WorldWideScience

Sample records for crystal growth conditions

  1. Stability of melt crystal growth under microgravity conditions

    Science.gov (United States)

    Tatarchenko, V. A.

    The conception of dynamic stability of melt crystal growth has been developed. The method based on the Lyapunov stability theory has been used to the study stability of crystallization by capillary shaping techniques including Czokhralsky, Stepanov, Kiropoulos, Verneuil and floating zone methods. Preliminary results of the stability analysis of crystallization by floating zone technique under microgravity conditions are presented here.

  2. Modeling of Macroscopic/Microscopic Transport and Growth Phenomena in Zeolite Crystal Solutions Under Microgravity Conditions

    Science.gov (United States)

    Gatsonis, Nikos A.; Alexandrou, Andreas; Shi, Hui; Ongewe, Bernard; Sacco, Albert, Jr.

    1999-01-01

    Crystals grown from liquid solutions have important industrial applications. Zeolites, for instance, a class of crystalline aluminosilicate materials, form the backbone of the chemical process industry worldwide, as they are used as adsorbents and catalysts. Many of the phenomena associated with crystal growth processes are not well understood due to complex microscopic and macroscopic interactions. Microgravity could help elucidate these phenomena and allow the control of defect locations, concentration, as well as size of crystals. Microgravity in an orbiting spacecraft could help isolate the possible effects of natural convection (which affects defect formation) and minimize sedimentation. In addition, crystals will stay essentially suspended in the nutrient pool under a diffusion-limited growth condition. This is expected to promote larger crystals by allowing a longer residence time in a high-concentration nutrient field. Among other factors, the crystal size distribution depends on the nucleation rate and crystallization. These two are also related to the "gel" polymerization/depolymerization rate. Macroscopic bulk mass and flow transport and especially gravity, force the crystals down to the bottom of the reactor, thus forming a sedimentation layer. In this layer, the growth rate of the crystals slows down as crystals compete for a limited amount of nutrients. The macroscopic transport phenomena under certain conditions can, however, enhance the nutrient supply and therefore, accelerate crystal growth. Several zeolite experiments have been performed in space with mixed results. The results from our laboratory have indicated an enhancement in size of 30 to 70 percent compared to the best ground based controls, and a reduction of lattice defects in many of the space grown crystals. Such experiments are difficult to interpret, and cannot be easily used to derive empirical or other laws since many physical parameters are simultaneously involved in the process

  3. Crystal habit and growth conditions of brushite, CaHPO 4 ṡ 2H 2O

    Science.gov (United States)

    Abbona, F.; Christensson, F.; Angela, M. Franchini; Madsen, H. E. Lundager

    1993-08-01

    Brushite, a polar compound, has been grown from aqueous solutions at 25 and 40°C in a large interval of concentrations, pH and supersaturations. The great variety of morphologies (aggregates, twins, regular and irregular crystals) are described and related to the growth conditions. The polar habit of brushite appears only under definite conditions. Four types of twins have been found, one of them occuring only at 40°C. The experimental crystal habit is compared to the theoretical crystal habit derived from the structure by the periodic bond chain (PBC) method. The form {111}, which has a high frequency, shows morphological instability due to its S character. The role played by the wrong incorporation of HPO 2-4 in the kinks in forming the [010] twins and the irregular crystals is pointed out. The growth mechanisms of the most important faces are also discussed.

  4. Nucleation and growth of crystals under cirrus and polar stratospheric cloud conditions

    Science.gov (United States)

    Hallett, John; Queen, Brian; Teets, Edward; Fahey, James

    1995-03-01

    Laboratory studies examine phase changes of hygroscopic substances which occur as aerosol in stratosphere and troposphere (sodium chloride, ammonium sulfate, ammonium bisulfate, nitric acid, sulfuric acid), under controlled conditions, in samples volume 1 to 10(exp -4) ml. Crystallization of salts from supersaturated solutions is examined by slowly evaporating a solution drop on a substrate, under controlled relative humidity, until self nucleation occurs; controlled nucleation of ice in a mm capillary U-tube gives a measured ice crystallization velocity at known supercooling. Two states of crystallization occur for regions where hydrates exist. It is inferred that all of the materials readily exist as supersaturated/supercooled solutions; the degree of metastability appears to be slightly enhanced by inclusion of aircraft produced soot. The crystallization velocity is taken as a measure of viscosity. Results suggest an approach to a glass transition at high molality, supersaturation and/or supercooling within the range of atmospheric interest. It is hypothesized that surface reactions occur more readily on solidified particles - either crystalline or glass, whereas volume reactions are more important on droplets with sufficiently low viscosity and volume diffusivity. Implications are examined for optical properties of such particles in the atmosphere. In a separate experiment, crystal growth was examined in a modified thermal vapor diffusion chamber over the range of cirrus temperature (-30 to -70 C) and under controlled supersaturation and air pressure. The crystals grew at a velocity of 1-2 microns/s, thickness 60-70 micron, in the form of thin column crystals. Design criteria are given for a system to investigate particle growth down to -100 C, (PSC temperatures) where nitric acid particles can be grown under similar control and in the form of hydrate crystals.

  5. Crystal Growth of Hen Egg-White Lysozyme (HEWL) under Various Gravity Conditions

    Science.gov (United States)

    Pan, Weichun; Xu, Jin; Tsukamoto, Katsuo; Koizumi, Masako; Yamazaki, Tomoya; Zhou, Ru; Li, Ang; Fu, Yuying

    2013-08-01

    Motivated by the enhancement of protein quality under microgravity condition, the behaviors of crystal growth under various gravity conditions have been monitored via Foton Satellite and parabolic flight. We found that the normal growth rate and the step velocity would be enhanced only at high protein concentration. Although the difference of diffusion between monomer lysozyme molecule and main impurity species in HWEL dimer may be able to explain this enhancement in long period at high protein concentration, it is not valid at low lysozyme concentration and it can't explain the results obtained by parabolic flight, in which microgravity condition maintained only about 20 s. In order to compromise this contradiction, cluster, universal existing in protein solution, has been picked up. The dynamic light scattering technique figured out dimer is served as the seed for cluster formation. Due to its large size, cluster keeps still under microgravity. Via this mechanism, the purification of lysozyme above crystal surface has been achieved. We also found the two supergravity (˜1.5 g) periods immediately before and after microgravity period have different effects on the step velocity. The pre-MG period depresses the step velocity while the post-MG enhances it. This odd phenomenon ascribes to two factors: (1) the flow rate modification and (2) the purity of protein solution immediate above crystal surface.

  6. Crystal growth and crystallography

    Science.gov (United States)

    Chernov, A. A.

    1998-01-01

    Selected topics that may be of interest for both crystal-structure and crystal-growth communities are overviewed. The growth of protein crystals, along with that of some other compounds, is one of the topics, and recent insights into related phenomena are considered as examples of applications of general principles. The relationship between crystal growth shape and structure is reviewed and an attempt to introduce semiquantitative characterization of binding for proteins is made. The concept of kinks for complex structures is briefly discussed. Even at sufficiently low supersaturations, the fluctuation of steps may not be sufficient to implement the Gibbs-Thomson law if the kink density is low enough. Subsurface ordering of liquids and growth of rough interfaces from melts is discussed. Crystals growing in microgravity from solution should be more perfect if they preferentially trap stress-inducing impurities, thus creating an impurity-depleted zone around themselves. Evidently, such a zone is developed only around the crystals growing in the absence of convection. Under terrestrial conditions, the self-purified depleted zone is destroyed by convection, the crystal traps more impurity and grows stressed. The stress relief causes mosaicity. In systems containing stress-inducing but poorly trapped impurities, the crystals grown in the absence of convection should be worse than those of their terrestrial counterparts.

  7. Shaped Crystal Growth

    Science.gov (United States)

    Tatartchenko, Vitali A.

    Crystals of specified shape and size (shaped crystals) with controlled crystal growth (SCG) defect and impurity structure have to be grown for the successful development of modern engineering. Since the 1950s many hundreds of papers and patents concerned with shaped growth have been published. In this chapter, we do not try to enumerate the successful applications of shaped growth to different materials but rather to carry out a fundamental physical and mathematical analysis of shaping as well as the peculiarities of shaped crystal structures. Four main techniques, based on which the lateral surface can be shaped without contact with the container walls, are analyzed: the Czochralski technique (CZT), the Verneuil technique (VT), the floating zone technique (FZT), and technique of pulling from shaper (TPS). Modifications of these techniques are analyzed as well. In all these techniques the shape of the melt meniscus is controlled by surface tension forces, i.e., capillary forces, and here they are classified as capillary shaping techniques (CST). We look for conditions under which the crystal growth process in each CST is dynamically stable. Only in this case are all perturbations attenuated and a crystal of constant cross section shaping technique (CST) grown without any special regulation. The dynamic stability theory of the crystal growth process for all CST is developed on the basis of Lyapunov's dynamic stability theory. Lyapunov's equations for the crystal growth processes follow from fundamental laws. The results of the theory allow the choice of stable regimes for crystal growth by all CST as well as special designs of shapers in TPS. SCG experiments by CZT, VT, and FZT are discussed but the main consideration is given to TPS. Shapers not only allow crystal of very complicated cross section to be grown but provide a special distribution of impurities. A history of TPS is provided later in the chapter, because it can only be described after explanation of the

  8. Growth habit of polar crystals

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Using coordination polyhedron rule, growth habit of polar crystals such as ZnO, ZnS and SiO2 is investigated. It shows that the growth rates in the positive and negative polar axis directions are different. The theoretical growth habit of ZnO crystal is hexagonal prism and the growth rates of its various faces are:V{0001}>V{0111}-->V{0110}->V{0111}->V{0001}-. The growth habit of ZnS crystal is tetrahedron and its growth rates of different crystal faces are: V{111}>V{001}>V{001} =V{100} =. The growth rate relationship between positive and negative polar axis directions of SiO2 crystal V[1120]-->V[1120]-.is These results are in agreement with the growth habits observed under hydrothermal conditions. The different growth rates between positive and negative polar axis directions cannot be explained by PBC theory.

  9. Flight Experiments of Physical Vapor Transport of ZnSe: Growth of Crystals in Various Convective Conditions

    Science.gov (United States)

    Su, Ching-Hua

    2015-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). The flight experiment will conduct crystal growths of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT). The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds, especially the effects of different growth orientations related to gravity direction on the grown crystals.

  10. Quartz crystal growth

    Science.gov (United States)

    Baughman, Richard J.

    1992-01-01

    A process for growing single crystals from an amorphous substance that can undergo phase transformation to the crystalline state in an appropriate solvent. The process is carried out in an autoclave having a lower dissolution zone and an upper crystallization zone between which a temperature differential (.DELTA.T) is maintained at all times. The apparatus loaded with the substance, solvent, and seed crystals is heated slowly maintaining a very low .DELTA.T between the warmer lower zone and cooler upper zone until the amorphous substance is transformed to the crystalline state in the lower zone. The heating rate is then increased to maintain a large .DELTA.T sufficient to increase material transport between the zones and rapid crystallization. .alpha.-Quartz single crystal can thus be made from fused quartz in caustic solvent by heating to 350.degree. C. stepwise with a .DELTA.T of 0.25.degree.-3.degree. C., increasing the .DELTA.T to about 50.degree. C. after the fused quartz has crystallized, and maintaining these conditions until crystal growth in the upper zone is completed.

  11. Influence of rotating magnetic fields on THM growth of CdZnTe crystals under microgravity and ground conditions

    Science.gov (United States)

    Stelian, Carmen; Duffar, Thierry

    2015-11-01

    The influence of rotating magnetic fields (RMF) on species transport and interface stability during the growth of Cd0.96Zn0.04Te:In crystals by using the traveling heater method (THM), under microgravity and terrestrial conditions, is numerically investigated. The numerical results are compared to ground and space experiments. The modeling of THM under ground conditions shows very deleterious effects of the natural convection on the morphological stability of the growth interface. The vertical flow transports the liquid of low Te concentration from the dissolution interface to the growth interface, which is consequently destabilized. The suppression of this flow, in low-gravity conditions, results in higher morphological stability of the growth interface. Application of RMF induces a two flow cell pattern, which has a destabilizing effect on the growth interface. Simulations performed by varying the magnetic field induction in the range of 1 - 3 mT show optimal conditions for the growth with a stable interface at low strength of the magnetic field (B = 1 mT). Computations of indium distribution show a better homogeneity of crystals grown under purely diffusive conditions. Rotating magnetic fields of B = 1 mT induce low intensity convection, which generates concentration gradients near the growth interface. These numerical results are in agreement with experiments performed during the FOTON M4 space mission, showing good structural quality of Cd0.96Zn0.04Te crystals grown at very low gravity level. Applying low intensity rotating magnetic fields in ground experiments has no significant influence on the flow pattern and solute distribution. At high intensity of RMF (B = 50 mT), the buoyancy convection is damped near the growth front, resulting in a more stable advancing interface. However, convection is strengthening in the upper part of the liquid zone, where the flow becomes unsteady. The multi-cellular unsteady flow generates temperature oscillations, having

  12. Growth of dopamine crystals

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Vidya, E-mail: vidya.patil@ruparel.edu; Patki, Mugdha, E-mail: mugdha.patki@ruparel.edu [D. G. Ruparel College, Senapati Bapat Marg, Mahim, Mumbai – 400 016 (India)

    2016-05-06

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  13. Growth of dopamine crystals

    Science.gov (United States)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  14. Crystal growth behavior of LiFePO4 in microwave-assisted hydrothermal condition: from nanoparticle to nanosheet.

    Science.gov (United States)

    Yang, Gang; Ji, Hongmei; Miao, Xiaowei; Hong, Anqing; Yan, Yuan

    2011-06-01

    By using microwave-assisted hydrothermal crystallization approach, LiFePO4 nanoparticles have been synthesized in several minutes without the use of any organic reducing agent and argon protection. The crystal structure and lattice parameters have been analyzed by using the X-ray diffraction patterns (XRD) and Rietveld refined analysis, and the full width at half-maximum (FWHM) of the characteristic peaks. A preferential orientation of crystal growth occurs upon microwave hydrothermal field. The SEM and TEM images show that the LiFePO4 crystals present a change from nanoparticle to nanosheet with the increasing reaction time from 5 to 20 min. All the samples present a couple of redox peaks in their CV profiles. The peak pair corresponds to the charge/discharge reaction of the Fe3+/Fe2+ redox couple, and evidencing the absence of electroactive iron impurities. Because of the LiFePO4 samples prepared without any carbon, the initial charge/discharge capacities and cycleability of absolutely are affected by the crystal structure which is controlled by the microwave irradiation condition. The relation among the microwave reaction condition, crystal morphology, and the electrochemical properties are presented and discussed in the electrochemical test.

  15. Czochralski crystal growth: Modeling study

    Science.gov (United States)

    Dudukovic, M. P.; Ramachandran, P. A.; Srivastava, R. K.; Dorsey, D.

    1986-01-01

    The modeling study of Czochralski (Cz) crystal growth is reported. The approach was to relate in a quantitative manner, using models based on first priniciples, crystal quality to operating conditions and geometric variables. The finite element method is used for all calculations.

  16. Inhibition of calcium carbonate crystal growth by organic additives using the constant composition method in conditions of recirculating cooling circuits

    Science.gov (United States)

    Chhim, Norinda; Kharbachi, Chams; Neveux, Thibaut; Bouteleux, Céline; Teychené, Sébastien; Biscans, Béatrice

    2017-08-01

    The cooling circuits used in power plants are subject to mineral crystallization which can cause scaling on the surfaces of equipment and construction materials reducing their heat exchange efficiency. Precipitated calcium carbonate is the predominant mineral scale commonly observed in cooling systems. Supersaturation is the key parameter controlling the nucleation and growth of calcite in these systems. The present work focuses on the precipitation of calcite using the constant composition method at constant supersaturation, through controlled addition of reactants to a semi-batch crystallizer, in order to maintain constant solution pH. The determination of the thermodynamic driving force (supersaturation) was based on the relevant chemical equilibria, total alkalinity and calculation of the activity coefficients. Calcite crystallization rates were derived from the experiments performed at supersaturation levels similar to those found in industrial station cooling circuits. Several types of seeds particles were added into the aqueous solution to mimic natural river water conditions in terms of suspended particulate matters content, typically: calcite, silica or illite particles. The effect of citric and copolycarboxylic additive inhibitors added to the aqueous solution was studied. The calcium carbonate growth rate was reduced by 38.6% in the presence of the citric additive and a reduction of 92.7% was observed when the copolycarboxylic additive was used under identical experimental conditions. These results are explained by the location of the adsorbed inhibitor at the crystal surface and by the degree of chemical bonding to the surface.

  17. Advanced Crystal Growth Technology

    Energy Technology Data Exchange (ETDEWEB)

    Land, T A; Hawley-Fedder, R A

    2005-03-01

    Although the fundamental mechanism of crystal growth has received and continues to receive deserved attention as a research activity, similar research efforts addressing the need for advanced materials and processing technology required to grow future high quality crystals has been sorely lacking. The purpose of this research effort is to develop advanced rapid growth processing technologies and materials suitable for providing the quality of products needed for advanced laser and photonics applications. In particular we are interested in developing a methodology for growing high quality KDP crystals based on an understanding of the fundamental mechanisms affecting growth. One problem in particular is the issue of control of impurities during the growth process. Many unwanted impurities are derived from the growth system containers and can adversely affect the optical quality and aspect ratio (shape) of the crystals. Previous studies have shown that even trace concentrations ({approx}10{sup -9} M) of impurities affect growth and even 'insignificant' species can have a large impact. It is also known that impurities affect the two growth faces of KDP very differently. Traces of trivalent metal impurities such as Fe{sup 3+}, Cr{sup 3+}, and Al{sup 3+} in solution are known to inhibit growth of the prismatic {l_brace}100{r_brace} faces of KDP while having little effect on the growth of the pyramidal {l_brace}101{r_brace} faces. This differentiation opens the possibility of intentionally adding select ions to control the aspect ratio of the crystal to obtain a more advantageous shape. This document summarizes our research efforts to improve KDP crystal growth. The first step was to control unwanted impurity addition from the growth vessel by developing an FEP liner to act as a barrier to the glass container. The other focus to develop an understanding of select impurities on growth rates in order to be able to use them to control the habit or shape of the

  18. Influence of Growth Conditions on Magnetite Nanoparticles Electro-Crystallized in the Presence of Organic Molecules

    Directory of Open Access Journals (Sweden)

    Saba Mosivand

    2013-05-01

    Full Text Available Magnetite nanoparticles were synthesized by electrocrystallization in the presence of thiourea or sodium butanoate as an organic stabilizer. The synthesis was performed in a thermostatic electrochemical cell containing two iron electrodes with an aqueous solution of sodium sulfate as electrolyte. The effects of organic concentration, applied potential and growth temperature on particle size, morphology, structure and magnetic properties were investigated. The magnetite nanoparticles were characterized by X-ray diffraction, electron microscopy, magnetometry and Mössbauer spectrometry. When the synthesis is performed in the presence of sodium butanoate at 60 °C, a paramagnetic ferric salt is obtained as a second phase; it is possible to avoid formation of this phase, increase the specific magnetization and improve the structure of the oxide particles by tuning the growth conditions. Room-temperature magnetization values range from 45 to 90 Am2kg−1, depending on the particle size, type of surfactant and synthesis conditions. Mössbauer spectra, which were recorded at 290 K for all the samples, are typical of nonstoichiometric Fe3−δO4, with a small excess of Fe3+, 0.05 ≤ δ ≤ 0.15.

  19. Influence of growth conditions on magnetite nanoparticles electro-crystallized in the presence of organic molecules.

    Science.gov (United States)

    Mosivand, Saba; Monzon, Lorena M A; Kazeminezhad, Iraj; Coey, J Michael D

    2013-05-17

    Magnetite nanoparticles were synthesized by electrocrystallization in the presence of thiourea or sodium butanoate as an organic stabilizer. The synthesis was performed in a thermostatic electrochemical cell containing two iron electrodes with an aqueous solution of sodium sulfate as electrolyte. The effects of organic concentration, applied potential and growth temperature on particle size, morphology, structure and magnetic properties were investigated. The magnetite nanoparticles were characterized by X-ray diffraction, electron microscopy, magnetometry and Mössbauer spectrometry. When the synthesis is performed in the presence of sodium butanoate at 60 °C, a paramagnetic ferric salt is obtained as a second phase; it is possible to avoid formation of this phase, increase the specific magnetization and improve the structure of the oxide particles by tuning the growth conditions. Room-temperature magnetization values range from 45 to 90 Am2kg-1, depending on the particle size, type of surfactant and synthesis conditions. Mössbauer spectra, which were recorded at 290 K for all the samples, are typical of nonstoichiometric Fe3-δO4, with a small excess of Fe3+, 0.05 ≤ δ ≤ 0.15.

  20. Crystal growth in salt efflorescence

    Science.gov (United States)

    Zehnder, Konrad; Arnold, Andreas

    1989-09-01

    Salt efflorescences strongly affect wall paintings and other monuments. The external factors governing the crystal habits and aggregate forms are studied phenomenologically in laboratory experiments. As salt contaminated materials dry, slats crystallize forming distinct sequences of crystal habits and aggregate forms on and underneath the surfaces. Four phases may be distinguished: (1) Large individual crystals with equilibrium forms grow immersed in a thick solution film; (2) granular crusts of small isometric crystals grow covered by a thin solution film; (3) fibrous crusts of columnar crystals grow from a coherent but thin solution film so that the crystals are in contact with solution only at their base; (4) whiskers grow from isolated spots of very thin solution films into the air. The main factor governing these morphologies is the humidity of the substrate. A porous material cracks while granular crystals (approaching their equilibrium forms) grow within the large pores. As the fissures widen, the habits pass into columnar crystals and then into whiskers. Because this succession corresponds to the crystallization sequence on the substrate surface it can be traced back to the same growth conditions.

  1. Growth of Solid Solution Crystals

    Science.gov (United States)

    Lehoczky, S. L.; Szofran, F. R.; Holland, L. R.

    1985-01-01

    The major objective of this program is to determine the conditions under which single crystals of solid solutions can be grown from the melt in a Bridgman configuration with a high degree of chemical homogeneity. The central aim is to assess the role of gravity in the growth process and to explore the possible advantages for growth in the absence of gravity. The alloy system being investigated is the solid solution semiconductor with x-values appropriate for infrared detector applications in Hg sub (1-x) Cd sub x Te the 8 to 14 micro m wavelength region. Both melt and Te-solvent growth are being considered. The study consists of an extensive ground-based experimental and theoretical research effort followed by flight experimentation where appropriate. Experimental facilities have been established for the purification, casting, and crystal growth of the alloy system. Facilities have been also established for the metallurgical, compositional, electric and optical characterization of the alloys. Crystals are being grown by the Bridgman-Stockbarger method and are analyzed by various experimental techniques to evaluate the effects of growth conditions on the longitudinal and radial compositional variations and defect densities in the crystals.

  2. Crystal Shape Evolution in Detached Bridgman Growth

    Science.gov (United States)

    Volz, M. P.; Mazuruk, K.

    2013-01-01

    Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. Existence of the gap provides several advantages, including no sticking of the crystal to the crucible wall, reduced thermal and mechanical stresses, reduced dislocations, and no heterogeneous nucleation by the crucible. Numerical calculations are used to determine the conditions in which a gap can exist. According to crystal shape stability theory, only some of these gap widths will be dynamically stable. Beginning with a crystal diameter that differs from stable conditions, the transient crystal growth process is analyzed. In microgravity, dynamic stability depends only on capillary effects and is decoupled from heat transfer. Depending on the initial conditions and growth parameters, the crystal shape will evolve towards the crucible wall, towards a stable gap width, or towards the center of the crucible, collapsing the meniscus. The effect of a tapered crucible on dynamic stability is also described.

  3. Effect of heating conditions on flow patterns during the seeding stage of Kyropoulos sapphire crystal growth

    Science.gov (United States)

    Timofeev, Vladimir V.; Kalaev, Vladimir V.; Ivanov, Vadim G.

    2016-07-01

    We apply numerical simulation to understand the effect of heating conditions on melt convection in an industrial Ky furnace. The direct numerical simulation (DNS) approach was used to investigate the features of melt flow during the seeding stage. Two different cases of Kyropoulos furnace hot zone design were studied numerically, and results were compared with experimental data to understand the effect of modifications on melt convection.

  4. Springer Handbook of Crystal Growth

    CERN Document Server

    Dhanaraj, Govindhan; Prasad, Vishwanath; Dudley, Michael

    2010-01-01

    Over the years, many successful attempts have been made to describe the art and science of crystal growth. Most modern advances in semiconductor and optical devices would not have been possible without the development of many elemental, binary, ternary, and other compound crystals of varying properties and large sizes. The objective of the Springer Handbook of Crystal Growth is to present state-of-the-art knowledge of both bulk and thin-film crystal growth. The goal is to make readers understand the basics of the commonly employed growth processes, materials produced, and defects generated. Almost 100 leading scientists, researchers, and engineers from 22 different countries from academia and industry have been selected to write chapters on the topics of their expertise. They have written 52 chapters on the fundamentals of bulk crystal growth from the melt, solution, and vapor, epitaxial growth, modeling of growth processes and defects, techniques of defect characterization as well as some contemporary specia...

  5. Morphology Changing at Incipient Crystallization Condition

    Science.gov (United States)

    Toshima, Takeshi; Hamai, Ryo; Fujita, Saya; Takemura, Yuka; Takamatsu, Saori; Tafu, Masamoto

    2015-04-01

    Brushite (Dicalcium phosphate dihydrate, (DCPD), CaHPO4·2H2O) is one of key components in calcium phosphate system due to wide attractive material not only as bioceramics but also environmental materials. Morphology of DCPD crystals is important factor when one uses its functionality with chemical reaction; because its surface crystal face, shape and size rule the chemical reactivity, responsiveness. Moreover, physical properties are also changed the morphology; such as cohesion, dispersiveness, permeability and so on. If one uses DCPD crystals as environmental renovation materials to catch the fluoride ions, their shape require 020 crystal surfaces; which usually restricts their shape as plate-like structure. After the chemical reaction, the shape of sludge is not good for handling due to their agglutinate property. Therefore searching an effective parameter and developing the method to control the morphology of DCPD crystals is required. In past, we reported that initial concentration and pH value of starting solution, prepared by dissolving calcium nitrate, Ca(NO3)2 and ammonium dihydrogen phosphate, NH4H2PO4, changes the morphology of DCPD crystals and phase diagram of morphology of DCPD crystal depend on those parameter. The DCPD crystallization shows unique behaviour; products obtained higher initial concentration form single crystal-like structure and under lower condition, they form agglomerate crystal-like structure. These results contradict usual crystallization. Here we report that the effect of mixing process of two solutions. The morphology of DCPD crystals is changed from plate structure to petal structure by the arrangement. Our result suggests that morphology of DCPD crystals strongly depends at incipient crystallization condition and growth form is controllable by setting initial crystallization condition.

  6. Crystal growth of various ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Kunkemoeller, Stefan; Braden, Markus [II. Physikalisches Institut, Universitaet zu Koeln (Germany); Nugroho, Agung [Institut Teknologi Bandung (Indonesia)

    2013-07-01

    Ruthenates of the Ruddlesdon-Popper series exhibit a variety of interesting phenomena ranging from unconventional superconductivity to orbitally polarized Mott insulators. Unfortunately the crystal growth of most of these ruthenates is extremely difficult partially due to the high evaporation of ruthenium; this strongly limits the research on these fascinating materials. We have started to grow single crystals of layered and perovskite ruthenates by the travelling floating-zone method using a Canon SC1-MDH mirror furnace. For the layered Ca{sub 2-x}Sr{sub x}RuO{sub 4} series we focused first on the range of concentration where recent My-SR experiments reveal spin-density wave ordering to occur at relatively high temperature and with a sizeable ordered moment. Good quality crystals of Ca{sub 1.5}Sr{sub 0.5}RuO{sub 4} can be obtained, when an excess of 15 percent of ruthenium is added to the initial preparation of the rod and when a high growth speed up to 40mm/h is used. Even slight modifications of the growing conditions result in large amounts of (Sr/Ca)RuO{sub 3} and (Sr/Ca){sub 3}Ru{sub 2}O{sub 7} intergrowth phases. First attempts to grow perovskite and double-layered ruthenates are discussed as well.

  7. Surrogate Seeds For Growth Of Crystals

    Science.gov (United States)

    Shlichta, Paul J.

    1989-01-01

    Larger crystals of higher quality grown. Alternative method for starting growth of crystal involves use of seed crystal of different material instead of same material as solution. Intended for growing single-crystal proteins for experiments but applicable in general to growth of crystals from solutions and to growth of semiconductor or other crystals from melts.

  8. Effects of impurities on crystal growth in fructose crystallization

    Science.gov (United States)

    Chu, Y. D.; Shiau, L. D.; Berglund, K. A.

    1989-10-01

    The influence of impurities on the crystallization of anhydrous fructose from aqueous solution was studied. The growth kinetics of fructose crystals in the fructose-water-glucose and fructose-water-difructose dianhydrides systems were investigated using photomicroscopic contact nucleation techniques. Glucose is the major impurity likely to be present in fructose syrup formed during corn wet milling, while several difructose dianhydrides are formed in situ under crystallization conditions and have been proposed as a cause in the decrease of overall yields. Both sets of impurities were found to cause inhibition of crystal growth, but the mechanisms responsible in each case are different. It was found that the presence of glucose increases the solubility of fructose in water and thus lowers the supersaturation of the solution. This is probably the main effect responsible for the decrease of crystal growth. Since the molecular structures of difructose dianhydrides are similar to that of fructose, they are probably "tailor-made" impurities. The decrease of crystal growth is probably caused by the incorporation of these impurities into or adsorption to the crystal surface which would accept fructose molecules in the orientation that existed in the difructose dianhydride.

  9. Photographic appraisal of crystal lattice growth technique

    Directory of Open Access Journals (Sweden)

    Kapoor D

    2005-01-01

    Full Text Available Concept of creating mechanical retention for bonding through crystal growth has been successfully achieved in the present study. By using polyacrylic acid, sulphated with sulphuric acid as etchant, abundant crystal growth was demonstrated. Keeping in view the obvious benefits of crystal growth technique, the present SEM study was aimed to observe and compare the changes brought about by different etching agents (phosphoric acid, polyacrylic acid and polyacrylic acid sulphated and to evaluate their advantages and disadvantages in an attempt to reduce iatrogenic trauma caused due to surface enamel alteration. Control and experimental groups were made of 24 and 30 premolars, respectively, for scanning electron microscopic appraisal of normal unetched and etched enamel surface and fracture site and finished surface evaluation. When compared with conventional phosphoric acid and weaker polyacrylic acid, investigations indicated that crystal growth treatment on enamel surface caused minimal iatrogenic trauma and surface alteration were restored to the original untreated condition to a large extent.

  10. Growth units model of anion coordination-polyhedra and its application to crystal growth

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xuehua; LUO Haosu; ZHONG Weizhuo

    2004-01-01

    Growth units model of anion coordination-polyhedra ACP model emphasizes the influence of intrinsic structure of crstal upon the crystal growth and the importance of the external conditions on which crystals grow. The ACP model is used to analyze some problems in crystal growth, such as the formation of dendrite in the crystal structure,growth habit of polar crystal, and formation of allomerism and polymorphism.

  11. The Growth of KLN Crystals

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The growth temperature curve of the growth system for the potass ium li thium niobate (KLN) has been measured and the temperature decrease program has b een calculated. KLN crystals with a size up to 30mm × 15mm × 5 mm have be en grown by flux method. The primary factors of the cracking of KLN crystal hav e been discussed. A blue laser light output has been obtained by optical parame tric oscillator pumping.

  12. On growth rate hysteresis and catastrophic crystal growth

    Science.gov (United States)

    Ferreira, Cecília; Rocha, Fernando A.; Damas, Ana M.; Martins, Pedro M.

    2013-04-01

    Different crystal growth rates as supersaturation is increasing or decreasing in impure media is a phenomenon called growth rate hysteresis (GRH) that has been observed in varied systems and applications, such as protein crystallization or during biomineralization. We have recently shown that the transient adsorption of impurities onto newly formed active sites for growth (or kinks) is sensitive to the direction and rate of supersaturation variation, thus providing a possible explanation for GRH [6]. In the present contribution, we expand on this concept by deriving the analytical expressions for transient crystal growth based on the energetics of growth hillock formation and kink occupation by impurities. Two types of GRH results are described according to the variation of kink density with supersaturation: for nearly constant density, decreasing or increasing supersaturation induce, respectively, growth promoting or inhibiting effects relative to equilibrium conditions. This is the type of GRH measured by us during the crystallization of egg-white lysozyme. For variable kink density, slight changes in the supersaturation level may induce abrupt variations in the crystal growth rate. Different literature examples of this so-called 'catastrophic' crystal growth are discussed in terms of their fundamental consequences.

  13. Protein Crystal Growth in Microgravity

    Institute of Scientific and Technical Information of China (English)

    毕汝昌; 桂璐璐; 师珂; 王耀萍; 陈世芝; 韩青; 胡永林; 沈福苓; 牛秀田; 华子谦; 卢光莹; 张健; 李松林; 龚为民; 牛立文; 黄其辰

    1994-01-01

    Protein crystal growth is quite important for the determination of protein structureswhich are essential to the understanding of life at molecular level as well as to the development of molecu-lar biotechnology.The microgravity environment of space is an ideal place to study the complicated pro-tein crystallization and to grow good-quality protein crystals.A number of crystal-growth experiments of10 different proteins were carried out in August,1992 on the Chinese re-entry satellite FSW-2 in spaceusing a tube crystallization equipment made in China.A total of 25 samples from 6 proteins producedcrystals,and the effects of microgravity on protein crystal growth were observed,especially for an acidicphospholipase A2 and henegg-white lysozyme which gave better crystals in space than earth-grown crys-tals in ground control experiments.The results have shown that the microgravity in space favors the im-provement of the size,perfection,morphology and internal order of the grown protein crytals.

  14. Crystal growth and structural analysis of zirconium sulphoselenide single crystals

    Indian Academy of Sciences (India)

    K R Patel; R D Vaidya; M S Dave; S G Patel

    2008-08-01

    A series of zirconium sulphoselenide (ZrSSe3–, where = 0, 0.5, 1, 1.5, 2, 2.5, 3) single crystals have been grown by chemical vapour transport technique using iodine as a transporting agent. The optimum condition for the growth of these crystals is given. The stoichiometry of the grown crystals were confirmed on the basis of energy dispersive analysis by X-ray (EDAX) and the structural characterization was accomplished by X-ray diffraction (XRD) studies. The crystals are found to possess monoclinic structure. The lattice parameters, volume, particle size and X-ray density have been carried out for these crystals. The effect of sulphur proportion on the lattice parameter, unit cell volume and X-ray density in the series of ZrSSe3– single crystals have been studied and found to decrease in all these parameters with rise in sulphur proportion. The grown crystals were examined under optical zoom microscope for their surface topography study. Hall effect measurements were carried out on grown crystals at room temperature. The negative value of Hall coefficient implies that these crystals are -type in nature. The conductivity is found to decrease with increase of sulphur content in the ZrSSe3– series. The electrical resistivity parallel to c-axis as well as perpendicular to -axis have been carried out in the temperature range 303–423 K. The results obtained are discussed in detail.

  15. Studies of laser crystal growth. 1. Production of crystal growth furnaces and operating results

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Akira; Sasuga, Tsuneo; Arisawa, Takashi; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Anzai, Yutaka; Katsurayama, Masamichi; Yamazaki, Takafumi; Yamagishi, Kiyoshi

    1997-10-01

    Table top short pulse Peta-watt laser system is the most promising light source to drive studying high energy field physics in advance photon research. To achieve high efficiency laser oscillation in stable condition, it is required to pull out the best performance from laser crystals as the gain medium. Therefore, we have conducted cooperative investigation with Mitsui Mining and Smelting Co., LTD. to create large ideal laser crystals by improved growth methods which solve several problems in usual growth techniques. This report describes specifications, results of operation, and improvements in two different types of growth furnaces which make homogeneous doped concentration along growth direction of Nd:YAG laser crystal and large fluoride laser crystals with a wide band gap, respectively. It also describes the first four results of crystals such as YAG, Nd:YAG, YLF, and LBO grown by these furnaces. (author)

  16. Crystal Growth in Al72.9Ge27.1 Alloy Melt under Acoustic Levitation Conditions

    Institute of Scientific and Technical Information of China (English)

    YAN Na; DAI Fu-Ping; WANG Wei-Li; WEI Bing-Bo

    2011-01-01

    The nonequilibrium solidification of liquid Al72.9Ge27.1 hypoeutectic alloy is accomplished by using single-axis acoustic levitation.A maximum undercooling of 112K (0.16TL) is obtained for the alloy melt at a coofing rate of 50 K/s. The primary (Al) phase displays a morphological transition from coarse dendrite under a normal conditions to equiaxed grain under acoustic levitation.In the (Al)+(Ge) eutectic,the (Ge) phase exhibits a conspicuous branched growth morphology.Both the primary (Al) dendrites and (Al)+(Ge) eutectics are well refined and the solute content of the primary (Al) phase is extended under acoustic levitation.The calculated and experimental results indicate that the solute trapping effect becomes more intensive with the enhancement of bulk undercooling.

  17. Crystallization Growth of Single Crystal Cu by ContinuousCasting

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Crystallization growth of single-crystal Cu by continuous casting has been investigated using selfdesigned horizontal continuous casting equipment and XRD. Experimental results showed that the crystallization plane of (311), (220) and (111) were eliminated sequentially in evolutionary process. The final growth plane of crystal was (200), the direction of crystallization was [100],the growth direction of both sides of the rod inclined to axis, and the degree of deviation of direction [100] from the crystal axis was less than 10. In order to produce high quality single crystal, the solid-liquid interface morphology must be smooth, even be planar.

  18. The growth of Nd: YAG single crystals

    Directory of Open Access Journals (Sweden)

    ANDREJA VALCIC

    2002-04-01

    Full Text Available Y3Al5O12 doped with 0.8 % wt. Nd (Nd:YAG single crystals were grown by the Czochralski technique under an argon atmosphere. The conditions for growing the Nd: YAG single crystals were calculated by using a combination of Reynolds and Grashof numbers. The critical crystal diameter and the critical rate of rotation were calculated from the hydrodynamics of the melt. The crystal diameter Dc = 1.5 cm remained constant during the crystal growth, while the critical rate of rotation changed from wc = 38 rpm after necking to wc = 13 rpm at the end of the crystal. The value of the rate of crystal growth was experimentally found to be 0.8–1.0 mm/h. According to our previous experiments, it was confirmed that 20 min exposure to conc. H3PO4 at 603 K was suitable for chemical polishing. Also, one-hour exposure to conc. H3PO4 at 493 K was found to be suitable for etching. The lattice parameter a = 1.201 (1 nm was determined by X-ray powder diffraction. The obtained results are discussed and compared with published data.

  19. A Century of Sapphire Crystal Growth

    Science.gov (United States)

    2004-05-17

    Crystal growth storage cabinet from Frémy’s lab.5,6 Flame Fusion and the Verneuil Process In 1885 rubies selling for $1000-2500...1891: Working with his student, M. Pacquier, Verneuil had developed most of what we now call Verneuil flame-fusion crystal growth . Verneuil ... Verneuil ) Crystal Growth Nassau, Gems Made by Man 11 • 1892: Verneuil eliminated crystal cracking by making contact area between ruby crystal

  20. Laboratory studies of crystal growth in magma

    Science.gov (United States)

    Hammer, J. E.; Welsch, B. T.; First, E.; Shea, T.

    2012-12-01

    The proportions, compositions, and interrelationships among crystalline phases and glasses in volcanic rocks cryptically record pre-eruptive intensive conditions, the timing of changes in crystallization environment, and the devolatilization history of eruptive ascent. These parameters are recognized as important monitoring tools at active volcanoes and interpreting geologic events at prehistoric and remote eruptions, thus motivating our attempts to understand the information preserved in crystals through an experimental appoach. We are performing laboratory experiments in mafic, felsic, and intermediate composition magmas to study the mechanisms of crystal growth in thermochemical environments relevant to volcanic environments. We target features common to natural crystals in igneous rocks for our experimental studies of rapid crystal growth phenomena: (1) Surface curvature. Do curved interfaces and spongy cores represent evidence of dissolution (i.e., are they corrosion features), or do they record the transition from dendritic to polyhedral morphology? (2) Trapped melt inclusions. Do trapped liquids represent bulk (i.e., far-field) liquids, boundary layer liquids, or something intermediate, depending on individual species diffusivity? What sequence of crystal growth rates leads to preservation of sealed melt inclusions? (3) Subgrain boundaries. Natural phenocrysts commonly exhibit tabular subgrain regions distinguished by small angle lattice misorientations or "dislocation lamellae" and undulatory extinction. Might these crystal defects be produced as dendrites undergo ripening? (4) Clusters. Contacting clusters of polymineralic crystals are the building blocks of cumulates, and are ubiquitous features of mafic volcanic rocks. Are plagioclase and clinopyroxene aligned crystallographically, suggesting an epitaxial (surface energy) relationship? (5) Log-normal size distribution. What synthetic cooling histories produce "natural" distributions of crystal sizes, and

  1. The growth of sapphire single crystals

    Directory of Open Access Journals (Sweden)

    STEVAN DJURIC

    2001-06-01

    Full Text Available Sapphire (Al2O3 single crystals were grown by the Czochralski technique both in air and argon atmospheres. The conditions for growing sapphire single crystals were calculated by using a combination of Reynolds and Grashof numbers. Acritical crystal diameter dc = 20 mm and the critical rate of rotation wc = 20 rpm were calculated from the hydrodynamics of the melt. The value of the rate of crystal growth was experimentally found to be 3.5 mm/h. According to our previous experiments, it was confirmed that three hours exposures to conc. H3PO4 at 593 K was suitable for chemical polishing. Also, three hours exposure to conc.H3PO4 at 523 K was found to be a suitable etching solution. The lattice parameters a = 0.47573 nm and c = 1.29893 nm were determined by X-ray powder diffraction. The obtained results are discussed and compared with published data.

  2. Zeolite crystal growth in space

    Science.gov (United States)

    Sacco, Albert, Jr.; Thompson, Robert W.; Dixon, Anthony G.

    1991-01-01

    The growth of large, uniform zeolite crystals in high yield in space can have a major impact on the chemical process industry. Large zeolite crystals will be used to improve basic understanding of adsorption and catalytic mechanisms, and to make zeolite membranes. To grow large zeolites in microgravity, it is necessary to control the nucleation event and fluid motion, and to enhance nutrient transfer. Data is presented that suggests nucleation can be controlled using chemical compounds (e.g., Triethanolamine, for zeolite A), while not adversely effecting growth rate. A three-zone furnace has been designed to perform multiple syntheses concurrently. The operating range of the furnace is 295 K to 473 K. Teflon-lined autoclaves (10 ml liquid volume) have been designed to minimize contamination, reduce wall nucleation, and control mixing of pre-gel solutions on orbit. Zeolite synthesis experiments will be performed on USML-1 in 1992.

  3. On the elastic contribution to crystal growth in complex environments

    Science.gov (United States)

    Gadomski, A.; Siódmiak, J.

    2005-03-01

    Based on a number of experimental studies, we propose to consider how elastic interactions between a crystal and its surroundings change crystal growing conditions. To aim to do this, we analyze the influence of some nonequilibrium modification of the Gibbs-Thomson thermodynamic condition, prescribed at the crystal boundary, on some properties of a kinetic model of protein crystal growth in a mass-convection regime. Next, to draw the physical picture more realistically, we study the influence of a certain stochastic perturbation on the crystal growth rate. To fulfill the task we apply the description of crystal growth in terms of nonequilibrium thermodynamics at a mesoscopic level. The proposed model offers a quite comprehensive picture of the formation of modern organic crystalline materials such as non-Kossel crystals.

  4. Introduction to crystal growth and characterization

    CERN Document Server

    Benz, Klaus-Werner

    2014-01-01

    This new textbook provides for the first time a comprehensive treatment of the basics of contemporary crystallography and crystal growth in a single volume. The reader will be familiarized with the concepts for the description of morphological and structural symmetry of crystals. The architecture of crystal structures of selected inorganic and molecular crystals is illustrated. The main crystallographic databases as data sources of crystal structures are described. Nucleation processes, their kinetics and main growth mechanism will be introduced in fundamentals of crystal growth. Some phase d

  5. Pressure-Reduction Technique for Crystal Growth

    Science.gov (United States)

    Shlichta, P. J.

    1981-01-01

    Large crystals grown by varying pressure rather than temperature. In constant temerature pressure-reduction process crystal growth promoted as solubility decreases by factor of more than 10. Technique used to study crystal growth kinetics by "pressure wave"" analog of conventional "thermal wave" experiments. Technique has advantages of faster response and freedom from convective interference.

  6. Engineering crystal growth of calcium hydrogenphosphate dihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Sikiric, M.; Babic-Ivancic, V. [Institut Rudjer Boskovic, Zagreb (Croatia); Milat, O. [Zagreb Univ. (Croatia). Inst. za Fiziku; Sarig, S.; Fueredi-Milhofer, H. [Hebrew Univ., Jerusalem (Israel). Inst. of Applied Chemistry

    2001-07-01

    The factors underlying calcium hydrogenphosphate dihydrate (CaHPO{sub 4}.2H{sub 2}O, DCPD) interactions with several structurally different additives: glutamic and aspartic acid, sodium citrate, hexaammonium tetrapolyphosphate, calcium phytate and polyaspartic acid were studied. DCPD crystals were prepared under controlled conditions by fast mixing of the anionic and cationic reactant solutions and subsequent growth without further stirring in the course of 24 hours at 37 C. The initial conditions were c(CaCl{sub 2}) = c(Na{sub 2}HPO{sub 4}) = 0.021 mol dm{sup -3}, c(NaCl) = 0.3 mol dm{sup -3}, pH{sub i} 5.5. The respective additive was added to the anionic component prior to pH adjustment. Crystals were characterized by X-ray diffraction, while their morphology was observed by optical and scanning electron microscopy (SEM). The Miller indices of the crystal faces were determined from SEM micrographs, after the orientation of the most prominent face was ascertained by the Weissenberg method. Mechanism of additive-DCPD crystals interaction depends on size and structure of additive molecule, structural fit between organic molecule and the ionic structure of particular crystal face. Small molecules (ions) specifically adsorb on lateral faces by electrostatic interactions, while macromolecules and molecules with hindered structure specifically adsorb on dominant (010) face, for which certain degree of structural fit is necessary. (orig.)

  7. Controlled growth of semiconductor crystals

    Science.gov (United States)

    Bourret-Courchesne, Edith D.

    1992-01-01

    A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.

  8. Coordination polyhedron growth mechanism model and growth habit of crystals

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new growth mechanism model, coordination polyhedron growth mechanism model, is introduced from the angle of the coordination of anion and cation to each other at the interface. It is pointed out that the force driving the growth unit to enter the crystal lattice is the electrostatic attraction force between ions, whose relative size can be approximately measured by the electrostatic bond strength (EBS) that reaches a nearest neighbor anion (or cation) in the parent phase from a cation (or anion) at the interface. The growth habits of NaCl, ZnS, CaF2 and CsI crystals are discussed, and a new growth habit rule is proposed as follows. When the growth rate of a crystal is determined by the step generation rate, the growth habit of this crystal is related to the coordination number of the ion with the smallest coordination rate at the interface of various crystal faces. The smaller the coordination number of the ion at the interface, the faster the growth rate of corresponding crystal face. When the growth of a crystal depends on the step movement rate, the growth habit of this crystal is related to the density of the ion with the smallest coordination rate at the interface of various crystal faces. The smaller the densities of the ion at the interface is, the faster the growth rate of corresponding crystal face will be.

  9. Measurements of Protein Crystal Face Growth Rates

    Science.gov (United States)

    Gorti, S.

    2014-01-01

    Protein crystal growth rates will be determined for several hyperthermophile proteins.; The growth rates will be assessed using available theoretical models, including kinetic roughening.; If/when kinetic roughening supersaturations are established, determinations of protein crystal quality over a range of supersaturations will also be assessed.; The results of our ground based effort may well address the existence of a correlation between fundamental growth mechanisms and protein crystal quality.

  10. Polar Growth Habit of KABO Crystal

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The polar growth habit of KABO crystal was discussed by the growth-units model of anionic coordination-polyhedra (ACP), and the relationship between stabilities of incorporation of those growth-units into various group faces and their corresponding morphologies was studied. It is put forward that the growth interface of crystal will be concave when negative plane is used as growth interface. Concave growth interface is very unfavorable for the quality of the crystal, because it is unsuitable for the transfer of the latent heat and impurities released during the deposition.

  11. Characterization of the Bridgman crystal growth process by radiographic imaging

    Science.gov (United States)

    Fripp, Archibald L.; Debnam, W. J.; Woodell, G. W.; Berry, R. F.; Simchick, R. T.; Sorokach, S. K.; Barber, P. G.

    1991-01-01

    Elemental (Ge) and alloy (PbSnTe) crystal growth that is monitored via radiography to reveal both the interface position and the shape in real time is discussed for both seeded and unseeded growth. It is concluded that the interface position and the actual growth rate of a Bridgman grown crystal is dependent on the growth conditions. The actual growth rate which is a strong function of the degree of supercooling exceeded the pull rate by a factor of greater than two. The interface shape changed from concave to flat to convex during the growth.

  12. Characterization of the Bridgman crystal growth process by radiographic imaging

    Science.gov (United States)

    Fripp, Archibald L.; Debnam, W. J.; Woodell, G. W.; Berry, R. F.; Simchick, R. T.; Sorokach, S. K.; Barber, P. G.

    1991-01-01

    Elemental (Ge) and alloy (PbSnTe) crystal growth that is monitored via radiography to reveal both the interface position and the shape in real time is discussed for both seeded and unseeded growth. It is concluded that the interface position and the actual growth rate of a Bridgman grown crystal is dependent on the growth conditions. The actual growth rate which is a strong function of the degree of supercooling exceeded the pull rate by a factor of greater than two. The interface shape changed from concave to flat to convex during the growth.

  13. Chemical Bond Calculations of Crystal Growth of KDP and ADP

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel method was proposed to calculate the crystal morphology (or growth habit) on the basis of chemical bond analysis. All constituent chemical bonds were distinguished as relevant and independent bonds according to their variations during the crystallization process. By employing the current method, the influence of specific growth conditions on the crystal morphology can be considered in the structure analysis process. The ideal morphologies of both KDP (KH2PO4) and ADP (NH4H2PO4) crystals were calculated and compared with our obtained crystallites at room temperature, which validates the present calculation method very well.

  14. Economic analysis of crystal growth in space

    Science.gov (United States)

    Ulrich, D. R.; Chung, A. M.; Yan, C. S.; Mccreight, L. R.

    1972-01-01

    Many advanced electronic technologies and devices for the 1980's are based on sophisticated compound single crystals, i.e. ceramic oxides and compound semiconductors. Space processing of these electronic crystals with maximum perfection, purity, and size is suggested. No ecomonic or technical justification was found for the growth of silicon single crystals for solid state electronic devices in space.

  15. An assessment of calcite crystal growth mechanisms based on crystal size distributions

    Science.gov (United States)

    Kile, D.E.; Eberl, D.D.; Hoch, A.R.; Reddy, M.M.

    2000-01-01

    Calcite crystal growth experiments were undertaken to test a recently proposed model that relates crystal growth mechanisms to the shapes of crystal size distributions (CSDs). According to this approach, CSDs for minerals have three basic shapes: (1) asymptotic, which is related to a crystal growth mechanism having constant-rate nucleation accompanied by surface-controlled growth; (2) lognormal, which results from decaying-rate nucleation accompanied by surface-controlled growth; and (3) a theoretical, universal, steady-state curve attributed to Ostwald ripening. In addition, there is a fourth crystal growth mechanism that does not have a specific CSD shape, but which preserves the relative shapes of previously formed CSDs. This mechanism is attributed to supply-controlled growth. All three shapes were produced experimentally in the calcite growth experiments by modifying nucleation conditions and solution concentrations. The asymptotic CSD formed when additional reactants were added stepwise to the surface of solutions that were supersaturated with respect to calcite (initial Ω = 20, where Ω = 1 represents saturation), thereby leading to the continuous nucleation and growth of calcite crystals. Lognormal CSDs resulted when reactants were added continuously below the solution surface, via a submerged tube, to similarly supersaturated solutions (initial Ω = 22 to 41), thereby leading to a single nucleation event followed by surface-controlled growth. The Ostwald CSD resulted when concentrated reactants were rapidly mixed, leading initially to high levels of supersaturation (Ω >100), and to the formation and subsequent dissolution of very small nuclei, thereby yielding CSDs having small crystal size variances. The three CSD shapes likely were produced early in the crystallization process, in the nanometer crystal size range, and preserved during subsequent growth. Preservation of the relative shapes of the CSDs indicates that a supply-controlled growth mechanism

  16. Study on buoyancy convection phenomenon in the crystal growth process

    Institute of Scientific and Technical Information of China (English)

    DUAN Li; KANG Qi

    2009-01-01

    Real-time phase shift Mach-Zehnder interference technique,imaging technique,and computer image processing technique were combined to perform a real-time diagnosis of NaCIO3 crystal,which described both the dissolution process end the crystallization process of the NaCIO3 crystal in real-time condition.The dissolution fringes and the growth fringes in the process were obtained.Moreover,a distribution of concentration field in this process was obtained by inversion calculation.Finally,the buoyancy convection phenomenon caused by gravity in the crystal growth process was analyzed.The results showed that this convection phenomenon directly influences the growth rate of each crystal face in the crystal.

  17. Study on buoyancy convection phenomenon in the crystal growth process

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Real-time phase shift Mach-Zehnder interference technique, imaging technique, and computer image processing technique were combined to perform a real-time diagnosis of NaClO3 crystal, which de- scribed both the dissolution process and the crystallization process of the NaClO3 crystal in real-time condition. The dissolution fringes and the growth fringes in the process were obtained. Moreover, a distribution of concentration field in this process was obtained by inversion calculation. Finally, the buoyancy convection phenomenon caused by gravity in the crystal growth process was analyzed. The results showed that this convection phenomenon directly influences the growth rate of each crystal face in the crystal.

  18. Crystal growth as an excitable medium.

    Science.gov (United States)

    Cartwright, Julyan H E; Checa, Antonio G; Escribano, Bruno; Sainz-Díaz, C Ignacio

    2012-06-28

    Crystal growth has been widely studied for many years, and, since the pioneering work of Burton, Cabrera and Frank, spirals and target patterns on the crystal surface have been understood as forms of tangential crystal growth mediated by defects and by two-dimensional nucleation. Similar spirals and target patterns are ubiquitous in physical systems describable as excitable media. Here, we demonstrate that this is not merely a superficial resemblance, that the physics of crystal growth can be set within the framework of an excitable medium, and that appreciating this correspondence may prove useful to both fields. Apart from solid crystals, we discuss how our model applies to the biomaterial nacre, formed by layer growth of a biological liquid crystal.

  19. Crystal size growth in the liquid phase methanol synthesis catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, A.; Lee, S.; Foos, A.

    1988-01-01

    The phenomenon of crystal growth in the methanol synthesis catalyst has been studied. Crystallite size distributions in the CuO/ZnO/Al/sub 2/O/sub 3/ methanol synthesis catalyst have been determined. The effects of temperature, reaction environment and time under reaction conditions have been studied. It is observed that water in the reaction mixture promotes crystal growth. 26 refs., 10 figs., 1 tab.

  20. Transport and Growth Kinetics in Microgravity Protein Crystal Growth

    Science.gov (United States)

    Otalora, F.; Garcia-Ruiz, J. M.; Carotenuto, L.; Castagnolo, D.; Novella, M. L.; Chernov, A. A.

    2002-01-01

    The dynamic coupling between mass transport and incorporation of growth units into the surface of a crystal growing from solution in microgravity is used to derive quantitative information on the crystal growth kinetics. To this end, new procedures for experiment preparation, interferometric data processing and model fitting have been developed. The use of experimental data from the bulk diffusive maw transport together with a model for steady state stagnant crystal growth allows the detailed quantitative understanding of the kinetics of both the concentration depletion zone around the crystal and the growth of the crystal interface. The protein crystal used in the experiment is shown to be growing in the mixed kinetic regime (0.2 x 10(exp -6) centimeters per second less than beta R/D less than 0.9 x 10(exp -6) centimeters per second).

  1. Growth of single crystals of BaFe12O19 by solid state crystal growth

    Science.gov (United States)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-10-01

    Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.

  2. Promotion of protein crystal growth by actively switching crystal growth mode via femtosecond laser ablation

    Science.gov (United States)

    Tominaga, Yusuke; Maruyama, Mihoko; Yoshimura, Masashi; Koizumi, Haruhiko; Tachibana, Masaru; Sugiyama, Shigeru; Adachi, Hiroaki; Tsukamoto, Katsuo; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Yoshikawa, Hiroshi Y.; Mori, Yusuke

    2016-11-01

    Large single crystals with desirable shapes are essential for various scientific and industrial fields, such as X-ray/neutron crystallography and crystalline devices. However, in the case of proteins the production of such crystals is particularly challenging, despite the efforts devoted to optimization of the environmental, chemical and physical parameters. Here we report an innovative approach for promoting the growth of protein crystals by directly modifying the local crystal structure via femtosecond laser ablation. We demonstrate that protein crystals with surfaces that are locally etched (several micrometers in diameter) by femtosecond laser ablation show enhanced growth rates without losing crystal quality. Optical phase-sensitive microscopy and X-ray topography imaging techniques reveal that the local etching induces spiral growth, which is energetically advantageous compared with the spontaneous two-dimensional nucleation growth mode. These findings prove that femtosecond laser ablation can actively switch the crystal growth mode, offering flexible control over the size and shape of protein crystals.

  3. Growth morphology and structural characteristic of C70single crystals

    Institute of Scientific and Technical Information of China (English)

    周维亚; 解思深; 吴源; 常保和; 王刚; 钱露茜

    1999-01-01

    Large size C70 single crystals with the dimension of more than 5 mm are grown from the vapor phase by controlling nucleation. X-ray diffraction and electron diffraction confirm that in the C70 single crystal a phase of the hexagonal close-packed (hcp) structure coexists with a minor face-center-cubic (fcc) phase at room temperature. The morphologies and their formation mechanism of the C70 single crystals are investigated by means of scanning electron microscopy and optical microscopy. The influence of growth conditions on the morphologies of C70 single crystals is discussed.

  4. Illusory spirals and loops in crystal growth.

    Science.gov (United States)

    Shtukenberg, Alexander G; Zhu, Zina; An, Zhihua; Bhandari, Misha; Song, Pengcheng; Kahr, Bart; Ward, Michael D

    2013-10-22

    The theory of dislocation-controlled crystal growth identifies a continuous spiral step with an emergent lattice displacement on a crystal surface; a mechanistic corollary is that closely spaced, oppositely winding spirals merge to form concentric loops. In situ atomic force microscopy of step propagation on pathological L-cystine crystals did indeed show spirals and islands with step heights of one lattice displacement. We show by analysis of the rates of growth of smaller steps only one molecule high that the major morphological spirals and loops are actually consequences of the bunching of the smaller steps. The morphology of the bunched steps actually inverts the predictions of the theory: Spirals arise from pairs of dislocations, loops from single dislocations. Only through numerical simulation of the growth is it revealed how normal growth of anisotropic layers of molecules within the highly symmetrical crystals can conspire to create features in apparent violation of the classic theory.

  5. The Growth of Large Single Crystals.

    Science.gov (United States)

    Baer, Carl D.

    1990-01-01

    Presented is an experiment which demonstrates principles of experimental design, solubility, and crystal growth and structure. Materials, procedures and results are discussed. Suggestions for adapting this activity to the high school laboratory are provided. (CW)

  6. Vapor Crystal Growth (VCG) experiment Cell

    Science.gov (United States)

    1992-01-01

    The image shows a test cell of Crystal Growth experiment inside the Vapor Crystal Growth System (VCGS) furnace aboard the STS-42, International Microgravity Laboratory-1 (IML-1), mission. The goal of IML-1, a pressurized marned Spacelab module, was to explore in depth the complex effects of weightlessness of living organisms and materials processing. More than 200 scientists from 16 countires participated in the investigations.

  7. Technology of gallium nitride crystal growth

    CERN Document Server

    Ehrentraut, Dirk; Bockowski, Michal

    2010-01-01

    This book deals with the important technological aspects of the growth of GaN single crystals by HVPE, MOCVD, ammonothermal and flux methods for the purpose of free-standing GaN wafer production. Leading experts from industry and academia report in a very comprehensive way on the current state-of-the-art of the growth technologies and optical and structural properties of the GaN crystals are compared.

  8. A Multiscale simulation method for ice crystallization and frost growth

    Science.gov (United States)

    Yazdani, Miad

    2015-11-01

    Formation of ice crystals and frost is associated with physical mechanisms at immensely separated scales. The primary focus of this work is on crystallization and frost growth on a cold plate exposed to the humid air. The nucleation is addressed through Gibbs energy barrier method based on the interfacial energy of crystal and condensate as well as the ambient and surface conditions. The supercooled crystallization of ice crystals is simulated through a phase-field based method where the variation of degree of surface tension anisotropy and its mode in the fluid medium is represented statistically. In addition, the mesoscale width of the interface is quantified asymptotically which serves as a length-scale criterion into a so-called ``Adaptive'' AMR (AAMR) algorithm to tie the grid resolution at the interface to local physical properties. Moreover, due to the exposure of crystal to humid air, a secondary non-equilibrium growth process contributes to the formation of frost at the tip of the crystal. A Monte-Carlo implementation of Diffusion Limited Aggregation method addresses the formation of frost during the crystallization. Finally, a virtual boundary based Immersed Boundary Method (IBM) is adapted to address the interaction of ice crystal with convective air during its growth.

  9. Imaging and interferometric analysis of protein crystal growth

    Science.gov (United States)

    Raghunandan, Ranjini; Gupta, Anamika Sethia; Muralidhar, K.

    2008-04-01

    Protein crystals are grown under controlled temperature, concentration and vapor pressure conditions, usually by vapor diffusion, liquid-liquid diffusion and dialysis techniques. The present study examines the effects of protein concentration, drop size and reservoir height on the crystal growth of Hen Egg White Lysozyme (HEWL). Crystals are grown by the hanging drop vapor diffusion method using Modular VDX TM Plates. Due to the vapor pressure difference created between the protein drop and the reservoir, evaporation takes place till equilibrium is attained. Crystal formation takes place after a certain level of supersaturation is attained when the protein precipitates out in crystalline form. The observations revealed that the growth is faster for higher lysozyme concentration, smaller drop sizes and larger reservoir heights. The morphology of the crystals is viewed during the growth process using stereomicroscope. The number of crystals formed is the maximum for higher concentrations, drop sizes and reservoir heights. When the number of crystals formed is less, the size of the crystals is comparatively larger. The effect of evaporation of water vapor from the protein drop into the reservoir is studied using Mach-Zehnder interferometry. The recorded interferograms and shadowgraph images indicate the diffusion of condensed water into the reservoir. The radius of the drop is determined using the shadowgraph images of the growth process. The radius decreases with evaporation and the rate of decrease of radius is highest for higher protein concentrations, smaller drop sizes and larger reservoir heights.

  10. Crystal growth in zinc borosilicate glasses

    Science.gov (United States)

    Kullberg, Ana T. G.; Lopes, Andreia A. S.; Veiga, João P. B.; Monteiro, Regina C. C.

    2017-01-01

    Glass samples with a molar composition (64+x)ZnO-(16-x)B2O3-20SiO2, where x=0 or 1, were successfully synthesized using a melt-quenching technique. Based on differential thermal analysis data, the produced glass samples were submitted to controlled heat-treatments at selected temperatures (610, 615 and 620 °C) during various times ranging from 8 to 30 h. The crystallization of willemite (Zn2SiO4) within the glass matrix was confirmed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Under specific heat-treatment conditions, transparent nanocomposite glass-ceramics were obtained, as confirmed by UV-vis spectroscopy. The influence of temperature, holding time and glass composition on crystal growth was investigated. The mean crystallite size was determined by image analysis on SEM micrographs. The results indicated an increase on the crystallite size and density with time and temperature. The change of crystallite size with time for the heat-treatments at 615 and 620 °C depended on the glass composition. Under fixed heat-treatment conditions, the crystallite density was comparatively higher for the glass composition with higher ZnO content.

  11. Fluid mechanics in crystal growth - The 1982 Freeman scholar lecture

    Science.gov (United States)

    Ostrach, S.

    1983-01-01

    An attempt is made to unify the current state of knowledge in crystal growth techniques and fluid mechanics. After identifying important fluid dynamic problems for such representative crystal growth processes as closed tube vapor transport, open reactor vapor deposition, and the Czochralski and floating zone melt growth techniques, research results obtained to date are presented. It is noted that the major effort to date has been directed to the description of the nature and extent of bulk transport under realistic conditions, where bulk flow determines the heat and solute transport which strongly influence the temperature and concentration fields in the vicinity of the growth interface. Proper treatment of near field, or interface, problems cannot be given until the far field, or global flow, involved in a given crystal growth technique has been adequately described.

  12. Historical aspects of crystal growth technology

    Science.gov (United States)

    Scheel, Hans J.

    2000-04-01

    The father of crystal fabrication technology is A. Verneuil with his flame-fusion growth method 1902. His principles of nucleation and growth control are adapted in most later growth methods from melt. The Czochralski method was essentially developed by Teal, Little and Dash. The multidisciplinary nature of crystal growth and epitaxy technology and the complex multiparameter processes, and also the scaling problem, have impeded the scientific development of this important area. Only recently it was possible to solve the striation problem and to understand the control of epitaxial growth modes for achieving structurally perfect layers of GaAs and high- Tc superconductors with atomically flat surfaces. The formation of crystal growth and epitaxy engineers and scientists as well as centers of excellence are necessary in order to develop crystal and epilayer fabrication technologies required for development of highest-efficiency white light-emitting diodes and photovoltaic solar cells for energy-saving lighting and as alternative source of energy. Also laser-fusion energy and other high technologies have to wait for progress in crystal growth technology.

  13. Crystal Growth Behaviors of Silicon during Melt Growth Processes

    Directory of Open Access Journals (Sweden)

    Kozo Fujiwara

    2012-01-01

    Full Text Available It is imperative to improve the crystal quality of Si multicrystal ingots grown by casting because they are widely used for solar cells in the present and will probably expand their use in the future. Fine control of macro- and microstructures, grain size, grain orientation, grain boundaries, dislocation/subgrain boundaries, and impurities, in a Si multicrystal ingot, is therefore necessary. Understanding crystal growth mechanisms in melt growth processes is thus crucial for developing a good technology for producing high-quality Si multicrystal ingots for solar cells. In this review, crystal growth mechanisms involving the morphological transformation of the crystal-melt interface, grain boundary formation, parallel-twin formation, and faceted dendrite growth are discussed on the basis of the experimental results of in situ observations.

  14. Some Aspects of PVT Low Supersaturation Nucleation and Contactless Crystal Growth

    Science.gov (United States)

    Grasza, K.; Palosz, W.

    1996-01-01

    The basic principles of the contactless growth of crystals from the vapor in combination with the process of low-supersaturation nucleation are discussed. The mathematical formulation of the morphological stability criterion in vapor growth systems is given and its implications for contactless growth technique are analyzed. A diagram for selection of proper temperature conditions for growth of CdTe crystals is presented.

  15. INTERFACIAL MASS TRANSPORT IN OXIDE CRYSTAL GROWTH

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ A space high temperature in situobservation instrument (SHITISOI) is dedicated to visualize and record the whole growth process of oxide crystal in high temperature melts and solutions. Model experiments using transparent liquids such as KNbO3,Li2B4O7+KNbO3 were chosen to investigate effects of interracial mass transport in oxide crystal growth. For the scaling of the coupled velocity, heat and concentration fields in KNbO3 crystal growth, a rotating crystal growth process was performed and the widths of interfacial concentration, heat and momentum transition zones (The "boundary layers") are obtained, which are 7.5×10-a, 8.6×10-2 and 4.4×10-1 cm,respectively. Hence one can expect that interfacial concentration gradient will be confined to a narrow layer and in region of major concentration change at the in terface. In order to study a mechanism based on the interfacial mass transport resulting from hydrodynamics, the growth of KNbO3 grain in high temperature Li2B4O7 and KNbO3 solutin was studied. The result shows that the pivotal feature in the KNbO3 crystal growth is the initiated by KNbO3 solute surface tension gra dient which is caused by the slow diffusion of KNbO3 solutes. Direct comparison of the model predictions and experimental observed phenomena demonstrate the predictive capability of this model.

  16. Protein crystal growth and the International Space Station

    Science.gov (United States)

    DeLucas, L. J.; Moore, K. M.; Long, M. M.

    1999-01-01

    Protein structural information plays a key role in understanding biological structure-function relationships and in the development of new pharmaceuticals for both chronic and infectious diseases. The Center for Macromolecular Crystallography (CMC) has devoted considerable effort studying the fundamental processes involved in macromolecular crystal growth both in a 1-g and microgravity environment. Results from experiments performed on more than 35 U.S. space shuttle flights have clearly indicated that microgravity can provide a beneficial environment for macromolecular crystal growth. This research has led to the development of a new generation of pharmaceuticals that are currently in preclinical or clinical trials for diseases such as cutaneous T-cell lymphoma, psoriasis, rheumatoid arthritis, AIDS, influenza, stroke and other cardiovascular complications. The International Space Station (ISS) provides an opportunity to have complete crystallographic capability on orbit, which was previously not possible with the space shuttle orbiter. As envisioned, the x-ray Crystallography Facility (XCF) will be a complete facility for growing protein crystals; selecting, harvesting, and mounting sample crystals for x-ray diffraction; cryo-freezing mounted crystals if necessary; performing x-ray diffraction studies; and downlinking the data for use by crystallographers on the ground. Other advantages of such a facility include crystal characterization so that iterations in the crystal growth conditions can be made, thereby optimizing the final crystals produced in a three month interval on the ISS.

  17. Convective flow effects on protein crystal growth

    Science.gov (United States)

    Rosenberger, Franz

    1995-01-01

    During the fifth semi-annual period under this grant we have pursued the following activities: (1) Characterization of the purity and further purification of lysozyme solutions, these efforts are summarized in Section 2; (2) Crystal growth morphology and kinetics studies with tetragonal lysozyme, our observation on the dependence of lysozyme growth kinetics on step sources and impurities has been summarized in a manuscript which was accepted for publication in the Journal of Crystal Growth; (3) Numerical modelling of the interaction between bulk transport and interface kinetics, for a detailed summary of this work see the manuscript which was accepted for publication in the Journal of Crystal Growth; and (4) Light scattering studies, this work has been summarized in a manuscript that has been submitted for publication to the Journal of Chemical Physics.

  18. Selectivity of Crystal Growth Direction in Layered Double Hydroxides

    Institute of Scientific and Technical Information of China (English)

    赵芸; 梁吉; 李峰; 段雪

    2004-01-01

    Investigation of selectivity of crystal growth direction in layered double hydroxides is helpful to control their particle sizes in different directions. Mg-Al layered double hydroxides (LDHs) were synthesized using a coprecipitation method. The influences of aging temperature, aging time, and Mg/Al molar ratio on the crystal structure, the LDHs particle size, and the selectivity of crystal growth in different directions were investigated. The results show that the size of the crystallites in the a direction is larger than that in the c direction for all experimental conditions, indicating faster crystal growth in the a direction than in the c direction. The crystallite sizes in the a and c directions both increase with decreasing Mg/Al molar ratio but with less difference between the sizes in the two directions. Therefore, the crystal growth rate in the c direction increases more than that in the a direction as the Mg/Al molar ratio decreases. The influence of the aging time, aging temperature, and Mg/Al molar ratio on the selectivity of the crystal growth direction can be used to prepare LDHs with selected sizes in the a and c directions.

  19. Method for solid state crystal growth

    Science.gov (United States)

    Nolas, George S.; Beekman, Matthew K.

    2013-04-09

    A novel method for high quality crystal growth of intermetallic clathrates is presented. The synthesis of high quality pure phase crystals has been complicated by the simultaneous formation of both clathrate type-I and clathrate type-II structures. It was found that selective, phase pure, single-crystal growth of type-I and type-II clathrates can be achieved by maintaining sufficient partial pressure of a chemical constituent during slow, controlled deprivation of the chemical constituent from the primary reactant. The chemical constituent is slowly removed from the primary reactant by the reaction of the chemical constituent vapor with a secondary reactant, spatially separated from the primary reactant, in a closed volume under uniaxial pressure and heat to form the single phase pure crystals.

  20. Crystal Growth Models of Dexamethasone Sodium Phosphate in a MSMPR Reactive Crystallizer

    Institute of Scientific and Technical Information of China (English)

    郝红勋; 王静康; 王永莉; 侯宝红

    2005-01-01

    The reactive crystallization process of dexamethasone sodium phosphate was investigated in a continuous mixed-suspension, mixed-product-removal(MSMPR) crystallizer. Analyzing experimental data, it was found that the growth of product crystal was size-dependent. The Bransom, CR, ASL, M J2 and M J3 size-dependent growth models were discussed in details. Using experimental steady state population density data of dexamethasone sodium phosphate, parameters of five size-dependent growth models were determined by the method of non-linear least-squares. By comparison of experimental population density and linear growth rate data with those obtained from the five size-dependent growth models, it was found that the MJ3 model predicts the growth more accurately than do the other four models. Based on the theory of population balance, the crystal nucleation and growth rate equations of dexamethasone sodium phosphate were determined by non-linear regression method. The effects of different operation parameters such as supersaturation, magma density and temperature on the quality of product crystal were also discussed, and the optimal operation conditions were derived.

  1. Biomolecular Modification of Inorganic Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    De Yoreo, J J

    2007-04-27

    The fascinating shapes and hierarchical designs of biomineralized structures are an inspiration to materials scientists because of the potential they suggest for biomolecular control over materials synthesis. Conversely, the failure to prevent or limit tissue mineralization in the vascular, skeletal, and urinary systems is a common source of disease. Understanding the mechanisms by which organisms direct or limit crystallization has long been a central challenge to the biomineralization community. One prevailing view is that mineral-associated macromolecules are responsible for either inhibiting crystallization or initiating and stabilizing non-equilibrium crystal polymorphs and morphologies through interactions between anionic moieties and cations in solution or at mineralizing surfaces. In particular, biomolecules that present carboxyl groups to the growing crystal have been implicated as primary modulators of growth. Here we review the results from a combination of in situ atomic force microscopy (AFM) and molecular modeling (MM) studies to investigate the effect of specific interactions between carboxylate-rich biomolecules and atomic steps on crystal surfaces during the growth of carbonates, oxalates and phosphates of calcium. Specifically, we how the growth kinetics and morphology depend on the concentration of additives that include citrate, simple amino acids, synthetic Asp-rich polypeptides, and naturally occurring Asp-rich proteins found in both functional and pathological mineral tissues. The results reveal a consistent picture of shape modification in which stereochemical matching of modifiers to specific atomic steps drives shape modification. Inhibition and other changes in growth kinetics are shown to be due to a range of mechanisms that depend on chemistry and molecular size. Some effects are well described by classic crystal growth theories, but others, such as step acceleration due to peptide charge and hydrophylicity, were previously unrealized

  2. An Apparatus for Growth of Small Crystals From Solutions.

    Science.gov (United States)

    Mitrovic, Mico M.

    1995-01-01

    Describes an apparatus for crystal growth that was designed to study growth kinetics of small crystals from solutions and to obtain crystals of various substances. Describes the use of the apparatus in laboratory practical experiments in the field of crystal growth physics within the course "Solid State Physics". (JRH)

  3. Molecular modifiers reveal a mechanism of pathological crystal growth inhibition

    Science.gov (United States)

    Chung, Jihae; Granja, Ignacio; Taylor, Michael G.; Mpourmpakis, Giannis; Asplin, John R.; Rimer, Jeffrey D.

    2016-08-01

    Crystalline materials are crucial to the function of living organisms, in the shells of molluscs, the matrix of bone, the teeth of sea urchins, and the exoskeletons of coccoliths. However, pathological biomineralization can be an undesirable crystallization process associated with human diseases. The crystal growth of biogenic, natural and synthetic materials may be regulated by the action of modifiers, most commonly inhibitors, which range from small ions and molecules to large macromolecules. Inhibitors adsorb on crystal surfaces and impede the addition of solute, thereby reducing the rate of growth. Complex inhibitor-crystal interactions in biomineralization are often not well elucidated. Here we show that two molecular inhibitors of calcium oxalate monohydrate crystallization—citrate and hydroxycitrate—exhibit a mechanism that differs from classical theory in that inhibitor adsorption on crystal surfaces induces dissolution of the crystal under specific conditions rather than a reduced rate of crystal growth. This phenomenon occurs even in supersaturated solutions where inhibitor concentration is three orders of magnitude less than that of the solute. The results of bulk crystallization, in situ atomic force microscopy, and density functional theory studies are qualitatively consistent with a hypothesis that inhibitor-crystal interactions impart localized strain to the crystal lattice and that oxalate and calcium ions are released into solution to alleviate this strain. Calcium oxalate monohydrate is the principal component of human kidney stones and citrate is an often-used therapy, but hydroxycitrate is not. For hydroxycitrate to function as a kidney stone treatment, it must be excreted in urine. We report that hydroxycitrate ingested by non-stone-forming humans at an often-recommended dose leads to substantial urinary excretion. In vitro assays using human urine reveal that the molecular modifier hydroxycitrate is as effective an inhibitor of nucleation

  4. Growth of mixed K2(Ni,Co)(SO4)2·6H2O crystals under stationary conditions of supercooling and forced convection of the aqueous solution

    Science.gov (United States)

    Masalov, Vladimir M.; Vasilyeva, Natalia A.; Manomenova, Vera L.; Zhokhov, Andrei A.; Rudneva, Elena B.; Voloshin, Alexey E.; Emelchenko, Gennadi A.

    2017-10-01

    The technique and the scheme of the system for growing single crystals, including complex mixed composition, under stationary conditions of supercooling and forced convection of aqueous solution were described. Solubility in water of various compositions of K2CoxNi1-x(SO4)2·6H2O (KCNSH) and the dependence of Co content in the KCNSH crystal of Co concentration in the saline part of aqueous solutions of KCNSH have been measured in the temperature range of 30-70 °C. It was found that the growth sectors {0 0 1} and {1 1 0} differ in Ni and Co contents. The Ni/Co ratio is dependent on the value of solution supersaturation. The optical transmission spectra of crystals grown showed high transmittance in the UV region of the spectrum and the almost complete absorption of light in the visible spectrum. It is concluded that the crystals grown can be used as efficient UV filters.

  5. Stability limits for the horizontal ribbon growth of silicon crystals

    Science.gov (United States)

    Daggolu, Parthiv; Yeckel, Andrew; Bleil, Carl E.; Derby, Jeffrey J.

    2013-01-01

    A rigorous, thermal-capillary model, developed to couple heat transfer, melt convection and capillary physics, is employed to assess stability limits of the HRG system for growing silicon ribbons. Extending the prior understanding of this process put forth by Daggolu et al. [Thermal-capillary analysis of the horizontal ribbon growth of silicon crystals, Journal of Crystal Growth 355 (2012) 129-139], model results presented here identify additional failure mechanisms, including the bridging of crystal onto crucible, the spilling of melt from the crucible, and the undercooling of melt at the ribbon tip, that are consistent with prior experimental observations. Changes in pull rate, pull angle, melt height, and other parameters are shown to give rise to limits, indicating that only narrow operating windows exist in multi-dimensional parameter space for stable growth conditions that circumvent these failure mechanisms.

  6. Nucleation and structural growth of cluster crystals

    CERN Document Server

    Leitold, Christian

    2016-01-01

    We study the nucleation of crystalline cluster phases in the generalized exponential model with exponent n=4. Due to the finite value of this pair potential for zero separation, at high densities the system forms cluster crystals with multiply occupied lattice sites. Here, we investigate the microscopic mechanisms that lead to the formation of cluster crystals from a supercooled liquid in the low-temperature region of the phase diagram. Using molecular dynamics and umbrella sampling, we calculate the free energy as a function of the size of the largest crystalline nucleus in the system, and compare our results with predictions from classical nucleation theory. Employing bond-order parameters based on a Voronoi tessellation to distinguish different crystal structures, we analyze the average composition of crystalline nuclei. We find that even for conditions where a multiply-occupied fcc crystal is the thermodynamically stable phase, the nucleation into bcc cluster crystals is strongly preferred. Furthermore, w...

  7. Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment

    Science.gov (United States)

    Su, Ching-Hua

    2014-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). There are two sections of the flight experiment: (I) crystal growth of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT) and (II) melt growth of CdZnTe by directional solidification. The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  8. Growth of single-crystal gallium nitride

    Science.gov (United States)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Use of ultrahigh purity ammonia prevents oxygen contamination of GaN during growth, making it possible to grow the GaN at temperatures as high as 825 degrees C, at which point single crystal wafers are deposited on /0001/-oriented sapphire surfaces.

  9. Growth of aluminum nitride bulk crystals by sublimation

    Science.gov (United States)

    Liu, Bei

    The commercial potential of III-nitride semiconductors is already being realized by the appearance of high efficiency, high reliability, blue and green LEDS around the world. However, the lack of a native nitride substrate has hindered the full-realization of more demanding III-nitride devices. To date, single aluminum nitride (AlN) crystals are not commercially available. New process investigation is required to scale up the crystal size. New crucibles stable up to very high temperatures (˜2500°C) are needed which do not incorporate impurities into the growing crystals. In this thesis, the recent progresses in bulk AlN crystal growth by sublimation-recondensation were reviewed first. The important physical, optical and electrical properties as well as chemical and thermal stabilities of AlN were discussed. The development of different types of growth procedures including self-seeding, substrate employed and a new "sandwich" technique were covered in detail. Next, the surface morphology and composition at the initial stages of AlN grown on 6H-SiC (0001) were investigated. Discontinuous AlN coverage occurred after 15 minutes of growth. The initial discontinuous nucleation of AlN and different lateral growth of nuclei indicated discontinuous AIN direct growth on on-axis 6H-SiC substrates. At the temperature in excess of 2100°C, the durability of the furnace fixture materials (crucibles, retorts, etc.) remains a critical problem. The thermal and chemical properties and performance of several refractory materials, including tantalum carbide, niobium carbide, tungsten, graphite, and hot-pressed boron nitride (HPBN), in inert gas, as well as under AIN crystal growth conditions were discussed. TaC and NbC are the most stable crucible materials in the crystal growth system. HPBN crucible is more suitable for AlN self-seeding growth, as crystals tend to nucleate in thin colorless platelets with low dislocation density. Finally, clear and colorless thin platelet Al

  10. Potential productivity benefits of float-zone versus Czochralski crystal growth

    Science.gov (United States)

    Abe, T.

    1985-01-01

    Efficient mass production of single-crystal silicon is necessary for the efficient silicon solar arrays needed in the coming decade. However, it is anticipated that there will be difficulty growing such volumes of crystals using conventional Czochralski (Cz) methods. While the productivity of single crystals might increase with a crystal diameter increase, there are two obstacles to the mass production of large diameter Czochralski crystals, the long production cycle due to slow growth rate and the high heat requirements of the furnaces. Also counterproductive would be the large resistivity gradient along the growth direction of the crystals due to impurity concentration. Comparison between Float zone (FZ) and Cz crystal growth on the basis of a crystal 150 mm in diameter is on an order of two to four times in favor of the FZ method. This advantage results from high growth rates and steady-state growth while maintaining a dislocation-free condition and impurity segregation.

  11. Effect of Co2+ doping on solubility, crystal growth and properties of ADP crystals

    Science.gov (United States)

    Ganesh, V.; Shkir, Mohd.; AlFaify, S.; Yahia, I. S.

    2016-09-01

    Bulk size crystal growth of ADP with different concentrations doping of cobalt (Co2+) has been done by low cost slow evaporation technique at ambient conditions. The solubility measurement was carried out on pure and doped crystals and found that the solubility is decreasing with doping concentrations. The presence of Co2+ ion in crystalline matrix of ADP has been confirmed by structural, vibrational and elemental analyses. Scanning electron microscopic study reveals that the doping has strong effect on the quality of the crystals. The optical absorbance and transmission confirms the enhancement of quality of ADP crystals due to Co2+ doping and so the optical band gap. Further the dislocation, photoluminescence, dielectric and mechanical studies confirms that the properties of grown crystals with Co2+ doping has been enriched and propose it as a better candidate for optoelectronic applications.

  12. Structures and growth mechanisms of poly-(3-hydroxybutyrate) (PHB) crystallized from solution and thin melt film

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The spherulitic structures and morphologies of poly-(3-hydroxybutyrate) (PHB) crystallized from a so- lution and a thin melt film were investigated in this study. The formation mechanisms of banded spherulites under different crystallization conditions are proposed. It was found that the formation of banded spherulites was caused by the rhythmic crystal growth of the spherulites and lamellar twisting growth for the polymer crystallization from a thin melt film and a solution, respectively.

  13. Conditioning biomass for microbial growth

    Science.gov (United States)

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  14. Conditioning biomass for microbial growth

    Energy Technology Data Exchange (ETDEWEB)

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  15. Crystal growth and physical properties of Ferro-pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Aswartham, Saicharan

    2012-11-08

    . Single crystals of KFe{sub 2}As{sub 2} were grown with two different fluxes, namely, FeAs-flux and KAs-flux. The superconducting transition is found to be at 3.8 K in both the crystals. The influence of doping with selected elements like Na, Rh, Co and Cr has been investigated systematically in KFe{sub 2}As{sub 2} single crystals. With Na-doping at the K-site, yield (K{sub 1-x}Na{sub x})Fe{sub 2}As{sub 2}; superconductivity is suppressed to lower temperatures. Substitution of Co and Cr at Fe site, yield K(Fe{sub 0.95}Co{sub 0.05}){sub 2}As{sub 2}, K(Fe{sub 0.95}Cr{sub 0.05}){sub 2}As{sub 2} superconductivity is rapidly killed. Single crystals of (Ba{sub 0.6}Eu{sub 0.4})(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} with x = 0, 0.05, 0.1, 0.15 and 0.2 were grown with solution growth technique using Fe-As flux and investigated with several physical measurements. The growth conditions are highly optimized to grow flux free large single crystals especially in case of BaFe{sub 2}As{sub 2} family. The high quality of the crystals were revealed by several physical properties, for e.g. single crystals of Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} are of the highest quality which was confirmed by the magnetic ac susceptibility which showed a very sharp superconducting transition.

  16. Controlling protein crystal growth rate by means of temperature

    Energy Technology Data Exchange (ETDEWEB)

    SantamarIa-Holek, I; Gadomski, A [Institute of Mathematics and Physics, University of Technology and Life Sciences, PL-85796 Bydgoszcz (Poland); RubI, J M, E-mail: isholek.fc@gmail.com, E-mail: agad@utp.edu.pl, E-mail: mrubi@ub.edu [Departament de Fisica Fonamental, University of Barcelona, Av. Diagonal 647, E-08028 Barcelona (Spain)

    2011-06-15

    We have proposed a model to analyze the growth kinetics of lysozyme crystals/aggregates under non-isothermal conditions. The model was formulated through an analysis of the entropy production of the growth process which was obtained by taking into account the explicit dependence of the free energy on the temperature. We found that the growth process is coupled with temperature variations, resulting in a novel Soret-type effect. We identified the surface entropy of the crystal/aggregate as a decisive ingredient controlling the behavior of the average growth rate as a function of temperature. The behavior of the Gibbs free energy as a function of temperature is also analyzed. The agreement between theory and experiments is very good in the range of temperatures considered.

  17. Controlling protein crystal growth rate by means of temperature.

    Science.gov (United States)

    Sanamaría-Holek, I; Gadomski, A; Rubí, J M

    2011-06-15

    We have proposed a model to analyze the growth kinetics of lysozyme crystals/aggregates under non-isothermal conditions. The model was formulated through an analysis of the entropy production of the growth process which was obtained by taking into account the explicit dependence of the free energy on the temperature. We found that the growth process is coupled with temperature variations, resulting in a novel Soret-type effect. We identified the surface entropy of the crystal/aggregate as a decisive ingredient controlling the behavior of the average growth rate as a function of temperature. The behavior of the Gibbs free energy as a function of temperature is also analyzed. The agreement between theory and experiments is very good in the range of temperatures considered.

  18. Flux growth of BPO 4 crystals

    Science.gov (United States)

    Li, Zhihua; Wu, Yicheng; Fu, Peizhen; Pan, Shilie; Chen, Chuangtian

    2004-10-01

    Single crystals of BPO4 with sizes up to 15×10×12 mm3 were grown by top-seeded solution growth method using Li2O-Li4P2O7 as fluxes. The components volatilized from the melt were characterized by the method of X-ray powder diffraction. The defects of grown crystals have also been investigated. The measured ultraviolet cutoff edge of BPO4 was about 130 nm. Its density was 2.82 g/cm3 determined using drainage method.

  19. Using Microfluidics to Decouple Nucleation and Growth of Protein Crystals.

    Science.gov (United States)

    Shim, Jung-Uk; Cristobal, Galder; Link, Darren R; Thorsen, Todd; Fraden, Seth

    2007-01-01

    A high throughput, low volume microfluidic device has been designed to decouple the physical processes of protein crystal nucleation and growth. This device, called the Phase Chip, is constructed out of poly(dimethylsiloxane) (PDMS) elastomer. One of the Phase Chip's innovations is to exploit surface tension forces to guide each drop to a storage chamber. We demonstrate that nanoliter water-in-oil drops of protein solutions can be rapidly stored in individual wells thereby allowing the screening of 1000 conditions while consuming a total of only 10 mug protein on a 20 cm(2) chip. Another significant advance over current microfluidic devices is that each well is in contact with a reservoir via a dialysis membrane through which only water and other low molecular weight organic solvents can pass, but not salt, polymer, or protein. This enables the concentration of all solutes in a solution to be reversibly, rapidly, and precisely varied in contrast to current methods, such as the free interface diffusion or sitting drop methods, which are irreversible. The Phase Chip operates by first optimizing conditions for nucleation by using dialysis to supersaturate the protein solution, which leads to nucleation of many small crystals. Next, conditions are optimized for crystal growth by using dialysis to reduce the protein and precipitant concentrations, which leads small crystals to dissolve while simultaneously causing only the largest ones to grow, ultimately resulting in the transformation of many small, unusable crystals into a few large ones.

  20. Crystallization and Growth of Colloidal Nanocrystals

    CERN Document Server

    Leite, Edson Roberto

    2012-01-01

    Since the size, shape, and microstructure of nanocrystalline materials strongly impact physical and chemical properties, the development of new synthetic routes to  nanocrystals with controlled composition and morphology is a key objective of the nanomaterials community. This objective is dependent on control of the nucleation and growth mechanisms that occur during the synthetic process, which in turn requires a fundamental understanding of both classical nucleation and growth and non-classical growth processes in nanostructured materials.  Recently, a novel growth process called Oriented Attachment (OA) was identified which appears to be a fundamental mechanism during the development of nanoscale  materials. OA is a special case of aggregation that provides an important route by which nanocrystals grow, defects are formed, and unique—often symmetry-defying—crystal morphologies can be produced. This growth mechanism involves reversible self-assembly of primary nanocrystals followed by reorientati...

  1. A preliminary review of organic materials single crystal growth by the Czochralski technique

    Science.gov (United States)

    Penn, B. G.; Shields, A. W.; Frazier, D. O.

    1988-01-01

    The growth of single crystals of organic compounds by the Czochralski method is reviewed. From the literature it is found that single crystals of benzil, a nonlinear optical material with a d sub 11 value of 11.2 + or - 1.5 x d sub 11 value of alpha quartz, has fewer dislocations than generally contained in Bridgman crystals. More perfect crystals were grown by repeated Czochralski growth. This consists of etching away the defect-containing portion of a Czochralski grown crystal and using it as a seed for further growth. Other compounds used to grow single crystals are benzophenone, 12-tricosanone (laurone), and salol. The physical properties, growth apparatus, and processing conditions presented in the literature are discussed. Moreover, some of the possible advantages of growing single crystals of organic compounds in microgravity to obtain more perfect crystals than on Earth are reviewed.

  2. Crystal Growth of Solid Solution HgCdTe Alloys

    Science.gov (United States)

    Lehoczky, Sandor L.

    1997-01-01

    The growth of homogenous crystals of HgCdTe alloys is complicated by the large separation between their liquidus and solidus temperatures. Hg(1-x)Cd(x)Te is representative of several alloys which have electrical and optical properties that can be compositionally tuned for a number of applications. Limitations imposed by gravity during growth and results from growth under reduced conditions are described. The importance of residual accelerations was demonstrated by dramatic differences in compositional distribution observed for different attitudes of the space shuttle that resulted in different steady acceleration components.

  3. Bridgman growth of bismuth tellurite crystals

    Indian Academy of Sciences (India)

    Anhua Wu; Jiayue Xu; Guoxing Qian; Baoliang Lu; Zengwei Ge; Linyao Tang; Xianjun Wu

    2005-10-01

    The photorefractive crystal, Bi2TeO5, was grown by the modified Bridgman method for the first time. High purity Bi2O3 and TeO2 were used as starting materials and were mixed thoroughly with molar ratio of Bi2O3/TeO2 = 1 : 1. Platinum crucible was fabricated with a seed well of 10 mm in diameter and several folds were pressed so that the spontaneous nuclei could be eliminated through competition. The crucible was sealed during the growth so that the evaporation of TeO2 was controlled effectively. By optimizing growth parameters, transparent and crack-free Bi2TeO5 crystal up to 25 mm in diameter and 40 mm in length was grown successfully.

  4. Growth of piezoelectric crystals by Czochralski method

    OpenAIRE

    Cochet-Muchy, D.

    1994-01-01

    The Czochralski method is one of the most widely used industrial technique to grow single-crystals, since it applies to a very large range of compounds, such as semiconductors, oxides, fluorides, etc... Many exhibit piezoelectric properties and some of them find applications in Surface-Acoustic-Waves or Bulk-Acoustic-Waves devices. That explains the large amount of work made on the development of the corresponding growth processes and the high levels of production achieved in the world today....

  5. Sealed silica pressure ampoules for crystal growth

    Science.gov (United States)

    Holland, L. R.

    1984-01-01

    The properties of vitreous silica and the mechanics of thick walled pressure vessels are reviewed with regard to the construction of sealed silica crucibles such as are used in the growth of mercury-cadmium telluride crystals. Data from destructive rupture tests are reported, failure modes discussed, and recommendations for design given. Ordinary commercial clear vitreous silica from flame fused quartz can withstand a surface stress of 20 MPa or more in this application.

  6. Studying Crystal Growth With the Peltier Effect

    Science.gov (United States)

    Larsen, David J., Jr.; Dressler, B.; Silberstein, R. P.; Poit, W. J.

    1986-01-01

    Peltier interface demarcation (PID) shown useful as aid in studying heat and mass transfer during growth of crystals from molten material. In PID, two dissimilar "metals" solid and liquid phases of same material. Current pulse passed through unidirectionally solidifying sample to create rapid Peltier thermal disturbance at liquid/solid interface. Disturbance, measured by thermocouple stationed along path of solidification at or near interface, provides information about position and shape of interface.

  7. Control of nucleation and growth in protein crystal growth

    Science.gov (United States)

    Rosenberger, Franz; Meehan, Edward J.

    1988-01-01

    The potential advantages of nucleation and growth control through temperature, rather than the addition of precipitants or removal of solvent, are discussed. A simple light scattering arrangement for the characterization of nucleation and growth conditions in solutions is described. The temperature dependence of the solubility of low ionic strength lysozyme solutions is applied in preliminary nucleation and growth experiments.

  8. Physical modelling of Czochralski crystal growth in horizontal magnetic field

    Science.gov (United States)

    Grants, Ilmārs; Pal, Josef; Gerbeth, Gunter

    2017-07-01

    This study addresses experimentally the heat transfer, the temperature azimuthal non-uniformity and the onset of oscillations in a low temperature physical model of a medium-sized Czochralski crystal growth process with a strong horizontal magnetic field (HMF). It is observed that under certain conditions the integral heat flux may decrease with increasing magnetic field strength at the same time as the flow velocity increases. The azimuthal non-uniformity of the temperature field in the melt near the crystal model rim is only little influenced by its rotation rate outside of a narrow range where the centrifugal force balances the buoyant one. The flow oscillation onset has been observed for two values of the HMF strength. Conditions of this onset are little influenced by the crystal rotation. The critical temperature difference of the oscillation onset considerably exceeds that of the Rayleigh-Bénard (RB) cell in a strong HMF.

  9. Solidification and crystal growth of solid solution semiconducting alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lehoczky, S.L.; Szofran, F.R.

    1984-10-01

    Problems associated with the solidification and crytal growth of solid-solution semiconducting alloy crystals in a terrestrial environment are described. A detailed description is given of the results for the growth of mercury cadmium telluride (HgCdTe) alloy crystals by directional solidification, because of their considerable technological importance. A series of HgCdTe alloy crystals are grown from pseudobinary melts by a vertical Bridgman method using a wide range of growth rates and thermal conditions. Precision measurements are performed to establish compositional profiles for the crystals. The compositional variations are related to compositional variations in the melts that can result from two-dimensional diffusion or density gradient driven flow effects ahead of the growth interface. These effects are discussed in terms of the alloy phase equilibrium properties, the recent high temperature thermophysical data for the alloys and the highly unusual heat transfer characteristics of the alloy/ampule/furnace system that may readily lead to double diffusive convective flows in a gravitational environment.

  10. Solidification and crystal growth of solid solution semiconducting alloys

    Science.gov (United States)

    Lehoczky, S. L.; Szofran, F. R.

    1984-01-01

    Problems associated with the solidification and crytal growth of solid-solution semiconducting alloy crystals in a terrestrial environment are described. A detailed description is given of the results for the growth of mercury cadmium telluride (HgCdTe) alloy crystals by directional solidification, because of their considerable technological importance. A series of HgCdTe alloy crystals are grown from pseudobinary melts by a vertical Bridgman method using a wide range of growth rates and thermal conditions. Precision measurements are performed to establish compositional profiles for the crystals. The compositional variations are related to compositional variations in the melts that can result from two-dimensional diffusion or density gradient driven flow effects ahead of the growth interface. These effects are discussed in terms of the alloy phase equilibrium properties, the recent high temperature thermophysical data for the alloys and the highly unusual heat transfer characteristics of the alloy/ampule/furnace system that may readily lead to double diffusive convective flows in a gravitational environment.

  11. Growth of Solid Solution Single Crystals

    Science.gov (United States)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.

    2001-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and solidus has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; with 80.0 mole percent of HgTe and 84.8 mole percent of HgTe respectively, the remainder being cadmium telluride. Such alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed correlating composition variations to measured residual acceleration. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system, analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. The results indicate that the sample did accomplish the desired objectives.

  12. Crystal growth in a three-phase system: diffusion and liquid-liquid phase separation in lysozyme crystal growth.

    Science.gov (United States)

    Heijna, M C R; van Enckevort, W J P; Vlieg, E

    2007-07-01

    In the phase diagram of the protein hen egg-white lysozyme, a region is present in which the lysozyme solution demixes and forms two liquid phases. In situ observations by optical microscopy show that the dense liquid droplets dissolve when crystals grow in this system. During this process the demixed liquid region retracts from the crystal surface. The spatial distribution of the dense phase droplets present special boundary conditions for Fick's second law for diffusion. In combination with the cylindrical symmetry provided by the kinetically roughened crystals, this system allows for a full numerical analysis. Using experimental data for setting the boundary conditions, a quasi-steady-state solution for the time-dependent concentration profile was shown to be valid. Comparison of kinetically rough growth in a phase separated system and in a nonseparated system shows that the growth kinetics for a three-phase system differs from a two-phase system, in that crystals grow more slowly but the duration of growth is prolonged.

  13. Growth of the (001 face of borax crystals

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available he growth rates of borax crystals from aqueous solutions in the (001 direction at various relative supersaturations were measured using in situ cell optical microscopy method. The result shows that the growth mechanism of the (001 face of borax crystal at temperature of 20 °C is spiral growth mechanism.   Keywords: Growth mechanism, borax.

  14. Growth of the (001) face of borax crystals

    OpenAIRE

    Suharso, Suharso

    2010-01-01

    he growth rates of borax crystals from aqueous solutions in the (001) direction at various relative supersaturations were measured using in situ cell optical microscopy method. The result shows that the growth mechanism of the (001) face of borax crystal at temperature of 20 °C is spiral growth mechanism.   Keywords: Growth mechanism, borax.

  15. Crystal growth of new charge-transfer salts based on π-conjugated donor molecules

    Energy Technology Data Exchange (ETDEWEB)

    Morherr, Antonia, E-mail: morherr@stud.uni-frankfurt.de [Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany); Witt, Sebastian [Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany); Chernenkaya, Alisa [Graduate School Materials Science in Mainz, 55128 Mainz (Germany); Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Bäcker, Jan-Peter [Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany); Schönhense, Gerd [Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Bolte, Michael [Institut für anorganische Chemie, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany); Krellner, Cornelius [Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany)

    2016-09-01

    New charge transfer crystals of π-conjugated, aromatic molecules (phenanthrene and picene) as donors were obtained by physical vapor transport. The melting behavior, optimization of crystal growth and the crystal structure are reported for charge transfer salts with (fluorinated) tetracyanoquinodimethane (TCNQ-F{sub x}, x=0, 2, 4), which was used as acceptor material. The crystal structures were determined by single-crystal X-ray diffraction. Growth conditions for different vapor pressures in closed ampules were applied and the effect of these starting conditions for crystal size and quality is reported. The process of charge transfer was investigated by geometrical analysis of the crystal structure and by infrared spectroscopy on single crystals. With these three different acceptor strengths and the two sets of donor materials, it is possible to investigate the distribution of the charge transfer systematically. This helps to understand the charge transfer process in this class of materials with π-conjugated donor molecules.

  16. Crystal growth of new charge-transfer salts based on π-conjugated donor molecules

    Science.gov (United States)

    Morherr, Antonia; Witt, Sebastian; Chernenkaya, Alisa; Bäcker, Jan-Peter; Schönhense, Gerd; Bolte, Michael; Krellner, Cornelius

    2016-09-01

    New charge transfer crystals of π-conjugated, aromatic molecules (phenanthrene and picene) as donors were obtained by physical vapor transport. The melting behavior, optimization of crystal growth and the crystal structure are reported for charge transfer salts with (fluorinated) tetracyanoquinodimethane (TCNQ-Fx, x=0, 2, 4), which was used as acceptor material. The crystal structures were determined by single-crystal X-ray diffraction. Growth conditions for different vapor pressures in closed ampules were applied and the effect of these starting conditions for crystal size and quality is reported. The process of charge transfer was investigated by geometrical analysis of the crystal structure and by infrared spectroscopy on single crystals. With these three different acceptor strengths and the two sets of donor materials, it is possible to investigate the distribution of the charge transfer systematically. This helps to understand the charge transfer process in this class of materials with π-conjugated donor molecules.

  17. Crystal Growth of new charge-transfer salts based on $\\pi$-conjugated molecules

    CERN Document Server

    Morherr, Antonia; Chernenkaya, Alisa; Bäcker, Jan-Peter; Schönhense, Gerd; Bolte, Michael; Krellner, Cornelius

    2016-01-01

    New charge transfer crystals of $\\pi$-conjugated, aromatic molecules (phenanthrene and picene) as donors were obtained by physical vapor transport. The melting behavior, optimization of crystal growth and the crystal structure is reported for charge transfer salts with (fluorinated) tetracyanoquinodimethane (TCNQ-F$_x$, x=0, 2, 4), which was used as acceptor material. The crystal structures were determined by single-crystal X-ray diffraction. Growth conditions for different vapor pressures in closed ampules were applied and the effect of these starting conditions for crystal size and quality is reported. The process of charge transfer was investigated by geometrical analysis of the crystal structure and by infrared spectroscopy on single crystals. With these three different acceptor strengths and the two sets of donor materials, it is possible to investigate the distribution of the charge transfer systematically. This helps to understand the charge transfer process in this class of materials with $\\pi$-conjug...

  18. Microstructure and crystal growth direction of Al-Mg alloy

    Directory of Open Access Journals (Sweden)

    Ti-jun Chen

    2015-03-01

    Full Text Available The microstructures and crystal growth directions of permanent mould casting and directionally solidified Al-Mg alloys with different Mg contents have been investigated. The results indicate that the effect of Mg content on microstructure is basically same for the alloys prepared by these two methods. The primary grains change from cellular crystals to developed columnar dendrites, and then to equiaxed dendrites as the Mg content is increased. Simultaneously, both the cellular or columnar grain region and the primary trunk spacing decrease. All of these changes are mainly attributed to the constitutional supercooling resulting from Mg element. Comparatively, the cellular or columnar crystals of the directionally solidified alloys are straighter and more parallel than those of the permanent mould casting alloys. These have straight or wavy grain boundaries, one of the most important microstructure characteristics of feathery grains. However, the transverse microstructure and growth direction reveal that they do not belong to feathery grains. The Mg seemingly can affect the crystal growth direction, but does not result in the formation of feathery grains under the conditions employed in the study.

  19. Vapor Growth of Alloy-Type Semiconductor Crystals

    Science.gov (United States)

    Wiedemeier, H.

    1985-01-01

    The present effort is part of a continuing research program directed towards the investigation of basic vapor transport phenomena and of crystal growth properties of electronic materials. The primary purpose of ground-based studies is the development and definition of optimum experimental parameters for flight experiments. The ground-based effort includes the investigation of gravity-driven convection effects on mass transport rates and on crystal morphology for different orientations of the density gradient with respect to the gravity vector, and as a function of pressure and of temperature. In addition to the experimental tasks, theoretical efforts involve the quantitative thermodynamic analysis of the systems under investigation, the computation of fluid dynamic parameters, and the consideration of other possible effects on fluid flow under vertical, stabilizing and microgravity conditions. The specific experiments to be performed in a microgravity environment include the investigation of vapor transport and crystal growth phenomena of the GeSe-Xenon system and of the mass flux and growth of bulk and layer-type crystals of Hg sub (1-x) Cd sub x Te using HgI as a transport agent.

  20. The Durability of Various Crucible Materials for Aluminum Nitride Crystal growth by Sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Liu,B.; Edgar, J.; Gu, Z.; Zhuang, D.; Raghothamachar, B.; Dudley, M.; Sarua, A.; Kuball, M.; Meyer, H.

    2004-01-01

    Producing high purity aluminum nitride crystals by the sublimation-recondensation technique is difficult due to the inherently reactive crystal growth environment, normally at temperature in excess of 2100 C. The durability of the furnace fixture materials (crucibles, retorts, etc.) at such a high temperature remains a critical problem. In the present study, the suitability of several refractory materials for AlN crystal growth is investigated, including tantalum carbide, niobium carbide, tungsten, graphite, and hot-pressed boron nitride. The thermal and chemical properties and performance of these materials in inert gas, as well as under AlN crystal growth conditions are discussed. TaC and NbC are the most stable crucible materials with very low elemental vapor pressures in the crystal growth system. Compared with refractory material coated graphite crucibles, HPBN crucible is better for AlN self-seeded growth, as crystals tend to nucleate in thin colorless platelets with low dislocation density.

  1. Growth of ZnO Single Crystal by Chemical Vapor Transport Method

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    ZnO crystals were grown by CVT method in closed quartz tube under seeded condition. Carbon was used as a transport agent to enhance the chemical transport of ZnO in the growth process. ZnO single crystals were grown by using GaN/sapphire and GaN/Si wafer as seeds. The property and crystal quality of the ZnO single crystals was studied by photoluminescence spectroscopy and X-ray diffraction technique.

  2. The impact of space research on semiconductor crystal growth technology

    Science.gov (United States)

    Witt, A. F.

    1983-01-01

    Crystal growth experiments in reduced gravity environment and related ground-based research have contributed significantly to the establishment of a scientific basis for semiconductor growth from the melt. NASA-sponsored research has been instrumental in the introduction of heat pipes for heat and mass transfer control in crystal growth and in the development of magnetic field induced melt stabilization, approaches primarily responsible for recent advances in crystal growth technology.

  3. In-situ detection of growth striations by crystallization electromotive force measurement during Czochralski crystal growth

    Science.gov (United States)

    Zhu, Yunzhong; Ma, Decai; Long, Siwei; Tang, Feng; Lin, Shaopeng; Wang, Biao

    2017-10-01

    Growth striations, as macrodefects of crystalline materials, are mainly caused by convection and temperature fluctuations in growth interface. For decades, striations have been widely regarded as an inherent problem. Even in the well-developed Czochralski method, the striation formation process is difficult to inspect in situ. In view of this long-standing issue, after systematically studying the temperature, weight, and output power during crystal growth and numerically modeling the growth process, we found that the regularity of the growth interface electromotive force (GEMF) is related to the distribution of striations. Furthermore, the GEMF quantifies interface fluctuations (711.2 s, 16.6 μm) and thermal hysteresis (107 s), presenting finer details than those provided by a thermocouple and a load cell. In this paper, GEMF is found to be an outstanding choice for monitoring the crystal growth status in real time. As an additional feedback, a new automatic control method could be developed for reducing growth striations and promoting crystal quality.

  4. Physicochemical principles of high-temperature crystallization and single crystal growth methods

    Science.gov (United States)

    Bagdasarov, Kh. S.

    The mechanisms of crystal growth are reviewed, with attention given to the physicochemical reactions taking place in the melt near the phase boundary; phenomena determining physical and chemical kinetics directly at the growth front; solid-phase processes occurring within the crystal. Methods for growing refractory single crystals are discussed with particular reference to the Verneuil method, zone melting, Czhochralskii growth, horizontal directional solidification, and the Stockbarger method. Methods for growing crystals of complex geometrical shapes are also discussed.

  5. Industrial growth of yttria-stabilized cubic zirconia crystals by skull melting process

    Institute of Scientific and Technical Information of China (English)

    徐家跃; 雷秀云; 蒋新; 何庆波; 房永征; 张道标; 何雪梅

    2009-01-01

    We reported the development of a Ф100 cm growth apparatus for skull melting growth of yttria-stabilized cubic zirconia(YSZ) crystals and more than 1000 kg crystals have been grown in the furnace each time.The growth conditions were optimized and the structure of the as-grown crystals was characterized by X-ray diffraction.The transmittance of 15 mol.% yttria-stabilized cubic zirconia crystal was nearly 80% in the range of 400-1600 nm.The refractive indices were measured and fitted the Sellmeier equation whi...

  6. Analysis of the carbon source for diamond crystal growth

    Institute of Scientific and Technical Information of China (English)

    LI Li; XU Bin; LI MuSen

    2008-01-01

    The lattice constants of diamond and graphite at high pressure and high temperature (HPHT) were calculated on the basis of linear expansion coefficient and elastic constant. According to the empirical electron theory of solids and molecules (EET), the valence electron structures (VESs) of diamond, graphite crystal and their common planes were calculated. The relationship between diamond and graphite structure was analyzed based on the boundary condition of the improved Thomas-Fermi-Dirac theory by Cheng (TFDC). It was found that the electron densities of common planes in graphite were not continuous with those of planes in diamond at the first order of approximation. The results show that during the course of diamond single crystal growth at HPHT with metal catalyst, the carbon sources forming diamond structure do not come from the graphite structure directly. The diamond growth mechanism was discussed from the viewpoint of valence electron structure.

  7. Growth and evaluation of lanthanoids orthoniobates single crystals processed by a miniature pedestal growth technique

    Energy Technology Data Exchange (ETDEWEB)

    Octaviano, E.S. [Universidade Camilo Castelo Branco, Descalvado, SP (Brazil); Reyes Ardila, D. [Departmento de Fisica, Universidad de Santiago de Chile (Chile); Andrade, L.H.C.; Siu Li, M.; Andreeta, J.P. [Instituto de Fisica de Sao Carlos, Departamento de Fisica e Ciencia dos Materiais, Universidade de Sao Paulo, Sao Carlos, SP (Brazil)

    2004-10-01

    Optimized conditions for the growth of lanthanoids orthoniobates (LnNbO{sub 4}, Ln=lanthanide elements) single crystal minirods by a floating zone technique were investigated. Adequate atmospheres and pulling to feeding speed ratios to grow these materials were determined. Emphasis is given to the study of LaNbO{sub 4} because of their more favorable growth conditions and crystalline quality. This material can be efficiently doped with rare earth elements such as erbium. It grows with high crystallinity and its preferential growth direction is [110]. A preliminary evaluation of optical properties of Er{sup 3+}-doped LaNbO{sub 4} single crystal under the Judd-Ofelt formalism indicates spectral parameters {omega}{sub t} close and even larger than for Er{sup 3+} ions in YVO{sub 4}. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Advances in the understanding of crystal growth mechanisms

    CERN Document Server

    Nishinaga, T; Harada, J; Sasaki, A; Takei, H

    1997-01-01

    This book contains the results of a research project entitled Crystal Growth Mechanisms on an Atomic Scale, which was carried out for 3 years by some 72 reseachers. Until recently in Japan, only the technological aspects of crystal growth have been emphasized and attention was paid only to its importance in industry. However the scientific aspects also need to be considered so that the technology of crystal growth can be developed even further. This project therefore aimed at understanding crystal growth and the emphasis was on finding growth mechanisms on an atomic scale.

  9. Kinetics of faceting of crystals in growth, etching, and equilibrium

    Science.gov (United States)

    Vlachos, D. G.; Schmidt, L. D.; Aris, R.

    1993-03-01

    The faceting of crystals in equilibrium with the gas phase and also during crystal growth and etching conditions is studied using the Monte Carlo method. The dynamics of the transformation of unstable crystallographic orientations into hill and valley structures and the spatial patterns that develop are examined as functions of surface temperature, crystallographic orientation, and strength of interatomic potential for two transport processes: adsorption-desorption and surface diffusion. The results are compared with the continuum theory for facet formation. Thermodynamically unstable orientations break into hill and valley structures, and faceting exhibits three time regimes: disordering, facet nucleation, and coarsening of small facets to large facets. Faceting is accelerated as temperature increases, but thermal roughening can occur at high temperatures. Surface diffusion is the dominant mechanism at short times and small facets but adsorption-desorption becomes important at long times and large facets. Growth and etching promote faceting for conditions close to equilibrium but induce kinetic roughening for conditions far from equilibrium. Simultaneous irreversible growth and etching conditions with fast surface diffusion result in enhanced faceting.

  10. Single crystal growth and anisotropic crystal-fluid interface tension in soft colloidal systems

    NARCIS (Netherlands)

    Nguyen, V.D.; Hu, Z.; Schall, P.

    2011-01-01

    We measure the anisotropy of the crystal-fluid interfacial free energy in soft colloidal systems. A temperature gradient is used to direct crystal nucleation and control the growth of large single crystals in order to achieve well-equilibrated crystal-fluid interfaces. Confocal microscopy is used to

  11. Method for the growth of large low-defect single crystals

    Science.gov (United States)

    Powell, J. Anthony (Inventor); Neudeck, Philip G. (Inventor); Trunek, Andrew J. (Inventor); Spry, David J. (Inventor)

    2008-01-01

    A method and the benefits resulting from the product thereof are disclosed for the growth of large, low-defect single-crystals of tetrahedrally-bonded crystal materials. The process utilizes a uniquely designed crystal shape whereby the direction of rapid growth is parallel to a preferred crystal direction. By establishing several regions of growth, a large single crystal that is largely defect-free can be grown at high growth rates. This process is particularly suitable for producing products for wide-bandgap semiconductors, such as SiC, GaN, AlN, and diamond. Large low-defect single crystals of these semiconductors enable greatly enhanced performance and reliability for applications involving high power, high voltage, and/or high temperature operating conditions.

  12. On geological interpretations of crystal size distributions: Constant vs. proportionate growth

    Science.gov (United States)

    Eberl, D.D.; Kile, D.E.; Drits, V.A.

    2002-01-01

    Geological interpretations of crystal size distributions (CSDs) depend on understanding the crystal growth laws that generated the distributions. Most descriptions of crystal growth, including a population-balance modeling equation that is widely used in petrology, assume that crystal growth rates at any particular time are identical for all crystals, and, therefore, independent of crystal size. This type of growth under constant conditions can be modeled by adding a constant length to the diameter of each crystal for each time step. This growth equation is unlikely to be correct for most mineral systems because it neither generates nor maintains the shapes of lognormal CSDs, which are among the most common types of CSDs observed in rocks. In an alternative approach, size-dependent (proportionate) growth is modeled approximately by multiplying the size of each crystal by a factor, an operation that maintains CSD shape and variance, and which is in accord with calcite growth experiments. The latter growth law can be obtained during supply controlled growth using a modified version of the Law of Proportionate Effect (LPE), an equation that simulates the reaction path followed by a CSD shape as mean size increases.

  13. CRYSTAL GROWTH OF RARE EARTH COMPOUNDS IN CLOSED SYSTEM

    OpenAIRE

    1991-01-01

    Remarkable improvements have been made on the crystal growth of rare earth pnictides and chalchogenides by the development of new growth technique and the construction of several new equipments for the crystal growth such as electron beam welding system of tungsten crucible provided with large glove box and vacuum HF furnace. This system has really worked on obtaining excellent quality of single crystals and made easier to explore unknown materials of rare earth compounds. Interesting and att...

  14. Growth of Hydroxyapatite Crystal in the Presence of Origanic Film

    Institute of Scientific and Technical Information of China (English)

    Yong LIU; Suping HUANG; Xiaohong DAN; Kechao ZHOU

    2004-01-01

    The growth of hydroxyapatite (Hap) crystal in the presence of hexadecylamine was investigated. Due to its high polarity and high charge density, the organic film could increase the ion supersaturation on its surface. Therefore the growth of pure Hap crystals was accelerated. Moreover, the positive headgroups of the organic film could act as recognized nucleation sites and orient the growth of Hap crystals along thedirection.

  15. Special phase transformation and crystal growth pathways observed in nanoparticles†

    Directory of Open Access Journals (Sweden)

    Finnegan Michael P

    2003-11-01

    Full Text Available Phase transformation and crystal growth in nanoparticles may happen via mechanisms distinct from those in bulk materials. We combine experimental studies of as-synthesized and hydrothermally coarsened titania (TiO2 and zinc sulfide (ZnS with thermodynamic analysis, kinetic modeling and molecular dynamics (MD simulations. The samples were characterized by transmission electron microscopy, X-ray diffraction, synchrotron X-ray absorption and scattering, and UV-vis spectroscopy. At low temperatures, phase transformation in titania nanoparticles occurs predominantly via interface nucleation at particle–particle contacts. Coarsening and crystal growth of titania nanoparticles can be described using the Smoluchowski equation. Oriented attachment-based crystal growth was common in both hydrothermal solutions and under dry conditions. MD simulations predict large structural perturbations within very fine particles, and are consistent with experimental results showing that ligand binding and change in aggregation state can cause phase transformation without particle coarsening. Such phenomena affect surface reactivity, thus may have important roles in geochemical cycling.

  16. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth

    Science.gov (United States)

    Foster, Jonathan A.; Piepenbrock, Marc-Oliver M.; Lloyd, Gareth O.; Clarke, Nigel; Howard, Judith A. K.; Steed, Jonathan W.

    2010-12-01

    We describe the use of low-molecular-weight supramolecular gels as media for the growth of molecular crystals. Growth of a range of crystals of organic compounds, including pharmaceuticals, was achieved in bis(urea) gels. Low-molecular-weight supramolecular gelators allow access to an unlimited range of solvent systems, in contrast to conventional aqueous gels such as gelatin and agarose. A detailed study of carbamazepine crystal growth in four different bis(urea) gelators, including a metallogelator, is reported. The crystallization of a range of other drug substances, namely sparfloxacin, piroxicam, theophylline, caffeine, ibuprofen, acetaminophen (paracetamol), sulindac and indomethacin, was also achieved in supramolecular gel media without co-crystal formation. In many cases, crystals can be conveniently recovered from the gels by using supramolecular anion-triggered gel dissolution; however, crystals of substances that themselves bind to anions are dissolved by them. Overall, supramolecular gel-phase crystallization offers an extremely versatile new tool in pharmaceutical polymorph screening.

  17. Bonding Energy and Growth Habit of Lithium Niobate Single Crystals

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    On the basis of crystallographic structure of lithium niobate (LN), the bonding energy was quantitatively calculated by the bond valence sum model, which was employed to investigate the crystal growth. A possible relationship between the crystal growth habit and chemical bonding energy of LN crystals are found. It is found that the higher the bond energy, the slower the growth rate, and the more important the plane. The analytical results indicate that (012) plane is the most influential face for the LN crystal growth, which consists well with the standard card (JCPDS Card: 20-0631) and our previous experimental observation. The current work shows that the chemical bond analysis of LN crystals allows us to predict its growth habit and thus to obtain the expected morphology during the spontaneous growth.

  18. Crystal growth in fluid flow: Nonlinear response effects

    Science.gov (United States)

    Peng, H. L.; Herlach, D. M.; Voigtmann, Th.

    2017-08-01

    We investigate crystal-growth kinetics in the presence of strong shear flow in the liquid, using molecular-dynamics simulations of a binary-alloy model. Close to the equilibrium melting point, shear flow always suppresses the growth of the crystal-liquid interface. For lower temperatures, we find that the growth velocity of the crystal depends nonmonotonically on the shear rate. Slow enough flow enhances the crystal growth, due to an increased particle mobility in the liquid. Stronger flow causes a growth regime that is nearly temperature-independent, in striking contrast to what one expects from the thermodynamic and equilibrium kinetic properties of the system, which both depend strongly on temperature. We rationalize these effects of flow on crystal growth as resulting from the nonlinear response of the fluid to strong shearing forces.

  19. Nucleation and crystal growth in laser patterned lines in glasses

    Directory of Open Access Journals (Sweden)

    Takayuki Komatsu

    2016-07-01

    Full Text Available Laser-induced crystallization is a new method for the design and control of the crystallization of glasses and opens a new door in the study of nucleation and crystal growth in glasses. Nonlinear optical Sm-doped -BaB2O4 (-BBO crystal lines were patterned by continuous wave Yb:YVO4 fiber laser (wavelength 1080 nm in 8Sm2O3-42BaO-50B2O3 glass as an example, and nucleation and crystal growth behaviors in the laser-patterned bending and crossing lines were examined. It was confirmed that the growth of c-axis oriented -BBO crystals follows along the laser scanning direction even if laser scanning direction changes. The model of self-organized homo-epitaxial crystal growth was demonstrated for the orientation of -BBO crystals at the crossing point of two lines, in which the first crystal line at the crossing point acts as nucleation site for the second crystal line. This study proposes a new crystal growth technology.

  20. Reinvestigation of growth of 'L-valine zinc sulphate' crystal.

    Science.gov (United States)

    Srinivasan, Bikshandarkoil R; Jyai, Rita N

    2014-01-01

    A reinvestigation of the growth of l-valine zinc sulphate crystal is reported. The slow evaporation of an aqueous solution containing l-valine and zinc sulphate heptahydrate results in the fractional crystallization of l-valine and not the organic inorganic hybrid nonlinear optical l-valine zinc sulphate crystal, as reported by Puhal Raj and Ramachandra Raja (2012).

  1. On the origin of size-dependent and size-independent crystal growth: Influence of advection and diffusion

    Science.gov (United States)

    Kile, D.E.; Eberl, D.D.

    2003-01-01

    Crystal growth experiments were conducted using potassium alum and calcite crystals in aqueous solution under both non-stirred and stirred conditions to elucidate the mechanism for size-dependent (proportionate) and size-independent (constant) crystal growth. Growth by these two laws can be distinguished from each other because the relative size difference among crystals is maintained during proportionate growth, leading to a constant crystal size variance (??2) for a crystal size distribution (CSD) as the mean size increases. The absolute size difference among crystals is maintained during constant growth, resulting in a decrease in size variance. Results of these experiments show that for centimeter-sized alum crystals, proportionate growth occurs in stirred systems, whereas constant growth occurs in non-stirred systems. Accordingly, the mechanism for proportionate growth is hypothesized to be related to the supply of reactants to the crystal surface by advection, whereas constant growth is related to supply by diffusion. Paradoxically, micrometer-sized calcite crystals showed proportionate growth both in stirred and in non-stirred systems. Such growth presumably results from the effects of convection and Brownian motion, which promote an advective environment and hence proportionate growth for minute crystals in non-stirred systems, thereby indicating the importance of solution velocity relative to crystal size. Calcite crystals grown in gels, where fluid motion was minimized, showed evidence for constant, diffusion-controlled growth. Additional investigations of CSDs of naturally occurring crystals indicate that proportionate growth is by far the most common growth law, thereby suggesting that advection, rather than diffusion, is the dominant process for supplying reactants to crystal surfaces.

  2. Crystal growth mechanisms in miarolitic cavities in the Lake George ring complex and vicinity, Colorado

    Science.gov (United States)

    Kile, D.E.; Eberl, D.D.

    1999-01-01

    The Crystal Peak area of the Pikes Peak batholith, near Lake George in central Colorado, is world-renowned for its crystals of amazonite (the blue-green variety of microcline) and smoky quartz. Such crystals, collected from individual miarolitic pegmatites, have a remakably small variation in crystal size within each pegmatite, and the shapes of plots of their crystal size distributions (CSDs) are invariably lognormal or close to lognormal in all cases. These observations are explained by a crystal growth mechanism that was governed initially by surface-controlled kinetics, during which crystals tended to grow larger in proportion to their size, thereby establishing lognormal CSDs. Surface-controlled growth was followed by longer periods of supply controlled growth, during which growth rate was predominantly size-independent, consequently preserving the lognormal shapes of the CSDs and the small size variation. The change from surface- to supply controlled growth kinetics may have resulted from an increasing demand for nutrients that exceeded diffusion limitations of the system. The proposed model for crystal growth in this locality appears to be common in the geologic record, and can be used with other information, such as isotopic data, to deduce physico-chemical conditions during crystal formation.

  3. Ground based experiments on the growth and characterization of L-Arginine Phosphate (LAP) crystals

    Science.gov (United States)

    Rao, S. M.; Cao, C.; Batra, A. K.; Lal, R. B.; Mookherji, T. K.

    1991-01-01

    L-Arginine Phosphate (LAP) is a new nonlinear optical material with higher efficiency for harmonic generation compared to KDP. Crystals of LAP were grown in the laboratory from supersaturated solutions by temperature lowering technique. Investigations revealed the presence of large dislocation densities inside the crystals which are observed to produce refractive index changes causing damage at high laser powers. This is a result of the convection during crystal growth from supersaturated solutions. It is proposed to grow these crystals in a diffusion controlled growth condition under microgravity environment and compare the crystals grown in space with those grown on ground. Physical properties of the solutions needed for modelling of crystal growth are also presented.

  4. Simulation of Single Crystal Growth: Heat and Mass Transfer

    CERN Document Server

    Zhmakin, A I

    2015-01-01

    The heat transfer (conductive, convective, radiative) and the related problems (the unknown phase boundary fluid/crystal, the assessment of the quality of the grown crystals) encountered in the melt and vapour growth of single crystal as well as the corresponding macroscopic models are reviewed. The importance of the adequate description of the optical crystal properties (semitransparency, absorption, scattering, refraction, diffuse and specular reflecting surfaces) and their effect on the heat transfer is stressed. The problems of the code verification and validation are discussed; differences between the crystal growth simulation codes intended for the research and for the industrial applications are indicated.

  5. On the growth of calcium tartrate tetrahydrate single crystals

    Indian Academy of Sciences (India)

    X Sahaya Shajan; C Mahadevan

    2004-08-01

    Calcium tartrate single crystals were grown using silica gel as the growth medium. Calcium formate mixed with formic acid was taken as the supernatant solution. It was observed that the nucleation density was reduced and the size of the crystals was improved to a large extent compared to the conventional way of growing calcium tartrate crystals with calcium chloride. The role played by formate–formic acid on the growth of crystals is discussed. The grown crystals were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction analysis (XRD), microhardness measurement, Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG) and differential thermal analysis (DTA). The results obtained are compared with the previous work.

  6. Nucleation and crystal growth in laser patterned lines in glasses

    OpenAIRE

    Takayuki Komatsu; Tsuyoshi Honma

    2016-01-01

    Laser-induced crystallization is a new method for the design and control of the crystallization of glasses and opens a new door in the study of nucleation and crystal growth in glasses. Nonlinear optical Sm-doped -BaB2O4 (-BBO) crystal lines were patterned by continuous wave Yb:YVO4 fiber laser (wavelength 1080 nm) in 8Sm2O3-42BaO-50B2O3 glass as an example, and nucleation and crystal growth behaviors in the laser-patterned bending and crossing lines were examined. It was confirmed that the...

  7. Growth of bulk gadolinium pyrosilicate single crystals for scintillators

    Science.gov (United States)

    Gerasymov, I.; Sidletskiy, O.; Neicheva, S.; Grinyov, B.; Baumer, V.; Galenin, E.; Katrunov, K.; Tkachenko, S.; Voloshina, O.; Zhukov, A.

    2011-03-01

    Ce, Pr, and La-doped gadolinium pyrosilicate Gd2Si2O7 (GPS) single crystals were grown by the Czochralski and Top Seeded Solution Growth (TSSG) techniques for the first time. Formation conditions of different pyrosilicate phases were determined. X-ray luminescence integral intensity of Ce-doped GPS is about one order of magnitude higher in comparison with gadolinium oxyorthosilicate Gd2SiO5:Ce (GSO:Ce). All samples demonstrate temperature stability of luminescence yield up to 400 K.

  8. Fluid flow and solute segregation in EFG crystal growth process

    Science.gov (United States)

    Bunoiu, O.; Nicoara, I.; Santailler, J. L.; Duffar, T.

    2005-02-01

    The influence of the die geometry and various growth conditions on the fluid flow and on the solute distribution in EFG method has been studied using numerical simulation. The commercial FIDAP software has been used in order to solve the momentum and mass transfer equations in the capillary channel and in the melt meniscus. Two types of shaper design are studied and the results are in good agreement with the void distribution observed in rod-shaped sapphire crystals grown by the EFG method in the various configurations.

  9. Velocity selection in the symmetric model of dendritic crystal growth

    Science.gov (United States)

    Barbieri, Angelo; Hong, Daniel C.; Langer, J. S.

    1987-01-01

    An analytic solution of the problem of velocity selection in a fully nonlocal model of dendritic crystal growth is presented. The analysis uses a WKB technique to derive and evaluate a solvability condition for the existence of steady-state needle-like solidification fronts in the limit of small under-cooling Delta. For the two-dimensional symmetric model with a capillary anisotropy of strength alpha, it is found that the velocity is proportional to (Delta to the 4th) times (alpha exp 7/4). The application of the method in three dimensions is also described.

  10. Space manufacturing in an automated crystal growth facility

    Science.gov (United States)

    Quinn, Alberta W.; Herrmann, Melody C.; Nelson, Pamela J.

    1989-01-01

    An account is given of a Space Station Freedom-based robotic laboratory system for crystal growth experiments; the robot must interface with both the experimental apparatus and such human input as may be required for control and display. The goal of the system is the simultaneous growth of several hundred protein crystals in microgravity. The robot possesses six degrees-of-freedom, allowing it to efficiently manipulate the cultured crystals as well as their respective growth cells; the crystals produced are expected to be of sufficiently high quality for complete structural determination on the basis of XRD.

  11. Preparation for microgravity science investigation of compound semiconductor crystal growth

    Science.gov (United States)

    Fripp, A. L.; Debnam, W. J.; Clark, I. O.; Crouch, R. K.; Carlson, F. M.

    1985-01-01

    Preparatory work on Bridgman directional solidification (BDS) of PbSnTe crystals prior to microgravity crystal growth experiments on Shuttle flights are reported. Gravitational effects become important in crystal growth when density gradients are present. The situation is critical in BDS of PbSnTe because of the necessity of obtaining homogeneous compositional distributions, which can be disturbed when convective processes occur. Numerical models have been defined which quantify the effects of convection in the crystal growth solution. The models were verified by earth-based crystal-growth tests in a two-zone furnace using equal concentrations of each of the elements. Data are provided to demonstrate the differences in composition among crystals grown at different orientations to the gravitational field vector.

  12. In-Situ Crystallization of a Lithium Disilicate Glass--Effect of Pressure on Crystal Growth Rate

    Science.gov (United States)

    Fuss, T.; Ray, C. S.; Lesher, C. E.; Day, D. E.

    2006-01-01

    Crystallization of a Li2O.2SiO2 (LS2) glass subjected to a uniform hydrostatic pressure of 4.5 GPa and 6 GPa was investigated up to a temperature of 750 C. The density of the compressed glass is about 2% greater at 4.5 GPa than at 1 atm and, depending upon the processing temperature, up to 10% greater at 6 GPa. Crystal growth rates investigated as a function of temperature and pressure show that lithium disilicate crystal growth is an order of magnitude slower at 4.5 GPa than 1 atm resulting in a shift of +45 C (plus or minus 10 C) in the growth rate curve at high pressure compared to 1 atm condition. At 6 GPa lithium disilicate crystallization is suppressed entirely, while a new high pressure lithium metasilicate crystallizes at temperatures 95 C (plus or minus 10 C) higher than those reported for lithium disilicate crystallization at 1 atm. The decrease in crystal growth rate with increasing pressure for lithium disilicate glass up to 750 C is related to an increase in viscosity with pressure associated with fundamental changes in glass structure accommodating densification.

  13. Issues in the growth of bulk crystals of infrared materials

    Science.gov (United States)

    Bachmann, K. J.; Golowsky, H.

    1987-01-01

    Attention is given to the relevant criteria governing materials choice in the growth of IR optoelectronic bulk single crystals of III-V and II-VI alloy and I-III-VI2 compound types. The most important considerations concern the control of crystal purity, microstructural perfection, stoichiometry, and uniformity during crystal growth, as well as the control of surface properties in wafer fabrication. Specific examples are given to illustrate the problems encountered and their preferred solutions.

  14. Computing the crystal growth rate by the interface pinning method

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Hummel, Felix; Dellago, Christoph

    2015-01-01

    -phase configurations are stabilized by adding a spring-like bias field coupling to an order-parameter that discriminates between the two phases. Crystal growth is a Smoluchowski process and the crystal growth rate can, therefore, be computed from the terminal exponential relaxation of the order parameter. The approach...... from first principles. A generalized version of the method may be used for computing the rates of crystal nucleation or other rare events....

  15. Semiconductor crystal growth and segregation problems on earth and in space

    Science.gov (United States)

    Gatos, H. C.

    1982-01-01

    Semiconductor crystal growth and segregation problems are examined in the context of their relationship to material properties, and some of the problems are illustrated with specific experimental results. The compositional and structural defects encountered in semiconductors are largely associated with gravity-induced convective currents in the melt; additional problems are introduced by variations in stoichiometry. It is demonstrated that in near-zero gravity environment, crystal growth and segregation takes place under ideal steady-state conditions with minimum convective interference. A discussion of the advantages of zero-gravity crystal growth is followed by a summary of problems arising from the absence of gravitational forces.

  16. Hard sphere crystal nucleation and growth near large spherical impurities

    Science.gov (United States)

    de Villeneuve, V. W. A.; Verboekend, D.; Dullens, R. P. A.; Aarts, D. G. A. L.; Kegel, W. K.; Lekkerkerker, H. N. W.

    2005-11-01

    We report how large spherical impurities affect the nucleation and growth of hard sphere colloidal crystals. Both the impurities and the colloids are fluorescently labelled polymethylmetacrylate particles and are dispersed in an optically and density matching solvent mixture. Crystal growth, initiated either at the impurity surface, or at the sample bottom, was studied by imaging sequences of two-dimensional xy-slices in the plane of the impurity's centre of mass with a laser scanning confocal microscope. At least two factors determine whether a large impurity can function as a seed for heterogeneous nucleation: timescales and impurity curvature. The curvature needs to be sufficiently low for crystal nuclei to form on the impurity surface. If bulk crystal growth has already approached the impurity, bulk growth is dominant over growth of crystallites on the impurity surface. Such surface crystallites eventually reorient to adapt to the overall bulk crystal symmetry.

  17. Needs and Opportunities in Crystal Growth.

    Science.gov (United States)

    Mroczkowski, Stanley

    1980-01-01

    Presents a survey of the scientific basis for single crystals production, discussing some of the theoretical and experimental advances in the area. Future prospects for semiconductors, magnetic lasers, nonlinear optics, piezoelectrics, and other crystals are surveyed. (Author/CS)

  18. Inhibition mechanism of aspartic acid on crystal growth of hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    HUANG Su-ping; ZHOU Ke-chao; LI Zhi-you

    2007-01-01

    The effects of aspartic acid on the crystal growth, morphology of hydroxyapatite(HAP) crystal were investigated, and the inhibition mechanism of aspartic acid on the crystal growth of hydroxyapatite was studied. The results show that the crystal growth rate of HAP decreases with the increase of the aspartic acid concentration, and the HAP crystal is thinner significantly compared with that without amino acid, which is mainly due to the (10(-)10) surface of HAP crystal being inhibited by the aspartic acids. The calculation analysis indicates that the crystal growth mechanism of HAP, following surface diffusion controlled mechanism, is not changed due to the presence of aspartic acid. AFM result shows that the front of terrace on vicinal growth hillocks is pinned, which suggests that the aspartic acid is adsorbed onto the (10(-)10) surface of HAP and interacts with the Ca2+ ions of HAP surface, so as to block the growth active sites and result in retarding of the growth of HAP crystal.

  19. Single Crystal Growth of Zirconia Utilizing a Skull Melting Technique,

    Science.gov (United States)

    1979-08-01

    help eliminate many crystal growth problems. The flame-fusion apparatus was invented by A. Verneuil 3 over 75 years ago and has been used for growth of...AOAO2 23 OMEAIRDEVLOPENT CNT RI RIFISS AFB NY F /S .7/ NGLE CRYSTAL GROWTH OF Z RONA UT IXZIN A SKULL MELTING TE-SCUl AUG 79 A C MARSHALL, J A ADAMSK...Crucible-less synthesis 50. ABSTRACT (Ceefiw.. - eooe edi. ,.e.eimwd identiby Slek ~b.,) Investigation into the growth of single crystal materials are

  20. Near-pure vapor condensation in the Martian atmosphere: CO2 ice crystal growth

    OpenAIRE

    Listowski, Constantino; Määttänen, Anni; Riipinen, Ilona; Montmessin, Franck; Lefèvre, Franck

    2013-01-01

    International audience; A new approach is presented to model the condensational growth of carbon dioxide (CO2) ice crystals on Mars. These condensates form in very particular conditions. First, ~95% of the atmosphere is composed of CO2 so that near-pure vapor condensation takes place. Second, the atmosphere is rarefied, having dramatic consequences on the crystal growth. Indeed, the subsequently reduced efficiency of heat transport helps maintain a high temperature difference between the crys...

  1. Calcite crystal growth rate inhibition by polycarboxylic acids

    Science.gov (United States)

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  2. Growth and Characterization on PMN-PT-Based Single Crystals

    Directory of Open Access Journals (Sweden)

    Jian Tian

    2014-07-01

    Full Text Available Lead magnesium niobate—lead titanate (PMN-PT single crystals have been successfully commercialized in medical ultrasound imaging. The superior properties of PMN-PT crystals over the legacy piezoelectric ceramics lead zirconate titanate (PZT enabled ultrasound transducers with enhanced imaging (broad bandwidth and improved sensitivity. To obtain high quality and relatively low cost single crystals for commercial production, PMN-PT single crystals were grown with modified Bridgman method, by which crystals were grown directly from stoichiometric melt without flux. For ultrasound imaging application, [001] crystal growth is essential to provide uniform composition and property within a crystal plate, which is critical for transducer performance. In addition, improvement in crystal growth technique is under development with the goals of improving the composition homogeneity along crystal growth direction and reducing unit cost of crystals. In recent years, PIN-PMN-PT single crystals have been developed with higher de-poling temperature and coercive field to provide improved thermal and electrical stability for transducer application.

  3. Numerical computation of sapphire crystal growth using heat exchanger method

    Science.gov (United States)

    Lu, Chung-Wei; Chen, Jyh-Chen

    2001-05-01

    The finite element software FIDAP is employed to study the temperature and velocity distribution and the interface shape during a large sapphire crystal growth process using a heat exchanger method (HEM). In the present study, the energy input to the crucible by the radiation and convection inside the furnace and the energy output through the heat exchanger is modeled by the convection boundary conditions. The effects of the various growth parameters are studied. It is found that the contact angle is obtuse before the solid-melt interface touches the sidewall of the crucible. Therefore, hot spots always appear in this process. The maximum convexity decreases significantly when the cooling-zone radius (RC) increases. The maximum convexity also decreases significantly as the combined convection coefficient inside the furnace (hI) decreases.

  4. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate.

    Science.gov (United States)

    Damodaran, Srinivasan

    2007-12-26

    The inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate produced by papain action was studied. The ice crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on ice crystal growth in ice cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit ice crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum ice crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of ice crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in ice nuclei. Binding of this oxygen triad plane to the prism face of ice nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting ice crystal growth in ice cream mix.

  5. GROWTH RATE DISPERSION (GRD OF THE (010 FACE OF BORAX CRYSTALS IN FLOWING SOLUTION

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The growth rates of borax crystals from aqueous solutions in the (010 direction at various flow rates were measured. The observed variations of the growth rate can be represented by a normal distribution.  It was found that there is no correlation between growth rate distribution and solution flow under these experimental conditions.   Keywords: Growth rate dispersion (GRD, borax, flow rate

  6. Crystal growth mechanisms of the (0 1 0) face of α-lactose monohydrate crystals

    Science.gov (United States)

    Dincer, T. D.; Ogden, M. I.; Parkinson, G. M.

    2009-04-01

    The growth rates of the (0 1 0) face of α-lactose monohydrate crystals were measured at 30, 40 and 50 °C in the relative supersaturation range 0.55-2.33 in aqueous solutions. The mechanisms of growth were investigated. Spiral growth was found to be the mechanism of growth up to a critical relative supersaturation ( s-1) crit=1.9 at 30 °C. Above the critical relative supersaturation, the crystal growth mechanisms were predicted to change. All growth models fit equally well to the growth rates. No two-dimensional nucleation was observed above critical supersaturation by AFM. On the other hand increased step height and roughness on the edges of steps were observed. It was concluded that the growth mechanism of the (0 1 0) face of α-lactose monohydrate crystal is spiral growth. A parabolic relationship was obtained below critical supersaturation followed by a linear relationship with relative supersaturation.

  7. Crystal Habits of Itraconazole Microcrystals: Unusual Isomorphic Intergrowths Induced via Tuning Recrystallization Conditions.

    Science.gov (United States)

    Mugheirbi, Naila A; Tajber, Lidia

    2015-09-01

    The external appearance of a crystal of active pharmaceutical ingredient (API), usually referred to as a crystal habit, has a substantial impact on the API's physicochemical and physiochemical properties and, subsequently, its pharmaceutical performance. In this work, we investigate the role of different parameters of antisolvent crystallization impacting on the itraconazole (ITR) crystal habit and how this crystal habit manipulation, including crystal intergrowth, can affect crystal interactions with water molecules. Three distinct isomorphic crystal habits of ITR, a twinned blade-shaped (CHtw), a plate-shaped (CHpl), and a flat sheet-shaped with dendritic ends (CHsh), were obtained by controlling crystallization conditions. A liquid-liquid crystalline phase separation was observed as an intermediate stage preceding crystal growth. The March-Dollase parameter was used as a quantitative description of the preferred orientation, where CHsh exhibited the highest preferred orientation. The three crystal habits were evaluated for their wettability and water vapor distribution, at 37 °C, using the Young-Nelson fitting model. CHtw crystals sorbed a statistically significantly higher amount of water than CHpl and CHsh, which was attributed to the presence of crystal defects due to the twinning boundary. On the other hand, the amount of water adsorbed on the surface of CHpl and CHsh crystals was comparable and it was about twice that adsorbed on CHtw crystals. This was related to the abundance of hydrophilic chemical functionalities on the (010) facet of CHpl and CHsh as supported by the full interaction map carried out using Mercury software. This study expands investigations of the impact of crystal habit manipulation on API's functional properties beyond the well-known solubility improvement approaches.

  8. Universality classes for unstable crystal growth.

    Science.gov (United States)

    Biagi, Sofia; Misbah, Chaouqi; Politi, Paolo

    2014-06-01

    Universality has been a key concept for the classification of equilibrium critical phenomena, allowing associations among different physical processes and models. When dealing with nonequilibrium problems, however, the distinction in universality classes is not as clear and few are the examples, such as phase separation and kinetic roughening, for which universality has allowed to classify results in a general spirit. Here we focus on an out-of-equilibrium case, unstable crystal growth, lying in between phase ordering and pattern formation. We consider a well-established 2+1-dimensional family of continuum nonlinear equations for the local height h(x,t) of a crystal surface having the general form ∂_{t}h(x,t)=-∇·[j(∇h)+∇(∇^{2}h)]: j(∇h) is an arbitrary function, which is linear for small ∇h, and whose structure expresses instabilities which lead to the formation of pyramidlike structures of planar size L and height H. Our task is the choice and calculation of the quantities that can operate as critical exponents, together with the discussion of what is relevant or not to the definition of our universality class. These aims are achieved by means of a perturbative, multiscale analysis of our model, leading to phase diffusion equations whose diffusion coefficients encapsulate all relevant information on dynamics. We identify two critical exponents: (i) the coarsening exponent, n, controlling the increase in time of the typical size of the pattern, L∼t^{n}; (ii) the exponent β, controlling the increase in time of the typical slope of the pattern, M∼t^{β}, where M≈H/L. Our study reveals that there are only two different universality classes, according to the presence (n=1/3, β=0) or the absence (n=1/4, β>0) of faceting. The symmetry of the pattern, as well as the symmetry of the surface mass current j(∇h) and its precise functional form, is irrelevant. Our analysis seems to support the idea that also space dimensionality is irrelevant.

  9. Growth and defects of explosives crystals

    Science.gov (United States)

    Cady, H. H.

    Large single crystals of PETN, RDX, and TNT can be grown easily from evaporating ethyl acetate solutions. The crystals all share a similar type of defect that may not be commonly recognized. The defect generates conical faces, ideally mosaic crystals, and may account for the 'polymorphs' of TNT and detonator grades of PETN. TATB crystals manufactured by the amination of trichlorotrinitrobenzene in dry toluene entrain two forms of ammonium chloride. One of these forms causes 'worm holes' in the TATB crystals that may be the reason for its unusually low failure diameters. Strained HMX crystals form mechanical twins that can spontaneously revert back to the untwinned form when the straining force is removed. Large strains or temperatures above 100 C lock in the mechanical twins.

  10. Phase Relationship in Phenol-Insulin Crystal Growth System

    Institute of Scientific and Technical Information of China (English)

    梁栋材; 宋浪舟; 万柱礼; 常文瑞

    1994-01-01

    Based on the crystal growth system of rhombohedral 2Zn-insulin,the phase transition ofinsulin crystals has been investigated with the phenol concentration as an independent component.The dia-gram of the phase relationship in this crystal growth system was established,and two points of phase transi-tion were found.The transition point Ⅰ indicates the phase transition between rhombohedral 2Zn-insulin crys-tal and rhombohedral 4Zn-insulin crystal,and these two phases coexist within a narrow region of phenol con-centration (0.028%-0.029% (g/ml)).Point Ⅱ at 0.76%-0.77% (g/ml) of phenol concentration showsthe phase transition between rhombohcdral crystal and monoclinic crystals,and a new phase of monocliniccrystal (B-form monoclinic insulin crystal) has been observed.This paper reports the diagram of phase rela-tionship obtained from our experiments,and analyses and discusses the dependence of phase transition of in-sulin crystals on phenol concentration in crystal growth system.

  11. Zirconate Pyrochlore Frustrated Magnets: Crystal Growth by the Floating Zone Technique

    Directory of Open Access Journals (Sweden)

    Monica Ciomaga Hatnean

    2016-07-01

    Full Text Available This article reviews recent achievements on the crystal growth of a new series of pyrochlore oxides—lanthanide zirconates, which are frustrated magnets with exotic magnetic properties. Oxides of the type A 2 B 2 O 7 (where A = Rare Earth, B = Ti, Mo have been successfully synthesised in single crystal form using the floating zone method. The main difficulty of employing this technique for the growth of rare earth zirconium oxides A 2 Zr 2 O 7 arises from the high melting point of these materials. This drawback has been recently overcome by the use of a high power Xenon arc lamp furnace for the growth of single crystals of Pr 2 Zr 2 O 7 . Subsequently, large, high quality single crystals of several members of the zirconate family of pyrochlore oxides A 2 Zr 2 O 7 (with A = La → Gd have been grown by the floating zone technique. In this work, the authors give an overview of the crystal growth of lanthanide zirconates. The optimum conditions used for the floating zone growth of A 2 Zr 2 O 7 crystals are reported. The characterisation of the crystal boules and their crystal quality is also presented.

  12. Progress in modeling of fluid flows in crystal growth processes

    Institute of Scientific and Technical Information of China (English)

    Qisheng Chen; Yanni Jiang; Junyi Yan; Ming Qin

    2008-01-01

    Modeling of fluid flows in crystal growth processes has become an important research area in theoretical and applied mechanics.Most crystal growth processes involve fluid flows,such as flows in the melt,solution or vapor.Theoretical modeling has played an important role in developing technologies used for growing semiconductor crystals for high performance electronic and optoelectronic devices.The application of devices requires large diameter crystals with a high degree of crystallographic perfection,low defect density and uniform dopant distribution.In this article,the flow models developed in modeling of the crystal growth processes such as Czochralski,ammono-thermal and physical vapor transport methods are reviewed.In the Czochralski growth modeling,the flow models for thermocapillary flow,turbulent flow and MHD flow have been developed.In the ammonothermal growth modeling,the buoyancy and porous media flow models have been developed based on a single-domain and continuum approach for the composite fluid-porous layer systems.In the physical vapor transport growth modeling,the Stefan flow model has been proposed based on the flow-kinetics theory for the vapor growth.In addition,perspectives for future studies on crystal growth modeling are proposed.

  13. Modeling high speed growth of large rods of cesium iodide crystals by edge-defined film-fed growth (EFG)

    Science.gov (United States)

    Yeckel, Andrew

    2016-09-01

    A thermocapillary model of edge-defined film-fed growth (EFG) is developed to analyze an experimental system for high speed growth of cesium iodide as a model system for halide scintillator production. The model simulates heat transfer and fluid dynamics in the die, melt, and crystal under conditions of steady growth. Appropriate mass, force, and energy balances are used to compute self-consistent shapes of the growth interface and melt-vapor meniscus. The model is applied to study the effects of growth rate, die geometry, and furnace heat transfer on the limits of system operability. An inverse problem formulation is used to seek operable states at high growth rates by adjusting the overall temperature level and thermal gradient in the furnace. The model predicts that steady growth is feasible at rates greater than 20 mm/h for crystals up to 18 mm in diameter under reasonable furnace gradients.

  14. Method of Promoting Single Crystal Growth During Melt Growth of Semiconductors

    Science.gov (United States)

    Su, Ching-Hua (Inventor)

    2013-01-01

    The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.

  15. Crystal growth of selected II-VI semiconducting alloys by directional solidification

    Science.gov (United States)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, D. C.; Cobb, S. D.; Su, C.-H.; Sha, Y.-G.; Andrews, R. N.

    1994-01-01

    A Hg(0.84)Zn(0.16)Te alloy crystal was back-melted and partially resolidified during the first United States Microgravity Laboratory (USML-1) mission in the Marshall Space Flight Center's Crystal Growth Furnace. The experiment was inadvertently terminated at about 30% of planned completion. Nonetheless, it was successfully demonstrated that HgZnTe alloy ingots partially grown and quenched on the ground can be back-melted and regrown in space under nearly steady state growth conditions. An identical 'ground-truth' experiment was performed following the mission. Preliminary results are presented for both crystals, as well as for a series of other crystals grown prior to the mission for the purposes of optimizing in-flight growth conditions.

  16. Crystal growth methods dedicated to low solubility actinide oxalates

    Energy Technology Data Exchange (ETDEWEB)

    Tamain, C., E-mail: christelle.tamain@cea.fr [CEA, Nuclear Energy Division, Marcoule, RadioChemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Arab-Chapelet, B. [CEA, Nuclear Energy Division, Marcoule, RadioChemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Rivenet, M. [University Lille Nord de France, Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, ENSCL-USTL, B.P. 90108, F-59652 Villeneuve d’Ascq Cedex (France); Grandjean, S. [CEA, Nuclear Energy Division, Marcoule, RadioChemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Abraham, F. [University Lille Nord de France, Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, ENSCL-USTL, B.P. 90108, F-59652 Villeneuve d’Ascq Cedex (France)

    2016-04-15

    Two novel crystal growth syntheses dedicated to low solubility actinide-oxalate systems and adapted to glove box handling are described. These methods based on the use of precursors of either actinide metal or oxalic acid have been optimized on lanthanide systems (analogue of actinides(III)) and then assessed on real actinide systems. They allow the synthesis of several actinide oxalate single crystals, Am{sub 2}(C{sub 2}O{sub 4}){sub 3}(H{sub 2}O){sub 3}·xH{sub 2}O, Th(C{sub 2}O{sub 4}){sub 2}·6H{sub 2}O, M{sub 2+x}[Pu{sup IV}{sub 2−x}Pu{sup III}{sub x}(C{sub 2}O{sub 4}){sub 5}]·nH{sub 2}O and M{sub 1−x}[Pu{sup III}{sub 1−x}Pu{sup IV}{sub x}(C{sub 2}O{sub 4}){sub 2}·H{sub 2}O]·nH{sub 2}O. It is the first time that these well-known compounds are formed by crystal growth methods, thus enabling direct structural studies on transuranic element systems and acquisition of basic data beyond deductions from isomorphic (or not) lanthanide compounds. Characterizations by X-ray diffraction, UV–visible solid spectroscopy, demonstrate the potentialities of these two crystal growth methods to obtain oxalate compounds. - Graphical abstract: Two new single crystal growth methods dedicated to actinide oxalate compounds. - Highlights: • Use of diester as oxalate precursor for crystal growth of actinide oxalates. • Use of actinide oxide as precursor for crystal growth of actinide oxalates. • Crystal growth of Pu(III) and Am(III) oxalates. • Crystal growth of mixed Pu(III)/Pu(IV) oxalates.

  17. Floating zone growth of α-Na0.90MnO2 single crystals

    Science.gov (United States)

    Dally, Rebecca; Clément, Raphaële J.; Chisnell, Robin; Taylor, Stephanie; Butala, Megan; Doan-Nguyen, Vicky; Balasubramanian, Mahalingam; Lynn, Jeffrey W.; Grey, Clare P.; Wilson, Stephen D.

    2017-02-01

    Single crystal growth of α-NaxMnO2 (x=0.90) is reported via the floating zone technique. The conditions required for stable growth and intergrowth-free crystals are described along with the results of trials under alternate growth atmospheres. Chemical and structural characterizations of the resulting α-Na0.90MnO2 crystals are performed using ICP-AES NMR, XANES, XPS, and neutron diffraction measurements. As a layered transition metal oxide with large ionic mobility and strong correlation effects, α-NaxMnO2 is of interest to many communities, and the implications of large volume, high purity, single crystal growth are discussed.

  18. Growth and characterization of DAST crystal with large-thickness

    Science.gov (United States)

    Cao, Lifeng; Teng, Bing; Zhong, Degao; Hao, Lun; Sun, Qing

    2016-10-01

    Highly nonlinear optical 4-N, N-dimethylamino-4-N-methyl stilbazolium tosylate (DAST) crystals with large surface and thickness was grown by the slope nucleation technology with slow-cooling in a high concentration solution. The structure and composition of the crystal were confirmed by X-ray diffraction (XRD). The surface morphology of the crystal was characterized by optical microscope. Growth layers were observed on the (001) surface and several isolated "island layers" were also found. The mechanism of crystal growth was analyzed. Etching behavior of the (001) and (00 1 bar) faces of the crystal was studied with methanol, respectively. Optical properties of the crystal were also characterized by UV-vis-NIR spectrometer. The dielectric constants and the dielectric loss were tested by impedance analyzer.

  19. Development of novel growth methods for halide single crystals

    Science.gov (United States)

    Yokota, Yuui; Kurosawa, Shunsuke; Shoji, Yasuhiro; Ohashi, Yuji; Kamada, Kei; Yoshikawa, Akira

    2017-03-01

    We developed novel growth methods for halide scintillator single crystals with hygroscopic nature, Halide micro-pulling-down [H-μ-PD] method and Halide Vertical Bridgman [H-VB] method. The H-μ-PD method with a removable chamber system can grow a single crystal of halide scintillator material with hygroscopicity at faster growth rate than the conventional methods. On the other hand, the H-VB method can grow a large bulk single crystal of halide scintillator without a quartz ampule. CeCl3, LaBr3, Ce:LaBr3 and Eu:SrI2 fiber single crystals could be grown by the H-μ-PD method and Eu:SrI2 bulk single crystals of 1 and 1.5 inch in diameter could be grown by the H-VB method. The grown fiber and bulk single crystals showed comparable scintillation properties to the previous reports using the conventional methods.

  20. Large-volume protein crystal growth for neutron macromolecular crystallography.

    Science.gov (United States)

    Ng, Joseph D; Baird, James K; Coates, Leighton; Garcia-Ruiz, Juan M; Hodge, Teresa A; Huang, Sijay

    2015-04-01

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.

  1. Nonlinear Optical BBO Crystals: Growth, Properties and Applications

    Institute of Scientific and Technical Information of China (English)

    唐鼎元

    2000-01-01

    Low temperature phase barium metaborate β-BaB2O4 (BBO) is an important nonlinear optical material. Up to now, the BBO single crystals with large size and good optical quality were grown from Na2O or NaF fluxed solvents by the top-seeded solution growth (TSSG) technique with or without pulling. In order to improve the growth rate and quality of BBO crystals, several new techniques such as continuous feeding, forced stirring and cooling growing crystals etc. have been suggested. Applications of BBO as an excellent nonlinear optical crystal include mainly frequency conversion of various laser radiation, high average power frequency conversion, frequency doubling of ultrashort pulses and broadly tunable optical parametric oscillators (OPO).This paper is a brief review on the growth, properties and applications of BBO crystals.

  2. Modelling of Heat Transfer in Single Crystal Growth

    CERN Document Server

    Zhmakin, Alexander I

    2014-01-01

    An attempt is made to review the heat transfer and the related problems encountered in the simulation of single crystal growth. The peculiarities of conductive, convective and radiative heat transfer in the different melt, solution, and vapour growth methods are discussed. The importance of the adequate description of the optical crystal properties (semitransparency, specular reflecting surfaces) and their effect on the heat transfer is stresses. Treatment of the unknown phase boundary fluid/crystal as well as problems related to the assessment of the quality of the grown crystals (composition, thermal stresses, point defects, disclocations etc.) and their coupling to the heat transfer/fluid flow problems is considered. Differences between the crystal growth simulation codes intended for the research and for the industrial applications are indicated. The problems of the code verification and validation are discussed; a brief review of the experimental techniques for the study of heat transfer and flow structu...

  3. Crystal growth of compound semiconductors in a low-gravity environment (InGaAs crystals) (M-22)

    Science.gov (United States)

    Tatsumi, Masami

    1993-01-01

    GaAs polycrystals in a crucible are doubly sealed in two quartz tubes for safety. The GHF consists of two zones, namely, high temperature and low temperature zones, which results in a large temperature gradient at the interface. Crystal growth is performed by moving the furnace (i.e. the temperature profile) from the left to right at a definite rate. Thus, we will grow crystals both on Earth and in space under the same conditions. As previously described, it is possible to obtain good quality crystals which are homogeneous in composition both macroscopically and microscopically due to the lack of convection in space. We are planning to study the effects of convection on crystal growth from a melt by comparing and characterizing the properties of crystals grown on Earth with those grown in space.

  4. Zeolite Crystal Growth (ZCG) Flight on USML-2

    Science.gov (United States)

    Sacco, Albert, Jr.; Bac, Nurcan; Warzywoda, Juliusz; Guray, Ipek; Marceau, Michelle; Sacco, Teran L.; Whalen, Leah M.

    1997-01-01

    The extensive use of zeolites and their impact on the world's economy has resulted in many efforts to characterize their structure, and improve the knowledge base for nucleation and growth of these crystals. The zeolite crystal growth (ZCG) experiment on USML-2 aimed to enhance the understanding of nucleation and growth of zeolite crystals, while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16 day - USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. The external surfaces of zeolite A, X, and Silicalite crystals grown in microgravity were smoother (lower surface roughness) than their terrestrial controls. Catalytic studies with zeolite Beta indicate that crystals grown in space exhibit a lower number of Lewis acid sites located in micropores. This suggests fewer structural defects for crystals grown in microgravity. Transmission electron micrographs (TEM) of zeolite Beta crystals also show that crystals grown in microgravity were free of line defects while terrestrial/controls had substantial defects.

  5. Growth features of ammonium hydrogen -tartrate single crystals

    Indian Academy of Sciences (India)

    G Sajeevkumar; R Raveendran; B S Remadevi; Alexander Varghese Vaidyan

    2004-08-01

    Ammonium hydrogen -tartrate (-AHT) single crystals were grown in silica gel. The growth features of these crystals with variation of parameters like specific gravity of the gel, gel pH, acid concentrations, concentration of the feed solution and gel age were studied in detail.

  6. Cross-twinning model of fcc crystal growth

    NARCIS (Netherlands)

    Waal, van de Benjamin W.

    1996-01-01

    The theory developed in 1960 by Wagner, Hamilton and Seidensticker (WHS-theory) to explain observed crystal growth phenomena in Ge is critically reviewed and shown to be capable of explaining preservation of ABC stacking order in two dimensions in fcc crystals of effectively spherical closed shell m

  7. An automatic system for crystal growth studies at constant supersaturation

    Science.gov (United States)

    March, J. G.; Costa-Bauzá, A.; Grases, F.; Söhnel, O.

    1992-01-01

    An automatic system for growing crystals from seeded supersaturated solutions at constant supersaturation is described. Control of burettes and data acquisition are controlled by computer. The system was tested with a study of the calcium oxalate kinetics of crystal growth. PMID:18924950

  8. Modeling and simulation of Si crystal growth from melt

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lijun; Liu, Xin; Li, Zaoyang [National Engineering Research Center for Fluid Machinery and Compressors, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Miyazawa, Hiroaki; Nakano, Satoshi; Kakimoto, Koichi [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan)

    2009-07-01

    A numerical simulator was developed with a global model of heat transfer for any crystal growth taking place at high temperature. Convective, conductive and radiative heat transfers in the furnace are solved together in a conjugated way by a finite volume method. A three-dimensional (3D) global model was especially developed for simulation of heat transfer in any crystal growth with 3D features. The model enables 3D global simulation be conducted with moderate requirement of computer resources. The application of this numerical simulator to a CZ growth and a directional solidification process for Si crystals, the two major production methods for crystalline Si for solar cells, was introduced. Some typical results were presented, showing the importance and effectiveness of numerical simulation in analyzing and improving these kinds of Si crystal growth processes from melt. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. The crystal growth of barium flouride in aqueous solution

    Science.gov (United States)

    Barone, J. P.; Svrjcek, D.; Nancollas, G. H.

    1983-06-01

    The kinetics of growth of barium flouride seed crystals were investigated in aqueous solution at 25°C using a constant composition method, in which the supersaturation and ionic strength were maintained constant by the addition of titrants consisting of barium nitrate and potassium flouride solutions. The rates of reaction, studied over a range of supersaturation (σ ≈ 0.4 to 1.0), were interpreted in terms of crystal growth models. A spiral growth mechanism best describes the data, and scanning electron microscopy indicates a three-dimensional growth. In the presence of inorganic additives such as phosphate, however, induction periods precede a morphological two-dimensional crystallization. Coulter Counter results show little crystal agglomeration.

  10. Semiconductor Crystal Growth in Static and Rotating Magnetic fields

    Science.gov (United States)

    Volz, Martin

    2004-01-01

    Magnetic fields have been applied during the growth of bulk semiconductor crystals to control the convective flow behavior of the melt. A static magnetic field established Lorentz forces which tend to reduce the convective intensity in the melt. At sufficiently high magnetic field strengths, a boundary layer is established ahead of the solid-liquid interface where mass transport is dominated by diffusion. This can have a significant effect on segregation behavior and can eliminate striations in grown crystals resulting from convective instabilities. Experiments on dilute (Ge:Ga) and solid solution (Ge-Si) semiconductor systems show a transition from a completely mixed convective state to a diffusion-controlled state between 0 and 5 Tesla. In HgCdTe, radial segregation approached the diffusion limited regime and the curvature of the solid-liquid interface was reduced by a factor of 3 during growth in magnetic fields in excess of 0.5 Tesla. Convection can also be controlled during growth at reduced gravitational levels. However, the direction of the residual steady-state acceleration vector can compromise this effect if it cannot be controlled. A magnetic field in reduced gravity can suppress disturbances caused by residual transverse accelerations and by random non-steady accelerations. Indeed, a joint program between NASA and the NHMFL resulted in the construction of a prototype spaceflight magnet for crystal growth applications. An alternative to the suppression of convection by static magnetic fields and reduced gravity is the imposition of controlled steady flow generated by rotating magnetic fields (RMF)'s. The potential benefits of an RMF include homogenization of the melt temperature and concentration distribution, and control of the solid-liquid interface shape. Adjusting the strength and frequency of the applied magnetic field allows tailoring of the resultant flow field. A limitation of RMF's is that they introduce deleterious instabilities above a

  11. Kinetics of the growth of filamentary KH2PO4 crystals on a seed crystal

    Science.gov (United States)

    Titaeva, E. K.; Kuritsyn, M. S.; Noskova, A. N.; Portnov, V. N.

    2017-08-01

    At oversaturations exceeding the inert range end for face {101} due to the presence of admixture Al(NO3)3 · 9H2O, a new phase is observed during the growth of this face in the form of filamentary crystals. Some experimental dependences of the growth rate of filamentary potassium dihydrophosphate (KH2PO4) crystals on the oversaturation have been obtained at different admixture concentrations. The growth of filamentary crystals occurs by the mechanism of two-dimensional nucleation. Their formation is governed by the effect of [AlHPO4]+ complexes in the form of Cabrera and Vermilyea stoppers.

  12. Theory of the intermediate stage of crystal growth with applications to insulin crystallization

    Science.gov (United States)

    Barlow, D. A.

    2017-07-01

    A theory for the intermediate stage of crystal growth, where two defining equations one for population continuity and another for mass-balance, is used to study the kinetics of the supersaturation decay, the homogeneous nucleation rate, the linear growth rate and the final distribution of crystal sizes for the crystallization of bovine and porcine insulin from solution. The cited experimental reports suggest that the crystal linear growth rate is directly proportional to the square of the insulin concentration in solution for bovine insulin and to the cube of concentration for porcine. In a previous work, it was shown that the above mentioned system could be solved for the case where the growth rate is directly proportional to the normalized supersaturation. Here a more general solution is presented valid for cases where the growth rate is directly proportional to the normalized supersaturation raised to the power of any positive integer. The resulting expressions for the time dependent normalized supersaturation and crystal size distribution are compared with experimental reports for insulin crystallization. An approximation for the maximum crystal size at the end of the intermediate stage is derived. The results suggest that the largest crystal size in the distribution at the end of the intermediate stage is maximized when nucleation is restricted to be only homogeneous. Further, the largest size in the final distribution depends only weakly upon the initial supersaturation.

  13. Growth and characterization of lead bromide crystals

    Science.gov (United States)

    Singh, N. B.; Gottlieb, M.; Henningsen, T.; Hopkins, R. H.; Mazelsky, R.; Glicksman, M. E.; Coriell, S. R.; Santoro, G. J.; Duval, W. M. B.

    1992-01-01

    Lead(II) bromide was purified by a combination of directional freezing and zone-refining methods. Differential thermal analysis of the lead bromide showed that a destructive phase transformation occurs below the melting temperature. This transformation causes extensive cracking, making it very difficult to grow a large single crystal. Energy of phase transformation for pure lead bromide was determined to be 24.67 cal/g. To circumvent this limitation, crystals were doped by silver bromide which decreased the energy of phase transformation. The addition of silver helped in achieving the size, but enhanced the inhomogeneity in the crystal. The acoustic attenuation constant was almost identical for the pure and doped (below 3000 ppm) crystals.

  14. The transport phenomena during the growth of ZnTe crystal by the temperature gradient solution growth technique

    Science.gov (United States)

    Yin, Liying; Jie, Wanqi; Wang, Tao; Zhou, Boru; Yang, Fan

    2017-03-01

    A numerical model is developed to simulate the temperature field, the thermosolutal convection, the solute segregation and the growth interface morphology during the growth of ZnTe crystal from Te rich solution by the temperature gradient solution growth (TGSG) technique. Effects of the temperature gradient on the transport phenomena, the growth interface morphology and the growth rate are examined. The influences of the latent heat and the thermal conductivity of ZnTe crystal on the transport phenomena and the growth interface are also discussed. We find that the mass transfer of ZnTe in the solution is very slow because of the low diffusion coefficient and the lack of mixing in the lower part of the solution. During the growth, dilute solution with high density and low growth temperature accumulates in the central region of the growth interface, making the growth interface change into two distinct parts. The inner part is very concave, while the outer part is relatively flat. Growth conditions in front of the two parts of the growth interface are different. The crystalline quality of the inner part of the ingot is predicted to be worse than that of the outer part. High temperature gradient can significantly increase the growth rate, and avoid the diffusion controlled growth to some extent.

  15. Growth and characterization of strontium tartrate pentahydrate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Firdous, A.; Ahmad, M.M. [Department of Physics, National Institute of Technology, Kashmir (India); Quasim, I.; Kotru, P.N. [Crystal Growth and Materials Research Laboratory, Department of Physics and Electronics, University of Jammu (India)

    2008-10-15

    Silica gel impregnated with L-tartaric acid and using strontium nitrate as the second reactant leads to the growth of well faceted strontium tartrate pentahydrate single crystals.The morphological developmen and internal cell dimensions are observed to be different from the ones reported in the literature for strontium tartrate trihydrate crystals. The crystals are characterized using XRD, CH analysis, SEM, FTIR spectroscopy and thermoanalytical techniques. The crystals are observed to be thermally stable upto about 105 C but thereafter start decomposing and ejecting water of hydration at various stages, finally reducing to strontium oxide. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Growth and characterization of CdS crystals

    Science.gov (United States)

    Su, Ching-Hua; Lehoczky, S. L.; Szofran, F. R.

    1990-01-01

    A growth method for the physical vapor transport of compound semiconductors in closed ampoules is described. With the unique techniques applied in the heat treatment of the starting materials and the temperature profiles provided by the three-zone translational furnace, large crystals of CdS have been grown successfully by the method at lower temperatures than previously used. Both unseeded and seeded growth have been investigated. The CdS crystals were examined using optical and scanning electron microscopies (SEM) to study the microstructure and the dislocation etch-pits. The crystals were further characterized by infrared (IR) and ultraviolet (UV) transmission measurements.

  17. Skylab experiments on semiconductors and alkali halides. [single crystal growth

    Science.gov (United States)

    Lundquist, C. A.

    1974-01-01

    The space processing experiments performed during the Skylab missions included one on single crystal growth of germanium selenide and telluride, one on pure and doped germanium crystals, two on pure and doped indium antimonide, one on gallium-indium-antimony systems, and one on a sodium chloride-sodium fluoride eutectic. In each experiment, three ampoules of sample were processed in the multipurpose electric furnace within the Skylab Materials Processing Facility. All were successful in varying degrees and gave important information about crystal growth removed from the effects of earth surface gravity.

  18. Growth and characterization of diammonium copper disulphate hexahydrate single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Siva Sankari, R. [Department of Physics, Agni College of Technology, Thalambur, Chennai 603103 (India); Perumal, Rajesh Narayana, E-mail: r.shankarisai@gmail.com [Department of Physics, SSN College of Engineering, Kalavakkam, Chennai 603110 (India)

    2014-03-01

    Graphical abstract: Diammonium copper disulphate hexahydrate (DACS) is one of the most promising inorganic dielectric crystals with exceptional mechanical properties. Good quality crystals of DACS were grown by using solution method in a period of 30 days. The grown crystals were subjected to single crystal X-ray diffraction analysis in order to establish their crystalline nature. Thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis were performed for the crystal. Several solid state physical parameters have been determined for the grown crystals. The dielectric constant and the dielectric loss and AC conductivity of the grown crystal were studied as a function of frequency and temperature has been calculated and plotted. - Highlights: • Diammonium copper disulphate is grown for the first time and CCDC number obtained. • Thermal analysis is done to see the stability range of the crystals. • Band gap and UV cut off wavelength of the crystal are determined to be 2.4 eV and 472.86 nm, respectively. • Dielectric constant, dielectric loss and AC conductivity are plotted as a function of applied field. - Abstract: Diammonium copper disulphate hexahydrate is one of the most promising inorganic crystals with exceptional dielectric properties. A good quality crystal was harvested in a 30-day period using solution growth method. The grown crystal was subjected to various characterization techniques like single crystal X-ray diffraction analysis, thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis. Unit cell dimensions of the grown crystal have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Thermal stability of the samples was checked by TG/DTA studies. Band gap of the crystal was calculated. The dielectric constant and dielectric loss were studied as a function of frequency of the applied field. AC conductivity was plotted as a function

  19. Effects of buoyancy-driven convection on nucleation and growth of protein crystals.

    Science.gov (United States)

    Nanev, Christo N; Penkova, Anita; Chayen, Naomi

    2004-11-01

    Protein crystallization has been studied in presence or absence of buoyancy-driven convection. Gravity-driven flow was created, or suppressed, in protein solutions by means of vertically directed density gradients that were caused by generating suitable temperature gradients. The presence of enhanced mixing was demonstrated directly by experiments with crustacyanin, a blue-colored protein, and other materials. Combined with the vertical tube position the enhanced convection has two main effects. First, it reduces the number of nucleated hen-egg-white lysozyme (HEWL) crystals, as compared with those in a horizontal capillary. By enabling better nutrition from the protein in the solution, convection results in growth of fewer larger HEWL crystals. Second, we observe that due to convection, trypsin crystals grow faster. Suppression of convection, achieved by decreasing solution density upward in the capillary, can to some extent mimic conditions of growth in microgravity. Thus, impurity supply, which may have a detrimental effect on crystal quality, was avoided.

  20. Preparation of anhydrous lanthanum bromide for scintillation crystal growth

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tong; LI Hongwei; ZHAO Chunlei; YU Jinqiu; HU Yunsheng; CUI Lei; HE Huaqiang

    2012-01-01

    This paper reported an efficient and economical method for preparation of anhydrous LaBr3 for scintillation crystal growth.High purity anhydrous LaBr3 powders in large quantities were successfully obtained by stepped dehydration of LaBr3·7H2O using NH4Br as additive.Experiments revealed that adding proper amount of NH4Br could effectively restrain the hydrolysis of LaBr3 during dehydration and thus decreased the yield of deleterious impurity of LaOBr.Optimum preparation conditions,including the amount of NH4Br in use,the dehydration temperature and atmosphere,were investigated by DTA/TG and water/oxygen analysis.The Raman characterization of the as-prepared anhydrous LaBr3 was also presented.

  1. Slanted stacking faults and persistent face centered cubic crystal growth in sedimentary colloidal hard sphere crystals

    NARCIS (Netherlands)

    Hilhorst, J.; Wolters, J. R.; Petukhov, A.V.

    2010-01-01

    Hard sphere crystal growth is a delicate interplay between kinetics and thermodynamics, where the former is commonly thought to favour a random hexagonal close packed structure and the latter leads to a face centered cubic crystal. In this article, we discuss the influence of slanted stacking faults

  2. CoTiO3微晶水热生长机理及结晶动力学研究%CoTiO3 Growth Mechanism and Crystallization Kinetics under Hydrothermal Conditions

    Institute of Scientific and Technical Information of China (English)

    卢靖; 黄剑锋; 曹丽云; 郑钦文

    2013-01-01

    采用水热法以TiCl3和Co(CH3COO)2·4H2O为主要原料制备出CoTiO3微晶.利用X射线衍射、透射电子显微镜对产物进行表征,重点研究了晶体的生长规律及结晶动力学.结果表明水热条件下CoTiO3晶体的生长过程是:水热温度为220℃时,晶核首先析出并沿平面铺展;随着反应时间的延长或水热温度的升高,晶核逐渐长大形成类似六边形的片状晶粒;280℃时晶粒开始沿垂直于片层的方向逐层堆积生长,最终形成菱面体晶粒.结晶动力学研究显示:水热条件下,CoTiO3晶体成核速率及生长速率均随温度升高而增长,其成核活化能和表观生长活化能分别为89.18 kJ· mol-1和50.56kJ·mol-1.%CoTiO3 microcrystals were prepared by hydrothermal method using TiCl3 and Co(CH3COO)2 as raw reactants. The crystal growth mechanism and crystallization kinetics of CoTiO3 under hydrothermal circumstances were detailed investigated via XRD and TEM. The results showed that CoTiO3 nuclei precipited from the precursor at 220℃, and firstly grew up into hexagonal flake grain with temperature and reaction hours increased. Later, the hexagonal flakes began to staking one by one along the c axis, forming ilmenite-type rhombohedron grain at 280℃. Crystallization kinetics research revealed that, both the nucleation rate and growth rate of CoTiO3 grain increased with increase of the hydrothermal temperature. The activation energies of CoTiO3 nucleation and crystal growth are 89.18 kJ·mol-1 and 50.56 kJ·mol-1, respectively.

  3. Crystal growth of CVD diamond and some of its peculiarities

    CERN Document Server

    Piekarczyk, W

    1999-01-01

    Experiments demonstrate that CVD diamond can form in gas environments that are carbon undersaturated with respect to diamond. This fact is, among others, the most serious violation of principles of chemical thermodynamics. In this $9 paper it is shown that none of the principles is broken when CVD diamond formation is considered not a physical process consisting in growth of crystals but a chemical process consisting in accretion of macro-molecules of polycyclic $9 saturated hydrocarbons belonging to the family of organic compounds the smallest representatives of which are adamantane, diamantane, triamantane and so forth. Since the polymantane macro-molecules are in every respect identical with $9 diamond single crystals with hydrogen-terminated surfaces, the accretion of polymantane macro- molecules is a process completely equivalent to the growth of diamond crystals. However, the accretion of macro-molecules must be $9 described in a way different from that used to describe the growth of crystals because so...

  4. Chemical Bond Analysis of Single Crystal Growth of Magnesium Oxide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Starting from the crystallographic structure of magnesium oxide (MgO), both the chemical bond model of solids and Pauling's third rule (polyhedral sharing rule) were employed to quantitatively analyze the chemical bonding structure of constituent atoms and single crystal growth. Our analytical results show that MgO single crystals prefer to grow along the direction and the growth rate of the {100} plane is the slowest one. Therefore, the results show that the {100} plane of MgO crystals can be the ultimate morphology face, which is in a good agreement with our previous experimental results. The study indicate that the structure analysis is an effective tool to control the single-crystal growth.

  5. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    Science.gov (United States)

    2003-01-01

    The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions. Significant effects of gravity vector orientation on the growth crystal morphology and point defect distribution were observed.

  6. Crystal Growth and Characterization of Bil3

    Science.gov (United States)

    Hayes, Julia; Chen, Kuo-Tong; Burger, Arnold

    1997-01-01

    Bismuth tri-iodide (BiI3) have been grown by physical vapor transport (PVT), and by the Bridgman (melt) method. These crystals along with pure and stoichiometric BiI3 powder have been investigated by differential scanning calorimetry (DSC). The DSC results show that pure BiI3 powder has no phase transition and melts around 408 C. While we found no evidence for the high temperature dissociation of BiI3, the DSC measurements show that crystals grown from melt method contain a significantly large amount of Bi-rich phases than crystals grown from PVT method, as indicated by phase transition detected at 270, 285, 298 and 336 C.

  7. The growth of ruby single crystals

    Directory of Open Access Journals (Sweden)

    ALEKSANDAR GOLUBOVIC

    2005-02-01

    Full Text Available Ruby (Cr:Al2O3 single crystals were grown by the Czochralski technique in an argon atmosphere. The critical crystal diameter dc = 1.0 cm and the critical rate of rotation wc = 20 rpm were calculated by equations of the hydrodynamics of the melt. The rate of crystal growthwas experimentally obtained to be 2.7 mm/h. For chemical polishing, conc. H3PO4 at 593 K for an exposure of 3 hours was determined. Conc. H3PO4 at 523 K for an exposure of 3 h was found to be a suitable etching solution. The lattice parameters a = 0.47627(6 nm and c = 1.301(1 nm were determined by X-ray powder diffraction. The obtained results are discussed and compared with published data.

  8. Growth and characterization of doped LiF crystals

    Energy Technology Data Exchange (ETDEWEB)

    Khan, S.; Kim, H. J. [Kyungpook National University, Daegu (Korea, Republic of); Rooh, G. [Abdul Wali Khan University, Mardan (Pakistan); Kim, S. H. [Cheongju University, Cheongju (Korea, Republic of)

    2014-12-15

    Transparent and crack-free crystals of LiF:x (x = Ca, Pb, Na, Tl) were successfully grown by using the Czochralski method. Growth parameters such as the pulling and the rotation rates were optimized. The grown crystals were characterized and compared by using X-ray luminescence. Tl- and Na-doped crystals showed better luminescence intensity than crystals with other dopants. Thermoluminescence (TL) glow curves were obtained to study the crystal defects in the grown samples. Activation energies were calculated from the TL glow curves. The temperature dependence of the light yield in the temperature range from 10 to 300 K under alpha particle excitation was also investigated. The light yield was found to be larger at low temperatures. Na- and Tl-doped crystals showed 35% and 20% increases in the light yield, respectively, at low temperatures as compared to room temperature.

  9. Growth of Tungsten Bronze Family Crystals

    Science.gov (United States)

    1989-03-01

    retracti e index nuclear activation of undoped and cerium-doped SBN. Since undoped SBN is photorefractie while containing only trace These equations %ere...Boules as large as 2 to 2.5 cm in diameter are now routinely grown. AXIS APERTURlE OMAA RETICON ABERRATOR r. POLARIZATIONI , ~ SSN ETALI Rt EAM ’SPLITTER...1tMl-R 1A, (REFERENCE OMIA WITH CRYSTAL SBN Cxi SEIN CeRETICON PHOTODIODE RETICON PHOTODIODE I POLARIZED EXTRAORDINARY OMAA (REFERENCE C2= CRYSTAL 9O I

  10. Crystal growth and properties of novel organic nonlinear optical crystals of 4-Nitrophenol urea

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, M. Krishna, E-mail: krishnamohan.m@ktr.srmuniv.ac.in; Ponnusamy, S.; Muthamizhchelvan, C.

    2017-07-01

    Single crystals of 4-Nitrophenol urea have been grown from water using slow evaporation technique at constant temperature, with the vision to improve the properties of the crystals. The unit cell parameters of the grown crystals were determined by single crystal and powder X-Ray diffraction. FTIR studies reveals the presence of different vibrational bands. The Optical studies confirmed that the crystal is transparent up to 360 nm .TGA and DSC studies were carried out to understand the thermal behavior of crystals. The SHG studies show the suitability of the crystals for NLO applications. The etching studies were carried out to study the behavior of the crystals under different conditions.These studies reveal that the crystals of 4-Nitrophenol urea are suitable for device applications. - Highlights: • 4-Nitrophenol urea crystals of dimensions 14 mm × 1 mm were grown. • UV–Visible studies indicate the crystal is transparent in the region of 370–800 nm. • Thermal studies show the crystal starts decomposing at 170 °C. • SHG studies indicate that the crystals have NLO efficiency 3.5 times that of KDP.

  11. Effects of impurities on growth habit of KDP crystal

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of metaphosphate, boric acid and quaternary ammonium cations with different concentration on the growth habit of KDP crystal are reported. The results are analyzed and discussed, which show that the effects of different impurities on the growth habit of KDP are not the same. It is due to the different adsorption mechanism of the impurities.

  12. Crystal growth from the melt by capillary shaping techniques

    Science.gov (United States)

    Ossipyan, Y. A.; Tatarchenko, V. A.

    A method based on the Lyapunov stability theory has been developed for studying the stability of crystallization by capillary shaping techniques (including Czochralski, Stepanov, EFG, Verneuil and floating zone methods). The preliminary results of the analysis of stability shows that the crystallization by capillary shaping technique under microgravitation conditions is more stable in some cases than under the action of gravitation. To get deeper into details of the capillary shaping technique under microgravitation conditions, we have carried out model experiments using two immiscible liquids of equal density and crystallization of sapphire in terrestrial conditions with small Bond number. The experiments on the copper crystallization were realized in the high-altitude rockets. Our experiments on indium crystallization carried out in the orbital space probe “Salyut” yielded cylindrical specimens.

  13. A microfluidic, high throughput protein crystal growth method for microgravity.

    Directory of Open Access Journals (Sweden)

    Carl W Carruthers

    Full Text Available The attenuation of sedimentation and convection in microgravity can sometimes decrease irregularities formed during macromolecular crystal growth. Current terrestrial protein crystal growth (PCG capabilities are very different than those used during the Shuttle era and that are currently on the International Space Station (ISS. The focus of this experiment was to demonstrate the use of a commercial off-the-shelf, high throughput, PCG method in microgravity. Using Protein BioSolutions' microfluidic Plug Maker™/CrystalCard™ system, we tested the ability to grow crystals of the regulator of glucose metabolism and adipogenesis: peroxisome proliferator-activated receptor gamma (apo-hPPAR-γ LBD, as well as several PCG standards. Overall, we sent 25 CrystalCards™ to the ISS, containing ~10,000 individual microgravity PCG experiments in a 3U NanoRacks NanoLab (1U = 10(3 cm.. After 70 days on the ISS, our samples were returned with 16 of 25 (64% microgravity cards having crystals, compared to 12 of 25 (48% of the ground controls. Encouragingly, there were more apo-hPPAR-γ LBD crystals in the microgravity PCG cards than the 1g controls. These positive results hope to introduce the use of the PCG standard of low sample volume and large experimental density to the microgravity environment and provide new opportunities for macromolecular samples that may crystallize poorly in standard laboratories.

  14. Synthesis, crystal growth and mechanical properties of Bismuth Silicon Oxide (BSO) single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Riscob, B. [CSIR – National Physical Laboratory, Crystal Growth and X-ray Analysis, New Delhi 110 012 (India); Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat (India); Shkir, Mohd. [CSIR – National Physical Laboratory, Crystal Growth and X-ray Analysis, New Delhi 110 012 (India); Ganesh, V. [Department of Physics, Kakatiya University, Warangal 506 009 (India); Vijayan, N.; Maurya, K.K. [CSIR – National Physical Laboratory, Crystal Growth and X-ray Analysis, New Delhi 110 012 (India); Kishan Rao, K. [Department of Physics, Kakatiya University, Warangal 506 009 (India); Bhagavannarayana, G., E-mail: bhagavan@mail.nplindia.ernet.in [CSIR – National Physical Laboratory, Crystal Growth and X-ray Analysis, New Delhi 110 012 (India)

    2014-03-05

    Highlights: • Synthesis of Bismuth Silicon Oxide (BSO). • Single crystal growth of BSO by Czochralski (Cz) method. • Complete mechanical analysis by device fabrication point of view. • Theoretical and experimental calculations of mechanical properties. -- Abstract: Bismuth Silicon Oxide (BSO) is an efficient material for piezo-electric and electro-optic applications. In this article, growth of BSO single crystal by high temperature Czochralski melt growth technique and its detailed mechanical characterization by Vickers microhardness, fracture toughness, crack propagation, brittleness index and yield strength have been reported. The raw material was synthesized by solid state reaction using the stoichiometric ratio of high purity bismuth tri-oxide and silicon di-oxide. The synthesized material was charged in the platinum crucible and then melted. The required rotation and pulling rate was optimized for BSO single crystal growth and good quality single crystal has been harvested after a time span of 5 days. Powder X-ray diffraction analysis confirms the parent crystallization phase of BSO. The experimentally studied mechanical behavior of the crystal is explained using various theoretical models. The anisotropic nature of the crystals is studied using Knoop indentation technique.

  15. Analysis of Boundary Conditions for Crystal Defect Atomistic Simulations

    Science.gov (United States)

    Ehrlacher, V.; Ortner, C.; Shapeev, A. V.

    2016-12-01

    Numerical simulations of crystal defects are necessarily restricted to finite computational domains, supplying artificial boundary conditions that emulate the effect of embedding the defect in an effectively infinite crystalline environment. This work develops a rigorous framework within which the accuracy of different types of boundary conditions can be precisely assessed. We formulate the equilibration of crystal defects as variational problems in a discrete energy space and establish qualitatively sharp regularity estimates for minimisers. Using this foundation we then present rigorous error estimates for (i) a truncation method (Dirichlet boundary conditions), (ii) periodic boundary conditions, (iii) boundary conditions from linear elasticity, and (iv) boundary conditions from nonlinear elasticity. Numerical results confirm the sharpness of the analysis.

  16. Aluminum nitride bulk crystal growth in a resistively heated reactor

    Science.gov (United States)

    Dalmau, Rafael Federico

    A resistively heated reactor capable of temperatures in excess of 2300°C was used to grow aluminum nitride (AlN) bulk single crystals from an AlN powder source by physical vapor transport (PVT) in nitrogen atmosphere. AlN crystals were grown at elevated temperatures by two different methods. Self-seeded crystals were obtained by spontaneous nucleation on the crucible walls, while seeded growth was performed on singular and vicinal (0001) surfaces of silicon carbide (SiC) seeds. During self-seeded growth experiments a variety of crucible materials, such as boron nitride, tungsten, tantalum, rhenium, tantalum nitride, and tantalum carbide, were evaluated. These studies showed that the morphology of crystals grown by spontaneous nucleation strongly depends on the growth temperature and contamination in the reactor. Crucible selection had a profound effect on contamination in the crystal growth environment, influencing nucleation, coalescence, and crystal morphology. In terms of high-temperature stability and compatibility with the growth process, the best results for AlN crystal growth were obtained in crucibles made of sintered tantalum carbide or tantalum nitride. In addition, contamination from the commercially purchased AlN powder source was reduced by presintering the powder prior to growth, which resulted in a drastic reduction of nearly all impurities. Spontaneously grown single crystals up to 15 mm in size were characterized by x-ray diffraction, x-ray topography, glow discharge mass spectrometry, and secondary ion mass spectrometry. Average dislocation densities were on the order of 103 cm -3, with extended areas virtually free of dislocations. High resolution rocking curves routinely showed peak widths as narrow as 7 arcsec, indicating a high degree of crystalline perfection. Low-temperature partially polarized optical reflectance measurements were used to calculate the crystal-field splitting parameter of AlN, Deltacr = -230 meV, and a low-temperature (1

  17. Crystal growth and magnetic property of YFeO3 crystal

    Indian Academy of Sciences (India)

    Anhua Wu; Hui Shen; Jun Xu; Zhanliang Wang; Linwen Jiang; Liqing Luo; Shujuan Yuan; Shixun Cao; Huaijin Zhang

    2012-04-01

    YFeO3 and other rare earth substituted crystals with distorted orthorhombic pervoskite-like structure (space group, ) have attracted much attention due to their remarkable magnetic properties of primary significance for technological applications. In the present work, the floating zone growth of YFeO3 crystals has been systematically investigated and high quality YFeO3 crystal was obtained by optimized process. The magnetic properties of YFeO3 crystal were investigated, and it indicated the high magneto-optical property in YFeO3 crystals with specific orientation due to its anisotropy. YFeO3 crystals display superior performance in the application magneto-optical current sensors and fast latching optical switches.

  18. Hydrothermal crystal growth of oxides for optical applications

    Science.gov (United States)

    McMillen, Colin David

    2007-12-01

    The manipulation of light has proven to be an integral part of today's technology-based society. In particular, there is great interest in obtaining coherent radiation in all regions of the optical spectrum to advance technology in military, medical, industrial, scientific and consumer fields. Exploring new crystal growth techniques as well as the growth of new optical materials is critical in the advancement of solid state optics. Surprisingly, the academic world devotes little attention to the growth of large crystals. This shortcoming has left gaps in the optical spectrum inaccessible by solid state devices. This dissertation explores the hydrothermal crystal growth of materials that could fill two such gaps. The first gap exists in the deep-UV region, particularly below 200 nm. Some materials such as LiB3O5 and beta-BaB2O4 can generate coherent light at wavelengths as low as 205 nm. The growth of these materials was explored to investigate the feasibility of the hydrothermal method as a new technique for growing these crystals. Particular attention was paid to the descriptive chemistry surrounding these systems, and several novel structures were elucidated. The study was also extended to the growth of materials that could be used for the generation of coherent light as low as 155 nm. Novel synthetic schemes for Sr2Be2B2O7 and KBe2BO 3F2 were developed and the growth of large crystals was explored. An extensive study of the structures, properties and crystal growth of related compounds, RbBe2BO3F2 and CsBe2BO 3F2, was also undertaken. Optimization of a number of parameters within this family of compounds led to the hydrothermal growth of large, high quality single crystal at rates suitable for large-scale growth. The second gap in technology is in the area of high average power solid state lasers emitting in the 1 mum and eye-safe (>1.5 mum) regions. A hydrothermal technique was developed to grow high quality crystals of Sc 2O3 and Sc2O3 doped with suitable

  19. Pathways to self-organization: crystallization via nucleation and growth

    CERN Document Server

    Jungblut, Swetlana

    2016-01-01

    Crystallization, a prototypical self-organization process during which a disordered state spontaneously transforms into a crystal characterized by a regular arrangement of its building blocks, usually proceeds by nucleation and growth. In the initial stages of the transformation, a localized nucleus of the new phase forms in the old one due to a random fluctuation. Most of these nuclei disappear after a short time, but rarely a crystalline embryo may reach a critical size after which further growth becomes thermodynamically favorable and the entire system is converted into the new phase. In these lecture notes, we will discuss several theoretical concepts and computational methods to study crystallization. More specifically, we will address the rare event problem arising in the simulation of nucleation processes and explain how to calculate nucleation rates accurately. Particular attention is directed towards discussing statistical tools to analyze crystallization trajectories and identify the transition mech...

  20. Growth and Characterization of Agar Gel Grown Brushite Crystals

    Directory of Open Access Journals (Sweden)

    V. B. Suryawanshi

    2014-01-01

    Full Text Available Brushite [CaHPO4·2H2O] or calcium hydrogen phosphate dihydrate (CHPD also known as urinary crystal is a stable form of calcium phosphate. The brushite crystals were grown by single and double diffusion techniques in agar-agar gel at room temperature. Effects of different growth parameters were discussed in single diffusion and double diffusion techniques. Good quality star, needle, platy, rectangular, and prismatic shaped crystals in single diffusion and nuclei with dendritic growth were obtained in double diffusion. These grown nuclei were characterized by scanning electron microscopy (SEM, Fourier transform infrared (FTIR spectroscopy, X-ray diffraction (XRD, and thermogravimetric analysis (TGA. SEM has shown the different morphologies of crystals; FTIR has confirmed the presence of functional groups; crystalline nature was supported by XRD, whereas the TGA indicates total 24.68% loss in weight and formation of stable calcium pyrophosphate (Ca2P2O7 at 500°C.

  1. Lattice Boltzmann Simulation of Water Isotope Fractionation During Growth of Ice Crystals in Clouds

    Science.gov (United States)

    Lu, G.; Depaolo, D.; Kang, Q.; Zhang, D.

    2006-12-01

    The isotopic composition of precipitation, especially that of snow, plays a special role in the global hydrological cycle and in reconstruction of past climates using polar ice cores. The fractionation of the major water isotope species (HHO, HDO, HHO-18) during ice crystal formation is critical to understanding the global distribution of isotopes in precipitation. Ice crystal growth in clouds is traditionally treated with a spherically- symmetric steady state diffusion model, with semi-empirical modifications added to account for ventilation and for complex crystal morphology. Although it is known that crystal growth rate, which depends largely on the degree of vapor over-saturation, determines crystal morphology, there are no existing quantitative models that directly relate morphology to the vapor saturation factor. Since kinetic (vapor phase diffusion-controlled) isotopic fractionation also depends on growth rate, there should be a direct relationship between vapor saturation, crystal morphology, and crystal isotopic composition. We use a 2D Lattice-Boltzmann model to simulate diffusion-controlled ice crystal growth from vapor- oversaturated air. In the model, crystals grow solely according to the diffusive fluxes just above the crystal surfaces, and hence crystal morphology arises from the initial and boundary conditions in the model and does not need to be specified a priori. The input parameters needed are the isotope-dependent vapor deposition rate constant (k) and the water vapor diffusivity in air (D). The values of both k and D can be computed from kinetic theory, and there are also experimentally determined values of D. The deduced values of k are uncertain to the extent that the sticking coefficient (or accommodation coefficient) for ice is uncertain. The ratio D/k is a length that determines the minimum scale of dendritic growth features and allows us to scale the numerical calculations to atmospheric conditions using a dimensionless Damkohler number

  2. Measurement and analysis of the mannitol partition coefficient in sucrose crystallization under simulated industrial conditions.

    Science.gov (United States)

    Eggleston, Gillian; Yen, Jenny Wu Tiu; Alexander, Clay; Gober, Jessica

    2012-07-01

    Mannitol is a major deterioration product of Leuconstoc mesenteroides bacterial metabolism of sucrose and fructose from both sugarcane and sugar beet. The effect of crystallization conditions on the mannitol partition coefficient (K(eff)) between impure sucrose syrup and crystal has been investigated in a batch laboratory crystallizer and a batch pilot plant-scale vacuum pan. Laboratory crystallization was operated at 65.5°C (150°F), 60.0°C (140°F), and 51.7°C (125°F) with a 78.0 Brix (% refractometric dissolved solids) pure sucrose syrup containing 0%, 0.1%, 0.2%, 1.0%, 2.0%, 3.0%, and 10% (at 65.5°C only) mannitol on a Brix basis. Produced mother liquor and crystals were separated by centrifugation and their mannitol contents measured by ion chromatography with integrated pulsed amperometric detection (IC-IPAD). The extent of mannitol partitioning into the crystals depended strongly on the mannitol concentration in the feed syrup and, to a lesser extent, the crystallization temperature. At 65.5 and 60.0°C, the K(eff) varied from ~0.4% to 3.0% with 0.2% to 3.0% mannitol in the feed syrup, respectively. The mannitol K(eff) was lower than that reported for dextran (~9-10% K(eff)), another product of Leuconstoc deterioration, under similar sucrose crystal growth conditions. At 10% mannitol concentration in the syrup at 65.5°C, co-crystallization of mannitol with sucrose occurred and the crystal growth rate was greatly impeded. In both laboratory and pilot plant crystallizations (95.7% purity; 78.0 Brix; 65.5°C), mannitol tended to cause conglomerates to form, which became progressively worse with increased mannitol syrup concentration. At the 3% mannitol concentration, crystallization at both the laboratory and pilot plant scales was more difficult. Mannitol incorporation into the sucrose crystal results mostly from liquid syrup inclusions but adsorption onto the crystal surface may play a minor role at lower mannitol concentrations.

  3. Growth, crystalline perfection and characterization of benzophenone oxime crystal

    Science.gov (United States)

    Rajasekar, M.; Muthu, K.; Meenatchi, V.; Bhagavannarayana, G.; Mahadevan, C. K.; Meenakshisundaram, SP.

    Single crystals of benzophenone oxime (BPO) have been grown by slow evaporation solution growth technique from ethanol at room temperature. The single crystal X-ray diffraction study reveals that the crystal belongs to monoclinic system and cell parameters are, a = 9.459 Å, b = 8.383 Å, c = 26.690 Å, v = 2115 Å3 and β = 92.807°. The structure and the crystallinity of the materials were further confirmed by powder X-ray diffraction analysis. The various functional groups present in the molecule are confirmed by FT-IR analysis. The TG/DSC studies reveal the purity of the material and the crystals are transparent in the entire visible region having a lower optical cut-off at ˜300 nm. The crystalline perfection was evaluated by high-resolution X-ray diffraction (HRXRD). The crystal is further characterized by Kurtz powder technique, dielectric studies and microhardness analysis.

  4. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization

    Science.gov (United States)

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-03-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8–133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared.

  5. Vapor Growth of Mercuric Iodide Tetragonal Prismatic Crystals

    Science.gov (United States)

    2013-03-01

    These steps were followed by immersion in 1% potassium iodide (KI) solution. The apparatus were then cleaned and rinsed thoroughly with deionized (DI...Pergamon Press, 1973. [34] N. Lyakh, “Composition and kinetic characteristics of vapour phase during mercuric iodide growing,” Crystal Res. Technol...DTRA-TR-13-6 Vapor Growth of Mercuric Iodide Tetragonal Prismatic Crystals Approved for public release, distribution is unlimited. March 2013

  6. Defect reduction in seeded aluminum nitride crystal growth

    Science.gov (United States)

    Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.; Slack, Glen A.

    2017-06-06

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density .ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  7. Defect reduction in seeded aluminum nitride crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.; Stack, Glen A.

    2017-04-18

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  8. Growth of lead molybdate crystals by vertical Bridgman method

    Indian Academy of Sciences (India)

    Hongbing Chen; Congxin Ge; Rongsheng Li; Jinhao Wang; Changgen Wu; Xianling Zeng

    2005-10-01

    The growth of PbMoO4 crystals by the modified Bridgman method has been reported in this paper. The feed material with strict stoichiometric composition is desirable for the Bridgman growth of the crystals. The continuous composition change of the melts during growth can be avoided because the volatilization of melts is limited by sealed platinum crucibles. By means of the optimum growth parameters such as the growth rate of < 1.2 mm/h and the temperature gradient of 20 ∼ 40°C/cm across the solid–liquid interface under the furnace temperature of 1140 ∼ 1200°C, large size crystals with high optical uniformity were grown successfully. The distribution of Pb and Mo concentration along the growth axis was measured by X-ray fluorescence analysis. The single crystallinity of the grown sample was evaluated by the double-crystal X-ray rocking curve. The transmission spectra were measured in the range of 300–800 nm at room temperature.

  9. Zeolite crystal growth in space - What has been learned

    Science.gov (United States)

    Sacco, A., Jr.; Thompson, R. W.; Dixon, A. G.

    1993-01-01

    Three zeolite crystal growth experiments developed at WPI have been performed in space in last twelve months. One experiment, GAS-1, illustrated that to grow large, crystallographically uniform crystals in space, the precursor solutions should be mixed in microgravity. Another experiment evaluated the optimum mixing protocol for solutions that chemically interact ('gel') on contact. These results were utilized in setting the protocol for mixing nineteen zeolite solutions that were then processed and yielded zeolites A, X and mordenite. All solutions in which the nucleation event was influenced produced larger, more 'uniform' crystals than did identical solutions processed on earth.

  10. Directed Growth of Orthorhombic Crystals in a Micropillar Array.

    Science.gov (United States)

    Holzner, Gregor; Binder, Claudia; Kriel, Frederik H; Priest, Craig

    2017-02-14

    We report directed growth of orthorhombic crystals of potassium permanganate in spatial confinement of a micropillar array. The solution is introduced by spontaneous wicking to give a well-defined film (thickness 10-15 μm; volume ∼600 nL) and is connected to a reservoir (several microliters) that continuously "feeds" the evaporating film. When the film is supersaturated, crystals nucleate and preferentially grow in specific directions guided by one of several possible linear paths through the pillar lattice. Crystals that do not initially conform are stopped at an obstructing pillar, branch into another permitted direction, or spontaneously rotate to align with a path and continue to grow. Microspectroscopy is able to track the concentration of solute in a small region of interest (70 × 100 μm(2)) near to growing crystals, revealing that the solute concentration initially increases linearly beyond the solubility limit. Crystal growth near the region of interest resulted in a sharp decrease in the local solute concentration (which rapidly returns the concentration to the solubility limit), consistent with estimated diffusion time scales (crystal orientation in nanoliter samples will provide new insight into microscale dynamics of microscale crystallization.

  11. Cystone, a well-known herbal formulation, inhibits struvite crystal growth formation in single diffusion gel growth technique

    Directory of Open Access Journals (Sweden)

    Pralhad S. Patki

    2013-02-01

    Full Text Available Objective: The present study was aimed to evaluate the beneficial effect of Cystone® against struvite crystal growth in in vitro conditions. Methods: Various concentrations of Cystone® was prepared in 1 M magnesium acetate solution and evaluated for crystal growth inhibition assay by a well-known method called single diffusion gel growth technique in vitro. Results: Cystone®, a well-known polyherbal formulation, at 0.5, 1 and 2% concentrations showed significant and dose-dependent inhibition of struvite crystal growth formation in in vitro by reducing number, total mass and total volume of the struvite crystals formed and also caused fragmentation of grown struvite crystals in the gel matrix. Conclusion: The results of the present study indicate, Cystone® significantly retards the formation of struvite stones and also brings about its fragmentation. This could be one of the probable mechanisms behind the beneficial effect offered by Cystone® in the clinical management of urolithiasis and urinary tract infections. [J Exp Integr Med 2013; 3(1: 51-55

  12. Crystal growth of aragonite in the presence of phosphate

    Science.gov (United States)

    Tadier, Solène; Rokidi, Stamatia; Rey, Christian; Combes, Christèle; Koutsoukos, Petros G.

    2017-01-01

    The crystal growth of aragonite was investigated at pH 7.8, 37 °C and constant solution supersaturation from aragonite-seeded supersaturated solutions. The effect of the presence of orthophosphate ions in the supersaturated solution on the kinetics of crystallization of aragonite was investigated over the range of orthophosphate concentrations of 0.25 μM-1 mM. In the presence of orthophosphate in the range of 0.25 μM-8 μM, the crystal growth rate of aragonite decreased with increasing phosphate concentration. At orthophosphate concentration levels exceeding 2 μM, induction times were measured and were found to increase with orthophosphate concentration. At orthophosphate concentration levels >8 μM, the crystal growth of aragonite was inhibited, suggesting the blockage of the active growth sites by the adsorption of orthophosphate ions. Adsorption was confirmed by the investigation of orthophosphate uptake on aragonite, which was: i) found to depend on the equilibrium concentration of orthophosphate in aqueous solutions saturated with respect to aragonite; ii) not influenced by the ionic strength of the electrolyte up to 0.15 M NaCl, showing that electrostatic interactions between orthophosphate and CaCO3 did not play a significant role in this concentration range. Adsorption data of orthophosphate on the aragonite crystals gave satisfactory fit to the Langmuir adsorption model and was confirmed by XPS analysis.

  13. Effects of Convective Solute and Impurity Transport in Protein Crystal Growth

    Science.gov (United States)

    Vekilov, Peter G.; Thomas, Bill R.; Rosenberger, Franz

    1998-01-01

    High-resolution optical interferometry was used to investigate the effects of forced solution convection on the crystal growth kinetics of the model protein lysozyme. Most experiments were conducted with 99.99% pure protein solutions. To study impurity effects, approx. 1% of lysozyme dimer (covalently bound) was added in some cases. We show that the unsteady kinetics, corresponding to bunching of growth steps, can be characterized by the Fourier components of time traces of the growth rate. Specific Fourier spectra are uniquely determined by the solution conditions (composition, temperature, and flow rate) and the growth layer source activity. We found that the average step velocity and growth rate increase by approx. I0% with increasing flow rate, as a result of the enhanced solute supply to the interface. More importantly, faster convective transport results in lower fluctuation amplitudes. This observation supports our rationale for system-dependent effects of transport on the structural perfection of protein crystals. We also found that solution flow rates greater than 500 microns/s result in stronger fluctuations while the average growth rate is decreased. This can lead to growth cessation at low supersaturations. With the intentionally contaminated solutions, these undesirable phenomena occurred at about half the flow rates required in pure solutions. Thus, we conclude that they are due to enhanced convective supply of impurities that are incorporated into the crystal during growth. Furthermore, we found that the impurity effects are reduced at higher crystal growth rates. Since the exposure time of terraces is inversely proportional to the growth rate, this observation suggests that the increased kinetics instability results from impurity adsorption on the interface. Finally, we provide evidence relating earlier observations of "slow protein crystal growth kinetics" to step bunch formation in response to nonsteady step generation.

  14. Rapid growth of a large-scale(600 mm aperture) KDP crystal and its optical quality

    Institute of Scientific and Technical Information of China (English)

    Guohui; Li; Guozong; Zheng; Yingkun; Qi; Peixiu; Yin; En; Tang; Fei; Li; Jing; Xu; Taiming; Lei; Xiuqin; Lin; Min; Zhang; Junye; Lu; Jinbo; Ma; Youping; He; Yuangen; Yao

    2014-01-01

    Potassium dihydrogen phosphate(KDP) single crystals are the only nonlinear crystals currently used for electro-optic switches and frequency converters in inertial confinement fusion research, due to their large dimension and exclusive physical properties. Based on the traditional solution-growth process, large bulk KDP crystals, usually with sizes up to600 × 600 mm2 so as to make a frequency doubler for the facility requirement loading highly flux of power laser, can be grown in standard Holden-type crystallizers, without spontaneous nucleation and visible defects, one to two orders of magnitude faster than by conventional methods. Pure water and KDP raw material with a few ion impurities such as Fe,Cr, and Al(less than 0.1 ppm) were used. The rapid-growth method includes extreme conditions such as temperature range from 60 to 35℃ , overcooling up to 5℃ , growth rates exceeding 10 mm/day, and crystal size up to 600 mm. The optical parameters of KDP crystals were determined. The optical properties of crystals determined indicate that they are of favorable quality for application in the facility.

  15. Growth of single crystals of mercuric iodide (HgI/sub 2/) in spacelab III

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Berg, L.; Schnepple, W.F.

    1981-01-01

    Continued development of a system designed to grow crystals by physical vapor transport in the environment of Spacelab III will be described, with special emphasis on simulation of expected space conditions, adjustment of crystal growth parameters, and on board observation and control of the experiment by crew members and ground personnel. A critical factor in the use of mercuric iodide for semiconductor detectors of x-rays and gamma-rays is the crystalline quality of the material. The twofold purpose of the Spacelab III experiment is therefore to grow single crystals with superior electronic properties as an indirect result of the greatly reduced gravity field during the growth, and to obtain data which will lead to improved understanding of the vapor transport mechanism. The experiments planned to evaluate the space crystals, including gamma-ray diffractometry and measurements of stoichiometry, lattice dimensions, mechanical strength, luminescense, and detector performance are discussed.

  16. Growth Defects in Cubic KTa1-xNbxO3 Crystal

    Institute of Scientific and Technical Information of China (English)

    WANG Xu-Ping; WANG Ji-Yang; WU-Jian; YU Yong-Gui; ZHANG Huai-Jin

    2008-01-01

    Potassium tantalate niobate(KTa1-x NbxO3,KTN)crystals with different dimensions and quality situations were grown by Czochralski method.Crystal growth process and morphology properties of KTN are presented in this paper.It was found that some defects,such as bubble,inclusion,crack,dislocation etc.,can all appear if the crystal is grown in an improper condition.The character and formation mechanism of such defects in macro growth are discussed.We consider that the CO2,which Was not released absolutely during the sintering process and dissolved in the melt,led to bubbles.The composition of the inclusion caused by high pulling and rotation rates is KTN polycrystalline.The crack and dislocation in KTN crystal mainly come from improper temperature field.Etching and high-resolution X-ray diffraction(HRXRD)experiment results indicate that the central area is the defects concentrated.

  17. The influence of crystallization conditions on the morphology of lactose intended for use as a carrier for dry powder aerosols.

    Science.gov (United States)

    Zeng, X M; Martin, G P; Marriott, C; Pritchard, J

    2000-06-01

    Lactose has been widely used as a carrier for inhalation aerosols. The carrier morphology is believed to affect the delivery of the drug. The aim of this study was to investigate the effects of crystallization conditions on the morphology of alpha-lactose monohydrate intended for use as the carrier for dry powder aerosols. The crystallization of lactose was carried out from aqueous solutions at different supersaturations, temperatures, different stages of crystallization and in the presence of different water-miscible organic solvents. The majority of lactose crystals were found to be either tomahawk-shaped or pyramidal after crystallization at an initial lactose concentration between 33-43% w/w, but these became prismatic if the lactose concentration was increased to 50% w/w. A further increase in the lactose concentration to 60% w/w led to the preparation of elongated cuboidal crystals. Higher initial lactose concentrations tended to result in the crystallization of more elongated particles. Crystallization at 40 degrees C was shown to prepare lactose crystals with a more regular shape and a smoother surface than those crystallized at 0 degrees C. Lactose particles generated during the later stage of crystallization were found to be more regular in shape with a smoother surface than those prepared in the earlier stage. The addition of 10% (v/v) methanol or ethanol or acetone to the mother liquor increased the growth rate of lactose particles whereas addition of propanol or glycerine inhibited the rate of crystal growth. Lactose crystals prepared in the presence of glycerine were more regularly shaped with a smoother surface than those prepared in the presence of ethanol or acetone. All the resultant crystals were shown to comprise alpha-lactose monohydrate. Lactose crystals could be prepared with a precisely defined morphology by means of carefully controlling the crystallization conditions.

  18. Modelling of transport phenomena and defects in crystal growth processes

    Indian Academy of Sciences (India)

    S Pendurti; H Zhang; V Prasad

    2001-02-01

    A brief review of single crystal growth techniques and the associated problems is presented. Emphasis is placed on models for various transport and defect phenomena involoved in the growth process with the ultimate aim of integrating them into a comprehensive numerical model. The sources of dislocation nucleation in the growing crystal are discussed, and the propagation and multiplication of these under the action of thermal stresses is discussed. A brief description of a high-level numerical technique based on multiple adaptive grid generation and finite volume discretization is presented, followed by the result of a representative numerical simulation.

  19. Crystal-growth Underground Breeding Extra-sensitive Detectors

    Science.gov (United States)

    Mei, Dongming

    2012-02-01

    CUBED (Center for Ultra-Low Background Experiments at DUSEL) collaborators from USD, SDSMT, SDSU, Sanford Lab, and Lawrence Berkeley National Laboratory are working on the development of techniques to manufacture crystals with unprecedented purity levels in an underground environment that may be used by experiments proposed for DUSEL. The collaboration continues to make significant progress toward its goal of producing high purity germanium crystals. High quality crystals are being pulled on a weekly basis at the temporary surface growth facility located on the USD campus. The characterization of the grown crystals demonstrates that the impurity levels are nearly in the range of the needed impurity level for detector-grade crystals. Currently, the crystals are being grown in high-purity hydrogen atmosphere. With an increase in purity due to the zone refining, the group expects to grow high-purity crystals by the end of 2011. The one third of the grown crystals will be manufactured to be detectors; the remaining will be fabricated in to wafers that have large applications in electro and optical devices as well as solar panels. This would allow the research to be connected to market and create more than 30 jobs and multi millions revenues in a few years.

  20. (Li1−xFexOHFeSe Superconductors: Crystal Growth, Structure, and Electromagnetic Properties

    Directory of Open Access Journals (Sweden)

    Guo-Yong Zhang

    2017-06-01

    Full Text Available This review focuses on the growth of high-quality (Li1−xFexOHFeSe single crystals by a hydrothermal method using floating-zone-grown AxFe2−ySe2 (A = K, Rb, and Cs as precursors. The structure, superconductivity, and magnetic behavior of the obtained crystals are highly influenced by the growth conditions, such as time, temperature, and composition. A phase diagram with temperature against the c-lattice constant is summarized including the antiferromagnetic spin density wave, superconducting, and paramagnetic phases.

  1. Strontium titanate - An index to the literature on properties and the growth of single crystals

    Science.gov (United States)

    Nassau, K.; Miller, A. E.

    1988-08-01

    This paper presents a list of references to the most important information concerning properties and the growth conditions of single-crystal SrTiO3. References to a wide variety of crystal growth techniques are presented, with special consideration given to those for the Verneuil technique. References to the properties of strontium titanate are grouped into five categories: (1) structural, thermal, and mechanical properties; (2) electric and magnetic properties; (3) optical and related properties; (4) phase diagrams, mixed systems, and chemical properties; and (5) the dopants used and their properties. Some of the more useful numerical constants are also included.

  2. The dynamic nature of crystal growth in pores

    Science.gov (United States)

    Godinho, Jose R. A.; Gerke, Kirill M.; Stack, Andrew G.; Lee, Peter D.

    2016-09-01

    The kinetics of crystal growth in porous media controls a variety of natural processes such as ore genesis and crystallization induced fracturing that can trigger earthquakes and weathering, as well as, sequestration of CO2 and toxic metals into geological formations. Progress on understanding those processes has been limited by experimental difficulties of dynamically studying the reactive surface area and permeability during pore occlusion. Here, we show that these variables cause a time-dependency of barite growth rates in microporous silica. The rate is approximately constant and similar to that observed on free surfaces if fast flow velocities predominate and if the time-dependent reactive surface area is accounted for. As the narrower flow paths clog, local flow velocities decrease, which causes the progressive slowing of growth rates. We conclude that mineral growth in a microporous media can be estimated based on free surface studies when a) the growth rate is normalized to the time-dependent surface area of the growing crystals, and b) the local flow velocities are above the limit at which growth is transport-limited. Accounting for the dynamic relation between microstructure, flow velocity and growth rate is shown to be crucial towards understanding and predicting precipitation in porous rocks.

  3. In-Situ Observation of SiC Bulk Single Crystal Growth by XRD System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In-situ analysis for SiC bulk single crystal growth was reported using vertical X-ray diffractometer system. A furnace for SiC sublimation growth combined with the XRD system which possessed three kinds of functions including topography, rocking curve measurement and crystal growth rate monitoring was developed. These functions could contribute as a powerful tool finding the optimum growth condition by dynamic observation in the crucible. In this study, the in-situ X-ray topographs succeeded to capture dynamic elongation of defects and dislocation generated in the SiC growing crystals. The in-situ rocking curve measurement reviled appearance of mosaic structure in the SiC crystal grown with high growth rate. The in-situ growth rate monitoring also succeeded very precisely using the direct X-ray beam absorption. On the base of findings and facts obtained by the in-situ observations, the importance for the SiC growth was discussed.

  4. Optimal growth conditions for Isochrysis galbana

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.; Cohen, Z.; Abeliovich, A.

    1986-01-01

    Environmental and nutritional growth conditions of the unicellular microalga Isochrysis galbana were studied under laboratory conditions. The information obtained was used for cultivating the alga in outdoor miniponds. Outdoor cultures stayed monoalgal and free of predators as long as the temperature did not fall below 19 degrees C and the rate of dilution did not exceed 40% of the culture's volume. Isochrysis galbana grown in outdoor cultures provided lipid concentrations of 24-28% of ash free dry matter. 12 references.

  5. Limit growth of ice crystals under different temperature oscillations levels in nile Tilapia

    Directory of Open Access Journals (Sweden)

    Mirko Salomon Chávez GUTIÉRREZ

    Full Text Available Abstract The degenerative effect of temperature fluctuations during storage time is a critical condition that needs to be quantitatively characterized in products where drip losses are appreciable. In this work, real storage conditions were reproduced using freezers modified to cause 3 levels of temperature fluctuation (± 0, ± 3, ± 5; ± 7 during storage of Tilapia (Oreochromis sp, at temperature of –18 °C. The fast frozen tilapia muscle (freezing cabinet was chosen to quantify the growth of ice crystals according to temperature fluctuations. The identification of crystals in the optical microscope as well as histological treatments and measurements using specific software has shown that the growth of ice crystals in the first days of storage follows an asymptote, whose final value is conditioned only by the level of temperature fluctuations regardless of initial diameter, which begins storage. It has also been found that the growth of crystals formed during rapid freezing rapidly develops according to temperature fluctuations to which the product has been subjected. This work also identified statistically significant differences in the equivalent diameter of crystals formed at the four proposed levels of temperature fluctuation with significance level of p < 0.05.

  6. Influence of the gravity on interface shape during crystal growth of LICAF

    Institute of Scientific and Technical Information of China (English)

    刘永才; 陈万春

    2000-01-01

    A Galerkin finite element method, together with the boundary conformal mapping tech-nique, is used to investigate the change of melt/crystal interface under low gravity during the growth of LICAF system. Results have shown that strong convection can cause a deeply concave interface to-ward the crystal, and significantly increase radial thermal gradients nearthe interface. The flow intensi-ty and the change of the gravity have a linear relationship under low gravity ( g0 = 10 -2-10-6). At small Ma number, the maximum acceleration for keeping a planar growth interface is gmax = 1 x 10-3g under our given conditions. in addition, the growth velocity may have some influence on the growth interface shape even at vg gravity level, indicating that the growth velocity cannot be too fast even when convection is very weak.

  7. Growth of strontium oxalate crystals in agar–agar gel

    Indian Academy of Sciences (India)

    P V Dalal; K B Saraf

    2011-04-01

    Single crystals of strontium oxalate have been grown by using strontium chloride and oxalic acid in agar–agar gel media at ambient temperature. Different methods for growing crystals were adopted. The optimum conditions were employed in each method by varying concentration of gel and reactants, and gel setting time etc. Transparent prismatic bi-pyramidal platy-shaped and spherulite crystals were obtained in various methods. The grown crystals were characterized with the help of FT–IR studies and monoclinic system of crystals were supported with lattice parameters = 9.67628 Å, = 6.7175 Å, = 8.6812 Å, = 113.566°, and = 521.84 Å3 calculated from X-ray diffractogram.

  8. Single crystal growth by gel technique and characterization of lithium hydrogen tartrate

    Science.gov (United States)

    Ahmad, Nazir; Ahmad, M. M.; Kotru, P. N.

    2015-02-01

    Single crystal growth of lithium hydrogen tartrate by gel encapsulation technique is reported. Dependence of crystal count on gel density, gel pH, reactant concentration and temperature are studied and the optimum conditions for these crystals are worked out. The stoichiometric composition of the grown crystals is determined using EDAX/AES and CH analysis. The grown crystals are characterized by X-ray diffraction, FTIR and Uv-Visible spectroscopy. It is established that crystal falls under orthorhombic system and space group P222 with the cell parameters as: a=10.971 Å, b=13.125 Å and c=5.101 Å; α=90.5o, β=γ=90°. The morphology of the crystals as revealed by SEM is illustrated. Crystallite size, micro strain, dislocation density and distortion parameters are calculated from the powder XRD results of the crystal. UV-vis spectroscopy shows indirect allowed transition with an optical band gap of~4.83 eV. The crystals are also shown to have high transmittance in the entire visible region. Dependence of dielectric constant, dielectric loss and conductivity on frequency of the applied ac field is analyzed. The frequency-dependent real part of the complex ac conductivity is found to follow the universal dielectric response: σac (ω)~ωs. The trend in the variation of frequency exponent with frequency corroborates the fact that correlated barrier hopping is the dominant charge-transport mechanism in the present system.

  9. Accumulated distribution of material gain at dislocation crystal growth

    Science.gov (United States)

    Rakin, V. I.

    2016-05-01

    A model for slowing down the tangential growth rate of an elementary step at dislocation crystal growth is proposed based on the exponential law of impurity particle distribution over adsorption energy. It is established that the statistical distribution of material gain on structurally equivalent faces obeys the Erlang law. The Erlang distribution is proposed to be used to calculate the occurrence rates of morphological combinatorial types of polyhedra, presenting real simple crystallographic forms.

  10. Research on crystal growth by using pressure as a control parameter; Atsuryoku seigyo ni yoru kessho seicho ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-31

    This research project aims to establish a technique for crystal growth using pressure as a principal control parameter, and combining it with a microgravity condition, to develop a novel process material fabrication. Since the solubility of materials depends on pressure, it is possible to control a supersaturated condition for crystal growth by changing pressure. The growth condition can be controlled precisely, which is not possible by conventional methods that vary temperature and other factors. On the other hand, because a concentration diffusing field is formed autonomically around crystals in association with their growth, density convection is generated under gravity as a result of difference in the concentrations, making the growth conditions severely complex and uncontrollable. Ideal crystal growth condition control may be possible if the pressure control is performed under micro-gravity by which generation of the density convection can be suppressed. Realization has been achieved on in-situ observation by using high-magnification microscope which uses a diamond anvil cell, development of a hydraulic type optic pressure cell, and a high- speed crystal growing technology by means of pressure control utilizing the cell. New findings were also obtained on effects of pressure on crystal forms, and the pressure induced solid phase transfer mechanism. 67 refs., 49 figs., 3 tabs.

  11. Control of fluid flow during Bridgman crystal growth using low-frequency vibrational stirring

    Science.gov (United States)

    Zawilski, Kevin Thomas

    The goal of this research program was to develop an in depth understanding of a promising new method for stirring crystal growth melts called coupled vibrational stirring (CVS). CVS is a mixing technique that can be used in sealed systems and produces rapid mixing through vortex flows. Under normal operating conditions, CVS uses low-frequency vibrations to move the growth crucible along a circular path, producing a surface wave and convection in the melt. This research focused on the application of CVS to the vertical Bridgman technique. CVS generated flows were directly studied using a physical modeling system containing water/glycerin solutions. Sodium nitrate was chosen as a model growth system because the growth process could be directly observed using a transparent furnace. Lead magnesium niobate-lead titanate (PMNT) was chosen as the third system because of its potential application for high performance solid state transducers and actuators. In this study, the critical parameters for controlling CVS flows in cylindrical Bridgman systems were established. One of the most important results obtained was the dependence of an axial velocity gradient on the vibrational frequency. By changing the frequency, the intensity of fluid flow at a given depth can be easily manipulated. The intensity of CVS flows near the crystal-melt interface was found to be important. When flow intensity near the interface increased during growth, large growth rate fluctuations and significant changes in interface shape were observed. To eliminate such fluctuations, a constant flow rate near the crystal-melt interface was maintained by decreasing the vibrational frequency. A continuous frequency ramp was found to be essential to grow crystals of good quality under strong CVS flows. CVS generated flows were also useful in controlling the shape of the growth interface. In the sodium nitrate system without stirring, high growth rates produced a very concave interface. By adjusting the flow

  12. Segregation during crystal growth from melt and absorption cross section determination by optical absorption method

    Institute of Scientific and Technical Information of China (English)

    ZHANG QingLi; YIN ShaoTang; SUN DunLu; WAN SongMing

    2008-01-01

    Segregation during crystal growth from melt under two conditions is studied by using crystal mass, which can be measured easily, as an independent variable, and a method to determine the effective segregation coefficient and absorption cross section of optical dopant is given. When the segregated solute disperses into the whole or just a part of melt homogenously, the concentration Cs in solid interface will change by different formulas. If the crystal growth interface is conical and segregated solute disperses into melt in total or part, the solute concentration at r=2/3R, where r is the distance from the growth cross section center and R the crystal radius, is independent on the shape of the crystal growth interface, and its variation at r=2/3R can be regarded as the result from crystal growth in flat interface. With Cs variation formula in solid and absorption cross section σ for optical dopant, the absorption coefficients along the crystal growth direction can be calculated, and the corresponding experimental value can be obtained through the crystal optical absorption spectra. By minimizing the half sum, whose independent variables are k, △W or σ, of the difference square between the calculated and experimental absorp-tion coefficients from one or more absorption peaks along the crystal growth di-rection, k and σ, or k and △W, can be determined at the same time through the Levenberg-Marquardt iteration method. Finally, the effective segregation coefficient k, △W and absorption cross sections of Nd:GGG were determined, the results fitted by two formula gave more closed effective segregation coefficient, and the value △W also indicates that the segregated dopant had nearly dispersed into the whole melt. Experimental results show that the method to determine effective segregation coefficient k, △W and absorption cross sections σ is convenient and reliable, and the two segregation formulas can describe the segregation during the crystal growth from

  13. Segregation during crystal growth from melt and absorption cross section determination by optical absorption method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Segregation during crystal growth from melt under two conditions is studied by using crystal mass,which can be measured easily,as an independent variable,and a method to determine the effective segregation coefficient and absorption cross section of optical dopant is given.When the segregated solute disperses into the whole or just a part of melt homogenously,the concentration CS in solid interface will change by different formulas.If the crystal growth interface is conical and segregated solute disperses into melt in total or part,the solute concentration at r=2/3R,where r is the distance from the growth cross section center and R the crystal radius,is independent on the shape of the crystal growth interface,and its variation at r=2/3R can be regarded as the result from crystal growth in flat interface.With CS variation formula in solid and absorption cross section σ for optical dopant,the absorption coefficients along the crystal growth direction can be calculated,and the corresponding experimental value can be obtained through the crystal optical absorption spectra.By minimizing the half sum,whose independent variables are k,ΔW or σ,of the difference square between the calculated and experimental absorp-tion coefficients from one or more absorption peaks along the crystal growth di-rection,k and σ,or k and ΔW,can be determined at the same time through the Levenberg-Marquardt iteration method.Finally,the effective segregation coefficient k,ΔW and absorption cross sections of Nd:GGG were determined,the results fitted by two formula gave more closed effective segregation coefficient,and the value ΔW also indicates that the segregated dopant had nearly dispersed into the whole melt.Experimental results show that the method to determine effective segregation coefficient k,ΔW and absorption cross sections σ is convenient and reliable,and the two segregation formulas can describe the segregation during the crystal growth from melt relatively commendably.

  14. Growth and high pressure studies of zirconium sulphoselenide single crystals

    Indian Academy of Sciences (India)

    K R Patel; R D Vaidya; M S Dave; S G Patel

    2009-11-01

    Transition metal trichalcogenides are well suited for extreme pressure lubrication. These materials being semiconducting and of layered structure may undergo structural and electronic transition under pressure. In this paper authors reported the details about synthesis and characterization of zirconium sulphoselenide single crystals. The chemical vapour transport technique was used for the growth of zirconium sulphoselenide single crystals. The energy dispersive analysis by X-ray (EDAX) gave the confirmation about the stoichiometry of the as-grown crystals and other structural characterizations were accomplished by X-ray diffraction (XRD) study. The variation of electrical resistance was monitored in a Bridgman opposed anvil set-up up to 8 GPa pressure to identify the occurrence of any structural transition. These crystals do not possess any structural transitions upto the pressure limit examined.

  15. Crystal nucleation and near-epitaxial growth in nacre

    CERN Document Server

    Olson, Ian C; Tamura, Nobumichi; Kunz, Martin; Gilbert, Pupa U P A

    2013-01-01

    Nacre, the iridescent inner lining of many mollusk shells, interests materials scientists because of its unique brick-and-mortar periodic structure at the sub-micron scale and its remarkable resistance to fracture. However, it remains unclear how nacre forms. Here we present 20-nm, 2{\\deg}-resolution Polarization-dependent Imaging Contrast (PIC) images of shells from 15 species, mapping nacre tablets and their orientation patterns, showing where crystals nucleate and how they grow in nacre. In all shells we found stacks of co-oriented aragonite (CaCO3) tablets arranged into vertical columns or staggered diagonally. Only near the nacre-prismatic boundary are disordered crystals nucleated, as spherulitic aragonite. Overgrowing nacre tablet crystals are most frequently co-oriented with the underlying spherulitic aragonite or with another tablet, connected by mineral bridges. Therefore aragonite crystal growth in nacre is epitaxial or near-epitaxial, with abrupt or gradual changes in orientation, with c-axes with...

  16. Second harmonic generation and crystal growth of new chalcone derivatives

    Science.gov (United States)

    Patil, P. S.; Dharmaprakash, S. M.; Ramakrishna, K.; Fun, Hoong-Kun; Sai Santosh Kumar, R.; Narayana Rao, D.

    2007-05-01

    We report on the synthesis, crystal structure and optical characterization of chalcone derivatives developed for second-order nonlinear optics. The investigation of a series of five chalcone derivatives with the second harmonic generation powder test according to Kurtz and Perry revealed that these chalcones show efficient second-order nonlinear activity. Among them, high-quality single crystals of 3-Br-4'-methoxychalcone (3BMC) were grown by solvent evaporation solution growth technique. Grown crystals were characterized by X-ray powder diffraction (XRD), laser damage threshold, UV-vis-NIR and refractive index measurement studies. Infrared spectroscopy, thermogravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of 3BMC crystal. Thermal analysis does not show any structural phase transition.

  17. Maintenance of supersaturation II: indomethacin crystal growth kinetics versus degree of supersaturation.

    Science.gov (United States)

    Patel, Dhaval D; Anderson, Bradley D

    2013-05-01

    This study compares the kinetics of crystal growth of indomethacin from supersaturated suspensions at varying degrees of supersaturation (2 ≤ S ≥ 9) in the presence of seed crystals of the γ-form of indomethacin, the lowest energy polymorph. At high S (6 ≤ S ≥ 9), the crystal growth was first order with rate coefficients (kG ) that were nearly constant and consistent with the value predicted for bulk-diffusion control. At lower S (supersaturation suggesting that a higher energy surface layer was deposited on the γ-form seed crystals during crystal growth. When growth experiments were repeated at low S in the presence of indomethacin seed crystals isolated from a previous crystal growth experiment (i.e., seed crystals having higher energy surface), kG matched the higher values observed for bulk diffusion-controlled crystal growth. Crystal growth experiments were also conducted at S supersaturation during oral absorption. Copyright © 2013 Wiley Periodicals, Inc.

  18. Transient natural convection heat and mass transfer in crystal growth

    Science.gov (United States)

    Han, Samuel S.

    1990-01-01

    A numerical analysis of transient combined heat and mass transfer across a rectangular cavity is performed. The physical parameters are selected to represent a range of possible crystal growth in solutions. Good agreements with measurement data are observed. It is found that the thermal and solute fields become highly oscillatory when the thermal and solute Grashof numbers are large.

  19. Phase field simulations of ice crystal growth in sugar solutions

    NARCIS (Netherlands)

    Sman, Van Der R.G.M.

    2016-01-01

    We present the first model ever, that describes explicitly ice crystal growth in a sugar solution during freezing. This 2-D model uses the phase field method, supplemented with realistic, and predictive theories on the thermodynamics and (diffusion) kinetics of this food system. We have to make u

  20. Electromagnetic induction heating for single crystal graphene growth: morphology control by rapid heating and quenching.

    Science.gov (United States)

    Wu, Chaoxing; Li, Fushan; Chen, Wei; Veeramalai, Chandrasekar Perumal; Ooi, Poh Choon; Guo, Tailiang

    2015-03-12

    The direct observation of single crystal graphene growth and its shape evolution is of fundamental importance to the understanding of graphene growth physicochemical mechanisms and the achievement of wafer-scale single crystalline graphene. Here we demonstrate the controlled formation of single crystal graphene with varying shapes, and directly observe the shape evolution of single crystal graphene by developing a localized-heating and rapid-quenching chemical vapor deposition (CVD) system based on electromagnetic induction heating. Importantly, rational control of circular, hexagonal, and dendritic single crystalline graphene domains can be readily obtained for the first time by changing the growth condition. Systematic studies suggest that the graphene nucleation only occurs during the initial stage, while the domain density is independent of the growth temperatures due to the surface-limiting effect. In addition, the direct observation of graphene domain shape evolution is employed for the identification of competing growth mechanisms including diffusion-limited, attachment-limited, and detachment-limited processes. Our study not only provides a novel method for morphology-controlled graphene synthesis, but also offers fundamental insights into the kinetics of single crystal graphene growth.

  1. Transient from crystallization to fractal growth observed in both boar bile and SnI sub 2 vapour

    CERN Document Server

    Zhang Ji Zhong; Xie An Jian

    2003-01-01

    A visual transient of the growth mechanism from crystallization to fractal growth was observed clearly in a drop of boar bile. The growing crystals were replaced by treelike fractal structures during solidification of the sample. It is fascinating to compare the transient with the result observed in SnI sub 2 vapour. They were completely identical, and revealed that under certain conditions a linear growth could be transferred spontaneously into nonlinear growth. It may be possible to consider the transient as a 'bridge' between linear and nonlinear growth, and to develop a quantitative expression of transient dynamics.

  2. Multi-ampoule Bridgman growth of halide scintillator crystals using the self-seeding method

    Science.gov (United States)

    Lindsey, Adam C.; Wu, Yuntao; Zhuravleva, Mariya; Loyd, Matthew; Koschan, Merry; Melcher, Charles L.

    2017-07-01

    We investigate the multi-ampoule growth at 25 mm diameter of ternary iodide single crystal scintillator KCaI3:Eu using the randomly oriented self-seeded Bridgman method. We compare scintillation performance between cubic inch scale crystals containing small variations of low nominal europium concentrations previously shown to balance light yield with self-absorption in the host crystal. Growth conditions were optimized in the developmental furnace and four 2 in3 KCaI3:Eu crystals were grown simultaneously producing a total of six 25 mm × 25 mm cylinders. Small variations in activator concentration did not result in significant performance differences among the six measured crystals. A range of energy resolutions of 3.5-4.7% at 662 keV was achieved, surpassing that of NaI:Tl crystals commonly used in spectroscopic detection applications. The function and basic design of the multi-ampoule furnace as well as the process of growing single crystals of KCaI3 is included here.

  3. Influence of controlling vibrations on heat transfer in floating zone crystal growth*

    Science.gov (United States)

    Fedyushkin, A. I.

    The crystal growth processes of monocrystals are strongly vibrational sensitive systems and in particular it concerns to a floating zone method as presence of a free surface and two fronts of crystallization and melting that aggravate it The given work is devoted to numerical investigations of the influence of controlling vibrations on heat transfer during crystal growth by floating zone technique Normal and weightless environment conditions are considered Mathematical simulation is performed on the numerical solutions of basis unsteady Navier-Stokes equations for incompressible fluid flows and energy equation 2D axisymmetric geometry was used in model Marangoni convection and radiation condition on the curvature free surface were taken in account The calculations of the shape of a free surface of a liquid zone and influences on it of a corner of wetting force of weight and size of factor of a superficial tension are carried out The simulations of convective heat transfer for real curvature free surface of a liquid zone with and without the taking into account of the following factors parameters of radiation rotations natural and Marangoni convection and vibrations are carried out The given calculations are carried out for semiconductors melts with Prandtl number Pr 1 and for oxides Pr 1 The influence of vibrations of a crystal on melt flow and on the wide of dynamic and thermal boundary layers at melt-crystal interface is studied The action of vibrations on an enhancement of heat fluxes at the melt crystal interface is shown

  4. Electromagnetic Field Effects in Semiconductor Crystal Growth

    Science.gov (United States)

    Dulikravich, George S.

    1996-01-01

    This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.

  5. Growth of lead-tin telluride crystals under high gravity

    Science.gov (United States)

    Regel, L. L.; Turchaninov, A. M.; Shumaev, O. V.; Bandeira, I. N.; An, C. Y.; Rappl, P. H. O.

    1992-04-01

    The influence of high gravity environment on several growth habits of lead-tin telluride crystals began to be investigated. Preliminary experiments with Pb 0.8Sn 0.2te grown by the Bridgman technique had been made at the centrifuge facilities of the Y.A. Gagarin Cosmonauts Center in the USSR, using accelerations of 5 g, 5.2 g and 8 g. The Sn distribution for these crystals was compared with that obtained for growth at normal gravity and the results show the existence of significant compositional inhomogeneities along the axial direction. Convection currents at high gravity seem to help multiple nucleation and subsequent random orientation of growth. Analyses of carrier concentrations as well as morphological characteristics were also made.

  6. Twin-mediated crystal growth: an enigma resolved

    Science.gov (United States)

    Shahani, Ashwin J.; Gulsoy, E. Begum; Poulsen, Stefan O.; Xiao, Xianghui; Voorhees, Peter W.

    2016-06-01

    During crystal growth, faceted interfaces may be perturbed by defects, leading to a rich variety of polycrystalline growth forms. One such defect is the coherent Σ3 {111} twin boundary, which is widely known to catalyze crystal growth. These defects have a profound effect on the properties of many materials: for example, electron-hole recombination rates strongly depend on the character of the twin boundaries in polycrystalline Si photovoltaic cells. However, the morphology of the twinned interface during growth has long been a mystery due to the lack of four-dimensional (i.e., space and time resolved) experiments. Many controversial mechanisms have been proposed for this process, most of which lack experimental verification. Here, we probe the real-time interfacial dynamics of polycrystalline Si particles growing from an Al-Si-Cu liquid via synchrotron-based X-ray tomography. Our novel analysis of the time evolution of the interfacial normals allows us to quantify unambiguously the habit plane and grain boundary orientations during growth. This, when combined with direct measurements of the interfacial morphology provide the first confirmation of twin-mediated growth, proposed over 50 years ago. Using the insights provided by these experiments, we have developed a unified picture of the phenomena responsible for the dynamics of faceted Si growth.

  7. Study of Growth Mechanism of Lysozyme Crystal by Batch Crystallization Method

    Institute of Scientific and Technical Information of China (English)

    Hai Liang CUI; Yong YU; Wan Chun CHEN; Qi KANG

    2006-01-01

    The lysozyme crystals were made by batch crystallization method and the distribution of aggregate in solution were measured by dynamic light scattering. The results showed that the dimension of aggregate increased with the increase of the concentration of lysozyme and NaC1,lysozyme molecules aggregated gradually in solution and finally arrived at balance each other.The higher the concentrations of lysozyme and NaC1 were, the faster the growth rate of (110) face was. The growth rates of lysozyme crystal were obtained by a Zeiss microscope, and the effective surface energy (α) of growing steps were calculated about 4.01×l0-8 J.cm-2 according to the model of multiple two-dimensional nucleation mechanism.

  8. Crystal Growth and Glass-Like Thermal Conductivity of Ca3RE2(BO34 (RE = Y, Gd, Nd Single Crystals

    Directory of Open Access Journals (Sweden)

    L. V. Gudzenko

    2017-03-01

    Full Text Available Crystal growth and thermal properties of binary borates, Ca3RE2(BO34 (RE = Y, Gd, Nd, are considered promising crystals for laser applications. These single crystals were grown by the Czochralski method. The crystal and defect structure were characterized. Volumetric chemical methods without prior separation of the components were developed and applied for the determination of the dependence of chemical compositions of the crystals on the growth conditions. The thermal conductivity was investigated in the 50–300 K range. The character of the temperature dependence of thermal conductivity was found to be similar to that of glass. The possible reasons of the observed features of the thermal conductivity were analyzed.

  9. Crystal Splitting in the Growth of Bi2S3

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jing; Alivisatos, A. Paul

    2006-06-15

    Novel Bi{sub 2}S{sub 3} nanostructures with a sheaf-like morphology are obtained via reaction of bismuth acetate-oleic acid complex with elemental sulfur in 1-octadecence. We propose these structures form by the splitting crystal growth mechanism, which is known to account for the morphology some mineral crystals assume in nature. By controlling the synthetic parameters, different forms of splitting, analogous to observed in minerals, are obtained in our case of Bi{sub 2}S{sub 3}. These new and complex Bi{sub 2}S{sub 3} nanostructures are characterized by TEM, SEM, XRD and ED.

  10. III-V semiconductor solid solution single crystal growth

    Science.gov (United States)

    Gertner, E. R.

    1982-01-01

    The feasibility and desirability of space growth of bulk IR semiconductor crystals for use as substrates for epitaxial IR detector material were researched. A III-V ternary compound (GaInSb) and a II-VI binary compound were considered. Vapor epitaxy and quaternary epitaxy techniques were found to be sufficient to permit the use of ground based binary III-V crystals for all major device applications. Float zoning of CdTe was found to be a potentially successful approach to obtaining high quality substrate material, but further experiments were required.

  11. Growth and characterization of air annealing Mn-doped YAG:Ce single crystal for LED

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Weidong, E-mail: xiangweidong001@126.com [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035 (China); College of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Zhong, Jiasong [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035 (China); College of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Zhao, Yinsheng [Pan Asia Technical Automotive Center Co. Ltd., Shanghai 201201 (China); Zhao, Binyu [College of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Liang, Xiaojuan [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035 (China); Dong, Yongjun [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai 201800 (China); Zhang, Zhimin; Chen, Zhaoping; Liu, Bingfeng [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035 (China)

    2012-11-25

    Highlights: Black-Right-Pointing-Pointer The YAG:Ce,Mn single crystal was well synthesized by the Czochralski (CZ) method. Black-Right-Pointing-Pointer The emission intensity of the sample has been influenced after annealing. Black-Right-Pointing-Pointer Annealed in the air at 1200 Degree-Sign C was the most optimal annealing condition. Black-Right-Pointing-Pointer The single crystal could be used in the white light LED which emitted by blue light. - Abstract: The growth of Mn-doped YAG:Ce (yttrium aluminum garnet doped cerium) single crystal by the Czochralski (CZ) method and the characterization of its spectroscopy and color-electric parameters are presented. The absorption spectra indicate that the crystal absorbed highly in the 300-500 nm wavelength range. The emission spectrum of the crystal consists of a peak around 538 nm when excited by 460 nm blue light, which prove the YAG:Ce,Mn single crystal could be used in the white light emitting doides (LED). The different charges of Mn ions have different luminescence properties, and the air annealing process for the single crystal would change the concentration of Mn ions with different charges, which could influence the emission intensity of the single crystal.

  12. Control of crystal growth in water purification by directional freeze crystallization

    Science.gov (United States)

    Conlon, William M. (Inventor)

    1996-01-01

    A Directional Freeze Crystallization system employs an indirect contact heat exchanger to freeze a fraction of liquid to be purified. The unfrozen fraction is drained away and the purified frozen fraction is melted. The heat exchanger must be designed in accordance with a Growth Habit Index to achieve efficient separation of contaminants. If gases are dissolved in the liquid, the system must be pressurized.

  13. Dependence of calcite growth rate and Sr partitioning on solution stoichiometry: Non-Kossel crystal growth

    NARCIS (Netherlands)

    Nehrke, G.; Reichart, G.-J.; Van Cappellen, P.; Meile, C.; Bijma, J.

    2007-01-01

    Seeded calcite growth experiments were conducted at fixed pH (10.2) and two degrees of supersaturation (Ω = 5, 16), while varying the Ca2+ to CO3 2- solution ratio over several orders of magnitude. The calcite growth rate and the incorporation of Sr in the growing crystals strongly depended on

  14. In situ atomic force microscopy of layer-by-layer crystal growth and key growth concepts

    Science.gov (United States)

    Rashkovich, L. N.; de Yoreo, J. J.; Orme, C. A.; Chernov, A. A.

    2006-12-01

    Contradictions that have been found recently between the representations of classical theory and experiments on crystal growth from solutions are considered. Experimental data show that the density of kinks is low in many cases as a result of the low rate of their fluctuation generation, the Gibbs-Thomson law is not always applicable in these cases, and there is inconsistency with the Cabrera-Vermilyea model. The theory of growth of non-Kossel crystals, which is to be developed, is illustrated by the analysis of the experimental dependence of the growth rate on the solution stoichiometry.

  15. Growth of Large High-Quality Type-Ⅱ a Diamond Crystals

    Institute of Scientific and Technical Information of China (English)

    WANG Xian-Cheng; MA Hong-An; ZANG Chuan-Yi; TIAN Yu; LI Shang-Sheng; JIA Xiao-Peng

    2005-01-01

    @@ Large high-quality type-Ⅱ a diamond crystals in size of about 4.0mm have been grown under the condition of 5.5 GPa and 1200-1300 ℃ by using the temperature gradient method in a domestic cubic anvil high-pressure apparatus. The Fe55Co16Ni25 alloy (KOV) is used as the solvent metal, and Ti with the content 1.5wt.% of the solvent metal is selected as the nitrogen getter to reduce the impurity of nitrogen in the diamond crystal.To avoid the impurities and cave in the crystal, the growth rate of the initial stage of the growing process is controlled within 0.45mg/h and the ring carbon source of the size φ8mm-φ6mm×3 mm is used to gnow large diamond crystals.

  16. Crystal Growth of HgZnTe Alloy by Directional Solidification in Low Gravity Environment

    Science.gov (United States)

    Su, Ching-Hua; Sha, Yi-Gao; Lehoczky, S. L.; Szofran, F. R.; Gillies, D. C.; Scripa, R. N.; Cobb, S. D.; Wang, J. C.

    2002-01-01

    An Hg(0.84)Zn(0.16)Te alloy crystal was back-melted and partially re-solidified during the first United States Microgravity Laboratory mission in the Marshall Space Flight Center's Crystal Growth Furnace. The experiment was inadvertently terminated at about 30% of planned completion. Nonetheless, it was successfully demonstrated that a HgZnTe alloy ingot partially grown and quenched on the ground can be back-melted and re-grown in space under nearly steady-state growth conditions. An identical "ground-truth" experiment was performed following the mission and a comparison between the properties of the crystals is described. The results indicate the importance of residual microgravity acceleration (less than or approx. equal to 0.4 micro-grams) even in the sub-microgravity range for the slow solidification velocities and large density gradients.

  17. Nanoparticle-mediated nonclassical crystal growth of sodium fluorosilicate nanowires and nanoplates

    Directory of Open Access Journals (Sweden)

    Hongxia Li

    2011-12-01

    Full Text Available We observed nonclassical crystal growth of the sodium fluorosilicate nanowires, nanoplates, and hierarchical structures through self-assembly and aggregation of primary intermediate nanoparticles. Unlike traditional ion-by-ion crystallization, the primary nanoparticles formed first and their subsequent self-assembly, fusion, and crystallization generated various final crystals. These findings offer direct evidences for the aggregation-based crystallization mechanism.

  18. Microgravity protein crystal growth; results and hardware development

    Science.gov (United States)

    DeLucas, Lawrence J.; Smith, Graig D.; Carter, Daniel C.; Snyder, Robert S.; McPherson, A.; Koszelak, S.; Bugg, Charles E.

    1991-02-01

    Protein crystal growth experiments have been performed on a series of US shuttle missions. Crystallographic studies of proteins and nucleic acids have played key roles in establishing the structural foundations of molecular biology and biochemistry and for revealing structure/function relationships that are of major importance in understanding how macromolecules operate in biological systems. A number of major advances in the technology involved in determining protein structures have shortened the time span involved in structure determination. The major bottleneck in the widespread application of protein crystallography is the ability to produce high quality crystals that are suitable for a complete structural analysis. Evidence from several investigations indicates that crystals of superior quality can be obtained in a microgravity environment. This paper summarizes results obtained from a series of US shuttle missions and describes new hardware currently being developed for future shuttle missions.

  19. Reevaluation of the plant "gemstones": Calcium oxalate crystals sustain photosynthesis under drought conditions.

    Science.gov (United States)

    Tooulakou, Georgia; Giannopoulos, Andreas; Nikolopoulos, Dimosthenis; Bresta, Panagiota; Dotsika, Elissavet; Orkoula, Malvina G; Kontoyannis, Christos G; Fasseas, Costas; Liakopoulos, Georgios; Klapa, Maria I; Karabourniotis, George

    2016-09-01

    Land plants face the perpetual dilemma of using atmospheric carbon dioxide for photosynthesis and losing water vapors, or saving water and reducing photosynthesis and thus growth. The reason behind this dilemma is that this simultaneous exchange of gases is accomplished through the same minute pores on leaf surfaces, called stomata. In a recent study we provided evidence that pigweed, an aggressive weed, attenuates this problem exploiting large crystals of calcium oxalate as dynamic carbon pools. This plant is able to photosynthesize even under drought conditions, when stomata are closed and water losses are limited, using carbon dioxide from crystal decomposition instead from the atmosphere. Abscisic acid, an alarm signal that causes stomatal closure seems to be implicated in this function and for this reason we named this path "alarm photosynthesis." The so-far "enigmatic," but highly conserved and widespread among plant species calcium oxalate crystals seem to play a crucial role in the survival of plants.

  20. The nacre protein perlucin nucleates growth of calcium carbonate crystals.

    Science.gov (United States)

    Blank, S; Arnoldi, M; Khoshnavaz, S; Treccani, L; Kuntz, M; Mann, K; Grathwohl, G; Fritz, M

    2003-12-01

    Atomic force microscopy (AFM) in aqueous solution was used to investigate native nacre of the marine snail Haliotis laevigata on the microscopic scale and the interaction of purified nacre proteins with calcium carbonate crystals on the nanoscopic scale. These investigations were controlled by scanning electron microscopy (SEM), light microscopy (LM) and biochemical methods. For investigations with AFM and SEM, nacre was cleaved parallel to the aragonite tablets in this biogenic polymer/mineral composite. Multilamellar organic sheets consisting of a core of chitin with layers of proteins attached on both sides lay between the aragonite layers consisting of confluent aragonite tablets. Cleavage appeared to occur between the aragonite tablet layer and the protein layer. AFM images revealed a honeycomb-like structure to the organic material with a diameter of the 'honeycombs' equalling that of the aragonite tablets. The walls of the structures consisted of filaments, which were suggested to be collagen. The flat regions of the honeycomb-like structures exhibited a hole with a diameter of more than 100 nm. When incubated in saturated calcium carbonate solution, aragonite needles with perfect vertical orientation grew on the proteinacous surface. After treatment with proteinase K, no growth of orientated aragonite needles was detected. Direct AFM measurements on dissolving and growing calcite crystals revealed a surface structure with straight steps the number of which decreased with crystal growth. When the purified nacre protein perlucin was added to the growth solution (a super-saturated calcium carbonate solution) new layers were nucleated and the number of steps increased. Anion exchange chromatography of the water-soluble proteins revealed a mixture of about 10 different proteins. When this mixture was dialysed against saturated calcium carbonate solution and sodium chloride, calcium carbonate crystals precipitated together with perlucin leaving the other proteins

  1. Growth morphology of zinc tris(thiourea) sulphate crystals

    Indian Academy of Sciences (India)

    Sunil Verma; M K Singh; V K Wadhawan; C H Suresh

    2000-06-01

    The growth morphology of crystals of zinc tris(thiourea) sulphate (ZTS) is investigated experimentally, and computed using the Hartman–Perdok approach. Attachment energies of the observed habit faces are calculated for determining their relative morphological importance. A computer code is developed for carrying out these calculations. A special procedure is adopted for computing the cohesive energy of a slice of the structure parallel to any rational crystallographic plane. For estimating the cohesive energies, formal charges on the experimentally determined atomic positions in the molecules of ZTS are calculated by ab initio molecular-orbital computations, with wave functions obtained by the Hartree–Fock procedure. Fairly good agreement with the observed crystal morphology is obtained for a model of growth mechanism in which ZTS is assumed to exist in solution as zinc tris(thiourea) ions and sulphate ions.

  2. A new approach to the CZ crystal growth weighing control

    Science.gov (United States)

    Kasimkin, P. V.; Moskovskih, V. A.; Vasiliev, Y. V.; Shlegel, V. N.; Yuferev, V. S.; Vasiliev, M. G.; Zhdankov, V. N.

    2014-03-01

    The aim of a new approach was to improve the robustness of the weighing control of CZ growth especially for semiconductors, for which the “anomalous“ behavior of the apparent weight provokes instability of the servo-loop. In the described method, the periodic reciprocating measuring motion of small amplitude is superposed on the uniform pull-rod movement. The cross-sectional area is determined from the weight sensor responses that are modulated mainly by the forces of hydrostatic pressure. By the example of germanium crystal growth, it is shown that in the control system, based on such a way of the diameter measuring, a simple PI control law provides a good close loop system's stability and dynamics for the materials with the “anomalous” behavior of a weighing signal. The effect of a meniscus on the modulation measuring of a crystal diameter is also discussed.

  3. Mathematical modeling and numerical simulation of Czochralski Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    Jaervinen, J.; Nieminen, R. [Center for Scientific Computing, Espoo (Finland)

    1996-12-31

    A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)

  4. Solar furnace satellite for large diameter crystal growth in space

    Science.gov (United States)

    Overfelt, Tony; Wells, Mark; Blake, John

    1993-02-01

    Investigators worldwide are preparing experiments to test the influence of low gravity found in space on the growth of many crystalline materials. However, power limitations prevent existing space crystal growth furnaces from being able to process samples any larger than about 2 cm, and in addition, the background microgravity levels found on the Space Shuttle are not low enough to significantly benefit samples much larger than 2 cm. This paper describes a novel concept of a free-flying platform utilizing well-established solar furnace technology to enable materials processing in space experiments on large-diameter crystals. The conceptual design of this Solar Furnace Satellite is described along with its operational scenario and the anticipated g levels.

  5. Growth morphologies and optical properties of LTA single crystal.

    Science.gov (United States)

    Liu, Xiaojing; Ren, Miaojuan; Chen, Gang; Wang, Peiji

    2013-12-01

    Atomic force microscopy (AFM) has been used to study the growth morphologies of l-threonine acetate (abbreviated as LTA) crystal. Spiral growth hillocks and typical step patterns are described and discussed. Nuclei with various shapes often distribute at the larger step terraces. Eventually, in order to investigate microscopic second order nonlinear optical properties of LTA crystals, the molecular dipole moment (μ), polarizability (α), and first hyperpolarizability (β) were computed using a series of basis sets including polarized and diffuse functions at the framework of Hartree-Fock and density functional theory methods. The study is helpful to the further development of l-threonine analogs with improved nonlinear optical properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Synthesis, crystal structure, crystal growth and physical properties of N,N-diethyl anilinium picrate

    Science.gov (United States)

    Subramaniyan @ Raja, R.; Anandha Babu, G.; Ramasamy, P.

    2011-11-01

    Crystalline substance of N,N-diethyl anilinium picrate (NNDEAP) has been synthesized and single crystals of NNDEAP were successfully grown for the first time by the slow evaporation solution growth technique at room temperature with dimensions 14×10×10 mm3. The formation of the new crystal has been confirmed by single crystal X-ray diffraction studies. The structural perfection of the grown crystal was analyzed by high resolution X-ray diffraction (HRXRD) measurements. The functional groups of NNDEAP have been identified by Fourier transform infrared spectral studies. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) have also been carried out and the thermal behavior of NNDEAP has been studied. The UV-vis-NIR studies have been carried out to identify the optical transmittance and the cut off wavelength of NNDEAP is identified. The dielectric loss and the dielectric constant as a function of frequency and temperature were measured for the grown crystal and the nature of variation of dielectric constant εr and dielectric losses (tan δ) were studied. Vicker's hardness test has been carried out on NNDEAP to measure the load dependent hardness. The laser induced surface damage threshold for the grown crystal was measured using Nd:YAG laser.

  7. Crystal growth and reflectivity studies of Zn1–MnTe crystals

    Indian Academy of Sciences (India)

    K Veera Brahmam; D Raja Reddy; B K Reddy

    2005-08-01

    Single crystals of Zn1–MnTe were prepared by vertical Bridgman crystal growth method for different concentrations of Mn. Chemical analysis and reflectivity studies were carried out for compositional and band structure properties. Microscopic variation in composition between starting and end compounds was observed from EDAX analysis. Linear dependence of fundamental absorption edge (0) as a function of Mn concentration () was expressed in terms of a straight line fit and a shift in 0 towards higher energy was observed in reflectivity spectra of Zn1–MnTe.

  8. Screening and Crystallization Plates for Manual and High-throughput Protein Crystal Growth

    Science.gov (United States)

    Thorne, Robert E. (Inventor); Berejnov, Viatcheslav (Inventor); Kalinin, Yevgeniy (Inventor)

    2010-01-01

    In one embodiment, a crystallization and screening plate comprises a plurality of cells open at a top and a bottom, a frame that defines the cells in the plate, and at least two films. The first film seals a top of the plate and the second film seals a bottom of the plate. At least one of the films is patterned to strongly pin the contact lines of drops dispensed onto it, fixing their position and shape. The present invention also includes methods and other devices for manual and high-throughput protein crystal growth.

  9. Growth of crystalline semiconductor materials on crystal surfaces

    CERN Document Server

    Aleksandrov, L

    2013-01-01

    Written for physicists, chemists, and engineers specialising in crystal and film growth, semiconductor electronics, and various applications of thin films, this book reviews promising scientific and engineering trends in thin films and thin-films materials science. The first part discusses the physical characteristics of the processes occurring during the deposition and growth of films, the principal methods of obtaining semiconductor films and of reparing substrate surfaces on which crystalline films are grown, and the main applications of films. The second part contains data on epitaxial i

  10. Growth Mechanism of Different Morphologies of ZnO Crystals Prepared by Hydrothermal Method

    Institute of Scientific and Technical Information of China (English)

    Hu Wang; Juan Xie; Kangping Yan; Ming Duan

    2011-01-01

    Different morphologies of zinc oxide (ZnO), including microrods, hexagonal pyramid-like rods and flower-like rod aggregates, had been synthesized, respectively, on glass substrates by controlling the reaction conditions (such as precursor concentration, reaction time and pH value) of hydrothermal method. The morphologies of the as-obtained ZnO were observed with scanning electron microscopy and transmission electron microscopy. Also, the crystalline natures of different ZnO crystals were analyzed with X-ray diffraction. The possible growth mechanism of ZnO crystals with different morphologies was discussed.

  11. Bulk single crystal growth of SiGe by PMCZ method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Weilian; NIU Xinhuan; CHEN Hongjian; ZHANG Jianxin; SUN Junsheng; ZHANG Enhuai

    2003-01-01

    A new type of magnetic device was used to replace the conventional electro-magnetic field for CZSi (doped with Ge) growth. The device was composed of three permanent magnetic rings and called PMCZ device. The lines of magnetic force are horizontally distributed at radial 360°. Using the ring permanent magnetic field, thermal convection in melt and centrifugal pumping flows due to crystal rotation could be strongly suppressed so that the fluctuations of temperature and micro-growth rate at solid/liquid interface could be restrained effectively. In the PMCZ condition, the growing environment of SiGe bulk single crystal was similar to the crystal growth in space under the condition of micro-gravity. The motion of impurities (Ge, oxygen, etc.) had been controlled by diffusion near the solid/liquid interface. Oxygen concentraion became lower and the distribution of composition became more homogeneous along longitudinal direction and across a radial section in the grown SiGe crystal. The mechanism of PMCZ superior to MCZ was also discussed.

  12. Non-linear optical titanyl arsenates: Crystal growth and properties

    Science.gov (United States)

    Nordborg, Jenni Eva Louise

    Crystals are appreciated not only for their appearance, but also for their unique physical properties which are utilized by the photonic industry in appliances that we come across every day. An important part of enabling the technical use of optical devices is the manufacture of crystals. This dissertation deals with a specific group of materials called the potassium titanyl phosphate (KIP) family, known for their non-linear optical and ferroelectric properties. The isomorphs vary in their linear optical and dielectric properties, which can be tuned to optimize device performance by forming solid solutions of the different materials. Titanyl arsenates have a wide range of near-infrared transmission which makes them useful for tunable infrared lasers. The isomorphs examined in the present work were primarily RbTiOASO4 (RTA) and CsTiOAsO4 (CTA) together with the mixtures RbxCs 1-xTiOAsO4 (RCTA). Large-scale crystals were grown by top seeding solution growth utilizing a three-zone furnace with excellent temperature control. Sufficiently slow cooling and constant upward lifting produced crystals with large volumes useable for technical applications. Optical quality RTA crystals up to 10 x 12 x 20 mm were grown. The greater difficulty in obtaining good crystals of CTA led to the use of mixed RCTA materials. The mixing of rubidium and cesium in RCTA is more favorable to crystal growth than the single components in pure RTA and CTA. Mixed crystals are rubidium-enriched and contain only 20-30% of the cesium concentration in the flux. The cesium atoms show a preference for the larger cation site. The network structure is very little affected by the cation substitution; consequently, the non-linear optical properties of the Rb-rich isomorphic mixtures of RTA and CTA can be expected to remain intact. Crystallographic methods utilizing conventional X-ray tubes, synchrotron radiation and neutron diffraction have been employed to investigate the properties of the atomic

  13. Monoclinic deformation of calcite crystals at ambient conditions

    Science.gov (United States)

    Przeniosło, R.; Fabrykiewicz, P.; Sosnowska, I.

    2016-09-01

    High resolution synchrotron radiation powder diffraction shows that the average crystal structure of calcite at ambient conditions is described with the trigonal space group R 3 bar c but there is a systematic hkl-dependent Bragg peak broadening. A modelling of this anisotropic peak broadening with the microstrain model from Stephens (1999) [15] is presented. The observed lattice parameters' correlations can be described by assuming a monoclinic-type deformation of calcite crystallites. A quantitative model of this monoclinic deformation observed at ambient conditions is described with the space group C 2 / c . The monoclinic unit cell suggested at ambient conditions is related with the monoclinic unit cell reported in calcite at high pressure (Merrill and Bassett (1975) [10]).

  14. Reduction-induced inward diffusion and crystal growth on the surfaces of iron-bearing silicate glasses

    DEFF Research Database (Denmark)

    Liu, S.J.; Tao, H.Z.; Zhang, Y.F.

    2015-01-01

    We investigate the sodium inward diffusion (i.e., sodium diffusion from surface toward interior) in iron containing alkaline earth silicate glasses under reducing conditions around Tg and the induced surface crystallization. The surface crystallization is caused by formation of a silicate-gel layer...... first and then the growth of silica crystals on the glass surface. The type of alkaline earth cations has a strong impact on both the glass transition and the surface crystallization. In the Mg-containing glass, a quartz layer forms on the glass surface. This could be attributed to the fact that Mg2...

  15. Luminescence labeling and dynamics of growth active crystal surface structures

    Science.gov (United States)

    Bullard, Theresa Vivian

    One aspect of the multifaceted proposal by A. G. Cairns-Smith (CS), that imperfect crystals have the capacity to act as primitive genes by transferring the disposition of their imperfections from one crystal to another, is investigated. An experiment was designed in a model crystalline system unrelated to the composition of the pre-biotic earth but suited to a well-defined test. Plates of potassium hydrogen phthalate were studied in order to ascertain whether, according to CS, parallel screw dislocations could serve as an information store with cores akin to punches in an old computer card. Evidence of screw dislocations was obtained from their associated growth hillocks through differential interference contrast microscopy, atomic force microscopy, and luminescence labeling of hillocks in conjunction with confocal laser scanning microscopy. Inheritance was evaluated by the corresponding patterns of luminescence developed in 'daughter' crystals grown from seed in the presence of fluorophores. The dispositions and evolution of growth active hillock patterns were quantified by fractal correlation analysis and statistical analysis. Along the way, we came to realize that transferring information encoded in the disposition of screw dislocations is complicated by several factors that lead to 'mutations' in the information stored in the pattern of defects. These observations forced us to confront the fundamental mechanisms that give rise to screw dislocations. It became clear that inter-hillock correlations play a significant role in the appearance of new dislocations through growth, and cause the overall pattern of hillocks to be non-random. Tendencies for clustering and correlations along various crystallographic directions were observed. Investigations into the dye-crystal surface chemistries and interactions with hillock steps also ensued through a combination of experimental techniques and force-field calculations. It was established that certain dye molecules not

  16. Oriented growth and assembly of zeolite crystals on substrates

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ming; ZHANG BaoQuan; LIU XiuFeng

    2008-01-01

    The aligned array and thin film of zeolites and molecular sieves possess a variety of potential applica-tions in membrane separation and catalysis, chemical sensors, and microelectronic devices. There are two main synthesis methods for manufacturing the aligned arrays and thin films of zeolites and mo-lecular sieves, i.e. in situ hydrothermal reaction and self-assembly of crystal grains on substrates. Both of them have attracted much attention in the scientific community worldwide. A series of significant progress has been made in recent years. By the in situ hydrothermal synthesis, the oriented nucleation and growth of zeolite and molecular sieve crystals can be achieved by modifying the surface properties of substrates or by changing the composition of synthesis solutions, leading to the formation of uni-formly oriented multicrystal-aligned arrays or thin films. On the other hand, the crystal grains of zeo-lites and molecular sieves can be assembled onto the substrate surface in required orientation using different bondages, for instance, the microstructure in the array or thin film can be controlled. This review is going to summarize and comment the significant results and progress reported recently in manufacturing highly covered and uniformly aligned arrays or thin films of zeolites and molecular sieves. It involves (1) in situ growth of highly aligned zeolite arrays and thin films via embedding func-tional groups on the substrate surface, modifying the surface microstructure of substrates, as well as varying the composition of synthesis solutions; (2) assembly of zeolite and molecular sieve crystals on various substrates to form aligned arrays and thin films with full coverage by covalent, ionic, and in-termolecular coupling interactions between crystals and substrates; (3) coupling surface assembly with microcontact printing or photoetching technique to produce patterned zeolite arrays and thin films. Finally, the functionality and applications of zeolite

  17. Growth and properties of Lithium Salicylate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, N; Newby, J; Hull, G; Saw, C; Carman, L; Cherepy, N; Payne, S

    2009-02-13

    An attractive feature of {sup 6}Li containing fluorescence materials that determines their potential application in radiation detection is the capture reaction with slow ({approx}< 100 keV) neutrons: {sup 6}Li + n = {sup 4}He + {sup 3}H + 4.8MeV. The use of {sup 6}Li-salicylate (LiSal, LiC{sub 6}H{sub 5}O{sub 3}) for thermal neutron detection was previously studied in liquid and polycrystalline scintillators. The studies showed that both liquid and polycrystalline LiSal scintillators could be utilized in pulse shape discrimination (PSD) techniques that enable separation of neutrons from the background gamma radiation. However, it was found that the efficiency of neutron detection using LiSal in liquid solutions was severely limited by its low solubility in commonly used organic solvents like, for example, toluene or xylene. Better results were obtained with neutron detectors containing the compound in its crystalline form, such as pressed pellets, or microscopic-scale (7-14 micron) crystals dispersed in various media. The expectation drown from these studies was that further improvement of pulse height, PSD, and efficiency characteristics could be reached with larger and more transparent LiSal crystals, growth of which has not been reported so far. In this paper, we present the first results on growth and characterization of relatively large, a cm-scale size, single crystals of LiSal with good optical quality. The crystals were grown both from aqueous and anhydrous (methanol) media, mainly for neutron detection studies. However, the results on growth and structural characterization may be interesting for other fields where LiSal, together with other alkali metal salicylates, is used for biological, medical, and chemical (as catalyst) applications.

  18. Researches on the Growth Habit and Optical Properties of Fe3+ Ion Doped KDP Crystal

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    During the process of KDP crystal growth, metal ions strongly affect the growth habit and optical properties of KDP single crystal. In this paper, KDP crystals were grown from an aqueous solution doped with different concentration of Fe3+ dopant by traditional temperaturereduction method and "point-seed" rapid growth method. Furthermore, we examined the light scatter and measured the transmission of these KDP crystals. It is found that the dopant of Fe3+ ion can improve the stability of the KDP growth solution when its concentration is less than 30 ppm.The effects of Fe3+ ion on the growth habit and optical properties of KDP crystal are also obvious.

  19. Experimental study on crystallization kinetics of alkali feldspar under high T-P conditions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In the granite-NaF-H2O system, there exists a nucleation lag in the course of alkali feldspar crystallization indicated by experiments on crystallization kinetics. The nucleation lag time is about 18 h at 700℃ and about 6 h at 650℃. Meanwhile, both nucleation rate and crystal-growth rate of alkali feldspar are not constant during the crystallization process, but vary with crystal- lization time. Here we suggest that the lag time should be taken into account in the calculation formula of nucleation rate and crystal-growth rate to obtain more reliable parameters.

  20. Characterization and In-Situ Monitoring of ZnSe Crystal Growth by Seeded PVT for Microgravity Applications

    Science.gov (United States)

    Feth, Shari T.

    2001-01-01

    Crystal growth from the vapor phase continues to play a significant role in the production of II-VI semiconductor compounds (ZnO, ZnTe, CdTe, etc.) and SiC. As compared to melt growth methods (where available) the advantages are: (1) lower growth temperature(s); (2) reduction in defect concentration; (3) additional purification; and (4) enhanced crystal perfection. A powerful tool in determining the mechanism of PVT is microgravity. Under normal gravity conditions the transport mechanism is a superposition of diffusive and convective fluxes. Microgravity offers the possibility of studying the transport properties without the influence of convective effects. Research on the crystal growth of ZnSe by PVT (P.I.: Su of NASA/MSFC) will help to clarify the effects of convection on crystal growth. A crystal growth furnace with in-situ and real time optical monitoring capabilities was constructed and used to monitor the vapor composition and growing crystal surface morphology during the PVT growth of ZnSe. Using photoluminescence and SIMS, ex-situ, the incorporation of point defects (Zn vacancy) and impurities was found to be correlated to the gravity vector due to the influence of the convective flow. A summary of the results to date will be presented.

  1. Growth, spectral and crystallization perfection studies of semi organic non linear optical crystal - L-alanine lithium chloride

    Science.gov (United States)

    Redrothu, Hanumantharao; Kalainathan, S.; Bhagavannarayana, G.

    2012-06-01

    Single crystals of L-alanine lithium chloride single crystals were successfully grown using slow evaporation solution growth technique at constant temperature (303K). The formation of the new crystal has been confirmed by single-crystal X-ray diffraction, FT-IR studies. The crystalline perfection was analyzed by high-resolution X-ray diffraction (HRXRD) rocking curve measurements. The powder second harmonic generation (SHG) has been confirmed by Nd: YAG laser. The results have been discussed in detail.

  2. Melt growth and properties of bulk BaSnO3 single crystals

    Science.gov (United States)

    Galazka, Z.; Uecker, R.; Irmscher, K.; Klimm, D.; Bertram, R.; Kwasniewski, A.; Naumann, M.; Schewski, R.; Pietsch, M.; Juda, U.; Fiedler, A.; Albrecht, M.; Ganschow, S.; Markurt, T.; Guguschev, C.; Bickermann, M.

    2017-02-01

    We present the first-time growth of bulk BaSnO3 single crystals from the melt by direct solidification, their basic electrical and optical properties as well as their structural quality. Our measurement of the melting point (MP) of BaSnO3 amounts to 1855 °C  ±  25 K. At this temperature an intensive decomposition and non-stoichiometric evaporation takes place as the partial pressure of SnO(g) is about 90 times higher than that of BaO(g). X ray powder diffraction identified only the BaSnO3 perovskite phase, while narrow rocking curves having a full width at half maximum of 26 arcsec and etch pit densities below 106 cm-2 confirm a high degree of structural perfection of the single crystals. In this respect they surpass the structural properties of those single crystals that were reported in the literature. The electrical conductivity of nominally undoped crystals depends on the growth conditions and ranges from insulating to medium n-type conductivity. After post-growth annealing in an oxidizing atmosphere undoped crystals are generally insulating. Doping the crystals with lanthanum during growth results in a high n-type conductivity. For a La doping concentration of 0.123 wt.% we measured an electron concentration of 3.3  ×  1019 cm-3 and an electron mobility of 219 cm2 V-1 s-1. Based on optical absorption measurements we determined an energy of 3.17  ±  0.04 eV at 5 K and of 2.99  ±  0.04 eV at 297 K for the indirect band gap of BaSnO3.

  3. Melt growth and properties of bulk BaSnO3 single crystals.

    Science.gov (United States)

    Galazka, Z; Uecker, R; Irmscher, K; Klimm, D; Bertram, R; Kwasniewski, A; Naumann, M; Schewski, R; Pietsch, M; Juda, U; Fiedler, A; Albrecht, M; Ganschow, S; Markurt, T; Guguschev, C; Bickermann, M

    2017-02-22

    We present the first-time growth of bulk BaSnO3 single crystals from the melt by direct solidification, their basic electrical and optical properties as well as their structural quality. Our measurement of the melting point (MP) of BaSnO3 amounts to 1855 °C  ±  25 K. At this temperature an intensive decomposition and non-stoichiometric evaporation takes place as the partial pressure of SnO(g) is about 90 times higher than that of BaO(g). X ray powder diffraction identified only the BaSnO3 perovskite phase, while narrow rocking curves having a full width at half maximum of 26 arcsec and etch pit densities below 10(6) cm(-2) confirm a high degree of structural perfection of the single crystals. In this respect they surpass the structural properties of those single crystals that were reported in the literature. The electrical conductivity of nominally undoped crystals depends on the growth conditions and ranges from insulating to medium n-type conductivity. After post-growth annealing in an oxidizing atmosphere undoped crystals are generally insulating. Doping the crystals with lanthanum during growth results in a high n-type conductivity. For a La doping concentration of 0.123 wt.% we measured an electron concentration of 3.3  ×  10(19) cm(-3) and an electron mobility of 219 cm(2) V(-1) s(-1). Based on optical absorption measurements we determined an energy of 3.17  ±  0.04 eV at 5 K and of 2.99  ±  0.04 eV at 297 K for the indirect band gap of BaSnO3.

  4. Growth and characterisation of bulk Sr2CuO2Cl2 single crystals

    NARCIS (Netherlands)

    Hien, NT; Franse, JJM; Pothuizen, JJM; Li, TW; Menovsky, AA

    1997-01-01

    Large bulk single crystals of the Sr2CuO2Cl2 compound with dimensions of 15 x 6 x 4 mm(3) have been grown directly from the melt by the floating-zone method using a light-image furnace. The optimal growth conditions are found in a mixed atmosphere of 0.2 bar oxygen and 1.2 bar argon. Results of the

  5. Low-temperature Growth of Single-crystal SrCO3 Nanoneedles

    Institute of Scientific and Technical Information of China (English)

    Guang Sheng GUO; Fu Bo GU; Zhi Hua WANG; Hong You GUO

    2005-01-01

    Single-crystal SrCO3 nanoneedles were synthesized in reverse micelles at low temperature. The products were characterized by X-ray diffraction, X-ray energy dispersive spectrometer, transmission electron microscopy and selected area electronic diffraction. The influences of experimental conditions on the morphologies of the products were discussed. The growth mechanism of SrCO3 nanoneedles in reverse micelles were proposed.

  6. Crystal growth of LiIn1-xGaxSe2 crystals

    Science.gov (United States)

    Wiggins, Brenden; Bell, Joseph; Woodward, Jonathan; Goodwin, Brandon; Stassun, Keivan; Burger, Arnold; Stowe, Ashley

    2017-06-01

    Lithium containing chalcogenide single crystals have become very promising materials for photonics and radiation detection. Detection applications include nuclear nonproliferation, neutron science, and stellar investigations for the search of life. Synthesis and single crystal growth methods for lithium containing chalcogenide, specifically LiIn1-xGaxSe2, single crystals are discussed. This study elucidates the possibility of improving neutron detection by reducing the indium capture contribution; with the incorporation of the lithium-6 isotope, gallium substitution may overcome the neutron detection efficiency limitation of 6LiInSe2 due to appreciable neutron capture by the indium-115 isotope. As a figure of merit, the ternary parent compounds 6LiInSe2 and 6LiGaSe2 were included in this study. Quality crystals can be obtained utilizing the vertical Bridgman method to produce quaternary compounds with tunable optical properties. Quaternary crystals of varying quality depending on the gallium concentration, approximately 5×5×2 mm3 or larger in volume, were harvested, analyzed and revealed tunable absorption characteristics between 2.8-3.4 eV.

  7. Acquisition of Single Crystal Growth and Characterization Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Maple, M. Brian; Zocco, Diego A.

    2008-12-09

    Final Report for DOE Grant No. DE-FG02-04ER46178 'Acquisition of Single Crystal Growth and Characterization Equipment'. There is growing concern in the condensed matter community that the need for quality crystal growth and materials preparation laboratories is not being met in the United States. It has been suggested that there are too many researchers performing measurements on too few materials. As a result, many user facilities are not being used optimally. The number of proficient crystal growers is too small. In addition, insufficient attention is being paid to the enterprise of finding new and interesting materials, which is the driving force behind much of condensed matter research and, ultimately, technology. While a detailed assessment of this situation is clearly needed, enough evidence of a problem already exists to compel a general consensus that the situation must be addressed promptly. This final report describes the work carried out during the last four years in our group, in which a state-of-the-art single crystal growth and characterization facility was established for the study of novel oxides and intermetallic compounds of rare earth, actinide and transition metal elements. Research emphasis is on the physics of superconducting (SC), magnetic, heavy fermion (HF), non-Fermi liquid (NFL) and other types of strongly correlated electron phenomena in bulk single crystals. Properties of these materials are being studied as a function of concentration of chemical constituents, temperature, pressure, and magnetic field, which provide information about the electronic, lattice, and magnetic excitations at the root of various strongly correlated electron phenomena. Most importantly, the facility makes possible the investigation of material properties that can only be achieved in high quality bulk single crystals, including magnetic and transport phenomena, studies of the effects of disorder, properties in the clean limit, and spectroscopic and

  8. Defined PEG smears as an alternative approach to enhance the search for crystallization conditions and crystal-quality improvement in reduced screens

    Energy Technology Data Exchange (ETDEWEB)

    Chaikuad, Apirat, E-mail: apirat.chaikuad@sgc.ox.ac.uk [University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ (United Kingdom); Knapp, Stefan [University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ (United Kingdom); Johann Wolfgang Goethe-University, Building N240 Room 3.03, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main (Germany); Delft, Frank von, E-mail: apirat.chaikuad@sgc.ox.ac.uk [University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ (United Kingdom)

    2015-07-28

    An alternative strategy for PEG sampling is suggested through the use of four newly defined PEG smears to enhance chemical space in reduced screens with a benefit towards protein crystallization. The quest for an optimal limited set of effective crystallization conditions remains a challenge in macromolecular crystallography, an issue that is complicated by the large number of chemicals which have been deemed to be suitable for promoting crystal growth. The lack of rational approaches towards the selection of successful chemical space and representative combinations has led to significant overlapping conditions, which are currently present in a multitude of commercially available crystallization screens. Here, an alternative approach to the sampling of widely used PEG precipitants is suggested through the use of PEG smears, which are mixtures of different PEGs with a requirement of either neutral or cooperatively positive effects of each component on crystal growth. Four newly defined smears were classified by molecular-weight groups and enabled the preservation of specific properties related to different polymer sizes. These smears not only allowed a wide coverage of properties of these polymers, but also reduced PEG variables, enabling greater sampling of other parameters such as buffers and additives. The efficiency of the smear-based screens was evaluated on more than 220 diverse recombinant human proteins, which overall revealed a good initial crystallization success rate of nearly 50%. In addition, in several cases successful crystallizations were only obtained using PEG smears, while various commercial screens failed to yield crystals. The defined smears therefore offer an alternative approach towards PEG sampling, which will benefit the design of crystallization screens sampling a wide chemical space of this key precipitant.

  9. Optimal Control of Oxygen Concentration in a Magnetic Czochralski Crystal Growth by Response Surface Methodology

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Concepts and techniques of response surface methodology have been widely applied in many branches of engineering, especially in the chemical and manufacturing areas. This paper presents an application of the methodology in a magnetic crystal Czochralski growth system for single crystal silicon to optimize the oxygen concentration at the crystal growth interface in a cusp magnetic field. The simulation demonstrates that the response surface methodology is a feasible algorithm for the optimization of the Czochralski crystal growth process.

  10. Growth and Characterization of Lead-free Piezoelectric Single Crystals

    Directory of Open Access Journals (Sweden)

    Philippe Veber

    2015-11-01

    Full Text Available Lead-free piezoelectric materials attract more and more attention owing to the environmental toxicity of lead-containing materials. In this work, we review our first attempts of single crystal grown by the top-seeded solution growth method of BaTiO3 substituted with zirconium and calcium (BCTZ and (K0.5Na0.5NbO3 substituted with lithium, tantalum, and antimony (KNLSTN. The growth methodology is optimized in order to reach the best compositions where enhanced properties are expected. Chemical analysis and electrical characterizations are presented for both kinds of crystals. The compositionally-dependent electrical performance is investigated for a better understanding of the relationship between the composition and electrical properties. A cross-over from relaxor to ferroelectric state in BCTZ solid solution is evidenced similar to the one reported in ceramics. In KNLSTN single crystals, we observed a substantial evolution of the orthorhombic-to-tetragonal phase transition under minute composition changes.

  11. Diagenetic Crystal Growth in the Murray Formation, Gale Crater, Mars

    Science.gov (United States)

    Kah, L. C.; Kronyak, R. E.; Ming, D. W.; Grotzinger, J. P.; Schieber, J.; Sumner, D. Y.; Edgett, K. S.

    2015-01-01

    The Pahrump region (Gale Crater, Mars) marks a critical transition between sedimentary environments dominated by alluvial-to-fluvial materials associated with the Gale crater rim, and depositional environments fundamentally linked to the crater's central mound, Mount Sharp. At Pahrump, the Murray formation consists of an approximately 14-meter thick succession dominated by massive to finely laminated mudstone with occasional interbeds of cross-bedded sandstone, and is best interpreted as a dominantly lacustrine environment containing tongues of prograding fluvial material. Murray formation mudstones contain abundant evidence for early diagenetic mineral precipitation and its subsequent removal by later diagenetic processes. Lenticular mineral growth is particularly common within lacustrine mudstone deposits at the Pahrump locality. High-resolution MAHLI images taken by the Curiosity rover permit detailed morphological and spatial analysis of these features. Millimeter-scale lenticular features occur in massive to well-laminated mudstone lithologies and are interpreted as pseudomorphs after calcium sulfate. The distribution and orientation of lenticular features suggests deposition at or near the sediment-water (or sediment-air) interface. Retention of chemical signals similar to host rock suggests that original precipitation was likely poikilotopic, incorporating substantial amounts of the primary matrix. Although poikilotopic crystal growth is common in burial environments, it also occurs during early diagenetic crystal growth within unlithified sediment where high rates of crystal growth are common. Loss of original calcium sulfate mineralogy suggests dissolution by mildly acidic, later-diagenetic fluids. As with lenticular voids observed at Meridiani by the Opportunity Rover, these features indicate that calcium sulfate deposition may have been widespread on early Mars; dissolution of depositional and early diagenetic minerals is a likely source for both calcium

  12. In vitro crystallization, characterization and growth-inhibition study of urinary type struvite crystals

    Science.gov (United States)

    Chauhan, Chetan K.; Joshi, Mihir J.

    2013-01-01

    The formation of urinary stones, known as nephrolithiasis or urolithiasis, is a serious, debilitating problem throughout the world. Struvite—NH4MgPO4·6H2O, ammonium magnesium phosphate hexahydrate, is one of the components of urinary stones (calculi). Struvite crystals with different morphologies were grown by in vitro single diffusion gel growth technique with different growth parameters. The crystals were characterized by powder XRD, FT-IR, thermal analysis and dielectric study. The powder XRD results of struvite confirmed the orthorhombic crystal structure. The FT-IR spectrum proved the presence of water of hydration, metal-oxygen bond, N-H bond and P-O bond. For thermal analysis TGA, DTA and DSC were carried out simultaneously. The kinetic and thermodynamic parameters of dehydration/decomposition process were calculated. Vickers micro-hardness and related mechanical parameters were also calculated. The in vitro growth inhibition studies of struvite by the juice of Citrus medica Linn as well as the herbal extracts of Commiphora wightii, Boerhaavia diffusa Linn and Rotula aquatica Lour were carried out and found potent inhibitors of struvite.

  13. Crystal growth of Cd1-xZnxTe by the traveling heater method in microgravity on board of Foton-M4 spacecraft

    Science.gov (United States)

    Borisenko, E. B.; Kolesnikov, N. N.; Senchenkov, A. S.; Fiederle, M.

    2017-01-01

    Cadmium zinc telluride crystals were grown using the traveling heater method (THM) under microgravity conditions on board of Foton-M4 spacecraft, and a reference crystal was grown on Earth under gravity conditions. Structure, chemical and phase compositions of these crystals, their optical characteristics and microhardness were compared. It can be concluded that the THM growth in microgravity has a positive effect on CZT crystals, since they have more homogeneous composition and their structural perfection is improved as compared with the crystals grown under terrestrial conditions, which results in improvement of electric and optical characteristics.

  14. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-04-01

    crystals will be discussed in Chapter 3 and 4. Despite their outstanding charge transport characteristics, organolead halide perovskite single crystals grown by hitherto reported crystallization methods are not suitable for most optoelectronic devices due to their small aspect ratios and free standing growth. As the other major part of work of this dissertation, explorative work on growing organolead halide perovskite monocrystalline films and further their application in solar cells will be discussed in Chapter 5.

  15. Plant growth conditions alter phytolith carbon

    Directory of Open Access Journals (Sweden)

    Kimberley L Gallagher

    2015-09-01

    Full Text Available Many plants, including grasses and some important human food sources, accumulate and precipitate silica in their cells to form opaline phytoliths. These phytoliths contain small amounts of organic matter (OM that are trapped during the process of silicification. Previous work has suggested that plant silica is associated with compounds such as proteins, lipids, lignin and carbohydrate complexes. It is not known whether these compounds are cellular components passively encapsulated as the cell silicifies, polymers actively involved in the precipitation process or random compounds assimilated by the plant and discarded into a glass wastebasket. Here, we used Raman spectroscopy to map the distribution of OM in phytoliths, and to analyze individual phytoliths isolated from Sorghum bicolor plants grown under different laboratory treatments. Using mapping, we showed that OM in phytoliths is distributed throughout the silica and is not related to dark spots visible in light microscopy, previously assumed to be the repository for phytolith OM. The Raman spectra exhibited common bands indicative of C-H stretching modes of general OM, and further more diagnostic bands consistent with carbohydrates, lignins and other OM. These Raman spectra exhibited variability of spectral signatures and of relative intensities between sample treatments indicating that differing growth conditions altered the phytolith carbon. This may have strong implications for understanding the mechanism of phytolith formation, and for use of phytolith carbon isotope values in dating or paleoclimate reconstruction.

  16. Plant growth conditions alter phytolith carbon.

    Science.gov (United States)

    Gallagher, Kimberley L; Alfonso-Garcia, Alba; Sanchez, Jessica; Potma, Eric O; Santos, Guaciara M

    2015-01-01

    Many plants, including grasses and some important human food sources, accumulate, and precipitate silica in their cells to form opaline phytoliths. These phytoliths contain small amounts of organic matter (OM) that are trapped during the process of silicification. Previous work has suggested that plant silica is associated with compounds such as proteins, lipids, lignin, and carbohydrate complexes. It is not known whether these compounds are cellular components passively encapsulated as the cell silicifies, polymers actively involved in the precipitation process or random compounds assimilated by the plant and discarded into a "glass wastebasket." Here, we used Raman spectroscopy to map the distribution of OM in phytoliths, and to analyze individual phytoliths isolated from Sorghum bicolor plants grown under different laboratory treatments. Using mapping, we showed that OM in phytoliths is distributed throughout the silica and is not related to dark spots visible in light microscopy, previously assumed to be the repository for phytolith OM. The Raman spectra exhibited common bands indicative of C-H stretching modes of general OM, and further more diagnostic bands consistent with carbohydrates, lignins, and other OM. These Raman spectra exhibited variability of spectral signatures and of relative intensities between sample treatments indicating that differing growth conditions altered the phytolith carbon. This may have strong implications for understanding the mechanism of phytolith formation, and for use of phytolith carbon isotope values in dating or paleoclimate reconstruction.

  17. Validation, verification, and benchmarking of crystal growth simulations

    Science.gov (United States)

    Dadzis, K.; Bönisch, P.; Sylla, L.; Richter, T.

    2017-09-01

    The variety of physical phenomena in crystal growth processes requires diverse software tools for the numerical simulations. Both, dedicated 2D or 3D ready-to-use software for coupled simulations of a crystallization furnace and general-purpose 3D simulation packages have been used in the literature. This work proposes a general strategy for model development: validation of the physical model using model experiments; verification of the numerical model using analytical or high-accuracy solutions; testing of the computational efficiency using complex benchmark cases. The application of these steps is demonstrated for various models in directional solidification of silicon showing the capabilities of various open source or commercial software packages.

  18. Modelling of Verneuil process for the sapphire crystal growth

    Science.gov (United States)

    Barvinschi, Floricica; Santailler, Jean-Louis; Duffar, Thierry; Le Gal, Hervé

    1999-03-01

    The finite element software FIDAP was used to simulate the Verneuil crystal growth process. The turbulent combustion between hydrogen and oxygen, giving water, the hydrodynamics of the gas phase, the inlet and outlet chemical species flow resulting from the combustion and the heat transfer in the furnace (including internal wall-to-wall radiation) are taken into account. A problem with 10 degrees of freedom per node is generated, solved and the results of the axisymmetric model have shown that the coupling of all these phenomena can be achieved in one numerical model. The effects of transparency of the crystal is discussed. A qualitative agreement between some experimental observations and the model is found, so that modelling may be a good tool for studying the Verneuil process. Nevertheless, some improvements of the model in conjunction with other experimental validations appear necessary.

  19. Model of apparent crystal growth rate and kinetics of seeded precipitation from sodium aluminate solution

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-bin; LIU Zhi-jian; XU Xiao-hui; ZHOU Qiu-sheng; PENG Zhi-hong; LIU Gui-hua

    2005-01-01

    Based on the population balance equation in a batch crystallizer characteristic of seeded precipitation, a model to calculate the rate of apparent crystal growth of aluminum hydroxide from the size distribution was deve-loped. The simulation results indicate that the rate of apparent crystal growth during seeded precipitation exhibits a manifest dependence on the crystal size. In general, there is an obvious increase in the apparent crystal growth rate with the augment in crystal size. The apparent activation energy increases with the increase of characteristic crystal size, which indicates that the growth of small crystals is controlled by surface chemical reaction; it is gradually controlled by both the surface reaction and diffusion with the augment in crystal size.

  20. In situ investigation of growth rates and growth rate dispersion of α-lactose monohydrate crystals

    Science.gov (United States)

    Dincer, T. D.; Ogden, M. I.; Parkinson, G. M.

    2009-02-01

    The growth rates and growth rate dispersion (GRD) of four different faces of α-lactose monohydrate crystal were measured at 30, 40 and 50 °C in the relative supersaturation range 0.55-2.33 in aqueous solutions. The overall growth rate of the crystal is around 50-60% of the (0 1 0) face of the crystal. The power law was applied to the growth rates of the four faces and the activation energies were calculated to be between 9.5 and 13.7 kcal/mol. This indicates a diffusion-controlled growth, but the exponents calculated are between 2.5 and 3.1 which are higher than unity. Introduction of critical supersaturation decreased the exponents to between 1.8 and 2.4. The variance of GRD for the (0 1 0) face is twice the variance of the GRD of the (1 1 0) and (1 0 0) faces and 10 times higher than the (1 1¯ 1¯) face at the same supersaturations and temperatures. The GRD of the four faces were similar when expressed as a function of growth rate. However, the (0 1 1) face displayed lower GRD than the other faces at the same temperatures and supersaturations.

  1. Recovery of surfaces from impurity poisoning during crystal growth

    Science.gov (United States)

    Land, Terry A.; Martin, Tracie L.; Potapenko, Sergey; Palmore, G. Tayhas; de Yoreo, James J.

    1999-06-01

    Growth and dissolution of crystal surfaces are central to processes as diverse as pharmaceutical manufacturing,, corrosion, single-crystal production and mineralization in geochemical and biological environments,. Impurities are either unavoidable features of these processes or intentionally introduced to modify the products. Those that act as inhibiting agents induce a so-called `dead zone', a regime of low supersaturation where growth ceases. Models based on the classic theory of Cabrera and Vermilyea explain behaviour near the dead zone in terms of the pinning of elementary step motion by impurities,. Despite general acceptance of this theory, a number of commonly investigated systems exhibit behaviour not predicted by such models. Moreover, no clear microscopic picture of impurity-step interactions currently exists. Here we use atomic force microscopy to investigate the potassium dihydrogen phosphate {100} surface as it emerges from the dead zone. We show that traditional models are not able to account for the behaviour of this system because they consider only elementary steps, whereas it is the propagation of macrosteps (bunches of monolayer steps) that leads to resurrection of growthout of the dead zone. We present a simple physical model of this process that includes macrosteps and relates characteristics of growth near the dead zone to the timescale for impurity adsorption.

  2. Modeling of crystal morphology : growth simulation on facets in arbitrary orientations

    NARCIS (Netherlands)

    Boerrigter, Stephan Xander Mattheus

    2003-01-01

    Many aspects of crystal morphology modeling are studied in this thesis. Most important of all, is the dependence of crystal growth on supersaturation--the driving force for crystallization--which not only influences the crystal morphology, but also polymorphism and nucleation. It is shown that an

  3. KNbO3 single crystal growth by the radio frequency heating Czochralski method

    Science.gov (United States)

    Wang, W.; Zou, Q.; Geng, Z.

    1985-01-01

    A radio frequency heating Czochralski technique to obtain single crystal KNbO3 is first presented. The technological parameters of KNbO3 crystal growth by the Czochralski technique and its pulling conditions were studied in detail. The experiments on second harmonic generation using 1.06 micrometer Nd:YAG laser in KNbO3 have been conducted. The second harmonic efficiency for upconversion of KNbO3 is found to be as high as that of NaBa2Nb5O15. An automatic scanning measurement for the optical homogeneity of KNbO crystal is also described. KNbO3 is revealed to be a potentially useful nonlinear material for optical device applications.

  4. A study about some phosphate derivatives as inhibitors of calcium oxalate crystal growth

    Science.gov (United States)

    Grases, F.; March, P.

    1989-08-01

    The kinetic of crystal growth of calcium oxalate monohydrate seed crystals were investigated potentiometrically in the presence of several phosphate derivatives, D-fructose-1,6-diphosphate, pyrophosphate, methylene diphosphonate and phytate, and it was found that in some cases they strongly inhibited crystal growth. The inhibitory action of the different substances assayed was comparatively evaluated.

  5. Growth Defects in Langasite Crystals Observed with White Beam Synchrotron Radiation Topography

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Langasite single crystal was grown by the Czochralski method and its perfection was assessed by white beam synchrotron radiation topography. It is found that the growth core and the growth striations are the primary growth defects and they show strong X-ray kinematical contrast in the topographs. Another typical defect in LGS crystal is dislocation. The formation mechanisms of these growth defects in LGS crystals were discussed.

  6. Crystal growth and characterization of REFeAsO (RE = La, Nd) and LaFePO

    Energy Technology Data Exchange (ETDEWEB)

    Adamski, Agnes; Abdel-Hafiez, Mahmoud; Krellner, Cornelius [Physikalisches Institut, Goethe Universitaet, D-60438 Frankfurt am Main (Germany)

    2016-07-01

    Since the discovery of iron-based superconductors, much effort was put on the crystal growth of the various systems and their characterization. Although, the initial flurry of activities was mainly performed on the 1111 systems, the focus has been rapidly shifted towards other materials, were large high-quality crystals are available. In contrast, the growth of sizeable high-quality single crystals of 1111 compounds is extremely challenging, slowing down the scientific progress in this type of compounds. Here we report on the crystal growth of 1111-type materials under ambient pressure conditions and by using the flux technique. The influence of the material to flux ratio was systematically studied. Subsequently, the obtained samples were analyzed with powder diffractometry, electron microscope, energy dispersive X-ray analysis, Laue diffractometry and magnetic measurements to analyze the structural and magnetic properties.

  7. Anisotropic growth of single-crystal graphite plates by nickel-assisted microwave-plasma chemical-vapor deposition

    Science.gov (United States)

    Badzian, Teresa; Badzian, Andrzej; Roy, Rustum; Cheng, Shang-Cong

    2000-02-01

    Growth of single-crystal graphite free-standing plates has been achieved by a microwavehydrogen-plasma etching of graphite powder and nickel mesh. The plates resemble a knife blade and grow in the direction with long crystals exceeding 100 μm. Hexagonal growth features at the edges and electron diffraction patterns confirm the single-crystal nature of these ultrathin plates. Electron microprobe and Raman spectroscopy indicate the presence of graphite. Diamond crystals nucleate on these plates and they grow simultaneously. We suggest that the paradoxical growth of graphite in a hydrogen plasma, under conditions in which graphite is usually etched away, is possible because of a protective coating by a Ni-C-H phase. This thin coating allows for transport of carbon atoms from the gas phase to the growing graphite surface.

  8. The Origin and Time Dependence of the Amount and Composition of Non-Constituent Gases Present in Crystal Growth Systems

    Science.gov (United States)

    Palosz, Witold

    1998-01-01

    Presence of different, non-constituent gases may be a critical factor in crystal growth systems. In Physical Vapor Transport processes the cras(es) can be used intentionally (to prevent excessively high, unstable growth conditions), or can evolve unintentionally during the course of the process (which may lead to undesired reduction in the -rowth rate). In melt growth, particularly under low gravity conditions (reduced hydrostatic pressure) the gas present in the system may contribute to formation of voids in the growing crystals and even to a separation of the crystal and the liquid phase [1]. On the other hand, some amount of gas may facilitate 'contactless' crystal growth particularly under reduced gravity conditions [2 - 6]. Different non-constituent gases may be present in growth ampoules, and their amount and composition may change during the crystallization process. Some gases can appear even in empty ampoules sealed originally under high vacuum: they may diffuse in from the outside, and/or desorb from the ampoule walls. Residual gases can also be generated by the source materials: even very high purity commercial elements and compounds may contain trace amounts of impurities, particularly oxides. The oxides may have low volatilities themselves but their reaction with other species, particularly carbon and hydrogen, may produce volatile compounds like water or carbon oxides. The non-constituent gases, either added initially to the system or evolved during the material processing, may diffuse out of the ampoule during the course of the experiment. Gases present outside (e.g. as a protective atmosphere or thermal conductor) may diffuse into the ampoule. In either case the growth conditions and the quality of the crystals may be affected. The problem is of a particular importance in sealed systems where the amount of the gases cannot be directly controlled. Therefore a reasonable knowledge and understanding of the origin, composition, magnitude, and change with

  9. The Origin and Time Dependence of the Amount and Composition of Non-Constituent Gases Present in Crystal Growth Systems

    Science.gov (United States)

    Palosz, Witold

    1998-01-01

    Presence of different, non-constituent gases may be a critical factor in crystal growth systems. In Physical Vapor Transport processes the cras(es) can be used intentionally (to prevent excessively high, unstable growth conditions), or can evolve unintentionally during the course of the process (which may lead to undesired reduction in the -rowth rate). In melt growth, particularly under low gravity conditions (reduced hydrostatic pressure) the gas present in the system may contribute to formation of voids in the growing crystals and even to a separation of the crystal and the liquid phase [1]. On the other hand, some amount of gas may facilitate 'contactless' crystal growth particularly under reduced gravity conditions [2 - 6]. Different non-constituent gases may be present in growth ampoules, and their amount and composition may change during the crystallization process. Some gases can appear even in empty ampoules sealed originally under high vacuum: they may diffuse in from the outside, and/or desorb from the ampoule walls. Residual gases can also be generated by the source materials: even very high purity commercial elements and compounds may contain trace amounts of impurities, particularly oxides. The oxides may have low volatilities themselves but their reaction with other species, particularly carbon and hydrogen, may produce volatile compounds like water or carbon oxides. The non-constituent gases, either added initially to the system or evolved during the material processing, may diffuse out of the ampoule during the course of the experiment. Gases present outside (e.g. as a protective atmosphere or thermal conductor) may diffuse into the ampoule. In either case the growth conditions and the quality of the crystals may be affected. The problem is of a particular importance in sealed systems where the amount of the gases cannot be directly controlled. Therefore a reasonable knowledge and understanding of the origin, composition, magnitude, and change with

  10. Viscosity solutions for a polymer crystal growth model

    CERN Document Server

    Cardaliaguet, Pierre; Monteillet, Aurélien

    2010-01-01

    We prove existence of a solution for a polymer crystal growth model describing the movement of a front $(\\Gamma(t))$ evolving with a nonlocal velocity. In this model the nonlocal velocity is linked to the solution of a heat equation with source $\\delta_\\Gamma$. The proof relies on new regularity results for the eikonal equation, in which the velocity is positive but merely measurable in time and with H\\"{o}lder bounds in space. From this result, we deduce \\textit{a priori} regularity for the front. On the other hand, under this regularity assumption, we prove bounds and regularity estimates for the solution of the heat equation.

  11. Direction-specific interactions control crystal growth by oriented attachment

    DEFF Research Database (Denmark)

    Li, Dongsheng; Nielsen, Michael H; Lee, Jonathan R.I.

    2012-01-01

    initiated at the contact point. Interface elimination proceeds at a rate consistent with the curvature dependence of the Gibbs free energy. Measured translational and rotational accelerations show that strong, highly direction-specific interactions drive crystal growth via oriented attachment....... using a fluid cell to directly observe oriented attachment of iron oxyhydroxide nanoparticles. The particles undergo continuous rotation and interaction until they find a perfect lattice match. A sudden jump to contact then occurs over less than 1 nanometer, followed by lateral atom-by-atom addition...

  12. Kinetic Processes Crystal Growth, Diffusion, and Phase Transformations in Materials

    CERN Document Server

    Jackson, Kenneth A

    2004-01-01

    The formation of solids is governed by kinetic processes, which are closely related to the macroscopic behaviour of the resulting materials. With the main focus on ease of understanding, the author begins with the basic processes at the atomic level to illustrate their connections to material properties. Diffusion processes during crystal growth and phase transformations are examined in detail. Since the underlying mathematics are very complex, approximation methods typically used in practice are the prime choice of approach. Apart from metals and alloys, the book places special emphasis on th

  13. Viscosity solutions for a polymer crystal growth model

    OpenAIRE

    Cardaliaguet, Pierre; Ley, Olivier; Monteillet, Aurélien

    2011-01-01

    International audience; We prove existence of a solution for a polymer crystal growth model describing the movement of a front $(\\Gamma(t))$ evolving with a nonlocal velocity. In this model the nonlocal velocity is linked to the solution of a heat equation with source $\\delta_\\Gamma$. The proof relies on new regularity results for the eikonal equation, in which the velocity is positive but merely measurable in time and with H\\"{o}lder bounds in space. From this result, we deduce \\textit{a pri...

  14. Growth of Corophium volutator under laboratory conditions

    NARCIS (Netherlands)

    Kater, B.J.; Jol, J.G.; Smit, M.G.D.

    2008-01-01

    Temperature-dependent growth is an important factor in the population model of Corophium volutator that was developed to translate responses in a 10-day acute bioassay to ecological consequences for the population. The growth rate, however, was estimated from old data, based on a Swedish population.

  15. Inclusion free cadmium zinc tellurium and cadmium tellurium crystals and associated growth method

    Science.gov (United States)

    Bolotnikov, Aleskey E.; James, Ralph B.

    2010-07-20

    The present disclosure provides systems and methods for crystal growth of cadmium zinc tellurium (CZT) and cadmium tellurium (CdTe) crystals with an inverted growth reactor chamber. The inverted growth reactor chamber enables growth of single, large, high purity CZT and CdTe crystals that can be used, for example, in X-ray and gamma detection, substrates for infrared detectors, or the like. The inverted growth reactor chamber enables reductions in the presence of Te inclusions, which are recognized as an important limiting factor in using CZT or CdTe as radiation detectors. The inverted growth reactor chamber can be utilized with existing crystal growth techniques such as the Bridgman crystal growth mechanism and the like. In an exemplary embodiment, the inverted growth reactor chamber is a U-shaped ampoule.

  16. Morphology, Growth Process and Symmetry of {0001} Face on Yb:YAl3(BO3)4 Crystal

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The {0001} face develops on the habit of self-frequency doubling laser crystal Yb: YAl3(BO3)4 (YbYAB) only under high growth rate condition, and its morphology is rough. To study the growth mechanism of {0001} face, we have observed the growth morphology on {0001} polishing section by atomic force microscopy (AFM). A series of AFM images captured in different growth durations on the {0001} polishing section reflect the crystal growth process. It is shown that the growth morphology on the {0001} polishing section was rough with many hillocks at the first growth stage, and it can become smooth finally, although the growth morphology on the {0001} face developed naturally on YbYAB crystal habit is always rough. On the smooth {0001} surface formed at the last growth stage, there are some triangular pits. This fact is different from that of hillocks in most crystal growth morphologies. AFM can easily distinguish the pits or hillocks on the surface, but differential interfere contrast microscopy (DIC) can not do. The orientation of the triangular pits is just the opposite to the triangular {0001} faces. The chemical etching pattern is also composed of this kind of triangular pits. These growth morphology and etching pattern of the {0001} faces show 3m symmetry, but the point group of YbYAB crystal is 32. The symmetric contradiction between morphology and point group does not exist for quartz, although which has the same point group as YbYAB. From quartz {0001} surface morphology we can distinguish the right form or left form of the crystal, but from YbYAB {0001} surface morphology we can not do. The reason for the symmetric contradiction between YbYAB {0001} surface morphology and its point group is not known yet.

  17. On the origin of radiation growth of hcp crystals

    Energy Technology Data Exchange (ETDEWEB)

    Golubov, Stanislav I [ORNL; Barashev, Aleksandr [University of Liverpool; Stoller, Roger E [ORNL

    2012-03-01

    The aim of the present work is to study theoretically the radiation growth (RG) of hcp-type materials with a particular focus on the effect of one-dimensionally (1-D) migrating clusters of self-interstitial atoms (SIAs), which are steadily produced in displacement cascades under neutron or heavy-ion irradiation. A reaction-diffusion model is developed for the description of RG in single hcp-type metallic crystals. The model reproduces all RG stages observed in neutron-irradiated annealed samples of pure Zr and Zr alloys, such as high strain rate at low, strain saturation at intermediate and breakaway growth at relatively high irradiation doses. In addition, it accounts for the striking observations of negative strains in prismatic directions and coexistence of vacancy- and SIA-type prismatic loops. The role of cold work in RG behavior and alignment of the vacancy-type loops along basal planes are revealed and the maximum strain rate is estimated.

  18. Operation condition for continuous anti-solvent crystallization of CBZ-SAC cocrystal considering deposition risk of undesired crystals

    Science.gov (United States)

    Nishimaru, Momoko; Nakasa, Miku; Kudo, Shoji; Takiyama, Hiroshi

    2017-07-01

    Crystallization operation of cocrystal production has deposition risk of undesired crystals. Simultaneously, continuous manufacturing processes are focused on. In this study, conditions for continuous cocrystallization considering risk reduction of undesired crystals deposition were investigated on the view point of thermodynamics and kinetics. The anti-solvent cocrystallization was carried out in four-component system of carbamazepine, saccharin, methanol and water. From the preliminary batch experiment, the relationships among undesired crystal deposition, solution composition decided by mixing ratio of solutions, and residence time for the crystals were considered, and then the conditions of continuous experiment were decided. Under these conditions, the continuous experiment was carried out. The XRD patterns of obtained crystals in the continuous experiment showed that desired cocrystals were obtained without undesired crystals. This experimental result was evaluated by using multi-component phase diagrams from the view point of the operation point's movement. From the evaluation, it was found that there is a certain operation condition which the operation point is fixed with time in the specific domain without the deposition risk of undesired single component crystals. It means the possibility of continuous production of cocrystals without deposition risk of undesired crystals was confirmed by using multi-component phase diagrams.

  19. The influence of crystal morphology on the kinetics of growth of calcium oxalate monohydrate

    Science.gov (United States)

    Millan, A.; Sohnel, O.; Grases, F.

    1997-08-01

    The growth of several calcium oxalate monohydrate seeds in the presence and absence of additives (phytate, EDTA and citrate) has been followed by potentiometry measurements. Growth rates have been calculated from precipitate curves by a cubic spline method and represented in logarithmic plots versus supersaturation. Crystal growth kinetics were found to be dependent on crystal morphology, crystal perfection and degree of aggregation. Some seeds were dissolving in supersaturated solutions. Other seeds showed an initial growth phase of high-order kinetics. The effect of the additives was also different on each seed. Three alternative mechanisms for calcium oxalate crystal growth are proposed.

  20. Solution Growth and Characterization of Single Crystals on Earth and in Microgravity

    Science.gov (United States)

    Aggarwal, M. D.; Currie, J. R.; Penn, B. G.; Batra, A. K.; Lal, R. B.

    2007-01-01

    Crystal growth has been of interest to physicists and engineers for a long time because of their unique properties. Single crystals are utilized in such diverse applications as pharmaceuticals, computers, infrared detectors, frequency measurements, piezoelectric devices, a variety of high-technology devices, and sensors. Solution crystal growth is one of the important techniques to grow a variety of crystals when the material decomposes at the melting point and a suitable solvent is available to make a saturated solution at a desired temperature. In this Technical Memorandum (TM) an attempt is made to give the fundamentals of growing crystals from solution including improved designs of various crystallizers. Since the same solution crystal growth technique could not be used in microgravity, the authors proposed a new cooled-sting technique to grow crystals in space. The authors experience from conducting two Space Shuttle solution crystal growth experiments are also detailed in this TM and the complexity of solution growth experiments to grow crystals in space are also discussed. These happen to be some of the early experiments performed in space, and various lessons learned are described. A brief discussion of protein crystal growth that shares basic principles of the solution growth technique is given, along with some flight hardware information for growth in microgravity.

  1. VO{sub 2} (A): Reinvestigation of crystal structure, phase transition and crystal growth mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Rao Popuri, Srinivasa [ICMCB, CNRS, UPR 9048, F-33608 Pessac (France); University of Bordeaux, ICMCB, UPR 9048, F-33608 Pessac (France); National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Plautius Andronescu Str. No. 1, 300224 Timisoara (Romania); Artemenko, Alla [ICMCB, CNRS, UPR 9048, F-33608 Pessac (France); University of Bordeaux, ICMCB, UPR 9048, F-33608 Pessac (France); Labrugere, Christine [CeCaMA, University of Bordeaux 1, ICMCB, 87 Avenue du Dr. A. Schweitzer, F-33608 Pessac (France); Miclau, Marinela [National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Plautius Andronescu Str. No. 1, 300224 Timisoara (Romania); Villesuzanne, Antoine [ICMCB, CNRS, UPR 9048, F-33608 Pessac (France); University of Bordeaux, ICMCB, UPR 9048, F-33608 Pessac (France); Pollet, Michaël, E-mail: pollet@icmcb-bordeaux.cnrs.fr [ICMCB, CNRS, UPR 9048, F-33608 Pessac (France); University of Bordeaux, ICMCB, UPR 9048, F-33608 Pessac (France)

    2014-05-01

    Well crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal reaction in the presence of V{sub 2}O{sub 5} and oxalic acid. With the advantage of high crystalline samples, we propose P4/ncc as an appropriate space group at room temperature. From morphological studies, we found that the oriented attachment and layer by layer growth mechanisms are responsible for the formation of VO{sub 2} (A) micro rods. The structural and electronic transitions in VO{sub 2} (A) are strongly first order in nature, and a marked difference between the structural transition temperatures and electronic transitions temperature was evidenced. The reversible intra- (LTP-A to HTP-A) and irreversible inter- (HTP-A to VO{sub 2} (M1)) structural phase transformations were studied by in-situ powder X-ray diffraction. Attempts to increase the size of the VO{sub 2} (A) microrods are presented and the possible formation steps for the flower-like morphologies of VO{sub 2} (M1) are described. - Graphical abstract: Using a single step and template free hydrothermal synthesis, well crystallized VO{sub 2} (A) microrods were prepared and the P4/ncc space group was assigned to the room temperature crystal structure. Reversible and irreversible phase transitions among different VO{sub 2} polymorphs were identified and their progressive nature was highlighted. Attempts to increase the microrods size, involving layer by layer formation mechanisms, are presented. - Highlights: • Highly crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal process. • The P4/ncc space group was determined for VO{sub 2} (A) at room temperature. • The electronic structure and progressive nature of the structural phase transition were investigated. • A weak coupling between structural and electronic phase transitions was identified. • Different crystallite morphologies were discussed in relation with growth mechanisms.

  2. Effect of Salt on Crystal Growth of Plate-like Alumina Particles by Molten-salt Method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Yeon; Lee, Yoon Joo; Kim, Soo Ryong; Kwon, Woo Teck; Shin, Dong Geun; Kim, Young Hee [Korea Institute of Ceramic Engineering and Technology, Seoul (Korea, Republic of); Choi, Duck Kyun [Hanyang University, Seoul (Korea, Republic of)

    2015-10-15

    Alumina powder have been expanded its application in industry and required to control its morphology such as powder size and aspect ratio of single particle. It can be synthesized by molten - salt method which is possible to obtain various shapes of ceramic particles by controlling the growth direction because each crystal face has different growth rate. In this study, various combinations of salts such as NaCl, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and their mixture were used for control the growth of plate like alumina particle from the initial stage of synthesis because salt having different ionic strength can control the growth direction of ceramic particle under its melting condition around 800-900 .deg. C, and growth behavior of plate-like alumina particle with different reaction conditions such as temperature and concentration on the crystal size and shape was studied.

  3. SiGe crystal growth aboard the international space station

    Science.gov (United States)

    Kinoshita, K.; Arai, Y.; Tsukada, T.; Inatomi, Y.; Miyata, H.; Tanaka, R.

    2015-05-01

    A silicon germanium mixed crystal Si1-xGex (x~0.5) 10 mm in diameter and 9.2 mm in length was grown by the traveling liquidus-zone (TLZ) method in microgravity by suppressing convection in a melt. Ge concentration of 49.8±2.5 at% has been established for the whole of the grown crystal. Compared with the former space experiment, concentration variation in the axial direction increased from ±1.5 at% to ±2.5 at% although average Ge concentration reached to nearly 50 at%. Excellent radial Ge compositional uniformity 52±0.5 at% was established in the region of 7-9 mm growth length, where axial compositional uniformity was also excellent. The single crystalline region is about 5 mm in length. The interface shape change from convex to concave is implied from both experimental results and numerical analysis. The possible cause of increase in concentration variation and interface shape change and its relation to the two-dimensional growth model are discussed.

  4. Growth of BPO4 single crystals from Li2Mo3O10 flux

    Science.gov (United States)

    Xu, Guogang; Li, Jing; Han, Shujuan; Guo, Yongjie; Wang, Jiyang

    2010-12-01

    Transparent single crystal of BPO4 with a typical sizes of 5 × 7 × 9 mm3 have been grown by the top-seeded solution growth (TSSG) slow-cooling method using Li2Mo3O10 as the flux. X-ray powder diffraction result shows that the as-grown crystal was well crystallized and indexed in a tetragonal system. The processing parameters and the effects of the flux on the crystal growth were investigated.

  5. Study on Characteristics of Crystal Growth of NdFeB Cast Alloys

    Institute of Scientific and Technical Information of China (English)

    李波; 郭炳麟; 王东玲; 刘涛; 喻晓军

    2004-01-01

    The characteristic of crystal growth of NdFeB cast alloys was studied.It is found that the crystal growth orientation of conventional ingots is along or .As the cooling rate increases,the crystallization orientation changes from a axis to c axis,along which the grain is easy to be magnetized.Meanwhile,by analyzing the change of crystallization orientation,the influence on the property of magnets was discussed.

  6. A peek into the history of sapphire crystal growth

    Science.gov (United States)

    Harris, Daniel C.

    2003-09-01

    After the chemical compositions of sapphire and ruby were unraveled in the middle of the 19th century, chemists set out to grow artificial crystals of these valuable gemstones. In 1885 a dealer in Geneva began to sell ruby that is now believed to have been created by flame fusion. Gemnologists rapidly concluded that the stones were artificial, but the Geneva ruby stimulated A. V. L. Verneuil in Paris to develop a flame fusion process to produce higher quality ruby and sapphire. By 1900 there was brisk demand for ruby manufactured by Verneuil's method, even though Verneuil did not publicly announce his work until 1902 and did not publish details until 1904. The Verneuil process was used with little alteration for the next 50 years. From 1932-1953, S. K. Popov in the Soviet Union established a capability for manufacturing high quality sapphire by the Verneuil process. In the U.S., under government contract, Linde Air Products Co. implemented the Verneuil process for ruby and sapphire when European sources were cut off during World War II. These materials were essential to the war effort for jewel bearings in precision instruments. In the 1960s and 1970s, the Czochralski process was implemented by Linde and its successor, Union Carbide, to make higher crystal quality material for ruby lasers. Stimulated by a government contract for structural fibers in 1966, H. LaBelle invented edge-defined film-fed growth (EFG). The Saphikon company, which is currently owned by Saint-Gobain, evolved from this effort. Independently and simultaneously, Stepanov developed edge-defined film-fed growth in the Soviet Union. In 1967 F. Schmid and D. Viechnicki at the Army Materials Research Lab grew sapphire by the heat exchanger method (HEM). Schmid went on to establish Crystal Systems, Inc. around this technology. Rotem Industries, founded in Israel in 1969, perfected the growth of sapphire hemispheres and near-net-shape domes by gradient solidification. In the U.S., growth of near

  7. Growth of KH/sub 2/PO/sub 4/ crystals at constant temperature and supersaturation. Final report, October 20, 1980-October 20, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Loiacono, G.M.; Zola, J.; Kostecky, G.

    1982-02-01

    A large three-zone crystallizer system was constructed and successfully operated for growing KH/sub 2/PO/sub 4/ single crystals. Under conditions of constant crystallization temperature and supersaturation, growth rates exceding 5 mm per day were demonstrated for KH/sub 2/PO/sub 4/ crystals of 5 x 5 cm cross section. The optical quality of these crystals was equivalent to that of crystals grown at rates presently considered as state-of-the-art (approx. 1 mm/day). Sample crystals were supplied for comparison testing. The three-zone system appears to be ideally suitable for growth of large-diameter KH/sub 2/PO/sub 4/ crystals for the Laser Fusion Program.

  8. Biological Macromolecule Crystallization Database

    Science.gov (United States)

    SRD 21 Biological Macromolecule Crystallization Database (Web, free access)   The Biological Macromolecule Crystallization Database and NASA Archive for Protein Crystal Growth Data (BMCD) contains the conditions reported for the crystallization of proteins and nucleic acids used in X-ray structure determinations and archives the results of microgravity macromolecule crystallization studies.

  9. Effect of gallbladder hypomotility on cholesterol crystallization and growth in CCK-deficient mice.

    Science.gov (United States)

    Wang, Helen H; Portincasa, Piero; Liu, Min; Tso, Patrick; Samuelson, Linda C; Wang, David Q-H

    2010-02-01

    We investigated the effect of gallbladder hypomotility on cholesterol crystallization and growth during the early stage of gallstone formation in CCK knockout mice. Contrary to wild-type mice, fasting gallbladder volumes were enlarged and the response of gallbladder emptying to a high-fat meal was impaired in knockout mice on chow or the lithogenic diet. In the lithogenic state, large amounts of mucin gel and liquid crystals as well as arc-like and tubular crystals formed first, followed by rapid formation of classic parallelogram-shaped cholesterol monohydrate crystals in knockout mice. Furthermore, three patterns of crystal growth habits were observed: proportional enlargement, spiral dislocation growth, and twin crystal growth, all enlarging solid cholesterol crystals. At day 15 on the lithogenic diet, 75% of knockout mice formed gallstones. However, wild-type mice formed very little mucin gel, liquid, and solid crystals, and gallstones were not observed. We conclude that lack of CCK induces gallbladder hypomotility that prolongs the residence time of excess cholesterol in the gallbladder, leading to rapid crystallization and precipitation of solid cholesterol crystals. Moreover, during the early stage of gallstone formation, there are two pathways of liquid and polymorph anhydrous crystals evolving to monohydrate crystals and three modes for cholesterol crystal growth.

  10. Growth of Bi-2212 single crystals by a horizontal Bridgman method using different oxygen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, M.; Makino, T.; Nakabayashi, T. [Department of Electrical and Electronic Engineering, Tottori University, Koyama-Minami, Tottori 680-8552 (Japan); Tanaka, H. [Yonago National College of Technology, 4448 Hikona Yonago, Tottori 683-8502 (Japan); Kinoshita, K., E-mail: kinoshita@ele.tottori-u.ac.j [Department of Electrical and Electronic Engineering, Tottori University, Koyama-Minami, Tottori 680-8552 (Japan); Kishida, S. [Department of Electrical and Electronic Engineering, Tottori University, Koyama-Minami, Tottori 680-8552 (Japan)

    2009-10-15

    We compared the crystallinity of the Bi-2212 single crystals grown by the horizontal Bridgman (HB) method with those grown by the vertical Bridgman (VB) method in terms of resistivity, rho. It was clarified that crystals far inside the ingot grown by HB method showed the equivalent crystallinity to crystals grown by VB method, whereas crystals near the surface of the ingot grown by HB method showed the similar crystallinity to crystals grown by TSFZ method, which is sensitive to the growth atmosphere.

  11. Effect of Crystal Growth Direction on Domain Structure of Mn-Doped (Na,K)NbO3 Crystal

    Science.gov (United States)

    Tsuchida, Kohei; Kakimoto, Ken-ichi; Kagomiya, Isao

    2013-09-01

    Single crystals of (Na0.55K0.45)(Nb0.995Mn0.005)O3 have been grown by a floating zone method in N2 and decompression atmosphere to avoid alkaline metal volatilization on the SrTiO3 material base. The variation of their ferroelectric domain structure and the chemical composition of the grown crystal in the growth direction were evaluated. In the crystal grown in N2 atmosphere, the Na and K are not distributed homogeneously. In addition, the phase transition temperature TC and TO-T showed different values between the grown crystal and raw material. By using laser scanning confocal microscope, the domain structures of the grown crystal revealed random patterns in the initial growth stage and lamellar patterns in the progressing crystal growth. In decompression atmosphere, the TC and TO-T values of the grown crystal were similar to those of the raw material and the domain structures showed a constant domain size. The electrical property of the crystal became stable and the domain structure was easily switched against applied electrical field because the oriented lamellar domain was created during cooling of the crystal.

  12. EFFECT OF SODIUM DODECYLBENZENESULFONIC ACID (SDBS ON THE GROWTH RATE AND MORPHOLOGY OF BORAX CRYSTAL

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available An investigation of the effect of sodium dodecylbenzenesulfonic acid (SDBS on both growth rate and morphology of borax crystal has been carried out.  This experiment was carried out at temperature of 25 °C and relative supersaturation of 0.21 and 0.74 under in situ cell optical microscopy method.  The result shows that SDBS inhibits the growth rate and changes the morphology of borax crystal.   Keywords: Borax; growth rate; crystallization, SDBS

  13. EFFECT OF SODIUM DODECYLBENZENESULFONIC ACID (SDBS) ON THE GROWTH RATE AND MORPHOLOGY OF BORAX CRYSTAL

    OpenAIRE

    Suharso, Suharso

    2010-01-01

    An investigation of the effect of sodium dodecylbenzenesulfonic acid (SDBS) on both growth rate and morphology of borax crystal has been carried out.  This experiment was carried out at temperature of 25 °C and relative supersaturation of 0.21 and 0.74 under in situ cell optical microscopy method.  The result shows that SDBS inhibits the growth rate and changes the morphology of borax crystal.   Keywords: Borax; growth rate; crystallization, SDBS

  14. Crystal growth, structural and thermal studies of amino acids admixtured L-arginine phosphate monohydrate single crystals

    Science.gov (United States)

    Anandan, P.; Saravanan, T.; Parthipan, G.; Kumar, R. Mohan; Bhagavannarayana, G.; Ravi, G.; Jayavel, R.

    2011-05-01

    To study the improved characteristics of L-arginine phosphate monohydrate (LAP) crystals, amino acids mixed LAP crystals have been grown by slow cooling method. Amino acids like glycine, L-alanine, and L-valine have been selected for doping. Optical quality bulk crystals have been harvested after a typical growth period of about twenty days. The effect of amino acids in the crystal lattice and molecular vibrational frequencies of various functional groups in the crystals have been studied using X-ray powder diffraction and Fourier Transform infrared (FTIR) analyses respectively. Thermal behavior of the amino acids mixed LAP crystals have been studied from the TG and DTG analyses. High-resolution X-ray diffraction studies have been carried out to find the crystalline nature. Optical transmission studies have been carried out by UV-vis spectrophotometer. The cut off wavelength is below 240 nm for the grown crystals.

  15. Effects of a carbon convection field on large diamond growth under high-pressure high-temperature conditions

    Institute of Scientific and Technical Information of China (English)

    Hu Mei-Hua; Li Shang-Sheng; Ma Hong-An; Su Tai-Chao; Li Xiao-Lei; Hu Qiang; Jia Xiao-Peng

    2012-01-01

    Large diamond crystals were successfully synthesized by a FeNi-C system using the temperature gradient method under high-pressure high-temperature conditions.The assembly of the growth cell was improved and the growth process of diamond was investigated.Effects of the symmetry of the carbon convection field around the growing diamond crystal were investigated systematically by adjusting the position of the seed crystal in the melted catalyst/solvent.The results indicate that the morphologies and metal inclusion distributions of the synthetic diamond crystals vary obviously in both symmetric and non-symmetric carbon convection fields with temperature.Moreover,the finite element method was applied to analyze the carbon convection mode of the melted catalyst/solvent around the diamond crystal.This work is helpful for understanding the growth mechanism of diamond.

  16. Confined Crystal Growth in Space. Deterministic vs Stochastic Vibroconvective Effects

    Science.gov (United States)

    Ruiz, Xavier; Bitlloch, Pau; Ramirez-Piscina, Laureano; Casademunt, Jaume

    The analysis of the correlations between characteristics of the acceleration environment and the quality of the crystalline materials grown in microgravity remains an open and interesting question. Acceleration disturbances in space environments usually give rise to effective gravity pulses, gravity pulse trains of finite duration, quasi-steady accelerations or g-jitters. To quantify these disturbances, deterministic translational plane polarized signals have largely been used in the literature [1]. In the present work, we take an alternative approach which models g-jitters in terms of a stochastic process in the form of the so-called narrow-band noise, which is designed to capture the main statistical properties of realistic g-jitters. In particular we compare their effects so single-frequency disturbances. The crystalline quality has been characterized, following previous analyses, in terms of two parameters, the longitudinal and the radial segregation coefficients. The first one averages transversally the dopant distribution, providing continuous longitudinal information of the degree of segregation along the growth process. The radial segregation characterizes the degree of lateral non-uniformity of the dopant in the solid-liquid interface at each instant of growth. In order to complete the description, and because the heat flux fluctuations at the interface have a direct impact on the crystal growth quality -growth striations -the time dependence of a Nusselt number associated to the growing interface has also been monitored. For realistic g-jitters acting orthogonally to the thermal gradient, the longitudinal segregation remains practically unperturbed in all simulated cases. Also, the Nusselt number is not significantly affected by the noise. On the other hand, radial segregation, despite its low magnitude, exhibits a peculiar low-frequency response in all realizations. [1] X. Ruiz, "Modelling of the influence of residual gravity on the segregation in

  17. Advances in crystal growth, device fabrication and characterization of thallium bromide detectors for room temperature applications

    Science.gov (United States)

    Datta, Amlan; Moed, Demi; Becla, Piotr; Overholt, Matthew; Motakef, Shariar

    2016-10-01

    Thallium bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. However, several critical issues need to be addressed before deployment of this material for long-term field applications can be realized. In this paper, progress made towards solving some of these challenges is discussed. The most significant factors for achieving long-term performance stability for TlBr devices include residual stress as generated during crystal growth and fabrication processes, surface conditions, and the choice of contact metal. Modifications to the commonly used traveling molten zone growth technique for TlBr crystals can significantly minimize the stresses generated by large temperature gradients near the melt-solid interface of the growing crystal. Plasma processing techniques were introduced for the first time to modify the Br-etched TlBr surfaces, which resulted in improvements to the surface conditions, and consequently the spectroscopic response of the detectors. Palladium electrodes resulted a 20-fold improvement in the room-temperature device lifetime when compared to its Br-etched Pt counterpart.

  18. Amelogenin as a promoter of nucleation and crystal growth of apatite

    Science.gov (United States)

    Uskoković, Vuk; Li, Wu; Habelitz, Stefan

    2011-02-01

    Human dental enamel forms over a period of 2-4 years by substituting the enamel matrix, a protein gel mostly composed of a single protein, amelogenin with fibrous apatite nanocrystals. Self-assembly of amelogenin and the products of its selective proteolytic digestion are presumed to direct the growth of apatite fibers and their organization into bundles that eventually comprise the mature enamel, the hardest tissue in the mammalian body. This work aimed to establish the physicochemical and biochemical conditions for the growth of apatite crystals under the control of a recombinant amelogenin matrix (rH174) in combination with a programmable titration system. The growth of apatite substrates was initiated in the presence of self-assembling amelogenin particles. A series of constant titration rate experiments was performed that allowed for a gradual increase of the calcium and/or phosphate concentrations in the protein suspensions. We observed a significant amount of apatite crystals formed on the substrates following the titration of rH174 sols that comprised the initial supersaturation ratio equal to zero. The protein layers adsorbed onto the substrate apatite crystals were shown to act as promoters of nucleation and growth of calcium phosphates subsequently formed on the substrate surface. Nucleation lag time experiments have showed that rH174 tends to accelerate precipitation from metastable calcium phosphate solutions in proportion to its concentration. Despite their mainly hydrophobic nature, amelogenin nanospheres, the size and surface charge properties of which were analyzed using dynamic light scattering, acted as a nucleating agent for the crystallization of apatite. The biomimetic experimental setting applied in this study proves as convenient for gaining insight into the fundamental nature of the process of amelogenesis.

  19. Growth of high-quality hexagonal ErMnO3 single crystals by the pressurized floating-zone method

    Science.gov (United States)

    Yan, Z.; Meier, D.; Schaab, J.; Ramesh, R.; Samulon, E.; Bourret, E.

    2015-01-01

    Hexagonal manganites are among the most intensively studied multiferroics, exhibit unusual geometrically driven ferroelectricity and magnetoelectric couplings, and form domains and domain walls with intriguing functional properties. In order to study these electronic correlation phenomena and develop a comprehensive understanding about the underlying physics, the availability of high-quality single-crystals is crucial. In particular, different members of the RMnO3 (R=Sc, Y, In, Dy to Lu) family require different growth condition in order to achieve stoichiometric single-phase crystals. Here, we report on the growth of high-quality ErMnO3 single crystals with dimensions of 5 mm in diameter and up to 60 mm in length using the pressurized floating-zone technique. We present Laue diffraction, piezoresponse force microscopy, and conductive atomic force microscopy data, reflecting the quality of our single crystals regarding the structure, as well as electronic properties on the level of domains and domain walls.

  20. Phase equilibria diagrams, crystal growth peculiarities and Raman investigations of lead and sodium-bismuth tungstate-molybdate solid solutions

    Science.gov (United States)

    Lebedev, Andrei V.; Avanesov, Samvel A.; Yunalan, Tyliay M.; Klimenko, Valeriy A.; Ignatyev, Boris V.; Isaev, Vladislav A.

    2016-02-01

    In this paper a comprehensive study of lead and sodium-bismuth tungstate-molybdate solid solutions was carried out, including the clarification of their structural peculiarities and phase diagrams of PbMoO4-PbWO4 and NaBi(MoO4)2-NaBi(WO4)2 systems, the study of spontaneous Raman spectra of these compounds, as well as preliminary experiments on single crystals growth of lead tungstate-molybdate. The linewidths, peak and integral intensities of the totally symmetric Raman vibrations of solid solutions were estimated in comparison with known SRS-active crystals. The conditions of the Czochralski growth of optically transparent lead tungstate-molybdate mixed crystals were found and SRS effect was observed in these crystals when pumping by 12 ns 1064 nm laser pulses.

  1. Single crystal fiber growth of cerium doped strontium yttrate, SrY2O4:Ce3+

    Science.gov (United States)

    Philippen, J.; Guguschev, C.; Klimm, D.

    2017-02-01

    First single crystal fibers of cerium doped strontium yttrate were fabricated using the laser-heated pedestal growth technique. Through thermodynamic equilibrium calculations and by high-temperature mass spectrometry suitable growth conditions could be determined. The atmosphere played an important role during crystallization. It affected the composition shift, on the one hand, and the valence state of cerium, on the other hand. These dependencies can be explained by combining X-ray diffraction, elemental analysis, and optical spectroscopy. Crystallization in slightly reducing nitrogen atmosphere proved to be a reasonable choice, because evaporation is suppressed and trivalent cerium is stabilized. Strong green emission that depends on the oxygen fugacity during crystallization could be excited using UV light. Optical properties of SrY2O4:Ce3+ were measured for the first time.

  2. Growth of Nd3+ doped LiNbO3 crystals using Bridgman method and its spectral properties

    Indian Academy of Sciences (India)

    Jinhao Wang; Yueping Zhang; Haiping Xia; Jiawei Sheng

    2009-04-01

    The growth of Nd3+ doped lithium niobate crystals using Bridgman method has been reported in this paper. By means of the optimum conditions such as proper feed materials, sealed platinum crucibles, growth rate of 1–1.5 mm/h and temperature gradient of 30–35°C/cm across the solid–liquid interface under the furnace temperature of 1300°C, single crystals containing Nd3+ ion with 0.54 mol% concentration were obtained. X-ray diffraction and ICP–AES were used to characterize the crystals and its composition. The absorption, emission and fluorescence lifetime are also measured. Based on the Judd–Ofelt theory, we obtained the optical parameters of the crystal such as the luminescent quantum efficiency, the radioactive lifetimes, the branching ratios and the emission cross-section.

  3. Growth of High Quality Semi-Insulating InP Single Crystal by Suppression of Compensation Defects

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Deep level defects in as-grown and annealed SI-InP samples were investigated by thermally stimulated current spectroscopy. Correlations between electrical property, compensation ratio, thermal stability and deep defect concentration in SI-InP were revealed. An optimized crystal growth condition for high quality SI-InP was demonstrated based on the experimental results.

  4. The growth of Nd:CaWO4 single crystals

    Directory of Open Access Journals (Sweden)

    ALEKSANDAR GOLUBOVIC

    2003-12-01

    Full Text Available CaWO4 doped with 0.8 % at. Nd (Nd:CaWO4 single crystals were grown from the melt in air by the Czochralski technique. The critical diameter dc = 1.0 cm and the critical rate of rotation wc = 30 rpm were calculated from hydrodynamic equations for buoyancy-driven and forced convection. The rate of crystal growth was experimentally obtained to be 6.7 mm/h. For chemical polishing, a solution of 1 part saturated chromic acid (CrO3 in water and 3 parts conc. H3PO4 (85 % at 433 K with an exposure time of 2 h was found to be adequate. A mixture of 1 part concentrated HF and 2 parts chromic acid at room temperature after exposure for 30 min was found to be a suitable etching solution. The lattice parameters a = 0.52404 (6 nm, c = 1.1362 (6 nm and V0 = 0.312 (2 nm3 were determined by X-ray powder diffraction. The obtained results are discussed and compared with published data.

  5. Growth of single-crystal YAG fiber optics.

    Science.gov (United States)

    Nie, Craig D; Bera, Subhabrata; Harrington, James A

    2016-07-11

    Single-crystal YAG (Y3Al5O12) fibers have been grown by the laser heated pedestal growth technique with losses as low as 0.3 dB/m at 1.06 μm. These YAG fibers are as long as about 60 cm with diameters around 330 μm. The early fibers were grown from unoriented YAG seed fibers and these fibers exhibited facet steps or ridges on the surface of the fiber. However, recently we have grown fibers using an oriented seed to grow step-free fibers. Scattering losses made on the fibers indicate that the scattering losses are equal to about 30% of the total loss.

  6. High Speed Crystal Growth by Q-switched Laser Melting

    Science.gov (United States)

    Cullis, A. G.

    1984-01-01

    The modification of the structural and electrical properties of semiconductors short radiation pulses obtained from Q-switched lasers is described. These modifications are accomplished by high heating and cooling rates. This processing revealed novel crystal growth and high speed resolidification phenomena. The behavior of semiconductor Si is analyzed. The annealing process typically employs short pulses of radiation in or near the visible region of the spectrum. The Q-switched ruby and Nd-YAG lasers are commonly used and these are sometimes mode locked to reduce the pulse length still further. Material to be annealed can be processed with a single large area radiation spot. Alternatively, a small radiation spot size can be used and a large sample area is covered by overlapping irradiated regions.

  7. Synthesis, crystal growth, solubility, structural, optical, dielectric and microhardness studies of Benzotriazole-4-hydroxybenzoic acid single crystals

    Science.gov (United States)

    Silambarasan, A.; Krishna Kumar, M.; Thirunavukkarasu, A.; Mohan Kumar, R.; Umarani, P. R.

    2015-06-01

    Organic Benzotriazole-4-hydroxybenzoic acid (BHBA), a novel second-order nonlinear optical single crystal was grown by solution growth method. The solubility and nucleation studies were performed for BHBA crystal at different temperatures 30, 35, 40 45 and 50 °C. Single crystal X-ray diffraction study reveals that the BHBA belongs to Pna21 space group of orthorhombic crystal system. The crystal perfection of BHBA was examined from powder and high resolution X-ray diffraction analysis. UV-visible and photoluminescence spectra were recorded to study its transmittance and excitation, emission behaviors respectively. Kurtz powder second harmonic generation test reveals that, the frequency conversion efficiency of BHBA is 3.7 times higher than that of potassium dihydrogen phosphate (KDP) crystal. The dielectric constant and dielectric loss values were estimated for BHBA crystal at various temperatures and frequencies. The mechanical property of BHBA crystal was studied on (110), (010) and (012) planes by using Vicker's microhardness test. The chemical etching study was performed on (012) facet of BHBA crystal to analyze its growth feature.

  8. Simplifying the growth of hybrid single-crystals by using nanoparticle precursors: the case of AgI

    Science.gov (United States)

    Xu, Biao; Wang, Ruji; Wang, Xun

    2012-03-01

    We report the synthesis of a series of AAgmIn single-crystals within 24 h, at room temperature, utilizing AgI nanoparticles (NPs) as the precursor. The AgI NPs impart high reactivity under mild conditions and favor the growth kinetics. 0D, 1D and 2D iodoargentate crystals can be obtained. This work represents the first application of NPs in the field of organo-metal-halide crystals and will inspire the design of other AMmXn crystals.We report the synthesis of a series of AAgmIn single-crystals within 24 h, at room temperature, utilizing AgI nanoparticles (NPs) as the precursor. The AgI NPs impart high reactivity under mild conditions and favor the growth kinetics. 0D, 1D and 2D iodoargentate crystals can be obtained. This work represents the first application of NPs in the field of organo-metal-halide crystals and will inspire the design of other AMmXn crystals. Electronic supplementary information (ESI) available: XPS spectra of AgI NPs, schematic representation of the formation process of [Ag4I8]4- in 2, UV-Vis spectra of the DTMA-Ag-I clusters, analysis of force balance of a crystal at the interface between H2O and CH2Cl2 and crystal structure depiction of 1-4. CIF files of 1-4 are also provided. CCDC reference numbers 863848, 863849, 863850 and 863851. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30139c

  9. Crystal growth iron based pnictide compounds; Kristallzuechtung eisenbasierter Pniktidverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Nacke, Claudia

    2012-11-15

    The present work is concerned with selected crystal growth method for producing iron-based superconductors. The first part of this work introduces significant results of the crystal growth of BaFe{sub 2}As{sub 2} and the cobalt-substituted compound Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} with x{sub Nom} = 0.025, 0.05, 0.07, 0.10 and 0.20. For this purpose a test procedure for the vertical Bridgman method was developed. The second part of this work contains substantial results for growing a crystal of LiFeAs and the nickel-substituted compound Li{sub 1-δ}Fe{sub 1-x}Ni{sub x}As with x{sub Nom} = 0.015, 0.025, 0.05, 0.06, 0.075 and 0.10. For this purpose a test procedure for the melt flow process has been developed successfully. [German] Die vorliegende Arbeit befasst sich mit ausgewaehlten Kristallzuechtungsverfahren zur Herstellung eisenbasierter Supraleiter. Der erste Teil dieser Arbeit fuehrt wesentliche Ergebnisse der Kristallzuechtung von BaFe{sub 2}As{sub 2} sowie der Cobalt-substituierten Verbindung Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} mit x{sub Nom} =0.025, 0.05, 0.07, 0.10 und 0.20 auf. Hierzu wurde eine Versuchsdurchfuehrung fuer das vertikale Bridgman-Verfahren konzipiert, mit welcher erfolgreich Kristalle dieser Zusammensetzungen gezuechtet wurden. Der zweite Teil dieser Arbeit enthaelt wesentliche Ergebnisse zur Kristallzuechtung von LiFeAs sowie der Nickel-substituierten Verbindung Li{sub 1-δ}Fe{sub 1-x}Ni{sub x}As mit x{sub Nom} = 0.015, 0.025, 0.05, 0.06, 0.075 und 0.10. Hierfuer wurde erfolgreich eine Versuchsdurchfuehrung fuer das Schmelzfluss-Verfahren entwickelt.

  10. Crystal growth and scintillation properties of undoped and Ce3+-doped GdI3 crystals

    Science.gov (United States)

    Ye, Le; Li, Huanying; Wang, Chao; Shi, Jian; Chen, Xiaofeng; Wang, Zhongqing; Huang, Yuefeng; Xu, Jiayue; Ren, Guohao

    2017-02-01

    The growth and scintillation properties of undoped and Ce3+-doped GdI3 crystals were reported in this paper. These GdI3:χ%Ce (χ = 0, 1, 2) crystals were grown by the vertical Bridgman growth technique in evacuated quartz crucibles. X-ray excited optical luminescence spectra of GdI3:Ce exhibit a broad emission band (450 nm-650 nm) peaking at 520 nm corresponding to 5d1→4f1 transition of Ce3+ while the undoped GdI3 crystal consists of a broad band (400 nm-600 nm) and several sharp lines peaking at 462 nm, 482 nm, 492 nm, 549 nm, 579 nm owing to the impurities ions and defects. The excitation spectra of Ce3+ doped GdI3 consist of two broad bands between 300 nm and 500 nm corresponding to 4f1→5d1 absorption of Ce3+. The other absorption peaking at 262 nm in the spectrum of GdI3:2%Ce is assigned to band-to-band exciton transition. The excitation spectrum of undoped GdI3 contains a flat absorption band from 330 to 370 nm and a broad band between 390 and 450 nm peaking at 414 nm corresponding to the absorption of the unintentionally doped Ce3+, Dy3+, Ho3+ impurities and other defects. The emission spectrum of undoped GdI3 under 332 nm excitation has the identical line peaks with the spectrum measured under X-ray excitation. The emission spectra of GdI3:2%Ce and GdI3:1%Ce show a broad band in the range of 450-750 nm with the maximum at 550 nm corresponding to 5d1→4f1 transitions of Ce3+ ion. The GdI3, GdI3:1%Ce and GdI3:2%Ce show fast principle decay time constant 73 ns, 69 ns and 58 ns respectively, besides, the undoped also shows a slow decay constant 325 ns which doesn't appear in Ce3+-doped GdI3 crystal. The energy resolutions of GdI3:χ%Ce (χ = 1, 2) measured at 662 KeV are about 3%-5% and the undoped GdI3 is 13.3%.

  11. Predicting crystal growth via a unified kinetic three-dimensional partition model.

    Science.gov (United States)

    Anderson, Michael W; Gebbie-Rayet, James T; Hill, Adam R; Farida, Nani; Attfield, Martin P; Cubillas, Pablo; Blatov, Vladislav A; Proserpio, Davide M; Akporiaye, Duncan; Arstad, Bjørnar; Gale, Julian D

    2017-04-03

    Understanding and predicting crystal growth is fundamental to the control of functionality in modern materials. Despite investigations for more than one hundred years, it is only recently that the molecular intricacies of these processes have been revealed by scanning probe microscopy. To organize and understand this large amount of new information, new rules for crystal growth need to be developed and tested. However, because of the complexity and variety of different crystal systems, attempts to understand crystal growth in detail have so far relied on developing models that are usually applicable to only one system. Such models cannot be used to achieve the wide scope of understanding that is required to create a unified model across crystal types and crystal structures. Here we describe a general approach to understanding and, in theory, predicting the growth of a wide range of crystal types, including the incorporation of defect structures, by simultaneous molecular-scale simulation of crystal habit and surface topology using a unified kinetic three-dimensional partition model. This entails dividing the structure into 'natural tiles' or Voronoi polyhedra that are metastable and, consequently, temporally persistent. As such, these units are then suitable for re-construction of the crystal via a Monte Carlo algorithm. We demonstrate our approach by predicting the crystal growth of a diverse set of crystal types, including zeolites, metal-organic frameworks, calcite, urea and l-cystine.

  12. Predicting crystal growth via a unified kinetic three-dimensional partition model

    Science.gov (United States)

    Anderson, Michael W.; Gebbie-Rayet, James T.; Hill, Adam R.; Farida, Nani; Attfield, Martin P.; Cubillas, Pablo; Blatov, Vladislav A.; Proserpio, Davide M.; Akporiaye, Duncan; Arstad, Bjørnar; Gale, Julian D.

    2017-04-01

    Understanding and predicting crystal growth is fundamental to the control of functionality in modern materials. Despite investigations for more than one hundred years, it is only recently that the molecular intricacies of these processes have been revealed by scanning probe microscopy. To organize and understand this large amount of new information, new rules for crystal growth need to be developed and tested. However, because of the complexity and variety of different crystal systems, attempts to understand crystal growth in detail have so far relied on developing models that are usually applicable to only one system. Such models cannot be used to achieve the wide scope of understanding that is required to create a unified model across crystal types and crystal structures. Here we describe a general approach to understanding and, in theory, predicting the growth of a wide range of crystal types, including the incorporation of defect structures, by simultaneous molecular-scale simulation of crystal habit and surface topology using a unified kinetic three-dimensional partition model. This entails dividing the structure into ‘natural tiles’ or Voronoi polyhedra that are metastable and, consequently, temporally persistent. As such, these units are then suitable for re-construction of the crystal via a Monte Carlo algorithm. We demonstrate our approach by predicting the crystal growth of a diverse set of crystal types, including zeolites, metal-organic frameworks, calcite, urea and L-cystine.

  13. Size effects on void growth in single crystals with distributed voids

    DEFF Research Database (Denmark)

    Borg, Ulrik; Niordson, Christian Frithiof; Kysar, J.W.

    2008-01-01

    The effect of void size on void growth in single crystals with uniformly distributed cylindrical voids is studied numerically using a finite deformation strain gradient crystal plasticity theory with an intrinsic length parameter. A plane strain cell model is analyzed for a single crystal...

  14. Growth of Single Crystals and Fabrication of GaN and AlN Wafers

    Science.gov (United States)

    2006-03-01

    in nature and thus must be synthesized. Crystal growth of this group using standard methods ( Czochralski , Bridgman) is extremely difficult because of...reaction zone in which deposition occurs. High growth rates of up to 0.5 mm/h were obtained with this method ; however, the crystals grew only for short...Chapter Five presents the growth of GaN on sapphire with a modified sandwich growth method which is a variation of vapor phase transport process. Optimum

  15. The Influence of Reduced Gravity on the Crystal Growth of Electronic Materials

    Science.gov (United States)

    Su, Ching-Hua; Gillies, D. C.; Szofran, F. R.; Watring, D. A.; Lehoczky, S. L.

    1996-01-01

    The imperfections in the grown crystals of electronic materials, such as compositional nonuniformity, dopant segregation and crystalline structural defects, are detrimental to the performance of the opto-electronic devices. Some of these imperfections can be attributed to effects caused by Earth gravity during crystal growth process and four areas have been identified as the uniqueness of material processing in reduced gravity environment. The significant results of early flight experiments, i.e. prior to space shuttle era, are briefly reviewed followed by an elaborated review on the recent flight experiments conducted on shuttle missions. The results are presented for two major growth methods of electronic materials: melt and vapor growth. The use of an applied magnetic field in the melt growth of electrically conductive melts on Earth to simulate the conditions of reduced gravity has been investigated and it is believed that the superimposed effect of moderate magnetic fields and the reduced gravity environment of space can result in reduction of convective intensities to the extent unreachable by the exclusive use of magnet on Earth or space processing. In the Discussions section each of the significant results of the flight experiments is attributed to one of the four effects of reduced gravity and the unresolved problems on the measured mass fluxes in some of the vapor transport flight experiments are discussed.

  16. Growth of KH/sub 2/PO/sub 4/ crystals at constant temperature and supersaturation. Final report, 20 October 1980-20 October 1981

    Energy Technology Data Exchange (ETDEWEB)

    Loiacono, G.M.; Zola, J.; Kostecky, G.

    1982-02-01

    A large three-zone cyrstallizer system was constructed and successfully operated for growing KH/sub 2/PO/sub 4/ single crystals. Under conditions of constant crystallization temperature and supersaturation, growth rates exceeding 5 mm per day were demonstrated for KH/sub 2/PO/sub 4/ crystals of 5 x 5 cm cross section. The optical quality of these crystals was equivalent to that of crystals grown at rates presently considered as state-of-the-art (approx. 1 mm/day). Sample crystals were supplied for comparison testing. The three-zone system appears to be ideally suitable for growth of large-diameter KH/sub 2/PO/sub 4/ crystals for the Laser Fusion Program.

  17. Formation and growth mechanism of TiC crystal in TiCp/Ti composites

    Institute of Scientific and Technical Information of China (English)

    金云学; 王宏伟; 曾松岩; 张二林

    2002-01-01

    Ti-C and Ti-Al-C alloys were prepared using gravity and directional solidification processes. Morphologies of TiC crystal were investigated by using SEM, XRD and EDX. Also, the formation and growth mechanism of TiC crystal have been analyzed on the basis of coordination polyhedron growth unit theory. During solidification of titanium alloys, the coordination polyhedron growth unit is TiC6. TiC6 growth units stack in a linking mode of edge to edge and form octahedral TiC crystal with {111} planes as present faces. Although the growing geometry of TiC crystal is decided by its lattice structure, the final morphology of TiC crystal depends on the effects of its growth environment. In solute concentration distribution, the super-saturation of C or TiC6 at the corners of octahedral TiC crystal is much higher than that of edges and faces of octahedral TiC crystal. At these corners the driving force for crystal growth is greater and the interface is instable which contribute to quick stacking rate of growth units at these corners and result in secondary dendrite arms along TiC crystallographic 〈100〉 directions. TiC crystal finally grows to be dendrites.

  18. Large single crystal growth of MnWO4-type materials from high-temperature solutions

    Science.gov (United States)

    Gattermann, U.; Röska, B.; Paulmann, C.; Park, S.-H.

    2016-11-01

    A simple high-temperature growth apparatus was constructed to obtain large crystals of chemically gradient (In, Na)-doped MnWO4solid-solutions. This paper presents the crystal growth and characterisation of both MnWO4and epitaxially grown (In, Na): MnWO4crystals on MnWO4. These large monolithic crystals were made in two steps: A MnWO4 crystal was grown in the crystallographic main direction [001] applying the Czochralski method, followed by the top seeded growth of (In, Na): MnWO4 solid-solutions with an oriented seed crystal of MnWO4. Such a monolithic crystal will serve to fundamental investigation of coupling properties at boundaries between various multiferroic MnWO4-typesolid-solutions.

  19. Sidebranching in the Dendritic Crystal Growth of Ammonium Chloride

    Science.gov (United States)

    Dougherty, Andrew

    2012-02-01

    We report measurements of the dendritic crystal growth of NH4Cl from supersaturated aqueous solution at small supersaturations. Sidebranch growth in this regime is challenging to model well, and the origin of the sidebranches is not fully understood. The early detection of sidebranches requires measurements of small deviations from the smooth steady state shape, but that shape is not well known at the intermediate distances relevant for sidebranch measurements. One model is that sidebranches result from the selective amplification of microscopic noise. We compare measurements of the sidebranch envelope with predictions of the noise-induced sidebranching model of Gonz'alez-Cinca, Ram'irez-Piscina, Casademunt, and Hern'andez-Machado [Phys Rev. E, 63, 051602 (2001)]. We find that the measured amplitude is somewhat larger than predicted, and the shape of the sidebranch envelope is also different. A second model is that sidebranches result from small oscillations of the tip. We have observed no such oscillations, but very small ones can not be ruled out. No measurement of the tip region can be completely free of contamination from early sidebranches, so it can be challenging to distinguish between an oscillating tip and a smooth tip with sidebranches starting nearby.

  20. Study of growth of single crystal ribbon in space

    Science.gov (United States)

    Wood, V. E.; Markworth, A. J.

    1975-01-01

    The technical feasibility is studied of growing single-crystal silicon ribbon in the space environment. Procedures are described for calculating the electromagnetic fields produced in a silicon ribbon by an rf shaping coil. The forces on the ribbon and the degree of shaping to be expected are determined. The expected steady-state temperature distribution in the ribbon is calculated in the one-dimensional approximation. Calculations on simplified models indicate, that lack of flatness of the shaped ribbon and excessive heating of the melt by the eddy currents induced by the shaping fields may pose problems. An analysis of the relative effects of various kinds of forces other than electromagnetic showed that in the space environment capillarity forces would dominate, and that the shape of the melt is thus principally determined by the shape of any solids with which it comes in contact. This suggests that ribbon may be produced simply by drawing between parallel wires. A concept is developed for a process of off-angle growth, in which the ribbon is pulled at an angle to the solidification front. Such a process promises to offer increased growth rate, better homogeneity, and thinner ribbon.

  1. Oscillations and accelerations of ice crystal growth rates in microgravity in presence of antifreeze glycoprotein impurity in supercooled water

    Science.gov (United States)

    Furukawa, Yoshinori; Nagashima, Ken; Nakatsubo, Shun-ichi; Yoshizaki, Izumi; Tamaru, Haruka; Shimaoka, Taro; Sone, Takehiko; Yokoyama, Etsuro; Zepeda, Salvador; Terasawa, Takanori; Asakawa, Harutoshi; Murata, Ken-ichiro; Sazaki, Gen

    2017-01-01

    The free growth of ice crystals in supercooled bulk water containing an impurity of glycoprotein, a bio-macromolecule that functions as ‘antifreeze’ in living organisms in a subzero environment, was observed under microgravity conditions on the International Space Station. We observed the acceleration and oscillation of the normal growth rates as a result of the interfacial adsorption of these protein molecules, which is a newly discovered impurity effect for crystal growth. As the convection caused by gravity may mitigate or modify this effect, secure observations of this effect were first made possible by continuous measurements of normal growth rates under long-term microgravity condition realized only in the spacecraft. Our findings will lead to a better understanding of a novel kinetic process for growth oscillation in relation to growth promotion due to the adsorption of protein molecules and will shed light on the role that crystal growth kinetics has in the onset of the mysterious antifreeze effect in living organisms, namely, how this protein may prevent fish freezing. PMID:28262787

  2. Mathematical modelling of the feed rod shape in floating zone silicon crystal growth

    Science.gov (United States)

    Plāte, M.; Krauze, A.; Virbulis, J.

    2017-01-01

    A three-dimensional (3D) transient multi-physical model of the feed rod melting in the floating zone (FZ) silicon single-crystal growth process is presented. Coupled temperature, electromagnetic (EM), and melt film simulations are performed for a 4 inch FZ system, and the time evolution of the open melting front is studied. The 3D model uses phase boundaries and parameters from a converged solution of a quasi-stationary axisymmetric (2D) model of the FZ system as initial conditions for the time dependent simulations. A parameter study with different feed rod rotation, crystal pull rates and widths of the inductor main slit is carried out to analyse their influence on the evolution of the asymmetric feed rod shape. The feed rod rotation is shown to have a smoothing effect on the shape of the open melting front.

  3. Numerical computation of the linear stability of the diffusion model for crystal growth simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Sorensen, D.C. [Rice Univ., Houston, TX (United States); Meiron, D.I.; Wedeman, B. [California Institute of Technology, Pasadena, CA (United States)

    1996-12-31

    We consider a computational scheme for determining the linear stability of a diffusion model arising from the simulation of crystal growth. The process of a needle crystal solidifying into some undercooled liquid can be described by the dual diffusion equations with appropriate initial and boundary conditions. Here U{sub t} and U{sub a} denote the temperature of the liquid and solid respectively, and {alpha} represents the thermal diffusivity. At the solid-liquid interface, the motion of the interface denoted by r and the temperature field are related by the conservation relation where n is the unit outward pointing normal to the interface. A basic stationary solution to this free boundary problem can be obtained by writing the equations of motion in a moving frame and transforming the problem to parabolic coordinates. This is known as the Ivantsov parabola solution. Linear stability theory applied to this stationary solution gives rise to an eigenvalue problem of the form.

  4. Synthesis, Crystal Growth and Characterization of bis Dl-Valine Picrate Single Crystal for Second-Order Nonlinear Optical Applications

    Science.gov (United States)

    Silambarasan, A.; Krishna Kumar, M.; Sudhahar, S.; Thirunavukkarasu, A.; Mohan Kumar, R.; Umarani, P. R.

    2013-08-01

    An organic compound Bis DL-Valine picrate (BDLVP) was synthesized successfully and single crystal was grown by slow evaporation solution growth method. The presence of functional groups in the compound was identified by FTIR spectral analysis. Single crystal X-ray diffraction study revealed that the grown crystal belongs to P21/n space group of monoclinic crystal system. Powder X-ray diffraction pattern was recorded to know the crystalline perfection of the grown crystal. The reaction mechanism, thermal decomposition stages and thermal stability of the grown crystal were studied by using TG/DTA analysis. From the UV-visible spectral study, the electronic band gap energy (Eg) of the grown crystal was found to be 2.43 eV. The second harmonic generation (SHG) efficiency of grown crystal was found to be 1.3 times higher than KDP crystal by using Kurtz powder SHG technique. The microhardness property of the grown crystal was examined by Vicker's microhardness test.

  5. Single crystal growth in spin-coated films of polymorphic phthalocyanine derivative under solvent vapor

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, T.; Ohmori, M.; Ramananarivo, M. F.; Fujii, A., E-mail: afujii@opal.eei.eng.osaka-u.ac.jp; Ozaki, M. [Division of Electrical, Electronic, and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)

    2015-12-01

    The effects of solvent vapor on spin-coated films of a polymorphic phthalocyanine derivative were investigated. Growth of single crystal films via redissolving organic films under solvent vapor was revealed by in situ microscopic observations of the films. X-ray diffraction measurement of the films after exposing to solvent vapor revealed the phase transition of polymorphs under solvent vapor. The direction of crystal growth was clarified by measuring the crystal orientation in a grown monodomain film. The mechanism of crystal growth based on redissolving organic films under solvent vapor was discussed in terms of the different solubilities of the polymorphs.

  6. Single crystal growth in spin-coated films of polymorphic phthalocyanine derivative under solvent vapor

    Directory of Open Access Journals (Sweden)

    T. Higashi

    2015-12-01

    Full Text Available The effects of solvent vapor on spin-coated films of a polymorphic phthalocyanine derivative were investigated. Growth of single crystal films via redissolving organic films under solvent vapor was revealed by in situ microscopic observations of the films. X-ray diffraction measurement of the films after exposing to solvent vapor revealed the phase transition of polymorphs under solvent vapor. The direction of crystal growth was clarified by measuring the crystal orientation in a grown monodomain film. The mechanism of crystal growth based on redissolving organic films under solvent vapor was discussed in terms of the different solubilities of the polymorphs.

  7. Growth Habit of Polar Crystal ZnO by Solid-vapor Method

    Institute of Scientific and Technical Information of China (English)

    MA Shufang; LIANG Jian; LIU Xuguang; ZHAO Junfu; XU Bingshe

    2011-01-01

    Crystals of semiconductor ZnO were fabricated by means of solid-vapor growth method-carbon thermal reduction. Powder X-ray diffraction and field emission scanning electron microscope were used to characterize the phase and morphology of the samples. The results showed that the samples were wurtzite ZnO crystals and anisotropy of crystal growth relied on reaction temperature in solid-vapor process. The crystals synthesized at different temperatures were of short column-like shape, flat top hexagon pyramidal-like shape and polyhedron shape. The growth mechanisms of the above three kinds of crystal were consistent with the theory of growth basic structural unit of negative ion coordination polyhedron. At first, Zn2+ and four O2- form [Zn-O4]6- coordination tetrahedron at any temperature. Then, tetrahedrons stack in different ways into different morphology crystal at different temperatures.

  8. Growth and Characterization of Organic NLO Crystal: β-Naphthol

    Institute of Scientific and Technical Information of China (English)

    S.Janarthanan; R.Sugaraj Samuel; S.Selvakumar; Y.C.Rajan; D.Jayaraman; S.Pandi

    2011-01-01

    Single crystals ofβ-Naphthol (βN), an organic nonlinear optical (NLO) material was successfully grown by temperature lowering method using chloroform as solvent. The initial compound was purified by repeated recrystallization process. As-grown crystals were characterized by single crystal X-ray diffraction (XRD) studies to ascertain that βN crystal crystallized in the monoclinic system with a noncemtrosymmetric space group. Vibrational frequencies of various functional groups in the crystals were derived from Fourier transform infrared (FTIR) spectroscopy and proton nuclear magnetic resonance (NMR) spectrum. Optical characterization was done using UV-Visible near-infrared (NIR) spectroscopy. The thermal behaviour of the material was studied by thermo gravimetric and differential thermal plots. Scanning electron microscopy (SEM) study was carried out on the surface of the grown crystals to investigate the nature of defects in the crystal surface and the NLO property of the crystal was tested by Nd:YAG laser as a source.

  9. Real-time processing of interferograms for monitoring protein crystal growth on the Space Station

    Science.gov (United States)

    Choudry, A.; Dupuis, N.

    1988-01-01

    The possibility of using microscopic interferometric techniques to monitor the growth of protein crystals on the Space Station is studied. Digital image processing techniques are used to develop a system for the real-time analysis of microscopic interferograms of nucleation sites during protein crystal growth. Features of the optical setup and the image processing system are discussed and experimental results are presented.

  10. Real-time processing of interferograms for monitoring protein crystal growth on the Space Station

    Science.gov (United States)

    Choudry, A.; Dupuis, N.

    1988-01-01

    The possibility of using microscopic interferometric techniques to monitor the growth of protein crystals on the Space Station is studied. Digital image processing techniques are used to develop a system for the real-time analysis of microscopic interferograms of nucleation sites during protein crystal growth. Features of the optical setup and the image processing system are discussed and experimental results are presented.

  11. Crystal growth, FTIR and thermal characterization of bis(ethyltriphenylphosphonium) tetrabromomanganate(II) dihydrate crystals

    Indian Academy of Sciences (India)

    C Ilamaran; M Sethuram; M Dhandapani; G Amirthaganesan

    2012-05-01

    Single crystals of a novel compound, bis(ethyltriphenylphosphonium) tetrabromomanganate(II) dihydrate (BTP-Mn) were grown by solution growth-slow evaporation technique from aqueous solution of the compound at ambient temperature. The grown crystals were characterized by elemental analysis, powder X-ray diffraction, thermal analysis, nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infra-red spectroscopy (FTIR) techniques. The chemical composition of the compound was revealed by elemental analysis and its crystallinity was confirmed by powder X-ray diffraction. Thermal analysis confirmed that the compound was stable up to 125°C. The various kinds of protons and carbons present in the compound were confirmed by 1H NMR and 13C NMR technique respectively and the presence of phosphorous was confirmed by 31P NMR spectrum in the compound. The modes of vibration of different molecular groups present in the compound were identified by FTIR spectral analysis. The second harmonic generation behaviour was tested by Nd:YAG laser source.

  12. Growth of YBCO single crystals by the self-flux technique

    Science.gov (United States)

    Liang, Ruixing; Bonn, Douglas A.; Hardy, Walter N.

    2012-07-01

    Preparation of high purity, highly perfect and homogeneous YBa2Cu3O6+ δ (YBCO) single crystals is a lengthy procedure that consists of five major steps. They are (a) fabrication of BaZrO3 ceramic crucibles, (b) self-flux growth of YBCO crystals using BaZrO3 crucibles, (c) setting of the oxygen content in the crystals, (d) removal of twins and homogenisation of oxygen content, and (e) formation of oxygen vacancy ordered superstructures by low temperature annealing. To obtain BaZrO3 ceramic impervious to the BaO-CuO melt, the volume of the grain boundary glass phase must be reduced to a very low level through the use of high purity starting materials and precise BaO:ZrO mole ratio control. The best quality YBCO crystals are obtained by slow cooling of YO1.5-BaO-CuO melt in the primary crystallisation region of YBCO. Oxygen content in heavily twinned orthorhombic YBCO is inhomogeneous due to the stress caused by twins. Therefore, homogenisation annealing must be carried out after removal of twin boundaries or, alternatively, under conditions where YBCO is tetragonal. In high purity YBCO, randomly distributed oxygen vacancies are the main source of charge carrier scattering. However, ordered superstructures of oxygen vacancies with significantly lower scattering rates can be generated by careful annealing at low temperatures.

  13. Morphology and Growth of Methyl Stearate as a Function of Crystallization Environment

    OpenAIRE

    Camacho, DM; Roberts, KJ; Muller, FL; Thomas, D.; More, I; Lewtas, K

    2017-01-01

    In situ studies of methyl stearate growing from supersaturated n-dodecane, kerosene, and toluene solutions reveal strong evidence that solvent choice influences the crystal morphology and crystal growth kinetics. Crystals with similar habit are observed in all solvents, with the exception of lower supersaturations in kerosene, where a less symmetric morphology was observed. BFDH analysis based on the monoclinic C2 crystal structure of methyl stearate yielded the morphological indexation to be...

  14. Growth of lithium triborate single crystals from molten salt solution under various temperature gradients

    Science.gov (United States)

    Guretskii, S. A.; Ges, A. P.; Zhigunov, D. I.; Ignatenko, A. A.; Kalanda, N. A.; Kurnevich, L. A.; Luginets, A. M.; Milovanov, A. S.; Molchan, P. V.

    1995-12-01

    Single crystals of lithium triborate LiB 3O 5 (LBO) have been grown by the top-seeded solution growth method with B 2O 3 as a solvent using different temperature gradients in the zone of crystallization. Optical and nonlinear optical properties of LBO single crystals have been investigated. The influence of post-growth thermal treatment in oxygen atmosphere on the optical properties has been studied.

  15. Effect of anisotropy on deep cellular crystal growth in directional solidification

    Science.gov (United States)

    Jiang, Han; Chen, Ming-Wen; Shi, Guo-Dong; Wang, Tao; Wang, Zi-Dong

    2016-06-01

    The effect of anisotropic surface tension and anisotropic interface kinetics on deep cellular crystal growth is studied. An asymptotic solution of deep cellular crystal growth in directional solidification is obtained by using the matched asymptotic expansion method and the multiple variable expansion method. The results show that as the anisotropic parameters increase, the total length of deep cellular crystal increases and the root depth increases, whereas the curvature of the interface near the root increases or the curvature radius decreases.

  16. The Effect of Ionic Liquids on the CaCO3 Crystal Growth

    Institute of Scientific and Technical Information of China (English)

    Zhi Guo HU; Shi Li SONG; Jian Ji WANG; Lin YANG

    2004-01-01

    In this paper, the effect of ionic liquids on the CaCO3 crystal growth has been studied for the first time. The obtained CaCO3 crystals were charactered by the X-ray diffraction and scanning electron micrographs. The results showed that the control ability of ionic liquids for CaCO3 crystals growth was dependent on the counter anion very much.

  17. A Transition from Eutectic Growth to Dendritic Growth Induced by High Undercooling Conditions

    Institute of Scientific and Technical Information of China (English)

    吕勇军; 魏炳波

    2003-01-01

    Cu-8 wt.%Al eutectic alloy was undercooled by up to 187K (0.14 TE) using a drop tube technique. The crystal growth and phase selection mechanisms were investigated during containerless rapid solidification. It is found that the microstructural morphology is characterized by lamellar eutectic growth at small undercoolings. However,if the liquid alloy is undercooled by more than 25K, eutectic growth will be suppressed completely and the dendritic growth of (Gu) solid solution dominates its solidification process. When the undercooling exceeds 153 K, a microstructural transition from coarse dendrite to equiaxed dendrite takes place.

  18. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport in Low Gravity

    Science.gov (United States)

    Su, Ching-Hua; Ramachandran, N.

    2013-01-01

    Crystals of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, will be grown by physical vapor transport in the Material Science Research Rack (MSRR) on International Space Station (ISS). The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  19. Hair-inspired crystal growth of HOA in cavities of cellulose matrix via hydrophobic-hydrophilic interface interaction.

    Science.gov (United States)

    He, Meng; Kwok, Ryan T K; Wang, Zhenggang; Duan, Bo; Tang, Ben Zhong; Zhang, Lina

    2014-06-25

    As one of the most ordinary phenomena in nature, numerous pores on animal skins induce the growth of abundant hairs. In this study, cavities of a cellulose matrix were used as hard templates to lead the hair-inspired crystal growth of 12-hydroxyoctadecanoic acid (HOA) through hydrophobic-hydrophilic interface interaction, and short hair-like HOA crystals with a smooth surface were formed on cellulose films. In our findings, by using solvent evaporation induced crystallization, hydrophobic HOA grew along the hydrophilic cellulose pore wall to form regular vertical worm-like and pillar-like crystals with an average diameter of about 200 nm, depending on the experimental conditions and HOA concentration. The formation mechanism of the short hair-like HOA crystals as well as the structure and properties of the cellulose/HOA submicrometer composite films were studied. The pores of the cellulose matrix supplied not only cavities for the HOA crystals fixation but also hydrophilic shells to favor the vertical growth of the relatively hydrophobic HOA crystals. The cellulose/HOA submicrometer composite films exhibited high hydrophobicity, as a result of the formation of the solid/air composite surface. Furthermore, 4-(1,2,2-triphenylethenyl) benzoic acid, an aggregation-induced emission luminogen, was used to aggregate on the cellulose surface with HOA to emit and monitor the HOA crystal growth, showing bifunctional photoluminscence and self-cleaning properties. This work opens up a novel one-step pathway to design bio-inspired submicrometer materials by utilizing natural products, showing potential applications in self-cleaning optical devices.

  20. Growth and characterization of propyl-para-hydroxybenzoate single crystals

    Indian Academy of Sciences (India)

    N Karunagaran; P Ramasamy; R Perumal Ramasamy

    2014-10-01

    Single crystals of propyl--hydroxybenzoate have been grown by slow evaporation solution technique. The structure of the compound was confirmed by FT–IR, FT–Raman spectroscopy and single crystal X-ray diffraction studies. The crystalline perfection of the grown single crystals has been analysed by high resolution X-ray diffraction measurements. Optical properties of the grown single crystals were studied by UV–Vis NIR spectrum. The luminescence behaviour of the single crystal has been analysed by photoluminescence analysis and found maximum luminescence in the lower wavelength region. A simple interferometric technique was used for measuring birefringence of the crystal. The laser damage threshold of the crystal is 1.3 GW/cm2. The mechanical strength of the grown crystal is measured using Vickers microhardness tester. The dielectric properties have been investigated.

  1. Growth and characterization of hexamethylenetetramine crystals grown from solution

    Science.gov (United States)

    Babu, B.; Chandrasekaran, J.; Balaprabhakaran, S.

    2014-06-01

    Organic nonlinear optical single crystals of hexamethylenetetramine (HMT; 10 × 10 × 5 mm3) were prepared by crystallization from methanol solution. The grown crystals were subjected to various characterization techniques such as single crystal XRD, powder XRD, UV-Vis and electrical studies. Single crystal XRD analysis confirmed the crystalline structure of the grown crystals. Their crystalline nature was also confirmed by powder XRD technique. The optical transmittance property was identified from UV-Vis spectrum. Dielectric measurements were performed as a function of frequency at different temperatures. DC conductivity and photoconductivity studies were also carried out for the crystal. The powder second harmonic generation efficiency (SHG) of the crystal was measured using Nd:YAG laser and the efficiency was found to be two times greater than that of potassium dihydrogen phosphate (KDP).

  2. Growth and characterization of gel grown pure and mixed iron–manganese levo-tartrate crystals

    Indian Academy of Sciences (India)

    S J Joshi; B B Parekh; K D Vohra; M J Joshi

    2006-06-01

    Several applications of iron tartrate and manganese tartrate compounds are reported in the literature. In the present investigation, we have grown pure and mixed iron (II)–manganese levo-tartrate crystals by single diffusion gel growth technique. Crystals with spherulitic morphology were harvested. The colouration of the crystals changed from black to pinkish brown upon increasing the content of manganese in the crystals. The crystals were characterized by FTIR spectroscopy, powder XRD, TGA, VSM and dielectric study. Crystal structures of different mixed crystals were studied. From TGA it was observed that on heating the hydrated crystals became anhydrous and then converted into oxides. Paramagnetic nature of the crystals was revealed from VSM study. The variation of the dielectric constant with frequency was studied. The results are discussed.

  3. Progress in art and science of crystal growth and its impacts on modern society

    Science.gov (United States)

    Nishinaga, Tatau

    2015-05-01

    The impacts of the progress in the art and science of crystal growth on human life are reviewed. Even before the invention of the transistor, quartz and corundum crystals were used as crystal oscillators and jewel bearings, respectively. However, a major impact of crystal growth on society was experienced with the invention of the transistor, which required high-purity and perfect germanium crystals. Once the importance of crystal growth was clearly recognized, the science of crystal growth also extensively developed. The growth of single crystalline silicon allows us to produce integrated circuits, which are used in all the electronic devices in everyday use. The technological developments in the growth of compound semiconductors have also had a large impact on society through the inventions of the laser diode for optical communication and the p-n junction nitride light-emitting diode toward the realization of a less energy-intensive society. The latter invention was awarded the 2014 Nobel Prize in Physics. Finally, future aspects of crystal growth are discussed.

  4. Extracellular matrix protein in calcified endoskeleton: a potential additive for crystal growth and design

    Science.gov (United States)

    Azizur Rahman, M.; Fujimura, Hiroyuki; Shinjo, Ryuichi; Oomori, Tamotsu

    2011-06-01

    In this study, we demonstrate a key function of extracellular matrix proteins (ECMPs) on seed crystals, which are isolated from calcified endoskeletons of soft coral and contain only CaCO 3 without any living cells. This is the first report that an ECMP protein extracted from a marine organism could potentially influence in modifying the surface of a substrate for designing materials via crystallization. We previously studied with the ECMPs from a different type of soft coral ( Sinularia polydactyla) without introducing any seed crystals in the process , which showed different results. Thus, crystallization on the seed in the presence of ECMPs of present species is an important first step toward linking function to individual proteins from soft coral. For understanding this interesting phenomenon, in vitro crystallization was initiated in a supersaturated solution on seed particles of calcite (1 0 4) with and without ECMPs. No change in the crystal growth shape occurred without ECMPs present during the crystallization process. However, with ECMPs, the morphology and phase of the crystals in the crystallization process changed dramatically. Upon completion of crystallization with ECMPs, an attractive crystal morphology was found. Scanning electron microscopy (SEM) was utilized to observe the crystal morphologies on the seeds surface. The mineral phases of crystals nucleated by ECMPs on the seeds surface were examined by Raman spectroscopy. Although 50 mM Mg 2+ is influential in making aragonite in the crystallization process, the ECMPs significantly made calcite crystals even when 50 mM Mg 2+ was present in the process. Crystallization with the ECMP additive seems to be a technically attractive strategy to generate assembled micro crystals that could be used in crystals growth and design in the Pharmaceutical and biotechnology industries.

  5. Crystal front shape control by use of an additional heater in a Czochralski sapphire single crystal growth system

    Science.gov (United States)

    Hur, Min-Jae; Han, Xue-Feng; Choi, Ho-Gil; Yi, Kyung-Woo

    2017-09-01

    The quality of sapphire single crystals used as substrates for LED production is largely influenced by two defects: dislocation density and bubbles trapped in the crystal. In particular, the dislocation density has a higher value in sapphire grown by the Czochralski (CZ) method than by other methods. In the present study, we predict a decreased value for the convexity and thermal gradient at the crystal front (CF) through the use of an additional heater in an induction-heated CZ system. In addition, we develop a solute concentration model by which the location of bubble formation in CZ growth is calculated, and the results are compared with experimental results. We further calculate the location of bubble entrapment corresponding with the use of an additional heater. We find that sapphire crystal growth with an additional heater yields a decreased thermal gradient at the CF, together with decreased CF convexity, improved energy efficiency, and improvements in terms of bubble formation location.

  6. Crystallization Kinetics of Organic–Inorganic Trihalide Perovskites and the Role of the Lead Anion in Crystal Growth

    KAUST Repository

    Moore, David T.

    2015-02-18

    © 2015 American Chemical Society. Methylammonium lead halide perovskite solar cells continue to excite the research community due to their rapidly increasing performance which, in large part, is due to improvements in film morphology. The next step in this progression is control of the crystal morphology which requires a better fundamental understanding of the crystal growth. In this study we use in situ X-ray scattering data to study isothermal transformations of perovskite films derived from chloride, iodide, nitrate, and acetate lead salts. Using established models we determine the activation energy for crystallization and find that it changes as a function of the lead salt. Further analysis enabled determination of the precursor composition and showed that the primary step in perovskite formation is removal of excess organic salt from the precursor. This understanding suggests that careful choice of the lead salt will aid in controlling crystal growth, leading to superior films and better performing solar cells.

  7. Crystallization kinetics of organic-inorganic trihalide perovskites and the role of the lead anion in crystal growth.

    Science.gov (United States)

    Moore, David T; Sai, Hiroaki; Tan, Kwan W; Smilgies, Detlef-M; Zhang, Wei; Snaith, Henry J; Wiesner, Ulrich; Estroff, Lara A

    2015-02-18

    Methylammonium lead halide perovskite solar cells continue to excite the research community due to their rapidly increasing performance which, in large part, is due to improvements in film morphology. The next step in this progression is control of the crystal morphology which requires a better fundamental understanding of the crystal growth. In this study we use in situ X-ray scattering data to study isothermal transformations of perovskite films derived from chloride, iodide, nitrate, and acetate lead salts. Using established models we determine the activation energy for crystallization and find that it changes as a function of the lead salt. Further analysis enabled determination of the precursor composition and showed that the primary step in perovskite formation is removal of excess organic salt from the precursor. This understanding suggests that careful choice of the lead salt will aid in controlling crystal growth, leading to superior films and better performing solar cells.

  8. SEMICONDUCTOR MATERIALS: Chemical etching of a GaSb crystal incorporated with Mn grown by the Bridgman method under microgravity conditions

    Science.gov (United States)

    Xiaofeng, Chen; Nuofu, Chen; Jinliang, Wu; Xiulan, Zhang; Chunlin, Chai; Yude, Yu

    2009-08-01

    A GaSb crystal incorporated with Mn has been grown by the Bridgman method on the Polizon facility onboard the FOTON-M3 spacecraft. Structural defects and growth striations have been successfully revealed by the chemical etching method. By calculating various parameters of the convection, the striation patterns can be explained, and the critical value of the Taylor number, which characterizes the convective condition of the rotating magnetic field induced azimuthal flow, was shown. The stresses generated during crystal growth can be reflected by the observations of etch pit distribution and other structural defects. Suggestions for improving the space experiment to improve the quality of the crystal are given.

  9. Experimental setup for rapid crystallization using favoured chemical potential and hydrodynamic conditions

    Indian Academy of Sciences (India)

    V K Dixit; B V Rodrigues; H L Bhat

    2001-10-01

    The rapid crystallization of KH2PO4 (KDP) from solution is demonstrated at a rate up to ≈7.5 mm/day along [100] and 22 mm/day along [001] in a crystallizer of 5 l capacity, using accelerated crucible rotation technique (ACRT) and simulated platform geometry for controlling the hydrodynamic conditions. On an experimental basis we have grown the crystals up to 40 × 43 × 66 mm3 size in about 3 days. Comparative analysis of the main structural and optical properties of crystals grown by conventional and rapid crystallization technique, is discussed.

  10. Fluid inclusions in carbonado diamond_Implication to the crystal growth environment

    Science.gov (United States)

    Kagi, H.; Ishibashi, H.; Sakurai, H.; Ohfuji, H.

    2010-12-01

    Diamond is a unique geological material carrying inside fluid and solid inclusions which are pristine witnesses of diamond crystallization media. Carbonado is natural polycrystalline diamond whose origin is still under hot depate. Our previous study on Central African carbonado reported the presence of fluid inclusions and high residual pressure in the diamond [1]. These results suggested that C-O-H mantle fluid was trapped in the carbonado sample and carbonado had grown in the volatile-rich environment in the mantle. However, it was unclear that the fluid inclusions in carbonado existed inside of diamond grains or in the grain boundaries. In this study, we precisely investigated the location of fluid inclusions from spectroscopic measurements and TEM observations. A carbonado grain with hundreds of micrometer in diameter was heated incrementally at temperatures from 700 to 1100°C under vacuum. After heating at each temperature condition, infrared absorption spectra were measured. Dehydration of hydrous minerals were observed with increasing temperature. In contrast, absorption bands assignable to liquid water were observed up to 950°C right before graphitization occurred. This observation strongly suggests that the fluid was trapped inside of diamond grains. For obtaining direct evidence of fluid inclusion existing inside of a diamond grain, we conducted TEM observations on an FIB-fabricated thin foil of carbonado. We found a void in the carbonado sample. The void was surrounded by (111) equivalent crystal faces. The octahedral void controlled by crystal habit of host diamond strongly suggests that the void is the negative crystal of diamond. The existence of negative crystal of diamond indicates that the fluid equilibrated with surrounding diamond crystals. Moreover, it was found that the grain boundary of the polished carbonado sample was in zig-zag texture. The detailed EBSD analyses on the grain boundary indicated that the grain boundary corresponded to the

  11. Thermodynamic reactivity, growth and characterization of mercurous halide crystals

    Science.gov (United States)

    Singh, N. B.; Gottlieb, M.; Henningsen, T.; Hopkins, R. H.; Mazelsky, R.; Singh, M.; Glicksman, M. E.; Paradies, C.

    1992-01-01

    Thermodynamic calculations were carried out for the Hg-X-O system (X = Cl, Br, I) to identify the potential sources of contamination and relative stability of oxides and oxy-halide phases. The effect of excess mercury vapor pressure on the optical quality of mercurous halide crystal was studied by growing several mercurous chloride crystals from mercury-rich composition. The optical quality of crystals was examined by birefringence interferometry and laser scattering studies. Crystals grown in slightly mercury-rich composition showed improved optical quality relative to stoichiometric crystals.

  12. Simulation of the flow and mass transfer for KDP crystals undergoing 2D translation during growth

    Science.gov (United States)

    Zhou, Chuan; Li, Mingwei; Hu, Zhitao; Yin, Huawei; Wang, Bangguo; Cui, Qidong

    2016-09-01

    In this study, a novel motion mode for crystals during growth, i.e., 2D translation, is proposed. Numerical simulations of flow and mass transfer are conducted for the growth of large-scale potassium dihydrogen phosphate (KDP) crystals subjected to the new motion mode. Surface supersaturation and shear stress are obtained as functions of the translational velocity, distance, size, orientation of crystals. The dependence of these two parameters on the flow fields around the crystals is also discussed. The thicknesses of the solute boundary layer varied with translational velocity are described. The characteristics of solution flow and surface supersaturation distribution are summarized, where it suggests that the morphological stability of a crystal surface can be enhanced if the proposed 2D translation is applied to crystal growth.

  13. Investigation on Growth and Optical Properties of LVCC Single Crystals

    Directory of Open Access Journals (Sweden)

    N. Sheen Kumar

    2014-11-01

    Full Text Available L-valine cadmium chloride (LVCC single crystals were grown by slow evaporation technique with different concentrations (0.25, 0.5, 0.75 and 1.0 mole of CdCl2. All the grown crystals were subjected to single crystal X-ray diffraction analysis. Solid state parameters were calculated for the grown crystals. The optical properties of the crystals were investigated by UV-Vis. absorption spectroscopy. The results revealed that, the wider bandgap and large transparency in the visible region along with higher polarizability of the grown crystals are highly useful in optoelectronic devices. Also according to our needs, one can tune the optical and electrical properties of LVCC crystals by adjusting the concentration of CdCl2 in LVCC.

  14. Crystal growth inhibitors for the prevention of L-cystine kidney stones through molecular design.

    Science.gov (United States)

    Rimer, Jeffrey D; An, Zhihua; Zhu, Zina; Lee, Michael H; Goldfarb, David S; Wesson, Jeffrey A; Ward, Michael D

    2010-10-15

    Crystallization of L-cystine is a critical step in the pathogenesis of cystine kidney stones. Treatments for this disease are somewhat effective but often lead to adverse side effects. Real-time in situ atomic force microscopy (AFM) reveals that L-cystine dimethylester (L-CDME) and L-cystine methylester (L-CME) dramatically reduce the growth velocity of the six symmetry-equivalent {100} steps because of specific binding at the crystal surface, which frustrates the attachment of L-cystine molecules. L-CDME and L-CME produce l-cystine crystals with different habits that reveal distinct binding modes at the crystal surfaces. The AFM observations are mirrored by reduced crystal yield and crystal size in the presence of L-CDME and L-CME, collectively suggesting a new pathway to the prevention of L-cystine stones by rational design of crystal growth inhibitors.

  15. Crystal Growth Inhibitors for the Prevention of L-Cystine Kidney Stones Through Molecular Design

    Energy Technology Data Exchange (ETDEWEB)

    Rimer, Jeffrey D.; An, Zhihua; Zhu, Zina; Lee, Michael H.; Goldfarb, David S.; Wesson, Jeffrey A.; Ward, Michael D. (NY Univ.); (MCW)

    2010-11-12

    Crystallization of L-cystine is a critical step in the pathogenesis of cystine kidney stones. Treatments for this disease are somewhat effective but often lead to adverse side effects. Real-time in situ atomic force microscopy (AFM) reveals that L-cystine dimethylester (L-CDME) and L-cystine methylester (L-CME) dramatically reduce the growth velocity of the six symmetry-equivalent {l_brace}100{r_brace} steps because of specific binding at the crystal surface, which frustrates the attachment of L-cystine molecules. L-CDME and L-CME produce L-cystine crystals with different habits that reveal distinct binding modes at the crystal surfaces. The AFM observations are mirrored by reduced crystal yield and crystal size in the presence of L-CDME and L-CME, collectively suggesting a new pathway to the prevention of L-cystine stones by rational design of crystal growth inhibitors.

  16. Raman Spectrum Analysis on the Solid-Liquid Boundary Layer of BGO Crystal Growth

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xia; YIN Shao-Tang; WAN Song-Ming; YOU Jing-Lin; CHEN Hui; ZHAO Si-Jie; ZHANG Qing-Li

    2007-01-01

    We study the Raman spectra of Bi4Ge3O12 crystal at different temperatures, as well as its melt. The structure characters of the single crystal, melt and growth solid-liquid boundary layer of BGO are investigated by their high-temperature Raman spectra for the first time. The rule of structure change of BGO crystal with increasing temperature is analysed. The results show that there exists [GeO4] polyhedral structure and Bi ion independently in BGO melt. The bridge bonds Bi-O-Bi and Bi-O-Ge appear in the crystal and at the boundary layer, but disappear in the melt. The structure of the growth solid-liquid boundary layer is similar to that of BGO crystal. In the melt, the long-range order structure of the crystal disappears. The thickness of the grovth solid-liquid boundary layer of BGO crystal is about 50 μm.

  17. Methodology of Single Crystal Growth and Microstructure Analysis of CoTi(Zr) Intermetallic Compounds

    Institute of Scientific and Technical Information of China (English)

    Lijuan ZHANG; Mike L.JENKINS; Glyn TAYLOR

    2005-01-01

    The effects of preparation and crystal growth methods on the microstructure, composition, and oxidation of CoTi(Zr)intermetallics were dealt with. A group of methods has been used to produce CoTi and CoTi(Zr) crystals to prevent the formation of titanium oxide particles during melting and crystal growth. The results show that more oxides formed when using powdered starting materials even though the metals handled were and melted under an inert gas atmosphere; using bulk starting materials produced alloys showed less oxidation than powders, but adding a small amount of Al to getter the oxygen was not sufficient to prevent TiO2 formation. However, using a slightly reducing atmosphere during initial melting was highly effective in reducing the formation of oxide. Crystal growth carried out in Ar did not reduce the amount of oxide but only redistributed the particles. TiO2 particles were found only inthe grain boundaries after crystal growing, where they obstructed grain growth. Crystal growth in a vacuum was found to be essential in producing oxide free crystals. A seed selection technique was developed and used in growing CoTi single crystals. The microstructures of the samples were determined using optical microscopy, scanning electron microscopy and transmission electron microscopy, including the morphologies, grain sizes, oxide distributions and crystal structure confirmation.

  18. Development of compartment for studies on the growth of protein crystals in space.

    Science.gov (United States)

    Yamazaki, T; Tsukamoto, K; Yoshizaki, I; Fukuyama, S; Miura, H; Shimaoka, T; Maki, T; Oshi, K; Kimura, Y

    2016-03-01

    To clarify the growth mechanism of a protein crystal, it is essential to measure its growth rate with respect to the supersaturation. We developed a compartment (growth cell) for measuring the growth rate (materials for these components with care. The equipment was successfully used to examine the growth of a lysozyme crystal at a controlled supersaturation in space, where convection is negligible because of the microgravity environment, thereby advancing our understanding of the mechanism of protein crystal growth from solution. The technique used to develop the growth cell is useful not only for space experiments but also for kinetic studies of materials with very slow growth and dissolution rates (<10(-3) nm s(-1)).

  19. Ampoule failure sensor development for semiconductor crystal growth experiments

    Science.gov (United States)

    Watring, Dale A.; Johnson, Martin

    1994-01-01

    Currently there are no devices to detect an ampoule failure in semiconductor crystal growth experiments. If an ampoule fails, it will go undetected until the containing cartridge is breached due to chemical degradation. The experiment will then be terminated resulting in a failed experiment and a loss of data. The objective of this research was to develop a reliable failure sensor that would detect a specific liquid or vapor material before the metallic cartridge is degraded and the processing furnace contaminated. The sensor is a chemical fuse made from a metal with which the semiconductor material reacts more rapidly than it does with the containing cartridge. Upon ampoule failure, the sensor is exposed to the vapor or liquid semiconductor and the chemical reaction causes a resistance change in the sensor material. The sensor shows a step change in resistance on the order of megohms when exposed to mercury zinc telluride (HgZnTe), mercury cadmium telluride (HgCdTe), or gallium arsenide (GaAs). This ampoule failure sensor is being tested for possible use on the second United States Microgravity Mission (USML-2) and is the subject of a NASA patent application.

  20. The effect of tailor-made additives on crystal growth of methyl paraben: Experiments and modelling

    Science.gov (United States)

    Cai, Zhihui; Liu, Yong; Song, Yang; Guan, Guoqiang; Jiang, Yanbin

    2017-03-01

    In this study, methyl paraben (MP) was selected as the model component, and acetaminophen (APAP), p-methyl acetanilide (PMAA) and acetanilide (ACET), which share the similar molecular structure as MP, were selected as the three tailor-made additives to study the effect of tailor-made additives on the crystal growth of MP. HPLC results indicated that the MP crystals induced by the three additives contained MP only. Photographs of the single crystals prepared indicated that the morphology of the MP crystals was greatly changed by the additives, but PXRD and single crystal diffraction results illustrated that the MP crystals were the same polymorph only with different crystal habits, and no new crystal form was found compared with other references. To investigate the effect of the additives on the crystal growth, the interaction between additives and facets was discussed in detail using the DFT methods and MD simulations. The results showed that APAP, PMAA and ACET would be selectively adsorbed on the growth surfaces of the crystal facets, which induced the change in MP crystal habits.

  1. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    Science.gov (United States)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  2. Impact of polymer conformation on the crystal growth inhibition of a poorly water-soluble drug in aqueous solution.

    Science.gov (United States)

    Schram, Caitlin J; Beaudoin, Stephen P; Taylor, Lynne S

    2015-01-01

    Poor aqueous solubility is a major hindrance to oral delivery of many emerging drugs. Supersaturated drug solutions can improve passive absorption across the gastrointestinal tract membrane as long as crystallization can be inhibited, enhancing the delivery of such poorly soluble therapeutics. Polymers can inhibit crystallization and prolong supersaturation; therefore, it is desirable to understand the attributes which render a polymer effective. In this study, the conformation of a polymer adsorbed to a crystal surface and its impact on crystal growth inhibition were investigated. The crystal growth rate of a poorly soluble pharmaceutical compound, felodipine, was measured in the presence of hydroxypropyl methylcellulose acetate succinate (HPMCAS) at two different pH conditions: pH 3 and pH 6.8. HPMCAS was found to be a less effective growth rate inhibitor at pH 3, below its pKa. It was expected that the ionization state of HPMCAS would most likely influence its conformation at the solid-liquid interface. Further investigation with atomic force microscopy (AFM) revealed significant differences in the conformation of HPMCAS adsorbed to felodipine at the two pH conditions. At pH 3, HPMCAS formed coiled globules on the surface, whereas at pH 6.8, HPMCAS adsorbed more uniformly. Thus, it appeared that the reduced effectiveness of HPMCAS at pH 3 was directly related to its conformation. The globule formation leaves many felodipine growth sites open and available for growth units to attach, rendering the polymer less effective as a growth rate inhibitor.

  3. Growth of organic crystals via attachment and transformation of nanoscopic precursors

    Science.gov (United States)

    Jiang, Yuan; Kellermeier, Matthias; Gebaue, Denis; Lu, Zihao; Rosenberg, Rose; Moise, Adrian; Przybylski, Michael; Cölfen, Helmut

    2017-06-01

    A key requirement for the understanding of crystal growth is to detect how new layers form and grow at the nanoscale. Multistage crystallization pathways involving liquid-like, amorphous or metastable crystalline precursors have been predicted by theoretical work and have been observed experimentally. Nevertheless, there is no clear evidence that any of these precursors can also be relevant for the growth of crystals of organic compounds. Herein, we present a new growth mode for crystals of DL-glutamic acid monohydrate that proceeds through the attachment of preformed nanoscopic species from solution, their subsequent decrease in height at the surface and final transformation into crystalline 2D nuclei that eventually build new molecular layers by further monomer incorporation. This alternative mechanism provides a direct proof for the existence of multistage pathways in the crystallization of molecular compounds and the relevance of precursor units larger than the monomeric constituents in the actual stage of growth.

  4. Growth of 2 Inch Eu-doped SrI2 single crystals for scintillator applications

    Science.gov (United States)

    Yoshikawa, Akira; Shoji, Yasuhiro; Yokota, Yuui; Kurosawa, Shunsuke; Hayasaka, Shoki; Chani, Valery I.; Ito, Tomoki; Kamada, Kei; Ohashi, Yuji; Kochurikhin, Vladimir

    2016-10-01

    A vertical Bridgman (VB) crystal growth process was established using modified micro-pulling-down (μ-PD) crystal growth system with a removable chamber that was developed for the growth of deliquescent halide single crystals because conventional μ-PD method does not allow growth of large bulk single crystals. Eu:SrI2 crystals were grown from the melt of (Sr0.98Eu0.02)I2 composition using carbon crucibles. Undoped μ-PD SrI2 crystals were used as seeds that were affixed to the bottom of the crucible. All the preparations preceding the growths and the hot zone assembling were performed in a glove box with Ar gas. Then the removable chamber was taken out of the glove box, attached to the μ-PD system, connected with a Turbo Molecular pump, and evacuated down to 10-4 Pa at 300 °C. After the baking procedure, high purity Ar gas (6N) was injected into the chamber. The crucible was heated by a high frequency induction coil up to the melting point of Eu:SrI2. After melting the starting materials, the crucible was displaced in downward direction for the crystal growth and then cooled down to room temperature. Thus, 2 in. and crack-free Eu:SrI2 bulk crystals were produced. The crystals had high transparency and did not contain any visible inclusions. The crystals were cut and polished in the glove box and then sealed in an aluminum container with an optical window for characterization. The details of the crystal growth are discussed.

  5. Dependence of Limited Growth Rate of High-Quality Gem Diamond on Growth Conditions

    Institute of Scientific and Technical Information of China (English)

    TIAN Yu; MA Hong-An; LI Shang-Sheng; XIAO Hong-Yu; ZHANG Ya-Fei; HUANG Guo-Feng; MA Li-Qiu; JIA Xiao-Peng

    2007-01-01

    The growth rate of diamond has been investigated for a long time and researchers have been attempting to enhance the growth rate of high-quality gem diamond infinitely. However, it has been found according to previous research results that the quality of diamond is debased with the increase of growth rate. Thus, under specific conditions, the growth rate of high-quality diamond cannot exceed a limited value that is called the limited growth rate of diamond. We synthesize a series of type Ib gem diamonds by temperature gradient method under high pressure and high temperature (HPHT) using the as-grown {100} face. The dependence of limited growth rate on growth conditions is studied. The results show that the limited growth rate increases when synthetic temperature decreases, also when growth time is prolonged.

  6. Synthesis, Growth, and Characterization of Bisglycine Hydrobromide Single Crystal

    Directory of Open Access Journals (Sweden)

    Koteeswari Pandurangan

    2014-01-01

    Full Text Available Single crystals of BGHB were grown by slow evaporation technique. The unit cell dimensions and space group of the grown crystals were confirmed by single crystal X-ray diffraction. The modes of vibration of the molecules and the presence of functional groups were identified using FTIR technique. The microhardness study shows that the Vickers hardness number of the crystal increases with the increase in applied load. The optical properties of the crystals were determined using UV-Visible spectroscopy. The thermal properties of the grown crystal were also determined. The refractive index was determined as 1.396 using Brewster’s angle method. The emission of green light on passing the Nd: YAG laser light confirmed the second harmonic generation property of the crystals and the SHG efficiency of the crystals was found to be higher than that of KDP. The dielectric constant and dielectric loss measurements were carried out for different temperatures and frequencies. The ac conductivity study of the crystals was also discussed. The photoconductivity studies confirm that the grown crystal has negative photoconductivity nature. The etching studies were carried out to study the formation of etch pits.

  7. Crystal growth of Ba 3BP 3O 12 with BPO 4-NaF flux

    Science.gov (United States)

    Zhang, Zhi-Jun; Wang, Hong; Hu, Guan-Qin; Chen, Hao-Hong; Yang, Xin-Xin; Zhao, Jing-Tai

    2010-04-01

    Single crystals of Ba 3BP 3O 12 with size of 10×8×2 mm 3 have been grown by the top-seeded solution growth (TSSG) method using BPO 4-NaF mixture as the flux. The crystals were characterized by X-ray powder diffraction, field emission scanning electron microscopy (FE-SEM) and transmittance spectrum. Ba 3BP 3O 12 single crystal exhibits wide transparency in the range 250-800 nm. The preparation process of starting materials and the effect of flux on the crystal growth were discussed.

  8. Influence of Thermal Conductivity on Interface Shape during Growth of Sapphire Crystal Using a Heat-Exchanger-Method

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The internal radiative contributed on heat transfer will enhance the heat transport inside the crystalline phase during growth the transparent sapphire crystal using a heat-exchanger-method (HEM). The artificially enhanced thermal conductivity of the solid to include the internal radiation effect was used in the present study. Numerical simulations using FIDAP were performed to investigate the effects of the thermal conductivity on the shape of the melt-crystal interface, the temperature distribution, and the velocity distribution. Heat transfer (including radiation) from the furnace to the crucible and heat extraction from the heat exchanger can be modeled by the convection boundary conditions. In the present study, we focus on the influence of the conductivity on the shape of the melt-crystal interface. Therefore, the effect of the others growth parameters during the HEM crystal growth was neglected. For the homogenous conductivity (km=kS=k), the maximum convexity decreases as k increases and the rate of maximum convexity increases for a higher conductivity is less abrupt than for a lower conductivity. For the no homogenous conductivity (km≠kS), the higher solid's kS generates lower maximum convexity and the variation in maximum convexity was less abrupt for the different melt's km. The maximum convexity decreases slightly as the enhance conductivity of the sapphire crystal increases. The effects of the anisotropic conductivity of the sapphire crystal were also addressed. The maximum convexity of the melt-crystal interface decreases when the radial conductivity (ksr) of the crystal increases. The maximum convexity increases as the axial conductivity (ksz) of the crucible increases.

  9. Self-interaction chromatography as a tool for optimizing conditions for membrane protein crystallization.

    Science.gov (United States)

    Gabrielsen, Mads; Nagy, Lisa A; DeLucas, Lawrence J; Cogdell, Richard J

    2010-01-01

    The second virial coefficient, or B value, is a measurement of how well a protein interacts with itself in solution. These interactions can lead to protein crystallization or precipitation, depending on their strength, with a narrow range of B values (the 'crystallization slot') being known to promote crystallization. A convenient method of determining the B value is by self-interaction chromatography. This paper describes how the light-harvesting complex 1-reaction centre core complex from Allochromatium vinosum yielded single straight-edged crystals after iterative cycles of self-interaction chromatography and crystallization. This process allowed the rapid screening of small molecules and detergents as crystallization additives. Here, a description is given of how self-interaction chromatography has been utilized to improve the crystallization conditions of a membrane protein.

  10. Growth and characterization of organic material 4-dimethylaminobenzaldehyde single crystal

    Science.gov (United States)

    Jebin, R. P.; Suthan, T.; Rajesh, N. P.; Vinitha, G.; Madhusoodhanan, U.

    2015-01-01

    The organic material 4-dimethylaminobenzaldehyde single crystals were grown by slow evaporation technique. The grown crystal was confirmed by the single crystal and powder X-ray diffraction analyses. The functional groups of the crystal have been identified from the Fourier Transform Infrared (FTIR) and FT-Raman studies. The optical property of the grown crystal was analyzed by UV-Vis-NIR and photoluminescence (PL) spectral measurements. The thermal behavior of the grown crystal was analyzed by thermogravimetric (TG) and differential thermal analyses (DTA). Dielectric measurements were carried out with different frequencies by using parallel plate capacitor method. The third order nonlinear optical properties of 4-dimethylaminobenzaldehyde was measured by the Z-scan technique using 532 nm diode pumped continuous wave (CW) Nd:YAG laser.

  11. Synthesis, growth, structural, thermal and optical studies of pyrrolidinium-2-carboxylate-4-nitrophenol single crystals

    Science.gov (United States)

    Swarna Sowmya, N.; Sampathkrishnan, S.; Vidyalakshmi, Y.; Sudhahar, S.; Mohan Kumar, R.

    2015-06-01

    Organic nonlinear optical material, pyrrolidinium-2-carboxylate-4-nitrophenol (PCN) was synthesized and single crystals were grown by slow evaporation solution growth method. Single crystal X-ray diffraction analysis confirmed the structure and lattice parameters of PCN crystals. Infrared, Raman and NMR spectral analyses were used to elucidate the functional groups present in the compound. The thermal behavior of synthesized compound was studied by thermogravimetric and differential scanning calorimetry (TG-DSC) analyses. The photoluminescence property was studied by exciting the crystal at 360 nm. The relative second harmonic generation (SHG) efficiency of grown crystal was estimated by using Nd:YAG laser with fundamental wavelength of 1064 nm.

  12. Crystal growth and comparison of vibrational and thermal properties of semi-organic nonlinear optical materials

    Indian Academy of Sciences (India)

    S Gunasekaran; G Anand; R Arun Balaji; J Dhanalakshmi; S Kumaresan

    2010-10-01

    Single crystals of urea thiourea mercuric sulphate (UTHS) and urea thiourea mercuric chloride (UTHC), semi-organic nonlinear optical materials, were grown by low-temperature solution growth technique by slow evaporation method using water as the solvent. Good quality single crystals were grown within three weeks. The nonlinear nature of the crystals was confirmed by SHG test. The UV–Vis spectrum showed the transmitting ability of the crystals in the entire visible region. FTIR spectrum was recorded and vibrational assignments were made. The degree of dopant inclusion was ascertained by AAS. The TGA–DTA studies showed the thermal properties of the crystals.

  13. Growth of centimeter-sized C60 single crystals

    Institute of Scientific and Technical Information of China (English)

    李宏年; 徐亚伯; 张建华; 何丕模; 李海洋; 吴太权; 鲍世宁

    2001-01-01

    C60 single crystals larger than one centimeter in size are grown with vapor method by nucleation control and by a proper time-dependent temperature process which allows only one nucleus growing larger and larger. X-ray diffraction patterns exhibit the high quality of the sample. As an example of the applications of large single C60 crystals,svnchrotron radiation photoemission spectra are measured to investigate the fine structure of valence bands of C60 crystals.

  14. Ultratough CVD single crystal diamond and three dimensional growth thereof

    Science.gov (United States)

    Hemley, Russell J [Washington, DC; Mao, Ho-kwang [Washington, DC; Yan, Chih-shiue [Washington, DC

    2009-09-29

    The invention relates to a single-crystal diamond grown by microwave plasma chemical vapor deposition that has a toughness of at least about 30 MPa m.sup.1/2. The invention also relates to a method of producing a single-crystal diamond with a toughness of at least about 30 MPa m.sup.1/2. The invention further relates to a process for producing a single crystal CVD diamond in three dimensions on a single crystal diamond substrate.

  15. He atom-surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Investigations in this laboratory have focused on the surface structure and dynamics of ionic insulators and on epitaxial growth onto alkali halide crystals. In the later the homoepitaxial growth of NaCl/NaCl(001) and the heteroepitaxial growth of KBr/NaCl(001), NaCl/KBr(001) and KBr/RbCl(001) have been studied by monitoring the specular He scattering as a function of the coverage and by measuring the angular and energy distributions of the scattered He atoms. These data provide information on the surface structure, defect densities, island sizes and surface strain during the layer-by-layer growth. The temperature dependence of these measurements also provides information on the mobilities of the admolecules. He atom scattering is unique among surface probes because the low-energy, inert atoms are sensitive only to the electronic structure of the topmost surface layer and are equally applicable to all crystalline materials. It is proposed for the next year to exploit further the variety of combinations possible with the alkali halides in order to carry out a definitive study of epitaxial growth in the ionic insulators. The work completed so far, including measurements of the Bragg diffraction and surface dispersion at various stages of growth, appears to be exceptionally rich in detail, which is particularly promising for theoretical modeling. In addition, because epitaxial growth conditions over a wide range of lattice mismatches is possible with these materials, size effects in growth processes can be explored in great depth. Further, as some of the alkali halides have the CsCl structure instead of the NaCl structure, we can investigate the effects of the heteroepitaxy with materials having different lattice preferences. Finally, by using co-deposition of different alkali halides, one can investigate the formation and stability of alloys and even alkali halide superlattices.

  16. GROWTH RATE DISTRIBUTION OF BORAX SINGLE CRYSTALS ON THE (001 FACE UNDER VARIOUS FLOW RATES

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The growth rates of borax single crystals from aqueous solutions at various flow rates in the (001 direction were measured using in situ cell method. From the growth rate data obtained, the growth rate distribution of borax crystals was investigated using Minitab Software and SPSS Software at relative supersaturation of 0807 and temperature of 25 °C. The result shows that normal, gamma, and log-normal distribution give a reasonably good fit to GRD. However, there is no correlation between growth rate distribution and flow rate of solution.   Keywords: growth rate dispersion (GRD, borax, flow rate

  17. Czochralski growth of Gd2Ti2O7 single crystals

    Science.gov (United States)

    Guo, F. Y.; Zhang, W. H.; Ruan, M.; Kang, J. B.; Chen, J. Z.

    2014-09-01

    Gd2Ti2O7 (GTO) single crystals having dimensions of 17×17×20 mm3 were grown by the Czochralski method. These crystals displayed a strong growth habit with {1 1 1} facets. The colors of the as-grown crystals were sensitive to the oxygen concentration both during growth and post-growth annealing. The possible reason for the different colors is discussed and based on transmission, energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) analyses.

  18. OPTICAL DIAGNOSTIC AND MODELING SOLUTION GROWTH PROCESS OF SODIUM CHLORATE CRYSTALS

    Institute of Scientific and Technical Information of China (English)

    WANG Tao; DUAN Li

    2006-01-01

    Both a real time optical interferometric experiment and a numerical simulation of two-dimension non-steady state model were employed to study the growth process of aqueous sodium chlorate crystals. The parameters such as solution concentration distribution, crystal dimensions, growth rate and velocity field were obtained by both experiment and numerical simulation. The influence of earth gravity during crystal growth process was analyzed. A reasonable theory model corresponding to the present experiment is advanced. The thickness of concentration boundary layer was investigated especially. The results from the experiment and numerical simulation match well.

  19. Acousto-optical phonon excitation in cubic piezoelectric slabs and crystal growth orientation effects

    DEFF Research Database (Denmark)

    Willatzen, Morten; Duggen, Lars

    2017-01-01

    mode density in GaAs can change by a factor of approximately 2–3 at qx a = 1 for different crystal-growth directions relative to the slab thickness direction. In particular, it is found that optical and acoustic phonon modes are always piezoelectrically coupled, independent of the crystal......-growth direction, and will be jointly excited by electrical stimulus. We demonstrate this for an electrically excited freestanding slab for two cases of high-symmetry crystal-growth directions and finally show the impact of the Drude model for permittivity on the phonon dispersion. In particular, it is verified...

  20. Kinetic roughening transition and missing regime transition of melt crystallized polybutene-1 tetragonal phase: growth kinetics analysis

    Institute of Scientific and Technical Information of China (English)

    Motoi YAMASHITA

    2009-01-01

    The morphology and lateral growth rate of isotactic polybutene-1 (it-PBl) have been investigated for crystallization from the melt over a wide range of crystallization temperatures from 50 to 110°C. The morphology of it-PBl crystals is a rounded shape at crystallization temperatures lower than 85°C, while lamellar single crystals possess faceted morphology at higher crystallization temperatures. The kinetic roughening transition occurs around 85°C. The nucleation and growth mechanism for crystallization does not work below 85°C, since the growth face is rough. However, the growth rate shows the supercooling dependence derived from the nucleation and growth mechanism. The nucleation theory seems still to work even for rough surface growth. Possible mechanisms for the crystal growth of this polymer are discussed.

  1. Analysis of switching conditions of chalcogenide alloys during crystallization

    Institute of Scientific and Technical Information of China (English)

    Wanhua Yu; C.D. Wright

    2006-01-01

    To understand the principle and limitation of chalcogenide alloy Ge2Sb2Te5 (GST) in solid-state memory devices during crystallization, it was necessary to develop a physically realistic model that could reflect the electrical and thermal properties of these media. A novel comprehensive numerical model has been developed for simulating these memory devices, which describes the electrical and thermal behavior using the solution of the nonlinear, time-dependent electrical and heat conduction equation. The finite-difference-time-domain technique was adopted to compute the electrical field and heat distribution in the device. Several contributing factors that affect the crystallization switching process such as the geometry of the GST layer, temperature and electric field dependency of the electrical conductivity have been discussed. The results of the simulations were then used to provide critical guidelines for fabrication and optimization of the device performance.

  2. Growth and characterization of pure and Cadmium chloride doped KDP Crystals grown by gel medium

    Science.gov (United States)

    Kalaivani, M. S.; Asaithambi, T.

    2016-10-01

    Crystal growth technology provides an important basis for many industrial branches. Crystals are the unrecognized pillars of modern technology. Without crystals, there is no electronic industry, no photonic industry, and no fiber optic communications. Single crystals play a major role and form the strongest base for the fast growing field of engineering, science and technology. Crystal growth is an interdisciplinary subject covering physics, chemistry, material science, chemical engineering, metallurgy, crystallography, mineralogy, etc. In past few decades, there has been a keen interest on crystal growth processes, particularly in view of the increasing demand of materials for technological applications. Optically good quality pure and metal doped KDP crystals have been grown by gel method at room temperature and their characterization have been studied. Gel method is a much uncomplicated method and can be utilized to synthesize crystals which are having low solubility. Potassium dihydrogen orthophosphate KH2PO4 (KDP) continues to be an interesting material both academically and industrially. KDP is a representative of hydrogen bonded materials which possess very good electro - optic and nonlinear optical properties in addition to interesting electrical properties. Due to this interesting properties, we made an attempt to grow pure and cadmium chloride doped KDP crystals in various concentrations (0.002, 0.004, 0.006, 0.008 and 0.010) using gel method. The grown crystals were collected after 20 days. We get crystals with good quality and shaped. The dc electrical conductivity (resistance, capacitance and dielectric constant) values were measured at frequencies in the range of 1 KHZ and 100 HZ of pure and cadmium chloride added crystal with a temperature range of 400C to 1300C using simple two probe setup with Q band digital LCR meter present in our lab. The electrical conductivity increases with increase of temperature. The dielectric constants of metal doped KDP

  3. Growth of large aluminum nitride single crystals with thermal-gradient control

    Energy Technology Data Exchange (ETDEWEB)

    Bondokov, Robert T.; Rao, Shailaja P.; Schowalter, Leo J.

    2017-02-28

    In various embodiments, non-zero thermal gradients are formed within a growth chamber both substantially parallel and substantially perpendicular to the growth direction during formation of semiconductor crystals, where the ratio of the two thermal gradients (parallel to perpendicular) is less than 10, by, e.g., arrangement of thermal shields outside of the growth chamber.

  4. Introducing uncertainty analysis of nucleation and crystal growth models in Process Analytical Technology (PAT) system design of crystallization processes.

    Science.gov (United States)

    Samad, Noor Asma Fazli Abdul; Sin, Gürkan; Gernaey, Krist V; Gani, Rafiqul

    2013-11-01

    This paper presents the application of uncertainty and sensitivity analysis as part of a systematic model-based process monitoring and control (PAT) system design framework for crystallization processes. For the uncertainty analysis, the Monte Carlo procedure is used to propagate input uncertainty, while for sensitivity analysis, global methods including the standardized regression coefficients (SRC) and Morris screening are used to identify the most significant parameters. The potassium dihydrogen phosphate (KDP) crystallization process is used as a case study, both in open-loop and closed-loop operation. In the uncertainty analysis, the impact on the predicted output of uncertain parameters related to the nucleation and the crystal growth model has been investigated for both a one- and two-dimensional crystal size distribution (CSD). The open-loop results show that the input uncertainties lead to significant uncertainties on the CSD, with appearance of a secondary peak due to secondary nucleation for both cases. The sensitivity analysis indicated that the most important parameters affecting the CSDs are nucleation order and growth order constants. In the proposed PAT system design (closed-loop), the target CSD variability was successfully reduced compared to the open-loop case, also when considering uncertainty in nucleation and crystal growth model parameters. The latter forms a strong indication of the robustness of the proposed PAT system design in achieving the target CSD and encourages its transfer to full-scale implementation.

  5. Introduction to Phase-Field Model and Its Applications in the Fields of Crystal Growth and Planetary Science

    Science.gov (United States)

    Miura, Hitoshi; Yokoyama, Etsuro; Tsukamoto, Katsuo

    2010-07-01

    The growth of crystal induces a change of ambient environment (temperature, concentration, etc.), and the environmental change gives some feedback to the growth of crystal. The interaction between the crystal growth and ambient environment is important to be taken into consideration, also in the crystallization process of cosmic crystals observed in chondritic meteorites. In this lecture, we will introduce the phase-field simulation, which is one of the powerful numerical methods to treat the crystal growth and diffusion fields (temperature, concentration, etc.) simultaneously. Participants can experience some phase-field simulations on their own laptop by using a newly developed Java program, which will be distributed at the school.

  6. Crystal growth and optical properties of 4-aminobenzophenone (ABP)

    Science.gov (United States)

    Li, Zhengdong; Wu, Baichang; Su, Genbo; Huang, Gongfan

    1997-02-01

    Bulk crystals of 4-aminobenzophenone (ABP) were grown from organic solution. The crystal structure was determined by X-ray analysis. The refractive indices were determined by the method of prism minimum deviation. Some effective nonlinear-optical coefficients deff were measured. A blue second-harmonic emission with wavelengths of 433 and 460 nm were observed during laser diode pumping.

  7. Crystal growth and morphology of calcium oxalates and carbonates

    NARCIS (Netherlands)

    Heijnen, W.M.M.

    1986-01-01

    The main purpose of the research described in this thesis is to establish a relationship between the crystal structure and morphology of calcium oxalate and calcium carbonate crystals grown from aqueous solutions. Starting point is the PBC (Periodic Bond Chain) theory formulated by Hartman and Perdo

  8. Growth and studies of cyclohexylammonium 4-methoxy benzoate single crystal for nonlinear optical applications

    Science.gov (United States)

    Sathya, P.; Gopalakrishnan, R.

    2015-06-01

    Cyclohexylammonium 4-Methoxy Benzoate (C4MB) was synthesised and the functional groups were confirmed by FTIR analysis. The purified C4MB (by repeated recrystallisation) was used for single crystal growth. Single crystal of cyclohexylammonium 4-methoxy benzoate was successfully grown by slow evaporation solution growth method at ambient temperature. Structural orientations were determined from single crystal X-ray diffractometer. Optical absorption and cut off wavelength were identified by UV-Visible spectroscopy. Thermal stability of the crystal was studied from thermogravimetric and differential thermal analyses curves. Mechanical stability of the grown crystal was analysed by Vicker's microhardness tester. The Second Harmonic Generation (SHG) study revealed that the C4MB compound exhibits the SHG efficiency 3.3 times greater than KDP crystal.

  9. Growth and studies of cyclohexylammonium 4-methoxy benzoate single crystal for nonlinear optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sathya, P.; Gopalakrishnan, R., E-mail: krgkrishnan@annauniv.edu [Crystal Research Lab, Department of Physics, Anna University, Chennai-600002 (India)

    2015-06-24

    Cyclohexylammonium 4-Methoxy Benzoate (C4MB) was synthesised and the functional groups were confirmed by FTIR analysis. The purified C4MB (by repeated recrystallisation) was used for single crystal growth. Single crystal of cyclohexylammonium 4-methoxy benzoate was successfully grown by slow evaporation solution growth method at ambient temperature. Structural orientations were determined from single crystal X-ray diffractometer. Optical absorption and cut off wavelength were identified by UV-Visible spectroscopy. Thermal stability of the crystal was studied from thermogravimetric and differential thermal analyses curves. Mechanical stability of the grown crystal was analysed by Vicker’s microhardness tester. The Second Harmonic Generation (SHG) study revealed that the C4MB compound exhibits the SHG efficiency 3.3 times greater than KDP crystal.

  10. Growth of ZSM-5 crystals within hollow β-zeolite

    Institute of Scientific and Technical Information of China (English)

    Qing Hu Zeng; Xiang Bai; Jia Jun Zheng; Jia Qi Chen; Rui Feng Li

    2011-01-01

    A zeolite composite composed of ZSM-5 and β-zeolites has been synthesized by a procedure of the nucleation and crystallization of ZSM-5 zeolite in the hollow β-zeolite. The property of β-zeolite crystals with aluminum-poor interior and aluminum-rich outer rim results in silicon extraction favorably in the aluminum-poor bulk rather than the aluminum-rich external surface. Subsequently, alkaline treatment of β-zeolite crystals during the second-step synthesis leads to a preferential dissolution of the aluminum-poor center and the formation of hollow β-zeolite crystals. ZSM-5 zeolite crystals are therefore embedded and grown within the hollow β-zeolite. The catalytic activities of Co-Hβ, Co-HZSM-5 and Co-HZSM-5/BEA are investigated during the reaction of methane catalytic reduction NO in the presence of O2.

  11. Growth and properties of benzil doped benzimidazole (BMZ) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 620 024 (India); Crystal Growth and Crystallography Section, National Physical Laboratory, Krishnan Marg, New Delhi 110 012 (India); Sukumar, M. [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 620 024 (India); Vasudevan, V. [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 620 024 (India); Crystal Growth and Crystallography Section, National Physical Laboratory, Krishnan Marg, New Delhi 110 012 (India); Shakir, Mohd. [Crystal Growth and Crystallography Section, National Physical Laboratory, Krishnan Marg, New Delhi 110 012 (India); Ramamurthi, K. [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 620 024 (India); Bhagavannarayana, G. [Crystal Growth and Crystallography Section, National Physical Laboratory, Krishnan Marg, New Delhi 110 012 (India)

    2010-09-15

    In the present work, we have made an attempt to study the effect of benzil doping on the properties of benzimidazole single crystals. For this purpose we have grown pure and benzil doped benzimidazole single crystals by vertical Bridgman technique. The grown crystals were characterized by various characterization techniques. The presence of dopants confirmed by powder X-ray diffraction (XRD). Crystalline perfection of the grown crystals has been analysed by high-resolution X-ray diffraction (HRXRD). The transmittance, electrical property and mechanical strength have been analysed using UV-vis-NIR spectroscopic, dielectric and Vicker's hardness studies. The relative second harmonic generation efficiency of pure and doped benzimidazole crystals measured using Kurtz powder test.

  12. Vapor Growth and Characterization of Cr-Doped ZnSe Crystals

    Science.gov (United States)

    Su, Ching-Hua; Feth, Shari; Volz, M. P.; Matyi, R.; George, M. A.; Chattopadhyay, K.; Burger, A.; Lehoczky, S. L.

    1999-01-01

    Cr-doped ZnSe single crystals were grown by a self-seeded physical vapor transport technique in both vertical (stabilized) and horizontal configurations. The source materials were mixtures of ZnSe and CrSe. Growth temperatures were in the range of 1140-1150 C and the furnace translation rates were 1.9-2.2 mm/day. The surface morphology of the as-grown crystals was examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Different features of the as-grown surface of the vertically and horizontally grown crystals suggest that different growth mechanisms were involved in the two growth configurations. The [Cr] doping levels were determined to be in the range of 1.8-8.3 x 10 (exp 19) cm (exp -3) from optical absorption measurements. The crystalline quality of the grown crystals were examined by high-resolution triple-crystal X-ray diffraction (HRTXD) analysis.

  13. Measurement and analysis of the mannitol partition coefficient in sucrose crystallization under simulated industrial conditions

    Science.gov (United States)

    Mannitol is a major deterioration product of Leuconstoc mesenteroides bacterial deterioration of both sugarcane and sugar beet. The effect of crystallization conditions on the mannitol partition coefficient (Keff) between impure sucrose syrup and crystal has been investigated in a batch laboratory c...

  14. Crystal growth, optical properties, and CW laser operation at 1.06 μm of Nd:GAGG crystals

    Science.gov (United States)

    Zhang, J.; Tao, X. T.; Dong, C. M.; Jia, Z. T.; Yu, H. H.; Zhang, Y. Z.; Zhi, Y. C.; Jiang, M. H.

    2009-05-01

    In this paper, the crystal growth and characterization of Nd:Gd3AlxGa5-xO12 (x = 0.94) (Nd:GGAG) was reported. The X-ray powder diffraction studies confirm that the Nd:Gd3AlxGa5-xO12 crystal is isostructural with Gd3Ga5O12 (GGG) with unit cell parameter of 1.2319 nm. The absorption and emission spectra of the Nd:GGAG crystal at room temperature have been studied. With a laser-diode (LD) as the pump source, continuous-wave (CW) laser performance at 1.06 μm of Nd:GAGG crystal was demonstrated for the first time to our knowledge. The maximum power of 2.44 W from Nd:GAGG laser was obtained with the optical conversion efficiency 28.5%, and slope efficiency of 28.8%.

  15. Crystal growth and characterization of new semiorganic nonlinear optical single crystals

    Science.gov (United States)

    Kulshrestha, Shobha; Shrivastava, A. K.

    2016-05-01

    An organic material of a L-histidine monohydrochloride single crystal was grown in a distilled water solution using the slow evaporation method at 40-45°C. The grown crystal was transparent and colourless, with a size of about 20 × 9 × 5 mm3, obtained within a period of 21 days. The solubility of grown crystals have found out at various temperatures. The UV-visible transmittance studies show that the grown crystals have wide optical transparency in the entire visible region It is observed that the crystal has transparency window from 255nm to 700nm and its energy gap (Eg) found to be is 3.1eV. The grown crystal was subjected to powder X-ray diffraction analysis, confirming that the orthorhombic crystalline nature of the crystal. To identify the surface morphology, the as grown crystal was subjected to FE-SEM technique. The chemical composition of the grown crystal was estimated by Energy dispersive X-ray analysis. The optical behaviour of the grown crystal was analyzed by PL study.

  16. Uncovering molecular details of urea crystal growth in the presence of additives.

    Science.gov (United States)

    Salvalaglio, Matteo; Vetter, Thomas; Giberti, Federico; Mazzotti, Marco; Parrinello, Michele

    2012-10-17

    Controlling the shape of crystals is of great practical relevance in fields like pharmacology and fine chemistry. Here we examine the paradigmatic case of urea which is known to crystallize from water with a needle-like morphology. To prevent this undesired effect, inhibitors that selectively favor or discourage the growth of specific crystal faces can be used. In urea the most relevant faces are the {001} and the {110} which are known to grow fast and slow, respectively. The relevant growth speed difference between these two crystal faces is responsible for the needle-like structure of crystals grown in water solution. To prevent this effect, additives are used to slow down the growth of one face relative to another, thus controlling the shape of the crystal. We study the growth of fast {001} and slow {110} faces in water solution and the effect of shape controlling inhibitors like biuret. Extensive sampling through molecular dynamics simulations provides a microscopic picture of the growth mechanism and of the role of the additives. We find a continuous growth mechanism on the {001} face, while the slow growing {110} face evolves through a birth and spread process, in which the rate-determining step is the formation on the surface of a two-dimensional crystalline nucleus. On the {001} face, growth inhibitors like biuret compete with urea for the adsorption on surface lattice sites; on the {110} face instead additives cannot interact specifically with surface sites and play a marginal sterical hindrance of the crystal growth. The free energies of adsorption of additives and urea are evaluated with advanced simulation methods (well-tempered metadynamics) allowing a microscopic understanding of the selective effect of additives. Based on this case study, general principles for the understanding of the anisotropic growth of molecular crystals from solutions are laid out. Our work is a step toward a rational development of novel shape-affecting additives.

  17. Models of Mass Transport During Microgravity Crystal Growth of Alloyed Semiconductors in a Magnetic Field

    Science.gov (United States)

    Ma, Nancy

    2003-01-01

    Alloyed semiconductor crystals, such as germanium-silicon (GeSi) and various II-VI alloyed crystals, are extremely important for optoelectronic devices. Currently, high-quality crystals of GeSi and of II-VI alloys can be grown by epitaxial processes, but the time required to grow a certain amount of single crystal is roughly 1,000 times longer than the time required for Bridgman growth from a melt. Recent rapid advances in optoelectronics have led to a great demand for more and larger crystals with fewer dislocations and other microdefects and with more uniform and controllable compositions. Currently, alloyed crystals grown by bulk methods have unacceptable levels of segregation in the composition of the crystal. Alloyed crystals are being grown by the Bridgman process in space in order to develop successful bulk-growth methods, with the hope that the technology will be equally successful on earth. Unfortunately some crystals grown in space still have unacceptable segregation, for example, due to residual accelerations. The application of a weak magnetic field during crystal growth in space may eliminate the undesirable segregation. Understanding and improving the bulk growth of alloyed semiconductors in microgravity is critically important. The purpose of this grant to to develop models of the unsteady species transport during the bulk growth of alloyed semiconductor crystals in the presence of a magnetic field in microgravity. The research supports experiments being conducted in the High Magnetic Field Solidification Facility at Marshall Space Flight Center (MSFC) and future experiments on the International Space Station.

  18. Growth, optical, thermal and mechanical studies of methyl 4-hydroxybenzoate single crystals

    Science.gov (United States)

    Vijayan, N.; Ramesh Babu, R.; Gunasekaran, M.; Gopalakrishnan, R.; Ramasamy, P.

    2003-08-01

    Bulk single crystals of methyl 4-hydroxy benzoate have been successfully grown by slow evaporation solution growth technique at room temperature. The grown crystals have been subjected to spectroscopic studies like FT-IR and FT-Raman. The hardness of the crystal was measured by Vicker's microhardness tester. The lattice parameters have been calculated by X-ray diffraction technique and the values are in good agreement with the reported JCPDS file.

  19. Synthesis, crystal growth and characterization of a phase matchable nonlinear optical single crystal: p-chloro dibenzylideneacetone

    Science.gov (United States)

    Ravindra, H. J.; John Kiran, A.; Nooji, Satheesha Rai; Dharmaprakash, S. M.; Chandrasekharan, K.; Kalluraya, Balakrishna; Rotermund, Fabian

    2008-05-01

    Good quality single crystals of p-chloro dibenzylideneacetone (CDBA) of size 13 mm×8 mm×2 mm were grown by slow evaporation solution growth technique. The grown crystals were confirmed by elemental analysis, Fourier transform infrared (FTIR) analysis and single crystal X-ray diffraction techniques. From the thermo gravimetric/differential thermal (TG/DT) analysis, the CDBA was found to be thermally stable up to 250 °C. The mechanical stability of the crystal is comparable with that of the other reported chalcones. The lower optical cut-off wavelength for this crystal was observed at 440 nm. The laser damage threshold of the crystal was 0.6 GW/cm 2 at 532 nm. The second harmonic generation conversion efficiency of the powder sample of CDBA was found to be 4.5 times greater than that of urea. We also demonstrate the existence of the phase matching property in this crystal using Kurtz powder technique.

  20. Chemical etching of a GaSb crystal incorporated with Mn grown by the Bridgman method under microgravity conditions

    Institute of Scientific and Technical Information of China (English)

    Chen Xiaofeng; Chen Nuofu; Wu Jinliang; Zhang Xiulan; Chai Chunlin; Yu Yude

    2009-01-01

    uring crystal growth can be reflected by the observations of etch pit distribution and other structural defects. Suggestions for improving the space experiment to improve the quality of the crystal are given.

  1. A Low-Cost System Based on Image Analysis for Monitoring the Crystal Growth Process

    Directory of Open Access Journals (Sweden)

    Fabrício Venâncio

    2017-05-01

    Full Text Available Many techniques are used to monitor one or more of the phenomena involved in the crystallization process. One of the challenges in crystal growth monitoring is finding techniques that allow direct interpretation of the data. The present study used a low-cost system, composed of a commercial webcam and a simple white LED (Light Emitting Diode illuminator, to follow the calcium carbonate crystal growth process. The experiments were followed with focused beam reflectance measurement (FBRM, a common technique for obtaining information about the formation and growth of crystals. The images obtained in real time were treated with the red, blue, and green (RGB system. The results showed a qualitative response of the system to crystal formation and growth processes, as there was an observed decrease in the signal as the growth process occurred. Control of the crystal growth was managed by increasing the viscosity of the test solution with the addition of monoethylene glycol (MEG at 30% and 70% in a mass to mass relationship, providing different profiles of the RGB average curves. The decrease in the average RGB value became slower as the concentration of MEG was increased; this reflected a lag in the growth process that was proven by the FBRM.

  2. Preliminary study of non-isothermal phase change phenomena in vertical Bridgman crystal growth

    Institute of Scientific and Technical Information of China (English)

    LIU Jie; LU WenQiang

    2007-01-01

    Axisymmetric dual reciprocity boundary element method (DRBEM) with augmented items is extended to simulate the heat and mass transfer problems in the vertical Bridgman method (VBM) crystal growth of HgCdTe and CdZnTe. Axial solute concentration redistribution of three regions numerically reappears, and the influence of the pulling rate of the ampoule on it is further studied. Secondly, one dimensional transient phase change phenomena is studied, and non-isothermal phase change phenomena is obtained from the initial transient region through the steady growth region to the final transient region. Thirdly, the two-dimensional axisymmetric phase change interface position, interfacial shape and the temperature field of the melt and the crystal are numerically captured under the condition to arrive at the steady state with zero pulling rate of the ampoule. Finally, the study of transient axisymmetric non-isothermal phase change phenomena is stressed and the results are compared with those in isothermal phase change. The influence of the pulling rate on non-isothermal phase change phenomena is revealed.

  3. Pressure-supported crystal growth and single-crystal structure determination of Li{sub 2}SiF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Hinteregger, Ernst; Wurst, Klaus; Niederwieser, Niklas; Heymann, Gunter; Huppertz, Hubert [Innsbruck Univ. (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie

    2014-03-01

    High-pressure/high-temperature conditions of 5.5 GPa and 750 C applied to a powder of Li{sub 2}SiF{sub 6} led to a pressure-supported crystal growth of Li{sub 2}SiF{sub 6} maintaining single crystals of sufficient quality for a single-crystal structure determination. The compound crystallizes in the space group P321 (No. 150) with 3 formula units and the lattice parameters a = 8.219(2), c = 4.5580(9) Aa, V = 266.65(8) Aa{sup 3}, R{sub 1} = 0.0178, and wR{sub 2} = 0.0391 (all data). This work verified the published powder diffraction data of Li{sub 2}SiF{sub 6} and the predicted space group. Additionally, powder-FT-IR and Raman-spectroscopic investigations on single-crystals of Li{sub 2}SiF{sub 6} were performed for the first time. (orig.)

  4. Magnetic field controlled single crystal growth and surface modification of titanium alloys exposed for biocompatibility

    Science.gov (United States)

    Hermann, Regina; Uhlemann, Margitta; Wendrock, Horst; Gerbeth, Gunter; Büchner, Bernd

    2011-03-01

    The aim of this work is growth and characterisation of Ti55Nb45 (wt%) single crystals by floating-zone single crystal growth of intermetallic compounds using two-phase radio-frequency (RF) electromagnetic heating. Thereby, the process and, in particular, the flow field in the molten zone is influenced by additional magnetic fields. The growth of massive intermetallic single crystals is very often unsuccessful due to an unfavourable solid-liquid interface geometry enclosing concave fringes. It is generally known that the crystallization process stability is enhanced if the crystallization interface is convex. For this, a tailored magnetic two-phase stirrer system has been developed, which enables a controlled influence on the melt ranging from intensive inwards to outwards flows. Since Ti is favourably light, strong and biocompatible, it is one of the few materials that naturally match the requirements for implantation in the human body. Therefore, the magnetic system was applied to crystal growth of Ti alloys. The grown crystals were oriented and cut to cubes with the desired crystallographic orientations [1 0 0] and [1 0 1] normally on a plane. The electron backscatter diffraction (EBSD) technique was applied to clearly determine crystal orientation and to localize grain boundaries. The formation of oxidic nanotubes on Ti surfaces in dependence of the grain orientation was investigated, performed electrochemically by anodic oxidation from fluoride containing electrolyte.

  5. Microscopic Rate Constants of Crystal Growth from Molecular Dynamic Simulations Combined with Metadynamics

    Directory of Open Access Journals (Sweden)

    Dániel Kozma

    2012-01-01

    Full Text Available Atomistic simulation of crystal growth can be decomposed into two steps: the determination of the microscopic rate constants and a mesoscopic kinetic Monte Carlo simulation. We proposed a method to determine kinetic rate constants of crystal growth. We performed classical molecular dynamics on the equilibrium liquid/crystal interface of argon. Metadynamics was used to explore the free energy surface of crystal growth. A crystalline atom was selected at the interface, and it was displaced to the liquid phase by adding repulsive Gaussian potentials. The activation free energy of this process was calculated as the maximal potential energy density of the Gaussian potentials. We calculated the rate constants at different interfacial structures using the transition state theory. In order to mimic real crystallization, we applied a temperature difference in the calculations of the two opposite rate constants, and they were applied in kinetic Monte Carlo simulation. The novelty of our technique is that it can be used for slow crystallization processes, while the simple following of trajectories can be applied only for fast reactions. Our method is a possibility for determination of elementary rate constants of crystal growth that seems to be necessary for the long-time goal of computer-aided crystal design.

  6. Acousto-optical phonon excitation in piezoelectric wurtzite slabs and crystal growth orientation effects

    DEFF Research Database (Denmark)

    Duggen, Lars; Willatzen, Morten

    2017-01-01

    This paper presents a theoretical investigation of phonon dispersion in piezoelectric slabs of hexagonal crystal symmetry (wurtzite). Specifically we solve the fully coupled dispersion relations in a GaN free standing quantum well by varying the crystal growth direction from the [001] axis...

  7. [Influence endophytic bacteria to promote plants growth in stress conditions].

    Science.gov (United States)

    Napora, Anna; Kacprzak, Małgorzata; Nowak, Kamil; Grobelak, Anna

    2015-01-01

    The growth of plants under stress conditions is often assisted by microorganisms colonizing the rhizosphere (the root zone of the highest microbial activity). One of the most important bacterial groups to encourage the growth of plants (PGPB) are endophytes. These microorganisms penetrate living cells of plants and there they lead the microbiological activity as endosymbionts. These microorganisms can effectively promote the growth of plants under stress conditions and stimulate biochemical activities: nitrogen fixation, production of growth hormones (auxins, cytokinins and gibberellins), reduction of the high concentration of ethylene as well as facilitation of the collection plant minerals and water. This paper is an attempt to summarize the current state of knowledge about the biochemical activity of bacterial endophytes.

  8. Synthesis, growth and characterization of a nonlinear optical crystal: Bis l-proline hydrogen nitrate.

    Science.gov (United States)

    Selvaraju, K; Kirubavathi, K

    2013-11-01

    The single crystals of bis l-proline hydrogen nitrate (BLPHN) belonging to non-centrosymmetric space group were successfully grown by the slow evaporation solution growth technique. The BLPHN crystals of size 10×7×3mm(3) were obtained in 35days. Initially, the solubility tests were carried out for two solvents such as deionized water and mixed of deionized water-acetone. Among the two solvents, the solubility of BLPHN was found to be the highest in deionized water, so crystallization of BLPHN was done from its aqueous solution. As grown, crystals were characterized by single crystal X-ray diffraction studies and optical transmission spectral studies. Infrared spectroscopy, thermo gravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of the grown BLPHN crystals. Nonlinear optical (NLO) behavior of BLPHN crystal was studied by Kurtz and Perry powder method. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Growth and Optical Spectra of Zn:Er:LiNbO3 Crystals Using Bridgman Method

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The growth of LiNbO3 single crystal with Er3 + and Zn2 + co-doped using Bridgman method and its characteristicabsorption spectra and fluorescence spectra were reported. Large-size crystals initially containing Zn2+ (3%) and Er3+diffraction and differential thermal analysis (DTA) were used to characterize the crystals. The results indicate that the con-centration of Er3 + ions in crystals, their absorption intensity, and their fluorescence intensity decrease from the bottom to thetop in the crystals. However, for the upper part of the crystal, the up-conversion fluorescence intensity is higher than that ofthe lower part excited by an 800 or 970 nm pump. The effects of the crystal lattice, their structural defect and their effectivesegregation of Er3 + ions were discussed with respect to the variations of the up-conversion fluorescence intensity.

  10. Deducing growth mechanisms for minerals from the shapes of crystal size distributions

    Science.gov (United States)

    Eberl, D.D.; Drits, V.A.; Srodon, J.

    1998-01-01

    Crystal size distributions (CSDs) of natural and synthetic samples are observed to have several distinct and different shapes. We have simulated these CSDs using three simple equations: the Law of Proportionate Effect (LPE), a mass balance equation, and equations for Ostwald ripening. The following crystal growth mechanisms are simulated using these equations and their modifications: (1) continuous nucleation and growth in an open system, during which crystals nucleate at either a constant, decaying, or accelerating nucleation rate, and then grow according to the LPE; (2) surface-controlled growth in an open system, during which crystals grow with an essentially unlimited supply of nutrients according to the LPE; (3) supply-controlled growth in an open system, during which crystals grow with a specified, limited supply of nutrients according to the LPE; (4) supply- or surface-controlled Ostwald ripening in a closed system, during which the relative rate of crystal dissolution and growth is controlled by differences in specific surface area and by diffusion rate; and (5) supply-controlled random ripening in a closed system, during which the rate of crystal dissolution and growth is random with respect to specific surface area. Each of these mechanisms affects the shapes of CSDs. For example, mechanism (1) above with a constant nucleation rate yields asymptotically-shaped CSDs for which the variance of the natural logarithms of the crystal sizes (??2) increases exponentially with the mean of the natural logarithms of the sizes (??). Mechanism (2) yields lognormally-shaped CSDs, for which ??2 increases linearly with ??, whereas mechanisms (3) and (5) do not change the shapes of CSDs, with ??2 remaining constant with increasing ??. During supply-controlled Ostwald ripening (4), initial lognormally-shaped CSDs become more symmetric, with ??2 decreasing with increasing ??. Thus, crystal growth mechanisms often can be deduced by noting trends in ?? versus ??2 of CSDs for

  11. Growth and characterization of new semiorganic nonlinear optical and piezoelectric lithium sulfate monohydrate oxalate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Harsh [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 110007 (India); Sinha, Nidhi [Department of Physics & Electronics, SGTB Khalsa College, University of Delhi, Delhi 110007 (India); Kumar, Binay, E-mail: b3kumar69@yahoo.co.in [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 110007 (India)

    2015-04-15

    Highlights: • A new semiorganic single crystal of LSO grown by slow evaporation technique. • Morphological studies of the LSO crystal deduced by BFDH law. • In the UV–vis spectrum wide transparent region and large band gap were found. • SHG is equal to KDP crystal and d{sub 33} was found to be equal to 6pC/N. • Grown crystal belongs to softer category. - Abstract: New semiorganic crystal of lithium sulfate monohydrate oxalate (LSO) for nonlinear application was synthesized by controlled slow evaporation method. The growth rate of various planes of the grown crystal was estimated by morphological study. Single crystal XRD analysis confirmed that the crystal belongs to triclinic lattice with space group P1. High transparency (∼95%) with large band gap (4.57 eV) was analyzed by UV–vis studies. FTIR and Raman spectroscopy were used to identify various functional groups present in the LSO crystal. SHG efficiency was found to be equal to the KDP crystal. Thermal stability (up to 117.54 °C) and melting point (242 °C) of the crystal were studied by TG-DTA. In dielectric measurements, the value of dielectric constant decreases with increase in frequency. Hardness studies confirmed soft nature of crystals. The piezoelectric coefficient was found to be 6pC/N along [0 0 1].

  12. single crystal growth, x-ray structure analysis, optical band gap ...

    African Journals Online (AJOL)

    2015-09-01

    Sep 1, 2015 ... absorption spectra illustrate the change in opticalband gap from 3.01eVto ... Keywords: Single crystal growth; structure analysis; optical Eg; Raman spectra; strain tensor ... Journal of Fundamental and Applied Sciences.

  13. Growth and characterization of organic single crystal benzyl carbamate

    Science.gov (United States)

    Bala Solanki, S. Siva; Perumal, Rajesh Narayana; Suthan, T.; Bhagavannarayana, G.

    2015-10-01

    Benzyl carbamate single crystal is grown by a solution and vertical Bridgman technique for the first time. The cell parameters and morphologies are assessed from single crystal X-ray diffraction analysis. High resolution X-ray diffraction analysis indicates the crystalline perfection of the grown benzyl carbamate crystal. Fourier Transforms Infrared spectroscopy study has been applied to arrive at the different functional groups. Thermo gravimetric analysis and differential scanning calorimetry are used to study its thermal behavior. The microhardness test is carried out and the load dependent hardness is measured.

  14. Crystal growth and detector performance of large size high-purity Ge crystals

    CERN Document Server

    Wang, Guojian; Mei, Hao; Mei, Dongming; Irmscher, Klaus; Guan, Yutong; Yang, Gang

    2015-01-01

    High-purity germanium crystals approximately 12 cm in diameter were grown in a hydrogen atmosphere using the Czochralski method. The dislocation density of the crystals was determined to be in the range of 2000 - 4200 cm-2, which meets a requirement for use as a radiation detector. The axial and radial distributions of impurities in the crystals were measured and are discussed. A planar detector was also fabricated from one of the crystals and then evaluated for electrical and spectral performance. Measurements of gamma-ray spectra from Cs-137 and Am-241 sources demonstrate that the detector has excellent energy resolution.

  15. Studies on growth, crystal structure and characterization of novel organic nicotinium trifluoroacetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, P.V. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Sundar, J. Kalyana; Natarajan, S. [Department of Physics, Madurai Kamaraj University, Madurai 625 021 (India); Vinitha, G. [Department of Physics, Crescent Engineering College, Chennai 600 048 (India)

    2011-09-15

    Highlights: {yields} Good quality crystals of nicotinium trifluoroacetate in monoclinic system were grown for first time. {yields} Nicotinium trifluoroacetate crystal exhibits third order nonlinear optical properties. {yields} The optical spectrum of nicotinium trifluoroacetate crystal reveals the wide transmission in the entire range with cutoff wavelength at 286 nm. {yields} Nicotinium trifluoroacetate is a low dielectric constant material. - Abstract: An organic material, nicotinium trifluoroacetate (NTF) was synthesized and single crystals in monoclinic system were grown from aqueous solution for the first time. Its solubility and metastable zone width were estimated. The crystal structure of NTF was analyzed to reveal the molecular arrangements and the formation of hydrogen bonds in the crystal. High-resolution X-ray diffraction rocking curve measurements were performed to analyze the structural perfection of the grown crystals. Functional groups in NTF were identified by Fourier transform infrared spectral analysis. Thermal behaviour and stability of NTF were studied by thermogravimetric and differential thermal analysis and differential scanning calorimetry. Mechanical and dielectric properties of NTF crystals were analyzed. Optical studies reveal that NTF crystals are transparent in the wavelength range 286-1100 nm. The third order nonlinear optical parameters of NTF were derived by the Z-scan technique.

  16. Crystallization phase diagram, the growth of large single crystals of bovine {beta}-Lactoglobulin A

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, D; Ohnishi, Y; Tanaka, I; Niimura, N, E-mail: niimura@mx.ibaraki.ac.jp

    2010-11-01

    A crystallization phase diagram defining the meta-stable region of bovine {beta}-lactoglobulin A ({beta}-Lg) was firstly determined by a dialysis method. We have succeeded in growing a large single crystal of {beta}-Lg by selecting a crystal grown in this ''meta-stable region'' method described in the present paper. The quality of protein crystals was characterized quantitatively via rapid X-ray data collections, followed by the use of Wilson plots to analyze their resulting average B-factors.

  17. Crystallization phase diagram, the growth of large single crystals of bovine β-Lactoglobulin A

    Science.gov (United States)

    Yagi, D.; Ohnishi, Y.; Tanaka, I.; Niimura, N.

    2010-11-01

    A crystallization phase diagram defining the meta-stable region of bovine β-lactoglobulin A (β-Lg) was firstly determined by a dialysis method. We have succeeded in growing a large single crystal of β-Lg by selecting a crystal grown in this "meta-stable region" method described in the present paper. The quality of protein crystals was characterized quantitatively via rapid X-ray data collections, followed by the use of Wilson plots to analyze their resulting average B-factors.

  18. Studies on crystal growth and physical properties of 2-amino-5-chloropyridine single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Suthan, T. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Mahadevan, C.K. [Physics Research Centre, S.T. Hindu College, Nagercoil 629 002 (India); Bhagavannarayana, G. [C.G.C. Section, National Physical Laboratory, New Delhi 110 012 (India)

    2011-09-15

    Graphical abstract: 2-Amino-5-chloropyridine single crystal. Highlights: {yields} 2-Amino-5-chloropyridine single crystals grown by slow evaporation technique. {yields} Use acetone as solvent. {yields} Grown crystal conformed by XRD and FTIR. {yields} HRXRD, optical, thermal, dielectric and mechanical studies were analyzed. - Abstract: Organic 2-amino-5-chloropyridine single crystals have been grown by slow evaporation technique successfully. The grown crystal was confirmed by single and powder X-ray diffraction studies. The presence of functional groups was identified by Fourier transform infrared (FTIR) study. High resolution X-ray diffraction (HRXRD) analysis indicates the crystalline perfection of the grown crystal. UV-Vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the results indicate an increase in dielectric and conductivity parameters with the increase of temperature at all frequencies. The Vicker's hardness study reveals that the grown crystal is in soft nature.

  19. Yield Improvement and Advanced Defect Control——Driving Forces for Modeling of Bulk Crystal Growth

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Yield improvement and advanced defect control can be identified as the driving forces for modeling of industrial bulk crystal growth. Yield improvement is mainly achieved by upscaling of the whole crystal growth apparatus and increased processing windows with more tolerances for parameter variations. Advanced defect control means on one hand a reduction of the number of deficient crystal defects and on the other hand the formation of beneficial crystal defects with a uniform distribution and well defined concentrations in the whole crystal. This "defect engineering" relates to the whole crystal growth process as well as the following cooling and optional annealing processes, respectively. These topics were illustrated in the paper by examples of modeling and experimental results of bulk growth of silicon (Si), gallium arsenide (GaAs), indium phosphide (InP) and calcium fluoride (CaF2). These examples also involve the state of the art of modeling of the most important melt growth techniques, crystal pulling (Czochralski methods) and vertical gradient freeze (Bridgman-type methods).

  20. Modified atmospheric conditions controlling fungal growth on cheese

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose

    1997-01-01

    2 level, relative humidity and temperature) and the composition of the cheese. All fungal species commonly found on cheese, starter cultures as well as contaminants, were examined.The most important factors influencing fungal growth are temperature, water activity of the medium and the carbon......Effective control of fungal growth on cheese under storage conditions is of great concern for the dairy industry. Therefore we designed a research project together with the Danish dairy industry on modelling fungal growth on cheese as affected by the combined effect of storage conditions (O2 and CO...... a competitive advantage over other fungi in moist conditions with high carbon dioxide levels, such as inside a roquefort cheese or in gas tight grain storage. The key to success in food packaging is to recognise the food ecosystem, as it enables us to identify which micro...

  1. Changes in alpine plant growth under future climate conditions

    Directory of Open Access Journals (Sweden)

    A. Rammig

    2010-06-01

    Full Text Available Alpine shrub- and grasslands are shaped by extreme climatic conditions such as a long-lasting snow cover and a short vegetation period. Such ecosystems are expected to be highly sensitive to global environmental change. Prolonged growing seasons and shifts in temperature and precipitation are likely to affect plant phenology and growth. In a unique experiment, climatology and plant growth was monitored for almost a decade at 17 snow meteorological stations in different alpine regions along the Swiss Alps. Regression analyses revealed highly significant correlations between mean air temperature in May/June and snow melt out, onset of plant growth, and plant height. These correlations were used to project plant growth phenology for future climate conditions based on the gridded output of a set of regional climate models runs. Melt out and onset of growth were projected to occur on average 17 days earlier by the end of the century than in the control period from 1971–2000 under the future climate conditions of the low resolution climate model ensemble. Plant height and biomass production were expected to increase by 77% and 45%, respectively. The earlier melt out and onset of growth will probably cause a considerable shift towards higher growing plants and thus increased biomass. Our results represent the first quantitative and spatially explicit estimates of climate change impacts on future growing season length and the respective productivity of alpine plant communities in the Swiss Alps.

  2. Growth and study of barium oxalate single crystals in agar gel

    Indian Academy of Sciences (India)

    P V Dalal; K B Saraf

    2006-10-01

    Barium oxalate was grown in agar gel at ambient temperature. The effect of various parameters like gel concentration, gel setting time and concentration of the reactants on the growth of these crystals was studied. Prismatic platy shaped spherulites and dendrites were obtained. The grown crystals were characterized by X-ray powder diffractometry, infrared spectroscopy, thermogravimetric and differential thermal analysis. An attempt is made to explain the spherulitic growth mechanism.

  3. Rapid growth of large-scale (40-55 cm) KDP crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, N.P.; DeYoreo, J.J.; Dehaven, M.R.; Vital, R.L.; Carman, L.M.; Spears, H.R.

    1997-02-13

    KDP (KH{sub 2}PO{sub 4}) single crystals up to 47 cm in size have been grown by the rapid growth technique on the point seed in glass recrystallizers of 1000 L in volume at growth rates of 10 to 25 mm/day in both the [001] and [100] directions. Measurements of the optical quality of 41 x 41 cm single crystal plates are presented.

  4. Characterization of Growth Defects in Nd:YCa4O(BO3)3 Crystals by Transmission Synchrotron Topography

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The growth detects in Nd:YCa4O(BO3)3(Nd:YCOB) crystals were investigated by transmission synchrotron topography.It was found that growth striations were the primary defects in Nd:YCOB crystals.Grown-in dislocations.mosaic blocks and inclusions were also obsered in the crystals.The effect of temperature field on the formation of growth defects in the crystals was discussed.

  5. Comparison of measurements and simulation results in 300 mm CZ silicon crystal growth

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A special thermal modeling tool, CrysVUn, which was developed by Crystal Growth Laboratory (CGL) of Fraunhofer Institute of Integrated Systems and Devices Technology in Erlangen of Germany, was used for numerical analysis of growth Interface situation. The heat transportation, argon flow and melt convection have been considered. Cauchy's first and second laws of motion have been the governing partial equations for stress calculation. The measurement results and simulation results were compared and the interface shape and thermal stress distribution during 300 mm Czochralski (CZ) silicon crystal growth with different growth rates were predicted.

  6. Overview of Characterization Techniques for High Speed Crystal Growth

    Science.gov (United States)

    Ravi, K. V.

    1984-01-01

    Features of characterization requirements for crystals, devices and completed products are discussed. Key parameters of interest in semiconductor processing are presented. Characterization as it applies to process control, diagnostics and research needs is discussed with appropriate examples.

  7. Growth and characterisation of gadolinium samarium oxalate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Korah, I. [Dept. of Physics, St. George College, Aruvithura - 686122, Kerala (India); Joseph, C. [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam - 686562 (India); Ittyachan, M.A. [Dept. of Physics, Cochin University of Science and Technology, Cochin (India)

    2007-10-15

    Single crystals of Gadolinium Samarium Oxalate (GSO) are grown by gel method. The crystals are pale yellowish in colour. Morphology and size of the crystals are found to depend on pH of the medium, gel density, concentration of the reactants and acidity of the feed solution. The crystallinity of the grown sample was confirmed by X-ray diffraction studies and the lattice parameters were determined. X-ray diffractogram shows well defined peaks. IR spectrum confirms the presence of water molecules and carboxylic group. EDAX analysis confirms the presence of Gd and Sm in the sample. The thermal decomposition behaviour of the crystal was analysed using TGA and DTA studies. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Optimizing Growth Conditions for Digoxin Production in Digitalis lanata Ehrh

    Institute of Scientific and Technical Information of China (English)

    Herman A. van Wietmarschen; Hansjo¨ rg Hagels; Ron Peters; Jolanda Heistek; Jan van der Greef; Mei Wang

    2016-01-01

    Objective: Digoxin is a therapeutic cardenolide widely used to treat various heart conditions such as atrial flutter, atrial fibrillation and heart failure in both Western as well as Chinese medicine. Digoxin is extracted from cultivated Digitalis lanata Ehrh. plants, known as Mao Hua Yang Di Huang in Chinese medicine. This manuscript presents two studies that were conducted to optimize the cultivation conditions for digoxin production in the TCM Mao Hua Yan Di Huang in a greenhouse under GAP conditions. Methods: Two experiments were designed in which 4 growth conditions were compared. Levels of digoxin, gitoxin, digitoxin, α-acetyl-digoxin,β-acetyl-digoxin were measured using HPLC-UV and compared between the conditions. Results: Normal soil, no CO2 enrichment combined with a cold shock was found to be the optimal condition for producing digoxin in the first experiment. Gitoxin content was significantly lower in plants grown in this condition. Mechanical stress as well as the time of harvesting showed no statistically significant differences in the production of cardenolides. In the second experiment the optimal condition was found to be a combination of cold nights, sun screen, fertilizer use and no milled soil. Conclusion: This study shows that digoxin production can be increased by controlling the growth conditions of D. lanata Ehrh. The effect of cold was important in both experiments for improving digoxin production. Cultivating Chinese herbal medicines in optimized greenhouse conditions might be an economically attractive alternative to regular open air cultivation.

  9. The crystal growth kinetics of alpha calcium sulfate hemihydrate in concentrated CaCl2-HCl solutions

    Science.gov (United States)

    Feldmann, Thomas; Demopoulos, George P.

    2012-07-01

    The crystal growth kinetics of calcium sulfate α-hemihydrate (α-HH) in nearly constant supersaturated HCl-CaCl2 solutions were investigated. Two types of solutions were used, the first had a low HCl (1.4 mol/L) and high CaCl2 (2.8 mol/L) concentration and the second had a high HCl (5.6 mol/L) and low CaCl2 (0.7 mol/L) concentration. These conditions were chosen to represent the first and last stage of a newly developed stage-wise HCl regeneration process. The seeded growth experiments were carried out in a stirred, temperature controlled semi-batch reactor in which supersaturation was kept constant by simultaneous addition of CaCl2 and Na2SO4 solutions. The influence of the following parameters on α-HH crystal growth was studied: temperature (70-95 °C), specific power input of stirring (0.02-1.29 W/kg) and equimolar inflow rate of CaCl2 and Na2SO4 (0-0.6 mol/h). The crystal growth rate was derived from particle size distribution measurements made with the laser light diffraction technique. It was found that the surface area normalized crystal growth rate increased linearly with the molar inflow rate up to 0.3 mol/h, at higher inflow rates no further increase of the growth rate was observed. Temperature and specific power input, within the investigated ranges, did not show a marked effect on the growth rate, attributable to a diffusion/adsorption controlled growth process. An interesting finding of the present research is the establishment of a positive relationship between the narrowing of the width of the particle size distribution with increasing crystal growth rate. The results show that the resulting particle size distribution is positively related to the reagent inflow rate, a finding that can be applied to the industrial design and scale-up of the α-HH crystallization/HCl regeneration process.

  10. Effects of cyclic structure inhibitors on the morphology and growth of tetrahydrofuran hydrate crystals

    Science.gov (United States)

    Li, Sijia; Wang, Yanhong; Lang, Xuemei; Fan, Shuanshi

    2013-08-01

    Morphology and growth of hydrate crystals with cyclic structure inhibitors at a hydrate-liquid interface were directly observed through a microscopic manipulating apparatus. Tetrahydrofuran (THF) hydrate was employed as an objective. The effects of four kind of cyclic structure inhibitors, polyvinylpyrrolidone (PVP), poly(N-vinyl-2-pyrrolidone-co-2-vinyl pyridine) (PVPP), poly(2-vinyl pyridine-co-N-vinylcaprolactam) (PVPC) and poly(N-vinylcaprolactam) (PVCap), were investigated. Morphological patterns between each hydrate crystal growth from hydrate-liquid interface into droplet were found differ significantly. Lamellar structure growth of hydrate crystal was observed without inhibitor, while with PVP was featheriness-like, PVPP was like long dendritic crystal, PVPC was Mimosa pudica leaf-like and PVCap was like weeds. The growth rate of hydrate crystal without inhibitor was 0.00498 mm3/s, while with PVPP, PVPC and PVCap, were 0.00339 mm3/s, 0.00350 mm3/s, 0.00386 mm3/s and 0.00426 mm3/s, respectively. Cyclic structure inhibitors can decrease the growth rate, degree of reduction in growth rate of hydrate crystals decrease with the increase of cylinder number.

  11. Growth and study of mixed crystals of Ca–Cd iodate

    Indian Academy of Sciences (India)

    S L Garud; K B Saraf

    2008-08-01

    Mixed crystals of calcium–cadmium iodate were grown by a simple gel technique using diffusion method. The optimum conditions were established by varying various parameters such as pH of gel solution, gel concentration, gel setting time, concentration of reactants etc. Crystals having different morphologies and habits were obtained. Prismatic, dendritic crystals of calcium–cadmium iodate and prismatic needle shaped, hopper crystals of mixed iodate were obtained. Some of them were transparent, some transluscent and a few others were opaque. The crystals were characterized using FT–IR, EDAX, XRD, TGA and DTA.

  12. High-throughput identification of purification conditions leads to preliminary crystallization conditions for three inner membrane proteins.

    Science.gov (United States)

    Gabrielsen, Mads; Kroner, Frank; Black, Isobel; Isaacs, Neil W; Roe, Andrew J; McLuskey, Karen

    2011-01-01

    An important factor in the crystallization, and subsequent structural determination, of integral membrane proteins is the ability to produce a stable and monodisperse solution of the protein. Obtaining the correct purification detergent to achieve this can be laborious and is often serendipitous. In this study, high-throughput methods are used to analyze the suitability of eight different detergents on the stability of 12 inner transmembrane proteins from Escherichia coli. The best results obtained from the small-scale experiments were scaled up, the aggregation state of the proteins assessed, and all monodisperse protein solutions entered into crystallization trials. This resulted in preliminary crystallization hits for three inner membrane proteins: XylH, PgpB and YjdL and this study reports the methods, purification procedures and crystallization conditions used to achieve this.

  13. Growth and characterization of morpholinium dihydrogenphosphate single crystal

    Science.gov (United States)

    Babu, D. Rajan; Arul, H.; Vizhi, R. Ezhil

    2016-10-01

    Morpholinium dihydrogenphosphate (MDP) single crystals were synthesized, and were subsequently grown by controlled evaporation technique at room temperature for nonlinear optical applications. The grown crystal, which belongs to the monoclinic system with the space group P21, was subjected to single crystal X-ray diffraction to confirm the structure. UV-vis-NIR spectroscopy was done on the grown crystal and it showed good optical transparency in the entire visible region with a minimum cut-off wavelength of 289 nm. The optical band gap was computed as a function of photon energy using Tauc's plot. The refractive index of the grown crystal was determined using a Metricon Prism Coupler. The thermogravimetric (TG) and differential thermal analysis (DTA) traces disclosed the thermal stability of the compound. The mechanical strength of the crystal was investigated by a Vickers microhardness tester. Dielectric constant and dielectric loss were calculated and plotted as a function of frequency at different temperatures. The second harmonic conversion efficiency was determined using the Kurtz-Perry powder technique, and the efficiency was found to be 1.2 times greater than that of standard KDP.

  14. Crystal growth of pure and impurity-doped lead chloride single crystals from the melt

    NARCIS (Netherlands)

    Willemsen, B.

    An account is given of the purification and the crystal growing of lead chloride. Difficulties observed are blackening of the material and the formation of oxides. It is evident that oxygen should be avoided. The influence of water vapour is studied with mass spectroscopy, crystal microbalance

  15. Shaped crystal growth of langasite-type piezoelectric single crystals and their physical properties.

    Science.gov (United States)

    Yokota, Yuui; Yoshikawa, Akira; Futami, Yoshisuke; Sato, Masato; Tota, Kazushige; Onodera, Ko; Yanagida, Takayuki

    2012-09-01

    We have grown shape-controlled langasite-type crystals by the micro-pulling-down (μ-PD) method. Columnar shaped La(3)Ta(0.5)Ga(5.5)O(14) (LTG), Ca(3)NbGa(3)Si(2)O(14) (CNGS), Ca(3)TaGa(3)Si(2)O(14) (CTGS), Sr(3)NbGa(3)Si(2)O(14) (SNGS), and Sr(3)Ta- Ga(3)Si(2)O(14) (STGS) crystals were grown using a Pt-Rh crucible with a 3-mm-diameter columnar die at the bottom. All grown crystals showed high transparency except for the peripheral area and diameter of approximately 3 mm. The chemical phases at the central parts of the grown crystals were identified as a single phase of langasite-type structure and their lattice parameters were almost the same as those of crystals grown by the Czochralski (Cz) method; however, some impurity phases were observed in the peripheral area. In X-ray rocking curve measurements, the grown crystals indicated equivalent crystallinity to the crystal grown by the Cz method. The piezoelectric constant d(11) of the CNGS crystal was 3.98 pC/N; this value is well correlated with those of previous reports.

  16. Monitoring and Characterization of Crystal Nucleation and Growth during Batch Crystallization

    NARCIS (Netherlands)

    Kadam, S.S.

    2012-01-01

    Batch crystallization is commonly used in pharmaceutical, agrochemical, specialty and fine chemicals industry. The advantages of batch crystallization lie in its ease of operation and the relatively simple equipment that can be used. On the other hand a major disadvantage associated with it is the i

  17. Crystal growth of pure and impurity-doped lead chloride single crystals from the melt

    NARCIS (Netherlands)

    Willemsen, B.

    1971-01-01

    An account is given of the purification and the crystal growing of lead chloride. Difficulties observed are blackening of the material and the formation of oxides. It is evident that oxygen should be avoided. The influence of water vapour is studied with mass spectroscopy, crystal microbalance measu

  18. Growth and chemical analysis of bulk Nd 2- xCe xCuO y single crystals

    Science.gov (United States)

    Zhigunov, D. I.; Shiryaev, S. V.; Kurnevich, L. A.; Kalanda, N. A.; Kurochkin, L. A.; Barilo, S. N.; Vashuk, V. V.; Smakhtin, L. A.

    1999-03-01

    Single crystals of Nd 2- xCe xCuO y (0< x<0.17) from a family of the electron-type superconductors have been grown using platinum crucibles by the top seeded solution growth technique. The structural quality of the crystals was examined by X-ray diffraction. The FWHM of the Bragg reflections for the best samples varies from 8 to 20 angular seconds. Full neutron activation analysis was carried out to determine the chemical composition of the as-grown crystals. Small cation stoichiometry deviations from ideal (NdCe)/Cu ratio are found as well as Pt substitution on the copper sublattice at a level up to 2 at% exists depending on growth conditions. The results of thermogravimetric measurements and further annealing of samples show that the problem of an oxygen reduction of large Nd 2- xCe xCuO y crystals is closely connected with inhomogeneity of anion distribution in the lattice possibly caused by non-optimal parameters for the reduction process and the level of impurities contamination. A three step reduction process which produces superconductivity with Tc˜19 K in single crystals thicker than 1 mm has been developed.

  19. Formation and growth of crystal defects in directionally solidified multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryningen, Birgit

    2008-07-01

    Included in this thesis are five publications and one report. The common theme is characterisation of directionally solidified multicrystalline silicon for solar cells. Material characterisation of solar cell silicon is naturally closely linked to both the casting process and to the solar cell processing: Many of the material properties are determined by the casting process, and the solar cell processing will to some extend determine which properties will influence the solar cell performance. Solar grade silicon (SoG-Si) made by metallurgical refining route and supplied by Elkem Solar was directionally solidified and subsequently characterised, and a simple solar cell process was applied. Except from some metallic co-precipitates in the top of the ingot, no abnormalities were found, and it is suggested that within the limits of the tests performed in this thesis, the casting and the solar cell processing, rather than the assumed higher impurity content, was the limiting factor. It is suggested in this thesis that the main quality problem in multicrystalline silicon wafers is the existence of dislocation clusters covering large wafer areas. The clusters will reduce the effect of gettering and even if gettering could be performed successfully, the clusters will still reduce the minority carrier mobility and hence the solar cell performance. It has further been pointed out that ingots solidified under seemingly equal conditions might have a pronounced difference in minority carrier lifetime. Ingots with low minority carrier lifetime have high dislocation densities. The ingots with the substantially higher lifetime seem all to be dominated by twins. It is also found a link between a higher undercooling and the ingots dominated by twins. It is suggested that the two types of ingots are subject to different nucleation and crystal growth mechanisms: For the ingots dominated by dislocations, which are over represented, the crystal growth is randomly nucleated at the

  20. Effect of UV Laser Conditioning on the Structure of KDP Crystal

    Directory of Open Access Journals (Sweden)

    Decheng Guo

    2014-01-01

    Full Text Available Multiparametric raster scanning experiments for KDP crystals are carried out to study the laser conditioning efficiency as a function of laser fluence, fluence step, and pulse sequence by using ultraviolet (UV laser irradiation with pulse duration of approximately 7 ns. It indicates that damage resistance of KDP can be enhanced after conditioning process. And laser conditioning efficiency depends on the maximal fluence which is below the damage threshold. Raman spectra and photothermal absorption have also been studied on KDP crystals before and after multiparametric laser conditioning. Photothermal absorption data reveal that absorbance of conditioned KDP crystal decreases with the increase of laser fluence and the damage threshold of low absorption area is higher. Raman analysis reveals that the effectiveness of laser conditioning relies mainly on the individual mode of PO4 molecule.