WorldWideScience

Sample records for crystal nial deformed

  1. Creep Properties of NiAl-1Hf Single Crystals Re-Investigated

    Science.gov (United States)

    Whittenberger, J. Daniel; Locci, Ivan E.; Darolia, Ram; Bowman, Randy R.

    2000-01-01

    NiAl-1Hf single crystals have been shown to be quite strong at 1027 C, with strength levels approaching those of advanced Ni-based superalloys. Initial testing, however, indicated that the properties might not be reproducible. Study of the 1027 C creep behavior of four different NiAl-1Hf single-crystal ingots subjected to several different heat treatments indicated that strength lies in a narrow band. Thus, we concluded that the mechanical properties are reproducible. Recent investigations of the intermetallic NiAl have confirmed that minor alloying additions combined with single-crystal growth technology can produce elevated temperature strength levels approaching those of Ni-based superalloys. For example, General Electric alloy AFN 12 {Ni-48.5(at.%) Al-0.5Hf-1Ti-0.05Ga} has a creep rupture strength equivalent to Rene 80 combined with a approximately 30-percent lower density, a fourfold improvement in thermal conductivity, and the ability to form a self-protective alumina scale in aggressive environments. Although the compositions of strong NiAl single crystals are relatively simple, the microstructures are complex and vary with the heat treatment and with small ingot-toingot variations in the alloy chemistry. In addition, initial testing suggested a strong dependence between microstructure and creep strength. If these observations were true, the ability to utilize NiAl single-crystal rotating components in turbine machinery could be severely limited. To investigate the possible limitations in the creep response of high-strength NiAl single crystals, the NASA Glenn Research Center at Lewis Field initiated an in depth investigation of the effect of heat treatment on the microstructure and subsequent 1027 C creep behavior of [001]-oriented NiAl-1Hf with a nominal chemistry of Ni-47.5Al-1Hf-0.5Si. This alloy was selected since four ingots, grown over a number of years and possessing slightly different compositions, were available for study. Specimens taken from the

  2. Microstructure and mechanical properties of a single crystal NiAl alloy with Zr or Hf rich G-phase precipitates

    Science.gov (United States)

    Locci, I. E.; Noebe, R. D.; Bowman, R. R.; Miner, R. V.; Nathal, M. V.; Darolia, R.

    1991-01-01

    The possibility of producing NiAl reinforced with the G-phase (Ni16X6Si7), where X is Zr or Hf, has been investigated. The microstructure of these NiAl alloys have been characterized in the as-cast and annealed conditions. The G-phases are present as fine cuboidal precipitates (10 to 40 nm) and have lattice parameters almost four times that of NiAl. They are coherent with the matrix and fairly resistant to coarsening during annealing heat treatments. Segregation and nonuniform precipitate distribution observed in as-cast materials were eliminated by homogenization at temperatures near 1600 K. Slow cooling from these temperatures resulted in large plate shaped precipitates, denuded zones, and a loss of coherency in some of the large particles. Faster cooling produced a homogeneous fine distribution of cuboidal G-phase particles in the matrix. Preliminary mechanical properties for the Zr-doped alloy are presented and compared to binary single crystal NiAl. The presence of these precipitates appears to have an important strengthening effect at temperatures not less than 1000 K compared to binary NiAl single crystals.

  3. Microstructure and mechanical properties of a single crystal NiAl alloy with Zr or Hf rich G-phase precipitates

    International Nuclear Information System (INIS)

    Locci, I.E.; Noebe, R.D.; Bowman, R.R.; Miner, R.V.; Nathal, M.V.

    1991-01-01

    In this paper the possibility of producing NiAl reinforced with the G-phase (Ni 16 X 6 Si 7 ), where X is Zr or Hf, has been investigated. The microstructures of these NiAl alloys have been characterized in the as-cast and annealed conditions. The G-phases are present as fine cuboidal precipitates (10 to 40 nm) and have lattice parameters almost four times that of NiAl. They are coherent with the matrix and fairly resistant to coarsening during annealing heat treatments. Segregation and non-uniform precipitate distribution observed in as-cast materials were eliminated by homogenization at temperatures near 1600 K. Slow cooling from these temperatures resulted in large plate shaped precipitates, denuded zones, and a loss of coherency in some of the large particles. Faster cooling produced a homogeneous fine distribution of cuboidal G-phase particles (≤10 nm) in the matrix. Preliminary mechanical properties for the Zr-doped alloy are presented and compared to binary single crystal NiAl. The presence of these precipitates appears to have an important strengthening effect at temperatures ≥1000 K compared to binary NiAl single crystals

  4. In situ neutron diffraction study of the plastic deformation mechanisms of B2 ordered intermetallic alloys: NiAl, CuZn, and CeAg

    Energy Technology Data Exchange (ETDEWEB)

    Wollmershauser, J.A. [Department of Materials Science and Engineering, University of Virginia, P.O. Box 400745, 116 Engineer' s Way, Charlottesville, VA 22904-04745 (United States); Kabra, S. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Agnew, S.R. [Department of Materials Science and Engineering, University of Virginia, P.O. Box 400745, 116 Engineer' s Way, Charlottesville, VA 22904-04745 (United States)], E-mail: sra4p@virginia.edu

    2009-01-15

    The internal stress developments of B2 compounds NiAl, CuZn, and CeAg are examined using in situ neutron diffraction. CeAg is a representative of a newly discovered class of fully ordered and ductile B2 compounds. Using polycrystal plasticity modeling to interpret the results, it is revealed that the internal stress evolution of CeAg is nearly identical to that of NiAl, indicating that they share a common primary mechanism of plastic deformation, i.e., <1 0 0>{l_brace}0 1 1{r_brace} 'cube' slip. This result reinforces the dilemma previously observed for rare-earth alloys CuY, AgY, and CuDy, since cube slip provides insufficient independent slip systems to accommodate large-scale homogenous polycrystalline deformation. There is no evidence in the diffraction data of either mechanical twinning or stress-induced phase transformation. The activity of bcc-type <1 1 1>{l_brace}11-bar0{r_brace} slip at high stresses is confirmed and a lower bound for the critical resolved shear stress is quantified.

  5. Strong crystal size effect on deformation twinning

    DEFF Research Database (Denmark)

    Yu, Qian; Shan, Zhi-Wei; Li, Ju

    2010-01-01

    plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium’s ideal strength9, 10. We develop a ‘stimulated slip’ model to explain the strong size dependence of deformation twinning......Deformation twinning1, 2, 3, 4, 5, 6 in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we...... find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation...

  6. Large deformation behavior of fat crystal networks

    NARCIS (Netherlands)

    Kloek, W.; Vliet, van T.; Walstra, P.

    2005-01-01

    Compression and wire-cutting experiments on dispersions of fully hydrogenated palm oil in sunflower oil with varying fraction solid fat were carried out to establish which parameters are important for the large deformation behavior of fat crystal networks. Compression experiments showed that the

  7. Cyclic deformation of Nb single crystals

    International Nuclear Information System (INIS)

    Guiu, F.; Anglada, M.

    1982-01-01

    The temperature and strain-rate dependence of the cyclic flow stress of Nb single crystals with two different axial orientations has been studied at temperatures between 175 and 350 K. This dependence is found to be independent of the crystal orientation when the internal stresses are taken into account, and the results are discussed in terms of the theory of thermally activated dislocation glide. A transition temperature can be identified at about 250 K which separates two regions with different thermally activated deformation behaviour. Above this transition temperature the strain rate can be described by a stress power law, and the activation energy can be represented by a logarithmic function of the stress, as in Escaig's model of screw dislocation mobility. In the temperature range 170 to 250 K the results are also in agreement with the more recent model proposed by Seeger. The large experimental errors inherent in the values of activation enthalpy at low stresses are emphasized and taken into account in the discussion of the results. It is suggested that either impurity-kink interactions or the flexibility of the screw dislocations are responsible for the trend towards the high values of activation enthalpy measured at the low stresses. (author)

  8. Deformation twinning in zinc-aluminium single crystals after slip

    International Nuclear Information System (INIS)

    Lukac, P.; Kral, F.; Trojanova, Z.; Kral, R.

    1993-01-01

    Deformation twinning in Zn-Al single crystals deformed by slip in the basal system is examined. The influence of temperature and the content of aluminium in zinc on the twinning stress is investigated in the temperature range from 198 to 373 K. It is shown that the twinning stress rises with increasing temperature and increases with the concentration of Al atoms. (orig.)

  9. Low temperature deformation mechanisms in LiF single crystals

    International Nuclear Information System (INIS)

    Fotedar, H.L.; Stroebe, T.G.

    1976-01-01

    An analysis of the deformation behavior of high purity LiF single crystals is given using yielding and work hardening data and thermally activated deformation parameters obtained in the temperature range 77-423 0 K. It is found that while the Fleischer mechanism is apparently valid experimentally over the thermally activated temperature range, vacancies produced in large numbers at 77 0 K could also play a role in determining the critical resolved shear stress at that temperature

  10. Observation of plastic deformation in freestanding single crystal Au nanowires

    International Nuclear Information System (INIS)

    Lee, Dongyun; Zhao Manhong; Wei Xiaoding; Chen Xi; Jun, Seong C.; Hone, James; Herbert, Erik G.; Oliver, Warren C.; Kysar, Jeffrey W.

    2006-01-01

    Freestanding single crystal nanowires of gold were fabricated from a single grain of pure gold leaf by standard lithographic techniques, with center section of 7 μm in length, 250 nm in width, and 100 nm in thickness. The ends remained anchored to a silicon substrate. The specimens were deflected via nanoindenter until plastic deformation was achieved. Nonlocalized and localized plastic deformations were observed. The resulting force-displacement curves were simulated using continuum single crystal plasticity. A set of material parameters which closely reproduce the experimental results suggests that the initial critical resolved shear stress was as high as 135 MPa

  11. The Taylor relation in compression deformed Ge single crystals

    International Nuclear Information System (INIS)

    Nyilas, K; Ungar, T; Dupas, C; Martin, J L; Kruml, T

    2010-01-01

    Ge single crystals are deformed in compression at 850K and the same strain rate to various extents of strains. In each sample, the internal stress is measured through stress reduction tests and the dislocation densities by X-ray measurements. Data about these two parameters follow fairly well the Taylor-Saada relation, provided a correction term is added. It probably corresponds to dislocations which are seen by X-rays, though they do not contribute to crystal hardening.

  12. Plastic deformation of cubic zirconia single crystals at 1400 C

    International Nuclear Information System (INIS)

    Baufeld, B.; Baither, D.; Bartsch, M.; Messerschmidt, U.

    1998-01-01

    Cubic zirconia single crystals stabilized with 11 mol% yttria were deformed in air at 1400 C and around 1200 C at different strain rates along [1 anti 12] and [100] compression directions. The strain rate sensitivity of the flow stress was determined by strain rate cycling and stress relaxation tests. The microstructure of the deformed specimens was investigated by transmission high-voltage electron microscopy, including contrast extinction analysis for determining the Burgers vectors as well as stereo pairs and wide-angle tilting experiments to find the active slip planes. At deformation along [1 anti 12], the primary and secondary slip planes are of {100} type. Previous experiments had shown that the dislocations move easily on these planes in an athermal way. During deformation along [100], mainly dislocations on {100} planes are activated, which move in a viscous way by the aid of thermal activation. The discussion of the different deformation behaviours during deformation along [1 anti 12] and [100] is based on the different dynamic properties of dislocations and the fact that recovery is an essential feature of the deformation of cubic zirconia at 1400 C. The results on the shape of the deformation curve and the strain rate sensitivity of the flow stress are partly at variance with those of previous authors. (orig.)

  13. Transmission electron microscopy of weakly deformed alkali halide crystals

    International Nuclear Information System (INIS)

    Strunk, H.

    1976-01-01

    Transmission electron microscopy (TEM) is applied to the investigation of the dislocation arrangement of [001]-orientated alkali halide crystals (orientation four quadruple slip) deformed into stage I of the work-hardenig curve. The investigations pertain mainly to NaCl - (0.1-1) mole-% NaBr crystals, because these exhibit a relatively long stage I. The time available for observing the specimens is limited by the ionization radiation damage occuring in the microscope. An optimum reduction of the damage rate is achieved by a combination of several experimental techniques that are briefly outlined. The crystals deform essentially in single glide. According to the observations, stage I deformation of pure and weakly alloyed NaCl crystals is characterized by the glide of screw dislocations, which bow out between jogs and drag dislocation dipoles behind them. In crystals with >= 0.5 mole-% NaBr this process is not observed to occur. This is attributed to the increased importance of solid solution hardening. (orig.) [de

  14. Polycrystal deformation and single crystal deformation: Dislocation structure and flow stress in copper

    DEFF Research Database (Denmark)

    Huang, X.; Borrego, A.; Pantleon, W.

    2001-01-01

    of microstructures have been identified. A correlation is found between microstructure and grain orientation, which agrees well with earlier observations in tensile deformed aluminum polycrystals and copper single crystals. The stress–strain curve of the copper polycrystal is calculated with good accuracy from...

  15. Shape Changing Nonlocal Molecular Deformations in a Nematic Liquid Crystal

    International Nuclear Information System (INIS)

    Kavitha, L.; Venkatesh, M.; Gopi, D.

    2010-07-01

    The nature of nonlinear molecular deformations in a homeotropically aligned nematic liquid crystal (NLC) is presented. We start from the basic dynamical equation for the director axis of a NLC with elastic deformation mapped onto an integro-differential perturbed Nonlinear Schroedinger equation which includes the nonlocal term. By invoking the modified extended tangent hyperbolic function method aided with symbolic computation, we obtain a series of solitary wave solutions. Under the influence of the nonlocality induced by the reorientation nonlinearity due to fluctuations in the molecular orientation, the solitary wave exhibits shape changing property for different choices of parameters. This intriguing property, as a result of the relation between the coherence of the solitary deformation and the nonlocality, reveals a strong need for deeper understanding in the theory of self-localization in NLC systems. (author)

  16. Strength and deformation of shocked diamond single crystals: Orientation dependence

    Science.gov (United States)

    Lang, J. M.; Winey, J. M.; Gupta, Y. M.

    2018-03-01

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ˜120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100] direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}⟨110⟩ slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (˜33 GPa) are 25%-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (˜23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response

  17. Physical and mechanical metallurgy of NiAl

    Science.gov (United States)

    Noebe, Ronald D.; Bowman, Randy R.; Nathal, Michael V.

    1994-01-01

    Considerable research has been performed on NiAl over the last decade, with an exponential increase in effort occurring over the last few years. This is due to interest in this material for electronic, catalytic, coating and especially high-temperature structural applications. This report uses this wealth of new information to develop a complete description of the properties and processing of NiAl and NiAl-based materials. Emphasis is placed on the controlling fracture and deformation mechanisms of single and polycrystalline NiAl and its alloys over the entire range of temperatures for which data are available. Creep, fatigue, and environmental resistance of this material are discussed. In addition, issues surrounding alloy design, development of NiAl-based composites, and materials processing are addressed.

  18. Plastic deformation of tubular crystals by dislocation glide.

    Science.gov (United States)

    Beller, Daniel A; Nelson, David R

    2016-09-01

    Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.

  19. Computational description of nanocrystalline deformation based on crystal plasticity

    International Nuclear Information System (INIS)

    Fu, H.-H.; Benson, David J.; Andre Meyers, Marc

    2004-01-01

    The effect of grain size on the mechanical response of polycrystalline metals was investigated computationally and applied to the nanocrystalline domain. A phenomenological constitutive description is adopted to build the computational crystal model. Two approaches are implemented. In the first, the material is envisaged as a composite; the grain interior is modeled as a monocrystalline core surrounded by a mantle (grain boundary) with a lower yield stress and higher work hardening rate response. Both a quasi-isotropic and crystal plasticity approaches are used to simulate the grain interiors. The grain boundary is modeled either by an isotropic Voce equation (Model I) or by crystal plasticity (Model II). Elastic and plastic anisotropy are incorporated into this simulation. An implicit Eulerian finite element formulation with von Mises plasticity or rate dependent crystal plasticity is used to study the nonuniform deformation and localized plastic flow. The computational predictions are compared with the experimentally determined mechanical response of copper with grain sizes of 1 μm and 26 nm. Shear localization is observed during work hardening in view of the inhomogeneous mechanical response. In the second approach, the use of a continuous change in mechanical response, expressed by the magnitude of the maximum shear stress orientation gradient, is introduced. It is shown that the magnitude of the gradient is directly dependent on grain size. This gradient term is inserted into a constitutive equation that predicts the local stress-strain evolution

  20. Plastic deformation of Ni3Nb single crystals

    International Nuclear Information System (INIS)

    Hagihara, Kouji; Nakano, Takayoshi; Umakoshi, Yukichi

    1999-01-01

    Temperature dependence of yield stress and operative slip system in Ni 3 Nb single crystals with the D0 a structure was investigated in comparison with that in an analogous L1 2 structure. Compression tests were performed at temperatures between 20 C and 1,200 C for specimens with loading axes perpendicular to (110), (331) and (270). (010)[100] slip was operative for three orientations, while (010)[001] slip for (331) and [211] twin for (270) orientations were observed, depending on deformation temperature. The critical resolved shear stress (CRSS) for the (010)[100] slip anomaly increased with increasing temperature showing a maximum peak between 400 C and 800 C depending on crystal orientation. The CRSS showed orientation dependence and no significant strain rate dependence in the temperature range for anomalous strengthening. The [100] dislocations with a screw character were aligned on the straight when the anomalous strengthening occurred. The anomalous strengthening mechanism for (010)[100] slip in Ni 3 Nb single crystals is discussed on the basis of a cross slip model which has been widely accepted for some L1 2 -type compounds

  1. Creep of crystals: High-temperature deformation processes in metals, ceramics and minerals

    Science.gov (United States)

    Poirier, J. P.

    An introductory text describing high-temperature deformation processes in metals, ceramics, and minerals is presented. Among the specific topics discussed are: the mechanical aspects of crystal deformation; lattice defects; and phenomenological and thermodynamical analysis of quasi-steady-state creep. Consideration is also given to: dislocation creep models; the effect of hydrostatic pressure on deformation; creep polygonization; and dynamic recrystallization. The status of experimental techniques for the study of transformation plasticity in crystals is also discussed.

  2. Mechanical Behavior and Fracture Properties of NiAl Intermetallic Alloy with Different Copper Contents

    Directory of Open Access Journals (Sweden)

    Tao-Hsing Chen

    2016-03-01

    Full Text Available The deformation behavior and fracture characteristics of NiAl intermetallic alloy containing 5~7 at% Cu are investigated at room temperature under strain rates ranging from 1 × 10−3 to 5 × 103 s−1. It is shown that the copper contents and strain rate both have a significant effect on the mechanical behavior of the NiAl alloy. Specifically, the flow stress increases with an increasing copper content and strain rate. Moreover, the ductility also improves as the copper content increases. The change in the mechanical response and fracture behavior of the NiAl alloy given a higher copper content is thought to be the result of the precipitation of β-phase (Ni,CuAl and γ'-phase (Ni,Cu3Al in the NiAl matrix.

  3. Nucleation reactions during deformation and crystallization of metallic glass

    International Nuclear Information System (INIS)

    Perepezko, J.H.; Imhoff, S.D.; Chen, M.W.; Gonzalez, S.; Inoue, A.

    2012-01-01

    Highlights: ► New approach to the examination and analysis of shear band nucleation. ► Discovery of multiple shear band nucleation sites. ► Identification of a method of using transient kinetic behavior to provide a more realistic evaluation of the diffusivity that is relevant to nucleation. - Abstract: Nucleation reactions play a central role in the synthesis of both bulk metallic glasses and nanostructured materials. For nanostructured materials it is necessary to promote a high nucleation density without significant growth or coarsening. Beyond crystallization reactions nucleation of shear bands is critical for promoting a homogeneous flow and useful ductility for structural applications of bulk metallic glass. The study and analysis of nucleation reactions for these different situations requires a consideration of the stochastic nature of nucleation, the influence of heterogeneous sites, and the controlling transport properties. For shear band nucleation, the stochastic nature can be effectively probed by instrumented nanoindentation tests. The analysis of a statistically significant number of measurements of the first pop-in shear band nucleation events reveals at least two main nucleation sites. In nanostructured composites, the initial nucleation stage is influenced by transient effects as reflected in the delay time prior to steady state nucleation and by heterogeneous nucleation sites that are related to medium range order regions in Al-base amorphous alloys. Moreover, the early growth characteristics are linked to the maximum achievable particle density. The new developments and insight on the fundamental understanding of nanostructure reaction mechanisms offer valuable guidance for control of nanoscale microstructures and for promoting ductile deformation behavior.

  4. Crystal plasticity in presence of great deformations and damages

    International Nuclear Information System (INIS)

    Musienko, A.

    2005-03-01

    This work addresses several problems in the framework of crystal plasticity. Its main motivation is the development of a coupled approach able to account for the interaction between environment, inelastic deformation and damage in a zircaloy alloy used for the cladding tubes in nuclear power plants. A first study was previously made by O. Diard on the same subject, and a preliminary numerical procedure was developed for performing the simulation. Our purpose was to improve this first attempt, and to reach a quantitative agreement with the experimental data. The main modification to the initial model is a new geometrical representation of the 'grain boundary'. In fact, instead of having a special material for the grain boundary, we introduce a specific zone in each grain near the grain boundary. In this area, we still have the normal slip systems, corresponding to the grain it belongs to, but also specific systems to allow the boundary to slip and open. The resulting model (DOS) successfully represents damage, opening and sliding, and can be calibrated using experimental information on tubes submitted to complex load histories. A finite strain formulation is also provided. Finally, a model describing cleavage is in competition with intergranular damage, so that we are able to predict the transition from intergranular to transgranular cracking. These new features are implemented using a robust integration algorithm in the finite element code Zebulon. A simulation of stress corrosion cracking of Zircaloy tubes in iodine environment (which appears as a result of pellet-cladding interaction in the core of nuclear pressurized-water reactors) is proposed. The predictions of the model are in good agreement with the experimental data describing the crack propagation rate. The following points are obtained as sub-products of the study: 1)Elasticity, J2 plasticity, crystal plasticity, and the DOS model are successively studied, in the framework of small perturbation and large

  5. Variation of low temperature internal friction of microplastic deformation of high purity molybdenum single crystals

    International Nuclear Information System (INIS)

    Pal-Val, P.P.; Kaufmann, H.J.

    1984-01-01

    Amplitude and temperature spectra of ultrasound absorption in weakly deformed high purity molybdenum single crystals of different orientations were measured. The results were discussed in terms of parameter changes related to quasiparticle or dislocation oscillations, respectively, dislocation point defect interactions as well as defect generation at microplastic deformation. (author)

  6. Variation of low temperature internal friction of microplastic deformation of high purity molybdenum single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pal-Val, P.P. (AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst. Nizkikh Temperatur); Kaufmann, H.J. (Akademie der Wissenschaften der DDR, Berlin)

    1984-08-01

    Amplitude and temperature spectra of ultrasound absorption in weakly deformed high purity molybdenum single crystals of different orientations were measured. The results were discussed in terms of parameter changes related to quasiparticle or dislocation oscillations, respectively, dislocation point defect interactions as well as defect generation at microplastic deformation.

  7. A finite deformation theory of higher-order gradient crystal plasticity

    DEFF Research Database (Denmark)

    Kuroda, Mitsutoshi; Tvergaard, Viggo

    2008-01-01

    crystal plasticity that is based on an assumption of the existence of higher-order stresses. Furthermore, a boundary-value problem for simple shear of a constrained thin strip is studied numerically, and some characteristic features of finite deformation are demonstrated through a comparison to a solution......For higher-order gradient crystal plasticity, a finite deformation formulation is presented. The theory does not deviate much from the conventional crystal plasticity theory. Only a back stress effect and additional differential equations for evolution of the geometrically necessary dislocation...

  8. The role of crystal orientation and surface proximity in the self-similar behavior of deformed Cu single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Judy W.L., E-mail: pangj@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Behtel Valley Road, Oak Ridge, TN 37831 (United States); Ice, Gene E. [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Behtel Valley Road, Oak Ridge, TN 37831 (United States); Liu Wenjun [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-11-25

    We report on novel 3D spatially resolved X-ray diffraction microscopy studies of self-affine behavior in deformed single crystals. This study extends surface profile measurements of self-affined morphology changes in single crystals during deformation to include local lattice rotations and sub-surface behavior. Investigations were made on the spatial correlation of the local lattice rotations in 8% tensile deformed Cu single crystals oriented with [1 2 3], [1 1 1] and [0 0 1] axes parallel to the tensile axis. The nondestructive depth-resolved measurements were made over a length scale of one to hundreds of micrometers. Self-affined correlation was found both at the surface and below the surface of the samples. A universal exponent for the power-law similar to that observed with surface profile methods is found at the surface of all samples but crystallographically sensitive changes are observed as a function of depth. Correlation lengths of the self-affine behavior vary with the [1 2 3] crystal exhibiting the longest self-affine length scale of 70 {mu}m with only 18 {mu}m for the [1 1 1] and [0 0 1] crystals. These measurements illuminate the transition from surface-like to bulk-like deformation behavior and provide new quantitative information to guide emerging models of self-organized structures in plasticity.

  9. Extension of an anisotropic creep model to general high temperature deformation of a single crystal superalloy

    International Nuclear Information System (INIS)

    Pan, L.M.; Ghosh, R.N.; McLean, M.

    1993-01-01

    A physics based model has been developed that accounts for the principal features of anisotropic creep deformation of single crystal superalloys. The present paper extends this model to simulate other types of high temperature deformation under strain controlled test conditions, such as stress relaxation and tension tests at constant strain rate in single crystals subject to axial loading along an arbitrary crystal direction. The approach is applied to the SRR99 single crystal superalloy where a model parameter database is available, determined via analysis of a database of constant stress creep curves. A software package has been generated to simulate the deformation behaviour under complex stress-strain conditions taking into account anisotropic elasticity. (orig.)

  10. Study of deformed quasi-periodic Fibonacci two dimensional photonic crystals

    International Nuclear Information System (INIS)

    Abdelaziz, K Ben; Bouazzi, Y; Kanzari, M

    2015-01-01

    Quasi-periodic photonic crystals are not periodic structures. These structures are generally obtained by the arrangement of layers according to a recursive rule. Properties of these structures make more attention the researchers especially in the case when applying defects. So, photonic crystals with defects present localized modes in the band gap leading to many potential applications such light localization.The objective of this work is to study by simulation the effect of the global deformation introduced in 2D quasiperiodic photonic crystals. Deformation was introduced by applying a power law, so that the coordinates y of the deformed object were determined through the coordinates x of the non-deformed structure in accordance with the following rule: y = x 1+k . Here k is the coefficient defining the deformation. Therefore, the objective is to study the effect of this deformation on the optical properties of 2D quasiperiodic photonic crystals, constructed by Fibonacci generation. An omnidirectional mirror was obtained for optimization Fibonacci iteration in a part of visible spectra. (paper)

  11. Crystal Orientation Effect on the Subsurface Deformation of Monocrystalline Germanium in Nanometric Cutting.

    Science.gov (United States)

    Lai, Min; Zhang, Xiaodong; Fang, Fengzhou

    2017-12-01

    Molecular dynamics simulations of nanometric cutting on monocrystalline germanium are conducted to investigate the subsurface deformation during and after nanometric cutting. The continuous random network model of amorphous germanium is established by molecular dynamics simulation, and its characteristic parameters are extracted to compare with those of the machined deformed layer. The coordination number distribution and radial distribution function (RDF) show that the machined surface presents the similar amorphous state. The anisotropic subsurface deformation is studied by nanometric cutting on the (010), (101), and (111) crystal planes of germanium, respectively. The deformed structures are prone to extend along the 110 slip system, which leads to the difference in the shape and thickness of the deformed layer on various directions and crystal planes. On machined surface, the greater thickness of subsurface deformed layer induces the greater surface recovery height. In order to get the critical thickness limit of deformed layer on machined surface of germanium, the optimized cutting direction on each crystal plane is suggested according to the relevance of the nanometric cutting to the nanoindentation.

  12. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    Science.gov (United States)

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  13. Nial and Nial-Based Composites Directionally Solidified by a Containerless Zone Process. Ph.D. Thesis

    Science.gov (United States)

    Joslin, Steven M.

    1995-01-01

    A containerless electromagnetically levitated zone (CELZ) process has been used to directionally solidify NiAl and NiAl-based composites. The CELZ processing results in single crystal NiAl (HP-NiAl) having higher purity than commercially pure NiAl grown by a modified Bridgman process (CP-NiAl). The mechanical properties, specifically fracture toughness and creep strength, of the HP-NiAl are superior to binary CP-NiAl and are used as a base-line for comparison with the composite materials subsequently studied. Two-phase composite materials (NiAl-based eutectic alloys) show improvement in room temperature fracture toughness and 1200 to 1400 K creep strength over that of binary HP-NiAl. Metallic phase reinforcements produce the greatest improvement in fracture toughness, while intermetallic reinforcement produces the largest improvement in high temperature strength. Three-phase eutectic alloys and composite materials were identified and directionally solidified with the intent to combine the improvements observed in the two-phase alloys into one alloy. The room temperature fracture toughness and high temperature strength (in air) serve as the basis for comparison between all of the alloys. Finally, the composite materials are discussed in terms of dominant fracture mechanism observed by fractography.

  14. Stress and strain fluctuations in plastic deformation of crystals with disordered microstructure

    International Nuclear Information System (INIS)

    Kapetanou, O; Zaiser, M; Weygand, D

    2015-01-01

    We investigate the spatial structure of stress and strain patterns in crystal plasticity. To this end, we combine theoretical arguments with plasticity simulations using three different models: (i) a generic model of bulk crystal plasticity with stochastic evolution of the local microstructure, (ii) a 2D discrete dislocation simulation assuming single-slip deformation in a bulk crystal, and (iii) a 3D discrete dislocation model for deformation of micropillars in multiple slip. For all three models we investigate the scale-dependent magnitude of local fluctuations of internal stress and plastic strain, and we determine the spatial structure of the respective auto- and cross-correlation functions. The investigations show that, in the course of deformation, nontrivial long range correlations emerge in the stress and strain patterns. We investigate the influence of boundary conditions on the observed spatial patterns of stress and strain, and discuss implications of our findings for larger-scale plasticity models. (paper)

  15. Simulation and experimental analysis of nanoindentation and mechanical properties of amorphous NiAl alloys.

    Science.gov (United States)

    Wang, Chih-Hao; Fang, Te-Hua; Cheng, Po-Chien; Chiang, Chia-Chin; Chao, Kuan-Chi

    2015-06-01

    This paper used numerical and experimental methods to investigate the mechanical properties of amorphous NiAl alloys during the nanoindentation process. A simulation was performed using the many-body tight-binding potential method. Temperature, plastic deformation, elastic recovery, and hardness were evaluated. The experimental method was based on nanoindentation measurements, allowing a precise prediction of Young's modulus and hardness values for comparison with the simulation results. The indentation simulation results showed a significant increase of NiAl hardness and elastic recovery with increasing Ni content. Furthermore, the results showed that hardness and Young's modulus increase with increasing Ni content. The simulation results are in good agreement with the experimental results. Adhesion test of amorphous NiAl alloys at room temperature is also described in this study.

  16. Shape effect related to crystallographic orientation of deformation behavior in copper crystals

    International Nuclear Information System (INIS)

    Kim, K.H.; Chang, C.H.; Koo, Y.M.; MacDowell, A.A.

    1999-01-01

    The deformation behavior of pure copper single crystals has been investigated by scanning electron microscopy and synchrotron radiation using the in situ reflection Laue method. Two types of samples with the same orientation of tensile axes, but with different crystallographic orientations in the directions of the width and thickness of the samples, have been studied. They showed different characteristics of deformation behavior, such as the activated slip systems, the movement of the tensile axis, and the mode of fracture

  17. The effect of deformation twinning on irradiation embrittlement in iron single crystals

    International Nuclear Information System (INIS)

    Kayano, Hideo; Tokutomi, Shoichiro; Yajima, Seishi; Takaku, Hiroshi.

    1978-01-01

    Single crystals of iron with the [100] crystal orientation were irradiated in JMTR with fast neutrons to a fluence of 8 x 10 18 n/cm 2 (E > 1 MeV). All samples were deformed in tension at temperatures from liquid nitrogen temperature to 200 0 C at different strain rates using an Instron-type tensile testing machine. Scanning electron microscopy of the fractured surfaces revealed that deformation twinning is difficult to occur in irradiated samples, and also that twins formed in both irradiated and unirradiated samples inhibit fracture nucleation and growth. From the results of tensile deformation of the irradiated samples deformed in tension a different strain rates at 159 0 K, it is conceived that twinning suppression is greater in the irradiated than in the unirradiated samples, and that the nucleation and growth of twins are not necessarily related to those of cracks. It is suggested that the irradiation-induced defects impede plastic deformation of the crystals and deformation twinning is suppressed by irradiation, thus causing the irradiation embrittlement. (auth.)

  18. A novel approach to dynamical neutron diffraction by a deformed crystal

    International Nuclear Information System (INIS)

    Kulda, J.

    1984-01-01

    The propagation of neutron waves in a deformed crystal is considered from the point of view of quantum mechanics. Instead of solving the Takagi-Taupin equations the probability of transitions, induced by the variation of the interaction potential, between quantum states corresponding to the two sheets of the dispersion surface is calculated. In this way transmission and reflection coefficients for an incident plane wave are obtained after a simple analytical calculation for a wide class of crystal deformations. The predictions of this theory are found to be in agreement with direct solutions of the Takagi-Taupin equations as well as with the experimental results. (Auth.)

  19. Experimental studies of the deformation of carbonated rocks by dissolution crystallization under stress

    International Nuclear Information System (INIS)

    Zubtsov, Sergey

    2003-01-01

    The first part of this research thesis reports the experimental investigation and the modelling of the deformation of poly-mineral rocks under the influence of mechanism of dissolution-crystallization under stress. This mechanism has a significant role in the compaction of sedimentary rocks, in the folding process of the earth's crust. The author notably reports the results of the experimental deformation of calcite in presence of water (calcite is present in marls in which the deposit of nuclear wastes in planned in France). The second part deals with the fact that healing is possible between two grains of similar mineralogy, and slows down or even stops deformation

  20. The Lamb wave bandgap variation of a locally resonant phononic crystal subjected to thermal deformation

    Science.gov (United States)

    Zhu, Yun; Li, Zhen; Li, Yue-ming

    2018-05-01

    A study on dynamical characteristics of a ternary locally resonant phononic crystal (PC) plate (i.e., hard scatterer with soft coating periodically disperse in stiff host matrix) is carried out in this paper. The effect of thermal deformation on the structure stiffness, which plays an important role in the PC's dynamical characteristics, is considered. Results show that both the start and the stop frequency of bandgap shift to higher range with the thermal deformation. In particular, the characteristics of band structure change suddenly at critical buckling temperature. The effect of thermal deformation could be utilized for tuning of phononic band structures, which can promote their design and further applications.

  1. Orientation and deformation of mineral crystals in tooth surfaces.

    Science.gov (United States)

    Fujisaki, Kazuhiro; Todoh, Masahiro; Niida, Atsushi; Shibuya, Ryota; Kitami, Shunsuke; Tadano, Shigeru

    2012-06-01

    Tooth enamel is the hardest material in the human body, and it is mainly composed of hydroxyapatite (HAp)-like mineral particles. As HAp has a hexagonal crystal structure, X-ray diffraction methods can be used to analyze the crystal structure of HAp in teeth. Here, the X-ray diffraction method was applied to the surface of tooth enamel to measure the orientation and strain of the HAp crystals. The c-axis of the hexagonal crystal structure of HAp was oriented to the surface perpendicular to the tooth enamel covering the tooth surface. Thus, the strain of HAp at the surface of teeth was measured by X-ray diffraction from the (004) lattice planes aligned along the c-axis. The X-ray strain measurements were conducted on tooth specimens with intact surfaces under loading. Highly accurate strain measurements of the surface of tooth specimens were performed by precise positioning of the X-ray irradiation area during loading. The strains of the (004) lattice plane were measured at several positions on the surface of the specimens under compression along the tooth axis. The strains were obtained as tensile strains at the labial side of incisor tooth specimens. In posterior teeth, the strains were different at different measurement positions, varying from tensile to compressive types. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Deformation microstructure and orientation of F.C.C. crystals

    DEFF Research Database (Denmark)

    Liu, Q.; Hansen, N.

    1995-01-01

    The effect of crystallographic orientation on the microstructural evolution in f.c.c. metals with medium to high stacking fault energy is analyzed. This analysis is based on a literature review of the behaviour of single crystals and polycrystals supplemented with an experimental study of cold...

  3. Effects of microscopic boundary conditions on plastic deformations of small-sized single crystals

    DEFF Research Database (Denmark)

    Kuroda, Mitsutoshi; Tvergaard, Viggo

    2009-01-01

    The finite deformation version of the higher-order gradient crystal plasticity model proposed by the authors is applied to solve plane strain boundary value problems, in order to obtain an understanding of the effect of the higher-order boundary conditions. Numerical solutions are carried out...

  4. Study of effect of quenching and deformation on KCl: Gd crystals by ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The study of ionic conductivity vs reciprocal temperature of pure KCl and KCl crystal doped with. 0⋅1, 0⋅3 and 0⋅5 mole% gadolinium has been carried out in as grown, quenched from elevated temperatures. (100, 350 and 500°C) and annealed at various timings i.e. 2–3 h and deformed by different percentages.

  5. Imprinting of slip bands in mechanically deformed MgO crystals using lithium impurities

    Energy Technology Data Exchange (ETDEWEB)

    Orera, V M; Chen, Y; Abraham, M M

    1980-01-01

    Lithium impurities in MgO can be used to imprint slip bands produced by plastic deformation. The imprinting is obtained by means of (Li)/sup 0/ defects (subtitutional Li/sup +/ ions each with an adjacent O/sup -/ ion) which absorb light at 680 nm (1.8 eV). Slip bands are observed as discolored regions against the background of dark blue coloration due to these defects. The decoloration can be achieved by two different processes: either by oxidation at 1275 K of a deformed crystal, or by the reverse procedure - deformation of a previously oxidized crystal. The mechanisms involved in the decoloration are different; the former is due to ionic motion, and the latter is an electronic effect. Similar procedures involving surface indentation by sharp objects also result in decoloration patterns.

  6. Structural features in Ni-Al alloys

    International Nuclear Information System (INIS)

    Abylkalykova, R.B.; Kveglis, L.I.; Rakhimova, U.A.; Nasokhova, Sh.B.; Tazhibaeva, G.B.

    2007-01-01

    Purpose of the work is study of structural transformations under diverse memory effect in Ni-Al alloys. Examination were conducted in following composition samples: Ni -75 at.% and Al - 25 at.%. The work is devoted to clarification reasons both formation atom-ordered structures in inter-grain boundaries of bulk samples under temperature action and static load. Revealed inter-grain inter-boundary layers in Ni-Al alloy both bulk and surface state have complicated structure

  7. Neutron scattering experiments of the ionic crystal deformed plastically with uniaxial compression under high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Yoshinori; Minakawa, Nobuaki; Aizawa, Kazuya; Ozawa, Kunio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-04-01

    As an aim of huge growth of alkali halide (AH) single crystal, a mosaic structure of small size AH single crystal deformed plastically with uniaxial compression under high temperature was evaluated due to its neutron irradiation experiment. Using TAS-2 installed at JRR-3M guide hole of Japan Atomic Energy Research Institute, locking curve at a representative face factor of the specimen was measured to observe the mosaic structure accompanied with expansion of the crystal due to compression. As a result, though the specimen before compression could be supposed to be divided to some parts already, the locking curve under 10 sec. of compression time showed already some fracture to divisions to suppose finer degradation of the crystal, and division of the locking curve at 600 sec. of compression time could be observed onto its 220 face. And, every compressed specimens showed some changes of crystallization method from standard sample. (G.K.)

  8. Dislocations and Plastic Deformation in MgO Crystals: A Review

    Directory of Open Access Journals (Sweden)

    Jonathan Amodeo

    2018-05-01

    Full Text Available This review paper focuses on dislocations and plastic deformation in magnesium oxide crystals. MgO is an archetype ionic ceramic with refractory properties which is of interest in several fields of applications such as ceramic materials fabrication, nano-scale engineering and Earth sciences. In its bulk single crystal shape, MgO can deform up to few percent plastic strain due to dislocation plasticity processes that strongly depend on external parameters such as pressure, temperature, strain rate, or crystal size. This review describes how a combined approach of macro-mechanical tests, multi-scale modeling, nano-mechanical tests, and high pressure experiments and simulations have progressively helped to improve our understanding of MgO mechanical behavior and elementary dislocation-based processes under stress.

  9. Calculation of thermal deformations in water-cooled monochromator crystals

    International Nuclear Information System (INIS)

    Nakamura, Ario; Hashimoto, Shinya; Motohashi, Haruhiko

    1994-11-01

    Through calculation of temperature distribution and thermal deformation of monochromators, optical degradation by the heat loads in SPring-8 have been discussed. Cooling experiments were made on three models of copper structures with the JAERI Electron Beam Irradiation Stand (JEBIS) and the results were used to estimate heat transfer coefficients in the models. The heat transfer coefficients have been adopted to simulate heating processes on silicon models of the same structures as the copper models, for which radiations from the SPring-8 bending magnet and the JAERI prototype undulator (WPH-33J) were considered. It has been concluded that, in the case of bending magnet (with power density of 0.27[MW/m 2 ] on monochromator surface), the temperature at the surface center reaches about 30[degC] from the initial temperature of 27[degC] in all the models. In the case of WPH-33J (with power density of 8.2[MW/m 2 ]), the temperature reaches about 200 to 280[degC] depending on the models. The radiation from WPH-33J yields slope errors bigger than the Darwin's width(23[μrad]). (author)

  10. Integrated experimental and computational studies of deformation of single crystal copper at high strain rates

    Science.gov (United States)

    Rawat, S.; Chandra, S.; Chavan, V. M.; Sharma, S.; Warrier, M.; Chaturvedi, S.; Patel, R. J.

    2014-12-01

    Quasi-static (0.0033 s-1) and dynamic (103 s-1) compression experiments were performed on single crystal copper along ⟨100⟩ and ⟨110⟩ directions and best-fit parameters for the Johnson-Cook (JC) material model, which is an important input to hydrodynamic simulations for shock induced fracture, have been obtained. The deformation of single crystal copper along the ⟨110⟩ direction showed high yield strength, more strain hardening, and less strain rate sensitivity as compared to the ⟨100⟩ direction. Although the JC model at the macro-scale is easy to apply and describes a general response of material deformation, it lacks physical mechanisms that describe the influence of texture and initial orientation on the material response. Hence, a crystal plasticity model based on the theory of thermally activated motion of dislocations was used at the meso-scale, in which the evolution equations permit one to study and quantify the influence of initial orientation on the material response. Hardening parameters of the crystal plasticity model show less strain rate sensitivity along the ⟨110⟩ orientation as compared to the ⟨100⟩ orientation, as also shown by the JC model. Since the deformation process is inherently multiscale in nature, the shape changes observed in the experiments due to loading along ⟨100⟩ and ⟨110⟩ directions are also validated by molecular dynamics simulations at the nano-scale.

  11. Photo-Induced Deformations of Liquid Crystal Elastomers

    Science.gov (United States)

    Dawson, Nathan; Kuzyk, Mark; Neal, Jeremy; Luchette, Paul; Palffy-Muhoray, Peter

    2010-10-01

    Over a century ago, Alexander Graham Bell transmitted mechanical information on a beam of light using the ``photophone.'' We report on the use of a Fabry-Perot interferometer to encode and detect mechanical information of an illuminated liquid crystal elastomer (LCE) that is placed at a critical point between the reflectors. Furthermore, we show that cascading of macroscopic LCE-interferometer devices is possible. These are the first steps in the creation of ultra smart materials. Such applications require materials with a large photomechanical response. Thus, understanding the underlying mechanisms is critical. Only limited studies of the mechanisms of photomechanical effects have been studied in azo-dye-doped LCEs. The focus of our present work is to use the Fabry-Perot transducer geometry to study the underlying mechanisms and to determine the relevant material parameters that are used to develop theoretical models of the response. We use various intensity-modulated optical wave forms to determine the frequency response of the material, which are used to predict the material response in the time domain.

  12. Mechanisms of Photo-Induced Deformations of Liquid Crystal Elastomers

    Science.gov (United States)

    Dawson, Nathan; Kuzyk, Mark; Neal, Jeremy; Luchette, Paul; Palffy-Muhoray, Peter

    2010-03-01

    Over a century ago, Alexander Graham Bell invented the photophone, which he used to transmit mechanical information on a beam of light. We report on the use of an active Fabry-Perot interferometer to encode and detect mechanical information using the photomechanical effect of a liquid crystal elastomer (LCE) that is placed at a critical point between the reflectors. These are the first steps in the creation of ultra smart materials which require a large photomechanical response. Thus, understanding the underlying mechanisms is critical. Only limited studies of the mechanisms of the photomechanical effect, such as photo-isomerization, photo-reorientation and thermal effects have been studied in azo-dye-doped LCEs and in azo-dye-doped polymer fibers have been reported. The focus of our present work is to use the Fabry-Perot transducer geometry to study the underlying mechanisms and to determine the relevant material parameters that are used to develop theoretical models of the response. We use various intensity-modulated optical wave forms to determine the frequency response of the material, which are used to predict the material response.

  13. Computer simulations of liquid crystals: Defects, deformations and dynamics

    Science.gov (United States)

    Billeter, Jeffrey Lee

    1999-11-01

    Computer simulations play an increasingly important role in investigating fundamental issues in the physics of liquid crystals. Presented here are the results of three projects which utilize the unique power of simulations to probe questions which neither theory nor experiment can adequately answer. Throughout, we use the (generalized) Gay-Berne model, a widely-used phenomenological potential which captures the essential features of the anisotropic mesogen shapes and interactions. First, we used a Molecular Dynamics simulation with 65536 Gay-Berne particles to study the behaviors of topological defects in a quench from the isotropic to the nematic phase. Twist disclination loops were the dominant defects, and we saw evidence for dynamical scaling. We observed the loops separating, combining and collapsing, and we also observed numerous non-singular type-1 lines which appeared to be intimately involved with many of the loop processes. Second, we used a Molecular Dynamics simulation of a sphere embedded in a system of 2048 Gay-Berne particles to study the effects of radial anchoring of the molecules at the sphere's surface. A saturn ring defect configuration was observed, and the ring caused a driven sphere (modelling the falling ball experiment) to experience an increased resistance as it moved through the nematic. Deviations from a linear relationship between the driving force and the terminal speed are attributed to distortions of the saturn ring which we observed. The existence of the saturn ring confirms theoretical predictions for small spheres. Finally, we constructed a model for wedge-shaped molecules and used a linear response approach in a Monte Carlo simulation to investigate the flexoelectric behavior of a system of 256 such wedges. Novel potential models as well as novel analytical and visualization techniques were developed for these projects. Once again, the emphasis throughout was to investigate questions which simulations alone can adequately answer.

  14. Microstructure and texture development during high-strain torsion of NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Kloeden, B.

    2006-07-01

    In this study polycrystalline NiAl has been subjected to torsion deformation. The deformation, microstructure and texture development subject to the shear strain are studied by different techniques (Electron Back-Scatter and High Energy Synchrotron Radiation). Beside the development of microstructure and texture with shear strain, the effect of an initial texture as well as the deformation temperature on the development of texture and microstructure constitute an important part of this study. Therefore, samples with three different initial textures were deformed in the temperature range T=700 K-1300 K. The shear stress-shear strain curves are characterized by a peak at low strains, which is followed by softening and a steady state at high strains. Grain refinement takes place for all samples and the average grain size decreases with temperature. For temperatures T>1000 K, discontinuous dynamic recrystallization occurs, by which new grains form by nucleation and subsequent growth. The texture is characterized by two components, {l_brace}100{r_brace}<100> (cube,C) and {l_brace}110{r_brace}<100> (Goss,G). Torsional creep of NiAl is characterized by a stress exponent, which depends on temperature and an activation energy, which is stress dependent. The Swift effect, due to which samples change their axial dimension during torsion without applied axial stress, is observed for NiAl. (orig.)

  15. In-situ TEM study of dislocation patterning during deformation in single crystal aluminum

    International Nuclear Information System (INIS)

    Landau, P; Shneck, R Z; Makov, G; Venkert, A

    2010-01-01

    The evolution of dislocation patterns in single crystal aluminum was examined using transmission electron microscopy (TEM). In-situ tensile tests of single crystals were carried out in a manner that activated double slip. Cross slip of dislocations, which is prominent in all stages of work hardening, plays an important role in dislocation motion and microstructural evolution. In spite of the limitations of in-situ straining to represent bulk phenomena, due to surface effects and the thickness of the samples, it is shown that experiments on prestrained samples can represent the early stages of deformation. Transition between stage I and stage II of work hardening and evolution during stage III were observed.

  16. Influence of macroscopic shear deformation on polygonization and recrystallization of molybdenum crystals

    International Nuclear Information System (INIS)

    Larikov, L.N.; Belyakova, M.N.; Maksimenko, E.A.; Mudruk, P.V.

    1984-01-01

    The effect of shear bands on polygonization and recrystallization is studied on molybdenum monocrystals deformed by compression. A sharp bend of the lattice is shown to be a structural condition necessary for arising the shear step. Internal stress relaxation strongly changes kinetics of softening processes in compressed molybdenum crystals: it slows down polygonization under low-temperature heating (below 700 deg C) and accelerates it under high-temperature heating (higher 1000 deg C). Under the effect of relaxation of internal streses recrystallization in the investigated crystals is similar to dynamical: recrystallized grains are distorted and they have a developed substructure

  17. On the possibility of the soliton description of acoustic emission during plastic deformation of crystals

    International Nuclear Information System (INIS)

    Pawelek, A.

    1987-06-01

    Two basic sources of acoustic emission (AE) during plastic deformation of pure crystals are discussed. One is related to non-stationary dislocation motion (the bremsstrahlung type of acoustic radiation), and the other to dislocation annihilation processes (the main component of the transition type of acoustic radiation). The possible soliton description of the bremsstrahlung acoustic radiation by oscillating dislocation kink and by bound kink-antikink pair (dislocation breather) is cosidered on the basis of Eshelby's theory (Proc. Roy. Soc. London A266, 222 (1962)). The dislocation annihilation component of transition acoustic emission is considered only in relation to the Frank-Read source operation. A soliton model for this type of acoustic radiation is proposed and the simple quantum-mechanical hypothesis is advanced for the purpose. Both soliton descriptions are discussed on the basis of available experimental data on the AE intensity behaviour during tensile deformation of crystals. (author). 36 refs, 5 figs

  18. HPT-Deformation of Copper and NicKEXl Single Crystals

    International Nuclear Information System (INIS)

    Hafok, M.; Vorhauer, A.; Pippan, R.; KEXcKEXs, J.

    2005-01-01

    Full text: Copper and nicKEXl single crystals of high purity with a crystallographic orientation, (001) and (111) respectively, were deformed by applying high pressure torsion (HPT) at room temperature. Special interest was devoted to the structural evolution of the material, which was characterized by electron backscatter diffraction (EBSD) and x-ray texture analysis as well. In addition back scatter electron investigations were applied to characterize shape and size of the new formed structure. Furthermore the study is focused on the micro structural and micro textural evolution that lead to the increase of misorientation angle with increasing plastic deformation. We observed an increasing fragmentation of the structure with increasing plastic equivalent strain up to a level where the grain size is saturated. The saturation could be traced back to dynamical recovery and recrystallisation during the deformation process that is depending on the purity of the material. (author)

  19. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    KAUST Repository

    Mohamed, Mamdouh S.

    2015-05-18

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kröner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  20. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    KAUST Repository

    Mohamed, Mamdouh S.; Larson, Ben C.; Tischler, Jon Z.; El-Azab, Anter

    2015-01-01

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kröner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  1. Time-dependent deformation of polymer network in polymer-stabilized cholesteric liquid crystals (Conference Presentation)

    Science.gov (United States)

    Lee, Kyung Min; Tondiglia, Vincent P.; Bunning, Timothy J.; White, Timothy J.

    2017-02-01

    Recently, we reported direct current (DC) field controllable electro-optic (EO) responses of negative dielectric anisotropy polymer stabilized cholesteric liquid crystals (PSCLCs). A potential mechanism is: Ions in the liquid crystal mixtures are trapped in/on the polymer network during the fast photopolymerization process, and the movement of ions by the application of the DC field distorts polymer network toward the negative electrode, inducing pitch variation through the cell thickness, i.e., pitch compression on the negative electrode side and pitch expansion on positive electrode side. As the DC voltage is directly applied to a target voltage, charged polymer network is deformed and the reflection band is tuned. Interestingly, the polymer network deforms further (red shift of reflection band) with time when constantly applied DC voltage, illustrating DC field induced time dependent deformation of polymer network (creep-like behavior). This time dependent reflection band changes in PSCLCs are investigated by varying the several factors, such as type and concentration of photoinitiators, liquid crystal monomer content, and curing condition (UV intensity and curing time). In addition, simple linear viscoelastic spring-dashpot models, such as 2-parameter Kelvin and 3-parameter linear models, are used to investigate the time-dependent viscoelastic behaviors of polymer networks in PSCLC.

  2. Investigation of crystallization kinetics and deformation behavior in supercooled liquid region of CuZr-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ke; Fan, Xinhui; Li, Bing; Li, Yanhong; Wang, Xin; Xu, Xuanxuan [Xi' an Technological Univ. (China). School of Material and Chemical Engineering

    2017-08-15

    In this paper, a systematic study of crystallization kinetics and deformation behavior is presented for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} bulk metallic glass in the supercooled liquid region. Crystallization results showed that the activation energy for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} was calculated using the Arrhenius equation in isothermal mode and the Kissinger-Akahira-Sunose method in non-isothermal mode. The activation energy was quite high compared with other bulk metallic glasses. Based on isothermal transformation kinetics described by the Johson-Mehl-Avrami model, the average Avrami exponent of about 3.05 implies a mainly diffusion controlled three-dimensional growth with an increasing nucleation rate during the crystallization. For warm deformation, the results showed that deformation behavior, composed of homogeneous and inhomogeneous deformation, is strongly dependent on strain rate and temperature. The homogeneous deformation transformed from non-Newtonian flow to Newtonian flow with a decrease in strain rate and an increase in temperature. It was found that the crystallization during high temperature deformation is induced by heating. The appropriate working temperature/strain rate combination for the alloy forming, without in-situ crystallization, was deduced by constructing an empirical deformation map. The optimum process condition for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} can be expressed as T∝733 K and ∝ ε 10{sup -3} s{sup -1}.

  3. Semantic modeling of the structural and process entities during plastic deformation of crystals and rocks

    Science.gov (United States)

    Babaie, Hassan; Davarpanah, Armita

    2016-04-01

    We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive

  4. Orientation dependence of deformation and penetration behavior of tungsten single-crystal rods

    International Nuclear Information System (INIS)

    Bruchey, W.J.; Horwath, E.J.; Kingman, P.W.

    1991-01-01

    This paper reports on the performance of tungsten single crystals as kinetic energy penetrator materials that was investigated in a high length-to-diameter (L/D) rod geometry at sub-scale (1/4 geometric scale). The [111]. [110], and [100] crystal orientations were tested in this 74-g LD = 15 geometry penetrator (6.90-mm diameter x 102.5-mm length). Several 93% tungsten alloy and uranium 3/4 titanium rod geometries were also tested to baseline expected performance of typical penetrator material/geometry combinations. Performance was determined for semi-infinite penetration into RHA steel and finite penetration into 76.20-mm RHA steel. Of the orientation tested, the [100] orientation provided the best ballistic results, with superior performance to mass and geometric equivalent 93% tungsten alloy rods. The [100] orientation also provided similar performance to geometric equivalent uranium 3/4 titanium rods. Favorable slip/cleavage during the compressive loading of the penetration process to allow penetrator material flow without large scale plastic deformation, and final shear localization at a favorable angle for easy material flow away from the penetration interface, contribute to the [100] orientation crystals' excellent performance. The net result was less energy expenditure during penetrator flow and, therefore, more energy for deformation of RHA

  5. Enhanced Deformation of Azobenzene-Modified Liquid Crystal Polymers under Dual Wavelength Exposure: A Photophysical Model

    Science.gov (United States)

    Liu, Ling; Onck, Patrick R.

    2017-08-01

    Azobenzene-embedded liquid crystal polymers can undergo mechanical deformation in response to ultraviolet (UV) light. The natural rodlike trans state azobenzene absorbs UV light and isomerizes to a bentlike cis state, which disturbs the order of the polymer network, leading to an anisotropic deformation. The current consensus is that the magnitude of the photoinduced deformation is related to the statistical building up of molecules in the cis state. However, a recent experimental study [Liu and Broer, Nat. Commun. 6 8334 (2015)., 10.1038/ncomms9334] shows that a drastic (fourfold) increase of the photoinduced deformation can be generated by exposing the samples simultaneously to 365 nm (UV) and 455 nm (visible) light. To elucidate the physical mechanism that drives this increase, we develop a two-light attenuation model and an optomechanical constitutive relation that not only accounts for the statistical accumulation of cis azobenzenes, but also for the dynamic trans-cis-trans oscillatory isomerization process. Our experimentally calibrated model predicts that the optimal single-wavelength exposure is 395 nm light, a pronounced shift towards the visible spectrum. In addition, we identify a range of optimal combinations of two-wavelength lights that generate a favorable response for a given amount of injected energy. Our model provides mechanistic insight into the different (multi)wavelength exposures used in experiments and, at the same time, opens new avenues towards enhanced, multiwavelength optomechanical behavior.

  6. Orientation dependence of deformation and penetration behavior of tungsten single crystal rods

    International Nuclear Information System (INIS)

    Bruchey, W.J. Jr.; Horwath, E.J.; Kingman, P.W.

    1991-01-01

    This paper reports on deformation and flow at a target/penetrator interface that occurs under conditions of high hydrostatic pressure and associated heat generation. To further elucidate the role of material structure in the penetration process, oriented single crystals of tungsten have been launched into steel targets and the residual penetrators recovered and analyzed. Both the penetration depth and the deformation characteristics were strongly influenced by the crystallographic orientation. Deformation modes for the left-angle 100 right-angle rod, which exhibited the best performance, appeared to involve considerable localized slip/cleavage and relatively less plastic working; the residual penetrator was extensively cracked and the eroded penetrator material was extruded in a smooth tube lined with an oriented array of discrete particle exhibiting cleavage fractures. Deformation appeared to be much less localized and to involve more extensive plastic working in the left-angle 011 right-angle rod, which exhibited the poorest penetration, while the left-angle 111 right-angle behaved in an intermediate fashion

  7. Crystal-plastic deformation of zircon : effects on microstructures, textures, microchemistry and the retention of radiogenic isotopes

    International Nuclear Information System (INIS)

    Kovaleva, E.

    2015-01-01

    Dating of deep-crustal deformation events potentially can be achieved by using plastically-deformed accessory minerals found in high-temperature shear zones. Deformation microstructures, such as dislocations and low-angle boundaries, form due to plastic deformation in the crystal lattice and act as fluid migration pathways and trace element (e.g. Pb, Ti, U, Th, REE) diffusion pathways through so-called “pipe diffusion”. Deformation microstructures can alter the chemical and isotopic composition of certain grain parts and may lead to complete or partial isotopic resetting of certain geochronometers (e.g. U/Th/Pb, K/Ar, Rb/Sr) in the mineral domains. This work aims to better understand the processes of crystal-plastic deformation and associated trace element redistribution and the resetting of isotopic systems in zircon. This study finds that: a) there are three general finite deformation patterns in deformed zircons; b) suggests that it is possible to reconstruct the macroscopic kinematic framework of the shear zone based on the orientation of deformed zircon grains and the operating misorientation axes; c) and demonstrates the effect of deformation microstructures on trace elements and Pb isotopes in zircon. The final goal of this project is to develop a tool for isotopic dating of high-temperature deformation events in the deep crust. In addition to these results, zircon grains with planar deformation bands have been discovered in paleo-seismic zones; these deformation features have been described in detail and a possible mechanism of their origin and formation is suggested. The effect of planar deformation bands on trace element and isotopic behavior has also been investigated. (author) [de

  8. Irradiation hardening and localized deformation of neutron-irradiated α-iron single crystals

    International Nuclear Information System (INIS)

    Mughrabi, H.; Stroehle, D.; Wilkens, M.

    1981-01-01

    The early yielding behaviour of neutron-irradiated α iron single crystals orientated for single slip was investigated as a function of neutron dose. In the range of neutron doses between approx. equal to 10 18 and approx. equal to 10 19 n/cm 2 , the irradiation hardening increment was found to be almost constant. Qualitative modifications of this behaviour were observed in the case of predeformed specimens. The localized deformation of the neutron-irradiated specimens by dislocation channelling was investigated by slip-line observations, transmission electron microscopy and X-ray topography. A model of localized deformation is proposed in order to explain the development of the observed asymmetric dislocation double layers which bound the channels and transmit characteristic misorientations. (orig.)

  9. Design of a compact polarization beam splitter based on a deformed photonic crystal directional coupler

    International Nuclear Information System (INIS)

    Ren Gang; Zheng Wanhua; Wang Ke; Du Xiaoyu; Xing Mingxin; Chen Lianghui

    2008-01-01

    In this paper a compact polarization beam splitter based on a deformed photonic crystal directional coupler is designed and simulated. The transverse-electric (TE) guided mode and transverse-magnetic (TM) guided mode are split due to different guiding mechanisms. The effect of the shape deformation of the air holes on the coupler is studied. It discovered that the coupling strength of the coupled waveguides is strongly enhanced by introducing elliptical airholes, which reduce the device length to less than 18.5μm. A finite-difference time-domain simulation is performed to evaluate the performance of the device, and the extinction ratios for both TE and TM polarized light are higher than 20 dB. (classical areas of phenomenology)

  10. Methods for determining deformation history for chocolate tablet boudinage with fibrous crystals

    Science.gov (United States)

    Casey, M.; Dietrich, D.; Ramsay, J. G.

    1983-02-01

    Chocolate tablet boudinage with fibrous crystal growths between the boudinaged plates from two localities were studied. In one, from Leytron, Valais, Switzerland, the deformation history was found to be a succession of plane strain increments with the shortening direction perpendicular to the boudinaged sheet and the extension direction showing a progressive change in orientation within the sheet. The incremental and finite strains were evaluated. The other specimen, from Parys Mountain, Anglesey Great Britain, was found to have a more complex history with diachronous break up of the competent layer and flattening strain increments. It was found that under these circumstances the direct graphical methods of determining finite and incremental strains gave inconsistent results. A numerical model was developed which allowed the simulation of chocolate tablet structure with a complex deformation history. The model was applied to the Anglesey specimen and three possible strain histories for this structure were tried.

  11. Plastic deformation of single crystals of WSi2 with the C11b structure

    International Nuclear Information System (INIS)

    Ito, K.; Yano, T.; Nakamoto, T.; Inui, H.; Yamaguchi, M.

    1999-01-01

    The deformation behavior of single crystals of WSi 2 has been investigated as a function of crystal orientation in the temperature range from room temperature to 1500 C in compression. Single crystals of WSi 2 can be deformed only at high temperatures above 1100 C, in contrast to MoSi 2 in which plastic flow is possible even at room temperature. Four slip systems, {110} left-angle 111 right-angle, {011} left-angle 100 right-angle, {023} left-angle 100 right-angle and (001)left-angle 100 right-angle, are identified. While the former three slip systems are operative also in MoSi 2 , the (001)left-angle 100 right-angle slip is only operative in WSi 2 . The (001)left-angle 100 right-angle slip in WSi 2 is the alternative to {013} left-angle 331 right-angle slip in MoSi 2 since they are operative in the same orientation range. Slip on {110} left-angle 331 right-angle is hardly observed in WSi 2 . The values of critical resolved shear stress (CRSS) for the commonly observed slip systems are much higher in WSi 2 than in MoSi 2 with the largest difference for {110} left-angle 111 right-angle slip. The higher CRSS values in WSi 2 are not only due to the intrinsic difference in the deformation behavior but also due to the existence of numerous grown-in stacking faults on (001)

  12. Crystal plasticity finite element analysis of deformation behaviour in SAC305 solder joint

    Science.gov (United States)

    Darbandi, Payam

    Due to the awareness of the potential health hazards associated with the toxicity of lead (Pb), actions have been taken to eliminate or reduce the use of Pb in consumer products. Among those, tin (Sn) solders have been used for the assembly of electronic systems. Anisotropy is of significant importance in all structural metals, but this characteristic is unusually strong in Sn, making Sn based solder joints one of the best examples of the influence of anisotropy. The effect of anisotropy arising from the crystal structure of tin and large grain microstructure on the microstructure and the evolution of constitutive responses of microscale SAC305 solder joints is investigated. Insights into the effects of key microstructural features and dominant plastic deformation mechanisms influencing the measured relative activity of slip systems in SAC305 are obtained from a combination of optical microscopy, orientation imaging microscopy (OIM), slip plane trace analysis and crystal plasticity finite element (CPFE) modeling. Package level SAC305 specimens were subjected to shear deformation in sequential steps and characterized using optical microscopy and OIM to identify the activity of slip systems. X-ray micro Laue diffraction and high energy monochromatic X-ray beam were employed to characterize the joint scale tensile samples to provide necessary information to be able to compare and validate the CPFE model. A CPFE model was developed that can account for relative ease of activating slip systems in SAC305 solder based upon the statistical estimation based on correlation between the critical resolved shear stress and the probability of activating various slip systems. The results from simulations show that the CPFE model developed using the statistical analysis of activity of slip system not only can satisfy the requirements associated with kinematic of plastic deformation in crystal coordinate systems (activity of slip systems) and global coordinate system (shape changes

  13. TEM microstructural analysis of creep deformed CM186LC single crystal Ni-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Dubiel, B.; Czyrska-Filemonowicz, A. [AGH Univ. of Science and Technology, Krakow (Poland); Blackler, M. [Howmet Ltd., Exeter (United Kingdom); Barnard, P.M. [ALSTOM Power Turbo-Systems Technology Centre, Rugby (United Kingdom)

    2006-07-01

    The nickel based single crystal superalloy CM186LC was extensively investigated as a potential low cost material for industrial gas turbine vanes within the COST522 programme. The alloy exhibits inhomogeneous structure consisting of dendritic regions and eutectic colonies. In the present work attention is focused on microstructural changes observed in single crystal CM186LC following creep deformation at 750 C. Creep tests were conducted at 750 C with an applied stress of 560 or 675 MPa for up to 11440 hours. The microstructure o ruptured and terminated specimens was investigated by scanning (SEM) and transmission (TEM) electron microscopy. TEM analysis revealed the microstructural changes in the CM186LC at primary and secondary creep as well as after creep rupture. (orig.)

  14. Deformation Mechanism and Recrystallization Relationships in Galfenol Single Crystals: On the Origin of Goss and Cube Orientations

    Science.gov (United States)

    Na, Suok-Min; Smith, Malcolm; Flatau, Alison B.

    2018-06-01

    In this work, deformation mechanism related to recrystallization behavior in single-crystal disks of Galfenol (Fe-Ga alloy) was investigated to gain insights into the influence of crystal orientations on structural changes and selective grain growth that take place during secondary recrystallization. We started with the three kinds of single-crystal samples with (011)[100], (001)[100], and (001)[110] orientations, which were rolled and annealed to promote the formation of different grain structures and texture evolutions. The initial Goss-oriented (011)[100] crystal mostly rotated into {111} orientations with twofold symmetry and shear band structures by twinning resulted in the exposure of rolled surface along {001} orientation during rolling. In contrast, the Cube-oriented (001)[100] single crystal had no change in texture during rolling with the thickness reduction up to 50 pct. The {123} slip systems were preferentially activated in these single crystals during deformation as well as {112} slip systems that are known to play a role in primary slip of body-centered cubic (BCC) materials such as α-iron and Fe-Si alloys. After annealing, the deformed Cube-oriented single crystal had a small fraction ( orientation, associated with {123} slip systems as well. This was expected to provide potential sites of nucleation for secondary recrystallization; however, no Goss- and Cube-oriented components actually developed in this sample during secondary recrystallization. Those results illustrated how the recrystallization behavior can be influenced by deformed structure and the slip systems.

  15. Stability of the composites: NiAl - cellular high-melting point metal

    International Nuclear Information System (INIS)

    Belomyttsev, M.Yu.; Kozlov, D.A.

    2006-01-01

    For sintered composite materials (CM) NiAl-W and NiAl-W-Mo the structure and mechanical properties are studied. A comparative analysis of the effect of hot deformation by compression at 1000-1300 Deg C on the integrity of microsamples themselves and tungsten shells of NiAl granules in CM with a cellular structure is accomplished. Local chemical composition of a NiAl/refractory metal interface in CM with cellular structure and free of it is determined. A CM structural state effect on compression yield strength at 1000 Deg C is estimated. The treatment is proposed which permits approaching cellular structured CM oxidation resistance at 1000-1100 Deg C to the level of heat stability of unalloyed NiAl or its alloy with Hf [ru

  16. A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals

    Science.gov (United States)

    Yu, Chao; Kang, Guozheng; Kan, Qianhua

    2015-09-01

    Based on the experimental observations on the anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals done by Gall and Maier (2002), a crystal plasticity based micromechanical constitutive model is constructed to describe such anisotropic cyclic deformation. To model the internal stress caused by the unmatched inelastic deformation between the austenite and martensite phases on the plastic deformation of austenite phase, 24 induced martensite variants are assumed to be ellipsoidal inclusions with anisotropic elasticity and embedded in the austenite matrix. The homogeneous stress fields in the austenite matrix and each induced martensite variant are obtained by using the Mori-Tanaka homogenization method. Two different inelastic mechanisms, i.e., martensite transformation and transformation-induced plasticity, and their interactions are considered in the proposed model. Following the assumption of instantaneous domain growth (Cherkaoui et al., 1998), the Helmholtz free energy of a representative volume element of a NiTi shape memory single crystal is established and the thermodynamic driving forces of the internal variables are obtained from the dissipative inequalities. The capability of the proposed model to describe the anisotropic cyclic deformation of super-elastic NiTi single crystals is first verified by comparing the predicted results with the experimental ones. It is concluded that the proposed model can capture the main quantitative features observed in the experiments. And then, the proposed model is further used to predict the uniaxial and multiaxial transformation ratchetting of a NiTi single crystal.

  17. Crystal field and site deformation in spinels and pentavalent uranium compounds

    International Nuclear Information System (INIS)

    Drifford, M.; Soulie, E.

    1976-01-01

    Magnesium aluminates with different alumina contents have the spinel structure. The optical absorption spectra of doped spinel compounds (Cr 3+ , Ni 2+ , Co 2+ ) or E.S.R. spectra (Cr 3+ , Mn 2+ ) are used for the investigation of the position of the doping materials and the deformation of the crystal sites, and give information on the structural disorders. The local structural information given by the doping materials are compared with the mean structure parameters obtained from X-ray diffraction. The optical absorption spectrum and the principal components of the g tensor for UF 6 Cs and the thermal variation in the magnetic susceptibility for UF 8 Cs 3 and UF 8 (NH 4 ) are used for determining the parameters of the electron Hamiltonian for the f 1 configuration. A rather significant covalent aspect is evidenced for UF 6 Cs, in the framework of the model of Eisenstein and Pryce, this property being weaker for the other two complex compounds. The three parameters giving the crystal field at a deformed cubic site with Dsub(3d) symmetry in the Newman superposition model are noticeably weaker for the 8-coordination than for the 6-coordination. As for UF 8 Cs 3 and UF 8 (NH 4 ) 3 a calculation predicts an electronic levels with a very low excitation, at about 110 and 70cm -1 respectively [fr

  18. Stress-induced martensitic transformation and ferroelastic deformation adjacent microhardness indents in tetragonal zirconia single crystals

    International Nuclear Information System (INIS)

    Chien, F.R.; Ubic, F.J.; Prakash, V.; Heuer, A.H.

    1998-01-01

    The stress-induced tetragonal to monoclinic (t → m) martensitic transformation, stress-induced ferroelastic domain switching, and dislocation slip were induced by Vickers microindentation at elevated temperatures in polydomain single crystals of 3 mol%-Y 2 O 3 -stabilized tetragonal ZrO 2 single crystals (3Y-TZS). Chemical etching revealed traces along t directions adjacent to indentations, and Raman spectroscopy and TEM have shown that these traces are caused by products of the martensitic transformation, i.e. the monoclinic product phase forms primarily as thin, long plates with a habit plane approximately on (bar 301) m . This habit plane and the associated shear strain arising from the transformation, visible in TEM micrographs at the intersection of crystallographically equivalent martensite plates, were successfully predicted using the observed lattice correspondence and the phenomenological invariant plane strain theory of martensitic transformations. The extent of the martensitic transformation increased with increasing temperature from room temperature up to 300 C, but then decreased at higher temperatures. Ferroelastic deformation of tetragonal ZrO 2 has been observed at all temperatures up to 1,000 C. At the highest temperature, only ferroelastic domain switching and dislocation slip occurred during indentation-induced deformation

  19. Size effect on deformation twinning in face-centred cubic single crystals: Experiments and modelling

    International Nuclear Information System (INIS)

    Liang, Z.Y.; De Hosson, J.T.M.; Huang, M.X.

    2017-01-01

    In addition to slip by dislocation glide, deformation twinning in small-sized metallic crystals also exhibits size effect, namely the twinning stress increases with decreasing sample size. In order to understand the underpinning mechanisms responsible for such effect, systematic experiments were carried out on the small-sized single-crystalline pillars of a twinning-induced plasticity steel with a face-centred cubic structure. The flow stress increases considerably with decreasing pillar diameter from 3 to 0.5 μm, demonstrating a substantial size effect with a power exponent of 0.43. Detailed microstructural characterization reveals that the plastic deformation of the present pillars is dominant by twinning, primarily via twin growth, indicating that the size effect should be related to deformation twinning instead of slip by dislocation glide. Subsequent modelling works indicate that twinning can be accomplished by the dissociation of the ion-radiation-induced vacancy Frank loops in the damaged subsurface layer of the pillars, and the size effect is attributed to the ion-radiation-induced compressive stress in the subsurface layer, which decreases with pillar diameter.

  20. A study of gradient strengthening based on a finite-deformation gradient crystal-plasticity model

    Science.gov (United States)

    Pouriayevali, Habib; Xu, Bai-Xiang

    2017-11-01

    A comprehensive study on a finite-deformation gradient crystal-plasticity model which has been derived based on Gurtin's framework (Int J Plast 24:702-725, 2008) is carried out here. This systematic investigation on the different roles of governing components of the model represents the strength of this framework in the prediction of a wide range of hardening behaviors as well as rate-dependent and scale-variation responses in a single crystal. The model is represented in the reference configuration for the purpose of numerical implementation and then implemented in the FEM software ABAQUS via a user-defined subroutine (UEL). Furthermore, a function of accumulation rates of dislocations is employed and viewed as a measure of formation of short-range interactions. Our simulation results reveal that the dissipative gradient strengthening can be identified as a source of isotropic-hardening behavior, which may represent the effect of irrecoverable work introduced by Gurtin and Ohno (J Mech Phys Solids 59:320-343, 2011). Here, the variation of size dependency at different magnitude of a rate-sensitivity parameter is also discussed. Moreover, an observation of effect of a distinctive feature in the model which explains the effect of distortion of crystal lattice in the reference configuration is reported in this study for the first time. In addition, plastic flows in predefined slip systems and expansion of accumulation of GNDs are distinctly observed in varying scales and under different loading conditions.

  1. Transient behaviour of the mechanoluminescence induced by impulsive deformation of fluorescent and phosphorescent crystals

    International Nuclear Information System (INIS)

    Chandra, B.P.; Mahobia, S.K.; Jha, P.; Kuraria, R.K.; Kuraria, S.R.; Baghel, R.N.; Thaker, S.

    2008-01-01

    When a crystal is fractured impulsively by the impact of a moving piston, then initially the mechanoluminescence (ML) intensity increases quadratically with time, attains a peak value and later on it decreases with time. Considering that the solid state ML and gas discharge ML are excited due to the charging and subsequent production of electric field near the tip of moving cracks, expressions are derived for the transient ML intensity I, time t m and intensity I m corresponding to the peak of ML intensity versus time curve, respectively, the total ML intensity I T , and for fast and slow decays of the ML intensity. It is shown that the decay time for the fast decrease of the ML intensity after t m , is related to the decay time of the strain rate of crystals, and the decay time of slow decay of ML, only observed in phosphorescent crystals, is equal to the decay time of phosphorescence. The value of t m decreases with the increasing impact velocity, I m increases with the increasing impact velocity, and I T initially increases and then it tends to attain a saturation value for higher values of the impact velocity. The values of t m , I m and I T increase linearly with the thickness, area of cross-section and volume of the crystals, respectively. So far as the rise, attainment of ML peak, and fast decay of ML are concerned, there is no any significant difference in the time-evolution of solid state ML, gas discharge ML, and the ML emission consisting of both the solid state ML and gas discharge ML. From the time-dependence of ML, the values of the time-constant for decrease of the surface area created by the movement of a single crack, the time-constant for the decrease of strain rate of crystals, and the decay time of phosphorescence of crystals can be determined. A good agreement is found between the theoretical and experimental results. The importance of fracto ML induced by impulsive deformation of crystals is discussed

  2. Deformation bands and dislocation structures of [1-bar 5 5] coplanar double-slip-oriented copper single crystal under cyclic deformation

    International Nuclear Information System (INIS)

    Li, Y.; Li, S.X.; Li, G.Y.

    2004-01-01

    The features of surface morphology and dislocation structure of [1-bar 5 5] coplanar double-slip-oriented copper single crystal under cyclic deformation at a constant plastic shear strain amplitude of 2x10 -3 were studied using optical microscope (OP) and electron channelling contrast imaging (ECCI) in the scanning electron microscope (SEM). Experimental results show that there are two sets of the secondary type of deformation band (DBII) formed in the specimen. The geometry relationship of the two sets of deformation bands (DBs) and slip band (SB) are given. The habit planes of DBIIs are close to (1-bar 0 1) and (1-bar 1 0) plane, respectively. The surface dislocation structures in the specimen including vein, irregular dislocation cells and dislocation walls were also observed. The typical dislocation structure in DBII is the dislocation walls

  3. Orientation correlation in tensile deformed [0 1 1] Cu single crystals

    International Nuclear Information System (INIS)

    Borbely, Andras; Szabo, Peter J.; Groma, Istvan

    2005-01-01

    Local crystallographic orientation of tensile deformed copper single crystals was investigated by the electron backscattering technique. Statistical evaluation of the data reveals the presence of an increased crystallographic correlation at the transition point between stages II and III of work-hardening. The transition state has the lowest probability of finding geometrically necessary dislocations in circular regions of radius smaller than 8 μm. According to the present results and other data showing that the relative fluctuation of the dislocation density has a maximum at the transition point, we conclude that the transition from stages II to III of work-hardening is similar to a second-order phase transformation of the statistical dislocation system

  4. Effect of laser shock on tensile deformation behavior of a single crystal nickel-base superalloy

    International Nuclear Information System (INIS)

    Lu, G.X.; Liu, J.D.; Qiao, H.C.; Zhou, Y.Z.; Jin, T.; Zhao, J.B.; Sun, X.F.; Hu, Z.Q.

    2017-01-01

    This investigation focused on the tensile deformation behavior of a single crystal nickel-base superalloy, both in virgin condition and after laser shock processing (LSP) with varied technology parameters. Nanoindention tests were carried out on the sectioned specimens after LSP treatment to characterize the surface strengthening effect. Stress strain curves of tensile specimens were analyzed, and microstructural observations of the fracture surface and the longitudinal cross-sections of ruptured specimens were performed via scanning electron microscope (SEM), in an effort to clarify the fracture mechanisms. The results show that a surface hardening layer with the thickness of about 0.3–0.6 mm was gained by the experimental alloys after LSP treatment, but the formation of surface hardening layer had not affected the yield strength. Furthermore, fundamental differences in the plastic responses at different temperatures due to LSP treatment had been discovered. At 700 °C, the slip deformation was held back when it extended to the surface hardening layer and the ensuing slip steps improved the plasticity; however, at 1000 °C, surface hardening layer hindered the macro necking, which resulted in the relatively lower plasticity.

  5. Effect of laser shock on tensile deformation behavior of a single crystal nickel-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Lu, G.X. [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Liu, J.D., E-mail: jdliu@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Qiao, H.C. [Shenyang Institute of Automation, Chinese Academy of Sciences, 114 Nanta Road, Shenyang 110016 (China); Zhou, Y.Z. [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Jin, T., E-mail: tjin@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhao, J.B. [Shenyang Institute of Automation, Chinese Academy of Sciences, 114 Nanta Road, Shenyang 110016 (China); Sun, X.F.; Hu, Z.Q. [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2017-02-16

    This investigation focused on the tensile deformation behavior of a single crystal nickel-base superalloy, both in virgin condition and after laser shock processing (LSP) with varied technology parameters. Nanoindention tests were carried out on the sectioned specimens after LSP treatment to characterize the surface strengthening effect. Stress strain curves of tensile specimens were analyzed, and microstructural observations of the fracture surface and the longitudinal cross-sections of ruptured specimens were performed via scanning electron microscope (SEM), in an effort to clarify the fracture mechanisms. The results show that a surface hardening layer with the thickness of about 0.3–0.6 mm was gained by the experimental alloys after LSP treatment, but the formation of surface hardening layer had not affected the yield strength. Furthermore, fundamental differences in the plastic responses at different temperatures due to LSP treatment had been discovered. At 700 °C, the slip deformation was held back when it extended to the surface hardening layer and the ensuing slip steps improved the plasticity; however, at 1000 °C, surface hardening layer hindered the macro necking, which resulted in the relatively lower plasticity.

  6. The creep deformation behavior of a single-crystal Co–Al–W-base superalloy at 900 °C

    International Nuclear Information System (INIS)

    Shi, L.; Yu, J.J.; Cui, C.Y.; Sun, X.F.

    2015-01-01

    The creep deformation behavior of a single-crystal Co–Al–W–Ni–Cr–Ta alloy with low tungsten content has been studied at stresses between 275 and 310 MPa at 900 °C. The alloy exhibits comparable creep strength with that of Co–Al–W-base alloys containing more tungsten. The creep deformation consists of three stages, the primary stage, the steady-state stage and the tertiary stage, when described by the creep strain rate versus time curve. At 900 °C, γ′ precipitates tend to raft along the direction of applied tensile stress in the steady-state creep stage and a topologically inverted and rafting γ/γ′ microstructure is formed in the tertiary stage. The main deformation mechanism in the primary creep stage is dislocation shearing of γ′ precipitates, and in the following creep stages, the dominant deformation mechanism is dislocations bypassing γ′ precipitates

  7. Review of the physical and mechanical properties and potential applications of the B2 compound NiAl: Unabridged version of a paper published in International materials review

    Science.gov (United States)

    Noebe, Ronald D.; Bowman, Randy R.; Nathal, Michael V.

    1992-01-01

    Considerable work has been performed on NiAl over the last three decades, with an extremely rapid growth in research on this intermetallic occurring in the last few years due to recent interest in this material for electronic and high temperature structural applications. However, many physical properties and the controlling fracture and deformation mechanisms over certain temperature regimes are still in question. Part of this problem lies in the incomplete characterization of many of the alloys previously investigated. Fragmentary data on processing conditions, chemistry, microstructure and the apparent difficulty in accurately measuring composition has made direct comparison between individual studies sometimes tenuous. Therefore, the purpose of this review is to summarize all available mechanical and pertinent physical properties on NiAl, stressing the most recent investigations, in an attempt to understand the behavior of NiAl and its alloys over a broad temperature range.

  8. Deformation mechanism in LiF single crystals at 1.7 to 330 K

    International Nuclear Information System (INIS)

    Niaz, S.; Butt, M.Z.

    1999-01-01

    The experimental data appertaining to the influence of temperature on the critical resolved shear stress (CRSS) of LiF ionic single crystals containing 10/sup -3/ wt% of divalent metal impurities in the range 1.7 to 330 K have been analyzed within the framework of the kink-pair nucleation (KPN) model of plastic flow in crystalline materials. The CRSS-T data when plotted in log-linear coordinates exhibit three distinct regions represented by straight lines of different slopes. In the temperature range 1.7 to 90 K, the CRSS 6 determined primarily by the stress-assisted thermally-activated escape of screw dislocations trapped in the Peierls troughs. At temperatures between 90 and 260 K, the rate process of plastic deformation is unpinning of edge-dislocation segments from short was rows of randomly dispersed point defects, e.g. residual metal impurities atoms, divalent metal ion-vacancy dipoles, induced defects formed during the pre-yield stage etc. 4. However, at higher temperatures up to 330 K, the CRSS decreases rapidly with rise in temperature, probably due to the mobility of the point defects referred to, and the KPN model becomes inapplicable. (author)

  9. Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper.

    Science.gov (United States)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun

    2015-12-01

    Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.

  10. Plastic deformation of submicron-sized crystals studied by in-situ Kikuchi diffraction and dislocation imaging

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Winther, Grethe

    2012-01-01

    The plastic deformation of submicron-size copper single crystals in the form of pillars has been characterized during in-situ compression in the transmission electron microscope up to strains of 28–33% using a state-of-the-art holder (PI-95 PicoIndenter). The dimensions of the crystals used were...... approx. 500×250×200 nm3 with the compression axis oriented 1.6° from [110]. Local crystallographic orientations have been determined with high accuracy using a Kikuchi diffraction method and glide of dislocations over a pillar has also been observed directly by dark field imaging. The variation...

  11. X-ray microbeam measurements of individual dislocation cell elastic strains in deformed single-crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Lyle E. [National Institute of Standards and Technology (NIST); Larson, Ben C [ORNL; Yang, Wenge [Carnegie Institution of Washington; Kassner, Michael E. [University of Southern California; Tischler, Jonathan Zachary [ORNL; Delos-Reyes, Michael A. [University of Southern California; Fields, Richard J. [National Institute of Standards and Technology (NIST); Liu, Wenjun [Argonne National Laboratory (ANL)

    2006-01-01

    The distribution of elastic strains (and thus stresses) at the sub-micrometer length scale within deformed metal single crystals has surprisingly broad implications for our understanding of important physical phenomena. These include the evolution of the complex dislocation structures that govern mechanical behavior within individual grains [1-4], the transport of dislocations through such structures [5-7], changes in mechanical properties that occur during reverse loading [8-10] (e.g. sheet metal forming), and the analyses of diffraction line profiles for microstructural studies of these phenomena [11-17]. We present the first direct, spatially-resolved measurements of the elastic strains within individual dislocation cells in copper single crystals deformed in tension and compression along <100> axes. Broad distributions of elastic strains are found, with profound implications for theories of dislocation structure evolution [4,18], dislocation transport [5-7], and the extraction of dislocation parameters from X-ray line profiles [11-17,19].

  12. X-Ray Microbeam Measurements of Individual Dislocation Cell Elastic Strains in Deformed Single-Crystal Copper

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Lyle E. [National Institute of Standards and Technology (NIST); Larson, Ben C [ORNL; Yang, Wenge [ORNL; Kassner, Michael E. [University of Southern California; Tischler, Jonathan Zachary [ORNL; Delos-Reyes, Michael A. [University of Southern California; Fields, Richard J. [National Institute of Standards and Technology (NIST); Liu, Wenjun [ORNL

    2006-01-01

    The distribution of elastic strains at the submicrometre length scale within deformed metal single crystals has remarkably broad implications for our understanding of important physical phenomena. These include the evolution of the complex dislocation structures that govern mechanical behaviour within individual grains, the transport of dislocations through such structures, changes in mechanical properties that occur during reverse loading (for example, sheet-metal forming and fatigue), and the analyses of diffraction line profiles for microstructural studies of these phenomena.

  13. Deformed lattice states in a Zn{sub 0.9}V{sub 0.1}Se cubic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Maksimov, V. I., E-mail: kokailo@rambler.ru; Dubinin, S. F.; Surkova, T. P.; Parkhomenko, V. D. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation)

    2016-01-15

    Neutron scattering patterns have been recorded for a bulk Zn{sub 0.9}V{sub 0.1}Se cubic crystal at room temperature; they are indicative of macroscopic deformation in the material and its significant inhomogeneity. Specific features of the previously found state, preceding the fcc ↔ hcp structural transformation of the sphalerite lattice upon strong destabilization induced by vanadium ions in the doped ZnSe matrix, are discussed taking into account the data obtained.

  14. Effect of elastic deformation and the magnetic field on the electrical conductivity of p-Si crystals

    Science.gov (United States)

    Lys, R.; Pavlyk, B.; Didyk, R.; Shykorjak, J.; Karbovnyk, I.

    2018-03-01

    It is shown that at a deformation rate of 0.41 kg/min, the characteristic feature of the dependence of the surface resistance of the p-Si sample on the magnitude of its elastic deformation (R(σ)) is the reduction of the resistance during compression and unclamping. With the increase in the number of "compression-unclamping" cycles, the difference between the positions of the compression and unclamping curves decreases. The transformation of two types of magnetically sensitive defects occurs under the impact of a magnetic field on p-Si crystals. The defects are interrelated with two factors that cause the mutually opposite influence on the conductivity of the crystal. The first factor is that the action of the magnetic field decreases the activation energy of the dislocation holders, which leads to an increase in the electrical conductivity of the sample. The second factor is that due to the decay of molecules of oxygen-containing impurities in the magnetic field, the stable chemisorption bonds appear in the crystal that leads to a decrease in its conductivity. If the sample stays in the magnetic field for a long time, the one or the other mechanism predominates, causing a slow growth or decrease in resistance around a certain (averaged) value. Moreover, the frequency of such changes is greater in the deformed sample. The value of the surface resistance of p-Si samples does not change for a long time without the influence of the magnetic field.

  15. Trajectory method in the theory of Laue diffraction of X rays in crystals: II. Effect of total reflection at bending deformation

    International Nuclear Information System (INIS)

    Kohn, V. G.

    2008-01-01

    The effect of total reflection (switching) of a spherical X-ray wave in the case of Laue diffraction in a crystal with bending deformation is analyzed by the trajectory method. Qualitative analytical description and computation of the spatial structure of the reflected beam for large and small distances between the spherical-wave source and the crystal are performed. The mechanism of much more efficient reflection of an X-ray beam by a deformed crystal in comparison with a perfect crystal is clearly demonstrated. It is also shown that the trajectory method is very convenient for description of the total reflection phenomenon.

  16. Trajectory method in the theory of Laue diffraction of X rays in crystals: II. Effect of total reflection at bending deformation

    International Nuclear Information System (INIS)

    Kohn, V. G.

    2008-01-01

    The effect of total reflection (switching) of a spherical X-ray wave in the case of Laue diffraction in a crystal with bending deformation is analyzed by the trajectory method. Qualitative analytical description and computation of the spatial structure of the reflected beam for large and small distances between the spherical-wave source and the crystal are performed. The mechanism of much more efficient reflection of an X-ray beam by a deformed crystal in comparison with a perfect crystal is clearly demonstrated. It is also shown that the trajectory method is very convenient for description of the total reflection phenomenon

  17. Plastic deformation of crystals: analytical and computer simulation studies of dislocation glide

    International Nuclear Information System (INIS)

    Altintas, S.

    1978-05-01

    The plastic deformation of crystals is usually accomplished through the motion of dislocations. The glide of a dislocation is impelled by the applied stress and opposed by microstructural defects such as point defects, voids, precipitates and other dislocations. The planar glide of a dislocation through randomly distributed obstacles is considered. The objective of the present research work is to calculate the critical resolved shear stress (CRSS) for athermal glide and the velocity of the dislocation at finite temperature as a function of the applied stress and the nature and strength of the obstacles. Dislocation glide through mixtures of obstacles has been studied analytically and by computer simulation. Arrays containing two kinds of obstacles as well as square distribution of obstacle strengths are considered. The critical resolved shear stress for an array containing obstacles with a given distribution of strengths is calculated using the sum of the quadratic mean of the stresses for the individual obstacles and is found to be in good agreement with the computer simulation data. Computer simulation of dislocation glide through randomly distributed obstacles containing up to 10 6 obstacles show that the CRSS decreases as the size of the array increases and approaches a limiting value. Histograms of forces and of segment lengths are obtained and compared with theoretical predictions. Effects of array shape and boundary conditions on the dislocation glide are also studied. Analytical and computer simulation results are compared with experimental results obtained on precipitation-, irradiation-, forest-, and impurity cluster-hardening systems and are found to be in good agreement

  18. Plastic deformation of crystals: analytical and computer simulation studies of dislocation glide

    Energy Technology Data Exchange (ETDEWEB)

    Altintas, S.

    1978-05-01

    The plastic deformation of crystals is usually accomplished through the motion of dislocations. The glide of a dislocation is impelled by the applied stress and opposed by microstructural defects such as point defects, voids, precipitates and other dislocations. The planar glide of a dislocation through randomly distributed obstacles is considered. The objective of the present research work is to calculate the critical resolved shear stress (CRSS) for athermal glide and the velocity of the dislocation at finite temperature as a function of the applied stress and the nature and strength of the obstacles. Dislocation glide through mixtures of obstacles has been studied analytically and by computer simulation. Arrays containing two kinds of obstacles as well as square distribution of obstacle strengths are considered. The critical resolved shear stress for an array containing obstacles with a given distribution of strengths is calculated using the sum of the quadratic mean of the stresses for the individual obstacles and is found to be in good agreement with the computer simulation data. Computer simulation of dislocation glide through randomly distributed obstacles containing up to 10/sup 6/ obstacles show that the CRSS decreases as the size of the array increases and approaches a limiting value. Histograms of forces and of segment lengths are obtained and compared with theoretical predictions. Effects of array shape and boundary conditions on the dislocation glide are also studied. Analytical and computer simulation results are compared with experimental results obtained on precipitation-, irradiation-, forest-, and impurity cluster-hardening systems and are found to be in good agreement.

  19. Large-scale membrane transfer process: its application to single-crystal-silicon continuous membrane deformable mirror

    International Nuclear Information System (INIS)

    Wu, Tong; Sasaki, Takashi; Hane, Kazuhiro; Akiyama, Masayuki

    2013-01-01

    This paper describes a large-scale membrane transfer process developed for the construction of large-scale membrane devices via the transfer of continuous single-crystal-silicon membranes from one substrate to another. This technique is applied for fabricating a large stroke deformable mirror. A bimorph spring array is used to generate a large air gap between the mirror membrane and the electrode. A 1.9 mm × 1.9 mm × 2 µm single-crystal-silicon membrane is successfully transferred to the electrode substrate by Au–Si eutectic bonding and the subsequent all-dry release process. This process provides an effective approach for transferring a free-standing large continuous single-crystal-silicon to a flexible suspension spring array with a large air gap. (paper)

  20. Effect of zinc crystals size on galvanized steel deformation and electrochemical behavior

    Directory of Open Access Journals (Sweden)

    José Daniel Culcasi

    2009-09-01

    Full Text Available Hot-dip galvanized steel sheets with different spangle sizes were deformed by means of rolling and tension. The change of preferential crystallographic orientation and of superficial characteristics due to the deformation was analyzed by means of both X-rays diffraction and optical and scanning electronic microscopy. A correlation between such changes and the involving deformation modes was intended to be done and the spangle size influence on these modes was studied. Coating reactivity change due to the deformation was investigated by means of quasi-steady DC electrochemical tests. The results allow to infer that, in great spangle samples, the main deformation mechanism is twinning whereas in small spangle ones, pyramidal slip systems happen as well. The increase of the reactivity with the deformation is greater in tension than in rolling and it is more important in small than in great spangle samples.

  1. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer, E-mail: chandraveer.singh@utoronto.ca; Thorpe, Steven John [Department of Materials Science and Engineering, University of Toronto, Room 140, 184 College Street, Toronto, Ontario M5S 3E4 (Canada)

    2015-09-21

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal–transition metal and transition metal–metalloid (TM–M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties of equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM–M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.

  2. Diffusive, Displacive Deformations and Local Phase Transformation Govern the Mechanics of Layered Crystals: The Case Study of Tobermorite.

    Science.gov (United States)

    Tao, Lei; Shahsavari, Rouzbeh

    2017-07-19

    Understanding the deformation mechanisms underlying the mechanical behavior of materials is the key to fundamental and engineering advances in materials' performance. Herein, we focus on crystalline calcium-silicate-hydrates (C-S-H) as a model system with applications in cementitious materials, bone-tissue engineering, drug delivery and refractory materials, and use molecular dynamics simulation to investigate its loading geometry dependent mechanical properties. By comparing various conventional (e.g. shear, compression and tension) and nano-indentation loading geometries, our findings demonstrate that the former loading leads to size-independent mechanical properties while the latter results in size-dependent mechanical properties at the nanometer scales. We found three key mechanisms govern the deformation and thus mechanics of the layered C-S-H: diffusive-controlled and displacive-controlled deformation mechanisms, and strain gradient with local phase transformations. Together, these elaborately classified mechanisms provide deep fundamental understanding and new insights on the relationship between the macro-scale mechanical properties and underlying molecular deformations, providing new opportunities to control and tune the mechanics of layered crystals and other complex materials such as glassy C-S-H, natural composite structures, and manmade laminated structures.

  3. Cyclic deformation of NI/sub 3/(Al,Nb) single crystals at ambient and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bonda, N.R.

    1985-01-01

    Cyclic tests were performed on Ni/sub 3/(Al,Nb) (..gamma..' phase) single crystals by using a servo-hydraulic machine under fully reversed plastic strain control at a frequency of 0.1-0.2 Hz at room temperature, 400/sup 0/C and 700/sup 0/C. Since the monotonic behavior is orientation dependent, three orientations were studied. Asymmetry in tensile and compressive stresses was observed in the cyclic hardening curves of specimens tested at these temperatures and they were discussed with regard to the model suggested by Paider et al for monotonic behavior. The stress levels in the cyclic stress-strain curves (CSSC) at room temperature depended on orientation and cyclic history. No CSSCs were established at 400/sup 0/C and 700/sup 0/C. The deformation in cyclic tests at small plastic strain amplitudes was found to be different from that in monotonic tests in the microplastic regions in which the deformation is believed to be carried by a small density of edge dislocations. But in cyclic deformation, to and from motion of dislocations trap the edge dislocations into dipoles and therefore screw dislocations will be forced to participate in the deformation. Cracks on the surfaces of specimens tested at room temperature and 400/sup 0/C were found to be of stage I type, whereas at 700/sup 0/C, they were of stage II type.

  4. On the failure of NiAl bicrystals during laser-induced shock compression

    International Nuclear Information System (INIS)

    Loomis, Eric; Swift, Damian; Peralta, Pedro; McClellan, Ken

    2005-01-01

    Thin NiAl bicrystals 5 mm in diameter and 150-350 μm thick were tested under laser-induced shock compression to evaluate the material behavior and the effect of localized strain at the grain boundary on the failure of these specimens. Circular NiAl bicrystal samples with random misorientation were grown using a modified Czochralski technique and samples were prepared for shock compression at moderate pressures (<10 GPa). The observed crack patterns on the drive surface as well as the free surface were examined using optical microscopy. Transmission electron microscopy (TEM) of the drive surface as well as in the bulk of one grain was performed on recovered specimens following shock compression. This revealed that a nanocrystalline region with a grain size of 15-20 nm formed on a thin layer at the drive surface following the plasma expansion phase of the laser-induced shock. TEM in the bulk of one grain showed that plastic deformation occurred in a periodic fashion through propagation of dislocation clusters. Cracking on the free surface of the samples revealed a clear grain boundary affected zone (GBAZ) due to scattering of the shock wave and variations in wave speed across the inclined boundary. Damage tended to accumulate in the grain into which the elastic wave refracted. This damage accumulation corresponds well to the regions in which the transmitted waves impinged on the free surface as predicted by elastic scattering models

  5. Research of resonant losses of ultrasonic sound in the deformed single crystals in temperature range 77...300 K

    International Nuclear Information System (INIS)

    Petchenko, A.M.; Petchenko, G.A.

    2007-01-01

    The damped dislocation resonance in preliminary deformed up to 1 % single crystals KBr was investigated. The measurements of a frequency dependence of a dislocation damping decrement of ultrasonic sound were conducted in range of frequencies 7,5...217,5 MHz and temperature range 77...300 K. From the analysis of frequency spectrums the temperature course of a coefficient of phonon viscosity B was determined, which is agreed both with the theory and experimental literary data. The influencing temperature changes of length of a dislocation segment on parameters of a resonant maximum and dynamic drag of dislocations by phonons was revealed and analyzed

  6. Acoustic and photon emissions during mechanical deformation of coloured alkali halide crystals

    International Nuclear Information System (INIS)

    Chandra, B.P.

    1984-01-01

    Acoustic and photon emissions take place in the elastic and plastic as well as the fracture region of x-irradiated KBr, KCl and NaCl crystals. The rate of photon emission is linear with the strain rate: however, the RMS value of the acoustic emission is proportional to the square root of the strain rate. The acoustic emission is maximum for x-irradiated NaCl crystals; however, the photon emission is maximum for x-irradiated KBr crystals. From the similarity between the acoustic emission and the photon emission, it seems that mobile dislocations are responsible for the acoustic emission in coloured alkali halide crystals. (author)

  7. 'Observation' of dislocation motion in single crystal and polycrystalline aluminum during uniaxial deformation using photoemission technique

    International Nuclear Information System (INIS)

    Cai, M.; Levine, L.E.; Langford, S.C.; Dickinson, J.T.

    2005-01-01

    We report measurements of photostimulated electron emission (PSE) from single-crystalline aluminum (99.995%) and high-purity polycrystalline aluminum (>99.9%) during uniaxial tensile deformation. Photoelectron intensities are sensitive to changes in surface morphology accompanying deformation, including slip line and slip band formation. In the single crystalline material, the PSE intensity increases linearly with strain. In the polycrystalline material, the PSE intensity increases exponentially with strain. In both materials, time-resolved PSE measurements show step-like increases in intensity consistent with the heterogeneous nucleation and growth of slip bands during tensile deformation. In this sense, we have 'observed' dislocation motion by this technique. Slip bands on the surfaces of deformed samples were subsequently imaged by atomic-force microscopy (AFM). Photoelectron measurements can provide reliable, quantitative information for dislocation dynamics

  8. Slip-band formation and dislocation kinetics in the stage I deformation of neutron-irradiated copper single crystals

    International Nuclear Information System (INIS)

    Kitajima, Sadakichi; Shinohara, Kazutoshi; Kutsuwada, Masanori

    1995-01-01

    The velocity of edge and screw dislocations moving in primary slip bands and the formation rate of primary slip bands were measured in stage I deformation of neutron-irradiated copper single crystals at different strain rates at room temperature using micro-cinematography and optical micrography. The average velocity of edge dislocations was larger at least by one order than that of screw ones, and that of screw dislocations did not depend so strongly on strain rate. The formation rate of primary slip bands was proportional to strain rate. From these results, it is concluded that (1) jogs produced on moving dislocations by cutting dislocation loops result in the difference in velocity between edge and screw dislocations and (2) the change in the density of mobile dislocations as well as velocity of dislocations is responsible for the change of plastic strain rate of a crystal. (author)

  9. Processing and microstructure of melt spun NiAl alloys

    Science.gov (United States)

    Locci, I. E.; Noebe, R. D.; Moser, J. A.; Lee, D. S.; Nathal, M.

    1989-01-01

    The influence of various melt spinning parameters and the effect of consolidation on the microstructure of melt spun NiAl and NiAl + W alloys have been examined by optical and electron microscopy techniques. It was found that the addition of 0.5 at. pct W to NiAl results in a fine dispersion of W particles after melt spinning which effectively controls grain growth during annealing treatments or consolidation at temperatures between 1523 and 1723 K. Increased wheel speeds are effective at reducing both the ribbon thickness and grain size, such that proper choice of both composition and casting parameters can produce structures with grain sizes as small as 2 microns. Finally, fabrication of continuous fiber-reinforced composites which used pulverized ribbon as the matrix material was demonstrated.

  10. Investigation on electronic and magnetic properties of Mn2NiAl by ab initio calculations and Monte Carlo simulations

    International Nuclear Information System (INIS)

    Masrour, R.; Jabar, A.; Hlil, E.K.; Hamedoun, M.; Benyoussef, A.; Hourmatallah, A.; Rezzouk, A.; Bouslykhane, K.; Benzakour, N.

    2017-01-01

    Self-consistent ab initio calculations, based on Density Functional Theory (DFT) approach and using Full potential Linear Augmented Plane Wave (FLAPW) method, are performed to investigate both electronic and magnetic properties of the Mn 2 NiAl. Magnetic moment considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for Monte Carlo simulations to compute other magnetic parameters. Also, the magnetic properties of Mn 2 NiAl are studied using the Monte Carlo simulations. The variation of magnetization and magnetic susceptibility with the reduced temperature of Mn 2 NiAl are investigated. The transition temperature of this system is deduced for different values exchange interaction and crystal field. The thermal total magnetization has been obtained, and the magnetic hysteresis cycle is established. The total magnetic moment is superior to those obtained by the other method and is mainly determined by the antiparallel aligned Mn I , Mn II and Ni spin moments. The superparamagnetic phase is found at the neighborhood of transition temperature. - Highlights: • Ab initio calculations are used to study magnetic and electronic properties of Mn 2 NiX. • The transition temperature of Mn 2 NiX is established. • The magnetic hysteresis cycle of M n2 NiX (X = Al, Ga, In, Sn) is deduced. • The magnetic coercive field of Mn 2 NiX (X = Al, Ga, In, Sn) is given.

  11. Experimental study and numerical simulation of the plastic deformation of zirconium single crystals

    International Nuclear Information System (INIS)

    Lebon, C.

    2011-01-01

    There is only few experimental data in the literature on the zirconium single crystals and no constitutive laws for this single crystal material are provided. The goal of this work is then to create an experimental database like the Critical Resolved Shear Stress (CRSS) for the prismatic slip, the strain-hardening, the activation of the prismatic glide system and the activation volumes. We determine theses parameters from image correlation method. Then, we develop a new multi-scale approach using dislocations dynamics concept and finite element computations. Finally, a first single crystal constitutive law for the zirconium is proposed and a good agreement with the experimental data is obtained. (author) [fr

  12. Anomalous effect of high-frequency ultrasound on radiation diffraction in deformed single crystals

    International Nuclear Information System (INIS)

    Iolin, E.M.; Rajtman, Eh.A.; Kuvaldin, B.V.; Zolotoyabko, Eh.V.

    1988-01-01

    Results are presented of a theoretical and experimental study of neutron and X-ray diffraction in defromed single crystals on high-frequency ultrasonic excitation. It is demonstrated theoretically that at a frequency exceeding a certain threshold value the ultrasound violates the adiabatic conditions for the excitation point motion on the dispersion surface branches. This leads to an anomalous (compared to diffraction for a perfect crystal) dependence of the diffraction intensity on the ultrasonic wave amplitude. The experimental data for Si crystals are in good agreement with the theoretical predictions

  13. A STUDY OF THE PRESSURE SOLUTION AND DEFORMATION OF QUARTZ CRYSTALS AT HIGH pH AND UNDER HIGH STRESS

    Directory of Open Access Journals (Sweden)

    JUNG-HAE CHOI

    2013-02-01

    Full Text Available Bentonite is generally used as a buffer material in high-level radioactive waste disposal facilities and consists of 50% quartz by weight. Quartz strongly affects the behavior of bentonite over very long periods. For this reason, quartz dissolution experiment was performed under high-pressure and high-alkalinity conditions based on the conditions found in a high-level radioactive waste disposal facility located deep underground. In this study, two quartz dissolution experiments were conducted on 1 quartz beads under low-pressure and high-alkalinity conditions and 2 a single quartz crystal under high-pressure and high-alkalinity conditions. Following the experiments, a confocal laser scanning microscope (CLSM was used to observe the surfaces of experimental samples. Numerical analyses using the finite element method (FEM were also performed to quantify the deformation of contact area. Quartz dissolution was observed in both experiments. This deformation was due to a concentrated compressive stress field, as indicated by the quartz deformation of the contact area through the FEM analysis. According to the numerical results, a high compressive stress field acted upon the neighboring contact area, which showed a rapid dissolution rate compared to other areas of the sample.

  14. 3D DDD modelling of dislocation-precipitate interaction in a nickel-based single crystal superalloy under cyclic deformation

    Science.gov (United States)

    Lin, Bing; Huang, Minsheng; Zhao, Liguo; Roy, Anish; Silberschmidt, Vadim; Barnard, Nick; Whittaker, Mark; McColvin, Gordon

    2018-06-01

    Strain-controlled cyclic deformation of a nickel-based single crystal superalloy has been modelled using three-dimensional (3D) discrete dislocation dynamics (DDD) for both [0 0 1] and [1 1 1] orientations. The work focused on the interaction between dislocations and precipitates during cyclic plastic deformation at elevated temperature, which has not been well studied yet. A representative volume element with cubic γ‧-precipitates was chosen to represent the material, with enforced periodical boundary conditions. In particular, cutting of superdislocations into precipitates was simulated by a back-force method. The global cyclic stress-strain responses were captured well by the DDD model when compared to experimental data, particularly the effects of crystallographic orientation. Dislocation evolution showed that considerably high density of dislocations was produced for [1 1 1] orientation when compared to [0 0 1] orientation. Cutting of dislocations into the precipitates had a significant effect on the plastic deformation, leading to material softening. Contour plots of in-plane shear strain proved the development of heterogeneous strain field, resulting in the formation of shear-band embryos.

  15. Determination of the activation energy of A-center in the uniaxially deformed n-Ge single crystals

    Directory of Open Access Journals (Sweden)

    S. V. Luniov

    2017-08-01

    Full Text Available Based on the decisions of electroneutrality equation and experimental results of measurements of the piezo-Hall-effect the dependences of activation energy of the deep level A-center depending on the uniaxial pressure along the crystallographic directions [100], [110] and [111] for n-Ge single crystals, irradiated by the electrons with energy 10 MeV are obtained. Using the method of least squares approximational polynomials for the calculation of these dependences are obtained. It is shown that the activation energy of A-center deep level decreases linearly for the entire range of uniaxial pressure along the crystallographic direction [100]. For the cases of uniaxial deformation along the crystallographic directions [110] and [111] decrease of the activation energy according to the linear law is observed only at high uniaxial pressures, when the A-center deep level interacts with the minima of the germanium conduction band, which proved the lower at the deformation. The various dependences of the activation energy of A-center depending on the orientation of the axis of deformation may be connected with features of its microstructure.

  16. Effects of crystal structure and grain orientation on the roughness of deformed polycrystalline metals

    NARCIS (Netherlands)

    Wouters, Onne; Vellinga, WP; van Tijum, Redmer; De Hosson, JTM

    Surface roughening during tensile deformation of polycrystalline aluminum, iron and zinc is investigated using white light confocal microscopy and orientation imaging microscopy. A height-height correlation technique is used to analyze the data. The surface obeys self-affine scaling on length scales

  17. On modeling of geometrically necessary dislocation densities in plastically deformed single crystals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2013-01-01

    ) for isotropic plasticity. An effective 2Dsolution valid for certain orientations of face centered cubic crystals is presented, where effective in-plane material properties are derived based on the crystallographic properties. The problems of void growth, pure shear and 2D wedge indentation are analyzed......A computational method for strain gradient single crystal plasticity is presented. The method accounts for both recoverable and dissipative gradient effects. The mathematical solution procedure is predicated on two minimum principles along the lines of those devised by Fleck and Willis (2009...

  18. Study of plastic deformation peculiarities in CdS single crystals within the temperature range of 25 to 300 deg C

    International Nuclear Information System (INIS)

    Bulatova, T.M.

    1990-01-01

    By the method of stress relaxation dependences of platic deformation rate on effective strain in CdS monocrystals for the temperatures of 25-300 deg C both in the darkness and in the light are obtained. In the range of the temperatures up to 150 deg C deformation activation energy is determined, which correlates with the value of point defect diffusion activation energy in the crystal. Anomalous temperature dependence of plastic deformation rate, i.e. its decrease with the temperature increase in the range of 150-300 deg C is detected

  19. Influences of crystallographic orientations on deformation mechanism and grain refinement of Al single crystals subjected to one-pass equal-channel angular pressing

    International Nuclear Information System (INIS)

    Han, W.Z.; Zhang, Z.F.; Wu, S.D.; Li, S.X.

    2007-01-01

    The influences of crystallographic orientations on the evolution of dislocation structures and the refinement process of sub-grains in Al single crystals processed by one-pass equal-channel angular pressing (ECAP) were systematically investigated by means of scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Three single crystals with different orientations, denoted as crystal I, crystal II and crystal III, were specially designed according to the shape of the ECAP die. For crystal I, its insert direction is parallel to [1 1 0] and its extrusion direction is parallel to [1-bar11]. For crystal II, the (1-bar11) plane is located parallel to the intersection plane of the ECAP die, and the [1 1 0] direction is along the general shear direction on the intersection plane. For crystal III, the (1-bar11) plane is laid on the plane perpendicular to the intersection of the ECAP die, and the [1 1 0] direction is vertical to the general shear direction. For crystal I, abundant cell block structures with multi-slip characters were formed, and they should be induced by four symmetric slip systems, while for crystal II, there are two sets of sub-grain structures with higher misorientation, making an angle of ∼70 deg., which can be attributed to the interactions of the two asymmetric primary slip planes, whereas for crystal III, only one set of ribbon structures was parallel to the traces of (1-bar11) with the lowest misorientation angle among the three single crystals, which should result from the homogeneous slip on the primary slip plane. The different microstructural features of the three single crystals provide clear experimental evidence that the microstructures and misorientation evolution are strongly affected by the crystallographic orientation or by the interaction between shear deformation imposed by the ECAP die and the intrinsic slip deformation of the single crystals. Based on the experimental results and the

  20. Studies on internal friction in electron-irradiated iron crystals after plastic deformation

    International Nuclear Information System (INIS)

    Wolf, J.

    1986-01-01

    For the analysis of atomic point defects in high-purity the generation of atomic point defects was, above all, carried out by electron radiation, but in addition, also by plastic deformation. The exposure to radiation was realized at different temperatures in the Dynamitron of the University of Stuttgart (80 K, 160 K) and also in the low-temperature radiation facility of the nuclear research plant (KfA) Juelich (50 K). The radiation doses ranged between 2.7.10 21 e - /m 2 and 1.0.10 23 e - /m 2 . In situ plastic deformation was achieved at about 80 K (torsion, 4%). Internal friction which was determined in an inverse torsion pendulum in the temperature range of 80 K - 700 K and at frequencies of about 1 Hz served as defect indicator. In this study simulation programs were developed which were to give information prior to the realization of measurements on the temperatures and the intensity of the damping peaks to be expected. The internal friction peaks measured in the framework of this study could be assigned to the recovery stages I-IV. The measured values were discussed for three temperature ranges with main emphasis on the investigation of the recovering, radiation-induced or deformation-induced, atomic point defect in the temperature range of the recovery stage III (200 K - 270 K). (orig./MM) [de

  1. Stages in the Recovery of Deformed Single Crystals of Iron Studied by Position Annihilation Techniques

    NARCIS (Netherlands)

    Lee, Jong-Lam; Waber, James T.; Park, Yong-Ki; Hosson, J.T.M. De

    Isochronal as well as isothermal measurements have been made on high purity single crystals of iron which had been cold rolled about 10% prior to annealing. Two steps were isolated corresponding first to the annihilation of screw dislocations and then to the elimination of edge dislocations at

  2. A facility for plastic deformation of germanium single-crystal wafers

    DEFF Research Database (Denmark)

    Lebech, B.; Theodor, K.; Breiting, B.

    1998-01-01

    . All movements and temperature changes are done by a robot via a PLC-control system. Two nine-crystal focusing monochromators (54 x 116 and 70 x 116 mm(2)) made from 100 wafers with average mosaicity similar to 13' have been constructed. Summaries of the test results are presented. (C) 1998 Elsevier...

  3. Confined crystallization, crystalline phase deformation and their effects on the properties of crystalline polymers

    Science.gov (United States)

    Wang, Haopeng

    With the recent advances in processing and catalyst technology, novel morphologies have been created in crystalline polymers and they are expected to substantially impact the properties. To reveal the structure-property relationships of some of these novel polymeric systems becomes the primary focus of this work. In the first part, using an innovative layer-multiplying coextrusion process to obtain assemblies with thousands of polymer nanolayers, dominating "in-plane" lamellar crystals were created when the confined poly(ethylene oxide) (PEO) layers were made progressively thinner. When the thickness was confined to 25 nanometers, the PEO crystallized as single, high-aspect-ratio lamellae that resembled single crystals. This crystallization habit imparted more than two orders of magnitude reduction in the gas permeability. The dramatic decrease in gas permeability was attributed to the reduced diffusion coefficient, because of the increase in gas diffusion path length through the in-plane lamellae. The temperature dependence of lamellar orientation and the crystallization kinetics in the confined nanolayers were also investigated. The novel olefinic block copolymer (OBC) studied in the second part consisted of long crystallizable sequences with low comonomer content alternating with rubbery amorphous blocks with high comonomer content. The crystallizable blocks formed lamellae that organized into space-filling spherulites even when the fraction of crystallizable block was so low that the crystallinity was only 7%. These unusual spherulites were highly elastic and recovered from strains as high as 300%. These "elastic spherulites" imparted higher strain recovery and temperature resistance than the conventional random copolymers that depend on isolated, fringed micellar-like crystals to provide the junctions for the elastomeric network. In the third part, positron annihilation lifetime spectroscopy (PALS) was used to obtain the temperature dependence of the free

  4. Microindentation deformation of lithium dihydrogen phosphate single crystals: Microhardness measurement and indentation size effect

    Energy Technology Data Exchange (ETDEWEB)

    Iurchenko, Anton [Institute for Single Crystals, National Academy of Sciences of Ukraine, Lenin Avenue 60, 61001 Kharkiv (Ukraine); Borc, Jarosław, E-mail: j.borc@pollub.pl [Department of Applied Physics, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin (Poland); Sangwal, Keshra [Department of Applied Physics, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin (Poland); Voronov, Alexei [Institute for Single Crystals, National Academy of Sciences of Ukraine, Lenin Avenue 60, 61001 Kharkiv (Ukraine)

    2016-02-15

    The Vickers microhardness H{sub V} of the (110) and (111) as-grown faces of lithium dihydrogen phosphate (LDP) crystals was investigated as a function of applied load P. The microhardness H{sub V} of the two faces increases with load P i.e. reverse indentation size effect (reverse ISE) and the hardness of the (110) face is somewhat lower than that of the (111) face but this difference is not easily recognized for these planes due to large scatter in the data. The origin of observed ISE was analyzed using different approaches. It was found that: (1) Hays–Kendall's and Begley–Hutchinson's relations do not explain the origin of reverse ISE but Meyer's law describes the reverse ISE satisfactorily and its constants provide a link between ISE and formation of radial cracks with applied indentation load P, (2) reverse ISE is associated with tensile surface stresses, (3) despite its failure to explain reverse ISE, Begley–Hutchinson's relation is reliable to obtain load-independent hardness H{sub 0}, is 2337 MPa for LDP, and (4) the value of fracture toughness K{sub C} of LDP crystals lies between 4.7 and 12 MPa m{sup 1/2}. The load-independent hardness H{sub 0} of LDP is higher by a factor of 1.5 than that reported for undoped KDP and ADP crystals whereas its fracture toughness K{sub C} is higher by factor of about 20 than that of undoped KDP crystals. - Highlights: • Vickers indentations on the (110) and (111) faces of LDP crystals were made. • The microhardness H{sub V} was investigated as a function of applied load P. • Reverse indentation size effect was observed. • Fracture toughness K{sub C} from the radial cracks was calculated.

  5. Microindentation deformation of lithium dihydrogen phosphate single crystals: Microhardness measurement and indentation size effect

    International Nuclear Information System (INIS)

    Iurchenko, Anton; Borc, Jarosław; Sangwal, Keshra; Voronov, Alexei

    2016-01-01

    The Vickers microhardness H_V of the (110) and (111) as-grown faces of lithium dihydrogen phosphate (LDP) crystals was investigated as a function of applied load P. The microhardness H_V of the two faces increases with load P i.e. reverse indentation size effect (reverse ISE) and the hardness of the (110) face is somewhat lower than that of the (111) face but this difference is not easily recognized for these planes due to large scatter in the data. The origin of observed ISE was analyzed using different approaches. It was found that: (1) Hays–Kendall's and Begley–Hutchinson's relations do not explain the origin of reverse ISE but Meyer's law describes the reverse ISE satisfactorily and its constants provide a link between ISE and formation of radial cracks with applied indentation load P, (2) reverse ISE is associated with tensile surface stresses, (3) despite its failure to explain reverse ISE, Begley–Hutchinson's relation is reliable to obtain load-independent hardness H_0, is 2337 MPa for LDP, and (4) the value of fracture toughness K_C of LDP crystals lies between 4.7 and 12 MPa m"1"/"2. The load-independent hardness H_0 of LDP is higher by a factor of 1.5 than that reported for undoped KDP and ADP crystals whereas its fracture toughness K_C is higher by factor of about 20 than that of undoped KDP crystals. - Highlights: • Vickers indentations on the (110) and (111) faces of LDP crystals were made. • The microhardness H_V was investigated as a function of applied load P. • Reverse indentation size effect was observed. • Fracture toughness K_C from the radial cracks was calculated.

  6. Micro-Structural Evolution and Size-Effects in Plastically Deformed Single Crystals: Strain Gradient Continuum Modeling

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah

    the macroscopic effects related to strain gradients, most predict smooth micro-structures. The evolution of dislocation micro-structures, during plastic straining of ductile crystalline materials, is highly complex and nonuniform. Published experimental measurements on deformed metal crystals show distinct......An extensive amount of research has been devoted to the development of micro-mechanics based gradient plasticity continuum theories, which are necessary for modeling micron-scale plasticity when large spatial gradients of plastic strain appear. While many models have proven successful in capturing...... strain. It is clear that many challenges are associated with modeling dislocation structures, within a framework based on continuum fields, however, since the strain gradient effects are attributed to the dislocation micro-structure, it is a natural step, in the further development of gradient theories...

  7. The preparation and testing of Nb-Zr and Nb-ZrO2 single crystals for deformation studies

    International Nuclear Information System (INIS)

    Botta Filho, W.J.; Christian, J.W.; Taylor, G.

    1987-01-01

    The difficulties to obtain adequate single crystals of Nb-Zr and Nb-ZrO 2 alloys for deformation studies are discussed. Low-temperature internal oxidation of Nb-Zr alloys followed by ageing at higher temperatures resulted in the precipitation of ZrO 2 particles. However, the effect of this treatment on the particles size and distribution and on the crystallographic structure of the particle was not completely understood. Compression tests in the temperature range 4.2K to 373K showed a small effect of zirconia particles on the mechanical properties of Nb-Zr solid solutions and a significative effect of the amount of oxygen remaining in solid solution after the oxidation treatment. (author) [pt

  8. Mechanoluminescence by impulsive deformation of γ-irradiated Er-doped CaF2 crystals

    International Nuclear Information System (INIS)

    Brahme, Nameeta; Shukla, Manju; Bisen, D.P.; Kurrey, U.; Choubey, Anil; Kher, R.S.; Singh, Manisha

    2011-01-01

    An impulsive technique has been used for mechanoluminescence (ML) measurements in γ-irradiated Er doped CaF 2 crystals. When the ML is excited impulsively by the impact of moving piston on to γ-irradiated CaF 2 :Er crystals, two peaks are observed in ML intensity with time and it is seen that the peak intensities of first and second peaks (I m1 and I m2 ) increase with increasing impact velocity. However the time corresponding to first and second peaks (t m1 and t m2 ) shifts towards shorter time values with increasing impact velocity. It is also seen that the total ML intensity I Total initially increases with the impact velocity and then it attains a saturation value for higher values of the impact velocity. We have presented a theoretical explanation for the observed results. - Research highlights: → Impulsive technique has been used for mechanoluminescence (ML) studies in γ-irradiated Er doped CaF 2 crystals. → ML intensity exhibited two peaks with time (I m1 and I m2 ), where the intensity of both the peaks increased with increasing impact velocity. → The time of occurrence of the peaks (t m1 and t m2 ) reduced with increasing the impact velocity. → Total ML intensity (I Total ) first increases and then attains a saturation value with an increment in the impact velocity. → A theoretical explanation is presented to the observed results.

  9. Electric-field-induced internal deformation in piezoelectric BiB{sub 3}O{sub 6} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, O.; Gorfman, S.; Pietsch, U. [Solid State Physics Department, University of Siegen (Germany)

    2008-11-15

    For the first time electric-field-induced atomic displacements (internal strains) in non-ferroelectric polar BiB{sub 3}O{sub 6} single crystal plates (point symmetry 2) were investigated using X-ray diffraction technique. The intensity variations of selected Bragg reflections were collected for three different orientations of the applied external electric field vector with respect to the crystal lattice and used for calculating the microscopic structural response of BiB{sub 3}O{sub 6}. Due to the limited number of the reflections providing measurable changes in Bragg intensities we restricted ourselves in analyzing the shift of the B{sub 3}O{sub 6} sublattice relative to the Bi one. In addition, we considered the deformation of the Bi-O, B(1)-O and B(2)-O bond lengths and identified the [B(2)O{sub 3}] group as the most sensitive structural unit to an external electric perturbation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Spatial organization of plastic deformation in single crystals with different structure of slip dislocation

    Energy Technology Data Exchange (ETDEWEB)

    Kunitsyna, T. S.; Teplyakova, L. A., E-mail: lat168@mail.ru; Koneva, N. A. [Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation); Poltaranin, M. A. [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    It is established that different structure of slip dislocation at the end of the linear hardening stage results in different distribution of dislocation charges in the volume of a single crystal. In the alloy with a near atomic order the slip of single dislocations leads to formation of planar structures—layers with the excess density of dislocations. In the alloy with long-range atomic order the slip of superdislocations brings the formation of the system of parallel rod-like charged dislocation linking.

  11. Dislocation structures and mechanical behaviour of Ge single crystals deformed by compression

    International Nuclear Information System (INIS)

    Nyilas, K.; Dupas, C.; Kruml, T.; Zsoldos, L.; Ungar, T.; Martin, J.L.

    2004-01-01

    Stress-strain curves of germanium interrupted by dip tests reveal that the internal stresses ascend parallel to the applied stress in a strain-rate dependent way. To understand this peculiar behaviour, the dislocation microstructure has been characterized. Transmission electron microscopy images show that regions of high dislocation activity along the primary slip system are separated by dislocation-free zones. X-ray microdiffraction reveals that the dislocation density is fluctuating on a 100 μm scale. X-ray reciprocal-space mapping, together with scanning microdiffraction, shows that misoriented mosaic blocks are forming owing to the boundary conditions in the compression test. These preliminary results reveal deformation heterogeneity both at macroscopic and mesoscopic scales

  12. Recovery of amplitude dependent internal friction in plastically deformed LiF single crystals

    International Nuclear Information System (INIS)

    Koshimizu, S.

    1977-01-01

    The internal friction due to is studied interactions between point defects and dislocations produced in pure LiF single crystais by plastic deformation. The recovery of amplitude dependent damping is investigated in these crystais in the low frequency range. The logarithmic decrement is measured as a function of strain amplitude at several different temperatures in the range 8C - 35C in order to observe thermal breakaway. The results were interpred according to the theory developed by Granato and Lucke. Systematic measurements are also been carried out to determine the logarithmic decrement as a function of time at different temperatures, after driving the specimens at high strains amplitudes, yelding the following results: I) there is a recovery of the amplitude dependent damping upon removal of the high strain excitations, and II) the Kinetic of the recovery follows initially a t sup(2/3) ageing law, changing to tsup(1/3) afterwards [pt

  13. Crystal plasticity in presence of great deformations and damages; Plasticite cristalline en presence de grandes deformations et d'endommagement

    Energy Technology Data Exchange (ETDEWEB)

    Musienko, A

    2005-03-15

    This work addresses several problems in the framework of crystal plasticity. Its main motivation is the development of a coupled approach able to account for the interaction between environment, inelastic deformation and damage in a zircaloy alloy used for the cladding tubes in nuclear power plants. A first study was previously made by O. Diard on the same subject, and a preliminary numerical procedure was developed for performing the simulation. Our purpose was to improve this first attempt, and to reach a quantitative agreement with the experimental data. The main modification to the initial model is a new geometrical representation of the 'grain boundary'. In fact, instead of having a special material for the grain boundary, we introduce a specific zone in each grain near the grain boundary. In this area, we still have the normal slip systems, corresponding to the grain it belongs to, but also specific systems to allow the boundary to slip and open. The resulting model (DOS) successfully represents damage, opening and sliding, and can be calibrated using experimental information on tubes submitted to complex load histories. A finite strain formulation is also provided. Finally, a model describing cleavage is in competition with intergranular damage, so that we are able to predict the transition from intergranular to transgranular cracking. These new features are implemented using a robust integration algorithm in the finite element code Zebulon. A simulation of stress corrosion cracking of Zircaloy tubes in iodine environment (which appears as a result of pellet-cladding interaction in the core of nuclear pressurized-water reactors) is proposed. The predictions of the model are in good agreement with the experimental data describing the crack propagation rate. The following points are obtained as sub-products of the study: 1)Elasticity, J2 plasticity, crystal plasticity, and the DOS model are successively studied, in the framework of small perturbation

  14. Computer studies of surface structure of NiAl(111)

    International Nuclear Information System (INIS)

    Takeuchi, Wataru; Yamamura, Yasunori

    1994-01-01

    The 180 neutral impact-collision ion scattering spectroscopy (NICISS) data have been analyzed using the ACOCT program code based on the binary collision approximation (BCA). The computer simulations are performed for the case of 2 keV He + ions incident along the [ anti 12 anti 1] direction of a NiAl(111) surface. It is found that the experimental results are well reproduced by the ACOCT simulations including the inward relaxation of 40% of the first interlayer spacing on Ni terminated layer at the NiAl(111) surface and including the Moliere approximation of the Thomas-Fermi potential with a reduced Firsov screening length, multiplied by a factor of 0.60. (orig.)

  15. The ideal tensile strength and deformation behavior of a tungsten single crystal

    International Nuclear Information System (INIS)

    Liu Yuelin; Zhou Hongbo; Zhang Ying; Jin Shuo; Lu Guanghong

    2009-01-01

    We employ first-principles total energy method based on the density functional theory with the generalized gradient approximation to investigate the ideal tensile strengths of a bcc tungsten (W) single crystal systemically. The ideal tensile strengths are shown to be 29.1, 49.2 and 37.6 GPa for bcc W in the [0 0 1], [1 1 0] and [1 1 1] directions, respectively. The [0 0 1] direction is shown to be the weakest direction due to the occurrence of structure transition at the lower strain and the [1 1 0] direction is strongest. The results can provide a useful reference for W as a PFM in the nuclear fusion Tokamak.

  16. Irradiation-initiated plastic deformation in prestrained single-crystal copper

    International Nuclear Information System (INIS)

    Li, Bo; Wang, Liang; Jian, Wu-Rong; E, Jun-Cheng; Ma, Hong-Hao; Luo, Sheng-Nian

    2016-01-01

    With large-scale molecular dynamics simulations, we investigate the response of elastically prestrained single-crystal Cu to irradiation as regards the effects of prestrain magnitude and direction, as well as PKA (primary knock-on atom) energy. Under uniaxial tension, irradiation induces such defects as Frenkel pairs, stacking faults, twins, dislocations, and voids. Given the high dislocation concentration, twins and quad-stacking faults form through overlapping of different stacking faults. Voids nucleate via liquid cavitation, and dislocations around void play a lesser role in the void nucleation and growth. Dislocation density increases with increasing prestrain and PKA energy. At a given prestrain, there exists a critical PKA energy for dislocation activation, which decreases with increasing prestrain and depends on crystallographic direction of the applied prestrain.

  17. Early stage of deformation in tungsten, tantalum, and nickel single crystals

    International Nuclear Information System (INIS)

    Pinatti, D.G.

    1977-01-01

    High purity Tantalum, Tungsten and Nickel single crystals were tested in simple tension between 77 and 300 K. The Ta and W was oriented for maximum resolved shear stress on the [111] (101) system. Simultaneously microstrain and ultrasonic propagation measurements (attenuation and modulus defect) were performed at various stress bias in order to test details of theories concerning the preyield region and the flow stress in body-centered cubic refractory metals. The experimental retical predictions for the kink chain model over the string model for dislocation. It appears that double kink nucleation in non-screw dislocations has negligible effect in this domains. The results for annealed Ta exhibited no stress bias effect on the ultrasonic propagation measurements, which suggest that the strong influence of impurities mask our ability to discern this fine structure for dislocation motion. For prestrained W and Ta, it was found that double-kink nucleation on nonscrew dislocation plays an important role and revealed interesting results with respect to our understanding of the intrinsic dislocation structure in bcc metals. These results support the kink chain model for dislocation unambiguously. The experiments on the prestrained samples also exhibited experimental results which are qualitatively but not quantitatively in agreement with the theoretical predictions of Seeger and Sectak. The Ni single crystals were prestrained between 10 and 23 percent in stage II, and the microstrain damping loops have been studied as a function of stress amplitude, temperature and magnetic field. The predominant hysteretic contribution to the observed decrement was analyzed according to the model of Roberts (Al. 14, Al. 15), and good agreement between theory and experiment was found

  18. Kinetics and mechanisms of low temperature deformation in high purity niobium single crystals

    International Nuclear Information System (INIS)

    Karam, N.H.

    1985-01-01

    This study included three main aspects: (1) an extensive examination of the temperature and strain rate dependence of the flow stress without any thermodynamic analysis; (2) detailed thermodynamic analysis of the experimental data with no specific models involved, and (3) testing the results against specific models as well as modification of Seeger's model (1981-1983) to account for the results. The temperature and strain rate dependence of the tau/sub f/, tau/sup */, and tau/sub μ/ was experimentally determined over the temperature range 300 to 4.2 K with intervals ΔT ≤ 20K. The value of tau/sub μ/(T/sub k/) was found experimentally by decremental unloading, stress relaxation, and back extrapolation techniques giving tau/sub μ/(T/sub k/) = 19 MPa in agreement with the analytical analysis. The knee temperature was found T/sub k/ = 300K and the Peierls stress was determined as taup = 370 MPa. The strain rate sensitivity λ was evaluated using both strain rate cycle and stress relaxation techniques which were in excellent agreement. λ reached its maximum at 77K. Experimental data are best described by double kink nucleation models where deformation occurs by the formation of double kinks on screw dislocations that are resisted by a lattice friction arising from the periodic lattice potential

  19. Crystallite size effect on the monoclinic deformation of the bcc crystal structure of chromium

    Science.gov (United States)

    Przeniosło, R.; Fabrykiewicz, P.; Sosnowska, I.; Wardecki, D.; Sławiński, W. A.; Playford, H. Y.; Hempelmann, R.; Bukowski, M.

    2018-02-01

    The modulated spin density wave magnetic orderings observed in chromium suggests that the crystal structure of chromium cannot be described by the cubic space group Im 3 bar m. Our experimental studies of polycrystalline and nanocrystalline chromium by synchrotron radiation (SR) and neutron powder diffraction show a hkl-dependent Bragg peak broadening which can be interpreted by the low-symmetry monoclinic space group P21 / n instead of the high symmetry cubic space group Im 3 bar m. The monoclinic angle is βm = 90.05(1)° and 90.29(1)° for polycrystalline Cr and nanocrystalline Cr, respectively. The relative monoclinic distortion observed in chromium is 5 times larger than those reported for several oxides: BiFeO3, α-Fe2O3, Cr2O3 and calcite. The symmetry of the magnetic transverse spin density wave (TSDW) and the longitudinal spin density wave (LSDW) observed in Cr are described by using the superspace groups P21 / n(0 β 0) 00 and P 21‧ /n‧(0 β 0) 00, respectively. These superspace groups describe both the magnetic modulations and the atomic position modulations reported in the literature. The monoclinic symmetry of chromium is a robust effect which is observed in the paramagnetic as well as in the TSDW and LSDW phases.

  20. SANS study of deformation and relaxation of a comb-like liquid crystal polymer in the nematic phase

    Science.gov (United States)

    Brûlet, A.; Boué, F.; Keller, P.; Davidson, P.; Strazielle, C.; Cotton, J. P.

    1994-06-01

    A comb-like liquid crystal polymer is stretched and quenched after a certain time in the nematic phase. The conformation of the deformed chain is determined using small angle neutron scattering (SANS) as a function of the temperature of stretching, the stretching ratio and the duration of the relaxation. The scattering data are well fitted to junction affine and phantom network models. Some data are even well fitted by a totally affine model that we call “ pseudo affine ” because the only parameter, the stretching ratio, is found to be well below the macroscopic stretching ratio. The latter result, never encountered with amorphous polymers, is attributed to the cooperative effects of the nematic phase. We also note that the form factors of the chain in the underformed sample remain similar in the isotropic, nematic and glassy state ; they correspond to a Gaussian chain. The same samples were studied by wide angle X-ray scattering. On one hand, the orientation of the mesogenic groups is found to be parallel or perpendicular to the stretching direction depending on the stretching temperature. This result is discussed as a function of the presence of smectic fluctuations. On the other hand, longer relaxations at constant elongation ratio do not lead to a disorganization of the mesogenic group orientation whereas the polymer chains are partly relaxed.

  1. Deformation, crystal preferred orientations, and seismic anisotropy in the Earth's D″ layer

    Science.gov (United States)

    Tommasi, Andréa; Goryaeva, Alexandra; Carrez, Philippe; Cordier, Patrick; Mainprice, David

    2018-06-01

    We use a forward multiscale model that couples atomistic modeling of intracrystalline plasticity mechanisms (dislocation glide ± twinning) in MgSiO3 post-perovskite (PPv) and periclase (MgO) at lower mantle pressures and temperatures to polycrystal plasticity simulations to predict crystal preferred orientations (CPO) development and seismic anisotropy in D″. We model the CPO evolution in aggregates of 70% PPv and 30% MgO submitted to simple shear, axial shortening, and along corner-flow streamlines, which simulate changes in flow orientation similar to those expected at the transition between a downwelling and flow parallel to the core-mantle boundary (CMB) within D″ or between CMB-parallel flow and upwelling at the borders of the large low shear wave velocity provinces (LLSVP) in the lowermost mantle. Axial shortening results in alignment of PPv [010] axes with the shortening direction. Simple shear produces PPv CPO with a monoclinic symmetry that rapidly rotates towards parallelism between the dominant [100](010) slip system and the macroscopic shear. These predictions differ from MgSiO3 post-perovskite textures formed in diamond-anvil cell experiments, but agree with those obtained in simple shear and compression experiments using CaIrO3 post-perovskite. Development of CPO in PPv and MgO results in seismic anisotropy in D″. For shear parallel to the CMB, at low strain, the inclination of ScS, Sdiff, and SKKS fast polarizations and delay times vary depending on the propagation direction. At moderate and high shear strains, all S-waves are polarized nearly horizontally. Downwelling flow produces Sdiff, ScS, and SKKS fast polarization directions and birefringence that vary gradually as a function of the back-azimuth from nearly parallel to inclined by up to 70° to CMB and from null to ∼5%. Change in the flow to shear parallel to the CMB results in dispersion of the CPO, weakening of the anisotropy, and strong azimuthal variation of the S-wave splitting

  2. Computer modeling of the process of self-propagating high-temperature synthesis in thin system Ni-Al

    International Nuclear Information System (INIS)

    Poletayev, G.M.; Starostenkov, M.D.; Denisova, N.F.; Skakov, M.K.

    2004-01-01

    Full text: The process of synthesis of thermal phases of the system Ni-Al is studied through the method of molecular dynamics. As the object of investigation was chosen two-dimensional crystal, that corresponds to atomic packing laying at the plane of volumetric fcc crystal. Clean Ni was taken as a matrix crystal. A particle of clean Al is packed in the center of matrix block. Beyond the bounds of calculated block crystal packing is repeated with the help of periodical border conditions. The interaction between different pairs of atoms is set by pair potential function of Morse, considering interatomic bonding of the point of the sixth coordinate sphere. The allocation of speeds of atomic function in the system is set through the Boltzmann factor, depending the temperature. When the bicrystal is represented by the ideal atom packing and there are no vacancies , the process of structural adjustment is only observed at the temperature, that is higher than melting point. At that, structural adjustment is observed in circular mechanism of atom allocation, also through the border between phases of clean Ni and Al. As a result, Al particle is transformed, at the border between metals, fields of positional disorder and embryos of intermetallide phases NiAl 2 , Ni 2 Al, Ni 3 Al. The introduction of of free volume through the creation of vacancies significantly lowers the temperature of the beginning of the synthesis process of intermetallide phases. The greatest decrease in temperature to the point of 300 K happens, when the vacancies are located in Ni field of bicrystal, the beginning of the thermo-activation is directly connected with the distance from interphase borders. As the process of thermo-activation continues, vacancies located in Ni matrix right up to seventh neighborhood relatively the border bicrystal. During thermo-activation Al particles enter the field and activate the synthesis process

  3. Density of Ni-Al Alloys in Liquid and Solid-Liquid Coexistence State Measured by a Modified Pycnometric Method

    Institute of Scientific and Technical Information of China (English)

    Liang FANG; Feng XIAO; Zushu LI; Zainan TAO

    2004-01-01

    The density of Ni-Al alloys in both liquid state and solid-liquid coexistence state was measured with a modified pycnometric method. It was found that the density of NI-Al alloys decreases with increasing temperature and Al concentration in the alloys. The molar volume of liquid Ni-Al binary alloys increases with the increase of temperature and Al concentration. The partial molar volume of Al in NI-Al binary alloy was calculated approximately. The molar volume of liquid NI-Al alloy determined in the present work shows a negative deviation from the ideal linear molar volume.

  4. Strain-rate dependence for Ni/Al hybrid foams

    Directory of Open Access Journals (Sweden)

    Jung Anne

    2015-01-01

    Full Text Available Shock absorption often needs stiff but lightweight materials that exhibit a large kinetic energy absorption capability. Open-cell metal foams are artificial structures, which due to their plateau stress, including a strong hysteresis, can in principle absorb large amounts of energy. However, their plateau stress is too low for many applications. In this study, we use highly novel and promising Ni/Al hybrid foams which consist of standard, open-cell aluminium foams, where nanocrystalline nickel is deposited by electrodeposition as coating on the strut surface. The mechanical behaviour of cellular materials, including their behaviour under higher strain-rates, is governed by their microstructure due to the properties of the strut material, pore/strut geometry and mass distribution over the struts. Micro-inertia effects are strongly related to the microstructure. For a conclusive model, the exact real microstructure is needed. In this study a micro-focus computer tomography (μCT system has been used for the analysis of the microstructure of the foam samples and for the development of a microstructural Finite Element (micro-FE mesh. The microstructural FE models have been used to model the mechanical behaviour of the Ni/Al hybrid foams under dynamic loading conditions. The simulations are validated by quasi-static compression tests and dynamic split Hopkinson pressure bar tests.

  5. Calorimetric features of release of plastic deformation induced internal stresses, and approach to equilibrium state on annealing of crystals and glasses

    Energy Technology Data Exchange (ETDEWEB)

    Johari, G.P., E-mail: joharig@mcmaster.ca

    2014-04-01

    Highlights: • Stress release in a glass occurs at a faster rate than structural relaxation. • Plastically-deformed glass would show two exothermic minima, and no glass transition. • Enthalpy matching procedure would yield an inaccurate fictive temperature. • Complex heat capacity may distinguish plastically-deformed from quench-formed glass. - Abstract: Plastic deformation of crystals and glasses produces internal strains (stresses), which change their energy and other thermodynamic properties. On annealing, these stresses decrease at a rate faster than the structure relaxes toward the equilibrium state. Mechanism of such relaxations in crystals differs from that in glasses and it also differs for glasses of different types. In all cases, the energy related properties decrease with time isothermally and on heating, resembling the structure relaxation of a stress-free glass. We consider these features and argue that kinetics of enthalpy loss with time yields the rate constants of the stress release and of the structure change, and not the viscosity determining α-relaxation time. Since thermal cycling does not recover the enthalpy from internal stresses, a glass with stresses has neither a glass-softening temperature, T{sub g}, nor a fictive temperature, T{sub f}. Plastic deformation would not rejuvenate a physically aged glass to the properties of its un-aged state. The Prigogine–Defay ratio can be extended to all T{sub f}s, and used to investigate the effect of distribution of relaxation times on its value, but it can not be defined for an internally stressed glass. After discussing the effects of annealing on the heat capacity and DSC scans, we conclude that on slow heating, glass with deformation-induced stresses would show two exothermic minima, and normal glass would show only one such minimum. Temperature-modulated scanning calorimetry would also distinguish an internally stressed glass from an equally high-enthalpy, stress-free glass. Enthalpy

  6. Spark-plasma sintering and mechanical property of mechanically alloyed NiAl powder compact and ball-milled (Ni+Al) mixed powder compact

    International Nuclear Information System (INIS)

    Kim, J.S.; Jang, Y.I.; Kwon, Y.S.; Kim, Y.D.; Ahn, I.S.

    2001-01-01

    Mechanically-alloyed NiAl powder and (Ni+Al) powder mixture prepared by ball-milling were sintered by spark-plasma sintering (SPS) process. Densification behavior and mechanical property were determined from the experimental results and analysis such as changes in linear shrinkage, shrinkage rate, microstructure, and phase during sintering process, Vicker's hardness and transverse rupture strength tests. Densification mechanisms for MA-NiAl powder compact and (Ni+Al) powder mixture were different from each other. While the former showed a rapid increase in densification rate only at higher temperature region of 800-900 o C, the latter revealed firstly a rapid increase in densification rate even at low temperature of 300 o C and a subsequent increase up to 500 o C. Densities of both powder compact (MA and mixture) sintered at 1150 o C for 5 min were 98 and above 99 %, respectively. Sintered bodies were composed mainly of NiAl phase with Ni 3 Al as secondary phase for both powders. Sintered body of MA-NiAl powder showed a very fine grain structure. Crystallite size determined by XRD result and the Sherrer's equation was approximately 80 nm. Vicker's hardness for the sintered bodies of (Ni+Al) powder mixture and MA-NiAl powder were 410±12 H v and 555±10 H v , respectively, whereas TRS values 1097±48 MPa and 1393±75 MPa. (author)

  7. High energy, widely tunable Si-prism-array coupled terahertz-wave parametric oscillator with a deformed pump and optimal crystal location for angle tuning.

    Science.gov (United States)

    Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Chen, Zhenlei

    2017-03-20

    A high energy, widely tunable Si-prism-array coupled terahertz-wave parametric oscillator (TPO) has been demonstrated by using a deformed pump. The deformed pump is cut from a beam spot of 2 mm in diameter by a 1-mm-wide slit. In comparison with a small pump spot (1-mm diameter), the THz-wave coupling area for the deformed pump is increased without limitation to the low-frequency end of the tuning range. Besides, the crystal location is specially designed to eliminate the alteration of the output position of the pump during angle tuning, so the initially adjusted nearest pumped region to the THz-wave exit surface is maintained throughout the tuning range. The tuning range is 0.58-2.5 THz for the deformed pump, while its low frequency end is limited at approximately 1.2 THz for the undeformed pump with 2 mm diameter. The highest THz-wave output of 2 μJ, which is 2.25 times as large as that from the pump of 1 mm in diameter, is obtained at 1.15 THz under 38 mJ (300  MW/cm2) pumping. The energy conversion efficiency is 5.3×10-5.

  8. Effect of rolling deformation on the microstructure of bulk Cu60Zr20Ti20 metallic glass and its crystallization

    DEFF Research Database (Denmark)

    Cao, Q.P.; Li, J.F.; Zhou, Y.H.

    2006-01-01

    Bulk Cu60Zr20Ti20 metallic glass has been rolled at room temperature (RT) and cryogenic temperature (CIF) up to 97% in thickness reduction, and the dependences of microstructure on the strain and temperature have been investigated. It is revealed that as the deformation proceeds below a critical...... thickness reduction, which is 87% at RT and 89% at CT, only the shear band density and the free-volume content increase, whereas the thermal stability of the deformed glass remains unchanged. Deformation above the critical thickness reduction results in phase separation plus nanocrystallization at RT...

  9. Dose dependence of tensoresistance for the symmetrical orientation of the deformation axis relatively to all isoenergetic ellipsoids in γ-irradiated (60Co n-Si crystals

    Directory of Open Access Journals (Sweden)

    G.P. Gaidar

    2018-03-01

    Full Text Available The dose dependence of tensoresistance X /0, which was measured at the symmetrical orientation of the deformation axis (compression relatively to all isoenergetic ellipsoids both in the initial and in -irradiated samples, was investigated in n-Si crystals. It has been shown that changing the irradiation doses is accompanied by not only quantitative but also qualitative changes in the functional dependence X /0 = f (Х. Features of tensoresistance in n-Si irradiated samples were found depending on three crystallographic directions, along which the samples were cut out and the mechanical stress Х was applied.

  10. The effect of nanoscratching direction on the plastic deformation and surface morphology of InP crystals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J. Y.; Ponce, F. A. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States); Caldas, P. G.; Prioli, R. [Departamento de Física, Pontificia Universidade Católica do Rio de Janeiro, Marques de São Vicente 225, Rio de Janeiro, 22453-900 Rio de Janeiro (Brazil); Almeida, C. M. [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Technología (INMETRO), Duque de Caxias, Rio de Janeiro 25250-020 (Brazil)

    2013-11-28

    The microstructure of (001) InP crystals scratched with a sharp diamond tip depends strongly on the scratching direction. The scratch surface is found to conform to the radius of curvature of the tip (∼60 nm) by the formation of atomic crystal steps produced by dislocation glide along (111) planes. 〈110〉 scratches lead to coherent local crystal lattice movement and rotation causing deep dislocation propagation into the crystal and irregular pileups at the sides of the scratch surface. 〈100〉 scratches lead to incoherent lattice movement causing dislocation locking that inhibits their propagation and results in regular pileups.

  11. Study and development of NiAl intermetallic coating on hypo-eutectoid steel using highly activated composite granules of the Ni-Al system

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, Aamir; Zadorozhnyy, Vladislav Yu.; Pavlov, Mikhail D.; Semenov, Dmitri V.; Kaloshkin, Sergey D. [National Univ. of Science and Technology (MISIS), Moscow (Russian Federation)

    2018-01-15

    NiAl intermetallic coating thickness of about 50 μm was fabricated on hypo-eutectoid steel by mechanical alloying using pre-activated Ni-Al composite granules as coating material. First, Ni and Al powders were mixed with the composition of Ni-50 at.% Al and mechanically activated in a planetary ball mill, until the composite granules of this powder mixture, having maximum activity (9 cm sec{sup -1}), were formed after 120 min of milling at 200 rpm. The composite granules were then taken out from the planetary ball mill just before the critical time, i. e. the time at which these granules synthesize and convert to an intermetallic NiAl compound. The highly activated composite granules of Ni-Al were then put into the vial of a vibratory ball mill with the substrate on top of the chamber. After mechanical alloying for 60 min in the vibratory ball mill, the composite granules were synthesized fully and heat was produced during the synthesis which helped producing a thick and strong adhesive coating of NiAl intermetallic on the steel substrate. The main advantage of this technique is that not only is time saved but also there is no need for any post mechanical alloying process such as annealing or laser treatment etc. to get homogeneous, strongly bonded intermetallic coatings. X-ray diffraction analysis clearly indicates the formation of NiAl phase. Micro-hardness of the coating and substrate was also measured. The cross-sectional microstructure of the composite granules and the final coating were studied by scanning electron microscopy.

  12. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  13. High-temperature deformation of B2 NiAl-base alloys

    International Nuclear Information System (INIS)

    Lee, I.G.; Ghosh, A.K.

    1994-01-01

    The high-temperature deformation behavior of three rapidly solidified and processed NiAl-base alloys--NiAl, NiAl containing 2 pct TiB 2 , and NiAl containing 4 pct HfC--have been studied and their microstructural and textural changes during deformation characterized. Compressions tests were conducted at 1,300 and 1,447 K at strain rates ranging from 10 -6 to 10 -2 s -1 . HfC-containing material showed dispersion strengthening as well as some degree of grain refinement over NiAl, while TiB 2 dispersoid-containing material showed grain refinement as well as secondary recrystallization and did not improve high-temperature strength. Hot-pack rolling was also performed to develop thin sheet materials (1.27-mm thick) and from these alloys. Without dispersoids, NiAl rolled easily at 1,223 K and showed low flow stress and good ductility during the hot-rolling operation. Rolling of dispersoid-containing alloys was difficult due to strain localization and edge-cracking effects, resulting partly from the high flow stress at the higher strain rate during the rolling operation. Sheet rolling initially produced a {111} texture, which eventually broke into multiple-texture components with severe deformation

  14. History Dependence of the Microstructure on Time-Dependent Deformation During In-Situ Cooling of a Nickel-Based Single-Crystal Superalloy

    Science.gov (United States)

    Panwisawas, Chinnapat; D'Souza, Neil; Collins, David M.; Bhowmik, Ayan; Roebuck, Bryan

    2018-05-01

    Time-dependent plastic deformation through stress relaxation and creep deformation during in-situ cooling of the as-cast single-crystal superalloy CMSX-4® has been studied via neutron diffraction, transmission electron microscopy, electro-thermal miniature testing, and analytical modeling across two temperature regimes. Between 1000 °C and 900 °C, stress relaxation prevails and gives rise to softening as evidenced by a decreased dislocation density and the presence of long segment stacking faults in γ phase. Lattice strains decrease in both the γ matrix and γ' precipitate phases. A constitutive viscoplastic law derived from in-situ isothermal relaxation test under-estimates the equivalent plastic strain in the prediction of the stress and strain evolution during cooling in this case. It is thereby shown that the history dependence of the microstructure needs to be taken into account while deriving a constitutive law and which becomes even more relevant at high temperatures approaching the solvus. Higher temperature cooling experiments have also been carried out between 1300 °C and 1150 °C to measure the evolution of stress and plastic strain close to the γ' solvus temperature. In-situ cooling of samples using ETMT shows that creep dominates during high-temperature deformation between 1300 °C and 1220 °C, but below a threshold temperature, typically 1220 °C work hardening begins to prevail from increasing γ' fraction and resulting in a rapid increase in stress. The history dependence of prior accumulated deformation is also confirmed in the flow stress measurements using a single sample while cooling. The saturation stresses in the flow stress experiments show very good agreement with the stresses measured in the cooling experiments when viscoplastic deformation is dominant. This study demonstrates that experimentation during high-temperature deformation as well as the history dependence of the microstructure during cooling plays a key role in deriving

  15. Investigation on electronic and magnetic properties of Mn{sub 2}NiAl by ab initio calculations and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000 Safi (Morocco); Jabar, A. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000 Safi (Morocco); Hlil, E.K. [Institut Néel, CNRS, Université Grenoble Alpes, BP 166, F-38042 Grenoble cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hourmatallah, A. [Equipe de Physique du Solide, Laboratoire LIPI, Ecole Normale Supérieure, BP 5206, Bensouda, Fes (Morocco); Rezzouk, A.; Bouslykhane, K.; Benzakour, N. [Laboratoire de Physique du Solide, Université Sidi Mohammed Ben Abdellah, Faculté des sciences DharMahraz, BP 1796, Fes (Morocco)

    2017-04-15

    Self-consistent ab initio calculations, based on Density Functional Theory (DFT) approach and using Full potential Linear Augmented Plane Wave (FLAPW) method, are performed to investigate both electronic and magnetic properties of the Mn{sub 2}NiAl. Magnetic moment considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for Monte Carlo simulations to compute other magnetic parameters. Also, the magnetic properties of Mn{sub 2}NiAl are studied using the Monte Carlo simulations. The variation of magnetization and magnetic susceptibility with the reduced temperature of Mn{sub 2}NiAl are investigated. The transition temperature of this system is deduced for different values exchange interaction and crystal field. The thermal total magnetization has been obtained, and the magnetic hysteresis cycle is established. The total magnetic moment is superior to those obtained by the other method and is mainly determined by the antiparallel aligned Mn{sub I}, Mn{sub II} and Ni spin moments. The superparamagnetic phase is found at the neighborhood of transition temperature. - Highlights: • Ab initio calculations are used to study magnetic and electronic properties of Mn{sub 2}NiX. • The transition temperature of Mn{sub 2}NiX is established. • The magnetic hysteresis cycle of M{sub n2}NiX (X = Al, Ga, In, Sn) is deduced. • The magnetic coercive field of Mn{sub 2}NiX (X = Al, Ga, In, Sn) is given.

  16. Laboratory Investigations of Ni-Al Coatings Exposed to Conditions Simulating Biomass Firing

    DEFF Research Database (Denmark)

    Wu, Duoli; Okoro, Sunday Chukwudi; Dahl, Kristian Vinter

    2016-01-01

    Fireside corrosion is a key problem when using biomass fuels in power plants. A possible solution is to apply corrosion resistant coatings. The present paper studies the corrosion and interdiffusion behaviour of a Ni-Al diffusion coating on austenitic stainless steel (TP347H). Ni-Al coatings were...... prepared by electrolytic deposition of nickel followed by pack aluminizing performed at 650˚C. A uniform and dense Ni-Al coating with an outer layer of Ni2Al3 and an inner Ni layer was formed. Samples were exposed to 560°C for 168h in an atmosphere simulating biomass combustion. This resulted in localized...... corrosion attack. Interdiffusion was studied by isothermal heat treatment in static air at 650˚C or 700˚C for up to 3000h. The Ni2Al3 gradually transformed into NiAl and Ni3Al during the interdiffusion process. Porosity developed at the interface between the Ni-Al coating and the Ni layer and expanded...

  17. Origin of dislocation luminescence centers and their reorganization in p-type silicon crystal subjected to plastic deformation and high temperature annealing.

    Science.gov (United States)

    Pavlyk, Bohdan; Kushlyk, Markiyan; Slobodzyan, Dmytro

    2017-12-01

    Changes of the defect structure of silicon p-type crystal surface layer under the influence of plastic deformation and high temperature annealing in oxygen atmosphere were investigated by deep-level capacitance-modulation spectroscopy (DLCMS) and IR spectroscopy of molecules and atom vibrational levels. Special role of dislocations in the surface layer of silicon during the formation of its energy spectrum and rebuilding the defective structure was established. It is shown that the concentration of linear defects (N ≥ 10 4  cm -2 ) enriches surface layer with electrically active complexes (dislocation-oxygen, dislocation-vacancy, and dislocation-interstitial atoms of silicon) which are an effective radiative recombination centers.

  18. High temperature oxidation behavior of hafnium modified NiAl bond coat in EB-PVD thermal barrier coating system

    Energy Technology Data Exchange (ETDEWEB)

    Guo Hongbo; Sun Lidong; Li Hefei [Department of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, No.37 Xueyuan Road, Beijing 100083 (China); Gong Shengkai [Department of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, No.37 Xueyuan Road, Beijing 100083 (China)], E-mail: gongsk@buaa.edu.cn

    2008-06-30

    NiAl coatings doped with 0.5 at.% and 1.5 at.% Hf were produced by co-evaporation of NiAl and Hf ingots by electron beam physical vapor deposition (EB-PVD), respectively. The addition of 0.5 at.% Hf significantly improved the cyclic oxidation resistance of the NiAl coating. The TGO layer in the 1.5 at.% Hf doped NiAl coating is straight; while that in the 0.5 at.% Hf doped coating became undulated after thermal cycling. The doped NiAl thermal barrier coatings (TBCs) revealed improved thermal cycling lifetimes at 1423 K, compared to the undoped TBC. Failure of the 0.5 at.% Hf doped TBC occurred by cracking at the interface between YSZ topcoat and bond coat, while the 1.5 at.% Hf doped TBC cracked at the interface between bond coat and substrate.

  19. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications

    Science.gov (United States)

    Bochenek, Kamil; Basista, Michal

    2015-11-01

    Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.

  20. The contrasting roles of creep and stress relaxation in the time-dependent deformation during in-situ cooling of a nickel-base single crystal superalloy.

    Science.gov (United States)

    Panwisawas, Chinnapat; D'Souza, Neil; Collins, David M; Bhowmik, Ayan

    2017-09-11

    Time dependent plastic deformation in a single crystal nickel-base superalloy during cooling from casting relevant temperatures has been studied using a combination of in-situ neutron diffraction, transmission electron microscopy and modelling. Visco-plastic deformation during cooling was found to be dependent on the stress and constraints imposed to component contraction during cooling, which mechanistically comprises creep and stress relaxation. Creep results in progressive work hardening with dislocations shearing the γ' precipitates, a high dislocation density in the γ channels and near the γ/γ' interface and precipitate shearing. When macroscopic contraction is restricted, relaxation dominates. This leads to work softening from a decreased dislocation density and the presence of long segment stacking faults in γ phase. Changes in lattice strains occur to a similar magnitude in both the γ and γ' phases during stress relaxation, while in creep there is no clear monotonic trend in lattice strain in the γ phase, but only a marginal increase in the γ' precipitates. Using a visco-plastic law derived from in-situ experiments, the experimentally measured and calculated stresses during cooling show a good agreement when creep predominates. However, when stress relaxation dominates accounting for the decrease in dislocation density during cooling is essential.

  1. Large aperture deformable mirror with a transferred single-crystal silicon membrane actuated using large-stroke PZT Unimorph Actuators

    Science.gov (United States)

    Hishinumat, Yoshikazu; Yang, Eui - Hyeok (EH)

    2005-01-01

    We have demonstrated a large aperture (50 mm x 50 mm) continuous membrane deformable mirror (DM) with a large-stroke piezoelectric unimorph actuator array. The DM consists of a continuous, large aperture, silicon membrane 'transferred' in its entirety onto a 20 x 20 piezoelectric unimorph actuator array. A PZT unimorph actuator, 2.5 mm in diameter with optimized PZT/Si thickness and design showed a deflection of 5.7 [m at 20V. An assembled DM showed an operating frequency bandwidth of 30 kHz and influence function of approximately 30%.

  2. The Ni3Al and NiAl alloys: a class of intermetallics which can replace the Ni-base superalloys for the aerospace high temperature structural applications

    International Nuclear Information System (INIS)

    Lucaci, M.; Vidu, C.D.; Vasile, E.

    2001-01-01

    The paper presents the results obtained in synthesizing Ni-base refractory intermetallics from elemental powder mixes. In view of this, four mixes were made for the Ni 3 Al intermetallics and five mixes for the NiAl ones. The compound synthesis was made at T = 660 o C under vacuum by the SHS method, in the thermo-explosion mode. The variable parameters were the compacting pressure and the aluminum amount in the mixes. The obtained materials were then characterized by the microstructure and by the physical properties. The product synthesis degree was followed as well as their influence on the types of microstructures obtained. The reaction products were evidenced by x-ray diffraction and by quantitative chemical microanalysis. The obtained results revealed the formation of the Ni 3 Al compound having a primitive cubic crystal lattice with a 0 = 3,564 Aa and the formation of the NiAl compound, of a bcc lattice having a 0 = 2,86 Aa. Those obtained prove the ample influences of the powder homogeneity degree and of the powder purity on the possibility to produce an adequate synthesis, as well as the influence of the amount liquid appeared in the system on the synthesis degree, on the reaction rate and on the porosity of materials obtained. (author)

  3. Constitutional and thermal point defects in B2 NiAl

    DEFF Research Database (Denmark)

    Korzhavyi, P. A.; Ruban, Andrei; Lozovoi, A. Y.

    2000-01-01

    The formation energies of point defects and the interaction energies of various defect pairs in NiAl are calculated from first principles within an order N, locally self-consistent Green's-function method in conjunction with multipole electrostatic corrections to the atomic sphere approximation...... distance on their sublattice. The dominant thermal defects in Ni-rich and stoichiometric NiAl are calculated to be triple defects. In Al-rich alloys another type of thermal defect dominates, where two Ni vacancies are replaced by one antisite Al atom. As a result, the vacancy concentration decreases...

  4. The decrease in yield strength in NiAl due to hydrostatic pressure

    Science.gov (United States)

    Margevicius, R. W.; Lewandowski, J. J.; Locci, I.

    1992-01-01

    The decrease in yield strength in NiAl due to hydrostatic pressure is examined via a comparison of the tensile flow behavior in the low strain regime at 0.1 MPa for NiAl which was cast, extruded, and annealed for 2 hr at 827 C in argon and very slowly cooled to room temperature. Pressurization to 1.4 GPa produces a subsequent reduction at 0.1 MP in proportional limit by 40 percent as well as a 25-percent reduction in the 0.2-percent offset yield strength, while pressurization with lower pressures produces a similar reduction, although smaller in magnitude.

  5. Possible configuration of two-knot auto-localized exciton in strainless and deformed alkali halide crystals

    International Nuclear Information System (INIS)

    Dzhumanov, S.; Tulepbergenov, S.K.; Shunkeev, K.Sh.

    2002-01-01

    In the paper molecular component of two-knot auto-localized exciton (TALE) occupying centrosymmetric state in alkali halide crystal cubic lattice with local D 2h symmetry is considered. In is suggested that the symmetry lowering of forming small radius auto-localized exciton (ALE) is realizing in order configuration transformation by the scenario: multi-knot continual ALE (with O h symmetry)→six-halide ALE (with O h symmetry)→TALE (with O h symmetry) or by the scenario O h →D 2h . Then for TALE with local D 2h symmetry normal molecular ion shifts are considered as well

  6. Effect of NiAl2O4 Formation on Ni/Al2O3 Stability during Dry Reforming of Methane

    KAUST Repository

    Zhou, Lu; Li, Lidong; Wei, Nini; Li, Jun; Basset, Jean-Marie

    2015-01-01

    A series of alumina-supported Ni catalysts were prepared to examine their activity and carbon deposition during dry reforming of methane (DRM). With an increase in the final calcination temperature to T=900 °C to form exclusively NiAl2O4, a catalyst with strong metal–support interactions was obtained. During a long-term DRM reaction (of about t=100 h) at T=700 °C and with CH4/CO2=1:1, reduced Ni (from NiAl2O4) showed a high resistance to sintering and coking. The DRM kinetics behaviors of the catalysts calcined at different temperatures were also investigated. Carbon growth models were proposed to rationalize the different carbon morphologies observed on the catalysts.

  7. Effect of NiAl2O4 Formation on Ni/Al2O3 Stability during Dry Reforming of Methane

    KAUST Repository

    Zhou, Lu

    2015-07-16

    A series of alumina-supported Ni catalysts were prepared to examine their activity and carbon deposition during dry reforming of methane (DRM). With an increase in the final calcination temperature to T=900 °C to form exclusively NiAl2O4, a catalyst with strong metal–support interactions was obtained. During a long-term DRM reaction (of about t=100 h) at T=700 °C and with CH4/CO2=1:1, reduced Ni (from NiAl2O4) showed a high resistance to sintering and coking. The DRM kinetics behaviors of the catalysts calcined at different temperatures were also investigated. Carbon growth models were proposed to rationalize the different carbon morphologies observed on the catalysts.

  8. Precipitation hardening of Zn0.1 at.%Ti single crystals deformed on the (0 0 0 1) system

    International Nuclear Information System (INIS)

    Boczkal, G.; Mikulowski, B.

    2004-01-01

    The mechanical properties (the critical resolved shear stress - CRSS, the work-hardening coefficient - θ A ) and a thermodynamic parameter (the activation volume--V*) have been studied in single crystals of Zn0.1 at.%Ti. The sample orientation allowed slip on the (0 0 0 1) system over a large range of strain. The investigations were conducted on samples which were both heat treated and not. The investigations were made using compression and stress relaxation tests in the range of easy glide at temperatures from 77 to 493 K. The single crystals appear to be hardened by precipitates while Ti solubility in Zn is negligible. Two types of the precipitates have been identified by TEM and microanalysis; very small precipitates were located uniformly in the matrix, and large needle-shaped obstacles with size of the order of 0.1 mm on the (0 0 0 1) orientation. The CRSS and the θ A showed a strong dependence on the temperature. The determined values of the CRSS were in the range of 4 MPa for 493 K to 12 MPa for 77 K. The obtained values of the activation volume V* were in the range of (10-110) x 10 -16 cm 3 and it was strongly dependent on the temperature and the stress at the beginning of relaxation. This value is attributed to small precipitates which are barriers for dislocation movement

  9. Creep deformation-induced antiphase boundaries in L12-containing single-crystal cobalt-base superalloys

    International Nuclear Information System (INIS)

    Eggeler, Yolita M.; Titus, Michael S.; Suzuki, Akane; Pollock, Tresa M.

    2014-01-01

    Creep-induced antiphase boundaries (APBs) in new Co-base single-crystal superalloys with coherent embedded L1 2 -γ′ precipitates have been observed. APBs formed during single-crystal tensile creep tests performed at 900 °C under vacuum at stresses between 275 and 310 MPa. The alloys investigated contained 30–39 at.% Ni, which was added to the Co–Al–W ternary system to expand the γ–γ′ phase field and increase the γ′-solvus. Transmission electron microscopy (TEM) using two-beam conditions with fundamental and superlattice reflections was performed for defect characterization. The Burgers vector b of dislocations associated with the APBs was determined to be of type b = a 0 /2[011] and a 0 /2[011 ¯ ]. The displacement vectors, R, of the APBs matched the dislocation Burgers vectors, with R = b = a 0 /2[011]. APBs were observed in nearly every precipitate beyond 0.5% creep strain for the compositions investigated. The implications for high-temperature properties are discussed

  10. High-rate sputter deposition of NiAl on sapphire fibers

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, K.; Martinez, C.; Cremer, R.; Neuschuetz, D. [Lehrstuhl fuer Theoretische Huettenkunde, RWTH Aachen, Aachen (Germany)

    2002-07-01

    Once the fiber-matrix bonding has been optimized to meet the different requirements during fabrication and operation of the later composite component, sapphire fiber reinforced NiAl will be a potential candidate to substitute conventional superalloys as structural material for gas turbine blades. To improve the composite fabrication process, a direct deposition of the intermetallic matrix material onto hBN coated sapphire fibers prior to the consolidation of the fiber-matrix composite is proposed. It is believed that this will simplify the fabrication process and prevent pore formation during the diffusion bonding. In addition, the fiber volume fraction can be quite easily adjusted by varying the NiAl coating thickness. For this, a high-rate deposition of NiAl is in any case necessary. It has been achieved by a pulsed DC magnetron sputtering of combined Al-Ni targets with the fibers rotating between the two facing cathodes. The obtained nickel aluminide coatings were analyzed as to structure and composition by means of X-ray (GIXRD) as well as electron diffraction (RHEED) and X-ray photoelectron spectroscopy (XPS), respectively. The morphology of the NiAl coatings was examined by SEM. (orig.)

  11. Combustion Synthesis Reaction Behavior of Cold-Rolled Ni/Al and Ti/Al Multilayers

    Science.gov (United States)

    2011-04-01

    reaction modes of the films. Anselmi-Tamburini and Munir (21) studied the 2 SHS reaction in laminated Ni/Al foils and established a sequence of... convolution of three peaks. The very large broad peak, centered on position C, contains a superimposed peak appearing as a shoulder (position A) and a

  12. Low cycle fatigue behavior of polycrystalline NiAl at 300 and 1000 K

    Science.gov (United States)

    Lerch, Bradley A.; Noebe, Ronald D.

    1993-01-01

    The low cycle fatigue behavior of polycrystalline NiAl was determined at 300 and 1000 K - temperatures below and above the brittle- to-ductile transition temperature (BDTT). Fully reversed, plastic strain-controlled fatigue tests were conducted on two differently fabricated alloy samples: hot isostatically pressed (HIP'ed) prealloyed powder and hot extruded castings. HIP'ed powder (HP) samples were tested only at 1000 K, whereas the more ductile cast-and-extruded (C+E) NiAl samples were tested at both 1000 and 300 K. Plastic strain ranges of 0.06 to 0.2 percent were used. The C+E NiAl cyclically hardened until fracture, reaching stress levels approximately 60 percent greater than the ultimate tensile strength of the alloy. Compared on a strain basis, NiAl had a much longer fatigue life than other B2 ordered compounds in which fracture initiated at processing-related defects. These defects controlled fatigue life at 300 K, with fracture occurring rapidly once a critical stress level was reached. At 1000 K, above the BDTT, both the C+E and HP samples cyclically softened during most of the fatigue tests in air and were insensitive to processing defects. The processing method did not have a major effect on fatigue life; the lives of the HP samples were about a factor of three shorter than the C+E NiAl, but this was attributed to the lower stress response of the C+E material. The C+E NiAl underwent dynamic grain growth, whereas the HP material maintained a constant grain size during testing. In both materials, fatigue life was controlled by intergranular cavitation and creep processes, which led to fatigue crack growth that was primarily intergranular in nature. Final fracture by overload was transgranular in nature. Also, HP samples tested in vacuum had a life three times longer than their counterparts tested in air and, in contrast to those tested in air, hardened continuously over half of the sample life, thereby indicating an environmentally assisted fatigue damage

  13. Dual-energy X-ray micro-CT imaging of hybrid Ni/Al open-cell foam

    International Nuclear Information System (INIS)

    Fíla, T.; Koudelka, P.; Zlámal, P.; Jiroušek, O.; Kumpová, I.; Vavřík, D.; Jung, A.

    2016-01-01

    In this paper, we employ dual-energy X-ray microfocus tomography (DECT) measurement to develop high-resolution finite element (FE) models that can be used for the numerical assessment of the deformation behaviour of hybrid Ni/Al foam subjected to both quasi-static and dynamic compressive loading. Cubic samples of hybrid Ni/Al open-cell foam with an edge length of [15]mm were investigated by the DECT measurement. The material was prepared using AlSi 7 Mg 0.3 aluminium foam with a mean pore size of [0.85]mm, coated with nanocrystalline nickel (crystallite size of approx. [50]nm) to form a surface layer with a theoretical thickness of [0.075]mm. CT imaging was carried out using state-of-the-art DSCT/DECT X-ray scanner developed at Centre of Excellence Telč. The device consists of a modular orthogonal assembly of two tube-detector imaging pairs, with an independent geometry setting and shared rotational stage mounted on a complex 16-axis CNC positioning system to enable unprecedented measurement variability for highly-detailed tomographical measurements. A sample of the metal foam was simultaneously irradiated using an XWT-240-SE reflection type X-ray tube and an XWT-160-TCHR transmission type X-ray tube. An enhanced dual-source sampling strategy was used for data acquisition. X-ray images were taken using XRD1622 large area GOS scintillator flat panel detectors with an active area of [410 × 410]mm and resolution [2048 × 2048]pixels. Tomographic scanning was performed in 1,200 projections with a 0.3 degree angular step to improve the accuracy of the generated models due to the very complex microstructure and high attenuation of the investigated material. Reconstructed data was processed using a dual-energy algorithm, and was used for the development of a 3D model and voxel model of the foam. The selected parameters of the models were compared with nominal parameters of the actual foam and showed good correlation

  14. Creep of crystals

    International Nuclear Information System (INIS)

    Poirier, J.-P.

    1988-01-01

    Creep mechanisms for metals, ceramics and rocks, effect of pressure and temperature on deformation processes are considered. The role of crystal defects is analysed, different models of creep are described. Deformation mechanisms maps for different materials are presented

  15. Laws of evolution of slip trace pattern and its parameters with deformation in [1.8.12] – single crystals of Ni{sub 3}Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Teplyakova, Ludmila, E-mail: lat168@mail.ru; Koneva, Nina, E-mail: koneva@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya sq., 634003, Tomsk (Russian Federation); Kunitsyna, Tatyana, E-mail: kma11061990@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation)

    2016-01-15

    The slip trace pattern of Ni{sub 3}Fe alloy single crystals with the short range order oriented for a single slip were investigated on replica at different stages of deformation using the transmission diffraction electron microscopy method. The connection of staging with the formation of slip trace pattern and the change of its parameters were established. The number of local areas where two or more slip systems work is increased with the change of stages. In these conditions the character of slip localization in the primary slip system is changed from the packets to the homogeneous distribution. The distributions of the distances between slip traces and the shear power in slip traces were plotted. The correlation between the average value of the shear power in the primary slip traces and the average distance between them was revealed in this work. It was established that the rates of the average value growth of the relative local shear and the shear power in the slip traces reach the largest values at the transition stage.

  16. Influence of Al grain boundaries segregations and La-doping on embrittlement of intermetallic NiAl

    Science.gov (United States)

    Kovalev, Anatoly I.; Wainstein, Dmitry L.; Rashkovskiy, Alexander Yu.

    2015-11-01

    The microscopic nature of intergranular fracture of NiAl was experimentally investigated by the set of electron spectroscopy techniques. The paper demonstrates that embrittlement of NiAl intermetallic compound is caused by ordering of atomic structure that leads to formation of structural aluminum segregations at grain boundaries (GB). Such segregations contain high number of brittle covalent interatomic bonds. The alloying by La increases the ductility of material avoiding Al GB enrichment and disordering GB atomic structure. The influence of La alloying on NiAl mechanical properties was investigated. GB chemical composition, atomic and electronic structure transformations after La doping were investigated by AES, XPS and EELFS techniques. To qualify the interatomic bonds metallicity the Fermi level (EF) position and electrons density (neff) in conduction band were determined in both undoped and doped NiAl. Basing on experimental results the physical model of GB brittleness formation was proposed.

  17. Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles

    International Nuclear Information System (INIS)

    Jiao, Z.B.; Luan, J.H.; Miller, M.K.; Yu, C.Y.; Liu, C.T.

    2015-01-01

    The critical role of Mn partitioning in the formation of ordered NiAl nanoparticles in ferritic steels has been examined through a combination of atom probe tomography (APT) and thermodynamic and first-principles calculations. Our APT study reveals that Mn partitions to the NiAl nanoparticles, and dramatically increases the particle number density by more than an order of magnitude, leading to a threefold enhancement in strengthening. Atomistic structural analyses reveal that Mn is energetically favored to partition to the NiAl nanoparticles by preferentially occupying the Al sublattice, which not only increases the driving force, but also reduces the strain energy for nucleation, thereby significantly decreasing the critical energy for formation of the NiAl nanoparticles in ferritic steels. In addition, the effects of Mn on the precipitation strengthening mechanisms were quantitatively evaluated in terms of chemical strengthening, coherency strengthening, modulus strengthening and order strengthening

  18. Microstructural modification of NiAl layered double hydroxide electrodes by adding graphene nanosheets and their capacitative property

    International Nuclear Information System (INIS)

    Kim, Yuna; Kim, Seok

    2015-01-01

    NiAl layered double hydroxide (LDH) composite electrodes containing various contents of graphene nanosheets (GNS) were prepared by a hydrothermal method. The microstructure and morphological properties were examined by FE-SEM, FE-TEM, XRD, and FTIR. Electrochemical analysis was also carried out by cyclic voltammetry, impedance, and cycle life measurement. The as-prepared composite that contained 500 mg of graphene (denoted as NiAl/G-50) achieved the highest specific capacitance of 1147 F/g among the various NiAl LDH/GNS composites. Besides, the NiAl LDH/GNS composite exhibited the lower diffusion resistance, improved rate capability, and good cyclic stability (83% of initial capacitance after 2000 cycles). Considering the morphological data and the improved capacitative properties together, we concluded the synthesized NiAl LDH/GNS composites would be a promising electrode material for supercapacitors

  19. Microstructural modification of NiAl layered double hydroxide electrodes by adding graphene nanosheets and their capacitative property

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yuna; Kim, Seok [School of Chemical and Biomolecular Engineering, Pusan National University, Busan (Korea, Republic of)

    2015-02-15

    NiAl layered double hydroxide (LDH) composite electrodes containing various contents of graphene nanosheets (GNS) were prepared by a hydrothermal method. The microstructure and morphological properties were examined by FE-SEM, FE-TEM, XRD, and FTIR. Electrochemical analysis was also carried out by cyclic voltammetry, impedance, and cycle life measurement. The as-prepared composite that contained 500 mg of graphene (denoted as NiAl/G-50) achieved the highest specific capacitance of 1147 F/g among the various NiAl LDH/GNS composites. Besides, the NiAl LDH/GNS composite exhibited the lower diffusion resistance, improved rate capability, and good cyclic stability (83% of initial capacitance after 2000 cycles). Considering the morphological data and the improved capacitative properties together, we concluded the synthesized NiAl LDH/GNS composites would be a promising electrode material for supercapacitors.

  20. Advanced Actuator Concepts for High Precision Deformable Mirrors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop a variety of single crystal actuators for adaptive optics deformable mirrors. Single crystal piezoelectric actuators are...

  1. Influence of Al grain boundaries segregations and La-doping on embrittlement of intermetallic NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, Anatoly I., E-mail: a_kovalev@sprg.ru; Wainstein, Dmitry L.; Rashkovskiy, Alexander Yu.

    2015-11-01

    Highlights: • We investigated Al grain boundaries segregations in ordered pure and La-doped NiAl. • Structural segregation of Al decreases critical strain for brittle cracks nucleation. • La alloying sharply improves plasticity of NiAl intermetallic. • Metallicity of interatomic bonds on grain boundaries increases at La alloying. • We have experimentally measured by EELFS that La atoms are located in Al sublattice. - Abstract: The microscopic nature of intergranular fracture of NiAl was experimentally investigated by the set of electron spectroscopy techniques. The paper demonstrates that embrittlement of NiAl intermetallic compound is caused by ordering of atomic structure that leads to formation of structural aluminum segregations at grain boundaries (GB). Such segregations contain high number of brittle covalent interatomic bonds. The alloying by La increases the ductility of material avoiding Al GB enrichment and disordering GB atomic structure. The influence of La alloying on NiAl mechanical properties was investigated. GB chemical composition, atomic and electronic structure transformations after La doping were investigated by AES, XPS and EELFS techniques. To qualify the interatomic bonds metallicity the Fermi level (E{sub F}) position and electrons density (n{sub eff}) in conduction band were determined in both undoped and doped NiAl. Basing on experimental results the physical model of GB brittleness formation was proposed.

  2. Formation of Ni(Al, Mo) solid solutions by mechanical alloying and their ordering on heating

    International Nuclear Information System (INIS)

    Portnoj, V.K.; Tomilin, I.A.; Blinov, A.M.; Kulik, T.

    2002-01-01

    The Ni(Al, Mo) solid solutions with different crystalline lattice periods (0.3592 and 0.3570 nm correspondingly) are formed in the course of the Ni 70 Al 25 Mo 5 and Ni 75 Al 20 Mo 5 powder mixtures mechanical alloying (MA) (through the mechanical activation in a vibrating mill). After MA the Mo atoms in the Ni 75 Al 20 Mo 5 mixture completely replace the aluminium positions with formation of the Ni 75 (AlMo) 25 (the L1 2 -type) ternary ordered phase, whereby such a distribution remains after heating up to 700 deg C. The Ni(Al, Mo) metastable solution is formed by MA in the Ni 75 Al 20 Mo 5 mixture, which decays with the release of molybdenum and the remained aluminide undergoes ordering by the L1 2 -type [ru

  3. Neutron diffraction study of the reduction of NiAl2O4

    International Nuclear Information System (INIS)

    Ustundag, E.; Clausen, B.; Bourke, M. A. M.

    2000-01-01

    The reduction of a solid NiAl 2 O 4 cylinder to a metal-ceramic composite consisting of Ni particles in an Al 2 O 3 matrix was monitored in situ at 1220 degree sign C with neutron powder diffraction. The reaction kinetics was determined with a time resolution of 30 min. The reduction is associated with a volume shrinkage. A comparison of finite element calculations and the changes in the measured lattice parameters suggests that creep has relaxed the residual strains that would otherwise result from the volume shrinkage. The data also indicate that structural evolution in unreduced NiAl 2 O 4 via a change in the cationic sublattice towards inverse spinel occurred and that led to a variation in lattice parameters. (c) 2000 American Institute of Physics

  4. Identification of strain fields in pure Al and hybrid Ni/Al metal foams using X-ray micro-tomography under loading

    International Nuclear Information System (INIS)

    Fíla, T.; Jiroušek, O.; Jung, A.; Kumpová, I.

    2016-01-01

    Hybrid foams are materials formed by a core from a standard open cell metal foam that is during the process of electrodeposition coated by a thin layer of different nanocrystalline metals. The material properties of the base metal foam are in this way modified resulting in higher plateau stress and, more importantly, by introduction of strain-rate dependence to its deformation response. In this paper, we used time-lapse X-ray micro-tomography for the mechanical characterization of Ni/Al hybrid foams (aluminium open cell foams with nickel coating layer). To fully understand the effects of the coating layer on the material's effective properties, we compared the compressive response of the base uncoated foam to the response of the material with coating thickness of 50 and 75 μm. Digital volume correlation (DVC) was applied to obtain volumetric strain fields of the deforming micro-structure up to the densification region of the deforming cellular structure. The analysis was performed as a compressive mechanical test with simultaneous observation using X-ray radiography and tomography. A custom design experimental device was used for compression of the foam specimens in several deformation states directly in the X-ray setup. Planar X-ray images were taken during the loading phases and a X-ray tomography was performed at the end of each loading phase (up to engineering strain 22%). The samples were irradiated using micro-focus reflection type X-ray tube and images were taken using a large area flat panel detector. Tomography reconstructions were used for an identification of a strain distribution in the foam using digital volumetric correlation. A comparison of the deformation response of the coated and the uncoated foam in uniaxial quasi-static compression is summarized in the paper.

  5. ANALISIS STRUKTUR MIKRO LAPISAN BOND COAT NIAL THERMAL BARRIER COATING (TBC PADA PADUAN LOGAM BERBASIS CO

    Directory of Open Access Journals (Sweden)

    Toto Sudiro

    2012-11-01

    Full Text Available Kehandalan dan umur pakai sistem Thermal Barrier Coating (TBC ditentukan oleh kestabilan lapisan bond coat dan thermal grown oxide (TGO. Sehingga sangatlah penting untuk memahami mekanisme pembentukan dan degradasi lapisan ini. Pada makalah ini akan dibahas analisis struktur mikro lapisan bond coat NiAl yang dideposisikan pada substrat CoCrNi dengan menggunakan gabungan metoda electroplating dan pack-cementation. Pada makalah ini juga dibahas mekanisme pembentukan void disepanjang interface bond coat¬-substrat setelah tes oksidasi.

  6. Molecular dynamics simulations of the melting curve of NiAl alloy under pressure

    OpenAIRE

    Wenjin Zhang; Yufeng Peng; Zhongli Liu

    2014-01-01

    The melting curve of B2-NiAl alloy under pressure has been investigated using molecular dynamics technique and the embedded atom method (EAM) potential. The melting temperatures were determined with two approaches, the one-phase and the two-phase methods. The first one simulates a homogeneous melting, while the second one involves a heterogeneous melting of materials. Both approaches reduce the superheating effectively and their results are close to each other at the applied pressures. By fit...

  7. Modification of NiAl intermetallic coatings processed by PTA with chromium carbides

    International Nuclear Information System (INIS)

    Yano, Diogo Henrique Sepel; Brunetti, Cristiano; Pintaude, Giuseppe; Oliveira, Ana Sofia Climaco Monteiro d'

    2010-01-01

    Equipment that operate under high-temperatures can be protected with NiAl intermetallic coatings mainly because of their metallurgical stability. This study as it evaluates the effect of chromium carbide added to Ni-Al intermetallic coatings processed by PTA. Three Ni-Al-Cr23C6 powder mixtures with different carbide fractions (15, 30 and 45 wt%) and another without carbides were deposited by PTA on an AISI 304 stainless steel plate, using two different current intensities (100 and 150A). Coatings were evaluated regarding the presence of welding defects, and resultant microstructures were characterized by X-ray diffraction and scanning electron microscopy. Vickers microhardness and EDS chemical composition were also determined. NiAl and Cr_7C_3 development was confirmed by X-ray diffraction analysis. A combination of NiAl/Cr-Fe-Ni phases was identified. The hardness was strongly related to the formed phases and their amounts. Besides presenting advances toward the development of coatings which can withstand severe operation conditions, the present study shows that PTA hardfacing is able to produce reinforced intermetallic coatings for high-temperature applications. (author)

  8. Molecular dynamics simulations of the melting curve of NiAl alloy under pressure

    International Nuclear Information System (INIS)

    Zhang, Wenjin; Peng, Yufeng; Liu, Zhongli

    2014-01-01

    The melting curve of B2-NiAl alloy under pressure has been investigated using molecular dynamics technique and the embedded atom method (EAM) potential. The melting temperatures were determined with two approaches, the one-phase and the two-phase methods. The first one simulates a homogeneous melting, while the second one involves a heterogeneous melting of materials. Both approaches reduce the superheating effectively and their results are close to each other at the applied pressures. By fitting the well-known Simon equation to our melting data, we yielded the melting curves for NiAl: 1783(1 + P/9.801) 0.298 (one-phase approach), 1850(1 + P/12.806) 0.357 (two-phase approach). The good agreement of the resulting equation of states and the zero-pressure melting point (calc., 1850 ± 25 K, exp., 1911 K) with experiment proved the correctness of these results. These melting data complemented the absence of experimental high-pressure melting of NiAl. To check the transferability of this EAM potential, we have also predicted the melting curves of pure nickel and pure aluminum. Results show the calculated melting point of Nickel agrees well with experiment at zero pressure, while the melting point of aluminum is slightly higher than experiment

  9. PRECIPITATION HARDENING IN B2-ORDERED NiAl BY Ni2AlTiCOMPOUND

    Institute of Scientific and Technical Information of China (English)

    W.H. Tian; K. Ohishi; M. Nemoto

    2001-01-01

    Microstructural variations and correlated hardness changes in B2-ordered NiAl containing fine precipitation of Ni2AlTi have been investigated by means of transmission electron microscopy (TEM) and hardness tests. The amount of age hardening is not large as compared to the large microstructural variations during aging. TEM observations have revealed that the L21-type Ni2AlTi precipitates keep a lattice coherency with the NiAl matrix at the beginning of aging. By longer periods of aging Ni2AlTi precipitates lose their coherency and change their morphology to the globular ones surrounded by misfit dislocations. The temperature dependence of the yield strength of precipitate-containing B2-ordered NiAl was investigated by compression tests over the temperature range of 873-1273K. The fine precipitation of Ni2AlTi was found to enhance greatly the yield strength and the high-temperature strength is comparison with that of superalloy Mar-M200.``

  10. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    International Nuclear Information System (INIS)

    Ohmi, Tatsuya; Matsuura, Kiyotaka; Iguchi, Manabu; Mizuma, Kiminori

    2008-01-01

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen

  11. Microtwins and their effect on accumulation of excess dislocation density in grains with different types of crystal lattice bending in deformed austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Gibert, Ivan, E-mail: gibert1993@mail.ru [National Research Tomsk Polytechnic University, 30, Lenin Ave., 634050, Tomsk (Russian Federation); Kiseleva, Svetlana, E-mail: kisielieva1946@mail.ru; Popova, Natalya, E-mail: natalya-popova-44@mail.ru; Koneva, Nina, E-mail: koneva@tsuab.ru; Kozlov, Eduard, E-mail: kozlov@tsuab.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)

    2016-01-15

    The investigation of excess dislocation density accumulation in the deformed polycrystalline austenitic steel was carried out using transmission electron microscopy (TEM). The distributions of the excess dislocation density in the grains of the deformed austenitic steel with different bending types were obtained and plotted. It was established that in the austenitic polycrystalline steel at the deformation degrees ε = 14 and 25 % the distributions of the excess dislocation density are multimodal. In both cases the grain with compound bending is more stressed. The values of the average excess dislocation density in the grains with the compound and simple bending are less at ε = 25 % than that at ε = 14 %. This is explained by a significant relaxation of the internal stresses in steel with the increase of the deformation degree from 14 % to 25 %. The increase of the number of twinning systems and the material volume fraction covered by twinning leads to the internal stress relaxation and consequently to the increase of the excess dislocation density. The presence of microtwins in the deformed material has an influence on the distribution of the excess dislocation density. In the deformed polycrystalline austenitic steel the number of grains with compound bending is increased with the increase of the plastic deformation degree.

  12. Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl

    KAUST Repository

    Wu, Shaohua; Wu, Xiaozhi; Wang, Rui; Liu, Qing; Gan, Liyong

    2014-01-01

    Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.

  13. Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl

    KAUST Repository

    Wu, Shaohua

    2014-12-01

    Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.

  14. Investigation of the local fracture toughness and the elastic-plastic fracture behavior of NiAl and tungsten by means of micro-cantilever tests

    International Nuclear Information System (INIS)

    Ast, Johannes

    2016-01-01

    The objective of this work was to get an improved understanding of the size dependence of the fracture toughness. For this purpose notched micro-cantilevers were fabricated ranging in dimensions from the submicron regime up to some tens of microns by means of a focused ion beam. B2-NiAl and tungsten were chosen as model materials as their brittle to ductile transition temperatures are well above room temperature. In that way, fracture processes accompanied by limited plastic deformation around the crack tip could be studied at the micro scale. For this size regime, new methods to describe the local elastic-plastic fracture behavior and to measure the fracture toughness were elaborated. Particular focus was set on the J-integral concept which was adapted to the micro scale to derive crack growth from stiffness measurements. This allowed a precise analysis of the transition from crack tip blunting to stable crack growth which is necessary to accurately measure the fracture toughness. Experiments in single crystalline NiAl showed for the two investigated crack systems, namely the hard and the soft orientation, that the fracture toughness at the micro scale is the same as the one known from macroscopic testing. Thus, size effects were not found for the tested length scale. The addition of little amounts of iron did not affect the fracture toughness considerably. Yet, it influenced the crack growth in those samples and consequently the resistance curve behavior. Concerning experiments in single crystalline tungsten, the fracture toughness showed a clear dependency on sample size. The smallest cantilevers fractured purely by cleavage. Larger samples exhibited stable crack growth along with plastic deformation which was recognizable in SEM-micrographs and quantified by means of EBSD measurements. Just as in macroscopic testing, the investigated crack system {100} demonstrated a dependency on loading rate with higher loading rates leading to a more brittle behavior. This

  15. Next-Generation Deformable Mirrors for Astronomical Coronagraphy by Utilizing PMN-PT Single Crystal Stack Actuators in integration with Driver ASIC, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project aims to develop a new manufacturing approach for deformable mirrors (DMs) by batch fabricating the stack actuator array. The innovation...

  16. Femtosecond laser ablation and nanoparticle formation in intermetallic NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, David J., E-mail: davidjjorgensen@engr.ucsb.edu; Titus, Michael S.; Pollock, Tresa M.

    2015-10-30

    Highlights: • The single-pulse fs laser ablation threshold of NiAl is 83 mJ/cm{sup 2}. • The transition between low- and high-fluence ablation regimes is 2.8 J/cm{sup 2}. • A bimodal size distribution of nanoparticles is formed with fs laser ablation. • Smaller nanoparticles are enriched in Al during pulsed fs laser ablation. • The target surface is depleted in Al during pulsed fs laser ablation. - Abstract: The ablation behavior of a stoichiometric intermetallic compound β-NiAl subjected to femtosecond laser pulsing in air has been investigated. The single-pulse ablation threshold for NiAl was determined to be 83 ± 4 mJ/cm{sup 2} and the transition to the high-fluence ablation regime occurred at 2.8 ± 0.3 J/cm{sup 2}. Two sizes of nanoparticles consisting of Al, NiAl, Ni{sub 3}Al and NiO were formed and ejected from the target during high-fluence ablation. Chemical analysis revealed that smaller nanoparticles (1–30 nm) tended to be rich in Al while larger nanoparticles (>100 nm) were lean in Al. Ablation in the low-fluence regime maintained this trend. Redeposited material and nanoparticles remaining on the surface after a single 3.7 J/cm{sup 2} pulse, one hundred 1.7 J/cm{sup 2} pulses, or one thousand 250 mJ/cm{sup 2} pulses were enriched in Al relative to the bulk target composition. Further, the surface of the irradiated high-fluence region was depleted in Al indicating that the fs laser ablation removal rate of the intermetallic constituents in this regime does not scale with the individual pure element ablation thresholds.

  17. Mosaic dislocation structures in aluminium crystals deformed in multiple slip at 0.5 to 0.8TM

    DEFF Research Database (Denmark)

    Theyssier, M.C.; Chenal, B.; Driver, J.H.

    1995-01-01

    corresponding to the stable rolling texture components of polycrystalline f.c.c. metals, C {112} [111], S {421} [112] and B {110} [112] and one recrystallisation component {001} [250]. The deformation microstructures are investigated by different techniques over a wide range of scales and the local orientations...... have been measured by EBSD (electron back scattered diffraction) and by CBED (convergent beam electron diffraction). The deformation microstructures are subdivided by dislocation boundaries which bound cell blocks oriented at +/- 30 degrees to +/- 55 degrees with respect to the rolling direction...

  18. Corrosion Resistance of Ni/Al2O3 Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    Beata KUCHARSKA

    2016-05-01

    Full Text Available Nickel matrix composite coatings with ceramic disperse phase have been widely investigated due to their enhanced properties, such as higher hardness and wear resistance in comparison to the pure nickel. The main aim of this research was to characterize the structure and corrosion properties of electrochemically produced Ni/Al2O3 nanocomposite coatings. The coatings were produced in a Watts bath modified by nickel grain growth inhibitor, cationic surfactant and the addition of alumina particles (low concentration 5 g/L. The process has been carried out with mechanical and ultrasonic agitation. The Ni/Al2O3 nanocomposite coatings were characterized by SEM, XRD and TEM techniques. In order to evaluate corrosion resistance of produced coatings, the corrosion studies have been carried out by the potentiodynamic method in a 0.5 M NaCl solution. The corrosion current, corrosion potential and corrosion rate were determined. Investigations of the morphology, topography and corrosion damages of the produced surface layers were performed by scanning microscope techniques. DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7407

  19. Dilution rate and microstructure of TIG arc Ni-Al powder surfacing layer

    Institute of Scientific and Technical Information of China (English)

    SHAN Jiguo; DONG Wei; TAN Wenda; ZHANG Di; PEN Jialie

    2007-01-01

    Surfacing beads are prepared by a direct current tungsten inert gas arc nickel-aluminum (Ni-Al) powder surfacing process. With the aim of controlling the dilution rate and obtaining surfacing beads rich in intermetallic compounds, the effects of surfacing parameters on geometric parameters, dilution rate, composition, and microstructure of the bead are investigated. An assistant cooler, which can potentially reduce the temperature of the base metal, is used in the surfacing process and its effect on dilution rate and microstructure is studied. The result indicates that with the surfacing parameter combination of low current and speed, the width and penetration of the bead decrease, reinforcement increases, and dilution rate drops markedly. With the reduc- tion of the parameter combination, the intergranular phase T-(Fe, Ni) is formed in the grain boundaries of Ni-Al interme- tallic matrix instead of the intergranular phase α-Fe, and large amount of intermetallics are obtained. With the use of an assistant cooler on a selected operation condition during the surfacing process, the reinforcement of the bead increases, penetration decreases, and dilution rate declines. The use of an assistant cooler helps obtain a surfacing bead composed of only intermetallics.

  20. Shock response of Ni/Al reactive inter-metallic composites

    Science.gov (United States)

    Cherukara, Mathew; Germann, Timothy; Kober, Edward; Strachan, Alejandro

    2014-03-01

    Intermolecular reactive composites find diverse applications in defense, microelectronics and medicine, where strong, localized sources of heat are required. Motivated by experimental work which has shown that high-energy ball milling can significantly improve the reactivity as well as the ease of ignition of Ni/Al inter-metallic composites, we present large scale (~41 million atom) molecular dynamics simulations of shock-induced chemistry in porous, polycrystalline, lamellar Ni/Al nano-composites, which are designed to capture the microstructure that is obtained post milling. Shock propagation in these porous, lamellar materials is observed to be extremely diffuse, leading to substantial inhomogeneity in the local stress states of the material. We describe the importance of pores as sites of initiation, where local temperatures can rise to several thousands of degrees, and chemical mixing is accelerated by vortex formation and jetting in the pore. We also follow the evolution of the chemistry after the shock passage by allowing the sample to ``cook'' under the shock induced pressures and temperatures for up to 0.5 ns. Multiple ``tendril-like'' reaction fronts, born in the cauldron of the pores, propagate rapidly through the sample, consuming it within a nanosecond. US Defense Threat Reduction Agency, Contract No. HDTRA1-10-1-0119.

  1. Numerical simulation of shock initiation of Ni/Al multilayered composites

    Energy Technology Data Exchange (ETDEWEB)

    Sraj, Ihab; Knio, Omar M., E-mail: omar.knio@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, 144 Hudson Hall, Durham, North Carolina 27708 (United States); Specht, Paul E.; Thadhani, Naresh N. [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332 (United States); Weihs, Timothy P. [Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (United States)

    2014-01-14

    The initiation of chemical reaction in cold-rolled Ni/Al multilayered composites by shock compression is investigated numerically. A simplified approach is adopted that exploits the disparity between the reaction and shock loading timescales. The impact of shock compression is modeled using CTH simulations that yield pressure, strain, and temperature distributions within the composites due to the shock propagation. The resulting temperature distribution is then used as initial condition to simulate the evolution of the subsequent shock-induced mixing and chemical reaction. To this end, a reduced reaction model is used that expresses the local atomic mixing and heat release rates in terms of an evolution equation for a dimensionless time scale reflecting the age of the mixed layer. The computations are used to assess the effect of bilayer thickness on the reaction, as well as the impact of shock velocity and orientation with respect to the layering. Computed results indicate that initiation and evolution of the reaction are substantially affected by both the shock velocity and the bilayer thickness. In particular, at low impact velocity, Ni/Al multilayered composites with thick bilayers react completely in 100 ms while at high impact velocity and thin bilayers, reaction time was less than 100 μs. Quantitative trends for the dependence of the reaction time on the shock velocity are also determined, for different bilayer thickness and shock orientation.

  2. Formation of epitaxial Al 2O 3/NiAl(1 1 0) films: aluminium deposition

    Science.gov (United States)

    Lykhach, Y.; Moroz, V.; Yoshitake, M.

    2005-02-01

    Structure of epitaxial Al 2O 3 layers formed on NiAl(1 1 0) substrates has been studied by means of reflection high-energy electron diffraction (RHEED). The elucidated structure was compared to the model suggested for 0.5 nm-thick Al 2O 3 layers [K. Müller, H. Lindner, D.M. Zehner, G. Ownby, Verh. Dtsch. Phys. Ges. 25 (1990) 1130; R.M. Jaeger, H. Kuhlenbeck, H.J. Freund, Surf. Sci. 259 (1991) 235]. The stepwise growth of Al 2O 3 film, involving deposition and subsequent oxidation of aluminium onto epitaxial 0.5 nm-thick Al 2O 3 layers, has been investigated. Aluminium was deposited at room temperature, whereas its oxidation took place during annealing at 1070 K. The Al 2O 3 thickness was monitored by means of Auger electron spectroscopy (AES). It was found that Al 2O 3 layer follows the structure of 0.5 nm thick Al 2O 3 film, although a tilting of Al 2O 3(1 1 1) surface plane with respect to NiAl(1 1 0) surface appeared after Al deposition.

  3. Ni adsorption and Ni-Al LDH precipitation in a sandy aquifer: An experimental and mechanistic modeling study

    NARCIS (Netherlands)

    Regelink, I.C.; Temminghoff, E.J.M.

    2011-01-01

    Mining activities and industries have created nickel (Ni) contaminations in many parts of the world. The objective of this study is to increase our understanding of Ni adsorption and Nickel-Aluminium Layered Double Hydroxide (Ni-Al LDH) precipitation to reduce Ni mobility in a sandy soil aquifer. At

  4. Producing laminated NiAl with bimodal distribution of grain size by solid–liquid reaction treatment

    DEFF Research Database (Denmark)

    Fan, G.H.; Wang, Q.W.; Du, Y.

    2014-01-01

    The prospect of combining laminated structure design and grain size tailoring to toughen brittle materials is examined. Laminated NiAl consisting of coarse-grained layers and fine-grained layers was fabricated by solid–liquid reaction treatment of stacking Ni and Al foils. The fracture toughness...

  5. Bonding characteristics in NiAl intermetallics with O impurity: a first-principles computational tensile test

    International Nuclear Information System (INIS)

    Hu Xuelan; Zhang Ying; Lu Guanghong; Wang Tianmin

    2009-01-01

    We have performed a first-principles computational tensile test on NiAl intermetallics with O impurity along the [001] crystalline direction on the (110) plane to investigate the tensile strength and the bonding characteristics of the NiAl-O system. We show that the ideal tensile strength is largely reduced due to the presence of O impurity in comparison with pure NiAl. The investigations of the atomic configuration and bond-length evolution show that O prefers to bond with Al, forming an O-Al cluster finally with the break of O-Ni bonds. The O-Ni bonds are demonstrated to be weaker than the O-Al bonds, and the reduced tensile strength originates from such weaker O-Ni bonds. A void-like structure forms after the break of the O-Ni and some Ni-Al bonds. Such a void-like structure can act as the initial nucleation or the propagation path of the crack, and thus produce large effects on the mechanical properties of NiAl.

  6. Microwave-assisted combustion synthesis of NiAl intermetallics in a single mode applicator: Modeling and optimisation

    International Nuclear Information System (INIS)

    Poli, G.; Sola, R.; Veronesi, P.

    2006-01-01

    The microwave-assisted combustion synthesis of NiAl intermetallics in a single mode applicator has been simulated numerically and performed with the aim of achieving the highest yields, energy efficiency and process reproducibility. The electromagnetic field modeling of the microwave system allowed to chose the proper experimental set-up and the materials more suitable for the application, minimising the reflected power and the risks of arcing. In all the experimental conditions tested, conversions of 3-5 g 1:1 atomic ratio Ni and Al powder compacts into NiAl ranged from 98.7% to 100%, requiring from 30 to 180 s with power from 500 to 1500 W. The optimisation procedure allowed to determine and quantify the effects of the main process variables on the ignition time, the NiAl yields and the specific energy consumption, leading to a fast, reproducible and cost-effective process of microwave-assisted combustion synthesis of NiAl intermetallics

  7. The effect of Ni-Al ratio on the properties of coprecipitated nickel-alumina catalysts with high nickel contents

    NARCIS (Netherlands)

    Lansink Rotgerink, H.G.J.; Bosch, H.; van Ommen, J.G.; Ross, J.R.H.

    1986-01-01

    A series of nickel-alumina catalysts with a Ni/Al ratio between 3 and 20 has been prepared by coprecipitation. The calcination and reduction of these samples have been studied by thermogravimetry and their structures after calcination and reduction at different temperatures has been examined by

  8. Effect of heat-treatment on microstructure and high-temperature deformation behavior of a low rhenium-containing single crystal nickel-based superalloy

    International Nuclear Information System (INIS)

    Sun, Nairong; Zhang, Lanting; Li, Zhigang; Shan, Aidang

    2014-01-01

    A low rhenium-containing [001] oriented single crystal nickel-based superalloy with different γ′ morphologies induced by various aging treatments was compressed from room temperature to 1000 °C. All the single crystal samples with different γ′ morphologies exhibit anomalous yield behavior. The sample first aged at 1180 °C has the widest anomalous temperature domain and highest yield strengths. The sample first aged at 1000 °C has the highest anomalous peak stress temperature

  9. Plastic deformation

    NARCIS (Netherlands)

    Sitter, de L.U.

    1937-01-01

    § 1. Plastic deformation of solid matter under high confining pressures has been insufficiently studied. Jeffreys 1) devotes a few paragraphs to deformation of solid matter as a preface to his chapter on the isostasy problem. He distinguishes two properties of solid matter with regard to its

  10. Photon emission spectroscopy of NiAl(110) in the scanning tunneling microscope

    International Nuclear Information System (INIS)

    Nilius, N.; Ernst, N.; Freund, H.-J.; Johansson, P.

    2000-01-01

    Spectroscopic measurements have been carried out of the light emitted from the NiAl(110)/W tunnel junction of a scanning tunneling microscope. The data reveal two prominent emission lines in the visible and near-infrared region. Corresponding model calculations assign the observed light emission to the radiating decay of the tip-induced plasmon excited in the tip-sample cavity. In agreement with the theory, a low- and a high-energy mode of the plasmon can be distinguished in the experimental data. Since the excitation probability of the two modes is determined by the size of the tunnel cavity, it can be influenced by the radius of the tunnel tip. A blunted tip favors the observation conditions of the higher mode

  11. Finite element simulation of texture evolution and Swift effect in NiAl under torsion

    Science.gov (United States)

    Böhlke, Thomas; Glüge, Rainer; Klöden, Burghardt; Skrotzki, Werner; Bertram, Albrecht

    2007-09-01

    The texture evolution and the Swift effect in NiAl under torsion at 727 °C are studied by finite element simulations for two different initial textures. The material behaviour is modelled by an elastic-viscoplastic Taylor model. In order to overcome the well-known shortcomings of Taylor's approach, the texture evolution is also investigated by a representative volume element (RVE) with periodic boundary conditions and a compatible microstructure at the opposite faces of the RVE. Such a representative volume element takes into account the grain morphology and the grain interaction. The numerical results are compared with experimental data. It is shown that the modelling of a finite element based RVE leads to a better prediction of the final textures. However, the texture evolution path is not accounted for correctly. The simulated Swift effect depends much more on the initial orientation distribution than observed in experiment. Deviations between simulation and experiment may be due to continuous dynamic recrystallization.

  12. Ab initio thermodynamic properties of stoichiometric phases in the Ni-Al system

    International Nuclear Information System (INIS)

    Arroyave, R.; Shin, D.; Liu, Z.-K.

    2005-01-01

    In this work the thermodynamic properties of Al, Ni, NiAl and Ni 3 Al were obtained through ab initio methods. Through the use of density functional theory within the generalized gradient approximation and projector augmented-wave (PAW) pseudopotentials, the 0 K energetics of the structures were calculated. The supercell method was used to calculate the vibrational contributions to the free energy. The contribution of electronic degrees of freedom to the total free energy was also included in the calculations. The resulting free energy was used to calculate the enthalpies and entropies of the structures investigated. The comparison with experimental data is satisfactory, and the calculations compare well with recent results using linear response theory

  13. Brittle-ductile deformation effects on zircon crystal-chemistry and U-Pb ages: an example from the Finero Mafic Complex (Ivrea-Verbano Zone, western Alps)

    Science.gov (United States)

    Langone, Antonio; José Alberto, Padrón-Navarta; Zanetti, Alberto; Mazzucchelli, Maurizio; Tiepolo, Massimo; Giovanardi, Tommaso; Bonazzi, Mattia

    2016-04-01

    A detailed structural, geochemical and geochronological survey was performed on zircon grains from a leucocratic dioritic dyke discordantly intruded within meta-diorites/gabbros forming the External Gabbro unit of the Finero Mafic Complex. This latter is nowadays exposed as part of a near complete crustal section spanning from mantle rocks to upper crustal metasediments (Val Cannobina, Ivrea-Verbano Zone, Italy). The leucocratic dyke consists mainly of plagioclase (An18-24Ab79-82Or0.3-0.7) with subordinate amounts of biotite, spinel, zircon and corundum. Both the leucocratic dyke and the surrounding meta-diorites show evidence of ductile deformation occurred under amphibolite-facies conditions. Zircon grains (up to 2 mm in length) occur mainly as euhedral grains surrounded by fine grained plagioclase-dominated matrix and pressure shadows, typically filled by oxides. Fractures and cracks within zircon are common and can be associated with grain displacement or they can be filled by secondary minerals (oxides and chlorite). Cathodoluminescence (CL) images show that zircon grains have internal features typical of magmatic growth, but with local disturbances. However EBSD maps on two selected zircon grains revealed a profuse mosaic texture resulting in an internal misorientation of ca. 10o. The majority of the domains of the mosaic texture are related to parting and fractures, but some domains show no clear relation with brittle features. Rotation angles related to the mosaic texture are not crystallographically controlled. In addition, one of the analysed zircons shows clear evidence of plastic deformation at one of its corners due to indentation. Plastic deformation results in gradual misorientations of up to 12o, which are crystallographically controlled. Trace elements and U-Pb analyses were carried out by LA-ICP-MS directly on petrographic thin sections and designed to cover the entire exposed surface of selected grains. Such investigations revealed a strong

  14. Mechanisms of deformation and of recrystallization of imperfect uranium monocrystals

    International Nuclear Information System (INIS)

    Calais, D.

    1960-04-01

    The various means by which plastic deformations by slip, twinning or kinking are produced by tension of imperfect α uranium single crystals prepared by a β → α phase change, have been studied by X-rays and micrographic examination. Depending on the crystallographic orientation with respect to the direction of the applied tension, and depending on the magnitude of the change in length, the crystals are deformed either preferentially according to a single mechanism, for example twinning, or simultaneously according to two or three mechanisms. The results of a subsequent annealing of the deformed single in the α phase are studied with respect to the deformation mechanisms. In the case of a deformation due primarily to (010) [100], (011) [100] or (110) [001] sliding, there occurs recrystallization by crystal growth selectivity. If the deformation occurs via deformation bands, there is recrystallization by 'oriented nucleation'. The crystals deformed preponderantly by twinning give on recrystallization perfect crystals having optimum dimensions and having orientational characteristics closely related to those of the original crystal. Finally are discussed some criteria relating to the geometry and the dynamics with a view to explaining the occurrence of such and such a deformation mechanism of a single crystal with a given orientation. This study, in conclusion, must help to define the best conditions (crystalline orientation and process of deformation) which will promote the growth of large, perfect, single crystals. (author) [fr

  15. Mechanism of abnormally slow crystal growth of CuZr alloy

    International Nuclear Information System (INIS)

    Yan, X. Q.; Lü, Y. J.

    2015-01-01

    Crystal growth of the glass-forming CuZr alloy is shown to be abnormally slow, which suggests a new method to identify the good glass-forming alloys. The crystal growth of elemental Cu, Pd and binary NiAl, CuZr alloys is systematically studied with the aid of molecular dynamics simulations. The temperature dependence of the growth velocity indicates the different growth mechanisms between the elemental and the alloy systems. The high-speed growth featuring the elemental metals is dominated by the non-activated collision between liquid-like atoms and interface, and the low-speed growth for NiAl and CuZr is determined by the diffusion across the interface. We find that, in contrast to Cu, Pd, and NiAl, a strong stress layering arisen from the density and the local order layering forms in front of the liquid-crystal interface of CuZr alloy, which causes a slow diffusion zone. The formation of the slow diffusion zone suppresses the interface moving, resulting in much small growth velocity of CuZr alloy. We provide a direct evidence of this explanation by applying the compressive stress normal to the interface. The compression is shown to boost the stress layering in CuZr significantly, correspondingly enhancing the slow diffusion zone, and eventually slowing down the crystal growth of CuZr alloy immediately. In contrast, the growth of Cu, Pd, and NiAl is increased by the compression because the low diffusion zones in them are never well developed

  16. Mechanisms of large strain, high strain rate plastic flow in the explosively driven collapse of Ni-Al laminate cylinders

    International Nuclear Information System (INIS)

    Olney, K L; Chiu, P H; Nesterenko, V F; Higgins, A; Serge, M; Weihs, T P; Fritz, G; Stover, A; Benson, D J

    2014-01-01

    Ni-Al laminates have shown promise as reactive materials due to their high energy release through intermetallic reaction. In addition to the traditional ignition methods, the reaction may be initiated in hot spots that can be created during mechanical loading. The explosively driven thick walled cylinder (TWC) technique was performed on two Ni-Al laminates composed of thin foil layers with different mesostructues: concentric and corrugated. These experiments were conducted to examine how these materials accommodate large plastic strain under high strain rates. Finite element simulations of these specimens with mesostuctures digitized from the experimental samples were conducted to provide insight into the mesoscale mechanisms of plastic flow. The dependence of dynamic behaviour on mesostructure may be used to tailor the hot spot formation and therefore the reactivity of the material system.

  17. Theoretical analysis of compatibility of several reinforcement materials with NiAl and FeAl matrices

    Science.gov (United States)

    Misra, Ajay K.

    1989-01-01

    Several potential reinforcement materials were assessed for their chemical, coefficient of thermal expansion (CTE), and mechanical compatibility with the intermetallic matrices based on NiAl and FeAl. Among the ceramic reinforcement materials, Al2O3, TiC, and TiB2, appear to be the optimum choices for NiAl and FeAl matrices. However, the problem of CTE mismatch with the matrix needs to be solved for these three reinforcement materials. Beryllium-rich intermetallic compounds can be considered as potential reinforcement materials provided suitable reaction barrier coatings can be developed for these. Based on preliminary thermodynamic calculations, Sc2O3 and TiC appear to be suitable as reaction barrier coatings for the beryllides. Several reaction barrier coatings are also suggested for the currently available SiC fibers.

  18. Influence of heat-treatment on microstructure and plastic deformation behavior in Ni3V single crystals with the D022 structure

    International Nuclear Information System (INIS)

    Hagihara, K; Mori, M; Kishimoto, T; Umakoshi, Y

    2009-01-01

    The control of microstructure in Ni 3 V single crystals such as variant and anti-phase boundary (APD) was attempted by quenching from the disordered state followed by annealing at several temperatures. In the heat-treatments, the microstructure strongly varied depending on the quenching speed from the disordered state. In slow-quenching, the lamellar structure composed of two variants was developed after annealing, as reported in many polycrystalline samples. However, only one of three variants was preferentially grown in the specimen rapidly quenched from the disordered state followed by annealing. The yield stress of slow-quenched specimen showed more than twice the value of the fast-quenched specimen.

  19. Design of the Precipitation Process for Ni-Al Alloys with Optimal Mechanical Properties: A Phase-Field Study

    Science.gov (United States)

    Ta, Na; Zhang, Lijun; Du, Yong

    2014-04-01

    An attempt to design the heat treatment schedule for binary Ni-Al alloys with optimal mechanical properties was made in the present work. A series of quantitative three-dimensional (3-D) phase-field simulations of microstructure evolution in Ni-Al alloys during the precipitation process were first performed using MICRESS (MICRostructure Evolution Simulation Software) package developed in the formalism of the multi-phase field model. The coupling to CALPHAD (CALculation of PHAse Diagram) thermodynamic and atomic mobility databases was realized via TQ interface. Moreover, the temperature-dependent lattice misfits and elastic constants were utilized for simulation. The effect of the alloy composition and aging temperature on microstructure evolution was extensively studied with the aid of statistical analysis. After that, an evaluation function was proposed for evaluating the optimal heat treatment schedule by choosing the phase fraction, grain size, and shape factor of γ' precipitate as the evaluation indicators. Based on 50 groups of phase-field-simulated and experimental microstructure information, as well as the proposed evaluation function, the optimal alloy composition, aging temperature, and aging time for binary Ni-Al alloy with optimal mechanical properties were finally chosen. The successful application in the present Ni-Al alloys indicates that it is possible to design the optimal alloy composition and heat treatment for other binary and even multicomponent alloys with optimal mechanical properties based on the evaluation function and the sufficient microstructure information. Additionally, the combination of the present method and the key experiments can definitely accelerate the material design and improve the efficiency and accuracy.

  20. Microstructure and Properties of Ni and Ni/Al2O3 Coatings Electrodeposited at Various Current Densities

    Directory of Open Access Journals (Sweden)

    Góral A.

    2016-03-01

    Full Text Available The study presents investigations of an influence of various direct current densities on microstructure, residual stresses, texture, microhardness and corrosion resistance of the nickel coatings electrodeposited from modified Watt’s baths. The properties of obtained coatings were compared to the nano-crystalline composite Ni/Al2O3 coatings prepared under the same plating conditions. The similarities and differences of the obtained coatings microstructures visible on both their surfaces and cross sections and determined properties were presented. The differences in the growth character of the Ni matrix and in the microstructural properties were observed. All electrodeposited Ni and Ni/Al2O3 coatings were compact and well adhering to the steel substrates. The thickness and the microhardness of the Ni and Ni/Al2O3 deposits increased significantly with the current density in the range 2 - 6 A/dm2. Residual stresses are tensile and they reduced as the current density increased. The composite coatings revealed better protection from the corrosion of steel substrate than pure nickel in solution 1 M NaCl.

  1. A work function study of ultra-thin alumina formation on NiAl(1 1 0) surface

    International Nuclear Information System (INIS)

    Song, Weijie; Yoshitake, Michiko

    2005-01-01

    We have investigated the oxidation of NiAl(1 1 0) surface at 1020 and 670 K using ultra-violet photoelectron spectroscopy, Kelvin probe, X-ray photoelectron spectroscopy and low-energy electron diffraction. The work function change during oxidation was monitored in situ as a function of oxygen exposure. It was observed that the work function decreased by 0.6 eV after 7.9 A of well-ordered Al 2 O 3 formation on NiAl(1 1 0) at 1020 K. The formation of the interfacial dipole layer was the main factor that determined the work function and XPS binding energy shifts of Al 2 O 3 energy levels. The work function decreased by 0.8 eV after 5.1 A of amorphous Al 2 O 3 formation at 670 K. The oxide layer structure was one of Key factors that determined the work function of the Al 2 O 3 /NiAl(1 1 0) system

  2. Growth of C60 thin films on Al2O3/NiAl(100) at early stages

    Science.gov (United States)

    Hsu, S.-C.; Liao, C.-H.; Hung, T.-C.; Wu, Y.-C.; Lai, Y.-L.; Hsu, Y.-J.; Luo, M.-F.

    2018-03-01

    The growth of thin films of C60 on Al2O3/NiAl(100) at the earliest stage was studied with scanning tunneling microscopy and synchrotron-based photoelectron spectroscopy under ultrahigh-vacuum conditions. C60 molecules, deposited from the vapor onto an ordered thin film of Al2O3/NiAl(100) at 300 K, nucleated into nanoscale rectangular islands, with their longer sides parallel to direction either [010] or [001] of NiAl. The particular island shape resulted because C60 diffused rapidly, and adsorbed and nucleated preferentially on the protrusion stripes of the crystalline Al2O3 surface. The monolayer C60 film exhibited linear protrusions of height 1-3 Å, due to either the structure of the underlying Al2O3 or the lattice mismatch at the boundaries of the coalescing C60 islands; such protrusions governed also the growth of the second layer. The second layer of the C60 film grew only for a C60 coverage >0.60 ML, implying a layer-by-layer growth mode, and also ripened in rectangular shapes. The thin film of C60 was thermally stable up to 400 K; above 500 K, the C60 islands dissociated and most C60 desorbed.

  3. New insight into electrochemical-induced synthesis of NiAl2O4/Al2O3: Synergistic effect of surface hydroxyl groups and magnetism for enhanced adsorptivity of Pd(II)

    International Nuclear Information System (INIS)

    Salleh, N.F.M.; Jalil, A.A.; Triwahyono, S.; Efendi, J.; Mukti, R.R.; Hameed, B.H.

    2015-01-01

    Graphical abstract: - Highlights: • The introduction of Ni to γ-Al 2 O 3 by electrolysis formed NiAl 2 O 4 spinels and NiO. • Physical mixed of NiO with γ-Al 2 O 3 only produced agglomerated NiO-Ni 0 . • Ni/Al 2 O 3 -E has remarkably higher degree of magnetism than Ni/Al 2 O 3 -PM. • Ni/Al 2 O 3 -E adsorbed Pd 2+ ions more effectively (q m = 40.3 mg/g) than Ni/Al 2 O 3 -PM. • Pd 2+ ions were adsorbed to both samples via magnetic attraction and ion exchange. - Abstract: A new promising adsorbent, Ni supported on γ-Al 2 O 3 was prepared in a simple electrolysis system (Ni/Al 2 O 3 -E) in minutes and was compared with the sample prepared by a physical mixing method (Ni/Al 2 O 3 -PM). The adsorbents were characterized by XRD, TEM, FTIR, 27 Al MAS NMR, XPS, and VSM. The results showed that besides NiO nanoparticles, a NiAl 2 O 4 spinel was also formed in Ni/Al 2 O 3 -E during the electrolysis via the dealumination and isomorphous substitution of Ni 2+ ions. In contrast, only agglomerated NiO was found in the Ni/Al 2 O 3 -PM. Adsorption test on removal of Pd 2+ ions from aqueous solution showed that the Pd 2+ ions were exchanged with the hydrogen atoms of the surface–OH groups of both adsorbents. Significantly, the Ni/Al 2 O 3 -E demonstrated a higher adsorption towards Pd 2+ ions than Ni/Al 2 O 3 -PM due to its remarkably higher degree of magnetism, which came from the NiAl 2 O 4 . The use of 0.1 g L −1 Ni/Al 2 O 3 -E gave the maximum monolayer adsorption capacity (q m ) of 40.3 mg g −1 at 303 K and pH 5. The Ni/Al 2 O 3 -E showed high potential for simultaneous removal of various noble and transition metal ions and could be also used repetitively without affecting the high adsorptivity for Pd 2+ ions. This work may provide promising adsorbents for recovery of various metals as well as other materials for such related applications

  4. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  5. Study of fine structure of deformed hafnium

    International Nuclear Information System (INIS)

    Voskresenskaya, L.A.; Petukhova, A.S.; Kovalev, K.S.

    1978-01-01

    Variations in the hafnium fine structure following the cold plastic deformation have been studied. The fine structure condition has been studied through the harmonic analysis of the profile of the X-ray diffraction line, obtained at the DRON-I installation. Received has been the dependence of the crystal lattice microdistortions value on the deformation extent for hafnium. This dependence is compared with the corresponding one for zirconium. It is found out that at all the deformations the microdistortion distribution is uniform. The microdistortion value grows with the increase in the compression. During the mechanical impact higher microdistortions of the crystal lattice occur in the hafnium rather than in zirconium

  6. Investigation of the local fracture toughness and the elastic-plastic fracture behavior of NiAl and tungsten by means of micro-cantilever tests; Untersuchung der lokalen Bruchzaehigkeit und des elastisch-plastischen Bruchverhaltens von NiAl und Wolfram mittels Mikrobiegebalkenversuchen

    Energy Technology Data Exchange (ETDEWEB)

    Ast, Johannes

    2016-07-01

    The objective of this work was to get an improved understanding of the size dependence of the fracture toughness. For this purpose notched micro-cantilevers were fabricated ranging in dimensions from the submicron regime up to some tens of microns by means of a focused ion beam. B2-NiAl and tungsten were chosen as model materials as their brittle to ductile transition temperatures are well above room temperature. In that way, fracture processes accompanied by limited plastic deformation around the crack tip could be studied at the micro scale. For this size regime, new methods to describe the local elastic-plastic fracture behavior and to measure the fracture toughness were elaborated. Particular focus was set on the J-integral concept which was adapted to the micro scale to derive crack growth from stiffness measurements. This allowed a precise analysis of the transition from crack tip blunting to stable crack growth which is necessary to accurately measure the fracture toughness. Experiments in single crystalline NiAl showed for the two investigated crack systems, namely the hard and the soft orientation, that the fracture toughness at the micro scale is the same as the one known from macroscopic testing. Thus, size effects were not found for the tested length scale. The addition of little amounts of iron did not affect the fracture toughness considerably. Yet, it influenced the crack growth in those samples and consequently the resistance curve behavior. Concerning experiments in single crystalline tungsten, the fracture toughness showed a clear dependency on sample size. The smallest cantilevers fractured purely by cleavage. Larger samples exhibited stable crack growth along with plastic deformation which was recognizable in SEM-micrographs and quantified by means of EBSD measurements. Just as in macroscopic testing, the investigated crack system <100>{100} demonstrated a dependency on loading rate with higher loading rates leading to a more brittle behavior

  7. A dynamical atomic simulation for the Ni-Al Wulff nanoparticle

    International Nuclear Information System (INIS)

    Tang, Jianfeng; Yang, Jianyu

    2013-01-01

    Ni-Al bimetallic nanoparticle structures are studied from a kinetic point of view. The diffusion and growth of Ni (or Al) atoms on Al (or Ni) cores with the Wulff structure are simulated by molecular dynamics and nudged elastic band methods. An analytic embedded atom model is applied to the two metals. The energy barriers of several typical diffusion processes of the adatoms on the nanoparticle surface are calculated. Results show that the incorporation of the Ni atoms into the Al core easily occurs, and the reverse process does not readily proceed. The growth simulations reveal that a better core-shell nanoparticle is obtained when the Al atoms are deposited on the Ni core at lower temperatures, and the deposition of the Ni atoms on the Al core leads to an amorphous surface. - Highlights: • The diffusion barrier of Ni (or Al) on Al (or Ni) Wulff nanoparticle is studied. • Ni atom can diffuse easily into Al core, and Al atom generally segregate on surface. • A core-shell nanoparticle is obtained for the deposition of Al atoms on Ni core. • Amorphous nanoparticle surface is obtained by depositing Ni atoms on Al core

  8. Granular deformation mechanisms in semi-solid alloys

    International Nuclear Information System (INIS)

    Gourlay, C.M.; Dahle, A.K.; Nagira, T.; Nakatsuka, N.; Nogita, K.; Uesugi, K.; Yasuda, H.

    2011-01-01

    Deformation mechanisms in equiaxed, partially solid Al-15 wt.% Cu are studied in situ by coupling shear-cell experiments with synchrotron X-ray radiography. Direct evidence is presented for granular deformation mechanisms in both globular and equiaxed-dendritic samples at solid fractions shortly after crystal impingement. It is demonstrated that dilatancy, arching and jamming occur at the crystal scale, and that these can cause stick-slip flow due to periodic dilation and compaction at low displacement rate. Granular deformation is found to be similar in globular and equiaxed-dendritic samples if length is scaled by the crystal size and packing is considered to occur among crystal envelopes. Rheological differences between the morphologies are discussed in terms of the competition between crystal rearrangement and crystal deformation.

  9. The Influence of oxide additives on Ni/Al2O3 catalysts in low temperature methane steam reforming

    International Nuclear Information System (INIS)

    Lazar, Mihaela; Dan, Monica; Mihet, Maria; Almasan, Valer

    2009-01-01

    Hydrogen is industrially produced by methane steam reforming. The process is catalytic and the usual catalyst is based on Ni as the active element. The main problem of this process is its inefficiency. It requires high temperatures at which Ni also favors the formation of graphite, which deactivates the catalysts. Ni has the advantage of being much cheaper than noble metal catalysts, so many researches are done in order to improve the properties of supported Ni catalysts and to decrease the temperature at which the process is energetically efficient. In order to obtain catalysts with high activity and stability, it is essential to maintain the dispersion of the active phase (Ni particles) and the stability of the support. Both properties can be improved by addition of a second oxide to the support. In this paper we present the results obtained in preparation and characterization of Ni/Al 2 O 3 catalysts modified by addition of CeO 2 and La 2 O 3 to alumina support. The following catalysts were prepared by impregnation method: Ni/Al 2 O 3 , Ni/CeO 2 -Al 2 O 3 and Ni/La 2 O 3 -Al 2 O 3 (10 wt.% Ni and 6 wt.% additional oxide). The catalytic surface was characterized by N 2 adsorption - desorption isotherms. The hydrogen - surface bond was characterized by Thermo-Programmed-Desorption (TPD) method. All catalysts were tested in steam reforming reaction of methane in the range of 600 - 700 deg. C, at atmospheric pressure working with CH 4 :H 2 O ratio of 1:3. The modified catalysts showed a better catalytic activity and selectivity for H 2 and CO 2 formation, at lower temperatures than the simple Ni/Al 2 O 3 catalyst. (authors)

  10. Structure of MeCrAlY + AlSi coatings deposited by Arc-PVD method on CMSX4 single crystal alloy

    International Nuclear Information System (INIS)

    Swadzba, L.; Hetmanczyk, M.; Mendala, B.; Saunders, S.R.J.

    2002-01-01

    Investigations of depositing high temperature resistant coatings on the Ni base superalloys by Arc-PVD method using exothermic reaction processes between Ni and Al with NiAl intermetallic formation are presented in the article. By the diffusion heating at 1050 o C in vacuum, NiAl diffusion coating containing 21% at. Al and 50 μm thick were obtained. In the next stage coatings with more complex chemical composition - MeCrAlY were formed. The MeCrAlY coatings were made from two targets. Good correlation between the chemical composition of the targets and a uniform distribution of elements in the coatings was shown. Then the surface was also covered with aluminium by the Arc-PVD method . In the vacuum chamber of the equipment a synthesis reaction between NiCoCrAlY and Al with the formation of NiAl intermetallics of high Co, Cr, Y content was initiated. The final heat treatment of coatings was conducted in vacuum at 1323 K. Strong segregation of yttrium into the oxide scale in the specimens heated in the air was shown. It was possible to form NiAl and intermetallics phase coatings modified by Co, Cr and Y by the Arc-PVD method. The coatings were formed on a single crystal CMSX-4. The structure, morphology and phase composition of coatings was carried out. (author)

  11. Steam reforming of different biomass tar model compounds over Ni/Al_2O_3 catalysts

    International Nuclear Information System (INIS)

    Artetxe, Maite; Alvarez, Jon; Nahil, Mohamad A.; Olazar, Martin; Williams, Paul T.

    2017-01-01

    Highlights: • Order of reactivity: anisole > furfural > indene > phenol > toluene > methyl naphthalene. • Higher coke deposition for oxygenates (1.5–2.8%) than for aromatics (0.5–0.8%). • Amorphous coke is deposited for oxygenates and filamentous carbon for aromatics. • Ni content of 20 wt.% shows the higher conversion (90%) and H_2 potential (63%). - Abstract: This work focuses on the removal of the tar derived from biomass gasification by catalytic steam reforming on Ni/Al_2O_3 catalysts. Different tar model compounds (phenol, toluene, methyl naphthalene, indene, anisole and furfural) were individually steam reformed (after dissolving each one in methanol), as well as a mixture of all of them, at 700 °C under a steam/carbon (S/C) ratio of 3 and 60 min on stream. The highest conversions and H_2 potential were attained for anisole and furfural, while methyl naphthalene presented the lowest reactivity. Nevertheless, the higher reactivity of oxygenates compared to aromatic hydrocarbons promoted carbon deposition on the catalyst (in the 1.5–2.8 wt.% range). When the concentration of methanol is decreased in the feedstock and that of toluene or anisole is increased, the selectivity to CO is favoured in the gaseous products, thus increasing coke deposition on the catalyst and decreasing catalyst activity for the steam reforming reaction. Moreover, an increase in Ni loading in the catalyst from 5 to 20% enhances carbon conversion and H_2 formation in the steam reforming of a mixture of all the model compounds studied, but these values decrease for a Ni content of 40%. Coke formation also increased by increasing Ni loading, attaining its maximum value for 40% Ni (6.5 wt.%).

  12. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems...... of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...... oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale....

  13. Plasticity analysis of nano-grain-sized NiAl alloy in an atomic scale

    International Nuclear Information System (INIS)

    Wang Jingyang; Wang Xiaowei; Rifkin, J.; Li Douxing

    2001-12-01

    The molecular dynamics method is used to simulate a uniaxial tensile deformation of 3.8nm nano-NiAl alloy with curved amorphous-like interfaces at 0K. Plastic deformation behaviour is studied by examining the strain-stress relationship and the microstructural evolution characteristic. Atomic level analysis showed that the micro-strain is essentially heterogeneous in simulated nano-phase samples. The plastic deformation is not only attributed to the plasticity of interfaces, but also accompanied with the plastic shear strain mechanism inside lattice distortion regions and grains. (author)

  14. Evaluation of the urea content in the synthesis by combustion reaction of the NiAl2O4 catalysts

    International Nuclear Information System (INIS)

    Leal, E.; Sousa, J.-P.L.M.L.; Costa, A.C.F.M.; Gama, L.; Argolo, F.; Sasaki, J.M.

    2009-01-01

    The aim of this work is to evaluate the influence of the urea fuel in the structure and morphology of the NiAl 2 O 4 prepared by combustion reaction. The powders were prepared according to the propellants and explosives theory, using urea in the stoichiometric composition, with 10% of excess and deficiency of this fuel. The samples were characterized by XRD, FTIR, particle size distribution and textural analysis by nitrogen adsorption (BET/BJH). The DRX results showed the presence of NiAl 2 O 4 as major phase and traces of NiO for all the samples. Also show crystallites size between 13 and 21 nm. All the samples showed large agglomerates size distribution, with D 50% between 18.6 and 20.4 μm, and morphology with irregular plates shape. The increase of the urea content caused an increase in the particle size and a reduction in the surface area, from 270 to 52 m 2 /g. (author)

  15. Bulk-compositional changes of Ni2Al3 and NiAl3 during ion etching

    International Nuclear Information System (INIS)

    Chen Houwen; Wang Rong

    2008-01-01

    Bulk-compositional changes of Ni 2 Al 3 and NiAl 3 in a Ni-50 wt% Al alloy during ion etching have been investigated by transmission electron microscopy and energy dispersive X-ray spectroscopic analyses. After etching with 7, 5 and 3 keV Ar + ions for 15, 24 and 100 h nickel contents in both Ni 2 Al 3 and NiAl 3 exceeded greatly those in the initial compounds and increased with the decrement of the sputtering energy. After 100 h etching with 3 keV Ar + ions the compositions of these two compounds reached a similar value, about Ni 80-83 Al 12-15 Fe 3-4 Cr 1-2 (at%). A synergistic action of preferential sputtering, radiation-induced segregation and radiation-enhanced diffusion enables the altered-layers at the top and bottom of the film extend through the whole film. The bulk-compositional changes are proposed to occur in the unsteady-state sputtering regime of ion etching and caused by an insufficient supply of matter in a thin film

  16. Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayer

    Science.gov (United States)

    Simões, Sónia; Viana, Filomena; Koçak, Mustafa; Ramos, A. Sofia; Vieira, M. Teresa; Vieira, Manuel F.

    2012-05-01

    In this article, the characterization of the interfacial structure of diffusion bonding a TiAl alloy is presented. The joining surfaces were modified by Ni/Al reactive multilayer deposition as an alternative approach to conventional diffusion bonding. TiAl substrates were coated with alternated Ni and Al nanolayers. The nanolayers were deposited by dc magnetron sputtering with 14 nm of period (bilayer thickness). Joining experiments were performed at 900 °C for 30 and 60 min with a pressure of 5 MPa. Cross sections of the joints were prepared for characterization of their interfaces by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), high resolution TEM (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). Several intermetallic compounds form at the interface, assuring the bonding of the TiAl. The interface can be divided into three distinct zones: zone 1 exhibits elongated nanograins, very small equiaxed grains are observed in zone 2, while zone 3 has larger equiaxed grains. EBSD analysis reveals that zone 1 corresponds to the intermetallic Al2NiTi and AlNiTi, and zones 2 and 3 to NiAl.

  17. Magnetic, structural and magnetocaloric properties of Ni-Si and Ni-Al thermoseeds for self-controlled hyperthermia.

    Science.gov (United States)

    Pandey, Sudip; Quetz, Abdiel; Aryal, Anil; Dubenko, Igor; Mazumdar, Dipanjan; Stadler, Shane; Ali, Naushad

    2017-11-01

    Self-controlled hyperthermia is a non-invasive technique used to kill or destroy cancer cells while preserving normal surrounding tissues. We have explored bulk magnetic Ni-Si and Ni-Al alloys as a potential thermoseeds. The structural, magnetic and magnetocaloric properties of the samples were investigated, including saturation magnetisation, Curie temperature (T C ), and magnetic and thermal hysteresis, using room temperature X-ray diffraction and magnetometry. The annealing time, temperature and the effects of homogenising the thermoseeds were studied to determine the functional hyperthermia applications. The bulk Ni-Si and Ni-Al binary alloys have Curie temperatures in the desired range, 316 K-319 K (43 °C-46 °C), which is suitable for magnetic hyperthermia applications. We have found that T C strictly follows a linear trend with doping concentration over a wide range of temperature. The magnetic ordering temperature and the magnetic properties can be controlled through substitution in these binary alloys.

  18. ac Conductivity of mixed spinel NiAl0.7Cr0.7Fe0.6O4

    Indian Academy of Sciences (India)

    Abstract. ac Conductivity measurements are carried out across the metal to insulator transition in NiAl0.7Cr0.7Fe0.6O4. The low frequency data is analyzed using Summerfield scaling theory for hopping conductivity. The exponent of the scaling behavior has significantly different values in the conducting and insulating ...

  19. Effect of crystal orientation on grain boundary migration and radiation-induced segregation

    International Nuclear Information System (INIS)

    Hashimoto, N.; Eda, Y.; Takahashi, H.

    1996-01-01

    Fe-Cr-Ni, Ni-Al and Ni-Si alloys were electron-irradiated using a high voltage electron microscope (1 MeV), and in situ observations of the structural evolution and micro-chemical analysis were carried out. During the irradiation, the grain boundaries in the irradiated region migrated, while no grain boundary migration occurred in the unirradiated area. The occurrence of boundary migration depended on the orientation relationship of the boundary interfaces. Grain boundary migration took place in Fe-Cr-Ni and Ni-Si alloys with large crystal orientation difference between the two grains across a grain boundary. In Ni-Al, however, the grain boundary migration did not occur. The solute segregation was caused at grain boundary under irradiation and this segregation behavior was closely related to solute size, namely the concentrations of undersized Ni and oversized Cr elements in Fe-Cr-Ni alloy increased and reduced at grain boundary, respectively. The same dependence of segregation on the solute size was derived in Ni-Si and Ni-Al alloys, in which Si and Al solutes are undersized and oversized elements, respectively. Therefore, Si solute enriched and Al solute depleted at grain boundary. From the present segregation behavior, it is suggested that the flow of point defects into the boundary is the cause of grain boundary migration. (orig.)

  20. Microstructure of AZ31 Magnesium Alloy deformed by indentation-flattening compound deformation technology

    Science.gov (United States)

    Wang, Minghao; Wang, Zhongtang; Yu, Xiaolin

    2018-03-01

    Characteristic of indentation-flattening compound deformation technology (IFCDT) is discussed, and the parameters of IFCDT are defined. Performance of magnesium alloy AZ31 sheet deformed by IFCDT is researched. The effect of IFCDT coefficient, temperature and reduction ratio on the microstructure of magnesium alloy sheet is analyzed. The research results show that the volume fraction of the twin crystal decreases gradually and the average grain size increases with increasing of coefficient of IFCDT. With increase of the reduction ratio, the volume fraction of the twin crystal gradually increases, and the average grain size also increases. With increase of deformation temperature, the volume fraction of the twin crystal decreases gradually, and the twin crystal grain size increases.

  1. Bunionette deformity.

    Science.gov (United States)

    Cohen, Bruce E; Nicholson, Christopher W

    2007-05-01

    The bunionette, or tailor's bunion, is a lateral prominence of the fifth metatarsal head. Most commonly, bunionettes are the result of a widened 4-5 intermetatarsal angle with associated varus of the metatarsophalangeal joint. When symptomatic, these deformities often respond to nonsurgical treatment methods, such as wider shoes and padding techniques. When these methods are unsuccessful, surgical treatment is based on preoperative radiographs and associated lesions, such as hyperkeratoses. In rare situations, a simple lateral eminence resection is appropriate; however, the risk of recurrence or overresection is high with this technique. Patients with a lateral bow to the fifth metatarsal are treated with a distal chevron-type osteotomy. A widened 4-5 intermetatarsal angle often requires a diaphyseal osteotomy for correction.

  2. Effect of orientation on deformation behavior of Fe nanowires: A molecular dynamics study

    Science.gov (United States)

    Sainath, G.; Srinivasan, V. S.; Choudhary, B. K.; Mathew, M. D.; Jayakumar, T.

    2014-04-01

    Molecular dynamics simulations have been carried out to study the effect of crystal orientation on tensile deformation behaviour of single crystal BCC Fe nanowires at 10 K. Two nanowires with an initial orientation of /{100} and /{111} have been chosen for this study. The simulation results show that the deformation mechanisms varied with crystal orientation. The nanowire with an initial orientation of /{100} deforms predominantly by twinning mechanism, whereas the nanowire oriented in /{111}, deforms by dislocation plasticity. In addition, the single crystal oriented in /{111} shows higher strength and elastic modulus than /{100} oriented nanowire.

  3. Deformation twinning: Influence of strain rate

    Energy Technology Data Exchange (ETDEWEB)

    Gray, G.T. III

    1993-11-01

    Twins in most crystal structures, including advanced materials such as intermetallics, form more readily as the temperature of deformation is decreased or the rate of deformation is increased. Both parameters lead to the suppression of thermally-activated dislocation processes which can result in stresses high enough to nucleate and grow deformation twins. Under high-strain rate or shock-loading/impact conditions deformation twinning is observed to be promoted even in high stacking fault energy FCC metals and alloys, composites, and ordered intermetallics which normally do not readily deform via twinning. Under such conditions and in particular under the extreme loading rates typical of shock wave deformation the competition between slip and deformation twinning can be examined in detail. In this paper, examples of deformation twinning in the intermetallics TiAl, Ti-48Al-lV and Ni{sub 3}A as well in the cermet Al-B{sub 4}C as a function of strain rate will be presented. Discussion includes: (1) the microstructural and experimental variables influencing twin formation in these systems and twinning topics related to high-strain-rate loading, (2) the high velocity of twin formation, and (3) the influence of deformation twinning on the constitutive response of advanced materials.

  4. First-principles investigations of Ni3Al(111) and NiAl(110) surfaces at metal dusting conditions

    DEFF Research Database (Denmark)

    Saadi, Souheil; Hinnemann, Berit; Appel, Charlotte C.

    2011-01-01

    We investigate the structure and surface composition of the γ′-Ni3Al(111) and β-NiAl(110) alloy surfaces at conditions relevant for metal dusting corrosion related to catalytic steam reforming of natural gas. In regular service as protective coatings, nickel–aluminum alloys are protected...... by an oxide scale, but in case of oxide scale spallation, the alloy surface may be directly exposed to the reactive gas environment and vulnerable to metal dusting. By means of density functional theory and thermochemical calculations for both the Ni3Al and NiAl surfaces, the conditions under which CO and OH...... adsorption is to be expected and under which it is inhibited, are mapped out. Because CO and OH are regarded as precursors for nucleating graphite or oxide on the surfaces, phase diagrams for the surfaces provide a simple description of their stability. Specifically, this study shows how the CO and OH...

  5. A novel deformation mechanism for superplastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Muto, H.; Sakai, M. (Toyohashi Univ. of Technology (Japan). Dept. of Materials Science)

    1999-01-01

    Uniaxial compressive creep tests with strain value up to -0.1 for a [beta]-spodumene glass ceramic are conducted at 1060 C. From the observation of microstructural changes between before and after the creep deformations, it is shown that the grain-boundary sliding takes place via cooperative movement of groups of grains rather than individual grains under the large-scale-deformation. The deformation process and the surface technique used in this work are not only applicable to explain the deformation and flow of two-phase ceramics but also the superplastic deformation. (orig.) 12 refs.

  6. Kinetics of the deformation induced memory effect in polyamide-6

    NARCIS (Netherlands)

    Drongelen, van M.; Stroeks, A.A.M.; Peters, G.W.M.

    2015-01-01

    Nascent polyamide-6 shows a peculiar and irreversible effect; the quiescent crystallization kinetics on cooling are accelerated upon deformation in the melt, even after full relaxation of the melt. This phenomenon, known as the orientation (or better, deformation) induced memory effect of polyamide

  7. Performance through Deformation and Instability

    Science.gov (United States)

    Bertoldi, Katia

    2015-03-01

    Materials capable of undergoing large deformations like elastomers and gels are ubiquitous in daily life and nature. An exciting field of engineering is emerging that uses these compliant materials to design active devices, such as actuators, adaptive optical systems and self-regulating fluidics. Compliant structures may significantly change their architecture in response to diverse stimuli. When excessive deformation is applied, they may eventually become unstable. Traditionally, mechanical instabilities have been viewed as an inconvenience, with research focusing on how to avoid them. Here, I will demonstrate that these instabilities can be exploited to design materials with novel, switchable functionalities. The abrupt changes introduced into the architecture of soft materials by instabilities will be used to change their shape in a sudden, but controlled manner. Possible and exciting applications include materials with unusual properties such negative Poisson's ratio, phononic crystals with tunable low-frequency acoustic band gaps and reversible encapsulation systems.

  8. Seismic anisotropy in deforming salt bodies

    Science.gov (United States)

    Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.

    2017-12-01

    Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.

  9. Synthesis NiAl1,0Fe1,0O4 catalyst by the combustion reaction to their use in the shift reaction (WGSR)

    International Nuclear Information System (INIS)

    Santos, P.T.A.; Costa, A.C.F.M.; Neiva, L.S.; Gama, L.; Argolo, F.; Andrade, H.M.C.

    2009-01-01

    This work aims at the synthesis of catalyst NiAl 1,0 Fe 1,0 O 4 by combustion reaction using urea as fuel, to evaluate its performance in the production of hydrogen by the reaction of displacement of water vapor (WGSR). The initial composition of the solution was based on valencia total oxidizing and reducing reagents based on the concepts of the chemistry of propellants, using container as a crucible of glassy silica. The resulting powder was characterized by X-ray diffraction, infrared spectroscopy, nitrogen adsorption isotherms (BET), scanning electronic microscope and catalytic tests. The DRX results reveal the presents majoritary phase NiAl 1,0 Fe 1,0 O 4 spinel, the catalyst presents surface area 28 m 2 /g and isotherms type III. Higher conversion CO/CO 2 of 75% CO conversion observed at 500 deg C and catalytic activity of 43 mmolg -1 .h -1 at 450 deg C. (author)

  10. Neutron diffraction determination of atomic mean-square displacements in cubic compounds of Ni-Al and Ni-Al-Cu systems

    International Nuclear Information System (INIS)

    Khidirov, I.; Mukhtarova, N.N.

    2002-01-01

    The atomic mean-square displacements (AMSD) are some of important characteristics of the solid and can be the main information for determination of a number of other characteristics of substances. In the work AMSD is determined for a number of cubic compounds of Ni-Al, Ni-Al-Cu systems immediately from intensities of neutron diffraction maxima. It is shown by the offered method that in all NiAl x and NiAlCu x compounds with the CsCl - type structure AMSD are near each other and they are practically constant. Therefore it is possible to assume that within the homogeneity region of these compounds the interatomic bond forces are changed insignificantly

  11. Fabrication of intermetallic NiAl by self-propagating high-temperature synthesis reaction using aluminium nanopowder under high pressure

    CERN Document Server

    Dong Shu Shan; Cheng Hai Yong; Yang Hai Bin; Zou Guang Tian

    2002-01-01

    By using aluminium nanopowder prepared by wire electrical explosion, pure monophase NiAl compound with fine crystallites (<=10 mu m) and good densification (98% of the theoretical green density) was successfully fabricated by means of self-propagating high-temperature synthesis (SHS) under a high pressure of 50 MPa. Investigation shows that, due to the physical and chemical characteristics of the nanoparticles, the SHS reaction mode and mechanism are distinct from those when using conventional coarse-grained reactants. The SHS reaction process depends on the thermal conditions related to pressure and can occur at a dramatically low temperature of 308 sup o C, which cannot be expected in conventional SHS reaction. With increasing pressure, the SHS explosive ignition temperature (T sub i sub g) of forming NiAl decreases due to thermal and kinetic effects.

  12. Wetting of cholesteric liquid crystals.

    Science.gov (United States)

    Silvestre, Nuno M; Figueirinhas Pereira, Maria Carolina; Bernardino, Nelson R; Telo da Gama, Margarida M

    2016-02-01

    We investigate theoretically the wetting properties of cholesteric liquid crystals at a planar substrate. If the properties of substrate and of the interface are such that the cholesteric layers are not distorted, the wetting properties are similar to those of a nematic liquid crystal. If, on the other hand, the anchoring conditions force the distortion of the liquid crystal layers the wetting properties are altered, the free cholesteric-isotropic interface is non-planar and there is a layer of topological defects close to the substrate. These deformations can either promote or hinder the wetting of the substrate by a cholesteric, depending on the properties of the cholesteric liquid crystal.

  13. Effect of Phosphine Doping and the Surface Metal State of Ni on the Catalytic Performance of Ni/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Xiaoru Li

    2015-04-01

    Full Text Available Ni-based catalysts as replacement for noble metal catalysts are of particular interest in the catalytic conversion of biomass due to their cheap and satisfactory catalytic activity. The Ni/SiO2 catalyst has been studied for the hydrogenolysis of glycerol, and doping with phosphorus (P found to improve the catalytic performance significantly because of the formation of Ni2P alloys. However, in the present work we disclose a different catalytic phenomenon for the P-doped Ni/Al2O3 catalyst. We found that doping with P has a significant effect on the state of the active Ni species, and thus improves the selectivity to 1,2-propanediol (1,2-PDO significantly in the hydrogenolysis of glycerol, although Ni-P alloys were not observed in our catalytic system. The structure and selectivity correlations were determined from the experimental data, combining the results of X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, hydrogen temperature-programmed reduction (H2-TPR and ammonia temperature-programmed desorption (NH3-TPD. The presence of NiO species, formed from P-doped Ni/Al2O3 catalyst, was shown to benefit the formation of 1,2-PDO. This was supported by the results of the Ni/Al2O3 catalyst containing NiO species with incomplete reduction. Furthermore, the role the NiO species played in the reaction and the potential reaction mechanism over the P-doped Ni/Al2O3 catalyst is discussed. The new findings in the present work open a new vision for Ni catalysis and will benefit researchers in designing Ni-based catalysts.

  14. Soft-chemical synthesis and catalytic activity of Ni-Al and Co-Al layered double hydroxides (LDHs intercalated with anions with different charge density

    Directory of Open Access Journals (Sweden)

    Takahiro Takei

    2014-09-01

    Full Text Available Co-Al and Ni-Al layered double hydroxides (LDHs intercalated with three types of anionic molecules, dodecylsulfate (C12H25SO4−, DS, di-2-ethylsulfosuccinate ([COOC2H3EtBu]2C2H3SO3−, D2ES, and polytungstate (H2W12O4210−, HWO were prepared by means of ion-exchange and co-precipitation processes. With the use of DS and D2ES as intercalation agents, high crystallinity was maintained after intercalation into the LDHs. In the case of HWO, the intercalated LDHs could be obtained by ion-exchange as well as co-precipitation with a decline in the crystallinity; however, unreacted LDH was detected in the ion-exchange samples, and some unwanted phases such as hydroxide and pyrochlore were generated by the co-precipitation process. The maximum specific surface area and pore volume of the Ni-Al sample with intercalated HWO, prepared by the ion-exchange process were 74 m2/g and 0.174 mL/g, respectively. The occupancies of DS, D2ES, and HWO within the interlayer space were approximately 0.3–0.4, 0.5–0.6, and 0.1–0.2, respectively, in the Co-Al and Ni-Al LDHs. Analysis of the catalytic activity demonstrated that the DS-intercalated Ni-Al LDH sample exhibited relatively good catalytic activity for conversion of cyclohexanol to cyclohexanone.

  15. Study on influence of Surface roughness of Ni-Al2O3 nano composite coating and evaluation of wear characteristics

    Science.gov (United States)

    Raghavendra, C. R.; Basavarajappa, S.; Sogalad, Irappa

    2018-02-01

    Electrodeposition is one of the most technologically feasible and economically superior techniques for producing metallic coating. The advancement in the application of nano particles has grabbed the attention in all fields of engineering. In this present study an attempt has been made on the Ni-Al2O3nano particle composite coating on aluminium substrate by electrodeposition process. The aluminium surface requires a specific pre-treatment for better adherence of coating. In light of this a thin zinc layer is coated on the aluminium substrate by electroless process. In addition to this surface roughness is an important parameter for any coating method and material. In this work Ni-Al2O3 composite coating were successfully coated by varying the process parameters such as bath temperature, current density and particle loading. The experimentation was performed using central composite design based 20 trials of experiments. The effect of process parameters and surface roughness before and after coating is analyzed on wear rate and coating thickness. The results shown a better wear resistance of Ni-Al2O3 composite electrodeposited coating compared to Ni coating. The particle loading and interaction effect of current density with temperature has greater significant effect on wear rate. The surface roughness is significantly affected the wear behaviour and thickness of coating.

  16. Electrosynthesized Ni-Al Layered Double Hydroxide-Pt Nanoparticles as an Inorganic Nanocomposite and Potentate Anodic Material for Methanol Electrooxidation in Alkaline Media

    Directory of Open Access Journals (Sweden)

    Biuck Habibi

    2017-04-01

    Full Text Available In this study, Ni-Al layered double hydroxide (LDH-Pt nanoparticles (PtNPs as an inorganic nano-composite was electrosynthesized on the glassy carbon electrode (GCE by a facile and fast two-step electrochemical process. Structure and physicochemical properties of PtNPs/Ni-Al LDH/GCE were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry and electrochemical methods. Then, electrocatalytic and stability characterizations of the PtNPs/Ni-Al LDH/GCE for methanol oxidation in alkaline media were investigated in detail by cyclic voltammetry, chronoamperometry, and chronopotentiometry measurements. PtNPs/Ni-Al LDH/GCE exhibited higher electrocatalytic activity than PtNPs/GCE and Ni-Al LDH/GCE. Also, the resulted chronoam-perograms indicated that the PtNPs/Ni-Al LDH/GCE has a better stability. Copyright © 2017 BCREC GROUP. All rights reserved Received: 30th March 2016; Revised: 29th July 2016; Accepted: 9th September 2016 How to Cite: Habibi, B., Ghaderi, S. (2017. Electro Synthesized Ni-Al Layered Double Hydroxide-Pt Nanoparticles as an Inorganic Nanocomposite and Potentate Anodic Material for Methanol Electro-Oxidation in Alkaline Media. Bulletin of Chemical Reaction Engineering & Catalysis, 12(1: 1-13 (doi:10.9767/bcrec.12.1.460.1-13 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.460.1-13

  17. Steam Reforming of Ethylene Glycol over Ni/Al2O3 Catalysts: Effect of the Preparation Method and Reduction Temperature

    International Nuclear Information System (INIS)

    Choi, Dong Hyuck; Park, Jung Eun; Park, Eun Duck

    2015-01-01

    The effect of preparation method on the catalytic activities of the Ni/Al 2 O 3 catalysts on steam reforming of ethylene glycol was investigated. The catalysts were prepared with various preparation methods such as an incipient wetness impregnation, wet impregnation, and coprecipitation method. In the case of coprecipitation method, various precipitants such as KOH, K 2 CO 3 , and NH 4 OH were compared. The prepared catalysts were characterized by using N 2 physisorption, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, temperature programmed reduction, pulsed H 2 chemisorption, temperature-programmed oxidation, scanning electron microscopy, and thermogravimetric analysis. Among the catalysts reduced at 773 K, the Ni/Al 2 O 3 catalyst prepared by a coprecipitation with KOH or K 2 CO 3 as precipitants showed the best catalytic performance. The preparation method affected the particle size of Ni, reducibility of nickel oxides, catalytic performance (activity and stability), and types of coke formed during the reaction. The Ni/Al 2 O 3 catalyst prepared by a coprecipitation with KOH showed the increasing catalytic activity with an increase in the reduction temperature from 773 to 1173 K because of an increase in the reduction degree of Ni oxide species even though the particle size of Ni increased with increasing reduction temperature

  18. Effect of NiAl underlayer and spacer on magnetoresistance of current-perpendicular-to-plane spin valves using Co2Mn(Ga0.5Sn0.5) Heusler alloy

    International Nuclear Information System (INIS)

    Hase, N.; Nakatani, T.M.; Kasai, S.; Takahashi, Y.K.; Furubayashi, T.; Hono, K.

    2012-01-01

    We investigated the effect of a NiAl underlayer and spacer on magnetoresistive (MR) properties in current-perpendicular-to-plane spin valves (CPP-SVs) using Co 2 Mn(Ga 0.5 Sn 0.5 ) (CMGS) Heusler alloy ferromagnetic layers. The usage of a NiAl underlayer allowed a high temperature annealing for the L2 1 ordering of the bottom CMGS layer, giving rise to a MR ratio of 10.2% at room temperature. We found that the usage of a NiAl spacer layer also improved the tolerance of the multilayer structure against thermal delamination, which allowed annealing to induce the L2 1 structure in both the bottom and top CMGS layers. However, the short spin diffusion length of NiAl resulted in a lower MR ratio compared to that obtained using a Ag spacer. Transmission electron microscopy of the multilayer structure of CPP-SVs showed that the atomically flat layered structure was maintained after the annealing. - Highlights: → CPP spin valves using Co 2 Mn(Ga 0.5 Sn 0.5 ) ferromagnetic layers with a new underlayer material. → NiAl underlayer and spacer improve the thermal tolerance of the spin valve structure. → NiAl underlayer improves MR ratio compared to Ag because of higher annealing temperature. → NiAl spacer degrades MR ratios compared to Ag because of short spin diffusion length. → Potential of heat resistant underlayer and spacer layer for CPP-SV using Heusler alloy.

  19. Peculiarities of luminescence of low-temperature-deformed cadmium sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Negrij, V.D.; Osip' yan, Yu.A. (AN SSSR, Chernogolovka. Inst. Fiziki Tverdogo Tela)

    1982-02-01

    Spatially resolved photoluminescence of CdS crystals deformed at low temperatures is investigated. It is revealed that production and movement of certain dislocations, i. e. microplastic deformation take place in the crystal under the effect of uniaxial loading F >= 10 kG/mm/sup 3/ at 6 K. Dislocations during their movement in the sliding planes produce specific defects in the crystalline lattice which, being the effective centres of irradiation recombination with characteristic radiation spectrum are presented in the form of luminescent traces which passed through the dislocation crystal. A group of symmetry of these centers is determined by means of piesospectroscopic investigations of the obtained radiation spectrum.

  20. Effect of Post Heat Treatment on the Microstructure and Microhardness of Friction Stir Processed NiAl Bronze (NAB Alloy

    Directory of Open Access Journals (Sweden)

    Yuting Lv

    2015-09-01

    Full Text Available NiAl bronze (NAB alloy is prepared by using friction stir processing (FSP technique at a tool rotation rate of 1200 rpm and a traverse speed of 150 mm/min. A post heat treatment is performed at the temperature of 675 °C. The effect of heat treatment on the microstructure and microhardness is studied. The results show that the microstructure of the FSP NAB alloy consists of high density dislocations, retained β phase (β′ phase and recrystallized grains. When annealed at 675 °C, discontinuous static recrystallization (DSRX takes place. The content of β′ phase gradually decreases and fine κ phase is precipitated. After annealing for 2 h, both the microhardness of the FSP sample in the stir zone (SZ and the difference in hardness between the SZ and base metal decrease due to the reduction of the dislocation density and β′ phase, accompanying recrystallized grain coarsening. With further increasing of the annealing time to 4 h, the aforementioned difference in hardness nearly disappears.

  1. MECHANISTIC KINETIC MODELS FOR STEAM REFORMING OF CONCENTRATED CRUDE ETHANOL ON NI/AL2O3 CATALYST

    Directory of Open Access Journals (Sweden)

    O. A. OLAFADEHAN

    2015-05-01

    Full Text Available Mechanistic kinetic models were postulated for the catalytic steam reforming of concentrated crude ethanol on a Ni-based commercial catalyst at atmosphere pressure in the temperature range of 673-863 K, and at different catalyst weight to the crude ethanol molar flow rate ratio (in the range 0.9645-9.6451 kg catalyst h/kg mole crude ethanol in a stainless steel packed bed tubular microreactor. The models were based on Langmuir-Hinshelwood-Hougen-Watson (LHHW and Eley-Rideal (ER mechanisms. The optimization routine of Nelder-Mead simplex algorithm was used to estimate the inherent kinetic parameters in the proposed models. The selection of the best kinetic model amongst the rival kinetic models was based on physicochemical, statistical and thermodynamic scrutinies. The rate determining step for the steam reforming of concentrated crude ethanol on Ni/Al2O3 catalyst was found to be surface reaction between chemisorbed CH3O and O when hydrogen and oxygen were adsorbed as monomolecular species on the catalyst surface. Excellent agreement was obtained between the experimental rate of reaction and conversion of crude ethanol, and the simulated results, with ADD% being ±0.46.

  2. Preparation and characterization of 6-layered functionally graded nickel-alumina (Ni-Al2O3) composites

    Science.gov (United States)

    Latiff, M. I. A.; Nuruzzaman, D. M.; Basri, S.; Ismail, N. M.; Jamaludin, S. N. S.; Kamaruzaman, F. F.

    2018-04-01

    The present research study deals with the preparation of 6-layered functionally graded (FG) metal-ceramic composite materials through powder metallurgy technique. Using a cylindrical die-punch set made of steel, the nickel-alumina (Ni-Al2O3) graded composite structure was fabricated. The samples consist of four gradual inter layers of varied nickel composition (80wt.%, 60wt.%, 40wt.%, 20wt.%) sandwiched with pure Ni and Al2O3 powders at the ends (100wt.% and 0wt.% nickel) were fabricated under 30 ton compaction load using a hydraulic press. After that, two-step sintering was carried out at sintering temperature 1200ºC and soaking time 3 hours was maintained in a tube furnace. The properties of the prepared samples were characterized by radial shrinkage, optical microscopy and hardness testing. Results showed that larger shrinkage occurred within the ceramic phase which proves that more porosities were eliminated in the ceramic rich layers. From the microstructural analysis, it was observed that alumina particles are almost uniformly distributed in nickel matrix, so as nickel particles in the ceramic matrix of alumina-dominant layers. From interfacial analyses, it was observed that a smooth transition in microstructure from one layer to the next confirms a good interfacial solid state bonding between metal-ceramic constituents and good compaction process. On the other hand, microhardness test results suggest that there might be increasing percentage of porosities in the graded structure as the ceramic content rises.

  3. Slurry Erosion Performance of Ni-Al2O3 Based Thermal-Sprayed Coatings: Effect of Angle of Impingement

    Science.gov (United States)

    Grewal, H. S.; Agrawal, Anupam; Singh, H.; Shollock, B. A.

    2014-02-01

    In this paper, slurry erosion performance of high velocity flame-sprayed Ni-Al2O3 based coatings was evaluated. The coatings were deposited on a hydroturbine steel (CA6NM) by varying the content of Al2O3 in Ni. Using jet-type test rig, erosion behavior of coatings and bare steel was evaluated at different impingement angles. Detailed investigation of the surface morphology of the eroded specimens was undertaken using SEM/EDS to identify potential erosion mechanism. A parameter named "erosion mechanism identifier" (ξ) was used to predict the mode of erosion. It was observed that the coating prepared using 40 wt.% of Al2O3 showed a highest resistance to erosion. This coating enhanced the erosion resistance of the steel by 2 to 4 times. Spalling in the form of splats and chunks of material (formed by interlinking of cracks) along with fracture of Al2O3 splats were identified as primary mechanisms responsible for the loss of coating material. The erosion mechanism of coatings and bare steel predicted by ξ was in good agreement with that observed experimentally. Among different parameters,, a function of fracture toughness ( K IC) and hardness ( H) showed excellent correlation with erosion resistance of coatings at both the impingement angles.

  4. Microstructural transformations and mechanical properties of cast NiAl bronze: Effects of fusion welding and friction stir processing

    International Nuclear Information System (INIS)

    Fuller, M.D.; Swaminathan, S.; Zhilyaev, A.P.; McNelley, T.R.

    2007-01-01

    A plate of as-cast NiAl bronze (NAB) material was sectioned from a large casting. A six-pass fusion weld overlay was placed in a machined groove; a portion of the weld reinforcement was removed by milling and a single friction stir processing (FSP) pass was conducted in a direction transverse to the axis of and over the weld overlay. A procedure was developed for machining of miniature tensile samples and the distributions of strength and ductility were evaluated for the fusion weld metal; for the stir zone (SZ) produced by the friction stir processing; and for a region wherein friction stir processing had taken place over the fusion weld. A region of low ductility in the heat affected zone (HAZ) of the fusion weld and in the thermomechanically affected zone (TMAZ) of friction stir processed material was attributed to partial reversion of an equilibrium lamellar eutectoid constituent upon local heating above ∼800 deg. C and formation of non-equilibrium transformation products upon subsequent cooling. The adverse effect on ductility is worse in the heat affected zone of the fusion weld than in the thermomechanically affected zone of friction stir processing due to the lower heat input of the latter process. The implications of this work to engineering applications of friction stir processing are discussed

  5. Treatment of textile effluents by chloride-intercalated Zn-, Mg- and Ni-Al layered double hydroxides

    Directory of Open Access Journals (Sweden)

    F. Z. Mahjoubi

    2017-09-01

    Full Text Available This work involved the preparation, characterization and dyes removal ability of Zn-Al, Mg-Al and Ni-Al layered double hydroxide (LDH minerals intercalated by chloride ions. The materials were synthetized by the co-precipitation method. X-ray diffraction, Fourier transform infrared, thermogravimetric-differential thermal analysis and transmission electron microscopy characterization exhibited a typical hydrotalcite structure for all the samples. Adsorption experiments for methyl orange were performed in terms of solution pH, contact time and initial dye concentration. Experimental results indicate that the capacity of dye uptake augmented rapidly within the first 60 min and then stayed practically the same regardless of the concentration. Maximum adsorption occurred with acidic pH medium. Kinetic data were studied using pseudo-first-order and pseudo-second-order kinetic models. Suitable correlation was acquired with the pseudo-second-order kinetic model. Equilibrium data were fitted to Langmuir and Freundlich isotherm models. The maximum Langmuir monolayer adsorption capacities were 2,758, 1,622 and 800 mg/g, respectively, for Zn-Al-Cl, Mg-Al-Cl and Ni-Al-Cl. The materials were later examined for the elimination of color and chemical oxygen demand (COD from a real textile effluent wastewater. The results indicated that the suitable conditions for color and COD removal were acquired at pH of 5. The maximum COD removal efficiency from the effluent was noted as 92.84% for Zn-Al-Cl LDH.

  6. Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy

    International Nuclear Information System (INIS)

    Kazanc, S.; Ozgen, S.; Adiguzel, O.

    2003-01-01

    The solid-solid phase transitions in NiAl alloys occur by the temperature changes and application of a pressure on the system. Both types of transitions are called martensitic transformation and have displacive and thermoelastic characters. Pressure effects on thermoelastic transformation in Ni 62.5 Al 37.5 alloy model have been studied by means of molecular dynamics method proposed by Parrinello-Rahman. Interaction forces between atoms in the model system were calculated by Lennard-Jones potential energy function. Thermodynamics and structural analysis of the martensitic transformations under hydrostatic pressure during the quenching processes have been performed. The simulation runs have been carried out in different hydrostatic pressures changing from zero to 40.65 GPa during the quenching process of the model alloy. At the zero and nonzero pressures, the system with B2-type ordered structure undergoes the product phase with L1 0 -type ordered structure by Bain distortion in the first step of martensitic transformation under the quenching process. The increase in hydrostatic pressure causes decrease in the formation time of the product phase, and twin-like lattice distortion is observed in low temperature L1 0 phase

  7. Catalisadores Ni/Al2O3 promovidos com molibdênio para a reação de reforma a vapor de metano Mo-Ni/AL2O3 catalysts for the methane steam reforming reaction

    Directory of Open Access Journals (Sweden)

    Silvia Sálua Maluf

    2003-03-01

    Full Text Available Mo-promoted Ni/Al2O3 catalysts for the methane steam reforming reaction were studied in this work. The Ni/Al2O3 catalysts were prepared by precipitation and molibdenum was added by impregnation up to 2%wt. The solids were tested using a micro-reactor under two H2Ov/C conditions and were characterized by ICP-OES, XRD, N2 adsoption, H2 chemisorption and TPR. NiO and NiAl2O4 phases were observed and the metallic area decreased with the increase of the Mo content. From the catalytic tests high stability was verified for H2Ov/C=4.0. On the other hand, only the catalyst containing 0,05% Mo stayed stable during 30 hours of the test at H2Ov/C=2.0.

  8. Ultrathin highly uniform Ni(Al) germanosilicide layer with modulated B8 type Ni5(SiGe)3 phase formed on strained Si1−xGex layers

    International Nuclear Information System (INIS)

    Liu, Linjie; Xu, Dawei; Jin, Lei; Knoll, Lars; Wirths, Stephan; Nichau, Alexander; Buca, Dan; Mussler, Gregor; Holländer, Bernhard; Zhao, Qing-Tai; Mantl, Siegfried; Feng Di, Zeng; Zhang, Miao

    2013-01-01

    We present a method to form ultrathin highly uniform Ni(Al) germanosilicide layers on compressively strained Si 1−x Ge x substrates and their structural characteristics. The uniform Ni(Al) germanosilicide film is formed with Ni/Al alloy at an optimized temperature of 400 °C with an optimized Al atomic content of 20 at. %. We find only two kinds of grains in the layer. Both grains show orthogonal relationship with modified B8 type phase. The growth plane is identified to be (10-10)-type plane. After germanosilicidation the strain in the rest Si 1−x Ge x layer is conserved, which provides a great advantage for device application

  9. Effect of Ni/Al2O3-SiO2 and Ni/Al2O3-SiO2 with K2O Promoter Catalysts on H2, CO and CH4 Concentration by CO2 Gasification of Rosa Multiflora Biomass

    Directory of Open Access Journals (Sweden)

    Tursunov Obid

    2017-11-01

    Full Text Available The thermal behaviour of the Rosa mutiflora biomass by thermogravimetric analysis was studied at heating rate 3 K min−1 from ambient temperature to 950 °C. TGA tests were performed in high purity carbon dioxide (99 998% with a flow rate 200 ml/min and 100 mg of sample, milled and sieved to a particle size below 250 µm. Moreover, yields of gasification products such as hydrogen (H2, carbon monoxide (CO and methane (CH4 were determined based on the thermovolumetric measurements of catalytic (Ni/Al2O3-SiO2 and Ni/Al2O3-SiO2 with K2O promoter catalysts and non-catalytic gasification of the Rosa multiflora biomass. Additionally, carbon conversion degrees are presented. Calculations were made of the kinetic parameters of carbon monoxide and hydrogen formation reaction in the catalytic and non-catalytic CO2 gasification processes. A high temperature of 950 °C along with Ni/Al2O3-SiO2and Ni/Al2O3-SiO2 with K2O promoter catalysts resulted in a higher conversion of Rosa multiflora biomass into gaseous yield production with greatly increasing of H2 and CO contents. Consequently, H2 and CO are the key factors to produce renewable energy and bio-gases (synthesis gas. The parameters obtained during the experimental examinations enable a tentative assessment of plant biomasses for the process of large-scale gasification in industrial sectors.

  10. Effect of contact deformation on contact electrification: a first-principles calculation

    International Nuclear Information System (INIS)

    Zhang, Yuanyue; Shao, Tianmin

    2013-01-01

    The effect of contact deformation on contact electrification of metallic materials was studied by the first-principles method. The results of charge population and the densities of states of the deformed contact models demonstrated that the magnitude of the transferred charge increased with deformation. The mechanism of the effect of deformation was investigated by studying the electronic properties of the deformed surface slabs. The results showed that crystal deformation led to a change in the electrostatic potential of the metal, where the number of nearly free electrons and unoccupied orbitals for charge transfer increased, and their energy barrier decreased. (paper)

  11. Crystal plasticity study of single crystal tungsten by indentation tests

    International Nuclear Information System (INIS)

    Yao, Weizhi

    2012-01-01

    Owing to its favorable material properties, tungsten (W) has been studied as a plasma-facing material in fusion reactors. Experiments on W heating in plasma sources and electron beam facilities have shown an intense micro-crack formation at the heated surface and sub-surface. The cracks go deep inside the irradiated sample, and often large distorted areas caused by local plastic deformation are present around the cracks. To interpret the crack-induced microscopic damage evolution process in W, one needs firstly to understand its plasticity on a single grain level, which is referred to as crystal plasticity. In this thesis, the crystal plasticity of single crystal tungsten (SCW) has been studied by spherical and Berkovich indentation tests and the finite element method with a crystal plasticity model. Appropriate values of the material parameters included in the crystal plasticity model are determined by fitting measured load-displacement curves and pile-up profiles with simulated counterparts for spherical indentation. The numerical simulations reveal excellent agreement with experiment. While the load-displacement curves and the deduced indentation hardness exhibit little sensitivity to the indented plane at small indentation depths, the orientation of slip directions within the crystals governs the development of deformation hillocks at the surface. It is found that several factors like friction, indentation depth, active slip systems, misoriented crystal orientation, misoriented sample surface and azimuthal orientation of the indenter can affect the indentation behavior of SCW. The Berkovich indentation test was also used to study the crystal plasticity of SCW after deuterium irradiation. The critical load (pop-in load) for triggering plastic deformation under the indenter is found to depend on the crystallographic orientation. The pop-in loads decrease dramatically after deuterium plasma irradiation for all three investigated crystallographic planes.

  12. Deformations of superconformal theories

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ 08540 (United States); Dumitrescu, Thomas T. [Department of Physics, Harvard University,17 Oxford Street, Cambridge, MA 02138 (United States); Intriligator, Kenneth [Department of Physics, University of California,9500 Gilman Drive, San Diego, La Jolla, CA 92093 (United States)

    2016-11-22

    We classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in d≥3 dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and non-central charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformations can be used to derive known and new constraints on moduli-space effective actions.

  13. Quantum deformed magnon kinematics

    OpenAIRE

    Gómez, César; Hernández Redondo, Rafael

    2007-01-01

    The dispersion relation for planar N=4 supersymmetric Yang-Mills is identified with the Casimir of a quantum deformed two-dimensional kinematical symmetry, E_q(1,1). The quantum deformed symmetry algebra is generated by the momentum, energy and boost, with deformation parameter q=e^{2\\pi i/\\lambda}. Representing the boost as the infinitesimal generator for translations on the rapidity space leads to an elliptic uniformization with crossing transformations implemented through translations by t...

  14. Mechanics of deformable bodies

    CERN Document Server

    Sommerfeld, Arnold Johannes Wilhelm

    1950-01-01

    Mechanics of Deformable Bodies: Lectures on Theoretical Physics, Volume II covers topics on the mechanics of deformable bodies. The book discusses the kinematics, statics, and dynamics of deformable bodies; the vortex theory; as well as the theory of waves. The text also describes the flow with given boundaries. Supplementary notes on selected hydrodynamic problems and supplements to the theory of elasticity are provided. Physicists, mathematicians, and students taking related courses will find the book useful.

  15. Modeling liquid crystal polymeric devices

    Science.gov (United States)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  16. Intracrystalline deformation of calcite

    NARCIS (Netherlands)

    Bresser, J.H.P. de

    1991-01-01

    It is well established from observations on natural calcite tectonites that intracrystalline plastic mechanisms are important during the deformation of calcite rocks in nature. In this thesis, new data are presented on fundamental aspects of deformation behaviour of calcite under conditions where

  17. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...

  18. Solvothermal one-step synthesis of Ni-Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for supercapacitors.

    Science.gov (United States)

    Yang, Wanlu; Gao, Zan; Wang, Jun; Ma, Jing; Zhang, Milin; Liu, Lianhe

    2013-06-26

    A Ni-Al layered double hydroxide (LDH), mutil-wall carbon nanotube (CNT), and reduced graphene oxide sheet (GNS) ternary nanocomposite electrode material has been developed by a facile one-step ethanol solvothermal method. The obtained LDH/CNT/GNS composite displayed a three-dimensional (3D) architecture with flowerlike Ni-Al LDH/CNT nanocrystallites gradually self-assembled on GNS nanosheets. GNS was used as building blocks to construct 3D nanostructure, and the LDH/CNT nanoflowers in turn separated the two-dimensional (2D) GNS sheets, which preserved the high surface area of GNSs. Furthermore, the generated porous networks with a narrow pore size distribution in the LDH/CNT/GNS composite were also demonstrated by the N2 adsorption/desorption experiment. Such morphology would be favorable to improve the mass transfer and electrochemical action of the electrode. As supercapacitor electrode material, the LDH/CNT/GNS hybrid exhibited excellent electrochemical performance, including ultrahigh specific capacitance (1562 F/g at 5 mA/cm(2)), excellent rate capability, and long-term cycling performance, which could be a promising energy storage/conversion material for supercapacitor application.

  19. Effect of Surface Roughness and Structure Features on Tribological Properties of Electrodeposited Nanocrystalline Ni and Ni/Al2O3 Coatings

    Science.gov (United States)

    Góral, Anna; Lityńska-Dobrzyńska, Lidia; Kot, Marcin

    2017-05-01

    Metal matrix composite coatings obtained by electrodeposition are one of the ways of improving the surfaces of materials to enhance their durability and properties required in different applications. This paper presents an analysis of the surface topography, microstructure and properties (residual stresses, microhardness, wear resistance) of Ni/Al2O3 nanocomposite coatings electrodeposited on steel substrates from modified Watt's-type baths containing various concentrations of Al2O3 nanoparticles and a saccharin additive. The residual stresses measured in the Ni/Al2O3 coatings decreased with an increasing amount of the co-deposited ceramics. It was established that the addition of Al2O3 powder significantly improved the coatings' microhardness. The wear mechanism changed from adhesive-abrasive to abrasive with a rising amount of Al2O3 particles and coating microhardness. Nanocomposite coatings also exhibited a lower coefficient of friction than that of a pure Ni-electrodeposited coating. The friction was found to depend on the surface roughness, and the smoother surfaces gave lower friction coefficients.

  20. A first-principles study of B2 NiAl alloyed with rare earth elements Pr, Pm, Sm, and Eu

    Institute of Scientific and Technical Information of China (English)

    He Jun-Qi; Wang You; Yan Mu-Fu; Pan Zhao-Yi; Guo Li-Xin

    2013-01-01

    The structural,elastic,and electronic properties of NiAl alloyed with rare earth elements Pr,Pm,Sm,and Eu are investigated by using density functional theory (DFT).The study suggests that Pr,Pm,Sm,and Eu all tend to be substituted for an Al site.Ni8Al7Pm possesses the largest ductility.Only the hardness and ductility of Ni8Al7Eu are enhanced simultaneously.The covalency strength of the Ni-Al bond in Ni8Al7Pm is higher than that in Ni8Al7Eu.The covalency strength of an Al-Al bond and that of a Ni-Ni bond in Ni8Al7Eu are higher than that in Ni8Al7Pm.The Ni-Pm bond and the Ni-Eu bond are covalent,and the covalency strength of the Ni-Pm bond is greater.The Al-Pm bond and the Al-Eu bond show great covalency strength and ionicity,respectively.

  1. Solvothermal synthesis of NiAl double hydroxide microspheres on a nickel foam-graphene as an electrode material for pseudo-capacitors

    International Nuclear Information System (INIS)

    Momodu, Damilola; Bello, Abdulhakeem; Dangbegnon, Julien; Barzeger, Farshad; Taghizadeh, Fatimeh; Fabiane, Mopeli; Manyala, Ncholu; Johnson, A. T. Charlie

    2014-01-01

    In this paper, we demonstrate excellent pseudo-capacitance behavior of nickel-aluminum double hydroxide microspheres (NiAl DHM) synthesized by a facile solvothermal technique using tertbutanol as a structure-directing agent on nickel foam-graphene (NF-G) current collector as compared to use of nickel foam current collector alone. The structure and surface morphology were studied by X-ray diffraction analysis, Raman spectroscopy and scanning and transmission electron microscopies respectively. NF-G current collector was fabricated by chemical vapor deposition followed by an ex situ coating method of NiAl DHM active material which forms a composite electrode. The pseudocapacitive performance of the composite electrode was investigated by cyclic voltammetry, constant charge–discharge and electrochemical impedance spectroscopy measurements. The composite electrode with the NF-G current collector exhibits an enhanced electrochemical performance due to the presence of the conductive graphene layer on the nickel foam and gives a specific capacitance of 1252 F g −1 at a current density of 1 A g −1 and a capacitive retention of about 97% after 1000 charge–discharge cycles. This shows that these composites are promising electrode materials for energy storage devices

  2. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 2; Specific Heat Capacity

    Science.gov (United States)

    Raj, S. V.

    2017-01-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma sprayed (VPS) and cold sprayed copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant pressure specific heat capacities, CP, of these coatings. The data were empirically were regression-fitted with the equation: CP = AT4 + BT3 + CT2 + DT +E where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of CP using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the Neumann-Kopp rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and CP is greater than 3R, where R is the universal gas constant, were measured for all the alloys except NiAl for which CP is less than 3R at all temperatures.

  3. Crystals in crystals

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion....... As representative examples, a metal (Pt), an alloy (PtSn), and a metal carbide (beta-Mo2C) were supported on conventional and mesoporous zeolite carriers, respectively, and the degree of particle dispersion was compared by TEM imaging. On conventional zeolites, the supported material aggregated on the outer surface...

  4. Monolithic I-Beam Crystal Monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Bagnasco, John

    2001-10-16

    Curved crystal, focusing monochromators featuring cubed-root thickness profiles typically employ side-clamped cooling to reduce thermally induced overall bend deformation of the crystal. While performance is improved, residual bend deformation is often an important limiting factor in the monochromator performance. A slightly asymmetric ``I-beam'' crystal cross section with cubed-root flange profiles has been developed to further reduce this effect. Physical motivation, finite-element modeling evaluation and performance characteristics of this design are discussed. Reduction of high mounting stress at the fixed end of the crystal required the soldering of an Invar support fixture to the crystal. Detailed descriptions of this process along with its performance characteristics are also presented.

  5. Virtual Crystallizer

    Energy Technology Data Exchange (ETDEWEB)

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  6. single crystals

    Indian Academy of Sciences (India)

    2018-05-18

    May 18, 2018 ... Abstract. 4-Nitrobenzoic acid (4-NBA) single crystals were studied for their linear and nonlinear optical ... studies on the proper growth, linear and nonlinear optical ..... between the optic axes and optic sign of the biaxial crystal.

  7. Crystal Systems.

    Science.gov (United States)

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  8. Hydrogen-Induced Plastic Deformation in ZnO

    Science.gov (United States)

    Lukáč, F.; Čížek, J.; Vlček, M.; Procházka, I.; Anwand, W.; Brauer, G.; Traeger, F.; Rogalla, D.; Becker, H.-W.

    In the present work hydrothermally grown ZnO single crystals covered with Pd over-layer were electrochemically loaded with hydrogen and the influence of hydrogen on ZnO micro structure was investigated by positron annihilation spectroscopy (PAS). Nuclear reaction analysis (NRA) was employed for determination of depth profile of hydrogen concentration in the sample. NRA measurements confirmed that a substantial amount of hydrogen was introduced into ZnO by electrochemical charging. The bulk hydrogen concentration in ZnO determined by NRA agrees well with the concentration estimated from the transported charge using the Faraday's law. Moreover, a subsurface region with enhanced hydrogen concentration was found in the loaded crystals. Slow positron implantation spectroscopy (SPIS) investigations of hydrogen-loaded crystal revealed enhanced concentration of defects in the subsurface region. This testifies hydrogen-induced plastic deformation of the loaded crystal. Absorbed hydrogen causes a significant lattice expansion. At low hydrogen concentrations this expansion is accommodated by elastic straining, but at higher concentrations hydrogen-induced stress exceeds the yield stress in ZnO and plastic deformation of the loaded crystal takes place. Enhanced hydrogen concentration detected in the subsurface region by NRA is, therefore, due to excess hydrogen trapped at open volume defects introduced by plastic deformation. Moreover, it was found that hydrogen-induced plastic deformation in the subsurface layer leads to typical surface modification: formation of hexagonal shape pyramids on the surface due to hydrogen-induced slip in the [0001] direction.

  9. In-situ studies of the TGO growth stresses and the martensitic transformation in the B2 phase in commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hovis, D.; Hu, L.; Reddy, A.; Heuer, A.H. [Dept. of Materials Science and Engineering, Case Western Reserve Univ., Cleveland, OH (United States); Paulikas, A.P.; Veal, B.W. [Materials Science Div., Argonne National Lab., Argonne, IL (United States)

    2007-12-15

    Oxide growth stresses were measured in situ at 1100 C on commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys using synchrotron X-rays. Measurements were taken on samples that had no preoxidation, as well as on samples that had experienced 24 one-hour thermal exposures at 1150 C, a condition known to induce rumpling in the Pt-modified NiAl alloy, but not in the NiCoCrAlY alloy. The NiCoCrAlY alloy showed continuous stress relaxation under all conditions, whereas the Pt-modified NiAl alloys would typically stabilize at a fixed (often non-zero) stress suggesting a higher creep strength in the 'Thermally Grown Oxide' on the latter alloy, though the precise behavior was dependent on initial surface preparation. The formation of martensite in the Pt-modified NiAl alloys was also observed upon cooling and occurred at temperatures below 200 C for all of the samples observed. Based on existing models, this M{sub s} temperature is too low to account for the rumpling observed in these alloys. (orig.)

  10. Is nucleon deformed?

    International Nuclear Information System (INIS)

    Abbas, Afsar

    1992-01-01

    The surprising answer to this question Is nucleon deformed? is : Yes. The evidence comes from a study of the quark model of the single nucleon and when it is found in a nucleus. It turns out that many of the long standing problems of the Naive Quark Model are taken care of if the nucleon is assumed to be deformed. Only one value of the parameter P D ∼1/4 (which specifies deformation) fits g A (the axial vector coupling constant) for all the semileptonic decay of baryons, the F/D ratio, the pion-nucleon-delta coupling constant fsub(πNΔ), the double delta coupling constant 1 fsub(πΔΔ), the Ml transition moment μΔN and g 1 p the spin structure function of proton 2 . All this gives strong hint that both neutron and proton are deformed. It is important to look for further signatures of this deformation. When this deformed nucleon finds itself in a nuclear medium its deformation decreases. So much that in a heavy nucleus the nucleons are actually spherical. We look into the Gamow-Teller strengths, magnetic moments and magnetic transition strengths in nuclei to study this property. (author). 15 refs

  11. Mejora en la producción de recubrimientos de NiAl obtenidos por síntesis autopropagada a alta temperatura mediante energía solar concentrada

    Directory of Open Access Journals (Sweden)

    Sierra, C.

    2005-12-01

    Full Text Available The production of NiAl coatings on steel can be achieved in a quick, cheap and unpolluted way. All this advantages are possible using concentrated solar energy (CSE and selfpropagating high-temperature synthesis (SHS. SHS process allows the production of NiAl in short periods of using of the heat released in the reaction. Initial energy is provided by concentrated solar energy. The aim of this work is to improve the adherence between steel and coating. Two kinds of samples are examined: samples with Ni powder layer, and samples electroplated with nickel.

    Se presenta un procedimiento para la obtención de recubrimientos de NiAl sobre acero, de forma rápida, barata y limpia desde el punto de vista medioambiental. Todas estas ventajas son posibles mediante el empleo combinado de la Energía Solar Concentrada (CSE y la Síntesis Autopropagada a Alta Temperatura (SHS aplicada a la producción de intermetálicos. Las reacciones SHS permiten la obtención de NiAl en procesos de corta duración, prácticamente instantáneos, aprovechando la elevada exotermicidad de la propia reacción. El aporte energético inicial se realiza concentrando radiación solar con una lente de Fresnel. El objetivo del trabajo presentado era mejorar la adherencia del recubrimiento de NiAl al acero base; se comparan los resultados de los ensayos entre probetas con una capa intermedia de polvo de níquel y probetas con níquel electrodepositado.

  12. Numerical simulation of distorted crystal Darwin width

    International Nuclear Information System (INIS)

    Wang Li; Xu Zhongmin; Wang Naxiu

    2012-01-01

    A new numerical simulation method according to distorted crystal optical theory was used to predict the direct-cooling crystal monochromator optical properties(crystal Darwin width) in this study. The finite element analysis software was used to calculate the deformed displacements of DCM crystal and to get the local reciprocal lattice vector of distorted crystal. The broadening of direct-cooling crystal Darwin width in meridional direction was estimated at 4.12 μrad. The result agrees well with the experimental data of 5 μrad, while it was 3.89 μrad by traditional calculation method of root mean square (RMS) of the slope error in the center line of footprint. The new method provides important theoretical support for designing and processing of monochromator crystal for synchrotron radiation beamline. (authors)

  13. Monomial Crystals and Partition Crystals

    Science.gov (United States)

    Tingley, Peter

    2010-04-01

    Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ0) for ^sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal.

  14. Size effects in crystal plasticity

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    Numerical analyses of plasticity size effects have been carried out for different problems using a developed strain gradient crystal plasticiy theory. The theory employs higher order stresses as work conjugates to slip gradients and uses higher order boundary conditions. Problems on localization...... of plastic flow in a single crystal, grain boundary effects in a bicrystal, and grain size effects in a polycrystal are studied. Single crystals containing micro-scale voids have also been analyzed at different loading conditions with focus on the stress and deformation fields around the voids, on void...... growth and interaction between neighboring voids, and on a comparison between the developed strain gradient crystal plasticity theory and a discrete dislocation plasticity theory. Furthermore, voids and rigid inclusions in isotropic materials have been studied using a strain gradient plasticity theory...

  15. Extremely deformable structures

    CERN Document Server

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  16. Diffeomorphic Statistical Deformation Models

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Hansen, Mads/Fogtman; Larsen, Rasmus

    2007-01-01

    In this paper we present a new method for constructing diffeomorphic statistical deformation models in arbitrary dimensional images with a nonlinear generative model and a linear parameter space. Our deformation model is a modified version of the diffeomorphic model introduced by Cootes et al....... The modifications ensure that no boundary restriction has to be enforced on the parameter space to prevent folds or tears in the deformation field. For straightforward statistical analysis, principal component analysis and sparse methods, we assume that the parameters for a class of deformations lie on a linear...... with ground truth in form of manual expert annotations, and compared to Cootes's model. We anticipate applications in unconstrained diffeomorphic synthesis of images, e.g. for tracking, segmentation, registration or classification purposes....

  17. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...... a single central section of the object. We use maximum-likelihood-based inference for this purpose and demonstrate the suggested methods on real data....

  18. Demonstration of finite element simulations in MOOSE using crystallographic models of irradiation hardening and plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Anirban [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wen, Wei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez Saez, Enrique [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-31

    This report describes the implementation of a crystal plasticity framework (VPSC) for irradiation hardening and plastic deformation in the finite element code, MOOSE. Constitutive models for irradiation hardening and the crystal plasticity framework are described in a previous report [1]. Here we describe these models briefly and then describe an algorithm for interfacing VPSC with finite elements. Example applications of tensile deformation of a dog bone specimen and a 3D pre-irradiated bar specimen performed using MOOSE are demonstrated.

  19. A diffraction based study of the deformation mechanisms in anomalously ductile B2 intermetallics

    Science.gov (United States)

    Mulay, Rupalee Prashant

    For many decades, the brittle nature of most intermetallic compounds (e.g. NiAl) has been the limiting factor in their practical application. Many B2 (CsCl prototypical structure) intermetallics are known to exhibit slip on the {110} slip mode, which provides only 3 independent slip systems and, hence, is unable to satisfy the von Mises (a.k.a. Taylor) criterion for polycrystalline ductility. As a result, inherent polycrystalline ductility is unexpected. Recent discovery of a number of ductile B2 intermetallics has raised questions about possible violation of the von Mises criterion by these alloys. These ductile intermetallic compounds are MR (metal (M) combined with a rare earth metal or group IV refractory metal (R)) alloys and are stoichiometric, ordered compounds. Single crystal slip trace analyses have only identified the presence of {011} or {010} slip systems. More than 100 other B2 MR compounds are known to exist and many of them have already been shown to be ductile (e.g., CuY, AgY, CuDy, CoZr, CoTi, etc.). Furthermore, these alloys exhibit a large Bauschinger effect. The present work uses several diffraction based techniques including electron back scattered diffraction (EBSD), X-ray diffraction (XRD) and in-situ neutron diffraction; in conjunction with scanning electron microscopy (SEM), transmission electron microscopy (TEM), mechanical testing, and crystal plasticity modeling, to elucidate the reason for ductility in select B2 alloys, explore the spread of this ductility over the B2 family, and understand the Bauschinger effect in these alloys. Several possible explanations (e.g., slip of dislocations, strong texture, phase transformations and twinning) for the anomalous ductility were explored. An X-ray diffraction based analysis ruled out texture, phase purity and departure from order as explanations for the anomalous ductility in MR alloys. In-situ neutron diffraction and post deformation SEM, EBSD, and TEM were unable to detect any evidence for

  20. Lattice dynamics of ionic crystals

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1990-01-01

    The theory of lattice dynamics for ionic and rare-gas crystals is derived in the harmonic approximation. We start from a Hamiltonian and average over electron coordinates in order to obtain an effective interaction between ion displacements. We assume that electronic excitations are localized on a single ion, which limits the theory to ionic crystals. The deformation-dipole model and the indirect-ionic-interaction model are derived. These two contributions are closely linked, and together provide an accurate description of short-range forces

  1. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  2. Kinetic coefficients in isotopically disordered crystals

    International Nuclear Information System (INIS)

    Zhernov, Arkadii P; Inyushkin, Alexander V

    2002-01-01

    Peculiarities of the behavior of kinetic coefficients, like thermal conductivity, electric conductivity, and thermoelectric power, in isotopically disordered materials are reviewed in detail. New experimental and theoretical results on the isotope effects in the thermal conductivity of diamond, Ge, and Si semiconductors are presented. The suppression effect of phonon-drag thermopower in the isotopically disordered Ge crystals is discussed. The influence of dynamic and static crystal lattice deformations on the electric conductivity of metals as well as on the ordinary phonon spectrum deformations is considered. (reviews of topical problems)

  3. Crystallization mechanisms of acicular crystals

    Science.gov (United States)

    Puel, François; Verdurand, Elodie; Taulelle, Pascal; Bebon, Christine; Colson, Didier; Klein, Jean-Paul; Veesler, Stéphane

    2008-01-01

    In this contribution, we present an experimental investigation of the growth of four different organic molecules produced at industrial scale with a view to understand the crystallization mechanism of acicular or needle-like crystals. For all organic crystals studied in this article, layer-by-layer growth of the lateral faces is very slow and clear, as soon as the supersaturation is high enough, there is competition between growth and surface-activated secondary nucleation. This gives rise to pseudo-twinned crystals composed of several needle individuals aligned along a crystallographic axis; this is explained by regular over- and inter-growths as in the case of twinning. And when supersaturation is even higher, nucleation is fast and random. In an industrial continuous crystallization, the rapid growth of needle-like crystals is to be avoided as it leads to fragile crystals or needles, which can be partly broken or totally detached from the parent crystals especially along structural anisotropic axis corresponding to weaker chemical bonds, thus leading to slower growing faces. When an activated mechanism is involved such as a secondary surface nucleation, it is no longer possible to obtain a steady state. Therefore, the crystal number, size and habit vary significantly with time, leading to troubles in the downstream processing operations and to modifications of the final solid-specific properties. These results provide valuable information on the unique crystallization mechanisms of acicular crystals, and show that it is important to know these threshold and critical values when running a crystallizer in order to obtain easy-to-handle crystals.

  4. Interfacial, mechanical properties of Al{sub 2}O{sub 3}-NiAl composites respective to long term thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jia; Hu, Weiping; Gottstein, Guenter [RWTH Aachen Univ. (Germany). Inst. of Physical Metallurgy and Metal Physics

    2010-07-01

    The long term thermal stability of NiAl-Al{sub 2}O{sub 3} composites was investigated. During annealing of the composites at 973 K and 1373 K for 2000 hours, the NiAl-Al{sub 2}O{sub 3} system showed excellent chemical stability. However, grain growth and embrittlement progressed in the polycrystalline NiAl matrix. The interfacial shear strength decreased from 222{+-}50 MPa for the as-fabricated sample to 197{+-}48 MPa and 150{+-}38 MPa for the samples annealed at 973 K and 1373 K, respectively. The microstructure change during annealing at 973K and 1373 K affected the tensile strength differently. The potential causes of microstructure and interface structure change and their impact on mechanical properties are discussed. (orig.)

  5. Promoting Effect of CeO2 Addition on Activity and Catalytic Stability in Steam Reforming of Methane over Ni/Al2O3

    International Nuclear Information System (INIS)

    Rakib, A.; Gennequin, C.; Ringot, S.; Aboukais, A.; Abi-Aad, E.; Dhainaut, T.

    2011-01-01

    Hydrogen production by steam reforming of methane was studied over Ni catalysts supported on CeO 2 , Al 2 O 3 and CeO 2 -Al 2 O 3 . These catalysts were prepared using the impregnation method and characterized by XRD. The effect of CeO2 promoter on the catalytic performance of Ni/Al 2 O 3 catalyst for methane steam reforming reaction was investigated. In fact, CeO 2 had a positive effect on the catalytic activity in this reaction. Experimental results demonstrated that Ni/CeO 2 -Al 2 O 3 catalyst showed excellent catalytic activity and high reaction performance. In addition, the effects of reaction temperature and metal content on the conversion of CH 4 and H 2 /CO ratio were also investigated. Results indicated that CH4 conversion increased significantly with the increase of the reaction temperature and metal content. (author)

  6. Magnetic hysterysis evolution of Ni-Al alloy with Fe and Mn substitution by vacuum arc melting to produce the room temperature magnetocaloric effect material

    Energy Technology Data Exchange (ETDEWEB)

    Notonegoro, Hamdan Akbar [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa, Cilegon 42435 (Indonesia); Kurniawan, Budhy; Manaf, Azwar, E-mail: azwar@sci.ui.ac.id [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Setiawan, Jan [Center for Nuclear Fuel Tecnology-Badan Tenaga Atom Nasional, Tangerang Selatan 15310 (Indonesia)

    2016-06-17

    The development of magnetocaloric effect (MCE) material is done in order to reduce the damage of the ozone layer caused by the chlorofluorocarbons (CFCs) emitted into the air. The research dealing with synthesis of magnetocaloric materials based of Ni-Al Heusler Alloy structure and by varying substitution some atoms of Ni with Fe and Al with Mn on Ni-Al Heusler Alloy structure to become Ni{sub 44}Fe{sub 6}Mn{sub 32}Al{sub 18}. Vacuum Arc Melting (VAM) equipment is used to form the alloys on vacuum condition and by flowing argon gas atmosphere and then followed by annealing process for 72 hours. X-Ray Diffraction (XRD) reveals that crystallite structure of material is observed. We define that Ni{sub 44}Fe{sub 6} as X{sub 2}, Mn{sub 25} as Y, and Al{sub 18}Mn{sub 7} as Z. Based on the XRD result, we observed that the general formula X{sub 2}YZ is not changed. The PERMAGRAF measurement revealed that there exists of magnetic hysterysis. The hysterysis show that the magnetic structures of the system undego evolution from diamagnetic to soft ferromagnetic material which all of the compound have the same crystallite structure. This evolution indicated that the change in the composition has led to changes the magnetic composition. Mn is the major element that gives strong magnetic properties to the sample. When Mn partially replaced position of Al, the sample became dominant to be influenced to improve their magnetic properties. In addition, substitution a part of Ni by Fe in the composition reveals a pinning of the domain walls in the sample.

  7. Relationship between local deformation behavior and crystallographic features of as-quenched lath martensite during uniaxial tensile deformation

    International Nuclear Information System (INIS)

    Michiuchi, M.; Nambu, S.; Ishimoto, Y.; Inoue, J.; Koseki, T.

    2009-01-01

    Electron backscattering diffraction patterns were used to investigate the relationship between local deformation behavior and the crystallographic features of as-quenched lath martensite of low-carbon steel during uniform elongation in tensile tests. The slip system operating during the deformation up to a strain of 20% was estimated by comparing the crystal rotation of each martensite block after deformation of 20% strain with predictions by the Taylor and Sachs models. The results indicate that the in-lath-plane slip system was preferentially activated compared to the out-of-lath-plane system up to this strain level. Further detailed analysis of crystal rotation at intervals of approximately 5% strain confirmed that the constraint on the operative slip system by the lath structure begins at a strain of 8% and that the local strain hardening of the primary slip systems occurred at approximately 15% strain.

  8. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  9. Interfacial Bubble Deformations

    Science.gov (United States)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  10. Array Theory and Nial

    DEFF Research Database (Denmark)

    Falster, Peter; Jenkins, Michael

    1999-01-01

    This report is the result of collaboration between the authors during the first 8 months of 1999 when M. Jenkins was visiting professor at DTU. The report documents the development of a tool for the investigation of array theory concepts and in particular presents various approaches to choose...

  11. Deformation of confined poly(ethylene oxide) in multilayer films.

    Science.gov (United States)

    Lai, Chuan-Yar; Hiltner, Anne; Baer, Eric; Korley, LaShanda T J

    2012-04-01

    The effect of confinement on the deformation behavior of poly(ethylene oxide) (PEO) was studied using melt processed coextruded poly(ethylene-co-acrylic acid) (EAA) and PEO multilayer films with varying PEO layer thicknesses from 3600 to 25 nm. The deformation mechanism was found to shift as layer thickness was decreased between 510 and 125 nm, from typical axial alignment of the crystalline fraction, as seen in bulk materials, to nonuniform micronecking mechanisms found in solution-grown single crystals. This change was evaluated via tensile testing, wide-angle X-ray diffraction (WAXD), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). With the commercially relevant method of melt coextrusion, we were able to overcome the limitations to the testing of solution-grown single crystals, and the artifacts that occur from their handling, and bridged the gap in knowledge between thick bulk materials and thin single crystals.

  12. On the deformation twinning of Mg AZ31B

    DEFF Research Database (Denmark)

    Abdolvand, Hamidreza; Majkut, Marta; Oddershede, Jette

    2015-01-01

    and grain volumes are used to construct various 3D microstructures and model them with a Crystal Plasticity Finite Element (CPFE) code. It is observed that the average grain-resolved stress did not always select the highest ranked Schmid factor twin variant. In fact, the contribution of lower ranked......Crystals with a hexagonal close-packed (HCP) structure are inherently anisotropic, and have a limited number of independent slip systems, which leads to strong deformation textures and reduced formability in polycrystalline products. Tension along the c-axis of the crystal ideally activates......-ray diffraction (3DXRD) was used to map the center-of-mass positions, volumes, orientations, elastic strains, and stress tensors of over 1400 grains in-situ up to a true strain of 1.4%. More than 700 tensile twins were observed to form in the mapped volume under deformation. The measured center-of-mass positions...

  13. Mechanisms of deformation and of recrystallization of imperfect uranium monocrystals; Les mecanismes de deformation et de recristallisation des monocristaux imparfaits d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Calais, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-04-15

    The various means by which plastic deformations by slip, twinning or kinking are produced by tension of imperfect {alpha} uranium single crystals prepared by a {beta} {yields} {alpha} phase change, have been studied by X-rays and micrographic examination. Depending on the crystallographic orientation with respect to the direction of the applied tension, and depending on the magnitude of the change in length, the crystals are deformed either preferentially according to a single mechanism, for example twinning, or simultaneously according to two or three mechanisms. The results of a subsequent annealing of the deformed single in the {alpha} phase are studied with respect to the deformation mechanisms. In the case of a deformation due primarily to (010) [100], (011) [100] or (110) [001] sliding, there occurs recrystallization by crystal growth selectivity. If the deformation occurs via deformation bands, there is recrystallization by 'oriented nucleation'. The crystals deformed preponderantly by twinning give on recrystallization perfect crystals having optimum dimensions and having orientational characteristics closely related to those of the original crystal. Finally are discussed some criteria relating to the geometry and the dynamics with a view to explaining the occurrence of such and such a deformation mechanism of a single crystal with a given orientation. This study, in conclusion, must help to define the best conditions (crystalline orientation and process of deformation) which will promote the growth of large, perfect, single crystals. (author) [French] Les divers modes de deformation plastique, glissement, maclage et pliage, que provoque la traction de monocristaux d'uranium {alpha} imparfaits prepares par changement de phase {beta} {yields} {alpha} ont ete etudies par rayons X et par examen micrographique. Suivant l'orientation cristallographique par rapport a la direction de l'axe de traction et suivant l'importance de l'allongement, les monocristaux se

  14. Terahertz adaptive optics with a deformable mirror.

    Science.gov (United States)

    Brossard, Mathilde; Sauvage, Jean-François; Perrin, Mathias; Abraham, Emmanuel

    2018-04-01

    We report on the wavefront correction of a terahertz (THz) beam using adaptive optics, which requires both a wavefront sensor that is able to sense the optical aberrations, as well as a wavefront corrector. The wavefront sensor relies on a direct 2D electro-optic imaging system composed of a ZnTe crystal and a CMOS camera. By measuring the phase variation of the THz electric field in the crystal, we were able to minimize the geometrical aberrations of the beam, thanks to the action of a deformable mirror. This phase control will open the route to THz adaptive optics in order to optimize the THz beam quality for both practical and fundamental applications.

  15. Joining by plastic deformation

    DEFF Research Database (Denmark)

    Mori, Ken-ichiro; Bay, Niels; Fratini, Livan

    2013-01-01

    As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating opportuni......As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating...

  16. On the thermomechanical deformation of silver shape memory nanowires

    International Nuclear Information System (INIS)

    Park, Harold S.; Ji, Changjiang

    2006-01-01

    We present an analysis of the uniaxial thermomechanical deformation of single-crystal silver shape memory nanowires using atomistic simulations. We first demonstrate that silver nanowires can show both shape memory and pseudoelastic behavior, then perform uniaxial tensile loading of the shape memory nanowires at various deformation temperatures, strain rates and heat transfer conditions. The simulations show that the resulting mechanical response of the shape memory nanowires depends strongly upon the temperature during deformation, and can be fundamentally different from that observed in bulk polycrystalline shape memory alloys. The energy and temperature signatures of uniaxially loaded silver shape memory nanowires are correlated to the observed nanowire deformation, and are further discussed in comparison to bulk polycrystalline shape memory alloy behavior

  17. Mechanisms of strain accommodation in plastically-deformed zircon under simple shear deformation conditions during amphibolite-facies metamorphism

    Science.gov (United States)

    Kovaleva, Elizaveta; Klötzli, Urs; Wheeler, John; Habler, Gerlinde

    2018-02-01

    This study documents the strain accommodation mechanisms in zircon under amphibolite-facies metamorphic conditions in simple shear. Microstructural data from undeformed, fractured and crystal-plastically deformed zircon crystals are described in the context of the host shear zone, and evaluated in the light of zircon elastic anisotropy. Our work challenges the existing model of zircon evolution and shows previously undescribed rheological characteristics for this important accessory mineral. Crystal-plastically deformed zircon grains have axis oriented parallel to the foliation plane, with the majority of deformed grains having axis parallel to the lineation. Zircon accommodates strain by a network of stepped low-angle boundaries, formed by switching between tilt dislocations with the slip systems {010} and {110} and rotation axis [001], twist dislocations with the rotation axis [001], and tilt dislocations with the slip system {001} and rotation axis [010]. The slip system {110} is newly described for zircon. Most misorientation axes in plastically-deformed zircon grains are parallel to the XY plane of the sample and have [001] crystallographic direction. Such behaviour of strained zircon lattice is caused by elastic anisotropy that has a direct geometric control on the rheology, deformation mechanisms and dominant slip systems in zircon. Young's modulus and P wave velocity have highest values parallel to zircon [001] axis, indicating that zircon is elastically strong along this direction. Poisson ratio and Shear modulus demonstrate that zircon is also most resistant to shearing along [001]. Thus, [001] axis is the most common rotation axis in zircon. The described zircon behaviour is important to take into account during structural and geochronological investigations of (poly)metamorphic terrains. Geometry of dislocations in zircon may help reconstructing the geometry of the host shear zone(s), large-scale stresses in the crust, and, possibly, the timing of

  18. Design of a crystalline undulator based on patterning by tensile Si3N4 strips on a Si crystal

    International Nuclear Information System (INIS)

    Guidi, V.; Lanzoni, L.; Mazzolari, A.; Martinelli, G.; Tralli, A.

    2007-01-01

    A crystalline undulator consists of a crystal with a periodic deformation in which channeled particles undergo oscillations and emit coherent undulator radiation. Patterning by an alternate series of tensile Si 3 N 4 strips on a Si crystal is shown to be a tractable method to construct a crystalline undulator. The method allows periodic deformation of the crystal with the parameters suitable for implementation of a crystalline undulator. The resulting periodic deformation is present in the bulk of the Si crystal with an essentially uniform amplitude, making the entire volume of the crystal available for channeling and in turn for emission of undulator radiation

  19. Marginally Deformed Starobinsky Gravity

    DEFF Research Database (Denmark)

    Codello, A.; Joergensen, J.; Sannino, Francesco

    2015-01-01

    We show that quantum-induced marginal deformations of the Starobinsky gravitational action of the form $R^{2(1 -\\alpha)}$, with $R$ the Ricci scalar and $\\alpha$ a positive parameter, smaller than one half, can account for the recent experimental observations by BICEP2 of primordial tensor modes....

  20. Transfer involving deformed nuclei

    International Nuclear Information System (INIS)

    Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.

    1985-03-01

    Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs

  1. Advanced Curvature Deformable Mirrors

    Science.gov (United States)

    2010-09-01

    ORGANIZATION NAME(S) AND ADDRESS(ES) University of Hawaii ,Institute for Astronomy,640 North A‘ohoku Place, #209 , Hilo ,HI,96720-2700 8. PERFORMING...Advanced Curvature Deformable Mirrors Christ Ftaclas1,2, Aglae Kellerer2 and Mark Chun2 Institute for Astronomy, University of Hawaii

  2. Computational Strain Gradient Crystal Plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2011-01-01

    A model for strain gradient crystal visco-plasticity is formulated along the lines proposed by Fleck andWillis (2009) for isotropic plasticity. Size-effects are included in the model due to the addition of gradient terms in both the free energy as well as through a dissipation potential. A finite...... element solution method is presented, which delivers the slip-rate field and the velocity-field based on two minimum principles. Some plane deformation problems relevant for certain specific orientations of a face centered cubic crystal under plane loading conditions are studied, and effective in......-plane parameters are developed based on the crystallographic properties of the material. The problem of cyclic shear of a single crystal between rigid platens is studied as well as void growth of a cylindrical void....

  3. On temperature dependence of deformation mechanism and the brittle - ductile transition in semiconductors

    International Nuclear Information System (INIS)

    Pirouz, P.; Samant, A.V.; Hong, M.H.; Moulin, A.; Kubin, L.P.

    1999-01-01

    Recent deformation experiments on semiconductors have shown the occurrence of a break in the variation of the critical resolved shear stress of the crystal as a function of temperature. These and many other examples in the literature evidence a critical temperature at which a transition occurs in the deformation mechanism of the crystal. In this paper, the occurrence of a similar transition in two polytypes of SiC is reported and correlated to the microstructure of the deformed crystals investigated by transmission electron microscopy, which shows evidence for partial dislocations carrying the deformation at high stresses and low temperatures. Based on these results and data in the literature, the explanation is generalized to other semiconductors and a possible relationship to their brittle-ductile transition is proposed. copyright 1999 Materials Research Society

  4. q-Deformed nonlinear maps

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 3 ... Keywords. Nonlinear dynamics; logistic map; -deformation; Tsallis statistics. ... As a specific example, a -deformation procedure is applied to the logistic map. Compared ...

  5. Compression deformation of WC: atomistic description of hard ceramic material

    Science.gov (United States)

    Feng, Qing; Song, Xiaoyan; Liu, Xuemei; Liang, Shuhua; Wang, Haibin; Nie, Zuoren

    2017-11-01

    The deformation characteristics of WC, as a typical hard ceramic material, were studied on the nanoscale using atomistic simulations for both the single-crystal and polycrystalline forms under uniaxial compression. In particular, the effects of crystallographic orientation, grain boundary coordination and grain size on the origin of deformation were investigated. The deformation behavior of the single-crystal and polycrystalline WC both depend strongly on the orientation towards the loading direction. The grain boundaries play a significant role in the deformation coordination and the potential high fracture toughness of the nanocrystalline WC. In contrast to conventional knowledge of ceramics, maximum strength was obtained at a critical grain size corresponding to the turning point from a Hall-Petch to an inverse Hall-Petch relationship. For this the mechanism of the combined effect of dislocation motion within grains and the coordination of stress concentration at the grain boundaries were proposed. The present work has moved forward our understanding of plastic deformability and the possibility of achieving a high strength of nanocrystalline ceramic materials.

  6. q-Deformed Kink solutions

    International Nuclear Information System (INIS)

    Lima, A.F. de

    2003-01-01

    The q-deformed kink of the λφ 4 -model is obtained via the normalisable ground state eigenfunction of a fluctuation operator associated with the q-deformed hyperbolic functions. The kink mass, the bosonic zero-mode and the q-deformed potential in 1+1 dimensions are found. (author)

  7. Cosmetic and Functional Nasal Deformities

    Science.gov (United States)

    ... nasal complaints. Nasal deformity can be categorized as “cosmetic” or “functional.” Cosmetic deformity of the nose results in a less ... taste , nose bleeds and/or recurrent sinusitis . A cosmetic or functional nasal deformity may occur secondary to ...

  8. High Strain Rate and Shock-Induced Deformation in Metals

    Science.gov (United States)

    Ravelo, Ramon

    2012-02-01

    Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as

  9. [Babies with cranial deformity].

    Science.gov (United States)

    Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J

    2009-01-01

    Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option.

  10. Deformed supersymmetric mechanics

    International Nuclear Information System (INIS)

    Ivanov, E.; Sidorov, S.

    2013-01-01

    Motivated by a recent interest in curved rigid supersymmetries, we construct a new type of N = 4, d = 1 supersymmetric systems by employing superfields defined on the cosets of the supergroup SU(2|1). The relevant worldline supersymmetry is a deformation of the standard N = 4, d = 1 supersymmetry by a mass parameter m. As instructive examples we consider at the classical and quantum levels the models associated with the supermultiplets (1,4,3) and (2,4,2) and find out interesting interrelations with some previous works on nonstandard d = 1 supersymmetry. In particular, the d = 1 systems with 'weak supersymmetry' are naturally reproduced within our SU(2|1) superfield approach as a subclass of the (1,4,3) models. A generalization to the N = 8, d = 1 case implies the supergroup SU(2|2) as a candidate deformed worldline supersymmetry

  11. Deformation Theory ( Lecture Notes )

    Czech Academy of Sciences Publication Activity Database

    Doubek, M.; Markl, Martin; Zima, P.

    2007-01-01

    Roč. 43, č. 5 (2007), s. 333-371 ISSN 0044-8753. [Winter School Geometry and Physics/27./. Srní, 13.01.2007-20.01.2007] R&D Projects: GA ČR GA201/05/2117 Institutional research plan: CEZ:AV0Z10190503 Keywords : deformation * Mauerer-Cartan equation * strongly homotopy Lie algebra Subject RIV: BA - General Mathematics

  12. Deformations of fractured rock

    International Nuclear Information System (INIS)

    Stephansson, O.

    1977-09-01

    Results of the DBM and FEM analysis in this study indicate that a suitable rock mass for repository of radioactive waste should be moderately jointed (about 1 joint/m 2 ) and surrounded by shear zones of the first order. This allowes for a gentle and flexible deformation under tectonic stresses and prevent the development of large cross-cutting failures in the repository area. (author)

  13. Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model

    DEFF Research Database (Denmark)

    Tarp, Jens M.; Angheluta, Luiza; Mathiesen, Joachim

    2014-01-01

    Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations...... propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate....

  14. Determination of scattering character and structural parameters of a surface layer according to X-ray data for a film with variable deformation gradient

    International Nuclear Information System (INIS)

    Dyshekov, A.A.; Khapachev, Yu.P.

    1997-01-01

    The problem of the dynamic X-ray diffraction for a crystal with the exponential variation of the deformation is considered. The qualitative criteria of the deformation is considered. The qualitative criteria of the degree of the solvability of the problem of determination of the deformation amplitude and the deformed range thickness on X-ray diffraction results are established. The unambiguous solvability of this problem, is connected with two alternative cases: the slowness condition for the ratio of the surface crystal deformation to the deformed layer thickness or, vice versa, the high value of this ratio. The estimation expressions for the deformed surface layer thickness and the deformation amplitude on the data of angular shifts of the main diffraction maximum and oscillations are obtained for two limit cases [ru

  15. Influencia de algunas variables del proceso sol–gel en las propiedades texturales y estructurales de un soporte de NiAl2O4

    Directory of Open Access Journals (Sweden)

    Valencia, J. S.

    2004-06-01

    Full Text Available In this work some aspects related to the synthesis of nickel aluminate as a ceramic material by the sol–gel processing, are studied. The solids obtained are analyzed by atomic absorption and x ray flourescence in order to determine their chemical composition. Texture is investigated using N2 adsorption–desorption isotherms, the structure is verified by x ray diffraction, and the morphology is looked using scanning electron microscope. The results show that the hydrolysis of aluminum tri–sec–butoxyde in presence of nickel nitrate at 80 °C and pH 10, produces a xerogel whose treatment at 900 °C results in a bright blue, fine, porous, spinel type solid, NiAl2O4. Texture data of these materials as shown by type IV isotherms with hysteresis loops type E; it verifies that hydrolysis temperature does not influence the surface area and confirms that these solids have a monomodal pore size distribution.En este trabajo se estudian algunos aspectos asociados con la síntesis, mediante procesamiento sol–gel, del aluminato de níquel. A los sólidos obtenidos se les determina la composición elemental mediante absorción atómica y fluorescencia de rayos–X, se les investiga la textura por sortometría de N2 a 77 K, se les analiza la estructura por difracción de rayos–X y se les examina la morfología con microscopía electrónica de barrido. Los resultados muestran que la hidrólisis a 80 °C y pH 10 de tri–sec–butóxido de aluminio en presencia de nitrato de níquel conduce a un xerogel cuyo tratamiento a 900 °C resulta en un sólido azul brillante, finamente dividido, poroso y altamente compatible con la espinela NiAl2O4. La textura de estos materiales se manifiesta por isotermas adsorción–desorción de nitrógeno tipo IV y anillos de histéresis tipo E; se verifica que la temperatura de hidrólisis no ejerce una marcada influencia sobre el área superficial de los sólidos y se comprueba que los sólidos poseen una distribuci

  16. Press forging of single crystal calcium fluoride

    International Nuclear Information System (INIS)

    Turk, R.R.

    1975-01-01

    Single crystals of high-purity calcium fluoride have been deformed uniaxially in an attempt to improve strength and resistance to cleavage, without impairing infrared transmission. Order of magnitude increases in strength, such as those found in forged KCl, have not been attained, but fine-grained polycrystalling material has been produced which is resistant to crystalline cleavage. Deformation rates of 10 -2 min -1 , reductions of 10 to 73 percent in height, and deformation temperatures of 550 to 1000 0 C have been used. Flexural strengths over 13,000 psi and grain sizes down to 5 μm have been obtained. Reduction of residual stress through heat treatment has been studied, and resultant techniques applied before, during, and after deformation. No increase in infrared absorption has been noted at the CO laser wavelength of 5.3 μm

  17. Commensurate-incommensurate phase transition in the deformed crystal

    International Nuclear Information System (INIS)

    Parlinski, K.; Watanabe, Y.; Ohno, K.; Kawazoe, Y.

    1995-01-01

    Using simple orthorhombic microscopic model the commensurate-incommensurate phase transition has been studied. Coupling of the order parameter with spontaneous strain may lead to process which uses the ferroelastic domain walls to introduce the discommensurations to the incommensurate phase. (author). 4 refs, 1 fig

  18. Modeling Finite Deformations in Trigonal Ceramic Crystals with Lattice Defects

    Science.gov (United States)

    2010-02-08

    fTÞ þ 1 6 EEab 6C abvde/ 0 E E vdE E e/ð1 fTÞ b ab 0 E E abðh h0Þð1 fTÞ þ Xw j¼1 1 2 EEab 4C abvd j E E vd þ 1 6 EEab 6C abvde/ j E E vdE E e/ b...E vd þ 1 2 6C abvde/ 0 E E vdE E e/ b ab 0 ðh h0Þ ð1 fTÞ þ Xw j¼1 4C abvd j E E vd þ 1 2 6C abvde/ j E E vdE E e/ b ab j ðh h0Þ f j

  19. Helium crystals

    International Nuclear Information System (INIS)

    Lipson, S.G.

    1987-01-01

    Hexagonal close-packed helium crystals in equilibrium with superfluid have been found to be one of the few systems in which an anisotropic solid comes into true thermodynamic equilibrium with its melt. The discovery of roughening transitions at the liquid-solid interface have shown this system to be ideal for the study of the statistical mechanics of interface structures. We describe the effect of roughening on the shape and growth of macroscopic crystals from both the theoretical and experimental points of view. (author)

  20. Simultaneous effect of UV-irradiation and deformation

    International Nuclear Information System (INIS)

    Turchanyi, G.; Janszky, J.; Racz, S.; Tarjan, I.

    1982-01-01

    The present paper reports on experiments performed on X-ray coloured KCl single crystals by means of dislocation photoconduction. This method makes use of the internal electric field developing in ionic crystals due to charged dislocations during their deformation. The effect of previous illuminations in the visible region on the photocurrent produced by VUV-light was also investigated, a memory effect and changes of the sign of the photocurrents were found under suitable conditions. It was shown that using visible light of high enough intensity the direction of the photocurrent produced by it also changes sign. The problems involved in the dislocation photoconduction method are discussed. (author)

  1. Void formation by annealing of neutron-irradiated plastically deformed molybdenum

    International Nuclear Information System (INIS)

    Petersen, K.; Nielsen, B.; Thrane, N.

    1976-01-01

    The positron annihilation technique has been used in order to study the influence of plastic deformation on the formation and growth of voids in neutron irradiated molybdenum single crystals treated by isochronal annealing. Samples were prepared in three ways: deformed 12-19% before irradiation, deformed 12-19% after irradiation, and - for reference purposes -non-deformed. In addition a polycrystalline sample was prepared in order to study the influence of the grain boundaries. All samples were irradiated at 60 0 C with a flux of 2.5 x 10 18 fast neutrons/cm 2 . After irradiation the samples were subjected to isochronal annealing. It was found that deformation before irradiation probably enhanced the formation of voids slightly. Deformation after irradiation strongly reduced the void formation. The presence of grain boundaries in the polycrystalline sample had a reducing influence on the growth of voids. (author)

  2. Modeling of dislocation generation and interaction during high-speed deformation of metals

    DEFF Research Database (Denmark)

    Schiøtz, J.; Leffers, T.; Singh, B.N.

    2002-01-01

    Recent experiments by Kiritani et al. [1] have revealed a surprisingly high rate of vacancy production during highspeed deformation of thin foils of fcc metals. Virtually no dislocations are seen after the deformation. This is interpreted as evidence for a dislocation-free deformation mechanism...... at very high strain rates. We have used molecular-dynamics simulations to investigate high-speed deformation of copper crystals. Even though no pre-existing dislocation sources are present in the initial system, dislocations are quickly nucleated and a very high dislocation density is reached during...... the deformation. Due to the high density of dislocations, many inelastic interactions occur between dislocations, resulting in the generation of vacancies. After the deformation, a very high density of vacancies is observed, in agreement with the experimental observations. The processes responsible...

  3. Enhancement of magnetoresistance by inserting thin NiAl layers at the interfaces in Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5}/Ag/Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5} current-perpendicular-to-plane pseudo spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J. W.; Sakuraba, Y., E-mail: Sakuraba.Yuya@nims.go.jp; Sasaki, T. T.; Hono, K. [National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Miura, Y. [National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Kyoto Institute of Technology, Electrical Engineering and Electronics, Kyoto 606-8585 (Japan)

    2016-03-07

    We have investigated the effects of insertion of a thin NiAl layer (≤0.63 nm) into a Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5} (CFGG)/Ag interface on the magnetoresistive properties in CFGG/Ag/CFGG current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo spin valves (PSVs). First-principles calculations of ballistic transmittance clarified that the interfacial band matching at the (001)-oriented NiAl/CFGG interface is better than that at the (001)-Ag/CFGG interface. The insertion of 0.21-nm-thick NiAl layers at the Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5}/Ag interfaces effectively improved the magnetoresistance (MR) output; the observed average and the highest MR ratio (ΔRA) are 62% (25 mΩ μm{sup 2}) and 77% (31 mΩ μm{sup 2}) at room temperature, respectively, which are much higher than those without NiAl insertion. Microstructural analysis using scanning transmission electron microscopy confirmed the existence of thin NiAl layers at the Ag interfaces with only modest interdiffusion even after annealing at 550 °C. The improvement of the interfacial spin-dependent scattering by very thin NiAl insertion can be a predominant reason for the enhancement of the MR output.

  4. Study beryllium microplastic deformation

    International Nuclear Information System (INIS)

    Papirov, I.I.; Ivantsov, V.I.; Nikolaenko, A.A.; Shokurov, V.S.; Tuzov, Yu.V.

    2015-01-01

    Microplastic flow characteristics systematically studied for different varieties beryllium. In isostatically pressed beryllium it decreased with increasing particle size of the powder, increasing temperature and increasing the pressing metal purity. High initial values of the limit microelasticity and microflow in some cases are due a high level of internal stresses of thermal origin and over time it can relax slowly. During long-term storage of beryllium materials with high initial resistance values microplastic deformation microflow limit and microflow stress markedly reduced, due mainly to the relaxation of thermal microstrain

  5. Stress hot spots in viscoplastic deformation of polycrystals

    International Nuclear Information System (INIS)

    Rollett, A D; Li, J; Rohrer, G S; Lebensohn, R A; Groeber, M; Choi, Y

    2010-01-01

    The viscoplastic deformation of polycrystals under uniaxial loading is investigated to determine the relationship between hot spots in stress and their location in relation to the microstructure. A 3D full-field formulation based on fast Fourier transforms for the prediction of the viscoplastic deformation of poly-crystals is used with rate-sensitive crystal plasticity. Two measured polycrystalline structures are used to instantiate the simulations, as well as a fully periodic synthetic polycrystal adapted from a simulation of grain growth. Application of (Euclidean) distance maps shows that hot spots in stress tend to occur close to grain boundaries. It is also found that low stress regions lie close to boundaries. The radial distribution function of the hot spots indicates clustering. Despite the lack of texture in the polycrystals, the hot spots are strongly concentrated in (1 1 0) orientations, which can account for the observed clustering. All three microstructures yield similar results despite significant differences in topology

  6. Direct measurement of erythrocyte deformability in diabetes mellitus with a transparent microchannel capillary model and high-speed video camera system.

    Science.gov (United States)

    Tsukada, K; Sekizuka, E; Oshio, C; Minamitani, H

    2001-05-01

    To measure erythrocyte deformability in vitro, we made transparent microchannels on a crystal substrate as a capillary model. We observed axisymmetrically deformed erythrocytes and defined a deformation index directly from individual flowing erythrocytes. By appropriate choice of channel width and erythrocyte velocity, we could observe erythrocytes deforming to a parachute-like shape similar to that occurring in capillaries. The flowing erythrocytes magnified 200-fold through microscopy were recorded with an image-intensified high-speed video camera system. The sensitivity of deformability measurement was confirmed by comparing the deformation index in healthy controls with erythrocytes whose membranes were hardened by glutaraldehyde. We confirmed that the crystal microchannel system is a valuable tool for erythrocyte deformability measurement. Microangiopathy is a characteristic complication of diabetes mellitus. A decrease in erythrocyte deformability may be part of the cause of this complication. In order to identify the difference in erythrocyte deformability between control and diabetic erythrocytes, we measured erythrocyte deformability using transparent crystal microchannels and a high-speed video camera system. The deformability of diabetic erythrocytes was indeed measurably lower than that of erythrocytes in healthy controls. This result suggests that impaired deformability in diabetic erythrocytes can cause altered viscosity and increase the shear stress on the microvessel wall. Copyright 2001 Academic Press.

  7. Study of the creep of germanium bi-crystals by X ray topography and electronic microscopy

    International Nuclear Information System (INIS)

    Gay, Marie-Odile

    1981-01-01

    This research thesis addresses the study of the microscopic as well as macroscopic aspect of the role of grain boundary during deformation, by studying the creep of Germanium bi-crystals. The objective was to observe interactions of network dislocations with the boundary as well as the evolution of dislocations in each grain. During the first stages of deformation, samples have been examined by X ray topography, a technique which suits well the observation of low deformed samples, provided their initial dislocation density is very low. At higher deformation, more conventional techniques of observation of sliding systems and electronic microscopy have been used. After some general recalls, the definition of twin boundaries and of their structure in terms of dislocation, a look at germanium deformation, and an overview of works performed on bi-crystals deformation, the author presents the experimental methods and apparatuses. He reports and discusses the obtained results at the beginning of deformation as well as during next phases

  8. Effect of P impurity on mechanical properties of NiAl Σ5 grain boundary: From perspectives of stress and energy

    Science.gov (United States)

    Hu, Xue-Lan; Zhao, Ruo-Xi; Deng, Jiang-Ge; Hu, Yan-Min; Song, Qing-Gong

    2018-03-01

    In this paper, we employ the first-principle total energy method to investigate the effect of P impurity on mechanical properties of NiAl grain boundary (GB). According to “energy”, the segregation of P atom in NiAlΣ5 GB reduces the cleavage energy and embrittlement potential, demonstrating that P impurity embrittles NiAlΣ5 GB. The first-principle computational tensile test is conducted to determine the theoretical tensile strength of NiAlΣ5 GB. It is demonstrated that the maximum ideal tensile strength of NiAlΣ5 GB with P atom segregation is 144.5 GPa, which is lower than that of the pure NiAlΣ5 GB (164.7 GPa). It is indicated that the segregation of P weakens the theoretical strength of NiAlΣ5 GB. The analysis of atomic configuration shows that the GB fracture is caused by the interfacial bond breaking. Moreover, P is identified to weaken the interactions between Al–Al bonds and enhance Ni–Ni bonds. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404396 and 51201181) and the Subject Construction Fund of Civil Aviation University of China (Grant No. 000032041102).

  9. Influence of Solvent on Liquid Phase Hydrodeoxygenation of Furfural-Acetone Condensation Adduct using Ni/Al2O3-ZrO2 Catalysts

    Science.gov (United States)

    Ulfa, S. M.; Mahfud, A.; Nabilah, S.; Rahman, M. F.

    2017-02-01

    Influence of water and acidic protic solvent on hydrodeoxygenation (HDO) of the furfural-acetone adduct (FAA) over Ni/Al2O3-ZrO2 (NiAZ) catalysts were investigated. The HDO of FAA was carried out in a batch reactor at 150°C for 8 hours. The NiAZ catalysts were home-made catalysts which were prepared by wet impregnation method with 10 and 20% nickel loading. The HDO reaction of FAA using 10NiAZ in water at 150°C gave alkane and oxygenated hydrocarbons at 31.41% with selectivity over tridecane (C13) in 6.67%. On the other hand, a reaction using acetic acid:water (1:19 v/v) in similar reaction condition gave only oxygenated compounds and hydrocracking product (C8-C10). The formation of tridecane (C13) was proposed by hydrogenation of C=O and C=C followed by decarboxylation without hydrocracking process. The presence of water facilitated decarboxylation mechanism by stabilized dehydrogenated derivatives of FAA.

  10. Hydrocracking of cumene over Ni/Al 2O 3 as influenced by CeO 2 doping and γ-irradiation

    Science.gov (United States)

    El-Shobaky, G. A.; Doheim, M. M.; Ghozza, A. M.

    2004-01-01

    Cumene hydrocracking was carried out over pure and doped Ni/Al 2O 3 solids and also, on these solids after exposure to different doses of γ-rays between 0.4 and 1.6 MGy. The dopant concentration was varied between 1 and 4 mol% CeO 2. Pure and doped samples were subjected to heat treatment at 400°C and cumene hydrocracking reaction was carried out using various solids at temperatures between 250°C and 400°C by means of micropulse technique. The results showed that both CeO 2 doping and γ-irradiation of the investigated system brought about an increase in its specific surface area. γ-irradiation of pure samples increased their catalytic activities effectively. However, the doping caused a decrease in the catalytic activity. γ-irradiation of the doped samples brought about a net decrease in the catalytic activity. The catalytic reaction products over different investigated solids were ethylbenzene as a major product together with different amounts of toluene, benzene and C 1-C 3 gaseous hydrocarbons. The selectivity towards the formation of various reaction products varies with the reaction temperature, doping and γ-irradiation.

  11. Methanation of CO2 on Ni/Al2O3 in a Structured Fixed-Bed Reactor—A Scale-Up Study

    Directory of Open Access Journals (Sweden)

    Daniel Türks

    2017-05-01

    Full Text Available Due to the ongoing change of energy supply, the availability of a reliable high-capacity storage technology becomes increasingly important. While conventional large-scale facilities are either limited in capacity respective supply time or their extension potential is little (e.g., pumped storage power stations, decentralized units could contribute to energy transition. The concepts of PtX (power-to-X storage technologies and in particular PtG (power-to-gas aim at fixation of electric power in chemical compounds. CO2 hydrogenation (methanation is the foundation of the PtG idea as H2 (via electrolysis and CO2 are easily accessible. Methane produced in this way, often called substitute natural gas (SNG, is a promising solution since it can be stored in the existing gas grid, tanks or underground cavern storages. Methanation is characterized by a strong exothermic heat of reaction which has to be handled safely. This work aims at getting rid of extreme temperature hot-spots in a tube reactor by configuring the catalyst bed structure. Proof of concept studies began with a small tube reactor (V = 12.5 cm3 with a commercial 18 wt % Ni/Al2O3 catalyst. Later, a double-jacket tube reactor was built (V = 452 cm3, reaching a production rate of 50 L/h SNG. The proposed approach not only improves the heat management and process safety, but also increases the specific productivity and stability of the catalyst remarkably.

  12. Hydrogenation/Deoxygenation (H/D Reaction of Furfural-Acetone Condensation Product using Ni/Al2O3-ZrO2 Catalyst

    Directory of Open Access Journals (Sweden)

    Adam Mahfud

    2016-08-01

    Full Text Available The catalytic hydrogenation/deoxygenation (H/D reaction was carried out using Ni/Al2O3-ZrO2 catalyst. The 10% (wt/wt of Ni were impregnated on Al2O3-ZrO2 (10NiAZ by wet impregnation method followed by calcination and reduction. X-Ray diffraction analysis showed that Nideposited on the surface, with specific surface areas (SBET was 48.616 m2/g. Catalyst performance were evaluated for H/D reaction over furfural-acetone condensation products, mixture of 2-(4-furyl-3-buten-2-on and 1,5-bis-(furan-2-yl-pentan-3-one. The reaction was carried out in a batch, performed at 150°C for 8 hours. The H/D reaction gave alkane derivatives C8 and C10 by hydrogenation process followed by ring opening of furan in 15.2% yield. While, oxygenated product C10-C13 were also detected in 17.2% yield. The increasing of pore volume of 10NiAZ might enhance catalyst activity over H/D reaction. The alkene C=C bond was easy to hydrogenated under this condition by the lower bond energy gap.

  13. Connection between twinning and brittle fracture in Fe-Cr-Co-Mo crystals

    International Nuclear Information System (INIS)

    Kirillov, V.A.; Chumlyakov, Yu.I.; Korotaev, A.D.; Aparova, L.A.

    1989-01-01

    Plasticity dependence on crystal orientation, on deformation temperature and structure state of alloy is investigated in Fe-28 % Cr-10 % Co-2 % Mo (at. %) monocrystals. Isostructure decomposition results in increase of critical shearing stresses τ cr , in change of deformation mechanism from slipping into twinning and abrupt reduction of plasticity. Brittleness - ductility transition is detected in high-stable structure states τ cr >280 MPa. Explanation of plasticity abrupt reduction of high-stable crystals using estimation of change of deformation mechanism and of deforming stress high level is given

  14. Microstructure, Slip Systems and Yield Stress Anisotropy in Plastic Deformation

    DEFF Research Database (Denmark)

    Winther, Grethe; You, Ze Sheng; Lu, Lei

    The highly anisotropic microstructures in nanotwinned copper produced by electrodeposition provide an excellent opportunity to evaluate models for microstructurally induced mechanical anisotropy. A crystal plasticity model originally developed for the integration of deformation induced dislocatio...... boundaries with texture is applied to account for the effects of texture as well as twin and grain boundaries, providing good qualitative agreement with experimental yield stress and yield stress anisotropy data....

  15. Electrical conduction along dislocations in plastically deformed GaN

    Energy Technology Data Exchange (ETDEWEB)

    Kamimura, Y; Yokoyama, T; Oiwa, H; Edagawa, K [Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Yonenaga, I, E-mail: yasushi@iis.u-tokyo.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan)

    2009-07-15

    Electrical conduction along dislocations in plastically deformed n-GaN single crystals has been investigated by scanning spread resistance microscopy (SSRM). In the SSRM images, many conductive spots have been observed, which correspond to electrical conduction along the dislocations introduced by deformation. Here, the introduced dislocations are b=(a/3)<1overline 210> edge dislocations parallel to the [0001] direction. The current values at the spots normalized to the background current value are larger than 100. Previous works have shown that grown-in edge dislocations in GaN are nonconductive. The high conductivity of the deformation-introduced edge dislocations in the present work suggests that the conductivity depends sensitively on the dislocation core structure.

  16. Nuclear fuel deformation phenomena

    International Nuclear Information System (INIS)

    Van Brutzel, L.; Dingreville, R.; Bartel, T.J.

    2015-01-01

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  17. Neutron halo in deformed nuclei

    International Nuclear Information System (INIS)

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-01-01

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus 44 Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  18. Rotary deformity in degenerative spondylolisthesis

    International Nuclear Information System (INIS)

    Kang, Sung Gwon; Kim, Jeong; Kho, Hyen Sim; Yun, Sung Su; Oh, Jae Hee; Byen, Ju Nam; Kim, Young Chul

    1994-01-01

    We studied to determine whether the degenerative spondylolisthesis has rotary deformity in addition to forward displacement. We have made analysis of difference of rotary deformity between the 31 study groups of symptomatic degenerative spondylolisthesis and 31 control groups without any symptom, statistically. We also reviewed CT findings in 15 study groups. The mean rotary deformity in study groups was 6.1 degree(the standard deviation is 5.20), and the mean rotary deformity in control groups was 2.52 degree(the standard deviation is 2.16)(p < 0.01). The rotary deformity can be accompanied with degenerative spondylolisthesis. We may consider the rotary deformity as a cause of symptomatic degenerative spondylolisthesis in case that any other cause is not detected

  19. Strain gradient crystal plasticity analysis of a single crystal containing a cylindrical void

    DEFF Research Database (Denmark)

    Borg, Ulrik; Kysar, J.W.

    2007-01-01

    to one another. Finite element simulations are performed using a strain gradient crystal plasticity formulation with an intrinsic length scale parameter in a non-local strain gradient constitutive framework. For a vanishing length scale parameter the non-local formulation reduces to a local crystal...... plasticity formulation. The stress and deformation fields obtained with a local non-hardening constitutive formulation are compared to those obtained from a local hardening formulation and to those from a non-local formulation. Compared to the case of the non-hardening local constitutive formulation......, it is shown that a local theory with hardening has only minor effects on the deformation field around the void, whereas a significant difference is obtained with the non-local constitutive relation. Finally, it is shown that the applied stress state required to activate plastic deformation at the void is up...

  20. q-deformed Brownian motion

    CERN Document Server

    Man'ko, V I

    1993-01-01

    Brownian motion may be embedded in the Fock space of bosonic free field in one dimension.Extending this correspondence to a family of creation and annihilation operators satisfying a q-deformed algebra, the notion of q-deformation is carried from the algebra to the domain of stochastic processes.The properties of q-deformed Brownian motion, in particular its non-Gaussian nature and cumulant structure,are established.

  1. q-deformed Minkowski space

    International Nuclear Information System (INIS)

    Ogievetsky, O.; Pillin, M.; Schmidke, W.B.; Wess, J.; Zumino, B.

    1993-01-01

    In this lecture I discuss the algebraic structure of a q-deformed four-vector space. It serves as a good example of quantizing Minkowski space. To give a physical interpretation of such a quantized Minkowski space we construct the Hilbert space representation and find that the relevant time and space operators have a discrete spectrum. Thus the q-deformed Minkowski space has a lattice structure. Nevertheless this lattice structure is compatible with the operation of q-deformed Lorentz transformations. The generators of the q-deformed Lorentz group can be represented as linear operators in the same Hilbert space. (orig.)

  2. Deformable paper origami optoelectronic devices

    KAUST Repository

    He, Jr-Hau

    2017-01-19

    Deformable optoelectronic devices are provided, including photodetectors, photodiodes, and photovoltaic cells. The devices can be made on a variety of paper substrates, and can include a plurality of fold segments in the paper substrate creating a deformable pattern. Thin electrode layers and semiconductor nanowire layers can be attached to the substrate, creating the optoelectronic device. The devices can be highly deformable, e.g. capable of undergoing strains of 500% or more, bending angles of 25° or more, and/or twist angles of 270° or more. Methods of making the deformable optoelectronic devices and methods of using, e.g. as a photodetector, are also provided.

  3. Deformation behaviour of turbine foundations

    International Nuclear Information System (INIS)

    Koch, W.; Klitzing, R.; Pietzonka, R.; Wehr, J.

    1979-01-01

    The effects of foundation deformation on alignment in turbine generator sets have gained significance with the transition to modern units at the limit of design possibilities. It is therefore necessary to obtain clarification about the remaining operational variations of turbine foundations. Static measurement programmes, which cover both deformation processes as well as individual conditions of deformation are described in the paper. In order to explain the deformations measured structural engineering model calculations are being undertaken which indicate the effect of limiting factors. (orig.) [de

  4. Magnetophotonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, M [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Fujikawa, R [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Baryshev, A [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Khanikaev, A [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Lim, P B [CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan (Japan); Uchida, H [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Aktsipetrov, O [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation); Fedyanin, A [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation); Murzina, T [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation); Granovsky, A [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation)

    2006-04-21

    When the constitutive materials of photonic crystals (PCs) are magnetic, or even only a defect introduced in PCs is magnetic, the resultant PCs exhibit very unique optical and magneto-optical properties. The strong photon confinement in the vicinity of magnetic defects results in large enhancement in linear and nonlinear magneto-optical responses of the media. Novel functions, such as band Faraday effect, magnetic super-prism effect and non-reciprocal or magnetically controllable photonic band structure, are predicted to occur theoretically. All the unique features of the media arise from the existence of magnetization in media, and hence they are called magnetophotonic crystals providing the spin-dependent nature in PCs. (topical review)

  5. Magnetophotonic crystals

    International Nuclear Information System (INIS)

    Inoue, M; Fujikawa, R; Baryshev, A; Khanikaev, A; Lim, P B; Uchida, H; Aktsipetrov, O; Fedyanin, A; Murzina, T; Granovsky, A

    2006-01-01

    When the constitutive materials of photonic crystals (PCs) are magnetic, or even only a defect introduced in PCs is magnetic, the resultant PCs exhibit very unique optical and magneto-optical properties. The strong photon confinement in the vicinity of magnetic defects results in large enhancement in linear and nonlinear magneto-optical responses of the media. Novel functions, such as band Faraday effect, magnetic super-prism effect and non-reciprocal or magnetically controllable photonic band structure, are predicted to occur theoretically. All the unique features of the media arise from the existence of magnetization in media, and hence they are called magnetophotonic crystals providing the spin-dependent nature in PCs. (topical review)

  6. Deformed chiral nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Price, C E; Shepard, J R [Colorado Univ., Boulder (USA). Dept. of Physics

    1991-04-18

    We compute properties of the nucleon in a hybrid chiral model based on the linear {sigma}-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and g{sub A}. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations. (orig.).

  7. Deformations of surface singularities

    CERN Document Server

    Szilárd, ágnes

    2013-01-01

    The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems, important examples and connections to other areas of mathematics. The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. This also is supported by review articles providing some global picture and an abundance of examples. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry.  This links two main theories of mathematics: low dimensional topology and algebraic geometry. The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several op...

  8. IBA in deformed nuclei

    International Nuclear Information System (INIS)

    Casten, R.F.; Warner, D.D.

    1982-01-01

    The structure and characteristic properties and predictions of the IBA in deformed nuclei are reviewed, and compared with experiment, in particular for 168 Er. Overall, excellent agreement, with a minimum of free parameters (in effect, two, neglecting scale factors on energy differences), was obtained. A particularly surprising, and unavoidable, prediction is that of strong β → γ transitions, a feature characteristically absent in the geometrical model, but manifest empirically. Some discrepancies were also noted, principally for the K=4 excitation, and the detailed magnitudes of some specific B(E2) values. Considerable attention is paid to analyzing the structure of the IBA states and their relation to geometric models. The bandmixing formalism was studied to interpret both the aforementioned discrepancies and the origin of the β → γ transitions. The IBA states, extremely complex in the usual SU(5) basis, are transformed to the SU(3) basis, as is the interaction Hamiltonian. The IBA wave functions appear with much simplified structure in this way as does the structure of the associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual deformed nuclei is seen to be predominantly ΔK=0 mixing. A modified, and more consistent, formalism for the IBA-1 is introduced which is simpler, has fewer free parameters (in effect, one, neglecting scale factors on energy differences), is in at least as good agreement with experiment as the earlier formalism, contains a special case of the 0(6) limit which corresponds to that known empirically, and appears to have a close relationship to the IBA-2. The new formalism facilitates the construction of contour plots of various observables (e.g., energy or B(E2) ratios) as functions of N and chi/sub Q/ which allow the parameter-free discussion of qualitative trajectories or systematics

  9. Synthesis of H/Bentonite and Ni/Al2O3-bentonite and its application to produce biogasoline from nyamplung seed (Calophyllum inophillum Linn) oil by catalytic hydrocracking

    Science.gov (United States)

    Marini, A. T.; Wijaya, K.; Sasongko, N. A.

    2018-03-01

    Hydrocracking process of Nyamplung (Calophyllum inophillum Linn) seed oil to produce biogasoline using H/bentonite and Ni/Al2O3-bentonite that pillared by Al2O3 as catalyst had been conducted. Bentonite was activated by acidification using HF 1% and H2SO4 0.5 M. Ni metal was impregnated into bentonite with two steps reaction; therewas intercalation with Al2O3kegging ion and Ni metal impregnation using NiCl2 metal salt. Catalysts were characterized by infrared spectrophotometer (FTIR), X-ray diffraction (XRD), X-ray fluorescence (XRF), BET, TEM and ammonia adsorption. Hydrocracking reaction was variated by Ni/Al2O3-bentonite and H/bentonite with ratio catalyst/oil 1:100. Biocrude was prepared by extraction by using ethanol 96%. Hydrocracking oil products were further analyzed by GC-MS. The results show that the acidity of bentonite by activation using HF 1% and H2SO4 0.5 M has been increased from 62.58 to 64.62 mmol/g. Impregnation process also increased the acidity of bentonite from 62.58 to 64.89 mmol/g. Activation using HF 1% and H2SO4 0.5 M, intercalation by Al2O3 and impregnation by Ni metal were increasing the crystallinity, surface area, total volume pore and average pore size of bentonite. These techniques were also causeddealumination of bentonite. The hydrocracking process successfully synthesized hydrocarbons with a number of carbon chain between C5-C20 which include bio-gasoline group compounds. Moreover, catalytic processes by H/bentonite and Ni/Al2O3-bentonite also successfully produced 39.83% and 60.37% of biogasoline yields, respectively.

  10. Fraktalnist deformational relief polycrystalline aluminum

    Directory of Open Access Journals (Sweden)

    М.В. Карускевич

    2006-02-01

    Full Text Available  The possibility of the fractal geometry method application for the analisys of surface deformation structures under cyclic loading is presented.It is shown, that deformation relief of the alclad aluminium alloyes meets the criteria of the fractality. For the fractal demention estimation the method of  “box-counting”can be applied.

  11. Sequence-dependent DNA deformability studied using molecular dynamics simulations.

    Science.gov (United States)

    Fujii, Satoshi; Kono, Hidetoshi; Takenaka, Shigeori; Go, Nobuhiro; Sarai, Akinori

    2007-01-01

    Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein-DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein-DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids.

  12. Deformation of Man Made Objects

    KAUST Repository

    Ibrahim, Mohamed

    2012-07-01

    We introduce a framework for 3D object deformation with primary focus on man-made objects. Our framework enables a user to deform a model while preserving its defining characteristics. Moreover, our framework enables a user to set constraints on a model to keep its most significant features intact after the deformation process. Our framework supports a semi-automatic constraint setting environment, where some constraints could be automatically set by the framework while others are left for the user to specify. Our framework has several advantages over some state of the art deformation techniques in that it enables a user to add new features to the deformed model while keeping its general look similar to the input model. In addition, our framework enables the rotation and extrusion of different parts of a model.

  13. Micro-structural evolution in plastically deformed crystalline materials

    DEFF Research Database (Denmark)

    Nellemann, Christopher

    predictions for the two models to be obtained. Application of the two models to the pure shear boundary value problem is used to characterize plastic behavior, which also allows for the identification of inherent properties through closed form expressions. Single crystal Monazite containing a void is studied......Two rate-independent strain gradient crystal plasticity models are developed and applied in numerical studies designed to identify the properties inherent to model predictions of plastic deformation. The two models incorporate gradients of slip into the framework of conventional crystal plasticity...... in order to model size-dependent plasticity effects. This gradient dependence is achieved by relating a slip measure which combines both slip and their gradients to a shear hardening curve, as commonly done in conventional plasticity theories. Finite element codes are implemented which allow for numerical...

  14. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure

    International Nuclear Information System (INIS)

    Zhang, Y.W.; Li, S.J.; Obbard, E.G.; Wang, H.; Wang, S.C.; Hao, Y.L.; Yang, R.

    2011-01-01

    Research highlights: → The single crystals of Ti2448 alloy with the bcc crystal structure were prepared. → The elastic moduli and constants were measured by several resonant methods. → The crystal shows significant elastic asymmetry in tension and compression. → The crystal exhibits weak nonlinear elasticity with large elastic strain ∼2.5%. → The crystal has weak atomic interactions against crystal distortion to low symmetry. - Abstract: Single crystals of Ti2448 alloy (Ti-24Nb-4Zr-8Sn in wt.%) were grown successfully using an optical floating-zone furnace. Several kinds of resonant methods gave consistent Young's moduli of 27.1, 56.3 and 88.1 GPa and shear moduli of 34.8, 11.0 and 14.6 GPa for the , and oriented single crystals, and C 11 , C 12 and C 44 of 57.2, 36.1 and 35.9 GPa respectively. Uniaxial testing revealed asymmetrical elastic behaviors of the crystals: tension caused elastic softening with a large reversible strain of ∼4% and a stress plateau of ∼250 MPa, whereas compression resulted in gradual elastic stiffening with much smaller reversible strain. The crystals exhibited weak nonlinear elasticity with a large elastic strain of ∼2.5% and a high strength, approaching ∼20% and ∼30% of its ideal shear and ideal tensile strength respectively. The crystals showed linear elasticity with a small elastic strain of ∼1%. These elastic deformation characteristics have been interpreted in terms of weakened atomic interactions against crystal distortion to low crystal symmetry under external applied stresses. These results are consistent with the properties of polycrystalline Ti2448, including high strength, low elastic modulus, large recoverable strain and weak strengthening effect due to grain refinement.

  15. Friction stir welding of single crystal aluminium

    DEFF Research Database (Denmark)

    Fonda, Richard Warren; Wert, John A.; Reynolds, A.P.

    2007-01-01

    Friction stir welds were prepared in different orientations in an aluminium single crystal. The welds were quenched to preserve the microstructure surrounding the tool and then electron backscattered diffraction was used to reveal the generation of grain boundaries and the evolution...... of crystallographic texture around the tool in each weld. The extent of both dynamic recrystallisation and conventional recrystallisation varied considerably as a function of weld orientation. As the base plate begins to interact with the deformation field surrounding the tool, regions of the single crystal rotate...

  16. Cold transfer between deformed, Coulomb excited nuclei

    International Nuclear Information System (INIS)

    Bauer, H.

    1998-01-01

    The scattering system 162 Dy → 116 Sn has been examined at energies in the vicinity of the Coulomb barrier using the Heidelberg-Darmstadt Crystal Ball spectrometer combined with 5 Germanium-CLUSTER detectors. In order to study pairing correlations as a function of angular momentum cold events were selected in the 2n stripping channel by identifying and suppressing the dominant hot part of the transfer with the Crystal Ball. The CLUSTER detectors with their high γ-efficiency were used to identify the transfer channel and to resolve individual final states. Cross sections for the population of individual yrast states in a cold transfer reaction have been measured for the first time indicating the strong influence of higher transfer multipolarities. At small surface distances Coulomb-nuclear interferences were found to be responsible for the stronger decline of the population of higher yrast states in the transfer channel as compared to the Coulex channel. As a preparatory study for 2n transfer measurements between high spin yrast states in the backbending region of deformed nuclei the Coulomb excitation process in the crossing region of two bands in 162 Dy has been analyzed. The gross properties of the measured population probabilities could be interpreted in a simple band mixing model. (orig.)

  17. Plastic deformation of solids viewed as a self-excited wave process

    International Nuclear Information System (INIS)

    Zuev, L.B.; Danilov, V.I.

    1998-01-01

    A self-excited wave model of plastic flow in crystalline solids is proposed. Experimental data on plastic flow in single crystals and polycrystalline solids involving different mechanisms have been correlated. The main types of strain localization in the materials investigated have been established and correlated with the respective stages of plastic flow curves. The best observing conditions have been defined for the major types of autowaves emerging by plastic deformation. The synergetic concepts of self-organization are shown to apply to description of plastic deformation. Suggested is a self-excited wave model of plastic flow in materials with different mechanisms of deformation. (orig.)

  18. Regularities of recrystallization in rolled Zr single crystals

    International Nuclear Information System (INIS)

    Isaenkova, M; Perlovich, Yu; Fesenko, V; Krymskaya, O; Krapivka, N; Thu, S S

    2015-01-01

    Experiments by rolled single crystals give a more visible conception of the operating mechanisms of plastic deformation and the following recrystallization, than experiments by polycrystals. Studies by usage of X-ray diffraction methods were conducted by Zr single crystals. It was revealed, that regions of the α-Zr matrix, deformed mainly by twinning, are characterized with decreased tendency to recrystallization. Orientations of recrystallized α-Zr grains correspond to “slopes” of maxima in the rolling texture, where the level of crystalline lattice distortion is maximal and the number of recrystallization nuclei is most of all. (paper)

  19. MESOSCALE SIMULATIONS OF MICROSTRUCTURE AND TEXTURE EVOLUTION DURING DEFORMATION OF COLUMNAR GRAINS

    International Nuclear Information System (INIS)

    Sarma, G.

    2001-01-01

    In recent years, microstructure evolution in metals during deformation processing has been modeled at the mesoscale by combining the finite element method to discretize the individual grains with crystal plasticity to provide the constitutive relations. This approach allows the simulations to capture the heterogeneous nature of grain deformations due to interactions with neighboring grains. The application of this approach to study the deformations of columnar grains present in solidification microstructures is described. The microstructures are deformed in simple compression, assuming the easy growth direction of the columnar grains to be parallel to the compression axis in one case, and perpendicular in the other. These deformations are similar to those experienced by the columnar zones of a large cast billet when processed by upsetting and drawing, respectively. The simulations show that there is a significant influence of the initial microstructure orientation relative to the loading axis on the resulting changes in grain shape and orientation

  20. Cryogenic deformation microstructures of 32Mn-7Cr-1Mo-0.3N austenitic steels

    International Nuclear Information System (INIS)

    Fu Ruidong; Qiu Liang; Wang Tiansheng; Wang Cunyu; Zheng Yangzeng

    2005-01-01

    The cryogenic deformation microstructures of impact and tensile specimens of 32Mn-7Cr-1Mo-0.3N austenitic steel were investigated using light microscopy and transmission electron microscopy. The results show that the deformation microstructures of the impact specimens are mainly composed of stacking faults, network dislocation, slip bands, and a few mechanical twins and ε-martensite. These microstructures cross with each other in a crystal angle. The deformation microstructures of the tensile specimens consist only of massive slip bands, in which a few mechanical twins and ε-martenite are located. Because of the larger plastic deformation the slip band traces become bent. All the deformation microstructures are formed on the {111} planes and along the orientation

  1. On infinitesimal conformai deformations of surfaces

    Directory of Open Access Journals (Sweden)

    Юлия Степановна Федченко

    2014-11-01

    Full Text Available A new form of basic equations for conformai deformations is found. The equations involve tensor fields of displacement vector only. Conditions for trivial deformations as well as infinitesimal conformai deformations are studied.

  2. Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process

    Science.gov (United States)

    Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.

    2018-06-01

    A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.

  3. Perceptual transparency from image deformation.

    Science.gov (United States)

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation.

  4. Quantifying the Erlenmeyer flask deformity

    Science.gov (United States)

    Carter, A; Rajan, P S; Deegan, P; Cox, T M; Bearcroft, P

    2012-01-01

    Objective Erlenmeyer flask deformity is a common radiological finding in patients with Gaucher′s disease; however, no definition of this deformity exists and the reported prevalence of the deformity varies widely. To devise an easily applied definition of this deformity, we investigated a cohort of knee radiographs in which there was consensus between three experienced radiologists as to the presence or absence of Erlenmeyer flask morphology. Methods Using the presence or absence of Erlenmeyer flask morphology as a benchmark, we measured the diameter of the femur at the level of the physeal scar and serially at defined intervals along the metadiaphysis. Results A measured ratio in excess of 0.57 between the diameter of the femoral shaft 4 cm from the physis to the diameter of the physeal baseline itself on a frontal radiograph of the knee predicted the Erlenmeyer flask deformity with 95.6% sensitivity and 100% specificity in our series of 43 independently diagnosed adults with Gaucher′s disease. Application of this method to the distal femur detected the Erlenmeyer flask deformity reproducibly and was simple to carry out. Conclusion Unlike diagnostic assignments based on subjective review, our simple procedure for identifying the modelling deformity is based on robust quantitative measurement: it should facilitate comparative studies between different groups of patients, and may allow more rigorous exploration of the pathogenesis of the complex osseous manifestations of Gaucher′s disease to be undertaken. PMID:22010032

  5. Deformation twinning in a creep-deformed nanolaminate structure

    International Nuclear Information System (INIS)

    Hsiung, Luke L

    2010-01-01

    The underlying mechanism of deformation twinning occurring in a TiAl-(γ)/Ti 3 Al-(α 2 ) nanolaminate creep deformed at elevated temperatures has been studied. Since the multiplication and propagation of lattice dislocations in both γ and α 2 thin lamellae are very limited, the total flow of lattice dislocations becomes insufficient to accommodate the accumulated creep strains. Consequently, the movement of interfacial dislocations along the laminate interfaces, i.e., interface sliding, becomes an alternative deformation mode of the nanolaminate structure. Pile-ups of interfacial dislocations occur when interfacial ledges and impinged lattice dislocations act as obstacles to impede the movement of interfacial dislocations. Deformation twinning can accordingly take place to relieve a stress concentration resulting from the pile-up of interfacial dislocations. An interface-controlled twinning mechanism driven by the pile-up and dissociation of interfacial dislocations is accordingly proposed.

  6. Deformation twinning in a creep-deformed nanolaminate structure

    Science.gov (United States)

    Hsiung, Luke L.

    2010-10-01

    The underlying mechanism of deformation twinning occurring in a TiAl-(γ)/Ti3Al-(α2) nanolaminate creep deformed at elevated temperatures has been studied. Since the multiplication and propagation of lattice dislocations in both γ and α2 thin lamellae are very limited, the total flow of lattice dislocations becomes insufficient to accommodate the accumulated creep strains. Consequently, the movement of interfacial dislocations along the laminate interfaces, i.e., interface sliding, becomes an alternative deformation mode of the nanolaminate structure. Pile-ups of interfacial dislocations occur when interfacial ledges and impinged lattice dislocations act as obstacles to impede the movement of interfacial dislocations. Deformation twinning can accordingly take place to relieve a stress concentration resulting from the pile-up of interfacial dislocations. An interface-controlled twinning mechanism driven by the pile-up and dissociation of interfacial dislocations is accordingly proposed.

  7. Deforming tachyon kinks and tachyon potentials

    International Nuclear Information System (INIS)

    Afonso, Victor I.; Bazeia, Dionisio; Brito, Francisco A.

    2006-01-01

    In this paper we investigate deformation of tachyon potentials and tachyon kink solutions. We consider the deformation of a DBI type action with gauge and tachyon fields living on D1-brane and D3-brane world-volume. We deform tachyon potentials to get other consistent tachyon potentials by using properly a deformation function depending on the gauge field components. Resolutions of singular tachyon kinks via deformation and applications of deformed tachyon potentials to scalar cosmology scenario are discussed

  8. Photonic time crystals.

    Science.gov (United States)

    Zeng, Lunwu; Xu, Jin; Wang, Chengen; Zhang, Jianhua; Zhao, Yuting; Zeng, Jing; Song, Runxia

    2017-12-07

    When space (time) translation symmetry is spontaneously broken, the space crystal (time crystal) forms; when permittivity and permeability periodically vary with space (time), the photonic crystal (photonic time crystal) forms. We proposed the concept of photonic time crystal and rewritten the Maxwell's equations. Utilizing Finite Difference Time Domain (FDTD) method, we simulated electromagnetic wave propagation in photonic time crystal and photonic space-time crystal, the simulation results show that more intensive scatter fields can obtained in photonic time crystal and photonic space-time crystal.

  9. Non-local crystal plasticity model with intrinsic SSD and GND effects

    NARCIS (Netherlands)

    Evers, L.P.; Brekelmans, W.A.M.; Geers, M.G.D.

    2004-01-01

    A strain gradient-dependent crystal plasticity approach is presented to model the constitutive behaviour of polycrystal FCC metals under large plastic deformation. In order to be capable of predicting scale dependence, the heterogeneous deformation-induced evolution and distribution of geometrically

  10. Mechanism for microstructural evolution induced by high temperature deformation in Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Cheng, Sirui; Wang, Chunju; Ma, Mingzhen; Shan, Debin; Guo, Bin

    2016-01-01

    In the Zr_4_1_._2Ti_1_3_._8Cu_1_2_._5Ni_1_0Be_2_2_._5 (Vit1) alloy undergoing high temperature deformation, its thermal properties and microstructure are quite different from those in the annealing alloy. In order to research the coupled effect of temperature and plastic strain on microstructural evolution of Zr-based amorphous, uniaxial compression test of Vit1 alloy with good amorphous nature has been performed, and then the structural state and thermal properties of Vit1 alloy after thermal deformation and isothermal annealing in the supercooled liquid region were investigated. It is revealed that the deformed specimens possess higher characteristic temperature and lower enthalpy change of microstructural relaxation. In addition, the smaller inter-atomic distance and higher order degree of atomic arrangement can be observed in those deformed Vit1 alloy. That can be deduced that thermal deformation is in favor of the microstructural evolution from a metastable amorphous state to stable crystallization state, because plastic strain promotes the annihilation of free volume and provide excess driving force of atomic diffusion. However, upon increasing the ambient temperature, the influence of plastic deformation on microstructure gradually decreased owing to the decreasing proportion of the plastic deformation-induced annihilation of free volume during the whole thermal deformation process. - Highlights: • The deformed specimens possess closer microstructure and higher characteristic temperatures. • The order degree of microstructures in deformed specimens is higher than that in annealed specimens. • Thermal deformation accelerates the microstructural evolution of Zr-based BMGs. • The influence of thermal deformation on microstructure decreases with the temperature increasing.

  11. Mechanism for microstructural evolution induced by high temperature deformation in Zr-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Sirui [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Chunju [Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Mingzhen [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Shan, Debin, E-mail: shandebin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Guo, Bin [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2016-08-15

    In the Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} (Vit1) alloy undergoing high temperature deformation, its thermal properties and microstructure are quite different from those in the annealing alloy. In order to research the coupled effect of temperature and plastic strain on microstructural evolution of Zr-based amorphous, uniaxial compression test of Vit1 alloy with good amorphous nature has been performed, and then the structural state and thermal properties of Vit1 alloy after thermal deformation and isothermal annealing in the supercooled liquid region were investigated. It is revealed that the deformed specimens possess higher characteristic temperature and lower enthalpy change of microstructural relaxation. In addition, the smaller inter-atomic distance and higher order degree of atomic arrangement can be observed in those deformed Vit1 alloy. That can be deduced that thermal deformation is in favor of the microstructural evolution from a metastable amorphous state to stable crystallization state, because plastic strain promotes the annihilation of free volume and provide excess driving force of atomic diffusion. However, upon increasing the ambient temperature, the influence of plastic deformation on microstructure gradually decreased owing to the decreasing proportion of the plastic deformation-induced annihilation of free volume during the whole thermal deformation process. - Highlights: • The deformed specimens possess closer microstructure and higher characteristic temperatures. • The order degree of microstructures in deformed specimens is higher than that in annealed specimens. • Thermal deformation accelerates the microstructural evolution of Zr-based BMGs. • The influence of thermal deformation on microstructure decreases with the temperature increasing.

  12. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 1; Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    Science.gov (United States)

    Raj, S. V.

    2017-01-01

    This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  13. M theory on deformed superspace

    Science.gov (United States)

    Faizal, Mir

    2011-11-01

    In this paper we will analyze a noncommutative deformation of the Aharony-Bergman-Jafferis-Maldacena (ABJM) theory in N=1 superspace formalism. We will then analyze the Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetries for this deformed ABJM theory, and its linear as well as nonlinear gauges. We will show that the sum of the gauge fixing term and the ghost term for this deformed ABJM theory can be expressed as a combination of the total BRST and the total anti-BRST variation, in Landau and nonlinear gauges. We will show that in Landau and Curci-Ferrari gauges deformed ABJM theory is invariant under an additional set of symmetry transformations. We will also discuss the effect that the addition of a bare mass term has on this theory.

  14. Nonlinear Deformable-body Dynamics

    CERN Document Server

    Luo, Albert C J

    2010-01-01

    "Nonlinear Deformable-body Dynamics" mainly consists in a mathematical treatise of approximate theories for thin deformable bodies, including cables, beams, rods, webs, membranes, plates, and shells. The intent of the book is to stimulate more research in the area of nonlinear deformable-body dynamics not only because of the unsolved theoretical puzzles it presents but also because of its wide spectrum of applications. For instance, the theories for soft webs and rod-reinforced soft structures can be applied to biomechanics for DNA and living tissues, and the nonlinear theory of deformable bodies, based on the Kirchhoff assumptions, is a special case discussed. This book can serve as a reference work for researchers and a textbook for senior and postgraduate students in physics, mathematics, engineering and biophysics. Dr. Albert C.J. Luo is a Professor of Mechanical Engineering at Southern Illinois University, Edwardsville, IL, USA. Professor Luo is an internationally recognized scientist in the field of non...

  15. Deformable paper origami optoelectronic devices

    KAUST Repository

    He, Jr-Hau; Lin, Chun-Ho

    2017-01-01

    Deformable optoelectronic devices are provided, including photodetectors, photodiodes, and photovoltaic cells. The devices can be made on a variety of paper substrates, and can include a plurality of fold segments in the paper substrate creating a

  16. Capillary Deformations of Bendable Films

    KAUST Repository

    Schroll, R. D.; Adda-Bedia, M.; Cerda, E.; Huang, J.; Menon, N.; Russell, T. P.; Toga, K. B.; Vella, D.; Davidovitch, B.

    2013-01-01

    We address the partial wetting of liquid drops on ultrathin solid sheets resting on a deformable foundation. Considering the membrane limit of sheets that can relax compression through wrinkling at negligible energetic cost, we revisit the classical

  17. Non-linear elastic deformations

    CERN Document Server

    Ogden, R W

    1997-01-01

    Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.

  18. Anisotropic Ripple Deformation in Phosphorene.

    Science.gov (United States)

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng

    2015-05-07

    Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  19. An atomistic study of the deformation behavior of tungsten nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shuozhi [University of California, California NanoSystems Institute, Santa Barbara, CA (United States); Su, Yanqing [University of California, Department of Mechanical Engineering, Santa Barbara, CA (United States); Chen, Dengke [Georgia Institute of Technology, GWW School of Mechanical Engineering, Atlanta, GA (United States); Li, Longlei [Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA (United States)

    2017-12-15

    Large-scale atomistic simulations are performed to study tensile and compressive left angle 112 right angle loading of single-crystalline nanowires in body-centered cubic tungsten (W). Effects of loading mode, wire cross-sectional shape, wire size, strain rate, and crystallographic orientations of the lateral surfaces are explored. Uniaxial deformation of a W bulk single crystal is also investigated for reference. Our results reveal a strong tension-compression asymmetry in both the stress-strain response and the deformation behavior due to different yielding/failure modes: while the nanowires fail by brittle fracture under tensile loading, they yield by nucleation of dislocations from the wire surface under compressive loading. It is found that (1) nanowires have a higher strength than the bulk single crystal; (2) with a cross-sectional size larger than 10 nm, there exists a weak dependence of strength on wire size; (3) when the wire size is equal to or smaller than 10 nm, nanowires buckle under compressive loading; (4) the cross-sectional shape, strain rate, and crystallographic orientations of the lateral surfaces affect the strength and the site of defect initiation but not the overall deformation behavior. (orig.)

  20. Computer simulation of plastic deformation in irradiated metals

    International Nuclear Information System (INIS)

    Colak, U.

    1989-01-01

    A computer-based model is developed for the localized plastic deformation in irradiated metals by dislocation channeling, and it is applied to irradiated single crystals of niobium. In the model, the concentrated plastic deformation in the dislocation channels is postulated to occur by virtue of the motion of dislocations in a series of pile-tips on closely spaced parallel slip planes. The dynamics of this dislocation motion is governed by an experimentally determined dependence of dislocation velocity on shear stress. This leads to a set of coupled differential equations for the positions of the individual dislocations in the pile-up as a function of time. Shear displacement in the channel region is calculated from the total distance traveled by the dislocations. The macroscopic shape change in single crystal metal sheet samples is determined by the axial displacement produced by the shear displacements in the dislocation channels. Computer simulations are performed for the plastic deformation up to 20% engineering strain at a constant strain rate. Results of the computer calculations are compared with experimental observations of the shear stress-engineering strain curve obtained in tensile tests described in the literature. Agreement between the calculated and experimental stress-strain curves is obtained for shear displacement of 1.20-1.25 μm and 1000 active slip planes per channel, which is reasonable in the view of experimental observations

  1. Multiscale crystal defect dynamics: A coarse-grained lattice defect model based on crystal microstructure

    Science.gov (United States)

    Lyu, Dandan; Li, Shaofan

    2017-10-01

    Crystal defects have microstructure, and this microstructure should be related to the microstructure of the original crystal. Hence each type of crystals may have similar defects due to the same failure mechanism originated from the same microstructure, if they are under the same loading conditions. In this work, we propose a multiscale crystal defect dynamics (MCDD) model that models defects by considering its intrinsic microstructure derived from the microstructure or material genome of the original perfect crystal. The main novelties of present work are: (1) the discrete exterior calculus and algebraic topology theory are used to construct a scale-up (coarse-grained) dual lattice model for crystal defects, which may represent all possible defect modes inside a crystal; (2) a higher order Cauchy-Born rule (up to the fourth order) is adopted to construct atomistic-informed constitutive relations for various defect process zones, and (3) an hierarchical strain gradient theory based finite element formulation is developed to support an hierarchical multiscale cohesive (process) zone model for various defects in a unified formulation. The efficiency of MCDD computational algorithm allows us to simulate dynamic defect evolution at large scale while taking into account atomistic interaction. The MCDD model has been validated by comparing of the results of MCDD simulations with that of molecular dynamics (MD) in the cases of nanoindentation and uniaxial tension. Numerical simulations have shown that MCDD model can predict dislocation nucleation induced instability and inelastic deformation, and thus it may provide an alternative solution to study crystal plasticity.

  2. Photonic Crystal Fibers

    National Research Council Canada - National Science Library

    Kristiansen, Rene E

    2005-01-01

    This report results from a contract tasking Crystal Fibre A/S as follows: Crystal Fibre will conduct research and development of large mode area, dual clad multi-core Yb-doped photonic crystal fiber...

  3. Stacking fault tetrahedron induced plasticity in copper single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang, E-mail: lz592@uowmail.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Lu, Cheng, E-mail: chenglu@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Tieu, Kiet; Su, Lihong; Zhao, Xing [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Pei, Linqing [Department of Mechanical Engineering, Chongqing University, Chongqing 400044 (China)

    2017-01-05

    Stacking fault tetrahedron (SFT) is the most common type of vacancy clustered defects in fcc metals and alloys, and can play an important role in the mechanical properties of metallic materials. In this study, molecular dynamics (MD) simulations were carried out to investigate the incipience of plasticity and the underlying atomic mechanisms in copper single crystals with SFT. Different deformation mechanisms of SFT were reported due to the crystal orientations and loading directions (compression and tension). The results showed that the incipient plasticity in crystals with SFT resulted from the heterogeneous dislocation nucleation from SFT, so the stress required for plastic deformation was less than that needed for perfect single crystals. Three crystal orientations ([1 0 0], [1 1 0] and [1 1 1]) were specified in this study because they can represent most of the typical deformation mechanisms of SFT. MD simulations revealed that the structural transformation of SFT was frequent under the applied loading; a metastable SFT structure and the collapse of SFT were usually observed. The structural transformation resulted in a different reduction of yield stress in compression and tension, and also caused a decreased or reversed compression/tension asymmetry. Compressive stress can result in the unfaulting of Frank loop in some crystal orientations. According to the elastic theory of dislocation, the process of unfaulting was closely related to the size of the dislocation loop and the stacking fault energy.

  4. Structural petrology of undeformed and experimentally deformed halite samples from USERDA site No. 7 and No. 9

    International Nuclear Information System (INIS)

    Callender, J.; Ingwell, T.

    1977-01-01

    Preliminary data from USERDA test holes No. 7 and No. 9 in the Salado Formation of southeastern New Mexico are presented. Cores consist primarily of halite (> 80 modal percent), clay, polyhalite, anhydrite, celestite, iron oxide, and magnesite. Macroscopic features of undeformed core include moderately tight grain boundaries, large cavities (less than or equal to 8 mm 2 ), fluid inclusions, rare intragranular dislocations, and coarse and bimodal textures. Petrographic examination reveals numerous secondary fluid inclusions of variable size, blebby halite and transected hopper crystals, all of which suggest mobility and recrystallization of the primary evaporite assemblages. Deformed core shows a complex group of fabric elements, including tight grain boundaries, intercrystalline lattice rotation, cavity deformation and closure, distortion of hopper crystals, polygonization, irregular lattice dislocations, glide dislocations, and climb dislocations. Grain boundaries become tight or locked with deformation, forming pinned and bulged grains. Intercrystalline lattice rotation causes grains to rotate as much as 17 0 to develop preferred orientation. Polygonization yields fabrics analogous to prophyroclasts in cataclastic rocks. Irregular dislocations are relatively abundant. Glide dislocations are also abundant in many deformed specimens. Individual mineral components within deformed halite also exhibit deformational fabrics. Folded layers of clay and anhydrite, and bent and broken single crystals of anhydrite are present in some samples. Secondary fluid inclusions apparently migrate in response to differential stress and form along dislocations in halite, healing the dislocations by secondary crystallization and forming discontinuous or completely healed dislocation fabrics. 67 figures, 9 tables

  5. Role of crystal orientation on chemical mechanical polishing of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Aibin, E-mail: abzhu@mail.xjtu.edu.cn; He, Dayong; Luo, Wencheng; Liu, Yangyang

    2016-11-15

    Highlights: • The role of crystal orientation in cooper CMP by quasi-continuum was studied. • The atom displacement diagrams were obtained and analyzed. • The stress distribution diagrams and load-displacement curves were analyzed. • This research is helpful to revealing the material removal mechanism of CMP. - Abstract: The material removal mechanism of single crystal copper in chemical mechanical polishing (CMP) has not been intensively investigated. And the role of crystal orientation in CMP of single crystal cooper is not quite clear yet. Quasi-continuum method was adopted in this paper to simulate the process of nano-particles grinding on single crystal copper in CMP process. Three different crystal orientations, i.e. x[100]y[001], x[001]y[110] and x[–211]y[111], were chosen for analysis. The atom displacement diagrams, stress distribution diagrams and load-displacement curves were obtained. After analyzing the deformation mechanism, residual stress of the work piece material and cutting force, results showed that, the crystal orientation of work piece has great influence on the deformation characteristics and surface quality of work piece during polishing. In the A(001)[100] orientation, the residual stress distribution after polishing is deeper, and the stress is larger than that in the B(110)[001] and C(111)[–211] orientations. And the average tangential cutting force in the A(001)[100] orientation is much larger than those in the other two crystal orientation. This research is helpful to revealing the material removal mechanism of CMP process.

  6. Influence of deformation on the fluid transport properties of salt rocks

    NARCIS (Netherlands)

    Peach, C.J.

    1991-01-01

    While the fluid transport properties of rocks are well understood under hydrostatic conditions, little is known regarding these properties in rocks undergoing crystal plastic deformation. However, such data are needed as input in the field of radioactive waste disposal in salt formations. They are

  7. Influence of deformation on the fluid transport properties of salt rocks

    NARCIS (Netherlands)

    Peach, C.J.

    1991-01-01

    While the fluid transport properties of rocks are well understood under hydrostatic conditions, little is known regarding these properties in rocks undergoing crystal plastic deformation. However, such data are needed as input in the field of radioactive waste disposal in salt formations. They

  8. Effect of microplastic deformation on the electron ultrasonic absorption in high-purity molybdenum monocrystals

    International Nuclear Information System (INIS)

    Pal'-Val', P.P.; Kaufmann, Kh.-J.

    1983-01-01

    The low temperature (100-6 K) linear absorption of ultrasound (88 kHz) by high purity molybdenum single crystals have been studied. Both unstrained samples and samples sub ected to microplastic deformation (epsilon 0 approximately 10 -4 , during 10 min, at 6 K. A new relaxation peak of absorption at 10 K has been found in strained samples

  9. Deformed configurations, band structures and spectroscopic ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... The deformed configurations and rotational band structures in =50 Ge and Se nuclei are studied by deformed Hartree–Fock with quadrupole constraint and angular momentum projection. Apart from the `almost' spherical HF solution, a well-deformed configuration occurs at low excitation. A deformed ...

  10. Interactive Character Deformation Using Simplified Elastic Models

    NARCIS (Netherlands)

    Luo, Z.

    2016-01-01

    This thesis describes the results of our research into realistic skin and model deformation methods aimed at the field of character deformation and animation. The main contributions lie in the properties of our deformation scheme. Our approach preserves the volume of the deformed object while

  11. Associative and Lie deformations of Poisson algebras

    OpenAIRE

    Remm, Elisabeth

    2011-01-01

    Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.

  12. Deformation effects during hydride transformations in the Ta-H system

    International Nuclear Information System (INIS)

    Spivak, L.V.; Kats, M.Ya.

    1991-01-01

    A behavior of alloys with hydrogen constant content under thermocycling in stress fields and deformation effects in thermodynamically closed system of Ta-H are considered. Effect of hydrogenized tantalum heating and cooling on differential electroresistance, shear modulus and internal friction have been investigated. Spontaneuous deformation (twist effect) has been established under heating of hydrogenized and homogenized tantalum after prethermocycling of unloaded samples at hydroidation transition temperature. Cooling from homogeneous area under a load less than yield-point is accompanied by significant deformation at the temperature of hydridation.Investigated results enable one to conclude that observed deformation comprises a transition plasticity effect. Sample heating under no-load conditions leads to recovery of deformation accumulated during cooling. Besides it has been revealed that deformation of oriented transformation (DOT) exibits in Ta-H system. By this means the shape memory effect obtained as well as DOT demonstrated experimentally for the first time. Observed deformation effects are considered as a result of oriented growth or disapear of hydride crystals according to the deformation sheme

  13. Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals.

    Science.gov (United States)

    Akamatsu, N; Hisano, K; Tatsumi, R; Aizawa, M; Barrett, C J; Shishido, A

    2017-10-25

    Tunable photonic crystals exhibiting optical properties that respond reversibly to external stimuli have been developed using liquid crystal networks (LCNs) and liquid crystal elastomers (LCEs). These tunable photonic crystals possess an inverse opal structure and are photo-responsive, but circumvent the usual requirement to contain dye molecules in the structure that often limit their applicability and cause optical degradation. Herein, we report tunable photonic crystal films that reversibly tune the reflection peak wavelength under thermo-, photo- and mechano-stimuli, through bilayering a stimuli-responsive LCN including azobenzene units with a colourless inverse opal film composed of non-responsive, flexible durable polymers. By mechanically deforming the azobenzene containing LCN via various stimuli, the reflection peak wavelength from the bilayered film assembly could be shifted on demand. We confirm that the reflection peak shift occurs due to the deformation of the stimuli-responsive layer propagating towards and into the inverse opal layer to change its shape in response, and this shift behaviour is repeatable without optical degradation.

  14. Bilateral cleft lip nasal deformity

    Directory of Open Access Journals (Sweden)

    Singh Arun

    2009-01-01

    Full Text Available Bilateral cleft lip nose deformity is a multi-factorial and complex deformity which tends to aggravate with growth of the child, if not attended surgically. The goals of primary bilateral cleft lip nose surgery are, closure of the nasal floor and sill, lengthening of the columella, repositioning of the alar base, achieving nasal tip projection, repositioning of the lower lateral cartilages, and reorienting the nares from horizontal to oblique position. The multiplicity of procedures in the literature for correction of this deformity alludes to the fact that no single procedure is entirely effective. The timing for surgical intervention and its extent varies considerably. Early surgery on cartilage may adversely affect growth and development; at the same time, allowing the cartilage to grow in an abnormal position and contributing to aggravation of deformity. Some surgeons advocate correction of deformity at an early age. However, others like the cartilages to grow and mature before going in for surgery. With peer pressure also becoming an important consideration during the teens, the current trend is towards early intervention. There is no unanimity in the extent of nasal dissection to be done at the time of primary lip repair. While many perform limited nasal dissection for the fear of growth retardation, others opt for full cartilage correction at the time of primary surgery itself. The value of naso-alveolar moulding (NAM too is not universally accepted and has now more opponents than proponents. Also most centres in the developing world have neither the personnel nor the facilities for the same. The secondary cleft nasal deformity is variable and is affected by the extent of the original abnormality, any prior surgeries performed and alteration due to nasal growth. This article reviews the currently popular methods for correction of nasal deformity associated with bilateral cleft lip, it′s management both at the time of cleft lip repair

  15. Deformation of second and third quantization

    Science.gov (United States)

    Faizal, Mir

    2015-03-01

    In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.

  16. Effect of microplastic deformation on the electron ultrasonic absorption in high-purity molybdenum monocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Pal' -Val' , P.P.; Kaufmann, Kh.J.

    1983-03-01

    The low temperature (100-6 K) linear absorption of ultrasound (88 kHz) by high purity molybdenum single crystals have been studied. Both unstrained samples and samples sub ected to microplastic deformation (epsilon<=0.45%) were used. Unstrained samples displayed at T<30 K a rapid increase in the absorption with lowering temperature which is interpreted as an indication of electron viscosity due to electron-phonon collisions. After deformation this part of absorption disappeared. This seems to suggest that microplastic deformation brings about in the crystal a sufficiently large number of defects that can compete with phonons in restricting the electron mean free path. A low temperature dynamic annealing has been revealed in strained samples, that is almost complete recovery of the absorption nature under irradiation with high amplitude sound, epsilon/sub 0/ approximately 10/sup -4/, during 10 min, at 6 K. A new relaxation peak of absorption at 10 K has been found in strained samples.

  17. Stochastic deformation of a thermodynamic symplectic structure

    OpenAIRE

    Kazinski, P. O.

    2008-01-01

    A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transform...

  18. Dynamical neutron diffraction by curved crystals in the Laue geometry

    International Nuclear Information System (INIS)

    Albertini, G.; Melone, S.; Lagomarsino, S.; Mazkedian, S.; Puliti, P.; Rustichelli, F.

    1977-01-01

    The Taupin dynamical theory of X-ray diffraction by deformed crystals which was previously extended to the neutron diffraction by curved crystals in the Bragg geometry, is applied to calculate neutron diffraction patterns in the Laue geometry. The theoretical results are compared with experimental data on curved silicon crystals. The agreement is quite satisfactory. In the second part a simple model recently presented to describe neutron diffraction properties in the Bragg case is extended to the Laue case. The predictions of such a model are in satisfactory agreement with the rigorous theory and the experimental results. (author)

  19. Volcanic deformation in the Andes

    Science.gov (United States)

    Riddick, S.; Fournier, T.; Pritchard, M.

    2009-05-01

    We present the results from an InSAR survey of volcanic activity in South America. We use data from the Japanese Space Agency's ALOS L-band radar satellite from 2006-2009. The L-band instrument provides better coherence in densely vegetated regions, compared to the shorter wave length C-band data. The survey reveals volcano related deformation in regions, north, central and southern, of the Andes volcanic arc. Since observations are limited to the austral summer, comprehensive coverage of all volcanoes is not possible. Yet, our combined observations reveal volcanic/hydrothermal deformation at Lonquimay, Llaima, Laguna del Maule, and Chaitén volcanoes, extend deformation measurements at Copahue, and illustrate temporal complexity to the previously described deformation at Cerro Hudson and Cordón Caulle. No precursory deformation is apparent before the large Chaitén eruption (VEI_5) of 2 May 2008, (at least before 16 April) suggesting rapid magma movement from depth at this long dormant volcano. Subsidence at Ticsani Volcano occurred coincident with an earthquake swarm in the same region.

  20. Plastic deformation of indium nanostructures

    International Nuclear Information System (INIS)

    Lee, Gyuhyon; Kim, Ju-Young; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2011-01-01

    Highlights: → Indium nanopillars display two different deformation mechanisms. → ∼80% exhibited low flow stresses near that of bulk indium. → Low strength nanopillars have strain rate sensitivity similar to bulk indium. → ∼20% of compressed indium nanopillars deformed at nearly theoretical strengths. → Low-strength samples do not exhibit strength size effects. - Abstract: Mechanical properties and morphology of cylindrical indium nanopillars, fabricated by electron beam lithography and electroplating, are characterized in uniaxial compression. Time-dependent deformation and influence of size on nanoscale indium mechanical properties were investigated. The results show two fundamentally different deformation mechanisms which govern plasticity in these indium nanostructures. We observed that the majority of indium nanopillars deform at engineering stresses near the bulk values (Type I), with a small fraction sustaining flow stresses approaching the theoretical limit for indium (Type II). The results also show the strain rate sensitivity and flow stresses in Type I indium nanopillars are similar to bulk indium with no apparent size effects.

  1. Static response of deformable microchannels

    Science.gov (United States)

    Christov, Ivan C.; Sidhore, Tanmay C.

    2017-11-01

    Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.

  2. Discrete dislocation plasticity modeling of short cracks in single crystals

    NARCIS (Netherlands)

    Deshpande, VS; Needleman, A; Van der Giessen, E

    2003-01-01

    The mode-I crack growth behavior of geometrically similar edge-cracked single crystal specimens of varying size subject to both monotonic and cyclic axial loading is analyzed using discrete dislocation dynamics. Plastic deformation is modeled through the motion of edge dislocations in an elastic

  3. Optical storage media based on fluorite activated crystals

    International Nuclear Information System (INIS)

    Mokienko, I.Yu.; Poletimov, A.E.; Shcheulin, A.S.

    1991-01-01

    Earlier studied mechanisms of photo- and thermotransformations of defects in pure and activated additively coloured crystals with fluorite structure are considered to suggest several methods of reversible optical recording of images, characterized by high resistance to high-power laser radiation and mechanical deformation

  4. Micromechanical modeling of the deformation of HCP metals

    Energy Technology Data Exchange (ETDEWEB)

    Graff, S. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2008-12-04

    Nowadays, intense research is conducted to understand the relation between microstructural features and mechanical properties of hexagonal close-packed (hcp) metals. Due to their hexagonal structure, hcp metals exhibit mechanical properties such as strong anisotropy, which is more pronounced than for construction metals with cubic crystal structure, and tension/compression asymmetry. Deformation mechanisms in hcp metals, dislocation motion on specific slip systems and activation of twinning, are not yet completely understood. The purpose of this work is to link the physical mechanisms developing during deformation of magnesium (Mg) on the microscale with the macroscopic yielding properties of texture Mg samples. It will be shown that the mechanical behavior of hcp metals may be understood and reproduced with the help of a visco-plastic model for crystal plasticity and a phenomenological yield criterion with appropriate hardening behavior. The study of single crystal specimens subjected to channel die compression tests reveals the active slip systems and twinning systems of the material considered. The material anisotropy at mesoscale is reproduced by using adequate critical resolved shear stresses (CRSS) for the considered deformation mechanisms. In order to describe the macroscopic behavior, texture is incorporated into polycrystalline Representative Volume Elements (RVEs) and various mechanical properties of extruded bars and rolled plates can be predicted. For RVEs exhibiting the texture of rolled plates the numerical results reveal the plate's anisotropic yielding and hardening behavior on a mesoscale. In order to extend the modeling possibilities to process simulations and to allow for time-saving simulations of structural behavior, a phenomenological yield surface accounting for anisotropy and tension/compression asymmetry has been established and implemented in a finite element code. Its numerous model parameters are calibrated by an optimization

  5. Crystal plasticity study of monocrystalline stochastic honeycombs under in-plane compression

    International Nuclear Information System (INIS)

    Ma, Duancheng; Eisenlohr, Philip; Epler, Eike; Volkert, Cynthia A.; Shanthraj, Pratheek; Diehl, Martin; Roters, Franz; Raabe, Dierk

    2016-01-01

    We present a study on the plastic deformation of single crystalline stochastic honeycombs under in-plane compression using a crystal plasticity constitutive description for face-centered cubic (fcc) materials, focusing on the very early stage of plastic deformation, and identifying the interplay between the crystallographic orientation and the cellular structure during plastic deformation. We observe that despite the stochastic structure, surprisingly, the slip system activations in the honeycombs are almost identical to their corresponding bulk single crystals at the early stage of the plastic deformation. On the other hand, however, the yield stresses of the honeycombs are nearly independent of their crystallographic orientations. Similar mechanical response is found in compression testing of nanoporous gold micro-pillars aligned with various crystallographic orientations. The macroscopic stress tensors of the honeycombs show the same anisotropy as their respective bulk single crystals. Locally, however, there is an appreciable fluctuation in the local stresses, which are even larger than for polycrystals. This explains why the Taylor/Schmid factor associated with the crystallographic orientation is less useful to estimate the yield stresses of the honeycombs than the bulk single crystals and polycrystals, and why the plastic deformation occurs at smaller strains in the honeycombs than their corresponding bulk single crystals. Besides these findings, the observations of the crystallographic reorientation suggest that conventional orientation analysis tools, such as inverse pole figure and related tools, would in general fail to study the plastic deformation mechanism of monocrystalline cellular materials.

  6. Structural defects in natural plastically deformed diamonds: Evidence from EPR spectroscopy

    Science.gov (United States)

    Mineeva, R. M.; Titkov, S. V.; Speransky, A. V.

    2009-06-01

    Structural defects formed as a result of plastic deformation in natural diamond crystals have been studied by EPR spectroscopy. The spectra of brown, pink-brown, black-brown, pink-purple, and gray plastically deformed diamonds of type Ia from deposits in Yakutia and the Urals were recorded. The results of EPR spectroscopy allowed us to identify various deformation centers in the structure of natural diamonds and to show that nitrogen centers were transformed under epigenetic mechanical loading. Abundant A centers, consisting of two isomorphic nitrogen atoms located in neighboring structural sites, were destroyed as a result of this process to form a series of N1, N4, W7, M2, and M3 nitrogen centers. Such centers are characterized by an anisotropic spatial distribution and a positive charge, related to the mechanism of their formation. In addition, N2 centers (probably, deformation-produced dislocations decorated by nitrogen) were formed in all plastically deformed diamonds and W10 and W35 centers (the models have not been finally ascertained) were formed in some of them. It has been established that diamonds with various types of deformation-induced color contain characteristic associations of these deformation centers. The diversity of associations of deformation centers indicates appreciable variations in conditions of disintegration of deep-seated rocks, transfer of diamonds to the Earth’s surface, and formation of kimberlitic deposits. Depending on the conditions of mechanical loading, the diamond crystals were plastically deformed by either dislocation gliding or mechanical twinning. Characteristic features of plastic deformation by dislocation gliding are the substantial prevalence of the N2 centers over other deformation centers and the occurrence of the high-spin W10 and W35 centers. The attributes of less frequent plastic deformation by mechanical twinning are unusual localization of the M2 centers and, in some cases, the N1 centers in microtwinned

  7. An acoustic emission study of plastic deformation in polycrystalline aluminium

    Science.gov (United States)

    Bill, R. C.; Frederick, J. R.; Felbeck, D. K.

    1979-01-01

    Acoustic emission experiments were performed on polycrystalline and single crystal 99.99% aluminum while undergoing tensile deformation. It was found that acoustic emission counts as a function of grain size showed a maximum value at a particular grain size. Furthermore, the slip area associated with this particular grain size corresponded to the threshold level of detectability of single dislocation slip events. The rate of decline in acoustic emission activity as grain size is increased beyond the peak value suggests that grain boundary associated dislocation sources are giving rise to the bulk of the detected acoustic emissions.

  8. Making Deformable Template Models Operational

    DEFF Research Database (Denmark)

    Fisker, Rune

    2000-01-01

    for estimation of the model parameters, which applies a combination of a maximum likelihood and minimum distance criterion. Another contribution is a very fast search based initialization algorithm using a filter interpretation of the likelihood model. These two methods can be applied to most deformable template......Deformable template models are a very popular and powerful tool within the field of image processing and computer vision. This thesis treats this type of models extensively with special focus on handling their common difficulties, i.e. model parameter selection, initialization and optimization....... A proper handling of the common difficulties is essential for making the models operational by a non-expert user, which is a requirement for intensifying and commercializing the use of deformable template models. The thesis is organized as a collection of the most important articles, which has been...

  9. Phonon operators in deformed nuclei

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1981-01-01

    For the description of the excited states in deformed nuclei new phonon operators are introduced, which depend on the sign of the angular momentum projection onto the symmetry axis of a deformed nucleus. In the calculations with new phonons the Pauli principle is correctly taken into account in the two-phonon components of the wave functions. There is a difference in comparison with the calculation with phonons independent of the sign of the angular momentum projection. The new phonons should be used in deformed nuclei if the Pauli principle is consistently taken into account and in the calculations with the excited state wave functions having the components with more than one phonon operator [ru

  10. Phonon operators for deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.

    1982-01-01

    The mathematical formalism with the phonon operators independent of the signature of the angular momentum projection turns out to be inadequate for describing excited states of deformed nuclei. New phonon operators are introduced which depend on the signature of the angular momentum projection on the symmetry axis of a deformed nucleus. It is shown that the calculations with the new phonons take correctly into account the Pauli principle in two-phonon components of wave functions. The results obtained differ from those given by the phonons independent of the signature of the angular momentum projection. The new phonons must be used in deformed nuclei at taking systematically the Pauli principle into account and in calculations involving wave functions of excited states having components with more than one-phonon operator

  11. Foam rheology at large deformation

    Science.gov (United States)

    Géminard, J.-C.; Pastenes, J. C.; Melo, F.

    2018-04-01

    Large deformations are prone to cause irreversible changes in materials structure, generally leading to either material hardening or softening. Aqueous foam is a metastable disordered structure of densely packed gas bubbles. We report on the mechanical response of a foam layer subjected to quasistatic periodic shear at large amplitude. We observe that, upon increasing shear, the shear stress follows a universal curve that is nearly exponential and tends to an asymptotic stress value interpreted as the critical yield stress at which the foam structure is completely remodeled. Relevant trends of the foam mechanical response to cycling are mathematically reproduced through a simple law accounting for the amount of plastic deformation upon increasing stress. This view provides a natural interpretation to stress hardening in foams, demonstrating that plastic effects are present in this material even for minute deformation.

  12. Computing layouts with deformable templates

    KAUST Repository

    Peng, Chi-Han

    2014-07-22

    In this paper, we tackle the problem of tiling a domain with a set of deformable templates. A valid solution to this problem completely covers the domain with templates such that the templates do not overlap. We generalize existing specialized solutions and formulate a general layout problem by modeling important constraints and admissible template deformations. Our main idea is to break the layout algorithm into two steps: a discrete step to lay out the approximate template positions and a continuous step to refine the template shapes. Our approach is suitable for a large class of applications, including floorplans, urban layouts, and arts and design. Copyright © ACM.

  13. Neutron scattering on deformed nuclei

    International Nuclear Information System (INIS)

    Hansen, L.F.; Haight, R.C.; Pohl, B.A.; Wong, C.; Lagrange, C.

    1984-09-01

    Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9 Be, C, 181 Ta, 232 Th, 238 U and 239 Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonable good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP

  14. Plastic Deformation of Metal Surfaces

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2013-01-01

    of metal components. An optimization of processes and material parameters must be based on a quantification of stress and strain gradients at the surface and in near surface layer where the structural scale can reach few tens of nanometers. For such fine structures it is suggested to quantify structural...... parameters by TEM and EBSD and apply strength-structural relationships established for the bulk metal deformed to high strains. This technique has been applied to steel deformed by high energy shot peening and a calculated stress gradient at or near the surface has been successfully validated by hardness...

  15. Nucleon deformation from lattice QCD

    International Nuclear Information System (INIS)

    Tsapalis, A.

    2008-01-01

    The issue of nucleon and Delta(1232) deformation is discussed through the evaluation of the N to Delta electromagnetic transition and Delta electromagnetic form factors in Lattice QCD. The momentum dependence of the form factors is studied using 2+1 staggered dynamical flavors at pion masses as low as 350 MeV and compared to results obtained in the Wilson quenched and two-flavor dynamical theory at similar pion masses. The measurement of small non-zero quadrupole amplitudes, in agreement to recent experiments, establishes the existence of deformation in the N and Delta states. (author)

  16. Computing layouts with deformable templates

    KAUST Repository

    Peng, Chi-Han; Yang, Yongliang; Wonka, Peter

    2014-01-01

    In this paper, we tackle the problem of tiling a domain with a set of deformable templates. A valid solution to this problem completely covers the domain with templates such that the templates do not overlap. We generalize existing specialized solutions and formulate a general layout problem by modeling important constraints and admissible template deformations. Our main idea is to break the layout algorithm into two steps: a discrete step to lay out the approximate template positions and a continuous step to refine the template shapes. Our approach is suitable for a large class of applications, including floorplans, urban layouts, and arts and design. Copyright © ACM.

  17. Formal connections in deformation quantization

    DEFF Research Database (Denmark)

    Masulli, Paolo

    The field of this thesis is deformation quantization, and we consider mainly symplectic manifolds equipped with a star product. After reviewing basics in complex geometry, we introduce quantization, focusing on geometric quantization and deformation quantization. The latter is defined as a star...... characteristic class, and that formal connections form an affine space over the derivations of the star products. Moreover, if the parameter space for the family of star products is contractible, we obtain that any two flat formal connections are gauge equivalent via a self-equivalence of the family of star...

  18. Nanodisturbances in deformed Gum Metal

    International Nuclear Information System (INIS)

    Gutkin, Mikhail Yu.; Ishizaki, Toshitaka; Kuramoto, Shigeru; Ovid'ko, Ilya A.

    2006-01-01

    Systematic experiments have been performed to characterize defect structures in deformed Gum Metal, a special titanium alloy with high strength, low Young's modulus, excellent cold workability and low resistance to shear in certain crystallographic planes. Results from high-resolution transmission electron microscopy characterization reveal nanodisturbances (planar nanoscopic areas of local shear) as typical elements of defect structures in deformed Gum Metal. A theoretical model is suggested describing nanodisturbances as nanoscale dipoles of non-conventional partial dislocations with arbitrary, non-quantized Burgers vectors. It is shown theoretically that the homogeneous generation of nanodisturbances is energetically favorable in Gum Metal, where they effectively carry plastic flow

  19. Deformation properties of lead isotopes

    International Nuclear Information System (INIS)

    Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.; Saperstein, E. E.

    2016-01-01

    The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF 0 Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes. The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, 180 Pb and 184 Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF 0 functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF 0 functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron-rich lead isotopes undergo

  20. Use of acoustic waves and x-ray radiation for determination of small deformations in monocrystalline Si wafers

    International Nuclear Information System (INIS)

    Gavrilov, V.N.; Myasishchev, D.E.; Raitman, E.A.

    2006-01-01

    The paper describes a new method for determination of inhomogeneous deformations in monocrystalline semiconductor wafers. The physical basis of the method is dynamical scattering of X-rays by ultra-sound waves in the presence of static stresses in the crystal. By solving approximately a modified Takagi-Taupin equation the expressions have been obtained that describe relative variations of the diffraction intensity depending on the deformation gradient, the amplitude of ultra-sound wave and its frequency. The paper exemplifies the use of the method for analyzing the deformations and their distribution near the wafer surface in almost 'perfect' crystals and in oxidized wafers with etched windows. It is shown that the new method of nondestructive control, along with its relative simplicity, possesses high sensitivity allowing relative deformations of crystalline lattice of the order of 10-4-10-5 to be determined. (Authors)

  1. Grain Interactions in Crystal Plasticity

    International Nuclear Information System (INIS)

    Boyle, K.P.; Curtin, W.A.

    2005-01-01

    The plastic response of a sheet metal is governed by the collective response of the underlying grains. Intragranular plasticity depends on intrinsic variables such as crystallographic orientation and on extrinsic variables such as grain interactions; however, the role of the latter is not well understood. A finite element crystal plasticity formulation is used to investigate the importance of grain interactions on intragranular plastic deformation in initially untextured polycrystalline aggregates. A statistical analysis reveals that grain interactions are of equal (or more) importance for determining the average intragranular deviations from the applied strain as compared to the orientation of the grain itself. Furthermore, the influence of the surrounding grains is found to extend past nearest neighbor interactions. It is concluded that the stochastic nature of the mesoscale environment must be considered for a proper understanding of the plastic response of sheet metals at the grain-scale

  2. Pressure cryocooling protein crystals

    Science.gov (United States)

    Kim, Chae Un [Ithaca, NY; Gruner, Sol M [Ithaca, NY

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  3. Single Crystal Piezoelectric Stack Actuator DM with Integrated Low-Power HVA-Based Driver ASIC, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project aims to develop an innovative batch fabrication technique to create single crystal PMN-PT stack actuator deformable mirrors (DM) at low...

  4. Twinning behavior in the Ti-5at.% Al single crystals during cyclic loading along [0001

    International Nuclear Information System (INIS)

    Xiao Lin

    2005-01-01

    Cyclic deformation behavior of Ti-5at.% Al single crystals subjected to pull-push cyclic load along [0001] crystallographic orientation was studied. A higher cyclic stress response was displayed in the Ti-5Al single crystal oriented for [0001] than that oriented for single prism slip. Optical microscopy and transmission electron microscopy examinations show that twinning is a dominant plastic deformation mode in the single crystals during cycling. Trace analysis of prepolished surfaces was used to identify the twin systems primarily responsible for deformation. The major twin type observed was {101-bar 2}, {112-bar 2}, {101-bar 1} and {112-bar 1}. slip was observed in the neighboring region of twins in the fatigued specimens. The activation of multiple twinning systems contributed to the higher cyclic saturation stress in Ti-5Al single crystals oriented for [0001

  5. Dynamic precipitation of nickel-based superalloys undergoing severe deformation below the solvus temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nowotnik, Andrzej; Rokicki, Pawel; Mrowka-Nowotnik, Grazyna; Sieniawski, Jan [Rzeszow Univ. of Technology (Poland). Dept. of Material Science

    2015-07-15

    The authors performed uniaxial compression tests of nickel-based superalloys: single crystal CMSX-4, also precipitation hardened; Inconel 718 and X750, at temperatures below the γ' solvus, in order to study the effect of temperature and strain rate on their flow stress and microstructural development. On the basis of the obtained flow stress values, the activation energy of a high-temperature deformation process was estimated. Microstructural observations of the deformed samples at high temperatures, previously solution heat treated and aged CMSX-4 and Inconel alloys revealed non-uniform deformation effects. Distribution of either molybdenum- or niobium-rich carbides was found to be affected by localized flow within the investigated strain range at relatively low deformation temperatures, 720-850 C. Microstructural examination of the alloys also showed that shear banding and cavity growth were responsible for the decrease in flow stress and a specimen fracture at larger strains.

  6. Deformations of the Almheiri-Polchinski model

    Energy Technology Data Exchange (ETDEWEB)

    Kyono, Hideki; Okumura, Suguru; Yoshida, Kentaroh [Department of Physics, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan)

    2017-03-31

    We study deformations of the Almheiri-Polchinski (AP) model by employing the Yang-Baxter deformation technique. The general deformed AdS{sub 2} metric becomes a solution of a deformed AP model. In particular, the dilaton potential is deformed from a simple quadratic form to a hyperbolic function-type potential similarly to integrable deformations. A specific solution is a deformed black hole solution. Because the deformation makes the spacetime structure around the boundary change drastically and a new naked singularity appears, the holographic interpretation is far from trivial. The Hawking temperature is the same as the undeformed case but the Bekenstein-Hawking entropy is modified due to the deformation. This entropy can also be reproduced by evaluating the renormalized stress tensor with an appropriate counter-term on the regularized screen close to the singularity.

  7. Dislocations and point defects in hydrostatically compressed crystal

    International Nuclear Information System (INIS)

    Kosevich, A.M.; Tokij, V.V.; Strel'tsov, V.A.

    1978-01-01

    Within the framework of the theory of finite deformations, the elastic fields are considered, which are induced by the sources of internal stresses in a crystal compressed under a high pressure. In the case of a hydrostatically compressed crystal with defects, the use of a variation principle is discussed. Using the smallness of distorsions, the linear theory of elastic fields of defects in the crystal compressed under a high pressure, is developed. An analysis of the main relationships of the theory results in the following conclusion: in a course of the linear approximation the taking into account of the hydrostatic pressure brings to the renorming of the elasticity moduli and to the replacing of the hydrostatic parameters of defects by their values in the compressed crystal. That conclusion allows the results of the elasticity linear theory of the crystal with defects to be used to the full extent

  8. Theory of the deformation of aligned polyethylene.

    Science.gov (United States)

    Hammad, A; Swinburne, T D; Hasan, H; Del Rosso, S; Iannucci, L; Sutton, A P

    2015-08-08

    Solitons are proposed as the agents of plastic and viscoelastic deformation in aligned polyethylene. Interactions between straight, parallel molecules are mapped rigorously onto the Frenkel-Kontorova model. It is shown that these molecular interactions distribute an applied load between molecules, with a characteristic transfer length equal to the soliton width. Load transfer leads to the introduction of tensile and compressive solitons at the chain ends to mark the onset of plasticity at a well-defined yield stress, which is much less than the theoretical pull-out stress. Interaction energies between solitons and an equation of motion for solitons are derived. The equation of motion is based on Langevin dynamics and the fluctuation-dissipation theorem and it leads to the rigorous definition of an effective mass for solitons. It forms the basis of a soliton dynamics in direct analogy to dislocation dynamics. Close parallels are drawn between solitons in aligned polymers and dislocations in crystals, including the configurational force on a soliton. The origins of the strain rate and temperature dependencies of the viscoelastic behaviour are discussed in terms of the formation energy of solitons. A failure mechanism is proposed involving soliton condensation under a tensile load.

  9. Deformable Models for Eye Tracking

    DEFF Research Database (Denmark)

    Vester-Christensen, Martin; Leimberg, Denis; Ersbøll, Bjarne Kjær

    2005-01-01

    A deformable template method for eye tracking on full face images is presented. The strengths of the method are that it is fast and retains accuracy independently of the resolution. We compare the me\\$\\backslash\\$-thod with a state of the art active contour approach, showing that the heuristic...

  10. Orbita - Anatomy, development and deformities

    International Nuclear Information System (INIS)

    Hartmann, K.M.; Reith, W.; Golinski, M.; Schroeder, A.C.

    2008-01-01

    The development of the structures of the human orbita is very complex, but understanding the development makes it easier to understand normal anatomy and dysplasia. The following article first discusses the embryonic development of the eye structures and then presents the ''normal'' radiological anatomy using different investigation techniques and the most common deformities. (orig.) [de

  11. Deformations of topological open strings

    NARCIS (Netherlands)

    Hofman, C.; Ma, Whee Ky

    Deformations of topological open string theories are described, with an emphasis on their algebraic structure. They are encoded in the mixed bulk-boundary correlators. They constitute the Hochschild complex of the open string algebra - the complex of multilinear maps on the boundary Hilbert space.

  12. Simulation of rock deformation behavior

    Directory of Open Access Journals (Sweden)

    Я. И. Рудаев

    2016-12-01

    Full Text Available A task of simulating the deformation behavior of geomaterials under compression with account of over-extreme branch has been addressed. The physical nature of rock properties variability as initially inhomogeneous material is explained by superposition of deformation and structural transformations of evolutionary type within open nonequilibrium systems. Due to this the description of deformation and failure of rock is related to hierarchy of instabilities within the system being far from thermodynamic equilibrium. It is generally recognized, that the energy function of the current stress-strain state is a superposition of potential component and disturbance, which includes the imperfection parameter accounting for defects not only existing in the initial state, but also appearing under load. The equation of state has been obtained by minimizing the energy function by the order parameter. The imperfection parameter is expressed through the strength deterioration, which is viewed as the internal parameter of state. The evolution of strength deterioration has been studied with the help of Fokker – Planck equation, which steady form corresponds to rock statical stressing. Here the diffusion coefficient is assumed to be constant, while the function reflecting internal sliding and loosening of the geomaterials is assumed as an antigradient of elementary integration catastrophe. Thus the equation of state is supplemented with a correlation establishing relationship between parameters of imperfection and strength deterioration. While deformation process is identified with the change of dissipative media, coupled with irreversible structural fluctuations. Theoretical studies are proven with experimental data obtained by subjecting certain rock specimens to compression.

  13. Deformation Driven Alloying and Transformation

    Science.gov (United States)

    2015-03-03

    process is a repeated deformation and welding or folding of particles or layers that allows for strain levels in excess of 100 as shown in Fig.1. The...complete transformation yielded a duplex product of metastable BCC and FCC solid solutions. Another form of mechanochemical transduction is

  14. Deformation mechanisms of nanotwinned Al

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinghang [Texas A & M Univ., College Station, TX (United States)

    2016-11-10

    The objective of this project is to investigate the role of different types of layer interfaces on the formation of high density stacking fault (SF) in Al in Al/fcc multilayers, and understand the corresponding deformation mechanisms of the films. Stacking faults or twins can be intentionally introduced (via growth) into certain fcc metals with low stacking fault energy (such as Cu, Ag and 330 stainless steels) to achieve high strength, high ductility, superior thermal stability and good electrical conductivity. However it is still a major challenge to synthesize these types of defects into metals with high stacking fault energy, such as Al. Although deformation twins have been observed in some nanocrystalline Al powders by low temperature, high strain rate cryomilling or in Al at the edge of crack tip or indentation (with the assistance of high stress intensity factor), these deformation techniques typically introduce twins sporadically and the control of deformation twin density in Al is still not feasible. This project is designed to test the following hypotheses: (1) Certain type of layer interfaces may assist the formation of SF in Al, (2) Al with high density SF may have deformation mechanisms drastically different from those of coarse-grained Al and nanotwinned Cu. To test these hypotheses, we have performed the following tasks: (i) Investigate the influence of layer interfaces, stresses and deposition parameters on the formation and density of SF in Al. (ii) Understand the role of SF on the deformation behavior of Al. In situ nanoindentation experiments will be performed to probe deformation mechanisms in Al. The major findings related to the formation mechanism of twins and mechanical behavior of nanotwinned metals include the followings: 1) Our studies show that nanotwins can be introduced into metals with high stacking fault energy, in drastic contrast to the general anticipation. 2) We show two strategies that can effectively introduce growth twins in

  15. Deformation mechanisms of nanotwinned Al

    International Nuclear Information System (INIS)

    Zhang, Xinghang

    2016-01-01

    The objective of this project is to investigate the role of different types of layer interfaces on the formation of high density stacking fault (SF) in Al in Al/fcc multilayers, and understand the corresponding deformation mechanisms of the films. Stacking faults or twins can be intentionally introduced (via growth) into certain fcc metals with low stacking fault energy (such as Cu, Ag and 330 stainless steels) to achieve high strength, high ductility, superior thermal stability and good electrical conductivity. However it is still a major challenge to synthesize these types of defects into metals with high stacking fault energy, such as Al. Although deformation twins have been observed in some nanocrystalline Al powders by low temperature, high strain rate cryomilling or in Al at the edge of crack tip or indentation (with the assistance of high stress intensity factor), these deformation techniques typically introduce twins sporadically and the control of deformation twin density in Al is still not feasible. This project is designed to test the following hypotheses: (1) Certain type of layer interfaces may assist the formation of SF in Al, (2) Al with high density SF may have deformation mechanisms drastically different from those of coarse-grained Al and nanotwinned Cu. To test these hypotheses, we have performed the following tasks: (i) Investigate the influence of layer interfaces, stresses and deposition parameters on the formation and density of SF in Al. (ii) Understand the role of SF on the deformation behavior of Al. In situ nanoindentation experiments will be performed to probe deformation mechanisms in Al. The major findings related to the formation mechanism of twins and mechanical behavior of nanotwinned metals include the followings: 1) Our studies show that nanotwins can be introduced into metals with high stacking fault energy, in drastic contrast to the general anticipation. 2) We show two strategies that can effectively introduce growth twins in

  16. Influence of Plastic Deformation on Martensitic Transformation During Hot Stamping of Complex Structure Auto Parts

    Science.gov (United States)

    Shen, Yuhan; Song, Yanli; Hua, Lin; Lu, Jue

    2017-04-01

    The ultra-high strength steel auto parts manufactured by hot stamping are widely applied for weight reduction and safety improvement. During the hot stamping process, hot forming and quenching are performed in one step wherein plastic deformation and phase transformation simultaneously take place and affect each other. Thereinto, the influence of deformation on martensitic transformation is of great importance. In the present paper, the influence of plastic deformation on martensitic transformation during hot stamping of complex structure auto parts was investigated. For this purpose, a B-pillar reinforced panel in B1500HS steel was manufactured by hot stamping, and the process was simulated by finite element software based on a thermo-mechanical-metallurgical coupled model. Considering various deformation degrees, the microstructures and mechanical properties at four typical locations of the hot stamped B-pillar reinforced panel were detected. The results show that the martensitic content and the microhardness increase with the increase in the deformation amount. There are two reasons causing this phenomenon: (1) the increase in mechanical driving force and (2) the increased probability of the martensitic nucleation at crystal defects. The x-ray diffraction analysis indicates the carbon enrichment in retained austenite which results from the carbon diffusion during the low-carbon martensite formation. Furthermore, the carbon content decreases with the increase in the deformation amount, because the deformation of austenite suppresses the carbon diffusion.

  17. Correlations between plastic deformation parameters and radiation detector quality in HgI2

    International Nuclear Information System (INIS)

    Georgeson, G.; Milstein, F.; California Univ., Santa Barbara

    1989-01-01

    Mercuric iodide radiation detectors of various grades of quality were subjected to shearing forces in the (001) crystallographic planes using a specially designed micromechanical shear testing fixture. Experimental measurements were made of (001) shear stress versus shear strain. Each of the stress-strain curves was described by two empirically determined deformation parameters, s 0 and σ, where s 0 is a measure of 'bulk yielding' and σ indicates the 'sharpness of yielding' during plastic deformation. It was observed that the deformation parameters of many HgI 2 single crystal samples fit the relation s 0 =8σ 2/3 and that significant deviation from this relation, with s 0 >8σ 2/3 , indicates poor detector quality. Work hardening by prior plastic deformation was also found to cause s 0 to depart (in an increasing manner) from the 8σ 2/3 relation. For good quality material that has not previously been plastically deformed, the deformation parameter s c =s 0 -2σ<19 psi; this parameter can be interpreted as the 'onset of plastic yielding'. The results are discussed in terms of dislocation mechanisms for plastic deformation, work hardening, and recovery of work hardening. (orig.)

  18. Treatment of hallux valgus deformity.

    Science.gov (United States)

    Fraissler, Lukas; Konrads, Christian; Hoberg, Maik; Rudert, Maximilian; Walcher, Matthias

    2016-08-01

    Hallux valgus deformity is a very common pathological condition which commonly produces painful disability. It is characterised as a combined deformity with a malpositioning of the first metatarsophalangeal joint caused by a lateral deviation of the great toe and a medial deviation of the first metatarsal bone.Taking the patient's history and a thorough physical examination are important steps. Anteroposterior and lateral weight-bearing radiographs of the entire foot are crucial for adequate assessment in the treatment of hallux valgus.Non-operative treatment of the hallux valgus cannot correct the deformity. However, insoles and physiotherapy in combination with good footwear can help to control the symptoms.There are many operative techniques for hallux valgus correction. The decision on which surgical technique is used depends on the degree of deformity, the extent of degenerative changes of the first metatarsophalangeal joint and the shape and size of the metatarsal bone and phalangeal deviation. The role of stability of the first tarsometatarsal joint is controversial.Surgical techniques include the modified McBride procedure, distal metatarsal osteotomies, metatarsal shaft osteotomies, the Akin osteotomy, proximal metatarsal osteotomies, the modified Lapidus fusion and the hallux joint fusion. Recently, minimally invasive percutaneous techniques have gained importance and are currently being evaluated more scientifically.Hallux valgus correction is followed by corrective dressings of the great toe post-operatively. Depending on the procedure, partial or full weight-bearing in a post-operative shoe or cast immobilisation is advised. Post-operative radiographs are taken in regular intervals until osseous healing is achieved. Cite this article: Fraissler L, Konrads C, Hoberg M, Rudert M, Walcher M. Treatment of hallux valgus deformity. EFORT Open Rev 2016;1:295-302. DOI: 10.1302/2058-5241.1.000005.

  19. Lattice mechanics of ionic crystals - unified study

    International Nuclear Information System (INIS)

    Sengupta, S.; Roy, D.; Basu, A.N.

    1979-01-01

    The up-to-date situation in the understanding of the mechanical properties of ionic solids is reviewed. These properties are determined by the Born-Oppenheimer (B-O) potential energy function. For ionic crystals this potential energy function can be written down with some precision. To keep the expression tractable, the dominant electron deformation, the dipolar deformation, is treated as an adiabatic variable and the energy then becomes a function of both the nuclear coordinates and the ionic dipole moments. All the well known models for ionic crystals are discussed in terms of the energy expression they imply. This makes the comparison straight forward and brings out the essential difference between the models clearly. Next various quantum mechanical treatments for ionic crystals are reviewed. An attempt is made to obtain the B-O potential energy expression using a Heitler-London approach. By comparing the various models one can arrive at some definitive conclusions about the degree of validity and the assumptions underlying these models. Finally a comprehensive review of the results of actual computation on various ionic crystals done by different authors is undertaken. The crucial quantitative results are examined and the success and shortcoming of each calculation are critically analysed. The guiding principle in this part is the unified approach. i.e. to see how far a model with a given set of parameters accounts for both the dynamic and static properties. The discussion is divided in three sections for crystals with sodium chloride, cesium chloride and zinc sulfide structures. Outstanding problems and difficulties in the present understanding are pointed out. (auth.)

  20. Thorax deformity, joint hypermobility and anxiety disorder

    International Nuclear Information System (INIS)

    Gulsun, M.; Dumlu, K.; Erbas, M.; Yilmaz, Mehmet B.; Pinar, M.; Tonbul, M.; Celik, C.; Ozdemir, B.

    2007-01-01

    Objective was to evaluate the association between thorax deformities, panic disorder and joint hypermobility. The study includes 52 males diagnosed with thorax deformity, and 40 healthy male controls without thorax deformity, in Tatvan Bitlis and Isparta, Turkey. The study was carried out from 2004 to 2006. The teleradiographic and thoracic lateral images of the subjects were evaluated to obtain the Beighton scores; subjects psychiatric conditions were evaluated using the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-1), and the Hamilton Anxiety Scale (HAM-A) was applied in order to determine the anxiety levels. Both the subjects and controls were compared in sociodemographic, anxiety levels and joint mobility levels. In addition, males with joint hypermobility and thorax deformity were compared to the group with thorax deformity without joint hypermobility. A significant difference in HAM-A scores was found between the groups with thorax deformity and without. In addition, 21 subjects with thorax deformity met the joint hypermobility criteria in the group with thorax deformity and 7 subjects without thorax deformity met the joint hypermobility criteria in the group without thorax deformity, according to Beighton scoring. The Beighton score of subjects with thorax deformity were significantly different from those of the group without deformity. Additionally, anxiety scores of the males with thorax deformity and joint hypermobility were found higher than males with thorax deformity without joint hypermobility. Anxiety disorders, particularly panic disorder, have a significantly higher distribution in males subjects with thorax deformity compared to the healthy control group. In addition, the anxiety level of males with thorax deformity and joint hypermobility is higher than males with thorax deformity without joint hypermobility. (author)

  1. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  2. Crystallization In Multicomponent Glasses

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.

    2009-01-01

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  3. Highly deformable bones: unusual deformation mechanisms of seahorse armor.

    Science.gov (United States)

    Porter, Michael M; Novitskaya, Ekaterina; Castro-Ceseña, Ana Bertha; Meyers, Marc A; McKittrick, Joanna

    2013-06-01

    Multifunctional materials and devices found in nature serve as inspiration for advanced synthetic materials, structures and robotics. Here, we elucidate the architecture and unusual deformation mechanisms of seahorse tails that provide prehension as well as protection against predators. The seahorse tail is composed of subdermal bony plates arranged in articulating ring-like segments that overlap for controlled ventral bending and twisting. The bony plates are highly deformable materials designed to slide past one another and buckle when compressed. This complex plate and segment motion, along with the unique hardness distribution and structural hierarchy of each plate, provide seahorses with joint flexibility while shielding them against impact and crushing. Mimicking seahorse armor may lead to novel bio-inspired technologies, such as flexible armor, fracture-resistant structures or prehensile robotics. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. On deformations of linear differential systems

    NARCIS (Netherlands)

    Gontsov, R.R.; Poberezhnyi, V.A.; Helminck, G.F.

    2011-01-01

    This article concerns deformations of meromorphic linear differential systems. Problems relating to their existence and classification are reviewed, and the global and local behaviour of solutions to deformation equations in a neighbourhood of their singular set is analysed. Certain classical

  5. Deformed configurations, band structures and spectroscopic ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... Our study gives insight into possible deformed structures at spherical shell closure. ... Considerable experimental and theoretical efforts ... True deformation effects can be seen only by considering configuration mixing.

  6. Development of the mercury iodide semiconductor crystal for application as a radiation detector

    International Nuclear Information System (INIS)

    Martins, Joao Francisco Trencher

    2011-01-01

    In this work, the establishment of a technique for HgI growth and preparation of crystals, for use as room temperature radiation semiconductor detectors is described. Three methods of crystal growth were studied while developing this work: physical vapor transport (PVT); saturated solution of HgI 2 , using two different solvents; (a) dimethyl sulfoxide (DMSO) and (b) acetone, and the Bridgman method. In order to evaluate the obtained crystals by the three methods, systematic measurements were carried out for determining the stoichiometry, structure, orientation, surface morphology and impurity of the crystal. The influence of these physical chemical properties on the crystals development was studied, evaluating their performance as radiation detectors. The X-ray diffractograms indicated that the crystals were, preferentially, oriented in the (001) e (101) directions with tetragonal structure for all crystals. Nevertheless, morphology with a smaller deformation level was observed for the crystal obtained by the PVT technique, comparing to other methods. Uniformity on the surface layer of the PVT crystal was detected, while clear incrustations of elements distinct from the crystal could be viewed on the DMSO crystal surface. The best results as to radiation response were found for the crystal grown by physical vapor transport. Significant improvement in the HgI z2 radiation detector performance was achieved for purer crystals, growing the crystal twice by PVT technique. (author)

  7. Peculiarities of the effect of high temperature deformation on the kinetics of bainite transformation in steels of various compositions

    International Nuclear Information System (INIS)

    Khlestov, V.M.; Gotsulyak, A.A.; Ehntin, R.I.; Konopleva, E.V.; Kogan, L.I.

    1979-01-01

    By the methods of magnetometry and metallography studied is the effect of 25% deformation by rolling at 800 deg C on kinetics and parameters of bainite transformation in steels with different hydrogen contents and types of alloying. The hot deformation decelerates the bainite transformation at temperatures >=400 deg C; while the isoterm temperature increases the decelerating effect of deformation at first decreases and then changes into the accelerating one. The slowing down of the transformation is determined mainly by the decrease in the rate of the bainite crystal growth, whereas the acceleration - by the activation of grain initiation processes in the hot-deformed austenite. A hydrogen content increase and steel alloying with carbide-forming elements increase the stabilization effect of the deformation on kinetics of bainite transformation

  8. Orientation and structure development in poly(lactide) under uniaxial deformation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Y.S. [School of Materials Science and Engineering, Nanyang Technological University, N4.1-02-06 Nanyang Avenue, Singapore 639798 (Singapore); Stachurski, Z.H. [Department of Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Venkatraman, S.S. [School of Materials Science and Engineering, Nanyang Technological University, N4.1-02-06 Nanyang Avenue, Singapore 639798 (Singapore)], E-mail: assubbu@ntu.edu.sg

    2008-10-15

    Semicrystalline poly(L-lactide), or PLLA, is used in many biomedical applications, including self-expanding stents. A network model is applied to describe the deformation behaviour of semicrystalline poly(L-lactide) obtained at different drawing temperatures. Based on the present results, it is suggested that the deformation behaviour of PLLA appears to follow pseudo-affine model at the macroscopic level, but it does not follow it at the molecular level. The development of molecular orientation during drawing in both crystalline and amorphous phases was characterized by means of optical birefringence and wide-angle X-ray diffraction (WAXD). In general, high orientation is achieved at the higher drawing temperature and it is found that the crystalline and amorphous phases respond differently to network deformation. At moderate deformation temperature, the development of crystalline orientation increases slowly at a low stretch ratio followed by a rapid rise in the degree of orientation as a result of crystal rotation and crystal slip, while the amorphous chains deform in pseudo-affine manner. Drawing at a high temperature shows rapid crystalline orientation development, even at a low stretch ratio of 1.5, while molecular alignment develops steadily in the amorphous phase.

  9. Estimation of dislocation concentration in plastically deformed Al-Li based alloy by positron annihilation

    International Nuclear Information System (INIS)

    Abdelrahman, M.

    1997-01-01

    Measurements of positron annihilation mean lifetime τ have been performed on eight different specimens of Al-Li based alloy plastically deformed at room temperature up to 40% thickness reduction. This measurement shows clearly positron trapping by dislocations. The positron lifetime τ exhibits a saturation for deformations larger than (15%) thickness reduction. The fitted lifetime varies from (183±2 ps) for annealed sample to (205±2 ps) for the dislocation saturated value. Using a trapping model, the data yield the values of μ=3.83x10 -8 cm 3 s -1 for the specific trapping rate and σ=3.58x10 -15 cm 2 for the trapping cross section, some what lower than those for plastically deformed Al single crystals. The value obtained for Δτ, the increase in lifetime of positrons trapped at dislocations in plastically deformed Al-Li based alloy sample over annihilation in the annealed sample, is 22 ps. This is about 40% of the lifetime increase for the case of positrons trapped at dislocations in plastically deformed Al single crystals. Dislocation densities at different thickness reduction have been estimated. (author)

  10. Modeling of 3D Aluminum Polycrystals during Large Deformations

    International Nuclear Information System (INIS)

    Maniatty, Antoinette M.; Littlewood, David J.; Lu Jing; Pyle, Devin

    2007-01-01

    An approach for generating, meshing, and modeling 3D polycrystals, with a focus on aluminum alloys, subjected to large deformation processes is presented. A Potts type model is used to generate statistically representative grain structures with periodicity to allow scale-linking. The grain structures are compared to experimentally observed grain structures to validate that they are representative. A procedure for generating a geometric model from the voxel data is developed allowing for adaptive meshing of the generated grain structure. Material behavior is governed by an appropriate crystal, elasto-viscoplastic constitutive model. The elastic-viscoplastic model is implemented in a three-dimensional, finite deformation, mixed, finite element program. In order to handle the large-scale problems of interest, a parallel implementation is utilized. A multiscale procedure is used to link larger scale models of deformation processes to the polycrystal model, where periodic boundary conditions on the fluctuation field are enforced. Finite-element models, of 3D polycrystal grain structures will be presented along with observations made from these simulations

  11. Shell effects in the nuclear deformation energy

    International Nuclear Information System (INIS)

    Ross, C.K.

    1973-01-01

    A new approach to shell effects in the Strutinsky method for calculating nuclear deformation energy is evaluated and the suggestion of non-conservation of angular momentum in the same method is resolved. Shell effects on the deformation energy in rotational bands of deformed nuclei are discussed. (B.F.G.)

  12. Conformal deformation of Riemann space and torsion

    International Nuclear Information System (INIS)

    Pyzh, V.M.

    1981-01-01

    Method for investigating conformal deformations of Riemann spaces using torsion tensor, which permits to reduce the second ' order equations for Killing vectors to the system of the first order equations, is presented. The method is illustrated using conformal deformations of dimer sphere as an example. A possibility of its use when studying more complex deformations is discussed [ru

  13. Deformation limits of polymer coated metal sheets

    NARCIS (Netherlands)

    Van Den Bosch, M.J.W.J.P.; Schreurs, P.J.G; Geers, M.G.D.

    2005-01-01

    Polymer coated metals are increasingly used by the packaging and automotive industry. During industrial deformation processes (drawing, roll-forming, bending etc.) the polymer-metal laminate is highly deformed at high deformation rates. These forming conditions can affect the mechanical integrity

  14. Photonic crystal pioneer

    Science.gov (United States)

    Anscombe, Nadya

    2011-08-01

    Over the past ten years, Crystal Fiber, now part of NKT Photonics, has been busy commercializing photonic crystal fibre. Nadya Anscombe finds out about the evolution of the technology and its applications.

  15. Crystallization Pathways in Biomineralization

    Science.gov (United States)

    Weiner, Steve; Addadi, Lia

    2011-08-01

    A crystallization pathway describes the movement of ions from their source to the final product. Cells are intimately involved in biological crystallization pathways. In many pathways the cells utilize a unique strategy: They temporarily concentrate ions in intracellular membrane-bound vesicles in the form of a highly disordered solid phase. This phase is then transported to the final mineralization site, where it is destabilized and crystallizes. We present four case studies, each of which demonstrates specific aspects of biological crystallization pathways: seawater uptake by foraminifera, calcite spicule formation by sea urchin larvae, goethite formation in the teeth of limpets, and guanine crystal formation in fish skin and spider cuticles. Three representative crystallization pathways are described, and aspects of the different stages of crystallization are discussed. An in-depth understanding of these complex processes can lead to new ideas for synthetic crystallization processes of interest to materials science.

  16. Photonic Crystal Nanocavity Arrays

    National Research Council Canada - National Science Library

    Altug, Hatice; Vuckovic, Jelena

    2006-01-01

    We recently proposed two-dimensional coupled photonic crystal nanocavity arrays as a route to achieve a slow-group velocity of light in all crystal directions, thereby enabling numerous applications...

  17. Growth of dopamine crystals

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Vidya, E-mail: vidya.patil@ruparel.edu; Patki, Mugdha, E-mail: mugdha.patki@ruparel.edu [D. G. Ruparel College, Senapati Bapat Marg, Mahim, Mumbai – 400 016 (India)

    2016-05-06

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  18. Problem of ''deformed'' superheavy nuclei

    International Nuclear Information System (INIS)

    Sobiczewski, A.; Patyk, Z.; Muntian, I.

    2000-08-01

    Problem of experimental confirmation of deformed shapes of superheavy nuclei situated in the neighbourhood of 270 Hs is discussed. Measurement of the energy E 2+ of the lowest 2+ state in even-even species of these nuclei is considered as a method for this confirmation. The energy is calculated in the cranking approximation for heavy and superheavy nuclei. The branching ratio p 2+ /p 0+ between α decay of a nucleus to this lowest 2+ state and to the ground state 0+ of its daughter is also calculated for these nuclei. The results indicate that a measurement of the energy E 2+ for some superheavy nuclei by electron or α spectroscopy is a promising method for the confirmation of their deformed shapes. (orig.)

  19. Deformation properties of lead isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.; Saperstein, E. E., E-mail: saper43-7@mail.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-01-15

    The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF{sup 0} Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes. The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, {sup 180}Pb and {sup 184}Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF{sup 0} functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF{sup 0} functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron

  20. Deformations of super Riemann surfaces

    International Nuclear Information System (INIS)

    Ninnemann, H.

    1992-01-01

    Two different approaches to (Konstant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincare upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function. (orig.)

  1. Deformations of super Riemann surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ninnemann, H [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    1992-11-01

    Two different approaches to (Konstant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincare upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function. (orig.).

  2. Deterritorializing Drawing - transformation/deformation

    DEFF Research Database (Denmark)

    Brabrand, Helle

    2012-01-01

    but also from within by sensations, body ‘images’ are different to all other images. Twisting these body images make a mode of operation of art. The paper will address the above issues discussing modes of operation and appearance of my actual project. Acting in the reality of drawing, the project confront...... criticises figurative as well as abstract painting as passing through the brain and not acting directly upon the senses. Figurative and abstract painting both fail to liberate the Figure, implementing transformation of form, but not attaining deformations of bodies. Bacon, then, is concerned about...... deformation, about painting the sensation, which is essentially rhythm, making Figure-rhythm relations appear as vibrations that flow through the body - making resonance. Deleuze, with Bergson, argues that art extracts ’a little time in a pure state’ from the everyday repetitions, and thereby opens...

  3. Apparatus for mounting crystal

    Science.gov (United States)

    Longeway, Paul A.

    1985-01-01

    A thickness monitor useful in deposition or etching reactor systems comprising a crystal-controlled oscillator in which the crystal is deposited or etched to change the frequency of the oscillator. The crystal rests within a thermally conductive metallic housing and arranged to be temperature controlled. Electrode contacts are made to the surface primarily by gravity force such that the crystal is substantially free of stress otherwise induced by high temperature.

  4. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  5. Deterritorializing Drawing - transformation/deformation

    DEFF Research Database (Denmark)

    Brabrand, Helle

    2012-01-01

    but also from within by sensations, body ‘images’ are different to all other images. Twisting these body images make a mode of operation of art. The paper will address the above issues discussing modes of operation and appearance of my actual project. Acting in the reality of drawing, the project confront...... the body, situated in real time and depth, with drawing transforming and deforming time and depth....

  6. Hindfoot Arthrodesis for Neuropathic Deformity

    Directory of Open Access Journals (Sweden)

    Peng-Ju Huang

    2007-03-01

    Full Text Available Acquired neurologic disorders of the foot lead to arthrosis, deformities, instabilities, and functional disabilities. Hindfoot arthrodesis is the current option available for irreducible or nonbraceable deformities of neuropathic feet. However, the role of ankle arthrodesis in these patients has been questioned because of high nonunion and complication rates. From 1990 to 2001, 17 cases of acquired neuropathic foot deformities were treated by four tibiotalocalcaneal (TTC arthrodeses and 13 ankle arthrodeses. TTC arthrodesis was performed on cases with combined ankle and subtalar arthritis or cases whose deformities or instabilities could not be corrected by ankle fusion alone. There was no nonunion of TTC arthrodesis and seven ununited ankle arthrodeses were salvaged by two TTC-attempted arthrodeses and five revision ankle-attempted arthrodeses. Eventually in these cases, there was one nonunion in TTC arthrodesis and one nonunion in revision ankle arthrodesis. The final fusion rate was 88% (15 of 17 cases with average union time of 6.9 months (range, 2.5–18 months. The American Orthopaedic Foot and Ankle Society ankle hind-foot functional scores were evaluated: one was excellent (5.8%, seven were good (41%, eight were fair (53.3%, and one was poor (5.8% in terms of total functional outcome. We conclude that TTC arthrodesis is indicated for cases with ankle and subtalar involvement and ankle arthrodesis is an alternative for cases with intact subtalar joint. We recommend revision ankle arthrodesis if the ankle fails to fuse and the bone stock of the talus is adequate. TTC arthrodesis is reserved for ankles with poor bone stock of the talus with fragmentation.

  7. Relation between the Hurst Exponent and the Efficiency of Self-organization of a Deformable System

    Science.gov (United States)

    Alfyorova, E. A.; Lychagin, D. V.

    2018-04-01

    We have established the degree of self-organization of a system under plastic deformation at different scale levels. Using fractal analysis, we have determined the Hurst exponent and correlation lengths in the region of formation of a corrugated (wrinkled) structure in [111] nickel single crystals under compression. This has made it possible to single out two (micro-and meso-) levels of self-organization in the deformable system. A qualitative relation between the values of the Hurst exponent and the stages of the stress-strain curve has been established.

  8. Influence of anisotropy effect and internal stresses upon the superconductive critical temperature of plastically deformed tin

    International Nuclear Information System (INIS)

    Wagner, D.; Stangler, F.

    1976-01-01

    The influence of plastic deformation on the superconductive critical temperature of tin single crystals has been investigated experimentally. It was shown by measurements that the lattice defects produced by plastic deformation lead to an anisotropy effect (according to the theory of Markowitz and Kadanoff), as do impurities in alloyed material. The decrease in T/sub c/ due to this effect can be measured, however, only with samples of certain special orientations. Samples with other orientations show an increase in T/sub c/, which can be explained by the assumption of internal stresses from dislocation pileups. A model is discussed which accounts for the measured rise in T/sub c/

  9. Faraday instability in deformable domains

    International Nuclear Information System (INIS)

    Pucci, G.

    2013-01-01

    Hydrodynamical instabilities are usually studied either in bounded regions or free to grow in space. In this article we review the experimental results of an intermediate situation, in which an instability develops in deformable domains. The Faraday instability, which consists in the formation of surface waves on a liquid experiencing a vertical forcing, is triggered in floating liquid lenses playing the role of deformable domains. Faraday waves deform the lenses from the initial circular shape and the mutual adaptation of instability patterns with the lens boundary is observed. Two archetypes of behaviour have been found. In the first archetype a stable elongated shape is reached, the wave vector being parallel to the direction of elongation. In the second archetype the waves exceed the response of the lens border and no equilibrium shape is reached. The lens stretches and eventually breaks into fragments that have a complex dynamics. The difference between the two archetypes is explained by the competition between the radiation pressure the waves exert on the lens border and its response due to surface tension.

  10. Crystal Growth Technology

    Science.gov (United States)

    Scheel, Hans J.; Fukuda, Tsuguo

    2004-06-01

    This volume deals with the technologies of crystal fabrication, of crystal machining, and of epilayer production and is the first book on industrial and scientific aspects of crystal and layer production. The major industrial crystals are treated: Si, GaAs, GaP, InP, CdTe, sapphire, oxide and halide scintillator crystals, crystals for optical, piezoelectric and microwave applications and more. Contains 29 contributions from leading crystal technologists covering the following topics: General aspects of crystal growth technology Silicon Compound semiconductors Oxides and halides Crystal machining Epitaxy and layer deposition Scientific and technological problems of production and machining of industrial crystals are discussed by top experts, most of them from the major growth industries and crystal growth centers. In addition, it will be useful for the users of crystals, for teachers and graduate students in materials sciences, in electronic and other functional materials, chemical and metallurgical engineering, micro-and optoelectronics including nanotechnology, mechanical engineering and precision-machining, microtechnology, and in solid-state sciences.

  11. Food crystallization and eggs.

    Science.gov (United States)

    Egg products can be utilized to control crystallization in a diverse realm of food products. Albumen and egg yolk can aid in the control of sugar crystal formation in candies. Egg yolk can enhance the textural properties and aid in the control of large ice crystal formation in frozen desserts. In...

  12. A kinematical model for the plastic deformation of face-centred cubic polycrystals

    International Nuclear Information System (INIS)

    Leffers, T.

    1975-01-01

    During the plastic deformation of a polycrystalline material the deformation of the individual grain must be adjusted to the deformation of the surrounding grains so that material continuity is maintained. This continuity condition is the essential feature distinguishing polycrystal deformation from single-crystal deformation. In the present work it is attempted to explain how the continuity condition is fulfilled in face-centred cubic polycrystals. The early treatments of the plastic deformation of polycrystalline materials were aimed directly at the formulation of a ''dynamical'' theory, i.e. it was the intention to cover the magnitude of the stresses involved as well as the slip processes producing the deformation. It is argued that rolling texture is a good tool for a necessary intermediate stage of establishing a ''kinematical'' model describing the slip processes, but not the magnitude of the necessary stresses. Three aspects of rolling texture are considered: (a) the development of the rolling textures found experimentally in face-centred cubic materials can be computer-simulated on the basis of models for the plastic deformation that only involve (111) slip; (b) experimentally that the widely accepted twinning theory for the transition in f.c.c. rolling texture does not reflect the behaviour of real materials; and (c) it is shown that the texture transition is thermally activated with an activation energy corresponding to that of cross slip. An electron-microscopical investigation of the slip process operating during rolling of f.c.c. polycrystals is also included. On the basis of the computer simulation of the texture formation supplemented by the experimental results a kinematical model is developed for the plastic deformation of f.c.c. polycrystals by rolling. In the proposed model the material continuity is maintained by inhomogeneous slip processes, combined with homogeneous multiple glide when the cross-slip frequency is high. (author)

  13. Quantification and validation of soft tissue deformation

    DEFF Research Database (Denmark)

    Mosbech, Thomas Hammershaimb; Ersbøll, Bjarne Kjær; Christensen, Lars Bager

    2009-01-01

    We present a model for soft tissue deformation derived empirically from 10 pig carcases. The carcasses are subjected to deformation from a known single source of pressure located at the skin surface, and the deformation is quantified by means of steel markers injected into the tissue. The steel...... markers are easy to distinguish from the surrounding soft tissue in 3D computed tomography images. By tracking corresponding markers using methods from point-based registration, we are able to accurately quantify the magnitude and propagation of the induced deformation. The deformation is parameterised...

  14. Shock wave compression of hexagonal-close-packed metal single crystals: Time-dependent, anisotropic elastic-plastic response of beryllium

    International Nuclear Information System (INIS)

    Winey, J. M.; Gupta, Y. M.

    2014-01-01

    Understanding and modeling the response of hcp metals to high stress impulsive loading is challenging because the lower crystal symmetry, compared to cubic metals, results in a significantly more complex material response. To gain insight into the inelastic deformation of hcp metals subjected to high dynamic stresses, shock wave compression of single crystals provides a useful approach because different inelastic deformation mechanisms can be examined selectively by shock compression along different crystal orientations. As a representative example, we report, here, on wave propagation simulations for beryllium (Be) single crystals shocked along the c-axis, a-axis, and several low-symmetry directions to peak stresses reaching 7 GPa. The simulations utilized a time-dependent, anisotropic material model that incorporated dislocation dynamics, deformation twinning, and shear cracking based descriptions of inelastic deformation. The simulation results showed good overall agreement with measured wave profiles for all the different crystal orientations examined [Pope and Johnson, J. Appl. Phys. 46, 720 (1975)], including features arising from wave mode coupling due to the highly anisotropic inelastic response of Be. This good agreement demonstrates that the measured profiles can be understood in terms of dislocation slip along basal, prismatic, and pyramidal planes, together with deformation twinning along (101 ¯ 2) planes. Our results show that the response of shocked Be single crystals involves the simultaneous operation of multiple, distinct inelastic deformation mechanisms for all orientations except the c-axis. For shocked c-axis Be, the measured wave profiles do not provide good discrimination between pyramidal slip and other inelastic deformation mechanisms, such as shear cracking. The findings presented here provide insight into the complex inelastic deformation response of shocked Be single crystals and are expected to be useful for other hcp crystals. More

  15. Anisotropy of Single-Crystal Silicon in Nanometric Cutting.

    Science.gov (United States)

    Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun

    2017-12-01

    The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.

  16. Spatially resolved analysis of short-range structure perturbations in a plastically bent molecular crystal

    Science.gov (United States)

    Panda, Manas K.; Ghosh, Soumyajit; Yasuda, Nobuhiro; Moriwaki, Taro; Mukherjee, Goutam Dev; Reddy, C. Malla; Naumov, Panče

    2015-01-01

    The exceptional mechanical flexibility observed with certain organic crystals defies the common perception of single crystals as brittle objects. Here, we describe the morphostructural consequences of plastic deformation in crystals of hexachlorobenzene that can be bent mechanically at multiple locations to 360° with retention of macroscopic integrity. This extraordinary plasticity proceeds by segregation of the bent section into flexible layers that slide on top of each other, thereby generating domains with slightly different lattice orientations. Microscopic, spectroscopic and diffraction analyses of the bent crystal showed that the preservation of crystal integrity when stress is applied on the (001) face requires sliding of layers by breaking and re-formation of halogen-halogen interactions. Application of stress on the (100) face, in the direction where π···π interactions dominate the packing, leads to immediate crystal disintegration. Within a broader perspective, this study highlights the yet unrecognized extraordinary malleability of molecular crystals with strongly anisotropic supramolecular interactions.

  17. Protein Crystal Growth

    Science.gov (United States)

    2003-01-01

    In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.

  18. Photonic crystal light source

    Science.gov (United States)

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  19. Induced defects in neutron irradiated GaN single crystals

    International Nuclear Information System (INIS)

    Park, I. W.; Koh, E. K.; Kim, Y. M.; Choh, S. H.; Park, S. S.; Kim, B. G.; Sohn, J. M.

    2005-01-01

    The local structure of defects in undoped, Si-doped, and neutron irradiated free standing GaN bulk crystals, grown by hydride vapor phase epitaxy, has been investigated by employing Raman scattering and cathodoluminescence. The GaN samples were irradiated to a dose of 2 x 10 17 neutrons in an atomic reactor at Korea Atomic Energy Research Institute. There was no appreciable change in the Raman spectra for undoped GaN samples before and after neutron irradiation. However, a forbidden transition, A 1 (TO) mode, appeared for a neutron irradiated Si-doped GaN crystal. Cathodoluminescence spectrum for the neutron irradiated Si-doped GaN crystal became much more broadened than that for the unirradiated one. The experimental results reveal the generation of defects with locally deformed structure in the wurtzite Si-doped GaN single crystal

  20. Effects of thermo-order-mechanical coupling on band structures in liquid crystal nematic elastomer porous phononic crystals.

    Science.gov (United States)

    Yang, Shuai; Liu, Ying

    2018-08-01

    Liquid crystal nematic elastomers are one kind of smart anisotropic and viscoelastic solids simultaneously combing the properties of rubber and liquid crystals, which is thermal sensitivity. In this paper, the wave dispersion in a liquid crystal nematic elastomer porous phononic crystal subjected to an external thermal stimulus is theoretically investigated. Firstly, an energy function is proposed to determine thermo-induced deformation in NE periodic structures. Based on this function, thermo-induced band variation in liquid crystal nematic elastomer porous phononic crystals is investigated in detail. The results show that when liquid crystal elastomer changes from nematic state to isotropic state due to the variation of the temperature, the absolute band gaps at different bands are opened or closed. There exists a threshold temperature above which the absolute band gaps are opened or closed. Larger porosity benefits the opening of the absolute band gaps. The deviation of director from the structural symmetry axis is advantageous for the absolute band gap opening in nematic state whist constrains the absolute band gap opening in isotropic state. The combination effect of temperature and director orientation provides an added degree of freedom in the intelligent tuning of the absolute band gaps in phononic crystals. Copyright © 2018 Elsevier B.V. All rights reserved.