WorldWideScience

Sample records for crystal lc materials

  1. Application of LC-MS and LC-MS-MS to the analysis of photo-decomposed crystal violet in the investigation of cultural heritage materials aging.

    Science.gov (United States)

    Favaro, Gabriella; Confortin, Daria; Pastore, Paolo; Brustolon, Marinarosa

    2012-12-01

    In this work, the accurate liquid chromatography-ultraviolet-visible (LC-UV-Vis), LC-mass spectrometry (MS) and LC-MS-MS analysis of the photo-degradation products of crystal violet (CV) is reported. CV is a light fugitive early synthetic dye which had a widespread diffusion into the market starting from the end of the XIX century and was used among others by V. Van Gogh and P. Gauguin in their writings, drawings or paintings. On-line photodiode array detector enabled simultaneous UV-Vis spectra acquisition. Many degradation compounds were identified through their exact mass (2 ppm accuracy) and MS-MS technique. In particular, all CV demethylated products, demethylated Michler's ketone and particularly some compounds that most likely contain oxygen, such as N-oxides, were found. Fragmentation products are all justified by the proposed fragmentation scheme, in term of precursor exact mass and isotopic profile, characteristic losses in fragmentation and rebuilt structure formula. In particular, we hypothesized the presence of N-imido oxides and hydroxylamine derivates, never reported before, together with the demethylated derivatives of the studied dyes. All these compounds, although at trace level in our samples, contribute to the discoloration and fading of works of arts made with CV. In particular, demethylation of CV by UV light leads to formation of compounds absorbing at shorter wavelengths than CV (blue shift) or no-absorbing in visible range (yellow-colourless) with an overall effect that may appear reddish-brown. This phenomenon justifies drawings appearing grey or brown on aged yellowed paper, when CV-based inks or paints were used. The final aim was to better characterize the photo-degradation of early synthetic dyes (in particular of CV) and to gain a better insight into the discoloration and fading of purple ink strokes made of CV. Copyright © 2012 John Wiley & Sons, Ltd.

  2. The low cycle fatigue behaviour of as cast single crystal CM186LC

    Energy Technology Data Exchange (ETDEWEB)

    Bale, D.W.; Henderson, M. [ALSTOM Power Technology Centre, Leicestershire (United Kingdom); Dubiel, B.; Czyrska-Filemonowicz, A. [Univ. of Mining and Metallurgy (AGH), Krakow (Poland); Guardamagna, C.; Bontempi, P. [CESI SpA, Milan (Italy); Mulvihill, P. [Powergen, Power Technology Centre, Nottingham (United Kingdom); Lukas, P.; Obrtlik, K. [Academy of Sciences of the Czech Republic, Brno (Czech Republic); Kolkman, H. [National Aerospace Lab., NLR (Netherlands)

    2002-07-01

    CM186 LC DS is well established as a first stage industrial gas turbine (IGT) blade material and has been adopted by leading IGT manufacturers due to significant grain boundary tolerance and cost benefits. To increase the temperature capability, single crystal (SX) casting practices have been applied. The composition and heat treatment are identical to those of the DS variant meaning that the cost savings remain. The following paper characterises the low cycle fatigue (LCF) properties of CM186LC SX, and considers the effects of orientation, temperature, strain rate and mean stress on the cyclic stress-strain and strain-life characteristics. The impact of LCF and creep loading interactions has also been studied by applying tensile and compressive dwell periods during the fatigue cycle. Fractographic and microstructural analysis of as-received and fatigued specimens has been conducted. (orig.)

  3. Hierarchical structuring of liquid crystal polymer-Laponite hybrid materials.

    Science.gov (United States)

    Tritschler, Ulrich; Zlotnikov, Igor; Zaslansky, Paul; Aichmayer, Barbara; Fratzl, Peter; Schlaad, Helmut; Cölfen, Helmut

    2013-09-03

    Biomimetic organic-inorganic composite materials were fabricated via one-step self-organization on three hierarchical levels. The organic component was a polyoxazoline with pendent cholesteryl and carboxyl (N-Boc-protected amino acid) side chains that was able to form a chiral nematic lyotropic phase and bind to positively charged inorganic faces of Laponite. The Laponite particles formed a mesocrystalline arrangement within the liquid-crystal (LC) polymer phase upon shearing a viscous dispersion of Laponite nanoparticles and LC polymer in DMF. Complementary analytical and mechanical characterization techniques (AUC, POM, TEM, SEM, SAXS, μCT, and nanoindentation) covering the millimeter, micrometer, and nanometer length scales reveal the hierarchical structures and properties of the composite materials consisting of different ratios of Laponite nanoparticles and liquid-crystalline polymer.

  4. Liquid crystal wavefront corrector with modal response based on spreading of the electric field in a dielectric material

    NARCIS (Netherlands)

    Loktev, M.; Vdovine, G.V.; Klimov, N.; Kotova, S.

    2007-01-01

    A novel liquid crystal (LC) wavefront corrector with smooth modal influence functions is proposed and realized. The device consists of a thin layer of planar aligned nematic LC sandwiched between a glass plate with a conductive electrode and a plate made of ceramic material with a very high dielectr

  5. Liquid crystal wavefront corrector with modal response based on spreading of the electric field in a dielectric material

    NARCIS (Netherlands)

    Loktev, M.; Vdovine, G.V.; Klimov, N.; Kotova, S.

    2007-01-01

    A novel liquid crystal (LC) wavefront corrector with smooth modal influence functions is proposed and realized. The device consists of a thin layer of planar aligned nematic LC sandwiched between a glass plate with a conductive electrode and a plate made of ceramic material with a very high

  6. Liquid crystal wavefront corrector with modal response based on spreading of the electric field in a dielectric material

    OpenAIRE

    Loktev, M.; Vdovine, G.V.; Klimov, N.; Kotova, S.

    2007-01-01

    A novel liquid crystal (LC) wavefront corrector with smooth modal influence functions is proposed and realized. The device consists of a thin layer of planar aligned nematic LC sandwiched between a glass plate with a conductive electrode and a plate made of ceramic material with a very high dielectric constant. Control electrodes are positioned on the back side of the ceramic plate, opposite to the LC. The modal character of the response is determined by spreading of the electric field in the...

  7. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    Science.gov (United States)

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage.

  8. Synthetic thermoelectric materials comprising phononic crystals

    Science.gov (United States)

    El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

    2013-08-13

    Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

  9. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    Science.gov (United States)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  10. Liquid crystal modified photonic crystal fiber (LC-PCF) fabricated with an un-cured SU-8 photoresist sealing technique for electrical flux measurement.

    Science.gov (United States)

    Kuo, Shu-Ming; Huang, Yu-Wen; Yeh, Szu-Ming; Cheng, Wood-Hi; Lin, Che-Hsin

    2011-09-12

    The optical transmission properties of photonic crystal fibers (PCFs) can be manipulated by modifying the pattern arrangement of the air channels within them. This paper presents a novel MEMS-based technique for modifying the optical transmission properties of commercial photonic-crystal fiber (PCF) by selectively filling the voids within the fiber structure with liquid crystals. In the proposed approach, an un-cured SU-8 ring pattern with a thickness of 5 μm is fabricated using a novel stamping method. The PCF is then brought into contact with the SU-8 pattern and an infra-red (IR) laser beam is passed through the fiber in order to soften the SU-8 surface; thereby selectively sealing some of the air channels with molten SU-8. Liquid crystals (LCs) are then infiltrated into the un-sealed holes in the PCF via capillary effects in order to modify the transmission properties of the PCF. Two selectively-filled PCFs are fabricated, namely an inner-ring LC-PCF and a single-line LC-PCF, respectively. It is shown that the two LC-PCFs exhibit significantly different optical behaviors. The practical applicability of the proposed selective-filling approach is demonstrated by fabricating an electric field sensor. The experimental results show that the sensor has the ability to measure electric fields with an intensity of up to 40 kV/cm.

  11. Materials science: Crystals aligned through graphene

    Science.gov (United States)

    Lee, Minjoo Larry

    2017-04-01

    Graphene has been used as a 'transparent' layer that allows single crystals of a material to be grown on a substrate, and then lifted off -- in much the same way that baking paper lets cakes be removed easily from tins. See Letter p.340

  12. LC Packing Materials for Pharmaceutical and Biomedical Analysis%用于药学和生物医学分析的液相色谱填料

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The author has prepared novel liquid chromatography (LC) packing materials for pharmaceutical and biomedical analysis. Those include LC packing materials for direct serum injection assays of drugs and their metabolites, LC packing materials for resolution of enantiomeric drugs, and uniformly sized molecularly imprinted polymers for drugs and their metabolites. This review article deals with the preparation of these materials and the pharmaceutical and biomedical applications of them in recognition of The Society of Chromatographic Sciences Award.

  13. Simple method for the determination of refractive indices and loss parameters for liquid-crystal materials in the millimeter-wave region.

    Science.gov (United States)

    Nose, Toshiaki; Honma, Michinori; Nozokido, Tatsuo; Mizuno, Koji

    2005-03-01

    A reflection-type liquid crystal (LC) test cell is prepared with a rectangular waveguide for investigation of a novel method to determine refractive indices and loss parameters of nematic liquid-crystal materials. As the bottom of the test cell is sealed with a glass window and the top of the cell is capped with a metal-tipped movable reflector after the LC materials are injected, both ends of the waveguide test cell have large reflectance. Thus the reflection properties of the LC test cell can be well described by a multiple-beam interference model. A simple method for the determination of refractive indices from the reflection measurement data is proposed based on results of some investigations with the theoretical model. Commercially available LC materials have been measured with this method at a millimeter-wave frequency (50 GHz) by use of a simple experimental setup with a Gunn oscillator and a diode detector.

  14. Liquid crystal devices based on photoalignment and photopatterning materials

    Science.gov (United States)

    Chigrinov, Vladimir

    2014-02-01

    Liquid crystal (LC) display and photonics devices based on photo-alignment and photo-patterning LC cells are developed. A fast switchable grating based on ferroelectric liquid crystals and orthogonal planar alignment by means of photo alignments. Both 1D and 2D gratings have been constructed. The proposed diffracting element provides fast response time of around 20 μs, contrast of 7000:1 and high diffraction efficiency, at the electric field of 6V/μm. A switchable LC Fresnel zone lens was also developed with the efficiency of ~42% that can be further improved, and the switching time for the 3 μm thick cell is ~6.7 ms which is relatively fast in comparison of existing devices. Thus, because of the photoalignment technology the fabrication of Fresnel lens became considerably simpler than others. A thin high spatial resolution, photo-patterned micropolarizer array for complementary metal-oxide-semiconductor (CMOS) image sensors was implemented for the complete optical visualization of so called "invisible" objects, which are completely transparent (reflective) and colorless. Four Stokes parameters, which fully characterized the reflected light beam can be simultaneously detected using the array of photo-patterned polarizers on CMOS sensor plate. The cheap, high resolution photo-patterned LC matrix sensor was developed to be able successfully compete with the expensive and low reliable wire grid polarizer patterned arrays currently used for the purpose.

  15. Progress in liquid crystal (LC) science and technology in honor of Kobayashi's 80th birthday

    CERN Document Server

    Kwok, Hoi-Sing; Ong, Hiap L

    2013-01-01

    The presence of liquid crystal displays (LCDs) marks the advances in mobile phones and television development over the last few decades. Japanese companies were the first to commercialize passive-matrix TNLCDs and, later on, high-resolution activematrix LCDs.Prof. Shunsuke Kobayashi has made essential contributions to Japan's prominence in LCD development throughout this period. He is well-known not only for his own groundbreaking research, but also for the training of many prominent figures in the display industry, both in Japan and in other countries.This book brings together many prominent

  16. Mechanical model study of relationship of molecular configuration and multiphase in liquid crystal materials

    Institute of Scientific and Technical Information of China (English)

    Ma Heng; Sun Rui-Zhi; Li Zhen-Xin

    2006-01-01

    A mechanical model of liquid crystals (LCs) is applied to study the polymorphism of homologous series of terphenyl compounds. With a semi-experimental molecular orbit method, we calculate the moment of inertia which represents the rotation state to describe the phase transition temperature obtained from experimental data. We propose a novel explanation of the phase sequence or polymorphism of LC materials using the two key parameters, the moment of inertia and critical rotational velocity. The effect of molecular polarity on the appearance of liquid crystalline is also discussed.

  17. Method of making macrocrystalline or single crystal semiconductor material

    Science.gov (United States)

    Shlichta, P. J. (Inventor); Holliday, R. J. (Inventor)

    1986-01-01

    A macrocrystalline or single crystal semiconductive material is formed from a primary substrate including a single crystal or several very large crystals of a relatively low melting material. This primary substrate is deposited on a base such as steel or ceramic, and it may be formed from such metals as zinc, cadmium, germanium, aluminum, tin, lead, copper, brass, magnesium silicide, or magnesium stannide. These materials generally have a melting point below about 1000 C and form on the base crystals the size of fingernails or greater. The primary substrate has an epitaxial relationship with a subsequently applied layer of material, and because of this epitaxial relationship, the material deposited on the primary substrate will have essentially the same crystal size as the crystals in the primary substrate. If required, successive layers are formed, each of a material which has an epitaxial relationship with the previously deposited layer, until a layer is formed which has an epitaxial relationship with the semiconductive material. This layer is referred to as the epitaxial substrate, and its crystals serve as sites for the growth of large crystals of semiconductive material. The primary substrate is passivated to remove or otherwise convert it into a stable or nonreactive state prior to deposition of the seconductive material.

  18. Liquid crystal wavefront corrector with modal response based on spreading of the electric field in a dielectric material.

    Science.gov (United States)

    Loktev, Mikhail; Vdovin, Gleb; Klimov, Nikolai; Kotova, Svetlana

    2007-03-19

    A novel liquid crystal (LC) wavefront corrector with smooth modal influence functions is proposed and realized. The device consists of a thin layer of planar aligned nematic LC sandwiched between a glass plate with a conductive electrode and a plate made of ceramic material with a very high dielectric constant. Control electrodes are positioned on the back side of the ceramic plate, opposite to the LC. The modal character of the response is determined by spreading of the electric field in the ceramic plate. The device implemented is operating in a reflective (mirror) mode; however, similar principles can be used to build a transmissive device. Low cost and simplicity of control make it a good alternative to continuous face-sheet deformable mirrors.

  19. Liquid crystal devices for photonics applications

    Science.gov (United States)

    Chigrinov, Vladimir G.

    2007-11-01

    Liquid crystal (LC) devices for Photonics applications is a hot topic of research. Such elements begin to appear in Photonics market. Passive elements for fiber optical communication systems (DWDM components) based on LC cells can successfully compete with the other elements used for the purpose, such as micro electromechanical (MEM), thermo-optical, opto-mechanical or acousto-optical devices. Application of nematic and ferroelectric LC for high speed communication systems, producing elements that are extremely fast, stable, durable, of low loss, operable over a wide temperature range, and that require small operating voltages and extremely low power consumption. The known LC applications in fiber optics enable to produce switches, filters, attenuators, equalizers, polarization controllers, phase emulators and other fiber optical components. Good robustness due to the absence of moving parts and compatibility with VLSI technology, excellent parameters in a large photonic wavelength range, whereas the complexity of the design and the cost of the device are equivalent to regular passive matrix LC displays makes LC fiber optical devices very attractive for mass production. We have already successfully fabricated certain prototypes of the optical switches based on ferroelectric and nematic LC materials. The electrooptical modes used for the purpose included the light polarization rotation, voltage controllable diffraction and fast switching of the LC refractive index. We used the powerful software to optimize the LC modulation characteristics. Use of photo-alignment technique pioneered by us makes it possible to develop new LC fiber components. Almost all the criteria of perfect LC alignment are met in case of azo-dye layers. We have already used azo-dye materials to align LC in superthin photonic holes, curved and 3D surfaces and as cladding layers in microring silicon based resonators. The prototypes of new LC efficient Photonics devices are envisaged. Controllable

  20. Automating the application of smart materials for protein crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Khurshid, Sahir; Govada, Lata [Imperial College London, London SW7 2AZ (United Kingdom); EL-Sharif, Hazim F.; Reddy, Subrayal M. [University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Chayen, Naomi E., E-mail: n.chayen@imperial.ac.uk [Imperial College London, London SW7 2AZ (United Kingdom)

    2015-03-01

    The first semi-liquid, non-protein nucleating agent for automated protein crystallization trials is described. This ‘smart material’ is demonstrated to induce crystal growth and will provide a simple, cost-effective tool for scientists in academia and industry. The fabrication and validation of the first semi-liquid nonprotein nucleating agent to be administered automatically to crystallization trials is reported. This research builds upon prior demonstration of the suitability of molecularly imprinted polymers (MIPs; known as ‘smart materials’) for inducing protein crystal growth. Modified MIPs of altered texture suitable for high-throughput trials are demonstrated to improve crystal quality and to increase the probability of success when screening for suitable crystallization conditions. The application of these materials is simple, time-efficient and will provide a potent tool for structural biologists embarking on crystallization trials.

  1. Issues in the growth of bulk crystals of infrared materials

    Science.gov (United States)

    Bachmann, K. J.; Golowsky, H.

    1987-01-01

    Attention is given to the relevant criteria governing materials choice in the growth of IR optoelectronic bulk single crystals of III-V and II-VI alloy and I-III-VI2 compound types. The most important considerations concern the control of crystal purity, microstructural perfection, stoichiometry, and uniformity during crystal growth, as well as the control of surface properties in wafer fabrication. Specific examples are given to illustrate the problems encountered and their preferred solutions.

  2. Crystal-Field Engineering of Solid-State Laser Materials

    Science.gov (United States)

    Henderson, Brian; Bartram, Ralph H.

    2005-08-01

    This book examines the underlying science and design of laser materials. It emphasizes the principles of crystal-field engineering and discusses the basic physical concepts that determine laser gain and nonlinear frequency conversion in optical crystals. Henderson and Bartram develop the predictive capabilities of crystal-field engineering to show how modification of the symmetry and composition of optical centers can improve laser performance. They also discuss applications of the principles of crystal-field engineering to a variety of optical crystals in relation to the performances of laser devices. This book will be of considerable interest to physical, chemical and material scientists and to engineers involved in the science and technology of solid state lasers.

  3. Design and Fabrication of Photonic Crystal Materials and Components

    DEFF Research Database (Denmark)

    Harpøth, Anders

    2005-01-01

    in the deposited silicon films and to open for a potential use with photonic crystals. In relation to photonic crystal structures, different properties have been investigated by using modelling tools such as the plane wave expansion method and the Finite-Difference Time-Domain method. Furthermore different......The work described in this thesis covers the issues of producing materials for use as base material for fabricating photonic crystals and the design, fabrication and characterization of photonic crystal components. One of the aims is to investigate the possibilities of fabricating a silicon...... is in principle rather straightforward and benefits from being much cheaper compared to acquiring commercially available SOI substrates. Different issues as deposition temperature, surface roughness, crystallization, and silicon waveguide geometries have been investigated in order to reduce the optical loss...

  4. Colloidal-crystal-assisted patterning of crystalline materials.

    Science.gov (United States)

    Li, Cheng; Qi, Limin

    2010-04-06

    Colloidal crystals have shown great potential as versatile templates for the fabrication of patterned micro- and nanostructures with complex architectures and novel properties. The patterning of functional crystalline materials in two and three dimensions is essential to the realization of their applications in many technologically important fields. This article highlights some recent progress in the fabrication of 2D and 3D patterned crystalline materials with the assistance of colloidal crystals. By combining a bioinspired synthetic strategy based on a transient amorphous phase with a colloidal-crystal templating method, unique 3D ordered macroporous (3DOM) calcite single crystals can be created. Moreover, patterned arrays of regular ZnO nanopillars with controlled size, shape, and orientation can be fabricated via a facile wet chemical approach by using masks derived from monolayer colloidal crystals (MCC).

  5. Growth and characterization of organic material 4-dimethylaminobenzaldehyde single crystal

    Science.gov (United States)

    Jebin, R. P.; Suthan, T.; Rajesh, N. P.; Vinitha, G.; Madhusoodhanan, U.

    2015-01-01

    The organic material 4-dimethylaminobenzaldehyde single crystals were grown by slow evaporation technique. The grown crystal was confirmed by the single crystal and powder X-ray diffraction analyses. The functional groups of the crystal have been identified from the Fourier Transform Infrared (FTIR) and FT-Raman studies. The optical property of the grown crystal was analyzed by UV-Vis-NIR and photoluminescence (PL) spectral measurements. The thermal behavior of the grown crystal was analyzed by thermogravimetric (TG) and differential thermal analyses (DTA). Dielectric measurements were carried out with different frequencies by using parallel plate capacitor method. The third order nonlinear optical properties of 4-dimethylaminobenzaldehyde was measured by the Z-scan technique using 532 nm diode pumped continuous wave (CW) Nd:YAG laser.

  6. Holographic Polymer-Dispersed Liquid Crystals: Materials, Formation, and Applications

    Directory of Open Access Journals (Sweden)

    Y. J. Liu

    2008-01-01

    Full Text Available By combining polymer-dispersed liquid crystal (PDLC and holography, holographic PDLC (H-PDLC has emerged as a new composite material for switchable or tunable optical devices. Generally, H-PDLC structures are created in a liquid crystal cell filled with polymer-dispersed liquid crystal materials by recording the interference pattern generated by two or more coherent laser beams which is a fast and single-step fabrication. With a relatively ideal phase separation between liquid crystals and polymers, periodic refractive index profile is formed in the cell and thus light can be diffracted. Under a suitable electric field, the light diffraction behavior disappears due to the index matching between liquid crystals and polymers. H-PDLCs show a fast switching time due to the small size of the liquid crystal droplets. So far, H-PDLCs have been applied in many promising applications in photonics, such as flat panel displays, switchable gratings, switchable lasers, switchable microlenses, and switchable photonic crystals. In this paper, we review the current state-of-the-art of H-PDLCs including the materials used to date, the grating formation dynamics and simulations, the optimization of electro-optical properties, the photonic applications, and the issues existed in H-PDLCs.

  7. Energetic materials: crystallization, characterization and insensitive plastic bonded explosives

    NARCIS (Netherlands)

    Heijden, A.E.D.M. van der; Creyghton, Y.L.M.; Marino, E.; Bouma, R.H.B.; Scholtes, G.J.H.G.; Duvalois, W.; Roelands, C.P.M.

    2008-01-01

    The product quality of energetic materials is predominantly determined by the crystallization process applied to produce these materials. It has been demonstrated in the past that the higher the product quality of the solid energetic ingredients, the less sensitive a plastic bonded explosive contain

  8. Energetic materials: crystallization, characterization and insensitive plastic bonded explosives

    NARCIS (Netherlands)

    Heijden, A.E.D.M. van der; Creyghton, Y.L.M.; Marino, E.; Bouma, R.H.B.; Scholtes, G.J.H.G.; Duvalois, W.; Roelands, C.P.M.

    2008-01-01

    The product quality of energetic materials is predominantly determined by the crystallization process applied to produce these materials. It has been demonstrated in the past that the higher the product quality of the solid energetic ingredients, the less sensitive a plastic bonded explosive

  9. Liquid crystal chiroptical polarization rotators for the near-UV region: theory, materials, and device applications

    Science.gov (United States)

    Saulnier, D.; Taylor, B.; Marshall, K. L.; Kessler, T. J.; Jacobs, S. D.

    2013-09-01

    The helical structure of a chiral-nematic liquid crystal (CLC) material produces a number of interesting optical properties, including selective reflection and optical rotatory power. To take advantage of the high optical rotation near the selective reflection peak for applications in the UV, either large concentrations of chiral components or those possessing very large helical twisting powers (HTP's) are necessary. It is difficult to find chiral twisting agents with high HTP that do not degrade the UV transmission. We report what we believe to be the first experimental observation of extraordinarily high optical rotation (LC) layer thickness. Using this model, the optical rotation at λ = 355 nm for the 1% CB 15/ZLI-1646 mixture is determined computationally, with the results in agreement with experimental data obtained by evaluating a series of wedged cells using an areal mapping, Hinds Exicor 450XT Mueller Matrix Polarimeter. This finding now opens a path to novel LC optics for numerous near-UV applications. One such envisioned application for this class of materials would be UV distributed polarization rotators (UV-DPR's) for largeaperture, high-peak-power lasers.

  10. AUTOMATED DETERMINATION OF THE CRYSTALS SIZE IN ELECTRODEPOSITED METAL MATERIALS

    Directory of Open Access Journals (Sweden)

    E. V. Kolesnik

    2014-01-01

    Full Text Available Methods of automated determination of the crystals size in the electrodeposited metal materials including digital processing of the electronicand microscopic image of the structure with sequential use of the low-and-high-leaky filter based on fast transformation of Fourier, Watershed-algorithm and decomposing of Voronoj with further measurement of thr crystal size with one of the traditional methods is offered.

  11. Heterogeneous Monolithic Integration of Single-Crystal Organic Materials.

    Science.gov (United States)

    Park, Kyung Sun; Baek, Jangmi; Park, Yoonkyung; Lee, Lynn; Hyon, Jinho; Koo Lee, Yong-Eun; Shrestha, Nabeen K; Kang, Youngjong; Sung, Myung Mo

    2017-02-01

    Manufacturing high-performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high-performance organic electronic and optoelectronic devices relies on high-quality single crystals that show optimal intrinsic charge-transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high-performance organic integrated electronics are also addressed.

  12. Milestone in the History of Field-Effect Liquid Crystal Displays and Materials

    Science.gov (United States)

    Schadt, Martin

    2009-03-01

    The history of digital electronics would have been very different without the invention of field-effect liquid crystal displays (LCDs) in 1970 and their sophisticated development and implementation into numerous products. Transmissive and reflective LCDs have become a key interface between man and machine. After almost 40 years of interdisciplinary R+D and engineering, today's LCDs enable virtually all display applications, including high definition television. Field-effect LCDs are characterized by flat design, low weight, low driving voltage, design flexibility, compatibility with silicon-on-glass and very low power consumption, especially in reflection. Their polarization-sensitive layer concept is the basis for sandwiching and integration of optical and electronic thin-film functions. The liquid crystal technology has become a fast growing industry over the past 38 years, today surpassing 100 billion, with many spin-offs into new areas. Prerequisite for field-effect LCDs and their large diversification potential is the unique self-organization of liquid crystals. New applications beyond displays based on self-organisation, smart boundary alignment, dedicated liquid crystalline materials and the ability of LCs to respond to electromagnetic fields, including light, are being developed. Examples for new applications are LC polymer thin-film optics, or synergies between LCDs and solid state back-lighting, such as inorganic and organic light emitting diodes (LEDs/OLEDs).

  13. Molecular and crystal design of nonlinear optical organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Suponitsky, Kirill Yu; Antipin, Mikhail Yu [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow (Russian Federation); Timofeeva, Tatiana V [Department of Chemistry, New Mexico Highlands University (United States)

    2006-06-30

    The results of theoretical and experimental studies on the second-order molecular and crystal nonlinear optical susceptibilities of organic and several classes of organoelement compounds are summarised. Modern methods used in these studies are briefly characterised, their advantages and drawbacks are outlined as regards their application to the systematic search for efficient nonlinear optical materials. Recent achievements and the main challenges in the field are thoroughly discussed and an optimum algorithm of the design of such materials is proposed.

  14. Encapsulation of energetic materials by cooling and electrospray crystallization

    NARCIS (Netherlands)

    Reus, M.A.; Horst, J.H. ter; Stankiewicz, A.I.; Heijden, A.E.D.M. van der

    2012-01-01

    In this work cooling and electrospray crystallization have been used to create encapsulated (sub-)micron sized particles of different crystalline materials. Encapsulation experiments have been conducted, creating the core particle in situ from solution, with the model systems isonicotinamide (INA) –

  15. Encapsulation of energetic materials by cooling and electrospray crystallization

    NARCIS (Netherlands)

    Reus, M.A.; Horst, J.H. ter; Stankiewicz, A.I.; Heijden, A.E.D.M. van der

    2012-01-01

    In this work cooling and electrospray crystallization have been used to create encapsulated (sub-)micron sized particles of different crystalline materials. Encapsulation experiments have been conducted, creating the core particle in situ from solution, with the model systems isonicotinamide (INA) –

  16. Constitutive Model for an FCC Single-Crystal Material

    Institute of Scientific and Technical Information of China (English)

    DING Zhi-ping; LIU Yi-lun; YIN Ze-yong; YANG Zhi-guo; CHENG Xiao-ming

    2006-01-01

    Talking into account the effects that the components of tension stresses couple with components of torsion stresses when off-axis loads are applied to orthotropic materials.Hill's yield criterion for plastically orthotropic solids is modified by adding an invariant that is composed of the product item of quadratic components of the deviatoric siress tensor,and a new yield criteflon is put forward in terms of the characteristics of the face-centered cubic(FCC) single-crystal material.The correlation of prediction and experiments is very good.and the new criterion is used to predict the yield stresses of an intemal single-crystal,Nickel-based superalloy,DD3,which is more accurate than that Of Hill's at 760°C.Equivalent stress and strain that adapt to the new criterion are defined.Thinking of the yield function as a plastic potential function from the associated flow rule.the elastic-plastic constitutive model for the FCC single-crystal material is constructed,and the corresponding elastic-plastic matrix iseduced.The new yield criterion and its equivalent stress and strain will be reduced to Von Mises' yield criterion and corresponding equivalent stress and strain for isotropic materials.

  17. Phononic crystals with one-dimensional defect as sensor materials

    Science.gov (United States)

    Aly, Arafa H.; Mehaney, Ahmed

    2017-09-01

    Recently, sensor technology has attracted great attention in many fields due to its importance in many engineering applications. In the present work, we introduce a study using the innovative properties of phononic crystals in enhancing a new type of sensors based on the intensity of transmitted frequencies inside the phononic band gaps. Based on the transfer matrix method and Bloch theory, the expressions of the reflection coefficient and dispersion relation are presented. Firstly, the influences of filling fraction ratio and the angle of incidence on the band gap width are discussed. Secondly, the localization of waves inside band gaps is discussed by enhancing the properties of the defected phononic crystal. Compared to the periodic structure, localization modes involved within the band structure of phononic crystals with one and two defect layers are presented and compared. Trapped localized modes can be detected easily and provide more information about defected structures. Such method could increase the knowledge of manufacturing defects by measuring the intensity of propagated waves in the resonant cavities and waveguides. Moreover, several factors enhance the role of the defect layer on the transmission properties of defected phononic crystals are presented. The acoustic band gap can be used to detect or sense the type of liquids filling the defect layer. The liquids make specific resonant modes through the phononic band gaps that related to the properties of each liquid. The frequency where the maximum resonant modes occur is correlated to material properties and allows to determine several parameters such as the type of an unknown material.

  18. Phononic crystals with one-dimensional defect as sensor materials

    Science.gov (United States)

    Aly, Arafa H.; Mehaney, Ahmed

    2017-04-01

    Recently, sensor technology has attracted great attention in many fields due to its importance in many engineering applications. In the present work, we introduce a study using the innovative properties of phononic crystals in enhancing a new type of sensors based on the intensity of transmitted frequencies inside the phononic band gaps. Based on the transfer matrix method and Bloch theory, the expressions of the reflection coefficient and dispersion relation are presented. Firstly, the influences of filling fraction ratio and the angle of incidence on the band gap width are discussed. Secondly, the localization of waves inside band gaps is discussed by enhancing the properties of the defected phononic crystal. Compared to the periodic structure, localization modes involved within the band structure of phononic crystals with one and two defect layers are presented and compared. Trapped localized modes can be detected easily and provide more information about defected structures. Such method could increase the knowledge of manufacturing defects by measuring the intensity of propagated waves in the resonant cavities and waveguides. Moreover, several factors enhance the role of the defect layer on the transmission properties of defected phononic crystals are presented. The acoustic band gap can be used to detect or sense the type of liquids filling the defect layer. The liquids make specific resonant modes through the phononic band gaps that related to the properties of each liquid. The frequency where the maximum resonant modes occur is correlated to material properties and allows to determine several parameters such as the type of an unknown material.

  19. [Study on limit detection of flavones in diterpene ginkgolides meglumine injection materials by LC-MS and HPLC-DAD].

    Science.gov (United States)

    Bi, Sen; Li, Yan-jing; Huang, Wen-zhe; Kang, Dan-yu; Ding, Gang; Xiao, Wei

    2015-08-01

    Limit test of flavones in diterpene ginkgolides meglumine injection materials by UV-Vis and HPLC-DAD method was studied in this essay. The HPLC-DAD method has lower LOD (about 1% of the UV-Vis), that is, the sensitivity is higher than UV-Vis method. Through the analysis of the kinds of flavonoids ingredients in the samples by LC-MS, the three compounds with highest contents are kaempferol, quercetin and isorhamnetin. Kaempferol, quercetin and isorhamnetin were chosen as reference compounds for HPLC analysis, and the HPLC separation analysis was carried on an Agilent Eclipse plus C18 column (4.6 mm x 250 mm, 5 μm) with methanol and water containing 0.4% phosphoric acid (50: 50) as mobile phase, and the flow rate was 1.0 mL x min(-1). The detection wavelength was set at 360 nm. This method has good specificity, precision and reproducibility. The LODs of quercetin, kaempferide and isorhamnetin were 27.6, 22.3, 29.5 μg x L(-1). The average recovery was 87.9% (RSD 3.3%), 91.7% (RSD 3.1%), 88.3 (RSD 1.3%) for quercetin, kaempferide and isorhamnetin, respectively. Based on the 10 batches of sample results and sensitivity of different HPLC, the content of total flavonoids ingredients of diterpene ginkgolides meglumine injection materials was limited no more than 2 x 10(-5). This method is simple, quick and has good maneuverability, and could be used to the limit test of flavonoids in the diterpene ginkgolides meglumine injection materials.

  20. Accumulated distribution of material gain at dislocation crystal growth

    Science.gov (United States)

    Rakin, V. I.

    2016-05-01

    A model for slowing down the tangential growth rate of an elementary step at dislocation crystal growth is proposed based on the exponential law of impurity particle distribution over adsorption energy. It is established that the statistical distribution of material gain on structurally equivalent faces obeys the Erlang law. The Erlang distribution is proposed to be used to calculate the occurrence rates of morphological combinatorial types of polyhedra, presenting real simple crystallographic forms.

  1. Modification of Absorption of a Bulk Material by Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    席永刚; 王昕; 胡新华; 刘晓晗; 资剑

    2002-01-01

    We show theoretically that it is possible to modify absorption of a bulk absorbing material by inserting another non-absorbing dielectric slab periodically to form one-dimensional photonic crystals. It is found that, for fre- quencies within photonic bandgaps, absorption is always suppressed. For frequencies located at photonic bands, absorption can be suppressed or enhanced, which depends on the relative values of the real refractive index of the absorbing and non-absorbing dielectric layers.

  2. Evaluation of the bond strength of different adhesive agents to a resin-modified calcium silicate material (TheraCal LC).

    Science.gov (United States)

    Karadas, Muhammed; Cantekin, Kenan; Gumus, Husniye; Ateş, Sabit Melih; Duymuş, Zeynep Yesil

    2016-09-01

    This study evaluated the bond strength of different adhesive agents to TheraCal LC and mineral trioxide aggregate (MTA) and examined the morphologic changes of these materials with different surface treatments. A total of 120 specimens, 60 of MTA Angelus (AMTA), and 60 of TheraCal LC, were prepared and divided into six subgroups according to the adhesive agent used; these agents included Scotchbond Multipurpose, Clearfil SE Bond, Clearfil Protect Bond, Clearfil S(3) Bond, OptiBond All-in-One, and G-aenial Bond. After application of adhesive agents, Filtek Z250 composite resin was placed onto the specimens. Shear bond strengths were measured using a universal testing machine, followed by examination of the fractured surfaces. The surface changes of the specimens were observed using scanning electron microscopy. Data were compared by two-way analysis of variance. Although no significant differences were found among the bond strengths of different adhesives to AMTA (p = 0.69), a significant difference was found in terms of bond strengths of different adhesives to the TheraCal LC surface (p TheraCal LC compared to the bond with other adhesives. TheraCal LC bonded significantly more strongly than AMTA regardless of the adhesive agents tested. Resin-modified calcium silicate showed higher bond strength than AMTA in terms of the composite bond to these materials with different bonding systems. On the other hand, the highest shear bond-strength values were found for composite bonds with the combination of TheraCal LC and the total-etch adhesive system. SCANNING 38:403-411, 2016. © 2015 Wiley Periodicals, Inc.

  3. Kinetic Processes Crystal Growth, Diffusion, and Phase Transformations in Materials

    CERN Document Server

    Jackson, Kenneth A

    2004-01-01

    The formation of solids is governed by kinetic processes, which are closely related to the macroscopic behaviour of the resulting materials. With the main focus on ease of understanding, the author begins with the basic processes at the atomic level to illustrate their connections to material properties. Diffusion processes during crystal growth and phase transformations are examined in detail. Since the underlying mathematics are very complex, approximation methods typically used in practice are the prime choice of approach. Apart from metals and alloys, the book places special emphasis on th

  4. Methods for the additive manufacturing of semiconductor and crystal materials

    Science.gov (United States)

    Stowe, Ashley C.; Speight, Douglas

    2016-11-22

    A method for the additive manufacturing of inorganic crystalline materials, including: physically combining a plurality of starting materials that are used to form an inorganic crystalline compound to be used as one or more of a semiconductor, scintillator, laser crystal, and optical filter; heating or melting successive regions of the combined starting materials using a directed heat source having a predetermined energy characteristic, thereby facilitating the reaction of the combined starting materials; and allowing each region of the combined starting materials to cool in a controlled manner, such that the desired inorganic crystalline compound results. The method also includes, prior to heating or melting the successive regions of the combined starting materials using the directed heat source, heating the combined starting materials to facilitate initial reaction of the combined starting materials. The method further includes translating the combined starting materials and/or the directed heat source between successive locations. The method still further includes controlling the mechanical, electrical, photonic, and/or optical properties of the inorganic crystalline compound.

  5. Methods for the additive manufacturing of semiconductor and crystal materials

    Energy Technology Data Exchange (ETDEWEB)

    Stowe, Ashley C.; Speight, Douglas

    2016-11-22

    A method for the additive manufacturing of inorganic crystalline materials, including: physically combining a plurality of starting materials that are used to form an inorganic crystalline compound to be used as one or more of a semiconductor, scintillator, laser crystal, and optical filter; heating or melting successive regions of the combined starting materials using a directed heat source having a predetermined energy characteristic, thereby facilitating the reaction of the combined starting materials; and allowing each region of the combined starting materials to cool in a controlled manner, such that the desired inorganic crystalline compound results. The method also includes, prior to heating or melting the successive regions of the combined starting materials using the directed heat source, heating the combined starting materials to facilitate initial reaction of the combined starting materials. The method further includes translating the combined starting materials and/or the directed heat source between successive locations. The method still further includes controlling the mechanical, electrical, photonic, and/or optical properties of the inorganic crystalline compound.

  6. A new material for single crystal modulators: BBO

    Science.gov (United States)

    Bammer, F.; Schumi, T.; Petkovsek, R.

    2011-06-01

    Single crystal photo-elastic modulators (SCPEM) are based on a single piezo-electric crystal which is electrically excited on a resonance frequency such that the resulting resonant oscillation causes a modulated artificial birefringence due to the photo-elastic effect. Polarized light experience in such a crystal a strong modulation of polarization, which, in connection with a polarizer, can be used for Q-switching of lasers with pulse repetition frequencies in the range of 100- 1000 kHz. A particularly advantageous configuration is possible with crystals from the symmetry class 3m. Besides LiTaO3 and LiNbO3, both already well explored as SCPEM-materials, we introduce now BBO, which offers a very low absorption in the near infrared region and is therefore particularly suited for Q-switching of solid state lasers. We demonstrate first results of such a BBO-modulator with the dimensions 8.6 x 4.05 x 4.5mm in x-, y-, z- direction, which offers a useful resonance and polarization modulation at 131.9 kHz. Since the piezo-electric effect is small, the voltage amplitude for achieving Q-switching for an Nd:YAG-laser is expected to be in the range of 100V. Nevertheless it is a simple and robust device to achieve Q-switching with a high fixed repetition rate for high power solid state lasers.

  7. Materials processing threshold report. 1: Semiconductor crystals for infrared detectors

    Science.gov (United States)

    Sager, E. V.; Thompson, T. R.; Nagler, R. G.

    1980-01-01

    An extensive search was performed of the open literature pertaining to infrared detectors to determine what constitutes a good detector and in what way performance is limited by specific material properties. Interviews were conducted with a number of experts in the field to assess their perceptions of the state of the art and of the utility of zero-gravity processing. Based on this information base and on a review of NASA programs in crystal growth and infrared sensors, NASA program goals were reassessed and suggestions are presented as to possible joint and divergent efforts between NASA and DOD.

  8. Cholesteric liquid crystals as multi-purpose sensor materials

    Energy Technology Data Exchange (ETDEWEB)

    Lisetski, L. N. [National Academy of Sciences of Ukraine, Kharkov (Ukraine)

    2005-03-15

    New possibilities are discussed for Cholesteric Liquid Crystals (CLC) as sensor materials for detection of ionizing radiation, biologically active UV radiation, and the presence of hazardous vapors in atmosphere. A distinguishing property of CLC-based detectors is their 'bioequivalence', i.e., mechanisms of their response to external factors essentially imitate the corresponding mechanisms of biological tissues. Such detectors can ensure sufficiently high sensitivity to make feasible their use as alarm indicators or in biophysical studies. Specific examples are given of sensor compositions and their response characteristics.

  9. Growth of crystalline semiconductor materials on crystal surfaces

    CERN Document Server

    Aleksandrov, L

    2013-01-01

    Written for physicists, chemists, and engineers specialising in crystal and film growth, semiconductor electronics, and various applications of thin films, this book reviews promising scientific and engineering trends in thin films and thin-films materials science. The first part discusses the physical characteristics of the processes occurring during the deposition and growth of films, the principal methods of obtaining semiconductor films and of reparing substrate surfaces on which crystalline films are grown, and the main applications of films. The second part contains data on epitaxial i

  10. Field induced heliconical structure of cholesteric liquid crystal

    Science.gov (United States)

    Lavrentovich, Oleg D.; Shiyanovsii, Sergij V.; Xiang, Jie; Kim, Young-Ki

    2017-06-27

    A diffraction grating comprises a liquid crystal (LC) cell configured to apply an electric field through a cholesteric LC material that induces the cholesteric LC material into a heliconical state with an oblique helicoid director. The applied electric field produces diffracted light from the cholesteric LC material within the visible, infrared or ultraviolet. The axis of the heliconical state is in the plane of the liquid crystal cell or perpendicular to the plane, depending on the application. A color tuning device operates with a similar heliconical state liquid crystal material but with the heliconical director axis oriented perpendicular to the plane of the cell. A power generator varies the strength of the applied electric field to adjust the wavelength of light reflected from the cholesteric liquid crystal material within the visible, infrared or ultraviolet.

  11. Tb-Dy-Fe Single Crystal and Magnetostrictive Actuator Using These Materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Magnetostrictive actuators normally use twin-crystal magnetostrictive materials as driving unit. Because the crystal and twin-crystal plane hinder the movement of the domain wall, its displacement output of low magnetic strength is rather small. Using Tb-Dy-Fe single crystal technique can effectively solve the problems brought by pollution and twin crystals, and produce high-quality Tb-Dy-Fe single crystal materials. The paper will introduce the technique of using these materials to produce magnetostrictive actuators that possess high sensitivity and resolution and use pulse feeding.

  12. Materials for Alternative Energies: Computational Materials Discovery and Crystal Structure Prediction

    Science.gov (United States)

    Wolverton, Chris

    2013-03-01

    Many of the key technological problems associated with alternative energies may be traced back to the lack of suitable materials. The materials discovery process may be greatly aided by the use of computational methods, particular those atomistic methods based on density functional theory. In this talk, we present an overview of recent work on energy-related materials from density-functional based approaches. We have developed novel computational tools which enable accurate prediction of crystal structures for new materials (using both Monte Carlo and Genetic Algorithm based approaches), materials discovery via high-throughput, data mining techniques, and automated phase diagram calculations. We highlight applications in the area of Li battery materials and hydrogen storage materials.

  13. Hydration of Biodentine, Theracal LC, and a prototype tricalcium silicate-based dentin replacement material after pulp capping in entire tooth cultures.

    Science.gov (United States)

    Camilleri, Josette; Laurent, Patrick; About, Imad

    2014-11-01

    The calcium-releasing ability of pulp-capping materials induces pulp tissue regeneration. Tricalcium silicate-based materials produce calcium hydroxide as a by-product of hydration. Assessment of hydration and calcium ion leaching is usually performed on samples that have been aged in physiological solution for a predetermined period of time. The hydration and activity of the materials in vivo may not be similar to those displayed in vitro because of insufficient fluid available in contact with dentin. The aim of this research was the assessment of hydration of Biodentine, Theracal LC, and a prototype radiopacified tricalcium silicate-based material after pulp capping and to compare it with direct hydration in an aqueous solution. The extent of hydration of Biodentine, Theracal LC, and a prototype radiopacified tricalcium silicate-based material with a similar composition to Biodentine but not incorporating the additives was assessed by scanning electron microscopy and energy dispersive spectroscopy of polished specimens after being allowed to hydrate in Hank's balanced salt solution for 14 days. The extent of hydration was compared with material hydration when used as direct pulp capping materials by using a tooth culture model. Material activity was also assessed by x-ray diffraction analysis to investigate the deposition of calcium hydroxide by the materials, and calcium ion leaching in Hank's balanced salt solution was assessed by ion chromatography. Biodentine and the prototype tricalcium silicate cement hydrated and reaction by-products were deposited in the cement matrix both after pulp capping and when incubated in an aqueous solution. Calcium hydroxide was formed, and calcium ions were leached in solution. Theracal LC hydration was incomplete because of the limited moisture diffusion within the material. Thus, no calcium hydroxide was produced, and a lower calcium ion leaching was recorded. Theracal LC had a heterogeneous structure with large unhydrated

  14. Recovery of valuable materials from waste liquid crystal display panel.

    Science.gov (United States)

    Li, Jinhui; Gao, Song; Duan, Huabo; Liu, Lili

    2009-07-01

    Associated with the rapid development of the information and electronic industry, liquid crystal displays (LCDs) have been increasingly sold as displays. However, during the discarding at their end-of-life stage, significant environmental hazards, impacts on health and a loss of resources may occur, if the scraps are not managed in an appropriate way. In order to improve the efficiency of the recovery of valuable materials from waste LCDs panel in an environmentally sound manner, this study presents a combined recycling technology process on the basis of manual dismantling and chemical treatment of LCDs. Three key processes of this technology have been studied, including the separation of LCD polarizing film by thermal shock method the removal of liquid crystals between the glass substrates by the ultrasonic cleaning, and the recovery of indium metal from glass by dissolution. The results show that valuable materials (e.g. indium) and harmful substances (e.g. liquid crystals) could be efficiently recovered or separated through above-mentioned combined technology. The optimal conditions are: (1) the peak temperature of thermal shock to separate polarizing film, ranges from 230 to 240 degrees C, where pyrolysis could be avoided; (2) the ultrasonic-assisted cleaning was most efficient at a frequency of 40 KHz (P = 40 W) and the exposure of the substrate to industrial detergents for 10 min; and (3) indium separation from glass in a mix of concentrated hydrochloric acid at 38% and nitric acid at 69% (HCl:HNO(3):H(2)O = 45:5:50, volume ratio). The indium separation process was conducted with an exposure time of 30 min at a constant temperature of 60 degrees C.

  15. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    Science.gov (United States)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    2014-02-01

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) & 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) &29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of 232Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  16. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    Energy Technology Data Exchange (ETDEWEB)

    AL-Areqi, Wadeeah M., E-mail: walareqi@yahoo.com; Majid, Amran Ab., E-mail: walareqi@yahoo.com; Sarmani, Sukiman, E-mail: walareqi@yahoo.com [Nuclear Science Programme, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi (Malaysia)

    2014-02-12

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) and 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) and 29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of {sup 232}Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  17. Confined crystals of the smallest phase-change material.

    Science.gov (United States)

    Giusca, Cristina E; Stolojan, Vlad; Sloan, Jeremy; Börrnert, Felix; Shiozawa, Hidetsugu; Sader, Kasim; Rümmeli, Mark H; Büchner, Bernd; Silva, S Ravi P

    2013-09-11

    The demand for high-density memory in tandem with limitations imposed by the minimum feature size of current storage devices has created a need for new materials that can store information in smaller volumes than currently possible. Successfully employed in commercial optical data storage products, phase-change materials, that can reversibly and rapidly change from an amorphous phase to a crystalline phase when subject to heating or cooling have been identified for the development of the next generation electronic memories. There are limitations to the miniaturization of these devices due to current synthesis and theoretical considerations that place a lower limit of 2 nm on the minimum bit size, below which the material does not transform in the structural phase. We show here that by using carbon nanotubes of less than 2 nm diameter as templates phase-change nanowires confined to their smallest conceivable scale are obtained. Contrary to previous experimental evidence and theoretical expectations, the nanowires are found to crystallize at this scale and display amorphous-to-crystalline phase changes, fulfilling an important prerequisite of a memory element. We show evidence for the smallest phase-change material, extending thus the size limit to explore phase-change memory devices at extreme scales.

  18. Morphological control and polarization switching in polymer dispersed liquid crystal materials and devices

    Indian Academy of Sciences (India)

    K K Raina; Pankaj Kumar; Praveen Malik

    2006-11-01

    Liquid crystals dispersed in polymer systems constitute novel class of optical materials. The precise control of the liquid crystal droplet morphology in the polymer matrix is essentially required to meet the prerequisites of display device. Experiments have been carried out to investigate and identify the material properties and processing conditions required for the precise control of the droplet morphology of the dispersed liquid crystal systems. Polarization switching has been studied. Aligned liquid crystal dispersed systems showed higher polarization over unaligned ones.

  19. Crystal engineering of energetic materials: co-crystals of Ethylenedinitramine (EDNA) with modified performance and improved chemical stability.

    Science.gov (United States)

    Aakeröy, Christer B; Wijethunga, Tharanga K; Desper, John

    2015-07-27

    In the area of energetic materials, co-crystallization is emerging as a new technology for modifying or enhancing the properties of existing energetic substances. Ethylenedinitramine (EDNA) is a known energetic material which requires attention partly due to its chemical instability originating with its two highly acidic protons. In order to stabilize EDNA, a co-crystallization approach targeting the acidic protons using a series of co-crystallizing agents with suitable hydrogen-bond acceptors was employed. Fifteen attempted co-crystallizations resulted in eight successful outcomes and six of these were crystallographically characterized and all showed evidence of hydrogen bonds to the intended protons. Calculated detonation properties and experimental thermal and impact data for the co-crystals were obtained and compared with those of pure EDNA. The co-crystal of EDNA and 1,2-bis(4-pyridyl)ethylene was recognized as a more thermally stable alternative to EDNA while the co-crystal of EDNA and pyrazine N,N'-dioxide showed comparable detonation strengths (and much improved chemical stability) compared with that of EDNA. The co-crystals EDNA:4,4'-bipyridine and EDNA:pyrazine N,N'-dioxide were found to be about 50 % less impact sensitive than EDNA, all of which illustrate how co-crystallizations can be utilized for successfully modifying specific aspects of energetic materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Sapphire: Relation between luminescence of starting materials and luminescence of single crystals

    Science.gov (United States)

    Mogilevsky, R.; Nedilko, S.; Sharafutdinova, L.; Burlay, S.; Sherbatskii, V.; Boyko, V.; Mittl, S.

    2009-10-01

    A relation between photoluminescence (PL) characteristics of different starting materials used for crystal growth and un-doped sapphire single crystals manufactured using various methods of crystal growth (Kyropolus, HEM, Czochralski, and EFG) was found. The crystals grown using the Verneuil starting material exhibited significant PL when any method of crystal growth was used. On the contrary, sapphire samples grown by the same technologies wherein the starting material was EMT HPDA R revealed very low PL. (HPDA R is produced by EMT, Inc., with proprietary and patented technology.)

  1. Photonic crystals to enhance light extraction from 2D materials

    CERN Document Server

    Noori, Yasir J; Roberts, Jonathan; Woodhead, Christopher; Bernardo-Gavito, Ramon; Tovee, Peter; Young, Robert J

    2016-01-01

    We propose a scheme for coupling 2D materials to an engineered cavity based on a defective rod type photonic crystal lattice. We show results from numerical modelling of the suggested cavity design, and propose using the height profile of a 2D material transferred on top of the cavity to maximise coupling between exciton recombination and the cavity mode. The photonic structure plays a key role in enhancing the launch efficiency, by improving the directionality of the emitted light to better couple it into an external optical system. When using the photonic structure, we measured an increase in the extraction ratio by a factor of 3.4. We investigated the variations in the flux spectrum when the radius of the rods is modified, and when the 2D material droops to a range of different heights within the cavity. We found an optimum enhancement when the rods have a radius equal to 0.165 times the lattice constant, this enhancement reduces when the radius is reduced or increased. Finally, we discuss the possible use...

  2. Single Molecule Studies on Dynamics in Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Daniela Täuber

    2013-09-01

    Full Text Available Single molecule (SM methods are able to resolve structure related dynamics of guest molecules in liquid crystals (LC. Highly diluted small dye molecules on the one hand explore structure formation and LC dynamics, on the other hand they report about a distortion caused by the guest molecules. The anisotropic structure of LC materials is used to retrieve specific conformation related properties of larger guest molecules like conjugated polymers. This in particular sheds light on organization mechanisms within biological cells, where large molecules are found in nematic LC surroundings. This review gives a short overview related to the application of highly sensitive SM detection schemes in LC.

  3. Refractive indices and birefringence of hybrid liquid crystal - nanoparticles composite materials in the terahertz region

    Directory of Open Access Journals (Sweden)

    E. Mavrona

    2015-07-01

    Full Text Available We show that a hybrid LC-ferroelectric nanoparticle suspension of liquid crystal E7 doped with BaTiO3 nanoparticles leads to 10% increase in birefringence in the THz region of spectrum as compared to pure E7. Doped liquid crystals can be used to increase performance of THz modulators and waveplates. BaTiO3 nanoparticles used in the mixture were synthesised with the sol gel technique, and their refractive index has been measured in THz in powder form and in solution.

  4. Liquid crystal dimers

    CERN Document Server

    Kumar Pal, Santanu

    2017-01-01

    This book covers in-depth discussion of design principles, synthesis and thermal behavior of all types of liquid crystal (LC) dimers. The text presents recent advances in the field of LC dimers consisting of different mesogenic units such as calamitic, discotic and bent-core molecules. It starts with a chapter on the introduction of liquid crystal dimers, including their odd-even behavior, basic classification of dimers and common mesophases in dimers. The text shows how the molecular architectures are being used to develop new materials to study a range of interesting phenomena such as the biaxial nematic phase containing rod-like and disc-like mesogenic units. Finally, the text presents perspectives related to technological relevance of these dimers such as dopants in LC display mixtures exhibiting faster relaxation time, strong flexoelectric coupling and others to effect control over the properties of these materials.

  5. The Durability of Various Crucible Materials for Aluminum Nitride Crystal growth by Sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Liu,B.; Edgar, J.; Gu, Z.; Zhuang, D.; Raghothamachar, B.; Dudley, M.; Sarua, A.; Kuball, M.; Meyer, H.

    2004-01-01

    Producing high purity aluminum nitride crystals by the sublimation-recondensation technique is difficult due to the inherently reactive crystal growth environment, normally at temperature in excess of 2100 C. The durability of the furnace fixture materials (crucibles, retorts, etc.) at such a high temperature remains a critical problem. In the present study, the suitability of several refractory materials for AlN crystal growth is investigated, including tantalum carbide, niobium carbide, tungsten, graphite, and hot-pressed boron nitride. The thermal and chemical properties and performance of these materials in inert gas, as well as under AlN crystal growth conditions are discussed. TaC and NbC are the most stable crucible materials with very low elemental vapor pressures in the crystal growth system. Compared with refractory material coated graphite crucibles, HPBN crucible is better for AlN self-seeded growth, as crystals tend to nucleate in thin colorless platelets with low dislocation density.

  6. Crystal violet: Study of the photo-fading of an early synthetic dye in aqueous solution and on paper with HPLC-PDA, LC-MS and FORS

    Energy Technology Data Exchange (ETDEWEB)

    Confortin, Daria; Brustolon, Marina; Franco, Lorenzo [Dipartimento di Scienze Chimiche, Universita degli Studi di Padova, via Marzolo 1, 35131 Padova (Italy); Neevel, Han; Bommel, Maarten R van [Netherlands Institute for Cultural Heritage (ICN), PO Box 76709, 1070 KA, Amsterdam (Netherlands); Kettelarij, Albert J; Williams, Rene M, E-mail: daria.confortin@gmail.co [Molecular Photonics Group, Van' t Hoff Institute for Molecular Sciences, Faculty of Science, Universiteit van Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam (Netherlands)

    2010-06-01

    The photo-fading of crystal violet (CV), one of the earliest synthetic dyes and an ink component, is examined both in solution and on paper. Aqueous solutions of CV were exposed to UV light (365nm) and samples were taken at constant time intervals and analysed with a High Performance Liquid Chromatography-Photo Diode Array (HPLC-PDA) and Liquid Chromatography-Mass Spectroscopy (LC-MS). Demethylation products were positively identified. Also, deamination probably occurred. The oxidation at the central carbon likely generates Michler's ketone (MK) or its derivatives, but still needs confirmation. To study CV on paper, Whatman paper was immersed in CV and exposed to UV light. Before and after different irradiation periods, reflectance spectra were recorded with Fibre Optic Reflectance Spectrophotometry (FORS). A decrease in CV concentration and a change in aggregation type for CV molecules upon irradiation was observed. Colorimetric L*a*b* values before and during irradiation were also measured. Also, CV was extracted from paper before and after different irradiation periods and analysed with HPLC-PDA. Photo-fading of CV on paper produced the same products as in solution, at least within the first 100 hours of irradiation. Finally, a photo-fading of CV in the presence of MK on Whatman paper was performed. It was demonstrated that MK both accelerates CV degradation and is consumed during the reaction. The degradation pathway identified in this work is suitable for explaining the photo/fading of other dyes belonging to the triarylmethane group.

  7. Rhombohedral cubic semiconductor materials on trigonal substrate with single crystal properties and devices based on such materials

    Science.gov (United States)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    Growth conditions are developed, based on a temperature-dependent alignment model, to enable formation of cubic group IV, group II-V and group II-VI crystals in the [111] orientation on the basal (0001) plane of trigonal crystal substrates, controlled such that the volume percentage of primary twin crystal is reduced from about 40% to about 0.3%, compared to the majority single crystal. The control of stacking faults in this and other embodiments can yield single crystalline semiconductors based on these materials that are substantially without defects, or improved thermoelectric materials with twinned crystals for phonon scattering while maintaining electrical integrity. These methods can selectively yield a cubic-on-trigonal epitaxial semiconductor material in which the cubic layer is substantially either directly aligned, or 60 degrees-rotated from, the underlying trigonal material.

  8. Research progress on ultra-precision machining technologies for soft-brittle crystal materials

    Science.gov (United States)

    Gao, Hang; Wang, Xu; Guo, Dongming; Chen, Yuchuan

    2016-12-01

    Soft-brittle crystal materials are widely used in many fields, especially optics and microelectronics. However, these materials are difficult to machine through traditional machining methods because of their brittle, soft, and anisotropic nature. In this article, the characteristics and machining difficulties of soft-brittle and crystals are presented. Moreover, the latest research progress of novel machining technologies and their applications for softbrittle crystals are introduced by using some representative materials (e.g., potassium dihydrogen phosphate (KDP), cadmium zinc telluride (CZT)) as examples. This article reviews the research progress of soft-brittle crystals processing.

  9. Dispersions of Semiconductor Nanoparticles in Thermotropic Liquid Crystal: From Optical Modification to Assisted Self-Assembly

    OpenAIRE

    Rodarte, Andrea L.

    2014-01-01

    The interaction of semiconducting quantum dot nanoparticles (QDs) within thermotropic liquid crystalline (LC) materials are studied in this thesis. LC materials are ideal for bottom-up organization of nanoparticles as an active matrix that can be externally manipulated via electric or magnetic fields. In addition, the optical properties of QDs can be modified by the surrounding LC resulting in novel devices such as a quantum dot/liquid crystal laser. The first system studies the dispersion of...

  10. A preliminary review of organic materials single crystal growth by the Czochralski technique

    Science.gov (United States)

    Penn, B. G.; Shields, A. W.; Frazier, D. O.

    1988-01-01

    The growth of single crystals of organic compounds by the Czochralski method is reviewed. From the literature it is found that single crystals of benzil, a nonlinear optical material with a d sub 11 value of 11.2 + or - 1.5 x d sub 11 value of alpha quartz, has fewer dislocations than generally contained in Bridgman crystals. More perfect crystals were grown by repeated Czochralski growth. This consists of etching away the defect-containing portion of a Czochralski grown crystal and using it as a seed for further growth. Other compounds used to grow single crystals are benzophenone, 12-tricosanone (laurone), and salol. The physical properties, growth apparatus, and processing conditions presented in the literature are discussed. Moreover, some of the possible advantages of growing single crystals of organic compounds in microgravity to obtain more perfect crystals than on Earth are reviewed.

  11. Concomitant crystallization for in situ encapsulation of organic materials

    NARCIS (Netherlands)

    Reus, M.A.; Hoetmer, G.; Heijden, A.E.D.M. van der; Horst, J.H. ter

    2014-01-01

    Concomitant crystallization leads to process intensification through the synergistic combination of the partial processes of particle formation and encapsulation within a single process step. Both cooling and electrospray crystallization in multi-component solutions were used to create (sub-)micron

  12. Concomitant crystallization for in situ encapsulation of organic materials

    NARCIS (Netherlands)

    Reus, M.A.; Hoetmer, G.; Heijden, A.E.D.M. van der; Horst, J.H. ter

    2014-01-01

    Concomitant crystallization leads to process intensification through the synergistic combination of the partial processes of particle formation and encapsulation within a single process step. Both cooling and electrospray crystallization in multi-component solutions were used to create (sub-)micron

  13. Ordering Quantum Dot Clusters via Nematic Liquid Crystal Defects

    Science.gov (United States)

    Rodarte, Andrea; Pandolfi, R.; Hirst, L. S.; Ghosh, S.

    2012-11-01

    Nematic liquid crystal (LC) materials can be used to create ordered clusters of CdSe/ZnS core/shell quantum dots (QDs) from a homogeneous isotropic dispersion. At the phase transition, the ordered domains of nematic LC expel the majority of dispersed QDs into the isotropic domains. The final LC phase produces a series of QD clusters that are situated at the defect points of the liquid crystal texture. Lower concentrations of QDs are organized in a network throughout the LC matrix that originates from the LC phase transition. Inside the QD clusters the inter-particle distance enables efficient energy transfer from high energy dots to lower energy dots. Because the QD clusters form at defect sites, the location of the clusters can be preselected by seeding the LC cell with defect nucleation points.

  14. Crystal growth and comparison of vibrational and thermal properties of semi-organic nonlinear optical materials

    Indian Academy of Sciences (India)

    S Gunasekaran; G Anand; R Arun Balaji; J Dhanalakshmi; S Kumaresan

    2010-10-01

    Single crystals of urea thiourea mercuric sulphate (UTHS) and urea thiourea mercuric chloride (UTHC), semi-organic nonlinear optical materials, were grown by low-temperature solution growth technique by slow evaporation method using water as the solvent. Good quality single crystals were grown within three weeks. The nonlinear nature of the crystals was confirmed by SHG test. The UV–Vis spectrum showed the transmitting ability of the crystals in the entire visible region. FTIR spectrum was recorded and vibrational assignments were made. The degree of dopant inclusion was ascertained by AAS. The TGA–DTA studies showed the thermal properties of the crystals.

  15. Thermal and Mechanical Properties of a Complex Nonlinear Optical Material: Cadmium Mercury Thiocyanate Crystal

    Institute of Scientific and Technical Information of China (English)

    YUAN Duo-Rong; XU Dong; ZHANG Guang-Hui; LIU Ming-Guo; GUO Shi-Yi; MENG Fan-Qing; LU Meng-Kai; FANG Qi; JIANG Min-Hua

    2000-01-01

    Institute of Crystal Materials and State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100 (Received 18 March 2000) The data of the thermal expansion and specific heat of cadmium mercury thiocyanate crystal have been obtained. The specific heat is 0.7588J/g℃ at room temperature. The thermal expansion occurs in the direction parallel to the c-axis, and the thermal contraction occurs in the direction parallel to the a-axis. The thermal expansion is the same as the thermal contraction at 353 K. The relationship between thermal properties and crystal structure is discussed.

  16. The peculairities of material crystallization experiments in the CF-18 centrifuge under high gravity

    Science.gov (United States)

    Burdin, B. V.; Regel, L. L.; Turchaninov, A. M.; Shumaev, O. V.

    1992-04-01

    This paper presents data on the crystallization of various materials using the CF-18 centrifuge at the Gagarin Cosmonaut Center. The geometry and equipment are described. Consideration is given to some peculiarities of preparing and conducting crystal growth experiments in this centrifuge. Vibration in a coordinate system fixed to the crystal growth equipment and the reasons for its initiation are shown. From the results of experiments conducted during the last 10 years, it was concluded that there are many possibilities of using various classes of model materials to study crystal growth processes under high gravity conditions.

  17. Fundamentals of liquid crystal devices

    CERN Document Server

    Yang, Deng-Ke

    2014-01-01

    Revised throughout to cover the latest developments in the fast moving area of display technology, this 2nd edition of Fundamentals of Liquid Crystal Devices, will continue to be a valuable resource for those wishing to understand the operation of liquid crystal displays. Significant updates include new material on display components, 3D LCDs and blue-phase displays which is one of the most promising new technologies within the field of displays and it is expected that this new LC-technology will reduce the response time and the number of optical components of LC-modules. Prof. Yang is a pion

  18. Synthesis, Crystal Structure, and Characterization of a New Organic-Inorganic Hybrid Material:

    OpenAIRE

    Hela Ferjani; Habib Boughzala; Ahmed Driss

    2013-01-01

    The title compound is an organic-inorganic hybrid material. The single crystal X-ray diffraction investigation reveals that the studied compound crystallizes in the orthorhombic system, space group Pbca with the following lattice parameters:  (4) Å,  (3) Å,  (6) Å, and . The crystal lattice is composed of a discrete anion surrounded by piperazinium cations, chlorine anions, and water molecules. Complex hydrogen bonding interactions between , , organic cations, and water molecules form a thre...

  19. LC-MS/MS analytical procedure to quantify tris(nonylphenyl)phosphite, as a source of the endocrine disruptors 4-nonylphenols, in food packaging materials.

    Science.gov (United States)

    Mottier, Pascal; Frank, Nancy; Dubois, Mathieu; Tarres, Adrienne; Bessaire, Thomas; Romero, Roman; Delatour, Thierry

    2014-01-01

    Tris(nonylphenyl)phosphite, an antioxidant used in polyethylene resins for food applications, is problematic since it is a source of the endocrine-disrupting chemicals 4-nonylphenols (4NP) upon migration into packaged foods. As a response to concerns surrounding the presence of 4NP-based compounds in packaging materials, some resin producers and additive suppliers have decided to eliminate TNPP from formulations. This paper describes an analytical procedure to verify the "TNPP-free" statement in multilayer laminates used for bag-in-box packaging. The method involves extraction of TNPP from laminates with organic solvents followed by detection/quantification by LC-MS/MS using the atmospheric pressure chemical ionisation (APCI) mode. A further acidic treatment of the latter extract allows the release of 4NP from potentially extracted TNPP. 4NP is then analysed by LC-MS/MS using electrospray ionisation (ESI) mode. This two-step analytical procedure ensures not only TNPP quantification in laminates, but also allows the flagging of other possible sources of 4NP in such packaging materials, typically as non-intentionally added substances (NIAS). The limits of quantification were 0.50 and 0.48 µg dm⁻² for TNPP and 4NP in laminates, respectively, with recoveries ranging between 87% and 114%. Usage of such analytical methodologies in quality control operations has pointed to a lack of traceability at the packaging supplier level and cross-contamination of extrusion equipment at the converter level, when TNPP-containing laminates are processed on the same machine beforehand.

  20. Liquid crystals. Oligomeric and polymeric materials for soft photonic technologies

    CERN Document Server

    Coles, M J

    2002-01-01

    The current pace of today's information technologies might lead the casual observer to believe that this is all new. However the reality is that, as with most things, this is really a long evolution of processes based on tried, tested and re-adapted techniques. This thesis represents 12 years of predominantly technology driven research and covers a whole range of characterising, evaluating and fabricating devices based on liquid crystalline systems. Firstly polymer liquid crystals are discussed with respect to the fabrication of a flexible substrate display based on standard printing techniques and this is shown to have improved display viewing properties over a standard polymer dispersed liquid crystal (PDLC) device. Following on from this work is presented that involves the production of regular grid arrays in isotropic polymers that are used as control structures in nematic liquid crystal systems. This progresses onto a now patented device that allows the production of robust ferroelectric devices based on...

  1. Determination of catechins and caffeine in proposed green tea standard reference materials by liquid chromatography-particle beam/electron ionization mass spectrometry (LC-PB/EIMS).

    Science.gov (United States)

    Castro, Joaudimir; Pregibon, Tara; Chumanov, Kristina; Marcus, R Kenneth

    2010-10-15

    Presented here is the quantitative analysis of green tea NIST standard reference materials (SRMs) via liquid chromatography-particle beam/electron ionization mass spectrometry (LC-PB/EIMS). Three different NIST green tea standard reference materials (SRM 3254 Camellia sinesis Leaves, SRM 3255 C. sinesis Extract and SRM 3256 Green Tea-containing Oral Dosage Form) are characterized for the content of caffeine and a series of catechin species (gallic acid, catechin, epicatechin, epigallocatechin, epicatechin gallate and epigallocatechin gallate (EGCG)). The absolute limits of detection for caffeine and the catechin species were determined to be on the nanogram level. A reversed-phase chromatographic separation of the green tea reference materials was carried out on a commercial C(18) column using a gradient of water (containing 0.1% TFA) and 2:1 methanol:acetonitrile (containing 0.1%TFA) at 0.9mLmin(-1) and an analysis time of 50min. Quantification of caffeine and the catechin species was carried out using the standard addition and internal standard methods, with the latter providing appreciable improvements in precision and recovery.

  2. Quantification of the predominant monomeric catechins in baking chocolate standard reference material by LC/APCI-MS.

    Science.gov (United States)

    Nelson, Bryant C; Sharpless, Katherine E

    2003-01-29

    Catechins are polyphenolic plant compounds (flavonoids) that may offer significant health benefits to humans. These benefits stem largely from their anticarcinogenic, antioxidant, and antimutagenic properties. Recent epidemiological studies suggest that the consumption of flavonoid-containing foods is associated with reduced risk of cardiovascular disease. Chocolate is a natural cocoa bean-based product that reportedly contains high levels of monomeric, oligomeric, and polymeric catechins. We have applied solid-liquid extraction and liquid chromatography coupled with atmospheric pressure chemical ionization-mass spectrometry to the identification and determination of the predominant monomeric catechins, (+)-catechin and (-)-epicatechin, in a baking chocolate Standard Reference Material (NIST Standard Reference Material 2384). (+)-Catechin and (-)-epicatechin are detected and quantified in chocolate extracts on the basis of selected-ion monitoring of their protonated [M + H](+) molecular ions. Tryptophan methyl ester is used as an internal standard. The developed method has the capacity to accurately quantify as little as 0.1 microg/mL (0.01 mg of catechin/g of chocolate) of either catechin in chocolate extracts, and the method has additionally been used to certify (+)-catechin and (-)-epicatechin levels in the baking chocolate Standard Reference Material. This is the first reported use of liquid chromatography/mass spectrometry for the quantitative determination of monomeric catechins in chocolate and the only report certifying monomeric catechin levels in a food-based Standard Reference Material.

  3. Crystal growth of an organic non-linear optical material from the vapour phase

    CERN Document Server

    Hou, W

    1999-01-01

    Due to the potential applications of organic non-linear optical materials in the areas of optical processing and communication, the investigation of the crystal growth of new organic NLO materials has been an active field for the last 20 years. For such uses it is necessary to produce single crystals of high quality and perfection, free of strain and defects. When crystals are grown from the solution and the melt, solvent and the decomposition component in the melt can introduce impurities and imperfection to the as-grown crystals. For crystals grown from vapour phase, in the absence of the solvent, this cannot occur and the method promises to yield single crystals of higher quality. Despite this attraction, little attention has been paid to the vapour phase growth of organic NLO crystals. It was with this in mind that the following investigation was carried out. Using Methyl p-hydroxybenzoate (p-MHB), a potential organic NLO material, a comparison investigation was made of its crystal growth from both the va...

  4. Phase field crystal study of deformation and plasticity in nanocrystalline materials.

    Science.gov (United States)

    Stefanovic, Peter; Haataja, Mikko; Provatas, Nikolas

    2009-10-01

    We introduce a modified phase field crystal (MPFC) technique that self-consistently incorporates rapid strain relaxation alongside the usual plastic deformation and multiple crystal orientations featured by the traditional phase field crystal (PFC) technique. Our MPFC formalism can be used to study a host of important phase transformation phenomena in material processing that require rapid strain relaxation. We apply the MPFC model to study elastic and plastic deformations in nanocrystalline materials, focusing on the "reverse" Hall-Petch effect. Finally, we introduce a multigrid algorithm for efficient numerical simulations of the MPFC model.

  5. Crystal growth and characterizations of L-cystine dihydrobromide—A semiorganic nonlinear optical material

    Science.gov (United States)

    Anbuchezhiyan, M.; Ponnusamy, S.; Muthamizhchelvan, C.

    2010-02-01

    Single crystal of a new semiorganic nonlinear optical material, L-cystine dihydrobromide, was grown successfully from aqueous solution by slow evaporation method. The grown crystals were characterized by single crystal X-ray diffraction technique to determine the cell parameters. Powder X-ray diffraction analysis also confirms the structure of the grown title compound. The functional groups and vibrational frequencies have been identified using FTIR and FT Raman spectral data. Transmittance of the title compound was analyzed using UV-Vis spectrum. The mechanical strength of the grown crystal was found using Vickers microhardness measurement. The thermal stability of the grown crystal was determined with the aid of thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Second order nonlinear optical behavior of the grown crystal has been confirmed by Kurtz powder second harmonic generation (SHG) test and its SHG efficiency was found as deff=0.38 deff (KDP).

  6. Crystal growth and characterizations of L-cystine dihydrobromide-A semiorganic nonlinear optical material

    Energy Technology Data Exchange (ETDEWEB)

    Anbuchezhiyan, M. [Department of Physics, Valliammai Engineering College, S.R.M. Nagar, Kattankulathur 603 203, Chennai (India); Ponnusamy, S., E-mail: suruponnus@gmail.co [Centre for Material Science and Nano Devices, Department of Physics, SRM University, Kattankulathur 603 203, Chennai (India); Muthamizhchelvan, C. [Centre for Material Science and Nano Devices, Department of Physics, SRM University, Kattankulathur 603 203, Chennai (India)

    2010-02-15

    Single crystal of a new semiorganic nonlinear optical material, L-cystine dihydrobromide, was grown successfully from aqueous solution by slow evaporation method. The grown crystals were characterized by single crystal X-ray diffraction technique to determine the cell parameters. Powder X-ray diffraction analysis also confirms the structure of the grown title compound. The functional groups and vibrational frequencies have been identified using FTIR and FT Raman spectral data. Transmittance of the title compound was analyzed using UV-Vis spectrum. The mechanical strength of the grown crystal was found using Vickers microhardness measurement. The thermal stability of the grown crystal was determined with the aid of thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Second order nonlinear optical behavior of the grown crystal has been confirmed by Kurtz powder second harmonic generation (SHG) test and its SHG efficiency was found as d{sub eff}=0.38d{sub eff} (KDP).

  7. Reversible crystal-to-amorphous-to-crystal phase transition and a large magnetocaloric effect in a spongelike metal organic framework material.

    Science.gov (United States)

    Tian, Chong-Bin; Chen, Rui-Ping; He, Chao; Li, Wei-Jin; Wei, Qi; Zhang, Xu-Dong; Du, Shao-Wu

    2014-02-21

    Reversible crystal-to-amorphous-to-crystal phase transition accompanied by changes in magnetic and NLO properties was first observed in a rigid non-porous spongelike MOF material. The crystal phase exhibits a high magnetocaloric effect, while the amorphous phase has potential application as a magnetic DMF sensor.

  8. Dynamic Photonic Materials Based on Liquid Crystals (Postprint)

    Science.gov (United States)

    2013-09-01

    in liquid-crystalline side chain polymers. Liquid Crystals, 33, 1421–1427. Atkins , P.W. (1987). Physical chemistry . Oxford: Oxford University Press...unlimited. 22 Luciano De Sio et al. Figure 15 Spectral shape and position of a variety of reflection grating samples written with appropriate chemistries ...gratings written with acrylate chemistry . The scale bar corresponds to 40 nm, 150 nm, and 1500 nm from left to right. The images clearly show the two

  9. Crystallization Behavior of Phosphate Glasses with Hydrophobic Coating Materials

    Directory of Open Access Journals (Sweden)

    Jaeyeop Chung

    2015-01-01

    Full Text Available We analyzed the effect of the addition of Li2O3, TiO2, and Fe2O3 on the crystallization behavior of P2O5–CaO–SiO2–K2O glasses and the effect of the crystallization behavior on the roughness and hydrophobicity of the coated surface. Exothermic behavior, including a strong exothermic peak in the 833–972 K temperature range when Fe2O3, TiO2, or Li2O3 was added, was confirmed by differential thermal analysis. The modified glass samples (PFTL1–3 showed diffraction peaks when heated at 1073 and 1123 K for 5 min; the crystallized phase corresponds to Fe3(PO42, that is, graftonite. We confirmed that the intensity of the diffraction peaks increases at high temperatures and with increasing Li2O3 content. In the case of the PFTL3 glass, a Li3Fe2(PO42 phase, that is, trilithium diiron(III tris[phosphate(V], was observed. Through scanning electron microscopy and the contact angles of the surfaces with water, we confirmed that the increase in surface roughness, correlated to the crystallization of the glass frit, increases hydrophobicity of the surface. The calculated values of the local activation energies for the growth of Fe3(PO42 on the PTFL1, PTFL2, and PFTL3 glass were 237–292 kJ mol−1, 182–258 kJ mol−1, and 180–235 kJ mol−1.

  10. Hardness of materials: studies at levels from atoms to crystals

    Institute of Scientific and Technical Information of China (English)

    LI KeYan; XUE DongFeng

    2009-01-01

    Based on the electron-holding energy per unit volume, we extend the concept of hardness to atomic stiffness, ionic stiffness and bond hardness, investigating the nature of material hardness at these three levels. We find that the stiffness of isolated atoms or ions has no direct connection with the hardness of materials, whereas material hardness is directly related to bond hardness, which is es-sentially determined by the electron-holding energy of its constituent chemical bonds per unit volume. We establish a model for identifying the hardness of materials on the basis of bond hardness. This work offers a deeper understanding of the nature of material hardness at the atomic level, and provides a practical guide in the search for new superhard materials.

  11. Carbon Nanoparticles in Nematic Liquid Crystals

    Institute of Scientific and Technical Information of China (English)

    S.Eren San; Mustafa Okutan; O(g)uz K(o)ysal; Yusuf Yer-li

    2008-01-01

    Fullerene G60,C70,single-walled and multi-walled carbon nanotubes and graphene sheets are doped to nematic liquid crystal(LC)host in the same percentage.Planar samples of these mixtures are prepared and our measurements constitute an optimization basis for possible applications.Fullerene balls are found to be the best compatible material for optical aims and reorientation of LC molecules,while the carbon nanotubes experience some reorientation possibility in LC media and graphene layers are good barriers to preserve reorientation.

  12. A novel laser-based method for controlled crystallization in dental prosthesis materials

    Science.gov (United States)

    Cam, Peter; Neuenschwander, Beat; Schwaller, Patrick; Köhli, Benjamin; Lüscher, Beat; Senn, Florian; Kounga, Alain; Appert, Christoph

    2015-02-01

    Glass-ceramic materials are increasingly becoming the material of choice in the field of dental prosthetics, as they can feature both high strength and very good aesthetics. It is believed that their color, microstructure and mechanical properties can be tuned such as to achieve an optimal lifelike performance. In order to reach that ultimate perfection a controlled arrangement of amorphous and crystalline phases in the material is required. A phase transformation from amorphous to crystalline is achieved by a heat treatment at defined temperature levels. The traditional approach is to perform the heat treatment in a furnace. This, however, only allows a homogeneous degree of crystallization over the whole volume of the parent glass material. Here a novel approach using a local heat treatment by laser irradiation is presented. To investigate the potential of this approach the crystallization process of SiO2-Li2O-Al2O3-based glass has been studied with laser systems (pulsed and continuous wave) operating at different wavelengths. Our results show the feasibility of gradual and partial crystallization of the base material using continuous laser irradiation. A dental prosthesis machined from an amorphous glassy state can be effectively treated with laser irradiation and crystallized within a confined region of a few millimeters starting from the body surface. Very good aesthetics have been achieved. Preliminary investigation with pulsed nanosecond lasers of a few hundreds nanoseconds pulse width has enabled more refinement of crystallization and possibility to place start of phase change within the material bulk.

  13. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Tercjak, A; Garcia, I; Mondragon, I [Materials-Technologies Group, Departamento IngenierIa Quimica y M Ambiente, Escuela Politecnica, Universidad PaIs Vasco/Euskal Herriko Unibertsitatea, Plaza Europa 1, E-20018 Donostia-San Sebastian (Spain)], E-mail: scptesza@sc.ehu.es, E-mail: inaki.mondragon@ehu.es

    2008-07-09

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface.

  14. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal

    Science.gov (United States)

    Tercjak, A.; Garcia, I.; Mondragon, I.

    2008-07-01

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface.

  15. Directory of crystal growth and solid state materials production and research

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, T.F.; Battle, G.C.; Keesee, A.M. (comps.)

    1979-03-01

    This directory lists only those who returned questionnaires distributed by the Research Materials Information Center during 1978. The directory includes, in addition to crystal growers, those preparing starting materials for crystal growth and ultrapure noncrystalline research specimens. It also includes responses from those characterizing, or otherwise studying, the properties of materials provided by others. The international coverage of the directory is limited to the United States, Argentina, Australia, Bulgaria, Canada, Czechoslovakia, Egypt, Finland, East Germany, Hungary, India, Israel, Japan, Mexico, Poland, Romania, South Africa, Taiwan, Yugoslavia, and Zaire.

  16. Computational studies of bioceramic crystals and related materials

    Science.gov (United States)

    Rulis, Paul Michael

    Ongoing research to improve the foundations of knowledge concerning the human body requires a detailed understanding of the effects derived from atomic interactions. The details of these fundamental interactions will pave the way to the effective manipulation of macroscopic tissue. As a small step towards the realization of that goal the Orthogonalized Linear Combination of Atomic Orbitals (OLCAO) program suite has been applied to complex bioceramic crystals and other prototypes of hard tissue biological nanostructures. In addition, the OLCAO program suite has been further developed and extended in terms of efficiency, features, ease of use, and ease of maintenance such that even more complex systems and effects can be treated in the future. Through extensive OLCAO ab initio calculations on a collection of prototype bioceramic crystals the differences between them in terms of bonding, charge transfer, electronic structure, and spectroscopic properties have been detailed in an effort to lay the foundations of further research where interfaces, dopants, and defects are considered. In addition, inactive silicon defects that can be considered as prototypes for the complex environment in which bioceramic apatites exist have also been studied with the OLCAO program suite in an effort to expand the detection limit of small structures through spectroscopic means. With much effort, the OLCAO program suite has undergone a detailed conversion to a more modern programming language and programming style. A thorough review of the source code has accounted for many inaccuracies, corrected some programming errors, and removed various inefficient algorithmic bottlenecks. The generation of OLCAO input files, the execution of the components of the OLCAO suite, and the analysis of resultant data has been automated with numerous control scripts. Various external library packages have been instrumented for the benefit of profiling and resource efficiency in a high performance computing

  17. Glass Formation of a Coordination Polymer Crystal for Enhanced Proton Conductivity and Material Flexibility.

    Science.gov (United States)

    Chen, Wenqian; Horike, Satoshi; Umeyama, Daiki; Ogiwara, Naoki; Itakura, Tomoya; Tassel, Cédric; Goto, Yoshihiro; Kageyama, Hiroshi; Kitagawa, Susumu

    2016-04-18

    The glassy state of a two-dimensional (2D) Cd(2+) coordination polymer crystal was prepared by a solvent-free mechanical milling process. The glassy state retains the 2D structure of the crystalline material, albeit with significant distortion, as characterized by synchrotron X-ray analyses and solid-state multinuclear NMR spectroscopy. It transforms to its original crystal structure upon heating. Thus, reversible crystal-to-glass transformation is possible using our new processes. The glass state displays superior properties compared to the crystalline state; specifically, it shows anhydrous proton conductivity and a dielectric constant two orders of magnitude greater than the crystalline material. It also shows material flexibility and transparency.

  18. High figure-of-merit compact phase shifters based on liquid crystal material for 1-10 GHz applications

    Science.gov (United States)

    Cai, Longzhu; Xu, Huan; Li, Jinfeng; Chu, Daping

    2017-01-01

    A liquid crystal (LC) based tunable microstrip line (ML) phase shifter featuring high performance is presented. The experimental results show an electrically tunable differential phase up to 360° at 10 GHz with an overall insertion loss impedance matching structure is applied, and the measured return loss is considerably improved. The FoM and phase tuning property of the fabricated device as optimized are compared with the state-of-art results published recently and show better performance for both of them.

  19. In-situ nano-crystal-to-crystal transformation synthesis of energetic materials based on three 5,5′-azotetrazolate Cr(III) salts

    Science.gov (United States)

    Miao, Yu; Qiu, Yanxuan; Cai, Jiawei; Wang, Zizhou; Yu, Xinwei; Dong, Wen

    2016-01-01

    The in-situ nano-crystal-to-crystal transformation (SCCT) synthesis provides a powerful approach for tailoring controllable feature shapes and sizes of nano crystals. In this work, three nitrogen-rich energetic nano-crystals based on 5,5′-azotetrazolate(AZT2−) Cr(III) salts were synthesized by means of SCCT methodology. SEM and TEM analyses show that the energetic nano-crystals feature a composition- and structure-dependent together with size-dependent thermal stability. Moreover, nano-scale decomposition products can be obtained above 500 °C, providing a new method for preparing metallic oxide nano materials. PMID:27869221

  20. In-situ nano-crystal-to-crystal transformation synthesis of energetic materials based on three 5,5'-azotetrazolate Cr(III) salts.

    Science.gov (United States)

    Miao, Yu; Qiu, Yanxuan; Cai, Jiawei; Wang, Zizhou; Yu, Xinwei; Dong, Wen

    2016-11-21

    The in-situ nano-crystal-to-crystal transformation (SCCT) synthesis provides a powerful approach for tailoring controllable feature shapes and sizes of nano crystals. In this work, three nitrogen-rich energetic nano-crystals based on 5,5'-azotetrazolate(AZT(2-)) Cr(III) salts were synthesized by means of SCCT methodology. SEM and TEM analyses show that the energetic nano-crystals feature a composition- and structure-dependent together with size-dependent thermal stability. Moreover, nano-scale decomposition products can be obtained above 500 °C, providing a new method for preparing metallic oxide nano materials.

  1. Evaluation method of multiaxial low cycle fatigue life for cubic single crystal material

    Institute of Scientific and Technical Information of China (English)

    CHEN Jiping; DING Zhiping

    2007-01-01

    The coupling effect of normal stress and shear stress on orthotropic materials happens when applied loading deflects from the directions of the principal axes of the material coordinate system.By taking account of the coupling effects,formulas of equivalent stress and strain for cubic single crystal materials are cited.Using the equivalent strain and equivalent stress for such material and a variable k,which is introduced to express the effect of asymmetrical cyclic loading on fatigue life,a low cycle fatigue (LCF) life prediction model for such material in multiaxial stress starts is proposed.On the basis of the yield criterion and constitutive model of cubic single crystal materials,a subroutine to calculate the thermo elastic-plastic stress-strain of the material on an ANSYS platform was developed.The cyclic stress-strain of DD3 notched specimens under asymmetrical loading at 680℃ was analyzed.Low cycle fatigue test data of the single crystal nickel-based superalloy are used to fit the different parameters of the power law with multiple linear regression analysis.The equivalent stress and strain for a cubic single crystal material as failure parameters have the largest correlation coefficient.A power law exists between k and the failure cycle.The model was validated with LCF test data of CMSX-2 and DD3 single crystal nickel-based superalloys.All the test data fall into the factor of 2.5 for CMSX-2 hollow cylinder specimens and 2.0 scatter band for DD3 notched specimens,respectively.

  2. Reflectance and reflection phase of photonic crystal with anisotropic left-handed materials

    Science.gov (United States)

    Kang, Yongqiang; Zhang, Chunmin; Yao, Baoli

    2016-11-01

    The reflectance and reflection phase properties of one dimensional photonic crystals with anisotropic left-handed materials is investigated by transfer matrix method. It is demonstrated that the width of zero- n band gap is influenced by the incident angle, polarization, the proportion of lattice and the ratio of thickness which is different from the zero- n band gap with isotropic left hand materials. The value of reflection phase is affected by incident angle and polarization and not affected by the proportion of lattice and the ratio of thickness. These characteristic may be useful for making photonic crystal phase compensators and the dispersion compensators.

  3. An Artificially Garnet Crystal Materials Using In Terahertz Waveguide

    Institute of Scientific and Technical Information of China (English)

    YANG Qing-Hui; ZHANG Huai-Wu; LIU Ying-Li; WEN Qi-Ye; ZHA Jie

    2008-01-01

    A hypothesis is brought forward that the materials with low propagation loss in both optical and microwave band may exhibit good performance in terahertz (THz) band because THz wave band interspaces those two wavebands. For the purpose of exploring a kind of low-loss material for THz waveguide, Lu2.1Bio.9FesO12(LuBiIG)garnet films are prepared by liquid phase epitaxy (LPE) method on a gadolinium gallium garnet (GGG) substrate from lead-free flux because of the good properties in both optical and microwave bands. In microwave band, the ferromagnetic resonance (FMR) linewidth of the film 2△H = 2.8-5.1 Oe; in optical band, the optical absorption coefficient is 600cm-1 at visible range and about 100-170cm-l when the wavelength is longer than 80Onm. In THz range, our hypothesis is well confirmed by a THz-TDS measurement which shows that the absorbance of the film for THz wave is 0.05-0.3 cm- 1 and the minimum value appears at 2.3 THz. This artificial ferromagnetic material holds a great promise for magnetic field tunable THz devices such as wavegnide, modulator or switch.

  4. Improvement of Response Performance of Liquid Crystal Optical Devices by using a Low Viscosity Component

    Institute of Scientific and Technical Information of China (English)

    PENG Zeng-Hui; LIU Yong-Gang; YAO Li-Shuang; CAO Zhao-Liang; MU Quan-Quan; HU Li-Fa; LU Xing-Hai; XUAN Li; ZHANG Zhi-Yong

    2011-01-01

    Difluorooxymethylene-bridged (CF2O) liquid crystal (LC) with low viscosity is prepared and used as a fast response LC material. When the material is mixed with isothiocyanato LCs with high birefringence, the visco-elastic coefficient of the mixture decreases evidently and, accordingly, the response performance increases. While the concentration of CF2O LCs is about 7%, the LC mixture approximately maintains high birefringence and exhibits a fastest response performance that is 14% higher than that of pure isothiocyanato LCs. Therefore, the LC material and mixing method could find useful applications in optical devices.%@@ Difluorooxymethylene-bridged(CF2O)liquid crystal(LC)with low viscosity is prepared and used as a fast response LC material.When the material is mixed with isothiocyanato LCs with high birefringence,the visco-elastic coefficient of the mixture decreases evidently and,accordingly,the response performance increases.While the concentration of CF2O LCs is about 7%,the LC mixture approximately maintains high birefringence and exhibits a fastest response performance that is 14%higher than that of pure isothiocyanato LCs.Therefore,the LC material and mixing method could find useful applications in optical devices.

  5. Modeling of Crystal Orientations in Laser Powder Deposition of Single Crystal Material

    Science.gov (United States)

    Qi, Huan; Liu, Zhaoyang

    This paper presents a numerical model which simulates the dynamic molten pool formation and the crystal orientations of solidified SX alloy in a multi-layer laser powder deposition process. Based on the mathematical model of coaxial laser direct deposition, the effect of parameters (laser power, scanning speed, powder feed rate) on the tendency to form [001] direction expitaxial grains during solidification was evaluated. In the transient three- dimensional model, physical phenomena including heat transfer, melting, grain formation during solidification, mass addition, and fluid flow in the melt pool, were modeled in a self-consistent manner. The temperature fields, fluid flow velocity, clad geometry (width, height and melt pool depth) and grain formation in melting pool of single layer are predicted.

  6. Photosensitive Polymers for Liquid Crystal Alignment

    Science.gov (United States)

    Mahilny, U. V.; Stankevich, A. I.; Trofimova, A. V.; Muravsky, A. A.; Murauski, A. A.

    The peculiarities of alignment of liquid crystal (LC) materials by the layers of photocrosslinkable polymers with side benzaldehyde groups are considered. The investigation of mechanism of photostimulated alignment by rubbed benzaldehyde layer is performed. The methods of creation of multidomain aligning layers on the basis of photostimulated rubbing alignment are described.

  7. Synthesis, Crystal Structure, and Characterization of a New Organic-Inorganic Hybrid Material:

    Directory of Open Access Journals (Sweden)

    Hela Ferjani

    2013-01-01

    Full Text Available The title compound is an organic-inorganic hybrid material. The single crystal X-ray diffraction investigation reveals that the studied compound crystallizes in the orthorhombic system, space group Pbca with the following lattice parameters:  (4 Å,  (3 Å,  (6 Å, and . The crystal lattice is composed of a discrete anion surrounded by piperazinium cations, chlorine anions, and water molecules. Complex hydrogen bonding interactions between , , organic cations, and water molecules form a three-dimensional network. Room temperature IR, Raman spectroscopy, and optical absorption of the title compound were recorded and analysed. The observed crystal morphology was compared to the simulated one using the Bravais-Friedel, Donnay-Harker model.

  8. Organometallic chemistry meets crystal engineering to give responsive crystalline materials.

    Science.gov (United States)

    Bacchi, A; Pelagatti, P

    2016-01-25

    Dynamically porous crystalline materials have been obtained by engineering organometallic molecules. This feature article deals with organometallic wheel-and-axle compounds, molecules with two relatively bulky groups (wheels) connected by a linear spacer. The wheels are represented by half-sandwich Ru(ii) moieties, while the spacer can be covalent or supramolecular in character. Covalent spacers are obtained using divergent bidentate ligands connecting two [(arene)RuX2] groups. Supramolecular spacers are instead obtained by exploiting the dimerization of COOH or C(O)NH2 groups appended to N-based ligands. A careful choice of ligand functional groups and X ligands leads to the isolation of crystalline materials with remarkable host-guest properties, evidenced by the possibility of reversibly capturing/releasing volatile guests through heterogenous solid-gas reactions. Structural correlations between the crystalline arrangement of the apohost and the host-guest compounds allow us to envisage the structural path followed by the system during the exchange processes.

  9. First principles crystal engineering of nonlinear optical materials. I. Prototypical case of urea

    Science.gov (United States)

    Masunov, Artëm E.; Tannu, Arman; Dyakov, Alexander A.; Matveeva, Anastasia D.; Freidzon, Alexandra Ya.; Odinokov, Alexey V.; Bagaturyants, Alexander A.

    2017-06-01

    The crystalline materials with nonlinear optical (NLO) properties are critically important for several technological applications, including nanophotonic and second harmonic generation devices. Urea is often considered to be a standard NLO material, due to the combination of non-centrosymmetric crystal packing and capacity for intramolecular charge transfer. Various approaches to crystal engineering of non-centrosymmetric molecular materials were reported in the literature. Here we propose using global lattice energy minimization to predict the crystal packing from the first principles. We developed a methodology that includes the following: (1) parameter derivation for polarizable force field AMOEBA; (2) local minimizations of crystal structures with these parameters, combined with the evolutionary algorithm for a global minimum search, implemented in program USPEX; (3) filtering out duplicate polymorphs produced; (4) reoptimization and final ranking based on density functional theory (DFT) with many-body dispersion (MBD) correction; and (5) prediction of the second-order susceptibility tensor by finite field approach. This methodology was applied to predict virtual urea polymorphs. After filtering based on packing similarity, only two distinct packing modes were predicted: one experimental and one hypothetical. DFT + MBD ranking established non-centrosymmetric crystal packing as the global minimum, in agreement with the experiment. Finite field approach was used to predict nonlinear susceptibility, and H-bonding was found to account for a 2.5-fold increase in molecular hyperpolarizability to the bulk value.

  10. 用液晶与聚合物混合材料的各向异性相分离制备快速响应液晶盒%Fast Switching Nematic Liquid Crystal Cell Fabricated by Anisotropic Phase-separation From a Liquid Crystal and Polymer Composite Material

    Institute of Scientific and Technical Information of China (English)

    王庆兵

    2004-01-01

    展示一种新型含有超薄液晶层( 小于1 μm) 的快速响应液晶盒, 总的响应时间( τon+τoff) 可以达到1.3 ms.这种液晶器件可以通过对一种液晶和聚合物混合材料的各向异性相分离制备获得. 偏光显微镜和扫描电子显微镜的观测结果确认了一种液晶/聚合物的双层膜机构的形成. 实验结果表明液晶层的厚度可以简单地通过改变液晶在混合材料中的含量来精确调节.这种制备方法可以用来制作含有超薄液晶层的快速显示液晶器件用于视频显示方面的应用.%It is demonstrated that a nematic liquid crystal (LC) cell containing a very thin (《1 μm) LC film can perform very fast switching, with a total response time as fast as 1.3 ms. Such type of LC devices can be prepared by a photo-induced anisotropic phase-separation from a nematic LC and polymer composite material. The formation of the LC/polymer bi-layer structure in the cell after the anisotropic phase-separation was confirmed by employing polarized light microscope and scanning electron microscope. It is also found that LC layer thickness can be fine tuned by adjusting the LC concentration in the composite mixture. Such a technique can be used to fabricate LC devices containing very thin LC film and performing fast switching for TV and Video applications where fast response time is required.

  11. Comparison of different solid-phase extraction materials for the determination of fluoroquinolones in chicken plasma by LC-MS/MS.

    Science.gov (United States)

    Janusch, Franziska; Scherz, Gesine; Mohring, Siegrun A I; Stahl, Jessica; Hamscher, Gerd

    2014-03-01

    Fluoroquinolones are synthetic antibiotics which are frequently used in veterinary medicine e.g. for the treatment of poultry. Their specific importance is based on the fact that they are regarded as antibiotics of last resort because of their broad spectrum of action against Gram-negative and -positive bacteria. Here, a new and sensitive method for the simultaneous determination of four fluoroquinolones (marbofloxacin, ciprofloxacin, enrofloxacin and difloxacin) in chicken plasma by LC-MS/MS was developed. Solid-phase extraction was chosen for sample preparation because a selective sample clean-up is combined with an effective extraction. Various solid-phase extraction materials including polymer-based reversed-phase, silica-based reversed-phase and mixed-mode sorbents were compared. Selection criteria were analyte recovery, sample extract purity and economical aspects (analysis time and elution solvent volume). Best recoveries and minimized elution solvent volumes were achieved using polymeric reversed-phase cartridges. However, post-column infusion experiments revealed that the analysis is influenced by co-eluting matrix components. Hence, a combination of a mixed-mode anion-exchange cartridge and a mixed-mode cation-exchange cartridge was used as final extraction method. This method yield slightly lower analyte recoveries compared to polymeric-reversed-phase cartridges but exhibit no matrix effects. Recoveries of spiked chicken plasma ranged from 61.9% to 84.8% with an inter-day precision of generally less than 12%. LODs are between 0.03 and 0.05μg/L; LOQs are between 0.08 and 0.16μg/L. Maximum plasma concentrations of chickens medicated with an enrofloxacin dosage of 3mg/kg bodyweight were 38.9μg/L for enrofloxacin and 3.3μg/L for its main metabolite ciprofloxacin. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Photoluminescence Studies of ZnSe Starting Materials and Vapor Grown Bulk Crystals

    Science.gov (United States)

    Su, Ching-Hua; Feth, S.; Wang, Ling Jun; Lehoczky, S. L.

    2001-01-01

    Low-temperature photoluminescence (PL) spectra were measured on ZnSe starting materials provided by various vendors and on bulk crystals grown from these starting materials by physical vapor transport (PVT) to study the effects of purification and contamination during PVT process. The impurity levels in one set of starting material/grown crystal were also measured by glow discharge mass spectroscopy (GDMS). The purification effect of pre-growth heat treatments and the PVT process is evidenced from the GDMS results which showed orders of magnitude reduction in the Li and Na concentration and a factor of 3 reduction in the O content after growth. The PL spectra showed that the strong emissions associated with Li (or Na) in one of the starting materials disappeared after growth. The GDMS results also showed increases in the At and Si contents by orders of magnitude after growth. To evaluate the contamination of the crystal during the high temperature growth process, three growth runs were processed using similar growth parameters but different furnace environments. The PL spectra suggest that the At contamination originated from the fused silica ampoule and that the Inconel cartridge might have been the cause of the broad Cu green and Cu red bands observed in one of the grown crystals.

  13. Process induced disorder in crystalline materials: differentiating defective crystals from the amorphous form of griseofulvin.

    Science.gov (United States)

    Feng, Tao; Pinal, Rodolfo; Carvajal, M Teresa

    2008-08-01

    This research investigates milling induced disorder in crystalline griseofulvin. Griseofulvin was subjected to cryogenic milling for various lengths of time. For comparison, the amorphous form of griseofulvin was also prepared by the quench melt method. Different analytical techniques were used to study the differences between the cryomilled, amorphous and crystalline forms of the drug. Cryogenic milling of griseofulvin progressively reduces the crystallinity of the drug by inducing crystal defects, rather than amorphous materials. Raman analysis provides evidence of structural differences between the two. The differences between the defective crystals produced by milling and the amorphous form are significant enough as to be measurable in their bulk thermal properties. Defective crystals show significant decrease in the heat of fusion as a function of milling time but do not exhibit a glass transition nor recrystallization from the amorphous form. Crystal defects undergo recrystallization upon heating at temperatures well below the glass transition temperature (T(g)) in a process that is separate and completely independent from the crystallization of the amorphous griseofulvin, observed above T(g). Physical mixtures of defective crystals and amorphous drug demonstrate that the thermal events associated with each form persist in the mixtures, unaffected by the presence of the other form.

  14. Wave properties of Fibonacci-sequence photonic crystals containing single-negative materials

    Science.gov (United States)

    Chen, Mei-Soong; Wu, Chien-Jang; Yang, Tzong-Jer; Fuh, Andy Ying-Guey

    2013-08-01

    Electromagnetic wave properties of a Fibonacci-sequence photonic crystal (FSPC) made of single-negative materials are theoretically investigated. It is found that, in the oblique incidence, such a kind of photonic crystal exhibits additional photonic bands or dips in the vicinity of either magnetic plasma frequency or electric plasma frequency. The additional photonic bands or dips corresponding to magnetic plasma frequency occur only for the TE wave, whereas those corresponding to electric plasma frequency occur only for the TM wave. In addition, we find that there exist omnidiretional gaps in such a single-negative FSPC.

  15. Visualization of unidirectional optical waveguide using topological photonic crystals made of dielectric material

    CERN Document Server

    Yang, Yuting; Xu, Tao; Wang, Hai-Xiao; Jiang, Jian-Hua; Hu, Xiao; Hang, Zhi Hong

    2016-01-01

    The introduction of topology unravels a new chapter of physics. Topological systems provide unique edge/interfacial quantum states which are expected to contribute to the development of novel spintronics and open the door to robust quantum computation. Optical systems can also benefit from topology. Engineering locally in real space a honeycomb photonic crystal with double Dirac cone in its photonic dispersion, topology transition in photonic band structure is induced and a pseudospin unidirectional optical channel is created and demonstrated by the backscattering immune electromagnetic transportation. The topological photonic crystal made of dielectric material can pave the road towards steering light propagations and contribute to novel communication technology.

  16. Wave Propagation From Electrons to Photonic Crystals and Left-Handed Materials

    CERN Document Server

    Markos, Peter

    2010-01-01

    This textbook offers the first unified treatment of wave propagation in electronic and electromagnetic systems and introduces readers to the essentials of the transfer matrix method, a powerful analytical tool that can be used to model and study an array of problems pertaining to wave propagation in electrons and photons. It is aimed at graduate and advanced undergraduate students in physics, materials science, electrical and computer engineering, and mathematics, and is ideal for researchers in photonic crystals, negative index materials, left-handed materials, plasmonics, nonlinear effects,

  17. Numerical Research of Materials Crystal Lattice Parameters Based on Rare-Earth Metals

    Directory of Open Access Journals (Sweden)

    Obkhodsky Artem

    2017-01-01

    Full Text Available Geometrical parameters (coordinates and angles of CeO2 crystal lattice by molecular dynamics method are calculated. Calculated parameters of crystal lattice are applied for definition the energy band structure via Hartree-Fock method in an approximation to CO LCAO (crystal orbitals as linear combination of atomic orbitals and using the model of cyclic cluster. Calculated minimum energy band p-d is within the value range of experimental data. Valence band maximum is 4.2 while minimum energy band p-d width is 2.8 eV Quantum-chemical calculations are accelerated by Schwarz inequality and direct inversion method in iterative subspace. The obtained mathematical model is implemented into software package for calculating material properties.

  18. Crystal Growth and Characterization of a New NLO Material: p-Toluidine p-Toluenesulfonate

    Directory of Open Access Journals (Sweden)

    M. Suresh

    2013-01-01

    Full Text Available Single crystals of p-Toluidine p-Toluenesulfonate (PTPT, an organic nonlinear optical (NLO material, have been grown by slow evaporation method at room temperature using ethanol as solvent. The crystal system was confirmed from the single crystal X-ray diffraction analysis. The functional groups were identified using FTIR spectroscopy. UV-Vis-NIR spectrum showed that the UV cut-off wavelength of PTPT occurs at 295 nm and it has insignificant absorption in the wavelength region of 532–800 nm. The SHG efficiency of PTPT was measured by employing Kurtz and Perry powder technique using a Q-switched mode locked Nd: YAG laser emitting 1064 nm for the first time and it was found to be 52% of standard KDP. Thermal and mechanical properties of PTPT were examined by TG/DTA and Vickers microhardness test, respectively.

  19. Graphene liquid crystal retarded percolation for new high-k materials

    Science.gov (United States)

    Yuan, Jinkai; Luna, Alan; Neri, Wilfrid; Zakri, Cécile; Schilling, Tanja; Colin, Annie; Poulin, Philippe

    2015-11-01

    Graphene flakes with giant shape anisotropy are extensively used to establish connectedness electrical percolation in various heterogeneous systems. However, the percolation behaviour of graphene flakes has been recently predicted to be far more complicated than generally anticipated on the basis of excluded volume arguments. Here we confirm experimentally that graphene flakes self-assemble into nematic liquid crystals below the onset of percolation. The competition of percolation and liquid crystal transition provides a new route towards high-k materials. Indeed, near-percolated liquid-crystalline graphene-based composites display unprecedented dielectric properties with a dielectric constant improved by 260-fold increase as compared with the polymer matrix, while maintaining the loss tangent as low as 0.4. This performance is shown to depend on the structure of monodomains of graphene liquid-crystalline phases. Insights into how the liquid crystal phase transition interferes with percolation transition and thus alters the dielectric constant are discussed.

  20. Synthesis of polycrystalline materials of SrW04 and growth of its single crystal

    Institute of Scientific and Technical Information of China (English)

    Fan Jiandong; Zhang Huaijin; Wang Zhengping; Ge Wenwei; Wang Jiyang

    2006-01-01

    The polycrystalline materials of SrWO4 were synthesized by means of a solid phase reaction with analytical purity SrCO3 and WO3 at high temperature.The transparent SrWO4 single crystal with dimension of Φ 22 mm×40 mm has been successfully grown along a-axis by Czochralski method.X-ray powder diffraction results show that the as-grown SrWO4 single crystal belongs to tetragonal system and I41/a space group.The measured density of segregation coefficients of W and Sr elements in SrWO4 single crystal are close to 1 by the X-ray fluorescence method.

  1. A co-crystal between benzene and ethane: a potential evaporite material for Saturn's moon Titan

    Directory of Open Access Journals (Sweden)

    Helen E. Maynard-Casely

    2016-05-01

    Full Text Available Using synchrotron X-ray powder diffraction, the structure of a co-crystal between benzene and ethane formed in situ at cryogenic conditions has been determined, and validated using dispersion-corrected density functional theory calculations. The structure comprises a lattice of benzene molecules hosting ethane molecules within channels. Similarity between the intermolecular interactions found in the co-crystal and in pure benzene indicate that the C—H...π network of benzene is maintained in the co-crystal, however, this expands to accommodate the guest ethane molecules. The co-crystal has a 3:1 benzene:ethane stoichiometry and is described in the space group R\\bar 3 with a = 15.977 (1 Å and c = 5.581 (1 Å at 90 K, with a density of 1.067 g cm−3. The conditions under which this co-crystal forms identify it is a potential that forms from evaporation of Saturn's moon Titan's lakes, an evaporite material.

  2. Synthesis, growth, structure and characterization of chalcone crystal: A novel organic NLO material

    Science.gov (United States)

    Agilandeshwari, R.; Meenatchi, V.; Meenakshisundaram, S. P.

    2016-08-01

    Single crystals of a chalcone, (E)-3-(4-bromophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (BHP), were grown by the slow evaporation solution growth technique. The structure is elucidated by single-crystal X-ray diffraction analysis and the crystal belongs to the monoclinic system with noncentrosymmetric space group P21. Optical studies reveal that the absorption is minimum in the visible region and the cut-off wavelength is at ∼468 nm. The band-gap energy was estimated by the application of the Kubelka-Munk algorithm. The powder X-ray diffraction pattern reveals the good crystallinity of the as-grown specimen. The vibrational patterns in FT-IR are used to identify the functional groups and thermal studies indicate the stability of the material. The second harmonic generation efficiency (SHG), as estimated by Kurtz and Perry powder technique, reveals the superior nonlinear optical character of this material. Hirshfeld surface analysis is done to quantify the intermolecular interactions, responsible for developing a nonlinear atmosphere. As-grown crystals were further characterized by SEM, NMR, mass spectrometry and elemental analysis.

  3. Neural signal recording using microelectrode arrays fabricated on liquid crystal polymer material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choong Jae; Oh, Seung Jae; Song, Jong Keun; Kim, Sung June

    2004-01-05

    Microelectrode arrays have been developed for simultaneous multi-channel recordings from nervous systems, typically using silicon substrates. However, it has been known that it is difficult to meet the biocompatibility and durability requirements using silicon and other dielectric materials (SiO{sub 2}, Si{sub 3}N{sub 4}), due to environmental moisture and ions. Additional disadvantage of silicon being the rigid material makes it hard to apply these materials in chronic recording situations. Liquid Crystal Polymer (LCP) was recently introduced as a candidate material for electronic packaging purposes. The material acts as efficient barrier against ions and moisture, a desirable feature for a substrate material of microelectrode arrays. In this paper, we report on the neural recording performed using the LCP-based microelectrode arrays. The cell adhesion on the new material was compared very favorably with that using silicon, SiO{sub 2}, or polyimide material. The microelectrode arrays were patterned with Ti (500 Angst)/Au (3500 Angst) on the LCP film and were employed in both stimulation and recording from rat sciatic nerve. The electrical characteristic of the recorded signal was as good as those using other substrate materials, proving this material as an excellent candidate for next generation microelectrode arrays.

  4. Structure, crystal growth, optical and mechanical studies of poly bis (thiourea) silver (I) nitrate single crystal: A new semi organic NLO material

    Science.gov (United States)

    Sivakumar, N.; Kanagathara, N.; Varghese, B.; Bhagavannarayana, G.; Gunasekaran, S.; Anbalagan, G.

    2014-01-01

    A new semi organic non linear optical polymeric crystal, bis (thiourea) silver (I) nitrate (TuAgN) with dimension 8 × 7 × 1.5 mm3 has been successfully grown from aqueous solution by slow evaporation solution technique. Single crystal X-ray diffraction study reveals that the crystal belongs to orthorhombic system with non centrosymmetric space group C2221. The crystalline perfection of the crystal was analyzed by high resolution X-ray diffraction (HRXRD) rocking curve measurements. Functional groups present in the crystal were analyzed qualitatively by infrared and Confocal Raman spectral analysis. Effects due to coordination of thiourea with metal ions were also discussed. Optical absorption study on TuAgN crystal shows the minimum absorption in the entire UV-Vis region and the lower cut off wavelength of TuAgN is found to be 318 nm. Thermal analysis shows that the material is thermally stable up to 180 °C. The mechanical strength and its parameters of the grown crystal were estimated by Vicker's microhardness test. The second harmonic generation (SHG) efficiency of the crystal was measured by Kurtz's powder technique infers that the crystal has nonlinear optical (NLO) efficiency 0.85 times that of KDP.

  5. Band structures tunability of bulk 2D phononic crystals made of magneto-elastic materials

    Directory of Open Access Journals (Sweden)

    J. O. Vasseur

    2011-12-01

    Full Text Available The feasibility of contactless tunability of the band structure of two-dimensional phononic crystals is demonstrated by employing magnetostrictive materials and applying an external magnetic field. The influence of the amplitude and of the orientation with respect to the inclusion axis of the applied magnetic field are studied in details. Applications to tunable selective frequency filters with switching functionnality and to reconfigurable wave-guides and demultiplexing devices are then discussed.

  6. Advancements in the Quantification of the Crystal Structure of ZNS Materials Produced in Variable Gravity

    Science.gov (United States)

    Castillo, Martin

    2016-07-01

    Screens and displays consume tremendous amounts of power. Global trends to significantly consume less power and increase battery life have led to the reinvestigation of electroluminescent materials. The state of the art in ZnS materials has not been furthered in the past 30 years and there is much potential in improving electroluminescent properties of these materials with advanced processing techniques. Self-propagating high temperature synthesis (SHS) utilises a rapid exothermic process involving high energy and nonlinearity coupled with a high cooling rate to produce materials formed outside of normal equilibrium boundaries thus possessing unique properties. The elimination of gravity during this process allows capillary forces to dominate mixing of the reactants which results in a superior and enhanced homogeneity in the product materials. ZnS type materials have been previously conducted in reduced gravity and normal gravity. It has been claimed in literature that a near perfect phases of ZnS wurtzite was produced. Although, the SHS of this material is possible at high pressures, there has been no quantitative information on the actual crystal structures and lattice parameters that were produced in this work. Utilising this process with ZnS doped with Cu, Mn, or rare earth metals such as Eu and Pr leads to electroluminescence properties, thus making this an attractive electroluminescent material. The work described here will revisit the synthesis of ZnS via high pressure SHS and will re-examine the work performed in both normal gravity and in reduced gravity within the ZARM drop tower facility. Quantifications in the lattice parameters, crystal structures, and phases produced will be presented to further explore the unique structure-property performance relationships produced from the SHS of ZnS materials.

  7. Liquid-crystal photonic-band-gap materials the tunable electromagnetic vacuum

    CERN Document Server

    Busch, K

    1999-01-01

    We demonstrate that when an optically birefringent nematic liquid crystal is infiltrated into the void regions of an inverse opal, photonic-band-gap (PBG) material, the resulting composite material exhibits a completely tunable PBG. $9 In particular, the three- dimensional PBG can be completely opened or closed by applying an electric field which rotates the axis of the nematic molecules relative to the inverse opal backbone. Tunable light localization effects may $9 be realized by controlling the orientational disorder in the nematic. (28 refs).

  8. "Negative" Hartman Effect in One-dimentional Photonic Crystals with Negative Refractive Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Ligang; XU Jingping; ZHU ShiYao

    2004-01-01

    @@ The Hartman effect inside the one-dimensional photonic crystals (1DPCS) composed of negative index materials (NIMS) is always and is reversed to the Hartman effect inside the 1DPCS composed of positive index materials (PIMs).By calculating the phases of Fourier components of a pulse accumulated inside the 1DPCs of NIMs and the evolution of the pulse inside the 1DPCs of NIMs, the origin of the negative phase time is explained.The evolution of the electromagnetic fields inside the 1DPCs of NIMs is time reversal with conjugate to that inside the 1DPCs of PIMs for real spectral pulses.

  9. Thermoluminescence characterization of Ag-doped Li2 B4 O7 single crystal materials.

    Science.gov (United States)

    Kuralı, D; Ekdal Karalı, E; Kelemen, A; Holovey, V; Can, N; Karalı, T

    2017-08-01

    In this study, the thermoluminescence (TL) characteristics of Ag-doped and undoped lithium tetraborate (Li2 B4 O7 , LTB) materials, grown using the Czochralski method, were reported. The TL properties of LTB:Ag, such as glow curve structure, dose response, fading and reproducibility, were investigated. The glow curve of the Li2 B4 O7 :Ag single crystal consists of four peaks located at approximately 75, 130, 190 and 275°C; in undoped LTB, the single crystal shows a broad glow curve with peaks at 65, 90, 125, 160 and 190°C using a heating rate of 5°C/s in the 50-350°C temperature region. The high temperature peak of Ag-doped sample at 275°C has a nonlinear dose response within the range from 33 mGy to 9 Gy. There is a linear response in the range of 33-800 mGy; after which, a sublinear region appears up to 9 Gy for Ag-doped LTB single crystal. For undoped single crystal, the dose response is supralinear for low doses and linear for the region between 1 and 9 Gy. The thermal fading ratio of the undoped material is almost 60% for the high temperature peak after 7 days. Ag-doped LTB single crystal exhibits different behaviour over a period of 7 days. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Computational materials science aided design of glass ceramics and crystal properties (abstract only).

    Science.gov (United States)

    Mannstadt, Wolfgang

    2008-02-13

    Today's high tech materials have in many cases highly specialized properties and designed functionalities. Materials parameters like high temperature stability, high stiffness and certain optical properties have to be optimized and in many cases an adaptation to given processes is necessary. Many materials are compounds or layered structures. Thus, surface and interface properties need to be considered as well. At the same time to some extent just a few atomic layers sometimes determine the properties of the material, as is well known in semiconductor and other thin film technologies. Therefore, a detailed understanding of the materials properties at the atomic scale becomes more and more important. In addition many high tech materials have to be of high purity or selective dopant concentrations have to be adjusted to fulfill the desired functionality. Modern materials developments successfully use computational materials science to achieve that goal. Improved software tools and continuously growing computational power allow us to predict macroscopic properties of materials on the basis of microscopic/atomic ab initio simulation approaches. At Schott, special materials, in particular glasses and glass ceramics, are produced for a variety of applications. For a glass ceramic all the above mentioned difficulties for materials development arise. The properties of a glass ceramic are determined by the interplay of crystalline phases embedded in an amorphous glass matrix. For materials development the understanding of crystal structures and their properties, surfaces and interface phenomena, and amorphous systems are necessary, likewise. Each by itself is already a challenging problem. Many crystal phases that are grown within the glass matrix do not exist as single crystals or are difficult to grow in reasonable amounts for experimental investigations. The only way to obtain the properties of these crystalline phases is through 'ab initio' simulations in the computer

  11. Design of radial phononic crystal using annular soft material with low-frequency resonant elastic structures

    Science.gov (United States)

    Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Xin, Hang

    2016-10-01

    Using FEM, we theoretically study the vibration properties of radial phononic crystal (RPC) with annular soft material. The band structures, transmission spectra, and displacement fields of eigenmode are given to estimate the starting and cut-off frequency of band gaps. Numerical calculation results show that RPC with annular soft material can yield low-frequency band gaps below 350 Hz. Annular soft material decreases equivalent stiffness of the whole structure effectively, and makes corresponding band gaps move to the lower frequency range. Physical mechanism behind band gaps is the coupling effect between long or traveling wave in plate matrix and the vibrations of corrugations. By changing geometrical dimensions of plate thickness e, the length of silicone rubber h2, and the corrugation width b, we can control the location and width of the first band gap. These research conclusions of RPC structure with annular soft material can potentially be applied to optimize band gaps, generate filters, and design acoustic devices.

  12. Synthesis, crystal growth and characterizations of bis ( l-proline) cadmium iodide: a new semi-organic nonlinear optical material

    Science.gov (United States)

    Boopathi, K.; Jagan, R.; Ramasamy, P.

    2016-07-01

    Novel semi-organic single crystals of bis ( l-proline) cadmium iodide (BLPC) were grown by slow evaporation technique. The crystal structure was determined by single-crystal X-ray diffraction studies. Single-crystal X-ray diffraction study shows that [BLPC] crystallizes in orthorhombic system with space group P212121. 1H NMR and 13C NMR studies were conducted for the grown crystal. Functional groups present in the compound were identified by FTIR spectral studies. The UV-Vis-NIR spectrum was studied to analyse the optical properties of the grown crystals. Thermogravimetric analysis was carried out to study thermal behaviour of the materials. Vickers microhardness measurement was carried out for different loads. Etching studies were carried out using water as etchant. The second harmonic generation efficiency was determined by the Kurtz powder method and it was found to be higher than that of potassium dihydrogen phosphate.

  13. Synthesis, crystal growth and characterization of a chiral compound (triphenylphosphine oxide cadmium iodide): A new semiorganic nonlinear optical material

    Science.gov (United States)

    Santhakumari, R.; Ramamurthi, K.; Stoeckli-Evans, Helen; Hema, R.; Nirmala, W.

    2011-05-01

    Synthesis of semiorganic material, triphenylphosphine oxide cadmium iodide (TPPOCdI), is reported for the first time. Employing the temperature reduction method, a crystal of size 16×7×6 mm 3 was grown from dimethyl sulfoxide (DMSO) solution. Three dimensional crystal structure of the grown crystal was determined by single crystal X-ray diffraction study. The complex crystallizes in the chiral orthorhombic space group P2 12 12 1. FTIR study was carried out in order to confirm the presence of the functional groups. UV-vis-NIR spectral studies show that the crystal is transparent in the wavelength range of 290-1100 nm. The microhardness test was carried out, and the load hardness was measured. Thermogravimetric and differential thermal analyses reveal the thermal stability of the crystal. Second harmonic generation efficiency of the powdered TPPOCdI, tested using Nd: YAG laser, is ∼0.65 times that of potassium dihydrogen orthophosphate.

  14. Gas barrier properties of bio-inspired Laponite-LC polymer hybrid films.

    Science.gov (United States)

    Tritschler, Ulrich; Zlotnikov, Igor; Fratzl, Peter; Schlaad, Helmut; Grüner, Simon; Cölfen, Helmut

    2016-05-26

    Bio-inspired Laponite (clay)-liquid crystal (LC) polymer composite materials with high clay fractions (>80%) and a high level of orientation of the clay platelets, i.e. with structural features similar to the ones found in natural nacre, have been shown to exhibit a promising behavior in the context of reduced oxygen transmission. Key characteristics of these bio-inspired composite materials are their high inorganic content, high level of exfoliation and orientation of the clay platelets, and the use of a LC polymer forming the organic matrix in between the Laponite particles. Each single feature may be beneficial to increase the materials gas barrier property rendering this composite a promising system with advantageous barrier capacities. In this detailed study, Laponite/LC polymer composite coatings with different clay loadings were investigated regarding their oxygen transmission rate. The obtained gas barrier performance was linked to the quality, respective Laponite content and the underlying composite micro- and nanostructure of the coatings. Most efficient oxygen barrier properties were observed for composite coatings with 83% Laponite loading that exhibit a structure similar to sheet-like nacre. Further on, advantageous mechanical properties of these Laponite/LC polymer composites reported previously give rise to a multifunctional composite system.

  15. Theoretical Studies on the Electronic Structures and Properties of Complex Ceramic Crystals and Novel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim

    2012-01-14

    This project is a continuation of a long program supported by the Office of Basic Energy Science in the Office of Science of DOE for many years. The final three-year continuation started on November 1, 2005 with additional 1 year extension to October 30, 2009. The project was then granted a two-year No Cost Extension which officially ended on October 30, 2011. This report covers the activities within this six year period with emphasis on the work completed within the last 3 years. A total of 44 papers with acknowledgement to this grant were published or submitted. The overall objectives of this project are as follows. These objectives have been evolved over the six year period: (1) To use the state-of-the-art computational methods to investigate the electronic structures of complex ceramics and other novel crystals. (2) To further investigate the defects, surfaces/interfaces and microstructures in complex materials using large scale modeling. (3) To extend the study on ceramic materials to more complex bioceramic crystals. (4) To initiate the study on soft condensed matters including water and biomolecules. (5) To focus on the spectroscopic studies of different materials especially on the ELNES and XANES spectral calculations and their applications related to experimental techniques. (6) To develop and refine computational methods to be effectively executed on DOE supercomputers. (7) To evaluate mechanical properties of different crystals and those containing defects and relate them to the fundamental electronic structures. (8) To promote and publicize the first-principles OLCAO method developed by the PI (under DOE support for many years) for applications to large complex material systems. (9) To train a new generation of graduate students and postdoctoral fellows in modern computational materials science and condensed matter physics. (10) To establish effective international and domestic collaborations with both experimentalists and theorists in materials

  16. Background radioactivity of construction materials, raw substance and ready-made CaMoO4 crystals

    CERN Document Server

    Busanov, O A; Gavriljuk, Yu M; Gezhaev, A M; Kazalov, V V; Kornoukhov, V N; Kuzminov, V V; Moseev, P S; Panasenko, S I; Ratkevich, S S; Yakimenko, S P

    2013-01-01

    The results of measurements of natural radioactive isotopes content in different source materials of natural and enriched composition used for CaMoO4 scintillation crystal growing are presented. The crystals are to be used in the experiment to search for double neutrinoless betas-decay of Mo-100.

  17. Background radioactivity of construction materials, raw substance and ready-made CaMoO4 crystals

    Directory of Open Access Journals (Sweden)

    Busanov O.A.

    2014-01-01

    Full Text Available The results of measurements of natural radioactive isotopes content in different source materials of natural and enriched composition used for CaMoO4 scintillation crystal growing are presented. The crystals are to be used in the experiment to search for neutrinoless double beta decay of 100Mo.

  18. Ultrasensitive Sensing Material Based on Opal Photonic Crystal for Label-Free Monitoring of Transferrin.

    Science.gov (United States)

    Wu, Enqi; Peng, Yuan; Zhang, Xihao; Bai, Jialei; Song, Yanqiu; He, Houluo; Fan, Longxing; Qu, Xiaochen; Gao, Zhixian; Liu, Ying; Ning, Baoan

    2017-02-22

    A new opal photonic crystal (PC) sensing material, allowing label-free detection of transferrin (TRF), is proposed in the current study. This photonic crystal was prepared via a vertical convective self-assembly method with monodisperse microspheres polymerized by methyl methacrylate (MMA) and 3-acrylamidophenylboronic acid (AAPBA). FTIR, TG, and DLS were used to characterize the components and particle size of the monodisperse microspheres. SEM was used to observe the morphology of the PC. The diffraction peak intensity decreases as the TRF concentration increase. This was due to the combination of TRF to the boronic acid group of the photonic crystal. After condition optimization, a standard curve was obtained and the linear range of TRF concentration was from 2 × 10(-3) ng/mL to 200 ng/mL. Measurement of TRF concentration in simulated urine sample was also investigated using the sensing material. The results indicated that the PC provided a cheap, label-free, and easy-to-use alternative for TRF determination in clinical diagnostics.

  19. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixue; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2016-01-25

    Highlights: • Pyrolysis characteristics are conducted for a better understanding of LCDs pyrolysis. • Optimum design is developed which is significant to guide the further industrial process. • Acetic acid and TPP are recycled and separated. - Abstract: Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box–Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min{sup −1} and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry.

  20. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels.

    Science.gov (United States)

    Wang, Ruixue; Xu, Zhenming

    2016-01-25

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box-Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min(-1) and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Structural Analysis of Layered Polymer Crystals and Application to Photofunctional Materials Using Organic Intercalation

    Institute of Scientific and Technical Information of China (English)

    Shinya Oshita; Akikazu Matsumoto

    2005-01-01

    @@ 1Introduction We reported that layered polymer crystals are obtained by the topochemical polymerization of 1,3-diene monomers and provided as host material for organic intercalation[1]. For intercalation using various long-alkyl amines as the guest species, its reaction behavior, mechanism, characteristics, and potential to application have been clarified[2]. We also succeeded in the synthesis of several host layered polymer crystals with different tacticities and layer structures[3]. We describe here intercalation using various stereoregular poly(muconic acid)s (PMA) and n-alkylamines as the host and guest compounds, respectively. The reaction behavior and the layered structure of the obtained ammonium polymers are discussed from the viewpoint of stereochemical structure of the host polymers.

  2. Plasmonic Photopatterning of Complex Molecular Orientations in Liquid Crystals

    Science.gov (United States)

    Guo, Yubing; Jiang, Miao; Peng, Chenhui; Sun, Kai; Yaroshchuk, Oleg; Lavrentovich, Oleg; Wei, Qi-Huo

    Aligning liquid crystal (LC) molecules in spatially non-uniform patterns are highly demanded for applications such as programmable origami and liquid crystal enabled nonlinear electrokinetics. We developed a high resolution projection photoalignment technique for patterning arbitrary LC alignment fields. The photoalignment is based on carefully engineered metasurfaces, or dubbed as plasmonic metamasks (PMMs). When illuminated by light, the PMMs generate patterns of both light intensity and polarization. By projecting the light transmitted through the PMMs onto liquid crystal cells coated with photosensitive materials, alignment patterns predesigned in polarization patterns of the PMMs can be imposed in liquid crystals. This technique makes the liquid crystal alignment a repeatable and scalable process similar to conventional photolithography, promising various applications. National Science Foundation CMMI-1436565.

  3. Shock response of single crystal and nanocrystalline pentaerythritol tetranitrate: Implications to hotspot formation in energetic materials.

    Science.gov (United States)

    Cai, Y; Zhao, F P; An, Q; Wu, H A; Goddard, W A; Luo, S N

    2013-10-28

    We investigate shock response of single crystal and nanocrystalline pentaerythritol tetranitrate (PETN) with a coarse-grained model and molecular dynamics simulations, as regards mechanical hotspot formation in the absence or presence of grain boundaries (GBs). Single crystals with different orientations, and columnar nanocrystalline PETN with regular hexagonal, irregular hexagonal, and random GB patterns, are subjected to shock loading at different shock strengths. In single crystals, shock-induced plasticity is consistent with resolved shear stress calculations and the steric hindrance model, and this deformation leads to local heating. For regular-shaped hexagonal columnar nanocrystalline PETN, different misorientation angles lead to activation of different/same slip systems, different deformation in individual grains and as a whole, different GB friction, different temperature distributions, and then, different hotspot characteristics. Compared to their regular-shaped hexagonal counterpart, nanocrystalline PETN with irregular hexagonal GB pattern and that with random GBs, show deformation and hotspot features specific to their GBs. Driven by stress concentration, hotspot formation is directly related to GB friction and GB-initiated crystal plasticity, and the exact deformation is dictated by grain orientations and resolved shear stresses. GB friction alone can induce hotspots, but the hotspot temperature can be enhanced if it is coupled with GB-initiated crystal plasticity, and the slip of GB atoms has components out of the GB plane. The magnitude of shearing can correlate well with temperature, but the slip direction of GB atoms relative to GBs may play a critical role. Wave propagation through varying microstructure may also induce differences in stress states (e.g., stress concentrations) and loading rates, and thus, local temperature rise. GB-related friction and plasticity induce local heating or mechanical hotspots, which could be precursors to chemical

  4. Diketonylpyridinium Cations as a Support of New Ionic Liquid Crystals and Ion-Conductive Materials: Analysis of Counter-Ion Effects

    Science.gov (United States)

    Pastor, María Jesús; Cuerva, Cristián; Campo, José A.; Schmidt, Rainer; Torres, María Rosario; Cano, Mercedes

    2016-01-01

    Ionic liquid crystals (ILCs) allow the combination of the high ionic conductivity of ionic liquids (ILs) with the supramolecular organization of liquid crystals (LCs). ILCs salts were obtained by the assembly of long-chained diketonylpyridinium cations of the type [HOOR(n)pyH]+ and BF4−, ReO4−, NO3−, CF3SO3−, CuCl42− counter-ions. We have studied the thermal behavior of five series of compounds by differential scanning calorimetry (DSC) and hot stage polarized light optical microscopy (POM). All materials show thermotropic mesomorphism as well as crystalline polymorphism. X-ray diffraction of the [HOOR(12)pyH][ReO4] crystal reveals a layered structure with alternating polar and apolar sublayers. The mesophases also exhibit a lamellar arrangement detected by variable temperature powder X-ray diffraction. The CuCl42− salts exhibit the best LC properties followed by the ReO4− ones due to low melting temperature and wide range of existence. The conductivity was probed for the mesophases in one species each from the ReO4−, and CuCl42− families, and for the solid phase in one of the non-mesomorphic Cl− salts. The highest ionic conductivity was found for the smectic mesophase of the ReO4− containing salt, whereas the solid phases of all salts were dominated by electronic contributions. The ionic conductivity may be favored by the mesophase lamellar structure. PMID:28773485

  5. A review of recent theoretical studies in nonlinear crystals: towards the design of new materials

    Science.gov (United States)

    Luppi, Eleonora; Véniard, Valérie

    2016-12-01

    Nonlinear optics is an important and exciting field of fundamental and applied research, with applications in many different disciplines such as physics chemistry, material science and biology. In the recent years, nonlinear optical phenomena started to be also widely used in technological applications for optoelectronics and photovoltaics. This coincided with an important experimental and theoretical search for new materials with an efficient and exploitable nonlinear optical response. Here, starting from the discovery of nonlinear optics, we review the most important theoretical formalisms developed to understand, interpret and predict the nonlinear optical phenomena. We show the different level of approximation of the many-electrons interactions that these formalisms can describe which are fundamental in the interpretation of the experiments. The impact of the theory is then analyzed on different classes of new materials particularly studied in these years: silicon bulk to nano, compound semiconductors, graphene, transition metal dichalcogenide, hexagonal boron nitride and borate crystals.

  6. A Novel Approach to Obtain GeSbTe-Based High Speed Crystallizing Materials for Phase Change Optical Recording

    Science.gov (United States)

    2001-04-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012318 TITLE: A Novel Approach to Obtain GeSbTe -Based High Speed...UNCLASSIFIED Mat. Res. Soc. Symp. Proc. Vol. 674 © 2001 Materials Research Society A Novel Approach to Obtain GeSbTe -Based High Speed Crystallizing...fast crystallizing materials based on a conventional GeSbTe alloy for rewritable phase change optical data storage. By means of co-sputtering

  7. Colloid-in-liquid crystal gels that respond to biomolecular interactions.

    Science.gov (United States)

    Agarwal, Ankit; Sidiq, Sumyra; Setia, Shilpa; Bukusoglu, Emre; de Pablo, Juan J; Pal, Santanu Kumar; Abbott, Nicholas L

    2013-08-26

    This paper advances the design of stimuli-responsive materials based on colloidal particles dispersed in liquid crystals (LCs). Specifically, thin films of colloid-in-liquid crystal (CLC) gels undergo easily visualized ordering transitions in response to reversible and irreversible (enzymatic) biomolecular interactions occurring at the aqueous interfaces of the gels. In particular, LC ordering transitions can propagate across the entire thickness of the gels. However, confinement of the LC to small domains with lateral sizes of ∼10 μm does change the nature of the anchoring transitions, as compared to films of pure LC, due to the effects of confinement on the elastic energy stored in the LC. The effects of confinement are also observed to cause the response of individual domains of the LC within the CLC gel to vary significantly from one to another, indicating that manipulation of LC domain size and shape can provide the basis of a general and facile method to tune the response of these LC-based physical gels to interfacial phenomena. Overall, the results presented in this paper establish that CLC gels offer a promising approach to the preparation of self-supporting, LC-based stimuli-responsive materials.

  8. The Influence of Reduced Gravity on the Crystal Growth of Electronic Materials

    Science.gov (United States)

    Su, Ching-Hua; Gillies, D. C.; Szofran, F. R.; Watring, D. A.; Lehoczky, S. L.

    1996-01-01

    The imperfections in the grown crystals of electronic materials, such as compositional nonuniformity, dopant segregation and crystalline structural defects, are detrimental to the performance of the opto-electronic devices. Some of these imperfections can be attributed to effects caused by Earth gravity during crystal growth process and four areas have been identified as the uniqueness of material processing in reduced gravity environment. The significant results of early flight experiments, i.e. prior to space shuttle era, are briefly reviewed followed by an elaborated review on the recent flight experiments conducted on shuttle missions. The results are presented for two major growth methods of electronic materials: melt and vapor growth. The use of an applied magnetic field in the melt growth of electrically conductive melts on Earth to simulate the conditions of reduced gravity has been investigated and it is believed that the superimposed effect of moderate magnetic fields and the reduced gravity environment of space can result in reduction of convective intensities to the extent unreachable by the exclusive use of magnet on Earth or space processing. In the Discussions section each of the significant results of the flight experiments is attributed to one of the four effects of reduced gravity and the unresolved problems on the measured mass fluxes in some of the vapor transport flight experiments are discussed.

  9. Spectroscopic and crystal-field analysis of new Yb-doped laser materials

    Energy Technology Data Exchange (ETDEWEB)

    Haumesser, Paul-Henri; Gaume, Romain; Antic-Fidancev, Elisabeth; Vivien, Daniel; Viana, Bruno [Laboratoire de Chimie Appliquee de l' Etat Solide UMR 75 74, ENSCP, Paris (France)]. E-mail: viana@ext.jussieu.fr

    2001-06-11

    Crystal-field effects are very important as far as laser performances of Yb-doped materials are concerned. In order to simplify the interpretation of low-temperature spectra, two tools derived from a careful examination of crystal-field interaction are presented. Both approaches are successfully applied in the case of new Yb-doped materials, namely Ca{sub 3}Y{sub 2}(BO{sub 3}){sub 4} (CYB), Ca{sub 3}Gd{sub 2}(BO{sub 3}){sub 4} (CaGB), Sr{sub 3}Y(BO{sub 3}){sub 3} (SrYBO), Ba{sub 3}Lu(BO{sub 3}){sub 3} (BLuB), Y{sub 2}SiO{sub 5} (YSO), Ca{sub 2}Al{sub 2}SiO{sub 7} (CAS) and SrY{sub 4}(SiO{sub 4}){sub 3}O (SYS). The {sup 2}F{sub 7/2} splitting is particularly large in these materials and favourable to a quasi-three-level laser operating scheme. Calculations performed using the point charge electrostatic model for these compounds and using a consistent set of effective atomic charges confirm the experimental results. This should permit to use this model in a predictive approach. (author)

  10. Tunable photonic band-gaps in one-dimensional photonic crystals containing linear graded index material

    Science.gov (United States)

    Singh, Bipin K.; Kumar, Pawan; Pandey, Praveen C.

    2014-12-01

    We have demonstrated control of the photonic band gaps (PBGs) in 1-D photonic crystals using linear graded index material. The analysis of PBG has been done in THz region by considering photonic crystals in the form of ten periods of second, third and fourth generation of the Fibonacci sequence as unit cell. The unit cells are constituted of two kinds of layers; one is taken of linear graded index material and other of normal dielectric material. For this investigation, we used a theoretical model based on transfer matrix method. We have obtained a large number of PBGs and their bandwidths can be tuned by changing the grading profile and thicknesses of linear graded index layers. The number of PBGs increases with increase in the thicknesses of layers and their bandwidths can be controlled by the contrast of initial and final refractive index of the graded layers. In this way, we provide more design freedom for photonic devices such as reflectors, filters, optical sensors, couplers, etc.

  11. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase.

    Science.gov (United States)

    Jeyasingh, Rakesh; Fong, Scott W; Lee, Jaeho; Li, Zijian; Chang, Kuo-Wei; Mantegazza, Davide; Asheghi, Mehdi; Goodson, Kenneth E; Wong, H-S Philip

    2014-06-11

    Phase change materials are widely considered for application in nonvolatile memories because of their ability to achieve phase transformation in the nanosecond time scale. However, the knowledge of fast crystallization dynamics in these materials is limited because of the lack of fast and accurate temperature control methods. In this work, we have developed an experimental methodology that enables ultrafast characterization of phase-change dynamics on a more technologically relevant melt-quenched amorphous phase using practical device structures. We have extracted the crystallization growth velocity (U) in a functional capped phase change memory (PCM) device over 8 orders of magnitude (10(-10) programmed PCM devices at very high heating rates (>10(8) K/s), which reveals the extreme fragility of Ge2Sb2Te5 in its supercooled liquid phase. Furthermore, these crystallization properties were studied as a function of device programming cycles, and the results show degradation in the cell retention properties due to elemental segregation. The above experiments are enabled by the use of an on-chip fast heater and thermometer called as microthermal stage (MTS) integrated with a vertical phase change memory (PCM) cell. The temperature at the PCM layer can be controlled up to 600 K using MTS and with a thermal time constant of 800 ns, leading to heating rates ∼10(8) K/s that are close to the typical device operating conditions during PCM programming. The MTS allows us to independently control the electrical and thermal aspects of phase transformation (inseparable in a conventional PCM cell) and extract the temperature dependence of key material properties in real PCM devices.

  12. Tunable omnidirectional multichannel filters based on dual-defective photonic crystals containing negative-index materials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yihang, E-mail: kallenmail@sina.co [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2009-04-07

    Multiple defect modes may generate in one-dimensional dual-defective photonic crystals containing negative-index materials. The interference between the two kinds of defect states of the proposed structure is avoided. Therefore, the frequency, frequency interval and number of the defect modes corresponding to different kinds of defects can be tuned independently as desired. These defect modes inside the zero n-bar gap are insensitive to the incident angle. It thus opens a promising way to fabricate omnidirectional multichannel filters with specific channels.

  13. Independent Modulation of Omnidirectional Defect Modes in Single-Negative Materials Photonic Crystal with Multiple Defects

    Institute of Scientific and Technical Information of China (English)

    WANG Qiong; YAN Chang-Chun; ZHANG Ling-Ling; CUI Yi-Ping

    2008-01-01

    @@ Single-negative materials based on photonic crystal with multiple defect layers are designed and the free modulation of defect modes is studied. The results show that the multi-defect structure can avoid the interference between the defect states. Therefore, the designed double defect modes in the zero effective-phase gap can be adjusted independently by changing the thickness of different defect layers. In addition, the two tunable defect modes have the omnidirectional characteristics. This multi-defect structure with above-mentioned two advantages has potential applications in modern optical devices such as tunable omnidirectional filters.

  14. Liquid Crystal Alignment Control Using Polymer Filament and Polymer Layers Coated on Substrates

    Science.gov (United States)

    Murashige, Takeshi; Fujikake, Hideo; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2005-04-01

    We investigated liquid crystal (LC) alignment in LC cells containing an aligned cellulose filament sandwiched by thin polymer layers coated on substrates. Three types of polymer material, namely polystyrene (PS), polyvinyl alcohol (PVA) and polyimide (PI), were used as polymer layers. LC alignment areas induced on both sides of the filament were large in the order of PS, PVA and PI. In the case of the PS layer, the average LC alignment area reached approximately 100 μm in the direction perpendicular to the polymer filament. The molecular interaction between the LC and the PS layer is thought to be weak and it does not disturb the LC alignment due to the polymer filament. On the other hand, rubbed PS layers were used as polymer layers of the LC cell, where the LC alignment direction induced by the rubbed PS layer was perpendicular to the polymer filament. It was found that the LC alignment near the polymer filament gradually bent in the cell plane. The result suggests that various three-dimensional LC alignments can be realized by the combination of the polymer filament and substrate surface.

  15. Synthesis, crystal growth, structural, spectral, thermal, mechanical, linear and nonlinear optical studies of organic single crystal 4-Iodo 4-nitrostilbene (IONS): A potential NLO material

    Energy Technology Data Exchange (ETDEWEB)

    Dinakaran, Paul M.; Kalainathan, S., E-mail: kalainathan@yahoo.com

    2013-12-16

    An organic nonlinear optical material 4-Iodo 4-nitrostilbene (IONS) has been synthesized and good optical quality single crystal was grown from ethyl methyl ketone solvent by the solution growth technique. Single and powder X-ray diffraction analyses reveals that the grown crystal belongs to monoclinic crystal system with noncentrosymmetric space group ‘P2{sub 1}’ and it has good crystalline nature. Functional groups and molecular structure of the title compound were confirmed by FTIR and {sup 1}H NMR respectively. The UV–Vis–NIR absorption study reveals no absorption in the visible region and the cut-off wavelength was found to be at 412.84 nm, TG/DTA, mass spectral analysis, photoluminescence and microhardness studies have been carried out for the grown crystals and results are discussed in detail. The second harmonic efficiency of the IONS was determined by Kurtz–Perry powder technique which reveals that the IONS crystal (3.1 V) has greater efficiency i.e., 143 times to that of KDP (21.7 mV). - Highlights: • The 4-Iodo 4-nitrostilbene (IONS) material has been synthesized by Wittig reaction. • The single crystal was grown for the first time with dimensions of 9.5 × 4 × 1.5 mm{sup 3}. • SHG efficiency of IONS is 143 times greater than that of KDP crystal. • The UV–Vis absorption study reveals that the transparency was found to be good. • IONS crystal is a potential candidate for optoelectronic applications.

  16. Refractive indices of polymer-dispersed liquid-crystal film materials: Epoxy-based systems

    Science.gov (United States)

    Vaz, Nuno A.; Montgomery, G. Paul, Jr.

    1987-10-01

    Polymer-dispersed liquid crystal (PDLC) films are potentially useful in applications requiring electrically controllable light transmission. In these applications, both a high on-state transmittance and a strong off-state attenuation are often needed over a wide operating temperature range. These transmittance characteristics depend strongly on the refractive indices of the materials in the PDLC films. We have measured the temperature dependent refractive indices of typical PDLC film materials and the temperature dependent electro-optic transmittance of a PDLC film composed of liquid crystal microdroplets dispersed in an epoxy matrix. We show that our refractive index measurements can account for all the features in the measured transmittance characteristics and discuss several methods for controlling refractive indices to optimize electro-optic transmittance over an extended temperature range. We have also measured the room temperature refractive indices of mixtures of epoxy resins and hardeners as a function of composition. We discuss the problems associated with predicting the refractive indices of such mixtures in terms of either the volume fractions or mole fractions of the mixture components. These considerations are important in matching refractive indices of droplets and matrix materials to maximize on-state transmittance. The refractive indices of epoxy matrix materials increase monotonically with time during their chemical cure. The measured time dependence can be described by a simple model in which the concentrations of the reacting resin and hardener each decay exponentially in time with their own characteristic time constants while the concentration of the cured polymer increases. Finally, we relate the measured rates of index change with temperature to the coefficients of volume expansion of PDLC film materials; the results are used to discuss the mechanical stability of PDLC films.

  17. Fluorinated Epoxy Resins-based Sorbent Coating Materials for Quartz Piezoelectric Crystal Detector

    Directory of Open Access Journals (Sweden)

    D. C Gupta

    2004-04-01

    Full Text Available Fluorinated epoxy resins were synthesised and evaluated as sorbent coating materials for the detection of organophosphorus compounds using quartz piezoelectric crystal detector. These resins were prepared by reacting excess of epichlorohydrin with each of or in combination of fluorinated diols, ie, a, a, a', a' tetrakis (trifluoromethyl 1,3 benzene dimethanol (TTFMBD, 4,4'bis-2-hydroxy hexafluoro isopropyl biphenyl (BHHFIBP, 4,4'dihydroxyocta fluorodiphenyl (DHOFDP and 2,2,3,3,4,4 hexafluoro 1,5 pentanediol (HFPD in the presence of sodium hydroxide at reflux temperature. These polymers were extracted in organic solvents and dried. Each of these fluoroepoxy resins were coated over quartz piezoelectric crystal by solution-casting method and tested using dimethylmethyl phosphonate (DMMP as model compound. Change in the  frequency (AF of quartz piezoelectric crystal oscillator was recorded. Sensitive and potential fluorinated epoxy resins, ie, diglycidylethers (DGE of HFPD-TTFMBD (in the molar ratio 6:4 and DGE (HFPD-BHHFIBP in the molar ratio 4:6 were characterised by viscosity, number average molecular weight (Mn, epoxy equivalent, infrared spectroscopy, and thermal stability.

  18. Liquid phase crystallized silicon on glass: Technology, material quality and back contacted heterojunction solar cells

    Science.gov (United States)

    Haschke, Jan; Amkreutz, Daniel; Rech, Bernd

    2016-04-01

    Liquid phase crystallization has emerged as a novel approach to grow large grained polycrystalline silicon films on glass with high electronic quality. In recent years a lot of effort was conducted by different groups to determine and optimize suitable interlayer materials, enhance the crystallographic quality or to improve post crystallization treatments. In this paper, we give an overview on liquid phase crystallization and describe the necessary process steps and discuss their influence on the absorber properties. Available line sources are compared and different interlayer configurations are presented. Furthermore, we present one-dimensional numerical simulations of a rear junction device, considering silicon absorber thicknesses between 1 and 500 µm. We vary the front surface recombination velocity as well as doping density and minority carrier lifetime in the absorber. The simulations suggest that a higher absorber doping density is beneficial for layer thicknesses below 20 µm or when the minority carrier lifetime is short. Finally, we discuss possible routes for device optimization and propose a hybride cell structure to circumvent current limitations in device design.

  19. Hybrid silica luminescent materials based on lanthanide-containing lyotropic liquid crystal with polarized emission

    Energy Technology Data Exchange (ETDEWEB)

    Selivanova, N.M., E-mail: natsel@mail.ru [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation); Vandyukov, A.E.; Gubaidullin, A.T. [A.E. Arbuzov Institute of Organic and Physical Chemistry of the Kazan Scientific Center of the Russian Academy of Sciences, 8 Acad. Arbuzov Str., Kazan 420088 (Russian Federation); Galyametdinov, Y.G. [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation)

    2014-11-14

    This paper represents the template method for synthesis of hybrid silica films based on Ln-containing lyotropic liquid crystal and characterized by efficient luminescence. Luminescence films were prepared in situ by the sol–gel processes. Lyotropic liquid crystal (LLC) mesophases C{sub 12}H{sub 25}O(CH{sub 2}CH{sub 2}O){sub 10}H/Ln(NO{sub 3}){sub 3}·6H{sub 2}O/H{sub 2}O containing Ln (III) ions (Dy, Tb, Eu) were used as template. Polarized optical microscopy, X-ray powder diffraction, and FT-IR-spectroscopy were used for characterization of liquid crystal mesophases and hybrid films. The morphology of composite films was studied by the atomic force microscopy method (AFM). The optical properties of the resulting materials were evaluated. It was found that hybrid silica films demonstrate significant increase of their lifetime in comparison with an LLC system. New effects of linearly polarized emission revealed for Ln-containing hybrid silica films. Polarization in lanthanide-containing hybrid composites indicates that silica precursor causes orientation of emitting ions. - Highlights: • We suggest a new simple approach for creating luminescence hybrid silica films. • Ln-containing hybrid silica films demonstrate yellow, green and red emissions. • Tb(III)-containing hybrid film have a high lifetime. • We report effects of linearly polarized emission in hybrid film.

  20. Estimation of diffusion anisotropy in microporous crystalline materials and optimization of crystal orientation in membranes.

    Science.gov (United States)

    Gounaris, Chrysanthos E; First, Eric L; Floudas, Christodoulos A

    2013-09-28

    The complex nature of the porous networks in microporous materials is primarily responsible for a high degree of intracrystalline diffusion anisotropy. Although this is a well-understood phenomenon, little attention has been paid in the literature with regards to classifying such anisotropy and elucidating its effect on the performance of membrane-based separation systems. In this paper, we develop a novel methodology to estimate full diffusion tensors based on the detailed description of the porous network geometry through our recent advances for the characterization of such networks. The proposed approach explicitly accounts for the tortuosity and complex connectivity of the porous framework, as well as for the variety of diffusion regimes that may be experienced by a guest molecule while it travels through the different localities of the crystal. Results on the diffusion of light gases in silicalite demonstrate good agreement with results from experiments and other computational techniques that have been reported in the literature. A comprehensive computational study involving 183 zeolite frameworks classifies these structures in terms of a number of anisotropy metrics. Finally, we utilize the computed diffusion tensors in a membrane optimization model that determines optimal crystal orientations. Application of the model in the context of separating carbon dioxide from nitrogen demonstrates that optimizing crystal orientation can offer significant benefit to membrane-based separation processes.

  1. Synthesis of Two-Photon Materials and Two-Photon Liquid Crystals

    Science.gov (United States)

    Subramaniam, Girija

    2001-01-01

    The duration of the grant was interrupted by two major accidents that the PI met with-- an auto accident in Pasadena, CA during her second summer at JPL which took almost eight months for recovery and a second accident during Fall 2000 that left her in crutches for the entire semester. Further, the time released agreed by the University was not given in a timely fashion. The candidate has been given post-grant expire time off. In spite of all these problems, the PI synthesized a number of new two-photon materials and studied the structure-activity correlation to arrive at the best-optimized structure. The PI's design proved to be one of the best in the sense that these materials has a hitherto unreported two-photon absorption cross section. Many materials based on PI's design was later made by the NASA colleague. This is Phase 1. Phase II of this grant is to orate liquid crystalline nature into this potentially useful materials and is currently in progress. Recent observations of nano- and pico-second response time of homeotropically aligned liquid crystals suggest their inherent potentials to act as laser hardening materials, i.e., as protective devices against short laser pulses. The objective of the current project is to exploit this potential by the synthesis of liquid crystals with high optical nonlinearity and optimizing their performance. The PI is trying structural variations to bring in liquid crystalline nature without losing the high two-photon cross section. Both Phase I and Phase II led to many invited presentations and publications in reputed journals like 'Science' and 'Molecular Crystals'. The list of presentations and reprints are enclosed. Another important and satisfying outcome of this grant is the opportunity that this grant offered to the budding undergraduate scientists to get involved in a visible research of international importance. All the students had a chance to learn a lot during research, had the opportunity to present their work at

  2. Computational chemistry modeling and design of photoswitchable alignment materials for optically addressable liquid crystal devices

    Science.gov (United States)

    Marshall, K. L.; Sekera, E. R.; Xiao, K.

    2015-09-01

    Photoalignment technology based on optically switchable "command surfaces" has been receiving increasing interest for liquid crystal optics and photonics device applications. Azobenzene compounds in the form of low-molar-mass, watersoluble salts deposited either directly on the substrate surface or after dispersion in a polymer binder have been almost exclusively employed for these applications, and ongoing research in the area follows a largely empirical materials design and development approach. Recent computational chemistry advances now afford unprecedented opportunities to develop predictive capabilities that will lead to new photoswitchable alignment layer materials with low switching energies, enhanced bistability, write/erase fatigue resistance, and high laser-damage thresholds. In the work described here, computational methods based on the density functional theory and time-dependent density functional theory were employed to study the impact of molecular structure on optical switching properties in photoswitchable methacrylate and acrylamide polymers functionalized with azobenzene and spiropyran pendants.

  3. Evaluation of undoped ZnS single crystal materials for x-ray imaging applications

    Science.gov (United States)

    Saleh, Muad; Lynn, Kelvin G.; McCloy, John S.

    2017-05-01

    ZnS-based materials have a long history of use as x-ray luminescent materials. ZnS was one of the first discovered scintillators and is reported to have one of the highest scintillator efficiencies. The use of ZnS for high energy luminescence has been thus far limited to thin powder screens, such as ZnS:Ag which is used for detecting alpha radiation, due to opacity to its scintillation light, primarily due to scattering. ZnS in bulk form (chemical vapor deposited, powder processed, and single crystal) has high transmission and low scattering compared to powder screens. In this paper, the performance of single crystalline ZnS is evaluated for low energy x-ray (decay time, and low levels of afterglow. We present a trade study which compares the calculated scintillation gain and absolute efficiency for low energy x-rays (<10 keV) comparing thin (<100 μm) ZnS to CsI:Tl, Bi4Ge3O12 (BGO), and Y3Al5O12:Ce (YAG:Ce). The study also gives insight into the spatial resolution of these scintillators. Further, photoluminescence (PL) and PL excitation (PLE) of several undoped ZnS single crystals is compared to their Radioluminescence (RL) spectra. It was found that the ZnS emission wavelength varies on the excitation source energy.

  4. Polyethylene Maleate Copolyesters as Coating Materials for Piezoelectric Quartz Crystal-based Chemical Sensors

    Directory of Open Access Journals (Sweden)

    D. C. Gupta

    2005-10-01

    Full Text Available Polyethylene maleate (PEM was synthesised by direct polycondensation of maleic anhydride and ethylene glycol in toluene under reflux usingp-toluene sulphonic acid as a catalyst. Structure of PEM was further modified by varying nature of diols and acid components, chain length of glycols, incorporation of aromatic and fluorine groups in the chain. Formation of PEM was monitored by gas chromatography. The parameters like degree of polymerisation, number average molecular weight (Mn, and weight average molecular weight (Mw were calculated from the extent of reaction and stoichiometric ratio of the reactants. The number average molecular weight was also determined using Knauer vapour pressure osmometer. Cohesive energy, volume, and solubility parameters of PEM-based copolyesters were calculated by group contribution method. These PEM-based copolyesters’ have been evaluated as sorbent-coating materials for the detection of organ0 phosphorus(OPcompo using dimethylmethylphosphonate (DMMP as model compound and piezoelectric crystal detector. PEMbisphenol A is found to be the most sensitive and potential coating material for the detection of OP compounds using piezoelectric crystal detector. Potential PEM-based copolyesters have been characterised by viscosity, infrared spectroscopy, NMR spectroscopy, Mn and thermal stability.

  5. Synthesis, crystal structure, growth, optical and third order nonlinear optical studies of 8HQ2C5N single crystal - An efficient third-order nonlinear optical material

    Energy Technology Data Exchange (ETDEWEB)

    Divya Bharathi, M.; Ahila, G.; Mohana, J. [Department of Physics, Presidency College, Chennai 600005 (India); Chakkaravarthi, G. [Department of Physics, CPCL Polytechnic College, Chennai 600068 (India); Anbalagan, G., E-mail: anbu24663@yahoo.co.in [Department of Nuclear Physics, University of Madras, Chennai 600025 (India)

    2017-05-01

    A neoteric organic third order nonlinear optical material 8-hydroxyquinolinium 2-chloro-5-nitrobenzoate dihydrate (8HQ2C5N) was grown by slow cooling technique using ethanol: water (1:1) mixed solvent. The calculated low value of average etch pit solidity (4.12 × 10{sup 3} cm{sup −2}) indicated that the title crystal contain less defects. From the single crystal X-ray diffraction data, it was endowed that 8HQ2C5N crystal belongs to the monoclinic system with centrosymmetric space group P2{sub 1}/c and the cell parameters values, a = 9.6546 (4) Ǻ, b = 7.1637(3) Ǻ, c = 24.3606 (12) Ǻ, α = γ = 90°, β = 92.458(2)° and volume = 1683.29(13) Ǻ{sup 3}. The FT-IR and FT-Raman spectrum were used to affirm the functional group of the title compound. The chemical structure of 8HQ2C5N was scrutinized by {sup 13}C and {sup 1}H NMR spectral analysis and thermal stability through the differential scanning calorimetry study. Using optical studies the lower cut-off wavelength and optical band gap of 8HQ2C5N were found to be 364 nm and 3.17 eV respectively. Using the single oscillator model suggested by Wemple – Didomenico, the oscillator energy (E{sub o}), the dispersion energy (E{sub d}) and static dielectric constant (ε{sub o}) were estimated. The third-order susceptibility were determined as Im χ{sup (3)} = 2.51 × 10{sup −5} esu and Re χ{sup (3)} = 4.46 × 10{sup −7} esu. The theoretical third-order nonlinear optical susceptibility χ{sup (3)} was calculated and the results were compared with experimental value. Photoluminescence spectrum of 8HQ2C5N crystal showed the yellow emission. The crystal had the single shot laser damage threshold of 5.562 GW/cm{sup 2}. Microhardness measurement showed that 8HQ2C5N belongs to a soft material category. - Highlights: • A new organic single crystals were grown and the crystal structure was reported. • Crystal possess, good transmittance, thermal and mechanical stability. • Single shot LDT value is found to be

  6. The properties of optimal two-dimensional phononic crystals with different material contrasts

    Science.gov (United States)

    Liu, Zong-Fa; Wu, Bin; He, Cun-Fu

    2016-09-01

    By modifying the spatial distribution of constituent material phases, phononic crystals (PnCs) can be designed to exhibit band gaps within which sound and vibration cannot propagate. In this paper, the developed topology optimization method (TOM), based on genetic algorithms (GAs) and the finite element method (FEM), is proposed to design two-dimensional (2D) solid PnC structures composed of two contrasting elastic materials. The PnCs have the lowest order band gap that is the third band gap for the coupled mode, the first band gap for the shear mode or the XY 34 Z band gap for the mixed mode. Moreover, the effects of the ratios of contrasting material properties on the optimal layout of unit cells and the corresponding phononic band gaps (PBGs) are investigated. The results indicate that the topology of the optimal PnCs and corresponding band gaps varies with the change of material contrasts. The law can be used for the rapid design of desired PnC structures.

  7. Material characterization and finite element modelling of cyclic plasticity behavior for 304 stainless steel using a crystal plasticity model

    OpenAIRE

    Lu, Jiawa; Sun, Wei; Becker, Adib A.

    2016-01-01

    Low cycle fatigue tests were carried out for a 304 stainless steel at room temperature. A series of experimental characterisations, including SEM, TEM, and XRD were conducted for the 304 stainless steel to facilitate the understanding of the mechanical responses and microstructural behaviour of the material under cyclic loading including nanostructure, crystal structure and the fractured surface. The crystal plasticity finite element method (CPFEM) is a powerful tool for studying the microstr...

  8. Effects of Parameter Modulation on Near-Field Imaging in Photonic Crystal Consisting of Alternately Left-Handed Material and Right-Handed Material

    Institute of Scientific and Technical Information of China (English)

    WANG Qiong; YAN Chang-Chun; ZHANG Ling-Ling; CUI Yi-Ping

    2008-01-01

    @@ By means of the transfer-matrix method, the effects of parameter modulation on the quality of near-field imaging in one-dimensional photonic crystal consisting of alternately Lett-handed material and right-handed material are investigated.Based on analyses of the recovery rate and ph'ase shift, the results show that the imaging quality is not obviously affected by the minor changes of layer thickness.In addition, by modulating the material parameters of the Lett-handed material, it is found that for both the real part and the imaginary part, the system is more sensitive to the permeability than the permittivity for the TE wave.For the TM wave, it is reverse.These properties are very useful to fabricate Lett-handed material photonic crystals in practice.

  9. Analysis on characteristics of 1-D apodized and chirped photonic crystals containing negative refractive materials

    Institute of Scientific and Technical Information of China (English)

    TONG Kai; CUI Wei-wei; XU Xiao-hui; LI Zhi-quan

    2008-01-01

    Using transfer matrix method, the optical transmission properties of 1-D photonic crystals composed partially of negativerefraction media are analyzed. The transmission spectra of periodic photonic crystal, chirped photonic crystal and apodizedphotonic crystal are numerically simulated respectively. By contrast with optical transmission properties of ordinary photo-nic crystals made of positive refraction media, the transmission spectra of apodized photonic crystal become unregular, theBragg flat-headed area recurs but the peak of transmission does not change significantly. Futhermore, the band gap rangeof chirped photonic crystal diminishes gradually.

  10. Growth and characterization of benzaldehyde 4-nitro phenyl hydrazone (BPH) single crystal: A proficient second order nonlinear optical material

    Science.gov (United States)

    Saravanan, M.; Abraham Rajasekar, S.

    2016-04-01

    The crystals (benzaldehyde 4-nitro phenyl hydrazone (BPH)) appropriate for NLO appliance were grown by the slow cooling method. The solubility and metastable zone width measurement of BPH specimen was studied. The material crystallizes in the monoclinic crystal system with noncentrosymmetric space group of Cc. The optical precision in the whole visible region was found to be excellent for non-linear optical claim. Excellence of the grown crystal is ascertained by the HRXRD and etching studies. Laser Damage Threshold and Photoluminescence studies designate that the grown crystal contains less imperfection. The mechanical behaviour of BPH sample at different temperatures was investigated to determine the hardness stability of the grown specimen. The piezoelectric temperament and the relative Second Harmonic Generation (for diverse particle sizes) of the material were also studied. The dielectric studies were executed at varied temperatures and frequencies to investigate the electrical properties. Photoconductivity measurement enumerates consummate of inducing dipoles due to strong incident radiation and also divulge the nonlinear behaviour of the material. The third order nonlinear optical properties of BPH crystals were deliberate by Z-scan method.

  11. Growth and characterization studies of sodium Di(L-Malato) borate bulk single crystal: A promising nonlinear optical material

    Science.gov (United States)

    Senthil, A.; Loganayaki, M.; Lenin, M.; Ramasamy, P.

    2012-06-01

    A semi-organic nonlinear optical material, sodium di(L-malato) borate (NaDMB) has been synthesized. Optically good quality bulk single crystal of NaDMB was successfully grown by slow evaporation solution technique (SEST) and Sankaranarayanan-Ramasamy (SR) method at 36 °C. Transparent, colourless crystal of size 22 mm X 8 mm X 6 mm with well defined morphology was grown by SEST and oriented unidirectional bulk single crystal of size 48 mm length and 16 mm diameter was grown by SR method. The grown crystals were subjected to single crystal X-ray diffraction studies. The crystal belongs to monoclinic structure with space group P21. The grown crystals were characterized by UV-vis studies. The structural perfection of the grown crystal has been analyzed by high-resolution X-ray diffraction (HRXRD) rocking curve measurements. The differential thermal (DTA) and thermogravimetric (TG) analysis traces reveal the thermal stability of the sample. The second-harmonic generation efficiency was estimated by Kurtz and Perry powder technique.

  12. Ice crystallization in porous building materials: assessing damage using real-time 3D monitoring

    Science.gov (United States)

    Deprez, Maxim; De Kock, Tim; De Schutter, Geert; Cnudde, Veerle

    2017-04-01

    Frost action is one of the main causes of deterioration of porous building materials in regions at middle to high latitudes. Damage will occur when the internal stresses due to ice formation become larger than the strength of the material. Hence, the sensitivity of the material to frost damage is partly defined by the structure of the solid body. On the other hand, the size, shape and interconnection of pores manages the water distribution in the building material and, therefore, the characteristics of the pore space control potential to form ice crystals (Ruedrich et al., 2011). In order to assess the damage to building materials by ice crystallization, lot of effort was put into identifying the mechanisms behind the stress build up. First of all, volumetric expansion of 9% (Hirschwald, 1908) during the transition of water to ice should be mentioned. Under natural circumstances, however, water saturation degrees within natural rocks or concrete cannot reach a damaging value. Therefore, linear growth pressure (Scherer, 1999), as well as several mechanisms triggered by water redistribution during freezing (Powers and Helmuth, 1953; Everett, 1961) are more likely responsible for damage due to freezing. Nevertheless, these theories are based on indirect observations and models and, thus, direct evidence that reveals the exact damage mechanism under certain conditions is still lacking. To obtain this proof, in-situ information needs to be acquired while a freezing process is performed. X-ray computed tomography has proven to be of great value in material research. Recent advances at the Ghent University Centre for Tomography (UGCT) have already allowed to dynamically 3D image crack growth in natural rock during freeze-thaw cycles (De Kock et al., 2015). A great potential to evaluate the different stress build-up mechanisms can be found in this imaging technique consequently. It is required to cover a range of materials with different petrophysical properties to achieve

  13. Construction of physical crosslink-based chitosan/liquid crystal composite hydrogel and evaluation on their cytocompatibility

    Science.gov (United States)

    Du, Lin; Yang, Xiaohui; Li, Wenqiang; Luo, Xuhui; Wu, Hao; Zhang, Jiaqing; Tu, Mei

    2017-01-01

    In order to provide a novel biomimetic composite substrate for tissue engineering and explore the interaction between cells and this type of material, we developed chitosan/liquid crystal (CS/LC) composite hydrogel with embedded LC phases by composing of cholesterol hydroxypropyl cellulose ester liquid crystalline material and CS. The micromorphology of CS/LC composite hydrogels exhibited ‘islands-sea’ phase separation structures similar to the ‘fluid mosaic model’ of biomembrane. In vitro cell compatibility study suggested that 3T3 is fibroblasts exhibited better initial cell adhesions and higher proliferation rates on the composite hydrogel than on the polystyrene control plate and the pure LC membrane. This novel CS/LC composite hydrogel provides more favorable interface for cell growth and proliferation and may serve as potentially active substrate for engineering interfaces to live cells. PMID:28149528

  14. Mechanical properties and material removal characteristics of soft-brittle HgCdTe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Irwan, R. [School of Mechanical and Mining Engineering, the University of Queensland, Brisbane, QLD 4072 (Australia); Huang, H., E-mail: han.huang@uq.edu.au [School of Mechanical and Mining Engineering, the University of Queensland, Brisbane, QLD 4072 (Australia); Zheng, H.Y.; Wu, H. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore)

    2013-01-01

    Mechanical properties and material removal characteristics of mercury cadmium telluride (Hg{sub 0.84}C{sub 0.16}Te) single crystals were investigated by the use of indentation and single point diamond turning. The nanoindentation tests showed that the average values of elastic modulus and hardness were 40 and 0.55 GPa, respectively. The fracture toughness estimated by Vickers indentation fracture toughness test was 0.200 MPa m{sup 1/2}, in the predicted range of 0.204-0.235 MPa m{sup 1/2} by the Bifano model. The diamond turning experiments revealed that there was a threshold value in depth of cut that was responsible for the transition from ductile to brittle removal modes during the cutting of the Hg{sub 0.84}C{sub 0.16}Te single crystals. The measured critical depth of cut was between 1.5 and 2 {mu}m, in agreement with that of 1.541 {mu}m calculated by the Bifano model.

  15. The Influence of Grain Size and Crystal Content on Rheology and Deformation of Pyroclastic Material

    Science.gov (United States)

    Paquereau-Lebti, P.; Robert, G.; Grunder, A. L.; Russell, K. J.

    2007-12-01

    Pyroclastic deposits undergo variable degrees of sintering, viscous deformation of particles and loss of pore space, which combine to produce the dramatic textural variations that define welded facies. We here investigate the effects of grain size and crystal content on the rheology and welding of pyroclastic material.Uniaxial deformation experiments were conducted using sintered cores of natural rhyolite ash under conditions consistent with welding. Experiments were done in the University of British Columbia Volcanology Deformation Rig (VDR). This apparatus is designed to run experiments relevant to volcanology, by supporting low-load, high temperature, deformation experiments (Quane et al., 2004). We ran experiments at constant displacement rate (2.5.10-6 m.s-1), under ambient water pressure ("Dry"), at temperatures of 850 and 900°C and to maximal strain of 50%. Grain-size effect was investigated using sintered cores from three different sieving fractions of Rattlesnake Tuff (RST, Eastern Oregon, USA) ash: fine ash (grain size 15% crystal content inhibited sintering in a sample that welded under the same experimental conditions when phenocryst depleted (phenocryst content around 1% in whole Rattlesnake Tuff ash). Reference: Quane, S.L., Russell, J.K., and Kennedy, L.A. (2004). A low-load, high-temperature deformation apparatus for volcanological studies. American mineralogist, 89, 873-877.

  16. Coordinate-Invariant Lyddane-Sachs-Teller Relationship for Polar Vibrations in Materials with Monoclinic and Triclinic Crystal Systems.

    Science.gov (United States)

    Schubert, Mathias

    2016-11-18

    A coordinate-invariant generalization of the Lyddane-Sachs-Teller relation is presented for polar vibrations in materials with monoclinic and triclinic crystal systems. The generalization is derived from an eigendielectric displacement vector summation approach, which is equivalent to the microscopic Born-Huang description of polar lattice vibrations in the harmonic approximation. An expression for a general oscillator strength is also described for materials with monoclinic and triclinic crystal systems. A generalized factorized form of the dielectric response characteristic for monoclinic and triclinic materials is proposed. The generalized Lyddane-Sachs-Teller relation is found valid for monoclinic β-Ga_{2}O_{3}, where accurate experimental data became available recently from a comprehensive generalized ellipsometry investigation [Phys. Rev. B 93, 125209 (2016)]. Data for triclinic crystal systems can be measured by generalized ellipsometry as well, and are anticipated to become available soon and results can be compared with the generalized relations presented here.

  17. Modeling the material properties at the onset of damage initiation in bulk potassium dihydrogen phosphate crystals

    Science.gov (United States)

    Demos, Stavros G.; Feit, Michael D.; Duchateau, Guillaume

    2014-10-01

    A model simulating transient optical properties during laser damage in the bulk of KDP/DKDP crystals is presented. The model was developed and tested using as a benchmark its ability to reproduce the well-documented damage initiation behaviors but most importantly, the salient behavior of the wavelength dependence of the damage threshold. The model involves two phases. During phase I, the model assumes a moderate localized initial absorption that is strongly enhanced during the laser pulse via excited state absorption and thermally driven generation of additional point defects in the surrounding material. The model suggests that during a fraction of the pulse duration, the host material around the defect cluster is transformed into a strong absorber that leads to significant increase of the local temperature. During phase II, the model suggests that the excitation pathway consists mainly of one photon absorption events within a quasicontinuum of short-lived vibronic defect states spanning the band gap that was generated after the initial localized heating of the material due to thermal quenching of the excited state lifetimes. The width of the transition (steps) between different number of photons is governed by the instantaneous temperature, which was estimated using the experimental data. The model also suggests that the critical physical parameter prior to initiation of breakdown is the conduction band electron density. This model, employing very few free parameters, for the first time is able to quantitatively reproduce the wavelength dependence of the damage initiation threshold, and thus provides important insight into the physical processes involved.

  18. Photoresponsive carbohydrate-based giant surfactants: automatic vertical alignment of nematic liquid crystal for the remote-controllable optical device.

    Science.gov (United States)

    Kim, Dae-Yoon; Lee, Sang-A; Kang, Dong-Gue; Park, Minwook; Choi, Yu-Jin; Jeong, Kwang-Un

    2015-03-25

    Photoresponsive carbohydrate-based giant surfactants (abbreviated as CELAnD-OH) were specifically designed and synthesized for the automatic vertical alignment (VA) layer of nematic (N) liquid crystal (LC), which can be applied for the fabrication of remote-controllable optical devices. Without the conventional polymer-based LC alignment process, a perfect VA layer was automatically constructed by directly adding the 0.1 wt % CELA1D-OH in the N-LC media. The programmed CELA1D-OH giant surfactants in the N-LC media gradually diffused onto the substrates of LC cell and self-assembled to the expanded monolayer structure, which can provide enough empty spaces for N-LC molecules to crawl into the empty zones for the construction of VA layer. On the other hand, the CELA3D-OH giant surfactants forming the condensed monolayer structure on the substrates exhibited a planar alignment (PA) rather than a VA. Upon tuning the wavelength of light, the N-LC alignments were reversibly switched between VA and PA in the remote-controllable LC optical devices. Based on the experimental results, it was realized that understanding the interactions between N-LC molecules and amphiphilic giant surfactants is critical to design the suitable materials for the automatic LC alignment.

  19. Collective spin waves in reconfigurable artificial crystals and magnonic meta-materials

    Science.gov (United States)

    Grundler, Dirk

    2014-03-01

    Periodically nanopatterned ferromagnets have generated great interest in the research field of magnonics in that they support spin-wave (SW) nanochannels, allow for multi-directional emission of short-wavelength SWs via the grating coupler effect and form artificial crystals for SWs (magnons) in the GHz frequency regime. Allowed SW minibands and forbidden frequency gaps are not just tailored by the geometrical and material parameters, but reflect decisively the periodic order of the nanomagnets' remanent magnetization. Thereby a further degree of freedom is offered for controlling wave phenomena in solids compared to photonics and plasmonics. We investigated such so-called reconfigurable magnonic crystals (MCs) consisting of a one-dimensional (1D) array of permalloy nanostripes that allow one to vary the Brillouin zone boundaries, forbidden frequency gaps and number of SW minibands in one-and-the same device. When excited by a microwave antenna, an unexpected metamaterial property was found in that both reciprocal and nonreciprocal SW excitation occurred depending on the parallel and antiparallel alignment of magnetic moments in neighboring stripes. Such excitation characteristics are not found in natural materials. Switching an individual stripe from parallel to antiparallel magnetization in an otherwise saturated 1D MC modified the transmitted SW amplitude considerably offering SW control on the nanoscale. Combined with the grating coupler effect, periodically nanopatterned ferromagnets are expected to provide interesting building blocks for magnonic applications aiming at transmitting and processing information at microwave frequencies with spin waves. Funding from the European Community's 7th Framework Programme (FP7/2007-2013) under grant No. 228673 MAGNONICS, No. 247556 NoWaPhen, the DFG via GR1640/5-1 (SPP 1538) and the German Excellence Cluster `Nanosystems Initiative Munich (NIM)' is acknowledged.

  20. Liquid crystal microlens with tunable-focus over focal plane driven by low-voltage signal

    Science.gov (United States)

    Kang, Shengwu; Rong, Xing; Zhang, Xinyu; Xie, Changsheng; Zhang, Tianxu

    2012-11-01

    A liquid crystal (LC) microlens with a new type of electrode pattern is designed. The both bottom and top ITO electrodes of LC microlens are placed face to face, and are separated by glass spacer with the thickness in micron scale, and then LC materials are injected into the cell constructed by them. Because of the two electrodes directly and closely facing the LC layer injected, the design can largely decrease the driving signal voltage for LC lens. The bottom electrode is designed with one round hole pattern. The top electrode is four circle patterns. The diameters of round hole and circle are 500μm and 160μm, respectively. Each circle pattern electrode can be used to focus incident light into different region over the focal plane of LC lens. When the four circle electrodes are driven by different signal at the same time, the focus can be moved off-axis over the focal plane of LC lens, and thus the voltage amplitude can be varied in the range from 0Vrms to 20Vrms. So, we realize a LC microlens with tunable-focus over the focal plane of LC lens driven by low-amplitude voltage signal.

  1. Crystal surface integrity and diffusion measurements on Earth and planetary materials

    Science.gov (United States)

    Watson, E. B.; Cherniak, D. J.; Thomas, J. B.; Hanchar, J. M.; Wirth, R.

    2016-09-01

    Characterization of diffusion behavior in minerals is key to providing quantitative constraints on the ages and thermal histories of Earth and planetary materials. Laboratory experiments are a vital source of the needed diffusion measurements, but these can pose challenges because the length scales of diffusion achievable in a laboratory time are commonly less than 1 μm. An effective strategy for dealing with this challenge is to conduct experiments involving inward diffusion of the element of interest from a surface source, followed by quantification of the resulting diffusive-uptake profile using a high-resolution depth-profiling technique such as Rutherford backscattering spectroscopy (RBS), nuclear reaction analysis (NRA), or ion microprobe (SIMS). The value of data from such experiments is crucially dependent on the assumption that diffusion in the near-surface of the sample is representative of diffusion in the bulk material. Historical arguments suggest that the very process of preparing a polished surface for diffusion studies introduces defects-in the form of dislocations and cracks-in the outermost micrometer of the sample that make this region fundamentally different from the bulk crystal in terms of its diffusion properties. Extensive indirect evidence suggests that, in fact, the near-surface region of carefully prepared samples is no different from the bulk crystal in terms of its diffusion properties. A direct confirmation of this conclusion is nevertheless clearly important. Here we use transmission electron microscopy to confirm that the near-surface regions of olivine, quartz and feldspar crystals prepared using careful polishing protocols contain no features that could plausibly affect diffusion. This finding does not preclude damage to the mineral structure from other techniques used in diffusion studies (e.g., ion implantation), but even in this case the role of possible structural damage can be objectively assessed and controlled. While all

  2. Study on the crystallization process of function inorganic crystal materials%无机功能晶体材料的结晶过程研究

    Institute of Scientific and Technical Information of China (English)

    孙丛婷; 薛冬峰

    2014-01-01

    Functional crystal materials used as the important conversion media of light,sound and electricity,have been widely applied to high-tech fields such as energy,information,aerospace and related hot topics at the forefront of materials science and engineering subject.Crystallization process is the core of the preparation of functional materials,crystal growth habit of materials directly affects the functional performances of optical,electrical,magnetic,and catalytic behaviors.During the crystallization process of inorganic materials,crystals are microscopically transformed from free-state ions into the crystalline solid-phase.We can use the ionic electronegativity and microscopic symmetry changes of constituent components,to study the crystallization process of aggregation formation and structure evolution.Using molecular vibration spectroscopy we can at the molecular scale,reveal the crystallization process of nonlinear optical crystal materials in aqueous solution crystallization process,to overcome the lack of traditional means of in situ observations determining those non-long-range order structures.Chemical bonding theory of single crystal growth can from both thermodynamic and kinetic aspects of the whole system,effectively guide the growth of large crystals,reasonably regulate the growth surface and interface thermodynamics and kinetics.The chemical bonding theory of single crystal growth is applied to the design and optimization of growth parameters of large-size crystal pulling growth system,we have built up a large-size crystal growth system,and successfully grown φ2" sapphire crystals,φ3" YAG crystals,and φ4" lithium niobate crystals.%功能晶体材料作为光、声、电等转换的重要介质,已经被广泛应用于能源、信息、航空航天等高新技术领域,是目前国际材料科学与工程学科发展的热点和前沿课题.结晶过程是制备功能材料的核心环节,结晶习性直接影响材料的光、电、磁、催化等

  3. Growth and characterization of Bis(L-threonine) copper (II) monohydrate single crystals: A semiorganic second order nonlinear optical material

    Science.gov (United States)

    Subhashini, R.; Sathya, D.; Sivashankar, V.; Latha Mageshwari, P. S.; Arjunan, S.

    2016-12-01

    Highly transparent solitary nonlinear semiorganic optical material Bis(L-threonine) copper (II) monohydrate [BLTCM], was synthesized by a conventional slow evaporation solution growth technique. The grown crystals were subjected to structural, optical, electrical, thermal, mechanical, SHG and Laser damage threshold studies. Single crystal XRD shows that the material crystallizes in monoclinic system with noncentrosymmetric space group P21. FT-IR and FT-RAMAN analyses confirm the various functional groups present in the grown crystal. The transparency range of BLTCM was determined by UV-vis-NIR studies and various optical constants such as extinction coefficient (K), refractive index, optical conductivity and electric susceptibility with real and imaginary parts of dielectric constant were calculated using the transmittance data which have applications in optoelectronic devices. Dielectric studies of the crystal were carried out at different frequencies and temperatures to analyze the electrical properties. TGA and DSC analyses were performed to study the thermal behaviour of the sample. The hardness stability of the grown specimen was investigated by Vickers microhardness test. The output intensity of second harmonic generation was confirmed using the Kurtz and Perry powder method. The laser induced surface damage threshold of the crystal was measured using Nd:YAG laser.

  4. Materials Chemistry Issues in the Development of a Single-Crystal Solar/Thermal Refractive Secondary Concentrator

    Science.gov (United States)

    Jacobson, Nathan S.; Biering, Robert C.

    2005-01-01

    A translucent crystal concentrates and transmits energy to a heat exchanger, which in turn heats a propellant gas, working gas of a dynamic power system, or a thermopile. Materials are the limiting issue in such a system. Central is the durability of the crystal, which must maintain the required chemical, physical/optical, and mechanical properties as it is heated and cooled. This report summarizes available data to date on the materials issues with this system. We focus on the current leading candidate materials, which are sapphire (Al2O3) for higher temperatures and silica (SiO2) for lower temperatures. We use data from thermochemical calculations; laboratory coupon tests with silica and sapphire; and system tests with sapphire. The required chemical properties include low-vapor pressure and interfacial stability with supporting structural materials. Optical properties such as transmittance and index of refraction must be maintained. Thermomechanical stability is a major challenge for a large, single-crystal ceramic and has been discussed in another report. In addition to the crystal, other materials in the proposed system include refractory metals (Nb, Ta, Mo, W, and Re), carbon (C), and high-temperature ceramic insulation. The major issue here is low levels of oxygen, which lead to volatile refractory metal oxides and rapid consumption of the refractory metal. Interfacial reactions between the ceramic crystal and refractory metal are also discussed. Finally, high-temperature ceramic insulating materials are also likely to be used in this system. Outgassing is a major issue for these materials. The products of outgassing are typically reactive with the refractory metals and must be minimized.

  5. Effect of the glass wool material on the two-dimensional steel-air phononic crystal

    Science.gov (United States)

    Yu, Kunpeng; Chen, Tianning; Wang, Xiaopeng; Li, Yinggang

    2013-12-01

    Using the finite-element method, the propagation behaviors of acoustic waves in a new two-dimensional phononic crystal (PC) composed of slotted steel tube periodically placed in air matrix are investigated. Unlike traditional PCs, the tube inclusions here are not hollow but filled with the glass wool (GW) material. By calculating dispersion relations and transmission spectra of the PC, the effect of GW on PCs is studied. Numerical results show that the presence of GW can shift the first band gap to lower frequencies while it has little effect on the second band gap; meanwhile it can also enhance the sound attenuation of PCs in the pass band frequencies, resulting in the decrease of noise in the whole frequency range. The analysis of acoustic eigenmodes shows that GW affects the band and transmission performances mainly through changing the resonance of the internal cavity inside the tube and meanwhile the sound-absorbing ability of GW itself. Furthermore, some parameters of GW are studied for their effects on the sound-propagation properties of PCs. Results show that the transmission behaviors can be significantly modulated by parameters such as the surface exposure degree, mean fiber diameter and the material's apparent density of GW.

  6. Performance of PIN-PMN-PT Single Crystal Piezoelectric versus PZT8 Piezoceramic Materials in Ultrasonic Transducers

    Science.gov (United States)

    DeAngelis, D. A.; Schulze, G. W.

    The recent advancements in the manufacturing of single crystal PIN-PMN-PT piezoelectric materials now make them a cost-competitive alternative to PZT4 and PZT8 (Navy Types I and III) piezoceramic materials, which have been the workhorse of power ultrasonic applications (e.g., welding, cutting, sonar, etc.) for over 50 years. Although there are great benefits to the use of single crystal materials with respect to high output, as well as added actuating and sensing abilities, many transducer designers are still reluctant to explore these materials due to inadequate design guidelines for substituting the familiar PZT materials; for example, what are the implications of the higher capacitance, sensitivity to chipping/cracks, aging effects, frequency shifts, or how much preload can be used are all common questions. This research is a case study on the performance of identical ultrasonic transducer bodies, used for semiconductor wire bonding, assembled with either PZT8 or PIN-PMN-PT piezo material. The main purpose of the study is to establish rule-of-thumb design guidelines for direct substitution of single crystal materials in existing PZT8 transducer designs, along with a side-by-side performance comparison to highlight benefits. Several metrics are investigated such as impedance, frequency, displacement gain, quality factor and electromechanical coupling factor.

  7. Survival of Organic Materials in Ancient Cryovolcanically-Produced Halite Crystals

    Science.gov (United States)

    Zolensky, M.; Fries, M.; Chan, Q. H.-S.; Kebukawa, Y.; Bodnar, R.; Burton, A.; Callahan, M.; Steele, A.; Sandford, S.

    2015-01-01

    Spectroscopic evidence supports the presence of Mg-Na-K salts derived from cryovolcanism on the surface of Europa. Halite (NaCl) is effective at very long-term preservation of organic phases and structures. Collection of salt crystals from Europan plumes would provide solid inclusions of organics, potentially also biomaterials, all suitable for analysis. Two thermally-metamorphosed ordinary chondrite regolith breccias (Monahans 1998 (H5) and Zag (H3-6)) contain fluid and solid inclusion-bearing halite crystals, dated to approximately 4.5 billion years, and thus the trapped aqueous fluids and solids are at least as old. Heating/freezing studies of the aqueous fluid inclusions in these halites demonstrated that they were trapped near 25 degrees Centigrade, and their continued presence in the halite grains requires that their incorporation into the H chondrite asteroid occurred after that body's metamorphism ended, since heating would have dessicated the halite. O and H isotopes of the trapped fluids are consistent with mixing of asteroidal and cometary water. Cryovolcanic Origin of the Halite: We hypothesize that these meteoritic halites derive from ancient cryovolcanism based on the following points. (1) Salts crystals are observed as products of current cryovolcanism on Enceladus. (2) In-situ spacecraft analysis of some of the icy grains associated with the Enceladus salt found minor organic or siliceous components, including methane, also found in the Monahans halite. (3) Cryovolcanic fluids are observed to be in chemical disequilibrium, reflecting incomplete reactions between interior volatiles and rocky materials. The coexistence of N2 and HCN in Enceladus' cryovolcanic fluids requires that the plume consists of a mixture of materials whose sources experienced different degrees of aqueous processing, including primordial material trapped in ice that has not been in contact with liquid water. The observed mineral assemblage within the Monahans and Zag halites is

  8. Polarization Properties of Elliptical-Hole Liquid Crystal Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Tartarini, Giovanni; Pansera, Marco; Alkeskjold, Thomas Tanggaard;

    2007-01-01

    ellipticity allow some phenomena that are not predicted yet, such as polarization-dependent losses and birefringence sign change in the wavelength range used for standard telecom fibers. Control of these features allows the design of new devices for sensing or telecommunication applications......The characteristics of triangular photonic crystal fibers (PCFs) with elliptical holes filled with a nematic liquid crystal (LC) are investigated theoretically. The analysis that is carried out using the finite-element method, including material dispersion effects, shows that LC anisotropy and hole...

  9. Crystal growth and electronic properties of a 3D Rashba material, BiTeI, with adjusted carrier concentrations.

    Science.gov (United States)

    Kanou, Manabu; Sasagawa, Takao

    2013-04-03

    3D Rashba materials can be a leading player in spin-related novel phenomena, ranging from the metallic extreme (unconventional superconductivity) to the transport intermediate (spin Hall effects) to the novel insulating variant (3D topological insulating states). As the essential backbone for both fundamental and applied research of such a 3D Rashba material, this study established the growth of sizeable single crystals of a candidate compound BiTeI with adjusted carrier concentrations. Three techniques (standard vertical Bridgman, modified horizontal Bridgman, and vapour transport) were employed, and BiTeI crystals (>1 × 1 × 0.2 mm(3)) with fundamentally different electronic states from metallic to insulating were successfully grown by the chosen technique. The 3D Rashba electronic states, including the Fermi surface topology, for the corresponding carrier concentrations of the obtained BiTeI crystals were revealed by relativistic first-principles calculations.

  10. Ultrabroadband terahertz spectroscopy of a liquid crystal

    DEFF Research Database (Denmark)

    Vieweg, N.; Fischer, B. M.; Reuter, M.;

    2012-01-01

    present the frequency dependent index of refraction and the absorption coefficients of the nematic liquid crystal 5CB over a frequency range from 0.3 THz to 15 THz using a dispersion-free THz time-domain spectrometer system based on two-color plasma generation and air biased coherent detection (ABCD). We......Liquid crystals (LCs) are becoming increasingly important for applications in the terahertz frequency range. A detailed understanding of the spectroscopic parameters of these materials over a broad frequency range is crucial in order to design customized LC mixtures for improved performance. We...

  11. A review on solar cells from Si-single crystals to porous materials and quantum dots.

    Science.gov (United States)

    Badawy, Waheed A

    2015-03-01

    Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12-16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper-indium-selenide) and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe-TiO2 architecture have been developed.

  12. A review on solar cells from Si-single crystals to porous materials and quantum dots

    Directory of Open Access Journals (Sweden)

    Waheed A. Badawy

    2015-03-01

    Full Text Available Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12–16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper–indium–selenide and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe–TiO2 architecture have been developed.

  13. Method for the preparation of inorganic single crystal and polycrystalline electronic materials

    Science.gov (United States)

    Groves, W. O. (Inventor)

    1969-01-01

    Large area, semiconductor crystals selected from group 3-5 compounds and alloys are provided for semiconductor device fabrication by the use of a selective etching operation which completely removes the substrate on which the desired crystal was deposited. The substrate, selected from the same group as the single crystal, has a higher solution rate than the epitaxial single crystal which is essentially unaffected by the etching solution. The preparation of gallium phosphide single crystals using a gallium arsenide substrate and a concentrated nitric acid etching solution is described.

  14. Crystallization and solid-state reaction as a route to asymmetric synthesis from achiral starting materials.

    Science.gov (United States)

    Green, B S; Lahav, M

    1975-10-29

    Many molecules which are achiral can crystallize in chiral (enantiomorphic) crystals and, under suitable conditions, crystals of only one chirality may be obtained. The formation of right- or left-handed crystals in excess is equally probable. Lattice-controlled (topochemical) photochemical or thermal solid-state reactions may then afford stable, optically active products. In the presence of the chiral products, achiral reactants may preferentially produce crystals of one chirality, leading to a feedback mechanism for the generation and amplification of optical activity. Amplification of optical activity can also be achieved by solid-state reactions. The optical synthesis of biologically relevant compounds by such routes may be envisaged.

  15. Optically and electrically controlled circularly polarized emission from cholesteric liquid crystal materials doped with semiconductor quantum dots.

    Science.gov (United States)

    Bobrovsky, Alexey; Mochalov, Konstantin; Oleinikov, Vladimir; Sukhanova, Alyona; Prudnikau, Anatol; Artemyev, Mikhail; Shibaev, Valery; Nabiev, Igor

    2012-12-04

    Novel types of electro- and photoactive quantum dot-doped cholesteric materials have been engineered. UV-irradiation or electric field application allows one to control the degree of circular polarization and intensity of fluorescence emission by prepared quantum dot-doped liquid crystal films. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Large single crystal growth of MnWO4-type materials from high-temperature solutions

    Science.gov (United States)

    Gattermann, U.; Röska, B.; Paulmann, C.; Park, S.-H.

    2016-11-01

    A simple high-temperature growth apparatus was constructed to obtain large crystals of chemically gradient (In, Na)-doped MnWO4solid-solutions. This paper presents the crystal growth and characterisation of both MnWO4and epitaxially grown (In, Na): MnWO4crystals on MnWO4. These large monolithic crystals were made in two steps: A MnWO4 crystal was grown in the crystallographic main direction [001] applying the Czochralski method, followed by the top seeded growth of (In, Na): MnWO4 solid-solutions with an oriented seed crystal of MnWO4. Such a monolithic crystal will serve to fundamental investigation of coupling properties at boundaries between various multiferroic MnWO4-typesolid-solutions.

  17. Transition Metal Dithiolene Near-IR Dyes and Thier Applications in Liquid Crystal Devices

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, K.L.; Painter, G.; Lotito, K.; Noto, A.G.; Chang, P.

    2006-08-18

    Numerous commercial and military applications exist for guest–host liquid crystal (LC) devices operating in the near- to mid-IR region. Progress in this area has been hindered by the severe lack of near-IR dyes with good solubility in the LC host, low impact on the inherent order of the LC phase, good thermal and chemical stability, and a large absorbance maximum tunable by structural modification over a broad range of the near-IR region. Transition metal complexes based on nickel, palladium, or platinum dithiolene cores show substantial promise in meeting these requirements. In this paper, we overview our past and present activities in the design and synthesis of transition metal dithiolene dyes, show some specific applications examples for these materials as near-IR dyes in LC electro-optical devices, and present our most recent results in the computational modeling of physical and optical properties of this interesting class of organometallic optical materials.

  18. Light-melt adhesive based on dynamic carbon frameworks in a columnar liquid-crystal phase

    Science.gov (United States)

    Saito, Shohei; Nobusue, Shunpei; Tsuzaka, Eri; Yuan, Chunxue; Mori, Chigusa; Hara, Mitsuo; Seki, Takahiro; Camacho, Cristopher; Irle, Stephan; Yamaguchi, Shigehiro

    2016-07-01

    Liquid crystal (LC) provides a suitable platform to exploit structural motions of molecules in a condensed phase. Amplification of the structural changes enables a variety of technologies not only in LC displays but also in other applications. Until very recently, however, a practical use of LCs for removable adhesives has not been explored, although a spontaneous disorganization of LC materials can be easily triggered by light-induced isomerization of photoactive components. The difficulty of such application derives from the requirements for simultaneous implementation of sufficient bonding strength and its rapid disappearance by photoirradiation. Here we report a dynamic molecular LC material that meets these requirements. Columnar-stacked V-shaped carbon frameworks display sufficient bonding strength even during heating conditions, while its bonding ability is immediately lost by a light-induced self-melting function. The light-melt adhesive is reusable and its fluorescence colour reversibly changes during the cycle, visualizing the bonding/nonbonding phases of the adhesive.

  19. Exploration of photonic crystal circulator based on gyromagnetic properties and scaling of ferrite materials

    Science.gov (United States)

    Umamaheswari, C.; sundar, D. Shanmuga; Raja, A. Sivanantha

    2017-01-01

    Three port optical circulators are designed predicated on two dimensional triangular lattice photonic crystals and examined with different size of regular (circular) and irregular (triangular) ferrite posts, through the structure optimization and exploration of defect mode coupling. Ferrite, a special type of highly permeable and low-loss magnetic material, which is anisotropic when biased by a much larger static magnetic field is modeled and the gyromagnetic property of the same is investigated. According to theoretical analysis, the optimized geometry structure can make the non-reciprocal transmission of electromagnetic waves accompanying a high caliber isolation and low insertion loss with the avail of ferrite post inserted at the center of the joint. In order to minimize the reflections in the isolated port at the nominal frequencies, the scaling of ferrite post is implemented by defining S parameter. The structural optimization and the calculation of tensor elements of the anisotropic medium is executed by the finite element method. Moreover, the further study shows the importance of scaling the magneto-photonic material and the way it affects the transmission and isolation of the structured contrivance. Numerical simulations are performed to manifest the attainability and the characteristics of the designed circulators. Finally the triangular ferrite post with the scale of 0.518 makes the non-reciprocal transmission of electromagnetic waves with the minimum insertion loss at the normalized frequency range of 191.6 GHz which benefits from a broad operational bandwidth. This optimized device can realize the operations of splitting, routing and isolation and have good technological compatibility for chip level integration into Photonic Integrated Circuits.

  20. Photonic gaps in one dimensional cylindrical photonic crystal that incorporates single negative materials

    Science.gov (United States)

    El-Naggar, Sahar A.

    2017-01-01

    In this article, we theoretically study electromagnetic waves that propagate in one-dimensional cylindrical photonic crystals (1DCPC) containing single negative materials. We examine the optical properties of three gaps namely; the zero-effective phase (zero- ϕ), the zero-permittivity (zero- ɛ) and the zero-permeability (zero- μ). We calculate the optical reflectance for transverse electric(magnetic) TE(TM) polarizations using the transfer matrix method in the cylindrical coordinates. We study the effect of azimuthal mode number ( m) and the starting radius on these gaps. The results show that the zero- μ (zero- ɛ) gap is found for TE(TM) polarization at frequency where μ( ɛ) changes its sign for m ≥ 1. The width of the gap increases by decreasing the starting radius or by increasing m, whereas the zero- ϕ gap remains invariant. In addition, we present a brief design of 1D-CPC that has a polarization-independent wide gap especially for high azimuthal mode number ( m > 2). Our results can help improve the performance of microwave devices independent of the source wave polarization.

  1. Organic crystals – More than simple additives toward better electroceramic materials

    Directory of Open Access Journals (Sweden)

    Mamoru Senna

    2010-09-01

    Full Text Available Roles of various organic crystals (OC, notably those containing nitrogen, on the preparation and properties of source materials for electroceramics are featured from the author’s own experimental studies. When OC are intimately mixed with metal salts like carbonates, their decomposition is accelerated, liberating the diffusing species at temperatures lower than usual. Mixing of OC with metal oxides under mechanical stressing results in anion exchange and eases diffusion of guest species. Case studies on 3 categories, i.e. i substitution of oxygen in titania with nitrogen and introduction of oxygen vacancies during co-grinding titania with urea, glycine and/or polytetra fluoroethylene; ii increase in the rate of reaction of barium titanate formation via a solid state route by OCs with detailed process analysis with glycine as an example of OC, and iii phase pure solid state synthesis of Li4Ti5O12 by mechanically activating the intermediate, Li2TiO3 with 3 amino acids as OCs.

  2. Stochastic polarity formation in molecular crystals, composite materials and natural tissues

    Directory of Open Access Journals (Sweden)

    Jürg Hulliger

    2017-07-01

    Full Text Available This topical review summarizes the theoretical and experimental findings obtained over the last 20 years on the subject of growth-induced polarity formation driven by a Markov chain process. When entering the growing surface of a molecular crystal, an inorganic–organic composite or a natural tissue, the building blocks may undergo 180° orientational disorder. Driven by configurational entropy, faulted orientations can promote the conversion of a growing non-polar seed into an object showing polar domains. Similarly, orientational disorder at the interface may change a polar seed into a two-domain state. Analytical theory and Monte Carlo simulations were used to model polarity formation. Scanning pyroelectric, piezoresponse force and phase-sensitive second-harmonic microscopies are methods for investigating the spatial distribution of polarity. Summarizing results from different types of materials, a general principle is provided for obtaining growth-induced polar domains: a non-zero difference in the probabilities for 180° orientational misalignments of building blocks, together with uni-directional growth, along with Markov chain theory, can produce objects showing polar domains.

  3. A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream

    Science.gov (United States)

    Rockett, P.; Karagadde, S.; Guo, E.; Bent, J.; Hazekamp, J.; Kingsley, M.; Vila-Comamala, J.; Lee, P. D.

    2015-06-01

    Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials.

  4. SHG Materials Based on the AlPO4-5 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Large AlPO4-5 molecular sieve single crystals with high optical quality were synthesized hydrothermally by using TPA as template. As-synthesized crystals were calcined under O2 atmosphere to remove the organic templates in the channels. Disperse-Red-1 (DR1) and p-nitroaniline (pNA) molecules have been successfully incorporated into the one-dimensional channels of AlPO4-5 single crystals respectively by means of vapor phase diffusion. XRD patterns reveal that the loading of organic molecules has not destroyed the structures of AlPO4-5 crystals. Polarizing microscope and SHG results indicate that the DR1 and pNA molecules are well aligned in a preferred direction along the crystal channels. The different polarization-dependence SH intensity shows that different SHG processes occur in the DR1- and pNA-loaded AlPO4-5 crystals.

  5. History of the "Detector Materials Engineering" Crystal Growth Process for Bulk Hg1- x Cd x Te

    Science.gov (United States)

    Higgins, W. M.; Nelson, D. A.; Roy, R. G.; Murosako, R. P.; Lancaster, R. A.; Tower, J.; Norton, P.

    2013-11-01

    This paper reviews the history and technology of a bulk Hg1- x Cd x Te crystal growth process that was developed in the early 1980s at Honeywell Electro-Optics Division (presently BAE Systems, Electronic Solutions). The crystal growth process name, DME, was an acronym for the department name: Detector Materials Engineering. This was an accelerated crucible rotation technique (ACRT) vertical traveling heater method growth process. Crystal growth occurred in the pseudobinary Hg1- x Cd x Te system. ACRT mixing allowed the lower-density, higher- x-value Hg1- x Cd x Te growth nutrient in the upper region of the ampoule to replenish the depleted melt and allowed the growth of constant- x-value, higher-density Hg1- x Cd x Te. The material grown by this research and production growth process yielded single crystals that had improved purity, compositional uniformity, precipitate density, and reproducibility in comparison with solid-state recrystallization and other bulk Hg1- x Cd x Te growth techniques. Radial and longitudinal nonuniformities in x-value for Hg1- x Cd x Te were reduced to DME material had highly desired performance characteristics.

  6. Experimental Conditions to Obtain Photopolymerization Induced Phase Separation Process in Liquid Crystal-Photopolymer Composite Materials under Laser Exposure

    Directory of Open Access Journals (Sweden)

    Manuel Ortuño

    2014-01-01

    Full Text Available We analyze the experimental conditions necessary to obtain a photopolymerization induced phase separation process inside liquid crystal-photopolymer composite materials. Composites stored for 24 hours perform poorly in hologram recording but a good result is obtained if they are used recently prepared. We use a procedure combining heat and sonication to disarrange the liquid crystal structures formed during storage of the composite. We also propose incoherent light treatment after recording the hologram in order to evaluate if the phase separation evolved correctly during hologram recording.

  7. Semitransparent Polymer Solar Cells Based on Liquid Crystal Reflectors

    Directory of Open Access Journals (Sweden)

    Shaopeng Yang

    2014-01-01

    Full Text Available The effects of liquid crystal (LC reflectors on semitransparent polymer solar cells (PSCs were investigated in this paper. By improving the cathode, we manufactured semitransparent PSCs based on the conventional PSCs. We then incorporated the LC reflector into the semitransparent PSCs, which increased the power conversion efficiency (PCE from 2.11% to 2.71%. Subsequently adjusting the concentration and spinning speed of the active layer material changed its thickness. The maximum light absorption for the active layer was obtained using the optimum thickness, and the PCE eventually reached 3.01%. These results provide a reference for selecting LC reflectors that are suitable for different active layer materials to improve the PCE of semitransparent PSCs.

  8. Colloid-in-Liquid Crystal Gels that Respond to Biomolecular Interactions

    OpenAIRE

    Agarwal, Ankit; Sidiq, Sumyra; Setia, Shilpa; Bukusoglu, Emre; de Pablo, Juan J.; Pal, Santanu Kumar; Abbott, Nicholas L.

    2013-01-01

    This paper advances the design of stimuli-responsive materials based on colloidal particles dispersed in liquid crystals (LCs). Specifically, we report that thin films of colloid-in-liquid crystal (CLC) gels can undergo easily visualized ordering transitions in response to reversible and irreversible (enzymatic) biomolecular interactions occurring at aqueous interfaces of the gels. In particular, we demonstrate that LC ordering transitions can propagate across the entire thickness of the gels...

  9. Thermal oxidation of single crystal aluminum antimonide and materials having the same

    Science.gov (United States)

    Sherohman, John William; Yee, Jick Hong; Coombs, III, Arthur William; Wu, Kuang Jen J.

    2012-12-25

    In one embodiment, a method for forming a non-conductive crystalline oxide layer on an AlSb crystal includes heat treating an AlSb crystal in a partial vacuum atmosphere at a temperature conducive for air adsorbed molecules to desorb, surface molecule groups to decompose, and elemental Sb to evaporate from a surface of the AlSb crystal and exposing the AlSb crystal to an atmosphere comprising oxygen to form a crystalline oxide layer on the surface of the AlSb crystal. In another embodiment, a method for forming a non-conductive crystalline oxide layer on an AlSb crystal includes heat treating an AlSb crystal in a non-oxidizing atmosphere at a temperature conducive for decomposition of an amorphous oxidized surface layer and evaporation of elemental Sb from the AlSb crystal surface and forming stable oxides of Al and Sb from residual surface oxygen to form a crystalline oxide layer on the surface of the AlSb crystal.

  10. Surface-Controlled Orientational Transitions in Elastically Strained Films of Liquid Crystal That Are Triggered by Vapors of Toluene.

    Science.gov (United States)

    Bedolla Pantoja, Marco A; Abbott, Nicholas L

    2016-05-25

    We report the fabrication of chemically patterned microwells that enable the rapid and facile preparation (by spin coating and patterned dewetting) of thin films of liquid crystals (LCs) that have precise thicknesses (0.7-30 μm), are supported on chemically defined substrates, and have free upper surfaces. We use these microwells to prepare elastically strained nematic LC films supported on silica glass, gold, or polystyrene substrates and thereby characterize the response of the strained LC films to vapors of toluene. We report that low concentrations of toluene vapor (LC to lower the anchoring energy of the LC on these substrates, thus allowing the elastic energy of the strained LC film to drive the LC films through an orientational transition. The central role of the toluene-induced change in surface anchoring energy is supported by additional experiments in which the response of the nematic LC to changes in film thickness and substrate identity are quantified. A simple thermodynamic model captures these trends and yielded estimates of anchoring energies (8-22 μJ/m(2)). Significantly, the orientational transitions observed in these strained LC thin films occur at concentrations of toluene vapor that are almost 1 order of magnitude below those which lead to bulk phase transitions, and they are not triggered by exposure to water vapor. Overall, these results hint at principles for the design of responsive LC-based materials that can be triggered by concentrations of aromatic, volatile organic compounds that are relevant to human health.

  11. LC-REHAB

    DEFF Research Database (Denmark)

    Lynggaard, Vibeke; May, Ole; Beauchamp, Alison;

    2014-01-01

    that learning and coping incorporated in cardiac rehabilitation will improve adherence in cardiac rehabilitation and may decrease morbidity and mortality. By describing learning and coping strategies the study aims to provide knowledge that can contribute to an increased transparency in patient education...... of cardiac rehabilitation it is important to develop patient education methods which can enhance adherence to this effective program. The LC-REHAB study aims to compare the effect of a new patient education strategy in cardiac rehabilitation called 'learning and coping' to that of standard care. Further...... the intervention group with learning and coping strategies incorporated into standard care in cardiac rehabilitation or the control group who receive the usual cardiac rehabilitation program. Learning and coping consists of two individual clarifying interviews, participation of experienced patients as educators...

  12. Crystallization and C-RAM application of Ag-doped Sb{sub 2}Te{sub 3} material

    Energy Technology Data Exchange (ETDEWEB)

    Xu Jiaqing [Research Center of Functional Semiconductor Film Engineering and Technology, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, 865 Changning Road, Shanghai 200050 (China) and Graduate School of the Chinese Academy of Sciences, Beijing 100080 (China)]. E-mail: xjq@mail.sim.ac.cn; Liu Bo [Research Center of Functional Semiconductor Film Engineering and Technology, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, 865 Changning Road, Shanghai 200050 (China); Song Zhitang [Research Center of Functional Semiconductor Film Engineering and Technology, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, 865 Changning Road, Shanghai 200050 (China); Feng Songlin [Research Center of Functional Semiconductor Film Engineering and Technology, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, 865 Changning Road, Shanghai 200050 (China); Chen Bomy [Silicon Storage Technology Inc., 1171 Sonora Court, Sunnyvale, CA 94086 (United States)

    2006-02-25

    Ag-doped amorphous Sb{sub 2}Te{sub 3} thin films are deposited by RF magnetron sputtering and the crystallization behavior is studied by differential scanning calorimeter (DSC), X-ray diffraction and sheet resistance measurements. Both crystallization temperature and polycrystalline state resistance of Sb{sub 2}Te{sub 3} are increased by doping Ag, which is beneficial for enhancing room temperature stability of the polycrystalline state and reducing writing current in chalcogenide random access memory (C-RAM) application, respectively. The crystallization process of Sb{sub 2}Te{sub 3} is broadened with new phases (AgSbTe{sub 2} and Ag{sub 2}Te) formed. And a model is introduced to explain the peak positions in the DSC profiles. Applying the new material in the C-RAM test cell, current-voltage characteristic is studied to confirm its feasibility in device application.

  13. Synthesis of rod-like bis-ester liquid crystals and their influence on photoelectric properties of liquid crystalline materials

    Institute of Scientific and Technical Information of China (English)

    Min Yan Zheng; Yong Sheng Wei; Zhong Wei An; Shan Wang

    2009-01-01

    Six novel rod-like magnetic liquid crystals have been prepared,in which trans-bicyclobexyl or trans-cyclobexylphenyl and biphenylcarboxylic acid phenyl ester mesogenic cores with n-propyl and n-pentyl substituents were terminated by 4-hydroxylTEMPO (TEMPO = 2,2,6,6-tetramethylpiperidine-l-oxy).Their structures were confirmed by elemental analysis,IR and MS.Determined by SQUID,EPR,DSC and HS-POM (heat stage polarizing optical microscope),the six compounds all have both magnetic and liquid crystalline properties; their temperature ranges of mesophase were from 16.0 to 24.8 ~C,and the magnetic liquid crystal molecules could obviously improve the response sensitivity of liquid crystal materials.

  14. Influence of electron beam exposure on crystallization of phase-change materials

    NARCIS (Netherlands)

    Pandian, Ramanathaswamy; Kooi, Bart J.; De Hosson, Jeff Th. M.; Pauza, Andrew

    2007-01-01

    Isothermal crystallization of amorphous SbxTe films capped with ZnS-SiO2 or GeCrN layers was performed using in situ heating within a transmission electron microscope. The effect of the electron beam of the microscope on the crystallization process was investigated. It was found that electron irradi

  15. Measurement of characteristics and phase modulation accuracy increase of LC SLM "HoloEye PLUTO VIS"

    Science.gov (United States)

    Bondareva, A. P.; Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Starikov, R. S.; Starikov, S. N.

    2014-09-01

    Phase liquid crystal spatial light modulators (LC SLM) are actively integrated in various optical systems for dynamic diffractive optical elements imaging. To achieve the best performance, high stability and linearity of phase modulation is required. This article presents results of measurement of characteristics and phase modulation accuracy increase of state of the art LC SLM with HD resolution "HoloEye PLUTO VIS".

  16. Studies on growth and characterization of a novel nonlinear optical and ferroelectric material - N,N-dimethylurea picrate single crystal

    Science.gov (United States)

    Shanthi, A.; Krishnan, C.; Selvarajan, P.

    2014-05-01

    A novel organic nonlinear optical (NLO) material viz. N,N-dimethylurea picrate (NNDMP) was grown by the slow evaporation technique using N,N-dimethyl formamide as a solvent. The solubility of the grown sample has been estimated for various temperatures. The XRD study reveals that the grown crystal crystallizes in the monoclinic crystal system and the corresponding lattice parameters were determined. The relative second harmonic generation (SHG) efficiency of the NNDMP was found to be 1.045 times that of KDP by Kurtz-Perry powder technique. FTIR and FT-Raman spectral analyses explain the various functional groups present in the sample. The optical spectral analysis of the grown crystal has been performed by UV-vis-NIR spectroscopy and the band gap energy was found out. The thermogravimetric analysis and differential thermal analysis (TG/DTA) reveal that the NNDMP crystal is stable at up to 172 °C. A prominent first-order ferroelectric to paraelectric phase transition at 323 K has been observed and activation energy was determined for the AC conduction process in the sample.

  17. A preliminary clinical report of 2LC reagent for early gastric cancer diagnosis

    Institute of Scientific and Technical Information of China (English)

    Min Li; Xue Zhong Chen; Zhi Xue Lin; Ling Chen

    2000-01-01

    AIM To explore the feasibility of early gastric cancer diagnosis with 2LC reagent, and to establish a grossexploration method for early gastric cancer with the reagent based on the feasibility.METHODS Add 30 mg or 0.3 mL 2LC reagent into 5 mL urinary sample, observe the change of urinary,and analyze the sample on DAO-JIN-UV-260 Ultraviolet-analyzer at 190nm - 700nm, then, record theabsorbance at 490nm. To determine best stage of sample, take some samples on 8:00 pm and 8:00 am,respectively. To select best dosage of 2LC, take the test with different concentrations. To test the effect ofoperation, conduct the experiment in different stages before and after the operation for the patients withgastric cancer. Two parallel samples were taken each time in the whole experiment.RESULTS Red compound produced by some reactions when the 2LC reagent was added into the urinary ofpatients with gastric cancer, and the urine had obvious absorptivity at about 490nm (positive). There was almost no reaction in the urine of other samples (negative). A total of 172 samples were tested, the positiverate of gastric cancer was above 90% in 48 samples before the operation, in which 8 advanced gastric cancerand 9 early stage gastric cancer samples behaved stronger positive reaction. The positive rate of 118 othersamples was less than 10%. The urine taken in the morning was batter than that in the evening. The bestdosage of 2LC was 6 mg/mL for crystal and 0.05 mL/mL for liquid. The test results of gastric cancerpatients with postoperative tumor recrudescence or transfer were positive, and the others were negative.CONCLUSION There is a high feasibility in manipulation simplification, specificity and receptivity of 2LCreagent for early gastric cancer detection, and the characteristics mentioned above will be improved based onthe advanced raw material used and the style of the 2LC reagent. It is an effective gross exploration methodfor early gastric cancer with the 2LC reagent, and can determine

  18. Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure

    Science.gov (United States)

    Yang, Jihui; Shi, Xun; Bai, Shengqiang; Zhang, Wenqing; Chen, Lidong; Yang, Jiong

    2012-01-17

    A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.

  19. Optimization of a Liquid Crystal-based Sensory Platform for Monitoring Enzymatic Glucose Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yibin; Jang, Chang-Hyun [Gachon University, Seongnam (Korea, Republic of)

    2016-05-15

    Managing glucose levels in human blood is extremely important for the treatment of diabetes. Here, an innovative sensory strategy has been developed to monitor the enzymatic activities of glucose and glucose oxidase by using confined liquid crystal (LC) birefringent droplet patterns. Acidic products released during the glucose oxidation process lead to a slight decrease in the pH of aqueous systems that can be monitored by pH-sensitive LC materials. Of the existing pH-sensitive LC materials, dodecanoic acid-doped 4-cyano-4'-pentylbiphenyl is inexpensive and easily adjusted to satisfy the 7.4 ± 0.05 pH requirement of human blood. Moreover, the orientational alignment of capillary-confined pH-responsive LCs can be disrupted at the aqueous/LC interface following a slight decrease in the critical pH of aqueous reaction systems, which results in an optical signal that can be observed with the naked eye by using polarizing optical microscopy. Based on the stable LC droplet patterns generated by the cylindrical confinement system, the functionalized LCs can selectively detect glucose at concentrations as low as 0.1 pM. This study further advances the previously reported LC-based glucose monitoring systems by reducing production costs and instituting a smarter LC sensory design. This improved system shows potential for the use in clinical bioassay applications.

  20. Thermal and Transmission Properties of UV Nonlinear Optical Material-- ZnCd(SCN)4 Crystal

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Zinc cadmium thiocyanate(ZCTC), ZnCd(SCN)4, has been discovered as a UV second-order nonlinear optical coordination crystal. Its thermal and transmission properties are reported. The thermal decomposition is characterized by using the X-ray powder diffraction (XRPD) and infrared (IR) spectroscopy at room temperature. The absorptions of intrinsic ions and ZCTC in a solution state are discussed as well as transmission properties of the ZCTC crystal. An effective method of reducing the surface reflection loss of ZCTC crystal is introduced.

  1. Electro-optical properties of polymer stabilized cholesteric liquid crystal film

    Institute of Scientific and Technical Information of China (English)

    Ma Ji; Zheng Zhi-Gang; Liu Yong-Gang; Xuan Li

    2011-01-01

    Liquid crystals (LCs) and polymers are extensively used in various electro-optical applications. In this paper, normal mode polymer stabilized cholesteric LC film is prepared and studied. The effects of chiral dopant and monomer concentrations on the electro-optical properties, such as contrast ratio, driving voltage, hysteresis width and response time, are investigated. The reasons of electro-optical properties influenced by the concentrations of the materials are discussed. Through the proper material recipe, the electro-optical properties of polymer stabilized cholesteric LC film can be optimized.

  2. Magnetorheological finishing with chemically modified fluids for studying material removal of single-crystal ZnS

    Science.gov (United States)

    Salzman, S.; Romanofsky, H. J.; Clara, Y. I.; Giannechini, L. J.; West, Garrett J.; Lambropoulos, J. C.; Jacobs, S. D.

    2013-09-01

    Magnetorheological finishing (MRF) of polycrystalline, chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and zinc selenide (ZnSe) can leave millimeter-size artifacts on the part surface. These pebble-like features come from the anisotropic mechanical and chemical properties of the ceramic material and from the CVD growth process itself. The resulting surface texture limits the use of MRF for polishing aspheric and other complex shapes using these important infrared (IR) ceramics. An investigation of the individual contributions of chemistry and mechanics to polishing of other polycrystalline ceramics has been employed in the past to overcome similar material anisotropy problems. The approach taken was to study the removal process for the different single-crystal orientations that comprise the ceramic, making adjustments to mechanics (polishing abrasive type and concentration) and polishing slurry chemistry (primarily pH) to equalize the removal rate for all crystal orientations. Polishing with the modified slurry was shown to prevent the development of surface texture. Here we present mechanical (microhardness testing) and chemical (acid etching) studies performed on the four single-crystal orientations of ZnS: 100, 110, 111, and 311. We found that the (111) plane is 35% to 55% harder and 30% to 40% more resistant to chemical etching than the other three planes. This relatively high degree of variation in these properties can help to explain the surface texture developed from MRF of the polycrystalline material. Theoretical calculations of microhardness, planar, and bond densities are presented and compared with the experimental data. Here surface characterization of these single-crystal orientations of ZnS for material removal and roughness with chemically modified MR fluids at various pH levels between pH 4 and pH 6 are presented for the first time.

  3. Cellulose nanocrystal-based materials : from liquid crystal self-assembly and glass formation to multifunctional thin films

    OpenAIRE

    Jan P. F. Lagerwall; Schütz, Christina; Salajkova, Michaela; Noh, Junghyun; PARK, JI HYUN; Scalia, Giusy; Bergström, Lennart

    2014-01-01

    Cellulose nanocrystals (CNCs), produced by the acid hydrolysis of wood, cotton or other cellulose-rich sources, constitute a renewable nanosized raw material with a broad range of envisaged uses: for example, in composites, cosmetics and medical devices. The intriguing ability of CNCs to self-organize into a chiral nematic (cholesteric) liquid crystal phase with a helical arrangement has attracted significant interest, resulting in much research effort, as this arrangement gives dried CNC fil...

  4. Crystal Structure Prediction and its Application in Earth and Materials Sciences

    Science.gov (United States)

    Zhu, Qiang

    First of all, we describe how to predict crystal structure by evolutionary approach, and extend this method to study the packing of organic molecules, by our specially designed constrained evolutionary algorithm. The main feature of this new approach is that each unit or molecule is treated as a whole body, which drastically reduces the search space and improves the efficiency. The improved method is possibly to be applied in the fields of (1) high pressure phase of simple molecules (H2O, NH3, CH4, etc); (2) pharmaceutical molecules (glycine, aspirin, etc); (3) complex inorganic crystals containing cluster or molecular unit, (Mg(BH4)2, Ca(BH4)2, etc). One application of the constrained evolutionary algorithm is given by the study of (Mg(BH4)2, which is a promising materials for hydrogen storage. Our prediction does not only reproduce the previous work on Mg(BH4)2 at ambient condition, but also yields two new tetragonal structures at high pressure, with space groups P4 and I41/acd are predicted to be lower in enthalpy, by 15.4 kJ/mol and 21.2 kJ/mol, respectively, than the earlier proposed P42nm phase. We have simulated X-ray diffraction spectra, lattice dynamics, and equations of state of these phases. The density, volume contraction, bulk modulus, and the simulated XRD patterns of P4 and I41/acd structures are in excellent agreement with the experimental results. Two kinds of oxides (Xe-O and Mg-O) have been studied under megabar pressures. For XeO, we predict the existence of thermodynamically stable Xe-O compounds at high pressures (XeO, XeO2 and XeO3 become stable at pressures of 83, 102 and 114 GPa, respectively). For Mg-O, our calculations find that two extraordinary compounds MgO2 and Mg3O 2 become thermodynamically stable at 116 GPa and 500 GPa, respectively. Our calculations indicate large charge transfer in these oxides for both systems, suggesting that large electronegativity difference and pressure are the key factors favouring their formations. We also

  5. Light-Propagation Characteristics of Photonic Crystal Waveguide Based on SOI Materials at Different Polarized States

    Institute of Scientific and Technical Information of China (English)

    WANG Chun-Xia; XU Xing-Sheng; LI Fang; DU Wei; XIONG Gui-Guang; LIU Yu-Liang; CHEN Hong-Da

    2006-01-01

    @@ Strgight single-line defect optical waveguides in photonic crystal slabs are designed by the plane wave expansion method and fabricated into silicon-on-insulator (SOI) wafer by 248-nm deep UV lithography.

  6. Structural, optical, thermal and mechanical characterization of an organic nonlinear optical material: 4-methyl-3-nitrobenzoic acid single crystal

    Science.gov (United States)

    Bharathi, M. Divya; Ahila, G.; Mohana, J.; Chakkaravarthi, G.; Anbalagan, G.

    2016-11-01

    Organic single crystals of 4-methyl-3-nitrobenzoic acid (4M3N) have been grown by slow evaporation solution growth technique at room temperature. The single crystal X-ray diffraction study reveals that 4M3N crystallizes in monoclinic system with space group P21/n. The crystalline perfection of the crystal was analyzed by high resolution X-ray diffraction (HRXRD) measurements. The functional groups present in 4M3N have been identified from FT-IR and FT-Raman spectra. The lower cut-off wavelength of 4M3N is found to be 404 nm and the optical band gap is calculated as 2.91 eV. The refractive index shows normal behavior with wavelength. The physio chemical changes, decomposition and stability of the 4M3N compound were established by TG-DTA studies. Vickers microhardness measurement concludes that 4M3N belongs to soft material (n=2.5) category. The LDT value is found to be higher than that of KDP and some of the important organic NLO materials. The third order nonlinear refractive index and nonlinear absorption coefficient of the 4M3N have been measured by Z-scan studies. The imaginary and real parts of the third-order susceptibility values were determined as Im χ3=9.129×10-11 esu and Re χ3=1.4034×10-9 esu respectively. The dislocation density was calculated to be 3.0448×106 cm-2 which indicates the quality of the crystal.

  7. Crystal growth and physical property of Bi-Sb-Te-Se topological insulator materials, and Cu-Bi-Se and Sn-In-Te topological superconductors

    Science.gov (United States)

    Gu, Genda; Yang, Alina; Schneeloch, J.; Zhong, R. D.; Xu, Z. J.; Tranquada, J. M.; Pan, Z. H.; Si, W. D.; Shi, X. Y.; Li, Q.; Valla, T.

    2013-03-01

    The discovery of 3D topological insulator materials and topological superconductor opens up a new research field in the condensed matter physics. We have grown a number of Bi-Sb-Te-Se topological insulator, and Cu-Bi-Se and Sn-In-Te topological superconductor single crystals. We have measured the physical properties on these single crystals. We have studied the effect of growth condition and impurity on the bulk electrical conductivity of these single crystals. We try to answer two questions for the topological insulator materials if it is possible to grow the bulk-insulating topological insulator single crystals and Which maximum resistivity of these topological insulator single crystals we can grow. For the topological superconductor, we have got the bulk superconducting single crystals with a maximum Tc =4.5K. DOE under Contract No. DE-AC02-98CH10886 and the DOE Center for Emergent Superconductivity.

  8. Constitutive Cyclic Deformation Behavior in Single-crystal and Directionally Solidified SSME High-pressure Fuel Turbopump Airfoil Materials

    Science.gov (United States)

    Milligan, W. W.; Huron, E. S.; Antolovich, S. D.

    1985-01-01

    The major goal of the project is to correlate mechanical properties with microstructural deformation behavior and to develop models for constitutive response under a variety of monotonic and cyclic loading cycles, temperatures, strain levels, strain rates, and environments. Two alloys are being studied as candidate SSME turbine blade materials. The first is PWA 1480, which is a single-crystal alloy whose nominal composition is reported. The second alloy being studied is D.S. Mar-M 246 + Hf. This is a directionally solidified material, and its nominal composition is also reported. The major areas of interest for the two materials will be slightly different. The single-crystal alloy lends itself well to fundamental deformation studies, since resolved shear stresses on slip planes are all known and only one grain is present. The D.S. material presents an excellent opportunity to study the effects of slightly misaligned grains on deformation behavior. The two materials will be studied by using approximately the same test matrix, so a good degree of direct comparison will also be possible.

  9. Enhanced contrast ratio of homogeneously aligned liquid crystal displays by controlling the surface-anchoring strength

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Young Jin; Woo, Chang Woo; Oh, Sang Hoon; Mukherjee, Amrita; Lee, Seung Hee [Department of BIN Fusion Technology and Department of Polymer Nano-Science and Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Baek, Ji Ho; Kim, Kyeong Jin; Yang, Myung Su, E-mail: lsh1@chonbuk.ac.kr [Panel Performance Department, LG Display Co., Ltd., Paju, Gyeonggi-do 413-811 (Korea, Republic of)

    2011-08-17

    The dark state of homogeneously aligned liquid crystal displays (LCDs) associated with the in-plane switching of a LC director depends on their molecular ordering. We propose a new approach to reduce the light leakage in the dark state of homogeneously aligned LCDs. A very small amount of reactive mesogen (RM) is mixed with the LC material and polymerized at room temperature and also at a low temperature (-20 {sup 0}C) to strengthen the surface-anchoring energy. The contrast ratio of the low-temperature cured cell is improved by about 50% over that of the pure LC cell and the room temperature cured RM-mixed LC cell due to an enhanced order parameter.

  10. Thermo-optical properties of beryllium containing oxide crystals as materials for high power laser systems

    Science.gov (United States)

    Pestryakov, E. V.; Petrov, V. V.; Trunov, V. I.; Kirpichnikov, A. V.; Laptev, A. V.; Matrosov, V. N.

    2007-06-01

    The elastic and thermo-optical properties of chrysoberyl, beryllium hexaaluminate and beryllium-lanthanum hexaaluminate crystals have been experimentally studied. The velocities of elastic-wave propagation in the crystals are measured by acousto-optic interference method. The values of all the independent components of elastic-constant tensor are determined and used to calculate a number of important dynamic parameters of the crystals such as the Young's and shear moduli, the modulus of volume elasticity, Poisson's ratio, the Debye temperature. Also measurements of refractive indices in 25 - 75 C temperature range in VIS spectral region were performed. Using experimental data the dispersion of thermal optical coefficients (dn/dT) was calculated, these data were employed to evaluate the thermal lens in beryllium containing laser crystals. The experimental and calculated data are compared with similar parameters for well-known laser hosts. Some of beryllium containing oxide crystals was shown to be candidates for master oscillator and amplifying stages of high power femtosecond laser systems.

  11. Crystal structure and mechanical properties of spark plasma sintered Cu2Se: An efficient photovoltaic and thermoelectric material

    Science.gov (United States)

    Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah; Jayasimhadri, M.; Sharma, Sakshi; Singh, Niraj Kumar; Haranath, D.; Srivastava, A. K.; Dhar, Ajay

    2015-04-01

    Copper selenide (Cu2Se) based materials are currently being investigated globally for efficient photovoltaic and thermoelectric (TE) device applications. Despite having enormous device potential its crystal structure and mechanical properties are still not fully explored owing to its complex behavior. Stereographic projection is one of such useful tools to estimate the crystallography of the material conclusively. In the current study, the crystal structure of α and β-phases of Cu2Se was determined by its stereographic projections in reciprocal space. Further, mechanical properties of Cu2Se are highly important to avoid catastrophic failure and ensure longevity of the TE devices made out of these materials. Cu2Se exhibited the compressive strength of 45 MPa with 3% of plastic strain and a fracture toughness value of 2±0.02 MPa√m, the latter being significantly higher than that of the other known TE materials. Finally, thermal shock resistance, which is one of the crucial parameters for the stability and longevity of the device applications, was calculated to be 281±12 W m-1. Superior mechanical properties coupled with highly reported thermoelectric behavior makes Cu2Se as a potential candidate for green energy generation.

  12. First-principles-based calculations of vibrational normal modes in polyatomic materials with translational symmetry: application to PETN molecular crystal.

    Science.gov (United States)

    Velizhanin, Kirill A; Kilina, Svetlana; Sewell, Thomas D; Piryatinski, Andrei

    2008-10-23

    Numerical studies of vibrational energy transport and associated (non)linear infrared and Raman response in polyatomic materials require knowledge of the multidimensional vibrational potential-energy surface and the ability to perform normal-mode analysis on that potential. The presence of translational symmetry, as in crystals, leads to the observed dispersion of the unit cell normal modes and has to be accounted for in calculations of energy transfer rates and other spectroscopic quantities. Here we report on the implementation of a computational approach that combines the generalized supercell method and density functional theory electronic structure calculations to investigate the vibrational structure in translationally symmetric materials containing relatively large numbers of atoms in the unit cell (58 atoms in the present study). The method is applied to calculate the phonon and vibron dispersion relations and the vibrational density of states in pentaerythritol tetranitrate (PETN) molecular crystal which is an important energetic material. The results set the stage for future investigations of vibrational energy transport and associated nonlinear spectroscopic signatures in this class of materials.

  13. Fast-response liquid crystal display by the VA-IPS display mode with nematic liquid crystal and polymer networks

    Science.gov (United States)

    Chen, Tien-Jung; Lin, Guan-Jhong; Chen, Bo-Yu; Wu, Jin-Jei; Yang, Ying-Jay

    2012-10-01

    To improve electrooptical characteristics of the vertical aligned (VA) liquid crystal displays (LCDs), the monomer material and in-plane switching (IPS) field produced by interdigital electrodes are employed in LC cells. The fast switching response and well optical transmittance of the VA-IPS display mode are successfully achieved by mixing the nematic LC with polymer networks, attributed to the surface anchoring, and the molecular orientation of the LC cell will be further governed, especially under the greater applied voltage. Furthermore, the high concentration doping of the monomer can effectively improve the response behavior, but it also results in the transmittance sacrificed due to the light scattering, and the threshold voltage (Vth) increased.

  14. Straining soft colloids in aqueous nematic liquid crystals

    Science.gov (United States)

    Mushenheim, Peter C.; Pendery, Joel S.; Weibel, Douglas B.; Spagnolie, Saverio E.; Abbott, Nicholas L.

    2016-05-01

    Liquid crystals (LCs), because of their long-range molecular ordering, are anisotropic, elastic fluids. Herein, we report that elastic stresses imparted by nematic LCs can dynamically shape soft colloids and tune their physical properties. Specifically, we use giant unilamellar vesicles (GUVs) as soft colloids and explore the interplay of mechanical strain when the GUVs are confined within aqueous chromonic LC phases. Accompanying thermal quenching from isotropic to LC phases, we observe the elasticity of the LC phases to transform initially spherical GUVs (diameters of 2-50 µm) into two distinct populations of GUVs with spindle-like shapes and aspect ratios as large as 10. Large GUVs are strained to a small extent (R/r minor radii, respectively), consistent with an LC elasticity-induced expansion of lipid membrane surface area of up to 3% and conservation of the internal GUV volume. Small GUVs, in contrast, form highly elongated spindles (1.54 materials and suggest previously unidentified designs of LC-based responsive and reconfigurable materials.

  15. Inorganic nanosheet liquid crystals and their applications (Conference Presentation)

    Science.gov (United States)

    Miyamoto, Nobuyoshi

    2016-09-01

    Liquid crystal (LC) phase of inorganic nanosheets is fascinating system in the field of condensed matter physics and for potential applications in many fields. In this lecture, I present my research on the LC nanosheet colloids derived from clay minerals, layered niobates, layered titnates, and layered perovskites. Structural analyses by small angle X-ray scattering and confocal laser scanning microscopy reveals not only meso-scale lamellar or nematic structures in the LC phase but also fractal-like porous structures. In that structure, the nanosheets show translational and rotational Brownian motions as revealed by fast-scanning confocal microscopy. The structure is tunable by many factors such as nanosheet concentration, nanosheet lateral size, salt concentration, solvent, counter cations, and charge density of the nanosheets. Some optimized systems show variable structural colors which will be useful for color materials and sensor devices. Under ac-electric field, the orientation of the nanosheets and LC domain is easily controllable; the electric field response is applicable for fabrication of electro-optic devices and formation of anisotropic composite materials. Among many future applications, inorganic nanosheet/ polymer composites with precisely controllable hierarchical structure are fascinating. We synthesized a cm-scale mono-domain gel of exfoliated LC clay/polymer composite. The gel is printable with a dye and the colored part shows photo-induced anomalous deformation behavior, which will be applicable as chemical actuators.

  16. A dislocation-based crystal viscoplasticity model with application to micro-engineered plasma-facing materials

    Science.gov (United States)

    Rivera, David; Huang, Yue; Po, Giacomo; Ghoniem, Nasr M.

    2017-03-01

    Materials developed with special surface architecture are shown here to be more resilient to the transient thermomechanical environments imposed by intermittent exposures to high heat flux thermal loading typical of long-pulse plasma transients. In an accompanying article, we present experimental results that show the relaxation of residual thermal stresses in micro-engineered W surfaces. A dislocation-based model is extended here within the framework of large deformation crystal plasticity. The model is applied to the deformation of single crystals, polycrystals, and micro-engineered surfaces composed of a uniform density of micro-pillars. The model is utilized to design tapered surface micro-pillar architecture, composed of a Re core and W coatings. Residual stresses generated by cyclic thermomechanical loading of these architectures show that the surface can be in a compressive stress state, following a short shakedown plasma exposure, thus mitigating surface fracture.

  17. Inverse gold photonic crystals and conjugated polymer coated opals for functional materials

    Energy Technology Data Exchange (ETDEWEB)

    Landon, P.B.; Gutierrez, Jose; Ferraris, John P.; Martinez, I.L.; Giridharagopal, Rajiv; Wu, Y.-C.; Lee, Sergey; Parikh, Kunjal; Gillespie, Jessica; Ussery, Geoffrey; Karimi, Behzad; Baughman, Ray; Zakhidov, Anvar; Glosser, R

    2003-10-01

    Inverse gold photonic crystals templated from synthetic opals with a face centered cubic (FCC) crystal lattice were constructed by heat converting gold chloride to metallic gold. Tetrahedral formations constructed of alternating large and small octahedrons oriented in the zinc sulfide structure were created by controlling the infiltration of gold chloride. Silica spheres were coated with polyanilinesulfonic acid, polypyrrole, poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and 5 nm colloidal gold. Ordinary yeast cells were coated with polyanilinesulfonic acid, polypyrrole and 5 nm colloidal gold. Spheres coated with MEH-PPV were dispersed in H{sub 2}O and coated with polyelectrolytes which recharged and sterically stabilized the colloidal surfaces. The recharged spheres self-assembled by sedimentation with a FCC crystalline lattice possessing 500 {mu}m wide and 1 mm long crystallites. Silica spheres with diameters as large as 1500 {mu}m were self-assembled along the [1 0 0] direction of the FCC crystal lattice. Opals infiltrated with gold and opals constructed from polymer coated spheres were co-infiltrated with polypropylene yielding inverse polypropylene composite photonic crystals.

  18. Two-dimensional photonic crystals from semiconductor material with polymer filled holes

    NARCIS (Netherlands)

    Van der Heijden, R.; Kjellander, C.; Carlström, C.-F.; Snijders, J.; Van der Heijden, R.W.; Bastiaansen, K.; Broer, D.; Karouta, F.; Nötzel, R.; Van der Drift, E.

    2006-01-01

    Polymer filling of the air holes of indiumphosphide based two-dimensional photonic crystals is reported. The filling is performed by infiltration with a liquid monomer and solidification of the infill in situ by thermal polymerization. Complete hole filling is obtained with infiltration under ambien

  19. Topology optimized mode conversion in a photonic crystal waveguide fabricated in siliconon-insulator material

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Elesin, Yuriy; Frellsen, Louise Floor;

    2014-01-01

    We have designed and for the first time experimentally verified a topology optimized mode converter with a footprint of ∼6.3 μm × ∼3.6 μm which converts the fundamental even mode to the higher order odd mode of a dispersion engineered photonic crystal waveguide. 2D and 3D topology optimization is...

  20. Fundamental Energetic Materials Initiative: Combat Safe Energetic Ingredients Based on Molecular Design and Crystal Morphology

    Science.gov (United States)

    2011-11-30

    loading conditions at the molecular and crystal levels. Replace one of the six bulk commodity chemicals currently used in all military propellant and...tetrazocine (HMX), nitroglycerin (NG), nitrocellulose (NC)) is the only way to achieve IM compliance. B. M. Rice and J. J. Hare, “A Quantum Mechanical

  1. Nematic Liquid Crystal Alignment Behaviors between Crossed Stretched Miropolymer Filaments with Anchoring Effects

    Science.gov (United States)

    Fujikake, Hideo; Murashige, Takeshi; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2006-04-01

    We observed the molecular alignment of a liquid crystal (LC) induced by crossing two stretched micropolymer filaments between glass substrates and confirmed its light modulation property. The two microfilaments, which were extracted from a cellulose cloth by stretching it in advance, had surface molecular alignment and stabilized nematic LC alignment between the microfilaments crossed with a small angle. In the fabricated LC cell, a spatially-uniform LC planar alignment is achieved in the area of a filament interval of less than 60 μm. By polarizing microscopy observation of the isotropic-to-nematic wetting transition of the LC material between the polymer filaments, it was confirmed that the stable LC alignment area is formed by the surface anchoring of the filaments. When external voltages were applied to the obtained uniformed alignment LC area, a characteristic periodic electrooptic property was confirmed on the basis of electrically-controlled birefringence under the alignment control of the in-plane anchoring of the filaments.

  2. Oxide-cladding aluminum nitride photonic crystal slab: Design and investigation of material dispersion and fabrication induced disorder

    Energy Technology Data Exchange (ETDEWEB)

    Melo, E. G., E-mail: emerdemelo@usp.br; Alvarado, M. A.; Carreño, M. N. P.; Alayo, M. I. [Electronic Systems Engineering Department, University of São Paulo, CEP 05508-010 São Paulo, SP (Brazil); Carvalho, D. O. [UNESP - São Paulo State University, CEP 13874-149 São João da Boa Vista, SP (Brazil); Ferlauto, A. S. [Department of Physics, Federal University of Minas Gerais, CEP 31270-901 Belo Horizonte, MG (Brazil)

    2016-01-14

    Photonic crystal slabs with a lower-index material surrounding the core layer are an attractive choice to circumvent the drawbacks in the fabrication of membranes suspended in air. In this work we propose a photonic crystal (PhC) slab structure composed of a triangular pattern of air holes in a multilayer thin film of aluminum nitride embedded in silicon dioxide layers designed for operating around 450 nm wavelengths. We show the design of an ideal structure and analyze the effects of material dispersion based on a first-order correction perturbation theory approach using dielectric functions obtained by experimental measurements of the thin film materials. Numerical methods were used to investigate the effects of fabrication induced disorder of typical nanofabrication processes on the bandgap size and spectral response of the proposed device. Deviation in holes radii and positions were introduced in the proposed PhC slab model with a Gaussian distribution profile. Impacts of slope in holes sidewalls that might result from the dry etching of AlN were also evaluated. The results show that for operation at the midgap frequency, slope in holes sidewalls is more critical than displacements in holes sizes and positions.

  3. Synthesis, growth, structural, spectral, thermal, chemical etching, linear and nonlinear optical and mechanical studies of an organic single crystal 4-chloro 4-nitrostilbene (CONS): a potential NLO material.

    Science.gov (United States)

    Dinakaran, Paul M; Kalainathan, S

    2013-07-01

    4-Chloro 4-nitrostilbene (CONS) a new organic nonlinear optical material has been synthesized. Employing slow evaporation method, good optical quality single crystals (dimensions up to 6×2×3 mm(3)) have been grown using ethyl methyl ketone (EMK) as a solvent. The grown crystals have been subjected to various characterizations such as single crystal X-ray diffraction, powder XRD, Fourier Transform Infrared spectroscopy (FTIR), proton NMR, solid UV absorption, SHG studies. Single crystal X-ray diffraction reveals that the crystal system belongs to monoclinic with noncentrosymmetric space group P21. The UV-Vis absorption spectrum has been recorded and found that the cut off wavelength is 380 nm. Functional groups and the structure of the title compound have been confirmed by FTIR and (1)H NMR spectroscopic analyses respectively. Molecular mass of the CONS confirmed by the high resolution mass spectral analysis .The thermal behavior of the grown crystal has been studied by TG/DTA analysis and it shows the melting point is at 188.66 °C. Dislocations and growth pattern present in the grown crystal revealed by the etching study. The mechanical strength of the CONS crystal has been studied by Vicker's hardness measurement. The SHG efficiency of the grown crystal has been determined by Kurtz and Perry powder test which revealed that the CONS crystal (327 mV) has 15 times greater efficiency than that of KDP (21.7 mV).

  4. Synthesis, growth, structural, spectral, thermal, chemical etching, linear and nonlinear optical and mechanical studies of an organic single crystal 4-chloro 4-nitrostilbene (CONS): A potential NLO material

    Science.gov (United States)

    Dinakaran, Paul M.; Kalainathan, S.

    2013-07-01

    4-Chloro 4-nitrostilbene (CONS) a new organic nonlinear optical material has been synthesized. Employing slow evaporation method, good optical quality single crystals (dimensions up to 6 × 2 × 3 mm3) have been grown using ethyl methyl ketone (EMK) as a solvent. The grown crystals have been subjected to various characterizations such as single crystal X-ray diffraction, powder XRD, Fourier Transform Infrared spectroscopy (FTIR), proton NMR, solid UV absorption, SHG studies. Single crystal X-ray diffraction reveals that the crystal system belongs to monoclinic with noncentrosymmetric space group P21. The UV-Vis absorption spectrum has been recorded and found that the cut off wavelength is 380 nm. Functional groups and the structure of the title compound have been confirmed by FTIR and 1H NMR spectroscopic analyses respectively. Molecular mass of the CONS confirmed by the high resolution mass spectral analysis .The thermal behavior of the grown crystal has been studied by TG/DTA analysis and it shows the melting point is at 188.66 °C. Dislocations and growth pattern present in the grown crystal revealed by the etching study. The mechanical strength of the CONS crystal has been studied by Vicker's hardness measurement. The SHG efficiency of the grown crystal has been determined by Kurtz and Perry powder test which revealed that the CONS crystal (327 mV) has 15 times greater efficiency than that of KDP (21.7 mV).

  5. Dielectric technique to measure the twist elastic constant of liquid crystals: the case of a bent-core material.

    Science.gov (United States)

    Salamon, P; Eber, N; Seltmann, J; Lehmann, M; Gleeson, J T; Sprunt, S; Jákli, A

    2012-06-01

    The effect of director pretilt on the twist magnetic Fréedericksz transition of nematics was investigated in a planar cell. The director configuration was calculated as a function of magnetic inductance. The dielectric and optical response of the nematic liquid crystal was numerically modeled. A dielectric measurement method for determining the elastic constant K_{22} is presented. The influence of the conditions for the Mauguin effect is discussed. The theoretical predictions were confirmed by our experiments. Experimental data for all elastic constants of a bent-core nematic material are presented and discussed.

  6. Optical properties of opaline photonic crystals covered by phase-change material Ge$_2$Sb$_2$Te$_5$

    CERN Document Server

    Dyakov, Sergey A; Voronov, Mikhail M; Yakovlev, Sergey A; Pevtsov, Alexander B; Akimov, Ilya A; Tikhodeev, Sergei G

    2016-01-01

    Reflection spectra from 3D opaline photonic crystals covered with phase-change material Ge$_2$Sb$_2$Te$_5$ are studied for different incident angles of light both experimentally and theoretically. We demonstrate that in presence of Ge$_2$Sb$_2$Te$_5$ chalcogenide capping layer, the reflection spectra have peaks associated with resonant Wood's anomalies. The experimental reflection spectra are in a good agreement with theoretical calculations performed by the Fourier modal method in the scattering matrix form. The electromagnetic near-field distributions of incident light at resonant frequencies are calculated.

  7. Transmission properties of one-dimensional Photonic crystals containing double-negative and single-negative materials

    Institute of Scientific and Technical Information of China (English)

    Xia Li; Kang Xie; Haiming Jiang

    2008-01-01

    The transmission properties of one-dimensional photonic crystals containing double-negative and singlenegative materials are studied theoretically.A special kind of photonic band gap is found in this structure.This gap is invariant with scaling and insensitive to thickness fluctuation.But when changing the ratio of the thickness of two media.the width of the gap could be enlarged.The defect modes are analyzed by inducing a linear defect layer in the structure.It is found that the number of defect modes will increase when the thickness of the defect layer becomes larger.

  8. Structural Transitions in Cholesteric Liquid Crystal Droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye; Bukusoglu, Emre; Martinez-Gonzalez, Jose A.; Rahimi, Mohammad; Roberts, Tyler F.; Zhang, Rui; Wang, Xiaoguang; Abbott, Nicholas L.; de Pablo, Juan J.

    2016-07-01

    Confinement of cholesteric liquid crystals (ChLC) into droplets leads to a delicate interplay between elasticity, chirality, and surface energy. In this work, we rely on a combination of theory and experiments to understand the rich morphological behavior that arises from that balance. More specifically, a systematic study of micrometer-sized ChLC droplets is presented as a function of chirality and surface energy (or anchoring). With increasing chirality, a continuous transition is observed from a twisted bipolar structure to a radial spherical structure, all within a narrow range of chirality. During such a transition, a bent structure is predicted by simulations and confirmed by experimental observations. Simulations are also able to capture the dynamics of the quenching process observed in experiments. Consistent with published work, it is found that nanoparticles are attracted to defect regions on the surface of the droplets. For weak anchoring conditions at the nanoparticle surface, ChLC droplets adopt a morphology similar to that of the equilibrium helical phase observed for ChLCs in the bulk. As the anchoring strength increases, a planar bipolar structure arises, followed by a morphological transition to a bent structure. The influence of chirality and surface interactions are discussed in the context of the potential use of ChLC droplets as stimuli-responsive materials for reporting molecular adsorbates.

  9. Faradaic current in different mullite materials. Single crystal, ceramic and cermets

    Energy Technology Data Exchange (ETDEWEB)

    Mata-Osoro, Gustavo; Moya, Jose S.; Pecharroman, Carlos [Instituto de Ciencia de Materiales de Madrid (CSIC) (Spain); Morales, Miguel [Universidad de Santiago de Compostela (Spain). LabCaF; Diaz, L. Antonio [Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN-CSIC), Llanera (Spain); Schneider, Hartmut [Koeln Univ. (Germany). Inst. fuer Kristallographie

    2012-04-15

    Faradaic current measurements have been carried out on three different types of mullite: 2: 1 mullite single crystals (E perpendicular to c), 3: 2 ceramics and 11 % mullite/Mo composites. Measurements were carried out on very thin samples (60 {mu}m) at high voltages (500 to 1 000 V). Under these conditions, measurable currents were recorded even at room temperature. Results indicate notable differences between these three samples, which suggest that, although they share the same name and similar crystalline structure, binding energies and defect distributions seem to be very different. Finally, it has been seen that the excellent behaviour against dielectric breakdown of ceramic mullite does not hold for single crystals or mullite based cermets. (orig.)

  10. Synthesis, Crystal Structure, and Comparative Study of a New Organic Material 3,4-Diaminobenzophenone Semihydrate

    Directory of Open Access Journals (Sweden)

    Tarek Ben Rhaiem

    2013-01-01

    Full Text Available The new organic 3,4-diaminobenzophenone semihydrate (34ABPH is grown by slow evaporation method. The compound crystallizes in the monoclinic space group: C2. The unit cell dimensions are (8 Å, (2 Å, (10 Å, and β = 99.40 (2° with . The crystal structure analysis reveals that the C13H12N2O molecules chains are organized into a double ribbon in the (b,c plane. The structural components interact by N–H⋯O and O–H⋯O hydrogen bonds, building up a two-dimensional network. The presence of functional groups in the molecular structure is confirmed by the Fourier transform infrared (FT-IR spectroscopy. Thermogravimetric analysis (TGA confirms the presence of the water molecule.

  11. Neutron scattering as a probe of liquid crystal polymer-reinforced composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Hjelm, R.P.; Douglas, E.P.; Benicewicz, B.C.; Langlois, D.A.

    1995-12-31

    This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research project sought to obtain nanoscale and molecular level information on the mechanism of reinforcement in liquid crystal polymer (LCP)-reinforced composites, to realize molecular-reinforced LCP composites, and to test the validity of the concept of molecular reinforcement. Small-angle neutron scattering was used to study the structures in the ternary phase diagram of LCP with liquid crystal thermosets and solvent on length scales ranging from 1-100 nm. The goal of the scattering measurements is to understand the phase morphology and degree of segregation of the reinforcing and matrix components. This information helps elucidate the physics of self assembly in these systems. This work provides an experimental basis for a microengineering approach to composites of vastly improved properties.

  12. Optical characterization and crystal field calculations for some erbium based solid state materials for laser refrigeration

    Science.gov (United States)

    Hasan, Z.; Qiu, Z.; Johnson, Jackie; Homerick, Uwe

    2009-02-01

    The potential of three erbium based solids hosts has been investigated for laser cooling. Absorption and emission spectra have been studied for the low lying IR transitions of erbium that are relevant to recent reports of cooling using the 4I15/2-4I9/2 and4I15/2 -4I13/2 transitions. Experimental studies have been performed for erbium in three hosts; ZBLAN glass and KPb2Cl5 and Cs2NaYCl6 crystals. In order to estimate the efficiencies of cooling, theoretical calculations have been performed for the cubic Elpasolite (Cs2NaYCl6 ) crystal. These calculations also provide a first principle insight into the cooling efficiency for non-cubic and glassy hosts where such calculations are not possible.

  13. δ-BIBO:Nd crystals as promising laser operated piezoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Majchrowski, A.; Jaroszewicz, L.R. [Institute of Applied Physics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Kityk, I.V., E-mail: iwank74@gmail.com [Electrical Engineering Faculty, Czestochowa University Technology, 42-201, Armii Krajowej 17 (Poland)

    2015-01-25

    Highlights: • Novel laser stimulated effects were discovered in δ-BiB{sub 3}O{sub 6} crystals. • Effect is caused by localized levels of the Nd{sup +3} ions. • The photoinduced piezoelectricity is maximal for the simultaneous treatment by 1064 nm and 532 nm laser beams. - Abstract: A possibility to operate piezoelectric efficiency of δ-BIBO:Nd crystals using external nanosecond laser light at 1064 nm and 532 nm was shown. Depending on the kind of the photoexciting light the behavior of the output piezoelectricity was quite different. The measurements of temperature and temporary features for the photoinduced piezoelectricity confirmed the main role of the incorporation of Nd ions in the δ-BiB{sub 3}O{sub 6} structure with respect to piezoelectricity. The DFT simulations of the local charge density re-distribution were done using the norm-conserving pseudopotential method to confirm principal role of the space charge density redistribution.

  14. Crystal structure of the high-energy-density material guanylurea dipicrylamide

    Directory of Open Access Journals (Sweden)

    Raik Deblitz

    2014-08-01

    Full Text Available The title compound, 1-carbamoylguanidinium bis(2,4,6-trinitrophenylamide [H2NC(=ONHC(NH22]+[N{C6H2(NO23-2,4,6}2]− (= guanylurea dipicrylamide, was prepared as dark-red block-like crystals in 70% yield by salt-metathesis reaction between guanylurea sulfate and sodium dipicrylamide. In the solid state, the new compound builds up an array of mutually linked guanylurea cations and dipicrylamide anions. The crystal packing is dominated by an extensive network of N—H...O hydrogen bonds, resulting in a high density of 1.795 Mg m−3, which makes the title compound a potential secondary explosive.

  15. Crystal structure of the high-energy-density material guanylurea dipicryl-amide.

    Science.gov (United States)

    Deblitz, Raik; Hrib, Cristian G; Hilfert, Liane; Edelmann, Frank T

    2014-08-01

    The title compound, 1-carbamoylguanidinium bis-(2,4,6-tri-nitro-phen-yl)amide [H2NC(=O)NHC(NH2)2](+)[N{C6H2(NO2)3-2,4,6}2](-) (= guanylurea dipicryl-amide), was prepared as dark-red block-like crystals in 70% yield by salt-metathesis reaction between guanylurea sulfate and sodium dipicryl-amide. In the solid state, the new compound builds up an array of mutually linked guanylurea cations and dipicryl-amide anions. The crystal packing is dominated by an extensive network of N-H⋯O hydrogen bonds, resulting in a high density of 1.795 Mg m(-3), which makes the title compound a potential secondary explosive.

  16. Two-dimensional photonic crystals from semiconductor material with polymer filled holes

    Science.gov (United States)

    van der Heijden, Rob; Kjellander, Charlotte; Carlström, Carl-Fredrik; Snijders, Juri; van der Heijden, Rob W.; Bastiaansen, Kees; Broer, Dick; Karouta, Fouad; Nötzel, Richard; van der Drift, Emile; Salemink, Huub W. M.

    2006-04-01

    Polymer filling of the air holes of indiumphosphide based two-dimensional photonic crystals is reported. The filling is performed by infiltration with a liquid monomer and solidification of the infill in situ by thermal polymerization. Complete hole filling is obtained with infiltration under ambient pressure. This conclusion is based both on cross-sectional scanning electron microscope inspection of the filled samples as well as on optical transmission measurements.

  17. A review on solar cells from Si-single crystals to porous materials and quantum dots

    OpenAIRE

    Badawy, Waheed A.

    2013-01-01

    Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. P...

  18. Bioinspired High-Performance Energetic Materials Using Heme-Containing Crystals.

    Science.gov (United States)

    Slocik, Joseph M; Drummy, Lawrence F; Dickerson, Matthew B; Crouse, Christopher A; Spowart, Jonathan E; Naik, Rajesh R

    2015-08-05

    Synthetic hemozoin crystals (β-hematin) are assembled with aluminium nanoparticles (nAl) to create a nanomaterial composite that is highly energetic and reactive. The results here demonstrate that hemozoin rapidly oxidizes the nAl fuel to release large amounts of energy (+12.5 ± 2.4 kJ g(-1) ). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Methane-propane hydrate crystal growth in the presence of nanosized materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.S.; Ryu, Y.B.; Kim, Y.S.; Lee, J.D. [Korea Inst. of Industrial Technology, Busan (Korea, Republic of). Busan Research Center; Park, Y.H. [Pusan National Univ., Busan (Korea, Republic of)

    2008-07-01

    The impact of nano-sized titanium dioxide, silver, and silica (TiO{sub 2}-Ag-SiO{sub 2}) sols on the gas hydrate formation morphology within an enclosed cell partially filled with liquid water was investigated. The nano-sized particles were synthesized suing a modified sol-gel method with a reduction agent added to eliminate the need for auxiliary dispersants or surfactants. Structure 2 (s2) hydrates were synthesized using a gas mixture of 90.1 per cent methane and propane as guest molecules. Small amounts of the nano-sized sols were added to the liquid water. The aim of the study was to determine methods of ensuring the stability of methane hydrates in storage facilities and during transport using gas to solids technology (GTS). Nucleation, hydrate crystal growth, and the migration of the gas hydrate were studied in relation to the stationary interface between the liquid water and the gas. Results of the study showed that the hydrate's growth phase started with the formation of a film at the upper surface of the liquid water pool. Crystals then grew in a downward manner from the hydrate film. Video images of the crystals showed that the downward crystals grown in the presence of the nano-sized particles occurred at a faster rate and with finer arm spacing. It was concluded that the addition of the nano-particles provided a larger specific surface area and larger nucleation sides so that more gas was absorbed into the water. The TiO{sub 2}-Ag-SiO{sub 2} sols acted as a promoter for methane-propane hydrate formation. 5 refs., 4 figs.

  20. Multiscale Modeling of Structurally-Graded Materials Using Discrete Dislocation Plasticity Models and Continuum Crystal Plasticity Models

    Science.gov (United States)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.

    2012-01-01

    A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.

  1. Electro-Thermal Tuning in a Negative Dielectric Cholesteric Liquid Crystal Material

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan,L.; Wofford, J.; Tondiglia, V.; Sutherland, R.; Koerner, H.; Vaia, R.; Bunning, T.

    2008-01-01

    The thermal and electrical tunability of a cholesteric liquid crystal containing a negative dielectric anisotropy liquid crystal in a planar alignment was studied. The physical, optical, and electro-optical characteristics of mixtures containing different ratios of chiral dopant S811 and the negative dielectric anisotropy liquid crystal ZLI-2806 were examined. A smectic A phase was seen at room temperature for S811 loadings >20 wt%. Below 20%, a room temperature cholesteric phase was observed. Upon heating mixtures with composition S811 >20%, the selective reflection notch of the cholesteric phase appeared and blueshifted with temperature. Thermal tuning from 2300?to?500?nm was observed over the temperature range of 23-55? C. Polarized optical microscopy, differential scanning calorimetry, and x-ray studies were utilized to confirm the temperature-dependent phase behavior. Tuning of ? 50?nm by the application of a direct current electric field was also observed with no onset of electrohydrodynamic instabilities for voltages up to {approx} 300 V. Bandwidth broadening but not tuning was obtained with the application of alternating current fields. Electrical tuning is likely due to pitch contraction brought about through the annealing of defects.

  2. Organic salts of biguanide - An attempt to crystal engineering of novel materials for second harmonic generation

    Science.gov (United States)

    Matulková, Irena; Němec, Ivan; Císařová, Ivana; Němec, Petr; Vaněk, Přemysl

    2010-03-01

    Three organic salts of biguanide with oxalic, succinic and L-tartaric acids have been prepared and X-ray structural analysis has been performed. Biguanidium(1+) oxalate hemihydrate ( a = 6.8330(2) Å, b = 10.0430(2) Å, c = 14.6230(4) Å, α = 90.236(1) , β = 90.333(1) , γ = 105.605(2) , V = 966.46(4) Å 3, Z = 1, R = 0.0393 for 3704 observed reflections) and biguanidium(1+) hydrogen succinate ( a = 6.4600(1) Å, b = 6.7670(2) Å, c = 11.4150(3) Å, α = 91.822(1) , β = 105.312(1) , γ = 90.922(1) , V = 480.89(2) Å 3, Z = 2, R = 0.0357 for 1880 observed reflections) belong to the triclinic space group P 1¯. Their crystal structures are based on biguanidium(1+) pairs connected by intermolecular N-H⋯N hydrogen bonds. The remaining ions (eventually water molecules) form a 3D structural network with these pairs. Furthermore, the formation of the cationic and anionic layers interconnected by intermolecular N-H⋯O hydrogen bonds was observed in the crystal structure of biguanidium(1+) hydrogen succinate. Biguanidium(2+) L-tartrate crystallizes in the orthorhombic space group P 2 12 12 1 ( a = 6.7170(2) Å, b = 9.2740(2) Å, c = 16.1500(4) Å, V = 1006.04(4) Å 3, Z = 4, R = 0.0432 for 2193 observed reflections). The crystal structure is based on L-tartrate chains, which are interconnected by isolated biguanidium(2+) cations via several types of N-H⋯O hydrogen bonds. The formation of L-tartrate chains is mediated by two types of intermolecular O-H⋯O hydrogen bonds connecting the hydroxyl and carboxylate groups. The FTIR and FT Raman spectra of all the compounds were recorded and discussed. The theoretical values of the first hyperpolarizability components were calculated for biguanidium(1+) and biguanidium(2+) cations at the B3LYP level with the 6-311G(d,p) basis set. Quantitative measurements of the second harmonic generation of powdered biguanidium(2+) L-tartrate at 800 nm were performed and a relative efficiency of 2% (compared to KDP) was

  3. Effects of loss factors on zero permeability and zero permittivity gaps in 1D photonic crystal containing DNG materials

    CERN Document Server

    Aghajamali, Alireza; Barati, Mahmood

    2014-01-01

    The effects of electric and magnetic loss factors on zero-mu and zero-epsilon gaps in a one-dimensional lossy photonic crystal composed of double-negative and double-positive materials are theoretically investigated by employing the characteristic matrix method. This study contradicts the previous reports as it indicates that by applying the inevitable factors of electric and magnetic losses to the double-negative material, the zero-mu and zero-epsilon gaps appear simultaneously in the transmission spectrum, being independent of the incidence angle and polarizations. Moreover, the results show that these gaps appear not only for an oblique incidence but also in the case of normal incidence, and their appearance at the normal incidence is directly related to the magnetic and electric loss factors. Besides, the results indicate that as the loss factors and angle of incidence increase, the width of both gaps also increases.

  4. Luminescent hybrid materials based on zeolite L crystals and lanthanide complexes: host-guest assembly and ultraviolet-visible excitation.

    Science.gov (United States)

    Chen, Lei; Yan, Bing

    2014-10-15

    Several kinds of host-guest hybrid materials have been synthesized employing a ship in a bottle method by loading 9-hydroxy-2-methylphenalenone (MHPO) or 9-hydroxyphenalen (HPNP) from gas phase into the nanochannels of Ln(3+)-exchanged zeolite L (ZL) crystals (Ln=Gd or Eu). The resulting hybrids without lanthanide ions, MHPO-ZL, HPNP-ZL and the hybrids with lanthanide ions Ln-MHPO-ZL and Ln-HPNP-ZL are characterized with FT-IR, UV-vis DRS and photoluminescence spectroscopy. The photoluminescence properties of these hybrid materials have been analyzed and discussed, exhibiting the luminescence of Eu(3+) and ligands under the excitation at ultraviolet-visible region. These results provide useful data and can be expected to have potential application in the practical fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Nanocomposite Material Based on GaSe and InSe Layered Crystals Intercalated by RbNO3 Ferroelectric

    Directory of Open Access Journals (Sweden)

    Z.R. Kudrynskyi

    2013-10-01

    Full Text Available In the present study, we established for the first time that single-crystal samples of gallium GaSe and indium InSe selenides can be intercalated by molecules of RbNO3 ferroelectric salt rubidium nitrate. We investigated kinetics of the intercalation process at different temperature-time regimes. Structural properties of the intercalate nanocomposites were studied by X-ray diffraction. The studied structures can be presented as composite superlattices which consist of a lattice of anisotropic layered semiconductor with embedded ferroelectric layers. We established that GaSe nanocomposite material exhibits electric energy storage properties. Energy storage properties are associated with polarization of the intercalated ferroelectric under external electric field. We developed a solid state electric energy storage device on the basis of GaSe nanocomposite material.

  6. Electron transport of photoconductive n-type liquid crystals based on a redox-active tetraazanaphthacene framework.

    Science.gov (United States)

    Isoda, Kyosuke; Abe, Tomonori; Funahashi, Masahiro; Tadokoro, Makoto

    2014-06-10

    The preparation of two liquid crystals composed of a redox-active tetraazanaphthacene (TANC) framework is reported. The materials form smectic A (SmA) thin-film liquid-crystalline (LC) phases over a wide temperature range. Cyclic voltammetry analysis revealed that LC TANCs behave as organic electron acceptors. The electron mobilities of the thin films were determined by time- of-flight (TOF) measurements, which are the order of 10(-4)  cm(2)  V(-1)  s(-1) in the SmA LC phase. This value is two orders of magnitude larger than those of amorphous organic semiconductors. To the best of our knowledge, very few reports exist on the electron-transporting behaviors of LC N-heteroacene semiconductors.

  7. Full solution, for crystal class 3m, of the Holland-EerNisse complex material-constant theory of lossy piezoelectrics for harmonic time dependence.

    Science.gov (United States)

    Piquette, Jean C; McLaughlin, Elizabeth A

    2007-06-01

    A complex material-constant theory of lossy piezoelectrics is fully solved for crystal class 3m for harmonic time dependence of the fields and stresses. A new demonstration that the theory's eigen coupling factor equation applies to the lossy alternating current (AC) case also is given. The solution presented for crystal class 3m provides a complete orthonormal set of eigenvectors and eigenvalues for the eigen coupling factor problem, and it also provides a complete orthonormal set of eigenvectors and eigenvalues for the eigen loss tangent problem, for this crystal class. It is shown that two positive coupling factors are sufficient to express an arbitrary 3m crystal state. Despite the complex nature of the material constants, the Holland-EerNisse theory produces fully real expressions for the coupling factors. The loss tangent eigenvalues also are fully real and positive. The loss eigenstates are important because driving a crystal in a loss eigenstate tends to minimize the impact of material losses. Given also is a set of loss inequalities for crystal class 3m. The loss inequalities of crystal class 6mm are recovered from these when d22 and s(E)14 both vanish.

  8. Ultrawide low frequency band gap of phononic crystal in nacreous composite material

    Energy Technology Data Exchange (ETDEWEB)

    Yin, J.; Huang, J.; Zhang, S., E-mail: zhangs@dlut.edu.cn; Zhang, H.W.; Chen, B.S.

    2014-06-27

    The band structure of a nacreous composite material is studied by two proposed models, where an ultrawide low frequency band gap is observed. The first model (tension-shear chain model) with two phases including brick and mortar is investigated to describe the wave propagation in the nacreous composite material, and the dispersion relation is calculated by transfer matrix method and Bloch theorem. The results show that the frequency ranges of the pass bands are quite narrow, because a special tension-shear chain motion in the nacreous composite material is formed by some very slow modes. Furthermore, the second model (two-dimensional finite element model) is presented to investigate its band gap by a multi-level substructure scheme. Our findings will be of great value to the design and synthesis of vibration isolation materials in a wide and low frequency range. Finally, the transmission characteristics are calculated to verify the results. - Highlights: • A Brick-and-Mortar structure is used to discuss wave propagation through nacreous materials. • A 1D Bloch wave solution of nacreous materials with a tension-shear chain model is obtained. • The band structure and transmission characteristics of nacreous materials with the FE model are examined. • An ultrawide low frequency band gap is found in nacreous materials with both theory and FE model.

  9. Progress in the material development of LiCaAlF(6):Cr(3+) laser crystals

    Science.gov (United States)

    Shinn, M. D.; Chase, L. L.; Caird, J. A.; Payne, S. A.; Atherton, L. J.; Kway, W. L.

    1990-03-01

    High Cr(3+) doping levels, up to 8 mole percent, and low losses were obtained with the tunable solid-state laser material LiCaAlF(6):Cr(3+) (Cr:LiCAF). Measurements and calculations show that high pumping and extraction efficiencies are possible with the improved material.

  10. Photonic crystal vertical-cavity surface-emitting laser based on GaAs material

    Institute of Scientific and Technical Information of China (English)

    XU XingSheng; WANG ChunXia; SONG Qian; DU Wei; HU HaiYang; ZHAO ZhiMin; LU Lin; KAN Qiang; CHEN HongDa

    2007-01-01

    A photonic crystal vertical-cavity-surface-emitting laser (PC-VCSEL) with a wavelength of about 850 nm was realized. The direct-current electrically-driven PC-VCSELs with a minimum threshold current of 2 mA and a maximum threshold current of 13.5 mA were obtained. We fabricated a series of PC-VCSEL chips whose lattice constants are in the range from 0.5 to 3 ?m with different filling factors, and found that the laser characterization depends on the lattice constant, the filling factor, the size of cavity, etc.

  11. Switchable liquid crystal contact lenses: dynamic vision for the ageing eye

    Science.gov (United States)

    Milton, Harry E.; Gleeson, Helen F.; Morgan, Philip B.; Goodby, John W.; Cowling, Stephen; Clamp, John H.

    2014-02-01

    The inability of the eye to focus on nearby objects, presbyopia, is suffered by ~100% of people over the age of 50. Liquid crystal (LC) spectacle lenses have shown great potential for correcting presbyopia. However, correcting presbyopia in contact lens users has proven elusive and existing commercial options suffer significant compromises in vision and comfort. We describe a novel contact lens that includes a liquid crystal element that offers to correct presbyopia without the compromises associated with other technologies. We fabricated variable focus lenses using a balanced optical system, providing the additional optical power presbyopes require for near vision (typically +1.00 D to +2.00 D). The system uses positive optical power from the two substrates and variable negative optical power from the LC layer to form a balanced optical system which, when unpowered, corrects distance vision. Upon voltage application, the liquid crystal layer decreases in refractive index, resulting in additional optical power in the system, offering correction equivalent to reading glasses. Our new technology is based on a traditional contact lens material which could be placed directly on the eye. The liquid crystal lens employed is well suited to the small optical areas associated with contact lenses. We compare several different LC materials and geometries which are suitable for our application, and discuss the influence of material and geometry on switching times, optical quality and operating voltage. Our contact lenses typically switch +/-2.00D in response to < 10 Vrms with response times of the order of a second.

  12. Maxwell-Wagner-Sillars effects on the thermal-transport properties of polymer-dispersed liquid crystals

    Science.gov (United States)

    Kuriakose, M.; Longuemart, S.; Depriester, M.; Delenclos, S.; Sahraoui, A. Hadj

    2014-02-01

    We present the depolarization field effects (Maxwell-Wagner-Sillars effect) for the thermal transport properties of polymer dispersed liquid crystal composites under a frequency-dependent electric field. The experiments were conducted on polystyrene/4-Cyano-4'-pentylbiphenyl (PS/5CB) PDLCs of 73 vol.% and 85 vol.% liquid crystal (LC) concentrations. A self-consistent field approximation model is used to deduce the electrical properties of polymer and LC materials as well as the threshold electric field. Electric field-varying (at constant frequency) experiments were also conducted to calculate the interfacial thermal resistance between the LC droplets and polymer matrix as well as to find the elastic constant of LCs in droplet form.

  13. Direct-writing of complex liquid crystal patterns.

    Science.gov (United States)

    Miskiewicz, Matthew N; Escuti, Michael J

    2014-05-19

    We report on a direct-write system for patterning of arbitrary, high-quality, continuous liquid crystal (LC) alignment patterns. The system uses a focused UV laser and XY scanning stages to expose a photoalignment layer, which then aligns a subsequent LC layer. We intentionally arrange for multiple overlapping exposures of the photoalignment material by a scanned Gaussian beam, often with a plurality of polarizations and intensities, in order to promote continuous and precise LC alignment. This type of exposure protocol has not been well investigated, and sometimes results in unexpected LC responses. Ultimately, this enables us to create continuous alignment patterns with feature sizes smaller than the recording beam. We describe the system design along with a thorough mathematical system description, starting from the direct-write system inputs and ending with the estimated alignment of the LC. We fabricate a number of test patterns to validate our system model, then design and fabricate a number of interesting well-known elements, including a q-plate and polarization grating.

  14. Crystal structure and thermochemical properties of bis(1-octylammonium) tetrachlorochromate phase change materials

    Institute of Scientific and Technical Information of China (English)

    Lu Dong-Fei; Di You-Ying; He Dong-Hua

    2012-01-01

    A new crystalline complex (C8H17NH3)2CdCl4 (s) (abbreviated as CsCd(s)) is synthesized by liquid phase reaction.The crystal structure and composition of the complex are determined by single crystal X-ray diffraction,chemical analysis,and elementary analysis.It is triclinic,the space group is P-1 and Z =2.The lattice potential energy of the title complex is calculated to be UpoT (CsCd(s))=978.83 kJ.mol-1 from crystallographic data.Low-temperature heat capacities of the complex are measured by using a precision automatic adiabatic calorimeter over a temperature range from 78 K to 384 K.The temperature,molar enthalpy,and entropy of the phase transition for the complex are determined to be 307.3±0.15 K,10.15±0.23 kJ.mol-1 and 33.05±0.78 J.K-1.mo1-1 respectively for the endothermic peak.Two polynomial equations of the heat capacities each as a function of temperature are fitted by using the leastsquare method.Smoothed heat capacity and thermodynamic functions of the complex are calculated based on the fitted polynomials.

  15. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design

    DEFF Research Database (Denmark)

    Perez-Ramirez, Javier; Christensen, Claus H.; Egeblad, Kresten

    2008-01-01

    in these materials often imposes intracrystalline diffusion limitations, rendering low utilisation of the zeolite active volume in catalysed reactions. This critical review examines recent advances in the rapidly evolving area of zeolites with improved accessibility and molecular transport. Strategies to enhance...... the properties of the resulting materials and the catalytic function. We particularly dwell on the exciting field of hierarchical zeolites, which couple in a single material the catalytic power of micropores and the facilitated access and improved transport consequence of a complementary mesopore network...

  16. Modulation Effect on Transmission Characteristics of Symmetry Photonic Crystals with Liquid Crystal Defect%液晶缺陷对对称结构光子晶体透射特性的调制作用

    Institute of Scientific and Technical Information of China (English)

    蒙成举; 戚朝伟; 杨德贵

    2015-01-01

    The transmission characteristics of 1D symmetrical photonic crystal with nematic liquid crystal ( LC) defect is studied by using temperature characteristics of the thermo optic effect of LC and transfer matrix method.The results show that without LC defect in the photonic crystal, the one defect mode with a transmission rate of 100%appears in the relatively wide forbidden band range; while LC defect is introduced in the photonic crystal, the transmission rate of band edge drops sharply and the two defect modes ( the transmission rate is 100%) appear in the band gap at same time.The position of LC defect mode moves to short wavelength with the increased temperature of LC, and it moves to longer wavelength by increasing the thickness of LC, but there is no change to the vacancy defect mode as the temperature or thickness of LC increases.These modulation effects of LC materials on transmission spectrum of photonic crystal can provide positive guidance for the design of tunable photonic crystal optical devices.%利用液晶热光效应的温度特性,并通过传输矩阵法理论,研究了液晶缺陷一维光子晶体的光传输特性。结果表明,当无液晶缺陷时,在较宽的禁带范围出现一条缺陷模,当在光子晶体中引入液晶缺陷时,禁带边缘通带的透射率大幅下降,同时禁带中增加了一条液晶缺陷模,形成双缺陷模特征,且透射率均为100%;随着液晶材料温度的增大,液晶缺陷模的位置向短波方向移动,而随着液晶层厚度的变化其位置向长波方向移动,但右边空位缺陷模的位置并未受到液晶温度和厚度的影响。液晶材料对光子晶体透射谱的这种调制作用,为设计可调谐光子晶体光学器件提供指导意义。

  17. Integration of Magneto-Optical Materials for Novel Optical Devices & Magnetophotonic Crystals Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to capitalize on our Phase I success in monolithically integrating magneto-optic and magnetic materials with semiconductor platforms in order to...

  18. Plasmon-Enhanced Photonic Crystal Negative Index Materials for Superlensing Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Negative index materials (NIMs) offer tremendous potential for the formation of highly compact as well as large-area deployable thin-film optical components. Omega...

  19. Properties of defect mode and optical enhancement of 1D photonic crystals with a defect layer of negative refractive index material

    Institute of Scientific and Technical Information of China (English)

    CHEN Xian-feng; SHEN Xiao-ming; JIANG Mei-ping; SHI Du-fang

    2005-01-01

    The band gap properties of one-dimensional photonic crystals with a defect layer of negative refractive index materials are studied.The defect mode width is bigger than that of conventional one-dimensional photonic crystals with a defect layer of positive refractive index materials.The defect mode of the former is different from that of the latter,shifts towards the direction of high frequency (short wavelength),and has a bigger shifting velocity.Furthermore the effects on the transmission properties of the former photonic crystals caused by change in the position of the defect layer of negative refractive index are investigated.Finally the optical enhancement of the former photonic crystals is also investigated.

  20. LC-MS based Metabolomics

    DEFF Research Database (Denmark)

    Magdenoska, Olivera

    with only 12C or 13C carbons were very low or even not measurable and showed minimal or no interference to the spiked amount of nonlabeled standards and their stable isotope-labeled internal standards (SIL-IS). Finally the developed IP-RP LC-MS method was coupled to a quadrupole time of flight (QTOF) MS...

  1. Thermal load leveling during silicon crystal growth from a melt using anisotropic materials

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Frederick M.; Helenbrook, Brian T.

    2016-10-11

    An apparatus for growing a silicon crystal substrate comprising a heat source, an anisotropic thermal load leveling component, a crucible, and a cold plate component is disclosed. The anisotropic thermal load leveling component possesses a high thermal conductivity and may be positioned atop the heat source to be operative to even-out temperature and heat flux variations emanating from the heat source. The crucible may be operative to contain molten silicon in which the top surface of the molten silicon may be defined as a growth interface. The crucible may be substantially surrounded by the anisotropic thermal load leveling component. The cold plate component may be positioned above the crucible to be operative with the anisotropic thermal load leveling component and heat source to maintain a uniform heat flux at the growth surface of the molten silicon.

  2. Nanoporous films for epitaxial growth of single crystal semiconductor materials : final LDRD report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowen, Adam M.; Koleske, Daniel David; Fan, Hongyou; Brinker, C. Jeffrey; Burckel, David Bruce; Williams, John Dalton; Arrington, Christian L.; Steen, William Arthur

    2007-10-01

    This senior council Tier 1 LDRD was focused on exploring the use of porous growth masks as a method for defect reduction during heteroepitaxial crystal growth. Initially our goal was to investigate porous silica as a growth mask, however, we expanded the scope of the research to include several other porous growth masks on various size scales, including mesoporous carbon, photolithographically patterned SU-8 and carbonized SU-8 structures. Use of photolithographically defined growth templates represents a new direction, unique in the extensive literature of patterned epitaxial growth, and presents the possibility of providing a single step growth mask. Additional research included investigation of pore viability via electrochemical deposition into high aspect ratio photoresist. This project was a small footprint research effort which, nonetheless, produced significant progress towards both the stated goal as well as unanticipated research directions.

  3. Quartz Crystal Microbalances for quantitative picosecond laser-material-interaction investigations - Part I: Technical considerations

    Science.gov (United States)

    Gierse, N.; Schildt, T.; Esser, H. G.; Sergienko, G.; Brezinsek, S.; Freisinger, M.; Zhao, D.; Ding, H.; Terra, A.; Samm, U.; Linsmeier, Ch.

    2016-12-01

    In this work the technical suitability of Quartz Crystal Microbalances (QMBs) for in situ, pulse resolved mass removal measurements is demonstrated for picosecond laser ablation of magnetron sputtered coatings. The QMBs show a linear characteristic of the sensitivity for layer thickness of different metals up to several microns. Laser pulse resolved measurements of the mass ablated from the metal layer were performed. About 400 ng of chromium was ablated during the first laser pulse while in subsequent pulses ablation of the QMBs is found to be larger than for deposition, which is explained by the radial sensitivity of the QMBs. Future refinements of the setup and the benefits of the pulse resolved mass loss measurements for laser based methods like LIBS and LIAS are discussed and will be presented in part II currently in preparation.

  4. Design, crystal growth, and physical properties of low-temperature thermoelectric materials

    Science.gov (United States)

    Fuccillo, Michael K.

    Thermoelectric materials serve as the foundation for two important modern technologies, namely 1) solid-state cooling, which enables small-area refrigeration without vibrations or moving parts, and 2) thermoelectric power generation, which has important implications for waste heat recovery and improved sources of alternative energy. Although the overall field of thermoelectrics research has been active for decades, and several consumer and industrial products have already been commercialized, the design and synthesis of new thermoelectrics that outperform long-standing state of the art materials has proven extremely challenging. This is particularly true for low-temperature refrigeration applications, which is the focus of this work; however, scientific advances in this area generally support power generation as well. In order to achieve more efficient materials for virtually all thermoelectric applications, improved materials design principles must be developed and synthetic procedures must be better understood. We aim to contribute to these goals by studying two classes of materials, namely 1) the tetradymites Bi2TeSe 2 and Bi2Te2Se, which are close relatives of state of the art thermoelectric cooling materials, and 2) Kondo insulating (-like) FeSb2 and FeSi, which possess anomalously enhanced low-temperature thermoelectric properties that arise from exotic electronic and magnetic properties. The organization of this dissertation is as follows: Chapter 1 is a brief perspective on solid-state chemistry. Chapter 2 presents experimental methods for synthesizing and characterizing thermoelectric materials. In Chapter 3, two original research projects are discussed: first, work on the tetradymite Bi2TeSe2 doped with Sb to achieve an n- to p-type transition, and second, the tetradymite Bi2Te2Se with chemical defects through two different methods. Chapter 4 gives the magnetic and transport properties of FeSb 2--RuSb2 alloys, a family of compounds exemplifying what we

  5. Recent advances in liquid-crystal fiber optics and photonics

    Science.gov (United States)

    Woliński, T. R.; Siarkowska, A.; Budaszewski, D.; Chychłowski, M.; Czapla, A.; Ertman, S.; Lesiak, P.; Rutkowska, K. A.; Orzechowski, K.; Sala-Tefelska, M.; Sierakowski, M.; DÄ browski, R.; Bartosewicz, B.; Jankiewicz, B.; Nowinowski-Kruszelnicki, E.; Mergo, P.

    2017-02-01

    Liquid crystals over the last two decades have been successfully used to infiltrate fiber-optic and photonic structures initially including hollow-core fibers and recently micro-structured photonic crystal fibers (PCFs). As a result photonic liquid crystal fibers (PLCFs) have been created as a new type of micro-structured fibers that benefit from a merge of "passive" PCF host structures with "active" LC guest materials and are responsible for diversity of new and uncommon spectral, propagation, and polarization properties. This combination has simultaneously boosted research activities in both fields of Liquid Crystals Photonics and Fiber Optics by demonstrating that optical fibers can be more "special" than previously thought. Simultaneously, photonic liquid crystal fibers create a new class of fiber-optic devices that utilize unique properties of the photonic crystal fibers and tunable properties of LCs. Compared to "classical" photonic crystal fibers, PLCFs can demonstrate greatly improved control over their optical properties. The paper discusses the latest advances in this field comprising PLCFs that are based on nanoparticles-doped LCs. Doping of LCs with nanoparticles has recently become a common method of improving their optical, magnetic, electrical, and physical properties. Such a combination of nanoparticles-based liquid crystals and photonic crystal fibers can be considered as a next milestone in developing a new class of fiber-based optofluidic systems.

  6. Crystal growth and physical property of Bi-Sb-Te-Se topological insulator and CuxBi2Se3 topological superconductor materials

    Science.gov (United States)

    Gu, Genda; Yang, Alina; Schneeloch, John; Xu, Zhijun; Tranquada, John; Zhoa, J. G.; Pan, Z. H.; Yang, H. B.; Si, W. D.; Valla, T.

    2012-02-01

    The discovery of 3D topological insulator and topological superconductor materials opens up a new research field in the condensed matter physics. In order to exploit the novel surface properties of these topological insulators, it is crucial to achieve a bulk-insulating state in these topological insulator crystals. Unfortunately, all available topological insulator crystals are not bulk-insulating. We have grown a number of Bi-Se, Bi-Te, Sb-Te-Se, Bi-Sb-Se, Bi-Sb-Te-Se and Bi-Sb-Te-Se-S topological insulator single crystals by using 5N and 6N pure elements. We have measured the physical properties on these single crystals. We have studied the effect of growth condition and impurity on the bulk electrical conductivity of these single crystals. We try to answer two questions if it is possible to grow the bulk-insulating topological insulator single crystals and which maximum resistivity of these topological insulator single crystals we can grow. We have also grown a number of CuxBi2Se3 topological superconductor single crystals.

  7. 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion.

    Science.gov (United States)

    Collins, Gillian; Armstrong, Eileen; McNulty, David; O'Hanlon, Sally; Geaney, Hugh; O'Dwyer, Colm

    2016-01-01

    This perspective reviews recent advances in inverse opal structures, how they have been developed, studied and applied as catalysts, catalyst support materials, as electrode materials for batteries, water splitting applications, solar-to-fuel conversion and electrochromics, and finally as photonic photocatalysts and photoelectrocatalysts. Throughout, we detail some of the salient optical characteristics that underpin recent results and form the basis for light-matter interactions that span electrochemical energy conversion systems as well as photocatalytic systems. Strategies for using 2D as well as 3D structures, ordered macroporous materials such as inverse opals are summarized and recent work on plasmonic-photonic coupling in metal nanoparticle-infiltrated wide band gap inverse opals for enhanced photoelectrochemistry are provided.

  8. High quality 2D crystals made by anodic bonding: a general technique for layered materials.

    Science.gov (United States)

    Gacem, Karim; Boukhicha, Mohamed; Chen, Zhesheng; Shukla, Abhay

    2012-12-21

    Anodic bonding of nanolayers is an easy technique based on a simple apparatus, which has already proven successful in application in the fabrication of high quality graphene. Here we demonstrate its extension to the fabrication of high quality nanolayers from several layered materials. The strengths of this technique are its high throughput rate and ease of application. All fabrication parameters are controllable and need to be determined carefully. We report optimal parameters found for nine layered materials. In general, using optimal parameters results in high quality 2D layers, in most cases much larger than those obtained by 'Scotch tape' microcleavage, with higher yields and which are easily transferable to other substrates. Moreover the samples obtained are clean and the good optical contrast of these layers on the glass substrate makes their identification very easy. This is thus the technique of choice for making nanolayers in the laboratory from any layered material.

  9. High quality 2D crystals made by anodic bonding: a general technique for layered materials

    Science.gov (United States)

    Gacem, Karim; Boukhicha, Mohamed; Chen, Zhesheng; Shukla, Abhay

    2012-12-01

    Anodic bonding of nanolayers is an easy technique based on a simple apparatus, which has already proven successful in application in the fabrication of high quality graphene. Here we demonstrate its extension to the fabrication of high quality nanolayers from several layered materials. The strengths of this technique are its high throughput rate and ease of application. All fabrication parameters are controllable and need to be determined carefully. We report optimal parameters found for nine layered materials. In general, using optimal parameters results in high quality 2D layers, in most cases much larger than those obtained by ‘Scotch tape’ microcleavage, with higher yields and which are easily transferable to other substrates. Moreover the samples obtained are clean and the good optical contrast of these layers on the glass substrate makes their identification very easy. This is thus the technique of choice for making nanolayers in the laboratory from any layered material.

  10. Crystal Data

    Science.gov (United States)

    SRD 3 NIST Crystal Data (PC database for purchase)   NIST Crystal Data contains chemical, physical, and crystallographic information useful to characterize more than 237,671 inorganic and organic crystalline materials. The data include the standard cell parameters, cell volume, space group number and symbol, calculated density, chemical formula, chemical name, and classification by chemical type.

  11. Single-crystal lead magnesium niobate-lead titanate (PMN/PT) as a broadband high power transduction material.

    Science.gov (United States)

    Moffett, Mark B; Robinson, Harold C; Powers, James M; Baird, P David

    2007-05-01

    Two experimental underwater acoustic projectors, a tonpilz array, and a cylindrical line array, were built with single crystal, lead magnesium niobate/lead titanate, a piezoelectric transduction material possessing a large electromechanical coupling factor (k33 = 0.9). The mechanical quality factor, Q(m), and the effective coupling factor, k(eff), determine the frequency band over which high power can be transmitted; k(eff) cannot be greater than the piezoelectric material value, and so a high material coupling factor is a requisite for broadband operation. Stansfield's bandwidth criteria are used to calculate the optimum Q(m) value, Q(opt) approximately 1.2 (1-k(eff)2 1/2/k(eff). The results for the tonpilz projector exhibited k(eff) = 0.730, Q(m) = 1.17 (very near optimal), and a fractional bandwidth of 0.93. For the cylindrical transducer array, k(eff) = 0.867, Q(m) = 0.91 (larger than the optimum value, 0.7), and the bandwidth was 1.16. Although the measured bandwidths were less than optimal, they were accurately predicted by the theory, despite the highly simplified nature of the Van Dyke equivalent circuit, on which the theory is based.

  12. Ultra-narrow bandwidth optical filters consisting of one-dimensional photonic crystals with anomalous dispersion materials

    Institute of Scientific and Technical Information of China (English)

    Liu Jiang-Tao; Zhou Yun-Song; Wang Fu-He; Gu Ben-Yuan

    2005-01-01

    We present a new type of optical filter with an ultra-narrow bandwidth and a wide field-of-view (FOV). This kind of optical filter consists of one-dimensional photonic crystal (PC) incorporating an anomalous-dispersion-material (ADM) with, for instance, an anomalous dispersion of 6P3/2 ← 6S1/2 hyperfine structure transition of a caesium atom.The transmission spectra of optical filters are calculated by using the transfer-matrix method. The simulation results show that the designed optical filter has a bandwidth narrower than 0.33GHz and a wide FOV of ±30° as well. The response of transmission spectrum to an external magnetic field is also investigated.

  13. Technological process and optimum design of organic materials vacuum pyrolysis and indium chlorinated separation from waste liquid crystal display panels.

    Science.gov (United States)

    Ma, En; Xu, Zhenming

    2013-12-15

    In this study, a technology process including vacuum pyrolysis and vacuum chlorinated separation was proposed to convert waste liquid crystal display (LCD) panels into useful resources using self-design apparatuses. The suitable pyrolysis temperature and pressure are determined as 300°C and 50 Pa at first. The organic parts of the panels were converted to oil (79.10 wt%) and gas (2.93 wt%). Then the technology of separating indium was optimized by central composite design (CCD) under response surface methodology (RSM). The results indicated the indium recovery ratio was 99.97% when the particle size is less than 0.16 mm, the weight percentage of NH4Cl to glass powder is 50 wt% and temperature is 450°C. The research results show that the organic materials, indium and glass of LCD panel can be recovered during the recovery process efficiently and eco-friendly.

  14. Eco-friendly p-type Cu2SnS3 thermoelectric material: crystal structure and transport properties

    Science.gov (United States)

    Shen, Yawei; Li, Chao; Huang, Rong; Tian, Ruoming; Ye, Yang; Pan, Lin; Koumoto, Kunihito; Zhang, Ruizhi; Wan, Chunlei; Wang, Yifeng

    2016-01-01

    As a new eco-friendly thermoelectric material, copper tin sulfide (Cu2SnS3) ceramics were experimentally studied by Zn-doping. Excellent electrical transport properties were obtained by virtue of 3-dimensionally conductive network for holes, which are less affected by the coexistence of cubic and tetragonal phases that formed upon Zn subsitition for Sn; a highest power factors ~0.84 mW m−1 K−2 at 723 K was achieved in the 20% doped sample. Moreover, an ultralow lattice thermal conductivity close to theoretical minimum was observed in these samples, which could be related to the disordering of atoms in the coexisting cubic and tetragonal phases and the interfaces. Thanks to the phonon-glass-electron-crystal features, a maximum ZT ~ 0.58 was obtained at 723 K, which stands among the tops for sulfide thermoelectrics at the same temperature. PMID:27666524

  15. Statistical studies on the light output and energy resolution of small LSO single crystals with different surface treatments combined with various reflector materials

    CERN Document Server

    Heinrichs, U; Bussmann, N; Engels, R; Kemmerling, G; Weber, S; Ziemons, K

    2002-01-01

    The optimization of light output and energy resolution of scintillators is of special interest for the development of high resolution and high sensitivity PET. The aim of this work is to obtain statistically reliable results concerning optimal surface treatment of scintillation crystals and the selection of reflector material. For this purpose, raw, mechanically polished and etched LSO crystals (size 2x2x10 mm sup 3) were combined with various reflector materials (Teflon tape, Teflon matrix, BaSO sub 4) and exposed to a sup 2 sup 2 Na source. In order to ensure the statistical reliability of the results, groups of 10 LSO crystals each were measured for all combinations of surface treatment and reflector material. Using no reflector material the light output increased up to 551+-35% by mechanical polishing the surface compared to 100+-5% for raw crystals. Etching the surface increased the light output to 441+-29%. The untreated crystals had an energy resolution of 24.6+-4.0%. By mechanical polishing the surfac...

  16. Material purification, crystal growth, and spectroscopy of Tm-doped KPb2Cl5 and KPb2Br5 for 2 μm photonic applications

    Science.gov (United States)

    Brown, E.; Kumi-Barimah, E.; Hömmerich, U.; Bluiett, A. G.; Trivedi, S. B.

    2014-05-01

    Results of the material purification, crystal growth, and optical characterization of Tm-doped KPb2Cl5 (KPC) and KPb2Br5 (KPB) for 2 μm photonic applications are presented. Undoped KPC and KPB were synthesized from ultra dry starting materials and purified through multi-pass translation in a zone-refinement system. 1 wt% of ultra-dry Tm-halides (TmCl3 or TmBr3) were added to the purified host materials and molten under bubbling of HCl or HBr gas, respectively. Tm: KPC and Tm: KPB crystals were subsequently grown using the Bridgman technique. The good optical quality of the resulting crystals was indicated by infrared transmissions as high as 70-75%. Under optical pumping, both crystals exhibited broad infrared emission bands centered at 1.82 μm with nearly exponential decay times ranging from 2-3 ms. Judd-Ofelt intensity parameters were calculated to determine the radiative lifetimes of the 3F4→3H6 Tm3+ transition. The optical absorption and emission cross-sections of Tm: KPC and Tm: KPB were determined using the McCumber theory. The investigated crystals were also evaluated as potential solid-state materials for optical cooling applications.

  17. Liquid crystal devices especially for use in liquid crystal point diffraction interferometer systems

    Science.gov (United States)

    Marshall, Kenneth L [Rochester, NY

    2009-02-17

    Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a "structured" substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a "contrast-compensated" mixture of positive and negative dichroic dyes.

  18. Flat band degeneracy and near-zero refractive index materials in acoustic crystals

    Directory of Open Access Journals (Sweden)

    Shiqiao Wu

    2016-01-01

    Full Text Available A Dirac-like cone is formed by utilizing the flat bands associated with localized modes in an acoustic crystal (AC composed of a square array of core-shell-structure cylinders in a water host. Although the triply-degeneracy seems to arise from two almost-overlapping flat bands touching another curved band, the enlarged view of the band structure around the degenerate point reveals that there are actually two linear bands intersecting each other at the Brillouin zone center, with another flat band passing through the same crossing point. The linearity of dispersion relations is achieved by tuning the geometrical parameters of the cylindrical scatterers. A perturbation method is used to not only accurately predict the linear slopes of the dispersions, but also confirm the linearity of the bands from first principles. An effective medium theory based on coherent potential approximation is developed, and it shows that a slab made of the AC carries a near-zero refractive index around the Dirac-like point. Full-wave simulations are performed to unambiguously demonstrate the wave manipulating properties of the AC structures such as perfect transmission, unidirectional transmission and wave front shaping.

  19. Liquid Crystals and Photonic Bandgap Fiber Components

    DEFF Research Database (Denmark)

    Weirich, Johannes; Wei, Lei; Scolari, Lara

    Liquid Crystal(LC)filled Photonic Crystal Fibers(PCFs) represent a promising platform for the design and the fabrication of tunable all-in fiber devices. Tunability is achieved by varying the refractive index of the LC thermally, optically or electrically. In this contribution we present important...... parts of the LC theory as well as an application of a LC infiltrated PCF subject to an external electrostatic field. The fiber is placed between two electrodes and the voltage is increased step by step leading to the reorientation of the LC in the fiber capillaries. This mechanism can be used to produce...... a swichable polarizer, and an on chip LC photonic bandgap fiber polarimeter is presented, which admits strong attenuation of one polarization direction while the other one is nearly unaffected....

  20. 2D Crystal Semiconductors New Materials for GHz-THz Devices

    Science.gov (United States)

    2015-10-02

    chemical catalysis (MoS2, graphite), lithium–ion batteries (lithium cobaltate and layered carbon), lubricants (MoS2), neutron moderation in nuclear ... reactors (graphite), and thermally and mechani- cally refractory crucibles used in much of electronic material and device processing (BN and graphite). The...SF298 Form Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF The maximum file size for

  1. A Single-Material Logical Junction Based on 2D Crystal PdS2.

    Science.gov (United States)

    Ghorbani-Asl, Mahdi; Kuc, Agnieszka; Miró, Pere; Heine, Thomas

    2016-02-01

    A single-material logical junction with negligible contact resistance is designed by exploiting quantum-confinement effects in 1T PdS2 . The metallic bilayer serves as electrodes for the semiconducting channel monolayer, avoiding contact resistance. Heat dissipation is then governed by tunnel loss, which becomes negligible at channel lengths larger than 2.45 nm. This value marks the integration limit for a conventional 2D transistor.

  2. Crystal structure, optical and thermal studies of a new organic nonlinear optical material: L-Histidinium maleate 1.5-hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Gonsago, C. Alosious [Department of Physics, A. J. College of Engineering, Chennai 603103 (India); Albert, Helen Merina [Department of Physics, Sathyabama University, Chennai 600119 (India); Karthikeyan, J. [Department of Chemistry, Sathyabama University, Chennai 600119 (India); Sagayaraj, P. [Department of Physics, Loyola College, Chennai 600034 (India); Pragasam, A. Joseph Arul, E-mail: drjosephsu@gmail.com [Department of Physics, Sathyabama University, Chennai 600119 (India)

    2012-07-15

    Highlights: ► L-Histidinium maleate 1.5-hydrate, a new organic crystal has been grown for the first time. ► The crystal structure is reported for the first time (CCDC 845975). ► The crystal belongs to monoclinic system with space group P2{sub 1}, Z = 4, a = 11.4656(7) Å, b = 8.0530(5) Å, c = 14.9705(9) Å and β = 101.657(2)°. ► The optical absorption study substantiates the complete transparency of the crystal. ► Kurtz powder SHG test confirms the nonlinear property of the crystal. -- Abstract: A new organic nonlinear optical material L-histidinium maleate 1.5-hydrate (LHM) with the molecular formula C{sub 10}H{sub 16}N{sub 3}O{sub 7.5} has been successfully synthesized from aqueous solution by slow solvent evaporation method. The structural characterization of the grown crystal was carried out by single crystal X-ray diffraction at 293(2) K. In the crystal, molecules are linked through inter and intramolecular N-H⋯O and O-H⋯O hydrogen bonds, generate edge fused ring motif. The hydrogen bonded motifs are linked to each other to form a three dimensional network. The FT-IR spectroscopy was used to identify the functional groups of the synthesized compound. The optical behavior of the grown crystal was examined by UV–visible spectral analysis, which shows that the optical absorption is almost negligible in the wavelength range 280–1300 nm. The nonlinear optical property was confirmed by the powder technique of Kurtz and Perry. The thermal behavior of the grown crystal was analyzed by thermogravimetric analysis.

  3. Transmission properties of a Fibonacci quasi-crystals containing single-negative materials and their usage as multi-channel filters

    Science.gov (United States)

    Charkhesht, Ali; Pashaei Adl, Hamid; Roshan Entezar, Samad

    2014-03-01

    One of the interesting phenomena appearing in Fibonacci quasi-crystals is wave localization, so that the field becomes spatially confined in some suitable regions, or delocalized in some other parts. Many theoretical works have been written on this interesting subject. The periodic Fibonacci structure properties lead to a transmission spectrum that exhibits some band gap, and it is possible to control these band gaps by the generation number of this structures. All these properties make Fibonacci quasi-crystals materials very attractive from an optical point of view. Accordingly, the transmission properties of Fibonacci quasi-crystals containing single-negative materials are investigated with the transfer matrix method. It is shown that the periodic structures created by repeating the Fibonacci quasi-crystal generations, have some omnidirectional band gaps at the single-negative frequency region. Moreover, it is shown these band gaps depends on the number of Fibonacci photonic crystal unit cell. In other words, when generation number of Fibonacci photonic crystal unit cell increases, some sub band gaps appears within this omnidirectional band gap. In this work by using Fibonacci quasi-periodic structures we demonstrate that by increasing Generation Number of Unit cell, some omnidirectional sub-gaps will appear which can be used as a multichannel filter.

  4. Low-Absorption Liquid Crystals for Infrared Beam Steering

    Science.gov (United States)

    2015-09-30

    absorption coefficient and d is the LC layer thickness . Let us take a~!0/cm as an example. For a 10-|j,m- thick LC layer, ad=0.01 and the transmittance...remains 99%. However, if the LC layer thickness (or effective optical path length) increases, then the absorption will increase exponentially, as Eq. (1...weight-and-power, 2) increasing mean-time-between- failure, and 3) reducing system complexity. Beam steering based on liquid crystal ( LC ) optical phase

  5. Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins.

    Science.gov (United States)

    Rogov, Vladimir V; Suzuki, Hironori; Marinković, Mija; Lang, Verena; Kato, Ryuichi; Kawasaki, Masato; Buljubašić, Maja; Šprung, Matilda; Rogova, Natalia; Wakatsuki, Soichi; Hamacher-Brady, Anne; Dötsch, Volker; Dikic, Ivan; Brady, Nathan R; Novak, Ivana

    2017-04-25

    The mitophagy receptor Nix interacts with LC3/GABARAP proteins, targeting mitochondria into autophagosomes for degradation. Here we present evidence for phosphorylation-driven regulation of the Nix:LC3B interaction. Isothermal titration calorimetry and NMR indicate a ~100 fold enhanced affinity of the serine 34/35-phosphorylated Nix LC3-interacting region (LIR) to LC3B and formation of a very rigid complex compared to the non-phosphorylated sequence. Moreover, the crystal structure of LC3B in complex with the Nix LIR peptide containing glutamic acids as phosphomimetic residues and NMR experiments revealed that LIR phosphorylation stabilizes the Nix:LC3B complex via formation of two additional hydrogen bonds between phosphorylated serines of Nix LIR and Arg11, Lys49 and Lys51 in LC3B. Substitution of Lys51 to Ala in LC3B abrogates binding of a phosphomimetic Nix mutant. Functionally, serine 34/35 phosphorylation enhances autophagosome recruitment to mitochondria in HeLa cells. Together, this study provides cellular, biochemical and biophysical evidence that phosphorylation of the LIR domain of Nix enhances mitophagy receptor engagement.

  6. VUV spectroscopy of nominally pure and rare-earth ions doped LiCaAIF6 single crystals as promising materials for 157 nm photolithography

    Science.gov (United States)

    Cefalas, Alkiviadis C.; Sarantopoulou, Evangelia; Kollia, Z.; Abdulsabirov, R. Y.; Korableva, S. L.; Naumov, A. K.; Semashko, V. V.; Kobe, S.; McGuiness, P. J.

    2002-07-01

    Recently it was found that birefringence is induced in CaF2 crystals when they are illuminated with laser light at 157 nm. Taking into consideration that CaF2 is the only optical material used in 157 nm photolithography today, the possibility to use new wide band gap fluoride crystals as optical elements for 157 nm photolithography, even those of non-cubic symmetry, should be considered. Additionally fluoride dielectric crystals with wide band gaps doped with trivalent rare-earth (RE) ions can be used as passive or active optical elements int eh VUV. For doped crystals, applications depend on the structure of the energy level pattern of the 4fn-15d electronic configuration and RE ion concentration. In this work we are exploiting the use of wide band gap fluoride dielectric crystals doped with RE ions. The laser induced fluorescence spectrum at 157 nm, and the absorption spectra of the LiCaAlF6 crystals, pure and doped with RE ions, were investigated in the VUV region of the spectrum. A new m4tehod for monitoring RE concentration in wide band gap fluoride crystals, that is based on vibrating sample magnetometer measurement is presented as well.

  7. Sm-doped CsBr crystal as a new radio-photoluminescence (RPL) material

    Institute of Scientific and Technical Information of China (English)

    Go Okada; Yutaka Fujimoto; Hironori Tanaka; Safa Kasap; Takayuki Yanagida

    2016-01-01

    Radio-photoluminescence (RPL) is a phenomenon seen in luminescent materials in which the appearance of new photolu-minescence (PL) emission is induced by an incident ionizing radiation such as X-rays;and the signal is stable even after the irradia-tion and during the PL measurement. Since the induced PL intensity is proportional to the irradiation dose, the RPL can be used in ra-diation measurements. The distinct advantage of RPL over the conventional thermally-or photo-stimulated luminescence (abbrevi-ated as TSL or PSL) dosimeters is the stability of response signal. With an RPL detector, it allows us to readout the signal multiple time without signal fading. In this work, we discovered that CsBr:Sm showed an RPL phenomenon by X-ray irradiation, and we characterized this new material as an RPL detector. While the sample showed PL emissions mainly in the visible range, after an X-ray irradiation additional emissions could be observed in the red to near-infrared range around 650–850 nm and 900–1000 nm and longer. The RPL response was fairly stable overall, but very interestingly the 650–850 nm signal slightly increased while the 900–1000 nm decreased during PL readout. The dynamic range was confirmed over 1–104 mGy with linear response.

  8. Synthesis, crystal growth and characterization of bioactive material: 2- Amino-1H-benzimidazolium pyridine-3-carboxylate single crystal- a proton transfer molecular complex

    Science.gov (United States)

    Fathima, K. Saiadali; Kavitha, P.; Anitha, K.

    2017-09-01

    The 1:1 molecular adducts 2- Amino-1H-benzimidazolium pyridine-3-carboxylate (2ABPC) was synthesized and grown as single crystal where 2-aminobenzimidazole (ABI) acts as a donor and nicotinic acid (NA) acts as an acceptor. The presence of proton and carbon were predicted using 1H and 13C NMR spectral analysis. The molecular structure of the crystal was elucidated by subjecting the grown crystals to the single crystal x-ray diffraction analysis and was refined by full matrix least-squares method to R = 0.038 for 2469 reflections. The vibrational modes of functional group have been studied using FTIR and Raman spectroscopic analysis. The UV-Vis spectrum exhibited a visible band at 246 nm for 2ABPC due to the nicotinate anion of the molecule. Further, the antimicrobial activity of 2ABPC complex against B. subtilis, klebsiella pneumonia, Pseudomonas eruginos and E. coli pathogens was investigated. Minimum Inhibitory Concentration (MIC) for this crystal was obtained using UV spectrometer against MRSA pathogen. It was found that the benzimidazole with aminogroup at position 2 increases the general antimicrobial activities of 2ABPC crystal.

  9. Research progress of cholesteric liquid crystals with broadband reflection characteristics in application of intelligent optical modulation materials

    Science.gov (United States)

    Zhang, Lan-Ying; Gao, Yan-Zi; Song, Ping; Wu, Xiao-Juan; Yuan, Xiao; He, Bao-Feng; Chen, Xing-Wu; Hu, Wang; Guo, Ren-Wei; Ding, Hang-Jun; Xiao, Jiu-Mei; Yang, Huai

    2016-09-01

    Cholesteric liquid crystals (CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architecture and their excellent selective reflection of light based on the Bragg relationship. Nowadays, by the virtue of building the self-organized nanostructures with pitch gradient or non-uniform pitch distribution, extensive work has already been performed to obtain CLC films with a broad reflection band. Based on authors’ many years’ research experience, this critical review systematically summarizes the physical and optical background of the CLCs with broadband reflection characteristics, methods to obtain broadband reflection of CLCs, as well as the application in the field of intelligent optical modulation materials. Combined with the research status and the advantages in the field, the important basic and applied scientific problems in the research direction are also introduced. Project supported by the National Natural Science Foundation of China (Grant Nos. 51573006, 51573003, 51203003, 51303008, 51302006, 51402006, 51272026, and 51273022), the Major Project of Beijing Science and Technology Program, China (Grant Nos. Z151100003315023 and Z141100003814011), and the Fok Ying Tung Education Foundation, China (Grant No. 142009).

  10. Emergence of Zeolite Analogs and other Microporous Crystals in an Atomic Lattice Model of Silica and Related Materials.

    Science.gov (United States)

    Jin, Lin; Auerbach, Scott M; Monson, Peter A

    2012-03-15

    The potential of tailored nanopores to transform technologies such as drug delivery, biofuel production, and optical-electronic devices depends on fundamental knowledge of the self-assembly of ordered nanoporous solids. Atomic-level geometries of critical nuclei that lead to such solids have remained hidden in the nanoscale blind spot between local (5 nm) probes of structure. Heroic efforts at molecular simulation of nanopore formation have provided massive libraries of hypothetical structures; (1-5) however, to date no statistical simulation has generated a crystallization pathway from random initial condition to ordered nanoporous solid, until now. In this work, we show that a recently developed atomic lattice model of silica and related materials can form ordered nanoporous solids with a rich variety of structures including known chalcogenides, zeolite analogs, and layered materials. We find that whereas canonical Monte Carlo simulations of the model consistently produce the amorphous solids studied in our previous work, parallel tempering Monte Carlo gives rise to ordered nanoporous solids. The utility of parallel tempering highlights the existence of barriers between amorphous and crystalline phases of our model. Moreover, the self-assembly or nanoporous crystalline phases in the model open the door to detailed understanding of nanopore nucleation.

  11. Light propagation in two-dimensional photonic crystals based on uniaxial polar materials: results on polaritonic spectrum

    Science.gov (United States)

    Gómez-Urrea, H. A.; Duque, C. A.; Pérez-Quintana, I. V.; Mora-Ramos, M. E.

    2017-03-01

    The dispersion relations of two-dimensional photonic crystals made of uniaxial polaritonic cylinders arranged in triangular lattice are calculated. The particular case of the transverse magnetic polarization is taken into account. Three different uniaxial materials showing transverse phonon-polariton excitations are considered: aluminum nitride, gallium nitride, and indium nitride. The study is carried out by means of the finite-difference time-domain technique for the solution of Maxwell equations, together with the method of the auxiliary differential equation. It is shown that changing the filling fraction can result in the modification of both the photonic and polaritonic bandgaps in the optical dispersion relations. Wider gaps appear for smaller filling fraction values, whereas a larger number of photonic bandgaps will occur within the frequency range considered when a larger filling fraction is used. The effect of including the distinct wurtzite III-V nitride semiconductors as core materials in the cylinders embedded in the air on the photonic properties is discussed as well, highlighting the effect of the dielectric anisotropy on the properties of the polaritonic part of the photonic spectrum.

  12. Bulk Crystal Growth, and High-Resolution X-ray Diffraction Results of LiZnAs Semiconductor Material

    Science.gov (United States)

    Montag, Benjamin W.; Reichenberger, Michael A.; Sunder, Madhana; Ugorowski, Philip B.; Nelson, Kyle A.; Henson, Luke C.; McGregor, Douglas S.

    2017-08-01

    LiZnAs is being explored as a candidate for solid-state neutron detectors. The compact form, solid-state device would have greater efficiency than present day gas-filled 3He and 10BF3 detectors. Devices fabricated from LiZnAs having either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. The 6Li( n, t)4He reaction yields a total Q-value of 4.78 MeV, an energy larger than that of the 10B reaction, which can easily be identified above background radiations. LiZnAs material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace (Montag et al. in J Cryst Growth 412:103, 2015). The raw synthesized LiZnAs was purified by a static vacuum sublimation in quartz (Montag et al. in J Cryst Growth 438:99, 2016). Bulk crystalline LiZnAs ingots were grown from the purified material with a high-temperature Bridgman-style growth process described here. One of the largest LiZnAs ingots harvested was 9.6 mm in diameter and 4.2 mm in length. Samples were harvested from the ingot and were characterized for crystallinity using a Bruker AXS Inc. D8 AXS Inc. D2 CRYSO, energy dispersive x-ray diffractometer, and a Bruker AXS Inc. D8 DISCOVER, high-resolution x-ray diffractometer equipped with molybdenum radiation, Gobel mirror, four bounce germanium monochromator and a scintillation detector. The primary beam divergence was determined to be 0.004°, using a single crystal Si standard. The x-ray based characterization revealed that the samples nucleated in the (110) direction and a high-resolution open detector rocking curve recorded on the (220) LiZnAs yielded a full width at half maximum (FWHM) of 0.235°. Sectional pole figures using off-axis reflections of the (211) LiZnAs confirmed in-plane ordering, and also indicated the presence of multiple

  13. Order parameters of liquid crystal on the rubbing surfaces of alignment layers

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Liquid crystal (LC) alignment is most important in LC devices. In this paper, we quantitatively analyze the LC scalar order parameters on the rubbed surface of an alignment layer. Careful measurement of dichroic infrared absorbance is performed. The result gives the evidence that the order parameter of LC just on the rubbed alignment film is only 1/3-1/2 that in the LC bulk.

  14. In-Plane Switching Mode for Liquid Crystal Displays Using a DNA Alignment Layer.

    Science.gov (United States)

    Cha, Yun Jeong; Gim, Min-Jun; Oh, Kyunghwan; Yoon, Dong Ki

    2015-06-24

    We successfully fabricated the in-plane switching mode (IPS) LC display (LCD) based on a double stranded DNA (dsDNA) alignment layer. As widely known, the DNA has the right-handed double helical structure that has naturally grown grooves with a very regular period, which can be used as an alignment layer to control the orientation of liquid crystal (LC) molecules. The LC molecules on this topographical layer of DNA material align obliquely at a specific angle with respect to the direction of DNA chains, providing an instant and convenient tool for the fabrication of the IPS display compared to the conventional ways such as rubbing and mechanical shearing methods. The electro-optical performance and response time of this device were also investigated. Our result will be of great use in further exploration of the electro-optical properties of the other biomaterials.

  15. Photoemission spectroscopy of single crystal HTSC materials: A Fermi liquid electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; List, R.S.; Bartlett, R.J.; Cheong, S.W.; Olson, C.G.; Yang, A.B.; Liu, R.; Gu, C.; Veal, B.W.; Liu, J.Z.

    1989-01-01

    Photoemission spectra from HTSC materials (primarily 123-type), cleaved and measured at 20K, reveal a rich DOS structure which compares favorably with a calculated band structure, except for a residual 0.5 eV shift which may reflect some correlation effects. Band dispersion is observed throughout the valence bands, with clear evidence for a 0.2 eV wide band dispersing through E/sub F/. The orbital character at E/sub F/ is a mix of Cu-3d and O-2p. There is unambiguous evidence for a large BCS-like gap (2..delta.. greater than or equal to 4kT/sub c/). 25 refs., 5 figs.

  16. Investigation on structural, optical, thermal, mechanical and dielectric properties of L-proline cadmium chloride monohydrate single crystals: An efficient NLO material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Preeti; Hasmuddin, Mohd [Crystal Growth and XRD Lab, Department of Physics, Jamia Millia Islamia, New Delhi 110 025 (India); Shakir, Mohd [Crystal Growth and XRD Lab, Department of Physics, Jamia Millia Islamia, New Delhi 110 025 (India); CSIR-National Physical Laboratory, New Delhi 110 012 (India); Department of Physics, ARSD College, University of Delhi, New Delhi 110021 (India); Vijayan, N. [Department of Physics, Kakatiya University, Warangal 506 009 (India); Abdullah, M.M. [Crystal Growth and XRD Lab, Department of Physics, Jamia Millia Islamia, New Delhi 110 025 (India); Advanced Materials and Nano-research Centre (AMNC), Faculty of Science and Arts, Najran University, P.O. Box-1988, Najran 11001 (Saudi Arabia); Ganesh, V. [Department of Physics, Kakatiya University, Warangal 506 009 (India); Wahab, M.A., E-mail: aries.pre84@gmail.com [Crystal Growth and XRD Lab, Department of Physics, Jamia Millia Islamia, New Delhi 110 025 (India)

    2013-10-01

    In the present work, we have grown single crystals of L-proline cadmium chloride monohydrate (LPCCM) by slow evaporation solution technique (SEST) at room temperature and recorded their live growth kinetics with the help of inverted microscope. Crystal size at various stages of growth and its corresponding morphology was also recorded. Powder X-ray diffraction (PXRD) analysis of LPCCM single crystals confirmed the orthorhombic structure. Respective values of crystallite size, strain and dislocation density have been calculated using PXRD data. Metal complex coordination of the single crystal is studied by FTIR spectroscopic. The optical properties of the grown crystals were investigated through UV–VIS spectroscopic studies and shows that the crystals have very low absorption in entire characterized wavelength range 200–800 nm. The optical band gap was calculated and found to be ∼5.6 eV. Optical constants of the material is determined by theoretical calculations. The chemical etching study was also carried out to study the density of defects in the grown crystals. The photoluminous excitation and emission spectra and thermal property by TGA/DTA curve were recorded. Further, the mechanical properties have been studied using Vicker's microhardness tester as well as many parameters such as fracture toughness (K{sub c}), Brittleness index (B{sub i}) and yield strength (σ{sub ν}) are presented. Dielectric studies have been carried out with varying frequency and temperatures. - Highlights: • The morphology of LPCCM crystal was observed during growth under inverted microscope. • Observation also shows defects also grows with the growth of crystal. • Positive temperature coefficient is observed. • The optical study shows its suitability for photonics and optical applications.

  17. Skylab experiments. Volume 3: Materials science. [Skylab experiments on metallurgy, crystal growth, semiconductors, and combustion physics in weightless environment for high school level education

    Science.gov (United States)

    1973-01-01

    The materials science and technology investigation conducted on the Skylab vehicle are discussed. The thirteen experiments that support these investigations have been planned to evaluate the effect of a weightless environment on melting and resolidification of a variety of metals and semiconductor crystals, and on combustion of solid flammable materials. A glossary of terms which define the space activities and a bibliography of related data are presented.

  18. Scientific developments of liquid crystal-based optical memory: a review

    Science.gov (United States)

    Prakash, Jai; Chandran, Achu; Biradar, Ashok M.

    2017-01-01

    The memory behavior in liquid crystals (LCs), although rarely observed, has made very significant headway over the past three decades since their discovery in nematic type LCs. It has gone from a mere scientific curiosity to application in variety of commodities. The memory element formed by numerous LCs have been protected by patents, and some commercialized, and used as compensation to non-volatile memory devices, and as memory in personal computers and digital cameras. They also have the low cost, large area, high speed, and high density memory needed for advanced computers and digital electronics. Short and long duration memory behavior for industrial applications have been obtained from several LC materials, and an LC memory with interesting features and applications has been demonstrated using numerous LCs. However, considerable challenges still exist in searching for highly efficient, stable, and long-lifespan materials and methods so that the development of useful memory devices is possible. This review focuses on the scientific and technological approach of fascinating applications of LC-based memory. We address the introduction, development status, novel design and engineering principles, and parameters of LC memory. We also address how the amalgamation of LCs could bring significant change/improvement in memory effects in the emerging field of nanotechnology, and the application of LC memory as the active component for futuristic and interesting memory devices.

  19. Photochemical manipulation of colloidal structures in liquid-crystal colloids

    Science.gov (United States)

    Yamamoto, T.; Tabe, Y.; Yokoyama, H.

    2007-05-01

    We investigated photochemical manipulation of physical properties and colloidal structures in liquid-crystal (LC) colloids containing azobenzene compounds. In a LC suspension where polymeric particles were dispersed in a host LC, we achieved photochemical control of light-scattering properties of the suspension. In a nematic phase, when the suspension was sandwiched with two glass plates, the film became opaque. This would be attributable to an appearance of both multidomain structures of LC alignment and mismatches of refractive indices between the materials. The opaque state turned into a transparent one when a nematic-to-isotropic phase transition was induced by the trans-to-cis photoisomerization of the azo-dye. This will result from a disappearance of both the multidomain structures and the refractive-index mismatches in the isotropic phase. The transparent film went back into the initial opaque film when the nematic phase was obtained by the cis-to-trans photoisomerization. In a LC emulsion in which glycerol or water droplets were dispersed in liquid crystals, we examined photochemical change of defect structures and inter-droplet distances by the photochemical manner. At the initial state, Saturn ring and hedgehog defects were formed around the droplets. For the glycerol droplets, we observed structural transformations between Saturn ring and boojums on irradiation with ultra-violet and visible light. For the water droplets, the inter-droplet distances varied by changing defect size on the irradiation. These phenomena would result from modulation of anchoring conditions of the droplets by the photoisomerization of the azo-dyes.

  20. On-line coupled LC-LC-GC for irradiation detection in complex lipid matrices

    Energy Technology Data Exchange (ETDEWEB)

    Schulzki, G. (Laboratory Group, Irradiation of Foods and Pharmaceuticals, Alternative Techniques, Inst. for Social Medicine and Epidemiology, Federal Health Office (BGA), Berlin (Germany)); Spiegelberg, A. (Laboratory Group, Irradiation of Foods and Pharmaceuticals, Alternative Techniques, Inst. for Social Medicine and Epidemiology, Federal Health Office (BGA), Berlin (Germany)); Helle, N. (Laboratory Group, Irradiation of Foods and Pharmaceuticals, Alternative Techniques, Inst. for Social Medicine and Epidemiology, Federal Health Office (BGA), Berlin (Germany)); Boegl, K.W. (Laboratory Group, Irradiation of Foods and Pharmaceuticals, Alternative Techniques, Inst. for Social Medicine and Epidemiology, Federal Health Office (BGA), Berlin (Germany)); Schreiber, G.A. (Laboratory Group, Irradiation of Foods and Pharmaceuticals, Alternative Techniques, Inst. for Social Medicine and Epidemiology, Federal Health Office (BGA), Berlin (Germany))

    1993-01-01

    Since sample preparation with HPLC coupled on-line to the GC has been performed for only a few weeks in our laboratory, the results presented give a first look at what can be done by means of this technique. Even difficult samples as the described fish species, where an unequivocal identification regarding an irradiation treatment seemed to become a hopeless enterprise, could be managed. Because of the greater variety of fatty acids in fish ''new'' radiation-induced hydrocarbons were available. According to the theory of Nawar in addition to 16:2 and 17:2 hydrocarbons we have looked for in irradiated meat, further alkadienes appeared in irradiated fish, which were 14:2, 18:2 and 20:2. Analysis of the alkadiene-fraction, transferred to the GC after a two step LC clean up, resulted in an unequivocal identification of all fish samples as well as the fruits and sponge cake. For fruits and sponge cake the detection limit seems to be clearly below 0.5 kGy. It can further be lowered by increasing the amount of lipid whereas the upper limit for a certain LC column has to be determined. In contrast to these samples only qualitative results were obtained for fish. In the case of sponge cake for the first time irradiation of a component of a heat treated food was detected. Further investigations regarding reproducibility, dose dependence and detection limit have to be done. On-line coupled (LC-)LC-GC was proved to be a highly efficient method for analysis of complex samples. In contrast to off-line Florisil column chromatography only a small part of the initial lipid material is needed because the complete hydrocarbon fraction is transferred on-line to the GC. This offers the possibility to analyze even foods with a low fat content like various seafoods. Classification of the hydrocarbon fraction by a two step LC may facilitate the identification of the radiolytic products also if no mass spectrometric detection system is available. (orig./vhe)

  1. Growth, optical, thermal, mechanical and dielectric studies of sodium succinate hexahydrate (β phase) single crystal: A promising third order NLO material

    Science.gov (United States)

    Mageshwari, P. S. Latha; Priya, R.; Krishnan, S.; Joseph, V.; Das, S. Jerome

    2016-11-01

    A third order nonlinear optical (NLO)single crystals of sodium succinate hexahydrate (SSH) (β phase) has been grown by a slow evaporation growth technique using aqueous solution at ambient temperature. The lattice parameters and morphology of SSH were determined by single crystal X-ray diffraction analysis. SSH crystallizes in centrosymmetric monoclinic system with space group P 21 / c and the crystalline purity was analyzed by powder X-ray diffraction analysis. The UV-vis-NIR spectrum reveals that the crystal is transparent in the entire visible region. The recorded FT-IR spectrum verified the presence of various functional groups in the material. NMR analysis of the grown crystal confirms the structural elucidation and detects the major and minor functional groups present in the title compound. ICP-OES analysis proved the presence of sodium in SSH. TG-DTA/DSCanalysis was used to investigate the thermal stability of the material. The dielectric permittivity and dielectric loss of SSH were carried out as a function of frequency for different temperatures and the results were discussed. The mechanical stability was evaluated from Vicker's microhardness test. The third order nonlinear optical properties of SSH has been investigated employing Z-scan technique with He-Ne laser operating at 632.8 nm wavelength.

  2. Ca10Li(VO4)7:Nd3+, a promising laser material: growth, structure and spectral characteristics of a Czochralski-grown single crystal

    Science.gov (United States)

    Kosmyna, M. B.; Nazarenko, B. P.; Puzikov, V. M.; Shekhovtsov, A. N.; Paszkowicz, W.; Behrooz, A.; Romanowski, P.; Yasukevich, A. S.; Kuleshov, N. V.; Demesh, M. P.; Wierzchowski, W.; Wieteska, K.; Paulmann, C.

    2016-07-01

    Pure and Nd-doped Ca10Li(VO4)7 single crystals were grown by the Czochralski method. The structure of Ca10Li(VO4)7 single crystal was refined starting from a model of Ca10K(VO4)7 using the powder diffraction data collected at a laboratory high-resolution diffractometer. The defect structure of the single crystal was studied with the use of both, high-resolution diffraction using a laboratory instrument and X-ray topographic techniques employing synchrotron radiation at the Hasylab laboratory (Hamburg). Polarized absorption and luminescence spectra of Nd-doped Ca10Li(VO4)7 crystal were investigated in details. The laser oscillation was obtained under flash lamp pumping and the slope efficiency of 0.87% was achieved in the free-running mode. Preliminary examination of lasing properties points that Ca10Li(VO4)7:Nd crystal can be a highly efficient solid state laser medium. Crystals of this kind are expected to be suitable for application as efficient non-linear optics materials.

  3. Binary colloidal crystals

    NARCIS (Netherlands)

    Christova-Zdravkova, C.G.

    2005-01-01

    Binary crystals are crystals composed of two types of particles having different properties like size, mass density, charge etc. In this thesis several new approaches to make binary crystals of colloidal particles that differ in size, material and charge are reported We found a variety of crystal st

  4. Synthesis, crystal growth and characterization of bioactive material: 2-amino-1H-benzo[d]imidazol-3-ium salicylate single crystal-a proton transfer molecular complex

    Science.gov (United States)

    Fathima, K. Saiadali; Anitha, K.

    2017-05-01

    The 1:1 molecular adducts 2-aminobenzimidazolium salicylate (ABIS) single crystal was synthesized and grown from 2-aminobenzimidazole (ABI) as a donor and salicylic acid (SA) as an acceptor. The cell parameter was determined using single crystal X-Ray diffraction method and the complex ABIS belongs to monoclinic system. The spectroscopic studies showed that ABIS crystal was an ion pair complex. The FTIR and Raman spectra showed that the presence of O-H, C=N, C=O vibration which confirms the proton transfer from SA to ABI. The UV-Vis spectrum exhibited a visible band at 359nm for ABIS due to the salicylate anion of the molecule. Further the antimicrobial activity of ABIS complex against Staphylococcus aureus, klebsiella pneumonia, Pseudomonas eruginos and E.coli pathogens was investigated. So the complex molecule inhibits both Gram positive and Gram negative bacterial. It is found that benzimidazole with aminogroup at position 2 increases the general antimicrobial activities of ABIS crystal.

  5. Bistable liquid crystal device fabricated via microscale liquid crystal alignment

    Science.gov (United States)

    Honma, Michinori; Toyoshima, Wataru; Nose, Toshiaki

    2016-10-01

    Bistable liquid crystal (LC) molecular orientation properties in micropatterned LC cells were investigated experimentally and theoretically. When an LC cell was heated to the phase-transition temperature and then cooled, an LC orientation with ±π/2-twist domains (±π/2-twist mode) was obtained. Furthermore, a different LC orientation with ±π-twist domains (±π-twist mode) was observed when a 10-V potential was applied across a sample LC cell. Both orientation states were stably retained over a long period. Herein, cross-sectional LC orientation models in the ±π/2- and ±π-twist modes are proposed to explain the generation and behavior of two different disclination lines. The total energies within one period in the ±π/2- and ±π-twist modes (F±π/2 and F±π, respectively) were estimated theoretically. These energies were found to depend on the LC layer thickness and to cross over at a certain thickness; this indicates that F±π is equal to F±π/2 at this equilibrium thickness. The best temporal stability is likely attained at this equilibrium thickness. We demonstrated a bistable color-switching device by combining a full-wave plate and crossed polarizers. When these optical components were configured properly, stable bistable switching between two colors was achieved.

  6. Properties of the Band Gaps in 1D Ternary Lossy Photonic Crystal Containing Double-Negative Materials

    Directory of Open Access Journals (Sweden)

    Alireza Aghajamali

    2014-01-01

    Full Text Available Theoretically, the characteristics matrix method is employed to investigate and compare the properties of the band gaps of the one-dimensional ternary and binary lossy photonic crystals which are composed of double-negative and double-positive materials. This study shows that by varying the angle of incidence, the band gaps for TM and TE waves behave differently in both ternary and binary lossy structures. The results demonstrate that, by increasing the angle of incidence for the TE wave, the width and the depth of zero-n¯, zero-μ, and Bragg gap increase in both ternary and binary structures. On the other hand, the enhancement of the angle of incidence for the TM wave contributes to reduction of the width and the depth of the zero-n¯ and Bragg gaps, and they finally disappear for incidence angles greater than 50° and 60° for the binary structure and 40° and 45° for the ternary structures, respectively. In addition, the details of the edges of the band gaps variations as a function of incidence angle for both structures are studied.

  7. Photo-electrochemical and physical characterizations of a new single crystal POM-based material. Application in photocatalysis

    Science.gov (United States)

    Meziani, D.; Abdmeziem, K.; Bouacida, S.; Trari, M.

    2016-12-01

    A new inorganic-organic hybrid material [(H2pip)3][α-PW12O40]2·4H2O, prepared by hydrothermal method, was structurally characterized by single-crystal X-ray diffraction. The compound based on a Keggin-type polyoxotungstate and piperazine (pip) displays a hybrid framework built from two (α-Keggin)3- polyoxoanions and three (H2pip)2+ hydrogen-bonded fragments, forming 3-D supramolecular architecture. The diffuse reflectance spectrum shows two optical transitions directly (3.27 eV) and indirectly (3.12 eV) allowed. The electrical conductivity follows an exponential law, indicating a semiconducting comportment with activation energy of 14 meV. The Mott-Schottky characteristic, plotted in Na2SO4 (0.5 M) solution indicates n-type conduction with a flat band potential of -0.084 VSCE and electrons density of 4.24 × 1018 cm-3. As application, the photo-degradation of methylene blue (MB) upon UV irradiation was successfully achieved by OH• radicals. The improved activity is attributed to the potentials closeness of the valence and conduction bands with the radical levels.

  8. Forming limit prediction using a self-consistent crystal plasticity framework: a case study for body-centered cubic materials

    Science.gov (United States)

    Jeong, Youngung; Pham, Minh-Son; Iadicola, Mark; Creuziger, Adam; Foecke, Timothy

    2016-06-01

    A rate-dependent self-consistent crystal plasticity model was incorporated with the Marciniak-Kuczyński model in order to study the effects of anisotropy on the forming limits of BCC materials. The computational speed of the model was improved by a factor of 24 when running the simulations for several strain paths in parallel. This speed-up enabled a comprehensive investigation of the forming limits of various BCC textures, such as γ , σ , α , η and ɛ fibers and a uniform (random) texture. These simulations demonstrate that the crystallographic texture has significant (both positive and negative) effects on the resulting forming limit diagrams. For example, the γ fiber texture, which is often sought through thermo-mechanical processing due to a high r-value, had the highest forming limit in the balanced biaxial strain path but the lowest forming limit under the plane strain path among the textures under consideration. A systematic investigation based on the results produced by the current model, referred to as ‘VPSC-FLD’, suggests that the r-value does not serve as a good measure of forming limit strain. However, model predictions show a degree of correlation between the r-value and the forming limit stress.

  9. Effect of phonon focusing on Knudsen flow of phonon gas in single-crystal nanowires made of spintronics materials

    Science.gov (United States)

    Kuleev, I. I.; Bakharev, S. M.; Kuleev, I. G.; Ustinov, V. V.

    2017-01-01

    Effect of anisotropy of elastic energy on the phonon propagation in single-crystal nanowires made of Fe, Cu, MgO, InSb, and GaAs materials that are used to fabricate spintronics devices in the regime of the Knudsen flow of phonon gas has been studied. A new method of analyzing the focusing of quasi-transverse modes has been suggested, which made it possible to determine the average values of the densities of phonon states in the regions of focusing and defocusing slow and fast quasi-transverse modes. The effect of phonon focusing on the anisotropy of heat conductivity and lengths of the phonon free paths has been analyzed for all acoustic modes that exist in spintronics nanostructures. It has been shown that for all the nanowires investigated the angular dependences of the free paths of fast and slow transverse modes in the {100} and {110} planes correlate with the angular dependences of the densities of phonon states for these modes. Directions of the heat flux that ensure the maximum and minimum phonon heat conductivity in the nanowires have been determined.

  10. Compound liquid crystal microlens array with convergent and divergent functions.

    Science.gov (United States)

    Kang, Shengwu; Zhang, Xinyu

    2016-04-20

    Based on the common liquid crystal microlens, a new compound structure for a liquid crystal (LC) microlens array is proposed. The structure consists of two sub LC microlens arrays with properties of light divergence and convergence. The structure has two LC layers: one to form the positive sub lens, one for the negative. The patterned electrode and plane electrode are used in both sub microlens arrays. When two sub microlens arrays are electrically controlled separately, they can diverge or converge the incident light, respectively. As two sub microlens arrays are both applied on the voltage, the focal length of the compound LC microlens becomes larger than that of the LC microlens with a single LC layer. Another feature of a compound LC microlens array is that it can make the target contour become visible under intense light. The mechanisms are described in detail, and the experimental data are given.

  11. Transitions through critical temperatures in nematic liquid crystals

    KAUST Repository

    Majumdar, Apala

    2013-08-06

    We obtain estimates for critical nematic liquid crystal (LC) temperatures under the action of a slowly varying temperature-dependent control variable. We show that biaxiality has a negligible effect within our model and that these delay estimates are well described by a purely uniaxial model. The static theory predicts two critical temperatures: the supercooling temperature below which the isotropic phase loses stability and the superheating temperature above which the ordered nematic states do not exist. In contrast to the static problem, the isotropic phase exhibits a memory effect below the supercooling temperature in the dynamic framework. This delayed loss of stability is independent of the rate of change of temperature and depends purely on the initial value of the temperature. We also show how our results can be used to improve estimates for LC material constants. © 2013 American Physical Society.

  12. Insights into the crystal chemistry of Earth materials rendered by electron density distributions: Pauling's rules revisited

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.

    2014-05-20

    coordination number of the atom is determined uniquely independent of the asphericity and sizes of the atom. A power law connection established between the bond lengths and bond strengths for crystals and molecules is mirrored by a comparable power law connection between bond length and the accumulation of the electron density between bonded pairs of atoms, a connection that is consistent with Pauling's electroneutrality postulate that the charges of the atoms in an oxide are negligibly small. The connection indicates that a one-to-one correspondence exists between the accumulation between a pair of bonded atoms and the Pauling bond strength for M-O bonded interaction for all atoms of the periodic table. The connection provides a common basis for understanding the success of the manifold applications that have been made with the bond valence theory model together with the modeling of crystal structures, chemical zoning, leaching and cation transport in batteries and the like. We believe that the wide spread applications of the model in mineralogy and material science owes much of its success to the direct connection between bond strength and the quantum mechanical observable, the electron density distribution. Comparable power law expressions established for the bonded interactions for both crystals and molecules support Pauling's assertion that his second rule has significance for molecules as well as for crystals. A simple expression is found that provides a one to one connection between the accumulation of the electron density between bonded M and O atoms and the Pauling bond strength for all M atoms of the periodic table with ~ 95 % of the variation of the bond strength being explained in terms of a linear dependence on the accumulated electron density. Compelling evidence is presented that supports the argument that the Si-O bonded interactions for tiny siloxane molecules and silicate crystals are chemically equivalent.

  13. Effect of L-cysteine on optical, thermal and mechanical properties of ADP crystal for NLO application

    Science.gov (United States)

    Shaikh, R. N.; Shirsat, M. D.; Koinkar, P. M.; Hussaini, S. S.

    2015-06-01

    The ammonium dihydrogen phosphate (ADP) crystal doped with amino acid L-cysteine (LC) was grown by a slow evaporation technique. The grown crystal was transparent in the entire visible region, which is an essential requirement for a nonlinear crystal. The LC doping enhances the optical band gap of ADP (5.35 eV). The TG/DTA analysis of LC doped ADP crystal confirms the optimum thermal stability of grown crystal. The enhancement in the mechanical stability after LC doping was confirmed by Vicker's microhardness test. The LC doping showed significant impact on dielectric properties (dielectric constant and dielectric loss) of grown crystal. The third order nonlinear behavior of LC doped ADP crystal was investigated using a Z-scan technique at 632.8 nm and effective nonlinear optical parameters were evaluated.

  14. A Study on the Effects on Low Cycle Fatigue Life of a High Pressure Turbine Nozzle due to the Perturbation of Crystal Orientation of Grain of DS Materials

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Jae Sung; Kang, Young Seok; Rhee, Dong Ho [Korea Aerospace Research Institute, Daejeon (Korea, Republic of)

    2016-07-15

    High pressure components of a gas turbine engine are generally made of nickel-base superalloys, using precision casting process due to complicated geometries with intricate channels and cooling holes. Turbine components manufactured from directionally solidified and single crystal materials have columnar grains; however, it is found that the crystals do not grow in its preferred direction, although the orientation can be controlled. This anisotropy can lead to the variations of elastic and Hill's parameters in constitutive equations, and they alter stress distributions and the low cycle fatigue life. We aims to evaluate the effects of perturbed crystal orientations on the structural integrity of a directionally solidified nozzle using low cycle fatigue life. We also attempt to show the necessity for the control of allowed manufacturing errors and stochastic analysis. Our approaches included conjugate heat transfer and structural analysis, along with low cycle fatigue life assessment.

  15. Activating photonic crystal membrane nanocavities by infiltrating with liquid crystals or luminescent colloidal nanocrystals

    NARCIS (Netherlands)

    Dündar, M.A.; Christova, C.; Silov, A.Y.; Karouta, F.; Nötzel, R.; Wienk, M.; Salemink, H.; Van der Heijden, R.W.

    2010-01-01

    Liquid crystal (LC, Merk 5 CB) is infiltrated into active, InAs quantum dots embedded, InGaAsP membrane type nanocavities to investigate the possible effect of the LC orientation on active cavity tuning. The tuning is demonstrated thermally and thermo-optically. The thermal tuning showed that the ca

  16. Activating photonic crystal membrane nanocavities by infiltrating with liquid crystals or luminescent colloidal nanocrystals

    NARCIS (Netherlands)

    Dündar, M.A.; Christova, C.; Silov, A.Y.; Karouta, F.; Nötzel, R.; Wienk, M.; Salemink, H.; Van der Heijden, R.

    2010-01-01

    Liquid crystal (LC, Merk 5 CB) is infiltrated into active, InAs quantum dots embedded, InGaAsP membrane type nanocavities to investigate the possible effect of the LC orientation on active cavity tuning. The tuning is demonstrated thermally and thermo-optically. The thermal tuning showed that the c

  17. Detection of low concentration formaldehyde gas by photonic crystal sensor fabricated by nanoimprint process in polymer material

    NARCIS (Netherlands)

    Boersma, A.; Ee, R.J. van; Stevens, R.S.A.; Saalmink, M.; Charlton, M.D.B.; Pollard, M.E.; Chen, R.; Kontturi, V.; Karioja, P.; Alajoki, T.

    2014-01-01

    This paper describes experimental measurement results for photonic crystal sensor devices which have been functionalized for gas sensing applications. The sensor consists of a two dimensional photonic crystal etched into a slab waveguide having a refractive index of 1.7-1.9. Test devices were fabric

  18. Material properties of pulsed-laser crystallized Si thin films grown on yttria-stabilized zirconia crystallization-induction layers by two-step irradiation method

    Science.gov (United States)

    Thi Kieu Lien, Mai; Horita, Susumu

    2016-03-01

    Amorphous Si thin films on yttria-stabilized zirconia (YSZ) layers were crystallized widely in solid phase by the two-step method with a pulsed laser, moving the sample stage. The crystalline quality, impurity diffusion, and electrical properties of the crystallized Si films were investigated. It was found that the crystallinity of the Si thin films was improved and their surface was smooth without an incubation layer at the interface, indicating the uniform crystallinity of Si on YSZ. The diffusion of Zr and Y into the Si thin films was as small as or smaller than the order of 1017 atoms/cm3. We evaluated the electrical properties of carrier concentration and Hall mobility of the Si thin films with/without YSZ layers by using the resistivity and AC Hall effect measurements. The temperature and doping concentration dependences were measured for both undoped and P-doped films. It was found that both the undoped and P-doped Si/YSZ/glass films showed higher mobilities and carrier concentrations (and therefore higher conductivities), which indicate a smaller number of defects, than the Si/glass films. This suggested that the Si film crystallized on the YSZ layer is more suitable for application to electronic devices than the Si film on glass.

  19. Optical transmittance investigation of 1-keV ion-irradiated sapphire crystals as potential VUV to NIR window materials of fusion reactors

    Directory of Open Access Journals (Sweden)

    Keisuke Iwano

    2016-10-01

    Full Text Available We investigate the optical transmittances of ion-irradiated sapphire crystals as potential vacuum ultraviolet (VUV to near-infrared (NIR window materials of fusion reactors. Under potential conditions in fusion reactors, sapphire crystals are irradiated with hydrogen (H, deuterium (D, and helium (He ions with 1-keV energy and ∼ 1020-m-2 s-1 flux. Ion irradiation decreases the transmittances from 140 to 260 nm but hardly affects the transmittances from 300 to 1500 nm. H-ion and D-ion irradiation causes optical absorptions near 210 and 260 nm associated with an F-center and an F+-center, respectively. These F-type centers are classified as Schottky defects that can be removed through annealing above 1000 K. In contrast, He-ion irradiation does not cause optical absorptions above 200 nm because He-ions cannot be incorporated in the crystal lattice due to the large ionic radius of He-ions. Moreover, the significant decrease in transmittance of the ion-irradiated sapphire crystals from 140 to 180 nm is related to the light scattering on the crystal surface. Similar to diamond polishing, ion irradiation modifies the crystal surface thereby affecting the optical properties especially at shorter wavelengths. Although the transmittances in the VUV wavelengths decrease after ion irradiation, the transmittances can be improved through annealing above 1000 K. With an optical transmittance in the VUV region that can recover through simple annealing and with a high transparency from the ultraviolet (UV to the NIR region, sapphire crystals can therefore be used as good optical windows inside modern fusion power reactors in terms of light particle loadings of hydrogen isotopes and helium.

  20. Liquid crystal device and method thereof

    Science.gov (United States)

    Shiyanovskii, Sergij V; Gu, Mingxia; Lavrentovich, Oleg D

    2012-10-23

    The invention provides a liquid crystal device and method thereof. Subsequent to applying a first electrical voltage on a liquid crystal to induce a reorientation of the liquid crystal, a second electrical voltage with proper polarity is applied on the liquid crystal to assist the relaxation of the reorientation that was induced by the first electrical voltage. The "switch-off" phase of the liquid crystal can therefore be accelerated or temporally shortened, and the device can exhibit better performance such as fast response to on/off signals. The invention can be widely used LCD, LC shutter, LC lens, spatial light modulator, telecommunication device, tunable filter, beam steering device, and electrically driven LC device, among others.

  1. 辊压法制备柔性双稳态液晶显示器件%Fabricating Flexible Reflective Bistable LC Cells via Roiling Process

    Institute of Scientific and Technical Information of China (English)

    夏亮; 徐琼; 陆红波; 唐龙祥; 邱龙臻

    2011-01-01

    基于PET塑料薄膜取代硬质玻璃作为基板材料制备柔性液晶盒时,采用传统制备工艺会产生盒厚度不均以及盒中残留气泡等现象,导致柔性液晶器件性能变差.采用辊压工艺可以有效地解决上述问题,文章对其工艺流程进行了详细描述.实验发现,通过在辊压工艺中加热两片基板以降低溶液的黏度,能够有效地避免气泡残留,获得厚度均匀的柔性液晶盒.应用辊压工艺和聚合物分散胆甾相液晶,成功地制备了尺寸为7 cm2的反射式柔性双稳态液晶盒.利用正交偏光显微镜观察了聚合物分散液晶的相形态,紫外分光光度计测试了其光电性能:最高反射率为22.8%,对比度为2.259,阈值电压为78 V,饱和电压为99 V.%As substrate materials rigid glass is commonly replaced by PET plastic films for preparing flexible LC cells, the traditional process may cause nonuniform thickness and trap air bubbles in LC cells which deteriorate property of flexible LC device. These problems can be effectively solved by a rolling technique. The detail process has been described in this paper. It was found that the viscosity of solution was reduced by heating the two substrates which avoids the interfusion of air bubbles in the solution and results in LC cells with uniform thickness. 7 cm2-sized flexible reflective bistable LC cells are prepared successfully by polymer dispersed cholesteric liquid crystal method. Polymer dispersed cholesteric liquid crystal texture is studied by polarizing microscope. Electro-optical of flexible liquid crystal cell is measured by ultraviolet. The film provided with max reflectivity 22. 8%, contrast 2. 259, threshold voltage 78 V and saturation voltage 99 V.

  2. Mn3O4 nano-sized crystals: Rapid synthesis and extension to preparation of nanosized LiMn2O4 materials

    Indian Academy of Sciences (India)

    Xiao-Ling Cui; Yong-Li Li; Shi-You Li; Guo-Cun Sun; Jin-Xia Ma; Lu Zhang; Tian-Ming Li; Rong-Bo Ma

    2014-05-01

    With a novel gas-liquid reaction, a facile and rapid method has been successfully developed for the synthesis of nano-sized Mn3O4 crystals. Coupled with complementary experiments, preparation mechanisms of Mn(II) and Mn(III)Mn(III)Mn(II) coordination complexes as well as nano-sized Mn3O4 crystals are studied. Besides, as the extension of synthesis of nano-sized Mn3O4 crystals, the intermediate ammonia alkaline solution containing Mn(III)Mn(III)Mn(II) coordination complexes, which tend to decompose into nano-sized Mn3O4 crystals spontaneously, are used to prepare nanosized LiMn2O4 materials. Although any physical treatment has been done to disperse powders, the as-synthesized LiMn2O4 nanoparticles are still existence with homogeneous size distribution (about 24.2 nm) without any obvious agglomeration. That is to say, the novel method is constructive not only to accelerate reaction rates for the elevated oxidation state of manganese ions, but also to prepare dispersed nanosized LiMn2O4 materials with good electrochemical properties.

  3. Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications.

    Science.gov (United States)

    Hong, Chitsung; Tang, Tsung-Ta; Hung, Chi-Yu; Pan, Ru-Pin; Fang, Weileun

    2010-07-16

    This paper reports the implementation and integration of a self-assembled nanoporous anodic aluminum oxide (np-AAO) film and liquid crystal (LC) on an ITO-glass substrate for liquid crystal display (LCD) panel applications. An np-AAO layer with a nanopore array acts as the vertical alignment layer to easily and uniformly align the LC molecules. Moreover, the np-AAO nanoalignment layer provides outstanding material properties, such as being inorganic with good transmittance, and colorless on ITO-glass substrates. In this application, an LCD panel, with the LC on the np-AAO nanoalignment layer, is successfully implemented on an ITO-glass substrate, and its performance is demonstrated. The measurements show that the LCD panel, consisting of an ITO-glass substrate and an np-AAO layer, has a transmittance of 60-80%. In addition, the LCD panel switches from a black state to a bright state at 3 V(rms), with a response time of 62.5 ms. In summary, this paper demonstrates the alignment of LC on an np-AAO layer for LCD applications.

  4. Tuning quantum-dot organization in liquid crystals for robust photonic applications.

    Science.gov (United States)

    Rodarte, Andrea L; Nuno, Zachary S; Cao, Blessing H; Pandolfi, Ronald J; Quint, Makiko T; Ghosh, Sayantani; Hein, Jason E; Hirst, Linda S

    2014-05-19

    Mesogenic ligands have the potential to provide control over the dispersion and stabilization of nanoparticles in liquid crystal (LC) phases. The creation of such hybrid materials is an important goal for the creation of soft tunable photonic devices, such as the LC laser. Herein, we present a comparison of isotropic and mesogenic ligands attached to the surface of CdSe (core-only) and CdSe/ZnS (core/shell) quantum dots (QDs). The mesogenic ligand's flexible arm structure enhances ligand alignment, with the local LC director promoting QD dispersion in the isotropic and nematic phases. To characterize QD dispersion on different length scales, we apply fluorescence microscopy, X-ray scattering, and scanning confocal photoluminescent imaging. These combined techniques demonstrate that the LC-modified QDs do not aggregate into the dense clusters observed for dots with simple isotropic ligands when dispersed in liquid crystal, but loosely associate in a fluid-like droplet with an average interparticle spacing >10 nm. Embedding the QDs in a cholesteric cavity, we observe comparable coupling effects to those reported for more closely packed isotropic ligands.

  5. Dielectric and electro-optical properties of polymer-stabilized liquid crystal. II. Polymer PiBMA dispersed in MBBA

    Science.gov (United States)

    Tripathi, Pankaj Kumar; Pande, Mukti; Singh, Shri

    2016-09-01

    In continuation of our earlier work (Pande et al. in Appl Phys A 122:217-226, 2016), we report the results of dielectric and electro-optical properties of pure MBBA and PSLC (polymer PiBMA dispersed in MBBA) systems. The polymer networks domains formed are found to be anisotropic and are oriented in the direction of electric field for both the planar and homeotropic alignment cells. The dielectric anisotropy, optical anisotropy, response time, threshold voltage, splay elastic constant and rotational viscosity were observed for both the LC and PSLC systems with electric field. The liquid crystal properties are affected significantly with increasing concentration of polymer in pure LC material. It has been observed that the polymer networks interaction plays a major role in changing the properties of PSLC system. The effect of dielectric loss and dielectric permittivity on both pure LC and PSLC systems is also discussed.

  6. Drying, phase separation, and deposition in droplets of sunset yellow chromonic liquid crystal

    Science.gov (United States)

    Gross, Adam; Davidson, Zoey S.; Huang, Yongyang; Still, Tim; Zhou, Chao; Yodh, A. G.

    We investigate the drying process and the final deposition patterns of multi-phase sessile droplets containing aqueous lyotropic chromonic liquid crystal (LC). The experiments employ a variety of optical techniques including profilometry, polarization optical microscopy and optical coherence microscopy. An unusual hierarchical LC assembly is observed during drying; in particular, LC mesogens are first formed at the start of drying and then compartments of isotropic, nematic and columnar phases arise. Nonuniform evaporation creates concentration gradients in droplets such that LC phases emerge from the outer edge of the drop and advance to the center over the course of drying. Distinct outward flows associated with the ``coffee-ring effect'' are seen initially, but the assembly of the mesogens creates viscosity, density, and surface tension gradients that effectively introduce new convective flows and complex LC phase boundaries within the drop. Finally, we show that the final deposit shape of chromonic materials changes with rate of evaporation. We gratefully acknowledge financial support through NSF DMR12-05463, MRSEC DMR11-20901, NASA NNX08AO0G, and NSF DBI-1455613.

  7. Pixel-level tunable liquid crystal lenses for auto-stereoscopic display

    Science.gov (United States)

    Li, Kun; Robertson, Brian; Pivnenko, Mike; Chu, Daping; Zhou, Jiong; Yao, Jun

    2014-02-01

    Mobile video and gaming are now widely used, and delivery of a glass-free 3D experience is of both research and development interest. The key drawbacks of a conventional 3D display based on a static lenticular lenslet array and parallax barriers are low resolution, limited viewing angle and reduced brightness, mainly because of the need of multiple-pixels for each object point. This study describes the concept and performance of pixel-level cylindrical liquid crystal (LC) lenses, which are designed to steer light to the left and right eye sequentially to form stereo parallax. The width of the LC lenses can be as small as 20-30 μm, so that the associated auto-stereoscopic display will have the same resolution as the 2D display panel in use. Such a thin sheet of tunable LC lens array can be applied directly on existing mobile displays, and can deliver 3D viewing experience while maintaining 2D viewing capability. Transparent electrodes were laser patterned to achieve the single pixel lens resolution, and a high birefringent LC material was used to realise a large diffraction angle for a wide field of view. Simulation was carried out to model the intensity profile at the viewing plane and optimise the lens array based on the measured LC phase profile. The measured viewing angle and intensity profile were compared with the simulation results.

  8. Surrogate Seeds For Growth Of Crystals

    Science.gov (United States)

    Shlichta, Paul J.

    1989-01-01

    Larger crystals of higher quality grown. Alternative method for starting growth of crystal involves use of seed crystal of different material instead of same material as solution. Intended for growing single-crystal proteins for experiments but applicable in general to growth of crystals from solutions and to growth of semiconductor or other crystals from melts.

  9. Ferro-based derivatizing agents for LC/MS an LC/EC/MS

    NARCIS (Netherlands)

    Seiwert, Bettina

    2007-01-01

    Within this thesis, the development and application of ferrocene-based derivatizing agents for LC/MS and LC/EC/MS is presented. The advantages of derivatization by ferrocenes are the similtaneous introduction of a mass tag and an electroactive group, which make them ideally suited for LC/MS and esp

  10. Defect structures in liquid crystals bounded by microwrinkles

    Science.gov (United States)

    Ohzono, Takuya

    2013-09-01

    Spatially confined liquid crystals (LCs) exhibit non-uniform alignment, often accompanied by self-organized topological defects of non-trivial shape in response to imposed boundary conditions and geometry. Here we show that a nematic LC, when confined in a sinusoidal microwrinkle groove, exhibits a new periodic arrangement of twist deformations and a zigzag line defect. This periodic ordering results from the inherent LC elastic anisotropy and the antagonistic boundary conditions at the top flat LC and the curved LC-groove interfaces. The effect of the LC thickness on the stability of the line defect is also shown.

  11. Liquid crystal cell design of VGA field sequential color LCoS display

    Science.gov (United States)

    Liu, Yanyan; Geng, Weidong; Dai, Yongping

    2009-07-01

    The design of liquid crystal cell is an important factor to determine the display quality of LCoS display device. The goal of this paper is to gain VGA field sequential color (FSC) LCoS device used for near-to-eye system. The characteristics of optics and electrooptics for the twist nematic liquid crystal material and the material requirements of the FSC LCoS were studied. The LCOS liquid crystal cell optimized by dynamic parameter space method had an uniform reflectivity (about 90%) for the light with wave length from 450nm to 650nm. Both considering the electrooptic response curve of liquid crystal and the relationship between the contrast ratio and pixel size, we determined to use high speed twist nematic liquid crystal working in normally white mode. The liquid crystal cell gap and the pixel size were determined as 2.5um and 12um, respectively. The VGA FSC LCoS device was fabricated with SMIC 0.35um CMOS process and filled with LC-A liquid crystal of Merck in Varitronix. The measurement showed that the response time of liquid crystal from light to dark was 1.8ms and from dark to light was 4.4ms. The contrast ratio is bigger than 50:1. The LCoS displays well.

  12. Asbestos. LC Science Tracer Bullet.

    Science.gov (United States)

    Evans, Joanna, Comp.

    Asbestos is a generic term that refers to several silicate materials occurring naturally as fibrous rocks. Insignificant amounts of asbestos fiber can be found in ambient air, but this, and materials containing hard asbestos, usually do not create problems. Soft materials, however, can release high amounts of asbestos fibers into the air, and…

  13. Photonic Material Selection of Scintillation Crystals Using Monte Carlo Method for X-Ray Detection in Industrial Computed Tomography

    Directory of Open Access Journals (Sweden)

    Peng He

    2014-01-01

    Full Text Available Currently industrial X-CT system is designed according to characteristics of test objects, and test objects determine industrial X-CT system structure, X-ray detector/sensor property, scanning mode, and so forth. So there are no uniform standards for the geometry size of scintillation crystals of detector. Moreover, scintillation crystals are usually mixed with some highly toxic impurity elements, such as Tl and Cd. Thus, it is indispensable for establishing guidelines of engineering practice to simulate X-ray detection performances of different scintillation crystals. This paper focuses on how to achieve high efficient X-ray detection in industrial X-CT system which used Monte Carlo (MC method to study X-ray energy straggling characteristics, full energy peak efficiency, and conversion efficiency of some scintillation crystals (e.g., CsI(Tl, NaI(Tl, and CdWO4 after X-ray interacted with these scintillation crystals. Our experimental results demonstrate that CsI(Tl scintillation crystal has the advantages of conversion efficiency, spectral matching, manufacturing process, and full energy peak efficiency; it is an ideal choice for high efficient X-ray detection in industrial X-CT system.

  14. Light-induced deformation of photoresponsive liquid crystals on a water surface.

    Science.gov (United States)

    Okano, Kunihiko; Shinohara, Masato; Yamashita, Takashi

    2009-01-01

    Photodeformation: Azobenzene derivatives showing a room-temperature liquid crystal (LC) phase exhibit photoinduced deformation on a water surface. While a droplet of a LC sample floating on the surface expands upon UV irradiation, a LC sample containing a solvent is condensed towards the center of the illuminated regions (see figure).

  15. Materials for high-performance diesel engines. [42CrMo4; 34CrNiMo6; Inconel 713LC; TiAl6V4]. Werkstoffe im Hochleistungsdieselmotor

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.M. (MTU Friedrichshafen, Vorentwicklung-Versuch (Germany)); Trebs, J. (MTU Friedrichshafen, Zentralabteilungen Versuch (Germany))

    1992-01-01

    In the high performance engine branch there is a trend to develop engines with increasing power density while at the same time more operational safety is demanded. The two above mentioned demands are apparently contrary. However, by using high performance materials both demands can be fulfilled. In the following a few engine components will be described to demonstrate the possibilities offered by high performance materials. (orig.).

  16. The study of electromagnetic wave propagation in photonic crystals via planewave based transfer (scattering) matrix method with active gain material applications

    Science.gov (United States)

    Li, Ming

    In this dissertation, a set of numerical simulation tools are developed under previous work to efficiently and accurately study one-dimensional (1D), two-dimensional (2D), 2D slab and three-dimensional (3D) photonic crystal structures and their defects effects by means of spectrum (transmission, reflection, absorption), band structure (dispersion relation), and electric and/or magnetic fields distribution (mode profiles). Further more, the lasing property and spontaneous emission behaviors are studied when active gain materials are presented in the photonic crystal structures. First, the planewave based transfer (scattering) matrix method (TMM) is described in every detail along with a brief review of photonic crystal history (Chapter 1 and 2). As a frequency domain method, TMM has the following major advantages over other numerical methods: (1) the planewave basis makes Maxwell's Equations a linear algebra problem and there are mature numerical package to solve linear algebra problem such as Lapack and Scalapack (for parallel computation). (2) Transfer (scattering) matrix method make 3D problem into 2D slices and link all slices together via the scattering matrix (S matrix) which reduces computation time and memory usage dramatically and makes 3D real photonic crystal devices design possible; and this also makes the simulated domain no length limitation along the propagation direction (ideal for waveguide simulation). (3) It is a frequency domain method and calculation results are all for steady state, without the influences of finite time span convolution effects and/or transient effects. (4) TMM can treat dispersive material (such as metal at visible light) naturally without introducing any additional computation; and meanwhile TMM can also deal with anisotropic material and magnetic material (such as perfectly matched layer) naturally from its algorithms. (5) Extension of TMM to deal with active gain material can be done through an iteration procedure with gain

  17. Growth, Properties, and Theoretical Analysis of M2LiVO4 (M = Rb, Cs) Crystals: Two Potential Mid-Infrared Nonlinear Optical Materials.

    Science.gov (United States)

    Han, Guopeng; Wang, Ying; Su, Xin; Yang, Zhihua; Pan, Shilie

    2017-05-15

    Mid-Infrared nonlinear optical (Mid-IR NLO) crystals with excellent performances play a particularly important role for applications in areas such as telecommunications, laser guidance, and explosives detection. However, the design and growth of high performance Mid-IR NLO crystals with large NLO efficiency and high laser-damage threshold (LDT) still face numerous fundamental challenge. In this study, two potential Mid-IR NLO materials, Rb2LiVO4 (RLVO) and Cs2LiVO4 (CLVO) with noncentrosymmetric structures (Orthorhombic, Cmc21) were synthesized by high-temperature solution method. Thermal analysis and powder X-ray diffraction demonstrate that RLVO and CLVO melt congruently. Centimeter sized crystals of CLVO have been grown by the top-seeded solution growth method. RLVO and CLVO exhibit strong second harmonic generation (SHG) effects (about 4 and 5 times that of KH2PO4, respectively) with a phase-matching behavior at 1.064 μm, and a wide transparency range (0.33-6.0 μm for CLVO). More importantly, RLVO and CLVO possess a high LDT value (~28 × AgGaS2). In addition, the density functional theory (DFT) and dipole moments studies indicate that the VO4 anionic groups have a dominant contribution to the SHG effects in RLVO and CLVO. These results suggest that the title compounds are promising NLO candidate crystals applied in the Mid-IR region.

  18. LC-MS systems for quantitative bioanalysis.

    Science.gov (United States)

    van Dongen, William D; Niessen, Wilfried M A

    2012-10-01

    LC-MS has become the method-of-choice in small-molecule drug bioanalysis (molecular mass Triple quadrupole MS is the established bioanalytical technique due to its unpreceded selectivity and sensitivity, but high-resolution accurate-mass MS is recently gaining ground due to its ability to provide simultaneous quantitative and qualitative analysis of drugs and their metabolites. This article discusses current trends in the field of bioanalytical LC-MS (until September 2012), and provides an overview of currently available commercial triple quadrupole MS and high-resolution LC-MS instruments as applied for the bioanalysis of small-molecule and biopharmaceutical drugs.

  19. LC Oscillator Driver for Safety Critical Applications

    CERN Document Server

    Horsky, Pavel

    2011-01-01

    A CMOS harmonic signal LC oscillator driver for automotive applications working in a harsh environment with high safety critical requirements is described. The driver can be used with a wide range of external components parameters (LC resonance network of a sensor). Quality factor of the external LC network can vary two decades. Amplitude regulation of the driver is digitally controlled and the DAC is constructed as exponential with piece-wise-linear (PWL) approximation. Low current consumption for high quality resonance networks is achieved. Realized oscillator is robust, used in safety critical application and has low EMC emissions.

  20. An analytical model for the determination of crystallite size and crystal lattice microstrain distributions in nanocrystalline materials from the variance of the X-ray diffraction peaks

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Bajo, F. [Universidad de Extremadura, Departamento de Fisica Aplicada, Badajoz (Spain); Ortiz, A.L. [Universidad de Extremadura, Departamento de Ingenieria Mecanica, Energetica y de los Materiales, Badajoz (Spain); Cumbrera, F.L. [Universidad de Extremadura, Departamento de Fisica, Badajoz (Spain)

    2009-01-15

    An analytical model for the determination of crystallite size and crystal lattice microstrain distributions in nanocrystalline (nc) materials by X-ray diffractometry (XRD) is presented. It entails generalizing the variance method to establish analytically the connection between the variance coefficients of the physically broadened XRD peaks and the characteristic parameters of explicit distributions of crystallite sizes and crystal lattice microstrains, which results in a more detailed characterization of the nc-materials. The proposed model is generic in nature and has the potential to be used under the assumption of different mathematical functions for the two distributions, which suggests that it may have an important role to play in the characterization of nc-materials. Nevertheless, the specialization to the case of nc-materials with log-normal crystallite size distribution and three typical types of lattice microstrains is used as an illustration and to formulate explicit analytical expressions of interest. Finally, the usefulness of the proposed model is demonstrated on standard XRD profiles. (orig.)

  1. Crystal growth by Bridgman and Czochralski method of the ferromagnetic quantum critical material YbNi4P2

    Science.gov (United States)

    Kliemt, K.; Krellner, C.

    2016-09-01

    The tetragonal YbNi4P2 is one of the rare examples of compounds that allow the investigation of a ferromagnetic quantum critical point. We report in detail on two different methods which have been used to grow YbNi4P2 single crystals from a self-flux. The first, a modified Bridgman method, using a closed crucible system yields needle-shaped single crystals oriented along the [001]-direction. The second method, the Czochralski growth from a levitating melt, yields large single crystals which can be cut in any desired orientation. With this crucible-free method, samples without flux inclusions and a resistivity ratio at 1.8 K of RR1.8K = 17 have been grown.

  2. Polarization Raman Microscopic Study of Molecular Alignment Behavior in Liquid Crystal/Polymer Composite Films

    Science.gov (United States)

    Murashige, Takeshi; Fujikake, Hideo; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2005-12-01

    We clarified that the molecular alignment of aggregated polymers is partially synchronized with liquid crystal (LC) director reorientation in an LC/polymer composite film. The molecular alignment behavior in composite films with LC- and polymer-rich regions formed by photopolymerization-induced phase separation was investigated using polarization Raman spectral microscopy. Raman scattering intensity induced by aligned side chains of polymers in the LC-rich region changed with LC director reorientation when voltage was applied to the composite film. It was confirmed for the first time that polymers capable of movement are formed in the LC-rich region.

  3. The Study of Electromagnetic Wave Propogation in Photonic Crystals Via Planewave Based Transfer (Scattering) Matrix Method with Active Gain Material Applications

    Energy Technology Data Exchange (ETDEWEB)

    LI, Ming [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    In this dissertation, a set of numerical simulation tools are developed under previous work to efficiently and accurately study one-dimensional (1D), two-dimensional(2D), 2D slab and three-dimensional (3D) photonic crystal structures and their defects effects by means of spectrum (transmission, reflection, absorption), band structure (dispersion relation), and electric and/or magnetic fields distribution (mode profiles). Furthermore, the lasing property and spontaneous emission behaviors are studied when active gain materials are presented in the photonic crystal structures. Various physical properties such as resonant cavity quality factor, waveguide loss, propagation group velocity of electromagnetic wave and light-current curve (for lasing devices) can be obtained from the developed software package.

  4. Reduced operating voltage and grey-to-grey response time in a vertically aligned liquid crystal display using a mixture of two polyimide alignment materials

    Science.gov (United States)

    Lee, Ji-Hoon; Choi, Young Eun; Lee, Jun Hee; Lee, Byeong Hoon; Song, Won Il; Jeong, Kwang-Un; Lee, Gi-Dong; Lee, Seung Hee

    2013-12-01

    We proposed a method to reduce the operating voltage and the grey-to-grey switching time of a vertically aligned liquid crystal display using a mixture of planar and vertical polyimide alignment materials. The surface anchoring energy of the two-polyimide mixture was smaller than that of the pure vertical polyimide and consequently, liquid crystal molecules were easily switched to a planar state with an electric field, resulting in a greater maximum retardation than that of the pure polyimide at the same applied voltage. Rising time was also significantly reduced due to the suppressed optical bouncing effect in the mixed planar polyimide, and the decaying time showed negligible change. With the proposed approach, we can reduce the cell gap to obtain half-wave retardation allowing for faster response time while keeping a low operating voltage.

  5. A United Effort for Crystal Growth, Neutron Scattering, and X-ray Scattering Studies of Novel Correlated Electron Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-02-12

    The research accomplishments during the award involved experimental studies of correlated electron systems and quantum magnetism. The techniques of crystal growth, neutron scattering, x-ray scattering, and thermodynamic & transport measurements were employed, and graduate students and postdoctoral research associates were trained in these techniques.

  6. Asymmetric electrooptic response in a nematic liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Dascalu, Constanta [Politechnica University of Bucharest, Bucharest (Romania)

    2001-06-01

    An asymmetric electrooptic response in nematic liquid crystal (LC) has been obtained. The liquid crystal hybrid cell was made by using a standard configuration. One of the ITO (Indium Tin Oxide) electrodes was covered with a surfactant, which induces a homeotropic alignment. The second of the indium tin oxide electrodes was covered by a thin layer of photopolymer, which was previously mixed with an acid, which favours a process of release of protons. Such cations are responsible of electrochemical process in the LC leading to an asymmetric electrooptic response, which depend on the polarity of the applied electric field. This fact is due to an internal field, which change the effective voltage thresholds for the reorientation of the liquid crystal. During the anodic polarization, the optical switching is inhibited because the effective field decreases below the threshold value. On contrary for the opposite polarization the effective field is enough to determine a homeotropic alignment. [Spanish] Se ha obtenido una respuesta electro-optica asimetrica en cristales liquidos neumaticos. La celula hibrida de cristal liquido fue construida utilizando una configuracion estandar. Uno de los electrodos ITO fue cubierto con una pelicula delgada de material organico para inducir una alineacion homeotropa. El otro electrodo ITO fue cubierto con una pelicula delgada de fotopolimero anteriormente mezclada con un acido para favorecer la emision de protones. Estos cationes son responsables del proceso electroquimico en LC, conduciendo a una respuesta electro-optica asimetrica que depende de la polaridad del campo electrico aplicado. Este efecto es originado por un campo interno que cambia el umbral efectivo del voltaje para la reorientacion del cristal liquido. Durante la polarizacion anodica, la conmutacion optica se inhibe debido a que el campo efectivo disminuye abajo del valor del umbral. Por el contrario, para la polarizacion opuesta el campo efectivo es suficiente para

  7. Growth of dopamine crystals

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Vidya, E-mail: vidya.patil@ruparel.edu; Patki, Mugdha, E-mail: mugdha.patki@ruparel.edu [D. G. Ruparel College, Senapati Bapat Marg, Mahim, Mumbai – 400 016 (India)

    2016-05-06

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  8. Growth of dopamine crystals

    Science.gov (United States)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  9. What did Erwin mean? The physics of information from the materials genomics of aperiodic crystals and water to molecular information catalysts and life.

    Science.gov (United States)

    Varn, D P; Crutchfield, J P

    2016-03-13

    Erwin Schrödinger famously and presciently ascribed the vehicle transmitting the hereditary information underlying life to an 'aperiodic crystal'. We compare and contrast this, only later discovered to be stored in the linear biomolecule DNA, with the information-bearing, layered quasi-one-dimensional materials investigated by the emerging field of chaotic crystallography. Despite differences in functionality, the same information measures capture structure and novelty in both, suggesting an intimate coherence between the information character of biotic and abiotic matter-a broadly applicable physics of information. We review layered solids and consider three examples of how information- and computation-theoretic techniques are being applied to understand their structure. In particular, (i) we review recent efforts to apply new kinds of information measures to quantify disordered crystals; (ii) we discuss the structure of ice I in information-theoretic terms; and (iii) we recount recent investigations into the structure of tris(bicyclo[2.1.1]hexeno)benzene, showing how an information-theoretic analysis yields additional insight into its structure. We then illustrate a new Second Law of Thermodynamics that describes information processing in active low-dimensional materials, reviewing Maxwell's Demon and a new class of molecular devices that act as information catalysts. Lastly, we conclude by speculating on how these ideas from informational materials science may impact biology.

  10. The Design and Investigation of Nanocomposites Containing Dimeric Nematogens and Liquid Crystal Gold Nanoparticles with Plasmonic Properties Showing a Nematic-Nematic Phase Transition (Nu-Nx/Ntb).

    Science.gov (United States)

    Tamba, Maria-Gabriela; Yu, Chih Hao; Tang, Bai Jia; Welch, Christopher; Kohlmeier, Alexandra; Schubert, Christopher P; Mehl, Georg H

    2014-04-30

    The construction of liquid crystal compositions consisting of the dimeric liquid crystal, CB_C9_CB (cyanobiphenyl dimer = 1'',9''-bis(4-cyanobiphenyl-4'-yl)nonane), and the range of nematic systems is explored. The materials include a laterally functionalized monomer, which was used to construct a phase diagram with CB_C9_CB, as well as one laterally linked dimer liquid crystal material and two liquid crystal gold nanoparticle (LC-Au-NPs) systems. For the Au-NP-LCs, the NP diameters were varied between ~3.3 nm and 10 nm. Stable mixtures that exhibit a nematic-nematic phase transition are reported and were investigated by POM (polarizing optical microscopy), DSC (differential scanning calorimetry) and X-ray diffraction studies.

  11. Analysis of magneto-optical properties for three-dimensional photonic crystals in high-symmetry arrangement doped by metamaterials and uniaxial materials

    Science.gov (United States)

    Yu, Bing; Li, Heming; Wang, Shenyun; Wan, Fayu; Ge, Junxiang

    2016-11-01

    In this paper, we use a modified plane wave expansion (PWE) method to investigate the properties of photonic band gaps (PBGs) for the extraordinary mode in the three-dimensional (3D) photonic crystals (PCs) which are composed of the anisotropic dielectric (the uniaxial materials) spheres immersed in the homogeneous metamaterials (epsilon-negative materials) background with high-symmetry (body-centered-cubic) lattices, as the magneto-optical Voigt effects are considered. The equations for calculating the PBGs in the first irreducible Brillouin zone are theoretically derived. It is numerically illustrated that the anisotropic PBGs and two flattened band regions can be achieved. The influences of the ordinary-refractive index, extraordinary-refractive index, filling factor of dielectric spheres, electronic plasma frequency and cyclotron frequency on the magneto-optical properties of such 3D PCs also are studied in detail, respectively, and some corresponding physical explanations are given. The numerical results demonstrate that the anisotropy can open partial band gaps in the proposed PCs, and the complete PBGs can be obtained compared with the conventional PCs only containing the isotropic material with similar structures. The bandwidths of PBGs can be tuned by introducing the epsilon-negative materials into such PCs containing the uniaxial materials. The anisotropic PBGs can be manipulated by the parameters as mentioned above. As the proposed PCs with high-symmetry lattices, the complete PBGs can be obtained by introducing the uniaxial materials.

  12. LC-MS/MS analysis of steroids in the clinical laboratory.

    Science.gov (United States)

    Keevil, Brian G

    2016-09-01

    Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a powerful tool that is changing the way we analyse steroids in the clinical laboratory. It is already opening up the field of steroid analysis in endocrinology and is providing new applications for individual steroids and panels of steroids in different clinical conditions. LC-MS/MS is now well-accepted technology and is increasingly being used to replace problematic immunoassay methods because of greater sensitivity and specificity. Improved sample preparation, modern chromatography methods, and sensitive, faster scanning mass spectrometers have all played a role in improving LC-MS/MS. LC-MS/MS is also playing a key role in improving the quality of assays through the development of reference measurement procedures, characterisation of reference materials and multi-site calibration programmes. There is increasing interest in multiplexing steroid assays into panels of diagnostic tests to aid and improve the diagnosis and monitoring of disease.

  13. Magnesium sulfate salts and historic building materials: experimental simulation of limestone flaking by relative humidity cycling and crystallization of salts

    Directory of Open Access Journals (Sweden)

    Pinchin, S.

    2008-06-01

    Full Text Available Magnesium sulfate salts often result from the combination of incompatible construction materials, such as stone or mortar with high magnesium content and sulfates from adjacent mortars or polluted air. When combined with a source of moisture, these materials react to form soluble salts, often leading to significant damage by flaking of the stone, as the magnesium sulfate responds to fluctuating environmental conditions. Several laboratory experiments were performed to reproduce surface flaking on different types of limestone from Spain and the UK to evaluate the effects of humidity cycling on the damage of stone by salt crystallization. The two salt solutions used for the experiments were a single salt of magnesium sulfate and a mixture of magnesium sulfate, calcium sulfate and sodium chloride, a typical salt mixture found in damaged stone at the site of Howden Minster (UK. A climate chamber with precise and programmable temperature and humidity control was used to test the hypothesis that salt damage in the stone can be readily caused by humidity fluctuations. Damage was monitored using Linear Variable Differential Transformer (LVDT, which measure transducers displacement by dimensional change on the order of microns. In addition, Ion Chromatography, Environmental Scanning Electron Microscopy with energy dispersive X-ray spectroscopy (ESEM-EDX and X-ray Diffraction analyses (XRD were also carried out to analyze salt behavior. Damage by flaking took place in two types of magnesian limestone cubes impregnated with the salt mixture, from Cadeby quarry and York Minster, apparently by deliquescent salts of low equilibrium relative humidity (RHeq, while the rest of the samples developed a salt crust over the surface, but no damage was observed in the stone. It is important to verify hypotheses developed from field observations with laboratory experiments. By combining both field and laboratory data, a clearer understanding the different mechanisms of

  14. Multiscale Modeling and Computation of Liquid Crystal Polymers, Polymer Blends, and Polymer Nanocomposites: Investigation of Rheology and Material Properties

    Science.gov (United States)

    2008-04-15

    Multiscale kinetic theories for flows of biaxial liquid crystal polymers Given the rising interests in the modeling of nanofluids of biaxial constituents...Newtonian Fluid Mechanics, 2006, 128(1): 44-61. 4. M. G. Forest, R. Zhou, and Q. Wang, Nano-rod suspension flows: a 2D Smoluchowski-Navier-Stokes...dynamics for rigid rod & platelet suspensions in strongly coupled coplanar linear flow and magnetic fields II: Kinetic theory, Physics of Fluids, 2006, 18

  15. Tribology. LC Science Tracer Bullet.

    Science.gov (United States)

    Havas, George D., Comp.

    Tribology is the science and technology of interacting surfaces in relative motion. It incorporates a number of scientific fields, including friction, wear, lubrication, materials science, and various branches of surface physics and surface chemistry. Tribology forms a vital part of engineering science. The interacting surfaces may be on machinery…

  16. Crystal growth, vibrational, optical, thermal and theoretical studies of a nonlinear optical material: 2-Methyl 3,5-dinitrobenzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, K. [Department of Physics, Sri Sarada College for Women, Salem-16 (India); Guru Prasad, L. [Department of Science & Humanities, M. Kumarasamy College of Engineering, Karur (India); Mathammal, R. [Department of Physics, Sri Sarada College for Women, Salem-16 (India)

    2016-11-15

    Single crystals of 2-methyl 3,5-dinitro benzoic acid with reasonable size have been grown by slow evaporation solution growth method using ethanol as solvent. Quantum chemical calculation of 2-methyl 3,5-Dinitro benzoic acid was carried out by using DFT/B3LYP/6-31+G(d,p) method. The powder X-ray diffraction pattern was recorded and indexed. Both the experimental and theoretical vibrational spectrum validates the presence of functional groups. Polarizability, first order hyperpolarizability and the electric dipole moment values have been computed theoretically. The {sup 1}H and {sup 13}C NMR chemical shift of the molecule was calculated and compared with experimental results. TG/DSC analysis has been employed to understand the thermal and physio-chemical stability of the title compound. Frequency conversion property of the crystal was tested by Kurtz and Perry method. Optical absorption behavior of the grown crystal was examined by recording the optical spectrum and band gap energy was also estimated. The calculated HOMO and LUMO energy shows the charge transfer nature of the molecule.

  17. Crystal growth, vibrational, optical, thermal and theoretical studies of a nonlinear optical material: 2-Methyl 3,5-dinitrobenzoic acid

    Science.gov (United States)

    Sangeetha, K.; Guru Prasad, L.; Mathammal, R.

    2016-11-01

    Single crystals of 2-methyl 3,5-dinitro benzoic acid with reasonable size have been grown by slow evaporation solution growth method using ethanol as solvent. Quantum chemical calculation of 2-methyl 3,5-Dinitro benzoic acid was carried out by using DFT/B3LYP/6-31+G(d,p) method. The powder X-ray diffraction pattern was recorded and indexed. Both the experimental and theoretical vibrational spectrum validates the presence of functional groups. Polarizability, first order hyperpolarizability and the electric dipole moment values have been computed theoretically. The 1H and 13C NMR chemical shift of the molecule was calculated and compared with experimental results. TG/DSC analysis has been employed to understand the thermal and physio-chemical stability of the title compound. Frequency conversion property of the crystal was tested by Kurtz and Perry method. Optical absorption behavior of the grown crystal was examined by recording the optical spectrum and band gap energy was also estimated. The calculated HOMO and LUMO energy shows the charge transfer nature of the molecule.

  18. Phononic crystal devices

    Science.gov (United States)

    El-Kady, Ihab F.; Olsson, Roy H.

    2012-01-10

    Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.

  19. Theoretical analysis of a biased photonic crystal fiber infiltrated with a negative dielectric anisotropy liquid crystal

    DEFF Research Database (Denmark)

    Weirich, Johannes; Wei, Lei; Lægsgaard, Jesper;

    2009-01-01

    We simulate the PBG mode of a biased Photonic Crystal Fiber (PCF) infiltrated with a Liquid Crystal (LC) with negative dielectric anisotropy. We analyse the voltage induced change of the transmission spectrum, dispersion and losses and compare them to the experimental values....

  20. Macroscopically Oriented Porous Materials with Periodic Ordered Structures: From Zeolites and Metal-Organic Frameworks to Liquid-Crystal-Templated Mesoporous Materials.

    Science.gov (United States)

    Cho, Joonil; Ishida, Yasuhiro

    2017-07-01

    Porous materials with molecular-sized periodic structures, as exemplified by zeolites, metal-organic frameworks, or mesoporous silica, have attracted increasing attention due to their range of applications in storage, sensing, separation, and transformation of small molecules. Although the components of such porous materials have a tendency to pack in unidirectionally oriented periodic structures, such ideal types of packing cannot continue indefinitely, generally ceasing when they reach a micrometer scale. Consequently, most porous materials are composed of multiple randomly oriented domains, and overall behave as isotropic materials from a macroscopic viewpoint. However, if their channels could be unidirectionally oriented over a macroscopic scale, the resultant porous materials might serve as powerful tools for manipulating molecules. Guest molecules captured in macroscopically oriented channels would have their positions and directions well-defined, so that molecular events in the channels would proceed in a highly controlled manner. To realize such an ideal situation, numerous efforts have been made to develop various porous materials with macroscopically oriented channels. An overview of recent studies on the synthesis, properties, and applications of macroscopically oriented porous materials is presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Study on the crystallization behaviour and thermal stability of glass-ceramics used as solid oxide fuel cell-sealing materials

    Science.gov (United States)

    Gödeke, Dieter; Dahlmann, Ulf

    Glass ceramics are commonly used as sealing materials for planar solid oxide fuel cells (SOFCs). The major requirements of stack and module builders for these materials are the stability of the coefficient of thermal expansion (CTE), excellent bonding (sticking) behaviour and the absence of volatile ingredients, which can lead to changes of the material properties and the sealing ability. SCHOTT Electronic Packaging has developed special glasses and glass-ceramics for various solid oxide fuel cell designs and operating temperatures. The glass compositions are based on the system MgO-Al 2O 3-BaO-SiO 2-B 2O 3. In this study the evaluation of the developed materials was done by high temperature aging tests for up to 1000 h, high temperature XRD-studies and Rietveld calculations, combined with scanning-electron microscope analysis. Samples of these aged samples were chemically analysed by XRD and wet chemical methods. Results show that after thermal aging of the glasses barium silicates accompanied by barium-magnesium silicates are the major crystalline phases of the glasses. The crystal phases remain stable during high temperature aging tests, indicating a low driving force of material change. The experimental results are compared to phase diagrams by phenomenological and thermochemical considerations.

  2. Identifying Structure-Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach

    Science.gov (United States)

    Diehl, Martin; Groeber, Michael; Haase, Christian; Molodov, Dmitri A.; Roters, Franz; Raabe, Dierk

    2017-03-01

    Predicting, understanding, and controlling the mechanical behavior is the most important task when designing structural materials. Modern alloy systems—in which multiple deformation mechanisms, phases, and defects are introduced to overcome the inverse strength-ductility relationship—give raise to multiple possibilities for modifying the deformation behavior, rendering traditional, exclusively experimentally-based alloy development workflows inappropriate. For fast and efficient alloy design, it is therefore desirable to predict the mechanical performance of candidate alloys by simulation studies to replace time- and resource-consuming mechanical tests. Simulation tools suitable for this task need to correctly predict the mechanical behavior in dependence of alloy composition, microstructure, texture, phase fractions, and processing history. Here, an integrated computational materials engineering approach based on the open source software packages DREAM.3D and DAMASK (Düsseldorf Advanced Materials Simulation Kit) that enables such virtual material development is presented. More specific, our approach consists of the following three steps: (1) acquire statistical quantities that describe a microstructure, (2) build a representative volume element based on these quantities employing DREAM.3D, and (3) evaluate the representative volume using a predictive crystal plasticity material model provided by DAMASK. Exemplarily, these steps are here conducted for a high-manganese steel.

  3. Identifying Structure-Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach

    Science.gov (United States)

    Diehl, Martin; Groeber, Michael; Haase, Christian; Molodov, Dmitri A.; Roters, Franz; Raabe, Dierk

    2017-05-01

    Predicting, understanding, and controlling the mechanical behavior is the most important task when designing structural materials. Modern alloy systems—in which multiple deformation mechanisms, phases, and defects are introduced to overcome the inverse strength-ductility relationship—give raise to multiple possibilities for modifying the deformation behavior, rendering traditional, exclusively experimentally-based alloy development workflows inappropriate. For fast and efficient alloy design, it is therefore desirable to predict the mechanical performance of candidate alloys by simulation studies to replace time- and resource-consuming mechanical tests. Simulation tools suitable for this task need to correctly predict the mechanical behavior in dependence of alloy composition, microstructure, texture, phase fractions, and processing history. Here, an integrated computational materials engineering approach based on the open source software packages DREAM.3D and DAMASK (Düsseldorf Advanced Materials Simulation Kit) that enables such virtual material development is presented. More specific, our approach consists of the following three steps: (1) acquire statistical quantities that describe a microstructure, (2) build a representative volume element based on these quantities employing DREAM.3D, and (3) evaluate the representative volume using a predictive crystal plasticity material model provided by DAMASK. Exemplarily, these steps are here conducted for a high-manganese steel.

  4. Non-centrosymmetric crystals of new N-benzylideneaniline derivatives as potential materials for non-linear optics.

    Science.gov (United States)

    Souza, Talita Evelyn; Rosa, Iara Maria Landre; Legendre, Alexandre Oliveira; Paschoal, Diego; Maia, Lauro J Q; Dos Santos, Hélio F; Matins, Felipe Terra; Doriguetto, Antonio Carlos

    2015-08-01

    Three new N-benzylideneaniline derivatives [p-nitrobenzylidene-p-phenylamineaniline (I), 2,4-dinitrobenzylidene-p-phenylamineaniline (II) and p-dinitrobenzylidene-p-diethylamineaniline (III)] containing electron-push-pull groups have been prepared. They present a planar N-benzylideneaniline core and neighbouring functional atoms, which are related through an efficient intramolecular charge transfer (CT). Two of the derivatives crystallize in non-centrosymmetric space groups, a necessary condition for non-linear optical (NLO) responses. The NLO properties were calculated for the molecular conformations determined by single-crystal X-ray diffraction as well as for the four molecules packed into each corresponding unit cell, using a quantum-chemical method at the cam-B3LYP/NLO-V level of theory. As expected from antiparallel face-to-face stacking through centrosymmetry, the main NLO descriptors - namely, the first hyperpolarizability (βtot) and its projection on the dipole moment direction (βvec) - are almost zero for the tetramer of derivative III. Interestingly, the calculated first hyperpolarizability decreases in the non-centrosymmetric unit-cell content of derivative II when compared to its single molecule, which may be related to its molecular pillaring, similar to that observed in derivative III. On the other hand, a desirable magnification of the NLO properties was found for packed units of derivative I, which may be a consequence of its parallel face-to-tail stacking with the CT vectors of all molecules pointing in the same direction. Moreover, the CT vector of compound I makes an angle of θ = 33.6° with its crystal polar axis, resulting in a higher-order parameter (cos(3)θ = 0.6) compared with the other derivatives. This is in line with the higher macroscopic second-order NLO response predicted for derivative I, βtot = 120.4 × 10(-30) e.s.u.

  5. Synthesis and optical activity of isosorbide chiral derivative containing fluorocarbon group as chiral dopant in liquid crystal materials

    Institute of Scientific and Technical Information of China (English)

    Kong Liang Xie; Yin He Su; Chun Xiang Zhang

    2011-01-01

    Novel isosorbide derivative containing perfluorocarbon group, bi(perfluorooctanesulfonyl)isosorbide ester as chiral dopant in liquid crystal, was synthesized. Chemical structure was characterized by elemental analysis, FT-IR, 1H NMR and 19F NMR. The optical texture of the mixture was observed by polarized optical microscopy (POM). Novel chiral dopant containing perfluorocarbon group had excellent optical activity. Its specific rotation and molar rotation were noticeable higher than those of bi(4-chloromethylbenzenecarbonic)isosorbide ester. The fluorocarbon group improved the molar rotation of chiral compound and did not affect optical rotation direction. The texture of the mixture added isosorbide derivative with fluorocarbon group showed the oily streak texture.

  6. [Spherical crystallization in pharmaceutical technology].

    Science.gov (United States)

    Szabóné, R P; Pintyéné, H K; Kása, P; Erös, I; Hasznosné, N M; Farkas, B

    1998-03-01

    Physical properties of crystals, such as size, crystal size distribution and morphology, may predetermine the usefulness of crystalline materials in many pharmaceutical application. The above properties can be regulated with the crystallization process. The spherical crystals are suitable for direct tablet-making because of their better flowability and compressibility properties. These crystals can be used in the filling of the capsule. In this work, the spherical crystals such as "single crystal", "poly-crystals" and agglomerates with other excipients are collected from the literature and the experimental results of the authors. A close cooperation between chemists and the pharmaceutical technologists can help for doing steps in this field.

  7. Light transmission of polymer-dispersed liquid crystal layer composed of droplets with inhomogeneous surface anchoring

    Science.gov (United States)

    Loiko, V. A.; Zyryanov, V. Ya.; Konkolovich, A. V.; Miskevich, A. A.

    2016-01-01

    We have developed a model and realized an algorithm for the calculation of the coefficient of coherent (direct) transmission of light through a layer of liquid crystal (LC) droplets in a polymer matrix. The model is based on the Hulst anomalous diffraction approximation for describing the scattering by an individual particle and the Foldy-Twersky approximation for a coherent field. It allows one to investigate polymer dispersed LC (PDLC) materials with homogeneous and inhomogeneous interphase surface anchoring on the droplet surface. In order to calculate the configuration of the field of the local director in the droplet, the relaxation method of solving the problem of minimization of the free energy volume density has been used. We have verified the model by comparison with experiment under the inverse regime of the ionic modification of the LC-polymer interphase boundary. The model makes it possible to solve problems of optimization of the optical response of PDLC films in relation to their thickness and optical characteristics of the polymer matrix, sizes, polydispersity, concentration, and anisometry parameters of droplets. Based on this model, we have proposed a technique for estimating the size of LC droplets from the data on the dependence of the transmission coefficient on the applied voltage.

  8. Materials characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, N.W.; Nicolet, M.A.

    1986-01-01

    This book presents the papers given at a symposium on the methods used in the chemical analysis of materials. Topics considered at the symposium included emerging techniques for materials microanalysis, scanning electron microscopy, Raman spectroscopy, Auger electron spectroscopy, crystal lattices, computerized tomography using synchrotron radiation, epitaxy, photoconductivity, elastic properties, neutron-induced particle track mapping of elemental distributions, and point defects in crystals.

  9. 热处理材料晶体结构的相变研究%THE TRANSITION RESEARCH OF HEAT TREATMENT MATERIAL CRYSTAL STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    施红娟

    2012-01-01

    金属材料经过热处理过程使材料具有优良的组织和性能,广泛应用于先进科技和日常生活中。金属材料的微观显微组织是研究金属材料组织性能的有效方法。金属材料微观组织的形成是金属材料合金成分在金属晶体晶胞中的溶入析出,金属晶体的晶格结构从体心立方晶格转变成面心立方晶格和密排六方晶格。金属材料不同的热处理过冷转变温度形成不同的微观形态的相结构。金属材料从加热状态冷却到室温,金属材料微观晶格结构的变化我们称之为相变。%metal materials after heat treatment process so that the materials have excellent microstructure and properties widely used in advanced technology and dail life. Metal mate rials microsttucture analysis a effective method to study of metallic materials structure and properties. Metal materials microstructure formation is a procedure of alloy compositions in metal crystal lattice dissolution and procipitation, metal crystal lattice strucrure from a body-centered cublc lattice into dense row of six cubic lattice and face centered cubic lattice. Metallic materials of different heat treatment ocld transformation tempreture form different microscopic porphology of the phase structure. From the high temperature heating to colling room temperature. the metal materials microscopic lattice structure changes we called phase transition. This paper we study of metallic materials the microscopic crstal structure of phase transition proces.

  10. Multiplexing storage using angular variation in a transmission holographic polymer dispersed liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hee; Jung, Yeon-Gil, E-mail: jungyg@changwon.ac.kr

    2015-12-01

    Simultaneous angular multiplexing of transmission gratings in a holographic polymer dispersed liquid crystal (HPDLC) film as a function of resin and film compositions, irradiation intensity, and cell thickness has been studied by exposing the material to three coherent laser beams. It was found that the diffraction efficiency monotonically increases with irradiation intensity and cell gap, whereas a maximum of 43% is obtained at specific compositions of trimethylolpropane triacrylate (TMPTA)/N-vinylpyrrolidone (NVP) = 8/1 and polymer/LC = 65/35. The multiplexed gratings have been captured using SEM imaging and the reconstructed images using a charge-coupled device camera, showing successful reconstructed images of gratings. - Highlights: • Multiplex images were well recorded using simultaneous angular method. • The periodic structures of the LC and polymer regions were well prepared. • The angular selectivity was variable nevertheless fabrication by three beams. • The images were successfully reconstructed in gratings of same spot.

  11. Electronic and atomic structures of the Sr3Ir4Sn13 single crystal: A possible charge density wave material

    Science.gov (United States)

    Wang, H.-T.; Srivastava, M. K.; Wu, C.-C.; Hsieh, S.-H.; Wang, Y.-F.; Shao, Y.-C.; Liang, Y.-H.; Du, C.-H.; Chiou, J.-W.; Cheng, C.-M.; Chen, J.-L.; Pao, C.-W.; Lee, J.-F.; Kuo, C. N.; Lue, C. S.; Wu, M.-K.; Pong, W.-F.

    2017-01-01

    X-ray scattering (XRS), x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) spectroscopic techniques were used to study the electronic and atomic structures of the high-quality Sr3Ir4Sn13 (SIS) single crystal below and above the transition temperature (T* ≈ 147 K). The evolution of a series of modulated satellite peaks below the transition temperature in the XRS experiment indicated the formation of a possible charge density wave (CDW) in the (110) plane. The EXAFS phase derivative analysis supports the CDW-like formation by revealing different bond distances [Sn1(2)-Sn2] below and above T* in the (110) plane. XANES spectra at the Ir L3-edge and Sn K-edge demonstrated an increase (decrease) in the unoccupied (occupied) density of Ir 5d-derived states and a nearly constant density of Sn 5p-derived states at temperatures T atomic structures and the CDW-like phase in the SIS single crystal. PMID:28106144

  12. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films

    Directory of Open Access Journals (Sweden)

    Yujian Sun

    2016-12-01

    Full Text Available Polymer-dispersed liquid crystal (PDLC films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found that the weight ratio among acrylate monomers, thiol monomer PETMP and the polymercaptan Capcure 3-800 showed great influence on the properties of the fabricated PDLC films because of the existence of competition between thiol-acrylate reaction and acrylate monomer polymerization reaction. While adding polymercaptans curing agent Capcure 3-800 with appropriate concentration into the PDLC system, lower driven voltage and higher contrast ratio were achieved. This made the polymer network and electro-optical properties of the PDLC films easily tunable by the introduction of the thiol monomers.

  13. A controllable viewing angle LCD with an optically isotropic liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Su; Lim, Young Jin; Yoon, Sukin; Kang, Shin-Woong; Lee, Seung Hee [Department of BIN Fusion Technology and Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Kim, Miyoung [Korea Electronics Technology Institute, Jeonju, Jeonbuk 561-844 (Korea, Republic of); Wu, Shin-Tson, E-mail: lsh1@chonbuk.ac.k, E-mail: swu@creol.ucf.ed [College of Optics and Photonics, University of Central Florida, Orlando, FL 32816 (United States)

    2010-04-14

    An optically isotropic liquid crystal (LC) such as a blue phase LC or an optically isotropic nano-structured LC exhibits a very wide viewing angle because the induced birefringence is along the in-plane electric field. Utilizing such a material, we propose a liquid crystal display (LCD) whose viewing angle can be switched from wide view to narrow view using only one panel. In the device, each pixel is divided into two parts: a major pixel and a sub-pixel. The main pixels display the images while the sub-pixels control the viewing angle. In the main pixels, birefringence is induced by horizontal electric fields through inter-digital electrodes leading to a wide viewing angle, while in the sub-pixels, birefringence is induced by the vertical electric field so that phase retardation occurs only at oblique angles. As a result, the dark state (or contrast ratio) of the entire pixel can be controlled by the voltage of the sub-pixels. Such a switchable viewing angle LCD is attractive for protecting personal privacy.

  14. The right circular polarized waves in the three-dimensional anisotropic dispersive photonic crystals consisting of the magnetized plasma and uniaxial material as the Faraday effects considered

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Feng, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu, Shao-Bin, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn; Tang, Yi-Jun [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Zhen, Jian-Ping [Nanjing Artillery Academy, Nanjing 211132 (China)

    2014-03-15

    In this paper, the properties of the right circular polarized (RCP) waves in the three-dimensional (3D) dispersive photonic crystals (PCs) consisting of the magnetized plasma and uniaxial material with face-centered-cubic (fcc) lattices are theoretically investigated by the plane wave expansion method, which the homogeneous anisotropic dielectric spheres (the uniaxial material) immersed in the magnetized plasma background, as the Faraday effects of magnetized plasma are considered (the incidence electromagnetic wave vector is parallel to the external magnetic field at any time). The equations for calculating the anisotropic photonic band gaps (PBGs) for the RCP waves in the first irreducible Brillouin zone are theoretically deduced. The anisotropic PBGs and a flatbands region can be obtained. The effects of the ordinary-refractive index, extraordinary-refractive index, anisotropic dielectric filling factor, plasma frequency, and plasma cyclotron frequency (the external magnetic field) on the properties of first two anisotropic PBGs for the RCP waves are investigated in detail, respectively. The numerical results show that the anisotropy can open partial band gaps in fcc lattices at U and W points, and the complete PBGs for the RCP waves can be achieved compared to the conventional 3D dispersive PCs composed of the magnetized plasma and isotropic material. It is also shown that the first two anisotropic PBGs can be tuned by those parameters as mentioned above. Those PBGs can be enlarged by introducing the uniaxial material into such 3D PCs as the Faraday effects are considered.

  15. Direct induction of molecular alignment in liquid crystal polymer network film by photopolymerization

    Science.gov (United States)

    Hisano, K.; Aizawa, M.; Ishizu, M.; Kurata, Y.; Shishido, A.

    2016-09-01

    Liquid crystal (LC) is the promising material for the fabrication of high-performance soft, flexible devices. The fascinating and useful properties arise from their cooperative effect that inherently allows the macroscopic integration and control of molecular alignment through various external stimuli. To date, light-matter interaction is the most attractive stimuli and researchers developed photoalignment through photochemical or photophysical reactions triggered by linearly polarized light. Here we show the new choice based on molecular diffusion by photopolymerization. We found that photopolymerization of a LC monomer and a crosslinker through a photomask enables to direct molecular alignment in the resultant LC polymer network film. The key generating the molecular alignment is molecular diffusion due to the difference of chemical potentials between irradiated and unirradiated regions. This concept is applicable to various shapes of photomask and two-dimensional molecular alignments can be fabricated depending on the spatial design of photomask. By virtue of the inherent versatility of molecular diffusion in materials, the process would shed light on the fabrication of various high-performance flexible materials with molecular alignment having controlled patterns.

  16. Protein crystallization with paper

    Science.gov (United States)

    Matsuoka, Miki; Kakinouchi, Keisuke; Adachi, Hiroaki; Maruyama, Mihoko; Sugiyama, Shigeru; Sano, Satoshi; Yoshikawa, Hiroshi Y.; Takahashi, Yoshinori; Yoshimura, Masashi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Takano, Kazufumi

    2016-05-01

    We developed a new protein crystallization method that incorporates paper. A small piece of paper, such as facial tissue or KimWipes, was added to a drop of protein solution in the traditional sitting drop vapor diffusion technique, and protein crystals grew by incorporating paper. By this method, we achieved the growth of protein crystals with reducing osmotic shock. Because the technique is very simple and the materials are easy to obtain, this method will come into wide use for protein crystallization. In the future, it could be applied to nanoliter-scale crystallization screening on a paper sheet such as in inkjet printing.

  17. Driving voltage properties sensitive to microscale liquid crystal orientation pattern in twisted nematic liquid crystal cells

    Science.gov (United States)

    Honma, Michinori; Takahashi, Koki; Yamaguchi, Rumiko; Nose, Toshiaki

    2016-04-01

    We investigated the micropattern-sensitive driving voltage properties of twisted nematic liquid crystal (LC) cells and found that the threshold voltage for inducing the Fréedericksz transition strongly depends on the micropatterned LC molecular orientation state. We discuss the effects of various cell parameters such as the period of the micropattern Λ, the LC layer thickness d, and the twist angle Φ on the threshold voltage. By a computer simulation of the LC molecular orientation, we found that the threshold voltage V th varies in response to the deformation factor Δ (= d 2/Λ2 + Φ2/π2) of the spatially distributed LC molecular orientation. We confirm that V\\text{th}2 is proportional to 1 - Δ from both theoretical and experimental standpoints.

  18. Correlation measurements of light transmittance in polymer dispersed liquid crystals

    Science.gov (United States)

    Maksimyak, P. P.; Nehrych, A. L.

    2015-11-01

    The methods of correlation optics are for the first time applied to study structure of liquid crystal (LC) - polymer (P) composites at various concentrations of LC and P. Their phase correlation function (PCF) was obtained considering LC-P composite as a random phase screen. The amplitude of PCF contains information about number of LC domains and structure of LC director inside of them, while a half-width of this function is connected with a size of these domains. We studied unpowered and powered composite layers with a thickness of 5 μm. As liquid crystal and polymer were used nematic LC E7 from Merck and photopolymer composition NOA65 from Norland. Concentration of polymer φP was varied in a range 10-55 vol. %. In good agreement with previous studies by SEM technique we detected monotone decrease of LC domains with concentration of polymer. With application of electric field, amplitude of PCF behaves differently for the samples with different polymer content. For the samples with φP>35 vol. % (samples having morphology of polymer dispersed LC), this dependence is monotonic. In turn, if φPLC morphology), the amplitude of PCF non-monotonically depends on the applied voltage going through a maximum. The latter fact is explained by transformation of orientational defects of LC phase with the applied voltage.

  19. High-performance slow light photonic crystal waveguides with topology optimized or circular-hole based material layouts

    DEFF Research Database (Denmark)

    Wang, Fengwen; Jensen, Jakob Søndergaard; Sigmund, Ole

    2012-01-01

    Photonic crystal waveguides are optimized for modal confinement and loss related to slow light with high group index. A detailed comparison between optimized circular-hole based waveguides and optimized waveguides with free topology is performed. Design robustness with respect to manufacturing...... imperfections is enforced by considering different design realizations generated from under-, standard- and over-etching processes in the optimization procedure. A constraint ensures a certain modal confinement, and loss related to slow light with high group index is indirectly treated by penalizing field...... of 0.48 or above. The comparisons between circular-hole based designs and topology optimized designs illustrate that the former can be efficient for dispersion engineering but that larger improvements are possible if irregular geometries are allowed....

  20. Ultra high-Q photonic crystal nanocavity design: The effect of a low-epsilon slab material

    CERN Document Server

    Bayn, Igal

    2008-01-01

    We analyze the influence of the dielectric constant of the slab on the quality factor (Q) in slab photonic crystal cavities with a minimized vertical losses model. The higher value of Q in high-epsilon cavity is attributed to the lower mode frequency. The Q ratio in a high-epsilon (silicon) vs. low-epsilon (diamond) slab is examined as a function of mode volume (Vm). The mode volume compensation technique is discussed. Finally, diamond cavity design is addressed. The analytical results are compared to 3D FDTD calculations. In a double heterostructure design, a Q=2.6*10^5 is obtained. The highest Q=1.3*10^6 with Vm=1.77*(lambda/n)^3 in a local width modulation design is derived.

  1. Nucleation and crystallization of Ca doped basaltic glass for the production of a glass-ceramic material

    Science.gov (United States)

    Tarrago, Mariona; Royo, Irene; Garcia-Valles, Maite; Martínez, Salvador

    2016-04-01

    Sewage sludge from wastewater treatment plants is a waste with a composition roughly similar to that of a basalt. It may contain potentially toxic elements that can be inertized by vitrification. Using a glass-ceramic process, these elements will be emplaced in newly formed mineral phases. Glass-ceramic production requires an accurate knowledge of the temperatures of nucleation (TN) and crystal growth of the corresponding minerals. This work arises from the study of the addition of ions to a basaltic matrix in order to establish a model of vitrification of sewage sludge. In this case a glass-ceramic is obtained from a glass made with a basalt that has been doped with 16% CaO. Two glasses which underwent different cooling processes have been produced and compared. The first was annealed at 650oC (AG) and the second was quenched (QG). The chemical composition of the glasses is SiO2 36.11 wt%, Al2O312.19 wt%, CaO 24.44 wt%, FeO 10.06 wt%, MgO 9.19 wt%, Na2O 2.28 wt%, TiO2 2.02 wt%, K2O 1.12 wt%, P2O5 0.46 wt%. Glass transition temperature obtained by dilatometry varies from 640 oC (AG) to 700 oC (QG). The temperatures of nucleation and crystal growth of the glass have been determined by Differential Thermal Analysis (DTA). The phases formed after these treatments were identified by X-Ray Diffraction. The temperatures of exothermic and endothermic peaks measured in the quenched glass are, in average, 10 oC higher than those found for the annealed glass. The exothermic peaks provide crystallization temperatures for different phases: a first event at 857 oC corresponds to the growth of magnetite, pyroxene and nepheline, whereas a second event at 1030 oC is due to the crystallization of melilite from the reaction between previous minerals and a remaining amorphous phase. The complete melting of this system occurs at 1201 oC. This glass has been nucleated inside the DTA furnace (500-850° C/3 hours) and then heated up to 1300 oC using the fraction between 400-500μm. TN

  2. Crystallization process

    Science.gov (United States)

    Adler, Robert J.; Brown, William R.; Auyang, Lun; Liu, Yin-Chang; Cook, W. Jeffrey

    1986-01-01

    An improved crystallization process is disclosed for separating a crystallizable material and an excluded material which is at least partially excluded from the solid phase of the crystallizable material obtained upon freezing a liquid phase of the materials. The solid phase is more dense than the liquid phase, and it is separated therefrom by relative movement with the formation of a packed bed of solid phase. The packed bed is continuously formed adjacent its lower end and passed from the liquid phase into a countercurrent flow of backwash liquid. The packed bed extends through the level of the backwash liquid to provide a drained bed of solid phase adjacent its upper end which is melted by a condensing vapor.

  3. Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering

    Science.gov (United States)

    He, Xiaoxian; Wang, Xiangru; Wu, Liang; Tan, Qinggui; Li, Man; Shang, Jiyang; Wu, Shuanghong; Huang, Ziqiang

    2017-01-01

    Non-mechanical laser beam steering has been reported previously in liquid crystal array devices. To be one of the most promising candidates to be practical non-mechanical laser deflector, its laser induced effect still has few theoretical model. In this paper, we propose a theoretical model to analyze this laser induced effect of LC-OPA to evaluate the deterioration on phased beam steering. The model has three parts: laser induced thermal distribution; temperature dependence of material parameters and beam steering deterioration. After these three steps, the far field of laser beam is obtained to demonstrate the steering performance with the respect to the incident laser beam power and beam waist.

  4. Mechanism in determining pretilt angle of liquid crystals aligned on fluorinated copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hsin-Ying; Wang, Chih-Yu; Lin, Chia-Jen; Pan, Ru-Pin [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan 30010 (China); Lin, Song-Shiang; Lee, Chein-Dhau [Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan 31040 (China); Kou, Chwung-Shan, E-mail: rpchao@mail.nctu.edu.t [Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 30013 (China)

    2009-08-07

    This work explores the surface treatment of copolymer materials with fluorinated carbonyl groups in various mole fractions by ultraviolet irradiation and ion-beam (IB) bombardment and its effect on liquid crystal (LC) surface alignments. X-ray photoemission spectroscopic analysis confirms that the content of the grafted CF{sub 2} side chains dominates the pretilt angle. A significant increase in oxygen content is responsible for the increase in the polar surface energy during IB treatment. Finally, the polar component of the surface energy dominates the pretilt angle of the LCs.

  5. Acoustical analog of the Fréedericksz transition in liquid crystals

    Science.gov (United States)

    Kapustina, O. A.; Kozhevnikov, E. N.; Negazina, E. K.

    2015-11-01

    A nonlinear relaxation model describing thresholdlike variation in the symmetry of a homeotropic orientational structure of a nematic liquid crystal (NLC) layer in an ultrasonic wave field has been constructed in the nonlinear hydrodynamics framework based on a molecular micromodel representing all processes in the mesophase proceeding from the behavior of a separate LC molecule. The relationship between the threshold characteristics and the ultrasound frequency, NLC mesophase layer thickness and material parameters, temperature, and parameters of the molecular micromodel is determined. The results of calculations for the frequency range containing the relaxation frequency of the NLC orientational order parameter are compared to the obtained experimental data.

  6. Molecular Structure and Crystal Packing of n-Type Semiconducting Material 3′,3′-(1,4-Phenylene)bis{2′-(4′′-trifluoromethyl)phenyl}acrylonitrile

    OpenAIRE

    Tetsuji Moriguchi; Shuichi Nagamatsu; Tatsuo Okauchi; Akihiko Tsuge; Wataru Takashima; Shuji Hayase

    2014-01-01

    The exact molecular structure and the crystal packing of the n-type semiconducting material 3′,3′-(1,4-phenylene)bis{2′-(4′′-trifluoromethyl)phenyl}acrylonitrile was determined by a single crystal X-ray diffraction with twin treatment technique. The air-stable product was crystallized from dichloromethane-hexane mixed solution. The solid-state structure is the example of a typical π-π stacking with side intermolecular CN–H short contact networks.

  7. Polymer Wall Formation Using Liquid-Crystal/Polymer Phase Separation Induced on Patterned Polyimide Films

    Science.gov (United States)

    Murashige, Takeshi; Fujikake, Hideo; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2004-12-01

    We could form lattice-shaped polymer walls in a liquid crystal (LC) layer through the thermal phase separation of an LC/polystyrene solution between substrates with polyimide films etched by short-wavelength ultraviolet irradiation using a photomask. The LC wetting difference between the polyimide and substrate surfaces caused the coalescence of growing LC droplets on patterned polyimide films with the progress of phase separation. Consequently, polymer walls were formed on substrate surface areas without polyimide films. The shape of the polymer wall formed became sharp with the use of rubbed polyimide films because the nucleation of growing LC droplets concentrated on the patterned polyimide films. It is thought that the increase in the alignment order of LC molecules in the solution near the rubbed polyimide films promotes the formation of LC molecular aggregation, which becomes the growth nuclei of LC droplets.

  8. TWO ALGORITHMS FOR LC1 UNCONSTRAINED OPTIMIZATION

    Institute of Scientific and Technical Information of China (English)

    Wen-yu Sun; R.J.B.de Sampaio; Jin-Yun Yuan

    2000-01-01

    In this paper we present two algorithms for LC1 unconstrained optimization problems which use the second order Dini upper directional derivative. These methods are simple and easy to perform. We discuss the related properties of the iteration function, and establish the global and superlinear convergence of our methods.

  9. LC-MS systems for quantitative bioanalysis

    NARCIS (Netherlands)

    Dongen, W.D. van; Niessen, W.M.A.

    2012-01-01

    LC-MS has become the method-of-choice in small-molecule drug bioanalysis (molecular mass <800 Da) and is also increasingly being applied as an alternative to ligand-binding assays for the bioanalytical determination of biopharmaceuticals. Triple quadrupole MS is the established bioanalytical techniq

  10. LC Quadrature Generation in Integrated Circuits

    DEFF Research Database (Denmark)

    Christensen, Kåre Tais

    2001-01-01

    Today quadrature signals for IQ demodulation are provided through RC polyphase networks, quadrature oscillators or double frequency VCOs. This paper presents a new method for generating quadrature signals in integrated circuits using only inductors and capacitors. This LC quadrature generation me...

  11. Hybrid LC filter for power electronic drives. Theory and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Dzhankhotov, V.

    2009-07-01

    Power electronic converter drives use, for the sake of high efficiency, pulse-width modulation that results in sequences of high-voltage high-frequency steep-edged pulses. Such a signal contains a set of high harmonics not required for control purposes. Harmonics cause reflections in the cable between the motor and the inverter leading to faster winding insulation ageing. Bearing failures and problems with electromagnetic compatibility may also result. Electrical du/dt filters provide an effective solution to problems caused by pulse-width modulation, thereby increasing the performance and service life of the electrical machines. It is shown that RLC filters effectively decrease the reflection phenomena in the cable. Improved (simple, but effective) solutions are found for both differential- and common-mode signals; these solutions use a galvanic connection between the RLC filter star point and the converter DC link. Foil chokes and film capacitors are among the most widely used components in high-power applications. In actual applications they can be placed in different parts of the cabinet. This fact complicates the arrangement of the cabinet and decreases the reliability of the system. In addition, the inductances of connection wires may prevent filtration at high frequencies. This thesis introduces a new hybrid LC filter that uses a natural capacitance between the turns of the foil choke based on integration of an auxiliary layer into it. The main idea of the hybrid LC filter results from the fact that both the foil choke and the film capacitors have the same roll structure. Moreover, the capacitance between the turns ('intra capacitance') of the foil inductors is the reason for the deterioration of their properties at high frequencies. It is shown that the proposed filter has a natural cancellation of the intra capacitance. A hybrid LC filter may contain two or more foil layers isolated from each other and coiled on a core. The core material can be

  12. Electrochemical synthesis of nanostructured porous materials using liquid crystal and colloidal templates and their magnetic and optical properties

    CERN Document Server

    Ghanem, M A M

    2002-01-01

    material, and that these magnetic properties vary systematically with the diameter of the spherical pores within the films. A new oscillation effect has been observed for the coercivity of macroporous Ni sub 8 sub 0 Fe sub 2 sub 0 film with different pore layer thickness. sphere templates, the resulting films show well-formed, regular, two- and three-dimensional macroporous networks consisting of spherical pores arranged in a highly ordered face centred cubic (fee) structure. The spherical voids are interconnected by a series of smaller windows that form an open porous structure embedded in the material framework. The diameter of the spherical pores can be precisely changed over the range from 200 to 1000 nm by changing the diameter of the latex spheres used to form the templates. The resulting macroporous material structures are robust, self-supported, dense, polycrystalline, uniform and free from filling defects and contamination or problems caused by shrinkage during processing. The nanostructured macropor...

  13. Hybrid graphene nematic liquid crystal light scattering device

    Science.gov (United States)

    Qasim, M. M.; Khan, A. A.; Kostanyan, A.; Kidambi, P. R.; Cabrero-Vilatela, A.; Braeuninger-Weimer, P.; Gardiner, D. J.; Hofmann, S.; Wilkinson, T. D.

    2015-08-01

    A hybrid graphene nematic liquid crystal (LC) light scattering device is presented. This device exploits the inherent poly-crystallinity of chemical vapour deposited (CVD) graphene films to induce directional anchoring and formation of LC multi-domains. This thereby enables efficient light scattering without the need for crossed polarisers or separate alignment layers/additives. The hybrid LC device exhibits switching thresholds at very low electric fields (crossed polarisers or separate alignment layers/additives. The hybrid LC device exhibits switching thresholds at very low electric fields (< 1 V μm-1) and repeatable, hysteresis free characteristics. This exploitation of LC alignment effects on CVD graphene films enables a new generation of highly efficient nematic LC scattering displays as well as many other possible applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04094a

  14. Further Applications of a Crystal Lattice Disintegration Criterion to Predict Shock-Induced Reactive Conditions in Solid Materials.

    Science.gov (United States)

    1991-07-01

    Table B-3 and plotted in Figure B-I, it appears that Cb 2 is a good measure of the heat of detonation (AHDEr) of energetic materials. That is, this...information indicates that: C2 - A HDET = AbDET mAv (B-13) where: AHDET = Heat of Detonation , Mega Joules/Kilogram or (km/sec) 2. The values of Cb and...Comparison of Elastic Wave Velocities and Heat of Detonation for Selected Energetic Materials. Substance AHDET AHDET VAHDET Cb Cs MJ/KG (km/sec) 2 km

  15. Studies on Growth, Spectral, Thermal, Mechanical and Optical Properties of 4-Bromoanilinium 4-Methylbenzenesulfonate Crystal: A Third Order Nonlinear Optical Material

    OpenAIRE

    Sivakumar,Pillukuruchi Kailasam; Kumar,Saravana; Kumar,Rangasamy Mohan; Kanagadurai,Ramajayam; Sagadevan,Suresh

    2016-01-01

    Abstract 4-Bromoanilinium 4-methylbenzenesulfonate (4BPTS) single crystal was successfully grown from ethanol by slow evaporation method at room temperature. The structure of grown crystal was confirmed by single crystal X-ray diffraction studies. The presence of functional groups of grown crystal was confirmed by the Fourier transform infrared spectroscopy (FTIR) spectral analysis. UV-Visible absorption study was performed on the grown crystal to determine the cut-off wavelength. The thermal...

  16. CuLi2Sn and Cu2LiSn: Characterization by single crystal XRD and structural discussion towards new anode materials for Li-ion batteries

    Science.gov (United States)

    Fürtauer, Siegfried; Effenberger, Herta S.; Flandorfer, Hans

    2014-12-01

    The stannides CuLi2Sn (CSD-427095) and Cu2LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu2Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi2Sn, the space group F-43m. was verified (structure type CuHg2Ti; a=6.295(2) Å; wR2(F²)=0.0355 for 78 unique reflections). The 4(c) and 4(d) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu2LiSn, the space group P63/mmc was confirmed (structure type InPt2Gd; a=4.3022(15) Å, c=7.618(3) Å; wR2(F²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2(a), 2(b) and 4(e). Both phases seem to be interesting in terms of application of Cu-Sn alloys as anode materials for Li-ion batteries.

  17. Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials.

    Science.gov (United States)

    Zou, Guohong; Ye, Ning; Huang, Ling; Lin, Xinsong

    2011-12-14

    A new series of alkaline-alkaline earth fluoride carbonates (KSrCO(3)F, RbSrCO(3)F, KCaCO(3)F, RbCaCO(3)F, CsCaCO(3)F, and Cs(3)Ba(4)(CO(3))(3)F(5)) were synthesized by spontaneous crystallization with molten fluxes. Their crystal structures, except for Cs(3)Ba(4)(CO(3))(3)F(5), exhibit the stacking of [AF](∞) (A = K, Rb, Cs) and [B(CO(3))](∞) (B = Ca, Sr) layers, and the coplanar alignment of [CO(3)] triangles. The results from the UV-vis diffuse reflectance spectroscopy study of the powder samples indicated that the short-wavelength absorption edges were all below 200 nm, except for Cs(3)Ba(4)(CO(3))(3)F(5), which is about 210 nm. Second-harmonic generation (SHG) on polycrystalline samples was measured using the Kurtz and Perry technique, which indicated that these carbonates are all phase-matchable materials in both visible and the UV region, and their measured SHG coefficients were about 3.33, 3.33, 3.61, 1.11, 1.11, and 1.20 times as large as that of d(36) (KDP), respectively. © 2011 American Chemical Society

  18. Layered exfoliable crystalline materials based on Sm-, Eu- and Eu/Gd-2-phenylsuccinate frameworks. Crystal structure, topology and luminescence properties.

    Science.gov (United States)

    Gomez, G E; Bernini, M C; Brusau, E V; Narda, G E; Vega, D; Kaczmarek, A M; Van Deun, R; Nazzarro, M

    2015-02-21

    Three new layered metal-organic frameworks (MOFs) based on 2-phenylsuccinic acid (H2psa) and lanthanide ions with the formula [Ln2(C10H8O4)3(H2O)] (Ln = Eu, Sm and Eu-Gd) have been synthesized under solvothermal conditions and fully characterized by single-crystal X-ray diffraction, thermal and vibrational analyses. The compounds are isostructural featuring 2D frameworks that consist of infinite zigzag chains composed of [LnO8] and [LnO8(H2O)] edge-sharing polyhedra linked by psa ligands leading to layers further connected by weak π-π interactions in an edge orientation. Moreover, a topological study was carried out to obtain the simplified net for better comparison with structurally related compounds. The crystals were exfoliated into nanolayers after miniaturization by addition of sodium acetate as a capping agent in the reaction medium. Scanning electron microscopy was applied to characterize the miniaturized samples whereas the exfoliated hybrid nanosheets were studied by atomic force microscopy. The photoluminescence (PL) properties of the bulk compounds as well as the miniaturized and exfoliated materials were investigated and compared with other related ones. An exhaustive study of the Eu(iii)-based MOFs was performed on the basis of the obtained PL parameters (excitation and emission spectra, kr, knr, intrinsic quantum yields and lifetimes) to explore the underlying structure-property relationships.

  19. Synthesis and crystal structure of two tin fluoride materials: NaSnF 3 (BING-12) and Sn 3F 3PO 4

    Science.gov (United States)

    Salami, Tolulope O.; Zavalij, Peter Y.; Oliver, Scott R. J.

    2004-03-01

    A new compound, sodium tin trifluoride (NaSnF 3, which we denote BING-12 for SUNY at Binghamton, Structure No. 12), was synthesized solvothermally from a pyridine-water solvent system. The new compound crystallized in the monoclinic space group C2/ c (No. 15), with a=11.7429(12) Å, b=17.0104(18) Å, c=6.8528(7) Å, β=100.6969(2)°, V=1345.1(2) Å 3 and Z=16. The layered structure consists of outer pyramidal SnF 3 units, where the fluorides surround a central layer of six- and seven-coordinate sodium atoms. The layers are stabilized by charged Na + galleries that reside in the center of the layers. Tin trifluorophosphate (Sn 3F 3PO 4, Compound 2) was isolated from a related synthetic system, and crystallized in the rhombohedral space group R3 (No. 146), with a=11.8647(11) Å, c=4.6291(6) Å, V=564.34(10) Å 3 and Z=3. The framework is made up of helical -Sn-F- chains, which are connected by phosphate groups. The materials were characterized by powder X-ray diffraction (PXRD), variable temperature PXRD (VT-PXRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM).

  20. Controlled solvothermal synthesis and electrochemical performance of LiCoPO4 submicron single crystals as a cathode material for lithium ion batteries

    Science.gov (United States)

    Wu, Borong; Xu, Hongliang; Mu, Daobin; Shi, Lili; Jiang, Bing; Gai, Liang; Wang, Lei; Liu, Qi; Ben, Liubin; Wu, Feng

    2016-02-01

    The submicron single crystals of LiCoPO4 with 500 nm diameter are prepared by solvothermal method. The carbon coated sample is obtained using sucrose as carbon source under 650 °C subsequently. It is investigated that the solvent composition has an effect on the morphology and the electrochemical performance of the cathode material. The as-prepared samples are characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopic, dynamic light scattering, and Fourier transform infrared spectra. The electrochemical performance is evaluated by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The LiCoPO4/C cathode can reach an initial discharge capacity of 123.8 mA h g-1 at 0.1C, with a retention of 83% after 100 cycles. A discharge capacity of 84.9 mA h g-1 is still attainable when the rate is up to 2C. The good cycling performance and rate capability are contributed to the decrease of particle size along with the lower antisite defect concentration in the LCP crystals, and uniform carbon coating.

  1. Effects of ferroelectric nanoparticles on ion-transport in a liquid crystal

    Science.gov (United States)

    Garvey, Alfred; Basu, Rajratan

    2015-03-01

    A small quantity of BaTiO3 ferroelectric nanoparticles (FNPs) of 50 nm diameter was doped in a nematic liquid crystal (LC), and the free ion concentration was found to be significantly reduced in the LC +FNP hybrid compared to that of the pure LC. The strong electric fields, due to the permanent dipole moment of the FNPs, trapped some mobile ions, reducing the free ion concentration in the LC media. The reduction of free ions was found to have coherent impacts on the LC's conductivity, rotational viscosity, and electric field-induced nematic switching.

  2. Effects of ferroelectric nanoparticles on ion transport in a liquid crystal

    Science.gov (United States)

    Basu, Rajratan; Garvey, Alfred

    2014-10-01

    A small quantity of BaTiO3 ferroelectric nanoparticles (FNPs) of 50 nm diameter was doped in a nematic liquid crystal (LC), and the free ion concentration was found to be significantly reduced in the LC + FNP hybrid compared to that of the pure LC. The strong electric fields, due to the permanent dipole moment of the FNPs, trapped some mobile ions, reducing the free ion concentration in the LC media. The reduction of free ions was found to have coherent impacts on the LC's conductivity, rotational viscosity, and electric field-induced nematic switching.

  3. A Polarizer-free Liquid Crystal Display Using Dye-doped Liquid Crystal Gels

    OpenAIRE

    Lin, Yi-Hsin; Yang, Jhih-Ming; Lin, Hung-Chun; Wu, Jing-Nuo

    2009-01-01

    In conclusion, we have introduced and demonstrated polarizer-free LCDs using dye-doped LC gels. These polarizer-free dye-doped LC gels exhibit high reflectance, high contrast ratio, wide viewing angle, and fast response time. Especially the low temperature process is favorable for flexible displays. The gel-like materials assist stabilizing the flexible display under trimming. Our dye-doped LC gels provide a stable LC mode and open a new window in paper-like flexible displays. A polarizer-fre...

  4. Nonlinear Localization due to a Double Negative Defect Layer in a One-Dimensional Photonic Crystal Containing Single Negative Material Layers

    Institute of Scientific and Technical Information of China (English)

    Munazza Zulfiqar Ali; Tariq Abdullah

    2008-01-01

    We investigate the effects of introducing a defect layer in a one-dimensional photonic crystal containing single negative material layers on the transmission properties.The width of the defect layer js taken to be the same or smaller than the period of the structure.Different cases of the defect layer being linear or nonlinear and double positive or double negative are discussed.It is found that only a nonlinear double negative layer givas rises to a localized mode within the zero-φeff gap in this kind of structure.It is also shown that the important characteristics of the nonlinear defect mode such as its frequency,its FWHM and the threshold of the associated bistability can be controlled by changing the widths of the defect layer and the host layers.

  5. Solvothermal Synthesis and Crystal Structure of a Novel Inorganic—Organic Hybrid Material,Fe2O(OH)(C5H4NCOO)SO4

    Institute of Scientific and Technical Information of China (English)

    郭洪猷; 李增和; 李秀艳; 张长远; 王如骥

    2003-01-01

    A novel inorganic-organic hybrid material,Fe2O(OH)(C5H4-NCOO)SO4 was synthesized via solvothermal route using a reaction of FeCl3·6H2O,KCNS,and 4-cyanopyridine in aqueous solution of H2O2 and ethanol at 130℃ for 3d.The compound crystallized in monoclinic space group P21,with cell parameters a=0.73850(15)nm,b=0.65100(13)nm,c=1.0546(2)nm,β=90.36(3)°,V=0.50700(18)nm3 and Z=2.The structure is constructed with inorganic layered [Fe2O(OH)SO4)+ cations linked by organic (C5H4NCOO)- anions.The compound is thermally stable up to approximately 240℃.

  6. Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials.

    Science.gov (United States)

    Rodriguez, Alejandro W; Ilic, Ognjen; Bermel, Peter; Celanovic, Ivan; Joannopoulos, John D; Soljačić, Marin; Johnson, Steven G

    2011-09-09

    We demonstrate the possibility of achieving enhanced frequency-selective near-field radiative heat transfer between patterned (photonic-crystal) slabs at designable frequencies and separations, exploiting a general numerical approach for computing heat transfer in arbitrary geometries and materials based on the finite-difference time-domain method. Our simulations reveal a tradeoff between selectivity and near-field enhancement as the slab-slab separation decreases, with the patterned heat transfer eventually reducing to the unpatterned result multiplied by a fill factor (described by a standard proximity approximation). We also find that heat transfer can be further enhanced at selective frequencies when the slabs are brought into a glide-symmetric configuration, a consequence of the degeneracies associated with the nonsymmorphic symmetry group.

  7. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge

    Science.gov (United States)

    Audetat, Andreas; Garbe-Schonberg, Dieter; Kronz, Andreas; Pettke, Thomas; Rusk, Brian G.; Donovan, John J.; Lowers, Heather

    2015-01-01

    A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium-in-quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g-1), Al (154 ± 15 μg g-1), Li (30 ± 2 μg g-1), Fe (2.2 ± 0.3 μg g-1), Mn (0.34 ± 0.04 μg g-1), Ge (1.7 ± 0.2 μg g-1) and Ga (0.020 ± 0.002 μg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.

  8. Fast reversible laser-induced crystallization of Sb-rich Zn-Sb-Se phase change material with excellent stability

    Directory of Open Access Journals (Sweden)

    Yimin Chen

    2015-07-01

    Full Text Available We present a new reversible phase-change medium Sb-rich Zn-Sb-Se film, which possesses a large difference in both optical and electrical constant. The doped-ZnSb, sub-formed Zn-Se, and exhausted Sb-Se3/2 co-influence the physical properties. Typically, there is ∼105 resistance ratio and ∼14% relative reflectivity change in Zn19Sb45.7Se35.3 film when switched by electricity or laser pulses between amorphous and crystalline states. The higher Tc (∼250°C, larger Ea (∼8.57eV, better 10-yr data retention (∼200.2°C, higher crystallization resistance (∼3 × 103Ω/□ at 300°C-annealled and relative lower melting temperature (∼550.2°C are exhibited in Zn19Sb45.7Se35.3 film. Importantly, a short crystalline time (∼80ns at 70mW of the ideal Zn19Sb45.7Se35.3 film can be obtained without sacrificing room-temperature stability.

  9. Crystal chemistry and application development of uranyl extended structure and nanoscale materials and actinyl ion-substituted mineral phases

    Science.gov (United States)

    Wylie, Ernest M.

    The worldwide use of nuclear energy presents both significant advantages and challenges for society. Actinide research seeks to address these challenges and drive advancement in the fields of nuclear science and engineering. Here, key aspects of the fuel cycle are examined from both a fundamental and an applications-based perspective. Hydrothermal, ionothermal, room-temperature evaporation, and liquid diffusion synthesis techniques and single-crystal X-ray diffraction were used to study the structures of 18 uranyl compounds and six actinyl-doped mineral phases. These compounds represent a diverse group ranging from unique molecular clusters to novel and known extended structures isolated from aqueous and ionic liquid media. Ultrafiltration techniques were utilized to separate uranyl peroxide nanoclusters from complex aqueous solutions. Inductively coupled plasma optical emission spectroscopy and mass spectrometry were used to quantify elemental distributions in the feed and permeate solutions while Raman spectroscopy, small-angle X-ray scattering, and electrospray ionization mass spectrometry were used to define the characteristics of the cluster species across a range different solution conditions.

  10. Fluorescence depolarization and contact angle investigation of dynamic and static interfacial tension of liquid crystal display materials.

    Science.gov (United States)

    Quintella, Cristina M; Lima, Angelo M V; Gonçalves, Cristiane C; Watanabe, Yuji N; Mammana, Alaide P; Schreiner, Marcos A; Pepe, Iuri; Pizzo, Angela A

    2003-06-01

    Interfacial interactions control two processes empirically known to be critical for molecular anchoring in twisted nematic liquid crystal displays technology (TN-LCDs): surface treatment and filling procedure. Static and dynamical interfacial tensions (Gamma(SL)) between liquids and several substrates with similar roughness were observed respectively by contact angle (theta(c)) of sessile drops and by fluorescence depolarization of thin liquid films flowing at high velocity. Gamma(SL) decreased when glass was coated with tin dioxide and increased with polyvinyl alcohol (PVA) deposition. Drops were circular for all substrates except rubbed PVA, where they flowed spontaneously along the rubbing direction, reaching an oblong form that had theta(c) parallel and perpendicular to the rubbing direction respectively greater and smaller than theta(c) for non-rubbed PVA. This is attributed to polar group alignment generating an asymmetric Gamma(SL) distribution with nanometric preferential direction, inducing a capillary-like flow. Polarization and anisotropy maps for high-velocity flow parallel to the PVA rubbing direction showed an increase in the net alignment of molecular domains and a widening of the region where it occurred. This is attributed to preferential anchoring in the downstream direction, instead of in several directions, as for non-rubbed PVA. This explains why filling direction is crucial for TN-LCDs homogeneous behavior.

  11. The mystery of the vanishing Reinke crystals.

    Science.gov (United States)

    Mesa, Hector; Gilles, Scott; Smith, Sophia; Dachel, Susan; Larson, Wendy; Manivel, J Carlos

    2015-04-01

    Reinke crystals (RC) are pathognomonic of Leydig cells (LCs); they are thought to be rare in normal testes and to occur only in approximately one third of LC tumors. We noticed that crystals present in touch imprint and frozen sections of an LC tumor disappeared after tissue fixation. This phenomenon led us to hypothesize that their reported low frequency in normal and neoplastic LCs may be secondary to degradation/dissolution of the crystals after formalin fixation. Our review of the literature also led us to hypothesize that RC are better preserved after air-drying and alcohol fixation. We collected testicular samples from 21 autopsies including air-dried cytologic preparations and tissue samples that were fixed in alcohol or formalin. We found that RC are common in normal LC but dissolve rapidly in formalin and slowly and only partially in alcohol. The composition of RC is unknown; however, they have been reported to stain specifically for nestin, an intermediate filament expressed mainly in neural and muscle tissue. Because the crystals have only been described in androgen-producing cells, we hypothesized that the crystals may represent a crystallized form of androgenic hormones, hormone complexes, or enzymes involved in their synthesis. We performed immunostains for androgens and enzymes involved in androgenesis. We also performed nestin immunostain to confirm the previous study. The crystals stain specifically with antibodies anti-3β-hydroxysteroid dehydrogenase and are negative for the remaining androgenic enzymes, androgenic hormones, and nestin.

  12. Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food

    OpenAIRE

    Lucci, Paolo; Saurina, Javier; Núñez Burcio, Oscar

    2016-01-01

    Polyphenols comprise a large family of naturally occurring secondary metabolites of plant-derived foods and are among the principal micronutrients associated with the health beneficial effects of our diet. Liquid chromatography coupled to mass spectrometry (LC-MS) and, in the last few years, high resolution mass spectrometry (LC-HRMS) is playing an important role in the research of polyphenols, not only for the determination of this family of compounds in food matrices, but also for the chara...

  13. Network diversity through decoration of trigonal-prismatic nodes: Two-step crystal engineering of cationic metal-organic materials

    KAUST Repository

    Schoedel, Alexander

    2011-10-05

    MOMs the word! In a two-step process, first a trigonal-prismatic Primary Molecular Building Block ([Cr3O(isonic)6]+, tp-PMBB-1) was formed and then it was connected to linear linkers or square-planar nodes to afford three novel highly charged cationic metal-organic materials (MOMs) with snx, snw, and stp topologies. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Crystallization from Gels

    Science.gov (United States)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  15. Crystallization kinetics in liquid crystals with hexagonal precursor phases by calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Padmaja, Sunkara; Ajita, Narayanan; Potukuchi, Dakshina Murthy [Dept. of Physics, Jawaharlal Nehru Technological Univ., Kakinada (India); Srinivasulu, Maddasani; Girish, Sriram Ramchandra [Liquid Crystal Research Centre, Koneru Lakshmaiah Coll. of Engineering, Vaddeswaram (India); Pisipati, Venkata Gopala Krishna Murthy [Dept. of Chemistry, Manipal Inst. of Tech. (India)

    2010-08-15

    Design and characterization of Schiff based liquid crystalline nO.m compounds exhibiting hexagonal smectic phases are reported. Crystallization kinetics investigations are carried out in the liquid crystals (LCs) exhibiting hexagonal ordered orthogonal and tilted precursor LC phases by calorimetry. The Avrami theory is referred and results are analyzed. Influence of molecular ordering, structure, and dimensionality of the LC precursor phase on kinetics is studied. Effect of shape and flexibility of the molecule for nucleation and growth processes is investigated. Varying rate of kinetics reflects upon the transit of the system from constant type to independent type of nucleation. The trends in the Avrami parameter b and exponent n suggest sporadic nucleation. Crystal growth is interpreted as heterogeneous permeation of layered domains (or aggregates) formed by needle shaped calamitic molecules. Calorimetric observations at different crystallization temperatures CT and hold time t infer diffusion mediated crystallization. (orig.)

  16. Ge and B doped collapsed photonic crystal optical fibre, a potential TLD material for low dose measurements

    Science.gov (United States)

    Rozaila, Z. Siti; Alyahyawi, Amjad; Khandaker, M. U.; Amin, Y. M.; Bradley, D. A.; Maah, M. J.

    2016-09-01

    Offering a number of advantageous features, tailor-made silica-based fibres are attracting attention as thermoluminesence (TL) dosimeters. We have performed a detailed study of the TL properties of Ge-doped and Ge-B-doped collapsed photonic crystal fibres (PCFc), most particularly with regard to their potential use for the environmental and X-ray diagnostic dose monitoring. Extrinsic doping and defects generated by strain at the fused inner walls of the collapsed fibres result in the PCFc-Ge-B and PCFc-Ge fibres producing markedly greater TL response than that of the phosphor-based dosimeter TLD-100, by some 9 and 7×, respectively. The linearity of TL yield has been investigated for X-ray doses from 0.5 mGy to 10 mGy. For a dose of 1 Gy, the energy response of the PCFs and TLD-100 has been studied using X-rays generated at accelerating potentials from 20 kVp through to 200 kVp and for the 1.25 MeV mean gamma-ray energy from 60Co. The effective atomic number , Zeffof PCFc-Ge and PCFc-Ge-B was estimated to be 12.5 and 14.4, respectively. Some 35 days post-irradiation, fading of the stored TL signal from PCFc-Ge-B and PCFc-Ge were found to be ∼15% and 20% respectively, with mean loss in TL emission of 0.4-0.5% per day. The present doped-silica collapsed PCFs provide greatly improved TLD performance compared to that of previous fibre designs and phosphor-based TLD-100.

  17. Liquid Crystal Motion Picture Projector①

    Institute of Scientific and Technical Information of China (English)

    SHIYongji

    1997-01-01

    A liquid crystal moving picture projector and method are described.Light incident on a liquid crystal display-type device is selectively scattered or transmitted by respective portions of liquid crystal display,and a projection mechanism projects an image formed by either such scattered light or such transmitted light.A liquid cystal moving picture projector includes a liquid crystal display for creating characteristics of an image,and projecttion optics for projecting images sequentially created by the display.The display includes a liquid crystal material capable of temporary storing information at respective areas.The temporary storage may be a function of charge storing directly on liquid crystal material.A method of projecting plural images in sequence includes:creating an image or characteristics of an image in a liquid crystal material,storing such image in such liquid crystal material,directing light at such liquid crystal material,projecting such image as a function of light transmitted through or scattered by such liquid crystal material,and creating a further image in such liquid crystal material for subsequent projection.

  18. Material removal mechanism during porous silica cluster impact on crystal silicon substrate studied by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ruling, E-mail: chenrl04@mails.tsinghua.edu.cn [Research Center of Nano-science and Nano-technology, Shanghai University, Shanghai 200444 (China); Jiang Ranran; Lei Hong; Liang Min [Research Center of Nano-science and Nano-technology, Shanghai University, Shanghai 200444 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer The impact of the porous silica clusters on a silicon substrate was studied by MD. Black-Right-Pointing-Pointer The porous cluster shows high MRR and low surface damage at an optimal pore size. Black-Right-Pointing-Pointer The high MRR is due to the combined effects of plough, adhesion and permeation. Black-Right-Pointing-Pointer The low surface damage is due to the decreasing of the penetration depth. Black-Right-Pointing-Pointer Enlarged contact area is more effective than increased penetration to enhance MRR. - Abstract: Molecular dynamics (MD) simulation is applied in analyzing the material removal mechanism of silicon substrate under the impact of large porous silica cluster with different pore diameters. With the increasing of the pore diameter of the porous cluster, the number of the atoms removed from the impact silicon surface will firstly increase and then decrease until the cluster is adhered to the substrate, which is due to the combinational effects of plough of the cluster, adhesion between the cluster and the substrate, and permeation of the substrate atoms through the pore of the cluster. And adhesion is the most significant one among these three effects. Meanwhile, the damage of the impact substrate will become weaker due to the decreasing of the penetration depth with the increasing of the pore diameter. In addition, it is found that the effect of an enlarged real contact area between the cluster and the substrate is more significant than that of deeper penetration of the cluster in order to enhance the material removal rate (MRR) during the impact process. These findings are instructive in optimizing the process parameters to obtain lower surface roughness and higher material removal rate during the chemical mechanical polishing process.

  19. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Michael I Koukourakis

    Full Text Available LC3s (MAP1-LC3A, B and C are structural proteins of autophagosomal membranes, widely used as biomarkers of autophagy. Whether these three LC3 proteins have a similar biological role in autophagy remains obscure. We examine in parallel the subcellular expression patterns of the three LC3 proteins in a panel of human cancer cell lines, as well as in normal MRC5 fibroblasts and HUVEC, using confocal microscopy and western blot analysis of cell fractions. In the cytoplasm, there was a minimal co-localization between LC3A, B and C staining, suggesting that the relevant autophagosomes are formed by only one out of the three LC3 proteins. LC3A showed a perinuclear and nuclear localization, while LC3B was equally distributed throughout the cytoplasm and localized in the nucleolar regions. LC3C was located in the cytoplasm and strongly in the nuclei (excluding nucleoli, where it extensively co-localized with the LC3A and the Beclin-1 autophagy initiating protein. Beclin 1 is known to contain a nuclear trafficking signal. Blocking nuclear export function by Leptomycin B resulted in nuclear accumulation of all LC3 and Beclin-1 proteins, while Ivermectin that blocks nuclear import showed reduction of accumulation, but not in all cell lines. Since endogenous LC3 proteins are used as major markers of autophagy in clinical studies and cell lines, it is essential to check the specificity of the antibodies used, as the kinetics of these molecules are not identical and may have distinct biological roles. The distinct subcellular expression patterns of LC3s provide a basis for further studies.

  20. Material-dependent amorphization and epitaxial crystallization in ion-implanted AlAs/GaAs layer structures

    Energy Technology Data Exchange (ETDEWEB)

    Cullis, A.G.; Chew, N.G.; Whitehouse, C.R. (Royal Signals and Radar Establishment, St. Andrews Road, Malvern, Worcestershire WR14 3PS, United Kingdom (GB)); Jacobson, D.C.; Poate, J.M.; Pearton, S.J. (AT T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974)

    1989-09-18

    When AlAs/GaAs layer samples are subjected to Ar{sup +} ion bombardment at liquid-nitrogen temperature, it is shown that very different damage structures are produced in the two materials. While the GaAs is relatively easily amorphized, the AlAs is quite resistant to damage accumulation and remains crystalline for the ion doses employed in these investigations. Epitaxial regrowth of buried amorphous GaAs layers of thicknesses up to 150 nm can be induced by rapid thermal annealing. It is demonstrated that differences in the initial damage state have a strong influence upon the nature of lattice defects produced by annealing.

  1. LC-MS-based metabolomics: an update.

    Science.gov (United States)

    Fang, Zhong-Ze; Gonzalez, Frank J

    2014-08-01

    Liquid chromatography-mass spectrometry (LC-MS)-based metabolomics can have a major impact in multiple research fields, especially when combined with other technologies, such as stable isotope tracers and genetically modified mice. This review highlights recent applications of metabolomic technology in the study of xenobiotic metabolism and toxicity, and the understanding of disease pathogenesis and therapeutics. Metabolomics has been employed to study metabolism of noscapine, an aryl hydrocarbon receptor antagonist, and to determine the mechanisms of liver toxicities of rifampicin and isoniazid, trichloroethylene, and gemfibrozil. Metabolomics-based insights into the pathogenesis of inflammatory bowel disease, alcohol-induced liver diseases, non-alcoholic steatohepatitis, and farnesoid X receptor signaling pathway-based therapeutic target discovery will also be discussed. Limitations in metabolomics technology such as sample preparation and lack of LC-MS databases and metabolite standards, need to be resolved in order to improve and broaden the application of metabolomic studies.

  2. Shapiro effect in mesoscopic LC circuit

    Institute of Scientific and Technical Information of China (English)

    嵇英华; 罗海梅; 欧阳楚英; 雷敏生

    2002-01-01

    In this paper we consider the movement of an electron in the single electron tunnel process through a mesoscopiccapacitor. The results show that, due to the Coulomb force, there is a threshold voltage Vt in the mesoscopic LC circuit.When the external voltage is lower than the threshold voltage, the tunnel current value is zero, and the Coulomb blockadephenomenon arises. Furthermore, considering that the mesoscopic dimension is comparable to the coherence length inwhich charge carriers retain the phase remembrance, a weak coupling can be produced through the proximity effectof the normal metal electrons of both electrodes of a mesoscopic capacitor. By varying the external voltage, we canobserve the Shapiro current step on the current-voltage characteristic curve of a mesoscopic LC circuit.

  3. Hydrophobic dipeptide crystals: a promising Ag-free class of ultramicroporous materials showing argon/oxygen adsorption selectivity.

    Science.gov (United States)

    Afonso, R; Mendes, A; Gales, L

    2014-09-28

    The adsorption isotherms of nitrogen, oxygen and argon in four VA-class hydrophobic dipeptides are presented. Isotherms were determined at 5, 20 and 35 °C, for a pressure range of 0-6 bar. Under these conditions, adsorption is still in the Henry region. For all materials and temperatures, the sequence of preferential adsorption is Ar > O2 > N2, a highly abnormal result. At 5 °C, the dipeptide with the smallest pores, VI, has Ar/O2 adsorption equilibrium selectivities up to 1.30, the highest ever measured in Ag-free adsorbents. Gas uptakes, at 1 bar and 20 °C, are ∼0.05 mol kg(-1), very low relative values that are partially explained by the low porosity of the solids (materials for the process of O2 generation by pressure swing adsorption (PSA) is discussed. The results indicate some of the structural and chemical properties that prospective Ag-free adsorbents should have in order to have Ar/O2 selectivity, hydrophobic pores, less than 0.5 nm-wide, and porosity of, at least, 20%.

  4. New Methods of Simulation of Mn(II) EPR Spectra: Single Crystals, Polycrystalline and Amorphous (Biological) Materials

    Science.gov (United States)

    Misra, Sushil K.

    Biological systems exhibit properties of amorphous materials. The Mn(II) ion in amorphous materials is characterized by distributions of spin-Hamiltonian parameters around mean values. It has a certain advantage over other ions, being one of the most abundant elements on the earth. The extent to which living organisms utilize manganese varies from one organism to the other. There is a fairly high concentration of the Mn(II) ion in green plants, which use it in the O2 evolution reaction of photosynthesis (Sauer, 1980). Structure-reactivity relationships in Mn(II)-O2 complexes are given in a review article by Coleman and Taylor (1980). Manganese is a trace requirement in animal nutrition; highly elevated levels of manganese in the diet can be toxic, probably because of an interference with iron homeostasis (Underwood, 1971). On the other hand, animals raised with a dietary deficiency of manganese exhibit severe abnormalities in connective tissue; these problems have been attributed to the obligatory role of Mn(II) in mucopolysaccharide metabolism (Leach, 1971). Mn(II) has been detected unequivocally in living organisms.

  5. Functional Smart Dispersed Liquid Crystals for Nano- and Biophotonic Applications: Nanoparticles-Assisted Optical Bioimaging

    Directory of Open Access Journals (Sweden)

    N. V. Kamanina

    2016-01-01

    Full Text Available Functional nematic liquid crystal structures doped with nano- and bioobjects have been investigated. The self-assembling features and the photorefractive parameters of the structured liquid crystals have been comparatively studied via microscopy and laser techniques. Fullerene, quantum dots, carbon nanotubes, DNA, and erythrocytes have been considered as the effective nano- and biosensitizers of the LC mesophase. The holographic recording technique based on four-wave mixing of the laser beams has been used to investigate the laser-induced change of the refractive index in the nano- and bioobjects-doped liquid crystal cells. The special accent has been given to novel nanostructured relief with vertically aligned carbon nanotubes at the interface: solid substrate-liquid crystal mesophase. It has been shown that this nanostructured relief influences the orienting ability of the liquid crystal molecules with good advantage. As a result, it provokes the orientation of the DNA. The modified functional liquid crystal materials have been proposed as the perspective systems for both the photonics and biology as well as the medical applications.

  6. Anisotropic electron-transfer mobilities in diethynyl-indenofluorene-dione crystals as high-performance n-type organic semiconductor materials: remarkable enhancement by varying substituents.

    Science.gov (United States)

    Zhang, Xiao-Yu; Huang, Jin-Dou; Yu, Juan-Juan; Li, Peng; Zhang, Wei-Ping; Frauenheim, Thoma

    2015-10-14

    In this study, the electron-transfer properties of alkynylated indenofluorene-diones with various substituents (SiMe3, SiPr3, and SiPh3) that function as n-type organic semiconductors were comparatively investigated at the first-principles DFT level based on the Marcus-Hush theory. The reorganization energies are calculated by the adiabatic potential-energy surface method, and the coupling terms are evaluated through a direct adiabatic model. The maximum value of the electron-transfer mobility of SiPr3 is 0.485 cm(2) V(-1) s(-1), which appears at the orientation angle of the conducting channel on the reference plane a-b near to 172°/352°. The predicted maximum electron mobility value of SiPr3 is nearly 26 times larger than that of SiPh3. This may be attributed to the largest number of intermolecular π-π interactions. In addition, the mobilities in all three crystals show remarkable anisotropic behavior. The calculated results indicate that SiPr3 could be an ideal candidate as a high-performance n-type organic semiconductor material. Our investigations not only give us an opportunity to completely understand the charge transport mechanisms, but also provide guidelines for designing materials for electronic applications.

  7. Drosophila roadblock and Chlamydomonas Lc7

    Science.gov (United States)

    Bowman, Aaron B.; Patel-King, Ramila S.; Benashski, Sharon E.; McCaffery, J. Michael; Goldstein, Lawrence S.B.; King, Stephen M.

    1999-01-01

    Eukaryotic organisms utilize microtubule-dependent motors of the kinesin and dynein superfamilies to generate intracellular movement. To identify new genes involved in the regulation of axonal transport in Drosophila melanogaster, we undertook a screen based upon the sluggish larval phenotype of known motor mutants. One of the mutants identified in this screen, roadblock (robl), exhibits diverse defects in intracellular transport including axonal transport and mitosis. These defects include intra-axonal accumulations of cargoes, severe axonal degeneration, and aberrant chromosome segregation. The gene identified by robl encodes a 97–amino acid polypeptide that is 57% identical (70% similar) to the 105–amino acid Chlamydomonas outer arm dynein–associated protein LC7, also reported here. Both robl and LC7 have homology to several other genes from fruit fly, nematode, and mammals, but not Saccharomyces cerevisiae. Furthermore, we demonstrate that members of this family of proteins are associated with both flagellar outer arm dynein and Drosophila and rat brain cytoplasmic dynein. We propose that roadblock/LC7 family members may modulate specific dynein functions. PMID:10402468

  8. Isothermal crystallization kinetics of lidocaine in supersaturated lidocaine/polyacrylate pressure sensitive adhesive systems.

    Science.gov (United States)

    Cui, Yong; Frank, Sylvan G

    2005-09-01

    Isothermal crystallization of lidocaine (LC) in supersaturated LC/Duro-Tak 87-2287 (DT2287) polyacrylate pressure sensitive adhesive (PSA) systems has been studied by differential scanning calorimetry (DSC). It was found that crystallization of LC in supersaturated LC/DT2287 systems was governed by the nucleation process, which in turn was dependent on temperature and composition of the systems. A critical temperature T(crit) was found at approximately 26 degrees C, above which the crystallization of LC in LC/DT2287 systems becomes slow. The lack of dependence of T(crit) on the composition of the mixtures indicates that the presence of the PSA affected the kinetics (diffusion) rather than the thermodynamics of the nucleation process. A critical degree of saturation S(crit) of approximately 4 was also found, above which the nucleation rate sharply increases. Kinetic analysis based on the classical theory of nucleation indicates that nucleation of LC in the PSA medium is a diffusion-controlled process. The activation energy of crystallization had a two-phase dependence on temperature suggesting that the mechanism of crystallization may change at the transition temperatures. As the weight fraction of LC increased in the systems, the activation energy of crystallization, DeltaG(c), was minimal at approximately 15 degrees C, indicating that the nucleation of LC in the LC/DT2287 systems is at its fastest rate around this temperature. These fundamental analyses of nucleation and crystallization mechanisms are of practical significance in the design of supersaturated drug delivery systems.

  9. Periodically-segmented liquid crystal core waveguides

    Science.gov (United States)

    Sharma, Mukesh; Shenoy, M. R.; Sinha, Aloka

    2017-09-01

    We report the fabrication and characterization of electrically-tunable periodically segmented waveguides (PSWs) with different duty cycles of 0.25, 0.33, 0.50 and 0.76, using the nematic liquid crystal 5CB as the guiding layer, and the negative photoresist AZ15nXT as the cladding. The experimental results show that light diffracts and re-focuses periodically on propagation through the liquid crystal (LC) core PSW, when an external voltage is applied to the periodically segmented electrodes. The performance of the fabricated LC core PSWs are analyzed in terms of effective refractive index, output power and duty cycle. The electrically-tunable LC core PSWs have potential application in the realization of optical filters, polarizers and dynamic mode size converters.

  10. Application of LC-MS/MS for quantitative analysis of glucocorticoids and stimulants in biological fluids

    Institute of Scientific and Technical Information of China (English)

    Jamshed Haneef; Mohammad Shaharyar; Asif Husaina; Mohd Rashid; Ravinesh Mishra; Shama Parveen; Niyaz Ahmed; Manoj Pal; Deepak Kumar

    2013-01-01

    Liquid chromatography tandem mass chromatography (LC-MS/MS) is an important hyphenated technique for quantitative analysis of drugs in biological fluids. Because of high sensitivity and selectivity, LC-MS/MS has been used for pharmacokinetic studies, metabolites identification in the plasma and urine. This manuscript gives comprehensive analytical review, focusing on chromatographic separation approaches (column packing materials, column length and mobile phase) as well as different acquisition modes (SIM, MRM) for quantitative analysis of glucocorticoids and stimulants. This review is not meant to be exhaustive but rather to provide a general overview for detection and confirmation of target drugs using LC-MS/MS and thus useful in the doping analysis, toxicological studies as well as in pharmaceutical analysis.

  11. Determination of phenolic compounds in Yucca gloriosa bark and root by LC-MS/MS.

    Science.gov (United States)

    Montoro, Paola; Skhirtladze, Alexandre; Bassarello, Carla; Perrone, Angela; Kemertelidze, Ether; Pizza, Cosimo; Piacente, Sonia

    2008-08-05

    On the basis of the biological activities shown by yuccaols and gloriosaols from Yucca schidigera and Yucca gloriosa, the content of yuccaols and gloriosaols in two different parts of Y. gloriosa (roots and bark), was determined for each single compound, and compared with phenolic determination in Y. schidigera bark, concluding that Y. gloriosa bark and roots are rich sources of phenolic derivatives structurally related to resveratrol. LC/ESIMS (liquid chromatography coupled to electrospray mass spectrometry) qualitative and an LC/ESIMS/MS (liquid chromatography coupled to tandem electrospray mass spectrometry) quantitative studies of the phenolic fraction of Y. gloriosa were performed. LC/ESIMS/MS multiple reaction monitoring (MRM) method previously described for yuccaols in Y. schidigera was applied and optimised for separation and determination of gloriosaols and yuccaols in Y. gloriosa. Due to the sensitivity and the repeatability of the assay, we suggest this method as suitable for industrial quality control of raw materials and final products.

  12. Interference forming of transmission by polymer dispersed liquid crystals

    Science.gov (United States)

    Maksimyak, P. P.; Nehrych, A. L.

    2013-12-01

    The methods of correlation optics are for the first time applied to study structure of liquid crystal (LC) - polymer (P) composites at various concentrations of LC and P. Their phase correlation function (PCF) was obtained considering LC-P composite as a random phase screen. The amplitude of PCF contains information about number of LC domains and structure of LC director inside of them, while a half-width of this function is connected with a size of these domains. We studied unpowered and powered composite layers with a thickness of 5 μm. As liquid crystal and polymer were used nematic LC E7 from Merck and photopolymer composition NOA65 from Norland. Concentration of polymer ϕP was varied in a range 10-55 vol. %. In good agreement with previous studies by SEM technique we detected monotone decrease of LC domains with concentration of polymer. With application of electric field, amplitude of PCF behaves differently for the samples with different polymer content. For the samples with ϕPLC), this dependence is monotonic. In turn, if ϕPLC morphology), the amplitude of PCF non-monotonically depends on the applied voltage going through a maximum. The latter fact is explained by transformation of orientational defects of LC phase with the applied voltage.

  13. An insight into crystal, electronic, and local structures of lithium iron silicate (Li{sub 2}FeSiO{sub 4}) materials upon lithium extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kamon-in, O. [School of Ceramic Engineering, Suranaree University of Technology, Nakhonratchasima 30000 (Thailand); Klysubun, W. [Synchrotron Light Research Institute, Nakhonratchasima 30000 (Thailand); Thailand Center of Excellence in Physics, Commission of Higher Education, Bangkok 10400 (Thailand); Limphirat, W. [Synchrotron Light Research Institute, Nakhonratchasima 30000 (Thailand); Srilomsak, S. [School of Ceramic Engineering, Suranaree University of Technology, Nakhonratchasima 30000 (Thailand); Meethong, N., E-mail: nonmee@kku.ac.th [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2013-05-01

    Recently, orthosilicate, Li{sub 2}MSiO{sub 4} (where M=transition metal) materials have been attracting considerable attention for potential use as a new generation cathode for Li-ion batteries due to their safety, low toxicity, and low cost characteristics. In addition, the presence of two Li{sup +} ions in the molecule offers a multiple electron-charge transfer (M{sup 2+}/M{sup 3+} and M{sup 3+}/M{sup 4+} redox couples), thus allowing a high achievable capacity of more than 320 mA h/g per M unit. Good electrochemical properties of Li{sub 2}FeSiO{sub 4} have been reported through several approaches such as downsizing of the particles, carbon-coating, etc. However, in addition to electrochemical performance, fundamental understanding regarding crystal, electronic and local structure changes during charge/discharge processes is also important and needs more rigorous investigation. In this work, lithium iron silicates (Li{sub 2}FeSiO{sub 4}/C) in space group of Pnma: a=10.6671(3) Å, b=6.2689(2) Å, and c=5.0042(2) Å have been prepared by solid-state reaction. The synthesized as well as chemical delithiated samples have been characterized by XRD, HRTEM, AAS and XAS techniques. We will show the results focusing on Fe K-edge XANES, EXAFS, HRTEM and XRD of the Li{sub 2−x}FeSiO{sub 4} samples and discuss how the crystal, electronic, and local structure changes upon Li{sup +} de-intercalation.

  14. Materials

    Science.gov (United States)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  15. Liquid crystal wavefront corrector on silicon

    NARCIS (Netherlands)

    Loktev, M.; Vdovin, G.; Nanver, L.

    2005-01-01

    A reflective-type liquid crystal (LC) wavefront corrector with modal addressing is described. The corrector’s backplane has an array of pixel electrodes interconnected by a network of discrete resistors. The resistive network serves to form the local voltage profile that controls the phase distribut

  16. Crystals in crystals

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.;

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion...... of the zeolite particles, particularly after thermal treatment. When using mesoporous zeolites, the particles were evenly distributed throughout the mesopore system of the zeolitic support, even after calcination, leading to nanocrystals within mesoporous zeolite single crystals....

  17. Modified low temperature Czochralski growth of xylenol orange doped benzopheone single crystal for fabricating dual band patch antenna

    Science.gov (United States)

    Yadav, Harsh; Sinha, Nidhi; Kumar, Binay

    2016-09-01

    Organic non-linear optical pure and xylenol orange (XO) doped benzophenone (BP) single crystals have been grown by a modified Czochralski technique. A low cost CZ system was designed and fabricated that is suitable for the growth of single crystals of low melting point organic materials. Structural analysis was performed by powder and single crystal XRD. LC-HRMS spectra reveal that the dye molecules are present in the doped crystal. The linear optical characterization was carried out by UV-vis spectroscopy. In the case of the XO doped BP crystal, two absorption peaks were found at 504 nm and 620 nm. The enhancement of photoluminescence intensity of blue emission was observed in the dye doped crystal. Dielectric studies reveal that the XO doped BP has shown improved a dielectric constant with low dielectric loss. A dual band compact circular patch antenna was simulated and fabricated using the XO doped crystal. Resonant frequencies of the dual bands at 4.80 GHz and 9.22 GHz were achieved by introducing a defect ground state in the circular patch antenna. The piezoelectric coefficient (d33) value was increased from 1 to 4 pC/N by XO dye doping, which opens up the possibilities of simultaneous transducer applications.

  18. Tunable plasmonic crystal

    Science.gov (United States)

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  19. Tunable plasmonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  20. Adsorption of Saliva Related Protein on Denture Materials: An X-Ray Photoelectron Spectroscopy and Quartz Crystal Microbalance Study

    Directory of Open Access Journals (Sweden)

    Akiko Miyake

    2016-01-01

    Full Text Available The aim of this study was to evaluate the difference in the adsorption behavior of different types of bovine salivary proteins on the PMMA and Ti QCM sensors are fabricated by spin-coating and sputtering onto bare QCM sensors by using QCM and X-ray photoelectron spectroscopy (XPS. SPM, XPS, and contact angle investigations were carried out to determine the chemical composition and surface wettability of the QCM surface. We discuss the quality of each sensor and evaluate the potential of the high-frequency QCM sensors by investigating the binding between the QCM sensor and the proteins albumin and mucin (a salivary-related protein. The SPM image showed a relatively homogeneous surface with nano-order roughness. The XPS survey spectra of the thin films coated on the sensors were similar to the binding energy of the characteristic spectra of PMMA and Ti. Additionally, the amount of salivary-related protein on the PMMA QCM sensor was higher than those on the Ti and Au QCM sensors. The difference of protein adsorption is proposed to be related to the wettability of each material. The PMMA and Ti QCM sensors are useful tools to study the adsorption and desorption of albumin and mucin on denture surfaces.

  1. ELECTROOPTICAL CHARACTERISTICS OF SPACE-INTEGRATED MODULATING STRUCTURES ON TWIST EFFECT IN LIQUID CRYSTALS

    Directory of Open Access Journals (Sweden)

    Yu. V. Razvin

    2014-01-01

    Full Text Available The paper demonstrates that the process of twist LC-pixel switching can be associated not only with a reorientation of liquid crystal molecules in the controlling electric field, but also with the effect of compression of the LC-spiral to the central area through layer thickness. In this case the time of LC-pixel total switching is decreased by almost three orders.

  2. Pixel size and pitch measurements of liquid crystal spatial light modulator by optical diffraction

    Indian Academy of Sciences (India)

    Ravinder Kumar Banyal; B Raghavendra Prasad

    2005-08-01

    We present a simple technique for the determination of pixel size and pitch of liquid crystal (LC) based spatial light modulator (SLM). The proposed method is based on optical diffraction from pixelated LC panel that has been modeled as a two-dimensional array of rectangular apertures. A novel yet simple, two-plane measurement technique is implemented to circumvent the difficulty in absolute distance measurement. Experimental results are presented for electrically addressed twisted nematic LC-SLM removed from the display projector.

  3. ELECTROOPTICAL CHARACTERISTICS OF SPACE-INTEGRATED MODULATING STRUCTURES ON TWIST EFFECT IN LIQUID CRYSTALS

    OpenAIRE

    Yu. V. Razvin; V. A. Potachits

    2014-01-01

    The paper demonstrates that the process of twist LC-pixel switching can be associated not only with a reorientation of liquid crystal molecules in the controlling electric field, but also with the effect of compression of the LC-spiral to the central area through layer thickness. In this case the time of LC-pixel total switching is decreased by almost three orders.

  4. The characteristics of serrated flow in superalloy IN738LC

    Energy Technology Data Exchange (ETDEWEB)

    Sharghi-Moshtaghin, Reza [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran (Iran, Islamic Republic of); Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States)], E-mail: rxs270@case.edu; Asgari, Sirous [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran (Iran, Islamic Republic of)

    2008-07-15

    Serrated flow was investigated in superalloy IN738LC, a nickel-base {gamma}' age-hardened alloy. In this material serrated flow appeared between 350 and 450 deg. C and strain rate of (8.77 x 10{sup -5} to 8.77 x 10{sup -3}) s{sup -1}. Activation energy for this process was calculated to be 0.69-0.86 eV which is in good agreement with the values reported for similar alloys. Results show that the diffusion rate of substitutional solute atoms at this temperature range is too low to cause this effect. This suggests that the interaction of solute atoms and moving dislocation is responsible for the observed serrated flow in this alloy.

  5. Microstructure and stability of melt spun INCONEL 713 LC

    Science.gov (United States)

    Antolovich, S. D.; Bowman, R. R.

    1986-01-01

    The alloy IN-714LC was used in an investigation of the effect of process parameters on the microstructure of a rapidly solidified melt-spun material. The resultant ribbon microstructure consisted of several distinct regions, each of which corresponds to a different thermal history during processing. A chill zone of equiaxed randomly-oriented grains exists in a region of the foil which was in contact with the wheel during casting. This zone develops into a dendritic growth morphology with distance away from the lower ribbon surface. Dendrites inclined in the direction of wheel rotation result from growth into a flowing stream. TEM studies showed that a cell structure formed, the cell size decreasing with increasing wheel speed. Aging studies indicated that the cell structure plays an important role in gamma prime precipitation. Results relating to heat treatments (as would be encountered in compaction and use) and the stability of the melt-spun structure are considered.

  6. Liquid-crystalline ordering as a concept in materials science: from semiconductors to stimuli-responsive devices.

    Science.gov (United States)

    Fleischmann, Eva-Kristina; Zentel, Rudolf

    2013-08-19

    While the unique optical properties of liquid crystals (LCs) are already well exploited for flat-panel displays, their intrinsic ability to self-organize into ordered mesophases, which are intermediate states between crystal and liquid, gives rise to a broad variety of additional applications. The high degree of molecular order, the possibility for large scale orientation, and the structural motif of the aromatic subunits recommend liquid-crystalline materials as organic semiconductors, which are solvent-processable and can easily be deposited on a substrate. The anisotropy of liquid crystals can further cause a stimuli-responsive macroscopic shape change of cross-linked polymer networks, which act as reversibly contracting artificial muscles. After illustrating the concept of liquid-crystalline order in this Review, emphasis will be placed on synthetic strategies for novel classes of LC materials, and the design and fabrication of active devices.

  7. Accurate LC peak boundary detection for ¹⁶O/¹⁸O labeled LC-MS data.

    Directory of Open Access Journals (Sweden)

    Jian Cui

    Full Text Available In liquid chromatography-mass spectrometry (LC-MS, parts of LC peaks are often corrupted by their co-eluting peptides, which results in increased quantification variance. In this paper, we propose to apply accurate LC peak boundary detection to remove the corrupted part of LC peaks. Accurate LC peak boundary detection is achieved by checking the consistency of intensity patterns within peptide elution time ranges. In addition, we remove peptides with erroneous mass assignment through model fitness check, which compares observed intensity patterns to theoretically constructed ones. The proposed algorithm can significantly improve the accuracy and precision of peptide ratio measurements.

  8. Polymer semiconductor crystals

    Directory of Open Access Journals (Sweden)

    Jung Ah Lim

    2010-05-01

    Full Text Available One of the long-standing challenges in the field of polymer semiconductors is to figure out how long interpenetrating and entangled polymer chains self-assemble into single crystals from the solution phase or melt. The ability to produce these crystalline solids has fascinated scientists from a broad range of backgrounds including physicists, chemists, and engineers. Scientists are still on the hunt for determining the mechanism of crystallization in these information-rich materials. Understanding the theory and concept of crystallization of polymer semiconductors will undoubtedly transform this area from an art to an area that will host a bandwagon of scientists and engineers. In this article we describe the basic concept of crystallization and highlight some of the advances in polymer crystallization from crystals to nanocrystalline fibers.

  9. Liquid Crystal Phase Transition driven three-dimensional Quantum Dot Organization

    Science.gov (United States)

    Rodarte, Andrea L.; Pandolfi, R. J.; Ghosh, S.; Hirst, L. S.

    2013-03-01

    We use a nematic liquid crystal (LC) to create organized assemblies of CdSe/ZnS core/shell quantum dots (QDs). At the isotropic-nematic LC phase transition, ordered domains of nematic LC expel the majority of dispersed QDs into the isotropic domains. The final LC phase produces a series of three dimensional columnar QD assemblies that are situated at defect points in the LC volume. Within each assembly the QD emission is spectrally-red-shifted due to resonant energy transfer. We use this spectral shift as a measure of the inter-dot separation and find that the QDs are packed uniformly in these assemblies over distances of microns between the glass plates of a standard LC cell. In addition, because the QD clusters form at defects, we can deterministically control the location of the assemblies by seeding the LC cell with defect nucleation points. Funding provided by NSF, UC MERI and UC MEXUS.

  10. Observation of applied voltage response of dye-doped liquid crystal by optical measurement of real and imaginary parts of complex refractive index

    Science.gov (United States)

    Sakamoto, Moritsugu; Bannai, Kenta; Noda, Kohei; Sasaki, Tomoyuki; Ono, Hiroshi

    2017-09-01

    The behavior of liquid crystal (LC) molecules and dye molecules in a dye-doped liquid crystal (DDLC) under a voltage application condition was quantitatively investigated. To observe the reorientation of these molecules, the real and imaginary parts of the complex refractive index were simultaneously and individually measured using an optical interferometer. The obtained results indicate that the alignment of dye molecules doped in DDLC occurs following the electrically responding LC molecules, near the Freedericksz transition region of LC.

  11. Crystal science fundamentals

    OpenAIRE

    Ramachandran, V.; Halfpenny, PJ; Roberts, KJ

    2017-01-01

    The fundamentals of crystal science notably crystallography, crystal chemistry, crystal defects, crystal morphology and the surface chemistry of crystals are introduced with particular emphasis on organic crystals.

  12. Fundamental emission characteristics of light-emitting liquid crystal cells with rubrene-doped 4-cyano-4'-pentylbiphenyl

    Science.gov (United States)

    Honma, Michinori; Horiuchi, Takao; Tanimoto, Masashi; Nose, Toshiaki

    2014-06-01

    We have investigated the light emission properties in rubrene-doped nematic liquid crystal (LC) cells from the following three standpoints: (i) effect of the heating temperature during the sample preparation, (ii) role of the emissive LC layer thickness, and (iii) role of different LC types used as the emissive layer. As a result, the light-emitting LC cells simultaneously exhibit the features of electrochemiluminescent cells (the carrier transport is governed by an ionic conduction) as well as of organic light-emitting diodes (the luminance strongly depends on the emissive layer thickness). Furthermore, we report that devices with cyano group containing LCs exhibit higher luminance compared to a fluorinated LC.

  13. The Development Status and Application of In-situ Crystallization Material%原位晶化材料的发展现状及应用前景

    Institute of Scientific and Technical Information of China (English)

    周宝龙; 姜洪文; 聂英斌

    2013-01-01

    高岭土经过热和酸碱处理后,形成中大孔结构,并具有一定的酸性中心,具有很好的重油转化能力和裂化产物选择性.以高岭土为基质原位晶化法制备的催化复合材料在活性、孔结构、晶粒大小、重油选择性等方面均具有独特的优势,尤其是有助于重油分子在其上的扩散,在加氢裂化催化剂中发挥了重要作用.主要介绍了原位晶化材料的发展现状以及在加氢裂化催化剂中的应用,有助于更好地理解高岭土原位晶化催化剂在加氢裂化中所起作用.%The kaolin forms middle and large size pores structures and possesses acid centers after being treated by acid and base, which has an excellent convention of heavy oil and cracking products selectivity. The kaolin composite material crystallized by in-situ synthesis has particular advantages, such as activity, pore structure, size of grain and selectivity of heavy oils; especially it contributes to the diffusion of heavy oils on it, and it plays an important role in hydro-cracking catalyst. The development status and trend of the in-situ crystalline material and its application in hydro-cracking catalyst are introduced, and it is helpful to comprehend the effect of in-situ crystalline catalyst in hydro-cracking.

  14. Influence of graded index materials on the photonic localization in one-dimensional quasiperiodic (Thue-Mosre and Double-Periodic) photonic crystals

    Science.gov (United States)

    Singh, Bipin K.; Pandey, Praveen C.

    2014-12-01

    In this paper, we present the investigation on the photonic localization and band gaps in quasi-periodic photonic crystals containing graded index materials using a transfer matrix method in region 150-750 THz of the electromagnetic spectrum. The graded layers have a space dispersive refractive index, which vary in a linear and exponential fashion as a function of the depth of layer. The considered quasiperiodic structures are taken in the form of Thue-Morse and Double-Periodic sequences. The grading profile in the layers affects the position of reflection dips and forbidden bands, and frequency region of the bands. We observed that vast number of forbidden band gaps and dips are developed in its reflection spectra by increasing the number of quasi-periodic generation. Moreover, we compare the total forbidden bandwidths with increasing the generation of the quasi-periodic sequences for the structures with linear and exponential graded layer. Results show that the different graded profiles with same boundary refractive index can change the position of localization modes, number of photonic bands and change the frequency region of the bands. Therefore, we can achieve suitable photonic band gaps and modes by choosing the different gradation profiles of the refractive index and generation of the quasi-periodic sequences.

  15. 1-Butyl-3-Methylimidazolium Tetrafluoroborate Film as a Highly Selective Sensing Material for Non-Invasive Detection of Acetone Using a Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Wenyan Tao

    2017-01-01

    Full Text Available Breath acetone serves as a biomarker for diabetes. This article reports 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4], a type of room temperature ionic liquid (RTIL, as a selective sensing material for acetone. The RTIL sensing layer was coated on a quartz crystal microbalance (QCM for detection. The sensing mechanism is based on a decrease in viscosity and density of the [bmim][BF4] film due to the solubilization of acetone leading to a positive frequency shift in the QCM. Acetone was detected with a linear range from 7.05 to 750 ppmv. Sensitivity and limit of detection were found to be 3.49 Hz/ppmv and 5.0 ppmv, respectively. The [bmim][BF4]-modified QCM sensor demonstrated anti-interference ability to commonly found volatile organic compounds in breath, e.g., isoprene, 1,2-pentadiene, d-limonene, and dl-limonene. This technology is useful for applications in non-invasive early diabetic diagnosis.

  16. Synthesis, crystal structure, vibrational spectra, optical properties and theoretical investigation of a two-dimensional self-assembled organic-inorganic hybrid material

    Science.gov (United States)

    Dammak, Hajer; Elleuch, Slim; Feki, Habib; Abid, Younes

    2016-11-01

    Organic-inorganic hybrid material of formula (C4H3SC2H4NH3)2[PbI4] was synthesized and studied by X-ray diffraction, Infrared absorption, Raman scattering, UV-Visible absorption and photoluminescence measurements. The molecule crystallizes as an organic-inorganic two-dimensional (2D) structure built up from infinite PbI6 octahedra surrounded by organic cations. Such a structure may be regarded as quantum wells system in which the inorganic layers act as semiconductor wells and the organic cations act as insulator barriers. Room temperature IR and Raman spectra were recorded in the 520-3500 and 10-3500 cm-1 frequency range, respectively. Optical absorption measurements performed on thin films of (C4H3SC2H4NH3)2[PbI4] revealed three distinct bands at 2.4, 2.66 and 3.25 eV. We also report DFT calculations of the electric dipole moments (μ), polarizability (α), the static first hyperpolarizability (β) and HOMO-LUMO analysis of the title compound investigated by GAUSSIAN 09 package. The calculated static first Hyperpolarizability is equal to 11.46 × 10-31 esu.

  17. 1-Butyl-3-Methylimidazolium Tetrafluoroborate Film as a Highly Selective Sensing Material for Non-Invasive Detection of Acetone Using a Quartz Crystal Microbalance

    Science.gov (United States)

    Tao, Wenyan; Lin, Peng; Liu, Sili; Xie, Qingji; Ke, Shanming; Zeng, Xierong

    2017-01-01

    Breath acetone serves as a biomarker for diabetes. This article reports 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), a type of room temperature ionic liquid (RTIL), as a selective sensing material for acetone. The RTIL sensing layer was coated on a quartz crystal microbalance (QCM) for detection. The sensing mechanism is based on a decrease in viscosity and density of the [bmim][BF4] film due to the solubilization of acetone leading to a positive frequency shift in the QCM. Acetone was detected with a linear range from 7.05 to 750 ppmv. Sensitivity and limit of detection were found to be 3.49 Hz/ppmv and 5.0 ppmv, respectively. The [bmim][BF4]-modified QCM sensor demonstrated anti-interference ability to commonly found volatile organic compounds in breath, e.g., isoprene, 1,2-pentadiene, d-limonene, and dl-limonene. This technology is useful for applications in non-invasive early diabetic diagnosis. PMID:28117697

  18. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells; Architectures hybrides auto-assemblees a base de systemes polyconjugues et de nanocristaux de semi-conducteurs pour le photovoltaique plastique

    Energy Technology Data Exchange (ETDEWEB)

    Girolamo, J. de

    2007-11-15

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  19. Optical devices based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard

    2005-01-01

    In this ph.d. work, an experimental and theoretical study on Liquid Crystal (LC) infiltrated Photonic Crystal Fibers (PCFs) has been carried out. PCFs usually, consists of an air/silica microstructure of air holes arranged in a triangular lattice surrounding a core defect defined by a missing air...... hole. The presence of a LC in the holes of the PCF transforms the fiber from a Total Internal Reflection (TIR) guiding type into a Photonic BandGap (PBG) guiding type, where light is confined to the silica core by coherent scattering from the LC-billed holes. The high dielectric and optical anisotropy...... of LCs combined with the unique waveguiding features of PBG fibers gives the LC filled PCFs unique tunable properties. PBG guidance has been demonstrated for different mesophases of LCs and various functional compact fibers has been demonstrated, which utilitzes the high thermo-optical and electro...

  20. The analysis of effect of heat treatment temperature on micro structure, crystal structure and hardness material on alloy Zr 96,2 Sn 2,3Nb1.1 Fe0,4

    Science.gov (United States)

    Saing, Bungaran; Budiarto

    2017-09-01

    The effect of heat treatment temperature (in 500 0C, 600 0C, and 700 0C) from Zr 96,2 Sn 2,3Nb1.1 Fe0,4 as fuel cladding material candidate’s reactor nuclear power plant; for microstructure, crystal structure, and hardness has been carried out. Several characteristic was conducted by using an optical microscope, x-ray diffractometer and Vickers method. The result showed the crystalline characteristic peaks by a tendency to a single crystal formation and microstructure is getting better with less precipitation and the hardness of the alloy is 329.6 4.5 HVN after the homogenization process.

  1. Ultrafast photonic crystal optical switching

    Institute of Scientific and Technical Information of China (English)

    GONG Qi-huang; HU Xiao-yong

    2006-01-01

    Photonic crystal,a novel and artificial photonic material with periodic dielectric distribution,possesses photonic bandgap and can control the propagation states of photons.Photonic crystal has been considered to be a promising candidate for the future integrated photonic devices.The properties and the fabrication method of photonic crystal are expounded.The progresses of the study of ultrafast photonic crystal optical switching are discussed in detail.

  2. Three-dimensional modeling of nematic liquid crystal micro-optics structures with complex patterned electrodes

    Science.gov (United States)

    Rong, Xing; Kang, Shengwu; Zhang, Xinyu; Ji, An; Xie, Changsheng; Zhang, Tianxu

    2012-11-01

    In this paper, a three-dimensional (3-D) relaxation method is used to model the dynamic response behavior of liquid crystal (LC) directors in LC micro-optics structures with complex patterned electrodes. The method is based on Frank- Oseen continuum elastic theory by using a vectorial representation. This method can deal with liquid crystal structures with arbitrary patterned electrodes, and it is quite computational stability. Different numerical results obtained according the method are as follows: (1) the nematic LC structures with complex patterned electrodes applied by a constant voltage signal, and (2) the nematic LC structures with different thickness of LC layer, and (3) the nematic LC structures with different signal voltage. The typical results include the distribution of LC directors in LC layers, the distribution of electric potential in LC layers, and the distribution of phase retardation. The results show that the method can be used to effectively predict the formation of disclination lines, which has a strong impact on the performance of LC micro-optics structures.

  3. Switching of polymer-stabilized vertical alignment liquid crystal cell.

    Science.gov (United States)

    Huang, Chi-Yen; Jhuang, Wen-Yi; Hsieh, Chia-Ting

    2008-03-17

    This work investigates the switching characteristics of the polymer-stabilized vertical alignment (VA) liquid crystal (LC) cell. The experimental results reveal that the fall time of the cell declines as the monomer concentration increases because the vertically-aligned polymer networks accelerate the relaxation of the LC molecules. Furthermore, the formed polymer networks impede the growth and annihilation of LC defects, suppressing the optical bounce in the time dependent transmittance curve of the cell when the voltage is applied to the cell, substantially reducing the rise time of the cell. A step-voltage driving scheme is demonstrated to eliminate completely the optical bounce and hence improve further the rise time of the VA LC cell. The rise times of the pristine and the polymer-stabilized VA LC cells under the step-voltage driving scheme are less than 50% of those under the conventional driving scheme.

  4. Design, Discovery and Growth of Novel Materials For Basic Research: An Urgent U.S. Need Report on the DOE/BES Workshop: “Future Directions of Design, Discovery and Growth of Single Crystals for Basic Research”

    Energy Technology Data Exchange (ETDEWEB)

    Canfield, Paul [Iowa State Univ., Ames, IA (United States); Ames Lab., Ames, IA (United States)

    2003-10-10

    The design, discovery and growth of novel materials, especially in single crystal form, represents a national core competency that is essential for scientific progress and long-term economic growth. Indeed, many of the major discoveries of condensed matter science during the last fifty years have been made possible by the discovery of new materials. Recently revealed phenomena such as high Tc superconductivity and the quantum Hall effect, for example, represent new states of matter that emerge from the collective behavior of large numbers of electronic, magnetic and lattice degrees of freedom. Such materials challenge our fundamental understanding of matter and provide novel materials functionality. New materials also lie at the core of many new and existing technologies, such as semiconductor electronics, solid state lasers, radiation detectors, compact disk storage, both cellular and optical communications, solar cells, fuel cells and catalysts. Such materials further hold the promise for new technologies ranging from efficient indoor and traffic lighting, to multi-component data storage, integrated bioelectronic sensors, and thermoelectric power generation. Single crystals are often required to achieve a materials’ full functionality as well as to completely elucidate its properties. A Department-of-Energy-sponsored workshop was held on Oct. 10-12, 2003 in Ames, Iowa with the purpose of assessing the state of novel materials and crystal growth in the U.S. Leaders of broad areas of synthesis and condensed matter science reviewed present U.S. strengths, levels of support, and competition from abroad. The principal finding of the workshop is that the current U.S. infrastructure and personnel levels are insufficient to meet the growing demand for high quality, specialized samples, and to maintain international competitiveness in an area vital to the nation’s condensed matter science enterprise. We further risk being unable to fully exploit the nation’s world

  5. Synthesis, growth, characterisation and laser damage threshold studies of N,N-dimethylanilinium-3-carboxy-4-hydroxybenzenesulphonate crystal: An efficient SHG material for electro-optic applications

    Science.gov (United States)

    Rajkumar, M.; Chandramohan, A.

    2017-04-01

    An NLO active organic proton transfer complex salt, N,N-Dimethylanilinium-3-carboxy-4-hydroxybenzenesulphonate has been synthesized and single crystals grown by slow solvent evaporation solution growth technique at ambient temperature. The synthesized salt was characterized by Uv-visible absorption, UV-vis-NIR transmission spectral studies and elemental analysis. The formation of the salt and the crystal structure have been confirmed by single crystal X-ray diffraction (XRD) analysis and the title crystal belongs to monoclinic crystal system with the non-centrosymmetric space group, Pc. The FT-IR spectrum was recorded to confirm the presence of various functional groups in the grown crystal. The molecular structure of the crystal was further confirmed by 1H and 13C NMR spectra. The TG/DTA analyses were carried out to establish the thermal stability of the title crystal. The dielectric constant and dielectric loss have been studied as a function of frequency at different temperatures. The presence of SHG and its conversion efficiency was measured by employing the modified Kurtz and Perry powder technique. The laser damage threshold value of the title crystal was determined using a Nd:YAG laser with the wavelength of 1064 nm.

  6. Dynamic pattern formation of liquid crystals using binary self-assembled monolayers on an ITO surface under DC voltage.

    Science.gov (United States)

    Ishida, Takao; Oyama, Makiko; Terada, Kei-ichi; Haga, Masa-aki

    2014-12-07

    There have been numerous studies of liquid crystal (LC) convection using sandwich-type LC cells under AC voltage. In contrast to previous LC convection studies under AC voltage, we propose the use of a binary self-assembled monolayer (SAM) with a redox-active Ru complex and insulating octadecyl phosphonic acid (C18) molecules on an indium tin oxide (ITO) surface as the electrode of sandwich-type LC cells under DC bias voltage. This is because the functionalized molecules immobilized on the ITO surface are expected to control the LC orientation and electrical conduction of LC cells, under an exact DC bias voltage. We successfully achieved LC pattern formation using ITO electrodes with binary SAMs in LC cells. Moreover, we confirmed that the LC pattern size was increased by increasing the coverage of the Ru complex in binary SAMs. We consider that a combination of three factors, electrical conduction change, controlling of LC orientation in the initial stage and redox-activity of the Ru-complex, is the reason for LC convection although we cannot fully explain the distribution of these three factors. We believe that our LC pattern formation is promising for new type devices e.g., artificial compound eyes using the LC device technology.

  7. Complete set of material constants of Pb(In(12)Nb(12))O(3)-Pb(Mg(13)Nb(23))O(3)-PbTiO(3)single crystal with morphotropic phase boundary composition.

    Science.gov (United States)

    Liu, Xiaozhou; Zhang, Shujun; Luo, Jun; Shrout, Thomas R; Cao, Wenwu

    2009-10-01

    Using combined resonance and ultrasonic methods, a full set of material constants has been measured for morphotropic phase boundary (MPB) composition xPb(In(12)Nb(12))O(3)-(1-x-y)Pb(Mg(13)Nb(23))O(3)-yPbTiO(3) (PIN-PMN-PT) single crystals poled along [001](c). Compared with the MPB composition (1-x)Pb(Mg(13)Nb(23))O(3)-xPbTiO(3) (PMN-PT) single crystals, the PIN-PMN-PT single crystals have smaller anisotropy, higher Curie temperature (T(c) approximately 197 degrees C), and higher rhombohedral to tetragonal phase transition temperature (T(R-T) approximately 96 degrees C). The electromechanical properties obtained here are the best found so far for this ternary system with d(33) approximately 2742 pCN, d(31) approximately -1337 pCN, k(33) approximately 95%, and k(31) approximately 65%.

  8. Proteomic analysis of proteins selectively associated with hydroxyapatite, brushite, and uric acid crystals precipitated from human urine.

    Science.gov (United States)

    Thurgood, Lauren A; Ryall, Rosemary L

    2010-10-01

    The aim of this study was to compare the intracrystalline protein profiles of hydroxyapatite (HA), brushite (BR), and uric acid (UA) crystals precipitated from the same urine samples. HA, BR, and UA crystals were precipitated on two different occasions from the same pooled healthy urine. Crystals were washed to remove surface-bound proteins, and their composition was confirmed using Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM) coupled with energy dispersive X-ray analysis (EDAX). SDS-PAGE was used for visual comparison of the protein content of the demineralised crystal extracts, which were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). HA comprised nanosized particles interspersed with organic material, which was absent from the BR and UA crystals. The number and type of individual proteins differed between the 3 minerals: 45 proteins were detected in the HA crystal extracts and 77 in the BR crystals, including a number of keratins, which were regarded as methodological contaminants. After excluding the keratins, 21 proteins were common to both HA and BR crystals. Seven nonkeratin proteins were identified in the UA extracts. Several proteins consistently detected in the HA and BR crystal extracts have been previously implicated in kidney stone disease, including osteopontin, prothrombin, protein S100A9 (calgranulin B), inter-α-inhibitor, α1-microglobulin bikunin (AMBP), heparan sulfate proteoglycan, and Tamm-Horsfall glycoprotein, all of which are strong calcium binders. We concluded that the association of proteins with HA, BR, and UA crystals formed in healthy urine is selective and that only a few of the numerous proteins present in healthy urine are likely to play any significant role in preventing stone pathogenesis.

  9. Pattern information extraction from crystal structures

    OpenAIRE

    Okuyan, Erhan

    2005-01-01

    Cataloged from PDF version of article. Determining crystal structure parameters of a material is a quite important issue in crystallography. Knowing the crystal structure parameters helps to understand physical behavior of material. For complex structures, particularly for materials which also contain local symmetry as well as global symmetry, obtaining crystal parameters can be quite hard. This work provides a tool that will extract crystal parameters such as primitive vect...

  10. Ultrasound visualization using polymer dispersed liquid crystal sensors

    Science.gov (United States)

    Edwards, R. S.; Trushkevych, O.; Eriksson, T. J. R.; Ramadas, S. N.; Dixon, S.

    2017-02-01

    The acousto-optic effect in liquid crystals (LCs) has previously been exploited to build large area acoustic sensors for visualising ultrasound fields, opening up the field of acoustography. There is an opportunity to simplify this technique and open new application areas by employing polymer dispersed LC (PDLC) thin films instead of aligned LC layers. In PDLCs, the normally opaque film becomes transparent under the influence of an acoustic field (e.g. when surface acoustic waves are propagating in the material under the film). This is called acoustic clearing and is visible by eye. There is potential for producing ultrasonic sensors which can be `painted on' to a component, giving direct visualisation of the ultrasonic field without requiring scanning. We demonstrate the effect by using PDLC films to characterise a resonant mode of a flexural air-coupled transducer. Visualisation was quick, with a switching time of a few seconds. The effect shows promise for ultrasound sensing applications for transducer characterisation and NDE.

  11. Modification of Urushiol Derivatives by Liquid Crystal Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Gongwen Tang

    2015-01-01

    Full Text Available Urushiol derivatives have vast potentials for using as coating materials. However, the cured coatings are quite brittle, limiting their applications. In this study, urushiol-furfural (UFUR was chosen as an example of urushiol derivatives and a liquid crystal (LC epoxy resin, tetramethylbiphenyl diglycidyl ether (TMBPDE, was for the first time utilized to modify UFUR. Fourier transform infrared spectroscopy and solid-state 13C nuclear magnetic resonance showed the reactions between TMBPDE and UFUR after the UFUR/TMBPDE composite resin was cured. Differential scanning calorimetry analysis showed that the Tg significantly increased after the addition of TMBPDE. Thermogravimetry analysis indicated that the cured UFUR/TMBPDE composite resin exhibited increasing thermodecomposition temperature as the TMBPDE concentration increased, indicating its great potential for high temperature applications. Moreover, the presence of TMBPDE enhanced the toughness of UFUR as observed by impact test and reflected in the morphologies observed from SEM images of fracture surfaces. It would also be novel and effective to modify urushiol derivatives by the LC polymer.

  12. Concept Misunderstanding of Crystal Structure in the Course of Foundations of Materials Science%材料科学基础课程晶体结构概念上现存误区的探讨

    Institute of Scientific and Technical Information of China (English)

    毛卫民

    2015-01-01

    根据晶体存在的平移对称性和点对称性可用点阵和晶系对其分类.在教学实践中如果不注意区分这两类对称性的差异,就会造成学生在理解晶体结构概念时的误区,对后续深入的学习和新材料的研究造成困扰.现有材料科学基础课程教学中代表性的非严谨表达为:"根据晶胞的6个参数可以把14种空间点阵归纳为七大晶系".分析并阐述了恰当的晶体结构概念,以克服上述困扰.%Lattice and crystal system are used to classify crystals according their translation symmetry and point symmetry which exist. Certain misunderstanding of students on the concept of crystal structure will be induced if enough attention has not been paid to the difference between the two symmetries, which may lead to confusion and difficulty during further study and research of many advanced materials. A typical unprecise description in the lecture of foundations of materials science is that "the 14 space lattices could be reduced to seven crystal systems according to six parameters of the crystal cell". In contrary to that, a proper analysis and expatiation concerning the concept of crystal structure is given, which may help to overcome the confusion and difficulty above.

  13. Single crystalline growth of a soluble organic semiconductor in a parallel aligned liquid crystal solvent using rubbing-treated polyimide films

    Science.gov (United States)

    Matsuzaki, Tomoya; Shibata, Yosei; Takeda, Risa; Ishinabe, Takahiro; Fujikake, Hideo

    2017-01-01

    For directional control of organic single crystals, we propose a crystal growth method using liquid crystal as the solvent. In this study, we examined the formation of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) single crystals using a parallel aligned liquid crystal (LC) cell and rubbing-treated polyimide films in order to clarify the effects of LC alignment on anisotropic C8-BTBT crystal growth. Based on the results, we found that the crystal growth direction of C8-BTBT single crystals was related to the direction of the aligned LC molecules because of rubbing treatment. Moreover, by optical evaluation, we found that the C8-BTBT single crystals have a aligned molecular structure.

  14. Silica and Pyroxene in IVA Irons; Possible Formation of the IVA Magma by Impact Melting and Reduction of L-LL-Chondrite Materials Followed by Crystallization and Cooling

    Science.gov (United States)

    Wasson, John T.; Matsunami, Yoshiyuki; Rubin, Alan E.

    2006-01-01

    Group IVA is a large magmatic group of iron meteorites. The mean DELTA O-17 (= delta O-17 - 0.52(raised dot) delta O-18) of the silicates is approx. plus or minus 1.2%o, similar to the highest values in L chondrites and the lowest values in LL chondrites; delta O-18 values are also in the L/LL range. This strongly suggests that IVA irons formed by melting L-LL parental material, but the mean Ni content of IVA irons (83 mg/g) is much lower than that of a presumed L-LL parent (approx. 170 mg/g) and the low-Ca pyroxene present in two IVA meteorites is Fs13, much lower than the Fs20-29 values in L and LL chondrites. Thus, formation from L-LL precursors requires extensive addition of metallic Fe, probably produced by reduction of FeS and FeO. Group IVA also has S/Ni, Ga/Ni, and Ge/Ni ratios that are much lower than those in L-LL chondrites or any chondrite group that preserves nebular compositions, implying loss of these volatile elements during asteroidal processing. We suggest that these reduction and loss processes occurred near the surface of the asteroid during impact heating, and resulted partly from reduction by C, and partly from the thermal dissociation of FeS and FeO with loss of O and S. The hot (approx. 1770 K) low-viscosity melt quickly moved through channels in the porous asteroid to form a core. Two members of the IVA group, Sao Joao Nepomuceno (hereafter, SJN) and Steinbach, contain moderate amounts of orthopyroxene and silica, and minor amounts of low-Ca clinopyroxene. Even though SJN formed after approx. 26% crystallization and Steinbach formed after approx. 77% Crystallization of the IVA core, both could have originated within several tens of meters of the core-mantle interface if 99% of the crystallization occurred from the center outwards. Two other members of the group (Gibeon and Bishop Canyon) contain tabular tridymite, which we infer to have initially formed as veins deposited from a cooling SiO-rich vapor. The silicates were clearly introduced

  15. Preprocessing and Analysis of LC-MS-Based Proteomic Data.

    Science.gov (United States)

    Tsai, Tsung-Heng; Wang, Minkun; Ressom, Habtom W

    2016-01-01

    Liquid chromatography coupled with mass spectrometry (LC-MS) has been widely used for profiling protein expression levels. This chapter is focused on LC-MS data preprocessing, which is a crucial step in the analysis of LC-MS based proteomics. We provide a high-level overview, highlight associated challenges, and present a step-by-step example for analysis of data from LC-MS based untargeted proteomic study. Furthermore, key procedures and relevant issues with the subsequent analysis by multiple reaction monitoring (MRM) are discussed.

  16. Photonic crystals as metamaterials

    Science.gov (United States)

    Foteinopoulou, S.

    2012-10-01

    The visionary work of Veselago had inspired intensive research efforts over the last decade, towards the realization of man-made structures with unprecedented electromagnetic (EM) properties. These structures, known as metamaterials, are typically periodic metallic-based resonant structures demonstrating effective constitutive parameters beyond the possibilities of natural material. For example they can exhibit optical magnetism or simultaneously negative effective permeability and permittivity which implies the existence of a negative refractive index. However, also periodic dielectric and polar material, known as photonic crystals, can exhibit EM capabilities beyond natural materials. This paper reviews the conditions and manifestations of metamaterial capabilities of photonic crystal systems.

  17. Material and detector properties of cadmium manganese telluride (Cd{sub 1−x}Mn{sub x}Te) crystals grown by the modified floating-zone method

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, A., E-mail: hossain@bnl.gov; Gu, G.D.; Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Roy, U.N.; Yang, G.; Liu, T.; Zhong, R.; Schneeloch, J.; James, R.B.

    2015-06-01

    We demonstrated the material- and radiation-detection properties of cadmium manganese telluride (Cd{sub 1−x}Mn{sub x}Te; x=0.06), a wide-band-gap semiconductor crystal grown by the modified floating-zone method. We investigated the presence of various bulk defects, such as Te inclusions, twins, and dislocations of several as-grown indium-doped Cd{sub 1−x}Mn{sub x}Te crystals using different techniques, viz., IR transmission microscopy, and chemical etching. We then fabricated four planar detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Our experimental results show that CMT crystals grown by the modified floating zone method apparently are free from Te inclusions. However, we still need to optimize our growth parameters to attain high-resistivity, large-volume single-crystal CdMnTe.

  18. Impact of dyes on the nonlinear optical response of liquid crystals implementing the Z-scan technique

    Science.gov (United States)

    Rodríguez-Rosales, A. A.; Ortega-Martínez, R.; Morales-Saavedra, O. G.

    2011-01-01

    The study of the nonlinear refractive index response γ of several organic dyes and their impact on the nonlinear optical (NLO) properties of nematic liquid crystals (LC) was performed via Z-scan measurements. For his purpose, a low power CW He-Ne laser system (λ approx 633 nm) was implemented. Studies were carried out at the low absorption spectroscopic region of the implemented samples (dyes, liquid crystals and mixtures at different ratios of these materials). Samples were prepared at 1% weight of the used solvent (THF) and were sandwiched in glass cells with a gap thickness of ~100 μm. The implemented dyes have shown the largest optical nonlinearities and represent the main contributors to the cubic NLO-properties of the LC:Dye mixtures. In our particular studies, 5CB liquid crystal doped with DR1 azo-dye, resulted in the simultaneous positive and negative exhibition of nonlinear refractive indexes γ, depending on the polarization state of the excitation laser beam. Experimental conditions and results are described in detail.

  19. Crystallization and X-ray diffraction of crystals formed in water-plasticized amorphous lactose.

    Science.gov (United States)

    Jouppila, K; Kansikas, J; Roos, Y H

    1998-01-01

    Effects of storage time and relative humidity on crystallization and crystal forms produced from amorphous lactose were investigated. Crystallization was observed from time-dependent loss of sorbed water and increasing intensities of peaks in X-ray diffraction patterns. The rate of crystallization increased with increasing storage relative humidity. Lactose crystallized mainly as alpha-lactose monohydrate and anhydrous crystals with alpha- and beta-lactose in a molar ratio of 5:3. The results suggested that the crystal form was defined by the early nucleation process. The crystallization data are important in modeling of crystallization phenomena and prediction of stability of lactose-containing food and pharmaceutical materials.

  20. Fractional RC and LC Electrical Circuits

    Directory of Open Access Journals (Sweden)

    Gómez-Aguilar José Francisco

    2014-04-01

    Full Text Available In this paper we propose a fractional differential equation for the electrical RC and LC circuit in terms of the fractional time derivatives of the Caputo type. The order of the derivative being considered is 0 < ɣ ≤1. To keep the dimensionality of the physical parameters R, L, C the new parameter σ is introduced. This parameter characterizes the existence of fractional structures in the system. A relation between the fractional order time derivative ɣ and the new parameter σ is found. The numeric Laplace transform method was used for the simulation of the equations results. The results show that the fractional differential equations generalize the behavior of the charge, voltage and current depending of the values of ɣ. The classical cases are recovered by taking the limit when ɣ = 1. An analysis in the frequency domain of an RC circuit shows the application and use of fractional order differential equations.