WorldWideScience

Sample records for crystal fibers pcf

  1. A Gas Cell Based on Hollow-Core Photonic Crystal Fiber (PCF and Its Application for the Detection of Greenhouse Gas (GHG: Nitrous Oxide (N2O

    Directory of Open Access Journals (Sweden)

    Jonas K. Valiunas

    2016-01-01

    Full Text Available The authors report the detection of nitrous oxide gas using intracavity fiber laser absorption spectroscopy. A gas cell based on a hollow-core photonic crystal fiber was constructed and used inside a fiber ring laser cavity as an intracavity gas cell. The fiber laser in the 1.55 μm band was developed using a polarization-maintaining erbium-doped fiber as the gain medium. The wavelength of the laser was selected by a fiber Bragg grating (FBG, and it matches one of the absorption lines of the gas under investigation. The laser wavelength contained multilongitudinal modes, which increases the sensitivity of the detection system. N2O gas has overtones of the fundamental absorption bands and rovibrational transitions in the 1.55 μm band. The system was operated at room temperature and was capable of detecting nitrous oxide gas at sub-ppmv concentration level.

  2. Monolithic Yb-fiber femtosecond laser with intracavity all-solid PBG fiber and ex-cavity HC-PCF

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2010-01-01

    (PM) photonic bandgap fiber (PBG) is used in the cavity of the master oscillator for dispersion compensation and stabilization of modelocking. The final compression of an chirped-pulse-amplified laser signal is performed in a hollow PM PCF, yielding final fiber-delivered pulse energy of around 7 n......J, and pulse duration of around 297 fs. The self-stabilization mechanism of the oscillator, based on the optical nonlinearities in an AS PCF, results in excellent environmental and operational stability of our laser. Stable self-starting fundamental modelocking is maintained for at least 4 days of operation......We demonstrate an all-fiber femtosecond master oscillator / power amplifier operating at the central wavelength of 1033 nm, based on Yb-doped fiber as gain medium, and two different kinds of photonic crystal fibers for dispersion control and stabilization. An all-solid (AS) polarization maintaining...

  3. Study of the fusion point between PM-PCF and panda fiber and its influence to Interferometric fiber-optical gyroscope

    Science.gov (United States)

    Sun, Zuoming; Wang, Shuhua; Li, Junwei

    2017-02-01

    Microhole collapse property of polarization maintaining photonic crystal fibers (PM-PCF) and its effect on the splice loss and polarization cross-coupling during fusion splicing were investigated. The relationship between the microhole collapse and polarization cross-coupling are analyzed through simulation and experiment. Finally their influence to the phase error of the FOG is calculated and tested.

  4. Photonic crystal fibers used in a multi-wavelength source and as transmission fiber in a WDM system

    DEFF Research Database (Denmark)

    Andersen, Peter Andreas; Zsigri, Beata; Peucheret, Christophe

    2004-01-01

    We present a WDM system based entirely on photonic crystal fibers. It includes a novel dispersion flattened highly nonlinear PCF to generate supercontinuum used in a multiwavelength pulse source and a 5.6 km transmission PCF.......We present a WDM system based entirely on photonic crystal fibers. It includes a novel dispersion flattened highly nonlinear PCF to generate supercontinuum used in a multiwavelength pulse source and a 5.6 km transmission PCF....

  5. Gain-switched CW fiber laser for improved supercontinuum generation in a PCF

    DEFF Research Database (Denmark)

    Larsen, Casper; Noordegraaf, Danny; Skovgaard, P.M.W.

    2011-01-01

    We demonstrate supercontinuum generation in a PCF pumped by a gain-switched high-power continuous wave (CW) fiber laser. The pulses generated by gain-switching have a peak power of more than 700 W, a duration around 200 ns, and a repetition rate of 200 kHz giving a high average power of almost 30 W....... By coupling such a pulse train into a commercial nonlinear photonic crystal fiber, a supercontinuum is generated with a spectrum spanning from 500 to 2250 nm, a total output power of 12 W, and an infrared flatness of 6 dB over a bandwidth of more than 1000 nm with a power density above 5 dBm/nm (3 m......W/nm). This is considerably broader than when operating the same system under CW conditions. The presented approach is attractive due to the high power, power scalability, and reduced system complexity compared to picosecond-pumped supercontinuum sources. © 2011 Optical Society of America....

  6. Supercontinuum generation for coherent anti- Stokes Raman scattering microscopy with photonic crystal fibers

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Isomäki, Antti; Hansen, Kim P.

    2011-01-01

    Photonic crystal fiber (PCF) designs with two zero-dispersion wavelengths (ZDWs) are experimentally investigated in order to suggest a novel PCF for coherent anti-Stokes Raman scattering (CARS) microscopy. From our investigation, we select the optimum PCF design and demonstrate a tailored spectru...

  7. Photonic Crystal Fiber Sensors for Strain and Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Jian Ju

    2009-01-01

    Full Text Available This paper discusses the applications of photonic crystal fibers (PCFs for strain and temperature measurement. Long-period grating sensors and in-fiber modal interferometric sensors are described and compared with their conventional single-mode counterparts. The strain sensitivities of the air-silica PCF sensors are comparable or higher than those implemented in conventional single-mode fibers but the temperature sensitivities of the PCF sensors are much lower.

  8. On-fiber 3D printing of photonic crystal fiber tapers for mode field diameter conversion

    KAUST Repository

    Bertoncini, Andrea; Rajamanickam, Vijayakumar Palanisamy; Liberale, Carlo

    2017-01-01

    The large mismatch between the Mode Field Diameter (MFD) of conventional single-mode fibers (SMFs) and the MFD of highly nonlinear Photonic Crystal Fibers (PCFs), that can be down to 1.5 μm, or Large Mode Area PCF, that can be up to 25 μm, would require a substantial fiber mode size rescaling in order to allow an efficient direct coupling between PCFs and SMFs. Over the years different solutions have been proposed, as fiber splicing of SMF to PCF. However these procedures are not straightforward, as they involve developing special splicing recipes, and can affect PCF optical properties at the splice interface [1].

  9. On-fiber 3D printing of photonic crystal fiber tapers for mode field diameter conversion

    KAUST Repository

    Bertoncini, Andrea

    2017-11-02

    The large mismatch between the Mode Field Diameter (MFD) of conventional single-mode fibers (SMFs) and the MFD of highly nonlinear Photonic Crystal Fibers (PCFs), that can be down to 1.5 μm, or Large Mode Area PCF, that can be up to 25 μm, would require a substantial fiber mode size rescaling in order to allow an efficient direct coupling between PCFs and SMFs. Over the years different solutions have been proposed, as fiber splicing of SMF to PCF. However these procedures are not straightforward, as they involve developing special splicing recipes, and can affect PCF optical properties at the splice interface [1].

  10. Supercontinuum noise in tapered photonic crystal fibers

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Moselund, Peter Morten

    Supercontinuum generation (SCG) in highly nonlinear photonic crystal fibers (PCF) has drawn a lot of attention for the last decade. Pumping such PCFs with high-power picosecond laser pulses enables the creation of broadband and intense light. Picosecond SCG is initiated by modulation instability ...

  11. Estimation of the Maximum Output Power of Double-Clad Photonic Crystal Fiber Laser

    International Nuclear Information System (INIS)

    Chen Yue-E; Wang Yong; Qu Xi-Long

    2012-01-01

    Compared with traditional optical fiber lasers, double-clad photonic crystal fiber (PCF) lasers have larger surface-area-to-volume ratios. With an increase of output power, thermal effects may severely restrict output power and deteriorate beam quality of fiber lasers. We utilize the heat-conduction equations to estimate the maximum output power of a double-clad PCF laser under natural-convection, air-cooling, and water-cooling conditions in terms of a certain surface-volume heat ratio of the PCF. The thermal effects hence define an upper power limit of double-clad PCF lasers when scaling output power. (fundamental areas of phenomenology(including applications))

  12. In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer.

    Science.gov (United States)

    Wu, Chuang; Tse, Ming-Leung Vincent; Liu, Zhengyong; Guan, Bai-Ou; Lu, Chao; Tam, Hwa-Yaw

    2013-09-01

    We propose and demonstrate a highly sensitive in-line photonic crystal fiber (PCF) microfluidic refractometer. Ultrathin C-shaped fibers are spliced in-between the PCF and standard single-mode fibers. The C-shaped fibers provide openings for liquid to flow in and out of the PCF. Based on a Sagnac interferometer, the refractive index (RI) response of the device is investigated theoretically and experimentally. A high sensitivity of 6621 nm/RIU for liquid RI from 1.330 to 1.333 is achieved in the experiment, which agrees well with the theoretical analysis.

  13. Mode-coupling in photonic crystal fibers with multiple cores

    DEFF Research Database (Denmark)

    Kristensen, Martin

    2000-01-01

    Summary form only given. We have fabricated a photonic crystal fiber (PCF) with multiple cores by drawing a fiber preform from stacked glass tubes. Transmission is high through each core despite many unintentional defects in the cladding indicating that the guidance is determined by the holes near...

  14. Perturbative modeling of Bragg-grating-based biosensors in photonic-crystal fibers

    DEFF Research Database (Denmark)

    Burani, Nicola; Lægsgaard, Jesper

    2005-01-01

    We present a modeling study carried out to support the design of a novel, to our knowledge, kind of photonic-crystal fiber (PCF)-based sensor. This device, based on a PCF Bragg grating, detects the presence of selected single-stranded DNA molecules, hybridized to a biofilm in the air holes of the...

  15. Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers

    DEFF Research Database (Denmark)

    Andresen, Esben Ravn; Paulsen, Henrik Nørgaard; Birkedal, Victoria

    2006-01-01

    We demonstrate spectral multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy and microscopy based on a single Ti:sapphire oscillator and a nonlinear photonic-crystal fiber (PCF). The Stokes pulse is generated by spectral conversion of the laser pulse in a PCF. The pump pulse is eit...

  16. Low Loss Single-Mode Porous-Core Kagome Photonic Crystal Fiber for THz Wave Guidance

    DEFF Research Database (Denmark)

    Hasanuzzaman, G. K. M.; Habib, Selim; Abdur Razzak, S. M.

    2015-01-01

    A novel porous-core kagome lattice photonic crystal fiber (PCF) is designed and analyzed in this paper for terahertz (THz) wave guidance. Using finite element method (FEM), properties of the proposed kagome lattice PCF are simulated in details including the effective material loss (EML), confinem...

  17. Photonic crystal fiber as lab-in-fiber optofluidic platform for sensing and process monitoring

    Science.gov (United States)

    Tian, Fei

    The ability to design and fabricate photonic crystal fiber (PCF) of vastly different microstructural and optical characteristics is arguably one of the most significant recent advances in the field of fiber optics. This dissertation aims to advance the PCF research frontier by exploring long-period fiber gratings (LPG) inscribed in PCF for sensing and process monitoring via combined numerical and experimental investigation. Specifically, a mode solver based on the Finite Element Method (FEM) has been employed to calculate the mode field distribution, the phase matching condition, and the dispersive characteristics associated with LPG-induced coupling of the fundamental core mode (LP01) to various cladding modes (LPmn, m=0,1; n=2,3, ...) in an endlessly single mode PCF. The numerical results have been used to guide the design and fabrication of LPG in PCF by CO2 laser inscription to maximize index sensitivity in gas or liquid medium. Cascaded PCF-LPG has been fabricated and shown to exhibit record sensitivity in excess of 1700 nm/RIU with high resolution for index measurements of gas phase. The inherent interference fringes in the transmission spectrum of cascaded PCF-LPG have been utilized to analyze mode coupling behaviour. In addition, we have developed and implemented a reflective mirror-aided method to allow symmetrical CO2 laser irradiation of PCF during LPG inscription. Both numerical analysis and experimental measurements have shown significantly improved mode coupling behaviour, mode field distribution, as well as reproducibility in LPG fabrication, critical for practical exploitation of the PCF-LPG platform. We have further exploited the high index sensitivity of PCF-LPG to monitor layer-by-layer (LbL) self-assembly of poly(vinyl pyrrolidone) (PVPON) and poly(methacrylic acid) (PMAA) polyelectrolyte layers as well as the pH responsiveness of the cross-linked PMAA hydrogel films. A shift of ˜1.625 nm in the resonance wavelength per polyelectrolyte layer

  18. Supercontinuum Generation in Uniform and Tapered Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Møller, Uffe Visbech; Larsen, Casper

    Supercontinuum generation (SCG) is a striking phenomenon of extreme spectral broadening involving a wealth of beautiful nonlinear physics. The study of SCG and development of today’s commercial sources really took off with the invention of the photonic crystal fiber (PCF), in which light can be m...

  19. Multiple soliton self-frequency shift cancellations in a temporally tailored photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lai; Kang, Zhe; Li, Qing; Gao, Xuejian; Qin, Guanshi, E-mail: qings@jlu.edu.cn, E-mail: wpqin@jlu.edu.cn; Qin, Weiping, E-mail: qings@jlu.edu.cn, E-mail: wpqin@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Liao, Meisong; Hu, Lili [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Ohishi, Yasutake [Research Center for Advanced Photon Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan)

    2014-11-03

    We report the generation of multiple soliton self-frequency shift cancellations in a temporally tailored tellurite photonic crystal fiber (PCF). The temporally regulated group velocity dispersion (GVD) is generated in the fiber by soliton induced optical Kerr effect. Two red-shifted dispersive waves spring up when two Raman solitons meet their own second zero-dispersion-wavelengths in the PCF. These results show how, through temporally tailored GVD, nonlinearities can be harnessed to generate unexpected effects.

  20. Coupling Characteristics of Fused Optical Fiber Coupler Formed with Single-Mode Fiber and Photonic Crystal Fiber Having Air Hole Collapsed Taper

    Directory of Open Access Journals (Sweden)

    Hirohisa Yokota

    2016-01-01

    Full Text Available Fused coupler forming with a single-mode fiber (SMF and a photonic crystal fiber (PCF is one of the solutions for optical coupling from a light source to a PCF. In this paper, we presented coupling characteristics of a fused fiber coupler formed with an ordinary SMF and a PCF having air hole collapsed taper. A prototype of SMF-PCF coupler with air hole collapsed taper was fabricated using CO2 laser irradiation. The coupling efficiency from SMF to PCF was −6.2 dB at 1554 nm wavelength in the fabricated coupler. The structure of the SMF-PCF coupler to obtain high coupling efficiency was theoretically clarified by beam propagation analysis using an equivalent model of the coupler with simplification. It was clarified that appropriately choosing the prestretched or etched SMF diameter and the length of air hole collapsed region was effective to obtain high coupling efficiency that was a result of high extinction ratio at cross port and low excess loss. We also demonstrated that the diameter of prestretched SMF to obtain high coupling efficiency was insensitive to the air hole diameter ratio to pitch of the PCF in the air hole collapsed SMF-PCF coupler.

  1. The Orbital Angular Momentum Modes Supporting Fibers Based on the Photonic Crystal Fiber Structure

    Directory of Open Access Journals (Sweden)

    Hu Zhang

    2017-10-01

    Full Text Available The orbital angular momentum (OAM of light can be another physical dimension that we exploit to make multiplexing in the spatial domain. The design of the OAM mode supporting fiber attracts many attentions in the field of the space division multiplexing (SDM system. This paper reviews the recent progresses in photonic crystal fiber (PCF supporting OAM modes, and summarizes why a PCF structure can be used to support stable OAM transmission modes. The emphasis is on the circular PCFs, which possess many excellent features of transmission performance, such as good-quality OAM modes, enough separation of the effective indices, low confinement loss, flat dispersion, a large effective area, and a low nonlinear coefficient. We also compare the transmission properties between the circular PCF and the ring core fiber, as well as the properties between the OAM EDFA based on circular PCF and the OAM EDFA based on the ring core fiber. At last, the challenges and prospects of OAM fibers based on the PCF structure are also discussed.

  2. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  3. Photonic Crystal Fibers

    National Research Council Canada - National Science Library

    Kristiansen, Rene E

    2005-01-01

    This report results from a contract tasking Crystal Fibre A/S as follows: Crystal Fibre will conduct research and development of large mode area, dual clad multi-core Yb-doped photonic crystal fiber...

  4. Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms

    DEFF Research Database (Denmark)

    Markos, Christos; Kubat, Irnis; Bang, Ole

    2014-01-01

    The combination of chalcogenide glasses with polymer photonic crystal fibers (PCFs) is a difficult and challenging task due to their different thermo-mechanical material properties. Here we report the first experimental realization of a hybrid polymer-chalcogenide PCF with integrated As2S3 glass...... nanofilms at the inner surface of the air-channels of a poly-methyl-methacrylate (PMMA) PCF. The integrated high refractive index glass films introduce distinct antiresonant transmission bands in the 480-900 nm wavelength region. We demonstrate that the ultra-high Kerr nonlinearity of the chalcogenide glass...

  5. Analysis of Indexed-Guided Highly Birefringent Photonic Crystal ...

    African Journals Online (AJOL)

    In this paper, a comparative study of three geometries of highly birefringent photonic crystal fibers (HB PCF) is presented. The proposed geometries are: V type PCF, Pseudo-Panda PCF and selectively liquid-filled PCF. Based on the famous Finite Difference Time Domain (FDTD) method with the perfectly matched layer ...

  6. Thermal properties photonic crystal fiber transducers with ferromagnetic nanoparticles

    Science.gov (United States)

    Przybysz, N.; Marć, P.; Kisielewska, A.; Jaroszewicz, L. R.

    2015-12-01

    The main aim of the research is to design new types of fiber optic transducers based on filled photonic crystal fibers for sensor applications. In our research we propose to use as a filling material nanoparticles' ferrofluids (Fe3O4 NPs). Optical properties of such transducers are studied by measurements of spectral characteristics' changes when transducers are exposed to temperature and magnetic field changes. From synthesized ferrofluid several mixtures with different NPs' concentrations were prepared. Partially filled commercially available photonic crystal fiber LMA 10 (NKT Photonics) was used to design PCF transducers. Their thermo-optic properties were tested in a temperature chamber. Taking into account magnetic properties of synthetized NPs the patch cords based on a partially filled PM 1550 PCF were measured.

  7. Hydrostatic Pressure Sensing with High Birefringence Photonic Crystal Fibers

    Science.gov (United States)

    Fávero, Fernando C.; Quintero, Sully M. M.; Martelli, Cicero; Braga, Arthur M.B.; Silva, Vinícius V.; Carvalho, Isabel C. S.; Llerena, Roberth W. A.; Valente, Luiz C. G.

    2010-01-01

    The effect of hydrostatic pressure on the waveguiding properties of high birefringence photonic crystal fibers (HiBi PCF) is evaluated both numerically and experimentally. A fiber design presenting form birefringence induced by two enlarged holes in the innermost ring defining the fiber core is investigated. Numerical results show that modal sensitivity to the applied pressure depends on the diameters of the holes, and can be tailored by independently varying the sizes of the large or small holes. Numerical and experimental results are compared showing excellent agreement. A hydrostatic pressure sensor is proposed and demonstrated using an in-fiber modal interferometer where the two orthogonally polarized modes of a HiBi PCF generate fringes over the optical spectrum of a broad band source. From the analysis of experimental results, it is concluded that, in principle, an operating limit of 92 MPa in pressure could be achieved with 0.0003% of full scale resolution. PMID:22163435

  8. Enhanced performance of an S-band fiber laser using a thulium-doped photonic crystal fiber

    Science.gov (United States)

    Muhammad, A. R.; Emami, S. D.; Hmood, J. K.; Sayar, K.; Penny, R.; Abdul-Rashid, H. A.; Ahmad, H.; Harun, S. W.

    2014-11-01

    This work proposes a new method to enhance the performance of an S-band fiber laser by using a thulium-doped photonic crystal fiber (PCF). The proposed method is based on amplified spontaneous emission (ASE) suppression provided by the thulium-doped PCF unique geometric structure. The enhanced performance of this filter based PCF is dependent on the short and long cut-off wavelength characteristics that define the fiber transmission window. Realizing the short wavelength cut-off location requires the PCF cladding to be doped with a high index material, which provides a refractive index difference between the core and cladding region. Achieving the long cut-off wavelength necessitates enlarging the size of the air holes surrounding the rare-earth doped core region. The PCF structure is optimized so as to achieve the desired ASE suppression regions of below 0.8 μm and above 1.8 μm. The laser performance is simulated for different host media, namely pure silica, alumino-silicate, and fluoride-based fiber ZBLAN based on this thulium-doped PCF design. The host media spectroscopic details, including lifetime variations and quantum efficiency effect on the lasing emission are also discussed. Information on the filter based PCF design is gathered via a full-vectorial finite element method analysis and specifically a numerical modelling solution for the energy level rate equation using the Runge-Kutta method. Results are analyzed for gain improvement, lasing cavity, laser efficiency and effect of core size diameter variation. Results are compared with conventional thulium-doped fiber and thulium-doped PCF for every single host media. We observe that the ZBLAN host media is the most promising candidate due to its greater quantum efficiency.

  9. Enhanced performance of an S-band fiber laser using a thulium-doped photonic crystal fiber

    International Nuclear Information System (INIS)

    Muhammad, A R; Emami, S D; Penny, R; Ahmad, H; Harun, S W; Hmood, J K; Sayar, K; Abdul-Rashid, H A

    2014-01-01

    This work proposes a new method to enhance the performance of an S-band fiber laser by using a thulium-doped photonic crystal fiber (PCF). The proposed method is based on amplified spontaneous emission (ASE) suppression provided by the thulium-doped PCF unique geometric structure. The enhanced performance of this filter based PCF is dependent on the short and long cut-off wavelength characteristics that define the fiber transmission window. Realizing the short wavelength cut-off location requires the PCF cladding to be doped with a high index material, which provides a refractive index difference between the core and cladding region. Achieving the long cut-off wavelength necessitates enlarging the size of the air holes surrounding the rare-earth doped core region. The PCF structure is optimized so as to achieve the desired ASE suppression regions of below 0.8 μm and above 1.8 μm. The laser performance is simulated for different host media, namely pure silica, alumino-silicate, and fluoride-based fiber ZBLAN based on this thulium-doped PCF design. The host media spectroscopic details, including lifetime variations and quantum efficiency effect on the lasing emission are also discussed. Information on the filter based PCF design is gathered via a full-vectorial finite element method analysis and specifically a numerical modelling solution for the energy level rate equation using the Runge–Kutta method. Results are analyzed for gain improvement, lasing cavity, laser efficiency and effect of core size diameter variation. Results are compared with conventional thulium-doped fiber and thulium-doped PCF for every single host media. We observe that the ZBLAN host media is the most promising candidate due to its greater quantum efficiency. (paper)

  10. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead....... The freedom to design the dispersion profile of the fibers is much larger and it is possible to create fibers, which support only a single spatial mode, regardless of wavelength. In comparison, the standard dispersion-shifted fibers are limited by a much lower index-contrast between the core and the cladding...... in 1996, and are today on their way to become the dominating technology within the specialty fiber field. Whether they will replace the standard fiber in the more traditional areas like telecommunication transmission, is not yet clear, but the nonlinear photonic crystal fibers are here to stay....

  11. A Novel Low Loss, Highly Birefringent Photonic Crystal Fiber in THz Regime

    DEFF Research Database (Denmark)

    Hasanuzzaman, G. K. M.; Rana, Sohel; Habib, Selim

    2016-01-01

    We present a new kind of dual-hole unit-based porous-core hexagonal photonic crystal fiber (H-PCF) with low loss and high birefringence in terahertz regime. The proposed fiber offers simultaneously high birefringence and low effective material loss (EML) in the frequency range of 0.5-0.85 THz wit...

  12. Development of photonic-crystal-fiber-based optical coupler with a broad operating wavelength range of 800 nm

    International Nuclear Information System (INIS)

    Yoon, Min-Seok; Kwon, Oh-Jang; Kim, Hyun-Joo; Chu, Su-Ho; Kim, Gil-Hwan; Lee, Sang-Bae; Han, Young-Geun

    2010-01-01

    We developed a broadband optical coupler based on a photonic crystal fiber (PCF), which is very useful for applications to optical coherence tomography (OCT). The PCF-based coupler is fabricated by using a fused biconical tapering (FBT) method. The PCF has six hexagonally-stacked layers of air holes. The PCF-based coupler has a nearly-flat 50/50 coupling ratio in a broad bandwidth range of 800 nm, which is much wider than that previously reported for a PCF-based coupler and a singlemode-fiber-based coupler. The bandwidth and the bandedge wavelength of the broadband coupler are controlled by changing the elongation length. The fabricated broadband optical coupler has great potential for realizing a broadband interferogram with a high resolution in an OCT system.

  13. Photonic crystal fiber monitors for intracellular ice formation

    Science.gov (United States)

    Battinelli, Emily; Reimlinger, Mark; Wynne, Rosalind

    2012-04-01

    An all-silica steering wheel photonic crystal fiber (SW-PCF) device with real-time analysis for cellular temperature sensing is presented. Results are provided for water-filled SW-PCF fibers experiencing cooling down near -40°C. Cellular temperature sensors with fast response times are of interest particularly to the study of cryopreservation, which has been influential in applications such as tissue preservation, food quality control, genetic engineering, as well as drug discovery and in- vitro toxin testing. Results of this investigation are relevant to detection of intracellular ice formation (IIF) and better understanding cell freezing at very low temperatures. IIF detection is determined as a function of absorption occurring within the core of the SW-PCF. The SW-PCF has a 3.3μm core diameter, 125μm outer diameter and steering wheel-like air hole pattern with triangular symmetry, with a 20μm radius. One end of a 0.6m length of the SW-PCF is placed between two thermoelectric coolers, filled with ~0.1μL water. This end is butt coupled to a 0.5m length of single mode fiber (SMF), the distal end of the fiber is then inserted into an optical spectrum analyzer. A near-IR light source is guided through the fiber, such that the absorption of the material in the core can be measured. Spectral characteristics demonstrated by the optical absorption of the water sample were present near the 1300-1700nm window region with strongest peaks at 1350, 1410 and 1460nm, further shifting of the absorption peaks is possible at cryogenic temperatures making this device suitable for IIF monitoring applications.

  14. High-energy master oscillator power amplifier with near-diffraction-limited output based on ytterbium-doped PCF fiber

    Science.gov (United States)

    Li, Rao; Qiao, Zhi; Wang, Xiaochao; Fan, Wei; Lin, Zunqi

    2017-10-01

    With the development of fiber technologies, fiber lasers are able to deliver very high power beams and high energy pulses which can be used not only in scientific researches but industrial fields (laser marking, welding,…). The key of high power fiber laser is fiber amplifier. In this paper, we present a two-level master-oscillator power amplifier system at 1053 nm based on Yb-doped photonic crystal fibers. The system is used in the front-end of high power laser facility for the amplification of nano-second pulses to meet the high-level requirements. Thanks to the high gain of the system which is over 50 dB, the pulse of more than 0.89 mJ energy with the nearly diffraction-limited beam quality has been obtained.

  15. Optical devices based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard

    2005-01-01

    the waveguiding mechanism of LC filled PCFs. The principle of tunable fibers based on LCs is thereafter discussed and an alignment and coating study of LC in capillaries is presented. Next, the Liquid Crystal Photonic BandGap (LCPBG) fiber is presented and the waveguiding mechanism is analyzed through plane...... hole. The presence of a LC in the holes of the PCF transforms the fiber from a Total Internal Reflection (TIR) guiding type into a Photonic BandGap (PBG) guiding type, where light is confined to the silica core by coherent scattering from the LC-billed holes. The high dielectric and optical anisotropy...

  16. Coatings influencing thermal stress in photonic crystal fiber laser

    Science.gov (United States)

    Pang, Dongqing; Li, Yan; Li, Yao; Hu, Minglie

    2018-06-01

    We studied how coating materials influence the thermal stress in the fiber core for three holding methods by simulating the temperature distribution and the thermal stress distribution in the photonic-crystal fiber laser. The results show that coating materials strongly influence both the thermal stress in the fiber core and the stress differences caused by holding methods. On the basis of the results, a two-coating PCF was designed. This design reduces the stress differences caused by variant holding conditions to zero, then the stability of laser operations can be improved.

  17. Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles

    Science.gov (United States)

    Lesiak, Piotr; Budaszewski, Daniel; Bednarska, Karolina; Wójcik, Michał; Sobotka, Piotr; Chychłowski, Miłosz; Woliński, Tomasz R.

    2017-05-01

    In this work we studied a newly reported class of nonlinear effects observed in 5CB liquid crystals doped with gold nanoparticles (GNPs). The size of the GNP was determined by direct TEM imaging and by X-ray scattering of the diluted NP solution. GNPs was coated by thiols with the ratio of mesogenic to n-alkyl thiols varying from 1:2 to 1:1. The research involved comparing properties of both undoped and doped 5CB (nematic LC) by infiltrating LC cell and microholes of the photonic crystal fiber (PCF) separately. In our experiment the PCF fiber type LMA-10 made by NKT Photonics as host material has been used.

  18. 40 W picosecond fiber amplifier with the large mode-area polarized crystal fiber

    International Nuclear Information System (INIS)

    Yu, H; Zhou, J; Wushouer, X; Yan, P; Wang, D; Gong, M

    2009-01-01

    We reported the 5W picosecond laser with pulse width of 30 ps and the repetition rate of 100 MHz, which was amplified to 40.2 W with the linear polarized Yb-doped photonic crystal fiber (PCF), with the slope efficiency of about 58%. As much as 17.3 W second-harmonic power was achieved corresponding to the conversion efficiency of 43%

  19. Research on Distributed Gas Detection Based on Hollow-core Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Gui XIN

    2014-07-01

    Full Text Available We have demonstrated a distributed gas detection system by using hollow-core photonic crystal fiber (HC-PCF as a gas chamber. The HC-PCF gas chamber has several lateral micro- channels fabricated by the femtosecond laser. The HC-PCF is connected to the single mode fiber by thermal splicing, and gas can diffuse in hollow-core of PCF via micro-channels. Compared to the traditional gas chamber, the HC-PCF gas chamber has relatively simpler construction and quite stability. According to experiment results, the system response time of 15 s has been achieved for a 5 cm HC-PCF which has ten channels with 4mm channel distance. It would construct long sensing length fiber gas sensor that the side holes and the splicer have introduced very little loss. Thus make it possible to achieve highly sensitive sensing system without influencing the response time. By using self-reference demodulation algorithm and space division multiplexing technique, distributed gas detection system with fast response was achieved.

  20. Terahertz detection of alcohol using a photonic crystal fiber sensor.

    Science.gov (United States)

    Sultana, Jakeya; Islam, Md Saiful; Ahmed, Kawsar; Dinovitser, Alex; Ng, Brian W-H; Abbott, Derek

    2018-04-01

    Ethanol is widely used in chemical industrial processes as well as in the food and beverage industry. Therefore, methods of detecting alcohol must be accurate, precise, and reliable. In this content, a novel Zeonex-based photonic crystal fiber (PCF) has been modeled and analyzed for ethanol detection in terahertz frequency range. A finite-element-method-based simulation of the PCF sensor shows a high relative sensitivity of 68.87% with negligible confinement loss of 7.79×10 -12    cm -1 at 1 THz frequency and x -polarization mode. Moreover, the core power fraction, birefringence, effective material loss, dispersion, and numerical aperture are also determined in the terahertz frequency range. Owing to the simple fiber structure, existing fabrication methods are feasible. With the outstanding waveguiding properties, the proposed sensor can potentially be used in ethanol detection, as well as polarization-preserving applications of terahertz waves.

  1. A modified hexagonal photonic crystal fiber for terahertz applications

    Science.gov (United States)

    Islam, Md. Saiful; Sultana, Jakeya; Faisal, Mohammad; Islam, Mohammad Rakibul; Dinovitser, Alex; Ng, Brian W.-H.; Abbott, Derek

    2018-05-01

    We present a Zeonex based highly birefringent and dispersion flattened porous core photonic crystal fiber (PC-PCF) for polarization preserving applications in the terahertz region. In order to facilitate birefringence, an array of elliptical shaped air holes surrounded by porous cladding is introduced. The porous cladding comprises circular air-holes in a modified hexagonal arrangement. The transmission characteristics of the proposed PCF are investigated using a full-vector finite element method with perfectly matched layer (PML) absorbing boundary conditions. Simulation results show a high birefringence of 0.086 and an ultra-flattened dispersion variation of ± 0.03 ps/THz/cm at optimal design parameters. Besides, a number of other important wave-guiding properties including frequency dependence of the effective material loss (EML), confinement loss, and effective area are also investigated to assess the fiber's effectiveness as a terahertz waveguide.

  2. Transverse Micro-structuring of Photonic Crystal Fibers for Industrial Sensors and Side Viewing Probes for Optical Coherence Tomography Applications

    Directory of Open Access Journals (Sweden)

    Sanjay KHER

    2010-05-01

    Full Text Available In this work, we report a simple and easily adaptable technique of lateral micro-machining of Photonic Crystal fibers (PCFs using modulated CO2-laser in conjunction with electrical arc system. The technique is controlled, convenient and precise over wide dimensions (50-250 mm. Lateral access to the holes of PCF provides additional flexibility for sensitive real time detection of gases such as green-house gases. Long period gratings are made in PCF through inscription of micro-grooves for sensitive detection of longitudinal strain. A unique and versatile PCF based probe for possible endoscopic Optical Coherence Tomography (OCT applications is reported.

  3. Extremely High-Birefringent Asymmetric Slotted-Core Photonic Crystal Fiber in THz Regime

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Habib, Selim; Hasanuzzaman, G.K.M.

    2015-01-01

    We present a thorough numerical analysis of a highly birefringent slotted porous-core circular photonic crystal fiber (PCF) for terahertz (THz) wave guidance. The slot shaped air-holes break the symmetry of the porous-core which offers a very high birefringence whereas the compact geometry of the...

  4. Extremely low-loss single-mode photonic crystal fiber in the terahertz regime

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Hasanuzzaman, G. K M; Sadath, Md Anwar

    2015-01-01

    This paper presents an updated design and numerical characterization of a rotated porous-core hexagonal photonic crystal fiber (PCF) for single-mode terahertz (THz) wave guidance. The simulation results are found using an efficient finite element method (FEM) which show a better and ultra-low eff...

  5. Harmonic Mode-Locked Fiber Laser based on Photonic Crystal Fiber Filled with Topological Insulator Solution

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2015-04-01

    Full Text Available We reported that the photonic crystal fiber (PCF filled with TI:Bi2Te3 nanosheets solution could act as an effective saturable absorber (SA. Employing this TI-PCF SA device; we constructed an ytterbium-doped all-fiber laser oscillator and achieved the evanescent wave mode-locking operation. Due to the large cavity dispersion; the fundamental mode-locking pulse had the large full width at half maximum (FWHM of 2.33 ns with the repetition rate of ~1.11 MHz; and the radio frequency (RF spectrum with signal-to-noise ratio (SNR of 61 dB. In addition; the transition dynamics from a bunched state of pulses to harmonic mode-locking (HML was also observed; which was up to 26th order.

  6. Photonic crystal fiber technology for compact fiber-delivered high-power ultrafast fiber lasers

    Science.gov (United States)

    Triches, Marco; Michieletto, Mattia; Johansen, Mette M.; Jakobsen, Christian; Olesen, Anders S.; Papior, Sidsel R.; Kristensen, Torben; Bondue, Magalie; Weirich, Johannes; Alkeskjold, Thomas T.

    2018-02-01

    Photonic crystal fiber (PCF) technology has radically impacted the scientific and industrial ultrafast laser market. Reducing platform dimensions are important to decrease cost and footprint while maintaining high optical efficiency. We present our recent work on short 85 μm core ROD-type fiber amplifiers that maintain single-mode performance and excellent beam quality. Robust long-term performance at 100 W average power and 250 kW peak power in 20 ps pulses at 1030 nm wavelength is presented, exceeding 500 h with stable performance in terms of both polarization and power. In addition, we present our recent results on hollow-core ultrafast fiber delivery maintaining high beam quality and polarization purity.

  7. Hollow-Core Photonic Crystal Fibers for Surface-Enhanced Raman Scattering Probes

    Directory of Open Access Journals (Sweden)

    Xuan Yang

    2011-01-01

    Full Text Available Photonic crystal fiber (PCF sensors based on surface-enhanced Raman scattering (SERS have become increasingly attractive in chemical and biological detections due to the molecular specificity, high sensitivity, and flexibility. In this paper, we review the development of PCF SERS sensors with emphasis on our recent work on SERS sensors utilizing hollow-core photonic crystal fibers (HCPCFs. Specifically, we discuss and compare various HCPCF SERS sensors, including the liquid-filled HCPCF and liquid-core photonic crystal fibers (LCPCFs. We experimentally demonstrate and theoretically analyze the high sensitivity of the HCPCF SERS sensors. Various molecules including Rhodamine B, Rhodamine 6G, human insulin, and tryptophan have been tested to show the excellent performance of these fiber sensors.

  8. Polarization-dependent in-line quasi-Michelson interferometer based on PM-PCF reflection.

    Science.gov (United States)

    Du, Yanying; Qiao, Xueguang; Rong, Qiangzhou; Zhang, Jing; Feng, Dingyi; Wang, Ruohui; Sun, Hao; Hu, Manli; Feng, Zhongyao

    2013-05-20

    An in-line fiber quasi-Michelson interferometer (IFQMI) working on reflection is proposed and experimentally demonstrated. The sensing head is fabricated by splicing a section of polarization-maintaining photonic crystal fiber (PM-PCF) with a lead-in single mode fiber (SMF). Some cladding modes are excited into the PM-PCF via the mismatch-core splicing interface between PM-PCF and SMF. Besides, two orthogonal polarized-modes are formed due to the inherent multiholes cladding structure of the PM-PCF. A well-defined interference pattern is obtained as the result of cladding-orthogonal modes interference. The IFQMI with 20 cm long PM-PCF is proposed for strain and torsion measurements. A strain sensitivity of -1.3 pm/με and a torsion sensitivity of -19.17 pm/deg are obtained, respectively. The proposed device with 10 cm long PM-PCF exhibits a considered temperature sensitivity of 9.9 pm/°C. The IFQMI has a compact structure and small size, making it a good candidate for multiparameter measurements.

  9. Ultrabroadband polarization splitter based on three-core photonic crystal fiber with a modulation core.

    Science.gov (United States)

    Zhao, Tongtong; Lou, Shuqin; Wang, Xin; Zhou, Min; Lian, Zhenggang

    2016-08-10

    We design an ultrabroadband polarization splitter based on three-core photonic crystal fiber (PCF). A modulation core and two fluorine-doped cores are introduced to achieve an ultrawide bandwidth. The properties of three-core PCF are modeled by using the full-vector finite element method along with the full-vector beam propagation method. Numerical results demonstrate that an ultrabroadband splitter with 320 nm bandwidth with an extinction ratio as low as -20  dB can be achieved by using 52.8 mm long three-core PCF. This splitter also has high compatibility with standard single-mode fibers as the input and output ports due to low splicing loss of 0.02 dB. All the air holes in the proposed structure are circular holes and arranged in a triangular lattice that makes it easy to fabricate.

  10. Linear and nonlinear modeling of light propagation in hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Roberts, John; Lægsgaard, Jesper

    2009-01-01

    Hollow core photonic crystal fibers (HC-PCFs) find applications which include quantum and non-linear optics, gas detection and short high-intensity laser pulse delivery. Central to most applications is an understanding of the linear and nonlinear optical properties. These require careful modeling....... The intricacies of modeling various forms of HC-PCF are reviewed. An example of linear dispersion engineering, aimed at reducing and flattening the group velocity dispersion, is then presented. Finally, a study of short high intensity pulse delivery using HC-PCF in both dispersive and nonlinear (solitonic...

  11. Photonic-crystal fibers gyroscope

    Directory of Open Access Journals (Sweden)

    Ali Muse Haider

    2015-01-01

    Full Text Available In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

  12. Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers

    DEFF Research Database (Denmark)

    Scolari, Lara; Alkeskjold, Thomas Tanggaard; Riishede, Jesper

    2005-01-01

    We present an electrically controlled photonic bandgap fiber device obtained by infiltrating the air holes of a photonic crystal fiber (PCF) with a dual-frequency liquid crystal (LC) with pre-tilted molecules. Compared to previously demonstrated devices of this kind, the main new feature of this ...... in the same device. We investigate the dynamics of this device and demonstrate a birefringence controller based on this principle....

  13. Dynamics of Dispersive Wave Generation in Gas-Filled Photonic Crystal Fiber with the Normal Dispersion

    Directory of Open Access Journals (Sweden)

    Zhixiang Deng

    2017-01-01

    Full Text Available The absence of Raman and unique pressure-tunable dispersion is the characteristic feature of gas-filled photonic crystal fiber (PCF, and its zero dispersion points can be extended to the near-infrared by increasing gas pressure. The generation of dispersive wave (DW in the normal group velocity dispersion (GVD region of PCF is investigated. It is demonstrated that considering the self-steepening (SS and introducing the chirp of the initial input pulse are two suitable means to control the DW generation. The SS enhances the relative average intensity of blue-shift DW while weakening that of red-shift DW. The required propagation distance of DW emission is markedly varied by introducing the frequency chirp. Manipulating DW generation in gas-filled PCF by the combined effects of either SS or chirp and three-order dispersion (TOD provides a method for a concentrated transfer of energy into the targeted wavelengths.

  14. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, Dnyandeo; Rao, Ch. N.; Kale, S. N., E-mail: sangeetakale2004@gmail.com [Department of Applied Physics, Defence Institute of Advanced Technology (DU), Girinagar, Pune 411 025, Maharashtra (India); Choubey, Ravi Kant [Department of Applied Physics, Amity Institute of Applied Sciences, Amity University, Noida 201 313 (India)

    2016-01-25

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor.

  15. Photonic crystal fiber coil sensor for water-depth sensing

    Science.gov (United States)

    Fan, Chen-Feng; Yu, Chin-Ping

    2013-05-01

    We fabricate a PCF coil sensor for water-depth sensing by winding a PCF on a plastic straw. Due to the bending-induced birefringence along the PCF, we can observe clear interference pattern in the output spectrum by placing the PCF coil into a Sagnac fiber loop. As we horizontally immerse the fabricated PCF coil into water, a nonlinear relationship between the water depth and the wavelength shift can be obtained. We have also measured the interference spectrum by vertically immersing the PCF coil into water. We can observe a linear relationship between the water depth and the wavelength shift, and the measured water-depth sensitivity for vertical immersion is -1.17 nm/mm.

  16. Highly birefringent photonic crystal fiber with ultra-flattened negative dispersion over S + C + L + U bands

    DEFF Research Database (Denmark)

    Habib, Selim; Khandker, Emran

    2015-01-01

    We present a new cladding design for photonic crystal fiber (PCF) on a decagonal structure to simultaneously achieve ultra-flattened large negative dispersion and ultrahigh birefringence. Numerical results confirm that the proposed PCFexhibits ultra-flattened large negative dispersion over the S ...

  17. Porous shaped photonic crystal fiber with strong confinement field in sensing applications: Design and analysis

    Directory of Open Access Journals (Sweden)

    Sawrab Chowdhury

    2017-04-01

    Full Text Available In this article, porous core porous cladding photonic crystal fiber (P-PCF has been proposed for aqueous analytes sensing applications. Guiding properties of the proposed P-PCF has been numerically investigated by utilizing the full vectorial finite element method (FEM. The relative sensitivity and confinement loss are obtained by varying distinct geometrical parameters like the diameter of air holes, a pitch of the core and cladding region over a wider range of wavelength. The proposed P-PCF is organized with five rings air hole in the cladding and two rings air hole in a core territory which maximizes the relative sensitivity expressively and minimizes confinement loss depressively compare with the prior-PCF structures. After completing all investigations, it is also visualized that the relative sensitivity is increasing with the increment of the wavelength of communication band (O + E + S + C + L + U. Higher sensitivity is gained by using higher band for all applied liquids. Finally the investigating effects of different structural parameters of the proposed P-PCF are optimized which shows the sensitivity of 60.57%, 61.45% and 61.82%; the confinement loss of 8.71 × 10−08 dB/m, 1.41 × 10−10 dB/m and 6.51 × 10−10 dB/m for Water (n = 1.33, Ethanol (n = 1.354 and Benzene (n = 1.366 respectively at 1.33 μm wavelength. The optimized P-PCF with higher sensitivity and lower confinement loss has high impact in the area of the chemical as well as gas sensing purposes. Keywords: Porous shaped PCF, Sensitivity, Optical sensing, Liquid sensor, Confinement loss

  18. Photonic crystal fiber based chloride chemical sensors for corrosion monitoring

    Science.gov (United States)

    Wei, Heming; Tao, Chuanyi; Krishnaswamy, Sridhar

    2016-04-01

    Corrosion of steel is one of the most important durability issues in reinforced concrete (RC) structures because aggressive ions such as chloride ions permeate concrete and corrode steel, consequently accelerating the destruction of structures, especially in marine environments. There are many practical methods for corrosion monitoring in RC structures, mostly focusing on electrochemical-based sensors for monitoring the chloride ion which is thought as one of the most important factors resulting in steel corrosion. In this work, we report a fiber-optic chloride chemical sensor based on long period gratings inscribed in a photonic crystal fiber (PCF) with a chloride sensitive thin film. Numerical simulation is performed to determine the characteristics and resonance spectral response versus the refractive indices of the analyte solution flowing through into the holes in the PCF. The effective refractive index of the cladding mode of the LPGs changes with variations of the analyte solution concentration, resulting in a shift of the resonance wavelength, hence providing the sensor signal. This fiber-optic chemical sensor has a fast response, is easy to prepare and is not susceptible to electromagnetic environment, and can therefore be of use for structural health monitoring of RC structures subjected to such aggressive environments.

  19. Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery

    Science.gov (United States)

    Lanin, Aleksandr A.; Fedotov, Il'ya V.; Sidorov-Biryukov, Dmitrii A.; Doronina-Amitonova, Lyubov V.; Ivashkina, Olga I.; Zots, Marina A.; Sun, Chi-Kuang; Ömer Ilday, F.; Fedotov, Andrei B.; Anokhin, Konstantin V.; Zheltikov, Aleksei M.

    2012-03-01

    Large-core hollow photonic-crystal fibers (PCFs) are shown to enable a fiber-format air-guided delivery of ultrashort infrared laser pulses for neurosurgery and nonlinear-optical imaging. With an appropriate dispersion precompensation, an anomalously dispersive 15-μm-core hollow PCF compresses 510-fs, 1070-nm light pulses to a pulse width of about 110 fs, providing a peak power in excess of 5 MW. The compressed PCF output is employed to induce a local photodisruption of corpus callosum tissues in mouse brain and is used to generate the third harmonic in brain tissues, which is captured by the PCF and delivered to a detector through the PCF cladding.

  20. Photonic crystal fiber modal interferometer with Pd/WO3 coating for real-time monitoring of dissolved hydrogen concentration in transformer oil.

    Science.gov (United States)

    Zhang, Ya-Nan; Wu, Qilu; Peng, Huijie; Zhao, Yong

    2016-12-01

    A highly-sensitive and temperature-robust photonic crystal fiber (PCF) modal interferometer coated with Pd/WO 3 film was fabricated and studied, aiming for real-time monitoring of dissolved hydrogen concentration in transformer oil. The sensor probe was fabricated by splicing two segments of a single mode fiber (SMF) with both ends of the PCF. Since the collapse of air holes in the PCF in the interfaces between SMF and PCF, a SMF-PCF-SMF interferometer structure was formed. The Pd/WO 3 film was fabricated by sol-gel method and coated on the surface of the PCF by dip-coating method. When the Pd/WO 3 film is exposed to hydrogen, both the length and cladding refractive index of the PCF would be changed, resulting in the resonant wavelength shift of the interferometer. Experimental results showed that the hydrogen measurement sensitivity of the proposed sensor can reach 0.109 pm/(μl/l) in the transformer oil, with the measurement range of 0-10 000 μl/l and response time less than 33 min. Besides, the proposed sensor was temperature-insensitive without any compensation process, easy to fabricate without any tapering, polishing, or etching process, low cost and quickly response without any oil-gas separation device. All these performances satisfy the actual need of real-time monitoring of dissolved hydrogen concentration in the transformer oil.

  1. Photonic crystal fibers -

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou

    2002-01-01

    . Such micro-structured fibers are the ones most often trated in literature concerning micro-structured fibers. These micro-structured fibers offer a whole range of novel wave guiding characteristics, including the possibility of fibers that guide only one mode irrespective of the frequency of light...

  2. Plasmonic excitations on metallic nanowires embedded in silica photonic crystal fibers

    International Nuclear Information System (INIS)

    Prill Sempere, Luis

    2010-01-01

    This thesis describes the theoretical and experimental investigation of metal-filled photonic crystal fibers (PCFs) and their fabrication. The thesis explains how to overcome the obstacles when infiltrating molten metals into sub-micron holes in fused silica (SiO 2 ) PCF. The optical properties of such filled fibers are theoretically and experimentally investigated, focusing on the coupling between the core mode of the fibers and the surface plasmon polaritons (SPPs) on the metal wires. The thesis introduces the ideas, physical challenges and results of two new filling techniques: the pressure cell technique and the splicing technique. These techniques make it possible for the first time to fill different fiber structures with sub-micron sized holes, such as PCFs and single-hole capillaries, with different metals like gold (Au) and silver (Ag). Samples with hole diameters between 120 nm and 20 μm and aspect ratios as high as 75000 have been realized. Theoretical simulations and models have been developed in order to understand the optical behavior of these novel structures. The light guided in the core of the filled PCF structure will couple to SPP modes on the wires. Several measurements have been performed to determine the resonance wavelengths and losses of such filled PCF structures. Also, different phenomena such as the shift of the resonance position with the wire diameter or pitch and the polarization dependence of SPP in polarization maintaining (PM)-PCF have been investigated. The fabrication of free standing metal arrays was another focus of this work. The critical question was how to remove the surrounding SiO 2 from the metal wires. Two different approaches have been tried: etching of the SiO 2 and cleaving the PCF. (orig.)

  3. Plasmonic excitations on metallic nanowires embedded in silica photonic crystal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Prill Sempere, Luis

    2010-06-17

    This thesis describes the theoretical and experimental investigation of metal-filled photonic crystal fibers (PCFs) and their fabrication. The thesis explains how to overcome the obstacles when infiltrating molten metals into sub-micron holes in fused silica (SiO{sub 2}) PCF. The optical properties of such filled fibers are theoretically and experimentally investigated, focusing on the coupling between the core mode of the fibers and the surface plasmon polaritons (SPPs) on the metal wires. The thesis introduces the ideas, physical challenges and results of two new filling techniques: the pressure cell technique and the splicing technique. These techniques make it possible for the first time to fill different fiber structures with sub-micron sized holes, such as PCFs and single-hole capillaries, with different metals like gold (Au) and silver (Ag). Samples with hole diameters between 120 nm and 20 {mu}m and aspect ratios as high as 75000 have been realized. Theoretical simulations and models have been developed in order to understand the optical behavior of these novel structures. The light guided in the core of the filled PCF structure will couple to SPP modes on the wires. Several measurements have been performed to determine the resonance wavelengths and losses of such filled PCF structures. Also, different phenomena such as the shift of the resonance position with the wire diameter or pitch and the polarization dependence of SPP in polarization maintaining (PM)-PCF have been investigated. The fabrication of free standing metal arrays was another focus of this work. The critical question was how to remove the surrounding SiO{sub 2} from the metal wires. Two different approaches have been tried: etching of the SiO{sub 2} and cleaving the PCF. (orig.)

  4. Bend-insensitive single-mode photonic crystal fiber with ultralarge effective area for dual applications

    Science.gov (United States)

    Islam, Md. Asiful; Alam, M. Shah

    2013-05-01

    A novel photonic crystal fiber (PCF) having circular arrangement of cladding air holes has been designed and numerically optimized to obtain a bend insensitive single mode fiber with large mode area for both wavelength division multiplexing (WDM) communication and fiber-to-the-home (FTTH) application. The bending loss of the proposed bent PCF lies in the range of 10-3 to 10-4 dB/turn or lower over 1300 to 1700 nm, and 2 × 10-4 dB/turn at the wavelength of 1550 nm for a 30-mm bend radius with a higher order mode (HOM) cut-off frequency below 1200 nm for WDM application. When the whole structure of the PCF is scaled down, a bending loss of 6.78×10-4 dB/turn at 1550 nm for a 4-mm bend radius is obtained, and the loss remains in the order of 10-4 dB/turn over the same range of wavelength with an HOM cut-off frequency below 700 nm, and makes the fiber useful for FTTH applications. Furthermore, this structure is also optimized to show a splice loss near zero for fusion-splicing to a conventional single-mode fiber (SMF).

  5. Design of single-polarization wavelength splitter based on photonic crystal fiber.

    Science.gov (United States)

    Zhang, Shanshan; Zhang, Weigang; Geng, Pengcheng; Li, Xiaolan; Ruan, Juan

    2011-12-20

    A new single-polarization wavelength splitter based on the photonic crystal fiber (PCF) has been proposed. The full-vector finite-element method (FEM) is applied to analyze the single-polarization single-mode guiding properties. Splitting of two different wavelengths is realized by adjusting the structural parameters. The semi-vector three-dimensional beam propagation method is employed to confirm the wavelength splitting characteristics of the PCF. Numerical simulations show that the wavelengths of 1.3 μm and 1.55 μm are split for a fiber length of 10.7 mm with single-polarization guiding in each core. The crosstalk between the two cores is low over appreciable optical bandwidths.

  6. PCF File Format.

    Energy Technology Data Exchange (ETDEWEB)

    Thoreson, Gregory G [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    PCF files are binary files designed to contain gamma spectra and neutron count rates from radiation sensors. It is the native format for the GAmma Detector Response and Analysis Software (GADRAS) package [1]. It can contain multiple spectra and information about each spectrum such as energy calibration. This document outlines the format of the file that would allow one to write a computer program to parse and write such files.

  7. Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor.

    Science.gov (United States)

    Tan, Zhixin; Hao, Xin; Shao, Yonghong; Chen, Yuzhi; Li, Xuejin; Fan, Ping

    2014-06-16

    We numerically investigate a D-shaped fiber surface plasmon resonance sensor based on all-solid photonic crystal fiber (PCF) with finite element method. In the side-polished PCF sensor, field leakage is guided to penetrate through the gap between the rods, causing a pronounced phase modulation in the deep polishing case. Taking advantage of these amplified phase shifts, a high-performance fiber sensor design is proposed. The significant enhancements arising from this new sensor design should lift the performance of the fiber SPR sensor into the range capable of detecting a wide range of biochemical interactions, which makes it especially attractive for many in vivo and in situ bioanalysis applications. Several parameters which influence the field leakage, such as the polishing position, the pitch of the PCF, and the rod diameter, are inspected to evaluate their impacts. Furthermore, we develop a mathematical model to describe the effects of varying the structural parameters of a D-shaped PCF sensor on the evanescent field and the sensor performance.

  8. Broadband high-resolution multi-species CARS in gas-filled hollow-core photonic crystal fiber.

    Science.gov (United States)

    Trabold, Barbara M; Hupfer, Robert J R; Abdolvand, Amir; St J Russell, Philip

    2017-09-01

    We report the use of coherent anti-Stokes Raman spectroscopy (CARS) in gas-filled hollow-core photonic crystal fiber (HC-PCF) for trace gas detection. The long optical path-lengths yield a 60 dB increase in the signal level compared with free-space arrangements. This enables a relatively weak supercontinuum (SC) to be used as Stokes seed, along with a ns pump pulse, paving the way for broadband (>4000  cm -1 ) single-shot CARS with an unprecedented resolution of ∼100  MHz. A kagomé-style HC-PCF provides broadband guidance, and, by operating close to the pressure-tunable zero dispersion wavelength, we can ensure simultaneous phase-matching of all gas species. We demonstrate simultaneous measurement of the concentrations of multiple trace gases in a gas sample introduced into the core of the HC-PCF.

  9. A new photonic crystal fiber design on the high negative ultra-flattened dispersion for both X and Y polarization modes

    DEFF Research Database (Denmark)

    Mahmud, Russel Reza; Razzak, S. M Abdur; Hasan, Md Imran

    2016-01-01

    Analysis of numerical design and properties of a new silica based photonic crystal fiber (PCF) are proposed in this manuscript. The design performs ultra-flattened negative chromatic dispersion (UNCD) in the optical windows 2nd and 3rd involving O to U bands in the infrared (IF) portion. The guid...

  10. Wavelength conversion of a 40 Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber

    DEFF Research Database (Denmark)

    Andersen, Peter Andreas; Tokle, Torger; Geng, Yan

    2005-01-01

    Wavelength conversion of a 40-Gb/s return-to-zero differential phase-shift keying signal is demonstrated in a highly nonlinear photonic crystal fiber (HNL-PCF) for the first time. A conversion efficiency of -20 dB for a pump power of 23 dBm and a conversion bandwidth of 31 nm, essentially limited...

  11. Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter.

    Science.gov (United States)

    Hameed, Mohamed Farhat O; Heikal, A M; Younis, B M; Abdelrazzak, Maher; Obayya, S S A

    2015-03-23

    A novel ultra-high tunable photonic crystal fiber (PCF) polarization filter is proposed and analyzed using finite element method. The suggested design has a central hole infiltrated with a nematic liquid crystal (NLC) that offers high tunability with temperature and external electric field. Moreover, the PCF is selectively filled with metal wires into cladding air holes. Results show that the resonance losses and wavelengths are different in x and y polarized directions depending on the rotation angle φ of the NLC. The reported filter of compact device length 0.5 mm can achieve 600 dB / cm resonance losses at φ = 90° for x-polarized mode at communication wavelength of 1300 mm with low losses of 0.00751 dB / cm for y-polarized mode. However, resonance losses of 157.71 dB / cm at φ = 0° can be achieved for y-polarized mode at the same wavelength with low losses of 0.092 dB / cm for x-polarized mode.

  12. Stabilized soliton self-frequency shift and 0.1- PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core.

    Science.gov (United States)

    Liu, Bo-Wen; Hu, Ming-Lie; Fang, Xiao-Hui; Li, Yan-Feng; Chai, Lu; Wang, Ching-Yue; Tong, Weijun; Luo, Jie; Voronin, Aleksandr A; Zheltikov, Aleksei M

    2008-09-15

    Fiber dispersion and nonlinearity management strategy based on a modification of a photonic-crystal fiber (PCF) core with an air hole is shown to facilitate optimization of PCF components for a stable soliton frequency shift and subpetahertz sideband generation through four-wave mixing. Spectral recoil of an optical soliton by a red-shifted dispersive wave, generated through a soliton instability induced by high-order fiber dispersion, is shown to stabilize the soliton self-frequency shift in a highly nonlinear PCF with an air-hole-modified core relative to pump power variations. A fiber with a 2.3-microm-diameter core modified with a 0.9-microm-diameter air hole is used to demonstrate a robust soliton self-frequency shift of unamplified 50-fs Ti: sapphire laser pulses to a central wavelength of about 960 nm, which remains insensitive to variations in the pump pulse energy within the range from 60 to at least 100 pJ. In this regime of frequency shifting, intense high- and low-frequency branches of dispersive wave radiation are simultaneously observed in the spectrum of PCF output. An air-hole-modified-core PCF with appropriate dispersion and nonlinearity parameters is shown to provide efficient four-wave mixing, giving rise to Stokes and anti-Stokes sidebands whose frequency shift relative to the pump wavelength falls within the subpetahertz range, thus offering an attractive source for nonlinear Raman microspectroscopy.

  13. High-birefringent photonic crystal fiber

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou; Broeng, Jes; Knudsen, Erik

    2001-01-01

    A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber.......A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber....

  14. Extension of supercontinuum spectrum, generated in polarization-maintaining photonic crystal fiber, using chirped femtosecond pulses

    Science.gov (United States)

    Vengelis, Julius; Jarutis, Vygandas; Sirutkaitis, Valdas

    2018-01-01

    We present results of experimental and numerical investigation of supercontinuum (SC) generation in polarization-maintaining photonic crystal fiber (PCF) using chirped femtosecond pulses. The initial unchirped pump pulse source was a mode-locked Yb:KGW laser generating 52-nJ energy, 110-fs duration pulses at 1030 nm with a 76-MHz repetition rate. The nonlinear medium was a 32-cm-long polarization-maintaining PCF manufactured by NKT Photonics A/S. We demonstrated the influence of pump pulse chirp on spectral characteristics of a SC. We showed that by chirping pump pulses positively or negatively one can obtain a broader SC spectrum than in the case of unchirped pump pulses at the same peak power. Moreover, the extension can be controlled by changing the amount of pump pulse chirp. Numerical simulation results also indicated that pump pulse chirp yields an extension of SC spectrum.

  15. Electrically controlled liquid crystal fiber

    Science.gov (United States)

    Corella-Madueño, A.; Reyes, J. Adrián

    2006-08-01

    We consider a cylindrical fiber whose core is a liquid crystal (LC) subject to the action of a low frequency field applied parallel to the axis of the cylinder and having initially the escaped configuration. We find the distorted textures of the nematic inside the cylinder by assuming arbitrary anchoring boundary conditions. In the optical limit we calculate the ray trajectories followed by a low intensity beam along the fiber parametrized by a low frequency electric field. Finally, we calculate exactly the spatial dependence of the transverse magnetic modes distribution in the guide, on the electric field, by using a numerical scheme. We summarize our paper and discuss our results.

  16. Numerical Analysis of Index-Guiding Photonic Crystal Fibers with Low Confinement Loss and Ultra-Flattened Dispersion by FDFD Method

    Directory of Open Access Journals (Sweden)

    M. Pourmahyabadi

    2009-09-01

    Full Text Available In this article, perfectly matched layer (PML for the boundary treatment and an efficient compact two dimensional finite-difference frequency-domain (2-D FDFD method were combined to model photonic crystal fibers (PCF. For photonic crystal fibers, if we assume that the propagation constant along the propagation direction is fixed, three-dimensional hybrid guided modes can be calculated by using only a two-dimensional mesh. An index-guiding PCF with an array of air-holes surrounding the silica core region has special characteristics compared with conventional single-mode fibers (SMFs. Using this model, the fundamental characteristics of single mode photonic crystal fibers (SMPCFs such as confinement loss, bending loss, effective mode area and chromatic dispersion are numerically investigated. The results revealed that low confinement loss and zero-flattened chromatic dispersion can be obtained by varying the air-holes diameter of each ring along the PCF radius. In this work, an especial PCF with nearly zero-flattened dispersion (1.3 ps/nm/km over a wide wavelength range which covers O, E, S, C, L and U telecommunication wavelength bands and low confinement loss (0.06 dB/km at 1.55μm is designed. Macro-bending loss performance of the designed PCF is also studied and it is found that the fiber shows low bending losses for the smallest feasible bending radius of 5 mm. Also, it is revealed that the temperature sensitivity of PCFs is very low in compared with the conventional fibers.

  17. Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression

    DEFF Research Database (Denmark)

    Kristensen, Jesper Toft; Houmann, Andreas; Liu, Xiaomin

    2008-01-01

    of the splicing process. We also demonstrate that the higher splice loss compromises the PM properties of the splice. Our splicing technique was successfully applied to the realization of a low-loss, environmentally stable monolithic PM fiber laser pulse compressor, enabling direct end-of-the-fiber femtosecond......We report on highly reproducible low-loss fusion splicing of polarization-maintaining single-mode fibers (PM-SMFs) and hollow-core photonic crystal fibers (HC-PCFs). The PM-SMF-to-HC-PCF splices are characterized by the loss of 0.62 ± 0.24 dB, and polarization extinction ratio of 19 ± 0.68 d...... pulse delivery...

  18. Hybrid photonic-crystal fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Travers, John C.; Abdolvand, Amir

    2017-01-01

    This article offers an extensive survey of results obtained using hybrid photonic-crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid- and hollow-core PCFs through various...... is reviewed from scientific and technological perspectives, focusing on how different fluids, solids, and gases can significantly extend the functionality of PCFs. The first part of this review discusses the efforts to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated...... with various liquids, glasses, semiconductors, and metals. The second part concentrates on recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics toward light generation in the extreme wavelength regions of vacuum ultraviolet, pulse...

  19. Photonic Crystal Fibers for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Ana M. R. Pinto

    2012-01-01

    Full Text Available Photonic crystal fibers are a kind of fiber optics that present a diversity of new and improved features beyond what conventional optical fibers can offer. Due to their unique geometric structure, photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications. A review of photonic crystal fiber sensors is presented. Two different groups of sensors are detailed separately: physical and biochemical sensors, based on the sensor measured parameter. Several sensors have been reported until the date, and more are expected to be developed due to the remarkable characteristics such fibers can offer.

  20. Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: Design and analysis

    Directory of Open Access Journals (Sweden)

    Bikash Kumar Paul

    2017-02-01

    Full Text Available A micro structure folded cladding porous shaped with circular air hole photonic crystal fiber (FP-PCF is proposed and numerically investigated in a broader wavelength range from 1.4 µm to 1.64 µm (E+S+C+L+U for chemical sensing purposes. Employing finite element method (FEM with anisotropic perfectly matched layer (PML various properties of the proposed FP-PCF are numerically inquired. Filling the hole of core with aqueous analyte ethanol (n = 1.354 and tuning different geometric parameters of the fiber, the sensitivity order of 64.19% and the confinement loss of 2.07 × 10-5 dB/m are attained at 1.48 µm wavelength in S band. The investigated numerical simulation result strongly focuses on sensing purposes; because this fiber attained higher sensitivity with lower confinement loss over the operating wavelength. Measuring time of sensitivity, simultaneously confinement loss also inquired. It reflects that confinement loss is highly dependable on PML depth but not for sensitivity. Beside above properties numerical aperture (NA, nonlinearity, and effective area are also computed. This FP-PCF also performed as sensor for other alcohol series (methanol, propanol, butanol, pentanol. Optimized FP-PCF shows higher sensitivity and low confinement loss carrying high impact in the area of chemical as well as gas sensing purposes. Surely it is clear that install such type of sensor will flourish technology massively.         Keywords: Confinement loss, Effective area, Index guiding FP-PCF, Numerical aperture, Nonlinear coefficient, Sensitivity

  1. Low-loss photonic crystal fibers for data transmission and their dispersion properties

    DEFF Research Database (Denmark)

    Nielsen, Martin Dybendal; Jacobsen, Christian; Mortensen, Niels Asger

    2004-01-01

    We report on a single-mode photonic crystal fiber with attenuation and effective area at 1550 nm of 0.48 dB/km and 130 µm2, respectively. This is, to our knowledge, the lowest loss reported for a PCF not made from VAD prepared silica and at the same time the largest effective area for a low......-loss (data transmission and show for the first time, both numerically and experimentally, how the group velocity dispersion is related to the mode field diameter....

  2. Low loss and flat dispersion Kagome photonic crystal fiber in the terahertz regime

    Science.gov (United States)

    Rana, Sohel; Rakin, Adnan Siraj; Hasan, Md. Rabiul; Reza, Md. Salim; Leonhardt, Rainer; Abbott, Derek; Subbaraman, Harish

    2018-03-01

    A novel fiber design based on hexagonal shaped holes incorporated within the core of a Kagome lattice photonic crystal fiber (PCF) is presented. The modal properties of the proposed fiber are evaluated by using a finite element method (FEM) with a perfectly matched layer as boundary condition. Simulation results exhibit an ultra-low effective material loss (EML) of 0.029 cm-1 at an operating frequency of 1.3 THz with an optimized core diameter of 300 μm. A positive, low, and flat dispersion of 0.49 ± 0.06 ps/THz/cm is obtained within a broad frequency range from 1.00 to 1.76 THz. Other essential guiding features of the designed fiber such as power fraction and confinement loss are studied. The fabrication possibilities are also investigated to demonstrate feasibility for a wide range of terahertz applications.

  3. Inhibited-coupling HC-PCF based beam-delivery-system for high power green industrial lasers

    Science.gov (United States)

    Chafer, M.; Gorse, A.; Beaudou, B.; Lekiefs, Q.; Maurel, M.; Debord, B.; Gérôme, F.; Benabid, F.

    2018-02-01

    We report on an ultra-low loss Hollow-Core Photonic Crystal Fiber (HC-PCF) beam delivery system (GLO-GreenBDS) for high power ultra-short pulse lasers operating in the green spectral range (including 515 nm and 532 nm). The GLOBDS- Green combines ease-of-use, high laser-coupling efficiency, robustness and industrial compatible cabling. It comprises a pre-aligned laser-injection head, a sheath-cable protected HC-PCF and a modular fiber-output head. It enables fiber-core gas loading and evacuation in a hermetic fashion. A 5 m long GLO-BDS were demonstrated for a green short pulse laser with a transmission coefficient larger than 80%, and a laser output profile close to single-mode (M2 <1.3).

  4. Characteristics of Highly Birefringent Photonic Crystal Fiber with Defected Core and Equilateral Pentagon Architecture

    Directory of Open Access Journals (Sweden)

    Fei Yu

    2016-01-01

    Full Text Available A novel high birefringence and nearly zero dispersion-flattened photonic crystal fiber (PCF with elliptical defected core (E-DC and equilateral pentagonal architecture is designed. By applying the full-vector finite element method (FEM, the characteristics of electric field distribution, birefringence, and chromatic dispersion of the proposed E-DC PCF are numerically investigated in detail. The simulation results reveal that the proposed PCF can realize high birefringence, ranging from 10-3 to 10-2 orders of magnitude, owing to the embedded elliptical air hole in the core center. However, the existence of the elliptical air hole gives rise to an extraordinary electric field distribution, where a V-shaped notch appears and the size of the V-shaped notch varies at different operating wavelengths. Also, the mode field diameter is estimated to be about 2 μm, which implies the small effective mode area and highly nonlinear coefficient. Furthermore, the investigation of the chromatic dispersion characteristic shows that the introduction of the elliptical air hole is helpful to control the chromatic dispersion to be negative or nearly zero flattened over a wide wavelength bandwidth.

  5. Liquid Crystal photonic Bandgap Fiber Devices

    DEFF Research Database (Denmark)

    Wei, Lei

    In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure. The prese......In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure...... of each LCPBG fiber. Finally, the applications for LCPBG fiber devices based on the on-chip platform design have been demonstrated in realizing microwave true-time delay and creating an electrically tunable fiber laser. Referatet mailes...

  6. A fusion-spliced near-field optical fiber probe using photonic crystal fiber for nanoscale thermometry based on fluorescence-lifetime measurement of quantum dots.

    Science.gov (United States)

    Fujii, Takuro; Taguchi, Yoshihiro; Saiki, Toshiharu; Nagasaka, Yuji

    2011-01-01

    We have developed a novel nanoscale temperature-measurement method using fluorescence in the near-field called fluorescence near-field optics thermal nanoscopy (Fluor-NOTN). Fluor-NOTN enables the temperature distributions of nanoscale materials to be measured in vivo/in situ. The proposed method measures temperature by detecting the temperature dependent fluorescence lifetimes of Cd/Se quantum dots (QDs). For a high-sensitivity temperature measurement, the auto-fluorescence generated from a fiber probe should be reduced. In order to decrease the noise, we have fabricated a novel near-field optical-fiber probe by fusion-splicing a photonic crystal fiber (PCF) and a conventional single-mode fiber (SMF). The validity of the novel fiber probe was assessed experimentally by evaluating the auto-fluorescence spectra of the PCF. Due to the decrease of auto-fluorescence, a six- to ten-fold increase of S/N in the near-field fluorescence lifetime detection was achieved with the newly fabricated fusion-spliced near-field optical fiber probe. Additionally, the near-field fluorescence lifetime of the quantum dots was successfully measured by the fabricated fusion-spliced near-field optical fiber probe at room temperature, and was estimated to be 10.0 ns.

  7. Hybrid photonic-crystal fiber

    Science.gov (United States)

    Markos, Christos; Travers, John C.; Abdolvand, Amir; Eggleton, Benjamin J.; Bang, Ole

    2017-10-01

    This article offers an extensive survey of results obtained using hybrid photonic-crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid- and hollow-core PCFs through various postprocessing methods has enabled new directions toward understanding fundamental linear and nonlinear phenomena as well as novel application aspects, within the fields of optoelectronics, material and laser science, remote sensing, and spectroscopy. Here the recent progress in the field of hybrid PCFs is reviewed from scientific and technological perspectives, focusing on how different fluids, solids, and gases can significantly extend the functionality of PCFs. The first part of this review discusses the efforts to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated with various liquids, glasses, semiconductors, and metals. The second part concentrates on recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics toward light generation in the extreme wavelength regions of vacuum ultraviolet, pulse propagation, and compression dynamics in both atomic and molecular gases, and novel soliton-plasma interactions are reviewed. A discussion of future prospects and directions is also included.

  8. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  9. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers.

    Science.gov (United States)

    Hu, Ming-Lie; Wang, Ching-Yue; Song, You-Jian; Li, Yan-Feng; Chai, Lu; Serebryannikov, Evgenii; Zheltikov, Aleksei

    2006-02-06

    We demonstrate an experimental technique that allows a mapping of vectorial nonlinear-optical processes in multimode photonic-crystal fibers (PCFs). Spatial and polarization modes of PCFs are selectively excited in this technique by varying the tilt angle of the input beam and rotating the polarization of the input field. Intensity spectra of the PCF output plotted as a function of the input field power and polarization then yield mode-resolved maps of nonlinear-optical interactions in multimode PCFs, facilitating the analysis and control of nonlinear-optical transformations of ultrashort laser pulses in such fibers.

  10. Photonic crystal fiber based antibody detection

    DEFF Research Database (Denmark)

    Duval, A; Lhoutellier, M; Jensen, J B

    2004-01-01

    An original approach for detecting labeled antibodies based on strong penetration photonic crystal fibers is introduced. The target antibody is immobilized inside the air-holes of a photonic crystal fiber and the detection is realized by the means of evanescent-wave fluorescence spectroscopy...

  11. A Novel Low-Loss Diamond-Core Porous Fiber for Polarization Maintaining Terahertz Transmission

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Habib, Selim; Hasanuzzaman, G. K. M.

    2016-01-01

    We report on the numerical design optimization of a new kind of relatively simple porous-core photonic crystal fiber (PCF) for terahertz (THz) waveguiding. A novel twist is introduced in the regular hexagonal PCF by including a diamond-shaped porous-core inside the hexagonal cladding. The numeric...

  12. Mode conversion in hybrid optical fiber coupler

    Science.gov (United States)

    Stasiewicz, Karol A.; Marc, P.; Jaroszewicz, Leszek R.

    2012-04-01

    Designing of all in-line fiber optic systems with a supercontinuum light source gives some issues. The use of a standard single mode fiber (SMF) as an input do not secure single mode transmission in full wavelength range. In the paper, the experimental results of the tested hybrid fiber optic coupler were presented. It was manufactured by fusing a standard single mode fiber (SMF28) and a photonic crystal fiber (PCF). The fabrication process is based on the standard fused biconical taper technique. Two types of large mode area fibers (LMA8 and LAM10 NKT Photonics) with different air holes arrangements were used as the photonic crystal fiber. Spectral characteristics within the range of 800 nm - 1700 nm were presented. All process was optimized to obtain a mode conversion between SMF and PCF and to reach a single mode transmission in the PCF output of the coupler.

  13. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... applications, and places emphasis on the development of polarization maintaining (PM) HC-PCF. The polarization cross-coupling characteristics of PM HC-PCF are very different from those of conventional PM fibers. The former fibers have the advantage of suffering far less from stress-field fluctuations...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  14. Elliptical As2Se3 filled core ultra-high-nonlinearity and polarization-maintaining photonic crystal fiber with double hexagonal lattice cladding

    Science.gov (United States)

    Li, Feng; He, Menghui; Zhang, Xuedian; Chang, Min; Wu, Zhizheng; Liu, Zheng; Chen, Hua

    2018-05-01

    A high birefringence and ultra-high nonlinearity photonic crystal fiber (PCF) is proposed, which is composed of an elliptical As2Se3-doped core and an inner cladding with hexagonal lattice. Optical properties of the PCF are simulated by the full-vector finite element method. The simulation results show that the high birefringence of ∼0.33, ultra-high-nonlinearity coefficient of 300757 W-1km-1 and the low confinement loss can be achieved in the proposed PCF simultaneously at the wavelength of 1.55 μm. Furthermore, by comparison with the other two materials (80PbO•20Ga2O3, As2S3) filled in the core, the As2Se3-doped PCF is found to have the highest birefringence and nonlinearity due to its higher refractive index and nonlinear refractive index. The flattened dispersion feature, as well as the low confinement loss of the proposed PCF structure make it suitable as a wide range of applications, such as the coherent optical communications, polarization-maintaining and nonlinear optics, etc.

  15. Designing analysis of the polarization beam splitter in two communication bands based on a gold-filled dual-core photonic crystal fiber

    International Nuclear Information System (INIS)

    Fan Zhen-Kai; Li Shu-Guang; Fan Yu-Qiu; Zhang Wan; An Guo-Wen; Bao Ya-Jie

    2014-01-01

    We design a novel kind of polarization beam splitter based on a gold-filled dual-core photonic crystal fiber (DC-PCF). Owing to filling with two gold wires in this DC-PCF, its coupling characteristics can be changed greatly by the second-order surface plasmon polariton (SPP) and the resonant coupling between the surface plasmon modes and the fiber-core guided modes can enhance the directional power transfer in the two fiber-cores. Numerical results by using the finite element method show the extinction ratio at the wavethlengths of 1.327 μm and 1.55 μm can reach −58 dB and −60 dB and the bandwidths as the extinction ratio better than −12 dB are about 54 nm and 47 nm, respectively. Compared with the gold-unfilled DC-PCF, a 1.746-mm-long gold-filled DC-PCF is better applied to the polarization beam splitter in the two communication bands of λ = 1.327 μm and 1.55 μm. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  16. A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications

    Science.gov (United States)

    Islam, Md. Saiful; Sultana, Jakeya; Dinovitser, Alex; Ng, Brian W.-H.; Abbott, Derek

    2018-04-01

    A novel waveguide consisting of oligo-porous core photonic crystal fiber (PCF) with a kagome lattice cladding has been designed for highly birefringent and near zero dispersion flattened applications of terahertz waves. The wave guiding properties of the designed PCF including birefringence, dispersion, effective material loss (EML), core power fraction, confinement loss, and modal effective area are investigated using a full vector Finite Element Method (FEM) with Perfectly Matched Layer (PML) absorbing boundary condition. Simulation results demonstrate that an ultra-high birefringence of 0.079, low EML of 0.05 cm-1, higher core power fraction of 44% and negligible confinement loss of 7 . 24 × 10-7 cm-1 can be achieved at 1 THz. Furthermore, for the y-polarization mode a near zero flattened dispersion of 0 . 49 ± 0 . 05 ps/THz/cm is achieved within a broad frequency range of 0.8-1.7 THz. The fabrication of the proposed fiber is feasible using the existing fabrication technology. Due to favorable wave-guiding properties, the proposed fiber has potential for terahertz imaging, sensing and polarization maintaining applications in the terahertz frequency range.

  17. Thermally Optimized Polarization-Maintaining Photonic Crystal Fiber and Its FOG Application.

    Science.gov (United States)

    Zhang, Chunxi; Zhang, Zhihao; Xu, Xiaobin; Cai, Wei

    2018-02-13

    In this paper, we propose a small-diameter polarization-maintaining solid-core photonic crystal fiber. The coating diameter, cladding diameter and other key parameters relating to the thermal properties were studied. Based on the optimized parameters, a fiber with a Shupe constant 15% lower than commercial photonic crystal fibers (PCFs) was fabricated, and the transmission loss was lower than 2 dB/km. The superior thermal stability of our fiber design was proven through both simulation and measurement. Using the small-diameter fiber, a split high precision fiber optic gyro (FOG) prototype was fabricated. The bias stability of the FOG was 0.0023 °/h, the random walk was 0.0003 °/ h , and the scale factor error was less than 1 ppm. Throughout a temperature variation ranging from -40 to 60 °C, the bias stability was less than 0.02 °/h without temperature compensation which is notably better than FOG with panda fiber. As a result, the PCF FOG is a promising choice for high precision FOG applications.

  18. A Raman cell based on hollow core photonic crystal fiber for human breath analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Kam Kong; Zeng, Haishan, E-mail: hzeng@bccrc.ca [Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada and Medical Physics Program – Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1 (Canada); Short, Michael; Lam, Stephen; McWilliams, Annette [Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada)

    2014-09-15

    Purpose: Breath analysis has a potential prospect to benefit the medical field based on its perceived advantages to become a point-of-care, easy to use, and cost-effective technology. Early studies done by mass spectrometry show that volatile organic compounds from human breath can represent certain disease states of our bodies, such as lung cancer, and revealed the potential of breath analysis. But mass spectrometry is costly and has slow-turnaround time. The authors’ goal is to develop a more portable and cost effective device based on Raman spectroscopy and hollow core-photonic crystal fiber (HC-PCF) for breath analysis. Methods: Raman scattering is a photon-molecular interaction based on the kinetic modes of an analyte which offers unique fingerprint type signals that allow molecular identification. HC-PCF is a novel light guide which allows light to be confined in a hollow core and it can be filled with a gaseous sample. Raman signals generated by the gaseous sample (i.e., human breath) can be guided and collected effectively for spectral analysis. Results: A Raman-cell based on HC-PCF in the near infrared wavelength range was developed and tested in a single pass forward-scattering mode for different gaseous samples. Raman spectra were obtained successfully from reference gases (hydrogen, oxygen, carbon dioxide gases), ambient air, and a human breath sample. The calculated minimum detectable concentration of this system was ∼15 parts per million by volume, determined by measuring the carbon dioxide concentration in ambient air via the characteristic Raman peaks at 1286 and 1388 cm{sup −1}. Conclusions: The results of this study were compared to a previous study using HC-PCF to trap industrial gases and backward-scatter 514.5 nm light from them. The authors found that the method presented in this paper has an advantage to enhance the signal-to-noise ratio (SNR). This SNR advantage, coupled with the better transmission of HC-PCF in the near-IR than in the

  19. Ultra-flattened nearly-zero dispersion and ultrahigh nonlinear slot silicon photonic crystal fibers with ultrahigh birefringence

    Science.gov (United States)

    Liao, Jianfei; Xie, Yingmao; Wang, Xinghua; Li, Dongbo; Huang, Tianye

    2017-07-01

    A slot silicon photonic crystal fiber (PCF) is proposed to simultaneously achieve ultrahigh birefringence, large nonlinearity and ultra-flattened nearly-zero dispersion over a wide wavelength range. By taking advantage on the slot effect, ultrahigh birefringence up to 0.0736 and ultrahigh nonlinear coefficient up to 211.48 W-1 m-1 for quasi-TE mode can be obtained at the wavelength of 1.55 μm. Moreover, ultra-flattened dispersion of 0.49 ps/(nm km) for quasi-TE mode can be achieved over a 180 nm wavelength range with low dispersion slope of 1.85 × 10-3 ps/(nm2 km) at 1.55 μm. Leveraging on these advantages, the proposed slot PCF has great potential for efficient all-optical signal processing applications.

  20. Dataset on photonic crystal fiber based chemical sensor.

    Science.gov (United States)

    Ahmed, Kawsar; Paul, Bikash Kumar; Chowdhury, Sawrab; Islam, Md Shadidul; Sen, Shuvo; Islam, Md Ibadul; Asaduzzaman, Sayed; Bahar, Ali Newaz; Miah, Mohammad Badrul Alam

    2017-06-01

    This article represents the data set of micro porous core photonic crystal fiber based chemical sensor. The suggested structure is folded cladding porous shaped with circular air hole. Here is investigated four distinctive parameters including relative sensitivity, confinement loss, numerical aperture (NA), and effective area ( A eff). The numerical outcomes are computed over the E+S+C+L+U communication band. The useable sensed chemicals are methanol, ethanol, propanol, butanol, and pentanol whose are lies in the alcohol series (Paul et al., 2017) [1]. Furthermore, V -parameter ( V ), Marcuse spot size (MSS), and beam divergence (BD) are also investigated rigorously. All examined results have been obtained using finite element method based simulation software COMSOL Multiphysics 4.2 versions with anisotropic circular perfectly matched layer (A-CPML). The proposed PCF shows the high NA from 0.35 to 0.36; the low CL from ~10 -11 to ~10 -7  dB/m; the high A eff from 5.50 to 5.66 µm 2 ; the MSS from 1.0 to 1.08 µm; the BD from 0.43 to 0.46 rad at the controlling wavelength λ = 1.55 µm for employing alcohol series respectively.

  1. Dataset on photonic crystal fiber based chemical sensor

    Directory of Open Access Journals (Sweden)

    Kawsar Ahmed

    2017-06-01

    Full Text Available This article represents the data set of micro porous core photonic crystal fiber based chemical sensor. The suggested structure is folded cladding porous shaped with circular air hole. Here is investigated four distinctive parameters including relative sensitivity, confinement loss, numerical aperture (NA, and effective area (Aeff. The numerical outcomes are computed over the E+S+C+L+U communication band. The useable sensed chemicals are methanol, ethanol, propanol, butanol, and pentanol whose are lies in the alcohol series (Paul et al., 2017 [1]. Furthermore, V-parameter (V, Marcuse spot size (MSS, and beam divergence (BD are also investigated rigorously. All examined results have been obtained using finite element method based simulation software COMSOL Multiphysics 4.2 versions with anisotropic circular perfectly matched layer (A-CPML. The proposed PCF shows the high NA from 0.35 to 0.36; the low CL from ~10–11 to ~10−7 dB/m; the high Aeff from 5.50 to 5.66 µm2; the MSS from 1.0 to 1.08 µm; the BD from 0.43 to 0.46 rad at the controlling wavelength λ = 1.55 µm for employing alcohol series respectively.

  2. Monolithic femtosecond Yb-fiber laser with photonic crystal fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    We demonstrate a monolithic stable SESAM-modelocked self-starting Yb-fiber laser. A novel PM all-solid photonic bandgap fiber is used for intra-cavity of dispersion management. The ex-cavity final pulse compression is performed in a spliced-on PM hollow-core photonic crystal fiber. The laser...... directly delivers 9 nJ pulses of 275 fs duration with pulse repetition of 26.7MHz....

  3. Generation of a mid-infrared broadband polarized supercontinuum in As2Se3 photonic crystal fibers

    International Nuclear Information System (INIS)

    Wang Xiao-Yan; Li Shu-Guang; Liu Shuo; Yin Guo-Bing; Li Jian-She

    2012-01-01

    A simplified structure of birefringent chalcogenide As 2 Se 3 photonic crystal fiber (PCF) is designed. Properties of birefringence, polarization extinction ratio, chromatic dispersion, nonlinear coefficient, and transmission are studied by using the multipole method, the finite-difference beam propagation method, and the adaptive split-step Fourier method. Considering that the zero dispersion wavelength of our proposed fiber is about 4 μm, we have analysed the mechanism of spectral broadening in PCFs with different pitches in detail, with femtosecond pulses at a wavelength of 4 μm as the pump pulses. Especially, mid-infrared broadband polarized supercontinuums are obtained in a 3-cm PCF with an optimal pitch of 2 μm. Their spectral width at −20 dB reaches up to 12 μm. In the birefringent PCF, we find that the supercontinuum generation changes with the pump alignment angle. Research results show that no coupling between eigenpolarization modes are observed at the maximum average power (i.e., 37 mW), which indicates that the polarization state is well maintained. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Ultrabroadband, Midinfrared Supercontinuum Generation in Dispersion Engineered As2Se3-Based Chalcogenide Photonic Crystal Fibers

    Directory of Open Access Journals (Sweden)

    Rim Cherif

    2013-01-01

    Full Text Available Small core As2Se3-based photonic crystal fibers (PCFs are accurately characterized for compact, high power, ultrabroadband, and coherent supercontinuum generation within few millimeters fiber length. Bandwidths of ~5.3 μm, 5 μm, and 3.2 μm were calculated for hole-to-hole spacings Λ= 3.5 μm, 4.5 μm, and 5.5 μm, respectively. The spectral broadening in the chalcogenide PCF is mainly caused by self-phase modulation and Raman-induced soliton self-frequency shift. The results show that small core As2Se3 PCFs are a promising candidate for mid-IR SCG up to ~8 μm.

  5. Wavelength-independent all-fiber mode converters.

    Science.gov (United States)

    Lai, K; Leon-Saval, S G; Witkowska, A; Wadsworth, W J; Birks, T A

    2007-02-15

    We have used two different photonic crystal fiber (PCF) techniques to make all-fiber mode converters. An LP(01) to LP(11) mode converter was made by the ferrule technique on a drawing tower, and an LP(01) to LP(02) mode converter was made by controlled hole inflation of an existing PCF on a tapering rig. Both devices rely on adiabatic propagation rather than resonant coupling; so high extinction was achieved across a wide wavelength range.

  6. Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, J., E-mail: j-sadeghi@sbu.ac.ir; Chenari, Z.; Ziaee, F. [Laser and Plasma Research Institute, Shahid Beheshti University, 1983963113 Tehran (Iran, Islamic Republic of); Latifi, H., E-mail: latifi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, 1983963113 Tehran (Iran, Islamic Republic of); Department of Physics, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Santos, J. L., E-mail: josantos@fc.up.pt [INESC Porto—Instituto de Engenharia de Sistemas e Computadores do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Departamento de Física, da Faculdade de Ciências, da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)

    2014-02-17

    Pressure fiber sensors play an important role in downhole high pressure measurements to withstand long term operation. The purpose of this paper is to present an application of hollow core photonic crystal fiber (HC-PCF) as a high pressure sensor head for downhole application based on dispersion variation. We used a high pressure stainless steel unit to exert pressure on the sensor. The experimental results show that different wavelengths based on sagnac loop interferometer have additive sensitivities from 5 × 10{sup −5} nm/psi at 1480 nm to 1.3 × 10{sup −3} nm/psi at 1680 nm. We developed a simulation to understand the reason for difference in sensitivity of wavelengths and also the relationship between deformation of HC-PCF and dispersion variation under pressure. For this purpose, by using the finite element method, we investigated the effect of structural variation of HC-PCF on spectral transformation of two linear polarizations under 1000 psi pressure. The simulation and experimental results show exponential decay behavior of dispersion variation from −3.4 × 10{sup −6} 1/psi to −1.3 × 10{sup −6} 1/psi and from −5 × 10{sup −6} 1/psi to −1.8 × 10{sup −6} 1/psi, respectively, which were in a good accordance with each other.

  7. Tunable microwave signal generation based on an Opto-DMD processor and a photonic crystal fiber

    International Nuclear Information System (INIS)

    Wang Tao; Sang Xin-Zhu; Yan Bin-Bin; Li Yan; Song Fei-Jun; Zhang Xia; Wang Kui-Ru; Yuan Jin-Hui; Yu Chong-Xiu; Ai Qi; Chen Xiao; Zhang Ying; Chen Gen-Xiang; Xiao Feng; Kamal Alameh

    2014-01-01

    Frequency-tunable microwave signal generation is proposed and experimentally demonstrated with a dual-wavelength single-longitudinal-mode (SLM) erbium-doped fiber ring laser based on a digital Opto-DMD processor and four-wave mixing (FWM) in a high-nonlinear photonic crystal fiber (PCF). The high-nonlinear PCF is employed for the generation of the FWM to obtain stable and uniform dual-wavelength oscillation. Two different short passive sub-ring cavities in the main ring cavity serve as mode filters to make SLM lasing. The two lasing wavelengths are electronically selected by loading different gratings on the Opto-DMD processor controlled with a computer. The wavelength spacing can be smartly adjusted from 0.165 nm to 1.08 nm within a tuning accuracy of 0.055 nm. Two microwave signals at 17.23 GHz and 27.47 GHz are achieved. The stability of the microwave signal is discussed. The system has the ability to generate a 137.36-GHz photonic millimeter signal at room temperature

  8. Optical fiber sensors fabricated by the focused ion beam technique

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wang, Fei; Bang, Ole

    2012-01-01

    crystal fiber (PCF). Using this technique we fabricate a highly compact fiber-optic Fabry-Pérot (FP) refractive index sensor near the tip of fiber taper, and a highly sensitive in-line temperature sensor in PCF. We also demonstrate the potential of using FIB to selectively fill functional fluid......Focused ion beam (FIB) is a highly versatile technique which helps to enable next generation of lab-on-fiber sensor technologies. In this paper, we demonstrate the use application of FIB to precisely mill the fiber taper and end facet of both conventional single mode fiber (SMF) and photonic...

  9. Monitoring the Wobbe Index of Natural Gas Using Fiber-Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Vincenz Sandfort

    2017-11-01

    Full Text Available The fast and reliable analysis of the natural gas composition requires the simultaneous quantification of numerous gaseous components. To this end, fiber-enhanced Raman spectroscopy is a powerful tool to detect most components in a single measurement using a single laser source. However, practical issues such as detection limit, gas exchange time and background Raman signals from the fiber material still pose obstacles to utilizing the scheme in real-world settings. This paper compares the performance of two types of hollow-core photonic crystal fiber (PCF, namely photonic bandgap PCF and kagomé-style PCF, and assesses their potential for online determination of the Wobbe index. In contrast to bandgap PCF, kagomé-PCF allows for reliable detection of Raman-scattered photons even below 1200 cm−1, which in turn enables fast and comprehensive assessment of the natural gas quality of arbitrary mixtures.

  10. Monitoring the Wobbe Index of Natural Gas Using Fiber-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Sandfort, Vincenz; Trabold, Barbara M; Abdolvand, Amir; Bolwien, Carsten; Russell, Philip St. J; Wöllenstein, Jürgen; Palzer, Stefan

    2017-11-24

    The fast and reliable analysis of the natural gas composition requires the simultaneous quantification of numerous gaseous components. To this end, fiber-enhanced Raman spectroscopy is a powerful tool to detect most components in a single measurement using a single laser source. However, practical issues such as detection limit, gas exchange time and background Raman signals from the fiber material still pose obstacles to utilizing the scheme in real-world settings. This paper compares the performance of two types of hollow-core photonic crystal fiber (PCF), namely photonic bandgap PCF and kagomé-style PCF, and assesses their potential for online determination of the Wobbe index. In contrast to bandgap PCF, kagomé-PCF allows for reliable detection of Raman-scattered photons even below 1200 cm -1 , which in turn enables fast and comprehensive assessment of the natural gas quality of arbitrary mixtures.

  11. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  12. Supercontinuum generation in optimized photonic crystal fiber at 1.3 μm for optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Ferhat M. L.

    2016-01-01

    Full Text Available In this paper, we have designed a high nonlinear photonic crystal fiber (HN-PCF based on square-lattice geometry with the zero dispersion wavelength (ZDW around 1300 nm. The exploitation of different nonlinear mechanisms in the pulse propagation allows supercontinuum generation, which is used to enhance the axial resolution of the optical coherence tomography (OCT systems. First mechanism demonstrated is the soliton self-compression, we came up to realize pulse compression of 28.4 fs around 1300 nm by the generation of solitons of different orders to obtain ultrashort pulses of about 4 fs pulses in a PCF length of 66cm, then, we improved the pulse compression until 1.2 fs in a PCF length of 26 cm.The exploitation of the interplay between many nonlinear effects as self-phase modulation, intrapulse Raman scattering and self-steepening as second mechanism allows a generation of supercontinuum with a spectral bandwith of SBW=260 nm. The obtained spectral bandwidth could contribute to enhance the OCwith OCT imaging axial resolution which can be evaluated to 2.8 μm in air, working at 1.3 μm center wavelength which is widely used in several fields.

  13. Extension of supercontinuum spectrum generated in photonic crystal fiber by using chirped femtosecond pulses

    Science.gov (United States)

    Vengelis, Julius; Jarutis, Vygandas; Sirutkaitis, Valdas

    2017-08-01

    We present results of experimental and numerical investigation of supercontinuum generation in polarization maintaining photonic crystal fiber (PCF) using chirped femtosecond pulses. The initial unchirped pump pulse source was a mode-locked Yb:KGW laser generating 52 nJ energy 110 fs duration pulses at 1030 nm with 76 MHz repetition rate. The nonlinear medium was a 32 cm long polarization maintaining PCF manufactured by NKT Photonics A/S. We demonstrated the influence of pump pulse chirp on spectral characteristics of supercontinuum. We showed that by chirping pump pulses positively or negatively one can obtain broader supercontinuum spectrum than in case of unchirped pump pulses at the same peak power. Moreover, the extension can be controlled by changing the amount of pump pulse chirp. In our case the supercontinuum spectrum width was extended by up to 115 nm (at maximum chirp value of +10500 fs2 that we could achieve in our setup) compared to the case of unchirped pump at the same peak power.

  14. Supercontinuum generation in silicon nanowire embedded photonic crystal fibers with different core geometries

    Science.gov (United States)

    Abdosllam, M. Abobaker; Gunasundari, E.; Senthilnathan, K.; Sivabalan, S.; Nakkeeran, K.; Ramesh Babu, P.

    2014-07-01

    We design various silicon nanowire embedded photonic crystal fibers (SN-PCFs) with different core geometries, namely, circular, rectangular and elliptical using finite element method. Further, we study the optical properties such as group velocity dispersion (GVD), third order dispersion (TOD) of x and y-polarized modes and effective nonlinearity for a wavelength range from 0.8 to 1.6 μm. The proposed structure exhibits almost flat GVD (0.8 to 1.2 μm wavelength), zero GVD (≍ 1.31 μm) and small TOD (0.00069 ps3/m) at 1.1 μm wavelength and high nonlinearity (2916 W-1m-1) at 0.8 μm wavelength for a 300 nm core diameter of circular core SN-PCF. Besides, we have been able to demonstrate the supercontinuum for the different core geometries at 1.3 μm wavelength with a less input power of 25 W for the input pulse of 20 fs. The numerical simulation results reveal that the proposed circular core SN-PCF could generate the supercontinuum of wider bandwidth (900 nm) compared to that from rest of the geometries. This enhanced bandwidth turns out to be a boon for optical coherence tomography (OCT) system.

  15. Broadband Enhancement of Optical Frequency Comb Using Cascaded Four-Wave Mixing in Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Tawfig Eltaif

    2017-01-01

    Full Text Available A cascaded intensity modulator (IM and phase modulator (PM are used to modulate a continuous-wave (CW laser and generate an optical frequency comb (OFC. Thus, the generated comb is utilized as an initial seed and combined with another CW-laser to generate four-wave mixing (FWM in photonic crystal fiber (PCF. Results show that an initial flat 30 GHz OFC of 29, 55 lines within power fluctuation of 0.8 dB and 2 dB, respectively, can be achieved by setting the ratio of the DC bias to amplitude of sinusoidal signal at 0.1 and setting the modulation indices of both IM and PM at 10. Moreover, the 1st order of FWM created through 14 m of PCF has over 68 and 94 lines with fluctuation of 0.8 dB and 2 dB, respectively. Hence, the generated wavelengths of 1st left and right order of FWM can be tuned in a range from ~1500 nm to ~1525 nm and ~1590 nm to ~1604 nm, respectively.

  16. Coupling to photonic crystal fibers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Bjarklev, Anders Overgaard; Knudsen, Erik

    2002-01-01

    In this work we have analyzed the correspondence between the fundamental mode of PCFs and Gaussian modes as a function of frequency, pitch, and air hole size. Such analysis provides insight into design space regions of PCFs, where low-loss coupling to standard fibers may be obtained.......In this work we have analyzed the correspondence between the fundamental mode of PCFs and Gaussian modes as a function of frequency, pitch, and air hole size. Such analysis provides insight into design space regions of PCFs, where low-loss coupling to standard fibers may be obtained....

  17. Stable narrow spacing dual-wavelength Q-switched graphene oxide embedded in a photonic crystal fiber

    International Nuclear Information System (INIS)

    Ahmad, H; Soltanian, M R K; Alimadad, M; Harun, S W

    2014-01-01

    An ultra-stable dual-wavelength saturable absorber based on a cladding-embedded commercial graphene oxide (GO) solution by capillary action in a solid core photonic crystal fiber (PCF) is demonstrated for the first time. The saturation absorption property is achieved through evanescent coupling between the guided light and the cladding-filled graphene layers. Stable spacing dual-wavelength fiber lasing is attained by controlling the polarization state of a simple 0.9 m long ring of highly doped Leikki Er80-8/125 erbium-doped fiber as the primary gain medium with PCF, polarization controller and tunable bandpass filter. Embedded GO is used to generate the desired pulsed output, and the laser is capable of generating pulses having a repetition rate of 24 kHz with an average output power and pulse energy of 0.167 mW and 8.98 nJ, respectively, at the maximum pump power of 220 mW. (paper)

  18. Extremely sensitive multiple sensing ring PCF sensor for lower indexed chemical detection

    Directory of Open Access Journals (Sweden)

    Veerpal Kaur

    2017-09-01

    Full Text Available In this article, we have designed and analysed a photonic crystal fiber with multiple sensing ring in core for chemical and biochemical sensing applications. In this proposed design, three and four sensing ring describe in core which offers remarkable high sensitivity and spiral cladding pattern confines large fraction of power in core region and thus reduce the overall confinement loss. This novel proposed model exhibits simultaneously ultra high relative sensitivity 95.40%, 93.13% and minimum confinement loss 7.108×10−08, 2.47×10−08dB/km for four and three ring pattern. These sensing rings are filled with different sensing liquid. Multiple sensing rings as compared to multiple air holes are desirable feature from fabrication point of view. This proposed PCF design overcomes some experimental challenge such as PCF probe needs some displacement after filling the sensing liquid. These uniform circular sensing rings around the solid core overcome the losses and support better evanescent field matter interaction for sensing application. Multiple sensing rings as compared to multiple tiny air holes are desirable feature from fabrication point of view.

  19. Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating.

    Science.gov (United States)

    Hu, Pengbing; Dong, Xinyong; Wong, Wei Chang; Chen, Li Han; Ni, Kai; Chan, Chi Chiu

    2015-04-01

    We present a simple photonic crystal fiber interferometer (PCFI) that operates in reflection mode for pH measurement. The sensor is made by coating polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel onto the surface of the PCFI, constructed by splicing a stub of PCF at the distal end of a single-mode fiber with its free end airhole collapsed. The experimental results demonstrate a high average sensitivity of 0.9 nm/pH unit for the 11 wt.% PVA/PAA coated sensor in the pH range from 2.5 to 6.5. The sensor also displays high repeatability and stability and low cross-sensitivity to temperature. Fast, reversible rise and fall times of 12 s and 18 s, respectively, are achieved for the sensor time response.

  20. The analogy between photonic crystal fibres and step index fibres

    DEFF Research Database (Denmark)

    Birks, T.A.; Mogilevtsev, D.; Knight, J.C.

    1999-01-01

    The propagation constant of a photonic crystal fiber (PCF) can be approximated by substituting the effective V-value and NA into a formula valid for step index fibers (SIF), provided the V-value is defined with a core radius of 0.625 $Lambda@. V$PRM and NA must still be computed. Care must be taken...

  1. Tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated photonic crystal fiber

    Science.gov (United States)

    Liu, Yingchao; Chen, Hailiang; Ma, Mingjian; Zhang, Wenxun; Wang, Yujun; Li, Shuguang

    2018-03-01

    We propose a tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated high birefringent photonic crystal fiber (HB-PCF). Gold film was applied to the inner walls of two cladding air holes and surface plasmon polaritons were generated on its surface. The two gold-coated cladding air holes acted as two defective cores. As the phase matching condition was satisfied, light transmitted in the fiber core and coupled to the two defective cores. The three-core PCF supported three super modes in two orthogonal polarization directions. The coupling characteristics among these modes were investigated using the finite-element method. We found that the coupling wavelengths and strength between these guided modes can be tuned by altering the structural parameters of the designed HB-PCF, such as the size of the voids, thickness of the gold-films and liquid infilling pattern. Under the optimized structural parameters, a tunable broadband polarization filter was realized. For one liquid infilling pattern, we obtained a broadband polarization filter which filtered out the light in y-polarization direction at the wavelength of 1550 nm. For another liquid infilling pattern, we filtered out light in the x-polarization direction at the wavelength of 1310 nm. Our studies on the designed HB-PCF made contributions to the further devising of tunable broadband polarization filters, which are extensively used in telecommunication and sensor systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61505175 and 61475134) and the Natural Science Foundation of Hebei Province (Grant Nos. F2017203110 and F2017203193).

  2. Broadband polymer microstructured THz fiber coupler with downdoped cores

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Bang, Ole

    2010-01-01

    We demonstrate a broadband THz directional coupler based on a dual core photonic crystal fiber (PCF) design with mechanically down-doped core regions. For a center frequency of 1.3 THz we demonstrate a bandwidth of 0.65 THz.......We demonstrate a broadband THz directional coupler based on a dual core photonic crystal fiber (PCF) design with mechanically down-doped core regions. For a center frequency of 1.3 THz we demonstrate a bandwidth of 0.65 THz....

  3. Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding.

    Science.gov (United States)

    Zhang, Guang; Zhou, Qinling; Yu, Chunlei; Hu, Lili; Chen, Danping

    2012-06-15

    We report on high-power fiber lasers based on index-guiding, all-solid neodymium-doped (Nd-doped) phosphate photonic crystal fiber (PCF) with a hexagonal-shaped inner cladding. The optimum fiber laser with a 36 cm length active fiber, generated up to 7.92 W output power at 1053 nm, which benefited from a high absorption coefficient for pump power due to its noncircular inner cladding. The guiding properties of the all-solid PCF were also investigated. A stable mode with a donut-shaped profile and a power-dependent laser beam quality have been observed experimentally and analyzed.

  4. Theoretical proposal of a low-loss wide-bandwidth silicon photonic crystal fiber for supporting 30 orbital angular momentum modes.

    Directory of Open Access Journals (Sweden)

    Xun Xu

    Full Text Available We propose a novel four-ring hollow-core silicon photonic crystal fiber (PCF, and we systematically and theoretically investigate the properties of their vector modes. Our PCF can stably support 30 OAM states from the wavelength of 1.5 μm to 2.4 μm, with a large effective refractive index separation of above 1×10-4. The confinement loss is less than 1×10-9 dB/m at the wavelength of 1.55 μm, and the average confinement loss is less than 1×10-8 dB/m from the wavelength of 1.2 μm to 2.4 μm. Moreover, the curve of the dispersion tends to flatten as the wavelength increases. In addition, we comparably investigate PCFs with different hole spacing. This kind of fiber structure will be a potential candidate for high-capacity optical fiber communications and OAM sensing applications using fibers.

  5. Crystal-free Formation of Non-Oxide Optical Fiber

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    Researchers at NASA Marshall Space Flight Center have devised a method for the creation of crystal-free nonoxide optical fiber preforms. Non-oxide fiber optics are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. However, some of these glasses are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. NASA has developed a new method of non-oxide fiber formation that uses axial magnetic fields to suppress crystallization. The resulting non-oxide fibers are crystal free and have lower signal attenuation rates than silica based optical fibers.

  6. Liquid crystal parameter analysis for tunable photonic bandgap fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei

    2010-01-01

    We investigate the tunability of splay-aligned liquid crystals for the use in solid core photonic crystal fibers. Finite element simulations are used to obtain the alignment of the liquid crystals subject to an external electric field. By means of the liquid crystal director field the optical...

  7. A new design of photonic crystal fiber with ultra-flattened dispersion to simultaneously minimize the dispersion and confinement loss

    Science.gov (United States)

    Olyaee, Saeed; Taghipour, Fahimeh

    2011-02-01

    Photonic crystal fibers (PCFs) are highly suitable transmission media for wavelength-division-multiplexing (WDM) systems, in which low and ultra-flattened dispersion of PCFs is extremely desirable. It is also required to concurrently achieve both a low confinement loss as well as a large effective area in a wide range of wavelengths. Relatively low dispersion with negligible variation has become feasible in the wavelength range of 1.1 to 1.8μm through the proposed design in this paper. According to a new structure of PCF presented in this study, the dispersion slope is 6.8×10-4ps/km.nm2 and the confinement loss reaches below 10-6 dB/km in this range, while at the same time an effective area of more than 50μm2 has been attained. For the analysis of this PCF, finite-difference time-domain (FDTD) method with the perfectly matched layers (PML) boundary conditions has been used.

  8. [Study on spectral gain characterization of FWM processes with multi-frequency pumps in photonic crystal fiber].

    Science.gov (United States)

    Hui, Zhan-Qiang

    2011-10-01

    Spectral gain induced by four-wave-mixing with multi-frequency pump was investigated by exploiting the data signal and continue lights co-propagation in dispersion flattened high nonlinear photonic crystal fiber (PCF). The effects of wavelength drift of pump lights, polarization state of orthogonal or parallel of pump lights, polarization mismatch of signal light versus orthogonal pump lights, total power of signal and probe light on the spectrum gain were analyzed. The results show that good FWM gain effects with multi-frequency pump can be obtained in 36.4 nm wavelength range when power ratio of pump to probe light is appropriate and with identical polarization. Furthermore, the gain of FWM with multi-frequency pump is very sensitive to polarization fluctuation and the different idle waves obtain different gain with the variation in signal polarization state. Moreover, the impact of pump numbers was investigated. The obtained results would be helpful for further research on ultrahigh-speed all optical signal processing devices exploiting the FWM with multi-frequency pump in PCF for future photonics network.

  9. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.

    2011-03-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  10. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.; Melnikov, Vasily; Fedotov, Il'ya V.; Fedotov, Andrei B.; Perova, Tatiana S.; Zheltikov, Aleksei M.

    2011-01-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  11. Photonic crystal fiber design for broadband directional coupling

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bang, Ole; Bjarklev, Anders Overgaard

    2004-01-01

    A novel design for a broadband directional coupler based on a photonic crystal fiber is investigated numerically. It is shown that suitable index-depressing doping of the core regions in an index-guiding twin-core photonic crystal fiber can stabilize the coupling coefficient between the cores over...

  12. A novel method for polarization squeezing with Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Milanovic, Josip; Lassen, Mikael Østergaard; Andersen, Ulrik Lund

    2010-01-01

    Photonic Crystal Fibers can be tailored to increase the effective Kerr nonlinearity, while producing smaller amounts of excess noise compared to standard silicon fibers. Using these features of Photonic Crystal Fibers we create polarization squeezed states with increased purity compared to standa...... Stokes parameter squeezing of −3.9 ±0.3dB and anti-squeezing of 16.2 ±0.3dB....

  13. Liquid crystal polyester-carbon fiber composites

    Science.gov (United States)

    Chung, T. S.

    1984-01-01

    Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material.

  14. Optical Fiber for High-Power Optical Communication

    Directory of Open Access Journals (Sweden)

    Kenji Kurokawa

    2012-09-01

    Full Text Available We examined optical fibers suitable for avoiding such problems as the fiber fuse phenomenon and failures at bends with a high power input. We found that the threshold power for fiber fuse propagation in photonic crystal fiber (PCF and hole-assisted fiber (HAF can exceed 18 W, which is more than 10 times that in conventional single-mode fiber (SMF. We considered this high threshold power in PCF and HAF to be caused by a jet of high temperature fluid penetrating the air holes. We showed examples of two kinds of failures at bends in conventional SMF when the input power was 9 W. We also observed the generation of a fiber fuse under a condition that caused a bend-loss induced failure. We showed that one solution for the failures at bends is to use optical fibers with a low bending loss such as PCF and HAF. Therefore, we consider PCF and HAF to be attractive solutions to the problems of the fiber fuse phenomenon and failures at bends with a high power input.

  15. Tunable bandpass filter based on photonic crystal fiber filled with multiple liquid crystals

    DEFF Research Database (Denmark)

    Scolari, Lara; Tartarini, G.; Borelli, E.

    2007-01-01

    A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC.......A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC....

  16. Growth of single-crystal YAG fiber optics.

    Science.gov (United States)

    Nie, Craig D; Bera, Subhabrata; Harrington, James A

    2016-07-11

    Single-crystal YAG (Y3Al5O12) fibers have been grown by the laser heated pedestal growth technique with losses as low as 0.3 dB/m at 1.06 μm. These YAG fibers are as long as about 60 cm with diameters around 330 μm. The early fibers were grown from unoriented YAG seed fibers and these fibers exhibited facet steps or ridges on the surface of the fiber. However, recently we have grown fibers using an oriented seed to grow step-free fibers. Scattering losses made on the fibers indicate that the scattering losses are equal to about 30% of the total loss.

  17. Direct writing of fiber optic components in photonic crystal fibers and other specialty fibers

    Science.gov (United States)

    Fernandes, Luis Andre; Sezerman, Omur; Best, Garland; Ng, Mi Li; Kane, Saidou

    2016-04-01

    Femtosecond direct laser writing has recently shown great potential for the fabrication of complex integrated devices in the cladding of optical fibers. Such devices have the advantage of requiring no bulk optical components and no breaks in the fiber path, thus reducing the need for complicated alignment, eliminating contamination, and increasing stability. This technology has already found applications using combinations of Bragg gratings, interferometers, and couplers for the fabrication of optical filters, sensors, and power monitors. The femtosecond laser writing method produces a local modification of refractive index through non-linear absorption of the ultrafast laser pulses inside the dielectric material of both the core and cladding of the fiber. However, fiber geometries that incorporate air or hollow structures, such as photonic crystal fibers (PCFs), still present a challenge since the index modification regions created by the writing process cannot be generated in the hollow regions of the fiber. In this work, the femtosecond laser method is used together with a pre-modification method that consists of partially collapsing the hollow holes using an electrical arc discharge. The partial collapse of the photonic band gap structure provides a path for femtosecond laser written waveguides to couple light from the core to the edge of the fiber for in-line power monitoring. This novel approach is expected to have applications in other specialty fibers such as suspended core fibers and can open the way for the integration of complex devices and facilitate miniaturization of optical circuits to take advantage of the particular characteristics of the PCFs.

  18. Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber

    Science.gov (United States)

    Tiwari, Vidhu S.; Khetani, Altaf; Monfared, Ali Momenpour T.; Smith, Brett; Anis, Hanan; Trudeau, Vance L.

    2012-03-01

    The present work explores the feasibility of using surface enhanced Raman scattering (SERS) for detecting the neurotransmitters such as glutamate (GLU) and gamma-amino butyric acid (GABA). These amino acid neurotransmitters that respectively mediate fast excitatory and inhibitory neurotransmission in the brain, are important for neuroendocrine control, and upsets in their synthesis are also linked to epilepsy. Our SERS-based detection scheme enabled the detection of low amounts of GLU (10-7 M) and GABA (10-4 M). It may complement existing techniques for characterizing such kinds of neurotransmitters that include high-performance liquid chromatography (HPLC) or mass spectrography (MS). This is mainly because SERS has other advantages such as ease of sample preparation, molecular specificity and sensitivity, thus making it potentially applicable to characterization of experimental brain extracts or clinical diagnostic samples of cerebrospinal fluid and saliva. Using hollow core photonic crystal fiber (HC-PCF) further enhanced the Raman signal relative to that in a standard cuvette providing sensitive detection of GLU and GABA in micro-litre volume of aqueous solutions.

  19. Tapered photonic crystal fibers for blue-enhanced supercontinuum generation

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Larsen, Casper

    2012-01-01

    Tapering of photonic crystal fibers is an effective way of shifting the blue edge of a supercontinuum spectrum down in the deep-blue. We discuss the optimum taper profile for enhancing the power in the blue edge....

  20. Control of Dispersion in Hollow Core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    The dispersion of hollow core photonic crystal fibers can be tailored by modifying a single ring of holes in the cladding. The dispersion can be lowered and flattened, or alternatively greatly increased, in a controlled manner.......The dispersion of hollow core photonic crystal fibers can be tailored by modifying a single ring of holes in the cladding. The dispersion can be lowered and flattened, or alternatively greatly increased, in a controlled manner....

  1. Highly efficient fluorescence sensing with hollow core photonic crystal fibers

    DEFF Research Database (Denmark)

    Smolka, Stephan; Barth, Michael; Benson, Oliver

    2008-01-01

    We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes.......We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes....

  2. Long-period gratings in photonic crystal fibers operating near the phase-matching turning point for evanescent chemical and biochemical sensing

    Science.gov (United States)

    Kanka, Jiri

    2012-06-01

    Fiber-optic long-period grating (LPG) operating near the dispersion turning point in its phase matching curve (PMC), referred to as a Turn Around Point (TAP) LPG, is known to be extremely sensitive to external parameters. Moreover, in a TAP LPG the phase matching condition can be almost satisfied over large spectral range, yielding a broadband LPG operation. TAP LPGs have been investigated, namely for use as broadband mode convertors and biosensors. So far TAP LPGs have been realized in specially designed or post-processed conventional fibers, not yet in PCFs, which allow a great degree of freedom in engineering the fiber's dispersion properties through the control of the PCF structural parameters. We have developed the design optimization technique for TAP PCF LPGs employing the finite element method for PCF modal analysis in a combination with the Nelder-Mead simplex method for minimizing the objective function based on target-specific PCF properties. Using this tool we have designed TAP PCF LPGs for specified wavelength ranges and refractive indices of medium in the air holes. Possible TAP PCF-LPG operational regimes - dual-resonance, broadband mode conversion and transmitted intensity-based operation - will be demonstrated numerically. Potential and limitations of TAP PCF-LPGs for evanescent chemical and biochemical sensing will be assessed.

  3. Chromatic dispersion of liquid crystal infiltrated capillary tubes and photonic crystal fibers

    DEFF Research Database (Denmark)

    Rasmussen, Per Dalgaard; Lægsgaard, Jesper; Bang, Ole

    2006-01-01

    We consider chromatic dispersion of capillary tubes and photonic crystal fibers infiltrated with liquid crystals. A perturbative scheme for inclusion of material dispersion of both liquid crystal and the surrounding waveguide material is derived. The method is used to calculate the chromatic...

  4. Temporal nonlinear beam dynamics in infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Bennet, Francis; Rosberg, Christian Romer; Neshev, Dragomir N.

    Liquid-infiltrated photonic crystal fibers (PCFs) offer a new way of studying light propagation in periodic and discrete systems. A wide range of available fiber structures combined with the ease of infiltration opens up a range of novel experimental opportunities for optical detection and bio...... the evolution of the fiber output beam in the few micro or milliseconds after the beam is turned on. The characterization of the temporal behavior of the thermal nonlinear response provides important information about the nonlocality associated with heat diffusion inside the fiber, thus enabling studies of long...... and technological potential of liquid-infiltrated PCFs it is important to understand the temporal dynamics of nonlinear beam propagation in such structures. In this work we consider thermally induced spatial nonlinear effects in infiltrated photonic crystal fibers. We experimentally study the temporal dynamics...

  5. Photonic crystal fibers for supercontinuum generation pumped by a gain-switched CW fiber laser

    DEFF Research Database (Denmark)

    Larsen, Casper; Noordegraaf, Danny; Hansen, Kim P.

    2012-01-01

    Supercontinuum generation in photonics crystal fibers (PCFs) pumped by CW lasers yields high spectral power density and average power. However, such systems require very high pump power and long nonlinear fibers. By on/off modulating the pump diodes of the fiber laser, the relaxation oscillations...... of the laser can be exploited to enhance the broadening process. The physics behind the supercontinuum generation is investigated by sweeping the fiber length, the zero dispersion wavelength, and the fiber nonlinearity. We show that by applying gain-switching a high average output power of up to 30 W can...

  6. High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging

    NARCIS (Netherlands)

    Amitonova, L. V.; Descloux, A.; Petschulat, J.; Frosz, M. H.; Ahmed, G.; Babic, F.; Jiang, X.; Mosk, A. P.; Russell, P. S. J.; Pinkse, P.W.H.

    2016-01-01

    We demonstrate that a high-numerical-aperture photonic crystal fiber allows lensless focusing at an unparalleled res- olution by complex wavefront shaping. This paves the way toward high-resolution imaging exceeding the capabilities of imaging with multi-core single-mode optical fibers. We analyze

  7. Temperature-independent refractometer based on fiber-optic Fabry-Perot interferometer

    Science.gov (United States)

    Li, Jiacheng; Qiao, Xueguang; Wang, Ruohui; Rong, Qiangzhou; Bao, Weijia; Shao, Zhihua; Yang, Tingting

    2016-04-01

    A miniature fiber-optic refractometer based on Fabry-Perot interferometer (FPI) has been proposed and experimentally demonstrated. The sensing head consists of a short section of photonics crystal fiber (PCF) spliced to a single mode fiber (SMF), in which the end-face of the PCF is etched to remove holey structure with hydrofluoric (HF) acid. A Fabry-Perot interference spectrum is achieved based on the reflections from the fusion splicing interface and the end-face of the core of PCF. The interference fringe is sensitive to the external refractive index (RI) with an intensity-referenced sensitivity of 358.27 dB/RIU ranging from 1.33 to 1.38. The sensor has also been implemented for the concentration measurement of λ-phage DNA solution. In addition, the dip intensity is insensitive to the ambient temperature variation, making it a good candidate for temperature-independent bio-sensing area.

  8. Low-loss rotated porous core hexagonal single-mode fiber in THz regime

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Hasanuzzaman, G.K.M.; Habib, Selim

    2015-01-01

    A kind of porous core photonic crystal fiber (PCF) for terahertz (THz) wave propagation is proposed in thispaper. By intentionally rotating the porous core lattice structure, a dispersion of 1.06 ± 0.12 ps/THz/cm ina frequency range of 0.5–1.08 THz is observed. Also, a very low material absorptio...

  9. Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals

    OpenAIRE

    Scolari, Lara; Gauza, Sebastian; Xianyu, Haiqing; Zhai, Lei; Eskildsen, Lars; Alkeskjold, Thomas Tanggaard; Wu, Shin-Tson; Bjarklev, Anders Overgaard

    2009-01-01

    We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum with the one achieved without dopant. New interesting features, such as frequency modulation response of the device and a transmission spectrum with tunable attenuation on the short wavelength side of the widest bandgap, suggest a potential application of this device as a tunable all-in-fiber gain equalization filter with an adjustable slope. The tunability ...

  10. FIBER LASER CONSTRUCTION AND THEORY INCLUDING FIBER BRAGG GRATINGS Photonic Crystal Fibers (PCFs) and applications of gas filled PCFs

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Jacob O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-08

    The principles used in fiber lasers have been around for a while but it is only within the past few years that fiber lasers have become commercially available and used in high power laser applications. This paper will focus on the basic design principles of fiber lasers, including fiber Bragg gratings, principles of operation, and forms of non-linear effects. It will describe the type and associated doping of the fiber used and difficult designs used to guide energy from the pump to the active medium. Topics covered include fiber laser design, fiber Bragg gratings, materials used, differences in quantum energy loss, thermo-optical effects, stimulated Raman scattering, Brillouin scattering, photonic crystal fibers and applications of gas filled Photonic Crystal Fibers (PCFs). Thanks to fiber lasers, the energy required to produce high power lasers has greatly dropped and as such we can now produce kW power using a standard 120V 15A circuit. High power laser applications are always requiring more power. The fiber laser can now deliver the greater power that these applications demand. Future applications requiring more power than can be combined using standard materials or configurations will need to be developed to overcome the high energy density and high non-linear optical scattering effects present during high power operations.

  11. Measuring Beam Quality of Hollow Core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Shephard, J.D.; Roberts, John; Jones, J.D.C.

    2006-01-01

    In this paper, the authors measure the quality of the delivered beam from hollow core photonic crystal fibers (HC-PCFs). The$M^2$parameter is determined, and the near- to far-field transition is examined. The influence on these properties due to the presence of a core surround mode is evaluated.......17 for the same output beam. This highlights the need for careful consideration when measuring and describing the beam quality delivered by these novel photonic fibers....

  12. Compact electrically controlled broadband liquid crystal photonic bandgap fiber polarizer

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm.......An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm....

  13. Eliminating Crystals in Non-Oxide Optical Fiber Preforms and Optical Fibers

    Science.gov (United States)

    Tucker, Dennis S.; LaPointe, Michael R.

    2012-01-01

    Non ]oxide fiber optics such as heavy metal fluoride and chalcogenide glasses are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. The addition of rare earths such as erbium, enable these materials to be used as fiber laser and amplifiers. Some of these glasses however are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. Previously two research teams found that microgravity suppressed crystallization in heavy metal fluoride glasses. Looking for a less expensive method to suppress crystallization, ground based research was performed utilizing an axial magnetic field. The experiments revealed identical results to those obtained via microgravity processing. This research then led to a patented process for eliminating crystals in optical fiber preforms and the resulting optical fibers. In this paper, the microgravity results will be reviewed as well as patents and papers relating to the use of magnetic fields in various material and glass processing applications. Finally our patent to eliminate crystals in non ]oxide glasses utilizing a magnetic field will be detailed.

  14. Optical tuning of photonic bandgaps in dye-doped nematic liquid crystal photonic crystal fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard; Hermann, David Sparre

    2005-01-01

    An all-optical modulator is demonstrated, which utilizes a pulsed 532 nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid crystal. In order to investigate the time response of the LCPBG fiber device, a low-power CW probe...... laser was coupled into the fiber together with the pulsed pump laser of 2.3 mW and we have demonstrated a modulation frequency of up to 2 kHz....

  15. Optimizing POF/PCF based optical switch for indoor LAN

    International Nuclear Information System (INIS)

    Bhuiyan, M M I; Rashid, M M; Ahmed, Sayem; Bhuiyan, M; Kajihara, M

    2013-01-01

    For indoor local area network (LAN) the Polymer optical fiber (POF) is mostly appropriate, because of its large core diameter and flexible material. A 1×2 optical switch for indoor LAN using POF and a shape memory alloy (SMA) coil actuator with magnetic latches was successfully fabricated and tested. To achieve switching by the movement of a POF, large displacement is necessary because the core diameter is large (e.g., 0.486mm). A SMA coil actuator is used for large displacement and a magnetic latching system is used for fixing the position of the shifted POF. The insertion loss is 0.40 to 0.50dB and crosstalk is more than 50dB without index-matching oil. Switching speed is less than 1s at a driving current of 80mA. A cycling test was performed 1.4 million times. Polymer clad fiber optical (PCF) switch also fabricated and tasted

  16. Photonic crystal fiber modal interferometer based on thin-core-fiber mode exciter.

    Science.gov (United States)

    Miao, Yinping; Ma, Xixi; Wu, Jixuan; Song, Binbin; Zhang, Hao; Liu, Bo; Yao, Jianquan

    2015-11-10

    A thin-core-fiber excited photonic crystal fiber modal interferometer has been proposed and experimentally demonstrated. By employing a thin-core fiber as the mode exciter, both of the core and cladding modes propagate in the photonic crystal fiber and interfere with each other. The experimental results show that the transmission dips corresponding to different-order modes have various strain responses with opposite shift directions. The strain sensitivity could be improved to 58.57  pm/με for the applied strain from 0 to 491 με by utilizing the wavelength interval between the dips with opposite shift directions. Moreover, due to the pure silica property of the employed photonic crystal fiber, the proposed fiber modal interferometer exhibits a low-temperature sensitivity of about 0.56  pm/°C within a temperature range from 26.4°C (room temperature) to 70°C. Additionally, the proposed fiber modal interferometer has several advantages, such as good stability, compact structure, and simple fabrication. Therefore, it is more applicable for strain measurement with reducing temperature cross-sensitivity.

  17. Initial steps of supercontinuum generation in photonic crystal fibers

    DEFF Research Database (Denmark)

    Hilligsøe, Karen Marie; Paulsen, H.N.; Thøgersen, J.

    2003-01-01

    The onset of supercontinuum generation in a photonic crystal fiber is investigated experimentally and numerically as a function of pump wavelength and intensity with 100-fs pulses. Soliton formation is found to be the determining factor in the initial step. The formation and behavior of a blueshi...

  18. Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Habib, Selim; Hasanuzzaman, G.K.M.

    2016-01-01

    In this Letter, we suggest a novel kind of porous-core photonic crystal fiber (PCF) (to the best of our knowledge) for efficient transportation of polarization maintaining (PM) terahertz (THz) waves. We introduce an asymmetry in both the porous-core and the porous-cladding of the structure to ach...

  19. Optimum PCF tapers for blue-enhanced supercontinuum sources

    DEFF Research Database (Denmark)

    Møller, Uffe Visbech; Sørensen, Simon Toft; Larsen, Casper

    2012-01-01

    Tapering of photonic crystal fibers has proven to be an effective way of blueshifting the dispersive wavelength edge of a supercontinuum spectrum down in the deep-blue. In this article we will review the state-of-the-art in fiber tapers, and discuss the underlying mechanisms of supercontinuum gen...... and tapered fibers, and we demonstrate that the intensity noise at the spectral edges of the generated supercontinuum is at a constant level independent on the pump power in both tapered and uniform fibers....

  20. Infiltration liquid crystal in microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wei, Lei; Bang, Ole

    2009-01-01

    7 is then infiltrated into about 6 cm of the length of mPOF by using capillary forces with the duration of 45 minutes. The transmission spectrum is measured by an optical spectrum analyzer with 1 nm resolution, and normalized to that of the unfilled fiber as shown by the solid line. The difference......POF is butt-coupled to a conventional single mode fiber (SMF) with the broadband light from a supercontinuum source. It is clear to see the colour of the guided modes is red, since some wavelengths are attenuated by the material loss of PMMA in visible region. A positive dielectric anisotropy liquid crystal E...

  1. Chromatic Dispersion Compensation Using Photonic Crystal Fibers with Hexagonal Distribution

    Directory of Open Access Journals (Sweden)

    Erick E. Reyes-Vera

    2013-11-01

    Full Text Available In this paper we show various configurations of photonic crystal fiber with hexagonal holes distribution for compensation of chromatic dispersion in optical communications links. The vectorial finite element method with scattering boundary condition was used for the analysis of the fibers. From these results it was estimated variation of the dispersion and the dispersion slope with respect to change in the diameter of the holes in the microstructure. With the above was possible to obtain values of dispersion in the C and L bands of telecommunications close to -850 ps / nm * km, with confinement losses 10-3 dB / km

  2. Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal

    International Nuclear Information System (INIS)

    Wahle, Markus; Kitzerow, Heinz-Siegfried

    2015-01-01

    We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue or red shifted depending on the frequency of the applied voltage

  3. Characterization of Fabricated Photonic Crystal Fibers Using Effective Index Method

    OpenAIRE

    Faramarz E. Seraji

    2009-01-01

    In this paper, the characteristics of photonic crystal fibers (PCFs), which have been experimentally determined in the last few years in Iran's Telecom Research Center are analyzed and compared theoretically using an effective index method. The PCFs under investigation are fabricated with a high speed drawing process that has not yet been reported elsewhere. It was shown that at higher wavelengths in PCFs; the light field is confined in the core where in shorter wavelengths the field spread...

  4. Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch; Sørensen, Thorkild; Bang, Ole

    2006-01-01

    ) on the location of the Stokes and anti-Stokes bands and gain bandwidth. An analysis shows that the Raman effect is responsible for reducing the four-wave mixing gain and a slight reduction in the corresponding frequency shift from the pump, when the frequency shift is much larger than the Raman shift. Using......Supercontinuum generation using picosecond pulses pumped into cobweb photonic crystal fibers is investigated. Dispersion profiles are calculated for several fiber designs and used to analytically investigate the influence of the fiber structural parameters (core size and wall thickness...... numerical simulations we find that four-wave mixing is the dominant physical mechanism for the pumping scheme considered, and that there is a trade-off between the spectral width and the spectral flatness of the supercontinuum. The balance of this trade-off is determined by nanometer-scale design...

  5. Group-velocity matched nonlinear photonic crystal fibers

    DEFF Research Database (Denmark)

    Bache, Morten; Lægsgaard, Jesper; Bang, Ole

    2006-01-01

    A quadratic nonlinear index-guiding silica PCF is optimized for efficient second-harmonic generation through dispersion calculations. Zero group-velocity mismatch is possible for any pump wavelength above 780 nm. Very high conversion efficiencies and bandwidths are found....

  6. Liquid crystals in micron-scale droplets, shells and fibers

    Science.gov (United States)

    Urbanski, Martin; Reyes, Catherine G.; Noh, JungHyun; Sharma, Anshul; Geng, Yong; Subba Rao Jampani, Venkata; Lagerwall, Jan P. F.

    2017-04-01

    The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of

  7. Liquid crystals in micron-scale droplets, shells and fibers

    International Nuclear Information System (INIS)

    Urbanski, Martin; Reyes, Catherine G; Noh, JungHyun; Sharma, Anshul; Geng, Yong; Subba Rao Jampani, Venkata; Lagerwall, Jan P F

    2017-01-01

    The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of

  8. Frequency conversion through spontaneous degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin

    2014-01-01

    Frequency conversion through spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers. Different FWM processes are observed, phasematching between fiber modes of orthogonal polarization, intermodal phasematching across bandgaps, and intramodal...

  9. Selective detection of labeled DNA using an air-clad photonic crystal fiber

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Hoiby, P.E.; Pedersen, L.H.

    2004-01-01

    Demonstration of selective detection of fluorophore labeled DNA by hybridization inside the air holes of a photonic crystal fiber A laser exposes the fiber from the side and the emitted fluorescence tunnels into the core.......Demonstration of selective detection of fluorophore labeled DNA by hybridization inside the air holes of a photonic crystal fiber A laser exposes the fiber from the side and the emitted fluorescence tunnels into the core....

  10. Guided mode gain competition in Yb-doped rod-type photonic crystal fibers

    DEFF Research Database (Denmark)

    Poli, Federica; Passaro, Davide; Cucinotta, Annamaria

    2009-01-01

    The gain competition among the guided modes in Yb-doped rod-type photonic crystal fibers with a low refractive index core is investigated with a spatial model to demonstrate the fiber effective single-mode behaviour.......The gain competition among the guided modes in Yb-doped rod-type photonic crystal fibers with a low refractive index core is investigated with a spatial model to demonstrate the fiber effective single-mode behaviour....

  11. Dispersion-tailored, low-loss photonic crystal fibers for the THz range

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Adam, Aurèle J.L.

    2009-01-01

    We have fabricated a new type of photonic crystal fibers based on a cyclic olefin copolymer, transparent in the THz range. We characterize the propagation loss, dispersion, and spatial beam profile in fibers designed for low and high dispersion.......We have fabricated a new type of photonic crystal fibers based on a cyclic olefin copolymer, transparent in the THz range. We characterize the propagation loss, dispersion, and spatial beam profile in fibers designed for low and high dispersion....

  12. Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2010-01-01

    in the oscillator cavity for dispersion balancing and nonlinear optical limiting, and another one is used for low nonlinearity final pulse recompression. The chirped-pulse amplification and recompression of the 232-fs, 45-pJ/pulse oscillator output yields a final direct fiber-end delivery of 7.3-nJ energy pulses......A self-starting, passively stabilized, monolithic all polarizationmaintaining femtosecond Yb-fiber master oscillator / power amplifier with very high operational and environmental stability is demonstrated. The system is based on the use of two different photonic crystal fibers. One is used...... of around 297 fs duration. Our laser shows exceptional stability. No Q-switched modelocking events were detected during 4-days long observation. An average fluctuation of only 7.85 · 10−4 over the mean output power was determined as a result of more than 6-hours long measurement. The laser is stable towards...

  13. Mid-infrared fiber-coupled supercontinuum spectroscopic imaging using a tapered chalcogenide photonic crystal fiber

    Science.gov (United States)

    Rosenberg Petersen, Christian; Prtljaga, Nikola; Farries, Mark; Ward, Jon; Napier, Bruce; Lloyd, Gavin Rhys; Nallala, Jayakrupakar; Stone, Nick; Bang, Ole

    2018-02-01

    We present the first demonstration of mid-infrared spectroscopic imaging of human tissue using a fiber-coupled supercontinuum source spanning from 2-7.5 μm. The supercontinuum was generated in a tapered large mode area chalcogenide photonic crystal fiber in order to obtain broad bandwidth, high average power, and single-mode output for good imaging properties. Tissue imaging was demonstrated in transmission by raster scanning over a sub-mm region of paraffinized colon tissue on CaF2 substrate, and the signal was measured using a fiber-coupled grating spectrometer. This demonstration has shown that we can distinguish between epithelial and surrounding connective tissues within a paraffinized section of colon tissue by imaging at discrete wavelengths related to distinct chemical absorption features.

  14. Widely tunable femtosecond solitonic radiation in photonic crystal fiber cladding

    DEFF Research Database (Denmark)

    Peng, J. H.; Sokolov, A. V.; Benabid, F.

    2010-01-01

    We report on a means to generate tunable ultrashort optical pulses. We demonstrate that dispersive waves generated by solitons within the small-core features of a photonic crystal fiber cladding can be used to obtain femtosecond pulses tunable over an octave-wide spectral range. The generation...... process is highly efficient and occurs at the relatively low laser powers available from a simple Ti:sapphire laser oscillator. The described phenomenon is general and will play an important role in other systems where solitons are known to exist....

  15. Photonic crystal fiber sensing characteristics research based on alcohol asymmetry filling

    Science.gov (United States)

    Shi, Fu-quan; Luo, Yan; Li, Hai-tao; Peng, Bao-jin

    2018-02-01

    A new type of Sagnac fiber temperature sensor based on alcohol asymmetric filling photonic crystal fiber is proposed. First, the corrosion of photonic crystal fiber and the treatment of air hole collapse are carried out. Then, the asymmetric structure of photonic crystal fiber is filled with alcohol, and then the structure is connected to the Sagnac interference ring. When the temperature changes, the thermal expansion effect of filling alcohol will lead to the change of birefringence of photonic crystal fiber, so that the interference spectrum of the sensor will drift along with the change of temperature. The experimental results show that the interference red shift will occur with the increase of temperature, and the temperature sensitivity is 0.1864nm/ °C. The sensor has high sensitivity to temperature. At the same time, the structure has the advantages of high stability, anti electromagnetic interference and easy to build. It provides a new method for obtaining birefringence in ordinary photonic crystal fibers.

  16. All-fiber femtosecond Cherenkov laser at visible wavelengths

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe Visbech

    2013-01-01

    -matching condition [1]. The resonant ultrafast wave conversion via the fiber-optic CR mechanism is instrumental for applications in biophotonics such as bio-imaging and microscopy [2]. In this work, we demonstrate a highly-stable all-fiber, fully monolithic CR system based on an Yb-fiber femtosecond laser, producing...... to be as low as -103 dBc/Hz. This is 2 orders of magnitudes lower noise as compared to spectrally-sliced supercontinuum, which is the current standard of ultrafast fiber-optic generation at visible wavelength. The layout of the laser system is shown in Fig. 1(a). The system consists of two parts: an all-fiber......Fiber-optic Cherenkov radiation (CR), also known as dispersive wave generation or non-solitonic radiation, is produced in small-core photonic crystal fibers (PCF) when a soliton perturbed by fiber higher-order dispersion co-propagates with a dispersive wave fulfilling a certain phase...

  17. Second-order polarization-mode dispersion in photonic crystal fibers

    DEFF Research Database (Denmark)

    Larsen, T; Bjarklev, Anders Overgaard; Peterson, A

    2003-01-01

    We report the first experimental measurements of second-order polarization-mode dispersion in two successive 900 meter pulls of a silica photonic crystal fiber.......We report the first experimental measurements of second-order polarization-mode dispersion in two successive 900 meter pulls of a silica photonic crystal fiber....

  18. Alcohol sensing over O+E+S+C+L+U transmission band based on porous cored octagonal photonic crystal fiber

    Science.gov (United States)

    Paul, Bikash Kumar; Islam, Md. Shadidul; Ahmed, Kawsar; Asaduzzaman, Sayed

    2017-06-01

    A micro structure porous cored octagonal photonic crystal fiber (P-OPCF) has been proposed to sense aqueous analysts (alcohol series) over a wavelength range of 0.80 μm to 2.0 μm. By implementing a full vectorial finite element method (FEM), the numerical simulation on the proposed O-PCF has been analyzed. Numerical investigation shows that high sensitivity can be gained by changing the structural parameters. The obtained result shows the sensitivities of 66.78%, 67.66%, 68.34%, 68.72%, and 69.09%, and the confinement losses of 2.42×10-10 dB/m, 3.28×10-11 dB/m, 1.21×10-6 dB/m, 4.79×10-10 dB/m, and 4.99×10-9 dB/m at the 1.33 μm wavelength for methanol, ethanol, propanol, butanol, and pentanol, respectively can satisfy the condition of much legibility to install an optical system. The effects of the varying core and cladding diameters, pitch distance, operating wavelength, and effective refractive index are also reported here. It reflects that a significant sensitivity and low confinement loss can be achieved by the proposed P-OPCF. The proposed P-OPCF also covers the wavelength band (O+E+S+C+L+U). The investigation also exhibits that the sensitivity increases when the wavelength increases like S O-bandsensor.

  19. Growth of rare-earth doped single crystal yttrium aluminum garnet fibers

    Science.gov (United States)

    Bera, Subhabrata; Nie, Craig D.; Harrington, James A.; Cheng, Long; Rand, Stephen C.; Li, Yuan; Johnson, Eric G.

    2018-02-01

    Rare-earth doped single crystal (SC) yttrium aluminum garnet (YAG) fibers have great potential as high-power laser gain media. SC fibers combine the superior material properties of crystals with the advantages of a fiber geometry. Improving processing techniques, growth of low-loss YAG SC fibers have been reported. A low-cost technique that allows for the growth of optical quality Ho:YAG single crystal (SC) fibers with different dopant concentrations have been developed and discussed. This technique is a low-cost sol-gel based method which offers greater flexibility in terms of dopant concentration. Self-segregation of Nd ions in YAG SC fibers have been observed. Such a phenomenon can be utilized to fabricate monolithic SC fibers with graded index.

  20. Compact and Robust Refilling and Connectorization of Hollow Core Photonic Crystal Fiber Gas Reference Cells

    Science.gov (United States)

    Poberezhskiy, Ilya Y.; Meras, Patrick; Chang, Daniel H.; Spiers, Gary D.

    2007-01-01

    This slide presentation reviews a method for refilling and connectorization of hollow core photonic crystal fiber gas reference cells. Thees hollow-core photonic crystal fiber allow optical propagation in air or vacuum and are for use as gas reference cell is proposed and demonstrated. It relies on torch-sealing a quartz filling tube connected to a mechanical splice between regular and hollow-core fibers.

  1. Photonic crystal fiber long-period gratings for biosensing

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Lindvold, Lars René

    2008-01-01

    is very general and can also give estimates to the attenuation constants of the lossy cladding modes as well heat transfer simulations of the rapid, intense heating and cooling during the CO2-laser inscription. As sensors PCF-LPGs are shown to detect layers of biomolecules ∼ 0.25 nm thick on average while...... and numerically. Experimentally, a setup for CO2-laser inscribed LPGs has been constructed. The setup produces LPGs with unprecedented quality and throughput. Numerically, the simulation of PCFLPGs is a demanding task and requires accurate mathematical methods such as the finite element method (FEM). The FEM...

  2. Highly Nonlinear and Birefringent Spiral Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    S. Revathi

    2014-01-01

    Full Text Available We propose and design a spiral photonic crystal fiber with elliptical air holes for achieving high birefringence, large nonlinearity, and negative dispersion. The structure is designed using chalcogenide glass (As2S3 for different ellipticity ratios of air holes in the cladding and the effect on various properties is observed. The proposed structure has birefringence of the order 10−2, nonlinearity of 26739.42 W−1 m−1, and dispersion of −1136.69 at 0.85 μm. An accurate numerical approach based on finite element method is used for the design and simulation of the structure. Due to high birefringence and negative dispersion, the proposed structure can be used for polarization control and dispersion compensation, respectively.

  3. Novel multichannel surface plasmon resonance photonic crystal fiber biosensor

    Science.gov (United States)

    Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, A. A.; El Deeb, Walid S.; Obayya, S. S. A.

    2016-04-01

    In this paper, a novel design of highly sensitive biosensor based on photonic crystal fiber is presented and analyzed using full vectorial finite element method. The suggested design depends on using silver layer as a plasmonic active material coated by a gold layer to protect silver oxidation. The reported sensor is based on the detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes which offers the possibility of multi-channel/multi-analyte sensing. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained for the quasi TM and quasi TE modes, respectively.

  4. Low-loss tunable all-in-fiber filter for Raman spectroscopy

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Scolari, Lara; Lund-Hansen, Toke

    2011-01-01

    We show a novel in-line Rayleigh-rejection filter for Raman spectroscopy, based on a solid-core Photonic Crystal Fiber (PCF) filled with a high-index material. The device is low-loss and thermally tunable, and allows for a strong attenuation of the Rayleigh line at 532nm and the transmission...... of the Raman lines in a broad wavenumber range....

  5. Broadband photonic crystal fiber coupler with polarization selection of coupling ratio

    Science.gov (United States)

    Jaroszewicz, Leszek R.; Stasiewicz, Karol A.; Marć, Paweł; Szymański, Michał

    2010-09-01

    In the paper a new broadband photonic crystal fiber coupler is presented. The proper application of the biconical taper technology has been used for manufacturing the coupler without air holes collapse in LMA10 fiber (NKT Photonics Crystal). This coupler, operates in the weakly coupling condition, protects coupling operation in range from 900 nm to 1700 nm. The coupling ratio between output arms is depending on wavelength and can be tuning by selection the proper input state of polarization. It gives opportunity to use the broadband crystal fiber coupler in many applications in which it is necessary to tune a coupling between output arms during the measurement.

  6. Guiding and amplification properties of rod-type photonic crystal fibers with sectioned core doping

    DEFF Research Database (Denmark)

    Selleri, Stefano; Poli, Federica; Passaro, Davide

    2009-01-01

    Rod-type photonic crystal fibers are large mode area double-cladding fibers with an outer diameter of few millimeters which can provide important advantages for high-power lasers and amplifiers. Numerical studies have recently demonstrated the guidance of higher-order modes in these fibers, which...... can worsen the output beam quality of lasers and amplifiers. In the present analysis a sectioned core doping has been proposed for Yb-doped rod-type photonic crystal fibers, with the aim to improve the higher-order mode suppression. A full-vector modal solver based on the finite element method has...

  7. Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source

    DEFF Research Database (Denmark)

    Paulsen, H.N.; Hilligsøe, Karen Marie; Thøgersen, J.

    2003-01-01

    A coherent anti-Stokes Raman scattering microscope based on a Ti:sapphire femtosecond oscillator and a photonic crystal fiber is demonstrated. The nonlinear response of the fiber is used to generate the additional wavelength needed in the Raman process. The applicability of the setup is demonstra......A coherent anti-Stokes Raman scattering microscope based on a Ti:sapphire femtosecond oscillator and a photonic crystal fiber is demonstrated. The nonlinear response of the fiber is used to generate the additional wavelength needed in the Raman process. The applicability of the setup...

  8. A model of PCF in guarded type theory

    DEFF Research Database (Denmark)

    Paviotti, Marco; Møgelberg, Rasmus Ejlers; Birkedal, Lars

    2015-01-01

    Guarded recursion is a form of recursion where recursive calls are guarded by delay modalities. Previous work has shown how guarded recursion is useful for constructing logics for reasoning about programming languages with advanced features, as well as for constructing and reasoning about element...... adequate. The model construction is related to Escardo's metric model for PCF, but here everything is carried out entirely in type theory with guarded recursion, including the formulation of the operational semantics, the model construction and the proof of adequacy...... of coinductive types. In this paper we investigate how type theory with guarded recursion can be used as a metalanguage for denotational semantics useful both for constructing models and for proving properties of these. We do this by constructing a fairly intensional model of PCF and proving it computationally...

  9. A Model of PCF in Guarded Type Theory

    DEFF Research Database (Denmark)

    Paviotti, Marco; Møgelberg, Rasmus Ejlers; Birkedal, Lars

    2015-01-01

    Guarded recursion is a form of recursion where recursive calls are guarded by delay modalities. Previous work has shown how guarded recursion is useful for constructing logics for reasoning about programming languages with advanced features, as well as for constructing and reasoning about element...... adequate. The model construction is related to Escardo's metric model for PCF, but here everything is carried out entirely in type theory with guarded recursion, including the formulation of the operational semantics, the model construction and the proof of adequacy....... of coinductive types. In this paper we investigate how type theory with guarded recursion can be used as a metalanguage for denotational semantics useful both for constructing models and for proving properties of these. We do this by constructing a fairly intensional model of PCF and proving it computationally...

  10. Single-mode amplification in Yb-doped rod-type photonic crystal fibers for high brilliance lasers

    DEFF Research Database (Denmark)

    Poli, F.; Lægsgaard, Jesper; Passaro, D.

    2009-01-01

    This paper presents the effect of a low refractive index ring in the Yb-doped rod-type photonic crystal fibre core on the guided mode propagation and analyzed through a spatial and spectral amplifier model. The ring provides a higher differential overlap between the fundamental mode (FM...... to identify a proper ring characteristic that is width, position and refractive index. Then rod-type PCF designs have been optimized with a full-vector modal solver based on the finite-element method. Then, the amplification properties of the Yb-doped rod-type PCFs have been investigated by assuming a forward...

  11. Optimization of Tapered Photonic Crystal Fibers for Blue-Enhanced Supercontinuum Generation

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Larsen, Casper

    2012-01-01

    Tapering of photonic crystal fibers is an effective way of shifting the dispersive wavelength edge of a supercontinuum spectrum down in the deep-blue. We discuss the optimum taper profile for blue-enhanced supercontinuum generation....

  12. Extremely Low Loss THz Guidance Using Kagome Lattice Porous Core Photonic Crystal Fiber

    DEFF Research Database (Denmark)

    Hossain, Anwar; Hasanuzzaman, G.K.M.; Habib, Selim

    2015-01-01

    A novel porous core Kagome lattice photonic crystal fiber is proposed for extremely low loss THz waves guiding. It has been reported that 82.5% of bulk effective material loss of Topas can be reduced...

  13. Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor

    Science.gov (United States)

    Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, Abdelhamid A.; El Deeb, Walid S.; Obayya, Salah S. A.

    2016-10-01

    A design of a highly sensitive multichannel biosensor based on photonic crystal fiber is proposed and analyzed. The suggested design has a silver layer as a plasmonic material coated by a gold layer to protect silver oxidation. The reported sensor is based on detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes, which offers the possibility of multichannel/multianalyte sensing. The numerical results are obtained using a finite element method with perfect matched layer boundary conditions. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High-refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained according to the quasi TM and quasi TE modes of the proposed sensor, respectively. Further, the reported design can be used as a self-calibration biosensor within an unknown analyte refractive index ranging from 1.33 to 1.35 with high linearity and high accuracy. Moreover, the suggested biosensor has advantages in terms of compactness and better integration of microfluidics setup, waveguide, and metallic layers into a single structure.

  14. Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.

    2007-01-01

    We suggest and demonstrate a novel platform for the study of tunable nonlinear light propagation in two-dimensional discrete systems, based on photonic crystal fibers filled with high index nonlinear liquids. Using the infiltrated cladding region of a photonic crystal fiber as a nonlinear waveguide...... array, we experimentally demonstrate highly tunable beam diffraction and thermal self-defocusing, and realize a compact all-optical power limiter based on a tunable nonlinear response....

  15. Simulating human photoreceptor optics using a liquid-filled photonic crystal fiber.

    Science.gov (United States)

    Rativa, Diego; Vohnsen, Brian

    2011-02-11

    We introduce a liquid-filled photonic crystal fiber to simulate a retinal cone photoreceptor mosaic and the directionality selective mechanism broadly known as the Stiles-Crawford effect. Experimental measurements are realized across the visible spectrum to study waveguide coupling and directionality at different managed waveguide parameters. The crystal fiber method is a hybrid tool between theory and a real biological sample and a valuable addition as a retina model for real eye simulations.

  16. Yb-doped rod-type photonic crystal fibers for single-mode amplification

    DEFF Research Database (Denmark)

    Poli, Frederica; Passaro, Davide; Cucinotta, Annamaria

    2009-01-01

    The competition among the guided modes in rod-type photonic crystal fibers with a low refractive index ring in the Yb-doped core is investigated with an amplifier model to demonstrate the effective higher-order mode suppression.......The competition among the guided modes in rod-type photonic crystal fibers with a low refractive index ring in the Yb-doped core is investigated with an amplifier model to demonstrate the effective higher-order mode suppression....

  17. Low Loss and Highly Birefringent Hollow-Core Photonic Crystal Fiber

    DEFF Research Database (Denmark)

    Roberts, P. John; Williams, D.P.; Mangan, Brian J.

    2006-01-01

    A hollow-core photonic crystal fiber design is proposed which enables both low-loss and polarization-maintained signal propagation. The design relies on an arrangement of antiresonant features positioned on the glass ring that surrounds the air core.......A hollow-core photonic crystal fiber design is proposed which enables both low-loss and polarization-maintained signal propagation. The design relies on an arrangement of antiresonant features positioned on the glass ring that surrounds the air core....

  18. Intermodal parametric gain of degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2013-01-01

    Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process.......Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process....

  19. A Polarization Maintaining Filter based on a Liquid-Crystal-Photonic-Bandgap-Fiber

    DEFF Research Database (Denmark)

    Scolari, Lara; Olausson, Christina Bjarnal Thulin; Turchinovich, Dmitry

    2008-01-01

    A polarization maintaining filter based on a liquid-crystal-photonic-bandgap-fiber is demonstrated. Its polarization extinction ratio is 14 dB at 1550 nm. Its tunability is 150 nm.......A polarization maintaining filter based on a liquid-crystal-photonic-bandgap-fiber is demonstrated. Its polarization extinction ratio is 14 dB at 1550 nm. Its tunability is 150 nm....

  20. Modeling thermo-optic effect in large mode area double cladding photonic crystal fibers

    Science.gov (United States)

    Coscelli, Enrico; Cucinotta, Annamaria

    2014-02-01

    The impact of thermally-induced refractive index changes on the single-mode (SM) properties of large mode area (LMA) photonic crystal fibers are thoroughly investigated by means of a full-vector modal solver with integrated thermal model. Three photonic crystal fiber designs are taken into account, namely the 19-cell core fiber, the large-pitch fiber (LPF) and the distributed modal filtering (DMF) fiber, to assess the effects of the interplay between thermal effects and the high-order mode (HOM) suppression mechanisms exploited in order to obtain effectively SM guiding. The results have shown significant differences in the way the SM regime is changed by the increase of heat load, providing useful hints for the design of LMA fibers for high power lasers.

  1. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    Science.gov (United States)

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  2. Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas T.; Poli, Federica

    2012-01-01

    A large-mode-area Ytterbium-doped photonic crystal fiber amplifier with build-in gain shaping is presented. The fiber cladding consists of a hexagonal lattice of air holes, where three rows are replaced with circular high-index inclusions. Seven missing air holes define the large-mode-area core. ...

  3. Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Bang, Ole

    2008-01-01

    We study the sensitivity of fiber grating sensors in the applications of strain, temperature, internal label-free biosensing, and internal refractive index sensing. New analytical expressions for the sensitivities, valid for photonic crystal fibers are rigorously derived. These are generally vali...

  4. Applications of photonic crystal fibers in optical communications - What is in the future?

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Lin, Chinlon

    2005-01-01

    Superior control of guiding properties in photonic-crystal fibers led to several interesting applications in optical communications ranging from nonlinear optical signal processing to high-power fiber amplifiers. This paper will review recent developments and discuss the future possibilities....

  5. Advances in Single-Crystal Fibers and Thin Rods Grown by Laser Heated Pedestal Growth

    Directory of Open Access Journals (Sweden)

    Gisele Maxwell

    2017-01-01

    Full Text Available Single-crystal fibers are an intermediate between laser crystals and doped glass fibers. They have the advantages of both guiding laser light and matching the efficiencies found in bulk crystals, which is making them ideal candidates for high-power laser and fiber laser applications. This work focuses on the growth of a flexible fiber with a core of dopant (Er, Nd, Yb, etc. and a polycrystalline clad of yttrium aluminum garnet (YAG that will exhibit good wave guiding properties. Direct growth or a combination of growth and cladding experiments are described. Scattering loss measurements at visible wavelengths, along with dopant profile characterization with damage threshold results, are also presented. For single-pass amplification, a single-pass linear gain of 7.4 was obtained for 29 nJ pulses of 5 ns duration at 1 MHz repetition rate. We also obtained a laser efficiency of over 58% in a diode-pumped configuration. These results confirm the potential for single-crystal fibers to overcome the limitations of the glass fibers commonly used in fiber lasers, making them prime candidates for high-power compact fiber lasers and amplifiers.

  6. Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Oo, M. K .K.; Han, Y.; Kaňka, Jiří; Sukhishvili, S.; Du, H.

    2010-01-01

    Roč. 35, č. 4 (2010), s. 466-468 ISSN 0146-9592 R&D Projects: GA ČR GA102/08/1719 Institutional research plan: CEZ:AV0Z20670512 Keywords : Photonic crystal fiber * Raman spectroscopy * Fiber-optic evanescent sensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.316, year: 2010

  7. Square-lattice large-pitch hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Couny, F.; Roberts, John; Birks, T.A.

    2008-01-01

    We report on the design, fabrication and characterization of silica square-lattice hollow core photonic crystal fibers optimized for low loss guidance over an extended frequency range in the mid-IR region of the optical spectrum. The fiber's linear optical properties include an ultra-low group...... velocity dispersion and a polarization cross-coupling as low as -13.4dB over 10m of fiber....

  8. The emulsion crystallization of hydrogenated castor oil into long thin fibers

    Science.gov (United States)

    De Meirleir, Niels; Pellens, Linda; Broeckx, Walter; De Malsche, Wim

    2013-11-01

    The present study discusses the optimal crystal growth conditions required for the emulsion crystallization of hydrogenated castor oil (HCO) into several crystal morphologies. The best possible crystal shape is furthermore identified in case high rheology modifying performance is required. HCO was crystallized in a meso- and micro-continuous process which allowed for a controlled and fast screening of several crystal morphologies at different crystallization conditions. Applying high isothermal temperatures (above 55 °C) resulted in a combination of rosettes, thick fibers and thin fibers. At lower isothermal temperatures (below 55 °C) the shape gradually evolved to a combination of short needles, spherically shaped and/or irregularly shaped crystals. Crystals with the highest aspect ratio were obtained when crystals were grown between 30 °C and 45 °C and were subsequently reheated above 63 °C, forming high amounts of large thin fibrous crystals. When diluted to 0.25 wt% these fibrous crystals increased the low shear viscosity far better compared to the other crystal shapes.

  9. Compact, integrable, and long life time Raman multiline UV-Vis source based on hypocycloid core Kagome HC-PCF

    Science.gov (United States)

    Chafer, M.; Lekiefs, Q.; Gorse, A.; Beaudou, B.; Debord, B.; Gérôme, F.; Benabid, F.

    2017-02-01

    Raman-gas filled HC-PCF has proved to be an outstanding Raman-convertor, as illustrated by the generation of more than 5 octaves wide Raman comb using a hydrogen-filled Kagome HC-PCF pumped with high power picosecond-laser, or the generation of multiline Raman-source in the UV-Vis using a very compact system pumped with micro-chip laser. Whilst these demonstrations are promising, a principal challenge for the industrialization of such a Raman source is its lifetime as the H2 diffusion through silica is high enough to leak out from the fiber within only a few months. Here, we report on a HC-PCF based Raman multiline source with a very long life-span. The system consists of hydrogen filled ultra-low loss HC-PCF contained in highly sealed box, coined CombBox, and pumped with a 532 nm micro-chip laser. This combination is a turnkey multiline Raman-source with a "shoe box" size. The CombBox is a robust and compact component that can be integrated and pumped with any common pulsed laser. When pumped with a 32 mW average power and 1 ns frequency-doubled Nd:Yag microchip laser, this Raman-source generates 24 lines spanning from 355 to 745 nm, and a peak power density per line of 260 mW/nm for the strongest lines. Both the output power and the spectrum remained constant over its monitoring duration of more than six months. The spectrum of this multiline laser superimposes with no less than 17 absorption peaks of fluorescent dyes from the Alexa Fluor family used as biological markers.

  10. Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform

    Czech Academy of Sciences Publication Activity Database

    Pinkhasova, P.; Chen, H.; Kaňka, Jiří; Mergo, P.; Du, H.

    2015-01-01

    Roč. 106, č. 7 (2015), 0711061-0711064 ISSN 0003-6951 R&D Projects: GA MŠk(CZ) LH11038 Institutional support: RVO:67985882 Keywords : Photonic crystal fibers * Raman scattering * Crystal whiskers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.142, year: 2015

  11. Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope.

    Science.gov (United States)

    Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei

    2017-10-26

    A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10 -5 deg/√h.

  12. Influences of chemical aging on the surface morphology and crystallization behavior of basaltic glass fibers

    DEFF Research Database (Denmark)

    Lund, Majbritt Deichgræber; Yue, Yuanzheng

    2008-01-01

    The impact of aging in high humidity and water on the surface morphology and crystallization behavior of basaltic glass fibers has been studied using scanning electron microscopy, transmission electron microscopy, calorimetry and X-ray diffraction. The results show that interaction between...... the fibers and the surrounding media (high humidity or water at 70 C) leads to chemical changes strongly affecting the surface morphology. The crystallization peak temperature of the basaltic glass fibers are increased without changing the onset temperature, this may be caused by a chemical depletion...

  13. Single-Crystal Sapphire Optical Fiber Sensor Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, Gary [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Scott, Brian [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Wang, Anbo [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Yu, Zhihao [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States)

    2013-12-31

    This report summarizes technical progress on the program “Single-Crystal Sapphire Optical Fiber Sensor Instrumentation,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. This project was completed in three phases, each with a separate focus. Phase I of the program, from October 1999 to April 2002, was devoted to development of sensing schema for use in high temperature, harsh environments. Different sensing designs were proposed and tested in the laboratory. Phase II of the program, from April 2002 to April 2009, focused on bringing the sensor technologies, which had already been successfully demonstrated in the laboratory, to a level where the sensors could be deployed in harsh industrial environments and eventually become commercially viable through a series of field tests. Also, a new sensing scheme was developed and tested with numerous advantages over all previous ones in Phase II. Phase III of the program, September 2009 to December 2013, focused on development of the new sensing scheme for field testing in conjunction with materials engineering of the improved sensor packaging lifetimes. In Phase I, three different sensing principles were studied: sapphire air-gap extrinsic Fabry-Perot sensors; intensity-based polarimetric sensors; and broadband polarimetric sensors. Black body radiation tests and corrosion tests were also performed in this phase. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. At the beginning of Phase II, in June 2004, the BPDI sensor was tested at the Wabash River coal gasifier

  14. Tailoring nonlinearity and dispersion of photonic crystal fibers using hybrid cladding

    International Nuclear Information System (INIS)

    Zhao-lun, Liu; Lan-tian, Hou; Wei, Wang

    2009-01-01

    We present a hybrid cladding photonic crystal fiber for shaping high nonlinear and flattened dispersion in a wide range of wavelengths. The new structure adopts hybrid cladding with different pitches, air-holes diameters and air-holes arrayed fashions. The full-vector finite element method with perfectly matched layer is used to investigate the characteristics of the hybrid cladding photonic crystal fiber such as nonlinearity and dispersion properties. The influence of the cladding structure parameters on the nonlinear coefficient and geometric dispersion is analyzed. High nonlinear coefficient and the dispersion properties of fibers are tailored by adjusting the cladding structure parameters. A novel hybrid cladding photonic crystal fiber with high nonlinear coefficient and dispersion flattened which is suited for super continuum generation is designed. (author)

  15. Guiding characteristics of sunflower-type fiber

    Science.gov (United States)

    Liu, Exian; Yan, Bei; Tan, Wei; Xie, Jianlan; Ge, Rui; Liu, Jianjun

    2018-03-01

    In this paper, the guiding characteristics of sunflower-type fiber (SFF) with 6-fold rotational symmetry are investigated theoretically using finite element method (FEM). The behavior of single-mode propagation in SFF is verified. Numerical results reveal that, the cutoff ratio for endlessly single-mode propagation in SFF is 0.575 which is larger than that of photonic crystal fiber (PCF) and photonic quasi-crystal fiber (PQF). Moreover, SFF can present ultra-flattened near-zero chromatic dispersion, 0.249 ± 1.146 ps/nm/km, in a broadband of wavelength covering 1.20-1.84 μm over all the telecommunication wavelengths. In term of chromatic dispersion and confinement loss in the wavelength range from 1.00 to 2.00 μm, a comparison between SFF, PCF and PQF with same structure parameters is carried out. Importantly, the rotational symmetry, as a new manageable structure parameter beyond common air hole diameter and lattice constant, can be employed to manipulate the chromatic dispersion, confinement loss, effective mode area and non-linear coefficient and it dependences on these guiding characteristics are discussed in detail.

  16. Band gap of two-dimensional fiber-air photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shu, E-mail: yangshu5678@163.com; Li, Masha

    2016-04-15

    A two-dimensional photonic crystal (PC) composed of textile fiber and air is initially discussed in this paper. Textile materials are so called soft materials, which are different from the previous PCs composed of rigid materials. The plain wave expansion method is used to calculate band structure of different PCs by altering component properties or structural parameters. Results show that the dielectric constant of textile fibers, fiber filling ratio and lattice arrangement are effective factors which influence PCs' band gap. Yet lattice constant and fiber diameter make inconspicuous influence on the band gap feature.

  17. Cross-correlated imaging of single-mode photonic crystal rod fiber with distributed mode filtering

    DEFF Research Database (Denmark)

    Laurila, Marko; Barankov, Roman; Jørgensen, Mette Marie

    2013-01-01

    Photonic crystal bandgap fibers employing distributed mode filtering design provide near diffraction-limited light outputs, a critical property of fiber-based high-power lasers. Microstructure of the fibers is tailored to achieve single-mode operation at specific wavelength by resonant mode...... identify regimes of resonant coupling between higher-order core modes and cladding band. We demonstrate a passive fiber design in which the higher-order modal content inside the single-mode guiding regime is suppressed by at least 20 dB even for significantly misaligned input-coupling configurations....

  18. Anomalous transparency in photonic crystals and its application to point-by-point grating inscription in photonic crystal fibers.

    Science.gov (United States)

    Baghdasaryan, Tigran; Geernaert, Thomas; Chah, Karima; Caucheteur, Christophe; Schuster, Kay; Kobelke, Jens; Thienpont, Hugo; Berghmans, Francis

    2018-04-03

    It is common belief that photonic crystals behave similarly to isotropic and transparent media only when their feature sizes are much smaller than the wavelength of light. Here, we counter that belief and we report on photonic crystals that are transparent for anomalously high normalized frequencies up to 0.9, where the crystal's feature sizes are comparable with the free space wavelength. Using traditional photonic band theory, we demonstrate that the isofrequency curves can be circular in the region above the first stop band for triangular lattice photonic crystals. In addition, by simulating how efficiently a tightly focused Gaussian beam propagates through the photonic crystal slab, we judge on the photonic crystal's transparency rather than on isotropy only. Using this approach, we identified a wide range of photonic crystal parameters that provide anomalous transparency. Our findings indicate the possibility to scale up the features of photonic crystals and to extend their operational wavelength range for applications including optical cloaking and graded index guiding. We applied our result in the domain of femtosecond laser micromachining, by demonstrating what we believe to be the first point-by-point grating inscribed in a multi-ring photonic crystal fiber.

  19. Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect

    DEFF Research Database (Denmark)

    Barkou, Stig Eigil; Broeng, Jes; Bjarklev, Anders Overgaard

    1999-01-01

    A theoretical investigation of a novel type of optical fiber is presented. The operation of the fiber relies entirely on wave guidance through the photonic bandgap effect and not on total internal reflection, thereby distinguishing that fiber from all other known fibers, including recently studied...... photonic crystal fibers. The novel fiber has a central low-index core region and a cladding consisting of a silica background material with air holes situated within a honeycomb lattice structure. We show the existence of photonic bandgaps for the silica–air cladding structure and demonstrate how light can...... be guided at the central low-index core region for a well-defined frequency that falls inside the photonic bandgap region of the cladding structure....

  20. Guiding and amplification properties of rod-type photonic crystal fibers with sectioned core doping

    Science.gov (United States)

    Selleri, S.; Poli, F.; Passaro, D.; Cucinotta, A.; Lægsgaard, J.; Broeng, J.

    2009-05-01

    Rod-type photonic crystal fibers are large mode area double-cladding fibers with an outer diameter of few millimeters which can provide important advantages for high-power lasers and amplifiers. Numerical studies have recently demonstrated the guidance of higher-order modes in these fibers, which can worsen the output beam quality of lasers and amplifiers. In the present analysis a sectioned core doping has been proposed for Ybdoped rod-type photonic crystal fibers, with the aim to improve the higher-order mode suppression. A full-vector modal solver based on the finite element method has been applied to properly design the low refractive index ring in the fiber core, which can provide an increase of the differential overlap between the fundamental and the higher-order mode. Then, the gain competition among the guided modes along the Yb-doped rod-type fibers has been investigated with a spatial and spectral amplifier model. Simulation results have shown the effectiveness of the sectioned core doping in worsening the higher-order mode overlap on the doped area, thus providing an effective single-mode behavior of the Yb-doped rod-type photonic crystal fibers.

  1. Compact Design of an Electrically Tunable and Rotatable Polarizer Based on a Liquid Crystal Photonic Bandgap Fiber

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    In this letter, a compact electrically controlled broadband liquid crystal (LC) photonic bandgap fiber polarizer is designed and fabricated. A good fiber coupling quality between two single-mode fibers and one 10-mm-long LC-filled photonic crystal fiber is obtained and protected by using SU-8 fiber...... fixing structures during the device assembly. The total insertion loss of this all-in-fiber device is 2.7 dB. An electrically tunable polarization extinction ratio of 21.3 dB is achieved with 45$^{circ}$ rotatable transmission axis as well as switched on and off in the wavelength range of 1300–1600 nm....

  2. Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber : toward a practical coherent fiber supercontinuum laser

    DEFF Research Database (Denmark)

    Tu, Haohua; Liu, Yuan; Liu, Xiaomin

    2012-01-01

    Dispersion-flattened dispersion-decreased all-normal dispersion (DFDD-ANDi) photonic crystal fibers have been identified as promising candidates for high-spectral-power coherent supercontinuum (SC) generation. However, the effects of the unintentional birefringence of the fibers on the SC generat...... of polarization-maintaining DFDD-ANDi fibers to avoid these adverse effects in pursuing a practical coherent fiber SC laser.......Dispersion-flattened dispersion-decreased all-normal dispersion (DFDD-ANDi) photonic crystal fibers have been identified as promising candidates for high-spectral-power coherent supercontinuum (SC) generation. However, the effects of the unintentional birefringence of the fibers on the SC...... generation have been ignored. This birefringence is widely present in nonlinear non-polarization maintaining fibers with a typical core size of 2 µm, presumably due to the structural symmetry breaks introduced in the fiber drawing process. We find that an intrinsic form-birefringence on the order of 10...

  3. Midinfrared optical rogue waves in soft glass photonic crystal fiber

    DEFF Research Database (Denmark)

    Buccoliero, Daniel; Steffensen, Henrik; Ebendorff-Heidepriem, Heike

    2011-01-01

    We investigate numerically the formation of extreme events or rogue waves in soft glass tellurite fibers and demonstrate that optical loss drastically diminishes shot-to-shot fluctuations characteristic of picosecond pumped supercontinuum (SC). When loss is neglected these fluctuations include...... distributions. Our results thus implicitly show that rogue waves will not occur in any SC spectrum that is limited by loss, such as commercial silica fiber based SC sources. © 2011 Optical Society of America....

  4. Ultrafast Raman scattering in gas-filled hollow-core fibers

    OpenAIRE

    Belli, Federico

    2017-01-01

    The experimental and numerical work reported here is rooted in ultrafast molecular phenomena and nonlinear fiber optics, which are brought together in a deceptively simple system: a homo-nuclear molecular gas (e.g. H2,D2) loaded in the hollow-core of a broad-band guiding photonic crystal fiber (PCF) and exposed to ultrashort pulses of moderate energies (∼ μJ). On one hand, the choice of a molecular gas as the nonlinear medium provides a rich playground for light-matter interactions. ...

  5. New Trends in Amplifiers and Sources via Chalcogenide Photonic Crystal Fibers

    Directory of Open Access Journals (Sweden)

    L. Mescia

    2012-01-01

    Full Text Available Rare-earth-doped chalcogenide glass fiber lasers and amplifiers have great applicative potential in many fields since they are key elements in the near and medium-infrared (mid-IR wavelength range. In this paper, a review, even if not exhaustive, on amplification and lasing obtained by employing rare-earth-doped chalcogenide photonic crystal fibers is reported. Materials, devices, and feasible applications in the mid-IR are briefly mentioned.

  6. Efficient Mid-Infrared Supercontinuum Generation in Tapered Large Mode Area Chalcogenide Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Petersen, Christian Rosenberg; Engelsholm, Rasmus Dybbro; Markos, Christos

    2017-01-01

    Mid-infrared supercontinuum spanning from 1.8-9  μm with an output power of 41.5 mW is demonstrated by pumping tapered large mode area chalcogenide photonic crystal fibers using a 4 μm optical parametric source.......Mid-infrared supercontinuum spanning from 1.8-9  μm with an output power of 41.5 mW is demonstrated by pumping tapered large mode area chalcogenide photonic crystal fibers using a 4 μm optical parametric source....

  7. Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wei, Lei; Alkeskjold, Thomas Tanggaard

    2009-01-01

    We demonstrate the photonic bandgap effect and the thermal tunability of bandgaps in microstructured polymer optical fibers infiltrated with liquid crystal. Two liquid crystals with opposite sign of the temperature gradient of the ordinary refractive index (E7 and MDA-00- 1444) are used to demons......We demonstrate the photonic bandgap effect and the thermal tunability of bandgaps in microstructured polymer optical fibers infiltrated with liquid crystal. Two liquid crystals with opposite sign of the temperature gradient of the ordinary refractive index (E7 and MDA-00- 1444) are used...... to demonstrate that both signs of the thermal tunability of the bandgaps are possible. The useful bandgaps are ultimately bounded to the visible range by the transparency window of the polymer....

  8. Temperature effects of Mach-Zehnder interferometer using a liquid crystal-filled fiber

    DEFF Research Database (Denmark)

    Ho, Bo-Yan; Su, Hsien-Pin; Tseng, Yu-Pei

    2015-01-01

    We demonstrated a simple and cost-effective method to fabricate all fiber Mach-Zehnder interferometer (MZI) based on cascading a short section of liquid crystal (LC)-filled hollow-optic fiber (HOF) between two single mode fibers by using automatically splicing technique. The transmission spectra...... of the proposed MZI with different LC-infiltrated length were measured and the temperature-induced wavelength shifts of the interference fringes were recorded. Both blue shift and red shift were observed, depending the temperature range. Based on our experimental results, interference fringe was observed...

  9. Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: A numerical study

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bjarklev, Anders Overgaard

    2004-01-01

    The mode profile evolution of small-core photonic crystal fibers (PCFs) during a gradual collapse of the cladding airholes is investigated. The mode overlap with standard step-index fibers having a small index contrast is calculated, and it is found that overlaps around 90% can be achieved in all...... cases studied, with the proper degree of hole collapse. Thus, hole collapse induced by, e.g. laser irradiation could prove an efficient and practical way of reducing splice losses when coupling small-core PCFs to other fiber types....

  10. Laser-cooled atoms inside a hollow-core photonic-crystal fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault

    2011-01-01

    We describe the loading of laser-cooled rubidium atoms into a single-mode hollow-core photonic-crystal fiber. Inside the fiber, the atoms are confined by a far-detuned optical trap and probed by a weak resonant beam. We describe different loading methods and compare their trade-offs in terms...... of implementation complexity and atom-loading efficiency. The most efficient procedure results in loading of ∼30,000 rubidium atoms, which creates a medium with an optical depth of ∼180 inside the fiber. Compared to our earlier study this represents a sixfold increase in the maximum achieved optical depth...

  11. All-optical control of group velocity dispersion in tellurite photonic crystal fibers.

    Science.gov (United States)

    Liu, Lai; Tian, Qijun; Liao, Meisong; Zhao, Dan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2012-12-15

    We demonstrate all-optical control of group velocity dispersion (GVD) via optical Kerr effect in highly nonlinear tellurite photonic crystal fibers. The redshift of the zero-dispersion wavelength is over 307 nm, measured by soliton self-frequency shift cancellation, when the pump peak power of a 1.56 μm femtosecond fiber laser is increased to 11.6 kW. The all-optical control of GVD not only offers a new platform for constructing all-optical-control photonic devices but also promises a new class of experiments in nonlinear fiber optics and light-matter interactions.

  12. Active Photonic crystal fibers for high power applications

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin

    The photonic crystal ber technology provides means to realize bers optimized for high power operation, due to the large single-mode cores and the unique design exibility of the microstructure. The work presented in this thesis focuses on improving the properties of active photonic crystal bers...... contributed to the compounding of new and improved material compositions. The second part is an investigation of pump absorption in photonic crystal bers, demonstrating that the microstructure in photonic crystal bers improves the pump absorption by up to a factor of two compared to step-index bers....... This plays an important role in high power lasers and ampliers with respect to efficiency, packaging, and thermal handling. The third part of the work has involved developing tools for characterizing the mode quality and stability of large core bers. Stable, single-mode bers with larger cores are essential...

  13. Design of turn-around-point long-period gratings in a photonic crystal fiber for refractometry of gases

    Czech Academy of Sciences Publication Activity Database

    Kaňka, Jiří

    2013-01-01

    Roč. 182, č. 6 (2013), s. 16-24 ISSN 0925-4005 R&D Projects: GA MŠk(CZ) LD11030; GA MŠk(CZ) LF11001 Institutional support: RVO:67985882 Keywords : Fiber design * Photonic crystal fiber * Microstructured optical fiber Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.840, year: 2013

  14. Photonic crystal fibers: fundamental properties and applications within sensors

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Riishede, Jesper; Broeng, Jes

    2003-01-01

    a large variety of novel optical properties and improvements compared to standard optical fibers. The stack-and-pull procedure used to manufacture PCFs is a highly flexible method offering a large degree of freedom in the fabrication of PCFs with specific characteristics. A few of the remarkable optical...

  15. High power supercontinuum generation in tapered photonic crystal fibers

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Larsen, Casper

    2012-01-01

    the concept of a group-acceleration mismatch, that for a given taper length, the downtapering section should be as long as possible to enhance the amount of blueshifted light. We also discuss the noise properties of supercontinuum in uniform and tapered fibers and we demonstrate that the amplitude noise...

  16. Efficient terahertz wave generation from GaP crystals pumped by chirp-controlled pulses from femtosecond photonic crystal fiber amplifier

    International Nuclear Information System (INIS)

    Li, Jiang; Shi, Junkai; Xu, Baozhong; Xing, Qirong; Wang, Chingyue; Chai, Lu; Liu, Bowen; Hu, Minglie; Li, Yanfeng; Fedotov, Andrey B.; Zheltikov, Aleksei M.

    2014-01-01

    A chirp-tunable femtosecond 10 W, 42 MHz photonic-crystal-fiber oscillator-amplifier system that is capable of delivering sub-60 fs light pulses at 1040 nm is used to demonstrate high-efficiency terahertz radiation generation via optical rectification in GaP crystals only a few millimeters in length. The optimization of the chirp of the fiber-laser pulses is shown to radically enhance the terahertz output, indicating one possible way to more efficiently use these extended nonlinear crystals in compact fiber-pumped terahertz radiation sources

  17. THz waveguides, devices and hybrid polymer-chalcogenide photonic crystal fibers

    DEFF Research Database (Denmark)

    Bao, Hualong; Markos, Christos; Nielsen, Kristian

    2014-01-01

    In this contribution, we review our recent activities in the design, fabrication and characterization of polymer THz waveguides. Besides the THz waveguides, we finally will also briefly show some of our initial results on a novel hybrid polymer photonic crystal fiber with integrated chalcogenide...

  18. Zero-velocity solitons in high-index photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2011-01-01

    Nonlinear propagation in slow-light states of high-index photonic crystal fibers (PCFs) is studied numerically. To avoid divergencies in dispersion and nonlinear parameters around the zero-velocity mode, a time-propagating generalized nonlinear Schrödinger equation is formulated. Calculated slow-...

  19. Polymeric THz 2D Photonic Crystal Filters Fabricated by Fiber Drawing

    DEFF Research Database (Denmark)

    Stecher, Matthias; Jansen, Christian; Ahmadi-Boroujeni, Mehdi

    2012-01-01

    In this paper, we report on a new form of polymeric 2D photonic crystal filters for THz frequencies fabricated using a standard fiber drawing technique. The band stop filters were modeled and designed using the generalized multipole technique. The frequency and angle-dependent transmission...

  20. Long period gratings written in large-mode area photonic crystal fiber

    DEFF Research Database (Denmark)

    Nodop, D.; Linke, S.; Jansen, F.

    2008-01-01

    We report for the first time, to the best of our knowledge, on the fabrication and characterization of CO2-laser written long-period gratings in a large-mode area photonic crystal fiber with a core diameter of 25 mu m. The gratings have low insertion losses ( 10 d...

  1. Picosecond anti-Stokes generation in a photonic-crystal fiber for interferometric CARS microscopy

    DEFF Research Database (Denmark)

    Keiding, Søren Rud

    2006-01-01

    We generate tunable picosecond anti-Stokes pulses by four-wave mixing of two picosecond pump and Stokes pulse trains in a photonic-crystal fiber. The visible, spectrally narrow anti-Stokes pulses with shifts over 150 nm are generated without generating other spectral features. As a demonstration,...

  2. Characterization of external refractive index sensitivity of a photonic crystal fiber long-period grating

    Czech Academy of Sciences Publication Activity Database

    Tian, F.; Kaňka, Jiří; Du, H.

    2015-01-01

    Roč. 13, č. 7 (2015), s. 0705011-0705013 ISSN 1671-7694 R&D Projects: GA MŠk(CZ) LH11038 Institutional support: RVO:67985882 Keywords : Carbon dioxide lasers * Crystal whiskers * Optical fiber fabrication Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.899, year: 2015

  3. Photonic crystal fiber for layer-by-layer assembly and measurements of polyelectrolyte thin films

    Czech Academy of Sciences Publication Activity Database

    Tian, F.; Kaňka, Jiří; Sukhishvili, S.; Du, H.

    2012-01-01

    Roč. 37, č. 20 (2012), s. 4299-4301 ISSN 0146-9592 R&D Projects: GA MŠk(CZ) LH11038 Institutional support: RVO:67985882 Keywords : Photonic crystal fiber * Long-period grating * Optical sensors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.385, year: 2012

  4. Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Pedersen, Lars H.; Hoiby, Poul E.

    2004-01-01

    We demonstrate highly efficient evanescent-wave detection of fluorophore-labeled biomolecules in aqueous solutions positioned in the air holes of the microstructured part of a photonic crystal fiber. The air-suspended silica structures located between three neighboring air holes in the cladding c...

  5. Design of a novel multi channel photonic crystal fiber polarization beam splitter

    Science.gov (United States)

    Zhao, Yunyan; Li, Shuguang; Wang, Xinyu; Wang, Guangyao; Shi, Min; Wu, Junjun

    2017-10-01

    A kind of multi channel dual-core photonic crystal fiber polarization beam splitter is designed. We analyze the effects of the lattice parameters and the thickness of gold layer on the beam splitting by the finite element method. Numerical results show that the thickness of metal layer and the size of the air holes near the fiber cores are closely linked with the nature of the polarization beam splitter. We also obtain that extinction ratio can reach -73.87 dB at 1 . 55 μm wavelength and at 1 . 41 μm, 1 . 65 μm extinction ratio can reach 30.8978 dB and 31.1741 dB, respectively. The comparison of the effect on the characteristic of the photonic crystal fiber with coating no gold is also taken into account.

  6. Soliton self-frequency shift controlled by a weak seed laser in tellurite photonic crystal fibers.

    Science.gov (United States)

    Liu, Lai; Meng, Xiangwei; Yin, Feixiang; Liao, Meisong; Zhao, Dan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2013-08-01

    We report the first demonstration of soliton self-frequency shift (SSFS) controlled by a weak continuous-wave (CW) laser, from a tellurite photonic crystal fiber pumped by a 1560 nm femtosecond fiber laser. The control of SSFS is performed by the cross-gain modulation of the 1560 nm femtosecond laser. By varying the input power of the weak CW laser (1560 nm) from 0 to 1.17 mW, the soliton generated in the tellurite photonic crystal fiber blue shifts from 1935 to 1591 nm. The dependence of the soliton wavelength on the operation wavelength of the weak CW laser is also measured. The results show the CW laser with a wavelength tunable range of 1530-1592 nm can be used to control the SSFS generation.

  7. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Grass, David, E-mail: david.grass@univie.ac.at; Fesel, Julian; Hofer, Sebastian G.; Kiesel, Nikolai; Aspelmeyer, Markus, E-mail: markus.aspelmeyer@univie.ac.at [Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, A-1090 Vienna (Austria)

    2016-05-30

    We demonstrate an optical conveyor belt for levitated nanoparticles over several centimeters inside both air-filled and evacuated hollow-core photonic crystal fibers (HCPCF). Detection of the transmitted light field allows three-dimensional read-out of the particle center-of-mass motion. An additional laser enables axial radiation pressure based feedback cooling over the full fiber length. We show that the particle dynamics is a sensitive local probe for characterizing the optical intensity profile inside the fiber as well as the pressure distribution along the fiber axis. In contrast to some theoretical predictions, we find a linear pressure dependence inside the HCPCF, extending over three orders of magnitude from 0.2 mbar to 100 mbar. A targeted application is the controlled delivery of nanoparticles from ambient pressure into medium vacuum.

  8. Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Zeltner, R.; Russell, P. St.J. [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Department of Physics, University of Erlangen-Nuremberg, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Bykov, D. S.; Xie, S. [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Euser, T. G. [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2016-06-06

    We report an irradiation sensor based on a fluorescent “flying particle” that is optically trapped and propelled inside the core of a water-filled hollow-core photonic crystal fiber. When the moving particle passes through an irradiated region, its emitted fluorescence is captured by guided modes of the fiber core and so can be monitored using a filtered photodiode placed at the fiber end. The particle speed and position can be precisely monitored using in-fiber Doppler velocimetry, allowing the irradiation profile to be measured to a spatial resolution of ∼10 μm. The spectral response can be readily adjusted by appropriate choice of particle material. Using dye-doped polystyrene particles, we demonstrate detection of green (532 nm) and ultraviolet (340 nm) light.

  9. Nonlinear spatial mode imaging of hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Laurila, Marko

    2013-01-01

    Degenerate spontaneous four wave mixing is studied for the rst time in a large mode area hybrid photonic crystal ber, where light con nement is achieved by combined index- and bandgap guiding. Four wave mixing products are generated on the edges of the bandgaps, which is veri ed by numerical and ...... and experimental results. Since the core mode is in resonance with cladding modes near the bandedges an unconventional measurement technique is used, in this work named nonlinear spatial mode imaging....

  10. Evanescent Field Enhancement in Liquid Crystal Optical Fibers: A Field Characteristics Based Analysis

    Directory of Open Access Journals (Sweden)

    P. K. Choudhury

    2013-01-01

    Full Text Available The paper presents the analysis of the electromagnetic wave propagation through liquid crystal optical fibers (LCOFs of two different types—conventional guides loaded with liquid crystals (addressed as LCOFs and those with additional twists due to conducting helical windings (addressed as HCLCOFs. More precisely, the three-layer optical waveguide structures are considered along with its outermost region being loaded with radially anisotropic liquid crystal material and the inner regions being made of usual silica, as used in conventional optical fibers. In addition to that, LCOF with twists introduced in the form of conducting helical windings at the interface of the silica core and the liquid crystal clad is also taken into account. Emphasis has been put on the power confinements by the lower-order TE modes sustained in the different sections of the LCOF structure. The results demonstrate useful applications of these guides in integrated optics as the power sustained in the liquid crystal section by the excited TE modes remains very high. In the case of twisted clad liquid crystal guides, descriptions are limited to the nature of dispersion relation only under the TE mode excitation, and corresponding to the cases of helix orientations being parallel and perpendicular to the optical axis.

  11. Two Octaves Supercontinuum Generation in Lead-Bismuth Glass Based Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Ryszard Buczynski

    2014-06-01

    Full Text Available In this paper we report a two octave spanning supercontinuum generation in a bandwidth of 700–3000 nm in a single-mode photonic crystal fiber made of lead-bismuth-gallate glass. To our knowledge this is the broadest supercontinuum reported in heavy metal oxide glass based fibers. The fiber was fabricated using an in-house synthesized glass with optimized nonlinear, rheological and transmission properties in the range of 500–4800 nm. The photonic cladding consists of 8 rings of air holes. The fiber has a zero dispersion wavelength (ZDW at 1460 nm. Its dispersion is determined mainly by the first ring of holes in the cladding with a relative hole size of 0.73. Relative hole size of the remaining seven rings is 0.54, which allows single mode performance of the fiber in the infrared range and reduces attenuation of the fundamental mode. The fiber is pumped into anomalous dispersion with 150 fs pulses at 1540 nm. Observed spectrum of 700–3000 nm was generated in 2 cm of fiber with pulse energy below 4 nJ. A flatness of 5 dB was observed in 950–2500 nm range.

  12. Optical properties study of nano-composite filled D shape photonic crystal fibre

    Science.gov (United States)

    Udaiyakumar, R.; Mohamed Junaid, K. A.; Janani, T.; Maheswar, R.; Yupapin, P.; Amiri, I. S.

    2018-06-01

    With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF) is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor.

  13. Optical properties study of nano-composite filled D shape photonic crystal fibre

    Directory of Open Access Journals (Sweden)

    R. Udaiyakumar

    2018-06-01

    Full Text Available With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor. Keywords: Nanoparticles, Nano-composite, Dispersion, Birefringence, Beat length

  14. Repeatability and Reversibility of the Humidity Sensor Based on Photonic Crystal Fiber Interferometer

    Science.gov (United States)

    Hindal, S. S.; Taher, H. J.

    2018-05-01

    The RH sensor operation based on water vapor adsorption and desorption at the silica-air interface within the PCF. Sensor fabrication is simple; it includes splicing and cleaving the PCF with SMF only. PCF (LMA-10) with a certain length spliced to SMF (Corning-28). The PCFI spectrum exhibits good sensitivity to the variations of humidity. The PCFI response is observed for range of relative humidity values from (27% RH to 85% RH), the interference peaks position is found to be shifted to longer wavelength as the humidity increases. In this work, a 6cm length of PCFs is used, and it shows a sensitivity of (2.41pm / %RH), good repeatability, and reversible in nature. This humidity sensor has distinguished features as that the sensor does not require the use of a hygroscopic material, robust, compact size, immunity to electromagnetic interference, and it has potential applications for high humidity environments.

  15. Molecular Dynamics Modeling of PPTA Crystals in Aramid Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, Brian Scott [Univ. of California, Berkeley, CA (United States)

    2016-05-19

    In this work, molecular dynamics modeling is used to study the mechanical properties of PPTA crystallites, which are the fundamental microstructural building blocks of polymer aramid bers such as Kevlar. Particular focus is given to constant strain rate axial loading simulations of PPTA crystallites, which is motivated by the rate-dependent mechanical properties observed in some experiments with aramid bers. In order to accommodate the covalent bond rupture that occurs in loading a crystallite to failure, the reactive bond order force eld ReaxFF is employed to conduct the simulations. Two major topics are addressed: The rst is the general behavior of PPTA crystallites under strain rate loading. Constant strain rate loading simulations of crystalline PPTA reveal that the crystal failure strain increases with increasing strain rate, while the modulus is not a ected by the strain rate. Increasing temperature lowers both the modulus and the failure strain. The simulations also identify the C N bond connecting the aromatic rings as weakest primary bond along the backbone of the PPTA chain. The e ect of chain-end defects on PPTA micromechanics is explored, and it is found that the presence of a chain-end defect transfers load to the adjacent chains in the hydrogen-bonded sheet in which the defect resides, but does not in uence the behavior of any other chains in the crystal. Chain-end defects are found to lower the strength of the crystal when clustered together, inducing bond failure via stress concentrations arising from the load transfer to bonds in adjacent chains near the defect site. The second topic addressed is the nature of primary and secondary bond failure in crystalline PPTA. Failure of both types of bonds is found to be stochastic in nature and driven by thermal uctuations of the bonds within the crystal. A model is proposed which uses reliability theory to model bonds under constant strain rate loading as components with time-dependent failure rate

  16. Identification of Bloch-modes in hollow-core Photonic Crystal Fiber cladding

    DEFF Research Database (Denmark)

    Couny, F.; Benabid, F.; Roberts, John

    2007-01-01

    We report on the experimental visualization of the cladding Bloch-modes of a hollow-core photonic crystal fiber. Both spectral and spatial field information is extracted using the approach, which is based on measurement of the near-field and Fresnel-zone that results after propagation over a short...... length of fiber. A detailed study of the modes near the edges of the band gap shows that it is formed by the influence of three types of resonator: the glass interstitial apex, the silica strut which joins the neighboring apexes, and the air hole. The cladding electromagnetic field which survives...

  17. Design of low-loss and highly birefringent hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Roberts, Peter John; Williams, D.P.; Sabert, H.

    2006-01-01

    A practical hollow-core photonic crystal fiber design suitable for attaining low-loss propagation is analyzed. The geometry involves a number of localized elliptical features positioned on the glass ring that surrounds the air core and separates the core and cladding regions. The size of each...... feature is tuned so that the composite core-surround geometry is antiresonant within the cladding band gap, thus minimizing the guided mode field intensity both within the fiber material and at material / air interfaces. A birefringent design, which involves a 2-fold symmetric arrangement of the features...

  18. Domain-Reversed Lithium Niobate Single-Crystal Fibers are Potentially for Efficient Terahertz Wave Generation

    Directory of Open Access Journals (Sweden)

    Yalin Lu

    2008-01-01

    Full Text Available Nonlinear frequency conversion remains one of the dominant approaches to efficiently generate THz waves. Significant material absorption in the THz range is the main factor impeding the progress towards this direction. In this research, a new multicladding nonlinear fiber design was proposed to solve this problem, and as the major experimental effort, periodic domain structure was introduced into lithium niobate single-crystal fibers by electrical poling. The introduced periodic domain structures were nondestructively revealed using a crossly polarized optical microscope and a confocal scanning optical microscope for quality assurance.

  19. Growth and characterization of Yb:Ho:YAG single crystal fiber

    Science.gov (United States)

    Yang, Yilun; Ye, Linhua; Bao, Renjie; Li, Shanming; Zhang, Peixiong; Xu, Min; Hang, Yin

    2018-06-01

    High quality Yb and Ho co-doped Y3Al5O12 single crystal fibers have been successfully grown by the laser heated pedestal growth method of up to 124 mm in length and 450 μm in diameter for the first time. The results of inductively coupled plasma-atomic emission spectrometry analysis, X-ray diffraction and Raman spectroscopy reveal that the lattice structure and doping concentrations of the SCF are the same as that of the bulk. Scanning electron microscopy microphotographs shows that the fibers only have minor diameter fluctuations within 0.5%.

  20. The effect of pineapple core fiber on dough rheology and the quality of mantou

    Directory of Open Access Journals (Sweden)

    Sy-Yu Shiau

    2015-09-01

    Full Text Available The consumption of dietary fiber offers the health benefit of lowering the risk of many chronic diseases. Pineapple core fiber (PCF in this study was extracted and incorporated into dough and mantou (i.e., steamed bread. The effects of PCF substitution and fiber size on textural and rheological properties of dough and mantou were evaluated by a texture analyzer. The substitution of wheat flour by PCF resulted in a stiffer and less extensible dough with or without fermentation. The hardness and gumminess of mantou significantly increased as the PCF substitution increased from 0% to 15%, but the cohesiveness, specific volume, and elasticity significantly decreased with the fiber substitution. Ten percent PCF-enriched dough and mantou with various fiber sizes had similar rheological and textural properties, except for the k1 and k2 values. By sensory evaluation, 5% PCF-enriched mantou and the control bread had better acceptability in texture, color, odor, and overall acceptability, compared to mantous enriched with 10% or 15% PCF. Significant correlations existed between the rheological properties of dough and textural parameters of mantou and between the sensory quality and textural parameters of mantou. Therefore, we suggest that fiber-enriched mantou can be prepared with 5% PCF substitution to increase the intake of dietary fiber and maintain the quality of mantou.

  1. Tunable all-optical devices based on liquid-filled photonic crystal fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis; Neshev, Dragomir N.

    of discrete and nonlinear light propagation in extended two-dimensional periodic systems. We experimentally demonstrate strongly tunable beam diffraction in a triangular waveguide array created by infiltration of a high index liquid into the cladding holes of a standard PCF, and employ the thermal...... high-precision fabrication procedures, and provides high tunability and nonlinearity at moderate laser powers while taking advantage of a compact experimental setup. The increasingly broad range of PCF structures available could stimulate further efforts in applying them in discrete nonlinear optics...

  2. Coloration of chromium-doped yttrium aluminum garnet single-crystal fibers using a divalent codopant

    International Nuclear Information System (INIS)

    Tissue, B.M.; Jia, W.; Lu, L.; Yen, W.M.

    1991-01-01

    We have grown single-crystal fibers of Cr:YAG and Cr,Ca:YAG under oxidizing and reducing conditions by the laser-heated-pedestal-growth method. The Cr:YAG crystals were light green due to Cr 3+ in octahedral sites, while the Cr,Ca:YAG crystals were brown. The presence of the divalent codopant was the dominant factor determining the coloration in these single-crystal fibers, while the oxidizing power of the growth atmosphere had little effect on the coloration. The Cr,Ca:YAG had a broad absorption band centered at 1.03 μm and fluoresced from 1.1 to 1.7 μm, with a room-temperature lifetime of 3.5 μs. The presence of both chromium and a divalent codopant were necessary to create the optically-active center which produces the near-infrared emission. Doping with only Ca 2+ created a different coloration with absorption in the blue and ultraviolet. The coloration in the Cr,Ca:YAG is attributed to Cr 4+ and is produced in as-grown crystals without irradiation or annealing, as has been necessary in previous work

  3. Thermal Stress-Induced Depolarization Loss in Conventional and Panda-Shaped Photonic Crystal Fiber Lasers

    Science.gov (United States)

    Mousavi, Seyedeh Laleh; Sabaeian, Mohammad

    2016-10-01

    We report on the modeling of the depolarization loss in the conventional and panda-shaped photonic crystal fiber lasers (PCFLs) due to the self-heating of the fiber, which we call it thermal stress-induced depolarization loss (TSIDL). We first calculated the temperature distribution over the fiber cross sections and then calculated the thermal stresses/strains as a function of heat load per meter. Thermal stress-induced birefringence (TSIB), which is defined as | n x - n y |, in the core and cladding regions was calculated. Finally, TSIDL was calculated for the conventional and panda-shaped PCFLs as a function of fiber length and, respectively, saturated values of 22 and 25 % were obtained which were independent of heat load per meter. For panda-shaped PCFLs, prior to being saturated, an oscillating and damping behavior against the fiber length was seen where in some lengths reached 35 %. The results are close to an experimental value of 30 % reported for a pulsed PCFL (Limpert et al., Opt Express 12:1313-1319, 2004) where the authors reported a degree of polarization of 70 % (i.e., a depolarization of 30 %). The most important result of this work is a saturation behavior of TSIDL at long-enough lengths of the fiber laser which is independent of heat load per meter. To our knowledge, this the first report of TSIBL for PCFLs.

  4. Comment on "Design of a broadband highly dispersive pure silica photonic crystal fiber"

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger

    2008-01-01

    In a recent paper, Subbaraman et al. [Appl. Opt. 46, 3263–3268 (2007)] reported a theoretical and numerical study of highly dispersive pure silica photonic crystal fiber supporting group-velocity dispersion exceeding −2 × 104 ps=nm=km. This Comment argues that the authors consider only one of two...... sides of the same coin by not taking the corresponding beating length into account....

  5. Facet Appearance on the Lateral Face of Sapphire Single-Crystal Fibers during LHPG Growth

    Directory of Open Access Journals (Sweden)

    Liudmila D. Iskhakova

    2016-08-01

    Full Text Available Results of the study of the lateral surface of single-crystal (SC sapphire fibers grown along crystallographic directions [ 0001 ] and [ 11 2 ¯ 0 ] by the LHPG method are presented. The appearance or absence of faceting of the lateral surface of the fibers depending on the growth direction is analyzed. The crystallographic orientation of the facets is investigated. The microstructure of the samples is investigated with the help of an optical microscope and a JSM-5910LV scanning electronic microscope (JEOL. The crystallographic orientations of the facets on the SC sapphire fiber surface are determined by electron backscatter diffraction (EBSD. The seed orientation is studied by means of XRD techniques.

  6. Degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper

    2013-01-01

    Spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers, in which photonic bandgap guidance and index guidance is combined. Calculations show the parametric gain is maximum on the edge of a photonic bandgap, for a large range of pump...... wavelengths. The FWM products are observed on the edges of a transmission band experimentally, in good agreement with the numerical results. Thereby the bandedges can be used to control the spectral positions of FWM products through a proper fiber design. The parametric gain control combined with a large mode...... area fiber design potentially allows for power scaling of light at wavelengths not easily accessible with e.g. rare earth ions....

  7. Analysis of Leaky Modes in Photonic Crystal Fibers Using the Surface Integral Equation Method

    Directory of Open Access Journals (Sweden)

    Jung-Sheng Chiang

    2018-04-01

    Full Text Available A fully vectorial algorithm based on the surface integral equation method for the modelling of leaky modes in photonic crystal fibers (PCFs by solely solving the complex propagation constants of characteristic equations is presented. It can be used for calculations of the complex effective index and confinement losses of photonic crystal fibers. As complex root examination is the key technique in the solution, the new algorithm which possesses this technique can be used to solve the leaky modes of photonic crystal fibers. The leaky modes of solid-core PCFs with a hexagonal lattice of circular air-holes are reported and discussed. The simulation results indicate how the confinement loss by the imaginary part of the effective index changes with air-hole size, the number of rings of air-holes, and wavelength. Confinement loss reductions can be realized by increasing the air-hole size and the number of air-holes. The results show that the confinement loss rises with wavelength, implying that the light leaks more easily for longer wavelengths; meanwhile, the losses are decreased significantly as the air-hole size d/Λ is increased.

  8. PA6 and Kevlar fiber reinforced isotactic polypropylene: Structure, mechanical properties and crystallization and melting behavior

    International Nuclear Information System (INIS)

    Zhao, Songfang; Cheng, Lei; Guo, Yong; Zheng, Yuying; Li, Baoming

    2012-01-01

    Highlights: ► KF was modified with caprolactam using toluenediisocyanate (TDI) as bridge. ► Modified KF improves interfacial interaction of iPP/KF/PA6 composites. ► Fiber and nylon 6 inhibited the crystallization of PP continuous phase. -- Abstract: To improve the thermal and mechanical properties of isotactic polypropylene (iPP), iPP/Kevlar fiber (KF)/polyamide 6 (PA6) composites were prepared via the melt-extrusion method on twin-screw extruder. Kevlar fiber was modified with caprolactam using toluenediisocyanate (TDI) as bridge. The microstructure of modified KF was successfully characterized by Fourier transform infrared (FT-IR), X-ray photoelectron spectrometer (XPS) and scanning electron microscopy (SEM), the results showed that KF was bonded with caprolactam and became coarser. Then the modified KF was introduced into iPP, the composites have better mechanical and thermal properties, implying that modification of KF was helpful to improve the interfacial interaction of iPP/KF/PA6 composites. Besides, the crystallization curves indicated that crystallization behavior of PA6 in the composites was homogeneous and fractional. Furthermore, compatibilizer content played an important role in the mechanical and thermal properties of composites.

  9. The development of a single-crystal fiber-array scintillator area detector

    International Nuclear Information System (INIS)

    Loong, Chun; Vitt, Richard; Sayir, Ali; Sayir, Haluk

    2001-01-01

    The scientific output of a neutron instrument is directly proportional to the effectiveness of its detector system-coverage of scattering area, pixel resolution, counting efficiency, signal-to-noise ratio, life time and cost. The current neutron scintillator detectors employ mainly 6 Li-doped glass and ZnS, both of which present well-know limitations such as low light output, high gamma sensitivity in the case of 6 Li-glass and optical opacity in the case of ZnS. We aim to develop a position-sensitive, flight-time differentiable, efficient and cost-effective neutron detector system based on single-crystal scintillator fiber-arrays. The laser-heated melt modulation fiber growth technology developed at NASA provides the means to grow high-purity single-crystal fibers or rods of variable diameters (200 μm to 5 mm) and essentially unlimited length. Arrays of such fibers can be tailored to meet the requirements of pixel size, geometric configuration, and coverage area for a detector system. We report a plan in the growth and characterization of scintillators based on lithium silicates and boron aluminates using Ce as activator. (author)

  10. Ytterbium-doped large-mode-area photonic crystal fiber amplifier with gain shaping for use at long wavelengths

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas T.; Poli, Federica

    2012-01-01

    A large-mode-area Ytterbium-doped photonic crystal fiber amplifier with efficient suppression of amplified spontaneous emission is presented. The fiber cladding consists of a hexagonal lattice of air holes, where three rows are replaced with circular high-index inclusions. Seven missing air holes...

  11. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

    DEFF Research Database (Denmark)

    Daveau, Raphaël S.; Balram, Krishna C.; Pregnolato, Tommaso

    2017-01-01

    Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide (PCWG) singlephoton source relying on evanescent coupling of the light field from a tapered...

  12. CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss

    OpenAIRE

    Healy, Noel; Fokine, Michael; Franz, Yohann; Hawkins, Thomas; Jones, Maxwell; Ballato, John; Peacock, Anna C.; Gibson, Ursula J.

    2016-01-01

    Reduced losses in silicon-core fibers are obtained using CO2 laser directional recrystallization of the core. Single crystals with aspect ratios up to 1500:1 are reported, limited by the scan range of the equipment. This processing technique holds promise for bringing crystalline silicon-core fibers to a central role in nonlinear optics and signal processing applications.

  13. Fabrication of polycrystalline silicon thin films on glass substrates using fiber laser crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Dao, Vinh Ai; Han, Kuymin; Heo, Jongkyu; Kyeong, Dohyeon; Kim, Jaehong; Lee, Youngseok; Kim, Yongkuk; Jung, Sungwook; Kim, Kyunghae [Information and Communication Device Laboratory, School of Information and Communication Engineering, Sungkyunkwan University (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.k [Information and Communication Device Laboratory, School of Information and Communication Engineering, Sungkyunkwan University (Korea, Republic of)

    2009-05-29

    Laser crystallization of amorphous silicon (a-Si), using a fiber laser of {lambda} = 1064 nm wavelength, was investigated. a-Si films with 50 nm thickness deposited on glass were prepared by a plasma enhanced chemical vapor deposition. The infrared fundamental wave ({lambda} = 1064 nm) is not absorbed by amorphous silicon (a-Si) films. Thus, different types of capping layers (a-CeO{sub x}, a-SiN{sub x}, and a-SiO{sub x}) with a desired refractive index, n and thickness, d were deposited on the a-Si surface. Crystallization was a function of laser energy density, and was performed using a fiber laser. The structural properties of the crystallized films were measured via Raman spectra, a scanning electron microscope (SEM), and an atomic force microscope (AFM). The relationship between film transmittance and crystallinity was discussed. As the laser energy density increased from 10-40 W, crystallinity increased from 0-90%. However, the higher laser density adversely affected surface roughness and uniformity of the grain size. We found that favorable crystallization and uniformity could be accomplished at the lower energy density of 30 W with a-SiO{sub x} as the capping layer.

  14. High-Density Polyethylene and Heat-Treated Bamboo Fiber Composites: Nonisothermal Crystallization Properties

    Directory of Open Access Journals (Sweden)

    Yanjun Li

    2015-01-01

    Full Text Available The effect of heat-treated bamboo fibers (BFs on nonisothermal crystallization of high-density polyethylene (HDPE was investigated using differential scanning calorimetry under nitrogen. The Avrami-Jeziorny model was used to fit the measured crystallization data of the HDPE/BF composites and to obtain the model parameters for the crystallization process. The heat flow curves of neat HDPE and HDPE/heat-treated BF composites showed similar trends. Their crystallization mostly occurred within a temperature range between 379 K and 399 K, where HDPE turned from the liquid phase into the crystalline phase. Values of the Avrami exponent (n were in the range of 2.8~3.38. Lamellae of neat HDPE and their composites grew in a three-dimensional manner, which increased with increased heat-treatment temperature and could be attributed to the improved ability of heterogeneous nucleation and crystallization completeness. The values of the modified kinetic rate constant (KJ first increased and then decreased with increased cooling rate because the supercooling was improved by the increased number of nucleating sites. Heat-treated BF and/or a coupling agent could act as a nucleator for the crystallization of HDPE.

  15. Arc-Induced Long Period Gratings from Standard to Polarization-Maintaining and Photonic Crystal Fibers

    Directory of Open Access Journals (Sweden)

    Flavio Esposito

    2018-03-01

    Full Text Available In this work, we report about our recent results concerning the fabrication of Long Period Grating (LPG sensors in several optical fibers, through the Electric Arc Discharge (EAD technique. In particular, the following silica fibers with both different dopants and geometrical structures are considered: standard Ge-doped, photosensitive B/Ge codoped, P-doped, pure-silica core with F-doped cladding, Panda type Polarization-maintaining, and Hollow core Photonic crystal fiber. An adaptive platform was developed and the appropriate “recipe” was identified for each fiber, in terms of both arc discharge parameters and setup arrangement, for manufacturing LPGs with strong and narrow attenuation bands, low insertion losses, and short length. As the fabricated devices have appealing features from the application point of view, the sensitivity characteristics towards changes in different external perturbations (i.e., surrounding refractive index, temperature, and strain are investigated and compared, highlighting the effects of different fiber composition and structure.

  16. Design of an amplifier model accounting for thermal effect in fully aperiodic large pitch fibers

    Science.gov (United States)

    Tragni, K.; Molardi, C.; Poli, F.; Dauliat, R.; Leconte, B.; Darwich, D.; du Jeu, R.; Malleville, M. A.; Jamier, R.; Selleri, S.; Roy, P.; Cucinotta, A.

    2018-02-01

    Yb-doped Photonic Crystal Fibers (PCFs) have triggered a significant power scaling into fiber-based lasers. However thermally-induced effects, like mode instability, can compromise the output beam quality. PCF design with improved Higher Order Mode (HOM) delocalization and effective thermal resilience can contain the problem. In particular, Fully- Aperiodic Large-Pitch Fibers (FA-LPFs) have shown interesting properties in terms of resilience to thermal effects. In this paper the performances of a Yb-doped FA-LPF amplifier are experimentally and numerically investigated. Modal properties and gain competition between Fundamental Mode (FM) and first HOM have been calculated, in presence of thermal effects. The main doped fiber characteristics have been derived by comparison between experimental and numerical results.

  17. Mutual interaction between high and low stereo-regularity components for crystallization and melting behaviors of polypropylene blend fibers

    Science.gov (United States)

    Kawai, Kouya; Kohri, Youhei; Takarada, Wataru; Takebe, Tomoaki; Kanai, Toshitaka; Kikutani, Takeshi

    2016-03-01

    Crystallization and melting behaviors of blend fibers of two types of polypropylene (PP), i.e. high stereo-regularity/high molecular weight PP (HPP) and low stereo-regularity/low molecular weight PP (LPP), was investigated. Blend fibers consisting of various HPP/LPP compositions were prepared through the melt spinning process. Differential scanning calorimetry (DSC), temperature modulated DSC (TMDSC) and wide-angle X-ray diffraction (WAXD) analysis were applied for clarifying the crystallization and melting behaviors of individual components. In the DSC measurement of blend fibers with high LPP composition, continuous endothermic heat was detected between the melting peaks of LPP at around 40 °C and that of HPP at around 160 °C. Such endothermic heat was more distinct for the blend fibers with higher LPP composition indicating that the melting of LPP in the heating process was hindered because of the presence of HPP crystals. On the other hand, heat of crystallization was detected at around 90 °C in the case of blend fibers with LPP content of 30 to 70 wt%, indicating that the crystallization of HPP component was taking place during the heating of as-spun blend fibers in the DSC measurement. Through the TMDSC analysis, re-organization of the crystalline structure through the simultaneous melting and re-crystallization was detected in the cases of HPP and blend fibers, whereas re-crystallization was not detected during the melting of LPP fibers. In the WAXD analysis during the heating of fibers, amount of a-form crystal was almost constant up to the melting in the case of single component HPP fibers, whereas there was a distinct increase of the intensity of crystalline reflections from around 100 °C, right after the melting of LPP in the case of blend fibers. These results suggested that the crystallization of HPP in the spinning process as well as during the conditioning process after spinning was hindered by the presence of LPP.

  18. Mutual interaction between high and low stereo-regularity components for crystallization and melting behaviors of polypropylene blend fibers

    International Nuclear Information System (INIS)

    Kawai, Kouya; Takarada, Wataru; Kikutani, Takeshi; Kohri, Youhei; Takebe, Tomoaki; Kanai, Toshitaka

    2016-01-01

    Crystallization and melting behaviors of blend fibers of two types of polypropylene (PP), i.e. high stereo-regularity/high molecular weight PP (HPP) and low stereo-regularity/low molecular weight PP (LPP), was investigated. Blend fibers consisting of various HPP/LPP compositions were prepared through the melt spinning process. Differential scanning calorimetry (DSC), temperature modulated DSC (TMDSC) and wide-angle X-ray diffraction (WAXD) analysis were applied for clarifying the crystallization and melting behaviors of individual components. In the DSC measurement of blend fibers with high LPP composition, continuous endothermic heat was detected between the melting peaks of LPP at around 40 °C and that of HPP at around 160 °C. Such endothermic heat was more distinct for the blend fibers with higher LPP composition indicating that the melting of LPP in the heating process was hindered because of the presence of HPP crystals. On the other hand, heat of crystallization was detected at around 90 °C in the case of blend fibers with LPP content of 30 to 70 wt%, indicating that the crystallization of HPP component was taking place during the heating of as-spun blend fibers in the DSC measurement. Through the TMDSC analysis, re-organization of the crystalline structure through the simultaneous melting and re-crystallization was detected in the cases of HPP and blend fibers, whereas re-crystallization was not detected during the melting of LPP fibers. In the WAXD analysis during the heating of fibers, amount of a-form crystal was almost constant up to the melting in the case of single component HPP fibers, whereas there was a distinct increase of the intensity of crystalline reflections from around 100 °C, right after the melting of LPP in the case of blend fibers. These results suggested that the crystallization of HPP in the spinning process as well as during the conditioning process after spinning was hindered by the presence of LPP.

  19. Mutual interaction between high and low stereo-regularity components for crystallization and melting behaviors of polypropylene blend fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Kouya; Takarada, Wataru; Kikutani, Takeshi, E-mail: kikutani.t.aa@m.titech.ac.jp [Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Kohri, Youhei; Takebe, Tomoaki [Performance Materials Laboratories, Idemitsu Kosan Co.,Ltd. (Japan); Kanai, Toshitaka [KT Polymer (Japan)

    2016-03-09

    Crystallization and melting behaviors of blend fibers of two types of polypropylene (PP), i.e. high stereo-regularity/high molecular weight PP (HPP) and low stereo-regularity/low molecular weight PP (LPP), was investigated. Blend fibers consisting of various HPP/LPP compositions were prepared through the melt spinning process. Differential scanning calorimetry (DSC), temperature modulated DSC (TMDSC) and wide-angle X-ray diffraction (WAXD) analysis were applied for clarifying the crystallization and melting behaviors of individual components. In the DSC measurement of blend fibers with high LPP composition, continuous endothermic heat was detected between the melting peaks of LPP at around 40 °C and that of HPP at around 160 °C. Such endothermic heat was more distinct for the blend fibers with higher LPP composition indicating that the melting of LPP in the heating process was hindered because of the presence of HPP crystals. On the other hand, heat of crystallization was detected at around 90 °C in the case of blend fibers with LPP content of 30 to 70 wt%, indicating that the crystallization of HPP component was taking place during the heating of as-spun blend fibers in the DSC measurement. Through the TMDSC analysis, re-organization of the crystalline structure through the simultaneous melting and re-crystallization was detected in the cases of HPP and blend fibers, whereas re-crystallization was not detected during the melting of LPP fibers. In the WAXD analysis during the heating of fibers, amount of a-form crystal was almost constant up to the melting in the case of single component HPP fibers, whereas there was a distinct increase of the intensity of crystalline reflections from around 100 °C, right after the melting of LPP in the case of blend fibers. These results suggested that the crystallization of HPP in the spinning process as well as during the conditioning process after spinning was hindered by the presence of LPP.

  20. An All-Fiber Gas Raman Light Source Based on a Hydrogen-Filled Hollow-Core Photonic Crystal Fiber Pumped with a Q-Switched Fiber Laser

    International Nuclear Information System (INIS)

    Chen Xiao-Dong; Mao Qing-He; Sun Qing; Zhao Jia-Sheng; Li Pan; Feng Su-Juan

    2011-01-01

    A gas Raman light source based on a H 2 -filled hollow-core photonic-crystal-fiber cell with a Q-switched fiber laser followed by a fiber amplifier as the Raman pump source is demonstrated. The Stokes frequency-shift lasing line is observed at 1135.7 nm with the Q-switched pump pulses at 1064.7 nm. Our experimental results show that the generated Stokes pulse is much narrower than the pump pulse, and the generated Stokes pulse duration is increased with the single pulse energy for the same duration pump pulses. For the 125 ns pump pulses with a repetition rate of 5 kHz, the Raman threshold pump energy and the conversion efficiency at the Raman threshold are 2.13 μJ and 9.82%. Moreover, by choosing narrower pump pulses, the Raman threshold pump energy may be reduced and the conversion efficiency may be improved. (fundamental areas of phenomenology(including applications))

  1. Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber.

    Science.gov (United States)

    Schmidt, Oliver A; Euser, Tijmen G; Russell, Philip St J

    2013-12-02

    We show how microparticles can be moved over long distances and precisely positioned in a low-loss air-filled hollow-core photonic crystal fiber using a coherent superposition of two co-propagating spatial modes, balanced by a backward-propagating fundamental mode. This creates a series of trapping positions spaced by half the beat-length between the forward-propagating modes (typically a fraction of a millimeter). The system allows a trapped microparticle to be moved along the fiber by continuously tuning the relative phase between the two forward-propagating modes. This mode-based optical conveyor belt combines long-range transport of microparticles with a positional accuracy of 1 µm. The technique also has potential uses in waveguide-based optofluidic systems.

  2. A New Generation Fiber Optic Probe: Characterization of Biological Fluids, Protein Crystals and Ophthalmic Diseases

    Science.gov (United States)

    Ansari, Rafat R.; Suh, Kwang I.

    1996-01-01

    A new fiber optic probe developed for determining transport properties of sub-micron particles in fluids experiments in a microgravity environment has been applied to characterize particulate dispersions/suspensions in various challenging environments which have been hitherto impossible. The probe positioned in front of a sample delivers a low power light (few nW - 3mW) from a laser and guides the light which is back scattered by the suspended particles through a receiving optical fiber to a photo detector and to a digital correlator. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions. It has been applied to characterize various biological fluids, protein crystals, and ophthalmic diseases.

  3. Stress induced birefringence in hybrid TIR/PBG guiding solid photonic crystal fibers

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian; Mangan, Brian Joseph; Olausson, Christina Bjarnal Thulin

    2010-01-01

    We report on two types of polarization maintaining solid photonic crystal fibers that guide light by a combination of a photonic bandgap and total internal reflection. Group and phase birefringence are studied experimentally and numerically for stress-applying parts made from B-doped and F......-doped silica. The stress field originating from Ge-doped cladding rods is shown to interfere with the stress field from the B-doped and F-doped rods. Since the differential expansion coefficients of B-doped and F-doped silica have opposite signs this interference is either destructive or constructive....... Consequently, we found that the fiber with F-doped stress applying parts has the highest modal phase birefringence, and polarization cross talk is characterized by an h-parameter below 3⋅10−5 m−1....

  4. Field analysis of TE and TM modes in photonic crystal Bragg fibers by transmission matrix method

    Directory of Open Access Journals (Sweden)

    M Hosseini Farzad

    2010-03-01

    Full Text Available In this article, we considered the field analysis in photonic crystal Bragg fibers. We apply the method of transmission matrix to calculater the dispersion curves, the longitudinal wave number over wave number versus incident wavelength, and the field distributions of TE and TM modes in the Bragg fiber. Our analysis shows that the field of guided modes is confined in the core and can exist only in particular wavelength bands corresponding to the band-gap of the periodic structure of the clad. From another point of view, light confinement is due to Bragg reflection from high-and low-refractive index layers of the clad. Also, the diagram of average angular frequency with respect to average longitudinal wave number is plotted so that the band gap regions of the clad are clearly observed.

  5. All-Optical Signal processing using Highly Nonlinear Photonic Crystal Fiber

    DEFF Research Database (Denmark)

    Andersen, Peter Andreas

    2006-01-01

    -optical regeneration is the only possible way of regenerating a signal with the current technology. Transforming the current telecommunication network into an all-optical network will require an all-optical regeneration of the optical signal. At the current time (May 2005) all-optical regeneration is a tool only used......The use of HNL-PCF in optical communication systems has been investigated in this thesis. The investigation has been done with respect to the future of telecommunications in an all-optical system. The PCFs used have all been used for all-optical signal processing as part of an optical component...... and the possibility of large differences between the refractive indices of the core and the cladding by using air-holes, makes PCFs suited for custom made components. By testing a HNL-PCF as a medium for supercontinuum generation at various dispersion values and at the same time using that supercontinuum...

  6. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes

    International Nuclear Information System (INIS)

    Han Ying; Hou Lan-Tian; Zhou Gui-Yao; Xia Chang-Ming; Wang Wei; Wang Chao; Hou Zhi-Yun; Yuan Jin-Hui

    2012-01-01

    Flat supercontinuum in the telecommunication wave bands of E+S+C is generated by coupling a train of femtosecond pulses generated by a mode-locked Ti:sapphire laser into the fundamental mode of a photonic crystal fiber with central holes fabricated in our lab. The pulse experiences the anomalous dispersion regime, and the soliton dynamic effect plays an important role in supercontinuum generation. The output spectrum in the wavelength range of 1360–1565 nm does not include significant ripples due to higher pump peak power, and the normalized intensity shows less fluctuation. (fundamental areas of phenomenology(including applications))

  7. Noise filtering in a multi-channel system using a tunable liquid crystal photonic bandgap fiber

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal; Scolari, Lara; Tokle, Torger

    2008-01-01

    This paper reports on the first application of a liquid crystal infiltrated photonic bandgap fiber used as a tunable filter in an optical transmission system. The device allows low-cost amplified spontaneous emission (ASE) noise filtering and gain equalization with low insertion loss and broad...... tunability. System experiments show that the use of this filter increases for times the distance over which the optical signal-to-noise ratio (OSNR) is sufficient for error-free transmission with respect to the case in which no filtering is used....

  8. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    . The laser output is compressed in a spliced-on hollow-core PM photonic crystal fiber, thus providing direct end-of-the-fiber delivery of pulses of around 370 fs duration and 4 nJ energy with high mode quality. Tuning the pump power of the end amplifier of the laser allows for the control of output pulse......We report on an environmentally stable self-starting monolithic (i.e. without any free-space coupling) all-polarization-maintaining (PM) femtosecond Yb-fiber laser, stabilized against Q-switching by a narrow-band fiber Bragg grating and modelocked using a semiconductor saturable absorber mirror...

  9. Detection of Collapse and Crystallization of Saccharide, Protein and Mannitol Formulations by Optical Fibers in Lyophilization

    Science.gov (United States)

    Horn, Jacqueline; Friess, Wolfgang

    2018-01-01

    The collapse temperature (Tc) and the glass transition temperature of freeze-concentrated solutions (Tg’) as well as the crystallization behavior of excipients are important physicochemical characteristics which guide the cycle development in freeze-drying. The most frequently used methods to determine these values are differential scanning calorimetry (DSC) and freeze-drying microscopy (FDM). The objective of this study was to evaluate the optical fiber system (OFS) unit as alternative tool for the analysis of Tc, Tg’ and crystallization events. The OFS unit was also tested as a potential online monitoring tool during freeze-drying. Freeze/thawing and freeze-drying experiments of sucrose, trehalose, stachyose, mannitol and highly concentrated IgG1 and lysozyme solutions were carried out and monitored by the OFS. Comparative analyses were performed by DSC and FDM. OFS and FDM results correlated well. The crystallization behavior of mannitol could be monitored by the OFS during freeze/thawing as it can be done by DSC. Online monitoring of freeze-drying runs detected collapse of amorphous saccharide matrices. The OFS unit enabled the analysis of both Tc and crystallization processes, which is usually carried out by FDM and DSC. The OFS can hence be used as novel measuring device. Additionally, detection of these events during lyophilization facilitate online-monitoring. Thus the OFS is a new beneficial tool for the development and monitoring of freeze-drying processes.

  10. Detection of Collapse and Crystallization of Saccharide, Protein, and Mannitol Formulations by Optical Fibers in Lyophilization

    Directory of Open Access Journals (Sweden)

    Jacqueline Horn

    2018-01-01

    Full Text Available The collapse temperature (Tc and the glass transition temperature of freeze-concentrated solutions (Tg' as well as the crystallization behavior of excipients are important physicochemical characteristics which guide the cycle development in freeze-drying. The most frequently used methods to determine these values are differential scanning calorimetry (DSC and freeze-drying microscopy (FDM. The objective of this study was to evaluate the optical fiber system (OFS unit as alternative tool for the analysis of Tc, Tg' and crystallization events. The OFS unit was also tested as a potential online monitoring tool during freeze-drying. Freeze/thawing and freeze-drying experiments of sucrose, trehalose, stachyose, mannitol, and highly concentrated IgG1 and lysozyme solutions were carried out and monitored by the OFS. Comparative analyses were performed by DSC and FDM. OFS and FDM results correlated well. The crystallization behavior of mannitol could be monitored by the OFS during freeze/thawing as it can be done by DSC. Online monitoring of freeze-drying runs detected collapse of amorphous saccharide matrices. The OFS unit enabled the analysis of both Tc and crystallization processes, which is usually carried out by FDM and DSC. The OFS can hence be used as novel measuring device. Additionally, detection of these events during lyophilization facilitates online-monitoring. Thus the OFS is a new beneficial tool for the development and monitoring of freeze-drying processes.

  11. Diode-pumped laser with Yb:YAG single-crystal fiber grown by the micro-pulling down technique

    Science.gov (United States)

    Sangla, D.; Aubry, N.; Didierjean, J.; Perrodin, D.; Balembois, F.; Lebbou, K.; Brenier, A.; Georges, P.; Tillement, O.; Fourmigué, J.-M.

    2009-02-01

    Laser emission obtained from an Yb:YAG single-crystal fiber directly grown by the micro-pulling down technique is demonstrated for the first time. We achieved 11.2 W of continuous wave (CW) output power at 1031 nm for 55 W of incident pump power at 940 nm. In the Q-switched regime, we obtained pulses as short as 17 ns, for an average power of 2.3 W at 2 kHz corresponding to an energy of 1.15 mJ. In both cases, the M 2 factor was 2.5. This single-crystal fiber showed performance similar to a standard rod elaborated by the Czochralski method. The potential of Yb3+-doped single-crystal fibers is presented for scalable high-average and high-peak-power laser systems.

  12. 2-µm wavelength-range low-loss inhibited-coupling hollow-core PCF

    Science.gov (United States)

    Maurel, M.; Chafer, M.; Delahaye, F.; Amrani, F.; Debord, B.; Gerome, F.; Benabid, F.

    2018-02-01

    We report on the design and fabrication of inhibited-coupling guiding hollow-core photonic crystal fiber with a transmission band optimized for low loss guidance around 2 μm. Two fibers design based on a Kagome-lattice cladding have been studied to demonstrate a minimum loss figure of 25 dB/km at 2 μm associated to an ultra-broad transmission band spanning from the visible to our detection limit of 3.4 μm. Such fibers could be an excellent tool to deliver and compress ultra-short pulse laser systems, especially for the emerging 2-3 μm spectral region.

  13. Single-crystal SrTiO3 fiber grown by laser heated pedestal growth method: influence of ceramic feed rod preparation in fiber quality

    Directory of Open Access Journals (Sweden)

    D. Reyes Ardila

    1998-10-01

    Full Text Available The rapidly spreading use of optical fiber as a transmission medium has created an interest in fiber-compatible optical devices and methods for growing them, such as the Laser Heated Pedestal Growth (LHPG. This paper reports on the influence of the ceramic feed rod treatment on fiber quality and optimization of ceramic pedestal processing that allows improvements to be made on the final quality in a simple manner. Using the LHPG technique, transparent crack-free colorless single crystal fibers of SrTiO3 (0.50 mm in diameter and 30-40 mm in length were grown directly from green-body feed rods, without using external oxygen atmosphere.

  14. Photonic crystal fiber injected with Fe{sub 3}O{sub 4} nanofluid for magnetic field detection

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Harneet V.; Nalawade, Sandipan M.; Gupta, Swati [Photonics Group, Department of Applied Physics, Defence Institute of Advanced Technology, Girinagar, Pune 411 025 (India); Kitture, Rohini [Department of Electronic-Science, Fergusson College, Pune 411 004 (India); Kale, S. N. [Nanotechnology Group, Department of Applied Physics, Defence Institute of Advanced Technology, Girinagar, Pune 411 025 (India)

    2011-10-17

    We report a magnetic field sensor having advantages of both photonic crystal fiber and optofluidics, combining them on a single platform by infiltrating small amount of Fe{sub 3}O{sub 4} magnetic optofluid/nanofluid in cladding holes of polarization-maintaining photonic crystal fiber. We demonstrated that magnetic field of few mT can be easily and very well detected with higher sensitivity of 242 pm/mT. The change in the birefringence values has been correlated to the response of nanofluid to applied field.

  15. Polymer PCF Bragg grating sensors based on poly(methyl methacrylate) and TOPAS cyclic olefin copolymer

    DEFF Research Database (Denmark)

    Johnson, Ian P; Webb, David J; Kalli, Kyriacos

    2011-01-01

    mode PCF with a core diameter of 6μm based on TOPAS cyclic olefin copolymer. Bragg grating inscription was achieved using a 30mW continuous wave 325nm helium cadmium laser. Both TOPAS and PMMA fibre have a large attenuation of around 1dB/cm in the 1550nm spectral region, limiting fibre lengths...

  16. 7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 mu m

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian; Mangan, B.J.; Jakobsen, C.

    2009-01-01

    Several 7 cell core hollow-core photonic crystal fibers with bandgaps in the spectral range of 1.4 μm to 2.3 μm have been fabricated. The transmission loss follows the ≈ λ−3 dependency previously reported, with a minimum measured loss of 9.5 dB/km at 1.99 μm. One fiber with a transmission loss...... of 26 dB/km at 2.3 μm is reported, which is significantly lower than the transmission loss of solid silica fibers at this wavelength....

  17. Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Agata Siarkowska

    2017-12-01

    Full Text Available Thermo- and electro-optical properties of a photonic liquid crystal fiber (PLCF enhanced by the use of dopants have been investigated. A 6CHBT nematic liquid crystal was doped with four different concentrations of gold nanoparticles (NPs, 0.1, 0.3, 0.5 and 1.0 wt %, for direct comparison of the influence of the dopant on the properties of the PLCF. The thermo-optical effects of the liquid crystal doped with gold NPs were compared in three setups, an LC cell, a microcapillary and within the PLCF, to determine if the observed responses to external factors are caused by the properties of the infiltration material or due to the setup configuration. The results obtained indicated that with increasing NP doping a significant reduction of the rise time under an external electric field occurs with a simultaneous decrease in the nematic–isotropic phase transition temperature, thus improving the thermo- and electro-optical properties of the PLCF.

  18. Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles.

    Science.gov (United States)

    Siarkowska, Agata; Chychłowski, Miłosz; Budaszewski, Daniel; Jankiewicz, Bartłomiej; Bartosewicz, Bartosz; Woliński, Tomasz R

    2017-01-01

    Thermo- and electro-optical properties of a photonic liquid crystal fiber (PLCF) enhanced by the use of dopants have been investigated. A 6CHBT nematic liquid crystal was doped with four different concentrations of gold nanoparticles (NPs), 0.1, 0.3, 0.5 and 1.0 wt %, for direct comparison of the influence of the dopant on the properties of the PLCF. The thermo-optical effects of the liquid crystal doped with gold NPs were compared in three setups, an LC cell, a microcapillary and within the PLCF, to determine if the observed responses to external factors are caused by the properties of the infiltration material or due to the setup configuration. The results obtained indicated that with increasing NP doping a significant reduction of the rise time under an external electric field occurs with a simultaneous decrease in the nematic-isotropic phase transition temperature, thus improving the thermo- and electro-optical properties of the PLCF.

  19. Ce-doped LuAG single-crystal fibers grown from the melt for high-energy physics

    CERN Document Server

    Xu, X; Moretti, F; Pauwels, K; Lecoq, P; Auffray, E; Dujardin, C

    2014-01-01

    Under a stationary stable regime undoped and Ce-doped LuAG (Lu3Al5O12) single-crystal fibers were grown by a micro-pulling-down technique. The meniscus length corresponding to the equilibrium state was <200 mu m. Fluctuations in the fiber composition and pulling rate were found to have a significant effect on the properties of the fibers grown. A great improvement in the performance was found in samples containing low Ce concentrations (<= 0.1 at.\\%) and produced using pulling rates <0.5 mm min(-1). Under such conditions a good lateral surface fiber quality was obtained and light propagation was significantly improved. Conversely, a high Ce concentration and a high pulling rate resulted in a strong degradation of the fiber surface quality causing defects to appear and a decrease in light output. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Temperature Compensated Strain Sensor Based on Cascaded Sagnac Interferometers and All-Solid Birefringent Hybrid Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Wu; He, Sailing

    2012-01-01

    We demonstrate a temperature compensated strain sensor with two cascaded Sagnac interferometers, that provide strain sensing and temperature compensation, respectively. The Sagnac interferometers use an all-solid hybrid photonic crystal fiber with stress-induced birefringence. The stress-induced ...

  1. Three-dimensional oriented attachment growth of single-crystal pre-perovskite PbTiO3 hollowed fibers

    KAUST Repository

    Zhao, Ruoyu; Li, Ming; Ren, Zhaohui; Zhu, Yihan; Han, Gaorong

    2017-01-01

    Hollowed single-crystal pre-perovskite PbTiO fibers (PP-PTF) were successfully synthesized via a polyvinyl alcohol (PVA) assisted hydrothermal process. The as-prepared PP-PTF were characterized to be 0.3-1 μm in diameter and tens of micrometers

  2. Polarization splitter based on interference effects in all-solid photonic crystal fibers.

    Science.gov (United States)

    Mao, Dong; Guan, Chunying; Yuan, Libo

    2010-07-01

    We propose a novel kind of polarization splitter in all-solid photonic crystal fibers based on the mode interference effects. Both the full-vector finite-element method and the semi-vector three-dimensional beam propagation method are employed to design and analyze the characteristics of the splitter. Numerical simulations show that x-polarized and y-polarized modes are split entirely along with 6.8 mm long propagation. An extinction ratio of more than 20 dB and a crosstalk of less than -20 dB are obtained within the wavelength range of 1.541-1.556 microm. The extinction ratio and the crosstalk at 1.55 microm are 28.9 and -29.0 dB for x polarization, while the extinction ratio and the crosstalk at 1.55 microm are 29.9 and -29.8 dB for y polarization, respectively.

  3. High Power 1443.5 nm Laser with Nd:YAG Single Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Han Rao

    2017-07-01

    Full Text Available A high-power eye-safe 1443.5 nm laser was demonstrated with an Nd:YAG single crystal fiber (SCF as the gain medium. For continuous wave (CW operation, a maximum output power of 13.3 W was obtained under an absorbed pump power of 95.0 W, corresponding to an optical-to-optical conversion efficiency of 14.0%. For acousto-optically (AO Q-switched regime, an output power of 1.95 W was obtained at a pulse repetition frequency (PRF of 10 kHz. The pulse duration was 69.5 ns. The pulse energy and peak power were calculated to be 195 µJ and 2.81 kW, respectively.

  4. Experimental study on slow flexural waves around the defect modes in a phononic crystal beam using fiber Bragg gratings

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Kuo-Chih, E-mail: chuangkc@zju.edu.cn; Zhang, Zhi-Qiang; Wang, Hua-Xin

    2016-12-09

    Highlights: • Slow waves around the defect modes in a phononic crystal beam are validated. • A fiber Bragg grating displacement sensing system can measure the defect mode. • The defect mode is analyzed by a transfer matrix method with a supercell technique. - Abstract: This work experimentally studies influences of the point defect modes on the group velocity of flexural waves in a phononic crystal Timoshenko beam. Using the transfer matrix method with a supercell technique, the band structures and the group velocities around the defect modes are theoretically obtained. Particularly, to demonstrate the existence of the localized defect modes inside the band gaps, a high-sensitivity fiber Bragg grating sensing system is set up and the displacement transmittance is measured. Slow propagation of flexural waves via defect coupling in the phononic crystal beam is then experimentally demonstrated with Hanning windowed tone burst excitations.

  5. Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers

    International Nuclear Information System (INIS)

    Liu, X M; Lin, A; Zhao, W; Lu, K Q; Wang, Y S; Zhang, T Y; Chung, Y

    2008-01-01

    We have proposed a novel multi-wavelength erbium-doped fiber laser by using two polarization controllers and a sampled chirped fiber Bragg grating(SC-FBG). On the assistance of SC-FBG, the proposed fiber lasers with excellent stability and uniformity are tunable and switchable by adjusting the polarization controllers. Our laser can stably lase two waves and up to eight waves simultaneously at room temperature

  6. All-fiber intensity bend sensor based on photonic crystal fiber with asymmetric air-hole structure

    Science.gov (United States)

    Budnicki, Dawid; Szostkiewicz, Lukasz; Szymanski, Michal O.; Ostrowski, Lukasz; Holdynski, Zbigniew; Lipinski, Stanislaw; Murawski, Michal; Wojcik, Grzegorz; Makara, Mariusz; Poturaj, Krzysztof; Mergo, Pawel; Napierala, Marek; Nasilowski, Tomasz

    2017-10-01

    Monitoring the geometry of an moving element is a crucial task for example in robotics. The robots equipped with fiber bend sensor integrated in their arms can be a promising solution for medicine, physiotherapy and also for application in computer games. We report an all-fiber intensity bend sensor, which is based on microstructured multicore optical fiber. It allows to perform a measurement of the bending radius as well as the bending orientation. The reported solution has a special airhole structure which makes the sensor only bend-sensitive. Our solution is an intensity based sensor, which measures power transmitted along the fiber, influenced by bend. The sensor is based on a multicore fiber with the special air-hole structure that allows detection of bending orientation in range of 360°. Each core in the multicore fiber is sensitive to bend in specified direction. The principle behind sensor operation is to differentiate the confinement loss of fundamental mode propagating in each core. Thanks to received power differences one can distinguish not only bend direction but also its amplitude. Multicore fiber is designed to utilize most common light sources that operate at 1.55 μm thus ensuring high stability of operation. The sensitivity of the proposed solution is equal 29,4 dB/cm and the accuracy of bend direction for the fiber end point is up to 5 degrees for 15 cm fiber length. Such sensitivity allows to perform end point detection with millimeter precision.

  7. Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF.

    Science.gov (United States)

    Wang, Y Y; Couny, F; Light, P S; Mangan, B J; Benabid, F

    2010-04-15

    We report on the realization of compact UV visible multiline Raman lasers based on two types of hydrogen-filled hollow-core photonic crystal fiber. The first, with a large pitch Kagome lattice structure, offers a broad spectral coverage from near IR through to the much sought after yellow, deep-blue and UV, whereas the other, based on photonic bandgap guidance, presents a pump conversion concentrated in the visible region. The high Raman efficiency achieved through these fibers allows for compact, portable diode-pumped solid-state lasers to be used as pumps. Each discrete component of this laser system exhibits a spectral density several orders of magnitude larger than what is achieved with supercontinuum sources and a narrow linewidth, making it an ideal candidate for forensics and biomedical applications.

  8. Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM

    DEFF Research Database (Denmark)

    Kwok, C.H.; Lee, S.H.; Chow, K.K.

    2005-01-01

    A widely tunable wavelength conversion scheme has been demonstrated using a 64-m-long dispersion-flattened high-nonlinearity photonic crystal fiber in a nonlinear optical loop mirror. Wavelength conversion range of over 60 nm with a 10-Gb/s return-to-zero signal was obtained with the output...... extinction ratio (ER) maintained above 13 dB. The proposed scheme can also improve the output ER and remove the bit-error-rate floor if a degraded signal is used....

  9. Cross two photon absorption in a silicon photonic crystal waveguide fiber taper coupler with a physical junction

    Energy Technology Data Exchange (ETDEWEB)

    Sarkissian, Raymond, E-mail: RaymondSark@gmail.com; O' Brien, John [Electrophysics department, University of Southern California, Los Angeles, California 90089 (United States)

    2015-01-21

    Cross two photon absorption in silicon is characterized using a tapered fiber photonic crystal silicon waveguide coupler. There is a physical junction between the tapered fiber and the waveguide constituting a stand-alone device. This device is used to obtain the spectrum for cross two photon absorption coefficient per unit volume of interaction between photons of nondegenerate energy. The corresponding Kerr coefficient per unit volume of interaction is also experimentally extracted. The thermal resistance of the device is also experimentally determined and the response time of the device is estimated for on-chip all-optical signal processing and data transfer between optical signals of different photon energies.

  10. Effects of Crystal Orientation on Cellulose Nanocrystals−Cellulose Acetate Nanocomposite Fibers Prepared by Dry Spinning

    Science.gov (United States)

    Si Chen; Greg Schueneman; R. Byron Pipes; Jeffrey Youngblood; Robert J. Moon

    2014-01-01

    This work presents the development of dry spun cellulose acetate (CA) fibers using cellulose nanocrystals (CNCs) as reinforcements. Increasing amounts of CNCs were dispersed into CA fibers in efforts to improve the tensile strength and elastic modulus of the fiber. A systematic characterization of dispersion of CNCs in the polymer fiber and their effect on the...

  11. Chemically etched sharpened tip of transparent crystallized glass fibers with nonlinear optical Ba2TiSi2O8 nanocrystals

    International Nuclear Information System (INIS)

    Enomoto, Itaru; Benino, Yasuhiko; Komatsu, Takayuki; Fujiwara, Takumi

    2007-01-01

    Glass fibers with a diameter of ∼100 μm are drawn by just pulling up melts of 40BaO·20TiO 2 ·40SiO 2 glass, and transparent crystallized glass fibers consisting of nonlinear optical fresnoite Ba 2 TiSi 2 O 8 nanocrystals (particle size: ∼100-200 nm) are fabricated by crystallization of glass fibers. Precursor glass fibers and nanocrystallized glass fibers are etched chemically using a meniscus method, in which an etching solution of 0.1wt%-HF/hexane is used. Glass fibers with sharpened tips (e.g., the taper length is ∼L=200 μm and the tip angle is ∼θ=23deg) are obtained. It is found that etched nanocrystallized glass fibers also have sharpened tips (L=50 μm, θ=80deg). Compared with precursor glass fibers, nanocrystallized glass fibers show a high resistance against chemical etching in a 0.1 wt%HF solution. Although sharpened tips in nanocrystallized glass fibers do not have nanoscaled apertures, the present study suggests that nanocrystallized glass fibers showing second harmonic generations would have a potential for fiber-type light control optical devices. (author)

  12. Novel coherent supercontinuum light sources based on all-normal dispersion fibers

    Energy Technology Data Exchange (ETDEWEB)

    Heidt, Alexander

    2011-07-05

    The concept of broadband coherent supercontinuum (SC) generation in all-normal dispersion (ANDi) fibers in the near-infrared, visible and ultraviolet (UV) spectral regions is introduced and investigated in detail. In numerical studies, explicit design criteria are established for ANDi photonic crystal fiber (PCF) designs that allow the generation of flat and smooth ultrabroad spectral profiles without significant fine structure and with excellent stability and coherence properties. The key benefit of SC generation in ANDi fibers is the conservation of a single ultrashort pulse in the time domain with smooth and recompressible phase distribution. In the numerical investigation of the SC generation dynamics self-phase modulation and optical wave breaking are identified as the dominant nonlinear effects responsible for the nonlinear spectral broadening. It is further demonstrated that coherence properties, spectral bandwidth and temporal compressibility are independent of input pulse duration for constant peak power. The numerical predictions are in excellent agreement with experimental results obtained in two realizations of ANDi PCF optimized for the near-infrared and visible spectral region. In these experiments, the broadest SC spectrum generated in the normal dispersion regime of an optical fiber to date is achieved. The exceptional temporal properties of the generated SC pulses are verified experimentally and their applicability for the time-resolved study of molecular dynamics in ultrafast transient absorption spectroscopy is demonstrated. In an additional nonlinear pulse compression experiment, the SC pulses obtained in a short piece of ANDi PCF could be temporally recompressed to sub-two cycle durations by linear chirp compensation. Numerical simulations show that even shorter pulse durations with excellent quality can be achieved by full phase compensation. The concept is further extended into the UV spectral regime by considering tapered optical fibers with

  13. Electroadsorption desalination with carbon nanotube/PAN-based carbon fiber felt composites as electrodes.

    Science.gov (United States)

    Liu, Yang; Zhou, Junbo

    2014-01-01

    The chemical vapor deposition method is used to prepare CNT (carbon nanotube)/PCF (PAN-based carbon fiber felt) composite electrodes in this paper, with the surface morphology of CNT/PCF composites and electroadsorption desalination performance being studied. Results show such electrode materials with three-dimensional network nanostructures having a larger specific surface area and narrower micropore distribution, with a huge number of reactive groups covering the surface. Compared with PCF electrodes, CNT/PCF can allow for a higher adsorption and desorption rate but lower energy consumption; meanwhile, under the condition of the same voltage change, the CNT/PCF electrodes are provided with a better desalination effect. The study also found that the higher the original concentration of the solution, the greater the adsorption capacity and the lower the adsorption rate. At the same time, the higher the solution's pH, the better the desalting; the smaller the ions' radius, the greater the amount of adsorption.

  14. Fourier analysis for hydrostatic pressure sensing in a polarization-maintaining photonic crystal fiber

    International Nuclear Information System (INIS)

    Childs, Paul; Wong, Allan C. L.; Fu, H. Y.; Liao, Yanbiao; Tam, Hwayaw; Lu Chao; Wai, P. K. A.

    2010-01-01

    .We measured the hydrostatic pressure dependence of the birefringence and birefringent dispersion of a Sagnac interferometric sensor incorporating a length of highly birefringent photonic crystal fiber using Fourier analysis. Sensitivity of both the phase and chirp spectra to hydrostatic pressure is demonstrated. Using this analysis, phase-based measurements showed a good linearity with an effective sensitivity of 9.45nm/MPa and an accuracy of ±7.8kPa using wavelength-encoded data and an effective sensitivity of -55.7cm -1 /MPa and an accuracy of ±4.4kPa using wavenumber-encoded data. Chirp-based measurements, though nonlinear in response, showed an improvement in accuracy at certain pressure ranges with an accuracy of ±5.5kPa for the full range of measured pressures using wavelength-encoded data and dropping to within ±2.5kPa in the range of 0.17 to 0.4MPa using wavenumber-encoded data. Improvements of the accuracy demonstrated the usefulness of implementing chirp-based analysis for sensing purposes.

  15. Acousto-optic mode coupling excited by flexural waves in simplified hollow-core photonic crystal fibers

    International Nuclear Information System (INIS)

    Zhang, Hao; Qiu, Minghui; Wu, Zhifang; Dong, Hongguang; Liu, Bo; Miao, Yinping

    2013-01-01

    We have demonstrated the formation of an acoustic grating in a simplified hollow-core photonic crystal fiber, which consists of a hollow hexagonal core and six crown-like air holes, by applying flexural acoustic waves along the fiber axis. The dependence of the resonance wavelength on the applied acoustic frequency has been acquired on the basis of the theoretical calculation of the phase matching curve; it is in good agreement with our experimental observation of the transmission spectral evolution as the applied acoustic frequency varies. Experimental results show that the acoustic grating resonance peak possesses acoustic frequency and strain dependences of 728 nm MHz −1 and −6.98 pm με −1 , respectively, based on which high-performance acousto-optic tunable filters and fiber-optic strain sensors with high sensitivity could be achieved. And furthermore, the research work presented in this paper indicates that microbending rather than physical deformation is the main physical mechanism that leads to the formation of equivalent long-period gratings, which would be of significance for developing related grating devices based on simplified hollow-core photonic crystal fibers. (paper)

  16. Growth of doped and pure monocrystalline fibers and gradient crystals of REMO_4 compounds (RE = rare earths and M = Nb and Ta)

    International Nuclear Information System (INIS)

    Octaviano, E.S.; Levada, C.L.; Missiato, O.; Semenzato, M.J.; Silva, R.A.; Andreeta, J.P.

    2009-01-01

    A desirable alternative for a faster development, characterization and application of material of technological interest has been the growth of single crystal fibers by LHPG - Laser Heated Pedestal Growth. In this work it was reported the growth of pure, doped and gradient single crystal fibers of the chemical formulation REMO_4 (M = Nb e Ta, e RE= Rare Earth), characterized through primary techniques such as X-Ray and optical spectroscopy. (author)

  17. Single-mode pumped high air-fill fraction photonic crystal fiber taper for high-power deep-blue supercontinuum sources

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Larsen, Casper; Jakobsen, Christian

    2014-01-01

    Dispersion control with axially nonuniform photonic crystal fibers (PCFs) permits supercontinuum (SC) generation into the deep-blue from an ytterbium pump laser. In this Letter, we exploit the full degrees of freedom afforded by PCFs to fabricate a fiber with longitudinally increasing air-fill fr...

  18. Core-cladding mode coupling and recoupling in photonic crystal fiber for enhanced overlap of evanescent field using long-period gratings

    Czech Academy of Sciences Publication Activity Database

    He, Z.; Zhu, Y.; Kaňka, Jiří; Du, H.

    2010-01-01

    Roč. 18, č. 2 (2010), s. 507-512 ISSN 1094-4087 R&D Projects: GA ČR GA102/08/1719 Institutional research plan: CEZ:AV0Z20670512 Keywords : Photonic crystal fiber * Long-period grating * Fiber-optic evanescent sensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.749, year: 2010

  19. Realization of low loss and polarization maintaining hollow core photonic crystal fibers

    DEFF Research Database (Denmark)

    Mangan, Brian Joseph; Lyngsøe, Jens Kristian; Roberts, John

    2008-01-01

    Antiresonant core wals in 7-cell hollow core fibers are used to reduce the attenuation to 9.3dB/km and create an intentionally hightly birefringent fiber with a beatlength as low as 0.2mm......Antiresonant core wals in 7-cell hollow core fibers are used to reduce the attenuation to 9.3dB/km and create an intentionally hightly birefringent fiber with a beatlength as low as 0.2mm...

  20. Control of ultrafast pulses in a hydrogen-filled hollow-core photonic-crystal fiber by Raman coherence

    Science.gov (United States)

    Belli, F.; Abdolvand, A.; Travers, J. C.; Russell, P. St. J.

    2018-01-01

    We present the results of an experimental and numerical investigation into temporally nonlocal coherent interactions between ultrashort pulses, mediated by Raman coherence, in a gas-filled kagome-style hollow-core photonic-crystal fiber. A pump pulse first sets up the Raman coherence, creating a refractive index spatiotemporal grating in the gas that travels at the group velocity of the pump pulse. Varying the arrival time of a second, probe, pulse allows a high degree of control over its evolution as it propagates along the fiber through the grating. Of particular interest are soliton-driven effects such as self-compression and dispersive wave (DW) emission. In the experiments reported, a DW is emitted at ˜300 nm and exhibits a wiggling effect, with its central frequency oscillating periodically with pump-probe delay. The results demonstrate that a strong Raman coherence, created in a broadband guiding gas-filled kagome photonic-crystal fiber, can be used to control the nonlinear dynamics of ultrashort probe pulses, even in difficult-to-access spectral regions such as the deep and vacuum ultraviolet.

  1. Thermo-tunable hybrid photonic crystal fiber based on solution-processed chalcogenide glass nanolayers

    DEFF Research Database (Denmark)

    Markos, Christos

    2016-01-01

    the air-capillaries of the fiber based on a solution-processed glass approach. The deposited high-index layers revealed antiresonant transmission windows from similar to 500 nm up to similar to 1300 nm. We experimentally demonstrate for the first time the possibility to thermally-tune the revealed....../degrees C at 1300 nm. The proposed fiber device could potentially constitute an efficient route towards realization of monolithic tunable fiber filters or sensing elements....

  2. Accelerated rogue waves generated by soliton fusion at the advanced stage of supercontinuum formation in photonic-crystal fibers.

    Science.gov (United States)

    Driben, Rodislav; Babushkin, Ihar

    2012-12-15

    Soliton fusion is a fascinating and delicate phenomenon that manifests itself in optical fibers in case of interaction between copropagating solitons with small temporal and wavelength separation. We show that the mechanism of acceleration of a trailing soliton by dispersive waves radiated from the preceding one provides necessary conditions for soliton fusion at the advanced stage of supercontinuum generation in photonic-crystal fibers. As a result of fusion, large-intensity robust light structures arise and propagate over significant distances. In the presence of small random noise the delicate condition for the effective fusion between solitons can easily be broken, making the fusion-induced giant waves a rare statistical event. Thus oblong-shaped giant accelerated waves become excellent candidates for optical rogue waves.

  3. Low-NA single-mode LMA photonic crystal fiber amplifier

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Scolari, Lara

    2011-01-01

    a spatially Distributed Mode Filter (DMF). This approach achieves SM performance in a short and straight rod fiber and allows preform tolerances to be compensated during draw. A low-NA SM rod fiber amplifier having a mode field diameter of ~60μm at 1064nm and a pump absorption of 27dB/m at 976nm...

  4. Ultrafast Mid-IR Nonlinear Optics in Gas-filled Hollow-core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Habib, Selim

    Invention of hollow-core fiber has been proven an ideal medium to study light-gas interaction. Tight confinement of light inside hollowcore fiber allows unremitting and tailored interaction between light and gas over long distances. In this work, we used a special kind of hollowcore fiber − hollow......-core anti-resonant (HC-AR) fiber to study the various nonlinear effects filled with Raman free noble gas. One of the main striking features of HC-AR fiber is that ∼99.99% light can be guided inside the central hollow-core region, which significantly enhances damage threshold level. HC-AR fiber can sustain...... be tuned by simply changing the pressure of the gas while at the same time providing extremely wide transparency ranges. In this thesis, we propose several low-loss broadband guidance HC-AR fibers and investigate soliton-plasma dynamics using HC-AR fiber filled with noble gas in the mid-IR. The combined...

  5. Cascaded interactions between Raman induced solitons and dispersive waves in photonic crystal fibers at the advanced stage of supercontinuum generation.

    Science.gov (United States)

    Driben, Rodislav; Mitschke, Fedor; Zhavoronkov, Nickolai

    2010-12-06

    The complex mechanism of multiple interactions between solitary and dispersive waves at the advanced stage of supercontinuum generation in photonic crystal fiber is studied in experiment and numerical simulations. Injection of high power negatively chirped pulses near zero dispersion frequency results in an effective soliton fission process with multiple interactions between red shifted Raman solitons and dispersive waves. These interactions may result in relative acceleration of solitons with further collisions between them of quasi-elastic or quasi-plastic kinds. In the spectral domain these processes result in enhancement of certain wavelength regions within the spectrum or development of a new significant band at the long wavelength side of the spectrum.

  6. Photonic crystal rod fibers: Understanding a new class of active optical waveguides

    DEFF Research Database (Denmark)

    Laurila, Marko

    core modes and the cladding band as the underlying mechanics to ensure SM operation of the new rod fiber design (85 μm core diameter), which was developed during this thesis work. The second focus of this work is the study of the new ytterbiumdoped rod fiber design under active operation. Performance...... of the rod fiber is evaluated in high power laser and laser amplifier configurations. The high power rod amplifier setup including the seed source is developed and characterized. Results obtained from the rod fiber showed simultaneously SM, near diffraction limited output beam quality with high average power...... and pulse energy generation using both laser and laser amplifier configurations. Modal instabilities (MIs) in high power fiber amplifiers are discussed, and a memory effect of the MI threshold level together with a recovery method and evidence of improved performance while suppressing MIs are reported...

  7. Ytterbium‐doped distributed spectral filtering photonic crystal fibers for use at wavelengths above 1100 nm

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper

    to avoid parasitic lasing due to Amplified Spontaneous Emission (ASE) build‐up. Nonlinear effects, such as stimulated Raman scattering, stimulated Brillouin scattering and four‐wave mixing, set the upper limit for achievable powers in fiber amplifiers. To increase the nonlinear threshold, Large......Rare‐earth doped high‐power fiber lasers and amplifiers have attracted a lot of attention, due to the advantages of the fiber amplification scheme. Compared to conventional optically pumped bulk lasers, heat is dissipated much more effectively in fiber lasers, having a large surface......‐to‐active volume ratio. Thereby, a stable beam with nearly diffraction‐limited quality can be achieved. The fibers are often cladding‐pumped with a number of low‐brightness semiconductor laser diodes, in which way a low‐cost pump of several kilowatts can be achieved [1]. However, the frequencies, which can...

  8. Optical pulse coupling in a photorefractive crystal, propagation of encoded pulses in an optical fiber, and phase conjugate optical interconnections

    Energy Technology Data Exchange (ETDEWEB)

    Yao, X.S.

    1992-01-01

    In Part I, the author presents a theory to describe the interaction between short optical pulses in a photorefractive crystal. This theory provides an analytical framework for pulse coherence length measurements using a photorefractive crystal. The theory also predicts how a pulse changes its temporal shape due to its coupling with another pulse in a photorefractive crystal. The author describes experiments to demonstrate how photorefractive coupling alters the temporal shape and the frequency spectrum of an optical pulse. The author describes a compact optical field correlator. Using this correlator, the author measured the field cross-correlation function of optical pulses using a photorefractive crystal. The author presents a more sophisticated theory to describe the photorefractive coupling of optical pulses that are too short for the previous theory to be valid. In Part II of this dissertation, the author analyzes how the group-velocity dispersion and the optical nonlinearity of an optical fiber ruin an fiberoptic code-division multiple-access (CDMA) communication system. The author treats the optical fiber's nonlinear response with a novel approach and derives the pulse propagation equation. Through analysis and numerically simulations, the author obtains the maximum and the maximum allowed peak pulse power, as well as the minimum and the maximum allowed pulse width for the communication system to function properly. The author simulates how the relative misalignment between the encoding and the decoding masks affects the system's performance. In Part III the author demonstrates a novel optical interconnection device based on a mutually pumped phase conjugator. This device automatically routes light from selected information-sending channels to selected information-receiving channels, and vice versa. The phase conjugator eliminates the need for critical alignment. It is shown that a large number of optical channels can be interconnected using this

  9. Type-I frequency-doubling characteristics of high-power, ultrafast fiber laser in thick BIBO crystal.

    Science.gov (United States)

    Chaitanya N, Apurv; Aadhi, A; Singh, R P; Samanta, G K

    2014-09-15

    We report on experimental realization of optimum focusing condition for type-I second-harmonic generation (SHG) of high-power, ultrafast laser in "thick" nonlinear crystal. Using single-pass, frequency doubling of a 5 W Yb-fiber laser of pulse width ~260 fs at repetition rate of 78 MHz in a 5-mm-long bismuth triborate (BIBO) crystal we observed that the optimum focusing condition is more dependent on the birefringence of the crystal than its group-velocity mismatch (GVM). A theoretical fit to our experimental results reveals that even in the presence of GVM, the optimum focusing condition matches the theoretical model of Boyd and Kleinman, predicted for continuous-wave and long-pulse SHG. Using a focusing factor of ξ=1.16 close to the estimated optimum value of ξ=1.72 for our experimental conditions, we generated 2.25 W of green radiation of pulse width 176 fs with single-pass conversion efficiency as high as 46.5%. Our study also verifies the effect of pulse narrowing and broadening of angular phase-matching bandwidth of SHG at tighter focusing. This study signifies the advantage of SHG in "thick" crystal in controlling SH-pulse width by changing the focusing lens while accessing high conversion efficiency and broad angular phase-matching bandwidth.

  10. Characteristics and Laser Performance of Yb3+-Doped Silica Large Mode Area Fibers Prepared by Sol–Gel Method

    Directory of Open Access Journals (Sweden)

    Shikai Wang

    2013-12-01

    Full Text Available Large-size 0.1 Yb2O3–1.0 Al2O3–98.9 SiO2 (mol% core glass was prepared by the sol–gel method. Its optical properties were evaluated. Both large mode area double cladding fiber (LMA DCF with core diameter of 48 µm and large mode area photonic crystal fiber (LMA PCF with core diameter of 90 µm were prepared from this core glass. Transmission loss at 1200 nm is 0.41 dB/m. Refractive index fluctuation is less than 2 × 10−4. Pumped by 976 nm laser diode LD pigtailed with silica fiber (NA 0.22, the slope efficiency of 54% and “light-to-light” conversion efficiency of 51% were realized in large mode area double cladding fiber, and 81 W laser power with a slope efficiency of 70.8% was achieved in the corresponding large mode area photonic crystal fiber.

  11. Determination of aluminium content in foodstuffs by neutron activation analysis utilizing PCF of Dhruva research reactor

    International Nuclear Information System (INIS)

    Nanda, B.B.; Biswal, R.R.; Acharya, R.; Pujari, P.K.; Shinde, A.

    2014-01-01

    Aluminium is one of the toxic elements in food and food products are the main sources of aluminium entering the human body. In the present study, Aluminium (Al) content of 25 samples (from market) including rice, rice products, wheat, spices, tea, tea products, and lentils were determined using instrumental neutron activation analysis (INAA). The concentrations of Al were in the range of 25-500 mg kg -1 in general except for tea and one spice sample. Samples were neutron irradiated using PCF of Dhruva reactor and 1779 keV γ-ray of 28 Al was analyzed using HPGe detector based γ-ray spectrometry. Three RMs was analyzed for method validation. The results obtained by INAA are discussed in this paper. (author)

  12. Fiber

    Science.gov (United States)

    ... meals instead of white rice. Add beans (kidney, black, navy, and pinto) to rice dishes for even more fiber. Spice up salads with berries and almonds, chickpeas, cooked artichokes, and beans (kidney, black, navy, or pinto). Use whole-grain (corn or ...

  13. Three-dimensional oriented attachment growth of single-crystal pre-perovskite PbTiO3 hollowed fibers

    KAUST Repository

    Zhao, Ruoyu

    2017-12-11

    Hollowed single-crystal pre-perovskite PbTiO fibers (PP-PTF) were successfully synthesized via a polyvinyl alcohol (PVA) assisted hydrothermal process. The as-prepared PP-PTF were characterized to be 0.3-1 μm in diameter and tens of micrometers in length by adjusting the concentration of PVA to 0.8 g L. Microstructure characterization of the samples at different reaction times revealed that PP-PTF were formed via a three-dimensional (3D) hierarchical oriented attachment (OA) growth process. The initial growth units were determined to be single-crystal pre-perovskite PbTiO fibers with a diameter of 10-20 nm. Zeta potential measurement suggested that the main driving force of the OA process is the surface electrostatic force, which is induced by the incompletely bonded Pb and O atomic layers on the surface of the {110} plane. Moreover, molecular dynamics simulations have been employed to reveal a stable configuration of the initial pre-perovskite PbTiO growth units, agreeing well with the experimental results.

  14. Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor

    Science.gov (United States)

    Lee, Hyun Ji; Kim, Sung-Jo; Ko, Myeong Ock; Kim, Jong-Hyun; Jeon, Min Yong

    2018-03-01

    We propose a tunable multiwavelength-swept laser based on a nematic liquid crystal (NLC) Fabry-Perot (FP) etalon, which is embedded in the resonator of a wavelength-swept laser. We achieve the continuous wavelength tuning of the multiwavelength-swept laser by applying the electric field to the NLC FP etalon. The free spectral range of the fabricated NLC FP etalon is approximately 7.9 nm. When the electric field applied to the NLC FP etalon exceeds the threshold value (Fréedericksz threshold voltage), the output of the multiwavelength-swept laser can be tuned continuously. The tuning range of the multiwavelength-swept laser can be achieved at a value greater than 75 nm, which has a considerably wider tunable range than a conventional multiwavelength laser based on an NLC FP etalon. The slope efficiencies in the spectral and temporal domains for the tunable multiwavelength-swept laser are 22.2 nm/(mVrms / μm) and 0.17 ms/(mVrms / μm), respectively in the linear region. Therefore, the developed multiwavelength-swept laser based on the NLC FP etalon can be applied to an electric-field sensor. Because the wavelength measurement and time measurement have a linear relationship, the electric-field sensor can detect a rapid change in the electric-field intensity by measuring the peak change of the pulse in the temporal domain using the NLC FP etalon-based multiwavelength-swept laser.

  15. Cascaded quadratic soliton compression of high-power femtosecond fiber lasers in Lithium Niobate crystals

    DEFF Research Database (Denmark)

    Bache, Morten; Moses, Jeffrey; Wise, Frank W.

    2008-01-01

    The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs.......The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs....

  16. Tunable and rotatable birefringence controller based on electrical control of liquid crystal filled photonic bandgap fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    We demonstrate the first compact electrically tunable and rotatable birefringence controller based on LCPBG fibers. The birefringence can be tuned electrically to work as a quarter-wave or a half-wave plate in the wavelength range 1520nm-1600nm.......We demonstrate the first compact electrically tunable and rotatable birefringence controller based on LCPBG fibers. The birefringence can be tuned electrically to work as a quarter-wave or a half-wave plate in the wavelength range 1520nm-1600nm....

  17. Super continuum generation at 800 nm in highly nonlinear photonic crystal fibers with normal dispersion

    DEFF Research Database (Denmark)

    Hansen, Kim Per; Larsen, Jacob Juul; Jensen, Jacob Riis

    2001-01-01

    More than 90 nm broad self-phase modulation (SPM) induced pulses have been created from both 25 and 50 fs pulses in just 12.5 cm of fiber. The broadening is more than 2.5 times that observed in standard SMF. SPM broadening in PCFs has several advantages over more complex super continuum generatio...

  18. Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers

    DEFF Research Database (Denmark)

    Triches, Marco; Michieletto, Mattia; Hald, Jan

    2015-01-01

    frequency instability. The locked fiber laser shows a fractional frequency instability below 4×10−12 for averaging time up to 104 s. The lock-point repeatability over more than 1 year is 1.3×10−11, corresponding to a standard deviation of 2.5 kHz. A complete experimental investigation of the light...

  19. Long-period gratings in photonic crystal fibers operating near the phase-matching turning point for evanescent chemical and biochemical sensing

    Czech Academy of Sciences Publication Activity Database

    Tian, F.; Kaňka, Jiří; Du, H.

    2012-01-01

    Roč. 20, č. 19 (2012), s. 20952-20961 ISSN 1094-4087 R&D Projects: GA MŠk(CZ) LH11038 Institutional support: RVO:67985882 Keywords : Photonic crystal fiber * Long-period grating * Optical sensors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.546, year: 2012

  20. Polarization-insensitive all-optical dual pump-phase transmultiplexing from 2 x 10-GBd OOKs to 10-GBd RZ-QPSK using cross-phase modulation in a passive nonlinear birefringent photonic crystal fiber

    Science.gov (United States)

    Mahmood, Tanvir

    Considering the network size, bit rate, spectral and channel capacity limitations, different modulation formats may be selectively used in future optical networks. Although the traditional metropolitan area networks (MANs) still uses the non-return-to-zero on-off keying (NRZ-OOK) modulation format due to its technical simplicity and therefore low cost, QPSK format is more advantageous in spectrally efficient long-haul fiber optic transmission systems because of its constant power envelope, and robustness to various transmission impairments. Consequently, an important problem may arise, in particular how to route the OOK-data streams from MANs to long-haul backbone networks when the state of polarization (SOP) of the remotely generated OOK is unpredictable. Hence, the focus of this dissertation was to investigate a polarization insensitive (PI) all-optical nonlinear optical signal processing (NOSP) method that can be implemented at the network cross-connect (X-connect) to transfer data from a remotely and a locally generated OOK data simultaneously to more effectual QPSK format for long-haul transmission. By utilizing cross-phase modulation (XPM) and inherent birefringence of the device, the work demonstrated, for the first time, PI all-optical data transfer utilizing dual pump-phase transmultiplexing (DPTM) from 2 x 10-GBd OOKs to 10-GBd RZ-QPSK in a passive nonlinear birefringent photonic crystal fiber (PCF). Polarization insensitivity was achieved by scrambling the SOP of the remotely generated OOK pump and launching the locally generated OOK pump and the probe off-axis. To mitigate polarization induced power fluctuations and detrimental effects due to nearby partially degenerate and non-degenerate four wave mixings, an optimum pump-probe detuning was also utilized. The PI DPTM RZ-QPSK demonstrated a pre-amplified receiver sensitivity penalty < 5.5 dB at 10--9 bit-error-rate (BER), relative to relative to the FPGA-precoded RZ-DQPSK baseline in ASE

  1. Electrically tunable whispering gallery mode microresonator based on a grapefruit-microstructured optical fiber infiltrated with nematic liquid crystals.

    Science.gov (United States)

    Yang, Chengkun; Zhang, Hao; Liu, Bo; Lin, Shiwei; Li, Yuetao; Liu, Haifeng

    2017-08-01

    An electrically tunable whispering gallery mode (WGM) microresonator based on an HF-etched microstructured optical fiber (MOF) infiltrated with nematic liquid crystals (NLCs) is proposed and experimentally demonstrated. Experimental results indicate that as the peak-to-peak voltage of the applied AC electric field increases from 160 to 220 V, WGM resonance peaks gradually move toward a shorter wavelength region by 0.527 nm with a wavelength sensitivity up to 0.01  nm/V for a TM1691 mode, and the Q-factor for each WGM resonance peak rapidly decreases with the increment of applied electric voltage. The proposed electrically controlled WGM tuning scheme shows a linear resonance wavelength shift with good spectral reversibility, which makes it a promising candidate to serve as an integrated functional photonic device in practical use and in related fundamental scientific studies.

  2. Simultaneous generation of tunable giant dispersive waves in the visible and mid-infrared regions based on photonic crystal fibers

    International Nuclear Information System (INIS)

    Zhang, Lei; Yang, Si-Gang; Chen, Hong-Wei; Chen, Ming-Hua; Xie, Shi-Zhong; Han, Ying

    2013-01-01

    Cherenkov radiation (CR) in both the visible and mid-infrared regions is simultaneously generated experimentally based on a photonic crystal fiber with two zero-dispersion wavelengths. The generation of CR in the visible region originates from solitons located in the anomalous group velocity dispersion (GVD) regime which are perturbed by positive third order dispersion. Conversely, the generation of CR in the mid-infrared region requires that the solitons in the anomalous GVD regime are perturbed by negative third order dispersion. The peak wavelength of the CR in the visible region can be tuned from 498 to 425 nm by increasing the average input pump power from 70 to 400 mW, while the peak wavelength of the CR in the mid-infrared region can be tuned from 1986 to 2279 nm by increasing the average input pump power from 70 to 320 mW. (paper)

  3. Experimental generation of discrete ultraviolet wavelength by cascaded intermodal four-wave mixing in a multimode photonic crystal fiber.

    Science.gov (United States)

    Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhang, Xianting; Mei, Chao; Zhou, Guiyao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Zhong, Kangping; Wang, Kuiru; Yu, Chongxiu; Farrell, Gerald; Lu, Chao; Tam, Hwa Yaw; Wai, P K A

    2017-09-15

    In this Letter, we demonstrate experimentally for the first time, to the best of our knowledge, discrete ultraviolet (UV) wavelength generation by cascaded intermodal FWM when femtosecond pump pulses at 800 nm are launched into the deeply normal dispersion region of the fundamental guided mode of a multimode photonic crystal fiber (MPCF). For pump pulses at average input powers of P av =450, 550, and 650 mW, the first anti-Stokes waves are generated at the visible wavelength of 538.1 nm through intermodal phase matching between the fundamental and second-order guided mode of the MPCF. The first anti-Stokes waves generated then serve as the secondary pump for the next intermodal FWM process. The second anti-Stokes waves in the form of the third-order guided mode are generated at the UV wavelength of 375.8 nm. The maximum output power is above 10 mW for P av =650  mW. We also confirm that the influences of fiber bending and intermodal walk-offs on the cascaded intermodal FWM-based frequency conversion process are negligible.

  4. Extended parametric gain range in photonic crystal fibers with strongly frequency-dependent field distributions.

    Science.gov (United States)

    Petersen, Sidsel R; Alkeskjold, Thomas T; Olausson, Christina B; Lægsgaard, Jesper

    2014-08-15

    The parametric gain range of a degenerate four-wave mixing process is determined in the undepleted pump regime. The gain range is considered with and without taking the mode field distributions of the four-wave mixing components into account. It is found that the mode field distributions have to be included to evaluate the parametric gain correctly in dispersion-tailored speciality fibers and that mode profile engineering can provide a way to increase the parametric gain range.

  5. Identification of the Propionicin F Bacteriocin Immunity Gene (pcfI) and Development of a Food-Grade Cloning System for Propionibacterium freudenreichii▿ †

    OpenAIRE

    Brede, Dag Anders; Lothe, Sheba; Salehian, Zhian; Faye, Therese; Nes, Ingolf F.

    2007-01-01

    This report describes the first functional analysis of a bacteriocin immunity gene from Propionibacterium freudenreichii and its use as a selection marker for food-grade cloning. Cloning of the pcfI gene (previously orf5 [located as part of the pcfABC propionicin F operon]) rendered the sensitive host 1,000-fold more tolerant to the propionicin F bacteriocin. The physiochemical properties of the 127-residue large PcfI protein resemble those of membrane-bound immunity proteins from bacteriocin...

  6. Characterization and modeling of microstructured chalcogenide fibers for efficient mid-infrared wavelength conversion.

    Science.gov (United States)

    Xing, Sida; Grassani, Davide; Kharitonov, Svyatoslav; Billat, Adrien; Brès, Camille-Sophie

    2016-05-02

    We experimentally demonstrate wavelength conversion in the 2 µm region by four-wave mixing in an AsSe and a GeAsSe chalcogenide photonic crystal fibers. A maximum conversion efficiency of -25.4 dB is measured for 112 mW of coupled continuous wave pump in a 27 cm long fiber. We estimate the dispersion parameters and the nonlinear refractive indexes of the chalcogenide PCFs, establishing a good agreement with the values expected from simulations. The different fiber geometries and glass compositions are compared in terms of performance, showing that GeAsSe is a more suited candidate for nonlinear optics at 2 µm. Building from the fitted parameters we then propose a new tapered GeAsSe PCF geometry to tailor the waveguide dispersion and lower the zero dispersion wavelength (ZDW) closer to the 2 µm pump wavelength. Numerical simulations shows that the new design allows both an increased conversion efficiency and bandwidth, and the generation of idler waves further in the mid-IR regions, by tuning the pump wavelength in the vicinity of the fiber ZDW.

  7. Crystallization and mechanical behavior of the ferroelectric polymer nonwoven fiber fabrics for highly durable wearable sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.H. [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Center for Nanoscience & Nanotechnology, National Sun Yat-Sen University, Taiwan (China); National Science Council Core Facilities Laboratory for Nano-Science and Nano-Technology in Kaohsiung-Pingtung Area, Taiwan (China); Micro/Meso Mechanical Manufacturing R& D Department, Metal Industries Research and Development Centre, Kaohsiung 81160, Taiwan (China); Pan, C.T., E-mail: panct@mail.nsysu.edu.tw [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Center for Nanoscience & Nanotechnology, National Sun Yat-Sen University, Taiwan (China); National Science Council Core Facilities Laboratory for Nano-Science and Nano-Technology in Kaohsiung-Pingtung Area, Taiwan (China); Yen, C.K. [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Center for Nanoscience & Nanotechnology, National Sun Yat-Sen University, Taiwan (China); National Science Council Core Facilities Laboratory for Nano-Science and Nano-Technology in Kaohsiung-Pingtung Area, Taiwan (China); Lin, L.W. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720 (United States); Huang, J.C. [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Ke, C.A. [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China)

    2015-08-15

    Highlights: • Performance of the hollow cylindrical near-field electrospinning (HCNFES). • Well-aligned self-assembled PVDF nonwoven fiber fabrics. • Highly durable wearable sensors. • The mechanical characterization of HCNFES piezoelectric NFFs. • The formation of β-form extended-chain crystallites in the PVDF nanofibers. - Abstract: The mechanical characterization of the electrospinning polyvinylidene fluoride (PVDF) nonwoven fiber fabrics (NFFs) doped with multi-walled carbon nanotubes (MWCNTs) was investigated. Piezoelectric composite nanofibers of the PVDF/MWCNTs were directly electrospun by the hollow cylindrical near-field electrospinning (HCNFES) without any post-poling treatment. We have made the HCNFES NFFs consisted of high-orderly arranged nanofiber assemblies for further characterizing the effect of MWCNTs filling PVDF nanofibers. An in situ electrical poling and high uniaxial stretching imparted on the polymer jet during the HCNFES process, which naturally align the dipoles in the PVDF crystals and promote the formation of the polar β-crystalline phase within the fibers. Moreover, the reinforcement of the HCNFES PVDF nanofibers indicated the improvement in mechanical properties and the degree of high oriented extended-chain crystallites through adding adequate contents of MWCNTs. In the case of alignment of the all-trans polymer chains in the vicinity of MWCNTs along the fiber axis, X-ray diffraction (XRD) patterns showed the strongest diffraction peak of the β-crystalline phase. In the comparison of the near-field electrospinning (NFES), the HCNFES nanofibers with smooth surface and smaller diameter can easily form high density structural NFFs. After nano-indentation and tensile strength measurements, the results indicated that the mechanical properties of the HCNFES NFFs are better than the NFES ones. When 16 wt% PVDF solution doped with 0.03 wt% MWCNTs, the results reveal that Young's modulus, hardness, yield stress, yield strain

  8. High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy

    DEFF Research Database (Denmark)

    Bondu, Magalie; Brooks, Christopher; Jakobsen, Christian

    2016-01-01

    We demonstrate a record bandwidth high energy supercontinuum source suitable for multispectral photoacoustic microscopy. The source has more than 150  nJ/10  nm150  nJ/10  nm bandwidth over a spectral range of 500 to 1600 nm. This performance is achieved using a carefully designed fiber taper...... with large-core input for improved power handling and small-core output that provides the desired spectral range of the supercontinuum source....

  9. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  10. Basic study of single crystal fibers of Pr:Lu{sub 3}Al{sub 5}O{sub 12} scintillator for gamma-ray imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: t_yanagi@tagen.tohoku.ac.jp [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Kamada, Kei [Materials Research Laboratory, Furukawa Co., Ltd., 1-25-13 Kannondai, Tukuba Ibaragi 305-0856 (Japan); Kawaguchi, Noriaki [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama Corporation, Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Fujimoto, Yutaka [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Fukuda, Kentaro [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama Corporation, Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Yokota, Yuui; Chani, Valery; Yoshikawa, Akira [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2011-10-01

    Single-crystalline fibers were grown from 0.25, 0.70, and 1.50 mol% Pr-doped Lu{sub 3}Al{sub 5}O{sub 12} (LuAG) melts by the micro-pulling down ({mu}-PD) method with a diameter of 0.3-0.5 mm and a length of about 200 mm. They were cut to 10 mm long specimens, and their scintillation properties, including light yield and decay time profile, were examined. These results were compared with corresponding properties of the specimens (0.8x0.8x10 mm{sup 3}) cut from the bulk crystals produced by conventional Czochralski (CZ) growth. The {mu}-PD-grown fibers demonstrated relatively low light yield and had the same decay time constant when compared with those of the samples cut from the CZ-grown crystals. The fiber crystals were used to assemble scintillating arrays with dimensions of O 0.5x10 mm{sup 2}x20 pixels and O 0.3x10 mm{sup 2}x30 pixels coated by a BaSO{sub 4} reflector. After optical coupling with a position sensitive photomultiplier tube, the fiber-based arrays demonstrated acceptable imaging capability with a spatial resolution of about 0.5 mm.

  11. Basic study of single crystal fibers of Pr:Lu3Al5O12 scintillator for gamma-ray imaging applications

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kamada, Kei; Kawaguchi, Noriaki; Fujimoto, Yutaka; Fukuda, Kentaro; Yokota, Yuui; Chani, Valery; Yoshikawa, Akira

    2011-01-01

    Single-crystalline fibers were grown from 0.25, 0.70, and 1.50 mol% Pr-doped Lu 3 Al 5 O 12 (LuAG) melts by the micro-pulling down (μ-PD) method with a diameter of 0.3-0.5 mm and a length of about 200 mm. They were cut to 10 mm long specimens, and their scintillation properties, including light yield and decay time profile, were examined. These results were compared with corresponding properties of the specimens (0.8x0.8x10 mm 3 ) cut from the bulk crystals produced by conventional Czochralski (CZ) growth. The μ-PD-grown fibers demonstrated relatively low light yield and had the same decay time constant when compared with those of the samples cut from the CZ-grown crystals. The fiber crystals were used to assemble scintillating arrays with dimensions of O 0.5x10 mm 2 x20 pixels and O 0.3x10 mm 2 x30 pixels coated by a BaSO 4 reflector. After optical coupling with a position sensitive photomultiplier tube, the fiber-based arrays demonstrated acceptable imaging capability with a spatial resolution of about 0.5 mm.

  12. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    OpenAIRE

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chavez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few {\\mu}J energy generate vacuum ultraviolet (VUV) radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to ...

  13. Fiber Strength of Hi Nicalon(TM) S After Oxidation and Scale Crystallization in Si(OH)4 Saturated Steam (Postprint)

    Science.gov (United States)

    2017-02-06

    transmission electron microscopy. At 700°C and higher, if SiO2 glass scales got too thick they often dewetted the SiC fibers and would spheroidize... SiO2 glass wicked to the spheroids as fast as it formed on the dewetted SiC surface, causing faster oxidation. SiO2 crystallization to cristobalite... glass scales got too thick they often dewetted the SiC fibers and would spheroidize. SiO2 glass wicked to the spheroids as fast as it formed on the

  14. MICROSTRUCTURING OF SILICON SINGLE CRYSTALS BY FIBER LASER IN HIGH-SPEED SCANNING MODE

    Directory of Open Access Journals (Sweden)

    T. A. Trifonova

    2015-11-01

    Full Text Available Subject of Study. The surface structure of the silicon wafers (substrate with a thermally grown silicon dioxide on the surface (of SiO2/Si is studied after irradiation by pulse fiber laser of ILI-1-20 type. The main requirements for exposure modes of the system are: the preservation of the integrity of the film of silicon dioxide in the process of microstructuring and the absence of interference of surrounding irradiated areas of the substrate. Method. Studies were carried out on silicon wafers KEF-4,5 oriented in the crystallographic plane (111 with the source (natural silicon dioxide (SiO2 with thickness of about 4 nm, and SiO2 with 40 nm and 150 nm thickness, grown by thermal oxidation in moist oxygen. Also, wafers KHB-10 oriented in the plane (100 with 500 nm thickness of thermal oxide were investigated. Irradiation of SiO2/Si system was produced by laser complex based on ytterbium fiber pulse laser ILI-1-20. Nominal output power of the laser was 20 W, and the laser wavelength was λ = 1062 nm. Irradiation was carried out by a focused beam spot with a diameter of 25 microns and a pulse repetition rate of 99 kHz. The samples with 150 nm and 40 nm thickness of SiO2 were irradiated at a power density equal to 1,2·102 W/cm2, and the samples of SiO2 with 500 nm thickness were irradiated at a power density equal to 2,0·102 W/cm2. Scanning was performed using a two-axis Coordinate Scanning Device based on VM2500+ drives with control via a PC with the software package "SinMarkTM." Only one scan line was used at the maximum speed of the beam equal to 8750 mm/s. Morphology control of the irradiated samples was conducted by an optical microscope ZeissA1M with high-resolution CCD array. A scanning probe microscope Nanoedicator of the NT-MDT company was used for structural measurements. Main Results. It has been shown that at a single exposure of high-frequency pulsed laser radiation on SiO2/Si system, with maintaining the integrity of the SiO2 film

  15. Measurement of Thermal Dependencies of PBG Fiber Properties

    International Nuclear Information System (INIS)

    Laouar, Rachik

    2011-01-01

    Photonic crystal fibers (PCFs) represent a class of optical fibers which have a wide spectrum of applications in the telecom and sensing industries. Currently, the Advanced Accelerator Research Department at SLAC is developing photonic bandgap particle accelerators, which are photonic crystal structures with a central defect used to accelerate electrons and achieve high longitudinal electric fields. Extremely compact and less costly than the traditional accelerators, these structures can support higher accelerating gradients and will open a new era in high energy physics as well as other fields of science. Based on direct laser acceleration in dielectric materials, the so called photonic band gap accelerators will benefit from mature laser and semiconductor industries. One of the key elements to direct laser acceleration in hollow core PCFs, is maintaining thermal and structural stability. Previous simulations demonstrate that accelerating modes are sensitive to the geometry of the defect region and the variations in the effective index. Unlike the telecom modes (for which over 95% of the energy propagates in the hollow core) most of the power of these modes is located in the glass at the periphery of the central hole which has a higher thermal constant than air (γ SiO# sub 2# = 1.19 x 10 -6 1/K, γ air = -9 x 10 -7 1/K with γ = dn/dT). To fully control laser driven acceleration, we need to evaluate the thermal and structural consequences of such modes on the PCFs. We are conducting series of interferometric tests to quantify the dependencies of the HC-633-02 (NKT Photonics) propagation constant (k z ) on temperature, vibration amplitude, stress and electric field strength. In this paper we will present the theoretical principles characterizing the thermal behavior of a PCF, the measurements realized for the fundamental telecom mode (TE 00 ), and the experimental demonstration of TM-like mode propagation in the HC-633-02 fiber.

  16. Crystal Structure of the Carboxy-Terminal Region of the Bacteriophage T4 Proximal Long Tail Fiber Protein Gp34

    Directory of Open Access Journals (Sweden)

    Meritxell Granell

    2017-06-01

    Full Text Available Long tail fibers of bacteriophage T4 are formed by proteins gp34, gp35, gp36, and gp37, with gp34 located at the phage-proximal end and gp37 at the phage-distal, receptor-binding end. We have solved the structure of the carboxy-terminal region of gp34, consisting of amino acids 894–1289, by single-wavelength anomalous diffraction and extended the structure to amino acids 744–1289 using data collected from crystals containing longer gp34-fragments. The structure reveals three repeats of a mixed α-β fibrous domain in residues 744 to 877. A triple-helical neck connects to an extended triple β-helix domain (amino acids 900–1127 punctuated by two β-prism domains. Next, a β-prism domain decorated with short helices and extended β-helices is present (residues 1146–1238, while the C-terminal end is capped with another short β-helical region and three β-hairpins. The structure provides insight into the stability of the fibrous gp34 protein.

  17. Highly-nonlinear polarization-maintaining As2Se3-based photonic quasi-crystal fiber for supercontinuum generation

    Science.gov (United States)

    Zhao, Tongtong; Lian, Zhenggang; Benson, Trevor; Wang, Xin; Zhang, Wan; Lou, Shuqin

    2017-11-01

    We propose an As2Se3-based photonic quasi-crystal fiber (PQF) with high nonlinearity and birefringence. By optimizing the structure parameters, a nonlinear coefficient up to 2079 W-1km-1 can be achieved at the wavelength of 2 μm; the birefringence reaches up to the order of 10-2 due to the introduction of large circular air holes in the cladding. Using an optical pulse with a peak power of 6 kW, a pulse width of 150 fs, and a central wavelength of 2.94 μm as the pump pulse, a mid-infrared polarized supercontinuum is obtained by using a 15 mm long PQF. The spectral width for x- and y-polarizations covers 1 μm-10.2 μm and 1 μm-12.5 μm, respectively. The polarization state can be well maintained when the incident angle of the input pulse changes within ±2°. The proposed PQF, with high nonlinear coefficient and birefringence, has potential applications in mid-infrared polarization-maintaining supercontinuum generation.

  18. Spectrally-isolated violet to blue wavelength generation by cascaded degenerate four-wave mixing in a photonic crystal fiber.

    Science.gov (United States)

    Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhang, Xianting; Zhou, Guiyao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Wang, Liang; Zhong, Kangping; Wang, Kuiru; Yu, Chongxiu; Tam, Hwa Yaw; Wai, P K A

    2016-06-01

    Generation of spectrally-isolated wavelengths in the violet to blue region based on cascaded degenerate four-wave mixing (FWM) is experimentally demonstrated for the first time in a tailor-made photonic crystal fiber, which has two adjacent zero dispersion wavelengths (ZDWs) at 696 and 852 nm in the fundamental mode. The influences of the wavelength λp and the input average power Pav of the femtosecond pump pulses on the phase-matched frequency conversion process are studied. When femtosecond pump pulses at λp of 880, 870, and 860 nm and Pav of 500 mW are coupled into the normal dispersion region close to the second ZDW, the first anti-Stokes waves generated near the first ZDW act as a secondary pump for the next FWM process. The conversion efficiency ηas2 of the second anti-Stokes waves, which are generated at the violet to blue wavelengths of 430, 456, and 472 nm, are 4.8, 6.48, and 9.66%, for λp equalling 880, 870, and 860 nm, respectively.

  19. Measurement of temperature and concentration influence on the dispersion of fused silica glass photonic crystal fiber infiltrated with water-ethanol mixture

    Science.gov (United States)

    Van, Hieu Le; Buczynski, Ryszard; Long, Van Cao; Trippenbach, Marek; Borzycki, Krzysztof; Manh, An Nguyen; Kasztelanic, Rafal

    2018-01-01

    We present experimental and simulation results of the zero-dispersion shift in photonics crystal fibers infiltrated with water-ethanol mixture. The fiber based on the fused silica glass with a hexagonal lattice consists of seven rings of air-holes filled by liquid. We show that it is possible to shift the zero-dispersion wavelength by 35 ps/nm/km when changing the temperature by 60 °C, and by 42 ps/nm/km when changing the concentration of ethanol from 0 to 100%. The results also show that for the optical fiber filed with pure ethanol the flattened part of the dispersion shifts from anomalous to the normal regime at temperatures below -70 °C.

  20. Unusual Formation of Precursors for Crystallization of Ultra-High Performance Polypropylene and Poly(ethylene terephthalate) Fibers by Utilization of Ecologically Friendly Horizontal Isothermal Bath

    Science.gov (United States)

    Avci, Huseyin

    structural development and the production of ultra-high performance as-spun and drawn polypropylene (PP) filaments were investigated. Two different commercial fiber forming PP polymers were used with the melt flow rate of 4.1 and 36 g/10 min. The results demonstrate surprisingly different precursor morphologies for each type of polymer at their optimum process condition. Interestingly, the all treated fibers demonstrated the similar fiber performance having tenacity of about 7 g/d and modulus of 75 g/d for as-spun fibers. After fiber drawing with DR of 1.49, tenacity greater than 12 g/d and modulus higher than 190 g/d were observed. The mean value for the modulus after the drawing process for the high melt flow rate is about 196 g/d. The theoretical modulus of PP is 35--42 GPa17, 275-330 g/d, which demonstrates the hIB fiber's modulus performance is approaching its theoretical maximum values. A key aspect of the third section of this study was to obtain ultra-high performance poly(ethylene terephthalate) fibers (PET) by utilizing a low molecular weight polymer via hIB method. The resulted fibers showed the efficient polymer chain orientation and the highly crystalline and ordered structures. The highest tenacity of more than 8 and 10 g/d were observed for the as-spun and drawn fibers, respectively, after only 1.28 draw ratios. The significant effect of the temperature of hIB spinning system on the fibrillar structure and the precursor's formation of the as-spun fibers was demonstrated. The melting temperature increased 8.51 °C from 254.05 to 262.56 °C when untreated and treated fibers are compared. The most important contribution of this study is that all these various types of polymer precursors for crystallization with different molecular weights after the baths treatments were highly oriented, yet non-crystallized or just showed the initial stages of crystallization. By a subsequent hot drawing process with the low draw ratio (DR< 1.5), the treated fibers showed a well

  1. All-optical temporal fractional order differentiator using an in-fiber ellipsoidal air-microcavity

    Science.gov (United States)

    Zhang, Lihong; Sun, Shuqian; Li, Ming; Zhu, Ninghua

    2017-12-01

    An all-optical temporal fractional order differentiator with ultrabroad bandwidth (~1.6 THz) and extremely simple fabrication is proposed and experimentally demonstrated based on an in-fiber ellipsoidal air-microcavity. The ellipsoidal air-microcavity is fabricated by splicing a single mode fiber (SMF) and a photonic crystal fiber (PCF) together using a simple arc-discharging technology. By changing the arc-discharging times, the propagation loss can be adjusted and then the differentiation order is tuned. A nearly Gaussian-like optical pulse with 3 dB bandwidth of 8 nm is launched into the differentiator and a 0.65 order differentiation of the input pulse is achieved with a processing error of 2.55%. Project supported by the the National Natural Science Foundation of China (Nos. 61522509, 61377002, 61535012), the National High-Tech Research & Development Program of China (No. SS2015AA011002), and the Beijing Natural Science Foundation (No. 4152052). Ming Li was supported in part by the Thousand Young Talent Program.

  2. Soliton fission and supercontinuum generation in photonic crystal

    Indian Academy of Sciences (India)

    2015-10-17

    Oct 17, 2015 ... We present a practical design of novel photonic crystal fibre (PCF) to investigate the nonlinear propagation of femtosecond pulses for the application of optical coherence tomography (OCT) based on supercontinuum generation (SCG) process. In addition, this paper contains a brief introduction of the ...

  3. Photonic Crystal Fibres for Dispersion and Sensor Applications

    DEFF Research Database (Denmark)

    Sørensen, Thorkild

    2005-01-01

    of the involved nonlinear processes. A hollow-core photonic crystal fibre (HC-PCF) is used as a sensor for gas. It is filled with two gasses, 12C2H2 acetylene, and H13CN hydrogen cyanide, and the transmission spectra are subject for a discussion. A model for infusion speed of fluids to a capillary presented...

  4. Growth by the μ-PD Method and Visible Laser Operation of a Single-Crystal Fiber of Pr3+:KY3F10

    Directory of Open Access Journals (Sweden)

    Jun Shu

    2017-07-01

    Full Text Available We report on the first growth, spectroscopy, and visible laser operation of a single-crystal fiber (SCF of KY3F10 (KYF grown by the micro-pulling-down (μ-PD method, doped with Pr3+ ions. This material has a cubic lattice, which makes it appealing for use in the industry. However, KYF crystals are considered difficult to grow with high optical quality, even with well-established methods. Nevertheless, we grew a 50-mm-long SCF of Pr:KYF, which was transparent in its inner part. We studied the spectroscopic features of it in comparison with existing literature and with samples of the same crystal grown by the Czochralski method, and we did not notice any large differences. These characterizations confirmed that is indeed possible to grow high-quality crystals of Pr:KYF by the μ-PD method. Unfortunately, the crystal proved to be more brittle than typical KYF and especially difficult to polish, leading to rough and irregular facets, as evidenced by transmission measurements. Despite these issues, we obtained continuous-wave laser operation in the orange, red, and deep red regions, using a sample carved from the SCF as active medium and an InGaN-based laser diode as pump source, though with lower performances than in existing reports on this crystal.

  5. Single crystal fibers growth of double lithium, lanthanium molybdate and adjustment of a micro-pulling down furnace for high vacuum setup

    International Nuclear Information System (INIS)

    Silva, Fernando Rodrigues da

    2013-01-01

    In this work we investigated crystal growth procedures aiming the development of single crystal fiber (SCF) for laser applications. For quality optimization in the fabrication of fluorides SCF a new growth chamber for a micro-pulling down furnace (μ-PD) was constructed targeting the fibers fabrication with strict atmosphere control (high vacuum, gas flux and static atmospheres). Simultaneously, the SCF growth process of rare earth double molybdates was studied. The growth of pure and Nd 3+ -doped SCF of LiLa(MoO 4 ) 2 (LLM) was studied in the range of 0,5 - 10mol% doping. The designed furnace growth chamber with controlled atmosphere was successfully constructed and tested under different conditions. Specially, it was tested with the growth of LiF SFC under CF 4 atmosphere showing the expected results. Transparent and homogeneous SCF of Nd:LLM were grown. In the pure fibers was observed facets formation, however, these defects were minimized after tuning of the growth parameters and additionally with the fibers doping. X-ray analysis showed the crystallization of a single phase (space group I4 1 /a); the optical coherence tomography showed the presence of scattering centers only in regions were some growth stability occurred due to the manual process control. The measured Nd 3+ distribution showed uniform incorporation, indicative of a segregation coefficient close to unity in LLM. The potential laser gain of the system was determined using a numerical solution of the rate equations system for the 805nm, CW pumping regime, showing the maximum laser emission gain at 1.064 μm for a Nd 3+ -doping of 5mol%. (author)

  6. Spectrofluorimetry with attomole sensitivity in photonic crystal fibres

    International Nuclear Information System (INIS)

    Williams, Gareth O S; Jones, Anita C; Euser, Tijmen G; Russell, Philip St J

    2013-01-01

    We report the use of photonic crystal fibres (PCF) as spectrofluorimetric systems in which sample solutions are excited within the microstructure of the fibre. The use of intra-fibre excitation has several advantages that combine to enable highly sensitive measurements of fluorescence spectra and lifetimes: long path-lengths are achieved by the efficient guidance of the fundamental mode; sample volumes contained within the micron-scale structure are very small, only a few nanolitres per cm of path; collection and guidance of the emitted fluorescence is efficient and the fluorescence lifetime is unperturbed. Fluorophores in bulk solution can be studied in hollow core PCF, whereas the use of PCF with a suspended, solid core enables selective excitation of molecules in close proximity to the silica surface, through interaction with the evanescent field. We demonstrate the measurement of fluorescence spectra and fluorescence lifetimes in each of these excitation regimes and report the detection of attomole quantities of fluorescein. (paper)

  7. Photonic Crystal Fibre SERS Sensors Based on Silver Nanoparticle Colloid

    International Nuclear Information System (INIS)

    Zhi-Guo, Xie; Yong-Hua, Lu; Pei, Wang; Kai-Qun, Lin; Jie, Yan; Hai, Ming

    2008-01-01

    A photonic crystal fibre (PCF) surface enhanced Raman scattering (SERS) sensor is developed based on silver nanoparticle colloid. Analyte solution and silver nanoparticles are injected into the air holes of PCF by a simple modified syringe to overcome mass-transport constraints, allowing more silver nanoparticles involved in SERS activity. This sensor offers significant benefit over the conventional SERS sensor with high flexibility, easy manufacture. We demonstrate the detection of 4-mercaptobenzoic acid (4-MBA) molecules with the injecting way and the common dipping measurement. The injecting way shows obviously better results than the dipping one. Theoretical analysis indicates that this PCF SERS substrate offers enhancement of about 7 orders of magnitude in SERS active area

  8. Measurement of Gamma-ray Energy Spectrum According to Temperature Variation Using a Fiber-Optic Radiation Sensor Based on YSO:Ce Crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, H.; Yoo, W. J.; Shin, S. H.; Jang, J. S.; Kim, J. S.; Kwon, G.; Lee, D. E.; Jang, K. W.; Lee, B. [BK21 Plus Research Institute of Biomedical Engineering, Konkuk University, Chungju (Korea, Republic of)

    2015-05-15

    As an alternative to conventional radiation detectors, various fiber-optic radiation sensors (FORSs) have been investigated for gamma-ray monitoring because of their various desirable advantages, such as their small sensing volume, substantial flexibility, remote operation, ability to make real-time measurement, and immunity to high electromagnetic interference. In general, the basic principle of a radiation detection using scintillators is to measure the scintillating light signals generated from the interactions between the scintillators and the radiations. To measure gamma-ray, the inorganic scintillators used in the FORS should have some properties, such as high atomic material, high light yields, fast decay time, high density, and high stopping power. For these reasons, a cerium-doped lutetium yttrium orthosilicate (LYSO:Ce) crystal has been introduced as a promising scintillator in various radiation sensor applications. According to the recent studies, however, LYSO:Ce crystal is impossible to be applied in high-temperature conditions because it serves the fluctuations of its light yields with the temperature variation (i.e., thermosluminescence). In this study, to obtain gamma-ray energy spectra by measuring scintillating light signals emitted from the scintillators in high-temperature conditions, we first fabricated an FORS system using various inorganic scintillator crystals and then evaluated the light yields of each inorganic scintillator. As a promising scintillator for use in high-temperature conditions, a cerium-doped yttrium orthosilicate (YSO:Ce) crystal was selected and evaluated its thermal property according to the elevated temperature up to 300 .deg. C. We fabricated an FORS using inorganic scintillator and an optical fiber bundle. To select an adequate scintillator to apply in high-temperature conditions, the gamma-ray energy spectra were obtained by using four kinds of inorganic scintillators. From the experimental results, we selected YSO

  9. Identification of the Propionicin F Bacteriocin Immunity Gene (pcfI) and Development of a Food-Grade Cloning System for Propionibacterium freudenreichii▿ †

    Science.gov (United States)

    Brede, Dag Anders; Lothe, Sheba; Salehian, Zhian; Faye, Therese; Nes, Ingolf F.

    2007-01-01

    This report describes the first functional analysis of a bacteriocin immunity gene from Propionibacterium freudenreichii and its use as a selection marker for food-grade cloning. Cloning of the pcfI gene (previously orf5 [located as part of the pcfABC propionicin F operon]) rendered the sensitive host 1,000-fold more tolerant to the propionicin F bacteriocin. The physiochemical properties of the 127-residue large PcfI protein resemble those of membrane-bound immunity proteins from bacteriocin systems found in lactic acid bacteria. The high level of immunity conferred by pcfI allowed its use as a selection marker for plasmid transformation in P. freudenreichii. Electroporation of P. freudenreichii IFO12426 by use of the pcfI expression plasmid pSL102 and propionicin F selection (200 bacteriocin units/ml) yielded 107 transformants/μg DNA. The 2.7-kb P. freudenreichii food-grade cloning vector pSL104 consists of the pLME108 replicon, a multiple cloning site, and pcfI expressed from the constitutive PpampS promoter for selection. The pSL104 vector efficiently facilitated cloning of the propionicin T1 bacteriocin in P. freudenreichii. High-level propionicin T1 production (640 BU/ml) was obtained with the IFO12426 strain, and the food-grade propionicin T1 expression plasmid pSL106 was maintained by ∼91% of the cells over 25 generations in the absence of selection. To the best of our knowledge this is the first report of an efficient cloning system that facilitates the generation of food-grade recombinant P. freudenreichii strains. PMID:17933941

  10. Identification of the propionicin F bacteriocin immunity gene (pcfI) and development of a food-grade cloning system for Propionibacterium freudenreichii.

    Science.gov (United States)

    Brede, Dag Anders; Lothe, Sheba; Salehian, Zhian; Faye, Therese; Nes, Ingolf F

    2007-12-01

    This report describes the first functional analysis of a bacteriocin immunity gene from Propionibacterium freudenreichii and its use as a selection marker for food-grade cloning. Cloning of the pcfI gene (previously orf5 [located as part of the pcfABC propionicin F operon]) rendered the sensitive host 1,000-fold more tolerant to the propionicin F bacteriocin. The physiochemical properties of the 127-residue large PcfI protein resemble those of membrane-bound immunity proteins from bacteriocin systems found in lactic acid bacteria. The high level of immunity conferred by pcfI allowed its use as a selection marker for plasmid transformation in P. freudenreichii. Electroporation of P. freudenreichii IFO12426 by use of the pcfI expression plasmid pSL102 and propionicin F selection (200 bacteriocin units/ml) yielded 10(7) transformants/microg DNA. The 2.7-kb P. freudenreichii food-grade cloning vector pSL104 consists of the pLME108 replicon, a multiple cloning site, and pcfI expressed from the constitutive P(pampS) promoter for selection. The pSL104 vector efficiently facilitated cloning of the propionicin T1 bacteriocin in P. freudenreichii. High-level propionicin T1 production (640 BU/ml) was obtained with the IFO12426 strain, and the food-grade propionicin T1 expression plasmid pSL106 was maintained by approximately 91% of the cells over 25 generations in the absence of selection. To the best of our knowledge this is the first report of an efficient cloning system that facilitates the generation of food-grade recombinant P. freudenreichii strains.

  11. Complete sequence of the IncA/C1 plasmid pCf587 carrying blaPER-2 from Citrobacter freundii.

    Science.gov (United States)

    Ruggiero, Melina; Girlich, Delphine; Dabos, Laura; Power, Pablo; Naas, Thierry; Gutkind, Gabriel

    2018-02-20

    The bla PER-2 harboring plasmid pCf587 (191,541 bp) belongs to lineage IncA/C 1 and is closely related to pRA1. It contains a large resistance island including the bla PER-2 gene between two copies of IS Kox2 -like elements, the toxin-antitoxin module pemK-pemI, several other resistance genes inserted within a Tn 2 transposon, a Tn 21 -like structure, and a class 1 integron. pCf587 belongs into ST 13, a new pMLST. Copyright © 2018 American Society for Microbiology.

  12. Understanding the dynamics of photoionization-induced nonlinear effects and solitons in gas-filled hollow-core photonic crystal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Mohammed F.; Biancalana, Fabio [Max Planck Institute for the Science of Light, Guenther-Scharowsky Str. 1, DE-91058 Erlangen (Germany)

    2011-12-15

    We present the details of our previously formulated model [Saleh et al., Phys. Rev. Lett. 107, 203902 (2011)] that governs pulse propagation in hollow-core photonic crystal fibers filled by an ionizable gas. By using perturbative methods, we find that the photoionization process induces the opposite phenomenon of the well-known Raman self-frequency redshift of solitons in solid-core glass fibers, as was recently experimentally demonstrated [Hoelzer et al., Phys. Rev. Lett. 107, 203901 (2011)]. This process is only limited by ionization losses, and leads to a constant acceleration of solitons in the time domain with a continuous blueshift in the frequency domain. By applying the Gagnon-Belanger gauge transformation, multipeak ''inverted gravitylike'' solitary waves are predicted. We also demonstrate that the pulse dynamics shows the ejection of solitons during propagation in such fibers, analogous to what happens in conventional solid-core fibers. Moreover, unconventional long-range nonlocal interactions between temporally distant solitons, unique of gas plasma systems, are predicted and studied. Finally, the effects of higher-order dispersion coefficients and the shock operator on the pulse dynamics are investigated, showing that the conversion efficiency of resonant radiation into the deep UV can be improved via plasma formation.

  13. Fugitive methane leak detection using mid-infrared hollow-core photonic crystal fiber containing ultrafast laser drilled side-holes

    Science.gov (United States)

    Karp, Jason; Challener, William; Kasten, Matthias; Choudhury, Niloy; Palit, Sabarni; Pickrell, Gary; Homa, Daniel; Floyd, Adam; Cheng, Yujie; Yu, Fei; Knight, Jonathan

    2016-05-01

    The increase in domestic natural gas production has brought attention to the environmental impacts of persistent gas leakages. The desire to identify fugitive gas emission, specifically for methane, presents new sensing challenges within the production and distribution supply chain. A spectroscopic gas sensing solution would ideally combine a long optical path length for high sensitivity and distributed detection over large areas. Specialty micro-structured fiber with a hollow core can exhibit a relatively low attenuation at mid-infrared wavelengths where methane has strong absorption lines. Methane diffusion into the hollow core is enabled by machining side-holes along the fiber length through ultrafast laser drilling methods. The complete system provides hundreds of meters of optical path for routing along well pads and pipelines while being interrogated by a single laser and detector. This work will present transmission and methane detection capabilities of mid-infrared photonic crystal fibers. Side-hole drilling techniques for methane diffusion will be highlighted as a means to convert hollow-core fibers into applicable gas sensors.

  14. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Science.gov (United States)

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chávez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-08-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  15. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    International Nuclear Information System (INIS)

    Bromberger, H.; Liu, H.; Chávez-Cervantes, M.; Gierz, I.; Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C.; Calegari, F.; Li, M. T.; Lin, C. T.; Cavalleri, A.

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi 2 Se 3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials

  16. A stable dual-wavelength Q-switch using a compact passive device containing photonics crystal fiber embedded with carbon platinum

    Science.gov (United States)

    Safaei, R.; Amiri, I. S.; Rezayi, M.; Ahmad, H.

    2018-01-01

    A compact fiber laser utilizing platinum nanoparticles doped on carbon (Pt/C) embedded in photonic crystal fiber capable of generating a stable Q-switch dual-wavelength is designed and verified. Stable Q-switch pulses, with a repetition rate of 73.6 kHz, pulse width of 1.45 µs and power of 3.8 nJ in two separated wavelengths of 1557.39 nm and 1558.86 nm at a pump power of 350 mW, have been obtained. This is a novel method for generating Q-switch dual-wavelength pulses using a well-protected component that introduces both a saturable absorber and Mach-Zehnder interferometer effects simultaneously in the laser cavity. Furthermore, to best of our knowledge, this is the first time that Pt/C nanoparticles have been used in a saturable absorber for optical pulse generation.

  17. Fivefold Symmetric Photonic Quasi-Crystal Fiber for Dispersion Compensation from S- to L-Band and Optimized at 1.55 μm

    Directory of Open Access Journals (Sweden)

    Sivacoumar Rajalingam

    2015-01-01

    Full Text Available A highly dispersive dual core quasi-periodic photonic crystal fiber is proposed for chromatic dispersion compensation. The dispersion for the dual concentric core fiber is optimized to compensate the chromatic dispersion with a high negative dispersion, accomplishing the communication bandwidth from S-band (1460 nm to L-band (1625 nm. By precise control of structural parameter we have achieved a maximum dispersion of −18,838 ps/nm-km with the phase matching wavelength centred around 1.55 μm. We also numerically investigate the influence of structural parameter and doping effects and its response on peak dispersion parameter.

  18. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.; Gierz, I. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Calegari, F. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Institute for Photonics and Nanotechnologies, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Li, M. T.; Lin, C. T. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Cavalleri, A. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Clarendon Laboratory, Department of Physics, University of Oxford, Parks Rd. Oxford OX1 3PU (United Kingdom)

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  19. Thermal effect-resilient design of large mode area double-cladding Yb-doped photonic crystal fibers

    DEFF Research Database (Denmark)

    Coscelli, Enrico; Poli, Federica; Johansen, Mette Marie

    2013-01-01

    The effects of thermally-induced refractive index change on the guiding properties of different large mode area fibers have been numerically analyzed. A simple but accurate model has been applied to obtain the refractive index change in the fiber cross-section, and a full-vector modal solver base...

  20. Quantification of chlorine in zirconium oxide and biological samples by instrumental NAA utilizing PCF of Dhruva reactor

    International Nuclear Information System (INIS)

    Shinde, Amol D.; Reddy, A.V.R.; Acharya, R.; Balaji Rao, Y.

    2012-01-01

    Recently studies on chlorine contents in various samples are being pursued due to its corrosive nature. Chlorine present at trace level in various finished products as well as powder is used as a raw material for production of different types of zircaloys used as structural materials in nuclear technology. As a part of quality assurance program, it is necessary to quantify chlorine accurately with suitable and simple technique. In the present work we have applied instrumental neutron activation analysis (INAA) utilizing its short-lived activation product ( 38 Cl, 37 min, 1642 and 2168 keV) for its estimation. Pneumatic Carrier Facility (PCF) of Dhruva reactor, BARC was used sample irradiation of zirconium oxide dry powder, synthetic wax and IAEA RMs 1515 (Apple leaves) and Lichen 336. (author)

  1. Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber

    International Nuclear Information System (INIS)

    Breunig, Hans Georg; Weinigel, Martin; Bückle, Rainer; Kellner-Höfer, Marcel; König, Karsten; Lademann, Jürgen; Darvin, Maxim E; Sterry, Wolfram

    2013-01-01

    We report on in vivo coherent anti-Stokes Raman scattering spectroscopy (CARS), two-photon fluorescence and second-harmonic-generation imaging on human skin with a novel multimodal clinical CARS/multiphoton tomograph. CARS imaging is realized by a combination of femtosecond pulses with broadband continuum pulses generated by a photonic crystal fiber. The images reveal the microscopic distribution of (i) non-fluorescent lipids, (ii) endogenous fluorophores and (iii) the collagen network inside the human skin in vivo with subcellular resolution. Examples of healthy as well as cancer-affected skin are presented. (letter)

  2. Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber

    Science.gov (United States)

    Breunig, Hans Georg; Weinigel, Martin; Bückle, Rainer; Kellner-Höfer, Marcel; Lademann, Jürgen; Darvin, Maxim E.; Sterry, Wolfram; König, Karsten

    2013-02-01

    We report on in vivo coherent anti-Stokes Raman scattering spectroscopy (CARS), two-photon fluorescence and second-harmonic-generation imaging on human skin with a novel multimodal clinical CARS/multiphoton tomograph. CARS imaging is realized by a combination of femtosecond pulses with broadband continuum pulses generated by a photonic crystal fiber. The images reveal the microscopic distribution of (i) non-fluorescent lipids, (ii) endogenous fluorophores and (iii) the collagen network inside the human skin in vivo with subcellular resolution. Examples of healthy as well as cancer-affected skin are presented.

  3. Generation of 2.5 μm and 4.6 μm Dispersive Waves in Kagome Photonic Crystal Fiber with Plasma Production

    Institute of Scientific and Technical Information of China (English)

    Tian-Qi Zhao; Meng Li; Dong Wei; Xin Ding; Gui-Zhong Zhang; Jian-Quan Yao

    2017-01-01

    We report our numerical simulation on dispersive waves (DWs) generated in the Kr-filled Kagome hollow-core photonic crystal fiber,by deploying the unidirectional pulse propagation equation.Relatively strong dispersive waves are simultaneously generated at 2.5μm and 4.6μm.It is deciphered that the interplay between plasma currents due to Kr ionization and nonlinear effects plays a key role in DW generation.Remarkably,this kind of DW generation is corroborated by the plasma-corrected phase-matching condition.

  4. Transfer of the pheromone-inducible plasmid pCF10 among Enterococcus faecalis microorganisms colonizing the intestine of mini-pigs

    DEFF Research Database (Denmark)

    Licht, Tine Rask; Laugesen, D.; Jensen, Lars Bogø

    2002-01-01

    A new animal model, the streptomycin-treated mini-pig, was developed in order to allow colonization of defined strains of Enterococcus faecalis in numbers sufficient to study plasmid transfer. Transfer of the pheromone-inducible pCF10 plasmid between streptomycin-resistant strains of E. faecalis OG...

  5. Photonic crystal pioneer

    Science.gov (United States)

    Anscombe, Nadya

    2011-08-01

    Over the past ten years, Crystal Fiber, now part of NKT Photonics, has been busy commercializing photonic crystal fibre. Nadya Anscombe finds out about the evolution of the technology and its applications.

  6. Nonlinear performance of asymmetric coupler based on dual-core photonic crystal fiber: Towards sub-nanojoule solitonic ultrafast all-optical switching

    Science.gov (United States)

    Curilla, L.; Astrauskas, I.; Pugzlys, A.; Stajanca, P.; Pysz, D.; Uherek, F.; Baltuska, A.; Bugar, I.

    2018-05-01

    We demonstrate ultrafast soliton-based nonlinear balancing of dual-core asymmetry in highly nonlinear photonic crystal fiber at sub-nanojoule pulse energy level. The effect of fiber asymmetry was studied experimentally by selective excitation and monitoring of individual fiber cores at different wavelengths between 1500 nm and 1800 nm. Higher energy transfer rate to non-excited core was observed in the case of fast core excitation due to nonlinear asymmetry balancing of temporal solitons, which was confirmed by the dedicated numerical simulations based on the coupled generalized nonlinear Schrödinger equations. Moreover, the simulation results correspond qualitatively with the experimentally acquired dependences of the output dual-core extinction ratio on excitation energy and wavelength. In the case of 1800 nm fast core excitation, narrow band spectral intensity switching between the output channels was registered with contrast of 23 dB. The switching was achieved by the change of the excitation pulse energy in sub-nanojoule region. The performed detailed analysis of the nonlinear balancing of dual-core asymmetry in solitonic propagation regime opens new perspectives for the development of ultrafast nonlinear all-optical switching devices.

  7. Wavelength conversion, time demultiplexing and multicasting based on cross-phase modulation and four-wave mixing in dispersion-flattened highly nonlinear photonic crystal fiber

    International Nuclear Information System (INIS)

    Hui, Zhan-Qiang; Zhang, Jian-Guo

    2012-01-01

    We propose the use of cross-phase modulation (XPM) and four-wave mixing (FWM) in dispersion-flattened highly nonlinear photonic crystal fibers (HNL-PCFs) to implement the functionalities of wavelength conversion, simultaneous time demultiplexing and wavelength multicasting in optical time-division multiplexing (OTDM) systems. The experiments on wavelength conversion at 80 Gbit s −1 and OTDM demultiplexing from 80 to 10 Gbit s −1 with wavelength multicasting of two channels are successfully demonstrated to validate the proposed scheme, which are carried out by using two segments of dispersion-flattened HNL-PCFs with lengths of 100 and 50 m, respectively. Moreover, the bit error rate (BER) performance is also measured. The results show that our designed system can achieve a power penalty of less than 4.6 dB for two multicasting channels with a 24 nm wavelength span at the BER of 10 −9 when compared with the 10 Gbit/s back-to-back measurement. The proposed system is transparent to bit rate since only an ultrafast third-order nonlinear effect is used. The resulting configuration is compact, robust and reliable, benefiting from the use of dispersion-flattened HNL-PCFs with short lengths. This also makes the proposed system more flexible in the operational wavelengths than those based on dispersion-shifted fibers and traditional highly nonlinear fibers. (paper)

  8. Nearly fully compressed 1053 nm pulses directly obtained from 800 nm laser-seeded photonic crystal fiber below zero dispersion point

    Science.gov (United States)

    Refaeli, Zaharit; Shamir, Yariv; Ofir, Atara; Marcus, Gilad

    2018-02-01

    We report a simple robust and broadly spectral-adjustable source generating near fully compressed 1053 nm 62 fs pulses directly out of a highly-nonlinear photonic crystal fiber. A dispersion-nonlinearity balance of 800 nm Ti:Sa 20 fs pulses was obtained initially by negative pre-chirping and then launching the pulses into the fibers' normal dispersion regime. Following a self-phase modulation spectral broadening, some energy that leaked below the zero dispersion point formed a soliton whose central wavelength could be tuned by Self-Frequency-Raman-Shift effect. Contrary to a common approach of power, or, fiber-length control over the shift, here we continuously varied the state of polarization, exploiting the Raman and Kerr nonlinearities responsivity for state of polarization. We obtained soliton pulses with central wavelength tuned over 150 nm, spanning from well below 1000 to over 1150 nm, of which we could select stable pulses around the 1 μm vicinity. With linewidth of > 20 nm FWHM Gaussian-like temporal-shape pulses with 62 fs duration and near flat phase structure we confirmed high quality pulse source. We believe such scheme can be used for high energy or high power glass lasers systems, such as Nd or Yb ion-doped amplifiers and systems.

  9. Evaporation induced diameter control in fiber crystal growth by micro-pulling-down technique: Bi{sub 4}Ge{sub 3}O{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Chani, V.; Lebbou, K.; Hautefeuille, B.; Tillement, O. [Physical Chemistry of Luminescent Materials, Claude Bernard Lyon1 University, CNRS UMR 5620, Bat. A. Kastler, 10 rue Ampere, 69622 Villeurbanne Cedex (France); Fourmigue, J.M. [FiberCryst, 23 rue Royale, F-69001 Lyon (France)

    2006-10-15

    Diameter self-control was established in Bi{sub 4}Ge{sub 3}O{sub 12} fiber crystal growth by micro-pulling-down technique. In accordance with Bi{sub 2}O{sub 3}-GeO{sub 2} phase diagram, the diameter was controlled due to compensation of solidification with evaporation of volatile Bi{sub 2}O{sub 3} self-flux charged into the crucible with excess. The crucibles had capillary channels of 310 or 650 {mu}m in outer diameter. The crystals up to 400 mm long and 50-300 {mu}m in diameter were grown at pulling-down rates of 0.04-1.00 mm/min. The melt composition and the pulling rate were generally only two parameters determining solidification rate. As a result, crystals with uniform ({+-} 10%) diameter and aspect ratio up to 10{sup 4} were produced without automation of the process. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Applications of nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2008-01-01

    * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo

  11. A dark hollow beam from a selectively liquid-filled photonic crystal fibre

    International Nuclear Information System (INIS)

    Mei-Yan, Zhang; Shu-Guang, Li; Yan-Yan, Yao; Bo, Fu; Lei, Zhang

    2010-01-01

    This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut shape, a typical hollow beam is produced by other methods; the mode-field images of the hollow-beam photonic crystal fibre satisfy sixth-order rotation symmetry, according to the symmetry of the photonic crystal fibre (PCF) structure. A dark spot size of the liquid-filled photonic crystal fibre-generated hollow beam can be tuned by inserting liquid into the cladding region and varying the photonic crystal fibre structure parameters. The liquid-filled PCF makes a convenient and flexible tool for the guiding and trapping of atoms and the creation of all-fibre optical tweezers. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Broad bandwidth and 600 μm length photonic crystal fiber polarization filter at the communication window of 1.55 μm

    Science.gov (United States)

    Zhang, Zhen; Li, Shuguang; Liu, Qiang; Zhang, Shuhuan; Wang, Yujun; Wu, Junjun

    2018-02-01

    A broad bandwidth and 600-μm length photonic crystal fiber polarization filter at the communication window of 1.55 μm is proposed. The physical parameters are analyzed by the finite element method. In the structure, the loss is 705.81 dB/cm for y-polarized mode and 24.06 dB/cm for x-polarized mode at the wavelength of 1.55 μm; the y-polarized mode will be filtered out because of this property. The bandwidth of an extinction ratio (ER) better than -20 dB is 65 nm when the filter length is 600 μm, and the ER is -41 dB at the communication wavelength of 1.55 μm. The filter structure is simple and easy to produce, and it can be used to produce a single-polarization filter.

  13. Fiber-coupled radioluminescence dosimetry with saturated Al2O3:C crystals: Characterization in 6 and 18 MV photon beams

    DEFF Research Database (Denmark)

    Andersen, Claus Erik; Damkjær, Sidsel Marie Skov; Kertzscher Schwencke, Gustavo Adolfo Vladimir

    2011-01-01

    Radioluminescence (RL) and optically stimulated luminescence (OSL) from carbon-doped aluminum oxide crystals can be used for medical dosimetry in external beam radiotherapy and remotely afterloaded brachytherapy. The RL/OSL signals are guided from the treatment room to the readout instrumentation...... using optical fiber cables, and in vivo dosimetry can be carried out in real time while the dosimeter probes are in the patient. The present study proposes a new improved readout protocol based solely on the RL signal from Al2O3:C. The key elements in the protocol are that Al2O3:C is pre-dosed with 20...... ((−0.21 ± 0.01)%/ °C), and dose-delivery rate ((−0.22 ± 0.01)% per 100 MU/min). A temporal gating technique was used for separation of RL and stem signals (i.e. Cerenkov light and fluorescence induced in the optical fiber cable during irradiation). The new readout protocol was a substantial improvement...

  14. Comparison of the properties of tonpilz transducers fabricated with 001 fiber-textured lead magnesium niobate-lead titanate ceramic and single crystals.

    Science.gov (United States)

    Brosnan, Kristen H; Messing, Gary L; Markley, Douglas C; Meyer, Richard J

    2009-11-01

    Tonpilz transducers are fabricated from 001 fiber-textured 0.72Pb(Mg(1/3)Nb(2/3))O(3)-0.28PbTiO(3) (PMN-28PT) ceramics, obtained by the templated grain growth process, and PMN-28PT ceramic and Bridgman grown single crystals of the same composition. In-water characterization of single element transducers shows higher source levels, higher in-water coupling, and more usable bandwidth for the 81 vol % textured PMN-28PT device than for the ceramic PMN-28PT element. The 81 vol % textured PMN-28PT tonpilz element measured under large signals shows linearity in sound pressure levels up to 0.23 MV/m drive field but undergoes a phase transition due to a lowered transition temperature from the SrTiO(3) template particles. Although the textured ceramic performs well in this application, it could be further improved with compositional tailoring to raise the transition temperature and better processing to improve the texture quality. With these improvements textured piezoelectric ceramics will be viable options for medical ultrasound, actuators, and sonar applications because of their ease of processing, compositional homogeneity, and potentially lower cost than single crystal.

  15. Numerical analysis and experimental investigation of highly sensitive photonic crystal fiber long-period grating refractive index sensor

    Czech Academy of Sciences Publication Activity Database

    Zhu, Y.; He, Z.; Kaňka, Jiří; Du, H.

    2008-01-01

    Roč. 129, č. 1 (2008), s. 99-105 ISSN 0925-4005 R&D Projects: GA MŠk 1P05OC002 Grant - others:National Science Foundation(US) ECS-0404002 Institutional research plan: CEZ:AV0Z20670512 Source of funding: V - iné verejné zdroje Keywords : photonic crystals * Bragg gratings * optical fibres * fibre optic sensors * refractometers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.122, year: 2008

  16. Nonlinear High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode-Locked Fiber Lasers

    Science.gov (United States)

    2014-12-23

    power kW at nm in a C-GIMF segment in the lowest order mode ; this pulse can be ob- tained from a typical titanium –sapphire mode-locked laser . A much...single- andmulticore double- clad and PCF lasers . He was a Senior Research Scientist at Corning Inc. from 2005 to 2008. He is currently an Assistant...High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode-Locked Fiber Lasers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1

  17. Pulsed-induced electromagnetically induced transparency in the acetylene-filled hollow-core fibers

    Science.gov (United States)

    Rodríguez, Nayeli Casillas; Stepanov, Serguei; Miramontes, Manuel Ocegueda; Hernández, Eliseo Hernández

    2017-06-01

    Experimental results on pulsed excitation of electromagnetically induced transparency (EIT) in the acetylene-filled hollow-core photonic crystal fiber (HC-PCF) at pressures 0.1-0.4 Torr are reported. The EIT was observed both in Λ and V interaction configurations with the continuous probe wave tuned to R9 (1520.08 nm) acetylene absorption line and with the control pulses tuned to P11 (1531.58 nm) and P9 (1530.37 nm) lines, respectively. The utilized control pulses were of up to 40 ns duration with EIT was up to 40 and 15% for the co- and counter-propagation of the probe and control waves, respectively, and importance of the waves polarization matching was demonstrated. For a qualitative explanation of reduction in the counter-propagation EIT efficiency a simple model of the accelerated mismatch of the two-frequency EIT resonance with deviation of the molecule thermal velocity from the resonance value was utilized. It was shown experimentally that the EIT efficiencies in both configurations do not depend on the longitudinal velocity of the molecules. The characteristic relaxation time of the of the EIT response was found to be about 9 ns, i.e., is close to the relaxation times T 1,2 of the acetylene molecules under the utilized experimental conditions.

  18. Electro-optical effects in porous PET films filled with liquid crystal: new possibilities for fiber optics and THZ applications.

    Science.gov (United States)

    Chopik, A; Pasechnik, S; Semerenko, D; Shmeliova, D; Dubtsov, A; Srivastava, A K; Chigrinov, V

    2014-03-15

    The results of investigation of electro-optical properties of porous polyethylene terephthalate films filled with a nematic liquid crystal (5 CB) are presented. It is established that the optical response of the samples on the applied voltage drastically depends on the frequency range. At low frequencies of applied electrical field (foptical response arises as an impulse of light intensity, which decays for the time essentially shorter than the electric pulse duration. At high frequencies (f>fc) electric field induces an overall change in the light intensity, which is typical for an electro-optical response of a liquid crystal (LC) layer in a conventional "sandwich"-like cell. The dependences of critical frequency fc, threshold voltages, and characteristic times on a pore diameter d were established. The peculiarities of electro-optical effects can be explained in the framework of the approach which connects the variations of light intensity with the corresponding changes of the effective refractive index n(eff) of a composite LC media. The unusual behavior of the electro-optical response at low frequencies is assigned to the orienting action of the specific shear flow typical for electrokinetic phenomena in polar liquids.

  19. Generation of 14  W at 589  nm by frequency doubling of high-power CW linearly polarized Raman fiber laser radiation in MgO:sPPLT crystal.

    Science.gov (United States)

    Surin, A A; Borisenko, T E; Larin, S V

    2016-06-01

    We introduce an efficient, single-mode, linearly polarized continuous wave (CW) Raman fiber laser (RFL), operating at 1178 nm, with 65 W maximum output power and a narrow linewidth of 0.1 nm. Single-pass second-harmonic generation was demonstrated using a 20 mm long MgO-doped stoichiometric periodically polled lithium tantalate (MgO:sPPLT) crystal pumped by RFL radiation. Output power of 14 W at 589 nm with 22% conversion efficiency was achieved. The possibility of further power scaling is considered, as no crystal degradation was observed at these power levels.

  20. Broadband dynamic phase matching of high-order harmonic generation by a high-peak-power soliton pump field in a gas-filled hollow photonic-crystal fiber.

    Science.gov (United States)

    Serebryannikov, Evgenii E; von der Linde, Dietrich; Zheltikov, Aleksei M

    2008-05-01

    Hollow-core photonic-crystal fibers are shown to enable dynamically phase-matched high-order harmonic generation by a gigawatt soliton pump field. With a careful design of the waveguide structure and an appropriate choice of input-pulse and gas parameters, a remarkably broadband phase matching can be achieved for a soliton pump field and a large group of optical harmonics in the soft-x-ray-extreme-ultraviolet spectral range.

  1. Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding

    International Nuclear Information System (INIS)

    Yuan, J H; Sang, X Z; Wu, Q; Yu, C X; Shen, X W; Wang, K R; Yan, B B; Teng, Y L; Farrell, G; Zhou, G Y; Xia, C M; Han, Y; Li, S G; Hou, L T

    2013-01-01

    The deep-ultraviolet (UV) to visible wavelengths are efficiently generated for the first time by the cross phase modulation (XPM) between the red-shifted solitons and the blue-shifted dispersive waves (DWs) in the fundamental guided mode of the multi-knots of a hollow-core photonic crystal fiber cladding (HC-PCFC). When the femtosecond pulses with a wavelength of 850 nm and average power of 300 mW are coupled into the knots 1–3, the conversion efficiency η uv−v of 11% and bandwidth B uv−v of 100 nm in the deep-UV region are experimentally obtained. The multi-milliwatt ultrashort pulses are tunable over the deep-UV (below 200 nm) to visible spectral region by adjusting the wavelengths of the pump pulses in different knots. It is expected that these widely tunable broadband ultrashort deep-UV–visible pulse sources could have important applications in ultrafast photonics, femtochemisty, photobiology, and UV–visible resonant Raman scattering. (letter)

  2. Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber

    Science.gov (United States)

    Yan, Bei; Wang, Anran; Liu, Exian; Tan, Wei; Xie, Jianlan; Ge, Rui; Liu, Jianjun

    2018-04-01

    A novel polarization filter based on a sunflower-type photonic quasi-crystal fiber (PQF) is proposed in this paper. We also discuss different methods to tune the filter wavelength. The proposed filter can efficiently produce polarized light with visible wavelengths by using the resonance between the second-order surface plasmon polariton mode and the core mode of the PQF. The filtered wavelength can be tuned between 0.55 µm and 0.68 µm by adjusting the thickness of the gold film. When the thickness of the gold film is 25.3 nm, the resonance loss in the y-polarized direction reaches 11707 dB m‑1 for a wavelength of 0.6326 µm, and the full width at half maximum is only 5 nm. Due to the flexible design and absence of both polarization coupling and polarization dispersion, this polarization filter can be used in devices that require narrow-band filtering.

  3. Efficient and broadband Stokes wave generation by degenerate four-wave mixing at the mid-infrared wavelength in a silica photonic crystal fiber.

    Science.gov (United States)

    Yuan, Jinhui; Sang, Xinzhu; Wu, Qiang; Zhou, Guiyao; Yu, Chongxiu; Wang, Kuiru; Yan, Binbin; Han, Ying; Farrell, Gerald; Hou, Lantian

    2013-12-15

    Based on degenerate four-wave mixing (FWM), the broadband Stokes waves are efficiently generated at the mid-infrared wavelength above 2 μm, for the first time to our knowledge, by coupling the femtosecond pulses into the fundamental mode of a silica photonic crystal fiber designed and fabricated in our laboratory. Influences of the power and wavelength of pump pulses on the phase-matched frequency conversion process are discussed. When pump pulses with central wavelength of 815 nm and average power of 300 mW are used, the output power ratio of the Stokes wave generated at 2226 nm and the residual pump wave P(s)/P(res) is estimated to be 10.8:1, and the corresponding conversion efficiency η(s) and bandwidth B(s) of the Stokes wave can be up to 26% and 33 nm, respectively. The efficient and broadband Stokes waves can be used as the ultrashort pulse sources for mid-infrared photonics and spectroscopy.

  4. Water-core Fresnel fiber

    NARCIS (Netherlands)

    Martelli, C.; Canning, J.; Lyytikainen, K.; Groothoff, N.

    2005-01-01

    A water core photonic crystal Fresnel fiber exploiting a hole distribution on zone plates of a cylindrical waveguide was developed and characterized. This fiber has similar guiding properties as the pristine air-hole guiding fiber although a large loss edge ~900nm is observed indicating that the

  5. Fabrication of Optical Fiber Devices

    Science.gov (United States)

    Andres, Miguel V.

    In this paper we present the main research activities of the Laboratorio de Fibras Opticas del Instituto de Ciencia de los Materiales de la Universidad de Valencia. We show some of the main results obtained for devices based on tapered fibers, fiber Bragg gratings, acousto-optic effects and photonic crystal fibers.

  6. Growth of doped and pure monocrystalline fibers and gradient crystals of REMO{sub 4} compounds (RE = rare earths and M = Nb and Ta); Crescimento de fibras monocristalinas puras e dopadas, e cristais gradientes de compostos REMO{sub 4} (RE= terras raras e M = Nb e Ta)

    Energy Technology Data Exchange (ETDEWEB)

    Octaviano, E.S.; Levada, C.L.; Missiato, O., E-mail: esoctaviano@if.sc.usp.br [Academia da Forca Aerea, Campo Fontenelle, Pirassununga , SP (Brazil). Div. de Ensino; Semenzato, M.J.; Silva, R.A.; Andreeta, J.P. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Fisica

    2009-07-01

    A desirable alternative for a faster development, characterization and application of material of technological interest has been the growth of single crystal fibers by LHPG - Laser Heated Pedestal Growth. In this work it was reported the growth of pure, doped and gradient single crystal fibers of the chemical formulation REMO{sub 4} (M = Nb e Ta, e RE= Rare Earth), characterized through primary techniques such as X-Ray and optical spectroscopy. (author)

  7. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  8. Mechanochromic Fibers with Structural Color.

    Science.gov (United States)

    Li, Houpu; Sun, Xuemei; Peng, Huisheng

    2015-12-21

    Responsive photonic crystals have been widely developed to realize tunable structural colors by manipulating the flow of light. Among them, mechanochromic photonic crystals attract increasing attention due to the easy operation, high safety and broad applications. Recently, mechanochromic photonic crystal fibers were proposed to satisfy the booming wearable smart textile market. In this Concept, the fundamental mechanism, fabrication, and recent progress on mechanochromic photonic crystals, especially in fiber shape, are summarized to represent a new direction in sensing and displaying. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fiber-based broadband black-light source

    OpenAIRE

    Sylvestre , Thibaut; Lee , Min Won; Ragueh , A. R.; Stiller , Birgit; Fanjoux , Gil; Barviau , B.; Mussot , A.; Kudlinski , A.

    2012-01-01

    International audience; Black-Light or Wood's lamp refers to sources that emit long-wavelength ultraviolet radiation (UV-A) from 315 nm and little visible light till 410 nm (blue). In this paper, we present a new fibre-based source of "black light", a source that emits broadband ultraviolet radiation but only small amounts of visible light and no infrared light. We made this source by pumping a specially designed silica photonic crystal fibre (PCF) with 355 nm light pulses from a Q-switched f...

  10. Prenatal nicotinic exposure upregulates pulmonary C-fiber NK1R expression to prolong pulmonary C-fiber-mediated apneic response

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lei; Zhuang, Jianguo; Zang, Na; Lin, Yong [Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, NM (United States); Lee, Lu-Yuan [Department of Physiology, University of Kentucky, Lexington, KY (United States); Xu, Fadi, E-mail: fxu@lrri.org [Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, NM (United States); Department of Physiology, University of Kentucky, Lexington, KY (United States)

    2016-01-01

    Prenatal nicotinic exposure (PNE) prolongs bronchopulmonary C-fiber (PCF)-mediated apneic response to intra-atrial bolus injection of capsaicin in rat pups. The relevant mechanisms remain unclear. Pulmonary substance P and adenosine and their receptors (neurokinin-A receptor, NK1R and ADA{sub 1} receptor, ADA{sub 1}R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) expressed on PCFs are critical for PCF sensitization and/or activation. Here, we compared substance P and adenosine in BALF and NK1R, ADA{sub 1}R, and TRPV1 expression in the nodose/jugular (N/J) ganglia (vagal pulmonary C-neurons retrogradely labeled) between Ctrl and PNE pups. We found that PNE failed to change BALF substance P and adenosine content, but significantly upregulated both mRNA and protein TRPV1 and NK1R in the N/J ganglia and only NK1R mRNA in pulmonary C-neurons. To define the role of NK1R in the PNE-induced PCF sensitization, the apneic response to capsaicin (i.v.) without or with pretreatment of SR140333 (a peripheral and selective NK1R antagonist) was compared and the prolonged apnea by PNE significantly shortened by SR140333. To clarify if the PNE-evoked responses depended on action of nicotinic acetylcholine receptors (nAChRs), particularly α7nAChR, mecamylamine or methyllycaconitine (a general nAChR or a selective α7nAChR antagonist) was administrated via another mini-pump over the PNE period. Mecamylamine or methyllycaconitine eliminated the PNE-evoked mRNA and protein responses. Our data suggest that PNE is able to elevate PCF NK1R expression via activation of nAChRs, especially α7nAChR, which likely contributes to sensitize PCFs and prolong the PCF-mediated apneic response to capsaicin. - Highlights: • PNE upregulated NK1R and TRPV1 gene and protein expression in the N/J ganglia. • PNE only elevated NK1R mRNA in vagal pulmonary C-neurons. • Blockage of peripheral NK1R reduced the PNE-induced PCF sensitization. • PNE induced gene and protein

  11. Prenatal nicotinic exposure upregulates pulmonary C-fiber NK1R expression to prolong pulmonary C-fiber-mediated apneic response

    International Nuclear Information System (INIS)

    Zhao, Lei; Zhuang, Jianguo; Zang, Na; Lin, Yong; Lee, Lu-Yuan; Xu, Fadi

    2016-01-01

    Prenatal nicotinic exposure (PNE) prolongs bronchopulmonary C-fiber (PCF)-mediated apneic response to intra-atrial bolus injection of capsaicin in rat pups. The relevant mechanisms remain unclear. Pulmonary substance P and adenosine and their receptors (neurokinin-A receptor, NK1R and ADA 1 receptor, ADA 1 R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) expressed on PCFs are critical for PCF sensitization and/or activation. Here, we compared substance P and adenosine in BALF and NK1R, ADA 1 R, and TRPV1 expression in the nodose/jugular (N/J) ganglia (vagal pulmonary C-neurons retrogradely labeled) between Ctrl and PNE pups. We found that PNE failed to change BALF substance P and adenosine content, but significantly upregulated both mRNA and protein TRPV1 and NK1R in the N/J ganglia and only NK1R mRNA in pulmonary C-neurons. To define the role of NK1R in the PNE-induced PCF sensitization, the apneic response to capsaicin (i.v.) without or with pretreatment of SR140333 (a peripheral and selective NK1R antagonist) was compared and the prolonged apnea by PNE significantly shortened by SR140333. To clarify if the PNE-evoked responses depended on action of nicotinic acetylcholine receptors (nAChRs), particularly α7nAChR, mecamylamine or methyllycaconitine (a general nAChR or a selective α7nAChR antagonist) was administrated via another mini-pump over the PNE period. Mecamylamine or methyllycaconitine eliminated the PNE-evoked mRNA and protein responses. Our data suggest that PNE is able to elevate PCF NK1R expression via activation of nAChRs, especially α7nAChR, which likely contributes to sensitize PCFs and prolong the PCF-mediated apneic response to capsaicin. - Highlights: • PNE upregulated NK1R and TRPV1 gene and protein expression in the N/J ganglia. • PNE only elevated NK1R mRNA in vagal pulmonary C-neurons. • Blockage of peripheral NK1R reduced the PNE-induced PCF sensitization. • PNE induced gene and protein changes in

  12. Fiber webs

    Science.gov (United States)

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  13. New trends in development of magnetic-field Bragg-grating fiber optic sensors based on magnetic nanofluids

    International Nuclear Information System (INIS)

    Jasenek, J.; Cervenova, J.; Korenko, B.

    2014-01-01

    The MF OFS are becoming very important for many practical applications due to their high available sensitivities, measurement range, small dimensions and also relatively low realization cost. Especially the MF FOS utilizing special OF like IG-PCF or HC-PCF combined with BG and simultaneously infiltrated with suitable MFL are very attractive and a significant effort to their analysis and design is devoted worldwide. We have brought a brief analysis and summary description of five approaches to the solution of the MF OFS based on the use of: (1) dual HC-PCF infiltrated with MFL where fiber exposition to the external MF induces the change of the total birefringence. As a result the minimum fringe wavelength shift of transmission intensity is measured as a function of external MF. The measurement sensitivities 155,7 - 242 pm/mT are achieved. (2) IG-PCF infiltrated with MFL and transmission loses are measured as a function of external MF. Sensitivity of cca (0,011/80) μW/(A/m) are obtained. (3) IG-PCF with inscribed BG and partially filled in with a MFL so that OF Fairy-Perrot resonator is created and the changes in reflection spectra (notch visibility) are measured as function of external MF. The MF in the range of 0,0317 - 0.250 T can be measured by this sensor. Finally - all above described approaches can be further optimized by adjusting of several parameters of the particular structure. Therefore there is a lot of possibilities to further perfection of this kind of MF FOS mainly by the tuning of MFL composition, by optimization of the geometrical parameters of OF used and also by the inventing and finding of new structures and basic ideas. (authors)

  14. Toward a compact fibered squeezing parametric source.

    Science.gov (United States)

    Brieussel, Alexandre; Ott, Konstantin; Joos, Maxime; Treps, Nicolas; Fabre, Claude

    2018-03-15

    In this work, we investigate three different compact fibered systems generating vacuum squeezing that involve optical cavities limited by the end surface of a fiber and by a curved mirror and containing a thin parametric crystal. These systems have the advantage to couple squeezed states directly to a fiber, allowing the user to benefit from the flexibility of fibers in the use of squeezing. Three types of fibers are investigated: standard single-mode fibers, photonic-crystal large-mode-area single-mode fibers, and short multimode fibers taped to a single-mode fiber. The observed squeezing is modest (-0.56  dB, -0.9  dB, -1  dB), but these experiments open the way for miniaturized squeezing devices that could be a very interesting advantage in scaling up quantum systems for quantum processing, opening new perspectives in the domain of integrated quantum optics.

  15. Monolithic all-PM femtosecond Yb-doped fiber laser using photonic bandgap fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2009-01-01

    We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm.......We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm....

  16. Macro-Fiber Composite Based Transduction

    Science.gov (United States)

    2016-03-01

    substrate Material properties of single crystal macro fiber composite actuators for active twist rotor blades Park, Jae-Sang (Seoul National...Passive Smart Structures and Integrated Systems 2007 Material properties of single crystal macro fiber composite actuators for active twist rotor ...19b. TELEPHONE NUMBER (Include area code) 10-03-20 16 Final Report 01 Jan 2013 - 31 Dec 2015 Macro-Fiber Composite Based Transduction N000-14-13-1-0212

  17. Stress-induced phase sensitivity of small diameter polarization maintaining solid-core photonic crystal fibre

    Science.gov (United States)

    Zhang, Zhihao; Zhang, Chunxi; Xu, Xiaobin

    2017-09-01

    Small diameter (cladding and coating diameter of 100 and 135 μm) polarization maintaining photonic crystal fibres (SDPM-PCFs) possess many unique properties and are extremely suitable for applications in fibre optic gyroscopes. In this study, we have investigated and measured the stress characteristics of an SDPM-PCF using the finite-element method and a Mach-Zehnder interferometer, respectively. Our results reveal a radial and axial sensitivity of 0.315 ppm/N/m and 25.2 ppm per 1 × 105 N/m2, respectively, for the SDPM-PCF. These values are 40% smaller than the corresponding parameters of conventional small diameter (cladding and coating diameter of 80 and 135 μm) panda fibres.

  18. Photorefractive Fibers

    National Research Council Canada - National Science Library

    Kuzyk, Mark G

    2003-01-01

    ... scope of the project. In addition to our work in optical limiting fibers, spillover results included making fiber-based light-sources, writing holograms in fibers, and developing the theory of the limits of the nonlinear...

  19. Micromachining structured optical fibers using focused ion beam milling

    NARCIS (Netherlands)

    Martelli, C.; Olivero, P.; Canning, J.; Groothoff, N.; Gibson, B.; Huntington, S.

    2007-01-01

    A focused ion beam is used to mill side holes in air-silica structured fibers. By way of example, side holes are introduced in two types of air-structured fiber, (1) a photonic crystal four-ring fiber and (2) a six-hole single-ring step-index structured fiber. © 2007 Optical Society of America.

  20. Bronchopulmonary C-fibers' IL1RI contributes to the prolonged apneic response to intra-atrial injection of capsaicin by prenatal nicotinic exposure in rat pups

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lei; Zhuang, Jianguo; Xu, Fadi, E-mail: fxu@lrri.org

    2016-07-15

    Prenatal nicotinic exposure (PNE) as a SIDS model reportedly sensitizes bronchopulmonary C-fibers (PCFs), contributing to the prolonged PCF-mediated apnea in rat pups, but the relevant mechanisms are not fully understood. Pulmonary IL-1β upregulated by cigarette smoke is known to stimulate or sensitize PCFs acting via IL-1 type I receptor (IL1RI) and inhibit inspiration frequency. Because of its upregulation observed in SIDS victims, we hypothesized that PNE increased pulmonary IL-1β release and IL1RI expression in pulmonary C-neurons via action on α7 nicotinic acetylcholine receptors (α7nAChR) to induce the prolonged PCF-mediated apnea. IL-1β in BALF and IL1RI in the nodose/jugular (N/J) ganglion and vagal pulmonary C-neurons retrogradely-traced were compared between Ctrl (saline) and PNE pups and among the vehicle-treated Ctrl and PNE and methyllycaconitine (a selective α7nAChR antagonist)-treated PNE pups. The effect of IL-1RI blockade (IL-1Ra) on the PCF-mediated apnea was also compared between Ctrl and PNE pups. PNE significantly elevated IL-1β in BALF and upregulated IL1RI gene and protein expression in N/J ganglia and gene in vagal pulmonary C-neurons. All of these responses were eliminated by pretreatment with blockade of α7nAChR. In addition, the prolonged PCF-mediated apnea in PNE pups was significantly shortened by right atrial bolus injection of IL-1Ra. We conclude that PNE enhances pulmonary IL-1β release and PCF IL1RI expression acting via α7nAChR in contributing to sensitization of PCFs and prolongation of the PCF-mediated apneic response. - Highlights: • PNE increased pulmonary IL-1β release and IL1R1 expression in the N/J ganglia. • PNE elevated IL1R1 mRNA in vagal pulmonary C-neurons. • Blockage of peripheral IL1R1 reduced the PNE-induced PCF sensitization. • PNE induced the changes in IL-1β and IL1R1 dependent on action of α7nAChR.

  1. Fiber dielectrophoresis

    International Nuclear Information System (INIS)

    Lipowicz, P.J.; Yeh, H.C.

    1988-01-01

    Dielectrophoresis is the motion of uncharged particles in nonuniform electric fields. We find that the theoretical dielectrophoretic velocity of a conducting fiber in an insulating medium is proportional to the square of the fiber length, and is virtually independent of fiber diameter. This prediction has been verified experimentally. The results point to the development of a fiber length classifier based on dielectrophoresis. (author)

  2. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  3. Carbon fiber structure for B.G.O. crystals of an electromagnetic calorimeter for energies around and above 2 GeV

    International Nuclear Information System (INIS)

    Anamateros, E.; Germenia, C.; Napoleone, T.

    1991-01-01

    This document describes a project to construct with composite material an Electromagnetic Calorimeter for a large, solid angle crystal ball for energies around and above 2 GeV, with thin walls (0.36 mm) and a complex figure like a 'Rugby Ball'. The contract was between the National Institute of Nuclear Physics (INFN) of Frascati, Genova, Catania, and Roma, and ITALCOMPOSITI - a joint venture between Agusta Group (50%) and ENI (50%) to research, produce and market advanced prepreg materials and composite structural components for aerospace, defense, energy, and transport applications. The contract concerns the design and the realization of the structure, which consists of 24 baskets containing 480 crystals of B.G.O. weighing about 4 Kg, each with full alveolus, including electronic systems

  4. Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap

    Czech Academy of Sciences Publication Activity Database

    Zhu, Y.; Bise, R. T.; Kaňka, Jiří; Peterka, Pavel; Du, H.

    Vol. 281, No. 1 (2008), s. 55-60 ISSN 0030-4018 R&D Projects: GA ČR GA102/05/0995 Grant - others:US National Science Foundation(US) ECS-0404002 Institutional research plan: CEZ:AV0Z20670512 Keywords : photonic crystals * fibre optic sensors * optic al fibres Subject RIV: BH - Optic s, Masers, Lasers Impact factor: 1.552, year: 2008

  5. Random photonic crystal optical memory

    International Nuclear Information System (INIS)

    Wirth Lima Jr, A; Sombra, A S B

    2012-01-01

    Currently, optical cross-connects working on wavelength division multiplexing systems are based on optical fiber delay lines buffering. We designed and analyzed a novel photonic crystal optical memory, which replaces the fiber delay lines of the current optical cross-connect buffer. Optical buffering systems based on random photonic crystal optical memory have similar behavior to the electronic buffering systems based on electronic RAM memory. In this paper, we show that OXCs working with optical buffering based on random photonic crystal optical memories provides better performance than the current optical cross-connects. (paper)

  6. Investigation on Guided-Mode Characteristics of Hollow-Core Photonic Crystal Fibre at Near-Infrared Wavelengths

    International Nuclear Information System (INIS)

    Jin-Hui, Yuan; Chong-Xiu, Yu; Xin-Zhu, Sang; Wen-Jing, Li; Gui-Yao, Zhou; Shu-Guang, Li; Lan-Tian, Hou

    2009-01-01

    Guided-mode characteristics of hollow-core photonic crystal fibre (HC-PCF) are experimentally and theoretically investigated. The transmission spectrum in the range from 755 to 845 nm is observed and the loss is measured to be 0.12 dB/m at 800 nm by cut-back method. Based on the full-vector beam propagation method and the full-vector plane-wave method, the characteristics of mode field over propagation distance 1 m are simulated, and the results show that the propagation efficiency can be above 80%. Compared with the fundamental guided mode well confined in air core within shorter propagation distance, the second-order guided mode leaks into the cladding region and gradually attenuates due to larger refractive index difference. The primary loss factors in HC-PCF and the corresponding solutions are elementarily discussed. (fundamental areas of phenomenology (including applications))

  7. Aligned Layers of Silver Nano-Fibers

    Directory of Open Access Journals (Sweden)

    Andrii B. Golovin

    2012-02-01

    Full Text Available We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics.

  8. Highly phosphorescent hollow fibers inner-coated with tungstate nanocrystals

    Science.gov (United States)

    Ng, Pui Fai; Bai, Gongxun; Si, Liping; Lee, Ka I.; Hao, Jianhua; Xin, John H.; Fei, Bin

    2017-12-01

    In order to develop luminescent microtubes from natural fibers, a facile biomimetic mineralization method was designed to introduce the CaWO4-based nanocrystals into kapok lumens. The structure, composition, and luminescence properties of resultant fibers were investigated with microscopes, x-ray diffraction, thermogravimetric analysis, and fluorescence spectrometry. The yield of tungstate crystals inside kapok was significantly promoted with a process at high temperature and pressure—the hydrothermal treatment. The tungstate crystals grown on the inner wall of kapok fibers showed the same crystal structure with those naked powders, but smaller in crystal size. The resultant fiber assemblies demonstrated reduced phosphorescence intensity in comparison to the naked tungstate powders. However, the fibers gave more stable luminescence than the naked powders in wet condition. This approach explored the possibility of decorating natural fibers with high load of nanocrystals, hinting potential applications in anti-counterfeit labels, security textiles, and even flexible and soft optical devices.

  9. Nanofibers extraction from palm mesocarp fiber for biodegradable polymers incorporation

    International Nuclear Information System (INIS)

    Kuana, Vanessa A.; Rodrigues, Vanessa B.; Takahashi, Marcio C.; Campos, Adriana de; Sena Neto, Alfredo R.; Mattoso, Luiz H.C.; Marconcini, Jose M.

    2015-01-01

    The palm mesocarp fibers are residues produced by the palm oil industries. The objective of this paper is to determine an efficient treatment to extract crystal cellulose nanofibers from the palm mesocarp fibers to be incorporated in biodegradable polymeric composites. The fibers were saponified, bleached and analyzed with thermal gravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. (author)

  10. Infrared Fibers for Use in Space-Based Smart Structures

    Science.gov (United States)

    Tucker, Dennis S.; Nettles, Alan T.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Infrared optical fibers are finding a number of applications including laser surgery, remote sensing, and nuclear radiation resistant links. Utilizing these fibers in space-based structures is another application, which can be exploited. Acoustic and thermal sensing are two areas in which these fibers could be utilized. In particular, fibers could be embedded in IM7/8552 toughened epoxy and incorporated into space structures both external and internal. ZBLAN optical fibers are a candidate, which have been studied extensively over the past 20 years for terrestrial applications. For the past seven years the effects of gravity on the crystallization behavior of ZBLAN optical fiber has been studied. It has been found that ZBLAN crystallization is suppressed in microgravity. This lack of crystallization leads to a fiber with better transmission characteristics than its terrestrial counterpart.

  11. Hollow-Core Fiber Lamp

    Science.gov (United States)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  12. All-Fiber Components for Micro-Structured Fibers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose new concepts for developing components for high performance space based Lidar systems. While it is generally recognized that photonic crystal fiber...

  13. Radiation response of SiC-based fibers

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Jones, R.H. [Battelle Pacific Northwest Labs., Richland, WA (United States); Kohyama, A. [Inst. of Advanced Energy, Kyoto Univ. (Japan); Snead, L.L. [Oak Ridge National Lab., TN (United States)

    1998-10-01

    Loss of strength in irradiated fiber-reinforced SiC/SiC composite generally is related to degradation in the reinforcing fiber. To assess fiber degradation, the density and length changes were determined for four types of SiC-based fibers (Tyranno, Nicalon CG, Hi Nicalon and Dow X) after high temperature (up to 1000 C) and high dose (up to 80 dpa-SiC) irradiations. For the fibers with nonstoichiometric compositions (the first three types in the list), the fiber densities increased from 6% to 12%. In contrast, a slight decrease in density (<1%) was observed for the Dow X fiber with a quasi-stoichiometric composition. Fiber length changes (0-5.6% shrinkage) suggested small mass losses (1-6%) had occurred for irradiated uncoated fibers. In contrast, excessive linear shrinkage of the pyrocarbon-coated Nicalon CG and Tyranno fibers (7-9% and 16-32%, respectively) indicated that much larger mass losses (11-84%) had occurred for these coated fibers. Crystallization and crystal growth were observed to have taken place at fiber surfaces by SEM and in the bulk by XRD, moreso for irradiated Nicalon CG than for Hi Nicalon fiber. The radiation response of the quasi-stoichiometric Dow X fiber was the most promising. Further testing of this type fiber is recommended. (orig.) 11 refs.

  14. Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser

    DEFF Research Database (Denmark)

    Laurila, Marko; Saby, Julien; Alkeskjold, Thomas T.

    2011-01-01

    We demonstrate a Single-Mode (SM) Large-Mode-Area (LMA) ytterbium-doped PCF rod fiber laser with stable and close to diffraction limited beam quality with 110W output power. Distributed-Mode-Filtering (DMF) elements integrated in the cladding of the rod fiber provide a robust spatial mode...... with a Mode-Field-Diameter (MFD) of 59 mu m. We further demonstrate high pulse energy Second-Harmonic-Generation (SHG) and Third Harmonic Generation (THG) using a simple Q-switched single-stage rod fiber laser cavity architecture reaching pulse energies up to 1mJ at 515nm and 0.5mJ at 343nm. (C) 2011 Optical...

  15. Single crystal fibers growth of double lithium, lanthanium molybdate and adjustment of a micro-pulling down furnace for high vacuum setup; Crescimento de fibras de molibdato duplo de litio e lantanio e adaptacao de sistema de alto vacuo para micro pulling-down

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fernando Rodrigues da

    2013-07-01

    In this work we investigated crystal growth procedures aiming the development of single crystal fiber (SCF) for laser applications. For quality optimization in the fabrication of fluorides SCF a new growth chamber for a micro-pulling down furnace ({mu}-PD) was constructed targeting the fibers fabrication with strict atmosphere control (high vacuum, gas flux and static atmospheres). Simultaneously, the SCF growth process of rare earth double molybdates was studied. The growth of pure and Nd{sup 3+}-doped SCF of LiLa(MoO{sub 4}){sub 2} (LLM) was studied in the range of 0,5 - 10mol% doping. The designed furnace growth chamber with controlled atmosphere was successfully constructed and tested under different conditions. Specially, it was tested with the growth of LiF SFC under CF{sub 4} atmosphere showing the expected results. Transparent and homogeneous SCF of Nd:LLM were grown. In the pure fibers was observed facets formation, however, these defects were minimized after tuning of the growth parameters and additionally with the fibers doping. X-ray analysis showed the crystallization of a single phase (space group I4{sub 1}/a); the optical coherence tomography showed the presence of scattering centers only in regions were some growth stability occurred due to the manual process control. The measured Nd{sup 3+} distribution showed uniform incorporation, indicative of a segregation coefficient close to unity in LLM. The potential laser gain of the system was determined using a numerical solution of the rate equations system for the 805nm, CW pumping regime, showing the maximum laser emission gain at 1.064 {mu}m for a Nd{sup 3+}-doping of 5mol%. (author)

  16. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements.

    Science.gov (United States)

    De Miguel-Soto, Veronica; Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel

    2017-11-30

    In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.

  17. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Veronica De Miguel-Soto

    2017-11-01

    Full Text Available In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG, and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.

  18. Two Fiber Optical Fiber Thermometry

    Science.gov (United States)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  19. Continuous drawing of Bi-Ca-Sr-Cu-O glass fibers from a preform

    International Nuclear Information System (INIS)

    Zheng, H.; Hu, Y.; Mackenzie, J.D.

    1991-01-01

    Several issues related to drawing Bi-Ca-Sr-Cu-O glass fibers from a preform are discussed. Continuous drawing of Bi-Ca-Sr-Cu-O glass fibers was successfully accomplished. Bi-Ca-Sr-Cu-O glass fibers are drawn above the crystallization temperature. Minimizing crystallization of the glass preforms is a key for successful drawing of the glass fibers. Two effective means, high glass melting temperature and V 2 O 5 doping, have been used to minimize the crystallization of the preforms, thus assuring the continuous drawing of Bi-Ca-Sr-Cu-O glass fibers

  20. Optical Fiber Thermometer Based on Fiber Bragg Gratings

    Science.gov (United States)

    Rosli, Ekbal Bin; Mohd. Noor, Uzer

    2018-03-01

    Fiber Bragg grating has generated much interest in use as sensors to measure strain, temperature, and other physical parameters. It also the most common component used to develop this sensor with the advantages of simple, intrinsic sensing elements, electrically passive operation, EMI immunity, high sensitivity, compact size and potentially low cost [6]. This paper reports the design of an optical fiber thermometer based on fiber Bragg gratings. The system was developed for detecting temperature and strain by monitoring the shift of Bragg wavelength. The shifting of Bragg wavelength is used to indicate the temperature and strain due to the change in the surrounding temperature and strain. When the temperature and strain reach the exact wavelength level of the system, the temperature and strain value will display on the Arduino liquid crystal display (LCD). The optical fiber will provide the broadband light source and after passing the FBG the Bragg wavelength into the optical spectrum analyzer (OSA). The system is based on FBG as a physical quantity sensor. The temperatures measured is taken from the water bath and that of the strain is provided by amount of slotted mass used. The outcome of this project is to characterize the Bragg wavelength shifting from the fiber Bragg grating output. As the conclusion, this project provides an efficient optical fiber thermometer in measuring temperature and strain in order to replace the use of conventional electrical instruments.

  1. Utilization of Infrared Fiber Optic in the Automotive Industry

    Science.gov (United States)

    Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Fiber optics are finding a place in the automotive industry. Illumination is the primary application today. Soon, however, fiber optics will be used for data communications and sensing applications. Silica fiber optics and plastic fibers are sufficient for illumination and communication applications however, sensing applications involving high temperature measurement and remote gas analysis would benefit from the use of infrared fiber optics. Chalcogonide and heavy metal fluoride glass optical fibers are two good candidates for these applications. Heavy metal fluoride optical fibers are being investigated by NASA for applications requiring transmission in the infrared portion of the electromagnetic spectrum. Zirconium-Barium-Lanthanum-Aluminum-Sodium-Fluoride (ZBLAN) is one such material which has been investigated. This material has a theoretical attenuation coefficient 100 times lower than that of silica and transmits into the mid-IR. However, the measured attenuation coefficient is higher than silica due to impurities and crystallization. Impurities can be taken care of by utilizing cleaner experimental protocol. It has been found that crystallization can be suppressed by processing in reduced gravity. Fibers processed in reduced gravity on the KC135 reduced gravity aircraft were found to be free of crystals while those processed on the ground were found to have crystals. These results will be presented along with plans for producing continuous lengths of ZBLAN optical fiber on board the International Space Station.

  2. Crystals in crystals

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion....... As representative examples, a metal (Pt), an alloy (PtSn), and a metal carbide (beta-Mo2C) were supported on conventional and mesoporous zeolite carriers, respectively, and the degree of particle dispersion was compared by TEM imaging. On conventional zeolites, the supported material aggregated on the outer surface...

  3. Virtual Crystallizer

    Energy Technology Data Exchange (ETDEWEB)

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  4. single crystals

    Indian Academy of Sciences (India)

    2018-05-18

    May 18, 2018 ... Abstract. 4-Nitrobenzoic acid (4-NBA) single crystals were studied for their linear and nonlinear optical ... studies on the proper growth, linear and nonlinear optical ..... between the optic axes and optic sign of the biaxial crystal.

  5. Crystal Systems.

    Science.gov (United States)

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  6. Diffraction by disordered polycrystalline fibers

    International Nuclear Information System (INIS)

    Stroud, W.J.; Millane, R.P.

    1995-01-01

    X-ray diffraction patterns from some polycrystalline fibers show that the constituent microcrystallites are disordered. The relationship between the crystal structure and the diffracted intensities is then quite complicated and depends on the precise kind and degree of disorder present. The effects of disorder on diffracted intensities must be included in structure determinations using diffraction data from such specimens. Theory and algorithms are developed here that allow the full diffraction pattern to be calculated for a disordered polycrystalline fiber made up of helical molecules. The model accommodates various kinds of disorder and includes the effects of finite crystallite size and cylindrical averaging of the diffracted intensities from a fiber. Simulations using these methods show how different kinds, or components, of disorder produce particular diffraction effects. General properties of disordered arrays of helical molecules and their effects on diffraction patterns are described. Implications for structure determination are discussed. (orig.)

  7. Monolithic Ytterbium All-single-mode Fiber Laser with Direct Fiber-end Delivery of nJ-level Femtosecond Pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry

    2008-01-01

    We demonstrate a monolithic, i.e. without any free-space coupling, all-single-mode passively modelocked Yb-fiber laser, with direct fiber-end delivery of 364−405 fs pulses of 4 nJ pulse energy using a low-loss hollow-core photonic crystal fiber compression....

  8. Low-fiber diet

    Science.gov (United States)

    ... residue; Low-fiber diet; Fiber restricted diet; Crohn disease - low fiber diet; Ulcerative colitis - low fiber diet; ... them if they do not contain seeds or pulp: Yellow squash (without seeds) Spinach Pumpkin Eggplant Potatoes, ...

  9. Photovoltaic fibers

    Science.gov (United States)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  10. Core temperature in super-Gaussian pumped air-clad photonic ...

    Indian Academy of Sciences (India)

    In this paper we investigate the core temperature of air-clad photonic crystal fiber (PCF) lasers pumped by a super-Gaussian (SG) source of order four. The results are compared with conventional double-clad fiber (DCF) lasers pumped by the same super-Gaussian and by top-hat pump profiles.

  11. Monomial Crystals and Partition Crystals

    Science.gov (United States)

    Tingley, Peter

    2010-04-01

    Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ0) for ^sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal.

  12. Colloid-templated multisectional porous polymeric fibers.

    Science.gov (United States)

    Song, Jung Hun; Kretzschmar, Ilona

    2008-10-07

    A fabrication method for porous polymeric fibers (PPFs) is reported. We show that a multisectional colloidal crystal can be assembled within a microcapillary by alternating dipping into colloidal solutions of varying size. Subsequent infiltration with curable polymer and washing with suitable solvents results in porous fibers with a cylindrical cross section. Along the length of the fiber, alternating sections of controlled length, pore size, and pore size distribution exist. These fibers present interesting materials for neural scaffolding, catalysis, and possibly photonics if produced with a high degree of crystallinity. The surface pores and bulk porosity of the fibers are characterized by variable-pressure scanning electron microscopy (vp-SEM). Careful analysis shows that the surface pores vary with the colloidal template diameter and polymer infiltration time.

  13. Bound water in Kevlar 49 fibers

    International Nuclear Information System (INIS)

    Garza, R.G.; Pruneda, C.O.; Morgan, R.J.

    1981-01-01

    From elemental analyses, thermogravimetric-mass spectroscopy studies and re-evaluation of previous water diffusion studies in Kevlar 49 fibers it is concluded that these fibers can contain two types of sorbed moisture. The fibers can absorb up to approx. 6 wt % loosely bound water with an activation energy for outgassing by desorption of 6 kcal/mole. This loosely bound water is a direct result of the presence of Na 2 SO 4 impurities and the perturbations they induce on the packing of the rod-like poly (p-phenylene terephthalamide) macromolecules. Kevlar 49 fibers also inherently contain up to 30 wt % additional water which is tightly bound within the crystal lattice. This water exhibits an activation energy for outgassing by diffusion of approx. 40 kcal/mole and is only evolved from the fiber in significant quantities at t > 350 0 C over a period of hours

  14. Iron Fibers Arrays Prepared by Electrodepositing in Reverse Liquid Crystalline

    Institute of Scientific and Technical Information of China (English)

    ZHAO Suling; LIN Dong; GUAN Jianguo; ZHANG Lianmeng

    2006-01-01

    Ordered iron fiber arrays were electrodeposited on the surface of zinc foils using "FeSO4 solution-sodium caprylate-Decanol" 3-component reverse hexagonal liquid crystal as soft templates. The structure of the soft templates and the synthesized iron fibers were characterized by polarizing microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray microanalysis etc. The experimental results show that the synthesized iron fibers with α crystal phase grew up in the form of fiber clusters of about 200 nm along the direction perpendicular to the cathode surface. Each cluster was composed of several tens of fibers. The fibers had almost the same length of more than 10 μm with a diameter of about 50 nm.

  15. Solidification microstructures in a short fiber reinforced alloy composite containing different fiber fractions

    Directory of Open Access Journals (Sweden)

    JING Qing-xiu

    2006-02-01

    Full Text Available The solidification microstructures and micro-segregation of a fiber reinforced Al-9 Cu alloy, containing different volume fractions of Al2O3 short fibers about 6 μm diameter and made by squeeze casting have been studied. The results indicate that as volume fraction of fiber Vf increases, the size of final grains becomes finer in the matrix. If λf /λ>1, the fibers have almost no influence on the solidification behavior of the matrix, so the final grains grow coarse, where λf is the average inter-fiber spacing and λ is the secondary dendrite arm spacing. While if λf /λ<1, the growth of crystals in the matrix is affected significantly by the fibers and the grain size is reduced to the value of the inter-fiber spacing. The fibers influence the average length of a solidification volume element L of the matrix and also influence the solidification time θt of the matrix. As a result of fibers influencing L and θt, the micro-segregation in the matrix is improved when the composite contains more fibers, although the level of the improvement is slight. The Clyne-Kurz model can be used to semi-quantitatively analyze the relationship between Vf and the volume fraction fe of the micro-segregation eutectic structure.

  16. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  17. Crystallization mechanisms of acicular crystals

    Science.gov (United States)

    Puel, François; Verdurand, Elodie; Taulelle, Pascal; Bebon, Christine; Colson, Didier; Klein, Jean-Paul; Veesler, Stéphane

    2008-01-01

    In this contribution, we present an experimental investigation of the growth of four different organic molecules produced at industrial scale with a view to understand the crystallization mechanism of acicular or needle-like crystals. For all organic crystals studied in this article, layer-by-layer growth of the lateral faces is very slow and clear, as soon as the supersaturation is high enough, there is competition between growth and surface-activated secondary nucleation. This gives rise to pseudo-twinned crystals composed of several needle individuals aligned along a crystallographic axis; this is explained by regular over- and inter-growths as in the case of twinning. And when supersaturation is even higher, nucleation is fast and random. In an industrial continuous crystallization, the rapid growth of needle-like crystals is to be avoided as it leads to fragile crystals or needles, which can be partly broken or totally detached from the parent crystals especially along structural anisotropic axis corresponding to weaker chemical bonds, thus leading to slower growing faces. When an activated mechanism is involved such as a secondary surface nucleation, it is no longer possible to obtain a steady state. Therefore, the crystal number, size and habit vary significantly with time, leading to troubles in the downstream processing operations and to modifications of the final solid-specific properties. These results provide valuable information on the unique crystallization mechanisms of acicular crystals, and show that it is important to know these threshold and critical values when running a crystallizer in order to obtain easy-to-handle crystals.

  18. Application Specific Optical Fibers

    OpenAIRE

    Pal, Bishnu P.

    2010-01-01

    In this chapter we have attempted to provide a unified summary description of the most important propagation characteristics of an optical fiber followed by discussion on several variety of special fibers for realizing fiber amplifiers, dispersion compensating fibers, microstructured optical fibers, and so on. Even though huge progress has been made on development of optical fibers for telecom application, a need for developing special fibers, not necessarily for telecom alone, has arisen. Th...

  19. Orange fiber laser for ophthalmology

    Science.gov (United States)

    Adachi, M.; Kojima, K.; Hayashi, K.

    2007-02-01

    For the light source of photocoagulators for ophthalmology, orange laser is more suitable than green laser because of low scattering loss by the crystalline lens, and low absorption by xanthophylls in the retina. We developed two orange fiber lasers (580 nm and 590 nm) to investigate the effect depending on the difference in the range of orange. The 580nm laser is composed of a 1160 nm fiber laser and a Periodically Polled Lithium Niobate (PPLN) crystal for second harmonic generation. The 1160 nm fiber laser beam is focused into the MgO-doped PPLN crystal whose length is 30 mm with 3-pass configuration. Continuous-wave 1.3 W output power of 580 nm was obtained with 5.8 W input power of 1160nm for the first time. The conversion efficiency was 22%. The band width of the second harmonic was 0.006 nm (FWHM). The 590 nm laser is almost the same as 580 nm laser source. In this case we used a Raman shift fiber to generate 1180 nm, and the output power of 590 nm was 1.4 W. We developed an evaluation model of photocoagulator system using these two laser sources. A 700 mW coagulation output power was obtained with this orange fiber laser photocoagulator system. This is enough power for the eye surgery. We have the prospect of the maintenance-free, long-life system that is completely air-cooled. We are planning to evaluate this photocoagulator system in order to investigate the difference between the two wavelengths at the field test.

  20. Realization of 7-cell hollow-core photonic crystal fibers with low loss in the region between 1.4 μm and 2.3 μm

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian; Mangan, Brian Joseph; Jakobsen, C.

    2009-01-01

    Five 7-cell core hollow-core fibers with photonic bandgap spectral positions between 1.4 μm and 2.3 μm were fabricated. The loss follows the ≈ λ-3 dependency previously reported [1] with a minimum measured loss of 9.5 dB/km at 1992 nm.......Five 7-cell core hollow-core fibers with photonic bandgap spectral positions between 1.4 μm and 2.3 μm were fabricated. The loss follows the ≈ λ-3 dependency previously reported [1] with a minimum measured loss of 9.5 dB/km at 1992 nm....

  1. Fiber transport of spatially entangled photons

    Science.gov (United States)

    Löffler, W.; Eliel, E. R.; Woerdman, J. P.; Euser, T. G.; Scharrer, M.; Russell, P.

    2012-03-01

    High-dimensional entangled photons pairs are interesting for quantum information and cryptography: Compared to the well-known 2D polarization case, the stronger non-local quantum correlations could improve noise resistance or security, and the larger amount of information per photon increases the available bandwidth. One implementation is to use entanglement in the spatial degree of freedom of twin photons created by spontaneous parametric down-conversion, which is equivalent to orbital angular momentum entanglement, this has been proven to be an excellent model system. The use of optical fiber technology for distribution of such photons has only very recently been practically demonstrated and is of fundamental and applied interest. It poses a big challenge compared to the established time and frequency domain methods: For spatially entangled photons, fiber transport requires the use of multimode fibers, and mode coupling and intermodal dispersion therein must be minimized not to destroy the spatial quantum correlations. We demonstrate that these shortcomings of conventional multimode fibers can be overcome by using a hollow-core photonic crystal fiber, which follows the paradigm to mimic free-space transport as good as possible, and are able to confirm entanglement of the fiber-transported photons. Fiber transport of spatially entangled photons is largely unexplored yet, therefore we discuss the main complications, the interplay of intermodal dispersion and mode mixing, the influence of external stress and core deformations, and consider the pros and cons of various fiber types.

  2. Fibrillar films obtained from sodium soap fibers and polyelectrolyte multilayers.

    Science.gov (United States)

    Zawko, Scott A; Schmidt, Christine E

    2011-08-01

    An objective of tissue engineering is to create synthetic polymer scaffolds with a fibrillar microstructure similar to the extracellular matrix. Here, we present a novel method for creating polymer fibers using the layer-by-layer method and sacrificial templates composed of sodium soap fibers. Soap fibers were prepared from neutralized fatty acids using a sodium chloride crystal dissolution method. Polyelectrolyte multilayers (PEMs) of polystyrene sulfonate and polyallylamine hydrochloride were deposited onto the soap fibers, crosslinked with glutaraldehyde, and then the soap fibers were leached with warm water and ethanol. The morphology of the resulting PEM structures was a dense network of fibers surrounded by a nonfibrillar matrix. Microscopy revealed that the PEM fibers were solid structures, presumably composed of polyelectrolytes complexed with residual fatty acids. These fibrillar PEM films were found to support the attachment of human dermal fibroblasts. Copyright © 2011 Wiley Periodicals, Inc.

  3. Liquid crystal-based hydrophone arrays

    Science.gov (United States)

    Brodzeli, Zourab; Silvestri, Leonardo; Michie, Andrew; Chigrinov, Vladimir G.; Guo, Qi; Pozhidaev, Eugene P.; Kiselev, Alexei D.; Ladouceur, Francois

    2012-09-01

    We describe a fiber optic hydrophone array system that could be used for underwater acoustic surveillance applications (e.g. military, counter terrorist, and customs authorities in protecting ports and harbors), offshore production facilities or coastal approaches as well as various marine applications. In this paper, we propose a new approach to underwater sonar systems using the voltage-controlled liquid crystals and simple multiplexing method. The proposed method permits measurement of sound under water at multiple points along an optical fiber using the low cost components and standard single mode fiber, without complex interferometric measurement techniques, electronics or demodulation software.

  4. Collection of scintillation light from small BGO crystals

    International Nuclear Information System (INIS)

    Cherry, S.R.; Shao, Y.; Tornai, M.P.; Siegel, S.; Ricci, A.R.; Phelps, M.E.

    1995-01-01

    The authors propose to develop a high resolution positron emission tomography (PET) detector designed for animal imaging. The detector consists of a 2-D array of small bismuth germanate (BGO) crystals coupled via optical fibers to a multi-channel photomultiplier tube (MC-PMT). Though this approach offers several advantages over the conventional BGO block design, it does require that a sufficient number of scintillation photons be transported from the crystal, down the fiber and into the PMT. In this study the authors use simulations and experimental data to determine how to maximize the signal reaching the PMT. This involves investigating factors such as crystal geometry, crystal surface treatment, the use of reflectors, choice of optical fiber, coupling of crystals to the optical fiber and optical fiber properties. Their results indicate that using 2 x 2 x 10 mm BGO crystals coupled to 30 cm of clad optical fiber, roughly 50 photoelectrons are produced at the PMT photocathode for a 511 keV interaction. This is sufficient to clearly visualize the photopeak and provide adequate timing resolution for PET. Based on these encouraging results, a prototype detector will now be constructed

  5. Thermal properties of poly(3-hydroxybutyrate)/vegetable fiber composites

    Science.gov (United States)

    Vitorino, Maria B. C.; Reul, Lízzia T. A.; Carvalho, Laura H.; Canedo, Eduardo L.

    2015-05-01

    The present work studies the thermal properties of composites of poly(3-hydroxybutyrate) (PHB) - a fully biodegradable semi-crystalline thermo-plastic obtained from renewable resources through low-impact biotechno-logical process, biocompatible and non-toxic - and vegetable fiber from the fruit (coconut) of babassu palm tree. PHB is a highly crystalline resin and this characteristic leads to suboptimal properties in some cases. Consequently, thermal properties, in particular those associated with the crystallization of the matrix, are important to judge the suitability of the compounds for specific applications. PHB/babassu composites with 0-50% load were prepared in an internal mixer. Two different types of babassu fibers with two different particle size ranges were compounded with PHB and test specimens molded by compression. Melting and crystallization behavior were studied by differential scanning calorimetry (DSC) at heating/cooling rates between 2 and 30°C/min. Several parameters, including melting point, crystallization temperature, crystallinity, and rate of crystallization, were estimated as functions of load and heating/cooling rates. Results indicate that fibers do not affect the melting process, but facilitate crystallization from the melt. Crystallization temperatures are 30 to 40°C higher for the compounds compared with the neat resin. However, the amount of fiber added has little effect on crystallinity and the degree of crystallinity is hardly affected by the load. Fiber type and initial particle size do not have a significant effect on thermal properties.

  6. Thermal transport during the growth of crystalline fibers by the laser-heated float zone method

    International Nuclear Information System (INIS)

    Feigelson, R.S.

    1990-01-01

    Single crystal fibers may someday prove useful in a variety of advanced device applications. At the current time, fibers for optical, superconducting, and structural applications are under investigation. The advantage of single crystal fibers for optical devices lies in the enhanced light guiding properties one can obtain compared to a bulk crystal of the same material. Potential fiber-optic applications include optical transmission lines for remote temperature sensing and spectroscopy, solid-state lasers and amplifiers, and nonlinear devices such as harmonic generators, Raman shifters and optical parameters oscillators. In the area of superconductivity, the potential for producing long flexible fibers of the Bi 2 Sr 2 CaCu 2 O 8 high temperature superconductor which are capable of carrying high electrical current has been demonstrated. This superconductor, like other high T c materials is incongruently melting and growth rates (fiber throughput), therefore, have to be reduced to optimize the superconducting properties. Interest in single crystal fibers for structural applications stems from a strong technological interest in high strength, light weight fiber-matrix composites capable of operating at elevated temperatures. The very high crystalline perfection possible in single crystal fibers of certain materials, for example Al 2 O 3 , make them very attractive for special high temperature structural applications. Single crystal fibers are noted for having greater lower defects and hence higher strength than comparable bulk crystals. For most of the fiber applications mentioned above, stringent requirements exist for uniform diameter, homogeneous composition, and a low density of crystalline defects. Excellent growth stability is needed to obtain such fibers

  7. All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. [Department of Physics, Bilkent University, 06800 Ankara (Turkey); Nanjing University of Posts and Communications, Nanjing 210003 (China); Popa, D., E-mail: dp387@cam.ac.uk; Wittwer, V. J.; Milana, S.; Hasan, T.; Jiang, Z.; Ferrari, A. C. [Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Ilday, F. Ö. [Department of Physics, Bilkent University, 06800 Ankara (Turkey); Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara (Turkey)

    2015-12-14

    We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.

  8. Polymer microstructured fibers for guiding of THz radiation

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Bang, Ole; Jepsen, Peter Uhd

    2010-01-01

    THz radiation, including low-loss transport of THz signals [1] between high-speed devices, integrated components for manipulation of THz light [2], such as power splitters, polarization management, and frequency filters, and confinement of the electric field of a THz signal in a small volume, enabling...... the facets of the fiber have allowed a direct visualization of the guided modes in the fiber [5]. We will discuss the optimal material choice for various kinds of polymer-based fibers, including solid-core and air-core photonic crystal fibers, and show examples of characterization of such components. We...

  9. Femtosecond nonlinear fiber optics in the ionization regime.

    Science.gov (United States)

    Hölzer, P; Chang, W; Travers, J C; Nazarkin, A; Nold, J; Joly, N Y; Saleh, M F; Biancalana, F; Russell, P St J

    2011-11-11

    By using a gas-filled kagome-style photonic crystal fiber, nonlinear fiber optics is studied in the regime of optically induced ionization. The fiber offers low anomalous dispersion over a broad bandwidth and low loss. Sequences of blueshifted pulses are emitted when 65 fs, few-microjoule pulses, corresponding to high-order solitons, are launched into the fiber and undergo self-compression. The experimental results are confirmed by numerical simulations which suggest that free-electron densities of ∼10(17) cm(-3) are achieved at peak intensities of 10(14) W/cm(2) over length scales of several centimeters.

  10. Fully-etched apodized fiber-to-chip grating coupler on the SOI platform with -0.78 dB coupling efficiency using photonic crystals and bonded Al mirror

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Peucheret, Christophe

    2014-01-01

    We design and fabricate an ultra-high coupling efficiency fully-etched apodized grating coupler on the SOI platform using photonic crystals and bonded aluminum mirror. Ultra-high coupling efficiency of -0.78 dB with a 3 dB bandwidth of 74 nm are demonstrated.......We design and fabricate an ultra-high coupling efficiency fully-etched apodized grating coupler on the SOI platform using photonic crystals and bonded aluminum mirror. Ultra-high coupling efficiency of -0.78 dB with a 3 dB bandwidth of 74 nm are demonstrated....

  11. Advanced specialty fiber designs for high power fiber lasers

    Science.gov (United States)

    Gu, Guancheng

    deviation from circular fiber outer shape may be an effective method to mitigate HOM loss reduction from coherent reflection from fiber outer boundary. In an all-solid photonic bandgap fiber, modes are only guided due to anti-resonance of cladding photonic crystal lattice. This provides strongly mode-dependent guidance, leading to very high differential mode losses, which is essential for lasing far from the gain peak and suppression of stimulated Raman scattering. We will show that all-solid photonic bandgap fibers with effective mode area of 920microm2 can be made with excellent higher order mode suppression. We then demonstrate a 50microm-core-diameter Yb-doped all-solid photonic bandgap fiber laser. 75W output power has been generated with a diffraction-limited beam and an efficiency of 70% relative to the launched pump power. We have also experimentally confirmed that a robust single-mode regime exists near the high frequency edge of the bandgap. It is well known that incorporation of additional smaller cores in the cladding can be used to resonantly out-couple higher-order modes from a main core to suppress higher-order-mode propagation in the main core. Using a novel design with multiple coupled smaller cores in the cladding, we further scaled up the mode area and have successfully demonstrated a single-mode photonic bandgap fiber with record effective mode area of 2650microm2. Detailed numeric studies have been conducted for multiple cladding designs. For the optimal designs, the simulated minimum higher-order-mode losses are well over two orders of magnitudes higher than that of fundamental mode when expressed in dBs. We have also experimentally validated one of the designs. M 2critical for tandem-pumping in >10kW fiber lasers to provide high pump brightness and low thermal loading. Using an ytterbium-doped-phosphosilicate double-clad leakage-channel fiber with 50microm core and 420microm cladding, we have achieved 70% optical-to-optical efficiency at 1018nm. The

  12. Optimization Of Fluoride Glass Fiber Drawing With Respect To Mechanical Strength

    Science.gov (United States)

    Schneider, H. W.; Schoberth, A.; Staudt, A.; Gerndt, Ch.

    1987-08-01

    Heavy metal fluoride fibers have attracted considerable attention recently as lightguides for infrared optical devices. Besides the optical loss mechanical performance of the fiber is of major interest. At present fiber strength suffers from surface crystallization prior to or during fiber drawing. We developed an etching method for the preparation of preforms with clean surface. Drawing these preforms under optimized conditions in a dry atmosphere results in fibers with improved strength. So far, mean value of 400 N/mm2 tensile strength have been achieved. Maximum values of 800 N/mm2 measured on etched fibers indicate an even higher strength potential for the material itself.

  13. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, B

    2004-01-01

    The authors discuss simulated photonic crystal structure designs for laser-driven particle acceleration. They focus on three-dimensional planar structures based on the so-called ''woodpile'' lattice, demonstrating guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice. They introduce a candidate geometry and discuss the properties of the accelerating mode. They also discuss the linear beam dynamics in the structure present a novelmethod for focusing the beam. In addition they describe ongoing investigations of photonic crystal fiber-based structures

  14. Light propagation in gas-filled kagomé hollow core photonic crystal fibres

    Science.gov (United States)

    Rodrigues, Sílvia M. G.; Facão, Margarida; Ferreira, Mário F. S.

    2018-04-01

    We study the propagation of light in kagomé hollow core photonic crystal fibres (HC-PCFs) filled with three different noble gases, namely, helium, xenon and argon. Various properties, including the guided modes, the group-velocity dispersion, and the nonlinear parameter were determined. The zero dispersion wavelength and the nonlinear parameter vary with the gas pressure which may be used to tune the generation of new frequencies using the same pump laser and the same fibre. In the case of the kagomé HC-PCF filled with xenon, the zero dispersion wavelength shifts from 693 to 1973 nm when the pressure is increased from 1 to 150bar, while the effective Kerr nonlinearity becomes comparable to that of silica. We have simulated the propagation of femtosecond pulses launched at 790 nm in order to study the generation of supercontinuum and UV light in kagomé HC-PCFs filled with the noble gases.

  15. Fibered F-Algebra

    OpenAIRE

    Kleyn, Aleks

    2007-01-01

    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  16. Fiber optic connector

    Science.gov (United States)

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  17. Helium crystals

    International Nuclear Information System (INIS)

    Lipson, S.G.

    1987-01-01

    Hexagonal close-packed helium crystals in equilibrium with superfluid have been found to be one of the few systems in which an anisotropic solid comes into true thermodynamic equilibrium with its melt. The discovery of roughening transitions at the liquid-solid interface have shown this system to be ideal for the study of the statistical mechanics of interface structures. We describe the effect of roughening on the shape and growth of macroscopic crystals from both the theoretical and experimental points of view. (author)

  18. Refractive Index Measurement of Liquids Based on Microstructured Optical Fibers

    Directory of Open Access Journals (Sweden)

    Susana Silva

    2014-12-01

    Full Text Available This review is focused on microstructured optical fiber sensors developed in recent years for liquid RI sensing. The review is divided into three parts: the first section introduces a general view of the most relevant refractometric sensors that have been reported over the last thirty years. Section 2 discusses several microstructured optical fiber designs, namely, suspended-core fiber, photonic crystal fiber, large-core air-clad photonic crystal fiber, and others. This part is also divided into two main groups: the interferometric-based and resonance-based configurations. The sensing methods rely either on full/selective filling of the microstructured fiber air holes with a liquid analyte or by simply immersing the sensing fiber into the liquid analyte. The sensitivities and resolutions are tabled at the end of this section followed by a brief discussion of the obtained results. The last section concludes with some remarks about the microstructured fiber-based configurations developed for RI sensing and their potential for future applications.

  19. Transmission Electron Microscopy of Bombyx Mori Silk Fibers

    Science.gov (United States)

    Shen, Y.; Martin, D. C.

    1997-03-01

    The microstructure of B. Mori silk fibers before and after degumming was examined by TEM, selected area electron diffraction (SAED), WAXS and low voltage SEM. SEM micrographs of the neat cocoon revealed a network of pairs of twisting filaments. After degumming, there were only individual filaments showing a surface texture consistent with an oriented fibrillar structure in the fiber interior. WAXS patterns confirmed the oriented beta-sheet crystal structure common to silkworm and spider silks. Low dose SAED results were fully consistent with the WAXS data, and revealed that the crystallographic texture did not vary significantly across the fiber diameter. TEM observations of microtomed fiber cross sections indicated a somewhat irregular shape, and also revealed a 0.5-2 micron sericin coating which was removed by the degumming process. TEM observations of the degummed silk fiber showed banded features with a characteristic spacing of nominally 600 nm along the fiber axis. These bands were oriented in a roughly parabolic or V-shape pointing along one axis within a given fiber. We hypothesize that this orientation is induced by the extrusion during the spinning process. Equatorial DF images revealed that axial and lateral sizes of the β-sheet crystallites in silk fibroin ranged from 20 to 170 nm and from 1 to 24 nm, respectively. Crazes developed in the degummed silk fiber parallel to the fiber direction. The formation of these crazes suggests that there are significant lateral interactions between fibrils in silk fibers.

  20. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  1. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  2. Improving degradation resistance of sisal fiber in concrete through fiber surface treatment

    Science.gov (United States)

    Wei, Jianqiang; Meyer, Christian

    2014-01-01

    As part of an ongoing effort to improve the sustainability of reinforced concrete, recycled concrete aggregate is being considered together with natural fibers such as sisal fiber as replacement of synthetic reinforcement. Since natural fibers are known to undergo potential deterioration in the alkaline cement matrix especially in outdoor erosive environment, they need to be treated to improve their durability. This paper describes two such methods (thermal and Na2CO3 treatment) and evaluates their effects on the degradation resistance of sisal fiber and durability of sisal fiber-reinforced concrete with recycled concrete aggregate. Concrete specimens were subjected to cycles of wetting and drying to accelerate aging. The microstructure, tensile strength and Young's modulus of sisal fiber as well as the weight loss of the composite were evaluated. Of primary interest were the effects on compressive and splitting tensile strength of sisal fiber-reinforced concrete. Thermal treatment and Na2CO3 surface treatment were shown to improve the durability of the composite as measured by splitting tensile strength by 36.5% and 46.2% and the compressive strength by 31.1% and 45.4%, respectively. The mechanisms of these two treatment methods were also analyzed. The thermal treatment achieved improvement of cellulose's crystallization, which ensured the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali solution formed in the cement hydration process, was formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface to improve their corrosion resistance and durability and reduced the detrimental effects of Na+ ions on concrete.

  3. Crystal growth, spectroscopic and laser properties of Tm:LuAG crystal

    Science.gov (United States)

    Xu, X. D.; Wang, X. D.; Lin, Z. F.; Cheng, Y.; Li, D. Z.; Cheng, S. S.; Wu, F.; Zhao, Z. W.; Gao, C. Q.; Gao, M. W.; Xu, J.

    2009-11-01

    Tm:Lu3Al5O12 (Tm:LuAG) crystal was grown by the Czochralski method. The segregation coefficient was measured by Inductively Coupled Plasma Atomic Emission Spectrometer. The cell parameters were analyzed with X-ray powder diffraction experiments. The absorption and fluorescence spectra of Tm:LuAG crystal at room temperature were investigated. With a 20 W fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Tm:LuAG crystal was demonstrated. The maximum output power at 2020 nm was obtained to be 3.04 W, and the slope efficiency was 25.3%.

  4. Fabrication of Microscale Carbon Nanotube Fibers

    Directory of Open Access Journals (Sweden)

    Gengzhi Sun

    2012-01-01

    Full Text Available Carbon nanotubes (CNTs have excellent mechanical, chemical, and electronic properties, but realizing these excellences in practical applications needs to assemble individual CNTs into larger-scale products. Recently, CNT fibers demonstrate the potential of retaining CNT's superior properties at macroscale level. High-performance CNT fibers have been widely obtained by several fabrication approaches. Here in this paper, we review several key spinning techniques including surfactant-based coagulation spinning, liquid-crystal-based solution spinning, spinning from vertical-aligned CNT arrays, and spinning from CNT aerogel. The method, principle, limitations, and recent progress of each technique have been addressed, and the fiber properties and their dependences on spinning parameters are also discussed.

  5. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  6. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  7. Magnetophotonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, M [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Fujikawa, R [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Baryshev, A [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Khanikaev, A [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Lim, P B [CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan (Japan); Uchida, H [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Aktsipetrov, O [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation); Fedyanin, A [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation); Murzina, T [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation); Granovsky, A [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation)

    2006-04-21

    When the constitutive materials of photonic crystals (PCs) are magnetic, or even only a defect introduced in PCs is magnetic, the resultant PCs exhibit very unique optical and magneto-optical properties. The strong photon confinement in the vicinity of magnetic defects results in large enhancement in linear and nonlinear magneto-optical responses of the media. Novel functions, such as band Faraday effect, magnetic super-prism effect and non-reciprocal or magnetically controllable photonic band structure, are predicted to occur theoretically. All the unique features of the media arise from the existence of magnetization in media, and hence they are called magnetophotonic crystals providing the spin-dependent nature in PCs. (topical review)

  8. Magnetophotonic crystals

    International Nuclear Information System (INIS)

    Inoue, M; Fujikawa, R; Baryshev, A; Khanikaev, A; Lim, P B; Uchida, H; Aktsipetrov, O; Fedyanin, A; Murzina, T; Granovsky, A

    2006-01-01

    When the constitutive materials of photonic crystals (PCs) are magnetic, or even only a defect introduced in PCs is magnetic, the resultant PCs exhibit very unique optical and magneto-optical properties. The strong photon confinement in the vicinity of magnetic defects results in large enhancement in linear and nonlinear magneto-optical responses of the media. Novel functions, such as band Faraday effect, magnetic super-prism effect and non-reciprocal or magnetically controllable photonic band structure, are predicted to occur theoretically. All the unique features of the media arise from the existence of magnetization in media, and hence they are called magnetophotonic crystals providing the spin-dependent nature in PCs. (topical review)

  9. Fiber optics in adverse environments

    International Nuclear Information System (INIS)

    Lyous, P.B.

    1982-01-01

    Radiation effects in optical fibers are considered, taking into account recent progress in the investigation of radiation resistant optical fibers, radiation damage in optical fibers, radiation-induced transient absorption in optical fibers, X-ray-induced transient attenuation at low temperatures in polymer clad silica (PCS) fibers, optical fiber composition and radiation hardness, the response of irradiated optical waveguides at low temperatures, and the effect of ionizing radiation on fiber-optic waveguides. Other topics explored are related to environmental effects on components of fiber optic systems, and radiation detection systems using optical fibers. Fiber optic systems in adverse environments are also discussed, giving attention to the survivability of Army fiber optics systems, space application of fiber optics systems, fiber optic wavelength multiplexing for civil aviation applications, a new fiber optic data bus topology, fiber optics for aircraft engine/inlet control, and application of fiber optics in high voltage substations

  10. Fiber Optics Technology.

    Science.gov (United States)

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  11. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  12. Shaped fiber composites

    Science.gov (United States)

    Kinnan, Mark K.; Roach, Dennis P.

    2017-12-05

    A composite article is disclosed that has non-circular fibers embedded in a polymer matrix. The composite article has improved damage tolerance, toughness, bending, and impact resistance compared to composites having traditional round fibers.

  13. Advances in Fiber Lasers

    National Research Council Canada - National Science Library

    Morse, T

    1999-01-01

    Most of the time of this contract has been devoted toward improvements in optical fiber lasers and toward gathering experience to improve our program in high power, cladding pumped optical fiber lasers...

  14. Crystal growth, spectral and laser properties of Nd:LuAG single crystal

    International Nuclear Information System (INIS)

    Xu, X D; Meng, J Q; Cheng, Y; Li, D Z; Cheng, S S; Wu, F; Zhao, Z W; Wang, X D; Xu, J

    2009-01-01

    Nd:LuAG (Nd:Lu 3 Al 5 O 12 ) crystal was grown by the Czochralski method. X-ray powder diffraction experiments show that the Nd:LuAG crystal crystallizes in the cubic with space group Ia3d and has the cell parameter: a = 1.1907 nm, V = 1.6882 nm 3 . The absorption and fluorescence spectra of Nd:LuAG crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LuAG crystal was demonstrated. The maximum output power at 1064 nm was obtained to be 3.8 W under the incident pump power of 17.3 W, with the optical conversion efficiency 22.0% and the slope efficiency 25.7%

  15. Crystal growth, spectral and laser properties of Nd:LuAG single crystal

    Science.gov (United States)

    Xu, X. D.; Wang, X. D.; Meng, J. Q.; Cheng, Y.; Li, D. Z.; Cheng, S. S.; Wu, F.; Zhao, Z. W.; Xu, J.

    2009-09-01

    Nd:LuAG (Nd:Lu3Al5O12) crystal was grown by the Czochralski method. X-ray powder diffraction experiments show that the Nd:LuAG crystal crystallizes in the cubic with space group Ia3d and has the cell parameter: a = 1.1907 nm, V = 1.6882 nm3. The absorption and fluorescence spectra of Nd:LuAG crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LuAG crystal was demonstrated. The maximum output power at 1064 nm was obtained to be 3.8 W under the incident pump power of 17.3 W, with the optical conversion efficiency 22.0% and the slope efficiency 25.7%.

  16. Crystal growth, spectral and laser properties of Nd:LSAT single crystal

    Science.gov (United States)

    Hu, P. C.; Yin, J. G.; Zhao, C. C.; Gong, J.; He, X. M.; Zhang, L. H.; Liang, X. Y.; Hang, Y.

    2011-10-01

    Nd:(La, Sr)(Al, Ta)O3 (Nd:LSAT) crystal was grown by the Czochralski method. The absorption and fluorescence spectra of Nd:LSAT crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LSAT crystal was demonstrated. The result of diode-pumped laser operation of Nd:LSAT crystal single crystal is reported for what is to our knowledge the first time. The maximum output power at 1064 nm was obtained to be 165 mW under the incident pump power of 3 W, with the slope efficiency 10.9%.

  17. High Power Spark Delivery System Using Hollow Core Kagome Lattice Fibers

    Directory of Open Access Journals (Sweden)

    Ciprian Dumitrache

    2014-08-01

    Full Text Available This study examines the use of the recently developed hollow core kagome lattice fibers for delivery of high power laser pulses. Compared to other photonic crystal fibers (PCFs, the hollow core kagome fibers have larger core diameter (~50 µm, which allows for higher energy coupling in the fiber while also maintaining high beam quality at the output (M2 = 1.25. We have conducted a study of the maximum deliverable energy versus laser pulse duration using a Nd:YAG laser at 1064 nm. Pulse energies as high as 30 mJ were transmitted for 30 ns pulse durations. This represents, to our knowledge; the highest laser pulse energy delivered using PCFs. Two fiber damage mechanisms were identified as damage at the fiber input and damage within the bulk of the fiber. Finally, we have demonstrated fiber delivered laser ignition on a single-cylinder gasoline direct injection engine.

  18. Properties of alginate fiber spun-dyed with fluorescent pigment dispersion.

    Science.gov (United States)

    Wang, Ping; Tawiah, Benjamin; Tian, Anli; Wang, Chunxia; Zhang, Liping; Fu, Shaohai

    2015-03-15

    Spun-dyed alginate fiber was prepared by the spun-dyeing method with the mixture of fluorescent pigment dispersion and sodium alginate fiber spinning solution, and its properties were characterized by SEM, TGA, DSC, and XRD. The results indicate that fluorescent pigment dispersion prepared with esterified poly (styrene-alt maleic acid) had excellent compatibility with sodium alginate fiber spinning solution, and small amount of fluorescent pigment could reduce the viscosity of spun-dyed spinning solutions. SEM photo of spun-dyed alginate fiber indicated that fewer pigment particles deposited on its surface. TGA, DSC, and XRD results suggested that thermal properties and crystal phase of spun-dyed alginate fibers had slight changes compared to the original alginate fibers. The fluorescence intensity of spun-dyed alginate fiber reached its maximum when the content of fluorescent pigment was 4%. The spun-dyed alginate fiber showed excellent rubbing and washing fastness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Hierarchically Structured Electrospun Fibers

    Science.gov (United States)

    2013-01-07

    in the natural lotus and silver ragwort leaves. Figure 4. Examples of electrospun bio-mimics of natural hierarchical structures. (A) Lotus leaf...B) pillared poly(methyl methacrylate) (PMMA) electrospun fiber mimic; (C) silver ragwort leaf; (D) electrospun fiber mimic made from nylon 6 and...domains containing the protein in the surrounding EVA fibers [115]. A wide variety of core-shell fibers have been generated, including PCL/ gelatin

  20. Superlattice Microstructured Optical Fiber

    Science.gov (United States)

    Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw

    2014-01-01

    A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10−4 is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure. PMID:28788693