SFC may be related to the structure of the Ca channel.

  9. The role of pH and Mg on the stability and crystallization of amorphous calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Blanco, J.D., E-mail: J.D.RodriguezBlanco@leeds.ac.uk [School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom); Shaw, S.; Bots, P.; Roncal-Herrero, T.; Benning, L.G. [School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer We studied the effect of pH and Mg in the crystallization of amorphous CaCO{sub 3} (ACC). Black-Right-Pointing-Pointer The study combined synchrotron-based scattering with electron microscopy. Black-Right-Pointing-Pointer The pH-dependent C speciation and hydration strength of Mg{sup 2+} control ACC structure. Black-Right-Pointing-Pointer This ACC structure governs the ACC dissolution rate and crystallization pathway. - Abstract: The effects of pH and Mg on the crystallization of amorphous calcium carbonate (ACC) to vaterite and/or calcite were studied using a combination of in situ time resolved synchrotron-based techniques and electron microscopy. The experiments showed that Mg increased the stability of ACC and favoured the formation of calcite over vaterite. A neutral ({approx}7) starting pH during mixing promoted the transformation of ACC into calcite via a dissolution/reprecipitation mechanism. Conversely, when ACC formed in a solution that started with a high initial pH ({approx}11.5), the transformation to calcite occurred via metastable vaterite, which formed via a spherulitic growth mechanism. In a second stage this vaterite transformed to calcite via a surface-controlled dissolution and recrystallization mechanism. These crystallization pathways can be explained as a consequence of the pH-dependent composition, local structure, stability and dissolution rates of ACC.

  10. Does Post Septoplasty Nasal Packing Reduce Complications?

    Directory of Open Access Journals (Sweden)

    Bijan Naghibzadeh

    2011-01-01

    Full Text Available The main issues in nasal surgery are to stabilize the nose in the good position after surgery and preserve the cartilages and bones in the favorable situation and reduce the risk of deviation recurrence. Also it is necessary to avoid the synechia formation, nasal valve narrowing, hematoma and bleeding. Due to the above mentioned problems and in order to solve and minimize them nasal packing, nasal splint and nasal mold have been advised. Patients for whom the nasal packing used may faced to some problems like naso-pulmonary reflex, intractable pain, sleep disorder, post operation infection and very dangerous complication like toxic shock syndrome. We have two groups of patients and three surgeons (one of the surgeons used post operative nasal packing in his patients and the two others surgeons did not.Complications and morbidities were compared in these two groups. Comparing the two groups showed that the rate of complication and morbidities between these two groups were same and the differences were not valuable, except the pain and discomfort post operatively and at the time of its removal. Nasal packing has several risks for the patients while its effects are not studied. Septoplasty can be safely performed without postoperative nasal packing. Nasal packing had no main findings that compensated its usage. Septal suture is one of the procedures that can be used as alternative method to nasal packing. Therefore the nasal packing after septoplasty should be reserved for the patients with increased risk of bleeding.

  11. Patchy particle packing under electric fields.

    Science.gov (United States)

    Song, Pengcheng; Wang, Yufeng; Wang, Yu; Hollingsworth, Andrew D; Weck, Marcus; Pine, David J; Ward, Michael D

    2015-03-01

    Colloidal particles equipped with two, three, or four negatively charged patches, which endow the particles with 2-fold, 3-fold, or tetrahedral symmetries, form 1D chains, 2D layers, and 3D packings when polarized by an AC electric field. Two-patch particles, with two patches on opposite sides of the particle (2-fold symmetry) pack into the cmm plane group and 3D packings with I4mm space group symmetry, in contrast to uncharged spherical or ellipsoidal colloids that typically crystallize into a face-centered ABC layer packing. Three-patch particles (3-fold symmetry) form chains having a 21 screw axis symmetry, but these chains pair in a manner such that each individual chain has one-fold symmetry but the pair has 21 screw axis symmetry, in an arrangement that aligns the patches that would favor Coulombic interactions along the chain. Surprisingly, some chain pairs form unanticipated double-helix regions that result from mutual twisting of the chains about each other, illustrating a kind of polymorphism that may be associated with nucleation from short chain pairs. Larger 2D domains of the three-patch particles crystallize in the p6m plane group with alignment (with respect to the field) and packing densities that suggest random disorder in the domains, whereas four-patch particles form 2D domains in which close-packed rows are aligned with the field.

  12. Microstructure and Phase Stability of Single Crystal NiAl Alloyed with Hf and Zr

    Science.gov (United States)

    Locci, I. E.; Dickerson, R. M.; Garg, A.; Noebe, R. D.; Whittenberger, J. D.; Nathal, M. V.; Darolia, R.

    1996-01-01

    Six near stoichiometric, NiAl single-crystal alloys, with 0.05-1.5 at.% of Hf and Zr additions plus Si impurities, were microstructurally analyzed in the as-cast, homogenized, and aged conditions. Hafnium-rich interdendritic regions, containing the Heusler phase (Ni2AlHf), were found in all the as-cast alloys containing Hf. Homogenization heat treatments partially reduced these interdendritic segregated regions. Transmission electron microscopy (TEM) observations of the as-cast and homogenized microstructures revealed the presence of a high density of fine Hf (or Zr) and Si-rich precipitates. These were identified as G-phase, Nil6X6Si7, or as an orthorhombic NiXSi phase, where X is Hf or Zr. Under these conditions the expected Heusler phase (beta') was almost completely absent. The Si responsible for the formation of the G and NiHfSi phases is the result of molten metal reacting with the Si-containing crucible used during the casting process. Varying the cooling rates after homogenization resulted in the refinement or complete suppression of the G and NiHfSi phases. In some of the alloys studied, long-term aging heat treatments resulted in the formation of Heusler precipitates, which were more stable at the aging temperature and coarsened at the expense of the G-phase. In other alloys, long-term aging resulted in the formation of the NiXSi phase. The stability of the Heusler or NiXSi phases can be traced to the reactive element (Hf or Zr) to silicon ratio. If the ratio is high, then the Heusler phase appears stable after long time aging. If the ratio is low, then the NiHfSi phase appears to be the stable phase.

  13. Enhancing ubiquitin crystallization through surface-entropy reduction.

    Science.gov (United States)

    Loll, Patrick J; Xu, Peining; Schmidt, John T; Melideo, Scott L

    2014-10-01

    Ubiquitin has many attributes suitable for a crystallization chaperone, including high stability and ease of expression. However, ubiquitin contains a high surface density of lysine residues and the doctrine of surface-entropy reduction suggests that these lysines will resist participating in packing interactions and thereby impede crystallization. To assess the contributions of these residues to crystallization behavior, each of the seven lysines of ubiquitin was mutated to serine and the corresponding single-site mutant proteins were expressed and purified. The behavior of these seven mutants was then compared with that of the wild-type protein in a 384-condition crystallization screen. The likelihood of obtaining crystals varied by two orders of magnitude within this set of eight proteins. Some mutants crystallized much more readily than the wild type, while others crystallized less readily. X-ray crystal structures were determined for three readily crystallized variants: K11S, K33S and the K11S/K63S double mutant. These structures revealed that the mutant serine residues can directly promote crystallization by participating in favorable packing interactions; the mutations can also exert permissive effects, wherein crystallization appears to be driven by removal of the lysine rather than by addition of a serine. Presumably, such permissive effects reflect the elimination of steric and electrostatic barriers to crystallization.

  14. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures.

    Science.gov (United States)

    Yang, Huayan; Wang, Yu; Huang, Huaqi; Gell, Lars; Lehtovaara, Lauri; Malola, Sami; Häkkinen, Hannu; Zheng, Nanfeng

    2013-01-01

    Noble metal nanoparticles stabilized by organic ligands are important for applications in assembly, site-specific bioconjugate labelling and sensing, drug delivery and medical therapy, molecular recognition and molecular electronics, and catalysis. Here we report crystal structures and theoretical analysis of three Ag44(SR)30 and three Au12Ag32(SR)30 intermetallic nanoclusters stabilized with fluorinated arylthiols (SR=SPhF, SPhF2 or SPhCF3). The nanocluster forms a Keplerate solid of concentric icosahedral and dodecahedral atom shells, protected by six Ag2(SR)5 units. Positive counterions in the crystal indicate a high negative charge of 4(-) per nanoparticle, and density functional theory calculations explain the stability as an 18-electron superatom shell closure in the metal core. Highly featured optical absorption spectra in the ultraviolet-visible region are analysed using time-dependent density functional perturbation theory. This work forms a basis for further understanding, engineering and controlling of stability as well as electronic and optical properties of these novel nanomaterials.

  15. Influence of oxygen partial pressure on crystallization behaviour and high-temperature stability of stone wool fibres

    Energy Technology Data Exchange (ETDEWEB)

    Kaasgaard, M.; Jacobsen, P.A.L.; Yue Yuanzheng [Aalborg Univ. (Denmark). Section of Chemistry

    2005-04-01

    The influence of oxygen partial pressure on the redox state of the iron in stone wool is studied using thermogravimetry (TG). The thermal response of the stone wool is measured using differential scanning calorimetry (DSC). The high-temperature stability of stone wool depending on the oxygen partial pressure is observed using scanning electron microscopy (SEM). It is confirmed that the oxidation of Fe{sup 2+} to Fe{sup 3+} is responsible for the high-temperature stability of stone wool. Even a minor increase in oxygen partial pressure can considerably alter the crystallization behaviour and enhance the high-temperature stability of the stone wool. The origin for that is discussed. (orig.)

  16. Study of 3-D stress development in parent and twin pairs of a hexagonal close-packed polycrystal: Part II - Crystal plasticity finite element modeling

    DEFF Research Database (Denmark)

    Abdolvand, Hamidreza; Majkut, Marta; Oddershede, Jette

    2015-01-01

    -of-mass positions and volumes as measured by three-dimensional X-ray diffraction (3DXRD) microscopy. The constructed microstructure is meshed with different element densities and for different numbers of grains. Then a selected group of twin and parent pairs are studied. It is shown that the measured average stress...... each grain, stresses in the parent and twin are quite different if they are plotted in the global coordinate system. However, if the stress tensor is rotated into the local coordinate system of the twin habit plane, all the stress components averaged over the presented population are close, except......Stress heterogeneity within each individual grain of polycrystalline Zircaloy-2 is studied using a crystal plasticity finite element (CPFE) model. For this purpose, the weighted Voronoi tessellation method is used to construct 3D geometries of more than 2600 grains based on their center...

  17. Crystal structure and stability of Tl2CO3 at high pressures

    OpenAIRE

    Grzechnik, A.; Friese, K

    2010-01-01

    The crystal structure of dithallium carbonate, Tl2CO3 (C2/m, Z = 4), is stable to 5.82 GPa and does not undergo any phase transitions at lower pressures as reported previously. At higher pressures, the material undergoes a phase transition that destroys the single crystal.

  18. Influence of fat crystals in the oil phase on stability of oil-in-water emulsions

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.

    1980-01-01

    Coalescence at rest and during flow was studied in emulsions of paraffin oil in water with several surfactants and with crystals of solid paraffin or tristearate in the oil phase. Solid fat in the oil phase was estimated by pulsed nuclear magnetic resonance. Without crystals, oil-in-water emulsions

  19. Material properties of pulsed-laser crystallized Si thin films grown on yttria-stabilized zirconia crystallization-induction layers by two-step irradiation method

    Science.gov (United States)

    Thi Kieu Lien, Mai; Horita, Susumu

    2016-03-01

    Amorphous Si thin films on yttria-stabilized zirconia (YSZ) layers were crystallized widely in solid phase by the two-step method with a pulsed laser, moving the sample stage. The crystalline quality, impurity diffusion, and electrical properties of the crystallized Si films were investigated. It was found that the crystallinity of the Si thin films was improved and their surface was smooth without an incubation layer at the interface, indicating the uniform crystallinity of Si on YSZ. The diffusion of Zr and Y into the Si thin films was as small as or smaller than the order of 1017 atoms/cm3. We evaluated the electrical properties of carrier concentration and Hall mobility of the Si thin films with/without YSZ layers by using the resistivity and AC Hall effect measurements. The temperature and doping concentration dependences were measured for both undoped and P-doped films. It was found that both the undoped and P-doped Si/YSZ/glass films showed higher mobilities and carrier concentrations (and therefore higher conductivities), which indicate a smaller number of defects, than the Si/glass films. This suggested that the Si film crystallized on the YSZ layer is more suitable for application to electronic devices than the Si film on glass.

  20. Electronically configured battery pack

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, D.

    1997-03-01

    Battery packs for portable equipment must sometimes accommodate conflicting requirements to meet application needs. An electronically configurable battery pack was developed to support two highly different operating modes, one requiring very low power consumption at a low voltage and the other requiring high power consumption at a higher voltage. The configurable battery pack optimizes the lifetime and performance of the system by making the best use of all available energy thus enabling the system to meet its goals of operation, volume, and lifetime. This paper describes the cell chemistry chosen, the battery pack electronics, and tradeoffs made during the evolution of its design.

  1. Polymer-stabilized ferroelectric liquid crystal for flexible displays using plastic substrates

    Science.gov (United States)

    Fujikake, Hideo; Murashige, Takeshi; Sato, Hiroto; Iino, Yoshiki; Kikuchi, Hiroshi; Kawakita, Masahiro; Tsuchiya, Yuzuru

    2001-12-01

    We have developed a ferroelectric liquid crystal device with a novel structure containing a polymer fiber network for flexible lightweight displays using thin plastic substrates. The aligned polymer fibers of sub-micrometers -diameter were formed under ultraviolet light irradiation in a heated nematic- phase solution consisting of liquid crystal and monofunctional acrylate monomer. The rigid polymer network was found to adhere to the two plastic substrates, and the uniform liquid crystal alignment provided a contrast ratio of 100:1 for a monomer concentration of 20 wt%. This device achieves a continuous grayscale capability as a result of change in the spatial distribution of small liquid crystal domains, and also exhibits a fast response time of 80 microsecond(s) due to high-purity separation of polymer and liquid crystal materials. It therefore has attractive features for flexible moving-image display applications.

  2. Relationship between crystallization tendencies during cooling from melt and isothermal storage: toward a general understanding of physical stability of pharmaceutical glasses.

    Science.gov (United States)

    Kawakami, Kohsaku; Harada, Takuji; Miura, Keiko; Yoshihashi, Yasuo; Yonemochi, Etsuo; Terada, Katsuhide; Moriyama, Hiroshi

    2014-06-02

    The lack of protocols to predict the physical stability has been one of the most important issues in the use of amorphous solid dispersions. In this paper, the crystallization behaviors of pharmaceutical glasses, which have large variations in their crystallization tendencies, have been investigated. Although each compound appears to have a wide variation in their crystallization time, the initiation time for crystallization could be generalized as a function of only Tg/T, where Tg and T are the glass transition temperature and storage temperature, respectively. All compounds in which crystallization was mainly governed by temperature had similar activation energies for crystallization initiation, ca. 210-250 kJ/mol, indicating that physical stability at any temperature is predictable from only Tg. Increased stability is expected for other compounds, where crystallization is inhibited by an large energetic barrier, and stochastic nucleation plays an important role in initiating crystallization. The difference in the dominant factor, either temperature or pressure, appeared to correlate with the nucleation mechanism, and this could be determined by a cool-heat cycle after melting using thermal analysis. This conclusion should make prediction of physical stability of amorphous formulations easier, although the investigation was conducted under ideal conditions, which eliminated surface effects.

  3. A novel acidic matrix protein, PfN44, stabilizes magnesium calcite to inhibit the crystallization of aragonite.

    Science.gov (United States)

    Pan, Cong; Fang, Dong; Xu, Guangrui; Liang, Jian; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2014-01-31

    Magnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium. Here, we identified a novel acidic matrix protein named PfN44 that affected aragonite formation in the shell of the pearl oyster Pinctada fucata. Using immunogold labeling assays, we found PfN44 in both the nacreous and prismatic layers. In shell repair, PfN44 was repressed, whereas other matrix proteins were up-regulated. Disturbing the function of PfN44 by RNAi led to the deposition of porous nacreous tablets with overgrowth of crystals in the nacreous layer. By in vitro circular dichroism spectra and fluorescence quenching, we found that PfN44 bound to both calcium and magnesium with a stronger affinity for magnesium. During in vitro calcium carbonate crystallization and calcification of amorphous calcium carbonate, PfN44 regulated the magnesium content of crystalline carbonate polymorphs and stabilized magnesium calcite to inhibit aragonite deposition. Taken together, our results suggested that by stabilizing magnesium calcite to inhibit aragonite deposition, PfN44 participated in P. fucata shell formation. These observations extend our understanding of the connections between matrix proteins and magnesium.

  4. Crystallization behavior and thermal stability of poly(butylene succinate)/poly(propylene carbonate) blends prepared by novel vane extruder

    Science.gov (United States)

    Chen, Rongyuan; Zou, Wei; Zhang, Haichen; Zhang, Guizhen; Qu, Jinping

    2016-03-01

    This work focused on the study of crystallization behavior and thermal stability of degradable poly(butylene succinate) (PBS) and poly(propylene carbonate) (PPC) blends prepared by vane extruder based on elongation force field, which is novel equipment for polymer processing. Dicumyl peroxide (DCP) was applied in this work as compatibilizer for PBS/PPC blend. Crystallization behavior and melting behavior of the blends were investigated by differential scanning calorimetry (DSC) testing. Thermal stability of the blends was studied by thermogravimetric (TG) testing. Furthermore, the melt flow indices (MFI) of the blends were examined by a MFI instrument. The results showed that the crystallization temperature of PBS decreased with the addition of PPC and DCP. The glass transition temperature of PPC increased and the melting temperature of the blend increased with the addition of PPC and DCP, which indicated that the entanglement between the molecular chains of PBS and PPC was enhanced. Thermogravimetric analysis showed that a two-step decomposition process of the blend occurred due to the different thermal resistance of PBS and PPC, and the addition of PBS reduced the decomposition rate of PPC. Moreover, the addition of PBS improved the melt flow property of PPC.

  5. Thermal-Mechanical Stability of Single Crystal Oxide Refractive Concentrators for High-Temperature Solar Thermal Propulsion

    Science.gov (United States)

    Zhu, Dongming; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO2 laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet and magnesium oxide.

  6. Biopolymer microencapsulations of Bacillus thuringiensis crystal preparations for increased stability and resistance to environmental stress.

    Science.gov (United States)

    He, Xiaolin; Sun, Zhongqin; He, Kanglai; Guo, Shuyuan

    2017-04-01

    Parasporal crystals synthesized by Bacillus thuringiensis (Bt) have been widely used as microbial pesticides because of their toxicity to the larval stages of specific insects. However, parasporal crystals can be damaged by environmental stresses, such as high temperature, ultraviolet radiation, and desiccation. To reduce environmental susceptibility of parasporal crystals and extend the duration of their activity, we developed a new type of protection by making microcapsules of crystals (MCs). The microcapsules were self-assembled by alternate deposition (layer by layer) of low-cost chitosan and sodium alginate (or sodium carboxymethyl cellulose) on the crystal surface. Crystal toxins (Cry1Ac) were released from microcapsules at pH values above 9.0. Bioassay results demonstrated that microencapsulated preparations had larvicidal toxicity equivalent to the non-encapsulated form. Microencapsuled crystals were protected from environmental stresses such as high temperature and desiccation. The results indicate that microcapsule protection can enhance the efficacy of Bt in pest control, especially to Lepidoptera larvae that have a alkaline midgut.

  7. Thermodynamic stability and crystallization behavior of molecular complexes with TEP host

    Science.gov (United States)

    Fijiwara, Atsushi; Kitamura, Mitsutaka

    2013-06-01

    In the crystallization of molecular complex (co-crystal, clathrate complex), polymorphism in regard to the host structure frequently appears. Previously, we studied the release process of the biocide, CMI (5-chloro-2-methyl-4-isothiazolin-3-one) from the molecular complex with TEP (1,1,2,2-tetrakis(4-hydroxyphenyl)ethane) (TEP·2CMI) in methanol-water mixed solvents. It was clear that the release process of the biocide (CMI) is composed of the transformation from the TEP·2CMI crystal to a more stable molecular complex crystal with solvent. In this work, the crystallization was performed in the methanol solutions including TEP and CMI at constant temperature (298 K and 308 K). It appeared that two kinds of TEP molecular complexes (TEP·2CMI and TEP·2MeOH) crystallize competitively. The crystallization zone of each molecular complex was shown in the map using the coordinates of initial concentrations of TEP and CMI. In the boundary zone both molecular complexes appeared and the transformation from TEP·2CMI to TEP·2MeOH was observed, indicating that the stable form is TEP·2MeOH. Without the boundary zone the corresponding stable form crystallized in each zone. The value of the initial concentration ratio of CMI/TEP for the selective crystallization of TEP·2CMI was higher at 298 K (1.54) than that (1.36) at 308 K. The equilibrium concentrations of TEP and CMI in the presence of two molecular complexes were expressed using the dissociation constants of the molecular complexes and it was indicated that the dissociation of TEP·2CMI highly increases with temperature

  8. Novel Gyroscopic Mounting for Crystal Oscillators to Increase Short and Medium Term Stability under Highly Dynamic Conditions

    Directory of Open Access Journals (Sweden)

    Maryam Abedi

    2015-06-01

    Full Text Available In this paper, a gyroscopic mounting method for crystal oscillators to reduce the impact of dynamic loads on their output stability has been proposed. In order to prove the efficiency of this mounting approach, each dynamic load-induced instability has been analyzed in detail. A statistical study has been performed on the elevation angle of the g-sensitivity vector of Stress Compensated-cut (SC-cut crystals. The analysis results show that the proposed gyroscopic mounting method gives good performance for host vehicle attitude changes. A phase noise improvement of 27 dB maximum and 5.7 dB on average can be achieved in the case of steady state loads, while under sinusoidal vibration conditions, the maximum and average phase noise improvement are as high as 24 dB and 7.5 dB respectively. With this gyroscopic mounting method, random vibration-induced phase noise instability is reduced 30 dB maximum and 8.7 dB on average. Good effects are apparent for crystal g-sensitivity vectors with low elevation angle φ and azimuthal angle β. under highly dynamic conditions, indicating the probability that crystal oscillator instability will be significantly reduced by using the proposed mounting approach.

  9. Use of Pom Pons to Illustrate Cubic Crystal Structures.

    Science.gov (United States)

    Cady, Susan G.

    1997-01-01

    Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)

  10. TLC Pack Unpacked

    Science.gov (United States)

    Oberhofer, Margret; Colpaert, Jozef

    2015-01-01

    TLC Pack stands for Teaching Languages to Caregivers and is a course designed to support migrants working or hoping to work in the caregiving sector. The TLC Pack resources range from A2 to B2 level of the Common European Framework of Reference for Languages (CEFR), and will be made available online in the six project languages: Dutch, English,…

  11. Crystal chemistry of three-component white dwarfs and neutron star crusts: phase stability, phase stratification, and physical properties

    CERN Document Server

    Engstrom, T A; Crespi, V H

    2015-01-01

    A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are "bred" by a genetic algorithm, and optimized at constant pressure under the assumption of linear response (Thomas-Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the $T=0$ bulk phase diagrams, five of which are complicated multinary structures not before predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferences of systems with pairwise Yukawa interactions, including and extending to the regime of low density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravit...

  12. Raman spectroscopic evidence of low temperature stability of D,L-glycolic and L-(+)-lactic acid crystals.

    Science.gov (United States)

    Mohaček-Grošev, Vlasta; Šoštarić, Vladimir; Maksimović, Aleksandar

    2015-04-01

    Raman and infrared spectra of polycrystalline D,L-glycolic and L-(+) lactic acid are presented and assigned both by an ab initio calculation of normal modes of free conformers and by self-consistent-charge density-functional-theory computational program DFTB+. Temperature dependent Raman spectra from 295 K to 10 K reveal great stability of crystal lattices, since no soft modes and no band splittings that could be attributed to changes of the number of molecules per unit cell were observed. A semiempirical calculation with GULP program was used to estimate the strength of hydrogen bonds in crystals: in glycolic acid they have energies of -0.337 eV/mol, -0.329 eV/mol, -0.262 eV/mol and -0.242 eV/mol, while in lactic acid two hydrogen bonds have energies of -0.283 eV/mol and -0.202 eV/mol.

  13. Field stability of piezoelectric shear properties in PIN-PMN-PT crystals under large drive field.

    Science.gov (United States)

    Zhang, Shujun; Li, Fei; Luo, Jun; Xia, Ru; Hackenberger, Wesley; Shrout, Thomas

    2011-02-01

    The coercive fields (E(C)) of Pb(In₀.₅Nb₀.₅)O₃-Pb(Mg(¹/₃)Nb(²/₃)O₃-PbTiO₃ (PIN-PMN-PT) ternary single crystals were found to be 5 kV/cm, double the value of binary Pb(Mg(¹/₃)Nb(²/₃)O₃-PbTiO₃ (PMNT) crystals, further increased to 6 to 9 kV/cm using Mn modifications. In addition to an increased EC, the acceptor modification resulted in the developed internal bias (E(int)), on the order of ~1 kV/cm. The piezoelectric shear properties of unmodified and Mn-modified PIN-PMN-PT crystals with various domain configurations were investigated. The shear piezoelectric coefficients and electromechanical coupling factors for different domain configurations were found to be >2000 pC/N and >0.85, respectively, with slightly reduced properties observed in Mn-modified tetragonal crystals. Fatigue/cycling tests performed on shearmode samples as a function of ac drive field level demonstrated that the allowable ac field levels (the maximum applied ac field before the occurrence of depolarization) were only ~2 kV/cm for unmodified crystals, less than half of their coercive field. Allowable ac drive levels were on the order of 4 to 6 kV/cm for Mn-modified crystals with rhombohedral/orthorhombic phase, further increased to 5 to 8 kV/cm in tetragonal crystals, because of their higher coercive fields. It is of particular interest that the allowable ac drive field level for Mn-modified crystals was found to be ≥ 60% of their coercive fields, because of the developed E(int), induced by the acceptor-oxygen vacancy defect dipoles.

  14. The Numerical Study of Marangoni Flow and Its Stability in Czochralski Crystal Growth

    Institute of Scientific and Technical Information of China (English)

    Xiao-BoWu; XuGeng; 等

    1995-01-01

    The fluctuation of temperature and flow in the melt is responsible for striations in the formed crystal.The purpose of this paper is to study the instability of the Marangoni flow with numerical simulation.The driving force considered in the flow is the surface tension only.The results show Marangoni flow is one of the factors that cause striations in the formed crystal.

  15. Impact of the concentration in polymer on the dynamic behavior of Polymer Stabilized Ferroelectric Liquid Crystal using Snap-shot Mueller Matrix Polarimetry.

    Science.gov (United States)

    Babilotte, Philippe; Silva, Vinicius N H; Dubreuil, Matthieu; Rivet, Sylvain; Dupont, Laurent; Le Jeune, Bernard

    2013-05-01

    Experimental results are presented related to the dynamic behaviour of Polymer Stabilized Ferro-electric Liquid Crystal (PSFLC) samples under external applied electric field, using Snap-shot Mueller Matrix Polarimetry (SMMP) and Mueller Matrix (MM) formalism. Different polarimetric coefficients are simultaneously extracted from each channeled spectrum measured with this full-optical SMMP technique. The impact of the concentration of polymer present into the liquid crystal cell on this dynamic behaviour is studied, permitting a direct and quick characterisation of the material. The results obtained for PSFLC are compared with those already measured for pure Surface Stabilized Ferro-electric Liquid Crystal (SSFLC) samples, which correspond to a 0% concentration in polymer.

  16. Antibody fragments for stabilization and crystallization of G protein-coupled receptors and their signaling complexes.

    Science.gov (United States)

    Shukla, Arun K; Gupta, Charu; Srivastava, Ashish; Jaiman, Deepika

    2015-01-01

    G protein-coupled receptors (GPCRs) are one of the key players in extracellular signal recognition and their subsequent communications with cellular signaling machinery. Crystallization and high-resolution structure determination of GPCRs has been one of the major advances in the area of GPCR biology over the last 7-8 years. There have primarily been three approaches to GPCR crystallization till date. These are fusion protein strategy, thermostabilization, and antibody fragment-mediated crystallization. Of these, antibody fragment-mediated crystallization has not only provided the first breakthrough in structure determination of a non-rhodopsin GPCR but it has also assisted in obtaining structures of fully active conformations of GPCRs. Antibody fragment approach has also been crucial in obtaining structural information on GPCR signaling complexes. Here, we highlight the specific examples of GPCR crystal structures that have utilized antibody fragments for promoting crystallogenesis and structure solution. We also discuss emerging powerful technologies such as the nanobody technology and the synthetic phage display libraries in the context of GPCR crystallization and underline how these tools are likely to propel key GPCR structural studies in future.

  17. The stability of tightly-packed, evenly-spaced systems of Earth-mass planets orbiting a Sun-like star

    Science.gov (United States)

    Obertas, Alysa; Van Laerhoven, Christa; Tamayo, Daniel

    2017-09-01

    Many of the multi-planet systems discovered to date have been notable for their compactness, with neighbouring planets closer together than any in the Solar System. Interestingly, planet-hosting stars have a wide range of ages, suggesting that such compact systems can survive for extended periods of time. We have used numerical simulations to investigate how quickly systems go unstable in relation to the spacing between planets, focusing on hypothetical systems of Earth-mass planets on evenly-spaced orbits (in mutual Hill radii). In general, the further apart the planets are initially, the longer it takes for a pair of planets to undergo a close encounter. We recover the results of previous studies, showing a linear trend in the initial planet spacing between 3 and 8 mutual Hill radii and the logarithm of the stability time. Investigating thousands of simulations with spacings up to 13 mutual Hill radii reveals distinct modulations superimposed on this relationship in the vicinity of first and second-order mean motion resonances of adjacent and next-adjacent planets. We discuss the impact of this structure and the implications on the stability of compact multi-planet systems. Applying the outcomes of our simulations, we show that isolated systems of up to five Earth-mass planets can fit in the habitable zone of a Sun-like star without close encounters for at least 109 orbits.

  18. Crystal structure of ethyl 3-anilino-2-{[bis(methylsulfanylmethylidene]amino}-3-oxopropanoate

    Directory of Open Access Journals (Sweden)

    A. Kémish López-Rodríguez

    2014-09-01

    Full Text Available The molecular conformation of the title compound, C14H18N2O3S2, is stabilized by intramolecular N—H...N and C—H...O hydrogen bonds. The crystal packing is characterized by a series of C—H...O hydrogen bonds, resulting in a three-dimensional network.

  19. Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Miyoung; Kim, Min Su; Kang, Byeong Gyun; Kim, Mi-Kyung; Yoon, Sukin; Lee, Seung Hee [Polymer BIN Fusion Research Center, Department of Polymer Nano-Science and Technology, Chonbuk National University, Chonju, Chonbuk 561-756 (Korea, Republic of); Ge Zhibing; Rao Linghui; Gauza, Sebastian; Wu, Shin-Tson, E-mail: lsh1@chonbuk.ac.k, E-mail: swu@creol.ucf.ed [College of Optics and Photonics, University of Central Florida, Orlando, FL 32816 (United States)

    2009-12-07

    Polymer-stabilized blue phase liquid crystal displays based on the Kerr effect are emerging due to their submillisecond response time, wide view and simple fabrication process. However, the conventional in-plane switching device exhibits a relatively high operating voltage because the electric fields are restricted in the vicinity of the electrode surface. To overcome this technical barrier, we propose a partitioned wall-shaped electrode configuration so that the induced birefringence is uniform between electrodes throughout the entire cell gap. Consequently, the operating voltage is reduced by {approx} 2.8x with two transistors. The responsible physical mechanisms are explained.

  20. Theoretical investigation on crystal structure, detonation performance and thermal stability of a high density cage hexanitrohexaazaisowurtzitane derivative

    Indian Academy of Sciences (India)

    Li Xiao-Hong; Cui Hong-Ling; Li Li-Ben; Zhang Xian-Zhou

    2013-07-01

    Density functional theory calculations were performed to study the new polynitro cage compound with the similar framework of HNIW. IR spectrum, heat of formation and thermodynamic properties were predicted. The bond dissociation energies and bond orders for the weakest bonds were analysed to investigate the thermal stability of the title compound. The detonation and pressure were evaluated by using the Kamlet-Jacobs equations based on the theoretical density and condensed HOFs. In addition, the results show that there exists an essentially linear relationship between the WBIs of N-NO2 bonds and the charges -QNO2 on the nitro groups. The crystal structure obtained by molecular mechanics belongs to P21/C space group, with lattice parameters Z = 4, a = 12.3421 Å, b = 24.6849 Å, c = 20.4912 Å, = 1.896 g cm-3. The designed compound has high thermal stability and good detonation properties and is a promising high energy density compound.

  1. Dispersive Stabilization of Liquid Crystal-in-Water with Acrylamide Copolymer/Surfactant Mixture: Nematic Curvilinear Aligned Phase Composite Film.

    Science.gov (United States)

    Park; Lee

    1999-11-01

    The effect of nonionic surfactant, (H(OCH(2)-CH(2))(8)-OC(6)H(4)-C(9)H(19)), on the dispersion stabilization of liquid crystal (LC)-in-water with acrylamide copolymer containing the related nonylphenyl groups was studied. It was observed that the addition of nonionic surfactant increases the stability of LC dispersions and improves the electrooptical properties of the nematic curvilinear aligned phase (NCAP) composite film. On the basis of the surface tension, reduced viscosity, cloud point, and coalescence time measurements, it was proposed that formation of an integrated structure induced by interactions between hydrophobic groups in the polymer chains is probably important to fabrication of a polymer composite film made of LC and polymer matrix. Copyright 1999 Academic Press.

  2. Fundamental display properties of flexible devices containing polymer-stabilized ferroelectric liquid crystal between plastic substrates

    Science.gov (United States)

    Fujikake, Hideo; Murashige, Takeshi; Sato, Hiroto; Iino, Yoshiki; Kawakita, Masahiro; Kikuchi, Hiroshi

    2002-09-01

    We describe several fundamental display properties of a flexible ferroelectric liquid crystal device containing polymer fibers between thin plastic substrates. The composite film of liquid crystal and polymer was created from a solution of liquid crystal and monomer materials between the plastic substrates under ultraviolet light irradiation. The dynamic electrooptic response to analog voltage pulses was examined with an incidence of laser beam light, and its light modulation property exhibited good linearity in continuous gray-scale capability. The excellent spatial uniformity of liquid crystal alignment formed between the flexible substrates resulted in high-contrast light modulation, although slight spontaneous bending of liquid crystal alignment in the device plane was recognized. When the laser light beam was obliquely incident on the flexible display device, the measured transmittance revealed that the device has a wide viewing angle of more than 100 deg without contrast reversal. This is considered to be caused by the molecular switching in the device plane and the thin electrooptic layer in the display device.

  3. Stabilization of porcine pancreatic elastase crystals by glutaraldehyde cross-linking.

    Science.gov (United States)

    Hofbauer, Stefan; Brito, José A; Mulchande, Jalmira; Nogly, Przemyslaw; Pessanha, Miguel; Moreira, Rui; Archer, Margarida

    2015-10-01

    Elastase is a serine protease from the chymotrypsin family of enzymes with the ability to degrade elastin, an important component of connective tissues. Excessive elastin proteolysis leads to a number of pathological diseases. Porcine pancreatic elastase (PPE) is often used for drug development as a model for human leukocyte elastase (HLE), with which it shares high sequence identity. Crystals of PPE were grown overnight using sodium sulfate and sodium acetate at acidic pH. Cross-linking the crystals with glutaraldehyde was needed to resist the soaking procedure with a diethyl N-(methyl)pyridinyl-substituted oxo-β-lactam inhibitor. Crystals of PPE bound to the inhibitor belonged to the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a = 51.0, b = 58.3, c = 74.9 Å, and diffracted to 1.8 Å resolution using an in-house X-ray source.

  4. Optimal Packed String Matching

    DEFF Research Database (Denmark)

    Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany

    2011-01-01

    In the packed string matching problem, each machine word accommodates – characters, thus an n-character text occupies n/– memory words. We extend the Crochemore-Perrin constantspace O(n)-time string matching algorithm to run in optimal O(n/–) time and even in real-time, achieving a factor – speedup...... over traditional algorithms that examine each character individually. Our solution can be efficiently implemented, unlike prior theoretical packed string matching work. We adapt the standard RAM model and only use its AC0 instructions (i.e., no multiplication) plus two specialized AC0 packed string...

  5. Envelope lipid-packing as a critical factor for the biological activity and stability of alphavirus particles isolated from mammalian and mosquito cells.

    Science.gov (United States)

    Sousa, Ivanildo P; Carvalho, Carlos A M; Ferreira, Davis F; Weissmüller, Gilberto; Rocha, Gustavo M; Silva, Jerson L; Gomes, Andre M O

    2011-01-21

    Alphaviruses are enveloped arboviruses. The viral envelope is derived from the host cell and is positioned between two icosahedral protein shells (T = 4). Because the viral envelope contains glycoproteins involved in cell recognition and entry, the integrity of the envelope is critical for the success of the early events of infection. Differing levels of cholesterol in different hosts leads to the production of alphaviruses with distinct levels of this sterol loaded in the envelope. Using Mayaro virus, a New World alphavirus, we investigated the role of cholesterol on the envelope of alphavirus particles assembled in either mammalian or mosquito cells. Our results show that although quite different in their cholesterol content, Mayaro virus particles obtained from both cells share a similar high level of lateral organization in their envelopes. This organization, as well as viral stability and infectivity, is severely compromised when cholesterol is depleted from the envelope of virus particles isolated from mammalian cells, but virus particles isolated from mosquito cells are relatively unaffected by cholesterol depletion. We suggest that it is not cholesterol itself, but rather the organization of the viral envelope, that is critical for the biological activity of alphaviruses.

  6. Dynamic, Infrared Bandpass Filters Prepared from Polymer-Stabilized Cholesteric Liquid Crystals (Postprint)

    Science.gov (United States)

    2016-04-04

    sapphire slides were spun-coated with an alignment layer from a polyimide (PI- 2555, HD Microsystem) or a nylon (Elvamide, DuPont), which was rubbed...transparent electrodes (graphene or silver nano- wires ), and filled with a cholesteric liquid crystal mixture. (b) Transmission spectra of substrates and

  7. Optimized packings with applications

    CERN Document Server

    Pintér, János

    2015-01-01

    This volume presents a selection of case studies that address a substantial range of optimized object packings (OOP) and their applications. The contributing authors are well-recognized researchers and practitioners. The mathematical modelling and numerical solution aspects of each application case study are presented in sufficient detail. A broad range of OOP problems are discussed: these include various specific and non-standard container loading and object packing problems, as well as the stowing of hazardous and other materials on container ships, data centre resource management, automotive engineering design, space station logistic support, cutting and packing problems with placement constraints, the optimal design of LED street lighting, robust sensor deployment strategies, spatial scheduling problems, and graph coloring models and metaheuristics for packing applications. Novel points of view related to model development and to computational nonlinear, global, mixed integer optimization and heuristic st...

  8. Nasal packing and stenting

    Directory of Open Access Journals (Sweden)

    Weber, Rainer K.

    2009-01-01

    Full Text Available Nasal packs are indispensable in ENT practice. This study reviews current indications, effectiveness and risks of nasal packs and stents. In endoscopic surgery, nasal packs should always have smooth surfaces to minimize mucosal damage, improve wound healing and increase patient comfort. Functional endoscopic endonasal sinus surgery allows the use of modern nasal packs, since pressure is no longer required. So called hemostatic/resorbable materials are a first step in this direction. However, they may lead to adhesions and foreign body reactions in mucosal membranes. Simple occlusion is an effective method for creating a moist milieu for improved wound healing and avoiding dryness. Stenting of the frontal sinus is recommended if surgery fails to produce a wide, physiologically shaped drainage path that is sufficiently covered by intact tissue.

  9. Thermal Mechanical Stability of Single-Crystal-Oxide Refractive Concentrators Evaluated for High-Temperature Solar-Thermal Propulsion

    Science.gov (United States)

    Jacobson, Nathan S.; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Recently, refractive secondary solar concentrator systems were developed for solar thermal power and propulsion (ref. 1). Single-crystal oxides-such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO), and sapphire (Al2O3)-are candidate refractive secondary concentrator materials. However, the refractive concentrator system will experience high-temperature thermal cycling in the solar thermal engine during the sun/shade transition of a space mission. The thermal mechanical reliability of these components in severe thermal environments is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions. In this research at the NASA Lewis Research Center, a controlled heat flux test approach was developed for investigating the thermal mechanical stability of the candidate oxide. This approach used a 3.0-kW continuous-wave (wavelength, 10.6 mm) carbon dioxide (CO2) laser (ref. 2). The CO2 laser is especially well-suited for single-crystal thermal shock tests because it can directly deliver well-characterized heat energy to the oxide surfaces. Since the oxides are opaque at the 10.6-mm wavelength of the laser beam, the light energy is absorbed at the surfaces rather than transmitting into the crystals, and thus generates the required temperature gradients within the specimens. The following figure is a schematic diagram of the test rig.

  10. Layered circle packings

    Directory of Open Access Journals (Sweden)

    David Dennis

    2005-01-01

    Full Text Available Given a bounded sequence of integers {d0,d1,d2,…}, 6≤dn≤M, there is an associated abstract triangulation created by building up layers of vertices so that vertices on the nth layer have degree dn. This triangulation can be realized via a circle packing which fills either the Euclidean or the hyperbolic plane. We give necessary and sufficient conditions to determine the type of the packing given the defining sequence {dn}.

  11. Voronoia: analyzing packing in protein structures.

    Science.gov (United States)

    Rother, Kristian; Hildebrand, Peter Werner; Goede, Andrean; Gruening, Bjoern; Preissner, Robert

    2009-01-01

    The packing of protein atoms is an indicator for their stability and functionality, and applied in determining thermostability, in protein design, ligand binding and to identify flexible regions in proteins. Here, we present Voronoia, a database of atomic-scale packing data for protein 3D structures. It is based on an improved Voronoi Cell algorithm using hyperboloid interfaces to construct atomic volumes, and to resolve solvent-accessible and -inaccessible regions of atoms. The database contains atomic volumes, local packing densities and interior cavities calculated for 61 318 biological units from the PDB. A report for each structure summarizes the packing by residue and atom types, and lists the environment of interior cavities. The packing data are compared to a nonredundant set of structures from SCOP superfamilies. Both packing densities and cavities can be visualized in the 3D structures by the Jmol plugin. Additionally, PDB files can be submitted to the Voronoia server for calculation. This service performs calculations for most full-atomic protein structures within a few minutes. For batch jobs, a standalone version of the program with an optional PyMOL plugin is available for download. The database can be freely accessed at: http://bioinformatics.charite.de/voronoia.

  12. Polymer stabilization of the smectic C-alpha* liquid crystal phase—Over tenfold thermal stabilization by confining networks of photo-polymerized reactive mesogens

    Energy Technology Data Exchange (ETDEWEB)

    Labeeb, A. [Liquid Crystal Institute, Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242 (United States); Microwave Physics and Dielectrics, National Research Center, Dokki 12622 (Egypt); Gleeson, H. F. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Hegmann, T., E-mail: thegmann@kent.edu [Liquid Crystal Institute, Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242 (United States)

    2015-12-07

    The smectic C*-alpha (SmC{sub α}*) phase is one of the sub-phases of ferroelectric liquid crystals that has drawn much interest due to its electro-optical properties and ultrafast switching. Generally observed above the ferroelectric SmC* phase in temperature, the SmC{sub α}* commonly shows only very narrow phase temperature range of a few degree Celsius. To broaden the SmC{sub α}* phase, polymer stabilization was investigated for thermal phase stabilization. Two different reactive monomers were tested in three mixtures, and all three broadened the temperature range of the SmC{sub α}* phase from 3 °C to 39 °C. The current reversal method was used to determine the phase existence versus temperature. Moreover, the texture and network structure was studied by polarized optical microscopy and scanning electron microscopy, with the latter revealing the confinement of the smectic layer structure within the porous polymer network.

  13. Synthesis, characterization and crystal structure determination of Mn (II) ion based 1D polymer constructed from 2, 2‧ bipyridyl and azide group, its thermal stability, magnetic properties and Hirshfeld surface analysis

    Science.gov (United States)

    Mudsainiyan, R. K.; Jassal, Amanpreet Kaur; Chawla, S. K.

    2015-05-01

    The 1-D polymeric complex (I) is having formula [Mn(2,2‧-BP).(N3)2]n, which has been crystallized in distilled water and characterized by elemental analyses, FT-IR spectrum, powder X-ray diffraction analyses and single-crystal diffraction analysis. This polymer possesses 1D helical chains or coils where Mn-azide-Mn forms the base of the coil which is alternatively garlanded by rigid bi-pyridine rings, where coordinates are in anti-fashion. The Mn (II) ions in the repeating units are linked by two end-on azide groups which extend through the two end-to-end azide ligands to the next unit forming a 1-D polymeric chain. The present study suggests that the use of this rigid and neutral building block leads to give better arrangement of the polymeric motif with [010] chains in 2-c uninodal net. During investigation of strong or weak intermolecular interactions, X-ray diffraction analysis and Hirshfeld surface analysis give rise to comparable results but in Hirshfeld surface analysis, two-third times more results of close contacts are obtained. The fingerprint plots demonstrate that these weak non-bonding interactions are important for stabilizing the crystal packing. Magnetic properties of the complex (I) were analyzed on the basis of an alternating ferro- and antiferromagnetic Heisenberg chain of Mn (II) ions. The J-exchange parameters found are J1=64.3 K (45.3 cm-1), and J2=-75.7 K (-53.3 cm-1). Magnetic properties are discussed in comparison with those of other similar molecular magnets of [Mn(L-L)(N3)2]n type.

  14. Stability to irradiation of SiGe whisker crystals used for sensors of physical values

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2011-04-01

    Full Text Available An influence of g-irradiation (Co60 with doze up to 1—1018 сm–2 and magnetic field with induction up to 14 T on conduction of 1–xGex (х = 0,03 whisker crystals with resistivity of 0,08—0,025 Оhm·сm in temperature range 4,2—300 K have been studied. It is shown that whisker crystals resistance faintly varies under irradiation with doze 2·1017 сm–2, while their magnetoresistance substantially changes. The strain sensors stable to irradiation action operating in high magnetic fields on the base of the whiskers have been designed.

  15. An ester derivative of the drug gabapentin: pH dependent crystal stability

    Science.gov (United States)

    André, Vânia; Marques, M. Matilde; da Piedade, M. F. Minas; Duarte, M. Teresa

    2010-06-01

    Gabapentin solutions with different pHs were prepared and slow crystallization was allowed to occur. Different crystalline forms were obtained at pHs up to 7, whereas alkaline media (pH 9) gave rise to an amorphous product. A new crystal structure of an ethyl ester derivative, obtained at pH 2 under Fischer esterification conditions, is described herein. Esterification blocked the supramolecular interactions typically observed through the carboxyl group of gabapentin, which resulted in a dramatic change in the solid-state structure. As it is known, this change could have a marked influence on the physiological absorption characteristics of the drug, which supports the search for ester-based gabapentin prodrugs as a means of improving the limited bioavailability of the drug.

  16. Crystal packing and hydrogen bonding in platinum(II) nucleotide complexes: X-ray crystal structure of [Pt(MeSCH(2)CH(2)SMe)(5'-GMP-N7)(2)].6H(2)O.

    Science.gov (United States)

    Djuran, Milos I; Milinkovic, Snezana U; Habtemariam, Abraha; Parsons, Simon; Sadler, Peter J

    2002-02-01

    We have synthesised the complex [Pt(CH(3)SCH(2)CH(2)SCH(3))(5'-GMP-N7)(2)].6H(2)O (1), where 5'-GMP is 5'-guanosine monophosphate, and determined its X-ray crystal structure. Pt(II) adopts a square-planar geometry in which the bases are coordinated head-to-tail (HT) in the Delta configuration. The nucleotide conformation in this complex is almost identical to that in the previously reported complex [Pt(en)(5'-GMP-N7)(2)].9H(2)O (2), in which there is outer sphere macrochelation via intramolecular H-bonding between the monoanionic phosphate groups and the coordinated ethylenediamine (en) NH. It is therefore apparent that intermolecular interactions rather than intramolecular H-bonding determines the orientation of the sugar-phosphate side-chain in these Pt(II) bisnucleotide complexes in the solid state.

  17. Transversal parametric oscillation and its external stability in photorefractive sillenite crystals

    DEFF Research Database (Denmark)

    Podivilov, E.V.; Pedersen, H.C.; Johansen, P.M.

    1998-01-01

    We develop the nonlinear theory of transversal parametric oscillation in photorefractive sillenite crystals. The theory is nonlinear in the sense that the nonlinear feedback from the parametric space-charge field waves, above threshold of their excitation, is taken into account. In this manner...... of transversal parametric oscillation is stable within certain regions of external and internal parameters. This is opposed to the degenerate case (K/2 subharmonic generation), which is unstable....

  18. Synthesis,Crystal Structure and Thermal Stability of(Diacetylacetone)(diimidazole)Nickel(Ⅱ)Complex

    Institute of Scientific and Technical Information of China (English)

    建方方; 庞蕾; 肖海连; 孙萍萍

    2004-01-01

    The title compound, [Ni(acac)2(Im)2] (acac = acetylacetone), has been obtained by the reaction of Ni(acac)2 with imidazole ligand in the ethanol solvent. The blue crystal is of triclinic, space group Pī with a = 7.472(2), b = 9.456(2), c = 13.823(3)A, α = 85.55(3), β = 89.03(3), γ = 80.63(3)o, C16H22N4NiO4, Mr = 393.09, V = 960.7(3)A3, Z = 2, Dc = 1.359 g/cm3, F(000) = 412, μ = 1.036 mm-1, R = 0.0549 and wR = 0.1615. The crystal structure consists of two disconnected structural units. Each Ni atom coordinated by two N atoms from two imidazole ligands and four O atoms from two acetylactone ligands adopts a slightly distorted octahedron. The structure characterization was performed by means of IR, UV, TG, elemental analysis and single-crystal X-ray analysis. The thermal gravity (TG) data indicate that thermal decomposition of the title compound takes place in two steps, and the residue is NiO.

  19. Influence of encapsulated functional lipids on crystal structure and chemical stability in solid lipid nanoparticles: Towards bioactive-based design of delivery systems.

    Science.gov (United States)

    Salminen, Hanna; Gömmel, Christina; Leuenberger, Bruno H; Weiss, Jochen

    2016-01-01

    We investigated the influence of physicochemical properties of encapsulated functional lipids--vitamin A, β-carotene and ω-3 fish oil--on the structural arrangement of solid lipid nanoparticles (SLN). The relationship between the crystal structure and chemical stability of the incorporated bioactive lipids was evaluated with different emulsifier compositions of a saponin-rich, food-grade Quillaja extract alone or combined with high-melting or low-melting lecithins. The major factors influencing the structural arrangement and chemical stability of functional lipids in solid lipid dispersions were their solubility in the aqueous phase and their crystallization temperature in relation to that of the carrier lipid. The results showed that the stabilization of the α-subcell crystals in the lattice of the carrier lipid is a key parameter for forming stable solid lipid dispersions. This study contributes to a better understanding of SLN as a function of the bioactive lipid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The effect of crystal plasticity and mineral stability on the rheological properties of magma during spine extrusion at Unzen, Japan

    Science.gov (United States)

    Wallace, Paul A.; Kendrick, Jackie E.; Lavallée, Yan; Ashworth, James D.; Mariani, Elisabetta; von Aulock, Felix W.; Coats, Rebecca; Miwa, Takahiro

    2016-04-01

    The presence of crystals in silicic magmas is known to have a significant effect on the rheological properties inducing a non-Newtonian response. Plastic deformation of the crystalline phase in magmatic suspensions is believed to be partially responsible for this characteristic behaviour via accommodating strain, but little has been investigated on its role in volcanic processes. The spine extrusion following the final stages of endogenous growth of the 1991-95 lava dome eruption at Unzen volcano, Japan, has provided a unique opportunity to investigate the contribution of the different deformation mechanisms and varying petrological phenomena associated with magma ascent. The spine forms a shear zone consisting of four structurally discrete units over a 6 m transect including: gouge (1), a heavily sheared zone (2) to a moderately sheared zone (3), and an undeformed magmatic core (4). Here we report the first systematic study of the microstructures, mineralogy, crystal stability, geochemistry and crystal size distribution across this shear zone. The spine samples are porphyritic dacites with varying abundance of phenocrysts (20-30 vol.%), dominantly plagioclase, hornblende and biotite with minor quartz. The groundmass contains the same mineralogy plus pyroxene, magnetite and ilmenite. The microlites (35 vol.%) show a strong trachytic texture in areas of high shear, providing evidence of strain localisation. Brittle deformation is evident across the spine, with the higher sheared samples showing more crystal size reduction of the phenocrysts. By performing high-temperature (900° C) uniaxial compressive strength tests at constant strain rates (10-5 and 10-3 s-1), it can be inferred that crystals play a key role in the rheological properties, by forming a rigid but weak network that serves to partition stress and thus localise strain within the flowing melt. Electron backscatter diffraction (EBSD) enables the identification of crystal plasticity in both phenocrysts

  1. Packing of nonoverlapping cubic particles: Computational algorithms and microstructural characteristics.

    Science.gov (United States)

    Malmir, Hessam; Sahimi, Muhammad; Tabar, M Reza Rahimi

    2016-12-01

    Packing of cubic particles arises in a variety of problems, ranging from biological materials to colloids and the fabrication of new types of porous materials with controlled morphology. The properties of such packings may also be relevant to problems involving suspensions of cubic zeolites, precipitation of salt crystals during CO_{2} sequestration in rock, and intrusion of fresh water in aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We present a detailed simulation and microstructural characterization of packings of nonoverlapping monodisperse cubic particles, following up on our preliminary results [H. Malmir et al., Sci. Rep. 6, 35024 (2016)2045-232210.1038/srep35024]. A modification of the random sequential addition (RSA) algorithm has been developed to generate such packings, and a variety of microstructural descriptors, including the radial distribution function, the face-normal correlation function, two-point probability and cluster functions, the lineal-path function, the pore-size distribution function, and surface-surface and surface-void correlation functions, have been computed, along with the specific surface and mean chord length of the packings. The results indicate the existence of both spatial and orientational long-range order as the the packing density increases. The maximum packing fraction achievable with the RSA method is about 0.57, which represents the limit for a structure similar to liquid crystals.

  2. Packing of nonoverlapping cubic particles: Computational algorithms and microstructural characteristics

    Science.gov (United States)

    Malmir, Hessam; Sahimi, Muhammad; Tabar, M. Reza Rahimi

    2016-12-01

    Packing of cubic particles arises in a variety of problems, ranging from biological materials to colloids and the fabrication of new types of porous materials with controlled morphology. The properties of such packings may also be relevant to problems involving suspensions of cubic zeolites, precipitation of salt crystals during CO2 sequestration in rock, and intrusion of fresh water in aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We present a detailed simulation and microstructural characterization of packings of nonoverlapping monodisperse cubic particles, following up on our preliminary results [H. Malmir et al., Sci. Rep. 6, 35024 (2016), 10.1038/srep35024]. A modification of the random sequential addition (RSA) algorithm has been developed to generate such packings, and a variety of microstructural descriptors, including the radial distribution function, the face-normal correlation function, two-point probability and cluster functions, the lineal-path function, the pore-size distribution function, and surface-surface and surface-void correlation functions, have been computed, along with the specific surface and mean chord length of the packings. The results indicate the existence of both spatial and orientational long-range order as the the packing density increases. The maximum packing fraction achievable with the RSA method is about 0.57, which represents the limit for a structure similar to liquid crystals.

  3. Phase stability, single crystal growth, and anisotropic magnetic properties of Ca-La magnetoplumbite-type ferrite

    Science.gov (United States)

    Uji, K.; Waki, T.; Tabata, Y.; Nakamura, H.

    2017-01-01

    The cation compositions in the Ca-La magnetoplumbite-type (M-type) ferrite, CaxLayFezO19, prepared from various initial fractions of reagents, were analyzed by wavelength-dispersive X-ray (WDX) spectroscopy. The reliability of the WDX composition analysis was confirmed by a crosscheck using inductively coupled plasma atomic emission spectrometry (ICP-AES). For particular polycrystalline samples furnace-cooled from 1250 ° C , the solubility ranges of Ca, La, and Fe were found to be 0.45 ≤ x ≤ 0.70 , 0.39 ≤ y ≤ 0.66 , and 11.82 ≤ z ≤ 11.92 , respectively, assuming x + y + z = 13 . Despite that the samples were synthesized from various starting compositions, the values of z / (x + y) of the matrix M phase are smaller than the M-type regular value, 12, for all the samples and comes in a very limited range at ∼ 11 , suggesting most probably Ca occupation at particular Fe sites or Fe deficiency due to insertion of stacking fault to Ca/La/O packing. Single crystals of CaxLayFezO19 with various x / y ratios were synthesized successfully by the self-flux method, followed by the characterization of their magnetic properties. The saturation magnetization and the Curie temperature were found to be almost independent of the cation composition. In contrast, the hard-axis magnetization process at low temperature depended significantly on the Ca/La ratio, and showed a sharp jump at ≲ 10 kOe, which can be attributed to a spin reorientation transition associated with the appearance of Fe2+.

  4. Estabilidade oxidativa de óleo de peixe encapsulado em diferentes tipos de embalagem em condição ambiente Encapsulated fish oil oxidative stability stored in different types of packing under ambient conditions

    Directory of Open Access Journals (Sweden)

    Selma Guidorizzi Antonio Pacheco

    2009-12-01

    due to oxidation. This research main interest was the stability of encapsulated fish oil stored in different types of packagings. The fish oil used in this experiment was supplied by Cardinal Pharmaceutical Industry in soft gel capsules. After encapsulation, half of the samples were sent to SERPAC Industry LTDA for blistering, where polychlortrifluoroethylene (PCTFE, commercially known as Aclar Rx 160 (15 μ, polyvinyldichloride (PVDC-60 gsm², and polyvinylchoride (PVC-250 μ films were used as treatments. The blisters were packed in carton boxes. The other half of the capsules was packed in amber glass or high density polyethylene (PEAD rigid flasks with and without silica bags. Each treatment contained 60 capsules in triplicate and all packs were stored under ambient conditions for 12 months. Analytical determinations were performed on the oil every 28 days and included acid and peroxide values and absortivities in the ultraviolet region at 232 and 270 nm. The fatty acid composition determinations, specifically EPA and DHA content, were performed during the experiment. The package which presented the largest changes in quality of the oil was the PVC film "blister". The best results were found in the encapsulated oil stored in PEAD flasks with silica bags. EPA and DHA contents were kept constant for all samples.

  5. Influence of standing surface waves on thermocapillary convection stability and crystal growth in weightlessness

    Science.gov (United States)

    Feonychev, A. I.

    Numerical investigation of thermocapillary flows and crystal growth by the floating zone method had been carried out in the case what free fluid surface oscillates in the form of standing wave by vibration. Two sorts of standing waves were considered. First, it is inertia-capillary standing waves due to vibration motion of fluid column as unit. These waves had been discovered under numerical investigation of problem /1/. Analytical model and the characteristic properties of these waves are described in /2/. Secondly, usual capillary waves generated by vibration of growing crystal were also considered. The effects of these surface waves on fluid flow and heat and mass transfer in process of crystal growth had been investigated over the wide ranges of dimensionless parameters for the Prandtl number is less than 1. The Marangoni number was varied from 140 to 2500, the range of cyclic frequency was between 200 and 76000. Transition from laminar thermocapillary convection to regime of flow with high oscillations (turbulent convection) happens very sharply when dimensionless amplitude (scale for linear dimensions is radius of fluid column) of standing wave reached 0.01112/n, where n is number of standing wave periods are along the length of fluid zone. If configuration of standing wave correlates with thermocapillary flow pattern two specific regimes of flow had been discovered. Flow with small oscillations is located in the range of standing wave amplitude between 0.0028 and 0.00418. In this area, radial macrosegregation of dopant is lowered by the factor of 3-6 depending on the Marangoni number. Next is an area with practically stable flow, in particular is identical to laminar flow without vibration. This area ends very sharply in the boundary of turbulent flow. All the mentioned boundaries are independent of the Marangoni number and frequency of oscillation of standing wave. For oscillatory thermocapillary convection (the Marangoni number is more than 2000

  6. Internal Friction Due to Localized Relaxation around Y-ions in Single Crystal Yttria-Stabilized Zirconia

    Science.gov (United States)

    Ohta, Michihiro; Kirimoto, Kenta; Nobugai, Kohji; Wigmore, J. Keith; Miyasato, Tatsuro

    2001-09-01

    The internal friction in single crystal yttria-stabilized zirconia (YSZ) doped with 9.5 mol% Y2O3 was measured for longitudinal sound waves in the frequency range from 10 Hz to 800 Hz using a vibrating reed technique. In the temperature range from 300 K to 700 K, observations of internal friction reveal two closely overlapping absorption peaks, confirming the existence of two relaxation modes in YSZ@. One of the peaks is due to diffusion relaxation, which is known to be responsible for long-range transport of O-ions. The second peak shows clearly the existence of localized relaxation, which is attributed to bound oxygen vacancies within the local structure which is formed around an Y-ion due to symmetry breaking. The absorption peak caused by the localized relaxation exhibits anisotropy resulting from the asymmetric local structure, and the strength of this peak changes with temperature reflecting the number of bound oxygen vacancies.

  7. Battery Pack Thermal Design

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-14

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.

  8. Superconducting switch pack

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, V.C.; Wollan, J.J.

    1990-07-24

    This patent describes a superconducting switch pack at least one switch element. The switch element including a length of superconductive wire having a switching portion and two lead portions, the switching portion being between the lead portions; means for supporting the switching portion in a plane in a common mold; hardened resin means encapsulating the switching portion in the plane in a solid body; wherein the solid body has an exterior surface which is planar and substantially parallel with and spaced apart from the plane in which the switching portion is positioned. The exterior surface being exposed to the exterior of the switch pack and the resin means filling the space between the exterior surface and the plane of the switching portion so as to provide uninterrupted thermal communication between the plane of the switching portion and the exterior of the switch pack; and a heater element in thermal contact with the switching portion.

  9. Blue phase liquid crystal: strategies for phase stabilization and device development

    Directory of Open Access Journals (Sweden)

    Asiqur Rahman, Suhana Mohd Said and S Balamurugan

    2015-05-01

    Full Text Available The blue phase liquid crystal (BPLC is a highly ordered liquid crystal (LC phase found very close to the LC–isotropic transition. The BPLC has demonstrated potential in next-generation display and photonic technology due to its exceptional properties such as sub-millisecond response time and wide viewing angle. However, BPLC is stable in a very small temperature range (0.5–1 °C and its driving voltage is very high (~100 V. To overcome these challenges recent research has focused on solutions which incorporate polymers or nanoparticles into the blue phase to widen the temperature range from around few °C to potentially more than 60 °C. In order to reduce the driving voltage, strategies have been attempted by modifying the device structure by introducing protrusion or corrugated electrodes and vertical field switching mechanism has been proposed. In this paper the effectiveness of the proposed solution will be discussed, in order to assess the potential of BPLC in display technology and beyond.

  10. Stabilizing the spin vortex crystal phase in two-dimensional iron-based superconductors

    Science.gov (United States)

    O'Halloran, Joseph; Agterberg, D. F.; Chen, M. X.; Weinert, M.

    2017-02-01

    We present an investigation of the magnetic structure for iron-based superconductors (FeSCs) when inversion symmetry is broken, such as in substrate-supported monolayers or in the presence of a c -axis electric field. We perform group-, mean-field-, and density-functional-theoretic analyses on a model system of monolayer iron selenide (FeSe) on a strontium titanate [SrTiO3 (001)] substrate. Our group- and mean-field-theoretic calculations are more generally applicable to thin films of the rest of the 11 (e.g., FeSe) family of iron-based superconductors, as well as to thin films of the 111 (e.g., LiFeAs) and 1111 (e.g., LaOFeAs) families, as these all belong to the same space group. We find that in systems with a collinear antiferromagnetic phase in bulk, when inversion symmetry is broken, the transition is instead into a "spin vortex crystal" phase and that a further phase transition can occur at a lower temperature in some circumstances. The spin vortex crystal is a C4-symmetric magnetic phase which is related to this parent C2-symmetric collinear antiferromagnetic (stripe) phase which is ubiquitous among the iron-based superconductors.

  11. Research on the stability of nearly zero flattened dispersion of photonic crystal fibers

    Institute of Scientific and Technical Information of China (English)

    HU Jie; WANG Jian

    2008-01-01

    To analyze the stability of nearly zero flattened dispersion,the dispersion deviations for three kinds of PCFs arc calculated when the hole diamcters deviate from their designed values.Numerical resuIts show that around the wavelength of 1.55μm,the dispersion deviations of both the PCF with three-fold symmetry core and the PCF with hexagonal lattice are much less than that of the PCF with different hole diameters in different rings.Therefore.the stabilities of nearly zero flattened dispersion of the first two kinds of PCFs are much better than that of the last one.Considering the confinement loss.the PCF with three-fold symmetry core is preferabk to practical USe.

  12. Structural considerations on acridine/acridinium derivatives: Synthesis, crystal structure, Hirshfeld surface analysis and computational studies

    Science.gov (United States)

    Wera, Michał; Storoniak, Piotr; Serdiuk, Illia E.; Zadykowicz, Beata

    2016-02-01

    This article describes a detailed study of the molecular packing and intermolecular interactions in crystals of four derivatives of acridine, i.e. 9-methyl-, 9-ethyl, 9-bromomethyl- and 9-piperidineacridine (1, 2, 3 and 4, respectively) and three 10-methylacridinium salts containing the trifluoromethanesulphonate anion and 9-vinyl-, 9-bromomethyl, and 9-phenyl-10-methylacridinium cations (5, 6 and 7, respectively). The crystal structures of all of the compounds are stabilized by long-range electrostatic interactions, as well as by a network of short-range C-HṡṡṡO (in hydrates and salts 3 and 5-7, respectively), C-Hṡṡṡπ, π-π, C-Fṡṡṡπ and S-Oṡṡṡπ (in salts 5-7) interactions. Hirshfeld surface analysis shows that various intermolecular contacts play an important role in the crystal packing, graphically exhibiting the differences in spatial arrangements of the acridine/acridinium derivatives under scrutiny here. Additionally, computational methods have been used to compare the intermolecular interactions in the crystal structures of the investigated compounds. Computations have confirmed the great contribution of dispersive interactions for crystal lattice stability in the case of 9-substituted acridine and electrostatic interactions for the crystal lattice stability in the case of 9-substituted 10-methylacridinium trifluoromethanesulphonates. The value of crystal lattice energy and the electrostatic contribution in the crystal lattice energy of monohydrated acridine derivatives have confirmed that these compounds have behave as acridinium derivatives.

  13. Estabilidade aeróbia de silagens do capim-marandu submetidas a diferentes intensidades de compactação na ensilagem Aerobic stability of marandu grass silages submitted to different packing intensities during ensiling

    Directory of Open Access Journals (Sweden)

    Rafael Camargo do Amaral

    2008-06-01

    Full Text Available Objetivou-se avaliar a estabilidade aeróbia das silagens de capim-marandu submetidas a diferentes pressões de compactação. A espécie forrageira foi colhida aos 60 dias de crescimento vegetativo. O delineamento experimental utilizado foi o inteiramente casualizado com quatro repetições, utilizando-se o modelo de medidas repetidas no tempo. Os tratamentos constituíram-se de quatro densidades (100, 120, 140 e 160 kg MS/m³. As alterações químicas das silagens foram determinadas com 0, 3 e 6 dias após a abertura. As leituras das temperaturas das silagens foram obtidas em intervalos de 12 horas, 156 horas após a acomodação dos baldes na câmara climática, utilizando-se o termômetro inserido a 10 cm no centro da massa de silagem. As silagens de maiores valores de densidade alcançaram máxima temperatura em maior tempo que as densidades inferiores, evidenciando a maior estabilidade decorrente de melhor compactação da massa ensilada. Com o avançar do tempo de exposição aeróbia, as silagens tiveram aumento nos valores de pH e decréscimos nos teores de nitrogênio amoniacal (N-NH3. Verificou-se queda nos teores de NIDN (nitrogênio insolúvel em detergente neutro e da fração B3 com o aumento da densidade, o que caracterizou a participação dessa fração durante o processo de proteólise após a quebra da vedação. Os teores de fibras em detergente neutro e detergente ácido durante a exposição ao ar sofreram acréscimo, sendo os maiores valores obtidos nas silagens de menor densidade. As silagens mais densas apresentaram maiores coeficientes de digestibilidade verdadeira in vitro que os demais tratamentos.This trial aimed to evaluate the aerobic stability of marandu grass silages submitted to different packing intensities. The forage was harvested at 60 days of regrowth. The following packing densities were evaluated: 100, 120, 140, and 160 kg DM/m³. Silage chemical changes were determined 0, 3, and 6 days after air

  14. Stabilizing control of continuous DTB crystallizer. Influence of undissolved fine crystals in external heater; DTB gata renzoku shosekiki no anteika seigyo. Gaibu kanetsuki ni okeru bisho kessho tokenokori no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Naito, Kiyoshi; Sotowa, Ken' ichi; Kano, Manabu; Hasebe, Shinji; Hashimoto, Iori [Kyoto University, Kyoto (Japan). Dept. of Chemical Engineering

    1999-01-10

    In the study of modeling and control of continuous DTB crystallizers, it has been common practice to assume complete dissolution of fine crystals in an external heater (fines dissolver). However, complete dissolution of fine crystals is not always guaranteed because the dissolution rate is finite. In this work, a model of an external heater is developed by taking account of the finite dissolution rate of the crystals. The model is used to study the influence of incomplete dissolution of fine crystals on the stabilizing control of the crystal size distribution (CSD). It is found to be difficult to suppress the sustained oscillation of CSD by using the conventional SISO controllers, which regulate the amount of fines crystals by manipulating the fines flow rate. This is because when the fines flow rate is very large, an increase in the fines flow rate can reduce the amount of crystal dissolution in the external heater. It is demonstrated that instability can be avoided by imposing an upper limit on the fines flow rate. Furthermore, it is shown that the upper limit can be predicted by using the results of open-loop simulation. (author)

  15. Na2TiGeO5: Crystal structure stability at low temperature and high pressure

    DEFF Research Database (Denmark)

    Waskowska, A.; Gerward, Leif; Olsen, J.S.

    2008-01-01

    and GeO4 tetrahedra, alternating with layers of Na+ cations. Antiparallel alignment of the short apical titanyl bond in adjacent rows of the polyhedral layer gives rise to spontaneous strain, when a distortion of the TiO5 groups occurs. Single-crystal structures determined at room temperature and 120 K......-axis. The structure distortion, however, is too small to allow any unambiguous determination of the symmetry-breaking effects. The bulk modulus and its pressure derivative have been determined as B-0 = 89(2) GPa and B'(0) = 4.0. A pressure-induced phase transformation takes place at P-c approximate to 12.5 GPa......, presumably to an orthorhombic structure. The pressure effect on the transition temperature is given by Delta T-c/Delta P approximate to 1.76 K/GPa....

  16. Stabilization of needle-crystals by the Gibbs-Thomson effect

    Science.gov (United States)

    Pillet, C.-A.

    1991-09-01

    We develop a scheme based on pseudo-differential operators to analyze the propagation of excitations in inhomogeneous extended systems. This method is used in a very specific situation, however we think that it has some generality and should apply to various other problems of current interest. We study the well known two-dimensional symmetric model of solidification introduced by Langer and Turski. Assuming the existence of Ivantsov-like steady-state solutions, we calculate their excitation spectrum. We show that there are no unstable propagating modes if the Gibbs-Thomson effect is taken into account. This proves that the growth of needle-crystals is stable with respect to side-branching.

  17. Four-wave mixing stability in hybrid photonic crystal fibers with two zero-dispersion wavelengths.

    Science.gov (United States)

    Sévigny, Benoit; Vanvincq, Olivier; Valentin, Constance; Chen, Na; Quiquempois, Yves; Bouwmans, Géraud

    2013-12-16

    The four-wave mixing process in optical fibers is generally sensitive to dispersion uniformity along the fiber length. However, some specific phase matching conditions show increased robustness to longitudinal fluctuations in fiber dimensions, which affect the dispersion, even for signal and idler wavelengths far from the pump. In this paper, we present the method by which this point is found, how the fiber design characteristics impact on the stable point and demonstrate the stability through propagation simulations using the non-linear Schrödinger equation.

  18. DIY Fraction Pack.

    Science.gov (United States)

    Graham, Alan; Graham, Louise

    2003-01-01

    Describes a very successful attempt to teach fractions to year 5 pupils based on pupils making their own fraction pack. Children decided for themselves how to make the fractional slices used in the activity using colored cardboard sheets and templates of a paper circle consisting of 24 equal slices. (Author/NB)

  19. Influence of the crystal structure on the stability of Ln{sup 2+} in strontium borates

    Energy Technology Data Exchange (ETDEWEB)

    Dotsenko, V.P. [Physico-Chemical Institute, Ukrainian Academy of Sciences, 86 Lustdorfskaya str., 65080 Odesa (Ukraine)], E-mail: ssclab@ukr.net; Berezovskaya, I.V.; Efryushina, N.P. [Physico-Chemical Institute, Ukrainian Academy of Sciences, 86 Lustdorfskaya str., 65080 Odesa (Ukraine); Voloshinovskii, A.S.; Stryganyuk, G.B. [Ivan Franko National University of Lviv, 8 Kyryla i Mefodiya str., 29005 Lviv (Ukraine)

    2007-04-15

    The results of luminescence measurements on Ln (Eu, Yb) doped alkaline earth (M=Ca,Sr) borates M{sub 3}(BO{sub 3}){sub 2}, MB{sub 2}O{sub 4}, M{sub 2}B{sub 5}O{sub 9}X(X=Cl,Br), MB{sub 6}O{sub 10}, MB{sub 4}O{sub 7} after high-temperature annealing in various atmospheres are reported and discussed. The stability of Ln{sup 2+}(Ln=Eu,Yb) is found to increase in the sequence Sr{sub 3}(BO{sub 3}){sub 2}stability of Ln{sup 2+} in alkaline earth borates.

  20. Comparison of the structural motifs and packing arrangements of six novel derivatives and one polymorph of 2-(1-phenyl-1H-1,2,3-triazol-4-yl)pyridine.

    Science.gov (United States)

    Tawfiq, Kinaan M; Miller, Gary J; Al-Jeboori, Mohamad J; Fennell, Paul S; Coles, Simon J; Tizzard, Graham J; Wilson, Claire; Potgieter, Herman

    2014-04-01

    The crystal structures of a new polymorph and seven new derivatives of 2-(1-phenyl-1H-1,2,3-triazol-4-yl)pyridine have been characterized and examined along with three structures from the literature to identify trends in their intermolecular contact patterns and packing arrangements in order to develop an insight into the crystallization behaviour of this class of compound. Seven unique C-H···X contacts were identified in the structures and three of these are present in four or more structures, indicating that these are reliable supramolecular synthons. Analysis of the packing arrangements of the molecules using XPac identified two closely related supramolecular constructs that are present in eight of the 11 structures; in all cases, the structures feature at least one of the three most common intermolecular contacts, suggesting a clear relationship between the intermolecular contacts and the packing arrangements of the structures. Both the intermolecular contacts and packing arrangements appear to be remarkably consistent between structures featuring different functional groups, with the expected exception of the carboxylic acid derivative 4-(4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl) benzoic acid (L11), where the introduction of a strong hydrogen-bonding group results in a markedly different supramolecular structure being adopted. The occurrence of these structural features has been compared with the packing efficiency of the structures and their melting points in order to assess the relative favourability of the supramolecular structural features in stabilizing the crystal structures.

  1. Simultaneous realization of high catalytic activity and stability for catalytic cracking of n-heptane on highly exposed (010) crystal planes of nanosheet ZSM-5 zeolite.

    Science.gov (United States)

    Xiao, Xia; Zhang, Yaoyuan; Jiang, Guiyuan; Liu, Jia; Han, Shanlei; Zhao, Zhen; Wang, Ruipu; Li, Cong; Xu, Chunming; Duan, Aijun; Wang, Yajun; Liu, Jian; Wei, Yuechang

    2016-08-01

    Nanosheet ZSM-5 zeolite with highly exposed (010) crystal planes demonstrates high reactivity and good anti-coking stability for the catalytic cracking of n-heptane, which is attributed to the synergy of high external surface area and acid sites, fully accessible channel intersection acid sites, and hierarchical porosity caused by the unique morphology.

  2. Molten Al and (0001) α-Al2O3 Single Crystal: Interface Stability

    Science.gov (United States)

    Aguilar-santillan, Joaquin

    2016-10-01

    The roughness on the " c"-plane (0001) sapphire single crystal reduces wetting of molten aluminum under Ar gas (99.999 pct) and PO2 10-15 Pa from 1073 K to 1473 K (800 °C to 1200 °C). The contact angle effect was partially understood by the roughness factor, R; however, the interfacial phenomenon involving this effect is yet a topic to study as it also depends, between other things, on the shape of droplet and the relationship to its substrate. The theory explains that the surface tension of liquid aluminum obtained by the sessile drop test can be determined just when a substrate is polished or free of any surface imperfection. However, roughness of sapphire (0001) surface promotes an apparent surface tension that exhibits different trends of wetting to that proposed in previous studies. This property adds to the interfacial wetting phenomena obtained from the Al-Al2O3 couple system and provides answers for contact angle trends toward a much more stable interface, which when coupled with thermodynamic conditions may help in the manufacturing, deterioration, and reliability of the system.

  3. Structure, Solubility and Stability of Orbifloxacin Crystal Forms: Hemihydrate versus Anhydrate.

    Science.gov (United States)

    Santos, Olimpia Maria Martins; Freitas, Jennifer Tavares Jacon; Cazedey, Edith Cristina Laignier; de Araújo, Magali Benjamim; Doriguetto, Antonio Carlos

    2016-03-09

    Orbifloxacin (ORBI) is a widely used antimicrobial drug of the fluoroquinolone class. In the official pharmaceutical compendia the existence of polymorphism in this active pharmaceutical ingredient (API) is reported. No crystal structure has been reported for this API and as described in the literature, its solubility is very controversial. Considering that different solid forms of the same API may have different physicochemical properties, these different solubilities may have resulted from analyses inadvertently carried out on different polymorphs. The solubility is the most critical property because it can affect the bioavailability and may compromise the quality of a drug product. The crystalline structure of ORBI determined by SCXRD is reported here for the first time. The structural analysis reveals that the ORBI molecule is zwitterionic and hemihydrated. ORBI hemihydrated form was characterized by the following techniques: TG/DTA, FTIR-ATR, and PXRD. A second crystalline ORBI form is also reported: the ORBI anhydrous form was obtained by heating the hemihydrate. These ORBI solid forms were isomorphous, since no significant change in unit cell and space group symmetry were observed. The solid-state phase transformation between these forms is discussed and the equilibrium solubility data were examined in order to check the impact of the differences observed in their crystalline structures.

  4. Structure, Solubility and Stability of Orbifloxacin Crystal Forms: Hemihydrate versus Anhydrate

    Directory of Open Access Journals (Sweden)

    Olimpia Maria Martins Santos

    2016-03-01

    Full Text Available Orbifloxacin (ORBI is a widely used antimicrobial drug of the fluoroquinolone class. In the official pharmaceutical compendia the existence of polymorphism in this active pharmaceutical ingredient (API is reported. No crystal structure has been reported for this API and as described in the literature, its solubility is very controversial. Considering that different solid forms of the same API may have different physicochemical properties, these different solubilities may have resulted from analyses inadvertently carried out on different polymorphs. The solubility is the most critical property because it can affect the bioavailability and may compromise the quality of a drug product. The crystalline structure of ORBI determined by SCXRD is reported here for the first time. The structural analysis reveals that the ORBI molecule is zwitterionic and hemihydrated. ORBI hemihydrated form was characterized by the following techniques: TG/DTA, FTIR-ATR, and PXRD. A second crystalline ORBI form is also reported: the ORBI anhydrous form was obtained by heating the hemihydrate. These ORBI solid forms were isomorphous, since no significant change in unit cell and space group symmetry were observed. The solid-state phase transformation between these forms is discussed and the equilibrium solubility data were examined in order to check the impact of the differences observed in their crystalline structures.

  5. Influence of crystallization conditions on the tensile properties of radiation crosslinked, vitamin E stabilized UHMWPE.

    Science.gov (United States)

    George, A; Ngo, H D; Bellare, A

    2014-12-01

    Radiation crosslinking for ultra-high molecular weight polyethylene results in improved wear resistance but a reduction in mechanical properties. Incorporation of vitamin E has been known to decrease the rate of oxidative degradation occurring through radiation crosslinking and prevents the need for post-irradiation melting with subsequent loss of crystallinity. In this study, we aimed to determine the effect of thermal treatments prior to crosslinking on the morphology and tensile properties of vitamin-E-containing polyethylene. Vitamin-E-blended polyethylene was melted and subsequently quenched in ice water in order to induce high rate crystallization. A second group was additionally annealed at 126°C following quenching and all samples were irradiated using electron beam radiation to a dose of 100kGy. The morphology of control, quenched and quench-annealed polyethylene was characterized using small angle x-ray scattering and differential scanning calorimetry. Tensile properties of these polyethylenes were measured before and after radiation crosslinking with equilibrium swelling experiments performed to assess the crosslink density of irradiated samples. This study shows how the tensile properties of polyethylene can be enhanced by varying thermal treatments prior to crosslinking; and thus how it may be possible to offset the reduction in tensile properties afforded by the crosslinking process.

  6. Crystal Structures, Stabilities, Electronic Properties, and Hardness of MoB2: First-Principles Calculations.

    Science.gov (United States)

    Ding, Li-Ping; Shao, Peng; Zhang, Fang-Hui; Lu, Cheng; Ding, Lei; Ning, Shu Ya; Huang, Xiao Fen

    2016-07-18

    On the basis of the first-principles techniques, we perform the structure prediction for MoB2. Accordingly, a new ground-state crystal structure WB2 (P63/mmc, 2 fu/cell) is uncovered. The experimental synthesized rhombohedral R3̅m and hexagonal AlB2, as well as theoretical predicted RuB2 structures, are no longer the most favorite structures. By analyzing the elastic constants, formation enthalpies, and phonon dispersion, we find that the WB2 phase is thermodynamically and mechanically stable. The high bulk modulus B, shear modulus G, low Poisson's ratio ν, and small B/G ratio are benefit to its low compressibility. When the pressure is 10 GPa, a phase transition is observed between the WB2-MoB2 and the rhombohedral R3̅m MoB2 phases. By analyzing the density of states and electron density, we find that the strong covalent is formed in MoB2 compounds, which contributes a great deal to its low compressibility. Furthermore, the low compressibility is also correlated with the local buckled structure.

  7. Role of Dispersion Interactions in the Polymorphism and Entropic Stabilization of the Aspirin Crystal

    Science.gov (United States)

    Reilly, Anthony M.; Tkatchenko, Alexandre

    2014-08-01

    Aspirin has been used and studied for over a century but has only recently been shown to have an additional polymorphic form, known as form II. Since the two observed solid forms of aspirin are degenerate in terms of lattice energy, kinetic effects have been suggested to determine the metastability of the less abundant form II. Here, first-principles calculations provide an alternative explanation based on free-energy differences at room temperature. The explicit consideration of many-body van der Waals interactions in the free energy demonstrates that the stability of the most abundant form of aspirin is due to a subtle coupling between collective electronic fluctuations and quantized lattice vibrations. In addition, a systematic analysis of the elastic properties of the two forms of aspirin rules out mechanical instability of form II as making it metastable.

  8. Crystal structures and phase stability in pseudobinary CaAl 2-xZn x

    Science.gov (United States)

    Söderberg, Karin; Boström, Magnus; Kubota, Yoshiki; Nishimatsu, Takeshi; Niewa, Rainer; Häussermann, Ulrich; Grin, Yuri; Terasaki, Osamu

    2006-08-01

    Samples in the pseudobinary system CaAl 2-xZn x ( 0⩽x⩽2) were synthesised from the elements. Three different structure types, the C15 and C36 Laves phase structures and the KHg 2 (CeCu 2) structure, were observed. The structures and homogeneity ranges of the underlying phases were investigated by electron microscopy and thermal analysis as well as X-ray powder diffraction. The stability ranges for the different structure types were found to be 0⩽x⩽0.18, 0.28⩽x⩽0.68 and 0.93⩽x⩽2 for the C15, C36 and KHg 2 structure types, respectively.

  9. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  10. CRYSTAL CHEMISTRY OF THREE-COMPONENT WHITE DWARFS AND NEUTRON STAR CRUSTS: PHASE STABILITY, PHASE STRATIFICATION, AND PHYSICAL PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Engstrom, T. A.; Yoder, N. C.; Crespi, V. H., E-mail: tae146@psu.edu, E-mail: ncy5007@psu.edu, E-mail: vhc2@psu.edu [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-02-20

    A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are “bred” by a genetic algorithm and optimized at constant pressure under the assumption of linear response (Thomas–Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the T = 0 bulk phase diagrams, five of which are complicated multinary structures not previously predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferences of systems with pairwise Yukawa interactions, including and extending to the regime of low-density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravitating, hydrostatically stable white dwarf, with fixed overall composition. To our knowledge, this is the first attempt to incorporate complex multinary phases into the equilibrium phase-layering diagram and mass–radius-composition dependence, both of which are reported for He–C–O and C–O–Ne white dwarfs. Finite thickness interfacial phases (“interphases”) show up at the boundaries between single-component body-centered cubic (bcc) crystalline regions, some of which have lower lattice symmetry than cubic. A second application—quasi-static settling of heavy nuclei in white dwarfs—builds on our equilibrium phase-layering method. Tests of this nonequilibrium method reveal extra phases that play the role of transient host phases for the settling species.

  11. Facile design and stabilization of a novel one-dimensional silicon-based photonic crystal microcavity

    Science.gov (United States)

    Salem, Mohamed Shaker; Ibrahim, Shaimaa Moustafa; Amin, Mohamed

    2017-07-01

    A novel silicon-based optical microcavity composed of a defect layer sandwiched between two parallel rugate mirrors is created by the electrochemical anodization of silicon in a hydrofluoric acid-based electrolyte using a precisely controlled current density profile. The profile consists of two sinusoidally modulated current waveforms separated by a fixed current that is applied to produce a defect layer between the mirrors. The spectral response of the rugate-based microcavity is simulated using the transfer matrix method and compared to the conventional Bragg-based microcavity. It is found that the resonance position of both microcavities is unchanged. However, the rugate-based microcavity exhibits a distinct reduction of the sidebands' intensity. Further attenuation of the sidebands' intensity is obtained by creating refractive index matching layers with optimized thickness at the bottom and top of the rugate-based microcavity. In order to stabilize the produced microcavity against natural oxidation, atomic layer deposition of an ultra-thin titanium dioxide layer on the pore wall is carried out followed by thermal annealing. The microcavity resonance position shows an observable sensitivity to the deposition and annealing processes.

  12. Crystal structure and thermal stability of martensite in Cu-25Al-3Mn alloy

    Institute of Scientific and Technical Information of China (English)

    李周; 汪明朴; 曹玲飞; 徐根应; 苏玉长

    2002-01-01

    The martensite structure in Cu-25Al-3Mn alloy and its thermal cycling and aging behavior are studied. It is convinced that the M2H martensite can be obtained by water-quenched, and the atoms distribution on the basal plane of the mart ensite is: Ⅰ(corner)-Al; Ⅱ(center of the plane)-Cu; Ⅲ(middle of b- side)-22/25Cu+3/25Mn. The lattice parameters are determined to be a=0.445 9 nm, b=0.527 9 nm, c=0.424 1 nm, β=88.64°. The triangle and other complicated configurations consisting of the variant group in the martensite are discovered. It is showed that the tested alloy has a high thermal stability when aging at average temperature in the parent phase, and the thermoelastic martensite amount is up to 90% af ter aging for 96 hat 400 ℃. The thermal cycling has a little influence on the transform ation temperature (Ms). When the number of thermal cycles is up to 1000, the increasing of Ms is only 8 ℃.

  13. The Six Pack Model

    DEFF Research Database (Denmark)

    Andersen, Henrik; Ritter, Thomas

    Ever seen a growth strategies fail because it was not connect ed to the firm’s customer base? Or a customer relationship strategy falters just because it was the wrong thing to do with that given customer? This article presents the six pack model, a tool that makes growth profitable and predictable....... Not all customers can and should grow – thus a firm needs to classify its customers in order to implement the right customer strategy....

  14. Tampering with molecular cohesion in crystals of hexaphenylbenzenes.

    Science.gov (United States)

    Gagnon, Eric; Halperin, Shira D; Métivaud, Valérie; Maly, Kenneth E; Wuest, James D

    2010-01-15

    Hexaphenylbenzene (HPB) and analogous compounds have properties of broad utility in science and technology, including conformationally well-defined molecular structures, high thermal stability, high HOMO-LUMO gaps, little self-association, inefficient packing, and high solubilities. Previous structural studies of HPB and its analogues have revealed persistent involvement of the central aromatic ring in strong C-H...pi interactions. These interactions can be blocked by adding simple ortho alkyl substituents to the peripheral phenyl groups. Comparison of the structures of HPB and a series of ortho-substituted derivatives has shown systematic changes in molecular cohesion and packing, as measured by packing indices, densities, solubilities, temperatures of sublimation, melting points, and ratios of H...H, C...H, and C...C contacts. These results illustrate how crystal engineering can guide the search for improved materials by identifying small but telling molecular alterations that thwart established patterns of association.

  15. Crystallization process

    Science.gov (United States)

    Adler, Robert J.; Brown, William R.; Auyang, Lun; Liu, Yin-Chang; Cook, W. Jeffrey

    1986-01-01

    An improved crystallization process is disclosed for separating a crystallizable material and an excluded material which is at least partially excluded from the solid phase of the crystallizable material obtained upon freezing a liquid phase of the materials. The solid phase is more dense than the liquid phase, and it is separated therefrom by relative movement with the formation of a packed bed of solid phase. The packed bed is continuously formed adjacent its lower end and passed from the liquid phase into a countercurrent flow of backwash liquid. The packed bed extends through the level of the backwash liquid to provide a drained bed of solid phase adjacent its upper end which is melted by a condensing vapor.

  16. Stability of α-tocopherol in freeze-dried sugar-protein-oil emulsion solids as affected by water plasticization and sugar crystallization.

    Science.gov (United States)

    Zhou, Yankun; Roos, Yrjö H

    2012-08-01

    Water plasticization of sugar-protein encapsulants may cause structural changes and decrease the stability of encapsulated compounds during storage. The retention of α-tocopherol in freeze-dried lactose-milk protein-oil, lactose-soy protein-oil, trehalose-milk protein-oil, and trehalose-soy protein-oil systems at various water activities (a(w)) and in the presence of sugar crystallization was studied. Water sorption was determined gravimetrically. Glass transition and sugar crystallization were studied using differential scanning calorimetry and the retention of α-tocopherol spectrophotometrically. The loss of α-tocopherol followed lipid oxidation, but the greatest stability was found at 0 a(w) presumably because of α-tocopherol immobilization at interfaces and consequent reduction in antioxidant activity. A considerable loss of α-tocopherol coincided with sugar crystallization. The results showed that glassy matrices may protect encapsulated α-tocopherol; however, its role as an antioxidant at increasing aw accelerated its loss. Sugar crystallization excluded the oil-containing α-tocopherol from the protecting matrices and exposed it to surroundings, which decreased the stability of α-tocopherol.

  17. Equilibrium crystal phases of triblock Janus colloids

    Science.gov (United States)

    Reinhart, Wesley F.; Panagiotopoulos, Athanassios Z.

    2016-09-01

    Triblock Janus colloids, which are colloidal spheres decorated with attractive patches at each pole, have recently generated significant interest as potential building blocks for functional materials. Their inherent anisotropy is known to induce self-assembly into open structures at moderate temperatures and pressures, where they are stabilized over close-packed crystals by entropic effects. We present a numerical investigation of the equilibrium phases of triblock Janus particles with many different patch geometries in three dimensions, using Monte Carlo simulations combined with free energy calculations. In all cases, we find that the free energy difference between crystal polymorphs is less than 0.2 kBT per particle. By varying the patch fraction and interaction range, we show that large patches stabilize the formation of structures with four bonds per patch over those with three. This transition occurs abruptly above a patch fraction of 0.30 and has a strong dependence on the interaction range. Furthermore, we find that a short interaction range favors four bonds per patch, with longer range increasingly stabilizing structures with only three bonds per patch. By quantifying the effect of patch geometry on the stability of the equilibrium crystal structures, we provide insights into the fundamental design rules for constructing complex colloidal crystals.

  18. Site occupation, phase stability, crystal and electronic structures of the doped S phase (Al2CuMg)

    Science.gov (United States)

    Gu, Jianglong; Gu, Huimin; Zhai, Yuchun; Ma, Peihua

    2016-07-01

    The S phase (Al2CuMg) is an important strengthening phase for the Al-Cu-Mg alloys, which are widely used in the aerospace and transportation industries. The commonly added alloying elements (Mn, Ti, Zr) and the impurity elements (Fe and Si) in the Al-Cu-Mg alloys are always found in the S phase. First-principles calculations based on the density functional theory (DFT) were used to investigate the influence of doping Mn, Ti, Zr, Fe and Si elements on the S phase. Key findings demonstrated that these elements prefer to occupy different atomic sites in the S phase. Ti and Zr improved the structural stability of the S phase. The bulk modulus of the Fe, Si, Ti and Zr doped S phases becomes larger than that of the pure S phase. Both the crystal and electronic structures of the S phase are affected by the dopants. The results of this study provide a better theoretical understanding of the S phase, providing guidance for improved composition design and performance optimization of Al-Cu-Mg alloys.

  19. Fast reversible laser-induced crystallization of Sb-rich Zn-Sb-Se phase change material with excellent stability

    Directory of Open Access Journals (Sweden)

    Yimin Chen

    2015-07-01

    Full Text Available We present a new reversible phase-change medium Sb-rich Zn-Sb-Se film, which possesses a large difference in both optical and electrical constant. The doped-ZnSb, sub-formed Zn-Se, and exhausted Sb-Se3/2 co-influence the physical properties. Typically, there is ∼105 resistance ratio and ∼14% relative reflectivity change in Zn19Sb45.7Se35.3 film when switched by electricity or laser pulses between amorphous and crystalline states. The higher Tc (∼250°C, larger Ea (∼8.57eV, better 10-yr data retention (∼200.2°C, higher crystallization resistance (∼3 × 103Ω/□ at 300°C-annealled and relative lower melting temperature (∼550.2°C are exhibited in Zn19Sb45.7Se35.3 film. Importantly, a short crystalline time (∼80ns at 70mW of the ideal Zn19Sb45.7Se35.3 film can be obtained without sacrificing room-temperature stability.

  20. A novel two-dimensional MgB6 crystal: metal-layer stabilized boron kagome lattice.

    Science.gov (United States)

    Xie, Sheng-Yi; Li, Xian-Bin; Tian, Wei Quan; Chen, Nian-Ke; Wang, Yeliang; Zhang, Shengbai; Sun, Hong-Bo

    2015-01-14

    Based on first-principles calculations, we designed for the first time a boron-kagome-based two-dimensional MgB6 crystal, in which two boron kagome layers sandwich a triangular magnesium layer. The two-dimensional lattice is metallic with several bands across the Fermi level, and among them a Dirac point appears at the K point of the first Brillouin zone. This metal-stabilized boron kagome system displays electron-phonon coupling, with a superconductivity critical transition temperature of 4.7 K, and thus it is another possible superconducting Mg-B compound besides MgB2. Furthermore, the proposed 2D MgB6 can also be used for hydrogen storage after decoration with Ca. Up to five H2 molecules can be attracted by one Ca with an average binding energy of 0.225 eV. The unique properties of 2D MgB6 will spur broad interest in nanoscience and technology.

  1. Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization

    Science.gov (United States)

    Wang, Lei; Wang, Meng; Yang, Mingchao; Shi, Li-Jie; Deng, Luogen; Yang, Huai

    2016-09-01

    In this paper, we investigate the bichromatic coherent random lasing actions from the dye-doped polymer stabilized blue phase liquid crystals. Two groups of lasing peaks, of which the full widith at half maximum is about 0.3 nm, are clearly observed. The shorter- and longer-wavelength modes are associated with the excitation of the single laser dye (DCM) monomers and dimers respectively. The experimental results show that the competition between the two groups of the lasing peaks can be controlled by varying the polarization of the pump light. When the polarization of the pump light is rotated from 0° to 90°, the intensity of the shorter-wavelength lasing peak group reduces while the intensity of the longer-wavelength lasing peak group increases. In addition, a red shift of the longer-wavelength modes is also observed and the physical mechanisms behind the red-shift phenomenon are discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474021 and 51333001), the Key Program for International S&T Cooperation Projects of China (Grant No. 2013DFB50340), the Issues of Priority Development Areas of the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120001130005), and the Key (Key Grant) Project of Chinese Ministry of Education (Grant No. 313002).

  2. Polarization independent Fabry-Pérot filter based on polymer-stabilized blue phase liquid crystals with fast response time.

    Science.gov (United States)

    Chen, Yan-Han; Wang, Chun-Ta; Yu, Chin-Ping; Lin, Tsung-Hsien

    2011-12-05

    This work demonstrates a polarization-independent electrically tunable Fabry-Pérot (FP) filter that is based on polymer-stabilized blue phase liquid crystals (PSBPLCs). An external vertical electric field can be applied to modulate the effective refractive index of the PSBPLCs along the optical axis. Therefore, the wavelength-tuning property of the FP filter is completely independent of the polarization state of the incident light. The change in the birefringence in PSBPLCs is governed by Kerr effect-induced isotropic-to-anisotropic transition, and so the PSBPLCs based FP filter has a short response time. The measured tunability and free spectral range of the FP filter are 0.092 nm/ V and 16nm in the visible region, and 0.12nm/ V and 97nm in the NIR region, respectively, and the response time is in sub-millisecond range. The fast-responding polarization-independent electrically tunable FP filter has substantial potential for practical applications.

  3. Analysis of the stabilization process of indomethacin crystals via π-π and CH-π interactions measured by Raman spectroscopy and X-ray diffraction

    Science.gov (United States)

    Hattori, Yusuke; Otsuka, Makoto

    2016-09-01

    In this study, formations of π-π and CH-π interactions in the crystallization of amorphous indomethacin (IMC) were investigated by simultaneous Raman spectroscopy and X-ray diffraction (XRD) measurements. The activation energy obtained from the change in the peak at 1616 cm-1 corresponded to the energy obtained from the XRD diffraction peak at 21.6°. We suggest that the stable IMC crystal forms by carboxyl-carboxyl interactions, which is followed by CH-π and π-π interactions supporting stabilization in the indole and chlorophenyl rings.

  4. Heuristics for Multidimensional Packing Problems

    DEFF Research Database (Denmark)

    Egeblad, Jens

    In this thesis we consider solution methods for packing problems. Packing problems occur in many different situations both directly in the industry and as sub-problems of other problems. High-quality solutions for problems in the industrial sector may be able to reduce transportation and production...... costs significantly. For packing problems in general are given a set of items and one of more containers. The items must be placed within the container such that some objective is optimized and the items do not overlap. Items and container may be rectangular or irregular (e.g. polygons and polyhedra...... methods. Two important problem variants are the knapsack packing problem and the strip-packing problem. In the knapsack packing problem, each item is given a profit value, and the problem asks for the subset with maximal profit that can be placed within one container. The strip-packing problem asks...

  5. Preparation of Zirconia Based Packing Material and Its Evaluation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new reversed-phase packing (C18-PBD-ZrO2) was prepared by depositing and cross-linking 1-octadecene (ODE or C18) and polybutadiene (PBD) onto the surface of porous zirconia microspheres (5~10 mm in diameter) which were synthesized by a sol-gel process. These novel column packings possess high mechanical and chemical stability,wider usable pH range and can be used to separate basic compounds with no observable peak tailing.

  6. New bounds for multi-dimensional packing

    OpenAIRE

    Seiden, S.; Stee, van, Rob

    2001-01-01

    New upper and lower bounds are presented for a multi-dimensional generalization of bin packing called box packing. Several variants of this problem, including bounded space box packing, square packing, variable sized box packing and resource augmented box packing are also studied. The main results, stated for d=2, are as follows: A new upper bound of 2.66013 for online box packing, a new $14/9 + varepsilon$ polynomial time offline approximation algorithm for square packing, a new upper bound ...

  7. A frequency-stabilized laser based on a hollow-core photonic crystal fiber CO2 gas cell and its application scheme

    Science.gov (United States)

    Chen, Ze-Heng; Yang, Fei; Chen, Di-Jun; Cai, Hai-Wen

    2017-04-01

    A frequency-stabilized laser system based on a hollow-core photonic crystal fiber (HC-PCF) CO2 gas cell for the space-borne CO2 light detection and ranging (LIDAR) is proposed. This system will help realize precise measurement of the global atmospheric CO2 concentrations. The relation between the frequency stability and the temperature of the HC-PCF cell was studied in detail. It is proved that accurate control of the temperature of the HC-PCF cell is very important to realize high stability of the proposed system. The laser is locked to CO2 gas R18 absorption line at 1572.0179 nm, and its peak-to-peak frequency stability is approximately 485 kHz, satisfying the requirements for the integrated path differential absorption system for CO2 measurement with an accuracy of  <1 ppm over 5 h.

  8. Stability

    Directory of Open Access Journals (Sweden)

    Nada S. Abdelwahab

    2017-05-01

    Full Text Available The present work concerns with the development of stability indicating the RP-HPLC method for simultaneous determination of guaifenesin (GUF and pseudoephedrine hydrochloride (PSH in the presence of guaifenesin related substance (Guaiacol. GUC, and in the presence of syrup excepients with minimum sample pre-treatment. In the developed RP-HPLC method efficient chromatographic separation was achieved for GUF, PSH, GUC and syrup excepients using ODS column as a stationary phase and methanol: water (50:50, v/v, pH = 4 with orthophosphoric acid as a mobile phase with a flow rate of 1 mL min−1 and UV detection at 210 nm. The chromatographic run time was approximately 10 min. Calibration curves were drawn relating the integrated area under peak to the corresponding concentrations of PSH, GUF and GUC in the range of 1–8, 1–20, 0.4–8 μg mL−1, respectively. The developed method has been validated and met the requirements delineated by ICH guidelines with respect to linearity, accuracy, precision, specificity and robustness. The validated method was successfully applied for determination of the studied drugs in triaminic chest congestion® syrup; moreover its results were statistically compared with those obtained by the official method and no significant difference was found between them.

  9. Packing anchored rectangles

    CERN Document Server

    Dumitrescu, Adrian

    2011-01-01

    Let $S$ be a set of $n$ points in the unit square $[0,1]^2$, one of which is the origin. We construct $n$ pairwise interior-disjoint axis-aligned empty rectangles such that the lower left corner of each rectangle is a point in $S$, and the rectangles jointly cover at least a positive constant area (about 0.09). This is a first step towards the solution of a longstanding conjecture that the rectangles in such a packing can jointly cover an area of at least 1/2.

  10. Packing ellipsoids with overlap

    CERN Document Server

    Uhler, Caroline

    2012-01-01

    The problem of packing ellipsoids of different sizes and shapes into an ellipsoidal container so as to minimize a measure of overlap between ellipsoids is considered. A bilevel optimization formulation is given, together with an algorithm for the general case and a simpler algorithm for the special case in which all ellipsoids are in fact spheres. Convergence results are proved and computational experience is described and illustrated. The motivating application - chromosome organization in the human cell nucleus - is discussed briefly, and some illustrative results are presented.

  11. New bounds for multi-dimensional packing

    NARCIS (Netherlands)

    S. Seiden; R. van Stee (Rob)

    2001-01-01

    textabstractNew upper and lower bounds are presented for a multi-dimensional generalization of bin packing called box packing. Several variants of this problem, including bounded space box packing, square packing, variable sized box packing and resource augmented box packing are also studied. The

  12. New bounds for multi-dimensional packing

    NARCIS (Netherlands)

    Seiden, S.; Stee, R. van

    2001-01-01

    New upper and lower bounds are presented for a multi-dimensional generalization of bin packing called box packing. Several variants of this problem, including bounded space box packing, square packing, variable sized box packing and resource augmented box packing are also studied. The main results,

  13. Two typical structure patterns in jammed monodisperse disk packings at high densities

    Science.gov (United States)

    Yuan, Ye; Jin, Weiwei; Liu, Lufeng; Li, Shuixiang

    2016-11-01

    We generate a large number of monodisperse disk packings in two dimensions via geometric-based packing algorithms including the relaxation algorithm and the Torquato-Jiao algorithm. Using the geometric-structure approach, a clear boundary of the geometrical feasible region in the order map is found which quite differs from that of the jammed region. For a certain packing density higher than 0.83, the crystalline degree varies in different packing samples. We find that the local hexatic order may increase in two fairly different ways as the system densifies. Therefore, two typical non-equilibrium jammed patterns, termed polycrystal and distorted crystal, are defined at high packing densities. Furthermore, their responses to isotropic compression are investigated using a compression-relaxation molecular dynamic protocol. The distorted crystal pattern is more stable than the polycrystal one with smaller displacements despite its low occurrence frequency. The results are helpful in understanding the structure and phase transition of disk packings.

  14. Analysis of bias thermal stability of interferometer fiber-optic gyroscope using a solid-core polarization-maintaining photonic crystal fiber

    Science.gov (United States)

    Zuoming, Sun; Shuhua, Wang; Junwei, Li; Yazhou, Zhang; Dapeng, Chen

    2016-12-01

    Bias thermal stability of a fiber-optic gyroscope using polarization-maintaining photonic crystal (PM-PCF) was studied. The thermal sensitivity of birefringence in PM-PCF and polarization cross talking in fiber coil was measured. Using an OCDP method, the polarization cross talking causing phase error of the fiber-optic gyroscope (FOG) was analyzed. The contrast experiment result of the FOGs with the PM-PCF coil and PMF coil showed that using PM-PCF instead of PMF can improve the FOG's bias thermal stability by about 50 %.

  15. Synthesis, characterization and crystal structure determination of Mn (II) ion based 1D polymer constructed from 2, 2′ bipyridyl and azide group, its thermal stability, magnetic properties and Hirshfeld surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mudsainiyan, R.K., E-mail: mudsainiyanrk@gmail.com; Jassal, Amanpreet Kaur; Chawla, S.K., E-mail: sukhvinder.k.chawla@gmail.com

    2015-05-15

    The 1-D polymeric complex (I) is having formula [Mn(2,2′-BP).(N{sub 3}){sub 2}]{sub n}, which has been crystallized in distilled water and characterized by elemental analyses, FT-IR spectrum, powder X-ray diffraction analyses and single-crystal diffraction analysis. This polymer possesses 1D helical chains or coils where Mn–azide–Mn forms the base of the coil which is alternatively garlanded by rigid bi-pyridine rings, where coordinates are in anti-fashion. The Mn (II) ions in the repeating units are linked by two end-on azide groups which extend through the two end-to-end azide ligands to the next unit forming a 1-D polymeric chain. The present study suggests that the use of this rigid and neutral building block leads to give better arrangement of the polymeric motif with [010] chains in 2-c uninodal net. During investigation of strong or weak intermolecular interactions, X-ray diffraction analysis and Hirshfeld surface analysis give rise to comparable results but in Hirshfeld surface analysis, two-third times more results of close contacts are obtained. The fingerprint plots demonstrate that these weak non-bonding interactions are important for stabilizing the crystal packing. Magnetic properties of the complex (I) were analyzed on the basis of an alternating ferro- and antiferromagnetic Heisenberg chain of Mn (II) ions. The J-exchange parameters found are J{sub 1}=64.3 K (45.3 cm{sup −1}), and J{sub 2}=−75.7 K (−53.3 cm{sup −1}). Magnetic properties are discussed in comparison with those of other similar molecular magnets of [Mn(L–L)(N{sub 3}){sub 2}]{sub n} type. - - Highlights: • Synthesized 1-D polymeric complex of Mn (II) ions with 2, 2′ bipyridyl and azide group. • X-ray data of complex (I) is in a good agreement with TGA and other spectroscopic techniques. • DFT calculations were done and compared with the parameter of experimental and theoretical data. • Intermolecular interactions calculated by Hirshfeld surface analysis

  16. Cell packing structures

    KAUST Repository

    Pottmann, Helmut

    2015-03-03

    This paper is an overview of architectural structures which are either composed of polyhedral cells or closely related to them. We introduce the concept of a support structure of such a polyhedral cell packing. It is formed by planar quads and obtained by connecting corresponding vertices in two combinatorially equivalent meshes whose corresponding edges are coplanar and thus determine planar quads. Since corresponding triangle meshes only yield trivial structures, we focus on support structures associated with quad meshes or hex-dominant meshes. For the quadrilateral case, we provide a short survey of recent research which reveals beautiful relations to discrete differential geometry. Those are essential for successfully initializing numerical optimization schemes for the computation of quad-based support structures. Hex-dominant structures may be designed via Voronoi tessellations, power diagrams, sphere packings and various extensions of these concepts. Apart from the obvious application as load-bearing structures, we illustrate here a new application to shading and indirect lighting. On a higher level, our work emphasizes the interplay between geometry, optimization, statics, and manufacturing, with the overall aim of combining form, function and fabrication into novel integrated design tools.

  17. ExactPack Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Jr., Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Israel, Daniel M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Doebling, Scott William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woods, Charles Nathan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kaul, Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Walter, Jr., John William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rogers, Michael Lloyd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-09

    For code verification, one compares the code output against known exact solutions. There are many standard test problems used in this capacity, such as the Noh and Sedov problems. ExactPack is a utility that integrates many of these exact solution codes into a common API (application program interface), and can be used as a stand-alone code or as a python package. ExactPack consists of python driver scripts that access a library of exact solutions written in Fortran or Python. The spatial profiles of the relevant physical quantities, such as the density, fluid velocity, sound speed, or internal energy, are returned at a time specified by the user. The solution profiles can be viewed and examined by a command line interface or a graphical user interface, and a number of analysis tools and unit tests are also provided. We have documented the physics of each problem in the solution library, and provided complete documentation on how to extend the library to include additional exact solutions. ExactPack’s code architecture makes it easy to extend the solution-code library to include additional exact solutions in a robust, reliable, and maintainable manner.

  18. Influence of morphology and polymorphic transformation of fat crystals on the freeze-thaw stability of mayonnaise-type oil-in-water emulsions.

    Science.gov (United States)

    Ishibashi, C; Hondoh, H; Ueno, S

    2016-11-01

    This study examined the destabilization of an oil-in-water (O/W) emulsion by freeze-thawing with a focus on the influence of the morphology and polymorph of fat crystals. For a model of food emulsion, this study used a mayonnaise-type O/W emulsion containing 70wt% canola oil (canola emulsion) or soybean oil (soybean emulsion) stored at -15, -20, and -30°C. The freeze-thaw stabilities of the emulsions were evaluated by measuring the upper oil layer after freeze-thawing. The soybean emulsion kept at -20°C had the highest stability; the other emulsions were destabilized during 6h of storage. Crystallization in the emulsions was determined using differential scanning calorimetry (DSC), time variation of temperature, X-ray diffraction measurement, and polarized light microscopy. DSC thermograms indicated that crystallization in emulsions occurred first in the high-melting fraction of oil, followed by water and, last, in the low-melting fraction of oil during cooling to -40°C. In the canola emulsion, the amount of fat crystals derived from the low-melting fraction of oil increased during storage at all temperatures, resulting in partial coalescence. The soybean emulsion was expected to be destabilized by polymorphic transformation (sub-α to β' and β) of fat crystals derived from the high-melting fraction during storage at -15 and -20°C. However, the soybean emulsion did not exhibit polymorphic transformation stored at -30°C, and the amount of fat crystals did not increase during freezing; thus, it was destabilized via a different mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Performance of a partially packed charcoal pellet bioreactor for acetic acid fermentation.

    Science.gov (United States)

    Horiuchi, J; Ando, K; Watanabe, S; Tada, K; Kobayashi, M; Kanno, T

    2001-01-01

    The performance of a partially packed charcoal pellet bioreactor was compared to that of a fully packed bioreactor for aerobic acetic acid production. In the fully packed charcoal pellet bioreactor, it was considered that the shortening of an actual retention time of the culture broth limited the bioreactor performance under high dilution rate and high aeration conditions. By reducing the filling ratio of charcoal pellets to 44%, which increased the actual retention time of the culture broth, the maximum productivity increased from 3.9 g/l/h in the fully packed bed bioreactor to 5.7 g/l/h in the partially packed bioreactor without affecting the operational stability.

  20. Haphazard Packing of Unequal Spheres

    Institute of Scientific and Technical Information of China (English)

    叶大年; 张金民

    1991-01-01

    Haphazard packing of equal and unequal spheres can be performed for the spheres of molecular sieve material with a density of 1.80.The packing of such spheres in air is equivalent to that of nat-ural grains in water.Packing concentrations of equal spheres have been obtained for different pac-king intensities.Unequal spheres can be regarded as equal ones in a wide range of diameter ratios,so far as the packing concentration is concerned.A threshold of diameter ratio exists at 0.70,be-low which the packing concentration is expected to increase.The variation curves of concentration vs.diameter ratio were established in the experiment.The result will help us to understand the process of sedimentation and the concentration of voids in sedimentary rocks.

  1. Helix-packing motifs in membrane proteins.

    Science.gov (United States)

    Walters, R F S; DeGrado, W F

    2006-09-12

    The fold of a helical membrane protein is largely determined by interactions between membrane-imbedded helices. To elucidate recurring helix-helix interaction motifs, we dissected the crystallographic structures of membrane proteins into a library of interacting helical pairs. The pairs were clustered according to their three-dimensional similarity (rmsd universe of common transmembrane helix-pairing motifs is relatively simple. The largest cluster, which comprises 29% of the library members, consists of an antiparallel motif with left-handed packing angles, and it is frequently stabilized by packing of small side chains occurring every seven residues in the sequence. Right-handed parallel and antiparallel structures show a similar tendency to segregate small residues to the helix-helix interface but spaced at four-residue intervals. Position-specific sequence propensities were derived for the most populated motifs. These structural and sequential motifs should be quite useful for the design and structural prediction of membrane proteins.

  2. Crystallization around solid-like nanosized docks can explain the specificity, diversity, and stability of membrane microdomains

    Science.gov (United States)

    de Almeida, Rodrigo F. M.; Joly, Etienne

    2014-01-01

    To date, it is widely accepted that microdomains do form in the biological membranes of all eukaryotic cells, and quite possibly also in prokaryotes. Those sub-micrometric domains play crucial roles in signaling, in intracellular transport, and even in inter-cellular communications. Despite their ubiquitous distribution, and the broad and lasting interest invested in those microdomains, their actual nature and composition, and even the physical rules that regiment their assembly still remain elusive and hotly debated. One of the most often considered models is the raft hypothesis, i.e., the partition of lipids between liquid disordered and ordered phases (Ld and Lo, respectively), the latter being enriched in sphingolipids and cholesterol. Although it is experimentally possible to obtain the formation of microdomains in synthetic membranes through Ld/Lo phase separation, there is an ever increasing amount of evidence, obtained with a wide array of experimental approaches, that a partition between domains in Ld and Lo phases cannot account for many of the observations collected in real cells. In particular, it is now commonly perceived that the plasma membrane of cells is mostly in Lo phase and recent data support the existence of gel or solid ordered domains in a whole variety of live cells under physiological conditions. Here, we present a model whereby seeds comprised of oligomerised proteins and/or lipids would serve as crystal nucleation centers for the formation of diverse gel/crystalline nanodomains. This could confer the selectivity necessary for the formation of multiple types of membrane domains, as well as the stability required to match the time frames of cellular events, such as intra- or inter-cellular transport or assembly of signaling platforms. Testing of this model will, however, require the development of new methods allowing the clear-cut discrimination between Lo and solid nanoscopic phases in live cells. PMID:24634670

  3. Method for dense packing discovery.

    Science.gov (United States)

    Kallus, Yoav; Elser, Veit; Gravel, Simon

    2010-11-01

    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting de novo (from-scratch) searches for dense packings becomes crucial. In this paper, we use the divide and concur framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit-cell parameters with the other packing variables in the definition of the configuration space. The method we present led to previously reported improvements in the densest-known tetrahedron packing. Here, we use the method to reproduce the densest-known lattice sphere packings and the best-known lattice kissing arrangements in up to 14 and 11 dimensions, respectively, providing numerical evidence for their optimality. For nonspherical particles, we report a dense packing of regular four-dimensional simplices with density ϕ=128/219≈0.5845 and with a similar structure to the densest-known tetrahedron packing.

  4. Polarizable protein packing.

    Science.gov (United States)

    Ng, Albert H; Snow, Christopher D

    2011-05-01

    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol(-1)] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. Copyright © 2011 Wiley Periodicals, Inc.

  5. Polarizable protein packing

    KAUST Repository

    Ng, Albert H.

    2011-01-24

    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol -1] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 Copyright © 2011 Wiley Periodicals, Inc.

  6. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...

  7. Form, symmetry and packing of biomacromolecules. II. Serotypes of human rhinovirus

    Science.gov (United States)

    Janner, A.

    2010-05-01

    The differentiation of the human rhinovirus into serotypes, all having very similar structures and the same architecture, is shown to be related to the packing of the viruses in the crystal and to its space-group symmetry.

  8. Superelastic behavior and stabilization of stress-induced martensite in Cu-13.4Al-4.0Ni single crystals

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By applying tensile stress along 〈100〉 of β phase, the superelastic behavior and stabilization of stress-induced martensite (SIM) of Cu-13.4Al-4.0Ni(mass fraction, %) single crystals were studied. The results show that the pseudo-yield stress decreases with the increase of cycling number, and keeping load isothermally has an effect on stabilization of SIM. Previous thermal cycling between (Ms-20  ℃) and (Af+20  ℃) promotes the superelasticity and the stabilization of SIM as well; the pre-thermal cycling also reduces the pseudo-yield stress. However, once the stabilization of SIM is produced, it can be destabilized by either the afterwards thermal cooling-heating cycling or load and immediately unload cycling in (Af~Md). Isothermal treatment in (Af~Md) brings restabilization of SIM. The maximum superelastic value from β→β′1(18  R) is 9% for the studied single crystal. When test temperature is in Af~(Af+50  ℃) and stress is in 0~350  MPa, the superelastic behavior exist.

  9. Crystal structure of bis(2-methyl-1H-imidazol-3-ium tetrachloridocobaltate(II

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2015-09-01

    Full Text Available The asymmetric unit of the title compound, (C4H7N22[CoCl4], consists of two 2-methylimidazolium cations and one tetrahedral [CoCl4]2− anion. The anions and cations interact through N—H...Cl hydrogen bonds to define layers with a stacking direction along [100]. Besides van der Waals forces, weak C—H...Cl interactions between these layers stabilize the crystal packing.

  10. Molecular Docking Study of Conformational Polymorph: Building Block of Crystal Chemistry

    Directory of Open Access Journals (Sweden)

    Rashmi Dubey

    2013-01-01

    Full Text Available Two conformational polymorphs of novel 2-[2-(3-cyano-4,6-dimethyl-2-oxo-2H-pyridin-1-yl-ethoxy]-4,6-dimethyl nicotinonitrile have been developed. The crystal structure of both polymorphs (1a and 1b seems to be stabilized by weak interactions. A difference was observed in the packing of both polymorphs. Polymorph 1b has a better binding affinity with the cyclooxygenase (COX-2 receptor than the standard (Nimesulide.

  11. Molecular Docking Study of Conformational Polymorph: Building Block of Crystal Chemistry

    Science.gov (United States)

    Dubey, Rashmi; Tewari, Ashish Kumar; Singh, Ved Prakash; Singh, Praveen; Dangi, Jawahar Singh; Puerta, Carmen; Valerga, Pedro; Kant, Rajni

    2013-01-01

    Two conformational polymorphs of novel 2-[2-(3-cyano-4,6-dimethyl-2-oxo-2H-pyridin-1-yl)-ethoxy]-4,6-dimethyl nicotinonitrile have been developed. The crystal structure of both polymorphs (1a and 1b) seems to be stabilized by weak interactions. A difference was observed in the packing of both polymorphs. Polymorph 1b has a better binding affinity with the cyclooxygenase (COX-2) receptor than the standard (Nimesulide). PMID:24250264

  12. Packing Products: Polystyrene vs. Cornstarch

    Science.gov (United States)

    Starr, Suzanne

    2009-01-01

    Packing materials such as polystyrene take thousands of years to decompose, whereas packing peanuts made from cornstarch, which some companies are now using, can serve the same purpose, but dissolve in water. The author illustrates this point to her class one rainy day using the sculptures students made from polystyrene and with the cornstarch…

  13. Influence of moieties for the phase stability, spontaneous polarization and dielectric relaxations in an achiral ferroelectric bent liquid crystal, PBUOB

    Energy Technology Data Exchange (ETDEWEB)

    Chalapathi, P.V. [Department of Physics, A.K.R.G. College of Engineering and Technology, Nallajerla 534112 (India); Srinivasulu, M. [Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Pisipati, V.G.K.M. [Department of Electronics and Communications Engineering, R and D Division, KL-University, Vaddeswaram (India); Satyanarayana, Ch. [Department of Computers Science Engineering, University College of Engineering, Jawaharlal Nehru Technological University: Kakinada, Kakinada 533003 (India); Potukuchi, D.M., E-mail: potukuchidm@yahoo.co [Department of Physics, University College of Engineering, Jawaharlal Nehru Technological University: Kakinada, Kakinada 533003 (India)

    2011-05-15

    The occurrence of ferroelectric phases and influence of chemical moieties in the area of supra-molecular achiral Bent core Liquid Crystals (BLCs) are reviewed. Synthesis of an intermediate/higher homolog of PBnOB series (for n=11), PBUOB, viz. 1,3-Phenyline-Bis(4-UndecylOxy Benzoate), is presented. Smectic LC phases exhibited by PBUOB are characterized by Polarized Optical Microscopy (POM), Differential Scanning Calorimetry (DSC) and Spontaneous Polarization (P{sub S}) techniques. Observations infer a bi-variant FE LC smectic phase occurrence, viz., isotropic{yields}B{sub 2}(FE){yields}B{sub 5}(FE){yields}solid phases in cooling and solid{yields}B{sub 5{yields}}isotropic phases in heating scans. Occurrence of B{sub 2} phase is monotropic (in cooling), while B{sub 5} phase is enantiotropic. I-B{sub 2} and B{sub 2}-B{sub 5} phase transitions are found to be of first order nature. The FE phases possess a moderate P{sub S} value of {approx}40 nC cm{sup -2}. Transition temperatures from dielectric studies agree with those from TM and DSC. Two modes of relaxations are observed, viz., a slow scissor mode at {approx}1 kHz and a fast mode at {approx}1 MHz. Anisotropic Dipolar Model is proposed to explain the reorientation mechanism. Arrhenius shifts of Relaxation Frequency (f{sub R}) show differing activation energies for two modes, i.e., 0.11 and 0.98 eV; 0.25 and 1.18 eV in B{sub 2} and B{sub 5} phases, respectively. Temperature variation of dielectric increment {Delta}{epsilon} and {alpha}-parameter LC phases reveals the relative fixture of dipole moment in polar smectic layers. An analytical study for the thermal stability, P{sub S} and f{sub R} in the FE phases is presented with respect to the constitution and configuration of moieties in BLCs.

  14. The generic geometry of helices and their close-packed structures

    DEFF Research Database (Denmark)

    Olsen, Kasper; Bohr, Jakob

    2010-01-01

    The formation of helices is an ubiquitous phenomenon for molecular structures whether they are biological, organic, or inorganic, in nature. Helical structures have geometrical constraints analogous to close packing of three-dimensional crystal structures. For helical packing the geometrical cons....... For double helices comparisons are made to the A,B, and Z forms of DNA. The helical geometry of the A form is nearly close-packed. The packing density for the B and Z form are found to be approximately equal to each other....

  15. FROM THE PACKED TOWERS

    Directory of Open Access Journals (Sweden)

    Valderi D. Leite

    2013-01-01

    Full Text Available About 245 thousand tones of municipal solid w aste are collected daily in Brazil. Nearly 32 thousand tones of the collected amount are treated in sanitary landfill, which generates biogas and leachate as byproduct. The leachate resulting from sanitary landfill contains high concentration of carbonaceous and nitrogenized material. The crucial question is that the biodegradation of the carbonaceous material is difficult as long as the nitrogenized material is presen t in the form of ammoniacal nitrogen (NH 4 + , which compromises performance of biological tr eatment process. Therefore, a physical and chemical treatment of the leachate should be done before its biological treatment, especially for reduction of ammoniacal nitr ogen concentration and for propitiating the realization of application of biological treatment. The treatment of leachate requires specific consideration, which is not needed fo r other types of waste. In the specific case in this study, where ammoniacal nitrogen concentration was about 2,200 mgN L -1 and the BOD 5 /COD ratio was 0.3, the study of ammonia stripping process was performed. Ammonia stripping process was studied in pack ed towers of 35 L capacity each and the parameters investigated were pH, ratio of contact area/leach volume and the aeration time. One of the parameters that influenced most in efficiency of ammonia stripping process was pH of the leachate since it contributes in conversion of ammoniacal nitrogen from NH 4 + to NH 3 .

  16. Optimization of heterogeneous Bin packing using adaptive genetic algorithm

    Science.gov (United States)

    Sridhar, R.; Chandrasekaran, M.; Sriramya, C.; Page, Tom

    2017-03-01

    This research is concentrates on a very interesting work, the bin packing using hybrid genetic approach. The optimal and feasible packing of goods for transportation and distribution to various locations by satisfying the practical constraints are the key points in this project work. As the number of boxes for packing can not be predicted in advance and the boxes may not be of same category always. It also involves many practical constraints that are why the optimal packing makes much importance to the industries. This work presents a combinational of heuristic Genetic Algorithm (HGA) for solving Three Dimensional (3D) Single container arbitrary sized rectangular prismatic bin packing optimization problem by considering most of the practical constraints facing in logistic industries. This goal was achieved in this research by optimizing the empty volume inside the container using genetic approach. Feasible packing pattern was achieved by satisfying various practical constraints like box orientation, stack priority, container stability, weight constraint, overlapping constraint, shipment placement constraint. 3D bin packing problem consists of ‘n’ number of boxes being to be packed in to a container of standard dimension in such a way to maximize the volume utilization and in-turn profit. Furthermore, Boxes to be packed may be of arbitrary sizes. The user input data are the number of bins, its size, shape, weight, and constraints if any along with standard container dimension. This user input were stored in the database and encoded to string (chromosomes) format which were normally acceptable by GA. GA operators were allowed to act over these encoded strings for finding the best solution.

  17. Statistical mechanics of the lattice sphere packing problem.

    Science.gov (United States)

    Kallus, Yoav

    2013-06-01

    We present an efficient Monte Carlo method for the lattice sphere packing problem in d dimensions. We use this method to numerically discover de novo the densest lattice sphere packing in dimensions 9 through 20. Our method goes beyond previous methods, not only in exploring higher dimensions but also in shedding light on the statistical mechanics underlying the problem in question. We observe evidence of a phase transition in the thermodynamic limit d→∞. In the dimensions explored in the present work, the results are consistent with a first-order crystallization transition but leave open the possibility that a glass transition is manifested in higher dimensions.

  18. Valve stem and packing assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wordin, J.J.

    1990-12-31

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele`s pivot. The Schiele`s pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele`s pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele`s pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

  19. Stabilizing Superacid Anions: The New [H(S4 O13 )2 ](3-) Anion in the Crystal Structure of Li3 [H(S4 O13 )2 ].

    Science.gov (United States)

    Schindler, Lisa Verena; Becker, Anna; Wickleder, Mathias Siegfried

    2016-12-05

    The unique hydrogenium-bis-tetrasulfate anion [H(S4 O13 )2 ](3-) in the crystal structure of Li3 [H(S4 O13 )2 ] (monoclinic, P21 /n (No. 14), Z=2, a=552.46(4) pm, b=939.70(6) pm, c=1876.6(1) pm, β=97.492(3)°, V=965.9(1)⋅10(6)  pm(3) ) is the longest protonated polysulfate chain ever observed. Very strong symmetrical hydrogen bonds are a bold feature of the crystal structure. The protonation of a very weak base such as [S4 O13 ](2-) and accordingly the stabilization of the first base of the superacid H2 S4 O13 is a significant success towards the still elusive polysulfuric acids.

  20. High-strength, creep-resistant Y{sub 2}O{sub 3}-stabilized cubic ZrO{sub 2} single crystal fibers

    Energy Technology Data Exchange (ETDEWEB)

    McClellan, K.J.; Sayir, H.; Heuer, A.H. [Case Western Reserve Univ., Cleveland, OH (United States)] [and others

    1993-06-20

    Y{sub 2}O{sub 3}-stabilized cubic ZrO{sub 2} (Y-CSZ) single crystal fibers have much higher thermal expansion coefficients than other possible oxide fibers and thus can serve as viable reinforcements for metallic- and intermetallic-matrix composites; furthermore, they offer good isotropic creep resistance. Data is presented for [001] ZrO{sub 2} single crystal fibers (9.5-21 m/o Y{sub 2}O{sub 3}) grown by the laser heated floating zone process; high temperature strengths were measured as a function of composition and the variation in tensile strength with temperature was measured for 21 m/o Y-CSZ fibers. Strengths of {approximately}2.0 GPa at -196{degrees}C, {approximately}1.5 GPa at room temperature and {approximately}500 MPa at 1400{degrees}C were achieved. All fibers failed in a brittle manner from surface or near-surface flaws.

  1. Characteristics and stability of soliton crystals in optical fibres for the purpose of optical frequency comb generation

    Science.gov (United States)

    Zajnulina, M.; Böhm, M.; Bodenmüller, D.; Blow, K.; Boggio, J. M. Chavez; Rieznik, A. A.; Roth, M. M.

    2017-06-01

    We study the properties of a soliton crystal, a bound state of several optical pulses that propagate with a fixed temporal separation through the optical fibres of the proposed approach for generation of optical frequency combs (OFC) for astronomical spectrograph calibration. This approach - also being suitable for subpicosecond pulse generation for other applications - consists of a conventional single-mode fibre and a suitably pumped Erbium-doped fibre. Two continuous-wave lasers are used as light source. The soliton crystal arises out of the initial deeply modulated laser field at low input powers; for higher input powers, it dissolves into free solitons. We study the soliton crystal build-up in the first fibre stage with respect to different fibre parameters (group-velocity dispersion, nonlinearity, and optical losses) and to the light source characteristics (laser frequency separation and intensity difference). We show that the soliton crystal can be described by two quantities, its fundamental frequency and the laser power-threshold at which the crystal dissolves into free solitons. The soliton crystal exhibits features of a linear and nonlinear optical pattern at the same time and is insensitive to the initial laser power fluctuations. We perform our studies using the numerical technique called Soliton Radiation Beat Analysis.

  2. Evolution of the dense packings of spherotetrahedral particles: from ideal tetrahedra to spheres.

    Science.gov (United States)

    Jin, Weiwei; Lu, Peng; Li, Shuixiang

    2015-10-22

    Particle shape plays a crucial role in determining packing characteristics. Real particles in nature usually have rounded corners. In this work, we systematically investigate the rounded corner effect on the dense packings of spherotetrahedral particles. The evolution of dense packing structure as the particle shape continuously deforms from a regular tetrahedron to a sphere is investigated, starting both from the regular tetrahedron and the sphere packings. The dimer crystal and the quasicrystal approximant are used as initial configurations, as well as the two densest sphere packing structures. We characterize the evolution of spherotetrahedron packings from the ideal tetrahedron (s = 0) to the sphere (s = 1) via a single roundness parameter s. The evolution can be partitioned into seven regions according to the shape variation of the packing unit cell. Interestingly, a peak of the packing density Φ is first observed at s ≈ 0.16 in the Φ-s curves where the tetrahedra have small rounded corners. The maximum density of the deformed quasicrystal approximant family (Φ ≈ 0.8763) is slightly larger than that of the deformed dimer crystal family (Φ ≈ 0.8704), and both of them exceed the densest known packing of ideal tetrahedra (Φ ≈ 0.8563).

  3. Compactness Theorems for Geometric Packings

    OpenAIRE

    Martin, Greg

    2000-01-01

    Moser asked whether the collection of rectangles of dimensions 1 x 1/2, 1/2 x 1/3, 1/3 x 1/4, ..., whose total area equals 1, can be packed into the unit square without overlap, and whether the collection of squares of side lengths 1/2, 1/3, 1/4, ... can be packed without overlap into a rectangle of area pi^2/6-1. Computational investigations have been made into packing these collections into squares of side length 1+epsilon and rectangles of area pi^2/6-1+epsilon, respectively, and one can c...

  4. Aspiration of Nasopore nasal packing.

    Science.gov (United States)

    Smith, Jonathan; Reddy, Ekambar

    2017-10-04

    We present a case of postoperative Nasopore aspiration in an otherwise fit and well 11-year-old. An endoscopic adenoidectomy had been performed without incident and Nasopore packing placed into each nasal cavity. Immediately after extubation, there was marked hypoxia, tachypnoea and high clinical suspicion of pack aspiration. The patient returned to theatre for emergency rigid bronchoscopy and retrieval of nasal packing. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Solid-state 13C NMR study of banana liquid crystals - 3: Alkyl-tail-group packing environments of an acute-angle bent-core molecule in the hexagonal columnar and cubic phases

    Science.gov (United States)

    Kurosu, Hiromichi; Endo, Yumi; Kimura, Saori; Hashimoto, Tomoko; Harada, Motoi; Lee, Eun-Woo; Sone, Masato; Watanabe, Junji; Kang, Sungmin

    2016-02-01

    Solid-state 13C nuclear magnetic resonance (NMR) measurements were performed on the hexagonal columnar and cubic phases of an acute-angle banana-shaped molecule, N(1,7)-S30. In the hexagonal columnar phase, three peaks appear at the NMR chemical shifts assigned to the internal methylene carbons of alkyl tails, indicating that the two alkyl tails have different packing structures, and one of the tails has two different conformations within a single molecule. Combined cross-polarization/magic-angle spinning and pulse saturation transfer/magic-angle spinning measurements show that one of the alkyl chains is located inside and the other is located outside the columnar structure. In the cubic phase, pulse saturation transfer/magic-angle spinning measurement shows that only one peak appears at the NMR chemical shifts assigned to the internal methylene carbons of alkyl tails, indicating that both of the alkyl chains are located outside the cubic structure.

  6. Characterization and evaluation of Y{sub 2}O{sub 3}-stabilized cubic ZrO{sub 2} for single crystal fibers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Heuer, A.H.

    1993-06-20

    The goal of this research was to develop the understanding of the structure/property relations in Y{sub 2}O{sub 3}-stabilized cubic ZrO{sub 2} (Y-CSZ) single crystals with emphasis on the potential use of these materials as a fibrous reinforcement for high temperature structural applications. In particular, the issues addressed include: (i) determination of the structure of as-grown Y-CSZ and its relation to the deformation behavior and (ii) initial fiber growth and evaluation. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  7. Jammed lattice sphere packings

    OpenAIRE

    Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore

    2013-01-01

    We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a...

  8. Thermal stability analysis of particles incorporated in cirrus crystals and of non-activated particles in between the cirrus crystals: comparing clean and polluted air masses

    Directory of Open Access Journals (Sweden)

    M. Seifert

    2004-01-01

    Full Text Available A thermal volatility technique is used to provide indirect information about the chemical composition of the aerosol involved in cirrus cloud formation. The fraction of particles that disappears after being heated to 125°C is termed volatile and the fraction that disappears between 125 and 250°C is termed semi-volatile. Particles that still remain after being heated to 250°C make up the non-volatile fraction. The thermal composition of residual particles remaining from evaporated cirrus crystals is presented and compared to interstitial aerosol particles (non-activated particles in between the cirrus crystals for two temperature regimes (cold: T< -38°C, warm: -38≤T< -23°C, based on in-situ observations. The observations were conducted in cirrus clouds in the Southern Hemisphere (SH and Northern Hemisphere (NH midlatitudes during the INCA project. In the cold temperature regime, the non-volatile fraction of the residual particles was typically in the range 10 to 30% in the NH and 30 to 40% in the SH. In the warm temperature regime, the non-volatile residual fraction was typically 10 to 30% (NH and 20 to 40% (SH. At high crystal number densities the non-volatile fraction in both temperature regimes was even higher: in the range of 30 to 40% (NH and 40 to 50% (SH. The semi-volatile fraction was typically less than 10% in both hemispheres, causing the volatile fraction to essentially be a complement to the non-volatile fraction. In terms of the fractioning into the three types of particles, the SH cold case is clearly different compared to the other three cases (the two warm cases and the cold NH case, which share many features. In the NH data the distribution of different particle types does not seem to be temperature dependent. In all the cases, the non-volatile fraction is enriched in the residual particles compared to the fractions observed for the interstitial particles. This enrichment corresponds to about 15 (NH and 30 (SH percent

  9. Thermal stability analysis of particles incorporated in cirrus crystals and of non-activated particles in between the cirrus crystals: Comparing clean and polluted air masses

    Directory of Open Access Journals (Sweden)

    M. Seifert

    2003-07-01

    Full Text Available A thermal volatility technique is used to provide indirect information about the chemical composition of the aerosol involved in cirrus cloud formation. The fraction of particles that disappears after being heated to 125°C is termed volatile and the fraction that disappears between 125 and 250°C is termed semi-volatile. Particles that still remain after being heated to 250°C make up the non-volatile fraction. The thermal composition of residual particles remaining from evaporated cirrus crystals is presented and compared to interstitial aerosol particles (non-activated particles in between the cirrus crystals for two temperature regimes (cold: T<235 K, warm: 235<T<250 K, based on in-situ observations. The observations were conducted in cirrus clouds in the Southern Hemisphere (SH and Northern Hemisphere (NH midlatitudes during the INCA project. In the cold temperature regime, the non-volatile fraction of the residual particles was typically in the range 10 to 30% in the NH and 30 to 40% in the SH. In the warm temperature regime, the non-volatile residual fraction was typically 10 to 30% (NH and 20 to 40% (SH. At high crystal number densities the non-volatile fraction in both temperature regimes was even higher: in the range of 30 to 40% (NH and 40 to 50% (SH. The semi-volatile fraction was typically less than 10% in both hemispheres, causing the volatile fraction to essentially be a complement to the non-volatile fraction. In terms of the fractioning into the three types of particles, the SH cold case is clearly different compared to the other three cases (the two warm cases and the cold NH case, which share many features. In the NH data the distribution of different particle types does not seem to be temperature dependent. In all the cases, the non-volatile fraction is enriched in the residual particles compared to the fractions observed for the interstitial particles. This enrichment corresponds to about 15 (NH and 30 (SH percent

  10. Hard convex lens-shaped particles: Densest-known packings and phase behavior

    Energy Technology Data Exchange (ETDEWEB)

    Cinacchi, Giorgio, E-mail: giorgio.cinacchi@uam.es [Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC), Instituto de Ciencias de Materiales “Nicolás Cabrera,” Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Torquato, Salvatore, E-mail: torquato@princeton.edu [Department of Chemistry, Department of Physics, Institute for the Science and Technology of Materials, Program for Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-12-14

    By using theoretical methods and Monte Carlo simulations, this work investigates dense ordered packings and equilibrium phase behavior (from the low-density isotropic fluid regime to the high-density crystalline solid regime) of monodisperse systems of hard convex lens-shaped particles as defined by the volume common to two intersecting congruent spheres. We show that, while the overall similarity of their shape to that of hard oblate ellipsoids is reflected in a qualitatively similar phase diagram, differences are more pronounced in the high-density crystal phase up to the densest-known packings determined here. In contrast to those non-(Bravais)-lattice two-particle basis crystals that are the densest-known packings of hard (oblate) ellipsoids, hard convex lens-shaped particles pack more densely in two types of degenerate crystalline structures: (i) non-(Bravais)-lattice two-particle basis body-centered-orthorhombic-like crystals and (ii) (Bravais) lattice monoclinic crystals. By stacking at will, regularly or irregularly, laminae of these two crystals, infinitely degenerate, generally non-periodic in the stacking direction, dense packings can be constructed that are consistent with recent organizing principles. While deferring the assessment of which of these dense ordered structures is thermodynamically stable in the high-density crystalline solid regime, the degeneracy of their densest-known packings strongly suggests that colloidal convex lens-shaped particles could be better glass formers than colloidal spheres because of the additional rotational degrees of freedom.

  11. Crystallization and colloidal stabilization of Ca(OH)2 in the presence of nopal juice (Opuntia ficus indica): Implications in architectural heritage conservation.

    Science.gov (United States)

    Rodriguez-Navarro, Carlos; Ruiz-Agudo, Encarnacion; Burgos-Cara, Alejandro; Elert, Kerstin; Hansen, Eric F

    2017-09-20

    Hydrated lime (Ca(OH)2) is a vernacular art and building material produced following slaking of CaO in water. If excess water is used, a slurry, called lime putty forms, which has been the preferred craftsman selection for formulating lime mortars since Roman times. A variety of natural additives were traditionally added to the lime putty to improve its quality. The mucilaginous juice extracted from nopal cladodes has been and still is used as additive incorporated in the slaking water for formulation of lime mortars and plasters both in ancient Mesoamerica as well as in the USA Southwest. Little is known on the ultimate effects of this additive on the crystallization and microstructure of hydrated lime. Here, we show that significant changes in habit and size of portlandite crystals occur following slaking in the presence of nopal juice as well as compositionally-similar citrus pectin. Both additives contain polysaccharides made up of galacturonic acid and neutral sugar residues. The carboxyl (and hydroxyl) functional groups present in these residues and in their alkaline degradation by-products, which are deprotonated at the high pH (12.4) produced during lime slaking, strongly interact with newly formed Ca(OH)2 crystals acting in two ways: a) as nucleation inhibitors, promoting the formation of nanosized crystals, and b) as habit modifiers, favoring the development of planar habit following their adsorption onto positively charged (0001)Ca(OH)2 faces. Adsorption of polysaccharides on Ca(OH)2 crystals prevents the development of large particles, resulting in a very reactive, nanosized portlandite slurry. It also promotes steric stabilization, which limits aggregation, thus enhancing the colloidal nature of the lime putty. Overall, these effects are very favorable for the preparation of highly plastic lime mortars with enhanced properties.

  12. Domain Discretization and Circle Packings

    DEFF Research Database (Denmark)

    Dias, Kealey

    A circle packing is a configuration of circles which are tangent with one another in a prescribed pattern determined by a combinatorial triangulation, where the configuration fills a planar domain or a two-dimensional surface. The vertices in the triangulation correspond to centers of circles......, and edges correspond to two circles (having centers corresponding to the endpoints of the edge) being tangent to each other. This circle packing creates a rigid structure having an underlying geometric triangulation, where the centers of circles again correspond to vertices in the triangulation......, and the edges are geodesic segments (Euclidean, hyperbolic, or spherical) connecting centers of circles that are tangent to each other. Three circles that are mutually tangent form a face of the triangulation. Since circle packing is closely related to triangulation, circle packing methods can be applied...

  13. The pursuit of perfect packing

    CERN Document Server

    Weaire, Denis

    2008-01-01

    Coauthored by one of the creators of the most efficient space packing solution, the Weaire-Phelan structure, The Pursuit of Perfect Packing, Second Edition explores a problem of importance in physics, mathematics, chemistry, biology, and engineering: the packing of structures. Maintaining its mathematical core, this edition continues and revises some of the stories from its predecessor while adding several new examples and applications. The book focuses on both scientific and everyday problems ranging from atoms to honeycombs. It describes packing models, such as the Kepler conjecture, Voronoï decomposition, and Delaunay decomposition, as well as actual structure models, such as the Kelvin cell and the Weaire-Phelan structure. The authors discuss numerous historical aspects and provide biographical details on influential contributors to the field, including emails from Thomas Hales and Ken Brakke. With examples from physics, crystallography, engineering, and biology, this accessible and whimsical bo...

  14. Pattern formations and optimal packing.

    Science.gov (United States)

    Mityushev, Vladimir

    2016-04-01

    Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random packing on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random packing. It is demonstrated that all random packings can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random packings. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal packings is also finite.

  15. Improvement of radiation stability of semi-insulating gallium arsenide crystals by deposition of diamond-like carbon films

    Science.gov (United States)

    Klyui, N. I.; Lozinskii, V. B.; Liptuga, A. I.; Izotov, V. Yu.; Han, Wei; Liu, Bingbing

    2016-12-01

    We studied the properties of optical elements for the IR spectral range based on semi-insulating gallium arsenide (SI-GaAs) and antireflecting diamond-like carbon films (DLCF). Particular attention has been paid to the effect of penetrating γ-radiation on transmission of the developed optical elements. A Co60 source and step-by-step gaining of γ-irradiation dose were used for treatment of both an initial SI-GaAs crystal and DLCF/SI-GaAs structures. It was shown that DLCF deposition essentially increases degradation resistance of the SI-GaAs-based optical elements to γ-radiation. Particularly, the transmittance of the DLCF/SI-GaAs structure after γ-irradiation with a dose 9ṡ104 Gy even exceeds that of initial structures. The possible mechanism that explains the effect of γ-radiation on the SI-GaAs crystals and the DLCF/SI-GaAs structures at different irradiation doses was proposed. The effect of small doses is responsible for non-monotonic transmission changes in both SI-GaAs crystals and DLCF/SI-GaAs structures. At further increasing the γ-irradiation dose, the variation of properties of both DLCF and SI-GaAs crystal influences on the transmission of DLCF/SI-GaAs system. At high γ-irradiation dose 1.4ṡ105 Gy, passivation of radiation defects in the SI-GaAs bulk by hydrogen diffused from DLCF leads to increasing the degradation resistance of the SI-GaAs crystals coated with DLCF as compared with the crystals without DLCF.

  16. Jammed lattice sphere packings.

    Science.gov (United States)

    Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore

    2013-12-01

    We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.

  17. Jammed lattice sphere packings

    Science.gov (United States)

    Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore

    2013-12-01

    We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.

  18. The influence of the stereochemistry of alanine residue on the solid state conformation and crystal packing of opioid peptides containing D-Ala or L-Ala in message domain--XRD and NMR study.

    Science.gov (United States)

    Trzeciak-Karlikowska, Katarzyna; Bujacz, Anna; Ciesielski, Włodzimierz; Bujacz, Grzegorz D; Potrzebowski, Marek J

    2011-08-18

    In this work, an X-ray diffraction (XRD) and solid state NMR study of two tetrapeptides with different stereochemistry of alanine residue is presented using Tyr-(D-Ala)-Phe-Gly (1), an N-terminal sequence of opioid peptide dermorphin, and its biologically inactive analog Tyr-(L-Ala)-Phe-Gly (2). Single-crystal XRD proved that 1 crystallized under different conditions from exclusively one structure: a monoclinic crystal with P2(1) space group. In contrast, 2 very easily formed at least three crystallographic modifications, 2a (monoclinic P2(1)), 2b (orthorhombic P2(1)2(1)2) and 2c (tetragonal P4(1)2(1)2). Solid-state NMR spectroscopy was employed to investigate the structure and molecular dynamics of 1, 2a, and 2b. By employing different NMR experiments (dipolar dephasing and PILGRIM) and an analysis of the (13)C principal elements of the chemical shift tensor (CST), it was proven that the main skeleton of tetrapeptides is rigid, whereas significant differences in the molecular motion of the aromatic residues were observed. Comparing current data with those of previous studies (J. Phys. Chem. B2004, 108, 4535-4545 and Cryst. Growth Des. 2009, 9, 4050-4059), it can be assumed that an important preorganization mechanism anticipating the formation of peptide crystals containing D-Ala in sequence is the intramolecular CH-π interaction, which occurs for the amino acid with D stereochemistry. This effect may be responsible for the formation of only one crystallographic form of D-Ala peptides.

  19. The mechanical behaviour of packed particulates

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, R

    1998-01-01

    Within the Canadian Nuclear Fuel Waste Management program, the central concept is to package used fuel in containers that would be deposited in an underground vault in a plutonic rock formation. To provide internal mechanical support for the container, the reference design specifies it to be filled with a matrix of compacted particulate material (called 'packed particulate'), such as quartz sand granules. The focus of this report is on the mechanical properties of the packed-particulate material, based on information drawn from the extant literature. We first consider the packing density of particulate matrices to minimize the remnant porosity and maximize mechanical stability under conditions of external pressure. Practical methods, involving vibratory packing, are reviewed and recommendations made to select techniques to achieve optimum packing density. The behaviour of particulates under compressive loading has been of interest to the powder metallurgy industry (i.e., the manufacture of products from pressed/sintered metal and ceramic powders) since the early decades of this century. We review the evidence showing that in short timescales, stress induced compaction occurs by particle shuffling and rearrangement, elastic distortion, plastic yielding and microfracturing. Analytical expressions are available to describe these processes in a semiquantitative fashion. Time-dependent compaction, mainly via creep mechanisms, is more complex. Much of the theoretical and experimental information is confined to higher temperatures (> 500 degrees C), where deformation rates are more rapid. Thus, for the relatively low ambient temperatures of the waste container ({approx}100 degrees C), we require analytical techniques to extrapolate the collective particulate creep behaviour. This is largely accomplished by employing current theories of creep deformation, particularly in the form of Deformation Mechanism Maps, which allow estimation of creep rates over a wide

  20. Crystal structure of bis(1-ethylpyridinium dioxonium hexacyanidoferrate(II

    Directory of Open Access Journals (Sweden)

    Rikako Tanaka

    2017-02-01

    Full Text Available The title compound, (C7H10N2(H3O2[Fe(CN6] or (Etpy2(H3O2[Fe(CN6] (Etpy+ is 1-ethylpyridinium, crystallizes in the space group Pnnm. The FeII atom of the [Fe(CN6]4− anion lies on a site with site symmetry ..2/m, and has an octahedral coordination sphere defined by six cyanido ligands. Both the Etpy+ and the oxonium cations are located on a mirror plane. In the crystal, electron-donor anions of [Fe(CN6]4− and electron-acceptor cations of Etpy+ are each stacked parallel to the b axis, resulting in a columnar structure with segregated moieties. The crystal packing is stabilized by a three-dimensional O—H...N hydrogen-bonding network between the oxonium ions and the cyanide ligands of [Fe(CN6]4−.

  1. Random close packing revisited: ways to pack frictionless disks.

    Science.gov (United States)

    Xu, Ning; Blawzdziewicz, Jerzy; O'Hern, Corey S

    2005-06-01

    We create collectively jammed (CJ) packings of 50-50 bidisperse mixtures of smooth disks in two dimensions (2D) using an algorithm in which we successively compress or expand soft particles and minimize the total energy at each step until the particles are just at contact. We focus on small systems in 2D and thus are able to find nearly all of the collectively jammed states at each system size. We decompose the probability P(phi) for obtaining a collectively jammed state at a particular packing fraction phi into two composite functions: (1) the density of CJ packing fractions rho(phi), which only depends on geometry, and (2) the frequency distribution beta(phi), which depends on the particular algorithm used to create them. We find that the function rho(phi) is sharply peaked and that beta(phi) depends exponentially on phi. We predict that in the infinite-system-size limit the behavior of P(phi) in these systems is controlled by the density of CJ packing fractions--not the frequency distribution. These results suggest that the location of the peak in P(phi) when N --> infinity can be used as a protocol-independent definition of random close packing.

  2. Engineering of CH3 NH3 PbI3 Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Properties.

    Science.gov (United States)

    Peng, Wei; Miao, Xiaohe; Adinolfi, Valerio; Alarousu, Erkki; El Tall, Omar; Emwas, Abdul-Hamid; Zhao, Chao; Walters, Grant; Liu, Jiakai; Ouellette, Olivier; Pan, Jun; Murali, Banavoth; Sargent, Edward H; Mohammed, Omar F; Bakr, Osman M

    2016-08-26

    The number of studies on organic-inorganic hybrid perovskites has soared in recent years. However, the majority of hybrid perovskites under investigation are based on a limited number of organic cations of suitable sizes, such as methylammonium and formamidinium. These small cations easily fit into the perovskite's three-dimensional (3D) lead halide framework to produce semiconductors with excellent charge transport properties. Until now, larger cations, such as ethylammonium, have been found to form 2D crystals with lead halide. Here we show for the first time that ethylammonium can in fact be incorporated coordinately with methylammonium in the lattice of a 3D perovskite thanks to a balance of opposite lattice distortion strains. This inclusion results in higher crystal symmetry, improved material stability, and markedly enhanced charge carrier lifetime. This crystal engineering strategy of balancing opposite lattice distortion effects vastly increases the number of potential choices of organic cations for 3D perovskites, opening up new degrees of freedom to tailor their optoelectronic and environmental properties.

  3. Fast Crystallization and improved Stability of Perovskite Solar Cells with Zn 2 SnO 4 Electron Transporting Layer: Interface Matters

    KAUST Repository

    Bera, Ashok

    2015-12-03

    Here we report that mesoporous ternary oxide Zn2SnO4 can significantly promotes the crystallization of hybrid perovskite layers and serves as an efficient electron transporting material in perovskite solar cells. Such devices exhibit an energy conversion efficiency of 13.34%, which is even higher than that achieved with the commonly used TiO2 in the similar experimental conditions (9.1%). Simple one-step spin coating of CH3NH3PbI3−xClx on Zn2SnO4 is found to lead to rapidly crystalized bilayer perovskite structure without any solvent engineering. Furthermore, ultrafast transient absorption measurement reveals efficient charge transfer at the Zn2SnO4/perovskite interface. Most importantly, solar cells with Zn2SnO4 as the electron-transporting material exhibit negligible electrical hysteresis and exceptionally high stability without encapsulation for over one month. Besides underscoring Zn2SnO4 as a highly promising electron transporting material for perovskite solar cells, our results demonstrate the significant role of interfaces on improving the perovskite crystallization and photovoltaic performance.

  4. Fast Crystallization and Improved Stability of Perovskite Solar Cells with Zn2SnO4 Electron Transporting Layer: Interface Matters.

    Science.gov (United States)

    Bera, Ashok; Sheikh, Arif D; Haque, Md Azimul; Bose, Riya; Alarousu, Erkki; Mohammed, Omar F; Wu, Tom

    2015-12-30

    Here we report that mesoporous ternary oxide Zn2SnO4 can significantly promotes the crystallization of hybrid perovskite layers and serves as an efficient electron transporting material in perovskite solar cells. Such devices exhibit an energy conversion efficiency of 13.34%, which is even higher than that achieved with the commonly used TiO2 in the similar experimental conditions (9.1%). Simple one-step spin coating of CH3NH3PbI3-xClx on Zn2SnO4 is found to lead to rapidly crystallized bilayer perovskite structure without any solvent engineering. Furthermore, ultrafast transient absorption measurement reveals efficient charge transfer at the Zn2SnO4/perovskite interface. Most importantly, solar cells with Zn2SnO4 as the electron-transporting material exhibit negligible electrical hysteresis and exceptionally high stability without encapsulation for over one month. Besides underscoring Zn2SnO4 as a highly promising electron transporting material for perovskite solar cells, our results demonstrate the significant role of interfaces on improving the perovskite crystallization and photovoltaic performance.

  5. Engineering of CH 3 NH 3 PbI 3 Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Properties

    KAUST Repository

    Peng, Wei

    2016-07-28

    The number of studies on organic–inorganic hybrid perovskites has soared in recent years. However, the majority of hybrid perovskites under investigation are based on a limited number of organic cations of suitable sizes, such as methylammonium and formamidinium. These small cations easily fit into the perovskite\\'s three-dimensional (3D) lead halide framework to produce semiconductors with excellent charge transport properties. Until now, larger cations, such as ethylammonium, have been found to form 2D crystals with lead halide. Here we show for the first time that ethylammonium can in fact be incorporated coordinately with methylammonium in the lattice of a 3D perovskite thanks to a balance of opposite lattice distortion strains. This inclusion results in higher crystal symmetry, improved material stability, and markedly enhanced charge carrier lifetime. This crystal engineering strategy of balancing opposite lattice distortion effects vastly increases the number of potential choices of organic cations for 3D perovskites, opening up new degrees of freedom to tailor their optoelectronic and environmental properties.

  6. Valve stem and packing assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wordin, J.J.

    1991-09-03

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents over tightening of the retaining nut and the resulting excessive friction between stem and stem packing. 2 figures.

  7. Valve stem and packing assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wordin, John J. (Bingham County, ID)

    1991-01-01

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

  8. Valve stem and packing assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wordin, J.J.

    1990-01-01

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

  9. 7 CFR 51.310 - Packing requirements.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Packing requirements. 51.310 Section 51.310... STANDARDS) United States Standards for Grades of Apples Packing Requirements § 51.310 Packing requirements... the contents. (e) Tolerances: In order to allow for variations incident to proper packing, not...

  10. 7 CFR 51.1270 - Packing.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Packing. 51.1270 Section 51.1270 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Summer and Fall Pears 1 Standard Pack § 51.1270 Packing. (a) Each package shall be packed...

  11. 7 CFR 51.1311 - Packing.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Packing. 51.1311 Section 51.1311 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Winter Pears 1 Standard Pack § 51.1311 Packing. (a) Each package shall be packed so that...

  12. Molecular packing in bone collagen fibrils prior to mineralization

    Science.gov (United States)

    Hsiao, Benjamin; Zhou, Hong-Wen; Burger, Christian; Chu, Benjamin; Glimcher, Melvin J.

    2012-02-01

    The three-dimensional packing of collagen molecules in bone collagen fibrils has been largely unknown because even in moderately mineralized bone tissues, the organic matrix structure is severely perturbed by the deposition of mineral crystals. During the past decades, the structure of tendon collagen (e.g. rat tail) --- a tissue that cannot mineralize in vivo, has been assumed to be representative for bone collagen fibrils. Small-angle X-ray diffraction analysis of the native, uncalcified intramuscular fish bone has revealed a new molecular packing scheme, significantly different from the quasi-hexagonal arrangement often found in tendons. The deduced structure in bone collagen fibrils indicates the presence of spatially discrete microfibrils, and an arrangement of intrafibrillar space to form ``channels'', which could accommodate crystals with dimensions typically found in bone apatite.

  13. Epitaxially stabilized TiN/(Ti,Fe,Co)N multilayer thin films in (pseudo-)fcc crystal structure by sequential magnetron sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Klever, C; Seemann, K; Stueber, M; Ulrich, S; Leiste, H [Karlsruhe Institute of Technology (KIT), Institute for Materials Research I, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Brunken, H; Ludwig, A, E-mail: christian.klever@kit.ed [Ruhr-University Bochum, Institute of Materials, Universitaetsstr. 150, 44780 Bochum (Germany)

    2010-10-06

    Multilayer thin films were grown by non-reactive sequential magnetron sputter deposition from ceramic TiN and metallic FeCo targets addressing a combination of wear resistance and sensoric functionality. Coatings with bilayer period values ranging from 449 nm down to 2.6 nm were grown with the total amount of either material maintained constant. The multilayer thin films were post-annealed ex situ at 600 {sup 0}C for 60 min in vacuum. X-ray diffraction results imply the multilayer thin films undergo significant changes in their crystalline structure when the bilayer period is decreased. Using high-resolution transmission electron microscopy as well as selected-area electron diffraction it is shown that in the case of multilayer thin films with bilayer periods of several tens of nanometres and higher, FeCo layers and TiN layers in their respective common CsCl- and NaCl-type crystal structures alternate. In contrast, in the multilayer thin films with bilayer periods of only a few nanometres, grain growth across the interfaces between the individual layers takes place and a strongly textured microstructure is formed which features columns in (pseudo-)fcc crystal structure grown in heteroepitaxial growth mode. It is suggested that the experimental findings imply the latter multilayer thin films to be alternately composed of TiN layers and (Ti,Fe,Co)N solid solution layers which have been formed by a solid-state reaction during the deposition process. As a consequence, heteroepitaxially stabilized columnar grains in strongly textured (pseudo-)fcc crystal structure are formed. This crystal structure is preserved after the annealing procedure which qualifies these coatings for use in applications where temperatures of up to 600 {sup 0}C are reached.

  14. Deterministic indexing for packed strings

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Skjoldjensen, Frederik Rye

    2017-01-01

    Given a string S of length n, the classic string indexing problem is to preprocess S into a compact data structure that supports efficient subsequent pattern queries. In the deterministic variant the goal is to solve the string indexing problem without any randomization (at preprocessing time...... or query time). In the packed variant the strings are stored with several character in a single word, giving us the opportunity to read multiple characters simultaneously. Our main result is a new string index in the deterministic and packed setting. Given a packed string S of length n over an alphabet σ......, we show how to preprocess S in O(n) (deterministic) time and space O(n) such that given a packed pattern string of length m we can support queries in (deterministic) time O (m/α + log m + log log σ), where α = w/log σ is the number of characters packed in a word of size w = θ(log n). Our query time...

  15. Hard sphere packings within cylinders.

    Science.gov (United States)

    Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick

    2016-03-07

    Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.

  16. Synthesis and X-Ray Crystal Structure of the First Pure and Air-Stable Salt of Peroxymonosulphuric Acid: (Ph4PHSO5

    Directory of Open Access Journals (Sweden)

    Marco Crisma

    2000-06-01

    Full Text Available In this paper we describe the synthesis of tetraphenylphosphonium peroxymonosulphate, its crystal structure and packing mode. The asymmetric unit accomodates two independent molecules of the monopersulphate anion, which are held together by hydrogen bonds. In the packing mode, rows of such dimers are surrounded by four rows of tetraphenyl cations. The consequence is that the highly water sensitive HSO5¯ anions are segregated inside hydrophobic channels composed by the lipophilic cations. This circumstance presumably accounts for the exceptional stability of the title compound.

  17. Relative crystal stability of Al{sub x}FeNiCrCo high entropy alloys from XRD analysis and formation energy calculation

    Energy Technology Data Exchange (ETDEWEB)

    Jasiewicz, K.; Cieslak, J.; Kaprzyk, S.; Tobola, J., E-mail: tobola@ftj.agh.edu.pl

    2015-11-05

    Electronic structure of Al{sub x}FeNiCrCo (x ≤ 3) high-entropy alloys (HEAs) was calculated using the Korringa–Kohn–Rostoker method combined with the coherent potential approximation (KKR-CPA). Total energy minimization was performed for bcc and fcc structures in each alloy composition. The phase stability was investigated from the total energy analysis, which finally allowed to determine the bcc–fcc phase transition for aluminium concentration close to 13 at%. It inspired us to synthesize Al{sub x}FeNiCrCo (0 ≤ x ≤ 1.5) using two procedures based on arc melting and sintering to allow for observation of entropy effect on phase formation. The XRD measurements evidently proved an occurence of fcc or bcc structure and their coexistence, depending on Al concentration and temperature. This finding remains in good agreement with theoretical results from free energy analysis, when accounting for KKR-CPA total energy as well as entropy terms. Furthermore, the structure preference, from fcc to bcc HEAs, with increasing Al content was discussed in view of total and atomic-dependent density of states computed in non-magnetic and paramagnetic-like states. - Highlights: • Crystal stability and electronic properties of high entropy alloys from KKR-CPA. • Influence of configuration entropy on phase preference (or coexistence). • Effect of configuration entropy on phase stability: arc melting viz. sintering. • Ab initio calculations (accounting for disorder) of phase preference in HEA.

  18. Dealing with Nonregular Shapes Packing

    Directory of Open Access Journals (Sweden)

    Bonfim Amaro Júnior

    2014-01-01

    Full Text Available This paper addresses the irregular strip packing problem, a particular two-dimensional cutting and packing problem in which convex/nonconvex shapes (polygons have to be packed onto a single rectangular object. We propose an approach that prescribes the integration of a metaheuristic engine (i.e., genetic algorithm and a placement rule (i.e., greedy bottom-left. Moreover, a shrinking algorithm is encapsulated into the metaheuristic engine to improve good quality solutions. To accomplish this task, we propose a no-fit polygon based heuristic that shifts polygons closer to each other. Computational experiments performed on standard benchmark problems, as well as practical case studies developed in the ambit of a large textile industry, are also reported and discussed here in order to testify the potentialities of proposed approach.

  19. Heuristics for Multidimensional Packing Problems

    DEFF Research Database (Denmark)

    Egeblad, Jens

    In this thesis we consider solution methods for packing problems. Packing problems occur in many different situations both directly in the industry and as sub-problems of other problems. High-quality solutions for problems in the industrial sector may be able to reduce transportation and production...... costs significantly. For packing problems in general are given a set of items and one of more containers. The items must be placed within the container such that some objective is optimized and the items do not overlap. Items and container may be rectangular or irregular (e.g. polygons and polyhedra......) and may be defined in any number of dimensions. Solution methods are based on theory from both computational geometry and operations research. The scientific contributions of this thesis are presented in the form of six papers and a section which introduces the many problem types and recent solution...

  20. Similar Energetic Contributions of Packing in the Core of Membrane and Water-Soluble Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Joh, Nathan H.; Oberai, Amit; Yang, Duan; Whitelegge, Julian P.; Bowie, James U.; (UCLA)

    2009-09-15

    A major driving force for water-soluble protein folding is the hydrophobic effect, but membrane proteins cannot make use of this stabilizing contribution in the apolar core of the bilayer. It has been proposed that membrane proteins compensate by packing more efficiently. We therefore investigated packing contributions experimentally by observing the energetic and structural consequences of cavity creating mutations in the core of a membrane protein. We observed little difference in the packing energetics of water and membrane soluble proteins. Our results imply that other mechanisms are employed to stabilize the structure of membrane proteins.

  1. Use of the Primitive Unit Cell in Understanding Subtle Features of the Cubic Closest-Packed Structure

    Science.gov (United States)

    Hawkins, John A.; Rittenhouse, Jeffrey L.; Soper, Linda M.; Rittenhouse, Robert C.

    2008-01-01

    One of the most important crystal structures adopted by metals is characterized by the "abcabc"...stacking of close-packed layers. This structure is commonly referred to in textbooks as the cubic close-packed (ccp) or face-centered cubic (fcc) structure, since the entire lattice can be generated by replication of a face-centered cubic unit cell…

  2. Stability and Occurrence of the Molecule-Containing SiO2 Clathrate Melanophlogite: Metastable Crystallization from a Colloid or Gel?

    Science.gov (United States)

    Geiger, C. A.; Dachs, E.

    2008-12-01

    The mineral melanophlogite is the only known natural SiO2 clathrate. It has been found in a number of localities worldwide in different low-temperature geologic environments. Melanophlogite's thermodynamic stability is not known. Low-temperature hydrothermal laboratory experiments indicate that structure-directing agents and colloid formation are needed for crystallization. The formation of silica-rich colloids/gels and following crystal growth can be observed in glass-ampoule synthesis experiments. In order to better address these issues, the heat capacities of two different molecule-containing melanophlogites of approximate composition 46SiO2·1.80CH4·3.54N2·1.02CO2 from Mt. Hamilton, CA and 46SiO2·3.59CH4·3.10N2·1.31CO2 from Racalmuto, Sicily, along with a heated (molecule-free) sample of composition SiO2, were studied between 5 and 300 K using heat- pulse microcalorimetry. The molecule-free sample was obtained by heating a natural Racalmuto sample at 1173 K for 24 hr. It has a slightly larger low-temperature heat capacity and standard third-law entropy compared to other low-density SiO2 polymorphs such as various zeosils. The standard third-law entropy of the molecule-free sample is S° = 2216.3 J/(mol·K) for 46SiO2 and the natural Mt. Hamilton and Racalmuto samples give S° = 2805.7 J/(mol·K) and S° = 2956.8 J/(mol· K), respectively. The entropy and Gibbs free energy for molecule-free melanophlogite relative to quartz at 298 K are Δ Strans = 6.7 J/(mol·K) and Δ Gtrans = 7.5 kJ/mol, respectively and, thus, it does not have a thermodynamic field of stability in the SiO2 system. The difference in Cp values between molecule-containing and molecule-free melanophlogite is characterized by an increase in Cp from 0 K to approximately 70 K and then reaches a roughly constant value at 70 K cristobalite and chalcedony, suggest that melanophlogite crystallizes metastabily from gels. The occurrence of melanophlogite, and the lack of other SiO2clathrates

  3. Cylinder valve packing nut studies

    Energy Technology Data Exchange (ETDEWEB)

    Blue, S.C. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    The design, manufacture, and use of cylinder valve packing nuts have been studied to improve their resistance to failure from stress corrosion cracking. Stress frozen photoelastic models have been analyzed to measure the stress concentrations at observed points of failure. The load effects induced by assembly torque and thermal expansion of stem packing were observed by strain gaging nuts. The effects of finishing operations and heat treatment were studied by the strain gage hole boring and X-ray methods. Modifications of manufacturing and operation practices are reducing the frequency of stress corrosion failures.

  4. Structural, quantum chemical, vibrational and thermal studies of a hydrogen bonded zwitterionic co-crystal (nicotinic acid: pyrogallol)

    Science.gov (United States)

    Prabha, E. Arockia Jeya Yasmi; Kumar, S. Suresh; Athimoolam, S.; Sridhar, B.

    2017-02-01

    In the present work, a new co-crystal of nicotinic acid with pyrogallol (NICPY) has been grown in the zwitterionic form and the corresponding structural, vibrational, thermal, solubility and anti-cancer characteristics have been reported. The single crystal X-ray diffraction analysis confirms that the structural molecular packing of the crystal stabilized through N-H⋯O and O-H⋯O hydrogen bond. The stabilization energy of the hydrogen bond motifs were calculated in the solid state. Vibrational spectral studies such as Fourier transform-infrared (FT-IR) and FT-Raman were adopted to understand the zwitterionic co-crystalline nature of the compound, which has been compared with theoretically calculated vibrational frequencies. The thermal stability of the grown co-crystal was analyzed by TG/DTA study. The solubility of the NICPY co-crystal was investigated in water at different temperature and compared with that of the nicotinic acid, which is the parent compound of NICPY co-crystal. The grown crystals were treated with human cervical cancer cell line (HeLa) to analyze the cytotoxicity of NICPY crystals and compared with the parent compound, which shows that NICPY has moderate activity against human cervical cancer cell line.

  5. Multi-scale modeling and experimental study of twin inception and propagation in hexagonal close-packed materials using a crystal plasticity finite element approach; part II: Local behavior

    Science.gov (United States)

    Abdolvand, Hamidreza; Daymond, Mark R.

    2013-03-01

    In-situ tensile tests are performed on Zircaloy-2 samples with various grain sizes to study twin inception and propagation. Orientation maps of some areas at the surface are measured before and after deformation, using the Electron BackScattered Diffraction (EBSD) technique. Strain fields of the same areas are determined using the digital image correlation technique and are compared with results from Crystal Plasticity Finite Element (CPFE) simulations. Different assumptions are made within the CPFE code to simulate twin propagation. It is observed that the predictions of different models does not really change from one model to another when statistical information on the twins is compared, yet local predictions for each grain, i.e. twin direction, twin variant selection, and twin inception site, do change. Also, it is shown that the twin Schmid factor can vary drastically within grains and that for those grains with a low tendency for twinning this variation may make them susceptible to twinning.

  6. Singlet Fission in Rubrene Derivatives: Impact of Molecular Packing

    KAUST Repository

    Sutton, Christopher

    2017-03-13

    We examine the properties of six recently synthesized rubrene derivatives (with substitutions on the side phenyl rings) that show vastly different crystal structures. In order to understand how packing in the solid state affects the excited states and couplings relevant for singlet fission, the lowest excited singlet (S), triplet (T), multiexciton (TT), and charge-transfer (CT) states of the rubrene derivatives are compared to known singlet fission materials [tetracene, pentacene, 5,12-diphenyltetracene (DPT), and rubrene itself]. While a small difference of less than 0.2 eV is calculated for the S and TT energies, a range of 0.50 to 1.2 eV in the CT energies and nearly 3 orders of magnitude in the electronic couplings are computed for the rubrene derivatives in their crystalline packings, which strongly affects the role of the CT state in facilitating SF. To rationalize experimental observations of singlet fission occurring in amorphous phases of rubrene, DPT, and tetracene, we use molecular dynamics (MD) simulations to assess the impact of molecular packing and orientations and to gain a better understanding of the parameters that control singlet fission in amorphous films compared to crystalline packings. The MD simulations point to a crystalline-like packing for thin films of tetracene; on the other hand, DPT, rubrene, and the rubrene derivatives all show various degrees of disorder with a number of sites that have larger electronic couplings than in the crystal, which can facilitate singlet fission in such thin films. Our analysis underlines the potential of these materials as promising candidates for singlet fission and helps understand how various structural motifs affect the critical parameters that control the ability of a system to undergo singlet fission.

  7. Effect of Hafnium and Zirconium to Glass Forming Ability, Thermal Stability, Plasticity Deformation and Crystallization of Ni-Free Pentabasic Ti-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Oak J.J.

    2017-06-01

    Full Text Available The newly designed Ti-based bulk metallic glass (BMG in which case of fracture behavior was observed 1990MPa to compressive strength with a wide plastic deformation around 7% after process of elastic deformation. This phenomenon can be compared with those of Ti-based alloys and other Ti-based BMGs and indicates high potential to be applied in use. It was evaluated the Ti-based BMG for thermal stability that the reduced glass parameters, ΔTx, Trg and γ, are 79K, 0.50 and 0.38, respectively. In addition, it reveals high activation energies for crystallization in which are estimated to Ex1 = 291.77 ±9.71 kJ/mol, Ex2 = 588.77 ±28.88 kJ/mol and Ex3 = 330.26 ±3.61 kJ/mol on kissinger plotting in this study.

  8. High-performance adaptive optics system with long-term stability using liquid-crystal-on-silicon spatial light modulator for high-resolution retinal imaging

    Science.gov (United States)

    Huang, Hongxin; Inoue, Takashi; Toyoda, Haruyoshi; Hara, Tsutomu

    2011-11-01

    An adaptive optics scanning laser ophthalmoscope (AO-SLO) using a liquid-crystal spatial light modulator was developed. For routine clinical applications, long-term stability of the AO system is very important because unavoidable eye movement may degrade the instrument's performance. We studied the long-term performance of the aberration correction with healthy human eyes. Retinal image acquisition and AO data collection were performed simultaneously for periods of several minutes. We confirmed that, for more than 90% of the periods, the root-mean-square errors of residual wavefront were below the Marechal criterion. Drifts and microsaccades of fixational eye movement were examined using retinal images and residual aberrations. The results showed significant correlation between the transverse shift of retinal image and the low-order residual wavefront aberration during the drifts.

  9. Pack cementation coatings for alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  10. Wire and Packing Tape Sandwiches

    Science.gov (United States)

    Rabinowitz, Sandy

    2009-01-01

    In this article, the author describes how students can combine craft wire with clear packing tape to create a two-dimensional design that can be bent and twisted to create a three-dimensional form. Students sandwich wire designs between two layers of tape. (Contains 1 online resource.)

  11. Ultrasonic characterization of Cu-Al-Ni single crystals lattice stability in the vicinity of the phase transition.

    Science.gov (United States)

    Landa, Michal; Novák, Václav; Sedlák, Petr; Sittner, Petr

    2004-04-01

    Measurements of elastic constants of the austenite phase when approaching the phase transformation either upon cooling or stressing is of the crucial interest for the shape memory alloy field. Acoustic properties (wave velocity and also attenuation changes) of the Cu-Al-Ni single crystal were investigated in situ during stress-induced martensitic transformation at constant (room) temperature. The parent austenite cubic lattice of the Cu-Al-Ni exhibits very high elastic anisotropy (anisotropy factor A approximately 12). The measurements were made using nine combinations of (i) applied uniaxial compression in a given crystal direction, (ii) the wave propagation and (iii) polarization vectors. The chosen configurations are sufficient for evaluation of all independent third order elastic constants (TOEC). The longitudinal modes were also measured by the immersion technique, using the transducer pair in a water tank installed on the testing machine. The device works as "a ultrasonic extensometer" measuring a transverse strain of the specimen. The dependencies of both natural and initial wave velocities on the applied stress may be evaluated. Three elastic constants of the stress-induced martensite were determined. The elastic properties were found to vary with the increasing stress above the Ms transformation temperature, which is interpreted as a precursor for the martensitic transformation. The onset of the transformation was additionally identified from the acoustic emission measurement.

  12. Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals (Postprint)

    Science.gov (United States)

    2014-10-01

    September 2014 4. TITLE AND SUBTITLE COLOR -TUNABLE MIRRORS BASED ON ELECTRICALLY REGULATED BANDWIDTH BROADENING IN POLYMER- STABILIZED CHOLESTERIC...Approved for public release; distribution unlimited. This report contains color . 13. SUPPLEMENTARY NOTES PA Case Number: 88ABW-2014-1978, Clearance...at dx.doi.org/10.1021/ph500259h. 14. ABSTRACT We report on the preparation of color -tunable mirrors based on electrically regulated bandwidth

  13. Coking technology using packed coal mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kuznichenko, V.M.; Shteinberg, Eh.A.; Tolstoi, A.P. (Khar' kovskii Nauchno-Issledovatel' skii Uglekhimicheskii Institut, Kharkov (Ukrainian SSR))

    1991-08-01

    Discusses coking of packed coal charges in the FRG, USSR, France, India, Poland and Czechoslovakia. The following aspects are evaluated: types of weakly caking coals that are used as components of packed mixtures, energy consumption of packing, effects of coal mixture packing on coke oven design, number of coke ovens in a battery, heating temperature, coking time, coke properties, investment and operating cost. Statistical data that characterize the Saarberg packing process used in the FRG are analyzed. Packing coal mixtures for coking improves coke quality and reduces environmental pollution. 4 refs.

  14. The Maximum Resource Bin Packing Problem

    DEFF Research Database (Denmark)

    Boyar, J.; Epstein, L.; Favrholdt, L.M.

    2006-01-01

    Usually, for bin packing problems, we try to minimize the number of bins used or in the case of the dual bin packing problem, maximize the number or total size of accepted items. This paper presents results for the opposite problems, where we would like to maximize the number of bins used...... algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of classical bin packing. For the on-line variant, we define maximum resource variants of classical and dual bin packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing, we find...

  15. The influence of structural factors on the composition, spectral-luminescent properties and thermal stability of zinc(II) bis(dipyrromethenate)s crystal solvates with amines

    Science.gov (United States)

    Guseva, G. B.; Ksenofontov, A. A.; Antina, E. V.

    2017-02-01

    It was found that 3,3‧-, 2,3‧- and 2,2‧-zinc(II) bis(dipyrromethenate)s ([Zn2L2]) form stable supramolecular complexes with aromatic and aliphatic amines (X - pyridine (Py), N,N-dimethylmethanamide (DMF), diethylamine (DEA) and triethylamine (TEA)) of the composition [Zn2L2(X)n]. Composition, stability and spectral-luminescent properties of the [Zn2L2(X)n] crystal solvates were studied by means of FTIR, PXRD, thermal, mass spectral, absorption, and fluorescence analyses. Spectroscopic studies showed that the quantum yield (φ) of [Zn2L2(Х)n] in cyclohexane is much lower (to ∼ 1.4-4.0 times) than φ for the [Zn2L2]. Crystal solvates are stable up to a temperature ∼367.35-427.55 K. It is demonstrated, that the high interactions energies (Znsbnd N) in [Zn2L2(X)n] supramolecular complexes are the main cause of the fluorescence quenching of [Zn2L2] luminophores in the presence of electron-donor molecules. The obtained results are of interest for the development on the basis of [Zn2L2] of a new fluorescent sensors of the electron donor molecules.

  16. Origin of the chemical stability of phosphine-phosphoramidites: structural study of an UPPhos-type crystal and application of UPPhos in the asymmetric hydrogenation of imines.

    Science.gov (United States)

    Balogh, Szabolcs; Farkas, Gergely; Holczbauer, Tamás; Bakos, József

    2017-08-01

    Phosphine-phosphoramidites (PPAs) are heterobidentate ligands that have been developed in the last two decades and have been used successfully in asymmetric catalytic reactions. A single crystal of the PPA (11bS)-N-[(2S,4S)-4-(diphenylphosphanyl)pentan-2-yl]-N-methyldinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-amine, C38H35NO2P2, was prepared and structurally characterized by single-crystal X-ray diffraction and density functional theory (DFT) calculations. Structure elucidation revealed unique features which might have a significant effect in the excellent chemical stability of this type of molecule. The conformation of the molecule provides an optimal chelating structure. Iridium complexes of UPPhos were found to be efficient catalysts in the asymmetric hydrogenation of imines {UPPhos is (11bS)-N-[(2S,4S)-4-(diphenylphosphanyl)pentan-2-yl]-N-(propan-2-yl)dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-amine}.

  17. Packing hyperspheres in high-dimensional Euclidean spaces.

    Science.gov (United States)

    Skoge, Monica; Donev, Aleksandar; Stillinger, Frank H; Torquato, Salvatore

    2006-10-01

    We present a study of disordered jammed hard-sphere packings in four-, five-, and six-dimensional Euclidean spaces. Using a collision-driven packing generation algorithm, we obtain the first estimates for the packing fractions of the maximally random jammed (MRJ) states for space dimensions d=4, 5, and 6 to be phi(MRJ) approximately 0.46, 0.31, and 0.20, respectively. To a good approximation, the MRJ density obeys the scaling form phi(MRJ)=c1/2(d)+(c2d)/2d, where c1=-2.72 and c2=2.56, which appears to be consistent with the high-dimensional asymptotic limit, albeit with different coefficients. Calculations of the pair correlation function g2(r) and structure factor S(k) for these states show that short-range ordering appreciably decreases with increasing dimension, consistent with a recently proposed "decorrelation principle," which, among other things, states that unconstrained correlations diminish as the dimension increases and vanish entirely in the limit d-->infinity. As in three dimensions (where phi(MRJ) approximately 0.64), the packings show no signs of crystallization, are isostatic, and have a power-law divergence in g2(r) at contact with power-law exponent approximately 0.4. Across dimensions, the cumulative number of neighbors equals the kissing number of the conjectured densest packing close to where g2(r) has its first minimum. Additionally, we obtain estimates for the freezing and melting packing fractions for the equilibrium hard-sphere fluid-solid transition, phi(F) approximately 0.32 and phi(M) approximately 0.39, respectively, for d=4, and phi(F) approximately 0.20 and phi(M) approximately 0.25, respectively, for d=5. Although our results indicate the stable phase at high density is a crystalline solid, nucleation appears to be strongly suppressed with increasing dimension.

  18. Estabilidade físico-química, microbiológica e sensorial de carne ovina embalada a vácuo estocada sob refrigeração Physical and chemical stability microbiological and sensory analysis of vacuum packed sheep meat stored under refrigeration

    Directory of Open Access Journals (Sweden)

    Rafaella de Paula Paseto Fernandes

    2012-04-01

    Full Text Available A carne ovina é comercializada atualmente em sua quase totalidade na forma congelada, porém com a tendência atual de maior procura por produtos de conveniência, vislumbra-se a necessidade de o mercado começar a ofertar esta carne na forma de cortes refrigerados. Este trabalho teve como objetivo avaliar a estabilidade e segurança de lombo de cordeiro embalado a vácuo quando estocado sob refrigeração. A estabilidade foi avaliada por meio de análises físicas e químicas (oxidação lipídica, cor objetiva, valor de pH, composição centesimal, perda de água por cocção e textura instrumental, microbiológicas (contagem total de psicrotróficos anaeróbios, coliformes termotolerantes a 45°C, estafilococos coagulase positiva e presença de Salmonella e sensorial (cor, aparência geral e aroma. A carne ovina apresentou-se estável durante o período de 28 dias com relação à maioria dos índices físicos e químicos avaliados e dentro dos padrões estabelecidos pela legislação brasileira para micro-organismos patogênicos. Durante o armazenamento, detectou-se um aumento elevado das contagens de micro-organismos psicrotróficos anaeróbios, atingindo valores da ordem de 10(7UFC g-1 amostra já aos 14 dias, porém os consumidores não detectaram alterações sensoriais significativas durante todo o período. Conclui-se que a vida útil de lombo ovino armazenado a 4°C é de no mínimo 28 dias.Lamb is commercialized today almost entirely in frozen form, but, considering the current trend to greater demand for convenience products, it becomes more evident the need of availability of chilled cuts of meat in the market. The objective of this study was to evaluate the stability and safety of lamb meat packed under vacuum when stored under refrigeration. The lamb meat samples were packed in high barrier multilayer plastic films and stored under refrigeration (4±1°C. The stability was evaluated by means of physical and chemical analysis

  19. Dielectric and electro-optical properties of polymer-stabilized liquid crystal. II. Polymer PiBMA dispersed in MBBA

    Science.gov (United States)

    Tripathi, Pankaj Kumar; Pande, Mukti; Singh, Shri

    2016-09-01

    In continuation of our earlier work (Pande et al. in Appl Phys A 122:217-226, 2016), we report the results of dielectric and electro-optical properties of pure MBBA and PSLC (polymer PiBMA dispersed in MBBA) systems. The polymer networks domains formed are found to be anisotropic and are oriented in the direction of electric field for both the planar and homeotropic alignment cells. The dielectric anisotropy, optical anisotropy, response time, threshold voltage, splay elastic constant and rotational viscosity were observed for both the LC and PSLC systems with electric field. The liquid crystal properties are affected significantly with increasing concentration of polymer in pure LC material. It has been observed that the polymer networks interaction plays a major role in changing the properties of PSLC system. The effect of dielectric loss and dielectric permittivity on both pure LC and PSLC systems is also discussed.

  20. Relative stability of the FCC and HCP polymorphs with interacting polymers.

    Science.gov (United States)

    Mahynski, Nathan A; Kumar, Sanat K; Panagiotopoulos, Athanassios Z

    2015-01-14

    Recent work [Mahynski et al., Nat. Commun., 2014, 5, 4472] has demonstrated that the addition of long linear homopolymers thermodynamically biases crystallizing hard-sphere colloids to produce the hexagonal close-packed (HCP) polymorph over the closely related face-centered cubic (FCC) structure when the polymers and colloids are purely repulsive. In this report, we investigate the effects of thermal interactions on each crystal polymorph to explore the possibility of stabilizing the FCC crystal structure over the HCP. We find that the HCP polymorph remains at least as stable as its FCC counterpart across the entire range of interactions we explored, where interactions were quantified by the reduced second virial coefficient, -1.50 0, its tetrahedral voids produce a similar effect when B FCC crystals are elusive in these binary mixtures.

  1. Test-bed’s Development of the Packed Bed with Both Revolution&Rotation’s High Gravity

    Science.gov (United States)

    Zhang, Chongpeng; Dong, Zhiqiang; He, Bianhua

    2017-06-01

    Rotating packed bed is a chemical reactor which used the effect of rotating centrifugal force to be equivalent in the gravity field. To increase the fluid flow time in bed, to extend the controlled process in bed’s reaction and to strengthen the role of influencing factor, a new type of rotating packed bed is proposed in the paper which is running on the revolution platform. Unfortunately, the bad synergy effect of revolution&rotation in packed bed has induced the serious vibration problem. Through optimizing the mass center of packed bed and disposing local weight, the stability of the operation of the bench was more improved. The stability of the operation of the bench was that more improved the bed’s vibration amplitude was analyzed by using the ANSYS. The results show that the test-bed of both the Revolution&Rotation’s Packed bed is a practical project in the Rotating packed bed’s development.

  2. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs.

    Science.gov (United States)

    Baghel, Shrawan; Cathcart, Helen; O'Reilly, Niall J

    2016-09-01

    Poor water solubility of many drugs has emerged as one of the major challenges in the pharmaceutical world. Polymer-based amorphous solid dispersions have been considered as the major advancement in overcoming limited aqueous solubility and oral absorption issues. The principle drawback of this approach is that they can lack necessary stability and revert to the crystalline form on storage. Significant upfront development is, therefore, required to generate stable amorphous formulations. A thorough understanding of the processes occurring at a molecular level is imperative for the rational design of amorphous solid dispersion products. This review attempts to address the critical molecular and thermodynamic aspects governing the physicochemical properties of such systems. A brief introduction to Biopharmaceutical Classification System, solid dispersions, glass transition, and solubility advantage of amorphous drugs is provided. The objective of this review is to weigh the current understanding of solid dispersion chemistry and to critically review the theoretical, technical, and molecular aspects of solid dispersions (amorphization and crystallization) and potential advantage of polymers (stabilization and solubilization) as inert, hydrophilic, pharmaceutical carrier matrices. In addition, different preformulation tools for the rational selection of polymers, state-of-the-art techniques for preparation and characterization of polymeric amorphous solid dispersions, and drug supersaturation in gastric media are also discussed.

  3. Theoretical studies on the crystal structure, thermodynamic properties, detonation performance and thermal stability of cage-tetranitrotetraazabicyclooctane as a novel high energy density compound.

    Science.gov (United States)

    Zhao, Guo-zheng; Lu, Ming

    2013-01-01

    The B3LYP/6-31G (d) method of density functional theory (DFT) was used to study molecular geometry, electronic structure, infrared spectrum (IR) and thermodynamic properties. The heat of formation (HOF) and calculated density were estimated to evaluate the detonation properties using Kamlet-Jacobs equations. Thermal stability of 3,5,7,10,12,14,15,16-octanitro- 3,5,7,10,12,14,15,16-octaaza-heptacyclo[7.5.1.1(2,8).0(1,11).0(2,6).0(4,13).0(6,11)]hexadecane (cage-tetranitrotetraazabicyclooctane) was investigated by calculating the bond dissociation energy (BDE) at unrestricted B3LYP/6-31G (d) level. The calculated results show that the N-NO2 bond is a trigger bond during thermolysis initiation process. The crystal structure obtained by molecular mechanics (MM) methods belongs to Pna2(1) space group, with cell parameters a=12.840 Å, b=9.129 Å, c=14.346 Å, Z=6 and ρ=2.292 g·cm(-3). Both the detonation velocity of 9.96 km·s(-1) and the detonation pressure of 47.47 GPa are better than those of CL-20. According to the quantitative standard of energetics and stability, as a high energy density compound (HEDC), cage-tetranitrotetraazabicyclooctane essentially satisfies this requirement.

  4. A homoleptic, all-alkynyl-stabilized highly luminescent Au8Ag8 cluster with a single crystal X-ray structure.

    Science.gov (United States)

    Zhang, Rui; Zhao, Chongyang; Li, Xiumin; Zhang, Zongyao; Ai, Xicheng; Chen, Hui; Cao, Rui

    2016-08-09

    A homoleptic, all-alkynyl-stabilized [Au8Ag8(ArC[triple bond, length as m-dash]C)16] (1, Ar = 3,5-di-tert-butylphenyl) cluster was synthesized and characterized with a single crystal X-ray structure. Reactions of 3,5-di-tert-butyl-phenylacetylene with Ag(i) and Au(i) gave [Ag(ArC[triple bond, length as m-dash]C)]n and Au(PPh3)(ArC[triple bond, length as m-dash]C), respectively, where both have unusually high solubility in nonpolar organic solvents. In addition to drastically increased solubility, the two bulky tert-butyl substituents on the phenyl ring can confine the metal core to a certain size by preventing infinite aggregation of d(10) metals. This feature makes the isolation of an all-alkynyl-stabilized Au-Ag cluster possible. Complex 1 is intensely luminescent with a very high quantum yield of 0.67 in solution at room temperature. Theoretical studies offered valuable insights into the intriguing photophysical properties, and revealed the significant role of metal-alkynyl bond interactions and enhanced molecular rigidity provided by tert-butyl groups.

  5. Morphological stability of the atomically clean surface of silicon (100) crystals after microwave plasma-chemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Yafarov, R. K., E-mail: pirpc@yandex.ru; Shanygin, V. Ya. [Russian Academy of Sciences, Saratov Branch of the Kotel’nikov Institute of Radio Engineering and Electronics (Russian Federation)

    2016-01-15

    The morphological stability of atomically clean silicon (100) surface after low-energy microwave plasma-chemical etching in various plasma-forming media is studied. It is found that relaxation changes in the surface density and atomic bump heights after plasma processing in inert and chemically active media are multidirectional in character. After processing in a freon-14 medium, the free energy is minimized due to a decrease in the surface density of microbumps and an increase in their height. After argon-plasma processing, an insignificant increase in the bump density with a simultaneous decrease in bump heights is observed. The physicochemical processes causing these changes are considered.

  6. Protein packing interactions and polymorphy of chorismate lyase from E. Coli

    Science.gov (United States)

    Gallagher, Travis

    2001-11-01

    The enzyme chorismate lyase from E. coli crystallizes into three well characterized polymorphs in identical conditions. The Wild-type enzyme tends to aggregate, even in the presence of a reducing agent, and yields monoclinic crystals that grow in intricate clusters. Protein aggregation was largely eliminated by mutating the protein's two cysteines to serines. The double mutant retains full enzymatic activity and grows singly in two new forms: triclinic and orthorhombic. The triclinic crystals diffract to 0.9 Å resolution. A single-cysteine mutant that crystallizes in the orthorhombic form was used to determine the structure, enabling examination of the packing interactions at 2.0 Å resolution or better in all three forms. A novel system for labeling contacts is proposed, and relations between packing patterns and crystal properties are discussed. Diffraction resolution is found to correlate with coordination number and with the root-mean-square deviation from mean extent of the contacts. Implications for contact energies are considered.

  7. Synthesis and Crystal Structure of 1-(4-Nitrobenzyl-3-allyl-1H-benzo[d]imidazol-2(3H-one

    Directory of Open Access Journals (Sweden)

    Dounia Belaziz

    2013-01-01

    Full Text Available A functionalized benzimidazole, 1-(4-nitrobenzyl-3-allyl-1H-benzo[d]imidazol-2(3H-one, has been synthesized, and the crystal structure was determined and analyzed. This compound crystallizes in the monoclinic, space group P21/n (number 14 c with cell parameters, a=7.12148(8 Å, b=16.12035(17 Å, c=13.04169(17 Å, β=93.3043(11, V=1494.71(3 Å3, and Dcalc = 1.375 g/mm3. The solid state geometry is stabilized by intermolecular π–π interactions along with the van der Waals interactions which contribute to the stability of the crystal packing. Computational calculations have been used to properly understand the main intermolecular interactions present in the crystal.

  8. A Sr2+-metal-organic framework with high chemical stability: synthesis, crystal structure and photoluminescence property.

    Science.gov (United States)

    Jia, Yan-Yuan; Liu, Xiao-Ting; Wang, Wen-He; Zhang, Li-Zhu; Zhang, Ying-Hui; Bu, Xian-He

    2017-01-13

    Metal-organic frameworks (MOFs) are typically built by assembly of metal centres and organic linkers, and have emerged as promising crystalline materials in a variety of fields. However, the stability of MOFs is a key limitation for their practical applications. Herein, we report a novel Sr 2+: -MOF [Sr4(Tdada)2(H2O)3(DMF)2] (denoted as NKU- 105: , NKU = Nankai University; H4Tdada = 5,5'-((thiophene-2,5-dicar bonyl)bis(azanediyl))diisophthalic acid; DMF = N,N-dimethylformamide) featuring an open square channel of about 6 Å along the c-axis. Notably, NKU- 105: exhibits much outstanding chemical stability against common organic solvents, boiling water, acids and bases, relative to most MOF materials. Furthermore, NKU- 105: is an environment-friendly luminescent material with a bright cyan emission.This article is part of the themed issue 'Coordination polymers and metal-organic frameworks: materials by design'.

  9. Effects of Zn Content on Crystal Structure, Cytocompatibility, Antibacterial Activity, and Chemical Stability in Zn-Modified Calcium Silicate Coatings

    Science.gov (United States)

    Li, Kai; Yu, Jiangming; Xie, Youtao; Huang, Liping; Ye, Xiaojian; Zheng, Xuebin

    2013-08-01

    In our previous study, Zn-modified calcium silicate coatings possess not only excellent chemical stability but also well antibacterial activity. Still, effects of zinc content on these properties and cytocompatibility remain unclear. In this paper, two kinds of Zn-modified calcium silicate coatings (ZC0.3, ZC0.5) were fabricated on Ti-6Al-4V substrates via plasma spraying technology. X-ray diffraction results and transmission electron microscopy observations showed that the ZC0.5 coating was composed of pure hardystonite (Ca2ZnSi2O7) phase, while, besides Ca2ZnSi2O7 phase, the amorphous CaSiO3 phase was also detected in the ZC0.3 coating. Chemical stability in Tris-HCl buffer solution and antibacterial activity of the Zn-modified calcium silicate coatings increased with an increase in zinc content. In vitro cytocompatibility evaluation demonstrated that the proliferation and alkaline phosphatase activity and collagen type I (COLI) secretion of osteoblast-like MC3T3-E1 cells on Zn-modified coatings were significantly enhanced compared to the Zn-free coating and Ti-6Al-4V control, and no cytotoxicity appeared on Zn-modified coatings. The better antibacterial activity and the enhanced capability to promote MC3T3-E1 cells differentiation of Zn-modified coatings should be attributed to the slow and constant Zn2+ releasing from the coatings.

  10. FCC-HCP coexistence in dense thermo-responsive microgel crystals

    Science.gov (United States)

    Karthickeyan, D.; Joshi, R. G.; Tata, B. V. R.

    2017-06-01

    Analogous to hard-sphere suspensions, monodisperse thermo-responsive poly (N-isopropyl acrylamide) (PNIPAM) microgel particles beyond a volume fraction (ϕ) of 0.5 freeze into face centered cubic (FCC)-hexagonal close packed (HCP) coexistence under as prepared conditions and into an FCC structure upon annealing. We report here FCC-HCP coexistence to be stable in dense PNIPAM microgel crystals (ϕ > 0.74) with particles in their deswollen state (referred to as osmotically compressed microgel crystals) and the FCC structure with particles in their swollen state by performing annealing studies with different cooling rates. The structure of PNIPAM microgel crystals is characterized using static light scattering technique and UV-Visible spectroscopy and dynamics by dynamic light scattering (DLS). DLS studies reveal that the particle motion is diffusive at short times in crystals with ϕ 0.74. The observed sub-diffusive behavior at short times is due to the overlap (interpenetration) of the dangling polymer chains between the shells of neighbouring PNIPAM microgel particles. Overlap is found to disappear upon heating the crystals well above their melting temperature, Tm due to reduction in the particle size. Annealing studies confirm that the overlap of dangling polymer chains between the shells of neighbouring PNIPAM spheres is responsible for the stability of FCC-HCP coexistence observed in osmotically compressed PNIPAM microgel crystals. Results are discussed in the light of recent reports of stabilizing the HCP structure in hard sphere crystals by adding interacting polymer chains.

  11. Fast Searching in Packed Strings

    DEFF Research Database (Denmark)

    Bille, Philip

    2009-01-01

    Given strings P and Q the (exact) string matching problem is to find all positions of substrings in Q matching P. The classical Knuth-Morris-Pratt algorithm [SIAM J. Comput., 1977] solves the string matching problem in linear time which is optimal if we can only read one character at the time....... However, most strings are stored in a computer in a packed representation with several characters in a single word, giving us the opportunity to read multiple characters simultaneously. In this paper we study the worst-case complexity of string matching on strings given in packed representation. Let m...... algorithm using time O(n/log(sigma) n + m + occ) Here occ is the number of occurrences of P in Q. For m = o(n) this improves the O(n) bound...

  12. Characteristics of fluidized-packed beds

    Science.gov (United States)

    Gabor, J. D.; Mecham, W. J.

    1968-01-01

    Study of fluidized-packed bed includes investigation of heat transfer, solids-gas mixing, and elutriation characteristics. A fluidized-packed bed is a system involving the fluidization of small particles in the voids of a packed bed of larger nonfluidized particles.

  13. Packing Superballs from Codes and Algebraic Curves

    Institute of Scientific and Technical Information of China (English)

    Li LIU; Chao Ping XING

    2008-01-01

    In the present paper, we make use of codes with good parameters and algebraic curves over finite fields with many rational points to construct dense packings of superballs. It turns out that our packing density is quite reasonable. In particular, we improve some values for the best-known lower bounds on packing density.

  14. Complications of balloon packing in epistaxis

    NARCIS (Netherlands)

    Vermeeren, Lenka; Derks, Wynia; Fokkens, Wytske; Menger, Dirk Jan

    2015-01-01

    Although balloon packing appears to be efficient to control epistaxis, severe local complications can occur. We describe four patients with local lesions after balloon packing. Prolonged balloon packing can cause damage to nasal mucosa, septum and alar skin (nasal mucosa, the cartilaginous skeleton

  15. 7 CFR 51.1527 - Standard pack.

    Science.gov (United States)

    2010-01-01

    ... package. The number of plums or prunes in California peach boxes or lug boxes shall not vary more than 4... Standards for Grades of Fresh Plums and Prunes Standard Pack § 51.1527 Standard pack. (a) Packing. (1) All... plums or prunes in the top layer of any package shall be reasonably representative in quality and...

  16. Random packing of colloids and granular matter

    NARCIS (Netherlands)

    Wouterse, A.

    2008-01-01

    This thesis deals with the random packing of colloids and granular matter. A random packing is a stable disordered collection of touching particles, without long-range positional and orientational order. Experimental random packings of particles with the same shape but made of different materials sh

  17. Efficiency of various lattices from hard ball to soft ball: theoretical study of thermodynamic properties of dendrimer liquid crystal from atomistic simulation.

    Science.gov (United States)

    Li, Youyong; Lin, Shiang-Tai; Goddard, William A

    2004-02-18

    Self-assembled supramolecular organic liquid crystal structures at nanoscale have potential applications in molecular electronics, photonics, and porous nanomaterials. Most of these structures are formed by aggregation of soft spherical supramolecules, which have soft coronas and overlap each other in the packing process. Our main focus here is to study the possible packing mechanisms via molecular dynamics simulations at the atomistic level. We consider the relative stability of various lattices packed by the soft dendrimer balls, first synthesized and characterized by Percec et al. (J. Am. Chem. Soc. 1997, 119, 1539) with different packing methods. The dendrons, which form the soft dendrimer balls, have the character of a hard aromatic region from the point of the cone to the edge with C(12) alkane "hair". After the dendrons pack into a sphere, the core of the sphere has the hard aromatic groups, while the surface is covered with the C(12) alkane "hair". In our studies, we propose three ways to organize the hair on the balls, Smooth/Valentino balls, Sticky/Einstein balls, and Asymmetric/Punk balls, which lead to three different packing mechanisms, Slippery, Sticky, and Anisotropic, respectively. We carry out a series of molecular dynamics (MD) studies on three plausible crystal structures (A15, FCC, and BCC) as a function of density and analyze the MD based on the vibrational density of state (DoS) method to extract the enthalpy, entropy, and free energies of these systems. We find that anisotropic packed A15 is favored over FCC, BCC lattices. Our predicted X-ray intensities of the best structures are in excellent agreement with experiment. "Anisotropic ball packing" proposed here plays an intermediate role between the enthalpy-favored "disk packing" and entropy-favored "isotropic ball packing", which explains the phase transitions at different temperatures. Free energies of various lattices at different densities are essentially the same, indicating that the

  18. Packing defects into ordered structures

    DEFF Research Database (Denmark)

    Bechstein, R.; Kristoffersen, Henrik Høgh; Vilhelmsen, L.B.

    2012-01-01

    We have studied vicinal TiO2(110) surfaces by high-resolution scanning tunneling microscopy and density functional theory calculations. On TiO2 surfaces characterized by a high density of ⟨11̅ 1⟩ steps, scanning tunneling microscopy reveals a high density of oxygen-deficient strandlike adstructur...... because building material is available at step sites. The strands on TiO2(110) represent point defects that are densely packed into ordered adstructures....

  19. Structure of crystals of hard colloidal spheres

    Energy Technology Data Exchange (ETDEWEB)

    Pusey, P.N.; van Megen, W.; Bartlett, P.; Ackerson, B.J.; Rarity, J.G.; Underwood, S.M. (Royal Signals and Radar Establishment, Malvern, WR14 3PS, United Kingsom (GB) Department of Applied Physics, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia School of Chemistry, Bristol University, Bristol, BS8 1TS, United Kingdom Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078)

    1989-12-18

    We report light-scattering measurements of powder diffraction patterns of crystals of essentially hard colloidal spheres. These are consistent with structures formed by stacking close-packed planes of particles in a sequence of permitted lateral positions, {ital A},{ital B},{ital C}, which shows a high degree of randomness. Crystals grown slowly, while still containing many stacking faults, show a tendency towards face-centered-cubic packing: possible explanations for this observation are discussed.

  20. Colloidal Stability and Magnetic Field-Induced Ordering of Magnetorheological Fluids Studied with a Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Jaime Rodriguez-López

    2015-12-01

    Full Text Available This work proposes the use of quartz crystal microbalances (QCMs as a method to analyze and characterize magnetorheological (MR fluids. QCM devices are sensitive to changes in mass, surface interactions, and viscoelastic properties of the medium contacting its surface. These features make the QCM suitable to study MR fluids and their response to variable environmental conditions. MR fluids change their structure and viscoelastic properties under the action of an external magnetic field, this change being determined by the particle volume fraction, the magnetic field strength, and the presence of thixotropic agents among other factors. In this work, the measurement of the resonance parameters (resonance frequency and dissipation factor of a QCM are used to analyze the behavior of MR fluids in static conditions (that is, in the absence of external mechanical stresses. The influence of sedimentation under gravity and the application of magnetic fields on the shifts of resonance frequency and dissipation factor were measured and discussed in the frame of the coupled resonance produced by particles touching the QCM surface. Furthermore, the MR-fluid/QCM system has a great potential for the study of high-frequency contact mechanics because the translational and rotational stiffness of the link between the surface and the particles can be tuned by the magnetic field.

  1. Towards optimal packed string matching

    DEFF Research Database (Denmark)

    Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany

    2014-01-01

    In the packed string matching problem, it is assumed that each machine word can accommodate up to α characters, thus an n-character string occupies n/α memory words.(a) We extend the Crochemore–Perrin constant-space O(n)-time string-matching algorithm to run in optimal O(n/α) time and even in real......-time, achieving a factor α speedup over traditional algorithms that examine each character individually. Our macro-level algorithm only uses the standard AC0 instructions of the word-RAM model (i.e. no integer multiplication) plus two specialized micro-level AC0 word-size packed-string instructions. The main word...... matching work.(b) We also consider the complexity of the packed string matching problem in the classical word-RAM model in the absence of the specialized micro-level instructions wssm and wslm. We propose micro-level algorithms for the theoretically efficient emulation using parallel algorithms techniques...

  2. Diffusion in Jammed Particle Packs.

    Science.gov (United States)

    Bolintineanu, Dan S; Grest, Gary S; Lechman, Jeremy B; Silbert, Leonardo E

    2015-08-21

    Using random walk simulations we explore diffusive transport through monodisperse sphere packings over a range of packing fractions ϕ in the vicinity of the jamming transition at ϕ(c). Various diffusion properties are computed over several orders of magnitude in both time and packing pressure. Two well-separated regimes of normal "Fickian" diffusion, where the mean squared displacement is linear in time, are observed. The first corresponds to diffusion inside individual spheres, while the latter is the long-time bulk diffusion. The intermediate anomalous diffusion regime and the long-time value of the diffusion coefficient are both shown to be controlled by particle contacts, which in turn depend on proximity to ϕ(c). The time required to recover normal diffusion t* scales as (ϕ-ϕ(c))(-0.5) and the long-time diffusivity D(∞)∼(ϕ-ϕ(c))0.5, or D(∞)∼1/t*. It is shown that the distribution of mean first passage times associated with the escape of random walkers between neighboring particles controls both t* and D(∞) in the limit ϕ→ϕ(c).

  3. Improved Online Square-into-Square Packing

    OpenAIRE

    Brubach, Brian

    2014-01-01

    In this paper, we show an improved bound and new algorithm for the online square-into-square packing problem. This two-dimensional packing problem involves packing an online sequence of squares into a unit square container without any two squares overlapping. The goal is to find the largest area $\\alpha$ such that any set of squares with total area $\\alpha$ can be packed. We show an algorithm that can pack any set of squares with total area $\\alpha \\leq 3/8$ into a unit square in an online se...

  4. Crystal structure of gold hydride

    Energy Technology Data Exchange (ETDEWEB)

    Degtyareva, Valentina F., E-mail: degtyar@issp.ac.ru

    2015-10-05

    Highlights: • Volume expansion of metal hydrides is due to the increase in the s-band filling. • AuH structure is similar to that of Hg having one more s electron compared to Au. • Structure stability of both Hg and AuH is governed by the Hume-Rothery rule. - Abstract: A number of transition metal hydrides with close-packed metal sublattices of fcc or hcp structures with hydrogen in octahedral interstitial positions were obtained by the high-pressure-hydrogen technique described by Ponyatovskii et al. (1982). In this paper we consider volume increase of metals by hydrogenation and possible crystal structure of gold hydride in relation with the structure of mercury, the nearest neighbor of Au in the Periodic table. Suggested structure of AuH has a basic tetragonal body-centered cell that is very similar to the mercury structure Hg-t I 2. The reasons of stability for this structure are discussed within the model of Fermi sphere–Brillouin zone interactions.

  5. Growth and thermal stability of single crystal metastable semiconducting (GaSb)/sub 1-x/Ge/sub x/ films

    Energy Technology Data Exchange (ETDEWEB)

    Cadien, K.C.; Eltoukhy, A.H.; Greene, J.E.

    1981-01-01

    Epitaxial metastable (GaSb)/sub 1-x/)Ge/sub x/ alloys with compositions across the pseudobinary phase diagram have been grown on (100) GaAs substrates by multitarget rf sputtering. The maximum growth temperature T/sub s/ ranged from 490 to 520/sup 0/C depending on the alloy composition. An essential feature allowing the growth of these metastable materials was low energy ion bombardment of the growing film during deposition to enhance surface diffusion, promote mixing, and preferentially sputter incipient second phase precipitates. A phase map plotted as a function of T/sub s/ showed a very narrow transition region between metastable single phase alloys and equilibrium two phase structures. Annealing experiments indicated that the metastable films exhibit good high temperature stability and that they transform through a continuous series of GaSb-rich and Ge-rich phases in which the solute concentrations decrease until the equilibrium two phase alloy is obtained. While the calculated free energy difference between the single phase metastable and equilibrium states is approx. 18 MeV atom/sup -1/, the measured activation barrier for the transformation is approx. 3 eV. All films were p-type with room temperature hole concentrations varying from 10/sup 16/ to 10/sup 19/ cm/sup -3/ and mobilities between 10 and 720 cm/sup 2//V-s, depending on film composition.

  6. Adhesive loose packings of small dry particles

    Science.gov (United States)

    Liu, Wenwei; Li, Shuiqing; Baule, Adrian; Makse, Hernán A.

    We explore adhesive loose packings of dry small spherical particles of micrometer size using 3D discrete-element simulations with adhesive contact mechanics. A dimensionless adhesion parameter ($Ad$) successfully combines the effects of particle velocities, sizes and the work of adhesion, identifying a universal regime of adhesive packings for $Ad>1$. The structural properties of the packings in this regime are well described by an ensemble approach based on a coarse-grained volume function that includes correlations between bulk and contact spheres. Our theoretical and numerical results predict: (i) An equation of state for adhesive loose packings that appears as a continuation from the frictionless random close packing (RCP) point in the jamming phase diagram; (ii) The existence of a maximal loose packing point at the coordination number $Z=2$ and packing fraction $\\phi=1/2^{3}$. Our results highlight that adhesion leads to a universal packing regime at packing fractions much smaller than the random loose packing, which can be described within a statistical mechanical framework. We present a general phase diagram of jammed matter comprising frictionless, frictional, adhesive as well as non-spherical particles, providing a classification of packings in terms of their continuation from the spherical frictionless RCP.

  7. Trialkylphosphine-stabilized copper(I) gallium(III) phenylchalcogenolate complexes: crystal structures and generation of ternary semiconductors by thermolysis.

    Science.gov (United States)

    Kluge, Oliver; Krautscheid, Harald

    2012-06-18

    A series of organometallic trialkylphosphine-stabilized copper gallium phenylchalcogenolate complexes [(R(3)P)(m)Cu(n)Me(2-x)Ga(EPh)(n+x+1)] (R = Me, Et, (i)Pr, (t)Bu; E = S, Se, Te; x = 0, 1) has been prepared and structurally characterized by X-ray diffraction. From their molecular structures three groups of compounds can be distinguished: ionic compounds, ring systems, and cage structures. All these complexes contain one gallium atom bound to one or two methyl groups, whereas the number of copper atoms, and therefore the nuclearity of the complexes, is variable and depends mainly on size and amount of phosphine ligand used in synthesis. The Ga-E bonds are relatively rigid, in contrast to flexible Cu-E bonds. The lengths of the latter are controlled by the coordination number and steric influences. The Ga-E bond lengths depend systematically on the number of methyl groups bound to the gallium atom, with somewhat shorter bonds in monomethyl compounds compared to dimethyl compounds. Quantum chemical computations reproduce this trend and show furthermore that the rotation of one phenyl group around the Ga-E bond is a low energy process with two distinct minima, corresponding to two different conformations found experimentally. Mixtures of different types of chalcogen atoms on molecular scale are possible, and then ligand exchange reactions in solution lead to mixed site occupation. In thermogravimetric studies the complexes were converted into the ternary semiconductors CuGaE(2). The thermolysis reaction is completed at temperatures between 250 and 400 °C, typically with lower temperatures for the heavier chalcogens. Because of significant release of Me(3)Ga during the thermolysis process, and especially in case of copper excess in the precursor complexes, binary copper chalcogenides are obtained as additional thermolysis products. Quaternary semiconductors can be obtained from mixed chalcogen precursors.

  8. Electronic Origins of Anomalous Twin Boundary Energies in Hexagonal Close Packed Transition Metals

    OpenAIRE

    de Jong, M.; Kacher, J.; Sluiter, M.H.F.; L. Qi; Olmsted, D. L.; van de Walle, A.; Morris, J. W., Jr.; Minor, A. M.; Asta, M.

    2015-01-01

    Density-functional-theory calculations of twin-boundary energies in hexagonal close packed metals reveal anomalously low values for elemental Tc and Re, which can be lowered further by alloying with solutes that reduce the electron per atom ratio. The anomalous behavior is linked to atomic geometries in the interface similar to those observed in bulk tetrahedrally close packed phases. The results establish a link between twin-boundary energetics and the theory of bulk structural stability in ...

  9. A posteriori design of crystal contacts to improve the X-ray diffraction properties of a small RNA enzyme

    Energy Technology Data Exchange (ETDEWEB)

    MacElrevey, Celeste [Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642 (United States); Spitale, Robert C. [Department of Chemistry, Biological Chemistry Cluster, River Campus Box 270216, University of Rochester, Rochester, New York 14627-0216 (United States); Krucinska, Jolanta [Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642 (United States); Wedekind, Joseph E., E-mail: joseph.wedekind@rochester.edu [Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642 (United States); Department of Chemistry, Biological Chemistry Cluster, River Campus Box 270216, University of Rochester, Rochester, New York 14627-0216 (United States)

    2007-07-01

    Insertion of a dangling 5′-uracil and incorporation of synthetic linkers at the domain interface of a minimal hairpin ribozyme have been investigated as means of favorably influencing crystal packing. These modifications lead to changes in the ribozyme’s structural elements that mimic packing within a natural four-way helical junction, thereby providing an example of how knowledge-based design can be used to enhance the diffraction properties of a tertiarily folded RNA. The hairpin ribozyme is a small catalytic RNA comprising two helix–loop–helix domains linked by a four-way helical junction (4WJ). In its most basic form, each domain can be formed independently and reconstituted without a 4WJ to yield an active enzyme. The production of such minimal junctionless hairpin ribozymes is achievable by chemical synthesis, which has allowed structures to be determined for numerous nucleotide variants. However, abasic and other destabilizing core modifications hinder crystallization. This investigation describes the use of a dangling 5′-U to form an intermolecular U·U mismatch, as well as the use of synthetic linkers to tether the loop A and B domains, including (i) a three-carbon propyl linker (C3L) and (ii) a nine-atom triethylene glycol linker (S9L). Both linker constructs demonstrated similar enzymatic activity, but S9L constructs yielded crystals that diffracted to 2.65 Å resolution or better. In contrast, C3L variants diffracted to 3.35 Å and exhibited a 15 Å expansion of the c axis. Crystal packing of the C3L construct showed a paucity of 6{sub 1} contacts, which comprise numerous backbone to 2′-OH hydrogen bonds in junctionless and S9L complexes. Significantly, the crystal packing in minimal structures mimics stabilizing features observed in the 4WJ hairpin ribozyme structure. The results demonstrate how knowledge-based design can be used to improve diffraction and overcome otherwise destabilizing defects.

  10. Synthesis of Mixed Tail Triphenylene Discotic Liquid Crystals:Molecular Symmetry and Oxygen-Atom Effect on the Stabilization of Columnar Mesophases

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ke-Qing; HU Ping; WANG Bi-Qin; YU Wen-Hao; CHEN Hong-Mei; WANG Xin-Ling; SHIMIZU Yo

    2007-01-01

    Small change in chemical structure of discotic liquid crystals can cause big difference in their mesomorphism.Replacing of the alkoxy peripheral chains of triphenylene by oxygen-atom containing ester chains would result in novel mesomorphism. A series of mixed tail triphenylenes containing propoxyacetyloxy and alkoxy, abbreviated as C18H6(OCnH2n+1)3(OCOCH2OC3H7)3, n=4-8, and hexa(propyloxyacetyloxy)triphenylene, C18H6(OCOCH2OC3H7)6 were synthesized. Thermal gravimetry analysis (TGA) of three discogens showed that they had good thermal stability till 350℃. The mesomorphism was investigated through differential scanning calorimetry (DSC)and polarized optical microscopy (POM). The preliminary X-ray diffraction (XRD) results of one compound showed that it exhibited ordered hexagonal columnar (Colho) mesophase. These mixed tail triphenylene derivatives possessed much stable Colho mesophase and wider mesophase ranges than their hexaalkoxytriphenylene C18H6(OR)6 and hexaalkanoyloxytriphenylene C18H6(OCOR')6 analogues. The asymmetrical compounds 2,6,11-trialkoxy-3,7,10-tri(2-propyloxyacetyloxy)triphenylenes with n=5-8 displayed higher clearing points and wider temperature ranges than their symmetrical isomers 2,6,10-trialkoxy-3,7,11-tri(2-propyloxyacetyloxy)triphenylenes, while C18H6(OCOCH2OC3H7)6 had the highest clearing point due to the β-oxygen-atom effect.

  11. Stabilized soliton self-frequency shift and 0.1- PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core.

    Science.gov (United States)

    Liu, Bo-Wen; Hu, Ming-Lie; Fang, Xiao-Hui; Li, Yan-Feng; Chai, Lu; Wang, Ching-Yue; Tong, Weijun; Luo, Jie; Voronin, Aleksandr A; Zheltikov, Aleksei M

    2008-09-15

    Fiber dispersion and nonlinearity management strategy based on a modification of a photonic-crystal fiber (PCF) core with an air hole is shown to facilitate optimization of PCF components for a stable soliton frequency shift and subpetahertz sideband generation through four-wave mixing. Spectral recoil of an optical soliton by a red-shifted dispersive wave, generated through a soliton instability induced by high-order fiber dispersion, is shown to stabilize the soliton self-frequency shift in a highly nonlinear PCF with an air-hole-modified core relative to pump power variations. A fiber with a 2.3-microm-diameter core modified with a 0.9-microm-diameter air hole is used to demonstrate a robust soliton self-frequency shift of unamplified 50-fs Ti: sapphire laser pulses to a central wavelength of about 960 nm, which remains insensitive to variations in the pump pulse energy within the range from 60 to at least 100 pJ. In this regime of frequency shifting, intense high- and low-frequency branches of dispersive wave radiation are simultaneously observed in the spectrum of PCF output. An air-hole-modified-core PCF with appropriate dispersion and nonlinearity parameters is shown to provide efficient four-wave mixing, giving rise to Stokes and anti-Stokes sidebands whose frequency shift relative to the pump wavelength falls within the subpetahertz range, thus offering an attractive source for nonlinear Raman microspectroscopy.

  12. Study on the crystallization behaviour and thermal stability of glass-ceramics used as solid oxide fuel cell-sealing materials

    Science.gov (United States)

    Gödeke, Dieter; Dahlmann, Ulf

    Glass ceramics are commonly used as sealing materials for planar solid oxide fuel cells (SOFCs). The major requirements of stack and module builders for these materials are the stability of the coefficient of thermal expansion (CTE), excellent bonding (sticking) behaviour and the absence of volatile ingredients, which can lead to changes of the material properties and the sealing ability. SCHOTT Electronic Packaging has developed special glasses and glass-ceramics for various solid oxide fuel cell designs and operating temperatures. The glass compositions are based on the system MgO-Al 2O 3-BaO-SiO 2-B 2O 3. In this study the evaluation of the developed materials was done by high temperature aging tests for up to 1000 h, high temperature XRD-studies and Rietveld calculations, combined with scanning-electron microscope analysis. Samples of these aged samples were chemically analysed by XRD and wet chemical methods. Results show that after thermal aging of the glasses barium silicates accompanied by barium-magnesium silicates are the major crystalline phases of the glasses. The crystal phases remain stable during high temperature aging tests, indicating a low driving force of material change. The experimental results are compared to phase diagrams by phenomenological and thermochemical considerations.

  13. Paring Down HIV Env: Design and Crystal Structure of a Stabilized Inner Domain of HIV-1 gp120 Displaying a Major ADCC Target of the A32 Region.

    Science.gov (United States)

    Tolbert, William D; Gohain, Neelakshi; Veillette, Maxime; Chapleau, Jean-Philippe; Orlandi, Chiara; Visciano, Maria L; Ebadi, Maryam; DeVico, Anthony L; Fouts, Timothy R; Finzi, Andrés; Lewis, George K; Pazgier, Marzena

    2016-05-03

    Evidence supports a role of antibody-dependent cellular cytotoxicity (ADCC) toward transitional epitopes in the first and second constant (C1-C2) regions of gp120 (A32-like epitopes) in preventing HIV-1 infection and in vaccine-induced protection. Here, we describe the first successful attempt at isolating the inner domain (ID) of gp120 as an independent molecule that encapsulates the A32-like region within a minimal structural unit of the HIV-1 Env. Through structure-based design, we developed ID2, which consists of the ID expressed independently of the outer domain and stabilized in the CD4-bound conformation by an inter-layer disulfide bond. ID2 expresses C1-C2 epitopes in the context of CD4-triggered full-length gp120 but without any known neutralizing epitope present. Thus, ID2 represents a novel probe for the analysis and/or selective induction of antibody responses to the A32 epitope region. We also present the crystal structure of ID2 complexed with mAb A32, which defines its epitope.

  14. Understanding water: Molecular dynamics simulations of solubilized and crystallized myoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Wei Gu; Garcia, A.E.; Schoenborn, B.P. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Molecular dynamics simulations were performed on CO myoglobin to evaluate the stability of the bound water molecules as determined in a neutron diffraction analysis. The myoglobin structure derived from the neutron analysis provided the starting coordinate set used in the simulations. The simulations show that only a few water molecules are tightly bound to protein atoms, while most solvent molecules are labile, breaking and reforming hydrogen bonds. Comparison between myoglobin in solution and in a single crystal highlighted some of the packing effects on the solvent structure and shows that water solvent plays an indispensable role in protein dynamics and structural stability. The described observations explain some of the differences in the experimental results of protein hydration as observed in NMR, neutron and X-ray diffraction studies.

  15. The relationship between efficient packing and glass-forming ability in hard-sphere systems

    Science.gov (United States)

    Zhang, Kai

    2014-03-01

    When supercooled liquids are rapidly quenched at rates R exceeding a critical value Rc, they avoid crystallization and form amorphous solids, such as bulk metallic glasses (BMGs). However, engineering applications of BMGs are often limited by the high cost of the constituent elements and their small casting thickness. Thus, we seek to design particular alloys with controllable stoichiometry and maximal critical cooling rate Rc. We perform numerical simulations to compress binary hard-sphere mixtures into glasses as a function of the particle size ratio and stoichiometry. We measure the packing fraction and local structural order for each glass to determine the critical compression rate. We find that large packing fraction differences between the crystalline and amorphous states implies poor glass forming ability, whereas small packing fraction differences yield better glass-formers. In addition, we show that an abundance of icosahedral order in amorphous packings enhances the glass forming ability of the mixtures. NSF MRSEC DMR-1119826, DMR-1006537, CBET-0968013.

  16. Crystal structure of bis-(1-ethyl-pyridinium) dioxonium hexa-cyanidoferrate(II).

    Science.gov (United States)

    Tanaka, Rikako; Matsushita, Nobuyuki

    2017-02-01

    The title compound, (C7H10N)2(H3O)2[Fe(CN)6] or (Etpy)2(H3O)2[Fe(CN)6] (Etpy(+) is 1-ethyl-pyridinium), crystallizes in the space group Pnnm. The Fe(II) atom of the [Fe(CN)6](4-) anion lies on a site with site symmetry ..2/m, and has an octa-hedral coordination sphere defined by six cyanido ligands. Both the Etpy(+) and the oxonium cations are located on a mirror plane. In the crystal, electron-donor anions of [Fe(CN)6](4-) and electron-acceptor cations of Etpy(+) are each stacked parallel to the b axis, resulting in a columnar structure with segregated moieties. The crystal packing is stabilized by a three-dimensional O-H⋯N hydrogen-bonding network between the oxonium ions and the cyanide ligands of [Fe(CN)6](4-).

  17. Synthesis, Crystal Structure, and DFT Calculations of 1,3-Diisobutyl Thiourea

    Directory of Open Access Journals (Sweden)

    Ataf A. Altaf

    2015-01-01

    Full Text Available 1,3-Diisobutyl thiourea was synthesized and characterized by single crystal X-ray diffraction. It gives a monoclinic (α = γ = 90 and β  ≠ 90 structure with the space group P21/c. The unit cell dimensions are a = 11.5131 (4 Å, b = 9.2355 (3 Å, c = 11.3093 (5 Å, α = 90°, β = 99.569° (2, γ = 90°, V = 1185.78 (8 Å3, and Z = 4. The crystal packing is stabilized by intermolecular (N–H⋯S hydrogen bonding in the molecules. The optimized geometry and Mullikan's charges of the said molecule calculated with the help of DFT using B3LYP-6-311G model support the crystal structure.

  18. The “Theoreticals” Pack

    CERN Document Server

    CERN Bulletin

    2011-01-01

    The Particle Zoo is a colourful set of hand-made soft toys representing the particles in the Standard Model and beyond. It includes a “theoreticals” pack where you can find yet undiscovered particles: the best-selling Higgs boson, the graviton, the tachyon, and dark matter. Supersymmetric particle soft toys are also available on demand. But what would happen to the zoo if Nature had prepared some unexpected surprises? Julie Peasley, the zookeeper, is ready to sew new smiling faces…   The "Theoreticals" pack in the Particle Zoo. There is only one place in the world where you can buy a smiling Higgs boson and it’s not at CERN, although this is where scientists hope to observe it. The blue star-shaped particle is the best seller of Julie Peasley’s Particle Zoo – a collection of tens of soft toys representing all sorts of particles, including composite and decaying particles.  Over the years Julie’s zoo ...

  19. Fast searching in packed strings

    DEFF Research Database (Denmark)

    Bille, Philip

    2011-01-01

    Given strings P and Q the (exact) string matching problem is to find all positions of substrings in Q matching P. The classical Knuth–Morris–Pratt algorithm [SIAM J. Comput. 6 (2) (1977) 323–350] solves the string matching problem in linear time which is optimal if we can only read one character...... at the time. However, most strings are stored in a computer in a packed representation with several characters in a single word, giving us the opportunity to read multiple characters simultaneously. In this paper we study the worst-case complexity of string matching on strings given in packed representation....... Let m⩽n be the lengths P and Q, respectively, and let σ denote the size of the alphabet. On a standard unit-cost word-RAM with logarithmic word size we present an algorithm using timeO(nlogσn+m+occ). Here occ is the number of occurrences of P in Q. For m=o(n) this improves the O(n) bound of the Knuth...

  20. Effect of stabilizer on optical and structural properties of MgO thin films prepared by sol–gel method

    Indian Academy of Sciences (India)

    Z Bazhan; F E Ghodsi; J Mazloom

    2013-10-01

    The effects of monoethanolamine (MEA) and acetylacetone (ACAC) addition as stabilizer on the crystallization behaviour, morphology and optical properties of magnesium oxide were investigated using thermogravimetry (TG/DTG), X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Visible, photoluminescence (PL) and Fourier transform infrared (FTIR) spectroscopy. Stabilizer addition reduces transparency of the films. MgO films prepared at 500 °C showed weak orientation of (200). However, the films prepared by addition of stabilizer are amorphous. MgO powders were prepared for exhibiting the structural properties. The patterns of MgO powders showed a preferred orientation of (200). The addition of stabilizer causes a reduction in grain size. SEM micrographs show that a homogenous and crack-free film can be prepared at 500 °C and addition of stabilizer causes an increase in packing density.

  1. Quantum Dot/Liquid Crystal Nanocomposites in Photonic Devices

    Directory of Open Access Journals (Sweden)

    Andrea L. Rodarte

    2015-07-01

    Full Text Available Quantum dot/liquid crystal nano-composites are promising new materials for a variety of applications in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however, we need to control and stabilize nano-particle dispersion in different liquid crystal host phases and understand how the particles behave in an anisotropic fluid. An ideal system will allow for the controlled assembly of either well-defined nano-particle clusters or a uniform particle distribution. In this paper, we investigate mesogen-functionalized quantum dots for dispersion in cholesteric liquid crystal. These nanoparticles are known to assemble into dense stable packings in the nematic phase, and such structures, when localized in the liquid crystal defects, can potentially enhance the coupling between particles and a cholesteric cavity. Controlling the dispersion and assembly of quantum dots using mesogenic surface ligands, we demonstrate how resonant fluid photonic cavities can result from the co-assembly of luminescent nanoparticles in the presence of cholesteric liquid crystalline ordering.

  2. The Maximum Resource Bin Packing Problem

    DEFF Research Database (Denmark)

    Boyar, J.; Epstein, L.; Favrholdt, L.M.

    2006-01-01

    algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of classical bin packing. For the on-line variant, we define maximum resource variants of classical and dual bin packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing, we find......Usually, for bin packing problems, we try to minimize the number of bins used or in the case of the dual bin packing problem, maximize the number or total size of accepted items. This paper presents results for the opposite problems, where we would like to maximize the number of bins used...... the competitive ratio of various natural algorithms. We study the general versions of the problems as well as the parameterized versions where there is an upper bound of on the item sizes, for some integer k....

  3. L1-norm packings from function fields

    Institute of Scientific and Technical Information of China (English)

    LI Hongli

    2005-01-01

    In this paper, we study some packings in a cube, namely, how to pack n points in a cube so as to maximize the minimal distance. The distance is induced by the L1-norm which is analogous to the Hamming distance in coding theory. Two constructions with reasonable parameters are obtained, by using some results from a function field including divisor class group, narrow ray class group, and so on. We also present some asymptotic results of the two packings.

  4. Circle Packing for Origami Design Is Hard

    CERN Document Server

    Demaine, Erik D; Lang, Robert J

    2010-01-01

    We show that deciding whether a given set of circles can be packed into a rectangle, an equilateral triangle, or a unit square are NP-hard problems, settling the complexity of these natural packing problems. On the positive side, we show that any set of circles of total area 1 can be packed into a square of size 8/pi=2.546... These results are motivated by problems arising in the context of origami design.

  5. Crystal structures of the all-cysteinyl-coordinated D14C variant of Pyrococcus furiosus ferredoxin: [4Fe–4S] ↔ [3Fe–4S] cluster conversion

    DEFF Research Database (Denmark)

    Løvgreen, Monika Nøhr; Martic, Maja; Windahl, Michael S.

    2011-01-01

    molecules have different crystal packing and intramolecular disulfide bond conformation. The crystal packing reveals a β-sheet interaction between A molecules in adjacent asymmetric units, whereas B molecules are packed as monomers in a less rigid position next to the A–A extended β-sheet dimers...

  6. Random close packing of polydisperse jammed emulsions

    Science.gov (United States)

    Brujic, Jasna

    2010-03-01

    Packing problems are everywhere, ranging from oil extraction through porous rocks to grain storage in silos and the compaction of pharmaceutical powders into tablets. At a given density, particulate systems pack into a mechanically stable and amorphous jammed state. Theoretical frameworks have proposed a connection between this jammed state and the glass transition, a thermodynamics of jamming, as well as geometric modeling of random packings. Nevertheless, a simple underlying mechanism for the random assembly of athermal particles, analogous to crystalline ordering, remains unknown. Here we use 3D measurements of polydisperse packings of emulsion droplets to build a simple statistical model in which the complexity of the global packing is distilled into a local stochastic process. From the perspective of a single particle the packing problem is reduced to the random formation of nearest neighbors, followed by a choice of contacts among them. The two key parameters in the model, the available space around a particle and the ratio of contacts to neighbors, are directly obtained from experiments. Remarkably, we demonstrate that this ``granocentric'' view captures the properties of the polydisperse emulsion packing, ranging from the microscopic distributions of nearest neighbors and contacts to local density fluctuations and all the way to the global packing density. Further applications to monodisperse and bidisperse systems quantitatively agree with previously measured trends in global density. This model therefore reveals a general principle of organization for random packing and lays the foundations for a theory of jammed matter.

  7. Random packing of spheres in Menger sponge.

    Science.gov (United States)

    Cieśla, Michał; Barbasz, Jakub

    2013-06-07

    Random packing of spheres inside fractal collectors of dimension 2 algorithm. The paper focuses mainly on the measurement of random packing saturation limit. Additionally, scaling properties of density autocorrelations in the obtained packing are analyzed. The RSA kinetics coefficients are also measured. Obtained results allow to test phenomenological relation between random packing saturation density and collector dimension. Additionally, performed simulations together with previously obtained results confirm that, in general, the known dimensional relations are obeyed by systems having non-integer dimension, at least for d < 3.

  8. SPECTRUM OF DIRECTED KIRKMAN PACKING DESIGNS

    Institute of Scientific and Technical Information of China (English)

    ZhangYan; DuBeiliang

    2003-01-01

    The problem studied in this article is the directed Kirkman packing, the resolvable directed packing which requires all blocks to be of size three except that ,each resolution class should contain either one block of size two(when v=2(mod 3)) or one block of size four (when v=l (mod 3)). A directed Kirkman packing design DKPD(v) is a resolvable directed packing of a v-set by the maximum possible number of resolution classes of this type. This article investigates the spectrum of DKPD(v) and it is found that it contains all positive integers v≥3 and v≠5,6.

  9. Preperitoneal pelvic packing: Technique and outcomes.

    Science.gov (United States)

    Filiberto, Dina M; Fox, Adam D

    2016-09-01

    Significant pelvic ring fractures are usually secondary to high-energy trauma, and when associated with other life-threatening injuries and hemodynamic instability, result in high mortality rates ranging from 40 to 60%. The major cause of death during the first 24 h after pelvic trauma is attributed to acute blood loss, with later mortality secondary to multisystem organ failure. In a majority of patients, the source of pelvic bleeding is from disruption of the presacral venous plexus and bony fracture sites, while arterial injury is present in only 10-15%. The optimal management algorithm for hemodynamically unstable patients with pelvic fractures remains controversial. The principles of care center on resuscitation, external stabilization of the pelvis, and hemorrhage control with angiography and embolization (AE) and/or preperitoneal pelvic packing (PPP). AE is effective in controlling arterial bleeding and its role in the management of hemodynamically unstable patients with pelvic fractures is supported by the EAST guidelines. However, since most patients suffer from venous bleeding, PPP can be an alternate life saving technique to control hemorrhage, especially if AE is not immediately available. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  10. Crystal growth, differential gas adsorption, high thermal stability, and reversible coordination of two new barium-organic frameworks, Ba(SBA)(DMF){sub 4} and Ba{sub 2}(BTEC)(H{sub 2}O)

    Energy Technology Data Exchange (ETDEWEB)

    Halake, Shobha; Ok, Kang Min, E-mail: kmok@cau.ac.kr

    2015-11-15

    Single crystals of two barium-organic framework materials, Ba(SBA)(DMF){sub 4} (CAUMOF-15) and Ba{sub 2}(BTEC)(H{sub 2}O) (CAUMOF-16), have been grown through solvothermal reactions (H{sub 2}SBA=4,4′-sulfonyldibenzoic acid and H{sub 4}BTEC=1,2,4,5-benzenetetracarboxylic acid). The crystal structures of the reported frameworks have been determined by single-crystal X-ray diffraction. The materials have been fully characterized by powder X-ray diffraction (PXRD), elemental analyses, Infrared (IR) spectroscopy, and thermogravimetric analyses (TGA). CAUMOF-15 reveals a three-dimensional open-framework that comprises of an inorganic motif with one-dimensional chains and the SBA linkers. CAUMOF-16 shows another three-dimensional backbone consisting of layers of edge-shared BaO{sub 9} and BaO{sub 10} polyhedra, and BTEC pillars. Both of the 3D frameworks exhibit relatively high thermal stabilities. The PXRD and IR spectral data confirm that CAUMOF-15 and CAUMOF-16 reveal reversible coordinations of the respective solvent molecules, DMF and H{sub 2}O. Gas adsorption properties towards nitrogen, hydrogen, and carbon dioxide have been also investigated. - Graphical abstract: Crystals of two new barium-organic frameworks, Ba(SBA)(DMF){sub 4} and Ba{sub 2}(BTEC)(H{sub 2}O), exhibiting a differential gas adsorption, a high thermal stability, and a reversible coordination of solvent molecules have been grown. - Highlights: • Crystals of two new 3D Ba-MOFs are grown. • The two Ba-MOFs reveal very high thermal stabilities up to ca. 400 °C. • Ba(SBA)(DMF){sub 4} exhibits differential gas adsorption properties. • The two Ba-MOFs show reversible coordination of the solvent molecules.

  11. Minimally packed phases in holography

    CERN Document Server

    Donos, Aristomenis

    2015-01-01

    We numerically construct asymptotically AdS black brane solutions of $D=4$ Einstein-Maxwell theory coupled to a pseudoscalar. The solutions are holographically dual to $d=3$ CFTs held at constant chemical potential and magnetic field that spontaneously break translation invariance leading to the spontaneous formation of abelian and momentum magnetisation currents flowing around the plaquettes of a periodic Bravais lattice. We analyse the three-dimensional moduli space of lattice solutions, which are generically oblique, and show that the free energy is minimised by the triangular lattice, associated with minimal packing of circles in the plane. The triangular structure persists at low temperatures indicating the existence of novel crystalline ground states.

  12. Confined disordered strictly jammed binary sphere packings

    Science.gov (United States)

    Chen, D.; Torquato, S.

    2015-12-01

    Disordered jammed packings under confinement have received considerably less attention than their bulk counterparts and yet arise in a variety of practical situations. In this work, we study binary sphere packings that are confined between two parallel hard planes and generalize the Torquato-Jiao (TJ) sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010), 10.1103/PhysRevE.82.061302] to obtain putative maximally random jammed (MRJ) packings that are exactly isostatic with high fidelity over a large range of plane separation distances H , small to large sphere radius ratio α , and small sphere relative concentration x . We find that packing characteristics can be substantially different from their bulk analogs, which is due to what we term "confinement frustration." Rattlers in confined packings are generally more prevalent than those in their bulk counterparts. We observe that packing fraction, rattler fraction, and degree of disorder of MRJ packings generally increase with H , though exceptions exist. Discontinuities in the packing characteristics as H varies in the vicinity of certain values of H are due to associated discontinuous transitions between different jammed states. When the plane separation distance is on the order of two large-sphere diameters or less, the packings exhibit salient two-dimensional features; when the plane separation distance exceeds about 30 large-sphere diameters, the packings approach three-dimensional bulk packings. As the size contrast increases (as α decreases), the rattler fraction dramatically increases due to what we call "size-disparity" frustration. We find that at intermediate α and when x is about 0.5 (50-50 mixture), the disorder of packings is maximized, as measured by an order metric ψ that is based on the number density fluctuations in the direction perpendicular to the hard walls. We also apply the local volume-fraction variance στ2(R ) to characterize confined packings and find that these

  13. Particle-size distribution and packing fraction of geometric random packings

    NARCIS (Netherlands)

    Brouwers, H.J.H.

    2006-01-01

    This paper addresses the geometric random packing and void fraction of polydisperse particles. It is demonstrated that the bimodal packing can be transformed into a continuous particle-size distribution of the power law type. It follows that a maximum packing fraction of particles is obtained when t

  14. Development of an effective valve packing program

    Energy Technology Data Exchange (ETDEWEB)

    Hart, K.A.

    1996-12-01

    Current data now shows that graphite valve packing installed within the guidance of a controlled program produces not only reliable stem sealing but predictable running loads. By utilizing recent technological developments in valve performance monitoring for both MOV`s and AOV`s, valve packing performance can be enhanced while reducing maintenance costs. Once known, values are established for acceptable valve packing loads, the measurement of actual valve running loads via the current MOV/AOV diagnostic techniques can provide indication of future valve stem sealing problems, improper valve packing installation or identify the opportunity for valve packing program improvements. At times the full benefit of these advances in material and predictive technology remain under utilized due to simple past misconceptions associated with valve packing. This paper will explore the basis for these misconceptions, provide general insight into the current understanding of valve packing and demonstrate how with this new understanding and current valve diagnostic equipment the key aspects required to develop an effective, quality valve packing program fit together. The cost and operational benefits provided by this approach can be significant impact by the: elimination of periodic valve repacking, reduction of maintenance costs, benefits of leak-free valve operation, justification for reduced Post Maintenance Test Requirements, reduced radiation exposure, improved plant appearance.

  15. On maximum cycle packings in polyhedral graphs

    Directory of Open Access Journals (Sweden)

    Peter Recht

    2014-04-01

    Full Text Available This paper addresses upper and lower bounds for the cardinality of a maximum vertex-/edge-disjoint cycle packing in a polyhedral graph G. Bounds on the cardinality of such packings are provided, that depend on the size, the order or the number of faces of G, respectively. Polyhedral graphs are constructed, that attain these bounds.

  16. BIPP (BISMUTH IODINE PARAFFINE PASTE PACK REVISITED

    Directory of Open Access Journals (Sweden)

    Balasubramanian Thiagarajan

    2011-09-01

    Full Text Available This review article takes a new look at the use of BIPP pack following nasal and ear surgeries. It lists the advantages and pitfalls of using this packing material. Pubmed search revealed very little material on this topic hence I compiled existing data to bring out an article.

  17. Meromorphic Vector Fields and Circle Packings

    DEFF Research Database (Denmark)

    Dias, Kealey

    to structurally stable vector fields, there is an underlying dynamically defined triangulation of the plane. Circle packings are a means to realize such a given combinatorial structure. About 20 years ago, W. Thurston suggested applying circle packings to obtain approximations to Riemann mappings. This gave rise...

  18. Improved lower bound for online strip packing

    NARCIS (Netherlands)

    Harren, Rolf; Kern, Walter

    2012-01-01

    In the two-dimensional strip packing problem a number of rectangles have to be packed without rotation or overlap into a strip such that the height of the strip used is minimal. The width of the rectangles is bounded by 1 and the strip has width 1 and infinite height. We study the online version of

  19. 7 CFR 29.1048 - Packing.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Packing. 29.1048 Section 29.1048 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1048 Packing. A lot of tobacco consisting of a number of packages submitted as...

  20. 7 CFR 29.6031 - Packing.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Packing. 29.6031 Section 29.6031 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6031 Packing. A lot of tobacco consisting of a number of...

  1. 7 CFR 29.3538 - Packing.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Packing. 29.3538 Section 29.3538 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3538 Packing. A lot of tobacco consisting of a number of packages submitted as...

  2. Difference packing arrays and systematic authentication codes

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    In this paper, a type of combinatorial design (called difference packing array)is proposed and used to give a construction of systematic authentication codes. Taking advantage of this construction, some new series of systematic authentication codes are obtainable in terms of existing difference packing arrays.

  3. 7 CFR 29.2541 - Packing.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Packing. 29.2541 Section 29.2541 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2541 Packing. A lot of tobacco consisting...

  4. 7 CFR 29.3048 - Packing.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Packing. 29.3048 Section 29.3048 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Packing. A lot of tobacco consisting of a number of packages submitted as one definite unit for...

  5. 7 CFR 29.2289 - Packing.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Packing. 29.2289 Section 29.2289 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Packing. A lot of tobacco consisting of a number of packages submitted as one definite unit for...

  6. Pack formation in cycling and orienteering.

    Science.gov (United States)

    Ackland, G J; Butler, D

    2001-09-13

    In cycling and orienteering competitions, competitors can become bunched into packs, which may mask an individual's true ability. Here we model this process with a view to determining when competitors' times are determined more by others than by their own ability. Our results may prove useful in helping to stage events so that pack formation can be avoided.

  7. Monitoring three-dimensional packings in microgravity.

    NARCIS (Netherlands)

    Yu, Peidong; Frank-Richter, Stefan; Börngen, Alexander; Sperl, Matthias

    2014-01-01

    We present results from experiments with granular packings in three dimensions in microgravity as realized on parabolic flights. Two different techniques are employed to monitor the inside of the packings during compaction: (1) X-ray radiography is used to measure in transmission the integrated fluc

  8. On contact numbers in random rod packings

    NARCIS (Netherlands)

    Wouterse, A.; Luding, Stefan; Philipse, A.P.

    2009-01-01

    Random packings of non-spherical granular particles are simulated by combining mechanical contraction and molecular dynamics, to determine contact numbers as a function of density. Particle shapes are varied from spheres to thin rods. The observed contact numbers (and packing densities) agree well

  9. Cluster and constraint analysis in tetrahedron packings.

    Science.gov (United States)

    Jin, Weiwei; Lu, Peng; Liu, Lufeng; Li, Shuixiang

    2015-04-01

    The disordered packings of tetrahedra often show no obvious macroscopic orientational or positional order for a wide range of packing densities, and it has been found that the local order in particle clusters is the main order form of tetrahedron packings. Therefore, a cluster analysis is carried out to investigate the local structures and properties of tetrahedron packings in this work. We obtain a cluster distribution of differently sized clusters, and peaks are observed at two special clusters, i.e., dimer and wagon wheel. We then calculate the amounts of dimers and wagon wheels, which are observed to have linear or approximate linear correlations with packing density. Following our previous work, the amount of particles participating in dimers is used as an order metric to evaluate the order degree of the hierarchical packing structure of tetrahedra, and an order map is consequently depicted. Furthermore, a constraint analysis is performed to determine the isostatic or hyperstatic region in the order map. We employ a Monte Carlo algorithm to test jamming and then suggest a new maximally random jammed packing of hard tetrahedra from the order map with a packing density of 0.6337.

  10. 7 CFR 51.1217 - Standard pack.

    Science.gov (United States)

    2010-01-01

    ... be ring faced and tightly packed with sufficient bulge to prevent any appreciable movement of the... the box. (d) Peaches packed in other type boxes such as wire-bound boxes and fiber-board boxes may be... than 10 percent of the packages in any lot may not meet these requirements. (i) “Well filled”...

  11. Tuning the crystal polymorphs of organic semiconductor towards high performance organic transistors (Conference Presentation)

    Science.gov (United States)

    Zhen, Yonggang; He, Ping; Yi, Yuanping; Hu, Wenping

    2016-11-01

    Generally, the differences in crystal polymorph exhibit different narrow band structures, electron-phonon coupling, optoelectronic characteristics and charge transport properties, thus leading to different device performances of organic semiconductors for application in organic field-effect transistors (OFETs). Nowadays it still remains a big challenge to control organic crystal polymorph because the slight non-directional intermolecular interactions lead to the very small differences instructure and energy of cystal phases with several alternative packing arrangements. Therefore, the control of the crystal polymorphism towards high device performance has become a crucial issue in the field of organic semiconductors. Thienoacenes have been intensively investigated as very promising organic semiconductors with high stability and superior mobility for OFETs in the last decade. However, scare studies focused on the crystal polymorph of thienoacenes. Herein, we report the controllable growth of different crystal phases of dihexyl-substituted dibenzo[d,d']thieno[3,2-b;4,5-b']dithiophene (C6-DBTDT), which was synthesized in a new, facile and efficient method. Furthermore, OFETs based on microribbon-shaped β phase crystals showed the hole mobility up to 18.9 cm2 V-1 s-1, which is one of the highest value for p-type organic semiconductors measured under ambient conditions, while platelet-shaped α phase crystals displayed the lower hole mobility of 8.5 cm2 V-1 s-1. We clearly demonstrated that the selective growth of different crystal polymorph for C6-DBTDT can be achieved by using different substrate and solvents. The simple drop-cast fabrication with controllable crystal phase and air operation stability would open the possibility of thienoacene derivatives in the construction of micro- and nanoelectronics.

  12. High-temperature separation with polymer-coated fiber in packed capillary gas chromatography.

    Science.gov (United States)

    Saito, Yoshihiro; Ogawa, Mitsuhiro; Imaizumi, Motohiro; Ban, Kazuhiro; Abe, Akira; Takeichi, Tsutomu; Wada, Hiroo; Jinno, Kiyokatsu

    2005-06-01

    High-temperature gas chromatographic separation of several synthetic polymer mixtures with Dexsil-coated fiber-packed columns was studied. A bundle of heat-resistant filaments, Zylon, was longitudinally packed into a short metal capillary, followed by the conventional coating process with Dexsil 300 material. Prior to the packing process the metal capillary was deactivated by the formation of a silica layer. The typical size of the resulting column was 0.3-mm i.d., 0.5-mm o.d., 1-m length, and packed with about 170 filaments of the Dexsil-coated Zylon. The column temperature could be elevated up to 450 degrees C owing to the good thermal stability of the fiber, Dexsil coating, and metal capillary; furthermore, this allowed the separation of low-volatile compounds to be studied.

  13. 7 CFR 51.2840 - Export packing requirements.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Export packing requirements. 51.2840 Section 51.2840...) Export Packing Requirements § 51.2840 Export packing requirements. Onions specified as meeting Export Packing Requirements shall be packed in containers having a net capacity of 25 kilograms (approximately...

  14. Connection between the packing efficiency of binary hard spheres and the glass-forming ability of bulk metallic glasses

    Science.gov (United States)

    Zhang, Kai; Smith, W. Wendell; Wang, Minglei; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D.; O'Hern, Corey S.

    2014-09-01

    We perform molecular dynamics simulations to compress binary hard spheres into jammed packings as a function of the compression rate R, size ratio α, and number fraction xS of small particles to determine the connection between the glass-forming ability (GFA) and packing efficiency in bulk metallic glasses (BMGs). We define the GFA by measuring the critical compression rate Rc, below which jammed hard-sphere packings begin to form "random crystal" structures with defects. We find that for systems with α ≳0.8 that do not demix, Rc decreases strongly with ΔϕJ, as Rc˜exp(-1/ΔϕJ2), where ΔϕJ is the difference between the average packing fraction of the amorphous packings and random crystal structures at Rc. Systems with α ≲0.8 partially demix, which promotes crystallization, but we still find a strong correlation between Rc and ΔϕJ. We show that known metal-metal BMGs occur in the regions of the α and xS parameter space with the lowest values of Rc for binary hard spheres. Our results emphasize that maximizing GFA in binary systems involves two competing effects: minimizing α to increase packing efficiency, while maximizing α to prevent demixing.

  15. Connection between the packing efficiency of binary hard spheres and the glass-forming ability of bulk metallic glasses.

    Science.gov (United States)

    Zhang, Kai; Smith, W Wendell; Wang, Minglei; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D; O'Hern, Corey S

    2014-09-01

    We perform molecular dynamics simulations to compress binary hard spheres into jammed packings as a function of the compression rate R, size ratio α, and number fraction x(S) of small particles to determine the connection between the glass-forming ability (GFA) and packing efficiency in bulk metallic glasses (BMGs). We define the GFA by measuring the critical compression rate R(c), below which jammed hard-sphere packings begin to form "random crystal" structures with defects. We find that for systems with α≳0.8 that do not demix, R(c) decreases strongly with Δϕ(J), as R(c)∼exp(-1/Δϕ(J)(2)), where Δϕ(J) is the difference between the average packing fraction of the amorphous packings and random crystal structures at R(c). Systems with α≲0.8 partially demix, which promotes crystallization, but we still find a strong correlation between R(c) and Δϕ(J). We show that known metal-metal BMGs occur in the regions of the α and x(S) parameter space with the lowest values of R(c) for binary hard spheres. Our results emphasize that maximizing GFA in binary systems involves two competing effects: minimizing α to increase packing efficiency, while maximizing α to prevent demixing.

  16. Structural Elucidation of α-Cyclodextrin-Succinic Acid Pseudo Dodecahydrate: Expanding the Packing Types of α-Cyclodextrin Inclusion Complexes

    Directory of Open Access Journals (Sweden)

    Sofiane Saouane

    2015-12-01

    Full Text Available This paper reports a new packing type of α-cyclodextrin inclusion complexes, obtained here with succinic acid under low-temperature crystallization conditions. The structure of the 1:1 complex is characterized by heavy disorder of the guest, the solvent, and part of the host. The crystal packing belongs to the known channel-type structure; the basic structural unit is composed of cyclodextrin trimers, as opposed to the known isolated molecular or dimeric constructs, packed along the c-axis. Each trimer is made of crystallographically independent molecules assembled in a stacked vase-like cluster. A multi-temperature single-crystal X-ray diffraction analysis reveals the presence of dynamic disorder.

  17. Random-close packing limits for monodisperse and polydisperse hard spheres.

    Science.gov (United States)

    Baranau, Vasili; Tallarek, Ulrich

    2014-06-07

    We investigate how the densities of inherent structures, which we refer to as the closest jammed configurations, are distributed for packings of 10(4) frictionless hard spheres. A computational algorithm is introduced to generate closest jammed configurations and determine corresponding densities. Closest jamming densities for monodisperse packings generated with high compression rates using Lubachevsky-Stillinger and force-biased algorithms are distributed in a narrow density range from φ = 0.634-0.636 to φ≈ 0.64; closest jamming densities for monodisperse packings generated with low compression rates converge to φ≈ 0.65 and grow rapidly when crystallization starts with very low compression rates. We interpret φ≈ 0.64 as the random-close packing (RCP) limit and φ≈ 0.65 as a lower bound of the glass close packing (GCP) limit, whereas φ = 0.634-0.636 is attributed to another characteristic (lowest typical, LT) density φLT. The three characteristic densities φLT, φRCP, and φGCP are determined for polydisperse packings with log-normal sphere radii distributions.

  18. Erythrocyte stability, membrane protective and haematological ...

    African Journals Online (AJOL)

    Erythrocyte stability, membrane protective and haematological activities of Newbouldia ... The high prevalence rate of diabetes mellitus (DM) in the developing world and its ... It dose-dependently decreased the packed cell volume (PCV) from ...

  19. Hawking Colloquium Packed CERN Auditoriums

    CERN Multimedia

    2006-01-01

    Stephen Hawking's week long visit to CERN included an 'exceptional CERN colloquium' which filled six auditoriums. Stephen Hawking during his visit to the ATLAS experiment. Stephen Hawking, Lucasian Professor of Cambridge University, visited the Theory Unit of the Physics Department from 24 September to 1 October 2006. As part of his visit, he gave two lectures in the main auditorium - a theoretical seminar on 'The Semi-Classical Birth of The Universe', attended by about 120 specialists; and a colloquium titled 'The Origin of The Universe'. As a key public figure in theoretical physics, his presence was eagerly awaited on both occasions. Those who wanted to attend the colloquium had to arrive early and be equipped with plenty of patience. An hour before it was due to begin, the 400 capacity of the main auditorium was already full. The lecture, simultaneously broadcast to five other fully packed CERN auditoriums, was attended by an estimated total of 850. Stephen Hawking attracted a large CERN crowd, filling ...

  20. Properties and Mechanism of CFBC Fly Ash-cement based Stabilizers for Lake Sludge

    Institute of Scientific and Technical Information of China (English)

    TANG Hua; LIXiangguo; LI Menglei; SONG Liuqing; WU Zhenjun; XU Haixing

    2012-01-01

    Circulating fluidized bed combustion (CFBC) fly ash was mixed with cement or lime at a different ratio as a stabilizer to stabilize lake sludge.In order to understand the influences of stabilizers on the lake sludge properties,tests unconfined compressive strength,water stability and SEM observation were performed.The experimental results show that with the increase of the curing time,the strength of all the stabilized specimens increase,especially the samples containing cement.The strength of the specimens is decreased with the increasing of the CFBC fly ash/cement ratio,the optimum ratio between CFBC fly ash and cement is 2:3.The water stability of CFBC fly ash-cement based stabilizers is higher than those of cement and lime.Moreover,the lake sludge stabilization mechanism of CFBC fly ash-cement based stabilizers includes gelation and filling of the hydration products,i e,C-S-H gel and the AFt crystal,which act as benders to solidify those particles together and fill in the packing void of the aggregates.

  1. SOLUTION CRYSTALLIZATION OF METALLOCENE SHORT CHAIN BRANCHED POLYETHYLENE: MORPHOLOGY AND MECHANISM

    Institute of Scientific and Technical Information of China (English)

    Qiang Fu; Rong-ni Du; Fang-Chyou Chiu

    2000-01-01

    Solution crystallization of metallocene short chain branched polyethylene (SCBPE) was carried out and very nice single crystals were obtained. Compared with single crystals grown from linear polyethylene, SCBPE single crystals are dirty due to intermolecular heterogeneity The crystal morphology changes with crystallization temperatures. Lozenge, truncated lozenge, hexagonal, rounded and elongated crystal morphologies have been found at much lower crystallization temperature than in linear polyethylene. The electron diffraction shows there is a possibility that the single crystals may have hexagonal packing in a crystallization temperature range. The lateral habits of single crystal are discussed based on roughening theories.

  2. A method for dense packing discovery

    CERN Document Server

    Kallus, Yoav; Gravel, Simon

    2010-01-01

    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting de novo (from-scratch) searches for dense packings becomes crucial. In this paper, we use the divide and concur framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit cell parameters with the other packing variables in the definition of the configuration space. The method we present led to improvements in the densest-known tetrahedron packing which are reported in [arXiv:0910.5226]. Here, we use the method to reproduce the densest known lattice sphere packings and the best known lattice kissing arrangements in up to 14 and ...

  3. Frustration and single crystal morphology of isotactic poly(2-vinylpyridine)

    NARCIS (Netherlands)

    Okihara, T; Cartier, L; van Ekenstein, GORA; Lotz, B

    1999-01-01

    The crystal structure of isotactic poly(2-vinylpyridine) (iP2VP) established in 1977 by Puterman et al. is shown to conform to a recently proposed frustrated packing scheme which involves three isochiral three-fold helices packed in a trigonal unit-cell, and observed in a number of polymers and biop

  4. Integral packing of trees and branchings

    Energy Technology Data Exchange (ETDEWEB)

    Trubin, V.A.

    1995-09-01

    This article continues the discussion of the author`s results on strictly polynomial algorithms for network strength problems (it is assumed that the reader is familiar with the previous publications). It considers the problem of optimal integral packing of spanning trees in a graph and proposes a strictly polynomial algorithm for the solution of this problem. The spanning tree packing and network covering algorithms described produce noninteger solutions. However, the Tutte-Nash-Williams theorem provides a good characterization for the solution of the corresponding problems for trees with integral cardinalities. Interger solutions can be obtained by Cunningham`s general algorithm, which produces an integer solution for the problem of packing of bases of a polymatroid polyhedron. This algorithm, however, is characterized by high time complexity. Moreover, the number of packed bases (in our case, spanning trees) in Seriver`s modification is double the theoretical minimum. In this paper, we apply the results to propose on O(n{sup 2} mp) algorithm for the problem of integral packing of spanning trees, where n and m respectively are the number of vertices and edges in the graph G and p is the time complexity of the maximum flow problem on G. The algorithm constructs a basis solution, so that the optimal solution contains a minimum number of spanning trees of nonzero cardinalities. In other words, the number of nonzero components forming the optimal packing does not exceed n. The proposed algorithm is easily modified for the solution of problems of minimum integral packing and covering described elswhere, and its elaboration for the present case is left to the reader. The spanning tree packing problem is transformed into a similar problem for digraphs, specifically, the problem of packing branchings into a given digraph with a distinguished root. A good characterization of this problem is provided by the Edmonds theorem.

  5. Modular vaccine packaging increases packing efficiency.

    Science.gov (United States)

    Norman, Bryan A; Rajgopal, Jayant; Lim, Jung; Gorham, Katrin; Haidari, Leila; Brown, Shawn T; Lee, Bruce Y

    2015-06-17

    Within a typical vaccine supply chain, vaccines are packaged into individual cylindrical vials (each containing one or more doses) that are bundled together in rectangular "inner packs" for transport via even larger groupings such as cold boxes and vaccine carriers. The variability of vaccine inner pack and vial size may hinder efficient vaccine distribution because it constrains packing of cold boxes and vaccine carriers to quantities that are often inappropriate or suboptimal in the context of country-specific vaccination guidelines. We developed in Microsoft Excel (Microsoft Corp., Redmond, WA) a spreadsheet model that evaluated the impact of different packing schemes for the Benin routine regimen plus the introduction of the Rotarix vaccine. Specifically, we used the model to compare the current packing scheme to that of a proposed modular packing scheme. Conventional packing of a Dometic RCW25 that aims to maximize fully-immunized children (FICs) results in 123 FICs and a packing efficiency of 81.93% compared to a maximum of 155 FICs and 94.1% efficiency for an alternative modular packaging system. Our analysis suggests that modular packaging systems could offer significant advantages over conventional vaccine packaging systems with respect to space efficiency and potential FICs, when they are stored in standard vaccine carrying devices. This allows for more vaccines to be stored within the same volume while also simplifying the procedures used by field workers to pack storage devices. Ultimately, modular packaging systems could be a simple way to help increase vaccine coverage worldwide. Copyright © 2015. Published by Elsevier Ltd.

  6. Heteropentanuclear Oxalato-Bridged nd–4f (n=4, 5) Metal Complexes with NO Ligand: Synthesis, Crystal Structures, Aqueous Stability and Antiproliferative Activity

    KAUST Repository

    Kuhn, Paul-Steffen

    2015-08-10

    A series of heteropentanuclear oxalate-bridged Ru(NO)-Ln (4d–4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(μ-ox)(NO)}4], where Ln=Y (2), Gd (3), Tb (4), Dy (5) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] (1) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1, 2, and 5 were in addition analyzed by X-ray crystallography, 1 by Ru K-edge XAS and 1 and 2 by 13C NMR spectroscopy. X-ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)]2− are coordinated to YIII and DyIII, respectively, with formation of [Ln{RuCl3(μ-ox)(NO)}4]5− (Ln=Y, Dy). While YIII is eight-coordinate in 2, DyIII is nine-coordinate in 5, with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu4N+ ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium-lanthanide complexes 2–5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC-5) and compared with those obtained for the previously reported Os(NO)-Ln (5d–4f) analogues (nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln=Y (6), Gd (7), Tb (8), Dy (9)). Complexes 2–5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d–4f metal complexes 6–9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4 μM was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP-MS data, indicating five- to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells.

  7. Slanted stacking faults and persistent face centered cubic crystal growth in sedimentary colloidal hard sphere crystals

    NARCIS (Netherlands)

    Hilhorst, J.; Wolters, J. R.; Petukhov, A.V.

    2010-01-01

    Hard sphere crystal growth is a delicate interplay between kinetics and thermodynamics, where the former is commonly thought to favour a random hexagonal close packed structure and the latter leads to a face centered cubic crystal. In this article, we discuss the influence of slanted stacking faults

  8. Frustrated polymer crystal structures

    Science.gov (United States)

    Lotz, B.; Strasbourg, 67083

    1997-03-01

    Several crystal structures or polymorphs of chiral or achiral polymers and biopolymers with three fold conformation of the helix have been found to conform to a common and -with one exception(Puterman, M. et al, J. Pol. Sci., Pol. Phys. Ed., 15, 805 (1977))- hitherto unsuspected packing scheme. The trigonal unit-cell contains three isochiral helices; the azimuthal setting of one helix differs significantly from that of the other two, leading to a so-called frustrated packing scheme, in which the environment of conformationally identical helices differs. Two variants of the frustrated scheme are analyzed. Similarities with frustrated two dimensional magnetic systems are underlined. Various examples of frustration in polymer crystallography are illustrated via the elucidation or reinterpretation of crystal phases or polymorphs of polyolefins, polyesters, cellulose derivatives and polypeptides. Structural manifestations (including AFM evidence) and morphological consequences of frustration are presented, which help diagnose the existence of this original packing of polymers.(Work done with L. Cartier, D. Dorset, S. Kopp, T. Okihara, M. Schumacher, W. Stocker.)

  9. Packing circles and spheres on surfaces

    KAUST Repository

    Schiftner, Alexander

    2009-12-01

    Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces\\' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry.

  10. Packing of ganglioside-phospholipid monolayers

    DEFF Research Database (Denmark)

    Majewski, J.; Kuhl, T.L.; Kjær, K.

    2001-01-01

    DPPE monolayer and does not distort the hexagonal in-plane unit cell or out-of-plane two-dimensional (2-D) packing compared with a pure DPPE monolayer. The oligosaccharide headgroups were found to extend normally from the monolayer surface, and the incorporation of these glycolipids into DPPE...... monolayers did not affect hydrocarbon tail packing (fluidization or condensation of the hydrocarbon region). This is in contrast to previous investigations of lipopolymer-lipid mixtures, where the packing structure of phospholipid monolayers was greatly altered by the inclusion of lipids bearing hydrophilic...... polymer groups. Indeed, the lack of packing disruptions by the oligosaccharide groups indicates that protein-GM, interactions, including binding, insertion, chain fluidization, and domain formation (lipid rafts), can be studied in 2-D monolayers using scattering techniques....

  11. Geometrical families of mechanically stable granular packings

    Science.gov (United States)

    Gao, Guo-Jie; Blawzdziewicz, Jerzy; O'Hern, Corey S.

    2009-12-01

    We enumerate and classify nearly all of the possible mechanically stable (MS) packings of bidipserse mixtures of frictionless disks in small sheared systems. We find that MS packings form continuous geometrical families, where each family is defined by its particular network of particle contacts. We also monitor the dynamics of MS packings along geometrical families by applying quasistatic simple shear strain at zero pressure. For small numbers of particles (N16 , we observe an increase in the period and random splittings of the trajectories caused by bifurcations in configuration space. We argue that the ratio of the splitting and contraction rates in large systems will determine the distribution of MS-packing geometrical families visited in steady state. This work is part of our long-term research program to develop a master-equation formalism to describe macroscopic slowly driven granular systems in terms of collections of small subsystems.

  12. Electroosmotic Driving Liquid Using Nanosilica Packed Column

    Institute of Scientific and Technical Information of China (English)

    Ling Xin CHEN; Guo An LUO; Tao WEN

    2005-01-01

    The electroosmotic pump (EOP) using nanosilica particles packed-bed column was experimentally studied. The relationship between flowrate, pressure and applied voltage of the pump, and pressure-flowrate (P-Q) characteristic were investigated.

  13. Packing circles and spheres on surfaces

    KAUST Repository

    Schiftner, Alexander

    2009-01-01

    Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces\\' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry. © 2009 ACM.

  14. Use of quartz crystal nanobalance to study the binding and stabilization of albumin and doxycycline on a thin layer of hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Victor, Sunita Prem [Biosurface Technology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695012, Kerala (India); Sharma, Chandra P., E-mail: sharmacp@sctmist.ac.in [Biosurface Technology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695012, Kerala (India); Sreenivasan, K. [Biosurface Technology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695012, Kerala (India); Laboratory for Polymer Analysis, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695012, Kerala (India)

    2011-12-15

    This study reports the use of quartz crystal nanobalance (QCN) to study the adsorption of two model molecules namely albumin and doxycycline by hydroxyapatite (HA). The work focuses on the deposition of a stable coating of HA on the quartz crystal, modification of the coating using doxycycline and its subsequent effects on albumin adsorption. The uniformity and thickness of the HA coating has been studied using atomic force microscopy (AFM). The functional groups to ascertain the presence of the selected moieties have been characterized by Raman spectroscopy. The results indicate that the mass of albumin deposited on the surface of the HA coated quartz crystal functionalized with doxycycline shows a substantial increase when compared to the standard HA coated quartz crystal. The adsorbed albumin has also been found to be retained for an enhanced period of time. This surface immobilization of doxycycline and subsequent albumin adsorption seem to be a promising approach to confer biomaterials with antithrombogenic and antibacterial surfaces.

  15. Use of quartz crystal nanobalance to study the binding and stabilization of albumin and doxycycline on a thin layer of hydroxyapatite

    Science.gov (United States)

    Victor, Sunita Prem; Sharma, Chandra P.; Sreenivasan, K.

    2011-12-01

    This study reports the use of quartz crystal nanobalance (QCN) to study the adsorption of two model molecules namely albumin and doxycycline by hydroxyapatite (HA). The work focuses on the deposition of a stable coating of HA on the quartz crystal, modification of the coating using doxycycline and its subsequent effects on albumin adsorption. The uniformity and thickness of the HA coating has been studied using atomic force microscopy (AFM). The functional groups to ascertain the presence of the selected moieties have been characterized by Raman spectroscopy. The results indicate that the mass of albumin deposited on the surface of the HA coated quartz crystal functionalized with doxycycline shows a substantial increase when compared to the standard HA coated quartz crystal. The adsorbed albumin has also been found to be retained for an enhanced period of time. This surface immobilization of doxycycline and subsequent albumin adsorption seem to be a promising approach to confer biomaterials with antithrombogenic and antibacterial surfaces.

  16. Software For Nearly Optimal Packing Of Cargo

    Science.gov (United States)

    Fennel, Theron R.; Daughtrey, Rodney S.; Schwaab, Doug G.

    1994-01-01

    PACKMAN computer program used to find nearly optimal arrangements of cargo items in storage containers, subject to such multiple packing objectives as utilization of volumes of containers, utilization of containers up to limits on weights, and other considerations. Automatic packing algorithm employed attempts to find best positioning of cargo items in container, such that volume and weight capacity of container both utilized to maximum extent possible. Written in Common LISP.

  17. Phyllotaxis, disk packing, and Fibonacci numbers

    Science.gov (United States)

    Mughal, A.; Weaire, D.

    2017-02-01

    We consider the evolution of the packing of disks (representing the position of buds) that are introduced at the top of a surface which has the form of a growing stem. They migrate downwards, while conforming to three principles, applied locally: dense packing, homogeneity, and continuity. We show that spiral structures characterized by the widely observed Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, ...), as well as related structures, occur naturally under such rules. Typical results are presented in an animation.

  18. Pharyngeal Packing during Rhinoplasty: Advantages and Disadvantages

    Directory of Open Access Journals (Sweden)

    Majid Razavi

    2015-11-01

    Full Text Available Introduction: Controversy remains as to the advantages and disadvantages of pharyngeal packing during septorhinoplasty. Our study investigated the effect of pharyngeal packing on postoperative nausea and vomiting and sore throat following this type of surgery or septorhinoplasty.   Materials and Methods: This clinical trial was performed on 90 American Society of Anesthesiologists (ASA I or II patients who were candidates for septorhinoplasty. They were randomly divided into two groups. Patients in the study group had received pharyngeal packing while those in the control group had not. The incidence of nausea and vomiting and sore throat based on the visual analog scale (VAS was evaluated postoperatively in the recovery room as well as at 2, 6 and 24 hours.   Results: The incidence of postoperative nausea and vomiting (PONV was 12.3%, with no significant difference between the study and control groups. Sore throat was reported in 50.5% of cases overall (56.8% on pack group and 44.4% on control. Although the severity of pain was higher in the study group at all times, the incidence in the two groups did not differ significantly.   Conclusion: The use of pharyngeal packing has no effect in reducing the incidence of nausea and vomiting and sore throat after surgery. Given that induced hypotension is used as the routine method of anesthesia in septorhinoplasty surgery, with a low incidence of hemorrhage and a high risk of unintended retention of pharyngeal packing, its routine use is not recommended for this procedure.

  19. Packing of elastic wires in flexible shells

    Science.gov (United States)

    Vetter, R.; Wittel, F. K.; Herrmann, H. J.

    2015-11-01

    The packing problem of long thin filaments that are injected into confined spaces is of fundamental interest for physicists and biologists alike. How linear threads pack and coil is well known only for the ideal case of rigid containers, though. Here, we force long elastic rods into flexible spatial confinement borne by an elastic shell to examine under which conditions recently acquired knowledge on wire packing in rigid spheres breaks down. We find that unlike in rigid cavities, friction plays a key role by giving rise to the emergence of two distinct packing patterns. At low friction, the wire densely coils into an ordered toroidal bundle with semi-ellipsoidal cross-section, while at high friction, it packs into a highly disordered, hierarchic structure. These two morphologies are shown to be separated by a continuous phase transition. Our findings demonstrate the dramatic impact of friction and confinement elasticity on filamentous packing and might drive future research on such systems in physics, biology and even medical technology toward including these mutually interacting effects.

  20. Surface-Induced Optimal Packing of Two-Dimensional Molecular Networks

    Science.gov (United States)

    Copie, Guillaume; Cleri, Fabrizio; Makoudi, Younes; Krzeminski, Christophe; Berthe, Maxime; Cherioux, Frédéric; Palmino, Frank; Grandidier, Bruno

    2015-02-01

    High-density packing in organic crystals is usually associated with an increase of the coordination between molecules. Such a concept is not necessarily extended to two-dimensional molecular networks self-assembled on a solid surface, for which we demonstrate the key role of the surface in inducing the optimal packing. By a combination of scanning tunneling microscopy experiments and multiscale computer simulations, we study the phase transition between two polymorphs. We find that, contrary to intuition, the structure with the lowest packing fraction corresponds to the highest molecular coordination number, due to the competition between surface and intermolecular forces. Having the lowest free energy, this structure spreads out as the most stable polymorph over a wide range of molecular concentrations.

  1. PCR detection of psychrophilic Clostridium spp. causing 'blown pack' spoilage of vacuum-packed chilled meats.

    Science.gov (United States)

    Broda, D M; Boerema, J A; Bell, R G

    2003-01-01

    To develop a practical molecular procedure that directly, without isolation, and specifically detects the presence of clostridia which cause 'blown pack' spoilage of vacuum-packed meat. Primer sets and PCR amplification procedures were developed that detect the presence of 16S rDNA gene and/or 16S-23S rDNA internal transcribed spacer fragments of 'blown pack' causing clostridia in meat. The specificity of the developed procedures was evaluated with DNA obtained from close phylogenetic neighbours of 'blown pack' causing clostridia, food clostridia and common meat spoilage microorganisms. The sensitivity of detection was assessed in non-enriched and low-temperature-enriched beef mince inoculated with serially diluted pure cultures of Clostridium estertheticum DSMZ 8809T and Cl. gasigenes DB1AT. The efficacy of detection procedures was evaluated for naturally contaminated vacuum-packed meat samples. Three primer sets, 16SE, 16SDB and EISR, produced amplicons of the expected size with DNA templates from target clostridia, but failed to yield PCR products with DNAs from any other microorganisms tested. With 16SE and 16SDB primers, minimum levels of detection were 104 CFU g(-1) for non-enriched, and 102 CFU g(-1) for enriched meat samples. Based on the established specificity of these primers, as well as DNA sequencing of amplicons, Cl. gasigenes was confirmed as the causative agent of 'blown pack' spoilage in two packs, and Cl. estertheticum as the causative agent in the third. The developed method can be used for rapid detection of 'blown pack' causing clostridia in commercial blown packs, or following low temperature enrichment, for detection of these microorganisms in meat containing as few as 100 clostridial cells per gram. The paper reports practical procedures that can be used for rapid confirmation of the causative agents of clostridial 'blown pack' spoilage in commercial spoiled packs, or for detection of psychrophilic clostridia in epidemiological trace back of

  2. Biodiesel production in packed-bed reactors using lipase-nanoparticle biocomposite.

    Science.gov (United States)

    Wang, Xia; Liu, Xueying; Zhao, Chuanming; Ding, Yi; Xu, Ping

    2011-05-01

    The development of appropriate reactors is crucial for the production of biodiesel. In this study, a packed-bed reactor system using lipase-Fe(3)O(4) nanoparticle biocomposite catalyst was successfully developed for biodiesel production based on soybean oil methanolysis. Emulsification before methanolysis improved the reaction rate. The lipase-nanoparticle biocomposite showed high activity and stability in the single-packed-bed reactor at an optimal flow rate (0.25 mL min(-1)). After 240 h of reaction, the conversion rate was sustained as high as 45%. The conversion rate and stability achieved using the four-packed-bed reactor were much higher than those achieved using the single-packed-bed reactor. The conversion of biodiesel was maintained at a high rate of over 88% for 192 h, and it only slightly declined to approximately 75% after 240 h of reaction. The packed-bed reactor system, therefore, has a great potential for achieving the design and operation of enzymatic biodiesel production on the industrial scale.

  3. Influence of packing interactions on the average conformation of B-DNA in crystalline structures.

    Science.gov (United States)

    Tereshko, V; Subirana, J A

    1999-04-01

    The molecular interactions in crystals of oligonucleotides in the B form have been analysed and in particular the end-to-end interactions. Phosphate-phosphate interactions in dodecamers are also reviewed. A strong influence of packing constraints on the average conformation of the double helix is found. There is a strong relationship between the space group, the end-to-end interactions and the average conformation of DNA. Dodecamers must have a B-form average conformation with 10 +/- 0.1 base pairs per turn in order to crystallize in the P212121 and related space groups usually found. Decamers show a wider range of conformational variation, with 9.7-10. 6 base pairs per turn, depending on the terminal sequence and the space group. The influence of the space group in decamers is quite striking and remains unexplained. Only small variations are allowed in each case. Thus, crystal packing is strongly related to the average DNA conformation in the crystals and deviations from the average are rather limited. The constraints imposed by the crystal lattice explain why the average twist of the DNA in solution (10.6 base pairs per turn) is seldom found in oligonucleotides crystallized in the B form.

  4. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    We report on an environmentally stable self-starting monolithic (i.e. without any free-space coupling) all-polarization-maintaining (PM) femtosecond Yb-fiber laser, stabilized against Q-switching by a narrow-band fiber Bragg grating and modelocked using a semiconductor saturable absorber mirror....... The laser output is compressed in a spliced-on hollow-core PM photonic crystal fiber, thus providing direct end-of-the-fiber delivery of pulses of around 370 fs duration and 4 nJ energy with high mode quality. Tuning the pump power of the end amplifier of the laser allows for the control of output pulse...

  5. Crystal structure of an apremilast ethanol hemisolvate hemihydrate solvatomorph

    Directory of Open Access Journals (Sweden)

    Yun-Deng Wu

    2017-06-01

    Full Text Available The title compound, C22H24N2O7S·0.5C2H5OH·0.5H2O {systematic name: (S-4-acetamido-2-[1-(3-ethoxy-4-methoxyphenyl-2-(methylsulfonylethyl]isoindoline-1,3-dione ethanol hemisolvate hemihydrate}, is a novel solvatomorph of apremilast (AP, which is an inhibitor of phosphodiesterase 4 (PDE4 and is indicated for the treatment of adult patients with active psoriatic arthritis. The asymmetric unit contains one molecule of AP and disordered molecules of ethanol and water, both with half occupancy. The dihedral angle between the planes of the phenyl ring and the isoindole ring is 67.9 (2°. Extensive intra- and intermolecular hydrogen bonds help to stabilize the molecular conformation and sustain the crystal packing.

  6. Crystal structure of 2-[2-(hydroxyimino-1-phenylpropylidene]-N-phenylhydrazinecarbothioamide

    Directory of Open Access Journals (Sweden)

    Brian J. Anderson

    2015-10-01

    Full Text Available In the title compound, C16H16N4OS, an intramolecular C—H...S hydrogen bond is observed. With the exception of the phenyl ring of the phenylpropylidene unit, the remainder of the molecule has an almost planar skeleton with an r.m.s. deviation of 0.121 (5 Å from the plane through the remaining 16 atoms. In the crystal O—H...N hydrogen bonds are observed between the terminal hydroxyimino groups, forming inverson dimers with R22(6 graph-set motifs. Additional C—H...N contacts stack the dimers along [100]. While no π—π interactions are present, weak C—H...O and O—H...Cg interactions are also observed and help stabilize the crystal packing.

  7. Fabricating colloidal crystals and construction of ordered nanostructures

    Directory of Open Access Journals (Sweden)

    Sun Zhiqiang

    2006-01-01

    Full Text Available AbstractColloidal crystals of polymeric or inorganic microspheres are of extensive interest due to their potential applications in such as sensing, optics, photonic bandgap and surface patterning. The article highlights a set of approaches developed in our group, which are efficient to prepare colloidal crystals with ordered voids, patterned colloidal crystals on non-planar surfaces, heterogeneous colloidal crystals of different building blocks, colloidal crystals composed of non-spherical polyhedrons, and colloidal crystals of non-close-packed colloidal microspheres in particular. The use of these colloidal crystals as templates for different microstructures range from nanoscale to micron-scale is also summarized.

  8. 高稳晶振在空间辐照条件下的频率特性变化%The Frequency Characteristic of High Stability Crystal Under Space Radiation Environment

    Institute of Scientific and Technical Information of China (English)

    阎栋梁; 韩红; 杨曦

    2012-01-01

    在空间恶劣环境下要求星载高稳晶振正常有效地工作,需要对其在空间辐照环境下的频率特性变化进行研究,利用地面辐照设备模拟空间辐照环境,通过不断增加辐照剂量,研究晶振相位噪声、短期频率稳定度、谐杂波以及输出功率等特性.%In order to insure the high stability crystal on satellite to work normally, the change of frequency character needs to be researched under space radiation environment, using ground radiation device to simulate space radiation environment, and phase noise, short term frequency stability, harmonics, spurious and output power also need to be researched.

  9. Structural searches using isopointal sets as generators: densest packings for binary hard sphere mixtures.

    Science.gov (United States)

    Hudson, Toby S; Harrowell, Peter

    2011-05-18

    Algorithms to search for crystal structures that optimize some extensive property (energy, volume, etc) typically make use of random particle reorganizations in the context of one or more numerical techniques such as simulated annealing, genetic algorithms or biased random walks, applied to the coordinates of every particle in the unit cell, together with the cell angles and lengths. In this paper we describe the restriction of such searches to predefined isopointal sets, breaking the problem into countable sub-problems which exploit crystal symmetries to reduce the dimensionality of the search space. Applying this method to the search for maximally packed mixtures of hard spheres of two sizes, we demonstrate that the densest packed structures can be identified by searches within a couple of isopointal sets. For the A(2)B system, the densest known packings over the entire tested range 0.2 < r(A)/r(B) < 2.5, including some improvements on previous optima, can all be identified by searches within a single isopointal set. In the case of the AB composition, searches of two isopointal sets generate the densest packed structures over the radius ratio range 0.2 < r(A)/r(B) < 5.0.

  10. Effect of Phytosterols on the Crystallization Behavior of Oil-in-Water Milk Fat Emulsions.

    Science.gov (United States)

    Zychowski, Lisa M; Logan, Amy; Augustin, Mary Ann; Kelly, Alan L; Zabara, Alexandru; O'Mahony, James A; Conn, Charlotte E; Auty, Mark A E

    2016-08-31

    Milk has been used commercially as a carrier for phytosterols, but there is limited knowledge on the effect of added plant sterols on the properties of the system. In this study, phytosterols dispersed in milk fat at a level of 0.3 or 0.6% were homogenized with an aqueous dispersion of whey protein isolate (WPI). The particle size, morphology, ζ-potential, and stability of the emulsions were investigated. Emulsion crystallization properties were examined through the use of differential scanning calorimetry (DSC) and Synchrotron X-ray scattering at both small and wide angles. Phytosterol enrichment influenced the particle size and physical appearance of the emulsion droplets, but did not affect the stability or charge of the dispersed particles. DSC data demonstrated that, at the higher level of phytosterol addition, crystallization of milk fat was delayed, whereas, at the lower level, phytosterol enrichment induced nucleation and emulsion crystallization. These differences were attributed to the formation of separate phytosterol crystals within the emulsions at the high phytosterol concentration, as characterized by Synchrotron X-ray measurements. X-ray scattering patterns demonstrated the ability of the phytosterol to integrate within the milk fat triacylglycerol matrix, with a concomitant increase in longitudinal packing and system disorder. Understanding the consequences of adding phytosterols, on the physical and crystalline behavior of emulsions may enable the functional food industry to design more physically and chemically stable products.

  11. Electronic Origins of Anomalous Twin Boundary Energies in Hexagonal Close Packed Transition Metals.

    Science.gov (United States)

    de Jong, Maarten; Kacher, J; Sluiter, M H F; Qi, L; Olmsted, D L; van de Walle, A; Morris, J W; Minor, A M; Asta, M

    2015-08-07

    Density-functional-theory calculations of twin-boundary energies in hexagonal close packed metals reveal anomalously low values for elemental Tc and Re, which can be lowered further by alloying with solutes that reduce the electron per atom ratio. The anomalous behavior is linked to atomic geometries in the interface similar to those observed in bulk tetrahedrally close packed phases. The results establish a link between twin-boundary energetics and the theory of bulk structural stability in transition metals that may prove useful in controlling mechanical behavior in alloy design.

  12. 27 CFR 24.308 - Bottled or packed wine record.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bottled or packed wine... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.308 Bottled or packed wine record. A proprietor who bottles, packs, or receives bottled or packed beverage wine in bond shall...

  13. A Harmonic Algorithm for the 3D Strip Packing Problem

    NARCIS (Netherlands)

    N. Bansal (Nikhil); X. Han; K. Iwama; M. Sviridenko; G. Zhang (Guochuan)

    2013-01-01

    htmlabstractIn the three-dimensional (3D) strip packing problem, we are given a set of 3D rectangular items and a 3D box $B$. The goal is to pack all the items in $B$ such that the height of the packing is minimized. We consider the most basic version of the problem, where the items must be packed

  14. 48 CFR 1846.672-6 - Packing list instructions.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Packing list instructions... ADMINISTRATION CONTRACT MANAGEMENT QUALITY ASSURANCE Material Inspection and Receiving Reports 1846.672-6 Packing list instructions. Copies of the MIRR may be used as a packing list. The packing list copies shall...

  15. 46 CFR 160.043-6 - Marking and packing.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Marking and packing. 160.043-6 Section 160.043-6... Marking and packing. (a) General. Jackknives specified by this subpart shall be stamped or otherwise... opener. (c) Packing. Each jackknife, complete with lanyard attached, shall be packed in a heat-sealed...

  16. Packing parameters effect on injection molding of polypropylene nanostructured surfaces

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Hansen, Hans Nørgaard

    2012-01-01

    having a diameter of 500 nm was employed. The tool insert surface was produced using chemical-based-batch techniques such aluminum anodization and nickel electroplating. During the injection molding process, polypropylene (PP) was employed as material and packing phase parameters (packing time, packing...... to the polymer part was mainly influenced by packing pressure level and distance from the gate....

  17. The close-packed triple helix as a possible new structural motif for collagen

    CERN Document Server

    Bohr, Jakob

    2010-01-01

    The one-dimensional problem of selecting the triple helix with the highest volume fraction is solved and hence the condition for a helix to be close-packed is obtained. The close-packed triple helix is shown to have a pitch angle of $v_{CP} =43.3 ^\\circ$. Contrary to the conventional notion, we suggest that close packing form the underlying principle behind the structure of collagen, and the implications of this suggestion are considered. Further, it is shown that the unique zero-twist structure with no strain-twist coupling is practically identical to the close-packed triple helix. Some of the difficulties for the current understanding of the structure of collagen are reviewed: The ambiguity in assigning crystal structures for collagen-like peptides, and the failure to satisfactorily calculate circular dichroism spectra. Further, the proposed new geometrical structure for collagen is better packed than both the 10/3 and the 7/2 structure. A feature of the suggested collagen structure is the existence of a ce...

  18. Efficient linear programming algorithm to generate the densest lattice sphere packings.

    Science.gov (United States)

    Marcotte, Étienne; Torquato, Salvatore

    2013-06-01

    Finding the densest sphere packing in d-dimensional Euclidean space R(d) is an outstanding fundamental problem with relevance in many fields, including the ground states of molecular systems, colloidal crystal structures, coding theory, discrete geometry, number theory, and biological systems. Numerically generating the densest sphere packings becomes very challenging in high dimensions due to an exponentially increasing number of possible sphere contacts and sphere configurations, even for the restricted problem of finding the densest lattice sphere packings. In this paper we apply the Torquato-Jiao packing algorithm, which is a method based on solving a sequence of linear programs, to robustly reproduce the densest known lattice sphere packings for dimensions 2 through 19. We show that the TJ algorithm is appreciably more efficient at solving these problems than previously published methods. Indeed, in some dimensions, the former procedure can be as much as three orders of magnitude faster at finding the optimal solutions than earlier ones. We also study the suboptimal local density-maxima solutions (inherent structures or "extreme" lattices) to gain insight about the nature of the topography of the "density" landscape.

  19. From Crystals to Disordered Crystals: A Hidden Order-Disorder Transition.

    Science.gov (United States)

    Tong, Hua; Tan, Peng; Xu, Ning

    2015-10-20

    To distinguish between order and disorder is of fundamental importance to understanding solids. It becomes more significant with recent observations that solids with high structural order can behave like disordered solids, while properties of disordered solids can approach crystals under certain circumstance. It is then imperative to understand when and how disorder takes effect to deviate the properties of a solid from crystals and what the correct factors are to control the behaviours of solids. Here we answer these questions by reporting the finding of a hidden order-disorder transition from crystals to disordered crystals for static packings of frictionless spheres. While the geometric indicators are mostly blind to the transition, disordered crystals already exhibit properties apart from crystals. The transition approaches the close packing of hard spheres, giving rise to the singularity of the close packing point. We evidence that both the transition and properties of disordered crystals are jointly determined by the structural order and density. Near the transition, the elastic moduli and coordination number of disordered crystals show particular pressure dependence distinct from known behaviours of both crystals and jammed solids. The discovery of the transition therefore reveals some unknown aspects of solids.

  20. Quasistatic packings of droplets in flat microfluidic channels

    Science.gov (United States)

    Kadivar, Erfan

    2016-02-01

    As observed in recent experiments, monodisperse droplets self-assemble spontaneously in different ordered packings. In this work, we present a numerical study of the droplet packings in the flat rectangular microfluidic channels. Employing the boundary element method, we numerically solve the Stokes equation in two-dimension and investigate the appearance of droplet packing and transition between one and two-row packings of monodisperse emulsion droplets. By calculating packing force applied on the droplet interface, we investigate the effect of flow rate, droplet size, and surface tension on the packing configurations of droplets and transition between different topological packings.