WorldWideScience

Sample records for cryogenic air separation

  1. An efficient and rigorous thermodynamic library and optimal-control of a cryogenic air separation unit

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Ritschel, Tobias Kasper Skovborg; Jørgensen, John Bagterp

    2017-01-01

    Cryogenic air separation (CAS) is the leading technology for large scale production of pure N2, O2 and Ar. This process is very electric-energy intensive; thus it is a likely candidate for load balancing of power stations in a smart grid. This type of intermittent operation of CAS, requires a non...... objective is to reduce the cost of compression in a volatile electricity market while meeting the production requirements, i.e. product flow rate and purity. This model is implemented in Matlab and uses the ThermoLib rigorous thermodynamic library. The present work represents a first step towards plant...

  2. Potential for improving the energy efficiency of cryogenic air separation unit (ASU) using binary heat recovery cycles

    International Nuclear Information System (INIS)

    Aneke, Mathew; Wang, Meihong

    2015-01-01

    In this paper, the potential of improving the energy efficiency of a conventional cryogenic air separation unit (ASU) was investigated through modelling and simulation using Aspen Plus ® v 8.1. It is achieved through converting the heat from the compressor effluent to electricity using organic Ranking cycle (ORC). Two different arrangements of combining compressor and waste heat recovery ORC system were compared with the conventional cryogenic ASU which was used as the benchmark. The benchmark is a conventional cryogenic ASU with 3 stages of compression which uses water for intercooling. In the first arrangement the water used as the cooling fluid of the intercooler/after cooler heat exchanger of a conventional cryogenic ASU process was replaced by R134a which also acts as the working fluid for the ORC system (C3WHR) while in the second arrangement, the 3 stages compressor of the conventional process was replaced with a single stage compressor with the same overall pressure ratio as the conventional process and the hot compressor effluent cooled with R134a which also acts as the working fluid of the ORC system (C1WHR). The simulation results based on a cryogenic ASU capable of processing 100 kg/s of atmospheric air at 30  ° C as feedstock show that the specific power consumption for the pure products which was 0.32 kWh/kg, 0.37 kWh/kg and 17.35 kWh/kg for oxygen, nitrogen and argon respectively for the conventional cryogenic ASU process was reduced by the addition of the waste heat recovery ORC system. The C1WHR reduced the specific power consumption by an average of 0.2% across the aforementioned pure products while the C3WHR reduced it by an average of 11%. The net power consumption of the conventional cryogenic ASU which was 21826.19 kW was also found to be reduced by the same percentage. - Highlights: • We model two cryogenic air separation unit with compressor waste heat recovery. • We compare the specific energy consumption of the models. • We

  3. Cryogenic separation of an oxygen-argon mixture in natural air samples for the determination of isotope and molecular ratios.

    Science.gov (United States)

    Keedakkadan, Habeeb Rahman; Abe, Osamu

    2015-04-30

    The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic

  4. Improving the exergy efficiency of a cryogenic air separation unit as part of an integrated gasification combined cycle

    International Nuclear Information System (INIS)

    Ham, L.V. van der

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Cryogenic air separation as part of an integrated gasification combined cycle. ► Considerable improvements in the exergy efficiency of a two-column design. ► Heating the separation products using heat of compression. ► Improving heat integration of the columns using heat-integrated distillation stages. - Abstract: The efficiency of a two-column cryogenic ASU (air separation unit) that is part of an IGCC (integrated gasification combined cycle) can be increased significantly by making better use of the heat of compression and by improving the heat integration of the distillation columns. The rational exergy efficiency of the ASU, which is defined as the desired increase in exergy content of the products divided by the amount of work that is added to the process, can be increased from 35% to over 70%. The exergy destruction per amount of feed is reduced with 1.6 kJ/mol air, corresponding to a 0.74% increase in the net electric efficiency of the IGCC. The efficiencies are expected to increase even further because the full potential of using heat-integrated distillation columns is not yet achieved.

  5. The fractional PID controllers tuned by genetic algorithms for expansion turbine in the cryogenic air separation process

    Directory of Open Access Journals (Sweden)

    Bučanović Ljubiša J.

    2014-01-01

    Full Text Available This paper deals with the design of a new algorithm of PID control based on fractional calculus (FC in production of technical gases, i.e. in a cryogenic air separation process. Production of low pressure liquid air was first introduced by P. L. Kapica and involved expansion in a gas turbine. For application in the synthesis of the control law, for the input temperature and flow of air to the expansion turbine, it is necessary to determine the appropriate differential equations of the cryogenic process of mixing of two gaseous airflows at different temperatures before entrance to the expansion turbine. Thereafter, the model is linearized and decoupled and consequently classical PID and fractional order controllers are taken to assess the quality of the proposed technique. A set of optimal parameters of these controllers are achieved through the genetic algorithm optimization procedure by minimizing a cost function. Our design method focuses on minimizing performance criterion which involves IAE, overshoot, as well as settling time. A time-domain simulation was used to identify the performance of controller with respect to a traditional optimized PID controller. [Projekat Ministarstva nauke Republike Srbije, br. 35006

  6. Cogeneration in air separation cryogenic plants; Cogeracao em plantas criogenicas de separacao de ar

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, Walter N.; Orlando, Alcir F. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica]. E-mails: wnovellob@openlink.com.br; afo@mec-puc-rio.br

    2000-07-01

    A thermal and economic study, carried on by using the first and second law of thermodynamics concepts demonstrated the economic feasibility of the cogeneration system, and proposed modifications to be done in the studied cryogenic plant, a typical T-240 NA MPL3 plant. The thermodynamic analysis showed that the second law efficiency of the processes could be improved, together with a 12% electric energy consumption reduction. Four cogeneration schemes were analyzed with both the first and second laws of thermodynamics and, then, the economic analysis was performed. Rankine, Brayton, Otto and Combined gas-steam basic cycles were used in this analysis.The combined gas-steam cycle was shown to be more economically feasible than others. Thermal and electric loads were well balanced, resulting in a higher second law efficiency. Although the initial investment for the modification was higher, the savings resulted to be higher, turning into a higher rate of return of the investment. (author)

  7. A comparative thermodynamic, economic and risk analysis concerning implementation of oxy-combustion power plants integrated with cryogenic and hybrid air separation units

    International Nuclear Information System (INIS)

    Skorek-Osikowska, Anna; Bartela, Łukasz; Kotowicz, Janusz

    2015-01-01

    Highlights: • Mathematical model of an integrated oxy-combustion power plant. • Comparison of a hybrid membrane–cryogenic oxygen generation plant with a cryogenic plant. • Thermodynamic analysis of the modeled cases of the plant. • Comparative economic analysis of the power plant with cryogenic and hybrid ASU. • Comparative risk analysis using a Monte Carlo method and sensitivity analysis. - Abstract: This paper presents a comparison of two types of oxy-combustion power plant that differ from each other in terms of the method of oxygen separation. For the purpose of the analysis, detailed thermodynamic models of oxy-fuel power plants with gross power of approximately 460 MW were built. In the first variant (Case 1), the plant is integrated with a cryogenic air separation unit (ASU). In the second variant (Case 2), the plant is integrated with a hybrid membrane–cryogenic installation. The models were built and optimized using the GateCycle, Aspen Plus and Aspen Custom Modeller software packages and with the use of our own computational codes. The results of the thermodynamic evaluation of the systems, which primarily uses indicators such as the auxiliary power and efficiencies of the whole system and of the individual components that constitute the unit, are presented. Better plant performance is observed for Case 2, which has a net efficiency of electricity generation that is 1.1 percentage points greater than that of Case 1. For the selected structure of the system, an economic analysis of the solutions was made. This analysis accounts for different scenarios of the functioning of the Emission Trading Scheme and includes detailed estimates of the investment costs in both cases. As an indicator of profitability, the break-even price of electricity was used primarily. The results of the analysis for the assumptions made are presented in this paper. A system with a hybrid air separation unit has slightly better economic performance. The break-even price

  8. Possibilities for improving the thermodynamic and economic characteristics of an oxy-type power plant with a cryogenic air separation unit

    International Nuclear Information System (INIS)

    Janusz-Szymańska, Katarzyna; Dryjańska, Aleksandra

    2015-01-01

    In this paper the thermo-economic analysis of the oxy-type supercritical power plant integrated with the cryogenic air separation unit was presented, with the efficiency of the whole power plant of 32.26%. The reduction of energy intensity of ASU (air separation unit) was proposed by appending the membrane module. A hybrid air separation unit allows to decrease the energy intensity of oxygen production from the value of 0.226 kWh/kg O 2 for the cryogenic ASU to 0.179 kWh/kg O 2 , for the analyzed hybrid membrane-cryogenic ASU, with an increase of the net efficiency to 33.84%. This solution causes the efficiency change by 8.7 percentage points in comparison with the reference air-fired power plant. A method of using the waste heat from the ASU and CCS (CO 2 capture system) installations for the regeneration system of the steam turbine was proposed as a mean to decrease the efficiency drop. Using the waste heat in the steam turbine system causes an increase of the electric energy of the generator of turbine, and in the consequence leads to the improvement of the efficiency of the analyzed power plant by 0.5 percentage points. An economic analysis showed that the profitability of building of the oxy-type power plant in place of a conventional power plant will be higher with the price of CO 2 emission allowances equal to 27.1 €/Mg CO 2 . All these effects of increasing the efficiency of the block can lead to lowering the cost of electricity generation by 5 €/MWh. - Highlights: • Comparison of net efficiency in the analyzed oxy and air power plant. • Analysis of possibilities of increase the power plant net efficiency. • Increase the boiler thermal efficiency by change of flue gas recirculation method. • Analysis of using the low-temperature heat from ASU and CCS installations. • Economic analysis of the analyzed power plant

  9. Hydrogen isotope separation by cryogenic distillation method

    International Nuclear Information System (INIS)

    Hayakawa, Nobuo; Mitsui, Jin

    1987-01-01

    Hydrogen isotope separation in fusion fuel cycle and tritium recovery from heavy water reactor are very important, and therefore the early establishment of these separation techniques are desired. The cryogenic distillation method in particular is promising for the separation of hydrogen isotope and the recovery of high concentrated tritium. The studies of hydrogen isotope separation by cryogenic distillation method have been carried out by using the experimental apparatus made for the first time in Japan. The separation of three components (H 2 -HD-D 2 ) under total reflux conditions was got by using the packing tower of 500 mm height. It was confirmed that the Height Equivalent Theoretical Plate (HETP) was 20 - 30 mm for the vapor's line velocity of 20 - 80 mm/s. (author)

  10. Cryogenic hydrogen-induced air liquefaction technologies

    Science.gov (United States)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  11. Photolytic separation of isotopes in cryogenic solution

    Science.gov (United States)

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Battie, W.H.

    Separation of carbon isotopes by photolysis of CS/sub 2/ in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distributionn of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of /sup 13/CS/sub 2/ is greater than that of /sup 12/CS/sub 2/ (because the absorption of 206 nm radiation is greater for /sup 13/CS/sub 2/), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  12. Cryogenic hydrogen-induced air-liquefaction technologies

    Science.gov (United States)

    Escher, William J. D.

    1990-01-01

    Extensive use of a special advanced airbreathing propulsion archives data base, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented in 1986. The resulting assessment report is summarized. Technical findings relating the status of air liquefaction technology are presented both as a singular technical area, and also as that of a cluster of collateral technical areas including: Compact lightweight cryogenic heat exchangers; Heat exchanger atmospheric constituents fouling alleviation; Para/ortho hydrogen shift conversion catalysts; Hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; Hydrogen recycling using slush hydrogen as heat sinks; Liquid hydrogen/liquid air rocket type combustion devices; Air Collection and Enrichment System (ACES); and Technically related engine concepts.

  13. Test plan for air monitoring during the Cryogenic Retrieval Demonstration

    International Nuclear Information System (INIS)

    Yokuda, E.

    1992-06-01

    This report presents a test plan for air monitoring during the Cryogenic Retrieval Demonstration (CRD). Air monitors will be used to sample for the tracer elements neodymium, terbium, and ytterbium, and dysprosium. The results from this air monitoring will be used to determine if the CRD is successful in controlling dust and minimizing contamination. Procedures and equipment specifications for the test are included

  14. Germanium-76 Isotope Separation by Cryogenic Distillation. Final Report

    International Nuclear Information System (INIS)

    Stohler, Eric

    2007-01-01

    The current separation method for Germanium isotopes is electromagnetic separation using Calutrons. The Calutrons have the disadvantage of having a low separation capacity and a high energy cost to achieve the separation. Our proposed new distillation method has the advantage that larger quantities of Germanium isotopes can be separated at a significantly lower cost and in a much shorter time. After nine months of operating the column that is 1.5 meter in length, no significant separation of the isotopes has been measured. We conclude that the length of the column we have been using is too short. In addition, other packing material than the 0.16 inch Propak, 316 ss Protruded metal packing that we used in the column, should be evaluated which may have a better separation factor than the 0.16 inch Propak, 316 ss Protruded metal packing that has been used. We conclude that a much longer column - a minimum of 50 feet length - should be built and additional column packing should be tested to verify that isotopic separation can be achieved by cryogenic distillation. Even a longer column than 50 feet would be desirable.

  15. Cryogenics

    International Nuclear Information System (INIS)

    Gutierrez R, C.; Jimenez D, J.; Cejudo A, J.; Hernandez M, V.

    1997-01-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  16. Studies on cryogenic distillation columns for hydrogen isotope separation

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro

    1984-08-01

    Cryogenic distillation is applicable to a number of situations. The feed condition, column cascade configuration, input and output specifications vary greatly from situation to situation. In the mainstream fuel circulation system for a fusion reactor, the feed composition may fluctuate greatly during the operation. The radiological standards for tritium lost to the environment are increasingly becoming stricter. Systematic studies are needed to achieve the goal of long-term operation meeting the strict requirements for products even under great fluctuation of the feed condition in all the situations. The present report gives a critical, brief review of the studies which have been made by the author. The subjects treated are development of computer simulation procedures, analysis on an H-T separation column with a feedback stream, dynamics and control, proposal of a new cascade, analysis on helium effects on column behavior, start-up analysis for a cascade, and preliminary experimental study on dependence of HETP on operational conditions. (author)

  17. Cryogenic distillation of CH4 for 12C/13C separation

    International Nuclear Information System (INIS)

    Nishiguchi, Yutaka

    1992-01-01

    Tokyo Gas imports a large amount of LNG (Liquefied Natural Gas). LNG is - 163degC at atmospheric pressure and re-gasified by heat exchange with sea water for distribution. We have studied the effective utilization of this cold energy such as air separation and power generation. The cryogenic distillation is one of the next targets. A pilot plant of a reduced pressure and cryogenic fractional distillation process using methane for production of 13 C at 50 % concentration has been built, and operated for two years. Two more distillation columns are now under starting-up operation. One is to enrich 13 C more to 98 %. The other is to have 12 C at 99.9 %. Liquid 13 CH 4 has a vapor pressure 0.3 % greater than that of 13 CH 4 . Therefore fractional distillation would concentrate 12 CH 4 , which is the heavier isotope in this system, in the liquid phase. The pilot plant, dealing with a mixture whose separation factor is close to unity, has to have a great height with many columns. And the process flows are very low compared with the boil-up in the columns. 9 columns for the methane-13 production can be divided into 3 groups in series. The other single column is for the methane-12 separation. These columns are packed with newly developed small wire packing. (author)

  18. Cryogenic Cooling System for Zero-Venting Storage of Supercritical Air Packs, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Supercritical air at cryogenic temperature is an attractive source of breathing air because of its very high density and low pressure. However, heat leak into the...

  19. Cryogenic Cooling System for Zero-Venting Storage of Supercritical Air Packs, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Supercritical air at cryogenic temperature is an attractive source of breathing air because of its very high density and low pressure. However, heat leak into the...

  20. A breath of fresh air for cryogenics training

    CERN Multimedia

    HSE Unit

    2014-01-01

    Whether you work full-time in a cryogenic installation or are required to handle cryogenic substances temporarily, you need to have followed the appropriate safety training.   Photo: Christoph Balle. Two new training courses are now available in English and French at CERN: “Cryogenic Safety – Fundamentals” (at the Prévessin Training Centre) and “Cryogenic Safety – Helium Transfer” (at the Cryolab). The first covers the content of levels 1 and 2 of the old “Cryogenic Safety” course. The second is a completely new course for CERN: it covers specific aspects of the transfer of liquid helium, such as the evaporation process of helium and the associated risks to human health (asphyxia due to displacement of oxygen), the colour code for gas bottles, etc. These training modules have been rewritten in response to the increase in the number of projects involving cryogenics and following various related incident...

  1. Separation and identification of picogram levels of dioxins and PCBs by GC/cryogenic trapping FTIR

    Science.gov (United States)

    Johnson, David J.; Powell, Jay R.; Krishnan, K.

    1994-01-01

    Capillary gas chromatography/mass spectrometry (GC/MS) has routinely been used by the analytical chemist to separate and identify low levels of environmentally important compounds. A GC/Cryogenic Trapping Fourier Transform Infrared Spectrometer (Tracer) provides the sensitivity of the GC/MS with the added capability of differentiating between compounds of the same mass. In this work, the Tracer was utilized to study low levels of six Polychlorinated Biphenyls (PCBs), eight Chlorinated Dibenzo-p-Doxins and Norflurazon. In all cases, picogram levels of these compounds were easily detected from `on the fly' generated IR chromatograms. Since the separated compounds eluting from the capillary column are cryogenically trapped onto a moving liquid nitrogen cooled ZnSe crystal, excellent signal-to- noise spectra of these same compounds may be collected after the run by returning to the same areas of deposition and signal averaging.

  2. Cryogenic hydrogen-induced air-liquefaction technologies for combined-cycle propulsion applications

    Science.gov (United States)

    Escher, William J. D.

    1992-01-01

    Given here is a technical assessment of the realization of cryogenic hydrogen induced air liquefaction technologies in a prospective onboard aerospace vehicle process setting. The technical findings related to the status of air liquefaction technologies are reviewed. Compact lightweight cryogenic heat exchangers, heat exchanger atmospheric constituent fouling alleviation measures, para/ortho-hydrogen shift-conversion catalysts, cryogenic air compressors and liquid air pumps, hydrogen recycling using slush hydrogen as a heat sink, liquid hydrogen/liquid air rocket-type combustion devices, and technically related engine concepts are discussed. Much of the LACE work is related to aerospaceplane propulsion concepts that were developed in the 1960's. Emphasis is placed on the Liquid Air Cycle Engine (LACE).

  3. Hybrid membrane--PSA system for separating oxygen from air

    Science.gov (United States)

    Staiger, Chad L [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM; Miller, A Keith [Albuquerque, NM; Cornelius, Christopher J [Blackburg, VA

    2011-01-25

    A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

  4. Stratospheric whole air sampling experiments at Syowa Station with compact cryogenic air samplers in JARE-49

    Directory of Open Access Journals (Sweden)

    Shinji Morimoto

    2009-03-01

    Full Text Available As a part of summer observations of the 49th Japanese Antarctic Research Expedition, stratospheric whole air sampling experiments were conducted at Syowa Station using newly developed compact cryogenic air samplers. The compact sampler uses liquefied neon (produced in-situ as a refrigerant to solidify or liquefy atmospheric constituents. Because of its reduced size and weight, the sampler can be launched using small-size balloons (1000–2000 m3 in volume. On December 30, 2007 and January 4, 2008, a total of 4 samplers were launched from Syowa Station and recovered on the same day as their launches. Two of them functioned as designed and collected stratospheric air samples at altitudes of 18 and 25 km. The air samples were analyzed for greenhouse gas concentrations and stable isotopes after return to Japan.

  5. Cryogenics safety

    International Nuclear Information System (INIS)

    Reider, R.

    1977-01-01

    The safety hazards associated with handling cryogenic fluids are discussed in detail. These hazards include pressure buildup when a cryogenic fluid is heated and becomes a gas, potential damage to body tissues due to surface contact, toxic risk from breathing air altered by cryogenic fluids, dangers of air solidification, and hazards of combustible cryogens such as liquified oxygen, hydrogen, or natural gas or of combustible mixtures. Safe operating procedures and emergency planning are described

  6. Age and gravitational separation of the stratospheric air over Indonesia

    Directory of Open Access Journals (Sweden)

    S. Sugawara

    2018-02-01

    Full Text Available The gravitational separation of major atmospheric components, in addition to the age of air, would provide additional useful information about stratospheric circulation. However, observations of the age of air and gravitational separation are still geographically sparse, especially in the tropics. In order to address this issue, air samples were collected over Biak, Indonesia in February 2015 using four large plastic balloons, each loaded with two compact cryogenic samplers. With a vertical resolution of better than 2 km, air samples from seven different altitudes were analyzed for CO2 and SF6 mole fractions, δ15N of N2, δ18O of O2, and δ(Ar∕N2 to examine the vertically dependent age and gravitational separation of air in the tropical tropopause layer (TTL and the equatorial stratosphere. By comparing their measured mole fractions with aircraft observations in the upper tropical troposphere, we have found that CO2 and SF6 ages increase gradually with increasing altitude from the TTL to 22 km, and then rapidly from there up to 29 km. The CO2 and SF6 ages agree well with each other in the TTL and in the lower stratosphere, but show a significant difference above 24 km. The average values of δ15N of N2, δ18O of O2, and δ(Ar∕N2 all show a small but distinct upward decrease due to the gravitational separation effect. Simulations with a two-dimensional atmospheric transport model indicate that the gravitational separation effect decreases as tropical upwelling is enhanced. From the model calculations with enhanced eddy mixing, it is also found that the upward increase in air age is magnified by horizontal mixing. These model simulations also show that the gravitational separation effect remains relatively constant in the lower stratosphere. The results of this study strongly suggest that the gravitational separation, combined with the age of air, can be used to diagnose air transport processes in the stratosphere.

  7. Experimental results to determine the separation performance of the packages used in cryogenic distillation isotopes

    International Nuclear Information System (INIS)

    Bornea, A.M.; Stefanescu, I.; Zamfirache, M.; Balteanu, O.; Preda, A.

    2007-01-01

    The cryogenic distillation of the hydrogen isotopes represents the back-end separation process most efficient and usually used in detritiation technologies. In our institute there were made many researches in the field of hydrogen isotopes separation. The first results were obtained based on an experimental installation - Pilot Plant for heavy water production - and in present days using a Detritiation Pilot Plant. In our Institute, was manufactured and patented a lot of hydrophilic package for isotopic distillation of water and hydrogen and also catalysts used for isotopic exchange waterhydrogen. This items was continuously developed in order to increase the isotopic separation efficiency. The goal of this paper is to determine by experimental work the performance of the package manufactured in our institute used in the cryogenic distillation process. To describe the separation performances was developed a mathematical model for the cryogenic distillation of the hydrogen isotopes. In order to determine the characteristics of the package, the installation was operated in the total reflux mode, for different flow rate for the liquid. There were made several experiments considering different operating conditions corresponding to various values for the refrigeration power in the column condenser. From the bottom and the top of the distillation column there were extracted samples in order to determine the isotopic composition. Processing the experimental data obtained from these tests using the Fenske relation, we obtained the separation efficiency function of the power inside the column boiler, operating pressure and also pressure drop along the package. This efficiency is describe by the number of theoretical plates per meter (NTT/m) or by equivalent height of one theoretical plate (IETT). (orig.)

  8. Theoretical study on separation of H2/HD by multi-column interlinking cryogenic distillation

    International Nuclear Information System (INIS)

    Xia Xiulong

    2010-01-01

    Multi-column interlinking is an effective separation method adopted for enrichment of trace deuterium and tritium. Conceptual design and proper operating mode were proposed for separation of H2/HD by cryogenic distillation with three interlinking columns,and separation performance were obtained.Enrichment of 20 x 10 x 10 achieved with proper operating mode indicating multi-column interlinking is specially suitable for trace composition enrichment. Pressure and reflux ratio' effect on separation performance were also investigated. As pressure increased from 0.6 atm to 1.5 atm, deuterium stripping efficiency dropped from 99.79% to 99.44%; As reflux ratio increased from 3 to 5, deuterium stripping efficiency increased from 99.67% to 99.81%. (authors)

  9. Developing Cryogenic Heat Exchangers for Selective Cabin Air Separation

    Data.gov (United States)

    National Aeronautics and Space Administration — Two HEXs will be designed that will interface with in-house Stirling cryo coolers: the residual H2O/VOC cold trap, and the CO2 deposition chamber. We’ll calculate...

  10. Analytical method of Kr-85 determination, using cryogenic concentration and separation and liquid scintillation counting

    International Nuclear Information System (INIS)

    Heras Iniquez, M.C.; Perez Garcia, M.M.; Grau Malonda, A.

    1983-01-01

    The method used in the Laboratory of the JEN for the determination of Kr-85 levels in gaseous effluents of nuclear power and in the atmosphere is described. Samples of air, collected in metallic cylinders, are introduced into a gas-solid chromatographic separation system which resolves Kr from the other air components. The separated Kr ia dissolved in a toluene based scintillation cocktail, and the Kr-85 content is determined by liquid scintillation counting. (Author)

  11. Steady state operation of the first cryogenic column in a krypton separation system

    International Nuclear Information System (INIS)

    von Ammon, R.; Bumiller, W.; Hutter, E.; Neffe, G.

    1981-01-01

    Recent results obtained during the operation of the inactive test unit KRETA for the cryogenic separation of krypton from simulated reprocessing off-gases are presented. The first rectification column of this unit was modified by shortening its lower part from 18 to 8 practical plates and placing the feed point into the warmer, krypton-rich section. Two essential results were thus achieved: plugging by desubliming xenon was not observed even at xenon feed concentrations as high as 1 vol.-%; and, accumulation of oxygen was much lower than in the column version used previously, thus reducing the potential hazard by ozone formation drastically. The accumulation of methane, however, was found to be high, in agreement with calculations

  12. Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilized

    International Nuclear Information System (INIS)

    Gao Ting; Lin Wensheng; Gu Anzhong

    2011-01-01

    Research highlights: → We propose two new light hydrocarbon separation processes utilizing LNG cold energy. → Both processes produce liquefied ethane and LPG with high ethane recovery rate. → CH 4 -riched gas from the high pressure process is compressed to final pressure. → Re-liquefied CH 4 -riched gas from the low pressure one is pumped to final pressure. → Both processes have good performance; the low pressure one is economically better. -- Abstract: Liquefied natural gas (LNG) often consists of some kinds of light hydrocarbons other than methane, such as ethane, propane and butane, which are of high additional value. By efficiently utilization of LNG cryogenic energy, these light hydrocarbons (C 2 + ) can be separated from LNG with low power consumption and LNG is gasified meanwhile. Two novel light hydrocarbon separation processes are proposed in this paper. The first process uses a demethanizer working at higher pressure (about 4.5 MPa). The methane-riched natural gas from the demethanizer can be compressed to pipeline pressure with low power consumption. The other one uses a demethanizer working at lower pressure (about 2.4 MPa). By cascade utilization of LNG cryogenic energy, the methane-riched natural gas from the demethanizer is entirely re-liquefied. Then the liquid product is pressurized to pipeline pressure by pumps instead of compressors, reducing the power consumption greatly. By both of the two processes, liquefied ethane and LPG (liquefied petroleum gas, i.e. C 3 + ) at atmosphere pressure can be obtained directly, and high ethane recovery rate can be gained. On the basis of one typical feed gas composition, the effects of the ethane content and the ethane price to the economics of the light hydrocarbon separation plants are studied, and the economics are compared for these two processes. The results show that recovering light hydrocarbons from LNG can gain great profits by both of the two processes, and from the view of economics, the

  13. A Cabin Air Separator for EVA Oxygen

    Science.gov (United States)

    Graf, John C.

    2011-01-01

    Presently, the Extra-Vehicular Activities (EVAs) conducted from the Quest Joint Airlock on the International Space Station use high pressure, high purity oxygen that is delivered to the Space Station by the Space Shuttle. When the Space Shuttle retires, a new method of delivering high pressure, high purity oxygen to the High Pressure Gas Tanks (HPGTs) is needed. One method is to use a cabin air separator to sweep oxygen from the cabin air, generate a low pressure/high purity oxygen stream, and compress the oxygen with a multistage mechanical compressor. A main advantage to this type of system is that the existing low pressure oxygen supply infrastructure can be used as the source of cabin oxygen. ISS has two water electrolysis systems that deliver low pressure oxygen to the cabin, as well as chlorate candles and compressed gas tanks on cargo vehicles. Each of these systems can feed low pressure oxygen into the cabin, and any low pressure oxygen source can be used as an on-board source of oxygen. Three different oxygen separator systems were evaluated, and a two stage Pressure Swing Adsorption system was selected for reasons of technical maturity. Two different compressor designs were subjected to long term testing, and the compressor with better life performance and more favorable oxygen safety characteristics was selected. These technologies have been used as the basis of a design for a flight system located in Equipment Lock, and taken to Preliminary Design Review level of maturity. This paper describes the Cabin Air Separator for EVA Oxygen (CASEO) concept, describes the separator and compressor technology trades, highlights key technology risks, and describes the flight hardware concept as presented at Preliminary Design Review (PDR)

  14. Simulation and modeling of the processes in the isotopic exchange column of a cryogenic pilot plant for tritium separation

    International Nuclear Information System (INIS)

    Retevoi, Carmen Maria; Stefan, Liviu; Balteanu, Ovidiu; Stefan, Iulia; Bornea, Anisia; Salamon, Peter

    2002-01-01

    The technology developed at the Institute of Cryogenics and Isotope Separations is based on catalytic isotope exchange between water and hydrogen gas both carrying various isotopes of hydrogen: normal hydrogen, deuterium, and tritium. This isotope exchange is followed by cryogenic distillation separating the various isotopes of hydrogen gas. The detritiation process was simulated using as working fluids water with a small content of deuterium and a gaseous mixture of hydrogen and deuterium. The mathematical model and the measured parameters permitted to compute the speed constants of the isotopic exchange by distillation and catalytic action, respectively, for deuterium and tritium. Also for monitoring the isotopic exchange column careful control of the temperature is necessary. To ensure that we made an automation system with data acquisition and control which provides all the data for analysis. (authors)

  15. Technology of oxygen production in the membranecryogenic air separation system for a 600 MW oxy-type pulverized bed boiler

    Science.gov (United States)

    Berdowska, Sylwia; Skorek-Osikowska, Anna

    2012-09-01

    In this paper the results of the thermodynamic analysis of the oxy-combustion type pulverized bed boiler integrated with a hybrid, membrane- cryogenic oxygen separation installation are presented. For the calculations a 600 MW boiler with live steam parameters at 31.1 MPa /654.9 oC and reheated steam at 6.15 MPa/672.4 oC was chosen. In this paper the hybrid membrane-cryogenic technology as oxygen production unit for pulverized bed boiler was proposed. Such an installation consists of a membrane module and two cryogenic distillation columns. Models of these installations were built in the Aspen software. The energy intensity of the oxygen production process in the hybrid system was compared with the cryogenic technology. The analysis of the influence of membrane surface area on the energy intensity of the process of air separation as well as the influence of oxygen concentration at the inlet to the cryogenic installation on the energy intensity of a hybrid unit was performed.

  16. Thermodynamic analysis of a hard coal oxyfuel power plant with high temperature three-end membrane for air separation

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, R. [Forschungszentrum Juelich, Juelich (Germany)

    2011-05-15

    Cryogenic air separation is a mature state-of-the-art technology to produce the high tonnage of oxygen required for oxyfuel power plants. However, this technology represents an important burden to the net plant efficiency (losses between 8% and 12%-points). High temperature ceramic membranes, associated with significantly lower efficiency losses, are foreseen as the best candidate to challenge cryogenics for high tonnage oxygen production. Although this technology is still at an embryonic state of development, the three-end membrane operation mode offers important technical advantages over the four-end mode that can be a good technological option in the near future. This paper analyzes the influence of both, the cryogenic and three-end high temperature membrane air separation units on the net oxyfuel plant efficiency considering the same boundary conditions and different equivalent thermal integrations. Moreover, the oxygen permeation rate, heat recovery, and required membrane area are also evaluated at different membrane operating conditions. Using a state-of-the-art perovskite BSCF as membrane material, net plant efficiency losses up to 5.1%-points can be reached requiring around 400,000 m{sup 2} of membrane area. Applying this membrane-based technology it is possible to improve the oxyfuel plant efficiency over 4%-points (compared with cryogenic technology); however, it is still necessary to develop new ceramic materials to reduce the amount of membrane area required.

  17. Future direction of air separation design for gasification, IGCC and alternative fuel projects

    Energy Technology Data Exchange (ETDEWEB)

    Allam, R.J.; Castel-Smith, H.; Smith, A.R.; Sorensen, J.C. [Air Products and Chemicals, Inc. (United States)

    1998-12-31

    Low pressure and elevated pressure cryogenic air separation units (ASUs) have successfully been applied to support gasification projects worldwide. ASU technology has ranged from traditional, low pressure, standalone facilities supplying products only to the gasification island, to highly integrated, elevated pressure facilities that obtain air feed from and inject excess nitrogen into a gas turbine. The near-term direction of ASUs is increased single unit capacity, process optimizations that will benefit integration with the new generation of higher pressure ratio and increased capacity gas turbines, and overall ASU facility optimization for the specialized requirements of shipboard units for remote gas conversion processes. Longer-term development is proceeding on compression and driver requirements to support cost improvements for 10,000 to 20,000 merit ton per day oxygen facilities for onshore or platform-based gas conversion processes. 8 refs., 4 figs., 1 tab.

  18. Future direction of air separation design for gasification, IGCC and alternative fuel projects

    Energy Technology Data Exchange (ETDEWEB)

    Allam, R.J.; Castel-Smith, H.; Smith, A.R.; Sorensen, J.C. (Air Products and Chemicals, Inc. (United States))

    1998-01-01

    Low pressure and elevated pressure cryogenic air separation units (ASUs) have successfully been applied to support gasification projects worldwide. ASU technology has ranged from traditional, low pressure, standalone facilities supplying products only to the gasification island, to highly integrated, elevated pressure facilities that obtain air feed from and inject excess nitrogen into a gas turbine. The near-term direction of ASUs is increased single unit capacity, process optimizations that will benefit integration with the new generation of higher pressure ratio and increased capacity gas turbines, and overall ASU facility optimization for the specialized requirements of shipboard units for remote gas conversion processes. Longer-term development is proceeding on compression and driver requirements to support cost improvements for 10,000 to 20,000 merit ton per day oxygen facilities for onshore or platform-based gas conversion processes. 8 refs., 4 figs., 1 tab.

  19. The influence of selected parameters on the efficiency and economic charactersistics of the oxy-type coal unit with a membrane-cryogenic oxygen separator

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2016-03-01

    Full Text Available In this paper a 600 MW oxy-type coal unit with a pulverized bed boiler and a membrane-cryogenic oxygen separator and carbon capture installation was analyzed. A membrane-cryogenic oxygen separation installation consists of a membrane module and two cryogenic distillation columns. In this system oxygen is produced with the purity equal to 95%. Installation of carbon capture was based on the physical separation method and allows to reduce the CO2 emission by 90%. In this work the influence of the main parameter of the membrane process – the selectivity coefficient, on the efficiency of the coal unit was presented. The economic analysis with the use of the break-even point method was carried out. The economic calculations were realized in view of the break-even price of electricity depending on a coal unit availability.

  20. The influence of selected parameters on the efficiency and economic charactersistics of the oxy-type coal unit with a membrane-cryogenic oxygen separator

    Science.gov (United States)

    Kotowicz, Janusz; Berdowska, Sylwia

    2016-03-01

    In this paper a 600 MW oxy-type coal unit with a pulverized bed boiler and a membrane-cryogenic oxygen separator and carbon capture installation was analyzed. A membrane-cryogenic oxygen separation installation consists of a membrane module and two cryogenic distillation columns. In this system oxygen is produced with the purity equal to 95%. Installation of carbon capture was based on the physical separation method and allows to reduce the CO2 emission by 90%. In this work the influence of the main parameter of the membrane process - the selectivity coefficient, on the efficiency of the coal unit was presented. The economic analysis with the use of the break-even point method was carried out. The economic calculations were realized in view of the break-even price of electricity depending on a coal unit availability.

  1. Separation of gaseous air pollutants using membrane contactors

    Science.gov (United States)

    Sverak, T.; Bulejko, P.; Ostrezi, J.; Kristof, O.; Kalivoda, J.; Kejik, P.; Mayerova, K.; Adamcik, M.

    2017-10-01

    This work deals with the separation of CO2 gaseous pollutant from gas mixtures to a water solution using the laboratory contactor. The laboratory set process parameters showed the rate of carbon dioxide transition through the interface in a so promising level the contactor separators can be considered as a very promising pathway to reduce the content of this greenhouse gas from the air.

  2. AIR SEPARATION BY PRESSURE SWING ADSORPTION USING SUPERIOR ADSORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    Ralph T. Yang

    2001-08-31

    Li-X zeolite (Si/Al = 1.0) is currently the best sorbent for use in the separation of air by adsorption processes. In particular, pressure swing adsorption (PSA) using zeolite sorbents is being increasingly used for air separation. Silver is also known to strongly affect the adsorptive properties of zeolites; and it is known that thermal vacuum dehydration of silver zeolites leads to the formation of silver clusters within the zeolite. In this work we have synthesized type X zeolites containing Ag and also varying mixtures of Li and Ag. In this project, we developed the Ag-containing zeolite as the best sorbent for air separation. We have also studied Co-ligand compounds as oxygen-selective sorbents. Syntheses, structural characterization and adsorption properties have been performed on all sorbents. The results are described in detail in 5 chapters.

  3. Evaluation of the cryogenic helium recovery process from natural gas based on flash separation by advanced exergy cost method - Linde modified process

    Science.gov (United States)

    Ansarinasab, Hojat; Mehrpooya, Mehdi; Parivazh, Mohammad Mehdi

    2017-10-01

    In this paper, exergy cost analysis method is used to evaluate a new cryogenic Helium recovery process from natural gas based on flash separation. Also advanced exergoeconomic analysis was made to determine the amount of avoidable exergy destruction cost of the process component. This proposed process can extract Helium from a feed gas stream with better efficiency than other existing processes. The results indicate that according to the avoidable endogenous exergy destruction cost C-4 (287.2/hr), C-5 (257.3/hr) and C-6 (181.6/hr) compressors should be modified first, respectively. According to the endogenous investment and exergy destruction cost, the interactions between the process components are not strong. In compressors, a high proportion of the cost of exergy destruction is avoidable while in these components, investment costs are unavoidable. In heat exchangers and air coolers, a high proportion of the exergy destruction cost is unavoidable while in these components, investment costs are avoidable. Finally, three different strategies are suggested to improve performance of each component, and the sensitivity of exergoeconomic factor and cost of exergy destruction to operating variables of the process are studied.

  4. Cryogenic Propulsion

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic propellants can enhance NASA missions. This project will establish that modern cryogenic storage technologies will allow the use of cryogenic propulsion...

  5. Krypton separation from ambient air for application in collinear fast beam laser spectroscopy.

    Science.gov (United States)

    Mohamed, Tarek; Strohaber, James; Nava, Ricardo; Kolomenskii, Alexandre; Thonnard, Norbert; Schuessler, Hans A

    2012-07-01

    A portable apparatus for the separation of krypton from environmental air samples was tested. The apparatus is based on the cryogenic trapping of gases at liquid nitrogen temperature followed by controlled releases at higher temperatures. The setup consists of a liquid nitrogen trap for the removal of H(2)O and CO(2), followed by charcoal-filled coils that sequentially collect and release krypton and other gases providing four stages of gas chromatography to achieve separation and purification of krypton from mainly N(2), O(2), and Ar. Residual reactive gases remaining after the final stage of chromatography are removed with a hot Ti sponge getter. A thermal conductivity detector is used to monitor the characteristic elution times of the various components of condensed gases in the traps during step-wise warming of the traps from liquid nitrogen temperatures to 0 °C, and then to 100 °C. This allows optimizing the switching times of the valves between the stages of gas chromatography so that mainly krypton is selected and loaded to the next stage while exhausting the other gases using a He carrier. A krypton separation efficiency of ~80 % was determined using a quadrupole mass spectrometer.

  6. Cryogenic distribution for radioactive secondary beam fragment separator (Super-FRS) of FAIR

    CERN Document Server

    Xiang, Y; Kauschke, M; Moritz, G; Quack, H

    2009-01-01

    We present the flow schemes for the superconducting dipoles, the superconducting multiplets (quadrupoles, hexapoles, octupoles and steering dipoles) and the corresponding feedboxes of the Super-FRS in the FAIR project. The system layout of the helium distribution for the whole separator including the three branches of the Super-FRS and the experiment caves is discussed as well. Based on the maximum cooling capacity specified for the refrigerator, the cold-down time of the multiplets which are characteristic of large cold mass (up to 37 Tons for each) has been investigated. The issues as operation conditions, quench protection and safety relief are also discussed.

  7. A versatile, refrigerant- and cryogen-free cryofocusing–thermodesorption unit for preconcentration of traces gases in air

    Directory of Open Access Journals (Sweden)

    F. Obersteiner

    2016-10-01

    Full Text Available We present a compact and versatile cryofocusing–thermodesorption unit, which we developed for quantitative analysis of halogenated trace gases in ambient air. Possible applications include aircraft-based in situ measurements, in situ monitoring and laboratory operation for the analysis of flask samples. Analytes are trapped on adsorptive material cooled by a Stirling cooler to low temperatures (e.g. −80 °C and subsequently desorbed by rapid heating of the adsorptive material (e.g. +200 °C. The set-up involves neither the exchange of adsorption tubes nor any further condensation or refocusing steps. No moving parts are used that would require vacuum insulation. This allows for a simple and robust design. Reliable operation is ensured by the Stirling cooler, which neither contains a liquid refrigerant nor requires refilling a cryogen. At the same time, it allows for significantly lower adsorption temperatures compared to commonly used Peltier elements. We use gas chromatography – mass spectrometry (GC–MS for separation and detection of the preconcentrated analytes after splitless injection. A substance boiling point range of approximately −80 to +150 °C and a substance mixing ratio range of less than 1 ppt (pmol mol−1 to more than 500 ppt in preconcentrated sample volumes of 0.1 to 10 L of ambient air is covered, depending on the application and its analytical demands. We present the instrumental design of the preconcentration unit and demonstrate capabilities and performance through the examination of analyte breakthrough during adsorption, repeatability of desorption and analyte residues in blank tests. Examples of application are taken from the analysis of flask samples collected at Mace Head Atmospheric Research Station in Ireland using our laboratory GC–MS instruments and by data obtained during a research flight with our in situ aircraft instrument GhOST-MS (Gas chromatograph for the Observation of Tracers

  8. Cryogenics; Criogenia

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez R, C.; Jimenez D, J.; Cejudo A, J.; Hernandez M, V. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  9. Fundamental Study on the Separation of Methane Isotopomer by Cryogenic Distillation

    Energy Technology Data Exchange (ETDEWEB)

    Song, K.M.; Lee, S.K.; Kim, K.S.; Kim, W.S. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    For the purpose of {sup 13}CH{sub 4} production from LNG, the state art of the application of C-13 and the marketing research were investigated. The theoretical number of stages and the number of distillation column required for the separation of {sup 13}CH{sub 4} from {sup 12}CH{sub 4}/{sup 13}CH{sub 4} mixture containing 1%-{sup 13}CH{sub 4} are calculated. Assuming the ideal liquid mixture of {sup 12}CH{sub 4} and {sup 13}CH{sub 4}, the theoretical number of stages are calculated the minimum theorical number of stages are calculated by Smoker equation and FUG method. Using the correlation between the minimum theoretical number of stages and the optimum theoretical number of stages, the number of distillation groups is obtained. From the simulation, we postulate that 6 groups of distillation tower having 600 stages per one column are needed for the production of 90%-{sup 13}CH{sub 4}. (author). 18 refs., 33 figs., 9 tabs.

  10. Volatile organic carbon/air separation test using gas membranes

    International Nuclear Information System (INIS)

    King, C.V.; Kaschemekat, J.

    1993-08-01

    An estimated 900 metric tons of carbon tetrachloride were discharged to soil columns during the Plutonium Finishing Plant Operations at the Hanford Site. The largest percentage of this volatile organic compound was found in the vadose region of the 200 West Area. Using a Vacuum Extraction System, the volatile organic compound was drawn from the soil in an air mixture at a concentration of about 1,000 parts per million. The volatile organic compounds were absorbed from the air stream using granulated activated carbon canisters. A gas membrane separation system, developed by Membrane Technology and Research, Inc., was tested at the Vacuum Extraction System site to determine if the volatile organic compound load on the granulated activated carbon could be reduced. The Vacuum Extraction System condensed most of the volatile organic compound into liquid carbon tetrachloride and vented the residual gas stream into the granulated activated carbon. This system reduced the cost of operation about $5/kilogram of volatile organic compound removed

  11. Rapid separation method for actinides in emergency air filter samples.

    Science.gov (United States)

    Maxwell, Sherrod L; Culligan, Brian K; Noyes, Gary W

    2010-12-01

    A new rapid method for the determination of actinides and strontium in air filter samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations. The actinides and strontium in air filter method utilizes a rapid acid digestion method and a streamlined column separation process with stacked TEVA, TRU and Sr Resin cartridges. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha emitters are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The purified (90)Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency air filter samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinide and (90)Sr in air filter results were reported in less than 4 h with excellent quality. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Air separation of heavy metal contaminants from soil

    International Nuclear Information System (INIS)

    Nelson, M.E.; Harper, M.J.; Buckon, A.D.

    1995-01-01

    Several heavy metal separation techniques are currently being developed for soil remediation at various Department of Defense and Department of Energy (DOE) Facilities. The majority of these techniques involve a wet process using water, pH modifiers or other compounds. The US Naval Academy (USNA) has developed a dry process for heavy metal separation. The process uses air classification technology to concentrate the metal contaminant into a fraction of the soil. The advantages of this dry process are that it creates no contaminated byproduct and uses commercially available technology. The USNA process is based on using a Gayco-Reliance air classifier. Tests have been conducted with the system at the Naval Academy and the University of Nevada-Reno (UNR). The USNA tests used soil from the Nevada Test Site mixed with bismuth at a concentration of 500--1,000 ppm. The UNR tests used soil from four DOE sites mixed with uranium oxides and plutonium at an activity level of 100--700 pCi per gram. Concentration of activities and volume reduction percentages are presented for the various soils and contaminants tested

  13. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    Science.gov (United States)

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  14. The optimization air separation plants for combined cycle MHD-power plant applications

    Science.gov (United States)

    Juhasz, A. J.; Springmann, H.; Greenberg, R.

    1980-01-01

    Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.

  15. Heat flux to the helium cryogenic system elements in the case of incidental vacuum vessel ventilation with atmospheric air

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The selection process for size in safety equipment for cold vessels or process pipes in cryogenic systems should take into consideration the incidental ventilation of the vacuum vessel with atmospheric air. In this case, a significant heat input toward the cold elements of the system can be expected. A number of experimental investigations have been done for the elements at liquid helium temperature which have been covered with 10 layers of MLI. The typical values of the heat flux were measured in a range of 3.7 to 5.0 kW/m2 of the element surface. The helium temperature parts are typically surrounded by thermal shields that are kept in a temperature range of 50-80K. On the external side, the thermal shields are covered with 30-40 layers of MLI while on the internal side, the shields are bare. The theoretical calculations of heat flux to the thermal shield, with respect to the possibility of air condensation and freezing on the bare side of the thermal shield, show that the heat flux to the thermal shield can...

  16. Back-trajectory modeling of high time-resolution air measurement data to separate nearby sources

    Science.gov (United States)

    Strategies to isolate air pollution contributions from sources is of interest as voluntary or regulatory measures are undertaken to reduce air pollution. When different sources are located in close proximity to one another and have similar emissions, separating source emissions ...

  17. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  18. Current experimental work related to a system alternative to that using the cryogenic separation of hydrogen isotopes

    International Nuclear Information System (INIS)

    Pierini, G.; Spelta, B.; Rizzello, C.

    1985-01-01

    The feasibility study of an alternative exhaust plasma process based mainly on the handling of tritiated waters had shown that it could be competitive as some units used in the isotopic separation system (ISS) could attain the performance required in the conceptual design. In particular, the two cells operating in the ISS should have confirmed, first the high separation factor between protium and tritium found in the literature, second the possibility of working at very low liquid (electrolyte) inventory or, in other words, tritium inventory. Moreover, research has been undertaken in order to investigate the preparation and charcterization of some types of separators which should be resistent to the beta radiation of tritiated water

  19. A dye laser-cryogenic helium jet system and recoil-mass-separator for studies of nuclei far from stability

    CERN Document Server

    Clark, D L; Cormier, T M; Hermann, G; Lin, B S; Martin, A G; Nicolis, N G; Stwertka, P M

    1981-01-01

    Most of the recent applications of lasers to on-line measurements of hyperfine interactions and isotope shifts have been made using high energy proton beams to produce large fluxes of a wide range of unstable atoms. On-line mass separators select the atomic species of interest. At NSRL the authors have in the final stages of development an on-line laser spectroscopy system for the upgraded MP tandem. The system is based on the use of more selective heavy-ion reactions so that mass separation is not usually required, and very sensitive detection techniques so that measurements are possible with small fluxes of atoms. A recoil mass separator is also near completion and will be used for a variety of studies of nuclei far from stability, including providing, when necessary, mass separated reaction products for study using the laser system. The heavy ion beam energy available from the upgraded MP allows production of neutron deficient nuclei by means of fusion-evaporation reactions that is limited only by the onse...

  20. Cryogenic electronics

    Energy Technology Data Exchange (ETDEWEB)

    Fourches, N.; Abbon, P.; Delagnes, E.; Le Meur, L.P.

    1995-04-01

    This study presents the cryogenic electronics, which is used in high energy physics with appropriate device. It discuss their ability to hardening against ionization radiation and neutrons. Some partial results on the operation of microelectronics devices at cryogenic temperature are given. (TEC). 33 refs., 13 figs.

  1. Equipment to separate liquid droplets from the cooling air stream of a liquid cooling tower

    International Nuclear Information System (INIS)

    Thompson, S.E.; Schwinn, J.M.

    1977-01-01

    In order to separate off liquid droplets from the air stream of a cooling tower, one uses separator blades that are secured to the supporting construction. An improvement on this is proposed to make the repairs easier. According to the invention, the separator blades should be fabricated from springy material with self-supporting strength and can be fitted onto the supporting construction by means of slits and notches. (RW) [de

  2. RHIC cryogenics

    Energy Technology Data Exchange (ETDEWEB)

    Iarocci, M.A. E-mail: iarocci@bnl.gov; Brown, D.; Sondericker, J.; Wu, K.C.; Benson, J.; Farah, Y.; Lac, C.; Morgillo, A.; Nicoletti, A.; Quimby, E.; Rank, J.; Rehak, M.; Werner, A

    2003-03-01

    An integrated helium cryogenic system was designed with the specific performance goal of cooling and refrigerating the cryogenic magnets to below their nominal operating temperature. These magnets make up the steering and focusing elements for the Relativistic Heavy Ion Collider (RHIC). In addition to meeting the accelerator demands, reliability, flexibility, safety, and ease of operation were key considerations during the design phase of the project. The refrigerator, with a capacity of 25 kW at about 4 K, was originally designed to match the load for the Colliding Beam Accelerator Project. The existing refrigerator, along with its complimentary warm compressor system was reconfigured slightly to meet the cooling process cycle design for RHIC. The original VAX based process control system was also adapted for RHIC, and later expanded upon to integrate a new programmable logic controller based ring resident control system, hence forming a common system to monitor and control all cryogenic components.

  3. Pilot and Controller Evaluations of Separation Function Allocation in Air Traffic Management

    Science.gov (United States)

    Wing, David; Prevot, Thomas; Morey, Susan; Lewis, Timothy; Martin, Lynne; Johnson, Sally; Cabrall, Christopher; Como, Sean; Homola, Jeffrey; Sheth-Chandra, Manasi; hide

    2013-01-01

    Two human-in-the-loop simulation experiments were conducted in coordinated fashion to investigate the allocation of separation assurance functions between ground and air and between humans and automation. The experiments modeled a mixed-operations concept in which aircraft receiving ground-based separation services shared the airspace with aircraft providing their own separation service (i.e., self-separation). Ground-based separation was provided by air traffic controllers without automation tools, with tools, or by ground-based automation with controllers in a managing role. Airborne self-separation was provided by airline pilots using self-separation automation enabled by airborne surveillance technology. The two experiments, one pilot-focused and the other controller-focused, addressed selected key issues of mixed operations, assuming the starting point of current-day operations and modeling an emergence of NextGen technologies and procedures. In the controller-focused experiment, the impact of mixed operations on controller performance was assessed at four stages of NextGen implementation. In the pilot-focused experiment, the limits to which pilots with automation tools could take full responsibility for separation from ground-controlled aircraft were tested. Results indicate that the presence of self-separating aircraft had little impact on the controllers' ability to provide separation services for ground-controlled aircraft. Overall performance was best in the most automated environment in which all aircraft were data communications equipped, ground-based separation was highly automated, and self-separating aircraft had access to trajectory intent information for all aircraft. In this environment, safe, efficient, and highly acceptable operations could be achieved for twice today's peak airspace throughput. In less automated environments, reduced trajectory intent exchange and manual air traffic control limited the safely achievable airspace throughput and

  4. Determination of the separation efficiencies of a single-stage cryogenic distillation setup to remove krypton out of xenon by using a Kr-83m tracer method

    Czech Academy of Sciences Publication Activity Database

    Rosendahl, S.; Brown, E.; Cristescu, I.; Fieguth, A.; Huhmann, C.; Lebeda, Ondřej; Murra, M.; Weinheimer, C.

    2015-01-01

    Roč. 86, č. 11 (2015), s. 115104 ISSN 0034-6748 R&D Projects: GA ČR(CZ) GAP203/12/1896; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : Kr-83 * cryogenic destillation * detectors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.336, year: 2015

  5. A Belief-Based Model of Air Traffic Controllers Performing Separation Assurance

    Science.gov (United States)

    Landry, S.J.

    2009-01-01

    A model of an air traffic controller performing a separation assurance task was produced. The model was designed to be simple to use and deploy in a simulator, but still provide realistic behavior. The model is based upon an evaluation of the safety function of the controller for separation assurance, and utilizes fast and frugal heuristics and belief networks to establish a knowledge set for the controller model. Based on this knowledge set, the controller acts to keep aircraft separated. Validation results are provided to demonstrate the model s performance.

  6. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.; Prahl, D.

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are (1) the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and (2) the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  7. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A. [ABT Systems, LLC, Annville, PA (United States); Prahl, D. [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  8. Integration optimisation of elevated pressure air separation unit with gas turbine in an IGCC power plant

    International Nuclear Information System (INIS)

    Han, Long; Deng, Guangyi; Li, Zheng; Wang, Qinhui; Ileleji, Klein E.

    2017-01-01

    Highlights: • IGCC thermodynamic model was setup carefully. • Simulations focus on integration between an elevated pressure ASU with gas turbine. • Different recommended solutions from those of low pressure ASUs are figured out. • Full N 2 injection and 80% air extraction was suggested as the optimum integration. - Abstract: The integration optimisation between an elevated pressure air separation unit (EP-ASU) and gas turbine is beneficial to promote net efficiency of an integrated gasification combined cycle (IGCC) power plant. This study sets up the thermodynamic model for a 400 MW plant specially coupled with an EP-ASU, aiming to examine system performances under different integrations and acquire the optimum solution. Influences of air extraction rate at conditions of without, partial and full N 2 injection, as well as the effects of N 2 injection rate when adopting separate ASU, partial and full integrated ASU were both analysed. Special attention has been paid to performance differences between utilising an EP-ASU and a low pressure unit. Results indicated that integration solution with a separate EP-ASU or without N 2 injection would not be reasonable. Among various recommended solutions for different integration conditions, N 2 injection rate increased with the growth of air extraction rate. The integration with an air extraction rate of 80% and full N 2 injection was suggested as the optimum solution. It is concluded that the optimum integration solution when adopting an EP-ASU is different from that using a low pressure one.

  9. Maximized Effective Energy Output of Contact-Separation-Triggered Triboelectric Nanogenerators as Limited by Air Breakdown

    KAUST Repository

    Zi, Yunlong

    2017-05-02

    Recent progress in triboelectric nanogenerators (TENGs) has demonstrated their promising potential as a high-efficiency mechanical energy harvesting technology, and plenty of effort has been devoted to improving the power output by maximizing the triboelectric surface charge density. However, due to high-voltage air breakdown, most of the enhanced surface charge density brought by material/surface optimization or external ion injection is not retainable or usable for electricity generation during the operation of contact-separation-triggered TENGs. Here, the existence of the air breakdown effect in a contact-separation mode TENG with a low threshold surface charge density of ≈40–50 µC m−2 is first validated under the high impedance external load, and then followed by the theoretical study of the maximized effective energy output as limited by air breakdown for contact-separation-triggered TENGs. The effects of air pressure and gas composition are also studied and propose promising solutions for reducing the air breakdown effect. This research provides a crucial fundamental study for TENG technology and its further development and applications.

  10. Determination of technical and economic parameters of an ionic transport membrane air separation unit working in a supercritical power plant

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2016-09-01

    Full Text Available In this paper an air separation unit was analyzed. The unit consisted of: an ionic transport membrane contained in a four-end type module, an air compressor, an expander fed by gas that remains after oxygen separation and heat exchangers which heat the air and recirculated flue gas to the membrane operating temperature (850 °C. The air separation unit works in a power plant with electrical power equal to 600 MW. This power plant additionally consists of: an oxy-type pulverized-fuel boiler, a steam turbine unit and a carbon dioxide capture unit. Life steam parameters are 30 MPa/650 °C and reheated steam parameters are 6 MPa/670 °C. The listed units were analyzed. For constant electrical power of the power plant technical parameters of the air separation unit for two oxygen recovery rate (65% and 95% were determined. One of such parameters is ionic membrane surface area. In this paper the formulated equation is presented. The remaining technical parameters of the air separation unit are, among others: heat exchange surface area, power of the air compressor, power of the expander and auxiliary power. Using the listed quantities, the economic parameters, such as costs of air separation unit and of individual components were determined. These quantities allowed to determine investment costs of construction of the air separation unit. In addition, they were compared with investment costs for the entire oxy-type power plant.

  11. An Eulerian-Eulerian CFD Simulation of Air-Water Flow in a Pipe Separator

    Directory of Open Access Journals (Sweden)

    E.A. Afolabi

    2014-06-01

    Full Text Available This paper presents a three dimensional Computational Fluid Dynamics (CFD of air-water flow using Eulerian –Eulerian multiphase model and RSM mixture turbulence model to investigate its hydrodynamic flow behaviour in a 30 mm pipe separator. The simulated results are then compared with the stereoscopic PIV measurements at different axial positions. The comparison shows that the velocity distribution can be predicted with high accuracy using CFD. The numerical velocity profiles are also found to be in good qualitative agreement with the experimental measurements. However, there were some discrepancies between the CFD results and the SPIV measurements at some axial positions away from the inlet section. Therefore, the CFD model could provide good physical understanding on the hydrodynamics flow behaviour for air-water in a pipe separator.

  12. Determination of technical and economic parameters of an ionic transport membrane air separation unit working in a supercritical power plant

    OpenAIRE

    Kotowicz Janusz; Michalski Sebastian; Balicki Adrian

    2016-01-01

    In this paper an air separation unit was analyzed. The unit consisted of: an ionic transport membrane contained in a four-end type module, an air compressor, an expander fed by gas that remains after oxygen separation and heat exchangers which heat the air and recirculated flue gas to the membrane operating temperature (850 °C). The air separation unit works in a power plant with electrical power equal to 600 MW. This power plant additionally consists of: an oxy-type pulverized-fuel boiler, a...

  13. Usage of air jigging for multi-component separation of construction and demolition waste.

    Science.gov (United States)

    Ambrós, Weslei Monteiro; Sampaio, Carlos Hoffmann; Cazacliu, Bogdan Grigore; Miltzarek, Gerson Luis; Miranda, Leonardo R

    2017-02-01

    The use of air jigging for performing multi-component separation in the treatment of mixed construction and demolition waste was studied. Sorting tests were carried out with mixtures of equal bulk volume of concrete and brick in which fixed quantities of unwanted materials - gypsum, wood and paper - were added. Experimental results have demonstrated the possibility to use air jigging to carry out both the removal of low-density contaminants and the concrete concentration in only one process step. In relation to the removal of contaminants only, the overall performance of jigging process can be comparable with that of commercial air classifiers and automatic sorting systems. Also, the initial content of contaminants seems does not have a significant effect on the separation extent. These results are of particular importance for recycling plants processing as they represent an alternative to optimize the use of air jigs. Further investigation is needed in order to evaluate the practical feasibility of such method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Cryogenic photodetectors

    CERN Document Server

    Chardin, G

    2000-01-01

    Some of the most significant developments in cryogenic photodetectors are presented. In particular, the main characteristics of microbolometers involving Transition Edge- and NTD-sensors and offering resolutions of a few eV in the keV range, superconducting tunnel junction detectors with resolutions of the order of 10 eV or offering position sensitivity, and infrared bolometers with recent developments towards matrix detectors are discussed. Some of the recent achievements using large mass bolometers for gamma and neutron discriminating detectors, and future prospects of single photon detection in the far infrared using Single Electron Transistor devices are also presented.

  15. Superconducting magnets and cryogenics: proceedings

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1986-01-01

    Separate abstracts were prepared for 70 papers in these workshop proceeedings. Topics covered include: superconducting accelerator magnet research and development; superconductor development; electrical measurements; magnet design and construction methods; field correction methods; power schemes and quench protection; cryogenic systems; and magnet measurements

  16. Analytical method of Kr-85 determination, using cryogenic concentration and separation and liquid scintillation counting; Desarrollo del metodo de concentracion y se paracion criogenica cromatografica y medida radiactiva por centelleo liquido de Kr-85

    Energy Technology Data Exchange (ETDEWEB)

    Heras, M. C.; Perez, M. M.; Grau, A.

    1983-07-01

    The method used in the Laboratory of the JEN for the determination of Kr-85 levels in gaseous effluents of nuclear power and in the atmosphere is described. Samples of air, collected in metallic cylinders, are introduced into a gas-solid chromatographic separation system which resolves Kr from the other air components. The separated Kr ia dissolved in a toluene based scintillation cocktail, and the Kr-85 content is determined by liquid scintillation counting. (Author)

  17. Configuration of Air Microfluidic Chip for Separating and Grading Respirable Dust

    Science.gov (United States)

    Zhu, Xiaofeng; Jia, Yiting; Sun, Jianhai; Zhao, Peiyue; Liu, Jinhua; Zhang, Yanni; Ning, Zhanwu

    2018-03-01

    Particulate matter (PM) is a category of airborne pollutants, and fine particles that have a diameter of 2.5 μm (PM2.5) or smaller are especially damaging to human health because of their ability to penetrate deep into our respiratory system, Therefore, Monitoring of PM is very important. In this work, an air micro- fluidic PM sensor based on MEMS was proposed, and numerical model of the sensor was simulated accurately. The sensor was able to separate particles according to their sizes, and then transports and deposits the selected particles using thermophoretic precipitation onto the surface of a microfabricated mass-sensitive film bulk acoustic resonator (FBAR), precisely weighing and providing the concentration of PM. The PM sensor has double stage separation function, and the primary separator can separate the particles with size of less 10 μm from the particles, and the secondary can separate particles with size of less 2.5 μm from the particles.

  18. Pilot scale fiber separation from distillers dried grains with solubles (DDGS) using sieving and air classification.

    Science.gov (United States)

    Srinivasan, Radhakrishnan; To, Filip; Columbus, Eugene

    2009-07-01

    Distillers dried grains with solubles (DDGS), the coproduct of fuel ethanol production from cereal grains like corn, is mainly used as cattle feed and is used at low inclusion levels in poultry and swine diets because of high fiber content. Elusieve process, the combination of sieving and air classification (elutriation), was developed in laboratory scale to separate fiber from DDGS to result in a low fiber product which would be more suitable for poultry and swine. In this pilot scale study, DDGS was sieved at a rate of 0.25 kg/s (1 ton/h) into four sieve fractions using a sifter and the three largest sieve fractions were air classified using aspirators to separate fiber on a continuous basis. Results were similar to laboratory scale. Nearly 12.4% by weight of DDGS was separated as Fiber product and resulted in two high protein products that had low fiber contents. Payback period for the Elusieve process in an existing dry grind plant processing corn at the rate of 2030 metric tonnes/day (80,000 bushels/day) would be 1.1 yr.

  19. Thermodynamic properties of cryogenic fluids

    CERN Document Server

    Leachman, Jacob; Lemmon, Eric; Penoncello, Steven

    2017-01-01

    This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...

  20. Development of a Smart Release Algorithm for Mid-Air Separation of Parachute Test Articles

    Science.gov (United States)

    Moore, James W.

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) project is currently developing an autonomous method to separate a capsule-shaped parachute test vehicle from an air-drop platform for use in the test program to develop and validate the parachute system for the Orion spacecraft. The CPAS project seeks to perform air-drop tests of an Orion-like boilerplate capsule. Delivery of the boilerplate capsule to the test condition has proven to be a critical and complicated task. In the current concept, the boilerplate vehicle is extracted from an aircraft on top of a Type V pallet and then separated from the pallet in mid-air. The attitude of the vehicles at separation is critical to avoiding re-contact and successfully deploying the boilerplate into a heatshield-down orientation. Neither the pallet nor the boilerplate has an active control system. However, the attitude of the mated vehicle as a function of time is somewhat predictable. CPAS engineers have designed an avionics system to monitor the attitude of the mated vehicle as it is extracted from the aircraft and command a release when the desired conditions are met. The algorithm includes contingency capabilities designed to release the test vehicle before undesirable orientations occur. The algorithm was verified with simulation and ground testing. The pre-flight development and testing is discussed and limitations of ground testing are noted. The CPAS project performed a series of three drop tests as a proof-of-concept of the release technique. These tests helped to refine the attitude instrumentation and software algorithm to be used on future tests. The drop tests are described in detail and the evolution of the release system with each test is described.

  1. Air-cathode structure optimization in separator-coupled microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan

    2011-12-01

    Microbial fuel cells (MFC) with 30% wet-proofed air cathodes have previously been optimized to have 4 diffusion layers (DLs) in order to limit oxygen transfer into the anode chamber and optimize performance. Newer MFC designs that allow close electrode spacing have a separator that can also reduce oxygen transfer into the anode chamber, and there are many types of carbon wet-proofed materials available. Additional analysis of conditions that optimize performance is therefore needed for separator-coupled MFCs in terms of the number of DLs and the percent of wet proofing used for the cathode. The number of DLs on a 50% wet-proofed carbon cloth cathode significantly affected MFC performance, with the maximum power density decreasing from 1427 to 855mW/m 2 for 1-4 DLs. A commonly used cathode (30% wet-proofed, 4 DLs) produced a maximum power density (988mW/m 2) that was 31% less than that produced by the 50% wet-proofed cathode (1 DL). It was shown that the cathode performance with different materials and numbers of DLs was directly related to conditions that increased oxygen transfer. The coulombic efficiency (CE) was more affected by the current density than the oxygen transfer coefficient for the cathode. MFCs with the 50% wet-proofed cathode (2 DLs) had a CE of >84% (6.8A/m 2), which was substantially larger than that previously obtained using carbon cloth air-cathodes lacking separators. These results demonstrate that MFCs constructed with separators should have the minimum number of DLs that prevent water leakage and maximize oxygen transfer to the cathode. © 2011 Elsevier B.V.

  2. Investigation of a working fluid for cryogenic energy storage systems

    Science.gov (United States)

    Wojcieszak, P.; Poliński, J.; Chorowski, M.

    2017-12-01

    Cryogenic energy storage (CES) systems are promising alternatives to existing electrical energy storage technologies such as a pumped hydroelectric storage (PHS) or compressed air energy storage (CAES). In CES systems, excess electrical energy is used to liquefy a cryogenic fluid. The liquid can be stored in large cryogenic tanks for a long time. When a demand for the electricity is high, the liquid cryogen is pumped to high pressure and then warmed in a heat exchanger using ambient temperature or an available waste heat source. The vaporized cryogen is then used to drive a turbine and generate the electricity. Most research on cryogenic energy storage focuses on liquid air energy storage, as atmospheric air is widely available and therefore it does not limit a location of the energy storage plant. Nevertheless, CES with other gases as the working fluids can exhibit a higher efficiency. In this research a performance analysis of simple CES systems with several working fluids was performed.

  3. 30 CFR 57.22215 - Separation of intake and return air (I-A, II-A, III, and V-A mines).

    Science.gov (United States)

    2010-07-01

    ... for separation of air currents. Such wall or partition shall be constructed of reinforced concrete or... separation of main air currents in the same opening. Flexible ventilation tubing shall not exceed 250 feet in...

  4. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  5. Energy Efficient Cryogenics

    Science.gov (United States)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  6. Cryogenics a textbook

    CERN Document Server

    Thipse, S S

    2013-01-01

    A Textbook covers lucidly various cryogenic applications including cryogenic engines and space and electronic applications. Importance of cryogenic engines in space propulsion, complete thermodynamic analysis of cryogenic systems with special emphasis on cryogenic cycles, Dewar vessels used to store cryogenic fluids and their applications in various industries have also been discussed in detail. Explanation of Superconductivity and its applications with a description of various Cryocoolers used in industry has also been provided with extensive details. Further technical information on cryogens has been specified alongwith the vacuum technology which has been sufficiently described with examples. Science of Cryonics has been elaborated and all aspects of technology related to functioning of cryogenic plants and their construction including valves, pipes has been incorporated in this book.

  7. Cryogenics '88

    International Nuclear Information System (INIS)

    1988-04-01

    The proceedings has four chapters: Processes and apparatus of low-temperature installations, Superconductors and magnets, Gas separators, Helium liquefiers and cryostats. It contains a total of 56 papers of which 4 belong in the INIS scope. (J.B.)

  8. Cryogenic immersion microscope

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  9. Swirling Combustor Energy Converter: H2/Air Simulations of Separated Chambers

    Directory of Open Access Journals (Sweden)

    Angelo Minotti

    2015-09-01

    Full Text Available This work reports results related to the “EU-FP7-HRC-Power” project aiming at developing micro-meso hybrid sources of power. One of the goals of the project is to achieve surface temperatures up to more than 1000 K, with a ∆T ≤ 100 K, in order to be compatible with a thermal/electrical conversion by thermo-photovoltaic cells. The authors investigate how to reach that goal adopting swirling chambers integrated in a thermally-conductive and emitting element. The converter consists of a small parallelepiped brick inside two separated swirling meso-combustion chambers, which heat up the parallelepiped, emitting material by the combustion of H2 and air at ambient pressure. The overall dimension is of the order of cm. Nine combustion simulations have been carried out assuming detailed chemistry, several length/diameter ratios (Z/D = 3, 5 and 11 and equivalence ratios (0.4, 0.7 and 1; all are at 400 W of injected chemical power. Among the most important results are the converter surfaces temperatures, the heat loads, provided to the environment, and the chemical efficiency. The high chemical efficiency, h > 99.9%, is due to the relatively long average gas residence time coupled with the fairly good mixing due to the swirl motion and the impinging air/fuel jets that provide heat and radicals to the flame.

  10. Cryogen Safety Course 8876

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-13

    Cryogenics (from the Greek word κρvoζ, meaning frost or icy cold) is the study of the behavior of matter at very cold temperatures. The purpose of this course is to provide trainees with an introduction to cryogen use, the hazards and potential accidents related to cryogen systems, cryogen safety components, and the requirements that govern the design and use of cryogen systems at Los Alamos National Laboratory (LANL). The knowledge you gain will help you keep your workplace safe for yourself and your coworkers.

  11. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  12. Thermodynamic evaluation of supercritical oxy-type power plant with high-temperature three-end membrane for air separation

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2014-09-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emissions, mainly of carbon dioxide, special attention deserves the idea of ‘zero-emission’ technology based on boilers working in oxy-combustion technology. In the paper a thermodynamic analysis of supercritical power plant fed by lignite was made. Power plant consists of: 600 MW steam power unit with live steam parameters of 650 °C/30 MPa and reheated steam parameters of 670 °C/6 MPa; circulating fluidized bed boiler working in oxy-combustion technology; air separation unit and installation of the carbon dioxide compression. Air separation unit is based on high temperature membrane working in three-end technology. Models of steam cycle, circulation fluidized bed boiler, air separation unit and carbon capture installation were made using commercial software. After integration of these models the net electricity generation efficiency as a function of the degree of oxygen recovery in high temperature membrane was analyzed.

  13. Introduction to cryogenic engineering

    CERN Multimedia

    CERN. Geneva; Vandoni, Giovanna; Niinikoski, Tapio O

    2005-01-01

    Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning.

  14. Risk based decision support for new air traffic operations with reduced aircraft separation

    NARCIS (Netherlands)

    Speijker, L.J.P.

    2007-01-01

    With the steady increase in air traffic, the aviation system is under continuous pressure to increase aircraft handling capacity. Various new Air Traffic Management systems and flight procedures are proposed to increase airport capacity while maintaining the required level of safety. Newly proposed

  15. Electrochemical analysis of separators used in single-chamber, air-cathode microbial fuel cells

    KAUST Repository

    Wei, Bin

    2013-02-01

    Polarization, solution-separator, charge transfer, and diffusion resistances of clean and used separator electrode assemblies were examined in microbial fuel cells using current-voltage curves and electrochemical impedance spectroscopy (EIS). Current-voltage curves showed the total resistance was reduced at low cathode potentials. EIS results revealed that at a set cathode potential of 0.3 V diffusion resistance was predominant, and it substantially increased when adding separators. However, at a lower cathode potential of 0.1 V all resistances showed only slight differences with and without separators. Used separator electrode assemblies with biofilms had increased charge transfer and diffusion resistances (0.1 V) when one separator was used; however, charge transfer resistance increased, and diffusion resistance did not appreciably change with four separators. Adding a plastic mesh to compress the separators improved maximum power densities. These results show the importance of pressing separators against the cathode, and the adverse impacts of biofilm formation on electrochemical performance. © 2012 Elsevier Ltd. All Rights Reserved.

  16. Gas separation by pressure swing adsorption

    International Nuclear Information System (INIS)

    Martin, J.R.; Gottzman, C.F.; Notaro, F.; Stewart, H.A.

    1986-01-01

    Over the past twenty years separation processes based upon pressure swing adsorption have replaced cryogenic processes in a number of selected applications such as air separation for production of moderate quantities of nitrogen and oxygen and recovery of hydrogen from refinery and chemical plant gases. Key events contributing to the emergence of PSA as an important process option have been the development of synthetic zeolite molecular sieves by Union Carbide Corporation in the USA and of carbon molecular sieves by Bergbau-Forschung in Germany. Today PSA processes enjoy significant commercial use producing oxygen from 0.1 Nm 3 /h for medical application to 1500 Nm 3 /h for steel mill use, for making nitrogen up to 1000 Nm 3 /h for inerting and in purifying hydrogen streams of up to 100,000 Nm 3 /h for refinery use. In this paper some of the principles of adsorptive separations are reviewed. The history of the technology is traced briefly with emphasis on key material, process and application events. The major commercial processes in the application of adsorption to bulk separation of air and hydrogen purification are reviewed in more detail with comparisons made to cryogenic alternatives in terms of specific characteristics, advantages and disadvantages where appropriate. Information on performance, reliability and comparative economics are discussed where available

  17. Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air

    Science.gov (United States)

    Bland, Robert J [Oviedo, FL; Horazak, Dennis A [Orlando, FL

    2012-03-06

    A gas turbine engine is provided comprising an outer shell, a compressor assembly, at least one combustor assembly, a turbine assembly and duct structure. The outer shell includes a compressor section, a combustor section, an intermediate section and a turbine section. The intermediate section includes at least one first opening and at least one second opening. The compressor assembly is located in the compressor section to define with the compressor section a compressor apparatus to compress air. The at least one combustor assembly is coupled to the combustor section to define with the combustor section a combustor apparatus. The turbine assembly is located in the turbine section to define with the turbine section a turbine apparatus. The duct structure is coupled to the intermediate section to receive at least a portion of the compressed air from the compressor apparatus through the at least one first opening in the intermediate section, pass the compressed air to an apparatus for separating a portion of oxygen from the compressed air to produced vitiated compressed air and return the vitiated compressed air to the intermediate section via the at least one second opening in the intermediate section.

  18. AN EXPERIMENTAL INVESTIGATION OF THE 236U DETECTION LIMIT IN THE SURFACE AIR USING RADIOCHEMICAL SEPARATION AND ALPHA-SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    A. D. Gedeonov

    2011-01-01

    Full Text Available Due to nuclear weapon testing, nuclear reactor accidents, uranium mining and nuclear fuel reprocessing, additional uranium has been introduced into the environment. 236U isotope is produced from 235U by capture of a thermal neutron and it can be used as an indicator for artificial uranium in the environment. In this paper the sensitive method for236U determination in the surface air is described. This method includes a total dissolution of the air dust in a mixture of mineral acids, uranium concentration and purification by anion-exchange chromatography. Long time measurements of the separated uranium fraction are made with the use of alpha-spectrometer based on PIPS-detector. The lower limit of detection for 236U in the surface air is determined as 5 • 10-9 Bq/m3 (2 ng/m3.

  19. The Removal of Aquacultural Wastes by Foam Separator from Sea Water III. The Effect of Superficial Air Velocity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byong Jin; Lee, Jung Hoon; Kim, Yong Ha; Yi, Gyeongbeom; Suh, Kuen Hack [Department of Chemical Engineering, Pukyong National University, Pusan (Korea); Kim, Sung Koo [Department of Biotechnology and Bioengineering, Pukyong National University, Pusan (Korea)

    2001-02-01

    Experimental investigations on the effect of the superficial air velocity(SAV) on the removal of aquacultural waste, such as protein, total suspended solids(TSS), chemical oxygen demand(COD), turbidity and total ammonia nitrogen(TAN) from sea water were carried out by using a foam separator. The foam separator as an aerator was also evaluated for increasing dissolved oxygen concentration. The increase in SAV, increased the removal rate and removal efficiency of protein enrichment ratio. The changes of removal rates and efficiencies of TSS, COD and turbidity were similar to proteins. TAN was removed by stripping. Dissolved oxygen(DO) saturation of the effluent from the foam separator was higher than 96.6%. 27 refs., 14 figs., 1 tab.

  20. FRIB Cryogenic Plant Status

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Casagranda, Fabio [Michigan State Univ., East Lansing, MI (United States)

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  1. Polymers at cryogenic temperatures

    CERN Document Server

    Fu, Shao-Yun

    2013-01-01

    Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.

  2. Cryogenics theory, processes and applications

    CERN Document Server

    Hayes, Allyson E

    2011-01-01

    Cryogenics is the study of the production of very low temperature (below -150 -C, -238 -F or 123 K) and the behaviour of materials at those temperatures. This book presents current research from across the globe in the study of cryogenics, including the effect of cryogenic treatment on microstructure and mechanical properties of light weight alloys; the application of Fiber Bragg grating sensors at cryogenic temperatures; cryogenic grinding; liquid oxygen magnetohydrodynamics; and, genetic engineering techniques used to improve tolerance to cryopreservation.

  3. The Helium Cryogenic System for the ATLAS Experiment

    CERN Document Server

    Delruelle, N; Passardi, Giorgio; ten Kate, H H J

    2000-01-01

    The magnetic configuration of the ATLAS detector is generated by an inner superconducting solenoid and three air-core toroids (the barrel and two end-caps), each of them made of eight superconducting coils. Two separated helium refrigerators will be used to allow cool-down from ambient temperature and steady-state operation at 4.5 K of all the magnets having a total cold mass of about 600 tons. In comparison with the preliminary design, the helium distribution scheme and interface with the magnet sub-systems are simplified, resulting in a considerable improvement of the operational easiness and the overall reliability of the system at some expense of the operational flexibility. The paper presents the cryogenic layout and the basic principles for magnets cool-down, steady state operation and thermal recovery after a fast energy dump.

  4. Cryogenic Acoustic Suppression Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — A proof-of-concept method utilizing a cryogenic fluid for acoustic suppression in rocket engine testing environments will be demonstrated. It is hypothesized that...

  5. Cryogenics for LHC experiments

    CERN Multimedia

    2001-01-01

    Cryogenic systems will be used by LHC experiments to maximize their performance. Institutes around the world are collaborating with CERN in the construction of these very low temperature systems. The cryogenic test facility in hall 180 for ATLAS magnets. High Energy Physics experiments have frequently adopted cryogenic versions of their apparatus to achieve optimal performance, and those for the LHC will be no exception. The two largest experiments for CERN's new flagship accelerator, ATLAS and CMS, will both use large superconducting magnets operated at 4.5 Kelvin - almost 270 degrees below the freezing point of water. ATLAS also includes calorimeters filled with liquid argon at 87 Kelvin. For the magnets, the choice of a cryogenic version was dictated by a combination economy and transparency to emerging particles. For the calorimeters, liquid argon was selected as the fluid best suited to the experiment's physics requirements. High Energy Physics experiments are the result of worldwide collaborations and...

  6. Advances in Cryogenic Principles

    Science.gov (United States)

    Barron, R. F.

    During the past 50 years, the use of digital computers has significantly influenced the design and analysis of cryogenic systems. At the time when the first Cryogenic Engineering Conference was held, thermodynamic data were presented in graphical or tabular form (the "steam table" format), whereas thermodynamic data for cryogenic system design is computer generated today. The thermal analysis of cryogenic systems in the 1950s involved analytical solutions, graphical solutions, and relatively simple finite-difference approaches. These approaches have been supplanted by finite-element numerical programs which readily solve complicated thermal problems that could not be solved easily using the methods of the 1950s. In distillation column design, the use of the McCabe-Thiele graphical method for determination of the number of theoretical plates has been replaced by numerical methods that allow consideration of several different components in the feed and product streams.

  7. Separate-effect tests on zirconium cladding degradation in air ingress situations

    Energy Technology Data Exchange (ETDEWEB)

    Duriez, C. [Institut de Radioprotection et de Surete Nucleaire, IRSN, Direction de Prevention des Accidents Majeurs, Centre de Cadarache, 13115 St Paul Lez Durance (France)], E-mail: christian.duriez@irsn.fr; Steinbrueck, M. [Forschungszentrum Karlsruhe, FZK, Institut fuer Materialforschung, Postfach 3640, 76021 Karlsruhe (Germany); Ohai, D.; Meleg, T. [Institute for Nuclear Research, INR, Nuclear Material and Corrosion Department, Pitesti, 115400 Mioveni Arges (Romania); Birchley, J.; Haste, T. [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2009-02-15

    In the event of air ingress during a reactor or spent fuel pond low probability accident, the fuel rods will be exposed to air-containing atmospheres at high temperatures. In comparison with steam, the presence of air is expected to result in a more rapid escalation of the accident. A state-of-the-art review performed before SARNET started showed that the existing data on zirconium alloy oxidation in air were scarce. Moreover, the exact role of zirconium nitride on the cladding degradation process was poorly understood. Regarding the cladding behaviour in air + steam or nitrogen-enriched atmospheres (encountered in oxygen-starved conditions), almost no data were available. New experimental programmes comprising small-scale tests have therefore been launched at FZK, IRSN (MOZART programme in the frame of the International Source Term Program-ISTP) and INR. Zircaloy-4 cladding in PWR (FZK, IRSN) and in CANDU (INR) geometry are investigated. On-line kinetic data are obtained on centimetre size tube segments, by thermogravimetry (FZK, IRSN and INR) or by mass spectrometry (FZK). Plugged tubes 15 cm long (FZK) are also investigated. The samples are air-oxidised either in the 'as-received' state, or after pre-oxidation in steam. 'Analytical' tests at constant temperature and gas composition provide basic kinetic data, while more prototypical temperature transients and sequential gas compositions are also investigated. The temperature domains extend from 600 deg. C up to 1500 deg. C. Systematic post-test metallographic inspections are performed. The paper gives a synthesis of the results obtained, comparing them in terms of kinetics and oxide scale structure and composition. A comparative analysis is performed with results of the QUENCH-10 (Q-10) bundle test, which included an air ingress phase. It is shown how the data contribute to a better understanding of the cladding degradation process, especially regarding the role of nitrogen. For modelling of

  8. Separate-effect tests on zirconium cladding degradation in air ingress situations

    International Nuclear Information System (INIS)

    Duriez, C.; Steinbrueck, M.; Ohai, D.; Meleg, T.; Birchley, J.; Haste, T.

    2009-01-01

    In the event of air ingress during a reactor or spent fuel pond low probability accident, the fuel rods will be exposed to air-containing atmospheres at high temperatures. In comparison with steam, the presence of air is expected to result in a more rapid escalation of the accident. A state-of-the-art review performed before SARNET started showed that the existing data on zirconium alloy oxidation in air were scarce. Moreover, the exact role of zirconium nitride on the cladding degradation process was poorly understood. Regarding the cladding behaviour in air + steam or nitrogen-enriched atmospheres (encountered in oxygen-starved conditions), almost no data were available. New experimental programmes comprising small-scale tests have therefore been launched at FZK, IRSN (MOZART programme in the frame of the International Source Term Program-ISTP) and INR. Zircaloy-4 cladding in PWR (FZK, IRSN) and in CANDU (INR) geometry are investigated. On-line kinetic data are obtained on centimetre size tube segments, by thermogravimetry (FZK, IRSN and INR) or by mass spectrometry (FZK). Plugged tubes 15 cm long (FZK) are also investigated. The samples are air-oxidised either in the 'as-received' state, or after pre-oxidation in steam. 'Analytical' tests at constant temperature and gas composition provide basic kinetic data, while more prototypical temperature transients and sequential gas compositions are also investigated. The temperature domains extend from 600 deg. C up to 1500 deg. C. Systematic post-test metallographic inspections are performed. The paper gives a synthesis of the results obtained, comparing them in terms of kinetics and oxide scale structure and composition. A comparative analysis is performed with results of the QUENCH-10 (Q-10) bundle test, which included an air ingress phase. It is shown how the data contribute to a better understanding of the cladding degradation process, especially regarding the role of nitrogen. For modelling of the oxide scale

  9. Removal of dissolved VOCs from water with an air stripper/membrane vapor separation system

    NARCIS (Netherlands)

    Wijmans, J.G.; Kamaruddin, H.D.; Segelke, S.V.; Wessling, Matthias; Baker, R.W.

    1997-01-01

    Treatment of water contaminated with volatile organic compounds (VOCs) is a major problem for the United States chemical industry. Currently, VOCs are removed from moderately contaminated wastewater streams by processes such as steam stripping and from dilute wastewaters by air stripping combined

  10. Efficient Computation of Separation-Compliant Speed Advisories for Air Traffic Arriving in Terminal Airspace

    Science.gov (United States)

    Sadovsky, Alexander V.; Davis, Damek; Isaacson, Douglas R.

    2012-01-01

    A class of problems in air traffic management asks for a scheduling algorithm that supplies the air traffic services authority not only with a schedule of arrivals and departures, but also with speed advisories. Since advisories must be finite, a scheduling algorithm must ultimately produce a finite data set, hence must either start with a purely discrete model or involve a discretization of a continuous one. The former choice, often preferred for intuitive clarity, naturally leads to mixed-integer programs, hindering proofs of correctness and computational cost bounds (crucial for real-time operations). In this paper, a hybrid control system is used to model air traffic scheduling, capturing both the discrete and continuous aspects. This framework is applied to a class of problems, called the Fully Routed Nominal Problem. We prove a number of geometric results on feasible schedules and use these results to formulate an algorithm that attempts to compute a collective speed advisory, effectively finite, and has computational cost polynomial in the number of aircraft. This work is a first step toward optimization and models refined with more realistic detail.

  11. In-air spectral signatures of the Baltic Sea macrophytes and their statistical separability

    Science.gov (United States)

    Kotta, Jonne; Remm, Kalle; Vahtmäe, Ele; Kutser, Tiit; Orav-Kotta, Helen

    2014-01-01

    Many macroalgal species potentially have distinctive spectral signatures detectable using remote sensing. In order to map the spatial distribution of these species, their spectral properties have to be quantified and statistical differences between species need to be assessed. In the present study, we collected a spectral library of the key benthic macrophyte species in the Baltic Sea area and presented the methodology that allows quantifying statistical differences between their reflectance spectra. The results indicate that three broad groups of algae-green, brown, and red algae-can be separated based on their optical signatures. In general, the between-species differences are too small to allow easy recognition of benthic algae based on their untransformed reflectance spectra. However, the distinctness of the studied species and taxa improves if standardized reflectance values are used. The best indicative spectral range was at 530 to 570 nm for the separation of species and of larger taxonomic units.

  12. A geographic approach to modelling human exposure to traffic air pollution using GIS. Separate appendix report

    Energy Technology Data Exchange (ETDEWEB)

    Solvang Jensen, S.

    1998-10-01

    A new exposure model has been developed that is based on a physical, single media (air) and single source (traffic) micro environmental approach that estimates traffic related exposures geographically with the postal address as exposure indicator. The micro environments: residence, workplace and street (road user exposure) may be considered. The model estimates outdoor levels for selected ambient air pollutants (benzene, CO, NO{sub 2} and O{sub 3}). The influence of outdoor air pollution on indoor levels can be estimated using average (I/O-ratios. The model has a very high spatial resolution (the address), a high temporal resolution (one hour) and may be used to predict past, present and future exposures. The model may be used for impact assessment of control measures provided that the changes to the model inputs are obtained. The exposure model takes advantage of a standard Geographic Information System (GIS) (ArcView and Avenue) for generation of inputs, for visualisation of input and output, and uses available digital maps, national administrative registers and a local traffic database, and the Danish Operational Street Pollution Model (OSPM). The exposure model presents a new approach to exposure determination by integration of digital maps, administrative registers, a street pollution model and GIS. New methods have been developed to generate the required input parameters for the OSPM model: to geocode buildings using cadastral maps and address points, to automatically generate street configuration data based on digital maps, the BBR and GIS; to predict the temporal variation in traffic and related parameters; and to provide hourly background levels for the OSPM model. (EG)

  13. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  14. Development of a software and hardware system for monitoring the air cleaning process using a cyclone-separator

    Science.gov (United States)

    Nicolaeva, B. K.; Borisov, A. P.; Zlochevskiy, V. L.

    2017-08-01

    The article is devoted to the development of a hardware-software complex for monitoring and controlling the process of air purification by means of a cyclone-separator. The hardware of this complex is the Arduino platform, to which are connected pressure sensors, air velocities, dustmeters, which allow monitoring of the main parameters of the cyclone-separator. Also, a frequency converter was developed to regulate the rotation speed of an asynchronous motor necessary to correct the flow rate, the control signals of which come with Arduino. The program part of the complex is written in the form of a web application in the programming language JavaScript and inserts into CSS and HTML for the user interface. This program allows you to receive data from sensors, build dependencies in real time and control the speed of rotation of an asynchronous electric drive. The conducted experiment shows that the cleaning efficiency is 95-99.9%, while the airflow at the cyclone inlet is 16-18 m/s, and at the exit 50-70 m/s.

  15. Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind speed

    Science.gov (United States)

    Zhang, Xin; Huang, Yong; Wang, WanBo; Wang, XunNian; Li, HuaXing

    2014-06-01

    The present paper described an experimental investigation of separation control of an Unmanned Aerial Vehicle (UAV) at high wind speeds. The plasma actuator was based on Dielectric Barrier Discharge (DBD) and operated in a steady manner. The flow over a wing of UAV was performed with smoke flow visualization in the ϕ0.75 m low speed wind tunnel to reveal the flow structure over the wing so that the locations of plasma actuators could be optimized. A full model of the UAV was experimentally investigated in the ϕ3.2 m low speed wind tunnel using a six-component internal strain gauge balance. The effects of the key parameters, including the locations of the plasma actuators, the applied voltage amplitude and the operating frequency, were obtained. The whole test model was made of aluminium and acted as a cathode of the actuator. The results showed that the plasma acting on the surface of UAV could obviously suppress the boundary layer separation and reduce the model vibration at the high wind speeds. It was found that the maximum lift coefficient of the UAV was increased by 2.5% and the lift/drag ratio was increased by about 80% at the wind speed of 100 m/s. The control mechanism of the plasma actuator at the test configuration was also analyzed.

  16. Seed-mediated synthesis of silver nanocrystals with controlled sizes and shapes in droplet microreactors separated by air.

    Science.gov (United States)

    Zhang, Lei; Wang, Yi; Tong, Limin; Xia, Younan

    2013-12-17

    Silver nanocrystals with uniform sizes were synthesized in droplet microreactors through seed-mediated growth. The key to the success of this synthesis is the use of air as a carrier phase to generate the droplets. The air not only separates the reaction solution into droplets but also provides O2 for the generation of reducing agent (glycolaldehyde). It also serves as a buffer space for the diffusion of NO, which is formed in situ due to the oxidative etching of Ag nanocrystals with twin defects. For the first time, we were able to generate Ag nanocrystals with controlled sizes and shapes in continuous production by using droplet microreactors. For Ag nanocubes, their edge lengths could be readily controlled in the range of 30-100 nm by varying the reaction time, the amount of seeds, and the concentration of AgNO3 in the droplets. Furthermore, we demonstrated the synthesis of Ag octahedra in the droplet microreactors. We believe that the air-driven droplet generation device can be extended to other noble metals for the production of nanocrystals with controlled sizes and shapes.

  17. Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

    Science.gov (United States)

    Kang, Chen; Hua, Liang

    2016-02-01

    Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503302, 51207169, and 51276197), the China Postdoctoral Science Foundation (Grant No. 2014M562446), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JM1001).

  18. Separation of gamma and hadron initiated air showers with energies between 20 and 500 TeV

    Science.gov (United States)

    Arqueros, F.; Karle, A.; Lorenz, E.; Martinez, S.; Plaga, R.; Rozanska, M.

    1996-04-01

    The discrimination between air showers initiated by γ rays and by hadrons is one of the fundamental problems in experimental cosmic-ray physics. The physics of this ' γ/hadron separation' is discussed in this paper. We restrict ourselves to the energy range from about 20 to 500 TeV, and take only the information contained in the lateral Čerenkov light distribution and the number of electrons at the detector level into consideration. An understanding of the differences between air showers generated by γ rays and those due to hadrons leads us to formulate suitable observables for the separation process. Angle integrating Čerenkov arrays (AICA) offer a promising new approach to ground-based γ-ray astronomy in the energy region from about 20 to 500 TeV. In order to establish this technique, an efficient suppression of the overwhelming hadronic background radiation is required. As an example for our general discussion, we present one method for γ/hadron separation in AICAs called 'LES'. It is based on the simultaneous determination of the shower size and some characteristic parameters of the lateral distribution of the Čerenkov light. The potential inherent within this technique is demonstrated in quantitative detail for the existing 'AIROBICC' AICA. We also propose an objective measure of the intrinsic sensitivity of a detection scheme in ground-based γ-ray astronomy, the 'reduced quality factor'. It is shown that AICAs may reach a sensitivity to γ-ray point sources in the high VHE range similar to that of the Čerenkov-telescope imaging technique in the low VHE region.

  19. Flow characteristics of centrifugal gas-liquid separator. Investigation with air-water two-phase flow experiment

    International Nuclear Information System (INIS)

    Yoneda, Kimitoshi; Inada, Fumio

    2004-01-01

    Air-water two-phase flow experiment was conducted to examine the basic flow characteristics of a centrifugal gas-liquid separator. Vertical transparent test section, which is 4 m in height, was used to imitate the scale of a BWR separator. Flow rate conditions of gas and liquid were fixed at 0.1 m 3 /s and 0.033 m 3 /s, respectively. Radial distributions of two-phase flow characteristics, such as void fraction, gas velocity and bubble chord length, were measured by traversing dual optical void probes in the test section, horizontally. The flow in the standpipe reached to quasi-developed state within the height-to-diameter aspect ratio H/D=10, which in turn can mean the maximum value for an ideal height design of a standpipe. The liquid film in the barrel showed a maximum thickness at 0.5 to 1 m in height from the swirler exit, which was a common result for three different standpipe length conditions, qualitatively and quantitatively. The empirical database obtained in this study would contribute practically to the validation of numerical analyses for an actual separator in a plant, and would also be academically useful for further investigations of two-phase flow in large-diameter pipes. (author)

  20. Cryogenic regenerative heat exchangers

    CERN Document Server

    Ackermann, Robert A

    1997-01-01

    An in-depth survey of regenerative heat exchangers, this book chronicles the development and recent commercialization of regenerative devices for cryogenic applications. Chapters cover historical background, concepts, practical applications, design data, and numerical solutions, providing the latest information for engineers to develop advanced cryogenic machines. The discussions include insights into the operation of a regenerator; descriptions of the cyclic and fluid temperature distributions in a regenerator; data for various matrix geometries and materials, including coarse and fine bronze, stainless steel-woven wire mesh screens, and lead spheres; and unique operating features of cryocoolers that produce deviations from ideal regenerator theory.

  1. Termination for a superconducting power transmission line including a horizontal cryogenic bushing

    Science.gov (United States)

    Minati, Kurt F.; Morgan, Gerry H.; McNerney, Andrew J.; Schauer, Felix

    1984-01-01

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  2. Air

    Science.gov (United States)

    ... gov/ Home The environment and your health Air Air While we don’t often think about the ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be ...

  3. WETTING AND REACTIVE AIR BRAZING OF BSCF FOR OXYGEN SEPARATION DEVICES

    Energy Technology Data Exchange (ETDEWEB)

    LaDouceur, Richard M.; Meier, Alan; Joshi, Vineet V.

    2014-10-13

    Reactive air brazes Ag-CuO and Ag-V2O5 were evaluated for brazing Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) (BSCF). BSCF has been determined in previous work to have the highest potential mixed ionic/electronic conducting (MIEC) ceramic material based on the design and oxygen flux requirements of an oxy-fuel plant such as an integrated gasification combined cycle (IGCC) used to facilitate high-efficiency carbon capture. Apparent contact angles were observed for Ag-CuO and Ag-V2O5 mixtures at 1000 °C for isothermal hold times of 0, 10, 30, and 60 minutes. Wetting apparent contact angles (θ<90°) were obtained for 1%, 2%, and 5% Ag-CuO and Ag-V2O5 mixtures, with the apparent contact angles between 74° and 78° for all compositions and furnace dwell times. Preliminary microstructural analysis indicates that two different interfacial reactions are occurring: Ag-CuO interfacial microstructures revealed the same dissolution of copper oxide into the BSCF matrix to form copper-cobalt-oxygen rich dissolution products along the BSCF grain boundaries and Ag-V2O5 interfacial microstructures revealed the infiltration and replacement of cobalt and iron with vanadium and silver filling pores in the BSCF microstructure. The Ag-V2O5 interfacial reaction product layer was measured to be significantly thinner than the Ag-CuO reaction product layer. Using a fully articulated four point flexural bend test fixture, the flexural fracture strength for BSCF was determined to be 95 ± 33 MPa. The fracture strength will be used to ascertain the success of the reactive air braze alloys. Based on these results, brazes were fabricated and mechanically tested to begin to optimize the brazing parameters for this system. Ag-2.5% CuO braze alloy with a 2.5 minute thermal cycle achieved a hermetic seal with a joint flexural strength of 34 ± 15 MPa and Ag-1% V2O5 with a 30 minute thermal cycle had a joint flexural strength of 20 ± 15 MPa.

  4. Cryogenics Research and Engineering Experience

    Science.gov (United States)

    Toro Medina, Jaime A.

    2013-01-01

    Energy efficient storage, transfer and use of cryogens and cryogenic propellants on Earth and in space have a direct impact on NASA, government and commercial programs. Research and development on thermal insulation, propellant servicing, cryogenic components, material properties and sensing technologies provides industry, government and research institutions with the cross-cutting technologies to manage low-temperature applications. Under the direction of the Cryogenic Testing Lab at Kennedy Space Center, the work experience acquired allowed me to perform research, testing, design and analysis of current and future cryogenic technologies to be applied in several projects.

  5. Adsorption in cryogenics

    International Nuclear Information System (INIS)

    Ravex, A.

    1989-01-01

    There are two main fields for application of physical adsorption in cryogenics: cryopumping and refrigeration. Cryopumping has known many developments but is now almost industrial. Basic principles, applications and realizations are presented, for instance, in nuclear fusion and particle physics. For refrigeration developments and realizations are rare but present potential space applications [fr

  6. Nonlinear dynamic behaviors and control based on simulation of high-purity heat integrated air separation column.

    Science.gov (United States)

    Fu, Yao; Liu, Xinggao

    2015-03-01

    In this paper, the dynamic behaviors on the basis of simulation for high-purity heat integrated air separation column (HIASC) are studied. A nonlinear generic model control (GMC) scheme is proposed based on the nonlinear behavior analyses of a HIASC process, and an adaptive generic model control (AGMC) scheme is further presented to correct the model parameters online. Related internal model control (IMC) scheme and multi-loop PID (M-PID) scheme are also developed as the comparative base. The comparative researches are carried out among these linear and nonlinear control schemes in detail. The simulation research results show that the proposed AGMC schemes present advantages in both servo control and regulatory control for the high-purity HIASC. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Evacuation apparatus with cryogenic pump and trap assembly

    International Nuclear Information System (INIS)

    Mahl, G.

    1980-01-01

    An evacuation apparatus comprising a vessel defining a vacuum chamber therein, vacuumizing means communicating with an opening to said vacuum chamber for selectively drawing a vacuum therein comprising cryogenic pump means disposed closely adjacent to said opening and defined by substantial cryogenically cooled trap surfaces for freezing-out water vapor from air evacuated from said vacuum chamber, said opening being common to said vacuum chamber and to said cryogenic pump means, valve means for selectively opening or closing the opening to said vacuum chamber and movable from a first position within said cryogenic pump means closing said opening to a second position within said cryogenic pump means directly exposing said vacuum chamber to said cryogenic pump means, through said opening, baffle means disposed closely adjacent to the opening to said vacuum chamber for providing substantial open communication to said vacuum chamber and for substantially preventing ingress of contaminants into said vacuum chamber, said baffle means being positioned to provide an optically dense view of said opening when viewed from a downstream side of said baffle means, and a plurality of longitudinally spaced and cryogenically cooled fins mounted in nested relationship within said baffle means and disposed in out-of-contact relationship therewith, said fins being positioned to provide an optically dense view of the downstream side of said baffle means when viewed from said openings. The cryogenic pump is adapted for use in an evacuation apparatus comprising a housing defining an opening to a vacuum chamber, a plurality of metallic plates defining a first chamber therein communicating with said vacuum chamber through said opening and further defining a second chamber at least partially surrounding said first chamber and adapted to be at least partially filled with a cryogenic liqui.d

  8. Radioactive krypton gas separation

    International Nuclear Information System (INIS)

    Martin, J.R.

    1976-01-01

    Radioactive krypton is separated from a gas mixture comprising nitrogen and traces of carbon dioxide and radioactive krypton by selective adsorption and then cryogenic distillation of the prepurified gas against nitrogen liquid to produce krypton bottoms concentrate liquid, using the nitrogen gas from the distillation for two step purging of the adsorbent. 16 Claims, 8 Drawing Figures

  9. Radioactive krypton gas separation

    International Nuclear Information System (INIS)

    Martin, J.R.

    1977-01-01

    Radioactive krypton is separated from a gas mixture comprising nitrogen and traces of carbon dioxide and radioactive krypton by first selective adsorption and then cryogenic distillation of the prepurified gas against nitrogen liquid to produce krypton bottoms concentrate liquid, using the nitrogen gas from the distillation for two step purging of the adsorbent. 6 claims, 8 drawing figures

  10. Hydrogen isotope separation

    Science.gov (United States)

    Bartlit, John R.; Denton, William H.; Sherman, Robert H.

    1982-01-01

    A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

  11. Bio-electrochemical characterization of air-cathode microbial fuel cells with microporous polyethylene/silica membrane as separator.

    Science.gov (United States)

    Kircheva, Nina; Outin, Jonathan; Perrier, Gérard; Ramousse, Julien; Merlin, Gérard; Lyautey, Emilie

    2015-12-01

    The aim of this work was to study the behavior over time of a separator made of a low-cost and non-selective microporous polyethylene membrane (RhinoHide®) in an air-cathode microbial fuel cell with a reticulated vitreous carbon foam bioanode. Performances of the microporous polyethylene membrane (RhinoHide®) were compared with Nafion®-117 as a cationic exchange membrane. A non-parametric test (Mann-Whitney) done on the different sets of coulombic or energy efficiency data showed no significant difference between the two types of tested membrane (p<0.05). Volumetric power densities were ranging from 30 to 90 W·m(-3) of RVC foam for both membranes. Similar amounts of biomass were observed on both sides of the polyethylene membrane illustrating bacterial permeability of this type of separator. A monospecific denitrifying population on cathodic side of RhinoHide® membrane has been identified. Electrochemical impedance spectroscopy (EIS) was used at OCV conditions to characterize electrochemical behavior of MFCs by equivalent electrical circuit fitted on both Nyquist and Bode plots. Resistances and pseudo-capacitances from EIS analyses do not differ in such a way that the nature of the membrane could be considered as responsible. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Experimental investigation of droplet separation in a horizontal counter-current air/water stratified flow

    International Nuclear Information System (INIS)

    Gabriel, Stephan Gerhard

    2015-01-01

    A stratified counter-current two-phase gas/liquid flow can occur in various technical systems. In the past investigations have mainly been motivated by the possible occurrence of these flows in accident scenarios of nuclear light water-reactors and in numerous applications in process engineering. However, the precise forecast of flow parameters, is still challenging, for instance due to their strong dependency on the geometric boundary conditions. A new approach which uses CFD methods (Computational Fluid Dynamics) promises a better understanding of the flow phenomena and simultaneously a higher scalability of the findings. RANS methods (Reynolds Averaged Navier Stokes) are preferred in order to compute industrial processes and geometries. A very deep understanding of the flow behavior and equation systems based on real physics are necessary preconditions to develop the equation system for a reliable RANS approach with predictive power. Therefore, local highly resolved, experimental data is needed in order to provide and validate the required turbulence and phase interaction models. The central objective of this work is to provide the data needed for the code development for these unsteady, turbulent and three-dimensional flows. Experiments were carried out at the WENKA facility (Water Entrainment Channel Karlsruhe) at the Karlsruhe Institute of Technology (KIT). The work consists of a detailed description of the test-facility including a new bended channel, the measurement techniques and the experimental results. The characterization of the new channel was done by flow maps. A high-speed imaging study gives an impression of the occurring flow regimes, and different flow phenomena like droplet separation. The velocity distributions as well as various turbulence values were investigated by particle image velocimetry (PIV). In the liquid phase fluorescent tracer-particles were used to suppress optical reflections from the phase surface (fluorescent PIV, FPIV

  13. Analysis for liquid cryogen spillage in the superconducting cyclotron building at VECC

    CERN Document Server

    Roy S ,; Pal, G; Bhandari, R K

    2009-01-01

    The cryogenic system uses liquid helium and liquid nitrogen to cool the superconducting cyclotron magnet and its cryopanels. In order to assess safety scenarios subsequent to an unusual leakage of cryogens from the system, a deterministic analysis has been carried out to estimate the variation of oxygen concentration with time at several locations of superconducting cyclotron building. The entire process is simulated assuming evaporated cryogens mixes instantaneously with air in the confined space, the ventilation system of the cyclotron building is operational, fresh air continuously enters the confined volume and mixes instantaneously with air in the confined space.

  14. CRYOGENIC PROCESSES IN LOESS

    Directory of Open Access Journals (Sweden)

    V. N. Konishchev

    2017-01-01

    Full Text Available This paper presents a new approach to the analysis of the genetic nature of the mineral substance of loessial rocks. At the present time, the prevailing view on this issue is the eolian accumulation of loess, while the influence of other factors of formation has not been practically taken into account. However, loess accumulation can be explained by other mechanisms, e.g., active processes of cryogenic weathering under a very harsh climate. The latter concept is based on the results of analysis of wedge-shaped structures in loess thickness, as well as numerous data of spore-pollen, microfaunistic, and other types of analysis. Further developing concepts of loess formation, the authors made an attempt to assess the degree of influence of cryogenic processes on the composition and structure of loess. The proposed method is based on a differentiated analysis of the distribution of the main rock-forming minerals (quartz and feldspars along the granulometric spectrum. Two criteria are proposed − the coefficient of cryogenic contrast and the heavy fraction coefficient (i.e., the coefficient of distribution of heavy minerals − which allow determining the degree of participation of cryogenic processes, as well as aeolian and aqueous sedimentation, in the formation of loessial rocks. This method was used to study two sections of loessial thickness − in the south of the Russian Plain and within the Loess Plateau of China. The results of the study revealed the role of cryogenic factors in the formation of the composition of the loess horizons of soil-loess sequences of different territories. Particularly clearly the effect of cryogenesis was manifested in the loess section in the south of the Russian Plain. In the section of the Loess Plateau, only the youngest deposits of the last formation stage are affected by cryogenesis. It follows that not only within the long-term periglacial permafrost zone, but also under the conditions of seasonal freezing

  15. Flexible cryogenic conduit

    International Nuclear Information System (INIS)

    Brindza, P.D.; Wines, R.R.; Takacs, J.J.

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament

  16. Cryogenic surface ion traps

    International Nuclear Information System (INIS)

    Niedermayr, M.

    2015-01-01

    Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de

  17. Impact of in-barn manure separation on biological air quality in an experimental setup identical to that in swine buildings.

    Science.gov (United States)

    Lavoie, J; Godbout, S; Lemay, S P; Belzile, M

    2009-07-01

    In-barn manure separation systems are becoming popular due to various environmental pressures on the swine industry. According to the literature, separation of feces and urine directly underneath the slats should have a positive impact on barn air quality. Removal and rapid separation of the two phases (solid/liquid) would reduce the dust and bioaerosol emissions, which would significantly improve the air quality in pig-housing facilities. From an occupational health and safety perspective, the maximum endotoxin and total bacteria concentrations to ensure workers' safety should not exceed 450 endotoxin units per cubic meter of air (EU m(-3)) and 10(4) colony-forming units per cubic meter of air (CFU m(-3)), respectively. In the current study, the effect on air quality of six in-barn manure handling systems was measured. A flat scraper system and four separation systems installed under the slats (a conveyor belt system, a conveyor net system, and a V-shaped scraper operated at two operation frequencies) were evaluated and compared to a conventional pull-plug system (control). The experiment took place in twelve independent and identical rooms housing four grower-finisher pigs each, and air samples were collected and analyzed for total dust, endotoxins, bacteria, and mold counts. The results obtained from this experimental setup show that the separation of feces and urine under the slats would concentrate at least 80% of the phosphorus in the solid phase. The total bacteria and endotoxin concentrations are lower than those found in commercial hog barns but remain higher than the recommended levels. Only the total dust concentrations are approximately 10% of their regulated value. This separation has no impact on dust and bioaerosol concentrations compared to the control.

  18. Features of applying systems approach for evaluating the reliability of cryogenic systems for special purposes

    Directory of Open Access Journals (Sweden)

    E. D. Chertov

    2016-01-01

    Full Text Available Summary. The analysis of cryogenic installations confirms objective regularity of increase in amount of the tasks solved by systems of a special purpose. One of the most important directions of development of a cryogenics is creation of installations for air separation product receipt, namely oxygen and nitrogen. Modern aviation complexes require use of these gases in large numbers as in gaseous, and in the liquid state. The onboard gas systems applied in aircraft of the Russian Federation are subdivided on: oxygen system; air (nitric system; system of neutral gas; fire-proof system. Technological schemes ADI are in many respects determined by pressure of compressed air or, in a general sense, a refrigerating cycle. For the majority ADI a working body of a refrigerating cycle the divided air is, that is technological and refrigerating cycles in installation are integrated. By this principle differentiate installations: low pressure; average and high pressure; with detander; with preliminary chilling. There is also insignificant number of the ADI types in which refrigerating and technological cycles are separated. These are installations with external chilling. For the solution of tasks of control of technical condition of the BRV hardware in real time and estimates of indicators of reliability it is offered to use multi-agent technologies. Multi-agent approach is the most acceptable for creation of SPPR for reliability assessment as allows: to redistribute processing of information on elements of system that leads to increase in overall performance; to solve a problem of accumulating, storage and recycling of knowledge that will allow to increase significantly efficiency of the solution of tasks of an assessment of reliability; to considerably reduce intervention of the person in process of functioning of system that will save time of the person of the making decision (PMD and will not demand from it special skills of work with it.

  19. A Systematic Study of Separators in Air-Breathing Flat-Plate Microbial Fuel Cells—Part 1: Structure, Properties, and Performance Correlations

    Directory of Open Access Journals (Sweden)

    Sona Kazemi

    2016-01-01

    Full Text Available Passive air-breathing microbial fuel cells (MFCs are a promising technology for energy recovery from wastewater and their performance is highly dependent on characteristics of the separator that isolates the anaerobic anode from the air-breathing cathode. The goal of the present work is to systematically study the separator characteristics and its effect on the performance of passive air-breathing flat-plate MFCs (FPMFCs. This was performed through characterization of structure, properties, and performance correlations of eight separators in Part 1 of this work. Eight commercial separators were characterized, in non-inoculated and inoculated setups, and were examined in passive air-breathing FPMFCs with different electrode spacing. The results showed a decrease in the peak power density as the oxygen and ethanol mass transfer coefficients in the separators increased, due to the increase of mixed potentials especially at smaller electrode spacing. Increasing the electrode spacing was therefore desirable for the application of diaphragms. The highest peak power density was measured using Nafion®117 with minimal electrode spacing, whereas using Nafion®117 or Celgard® with larger electrode spacing resulted in similar peak powers. Part 2 of this work focuses on numerical modelling of the FPMFCs based on mixed potential theory, implementing the experimental data from Part 1.

  20. Use of Capillaries for Macromolecular Crystallization in a Cryogenic Dewar

    Science.gov (United States)

    Ciszak, Ewa; Hammons, Aaron S.; Hong, Young Soo

    2002-01-01

    The enhanced gaseous nitrogen (EGN) dewar is a cryogenic dry shipper with a sealed cylinder inserted inside along with a temperature monitoring device, and is intended for macromolecular crystallization experiments on the International Space Station. Within the dewar, each crystallization experiment is contained as a solution within a plastic capillary tube. The standard procedure for loading samples in these tubes has involved rapid freezing of the precipitant and biomolecular solution, e.g., protein, directly in liquid nitrogen; this method, however, often resulted in uncontrolled formation of air voids, These air pockets, or bubbles, can lead to irreproducible crystallization results. A novel protocol has been developed to prevent formation of bubbles, and this has been tested in the laboratory as well as aboard the International Space Station during a 42-day long mission of July/August 2001. The gain or loss of mass from solutions within the plastic capillaries revealed that mass transport occurred among separated tubes, and that this mass transport was dependent upon the hygroscopic character of the solution contained in any given tube. The surface area of the plastic capillary tube also related to the observed mass transport. Furthermore, the decreased mass of solutions of-protein correlated to observed formation of protein crystals.

  1. Kr/Xe Separation over a Chabazite Zeolite Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xuhui; Zong, Zhaowang; Elsaidi, Sameh K.; Jasinski, Jacek B.; Krishna, Rajamani; Thallapally, Praveen K.; Carreon, Moises A.

    2016-08-10

    Cryogenic distillation, the current conventional technology to separate Krypton and Xenon from air, and from nuclear reprocessing technologies, is an energy-intensive and expensive process. Membrane technology could potentially make this challenging industrial separation less energy intensive and economically viable. We demonstrate that chabazite zeolite SAPO-34 membranes effectively separated Kr/Xe gas mixtures at industrially relevant compositions. Control over membrane thickness and average crystal size led to industrial range permeances and high separation selectivities. Specifically, SAPO-34 membranes can separate Kr/Xe mixtures with Kr permeances as high as 361.4 GPU and separation selectivities of 34.8 for molar compositions close to typical concentrations of these two gases in air. In addition, SAPO-34 membranes separated Kr/Xe mixtures with Kr permeances as high as 525.7 GPU and separation selectivities up to 45.1 for molar compositions as might be encountered in nuclear reprocessing technologies. Molecular sieving and differences in diffusivities were identified as the dominant separation mechanisms.

  2. Proceedings of cryogenic optical systems and instruments IV

    International Nuclear Information System (INIS)

    Melugin, R.K.

    1990-01-01

    This book contains the proceedings of Cryogenic Optical systems and Instruments IV. Topics covered include: Cryogenic System Design and Optical Technology; Cryogenic Instruments, Sensors, and Detectors; Space Cryogenic Dewars and Coolers; and Cryogenic Mechanisms, Testing, and Structures

  3. Cryogenic distribution box for Fermi National Accelerator Laboratory

    Science.gov (United States)

    Svehla, M. R.; Bonnema, E. C.; Cunningham, E. K.

    2017-12-01

    Meyer Tool & Mfg., Inc (Meyer Tool) of Oak Lawn, Illinois is manufacturing a cryogenic distribution box for Fermi National Accelerator Laboratory (FNAL). The distribution box will be used for the Muon-to-electron conversion (Mu2e) experiment. The box includes twenty-seven cryogenic valves, two heat exchangers, a thermal shield, and an internal nitrogen separator vessel, all contained within a six-foot diameter ASME coded vacuum vessel. This paper discusses the design and manufacturing processes that were implemented to meet the unique fabrication requirements of this distribution box. Design and manufacturing features discussed include: 1) Thermal strap design and fabrication, 2) Evolution of piping connections to heat exchangers, 3) Nitrogen phase separator design, 4) ASME code design of vacuum vessel, and 5) Cryogenic valve installation.

  4. A Cryogenic Flow Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Technologies Group, Inc. proposes the development of a Cryogenic Flow Sensor (CFS) for determining mass flow of cryogens in spacecraft propellant...

  5. Cryogenic Propellant Storage and Transfer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cryogenic Propellant Storage and Transfer project will demonstrate the capability to safely and efficiently store, transfer and measure cryogenic propellants,...

  6. Refrigeration and Cryogenics Specialist. J3ABR54530

    Science.gov (United States)

    Air Force Training Command, Sheppard AFB, TX.

    This document package contains an Air Force course used to train refrigeration and cryogenics specialists. The course is organized in six blocks designed for group instruction. The blocks cover the following topics: electrical principles; fundamentals of tubing and piping; metering devices, motor controls, domestic and commercial refrigeration;…

  7. Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  8. CRYOCOL a computer program to calculate the cryogenic distillation of hydrogen isotopes

    International Nuclear Information System (INIS)

    Douglas, S.R.

    1993-02-01

    This report describes the computer model and mathematical method coded into the AECL Research computer program CRYOCOL. The purpose of CRYOCOL is to calculate the separation of hydrogen isotopes by cryogenic distillation. (Author)

  9. Cryogenics maintenance strategy

    Science.gov (United States)

    Cruzat, Fabiola

    2012-09-01

    ALMA is an interferometer composed of 66 independent systems, with specific maintenance requirements for each subsystem. To optimize the observation time and reduce downtime maintenance, requirements are very demanding. One subsystem with high maintenance efforts is cryogenics and vacuum. To organize the maintenance, the Cryogenic and Vacuum department is using and implementing different tools. These are monitoring and problem reporting systems and CMMS. This leads to different maintenance approaches: Preventive Maintenance, Corrective Maintenance and Condition Based Maintenance. In order to coordinate activities with other departments the preventive maintenance schedule is kept as flexible as systems allow. To cope with unavoidable failures, the team has to be prepared to work under any condition with the spares on time. Computerized maintenance management system (CMMS) will help to manage inventory control for reliable spare part handling, the correct record of work orders and traceability of maintenance activities. For an optimized approach the department is currently evaluating where preventive or condition based maintenance applies to comply with the individual system demand. Considering the change from maintenance contracts to in-house maintenance will help to minimize costs and increase availability of parts. Due to increased number of system and tasks the cryo team needs to grow. Training of all staff members is mandatory, in depth knowledge must be built up by doing complex maintenance activities in the Cryo group, use of advanced computerized metrology systems.

  10. Zeolitic Imidazolate Framework-8 (ZIF-8) Membranes for Kr/Xe Separation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ting; Feng, Xuhui; Elsaidi, Sameh K.; Thallapally, Praveen K.; Carreon, Moises A.

    2017-01-30

    Herein, we demonstrate that a prototypical type of metal organic framework, zeolitic imidazolate framework-8 (ZIF-8), in membrane form, can effectively separate Kr/Xe gas mixtures at industrially relevant compositions. The best membranes separated Kr/Xe mixtures with average Kr permeances as high as 1.5 × 10-8 ± 0.2 mol/m2 s Pa and average separation selectivities of 14.2 ± 1.9 for molar feed compositions corresponding to Kr/Xe ratio encountered typically in air. Molecular sieving, competitive adsorption, and differences in diffusivities were identified as the prevailing separation mechanisms. These membranes potentially represent a less-energy-intensive alternative to cryogenic distillation, which is the benchmark technology used to separate this challenging gas mixture. To our best knowledge, this is the first example of any metal organic membrane composition displaying separation ability for Kr/Xe gas mixtures.

  11. Simulation of ideal-gas flow by nitrogen and other selected gases at cryogenic temperatures. [transonic flow in cryogenic wind tunnels

    Science.gov (United States)

    Hall, R. M.; Adcock, J. B.

    1981-01-01

    The real gas behavior of nitrogen, the gas normally used in transonic cryogenic tunnels, is reported for the following flow processes: isentropic expansion, normal shocks, boundary layers, and interactions between shock waves and boundary layers. The only difference in predicted pressure ratio between nitrogen and an ideal gas which may limit the minimum operating temperature of transonic cryogenic wind tunnels occur at total pressures approaching 9 atm and total temperatures 10 K below the corresponding saturation temperature. These pressure differences approach 1 percent for both isentropic expansions and normal shocks. Alternative cryogenic test gases were also analyzed. Differences between air and an ideal diatomic gas are similar in magnitude to those for nitrogen and should present no difficulty. However, differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. It is concluded that helium and cryogenic hydrogen would not approximate the compressible flow of an ideal diatomic gas.

  12. Germanium cryogenic detectors: Alpha surface events rejection capabilities

    International Nuclear Information System (INIS)

    Fiorucci, S.; Broniatowski, A.; Chardin, G.; Censier, B.; Lesquen, A. de; Deschamps, H.; Fesquet, M.; Jin, Y.

    2006-01-01

    Alpha surface events and multiple compton gamma interactions are the two major background components in Ge detectors for double-beta decay investigations. Two different methods have been studied to identify such type of events, using cryogenic Ge detectors developed primarily for dark matter search: (i) combined heat and ionization measurements, and (ii) pulse-shape analysis of the charge collection signals. Both methods show strong separation between electron recoil events and surface alphas. Cryogenic heat-ionization detectors therefore appear able to reject virtually all surface alpha interactions

  13. The oxycoal process with cryogenic oxygen supply

    Science.gov (United States)

    Kather, Alfons; Scheffknecht, Günter

    2009-09-01

    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly

  14. Review of the Scientific Basis for the Mandatory Separation of an Air Traffic Control Specialist at Age 56

    National Research Council Canada - National Science Library

    Broach, Dana; Schroeder, David

    2005-01-01

    .... The review was not a comprehensive examination of the extensive literature on aging, health, stress, shiftwork, cognitive abilities, or job performance, including errors, as related to the air...

  15. Cryogenic Cooling for Myriad Applications-A STAR Is Born

    Science.gov (United States)

    2006-01-01

    Cryogenics, the science of generating extremely low temperatures, has wide applicability throughout NASA. The Agency employs cryogenics for rocket propulsion, high-pressure gas supply, breathable air in space, life support equipment, electricity, water, food preservation and packaging, medicine, imaging devices, and electronics. Cryogenic liquid oxygen and liquid hydrogen systems are also replacing solid rocket motor propulsion systems in most of the proposed launch systems, a reversion to old-style liquid propellants. In the late 1980s, NASA wanted a compact linear alternator/motor with reduced size and mass, as well as high efficiency, that had unlimited service life for use in a thermally driven power generator for space power applications. Prior development work with free-piston Stirling converters (a Stirling engine integrated with a linear actuator that produces electrical power output) had shown the promise of that technology for high-power space applications. A dual use for terrestrial applications exists for compact Stirling converters for onsite combined heat and power units. The Stirling cycle is also usable in reverse as a refrigeration cycle suitable for cryogenic cooling, so this Stirling converter work promised double benefits as well as dual uses. The uses for cryogenic coolers within NASA abound; commercial applications are similarly wide-ranging, from cooling liquid oxygen and nitrogen, to cryobiology and bio-storage, cryosurgery, instrument and detector cooling, semiconductor manufacturing, and support service for cooled superconducting power systems.

  16. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  17. The role of algal organic matter in the separation of algae and cyanobacteria using the novel "Posi" - Dissolved air flotation process.

    Science.gov (United States)

    Hanumanth Rao, Narasinga Rao; Yap, Russell; Whittaker, Michael; Stuetz, Richard M; Jefferson, Bruce; Peirson, William L; Granville, Anthony M; Henderson, Rita K

    2018-03-01

    Algae and cyanobacteria frequently require separation from liquid media in both water treatment and algae culturing for biotechnology applications. The effectiveness of cell separation using a novel dissolved air flotation process that incorporates positively charged bubbles (PosiDAF) has recently been of interest but has been shown to be dependent on the algae or cyanobacteria species tested. Previously, it was hypothesised that algal organic matter (AOM) could be impacting the separation efficiency. Hence, this study investigates the influence of AOM on cell separation using PosiDAF, in which bubbles are modified using a commercially available cationic polyelectrolyte poly(N, N-diallyl-N,N-dimethylammonium chloride) (PDADMAC). The separation of Chlorella vulgaris CS-42/7, Mychonastes homosphaera CS-556/01 and two strains of Microcystis aeruginosa (CS-564/01 and CS-555/1), all of which have similar cell morphology but different AOM character, was investigated. By testing the cell separation in the presence and absence of AOM, it was determined that AOM enhanced cell separation for all the strains but to different extents depending on the quantity and composition of carbohydrates and proteins in the AOM. By extracting AOM from the strain for which optimal separation was observed and adding it to the others, cell separation improved from 90%. This was attributed to elevated levels of acidic carbohydrates as well as glycoprotein-carbohydrate conjugations, which in turn were related to the nature and quantity of proteins and carbohydrates present in the AOM. Therefore, it was concluded that process optimisation requires an in-depth understanding of the AOM and its components. If culturing algae for biotechnology applications, this indicates that strain selection is not only important with respect to high value product content, but also for cell separation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes

    KAUST Repository

    Zhang, Xiaoyuan

    2011-01-01

    The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely-spaced electrodes, and cathode supporters were used to avoid water gaps between the separator and cathode that can reduce power production. The maximum power density with a separator and supporter and a single cathode was 75±1W/m3. Removing the separator decreased power by 8%. Adding a second cathode increased power to 154±1W/m3. Current was increased by connecting two MFCs connected in parallel. These results show that brush anodes, combined with a glass fiber separator and a plastic mesh supporter, produce a useful MFC architecture that is inherently scalable due to good insulation between the electrodes and a compact architecture. © 2010 Elsevier Ltd.

  19. Measuring the Densities of Aqueous Glasses at Cryogenic Temperatures.

    Science.gov (United States)

    Shen, Chen; Julius, Ethan F; Tyree, Timothy J; Dan, Ritwik; Moreau, David W; Thorne, Robert

    2017-06-28

    We demonstrate a method for determining the vitreous phase cryogenic temperature densities of aqueous mixtures, and other samples that require rapid cooling, to prepare the desired cryogenic temperature phase. Microliter to picoliter size drops are cooled by projection into a liquid nitrogen-argon (N2-Ar) mixture. The cryogenic temperature phase of the drop is evaluated using a visual assay that correlates with X-ray diffraction measurements. The density of the liquid N2-Ar mixture is adjusted by adding N2 or Ar until the drop becomes neutrally buoyant. The density of this mixture and thus of the drop is determined using a test mass and Archimedes principle. With appropriate care in drop preparation, management of gas above the liquid cryogen mixture to minimize icing, and regular mixing of the cryogenic mixture to prevent density stratification and phase separation, densities accurate to <0.5% of drops as small as 50 pL can readily be determined. Measurements on aqueous cryoprotectant mixtures provide insight into cryoprotectant action, and provide quantitative data to facilitate thermal contraction matching in biological cryopreservation.

  20. Separation of special toxic substances from the air and incinerator of offgas streams, especially of radioactive iodine and polycyclic carbon hydrogens

    International Nuclear Information System (INIS)

    Nikoopour-Deylami, A.H.

    1981-11-01

    In the first part of the thesis, the adsorption of radioiodine and methyliodide on different kinds of active charcoal was studied. It was observed that untreated charcoal retains radioiodine sufficiently, while organic compounds as methyliodid could be adsorbed after pretreating with triethylenediamine even at high air velocities. In the presence of moisture in the air the efficiency dropped down to 30% of the original value. In the second part of the work an apparatus using sandfilter columns for the separation of toxic substances and thermochrome column for marking the temperature intervals was developed and posted at different places in athe filtering system of an incineration plant. After extraction of the polycyclic aromates with benzene from the column and chemical separation, the neutral fraction was split by a silicagel column and 14 toxic aromates identified by gas chromatography. It could be proven that 97 +- 2% of the polycyclic aromates were retained by the existing ceramic filter systems. (Author)

  1. Cryogenic Propellant Storage and Transfer

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Flight Demonstration development has been canceled in favor of a ground test bed development for of passive/active cryogenic propellant storage, transfer, and...

  2. A Piezoelectric Cryogenic Heat Switch

    Science.gov (United States)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  3. Individual protection clothing for use in cryogenics conditions and radioactive contamination environment

    International Nuclear Information System (INIS)

    Sima, Alina; Gorincu, Adriana; Peteu, Gh.; Mihaila, V.; Iliescu, V.

    1997-01-01

    This work has as objective presentation of individual protection clothing destined for use in cryogenic and radioactive contamination environment. The paper presents: - types of basic materials used as exterior layer of clothing; - variants of clothing structures; - typical individual protection clothing used in cryogenic environment (overalls, two piece clothing, aprons); - indices for characterizing the cryogenic and radioactive contamination efficiency (total thermal conductivity, water vapor and air permeability, radioactive contamination resistance); - pictograph plots to represent the performance levels for different types of individual protection clothing according to the Directives of the European Council 889/686/CEE. Values for the characterization indices of the protection efficiency as obtained following the testings carried out are presented

  4. R&D ERL: Cryogenic System

    Energy Technology Data Exchange (ETDEWEB)

    Than, R.

    2010-01-01

    The ERL cryogenic system will supply cooling to a super-conducting RF (SCRF) gun and the 5-cell super-conducting RF cavity system that need to be held cold at 2K. The engineering of the cavity cryomodules were carried out by AES in collaboration with BNL. The 2K superfluid bath is produced by pumping on the bath using a sub-atmospheric warm compression system. The cryogenic system makes use of mainly existing equipment relocated from other facilities: a 300W 4.5K coldbox, an 45 g/s screw compressor, a 3800 liter liquid helium storage dewar, a 170 m{sup 3} warm gas storage tank, and a 40,000 liter vertical low pressure liquid nitrogen storage dewar. An existing wet expander obtained from another facility has been added to increase the plant capacity. In order to deliver the required 3 to 4 bar helium to the cryomodules while using up stored liquid capacity at low pressure, a new subcooler will be installed to function as the capacity transfer device. A 2K to 4K recovery heat exchanger is also implemented for each cryomodule to recover refrigeration below 4K, thus maximizing 2K cooling capacity with the given sub-atmospheric pump. No 4K-300K refrigeration recovery is implemented at this time of the returning sub-atmospheric cold vapor, hence the 2K load appears as a liquefaction1 load on the cryogenic plant. A separate LN2 cooling loop supplies liquid nitrogen to the superconducting gun's cathode tip.

  5. Cryogenic Permanent Magnet Undulators

    International Nuclear Information System (INIS)

    Chavanne, J.; Lebec, G.; Penel, C.; Revol, F.; Kitegi, C.

    2010-01-01

    For an in-vacuum undulator operated at small gaps the permanent magnet material needs to be highly resistant to possible electron beam exposure. At room temperature, one generally uses Sm 2 Co 17 or high coercivity NdFeB magnets at the expense of a limited field performance. In a cryogenic permanent magnet undulator (CPMU), at a temperature of around 150 K, any NdFeB grade reveals a coercivity large enough to be radiation resistant. In particular, very high remanence NdFeB material can be used to build undulators with enhanced field and X-ray brilliance at high photon energy provided that the pre-baking of the undulator above 100 deg. C can be eliminated. The ESRF has developed a full scale 2 m long CPMU with a period of 18 mm. This prototype has been in operation on the ID6 test beamline since January 2008. A significant effort was put into the characterization of NdFeB material at low temperature, the development of dedicated magnetic measurement systems and cooling methods. The measured heat budget with beam is found to be larger than expected without compromising the smooth operation of the device. Leading on from this first experience, new CPMUs are currently being considered for the upgrade of the ESRF.

  6. 75 FR 30742 - Modification of the Process for Requesting a Waiver of the Mandatory Separation Age of 56 for Air...

    Science.gov (United States)

    2010-06-02

    ... change, to http://www.regulations.gov , including any personal information you provide. Using the search... $26,000 or $18,000 present value, as shown in table 1. [GRAPHIC] [TIFF OMITTED] TP02JN10.309 FAA has... proposed rule would help extend the careers of experienced air traffic controllers and thus have no impact...

  7. Vapour permeation for the recovery of organic solvents from waste air streams: separation capacities and process optimization

    NARCIS (Netherlands)

    Leemann, M.; Leemann, M.; Eigenberger, G.; Strathmann, H.

    1996-01-01

    Vapour permeation is a potentially suitable technology for the recovery of organic solvents from waste air streams. New solvent stable capillary membrane modules that are currently emerging on the market provide large membrane areas for an acceptable price and enhance the competitiveness of this

  8. Cryogenic engineering fifty years of progress

    CERN Document Server

    Reed, Richard

    2007-01-01

    Cryogenic Engineering: Fifty Years of Progress is a benchmark reference work which chronicles the major developments in the field. Starting with an historical background dating to the 1850s, this book reviews the development of data resources now available for cryogenic fields and properties of materials. The advances in cryogenic fundamentals are covered by reviews of cryogenic principles, cryogenic insulation, low-loss storage systems, modern liquefaction processes, helium cryogenics and low-temperature thermometry. Several well-established applications resulting from cryogenic advances include aerospace cryocoolers and refrigerators, use of LTS and HTS systems in electrical applications, and recent changes in cryopreservation. Extensive references are provided for the readers interested in the details of these cryogenic engineering advances.

  9. Cryogenics bringing the temperature down, underground

    CERN Multimedia

    2005-01-01

    The first 600m of the LHC cryogenic distribution line (QRL), which will feed the accelerator's superconducting magnets, has passed initial validating tests of its mechanical design at room and cryogenic temperatures.

  10. Overview of the Liquid Argon Cryogenics for the Short Baseline Neutrino Program (SBN) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Barry [Fermilab; Bremer, Johan [CERN; Chalifour, Michel [Fermilab; Delaney, Mike [Fermilab; Dinnon, Mike [Fermilab; Doubnik, Roza [Fermilab; Geynisman, Michael [Fermilab; Hentschel, Steve [Fermilab; Kim, Min Jeong [Fermilab; Stefanik, Andy [Fermilab; Tillman, Justin [Fermilab; Zuckerbrot, Mike [Fermilab

    2017-01-01

    The Short-Baseline Neutrino (SBN) physics program will involve three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. The Program will be composed of an existing and operational detector known as Micro Boone (170 ton LAr mass) plus two new experiments known as the SBN Near Detector (SBND, ~ 260 ton) and the SBN Far Detector (SBN-FD, ~ 600 tons). Fermilab is now building two new facilities to house the experiments and incorporate all cryogenic and process systems to operate these detectors beginning in the 2018-2019 time frame. The SBN cryogenics are a collaborative effort between Fermilab and CERN. The SBN cryogenic systems for both detectors are composed of several sub-systems: External/Infrastructure (or LN2), Proximity (or LAr), and internal cryogenics. For each detector the External/Infrastructure cryogenics includes the equipment used to store and the cryogenic fluids needed for the operation of the Proximity cryogenics, including the LN2 and LAr storage facilities. The Proximity cryogenics consists of all the systems that take the cryogenic fluids from the external/infrastructure cryogenics and deliver them to the internal at the required pressure, temperature, purity and mass flow rate. It includes the condensers, the LAr and GAr purification systems, the LN2 and LAr phase separators, and the interconnecting piping. The Internal cryogenics is comprised of all the cryogenic equipment located within the cryostats themselves, including the GAr and LAr distribution piping and the piping required to cool down the cryostats and the detectors. These cryogenic systems will be engineered, manufactured, commissioned, and

  11. Silicon Germanium Cryogenic Low Noise Amplifiers

    Science.gov (United States)

    Bardin, J. C.; Montazeri, S.; Chang, Su-Wei

    2017-05-01

    Silicon germanium heterojunction bipolar transistors have emerged in the last decade as an excellent option for use in cryogenic low noise amplifiers. This paper begins with a review of the critical developments that have led to today’s cryogenic low noise amplifiers. Next, recent work focused on minimizing the power consumption of SiGe cryogenic amplifiers is presented. Finally, open issues related to the cryogenic noise properties of SiGe HBTs are discussed.

  12. High speed cryogenic monodisperse targets

    Science.gov (United States)

    Boukharov, A.; Vishnevkii, E.

    2017-11-01

    The basic possibility of creation of high speed cryogenic monodisperse targets is shown. According to calculations at input of thin liquid cryogenic jets with a velocity of bigger 100 m/s in vacuum the jets don’t manage to freeze at distance to 1 mm and can be broken into monodisperse drops. Drops due to evaporation are cooled and become granules. High speed cryogenic monodisperse targets have the following advantages: direct input in vacuum (there is no need for a chamber of a triple point chamber and sluices), it is possible to use the equipment of a cluster target, it is possible to receive targets with a diameter of D 100m/s), exact synchronization of the target hitting moment in a beam with the moment of sensors turning on.

  13. Cryogenic safety organisation at CERN

    CERN Document Server

    CERN. Geneva

    2016-01-01

    With Safety being a top priority of CERN’s general policy, the Organisation defines and implements a Policy that sets out the general principles governing Safety at CERN. To the end of the attainment of said Safety objectives, the organic units (owners/users of the equipment) are assigned the responsibility for the implementation of the CERN Safety Policy at all levels of the organization, whereas the Health and Safety and Environmental Protection Unit (HSE) has the role of providing assistance for the implementation of the Safety Policy, and a monitoring role related to the implementation of continuous improvement of Safety, compliance with the Safety Rules and the handling of emergency situations. This talk will elaborate on the roles, responsibilities and organisational structure of the different stakeholders within the Organization with regards to Safety, and in particular to cryogenic safety. The roles of actors of particular importance such as the Cryogenic Safety Officers (CSOs) and the Cryogenic Sa...

  14. Temperature control of cryogenic systems

    International Nuclear Information System (INIS)

    Lessard, P.A.; Bartlett, A.J.; Peterson, J.F.

    1987-01-01

    A cryogenic refrigerator is described comprising: a refrigerator heat sink; a source of refrigerant gas under pressure; gas expansion means including a reciprocating piston in a cylinder for expanding the refrigerant gas in a gas expansion space within the cylinder to cool the gas and the refrigerator heat sink to cryogenic temperatures; means for selectively diverting refrigerant gas away from the gas expansion means; and a heat exchanger in thermal communication with the refrigerator heat sink for receiving diverted gas and conducting heat from the refrigerant gas into the refrigerator heat sink to warm the heat sink while keeping the diverted gas out of fluid communication with the gas expansion space

  15. Analysis of Cryogenic Cycle with Process Modeling Tool: Aspen HYSYS

    International Nuclear Information System (INIS)

    Joshi, D.M.; Patel, H.K.

    2015-01-01

    Cryogenic engineering deals with the development and improvement of low temperature techniques, processes and equipment. A process simulator such as Aspen HYSYS, for the design, analysis, and optimization of process plants, has features that accommodate the special requirements and therefore can be used to simulate most cryogenic liquefaction and refrigeration processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Cryogenic processes require special attention in terms of the integration of various components like heat exchangers, Joule-Thompson Valve, Turbo expander and Compressor. Here, Aspen HYSYS, a process modeling tool, is used to understand the behavior of the complete plant. This paper presents the analysis of an air liquefaction plant based on the Linde cryogenic cycle, performed using the Aspen HYSYS process modeling tool. It covers the technique used to find the optimum values for getting the maximum liquefaction of the plant considering different constraints of other parameters. The analysis result so obtained gives clear idea in deciding various parameter values before implementation of the actual plant in the field. It also gives an idea about the productivity and profitability of the given configuration plant which leads to the design of an efficient productive plant

  16. Selective Ion Transporting Polymerized Ionic Liquid Membrane Separator for Enhancing Cycle Stability and Durability in Secondary Zinc-Air Battery Systems.

    Science.gov (United States)

    Hwang, Ho Jung; Chi, Won Seok; Kwon, Ohchan; Lee, Jin Goo; Kim, Jong Hak; Shul, Yong-Gun

    2016-10-05

    Rechargeable secondary zinc-air batteries with superior cyclic stability were developed using commercial polypropylene (PP) membrane coated with polymerized ionic liquid as separators. The anionic exchange polymer was synthesized copolymerizing 1-[(4-ethenylphenyl)methyl]-3-butylimidazolium hydroxide (EBIH) and butyl methacrylate (BMA) monomers by free radical polymerization for both functionality and structural integrity. The ionic liquid induced copolymer was coated on a commercially available PP membrane (Celguard 5550). The coat allows anionic transfer through the separator and minimizes the migration of zincate ions to the cathode compartment, which reduces electrolyte conductivity and may deteriorate catalytic activity by the formation of zinc oxide on the surface of the catalyst layer. Energy dispersive X-ray spectroscopy (EDS) data revealed the copolymer-coated separator showed less zinc element in the cathode, indicating lower zinc crossover through the membrane. Ion coupled plasma optical emission spectroscopy (ICP-OES) analysis confirmed over 96% of zincate ion crossover was reduced. In our charge/discharge setup, the constructed cell with the ionic liquid induced copolymer casted separator exhibited drastically improved durability as the battery life increased more than 281% compared to the pure commercial PP membrane. Electrochemical impedance spectroscopy (EIS) during the cycle process elucidated the premature failure of cells due to the zinc crossover for the untreated cell and revealed a substantial importance must be placed in zincate control.

  17. Hermeticity of three cryogenic calorimeter geometries

    International Nuclear Information System (INIS)

    Strovink, M.; Wormersley, W.J.; Forden, G.E.

    1989-04-01

    We calculate the effect of cracks and dead material on resolution in three simplified cryogenic calorimeter geometries, using a crude approximation that neglects transverse shower spreading and considers only a small set of incident angles. For each dead region, we estimate the average unseen energy using a shower parametrization, and relate it to resolution broadening using a simple approximation that agrees with experimental data. Making reasonable and consistent assumptions on cryostat wall thicknesses, we find that the effects of cracks and dead material dominate the expected resolution in the region where separate ''barrel'' and ''end'' cryostats meet. This is particularly true for one geometry in which the end calorimeter caps the barrel and also protrudes into the hole within it. We also find that carefully designed auxiliary ''crack filler'' detectors can substantially reduce the loss of resolution in these areas. 6 figs

  18. Heat switch technology for cryogenic thermal management

    Science.gov (United States)

    Shu, Q. S.; Demko, J. A.; E Fesmire, J.

    2017-12-01

    Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.

  19. Air

    CERN Document Server

    Rivera, Andrea

    2017-01-01

    Air is all around us. Learn how it is used in art, technology, and engineering. Five easy-to-read chapters explain the science behind air, as well as its real-world applications. Vibrant, full-color photos, bolded glossary words, and a key stats section let readers zoom in even deeper. Aligned to Common Core Standards and correlated to state standards. Abdo Zoom is a division of ABDO.

  20. Theoretical calculation of cryogenic distillation for two-component hydrogen isotope system

    International Nuclear Information System (INIS)

    Xia Xiulong; Luo Yangming; Wang Heyi; Fu Zhonghua; Liu Jun; Han Jun; Gu Mei

    2005-10-01

    Cryogenic distillation model for single column was built to simulating hydrogen isotope separation system. Three two-component system H 2 /HD, H 2 /HT and D 2 /DT was studied. Both temperature and concentration distribution was obtained and the results show a clear separation characteristics. H 2 /HT has the best separation performance while D 2 /DT was the most difficult to separate. (authors)

  1. Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations

    KAUST Repository

    Swaidan, Raja

    2015-08-20

    Intrinsically ultramicroporous (<7 Å) polymers represent a new paradigm in materials development for membrane-based gas separation. In particular, they demonstrate that uniting intrachain “rigidity”, the traditional design metric of highly permeable polymers of intrinsic microporosity (PIMs), with gas-sieving ultramicroporosity yields high-performance gas separation membranes. Highly ultramicroporous PIMs have redefined the state-of-the-art in large-scale air (e.g., O2/N2) and hydrogen recovery (e.g., H2/N2, H2/CH4) applications with unprecedented molecular sieving gas transport properties. Accordingly, presented herein are new 2015 permeability/selectivity “upper bounds” for large-scale commercial membrane-based air and hydrogen applications that accommodate the substantial performance enhancements of recent PIMs over preceding polymers. A subtle balance between intrachain rigidity and interchain spacing has been achieved in the amorphous microstructures of PIMs, fine-tuned using unique bridged-bicyclic building blocks (i.e., triptycene, ethanoanthracene and Tröger’s base) in both ladder and semiladder (e.g., polyimide) structures.

  2. Survey of cryogenic semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, L.J.; McKeever, J.W.

    1996-04-01

    Improved reliability and electronic performance can be achieved in a system operated at cryogenic temperatures because of the reduction in mechanical insult and in disruptive effects of thermal energy on electronic devices. Continuing discoveries of new superconductors with ever increasing values of T{sub c} above that of liquid nitrogen temperature (LNT) have provided incentive for developing semiconductor electronic systems that may also operate in the superconductor`s liquid nitrogen bath. Because of the interest in high-temperature superconductor (HTS) devices, liquid nitrogen is the cryogen of choice and LNT is the temperature on which this review is focused. The purpose of this survey is to locate and assemble published information comparing the room temperature (298 K), performance of commercially available conventional and hybrid semiconductor device with their performance at LNT (77K), to help establish their candidacy as cryogenic electronic devices specifically for use at LNT. The approach to gathering information for this survey included the following activities. Periodicals and proceedings were searched for information on the behavior of semiconductor devices at LNT. Telephone calls were made to representatives of semiconductor industries, to semiconductor subcontractors, to university faculty members prominent for their research in the area of cryogenic semiconductors, and to representatives of the National Aeronautics and Space Administration (NASA) and NASA subcontractors. The sources and contacts are listed with their responses in the introduction, and a list of references appears at the end of the survey.

  3. Champagne for the cryogenics teams

    CERN Multimedia

    2005-01-01

    Christmas has come early for the LHC as a complete sector of the cryogenic distribution line has been operating at 10 degrees Kelvin (-263°C) for the past two weeks, just a few degrees above the machine's nominal operating temperature.

  4. Operation of large cryogenic systems

    International Nuclear Information System (INIS)

    Rode, C.H.; Ferry, B.; Fowler, W.B.; Makara, J.; Peterson, T.; Theilacker, J.; Walker, R.

    1985-06-01

    This report is based on the past 12 years of experiments on R and D and operation of the 27 kW Fermilab Tevatron Cryogenic System. In general the comments are applicable for all helium plants larger than 1000W (400 l/hr) and non mass-produced nitrogen plants larger than 50 tons per day. 14 refs., 3 figs., 1 tab

  5. LHC Cryogenics on the mend

    CERN Multimedia

    2004-01-01

    On 29 September, repairs began on the LHC cryogenic distribution line, or QRL, to replace a faulty part that occurs in the hundreds of elements of the line that are already on-site. The Accelerator Technology Department is designing a work programme to finish the repairs as soon as possible and minimize delays to the rest of the LHC project.

  6. Sources of Cryogenic Data and Information

    Science.gov (United States)

    Mohling, R. A.; Hufferd, W. L.; Marquardt, E. D.

    It is commonly known that cryogenic data, technology, and information are applied across many military, National Aeronautics and Space Administration (NASA), and civilian product lines. Before 1950, however, there was no centralized US source of cryogenic technology data. The Cryogenic Data Center of the National Bureau of Standards (NBS) maintained a database of cryogenic technical documents that served the national need well from the mid 1950s to the early 1980s. The database, maintained on a mainframe computer, was a highly specific bibliography of cryogenic literature and thermophysical properties that covered over 100 years of data. In 1983, however, the Cryogenic Data Center was discontinued when NBS's mission and scope were redefined. In 1998, NASA contracted with the Chemical Propulsion Information Agency (CPIA) and Technology Applications, Inc. (TAI) to reconstitute and update Cryogenic Data Center information and establish a self-sufficient entity to provide technical services for the cryogenic community. The Cryogenic Information Center (CIC) provided this service until 2004, when it was discontinued due to a lack of market interest. The CIC technical assets were distributed to NASA Marshall Space Flight Center and the National Institute of Standards and Technology. Plans are under way in 2006 for CPIA to launch an e-commerce cryogenic website to offer bibliography data with capability to download cryogenic documents.

  7. The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan

    2010-01-01

    Separators are needed in microbial fuel cells (MFCs) to reduce electrode spacing and preventing electrode short circuiting. The use of nylon and glass fiber filter separators in single-chamber, air-cathode MFCs was examined for their effect on performance. Larger pore nylon mesh were used that had regular mesh weaves with pores ranging from 10 to 160 μm, while smaller pore-size nylon filters (0.2-0.45 μm) and glass fiber filters (0.7-2.0 μm) had a more random structure. The pore size of both types of nylon filters had a direct and predictable effect on power production, with power increasing from 443 ± 27 to 650 ± 7 mW m-2 for pore sizes of 0.2 and 0.45 μm, and from 769 ± 65 to 941 ± 47 mW m-2 for 10 to 160 μm. In contrast, changes in pore sizes of the glass fiber filters resulted in a relatively narrow change in power (732 ± 48 to 779 ± 43 mW m-2) for pore sizes of 0.7 to 2 μm. An ideal separator should increase both power density and Coulombic efficiency (CE). However, CEs measured for the different separators were inversely correlated with power production, demonstrating that materials which reduced the oxygen diffusion into the reactor also hindered proton transport to the cathode, reducing power production through increased internal resistance. Our results highlight the need to develop separators that control oxygen transfer and facilitate proton transfer to the cathode. © 2010 The Royal Society of Chemistry.

  8. A Magnetically Coupled Cryogenic Pump

    Science.gov (United States)

    Hatfield, Walter; Jumper, Kevin

    2011-01-01

    Historically, cryogenic pumps used for propellant loading at Kennedy Space Center (KSC) and other NASA Centers have a bellows mechanical seal and oil bath ball bearings, both of which can be problematic and require high maintenance. Because of the extremely low temperatures, the mechanical seals are made of special materials and design, have wearing surfaces, are subject to improper installation, and commonly are a potential leak path. The ball bearings are non-precision bearings [ABEC-1 (Annular Bearing Engineering Council)] and are lubricated using LOX compatible oil. This oil is compatible with the propellant to prevent explosions, but does not have good lubricating properties. Due to the poor lubricity, it has been a goal of the KSC cryogenics community for the last 15 years to develop a magnetically coupled pump, which would eliminate these two potential issues. A number of projects have been attempted, but none of the pumps was a success. An off-the-shelf magnetically coupled pump (typically used with corrosive fluids) was procured that has been used for hypergolic service at KSC. The KSC Cryogenics Test Lab (CTL) operated the pump in cryogenic LN2 as received to determine a baseline for modifications required. The pump bushing, bearings, and thrust rings failed, and the pump would not flow liquid (this is a typical failure mode that was experienced in the previous attempts). Using the knowledge gained over the years designing and building cryogenic pumps, the CTL determined alternative materials that would be suitable for use under the pump design conditions. The CTL procured alternative materials for the bearings (bronze, aluminum bronze, and glass filled PTFE) and machined new bearing bushings, sleeves, and thrust rings. The designed clearances among the bushings, sleeves, thrust rings, case, and case cover were altered once again using experience gained from previous cryogenic pump rebuilds and designs. The alternative material parts were assembled into

  9. Cryogenic and non-cryogenic pool calcites indicating permafrost and non-permafrost periods: a case study from the Herbstlabyrinth-Advent Cave system (Germany

    Directory of Open Access Journals (Sweden)

    D. K. Richter

    2010-11-01

    Full Text Available Weichselian cryogenic calcites collected in what is referred to as the Rätselhalle of the Herbstlabyrinth-Advent Cave system are structurally classified as rhombohedral crystals and spherulitic aggregates. The carbon and oxygen isotopic composition of these precipitates (δ13C = +0.6 to −7.3‰ δ18O = −6.9 to −18.0‰ corresponds to those of known slowly precipitated cryogenic cave calcites under conditions of isotopic equilibrium between water and ice of Central European caves. The carbon and oxygen isotopic composition varies between different caves which is attributed to the effects of cave air ventilation before the freezing started.

    By petrographic and geochemical comparisons of Weichselian cryogenic calcite with recent to sub-recent precipitates as well as Weichselian non-cryogenic calcites of the same locality, a model for the precipitation of these calcites is proposed. While the recent and sub-recent pool-calcites isotopically match the composition of interglacial speleothems (stalagmites, etc., isotope ratios of Weichselian non-cryogenic pool-calcites reflect cooler conditions. Weichselian cryogenic calcites show a trend towards low δ18O values with higher carbon isotope ratios reflecting slow freezing of the precipitating solution. In essence, the isotope geochemistry of the Weichselian calcites reflects the climate history changing from overall initial permafrost conditions to permafrost-free and subsequently to renewed permafrost conditions. Judging from the data compiled here, the last permafrost stage in the Rätselhalle is followed by a warm period (interstadial and/or Holocene. During this warmer period, the cave ice melted and cryogenic and non-cryogenic Weichselian calcite precipitates were deposited on the cave ground or on fallen blocks, respectively.

  10. Air

    International Nuclear Information System (INIS)

    Gugele, B.; Scheider, J.; Spangl, W.

    2001-01-01

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  11. Technical and economic aspects of oxygen separation for oxy-fuel purposes

    Directory of Open Access Journals (Sweden)

    Chorowski Maciej

    2015-03-01

    Full Text Available Oxy combustion is the most promising technology for carbon dioxide, originated from thermal power plants, capture and storage. The oxygen in sufficient quantities can be separated from air in cryogenic installations. Even the state-of-art air separation units are characterized by high energy demands decreasing net efficiency of thermal power plant by at least 7%. This efficiency decrease can be mitigated by the use of waste nitrogen, e.g., as the medium for lignite drying. It is also possible to store energy in liquefied gases and recover it by liquid pressurization, warm-up to ambient temperature and expansion. Exergetic efficiency of the proposed energy accumulator may reach 85%.

  12. Performance of low cost scalable air-cathode microbial fuel cell made from clayware separator using multiple electrodes.

    Science.gov (United States)

    Ghadge, Anil N; Ghangrekar, Makarand M

    2015-04-01

    Performance of scalable air-cathode microbial fuel cell (MFC) of 26 L volume, made from clayware cylinder with multiple electrodes, was evaluated. When electrodes were connected in parallel with 100 Ω resistance (R ext), power of 11.46 mW was produced which was 4.48 and 3.73 times higher than individual electrode pair and series connection, respectively. Coulombic efficiency of 5.10 ± 0.13% and chemical oxygen demand (COD) removal of 78.8 ± 5.52% was observed at R ext of 3 Ω. Performance under different organic loading rates (OLRs) varying from 0.75 to 6.0 g CODL(-1)d(-1) revealed power of 17.85 mW (47.28 mA current) at OLR of 3.0 g CODL(-1)d(-1). Internal resistance (R int) of 5.2 Ω observed is among the least value reported in literature. Long term operational stability (14 months) demonstrates the technical viability of clayware MFC for practical applications and potential benefits towards wastewater treatment and electricity recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Cryogenic systems for detectors and particle accelerators

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1988-01-01

    It's been one hundred years since the first successful experiments were carried out leading to the liquefaction of oxygen which birthed the field of cryogenics and about sixty years since cryogenics went commercial. Originally, cryogenics referred to the technology and art of producing low temperatures but today the definition adopted by the XII Congress of the International Institute of Refrigeration describes cryogenics as the study of phenomena, techniques, and concepts occurring at our pertaining to temperatures below 120 K. Modern acceptance of the importance and use of cryogenic fluids continues to grow. By far, the bulk of cryogenic products are utilized by industry for metal making, agriculture, medicine, food processing and as efficient storage of fuels. Cryogenics has found many uses in the scientific community as well, enabling the development of ultra low noise amplifiers, fast cold electronics, cryopumped ultra high vacuums, the production of intense magnetic fields and low loss power transmission through the sue of cryogenically cooled superconductors. High energy physic research has been and continues to use cryogenic hardware to produce liquids used as detector targets and to produce refrigeration necessary to cool superconducting magnets to design temperature for particle accelerator applications. In fact, today's super accelerators achieve energies that would be impossible to reach with conventional copper magnets, demonstrating that cryogenics has become an indispensable ingredient in today's scientific endeavors

  14. Final report for the cryogenic retrieval demonstration

    International Nuclear Information System (INIS)

    Valentich, D.J.; Yokuda, E.L.

    1992-09-01

    This report documents a demonstration of a proposed buried transuranic waste retrieval concept that uses cryogenic ground freezing and remote excavation. At the Idaho National Engineering Laboratory (INEL), there are over 8 million ft 3 of intermingled soil and transuranic (TRU) wastes in shallow land burial, and retrieval of the material is one of the options being considered by the Buried Waste Integrated Demonstration for the Environmental Restoration program. Cryogenically freezing contaminated soil and buried waste has been proposed as a way to greatly reduce or eliminate the climate the threat of contamination spread during retrieval activities. In support of this idea, a demonstration of an innovative ground freezing and retrieval technology was performed at the INEL. This initial demonstration was held near the Radioactive Waste Management Complex at a ''cold test pit'' that was built in 1988 as a test bed for the demonstration of retrieval contamination control technologies. This pit is not contaminated with any radioactive or hazardous wastes. Barrels and boxes filled with metals, plastics, tools, paper, cloth, etc. configured in the same manner as expected in contaminated pits and trenches are buried at the cold test pit. After design, fabrication, and shop testing, Sonsub mobilized to the field in early July 1992 to perform the field demonstration. It was planned to freeze and extract four pits, each 9 x 9 x 10 ft. Each pit represented a different configuration of buried waste (stacked boxes, stacked barrels, random dumped barrels and boxes, and random dumped barrels). Sonsub's proposed technology consisted of driving a series of freeze pipes into the soil and waste, using liquid nitrogen to freeze the mass, and extracting the soil and debris using a series of remote operated, bridge crane mounted tools. In conjunction with the freezing and removal activities, temperature and moisture measurements, and air monitoring were performed

  15. Final report for the cryogenic retrieval demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Valentich, D.J.; Yokuda, E.L.

    1992-09-01

    This report documents a demonstration of a proposed buried transuranic waste retrieval concept that uses cryogenic ground freezing and remote excavation. At the Idaho National Engineering Laboratory (INEL), there are over 8 million ft{sup 3} of intermingled soil and transuranic (TRU) wastes in shallow land burial, and retrieval of the material is one of the options being considered by the Buried Waste Integrated Demonstration for the Environmental Restoration program. Cryogenically freezing contaminated soil and buried waste has been proposed as a way to greatly reduce or eliminate the climate the threat of contamination spread during retrieval activities. In support of this idea, a demonstration of an innovative ground freezing and retrieval technology was performed at the INEL. This initial demonstration was held near the Radioactive Waste Management Complex at a ``cold test pit`` that was built in 1988 as a test bed for the demonstration of retrieval contamination control technologies. This pit is not contaminated with any radioactive or hazardous wastes. Barrels and boxes filled with metals, plastics, tools, paper, cloth, etc. configured in the same manner as expected in contaminated pits and trenches are buried at the cold test pit. After design, fabrication, and shop testing, Sonsub mobilized to the field in early July 1992 to perform the field demonstration. It was planned to freeze and extract four pits, each 9 {times} 9 {times} 10 ft. Each pit represented a different configuration of buried waste (stacked boxes, stacked barrels, random dumped barrels and boxes, and random dumped barrels). Sonsub`s proposed technology consisted of driving a series of freeze pipes into the soil and waste, using liquid nitrogen to freeze the mass, and extracting the soil and debris using a series of remote operated, bridge crane mounted tools. In conjunction with the freezing and removal activities, temperature and moisture measurements, and air monitoring were performed.

  16. Final report for the cryogenic retrieval demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Valentich, D.J.; Yokuda, E.L.

    1992-09-01

    This report documents a demonstration of a proposed buried transuranic waste retrieval concept that uses cryogenic ground freezing and remote excavation. At the Idaho National Engineering Laboratory (INEL), there are over 8 million ft[sup 3] of intermingled soil and transuranic (TRU) wastes in shallow land burial, and retrieval of the material is one of the options being considered by the Buried Waste Integrated Demonstration for the Environmental Restoration program. Cryogenically freezing contaminated soil and buried waste has been proposed as a way to greatly reduce or eliminate the climate the threat of contamination spread during retrieval activities. In support of this idea, a demonstration of an innovative ground freezing and retrieval technology was performed at the INEL. This initial demonstration was held near the Radioactive Waste Management Complex at a cold test pit'' that was built in 1988 as a test bed for the demonstration of retrieval contamination control technologies. This pit is not contaminated with any radioactive or hazardous wastes. Barrels and boxes filled with metals, plastics, tools, paper, cloth, etc. configured in the same manner as expected in contaminated pits and trenches are buried at the cold test pit. After design, fabrication, and shop testing, Sonsub mobilized to the field in early July 1992 to perform the field demonstration. It was planned to freeze and extract four pits, each 9 [times] 9 [times] 10 ft. Each pit represented a different configuration of buried waste (stacked boxes, stacked barrels, random dumped barrels and boxes, and random dumped barrels). Sonsub's proposed technology consisted of driving a series of freeze pipes into the soil and waste, using liquid nitrogen to freeze the mass, and extracting the soil and debris using a series of remote operated, bridge crane mounted tools. In conjunction with the freezing and removal activities, temperature and moisture measurements, and air monitoring were

  17. Characterization of an Integral Thermal Protection and Cryogenic Insulation Material for Advanced Space Transportation Vehicles

    Science.gov (United States)

    Salerno, L. J.; White, S. M.; Helvensteijn, B. P. M.

    2000-01-01

    NASA's planned advanced space transportation vehicles will benefit from the use of integral/conformal cryogenic propellant tanks which will reduce the launch weight and lower the earth-to-orbit costs considerably. To implement the novel concept of integral/conformal tanks requires developing an equally novel concept in thermal protection materials. Providing insulation against reentry heating and preserving propellant mass can no longer be considered separate problems to be handled by separate materials. A new family of materials, Superthermal Insulation (STI), has been conceiving and investigated by NASA's Ames Research Center to simultaneously provide both thermal protection and cryogenic insulation in a single, integral material.

  18. Composite materials for cryogenic structures

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1978-01-01

    The paper is concerned with the composition, mechanical properties and capabilities of various types of composite materials for cryogenic structures. Attention is given to high-pressure plastic laminates, low-pressure plastic laminates, metal-matrix laminates, and aggregates (low-temperature concretes). The ability of these materials to match the strength and modulus of stainless steels suggests that their usage will substantially increase as alloying elements become scarce and more expensive

  19. Cryogenic moderator simulations: confronting reality

    International Nuclear Information System (INIS)

    Iverson, E. B.

    1999-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source dedicated to materials research. Its three cryogenic methane moderators provide twelve neutron beams to fourteen instruments and test facilities. This report concerns ongoing activities for benchmarking our Monte Carlo model of the IPNS neutron generation system. This paper concentrates on the techniques (both experimental and calculational) used in such benchmarking activities

  20. Room temperature cryogenic test interface

    International Nuclear Information System (INIS)

    Faris, S. M.; Davidson, A.; Moskowitz, P. A.; Sai-Halasz, G. A.

    1985-01-01

    This interface permits the testing of high speed semiconductor devices (room-temperature chips) by a Josephson junction sampling device (cryogenic chip) without intolerable loss of resolution. The interface comprises a quartz pass-through plug which includes a planar transmission line interconnecting a first chip station, where the cryogenic chip is mounted, and a second chip station, where the semiconductor chip to be tested is temporarily mounted. The pass-through plug has a cemented long half-cylindrical portion and short half-cylindrical portion. The long portion carries the planar transmission line, the ends of which form the first and second chip mounting stations. The short portion completes the cylinder with the long portion for part of its length, where a seal can be achieved, but does not extend over the chip mounting stations. Sealing is by epoxy cement. The pass-through plug is sealed in place in a flange mounted to the chamber wall. The first chip station, with the cryogenic chip attached, extends into the liquid helium reservoir. The second chip station is in the room temperature environment required for semiconductor operation. Proper semiconductor operating temperature is achieved by a heater wire and control thermocouple in the vicinity of each other and the second chip mounting station. Thermal isolation is maintained by vacuum and seals. Connections for power and control, for test result signals, for temperature control and heating, and for vacuum complete the test apparatus

  1. Centrifugal Separation of Antiprotons and Electrons

    CERN Document Server

    Gabrielse, G; McConnell, R; Richerme, P; Wrubel, J; Kalra, R; Novitski, E; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Borbely, J S; Fitzakerley, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Mullers, A; Walz, J; Speck, A

    2010-01-01

    Centrifugal separation of antiprotons and electrons is observed, the first such demonstration with particles that cannot be laser cooled or optically imaged. The spatial separation takes place during the electron cooling of trapped antiprotons, the only method available to produce cryogenic antiprotons for precision tests of fundamental symmetries and for cold antihydrogen studies. The centrifugal separation suggests a new approach for isolating low energy antiprotons and for producing a controlled mixture of antiprotons and electrons.

  2. Thermal Modeling and Analysis of a Cryogenic Tank Design Exposed to Extreme Heating Profiles

    Science.gov (United States)

    Stephens, Craig A.; Hanna, Gregory J.

    1991-01-01

    A cryogenic test article, the Generic Research Cryogenic Tank, was designed to qualitatively simulate the thermal response of transatmospheric vehicle fuel tanks exposed to the environment of hypersonic flight. One-dimensional and two-dimensional finite-difference thermal models were developed to simulate the thermal response and assist in the design of the Generic Research Cryogenic Tank. The one-dimensional thermal analysis determined the required insulation thickness to meet the thermal design criteria and located the purge jacket to eliminate the liquefaction of air. The two-dimensional thermal analysis predicted the temperature gradients developed within the pressure-vessel wall, estimated the cryogen boiloff, and showed the effects the ullage condition has on pressure-vessel temperatures. The degree of ullage mixing, location of the applied high-temperature profile, and the purge gas influence on insulation thermal conductivity had significant effects on the thermal behavior of the Generic Research Cryogenic Tank. In addition to analysis results, a description of the Generic Research Cryogenic Tank and the role it will play in future thermal structures and transatmospheric vehicle research at the NASA Dryden Flight Research Facility is presented.

  3. FRIB Cryogenic Distribution System and Status

    Energy Technology Data Exchange (ETDEWEB)

    Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Laverdure, Nathaniel A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Yang, Shuo [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Nellis, Timothy [Michigan State Univ., East Lansing, MI (United States); Jones, S. [Michigan State Univ., East Lansing, MI (United States); Casagrande, Fabio [Michigan State Univ., East Lansing, MI (United States)

    2015-12-01

    The MSU-FRIB cryogenic distribution system supports the 2 K primary, 4 K primary, and 35 - 55 K shield operation of more than 70 loads in the accelerator and the experimental areas. It is based on JLab and SNS experience with bayonet-type disconnects between the loads and the distribution system for phased commissioning and maintenance. The linac transfer line, which features three separate transfer line segments for additional independence during phased commissioning at 4 K and 2 K, connects the folded arrangement of 49 cryomodules and 4 superconducting dipole magnets and a fourth transfer line supports the separator area cryo loads. The pressure reliefs for the transfer line process lines, located in the refrigeration room outside the tunnel/accelerator area, are piped to be vented outdoors. The transfer line designs integrate supply and return flow paths into a combined vacuum space. The main linac distribution segments are produced in a small number of standard configurations; a prototype of one such configuration has been fabricated at Jefferson Lab and has been installed at MSU to support testing of a prototype FRIB cryomodule.

  4. High Reliability Cryogenic Piezoelectric Valve Actuator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid valves are subject to harsh exposure and actuators to drive these valves require robust performance and high reliability. DSM's piezoelectric...

  5. Cryogenic MEMS Technology for Sensing Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of cryogenic microwave components, such as focal plane polarization modulators, first requires an RF MEMS switching technology that operates...

  6. StructUre and test results of the Tokamak-7 device cryogenic system

    International Nuclear Information System (INIS)

    Babaev, I.V.; VolobUev, A.N.; Zhul'kin, V.F.

    1982-01-01

    A cryogenic system (CS) of the Tokamak-7 (T-7) installation with the longitudinal field superconducting magnetic system (SMS) is described. The CS is designed for cool-down, cryostatic cooling and heating of the T-7 cryogenic objects and consists of a helium system (HS) and a nitrogen cryogenic system (NCS). The HS consists of:a a heliUm delivery system intended for distributing and controlling the helium flows in the SMS; cryogenic helium units; a 1.25 m 3 volume for storing liquid helium; a compressor compartment using piston compressors at the 3 MPa operating pressure and 140 g/s total capacity; gaseous helium storages (3600 m 3 under normal conditions); helium cleaning and drying systems; a gas holder of 20 m 3 operating volume; cryogenic pipelines and pipe fittings. The NCS operates on delivered nitrogen and includes a 120 m 3 liquid nitrogen storage, evaporators and electric heaters producing up to 230 g/s of gaseous nitrogen at 300 K, a separator, cryogenic pipelines and fittings. It is found that the CS has the necessary cold production reserve, ensures reliable operation of the Tokamak-7 device and permits to carry out practically continuous plasma experiments

  7. Solid-cryogen-stabilized, cable-in-conduit (CIC) superconducting cables

    Science.gov (United States)

    Voccio, J. P.; Michael, P. C.; Bromberg, L.; Hahn, S.

    2015-12-01

    This paper considers the use of a solid cryogen as a means to stabilize, both mechanically and thermally, magnesium diboride (MgB2) superconducting strands within a dual-channel cable-in-conduit (CIC) cable for use in AC applications, such as a generator stator winding. The cable consists of two separate channels; the outer channel contains the superconducting strands and is filled with a fluid (liquid or gas) that becomes solid at the device operating temperature. Several options for fluid will be presented, such as liquid nitrogen, hydrocarbons and other chlorofluorocarbons (CFCs) that have a range of melting temperatures and volumetric expansions (from solid at operating temperature to fixed volume at room temperature). Implications for quench protection and conductor stability, enhanced through direct contact with the solid cryogen, which has high heat capacity and thermal conductivity (compared with helium gas), will be presented. Depending on the cryogen, the conductor will be filled initially either with liquid at atmospheric conditions or a gas at high pressure (∼100 atm). After cooldown, the cryogen in the stranded-channel will be solid, essentially locking the strands in place, preventing strand motion and degradation due to mechanical deformation while providing enhanced thermal capacity for stability and protection. The effect of cryogen porosity is also considered. The relatively high heat capacity of solid cryogens at these lower temperatures (compared to gaseous helium) enhances the thermal stability of the winding. During operation, coolant flow through the open inner channel will minimize pressure drop.

  8. Physics Based Model for Cryogenic Chilldown and Loading. Part IV: Code Structure

    Science.gov (United States)

    Luchinsky, D. G.; Smelyanskiy, V. N.; Brown, B.

    2014-01-01

    This is the fourth report in a series of technical reports that describe separated two-phase flow model application to the cryogenic loading operation. In this report we present the structure of the code. The code consists of five major modules: (1) geometry module; (2) solver; (3) material properties; (4) correlations; and finally (5) stability control module. The two key modules - solver and correlations - are further divided into a number of submodules. Most of the physics and knowledge databases related to the properties of cryogenic two-phase flow are included into the cryogenic correlations module. The functional form of those correlations is not well established and is a subject of extensive research. Multiple parametric forms for various correlations are currently available. Some of them are included into correlations module as will be described in details in a separate technical report. Here we describe the overall structure of the code and focus on the details of the solver and stability control modules.

  9. Aerogel Insulation to Support Cryogenic Technologies, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is seeking a high performance thermal insulation material for cryogenic applications in space launch development. Many of the components in cryogenic...

  10. Commissioning of the cryogenic safety test facility PICARD

    Science.gov (United States)

    Heidt, C.; Schön, H.; Stamm, M.; Grohmann, S.

    2015-12-01

    The sizing of cryogenic safety relief devices requires detailed knowledge on the evolution of the pressure increase in cryostats following hazardous incidents such as the venting of the insulating vacuum with atmospheric air. Based on typical design and operating conditions in liquid helium cryostats, the new test facility PICARD, which stands for Pressure Increase in Cryostats and Analysis of Relief Devices, has been constructed. The vacuum-insulated test stand has a cryogenic liquid volume of 100 liters and a nominal design pressure of 16 bar(g). This allows a broad range of experimental conditions with cryogenic fluids. In case of helium, mass flow rates through safety valves and rupture disks up to about 4kg/s can be measured. Beside flow rate measurements under various conditions (venting diameter, insulation, working fluid, liquid level, set pressure), the test stand will be used for studies on the impact of two-phase flow and for the measurement of flow coefficients of safety devices at low temperature. This paper describes the operating range, layout and instrumentation of the test stand and presents the status of the commissioning phase.

  11. Cryogenic and vacuum sectorisation of the LHC arcs

    CERN Document Server

    Bóna, M; Erdt, W K; Perinet-Marquet, J L; Poncet, Alain; Rohmig, P; Wikberg, Tore

    1996-01-01

    Following the recommendation of the LHC TC of June 20th, 1995 to introduce a separate cryogenic distribution line (QRL), which opened the possibility to have a finer cryogenic and vacuum sectorisation of the LHC machine than the original 8 arcs scheme, a working group was set up to study the implications: technical feasibility, advantages and drawbacks as well as cost of such a sectorisation (DG/DI/LE/dl, 26 July 1995). This report presents the conclusions of the Working Group. In the LHC Conceptual Design Report, ref. CERN/AC/95-05 (LHC), 20 October 1995, the so-called "Yellow Book", a complete cryostat arc (~ 2.9 km) would have to be warmed up in order to replace a defective cryomagnet. Even by coupling the two large refrigerators feeding adjacent arcs at even points to speed up the warm-up and cool down of one arc, the minimum down-time of the machine needed to replace a cryomagnet would be more than a full month (and even 52 days with only one cryoplant). Cryogenic and vacuum sectorisation of an arc int...

  12. Spray-on foam insulations for launch vehicle cryogenic tanks

    Science.gov (United States)

    Fesmire, J. E.; Coffman, B. E.; Meneghelli, B. J.; Heckle, K. W.

    2012-04-01

    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex array of many variables starting with the large temperature difference of 200-260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the different

  13. Spray-On Foam Insulations for Launch Vehicle Cryogenic Tanks

    Science.gov (United States)

    Fesmire, J. E.; Cofman, B. E.; Menghelli, B. J.; Heckle, K. W.

    2011-01-01

    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability with throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex of many variables starting with the large temperature difference of from 200 to 260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the

  14. Longevity of cryogenically stored seeds.

    Science.gov (United States)

    Walters, Christina; Wheeler, Lana; Stanwood, Phillip C

    2004-06-01

    Though cryogenic storage is presumed to provide nearly infinite longevity to cells, the actual shelf life achieved under ultra-cold temperatures has not been addressed theoretically or empirically. Here, we report measurable changes in germination of dried seeds stored under liquid nitrogen conditions for >10 years. There was considerable variability in the extent of deterioration among species and accessions within a species. Aging time courses for lettuce seeds stored at temperatures between 50 and -196 degrees C were fit to a form of the Avrami equation to determine rate coefficients and predict half-life of accessions. A reduction in the temperature dependency on aging rate, determined as a break in the Arrhenius plot, occurred at about -15 degrees C, and this resulted in faster deterioration than anticipated from extrapolation of kinetics measured at higher temperatures. The break in Arrhenius behavior occurred at temperatures in between the glass transition temperature (28 degrees C) and the Kauzmann temperature (-42 degrees C) and also coincided with a major triacylglycerol phase change (-40 to -7 degrees C). In spite of the faster than anticipated deterioration, cryogenic storage clearly prolonged shelf life of lettuce seeds with half-lives projected as approximately 500 and approximately 3400 years for fresh lettuce seeds stored in the vapor and liquid phases of liquid nitrogen, respectively. The benefit of low temperature storage (-18 or -135 degrees C) on seed longevity was progressively lost if seeds were first stored at 5 degrees C. Collectively, these results demonstrate that lowering storage temperature progressively increases longevity of seeds. However, cryogenic temperatures were not sufficient to stop deterioration, especially if initial stages of aging were allowed to progress at higher storage temperatures. This work contributes to reliable assessments of the potential benefit and cost of different genebanking strategies.

  15. Cryogenic fluid management program flight concept definition

    Science.gov (United States)

    Kroeger, Erich

    1987-01-01

    The Lewis Research Center's cryogenic fluid management program flight concept definition is presented in viewgraph form. Diagrams are given of the cryogenic fluid management subpallet and its configuration with the Delta launch vehicle. Information is given in outline form on feasibility studies, requirements definition, and flight experiments design.

  16. Low Mn alloy steel for cryogenic service

    Science.gov (United States)

    Morris, J.W. Jr.; Niikura, M.

    A ferritic cryogenic steel which has a relatively low (about 4 to 6%) manganese content and which has been made suitable for use at cryogenic temperatures by a thermal cycling treatment followed by a final tempering. The steel includes 4 to 6% manganese, 0.02 to 0.06% carbon, 0.1 to 0.4% molybdenum and 0 to 3% nickel.

  17. Self-Sealing Cryogenic Fitting

    Science.gov (United States)

    Jia, Lin Xiang; Chow, Wen Lung; Moslemian, Davood; Lin, Gary; Melton, Greg

    1994-01-01

    Self-sealing fitting for cryogenic tubes remains free of leakage from room temperature to liquid-helium temperature even at internal pressure as high as 2.7 MPa. Fitting comprises parts made of materials with different coefficients of thermal expansion to prevent leakage gaps from forming as temperature decreases. Consists of coupling nut, two flared tube ends, and flared O-ring spacer. Spacer contracts more than tube ends do as temperature decreases. This greater contraction seals tube ends more tightly, preventing leakage.

  18. Cryogenic Preamplifiers for Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Johansen, Daniel H.; Sanchez-Heredia, Juan D.; Petersen, Jan R.

    2018-01-01

    Pursuing the ultimate limit of detection in magnetic resonance imaging (MRI) requires cryogenics to decrease the thermal noise of the electronic circuits. As cryogenic coils for MRI are slowly emerging cryogenic preamplifiers are required to fully exploit their potential. A cryogenic preamplifier...... operated at 77 K is designed and implemented for C imaging at 3 T (32.13 MHz), using off-the-shelves components. The design is based on a high electron mobility transistor (ATF54143) in a common source configuration. Required auxiliary circuitry for optimal cryogenic preamplifier performance is also...... presented consisting of a voltage regulator (noise free supply voltage and optimal power consumption), switch, and trigger (for active detuning during transmission to protect the preamplifier). A gain of 18 dB with a noise temperature of 13.7 K is achieved. Performing imaging experiments in a 3 T scanner...

  19. Improving iodine homogeneity in NIST SRM 1548a Typical Diet by cryogenic grinding

    Czech Academy of Sciences Publication Activity Database

    Kučera, Jan; Kameník, Jan

    2015-01-01

    Roč. 20, č. 3 (2015), s. 189-194 ISSN 0949-1775 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : Iodine * reference material * NIST SRM 1548a * cryogenic grinding * homogeneity Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.010, year: 2015

  20. RECENT PROGRESS OF OXYGEN/NITROGEN SEPARATION USING MEMBRANE TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    K. C. CHONG

    2016-07-01

    Full Text Available The oxygen-enriched air is highly demanded for various industrial applications such as medical, chemical and enhanced combustion processes. The conventional oxygen/nitrogen production is either cryogenic distillation or pressure swing adsorption (PSA. Both of these techniques possess the production capability of 20 to 300 tonnes of oxygen per day and oxygen purity of more than 95%. However, these techniques are energy intensive. Alternatively, membrane technology is an emerging technology in gas separation as it requires low energy consumption and relatively moderate production volume, if compared to the conventional gas production techniques. These advantages have spurred much interest from industries and academics to speed up the commercial viability of the O2/N2 separation via membrane technology. In this review, the conventional and membrane technologies in O2/N2 separation, as well as recent development of membrane fabrication techniques and materials are reviewed. The latest membrane performance in O2/N2 separation is also tabulated and discussed.

  1. Calibration of Cryogenic Thermometers for the LHC

    CERN Document Server

    Balle, Ch; Vauthier, N; Thermeau, JP

    2008-01-01

    6000 cryogenic temperature sensors of resistive type covering the range from room temperature down to 1.6 K are installed on the LHC machine. In order to meet the stringent requirements on temperature control of the superconducting magnets, each single sensor needs to be calibrated individually. In the framework of a special contribution, IPN (Institut de Physique Nucléaire) in Orsay, France built and operated a calibration facility with a throughput of 80 thermometers per week. After reception from the manufacturer, the thermometer is first assembled onto a support specific to the measurement environment, and then thermally cycled ten times and calibrated at least once from 1.6 to 300 K. The procedure for each of these interventions includes various measurements and the acquired data is recorded in an ORACLE®-database. Furthermore random calibrations on some samples are executed at CERN to crosscheck the coherence between the approximation data obtained by both IPN and CERN. In the range of 1.5 K to 30 K...

  2. The cryogenic storage ring CSR

    Science.gov (United States)

    von Hahn, R.; Becker, A.; Berg, F.; Blaum, K.; Breitenfeldt, C.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Heber, O.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S.; Meyer, C.; Mishra, P. M.; Novotný, O.; O'Connor, A. P.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Saurabh, S.; Schippers, S.; Schröter, C. D.; Schwalm, D.; Schweikhard, L.; Sieber, T.; Shornikov, A.; Spruck, K.; Sunil Kumar, S.; Ullrich, J.; Urbain, X.; Vogel, S.; Wilhelm, P.; Wolf, A.; Zajfman, D.

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm-3 is derived, equivalent to a room-temperature pressure below 10-14 mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  3. Cryogenics for HL-LHC

    Science.gov (United States)

    Tavian, L.; Brodzinski, K.; Claudet, S.; Ferlin, G.; Wagner, U.; van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This chapter will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  4. ITER isotope separation system

    International Nuclear Information System (INIS)

    Busigin, A.; Sood, S.K.; Kveton, O.K.; Sherman, R.H.; Anderson, J.L.

    1990-09-01

    This document presents the results of a study that examined the technical operating and economic viability of an alternative Isotope Separation System (ISS) design based on the distributed design concept. In the distributed design, the ISS is broken up into local independently operable subsystems matched to local processing requirements. The distributed design accepts the same feeds and produces essentially the same products as the reference design. The distributed design consists of two separate, independent subsystems. The first, called ISS-H, receives only protium-dominated streams and waste water from tritium extraction. It has two cryogenic distillation columns and can produce a 50 percent D, 50 percent T product since it lacks D/T separation capability. A final 80 percent T 2 concentration product can be obtained by blending the 50 percent T 2 stream from ISS-H with the more than 99 percent T 2 stream from the second subsystem, ISS-D. The second subsystem receives only deuterium-dominated feeds, which also contain some protium. ISS-D is as complex as the reference design, but smaller. Although each subsystem has some advantages, such as only two cryogenic distillation columns in ISS-H and better than 99 percent steady state T 2 product in ISS-D, the combined subsystems do not offer any real advantage compared to the reference IISS. The entire distributed ISS design has been simulated using Ontario Hydro's FLOSHEET steady state process simulator. Dynamic analysis has not been done for the distributed design. (10 refs., 3 figs., 8 tabs.)

  5. Throttling Cryogen Boiloff To Control Cryostat Temperature

    Science.gov (United States)

    Cunningham, Thomas

    2003-01-01

    An improved design has been proposed for a cryostat of a type that maintains a desired low temperature mainly through boiloff of a liquid cryogen (e.g., liquid nitrogen) at atmospheric pressure. (A cryostat that maintains a low temperature mainly through boiloff of a cryogen at atmospheric pressure is said to be of the pour/fill Dewar-flask type because its main component is a Dewar flask, the top of which is kept open to the atmosphere so that the liquid cryogen can boil at atmospheric pressure and cryogenic liquid can be added by simply pouring it in.) The major distinguishing feature of the proposed design is control of temperature and cooling rate through control of the flow of cryogen vapor from a heat exchanger. At a cost of a modest increase in complexity, a cryostat according to the proposal would retain most of the compactness of prior, simpler pour/fill Dewar-flask cryostats, but would utilize cryogen more efficiently (intervals between cryogen refills could be longer).

  6. Summary of ISABELLE cryogenic systems workshop

    International Nuclear Information System (INIS)

    Brown, D.P.

    1976-05-01

    Twenty-four people participated in the ISABELLE Cryogenic System Workshop which was held on June 2 and 3, 1976. The magnet cooling system for ISABELLE, as described in the new proposal, utilizes supercritical helium as the refrigerant instead of pool-boiling helium as in earlier proposals. This new and more cost-effective system was described in detail with discussion of the design parameters for the refrigerator itself, turbomachinery required and the refrigerant distribution system. The testing and prototype development program for ISABELLE cryogenic system components was also reviewed. A small cryogenic turbocompressor/expander system is now on order for testing with an ISABELLE half-cell

  7. Influence of cryogenic cooling rate on mechanical properties of tool steels

    Science.gov (United States)

    Mazor, G.; Ladizhensky, I.; Shapiro, A.

    2017-09-01

    The effect of the rapid cryogenic treatment on hardness and wear resistance of several kinds of tool steel was examined. Two ways of cryogenic cooling were evaluated: direct immersion of the metallic samples into liquid nitrogen and three-stage rapid cryogenic cooling (1 - precooling in LN2 to -20°C, 2 - formation on the sample of a frost layer from air by natural humidity, 3 - second cooling of the frost-covered sample in LN2 to -195.7°C). Material in “as is” conditions and after a preliminary heat treatment (850°C) were used as the reference points. The HV microhardness and the wear rate under dry abrasive friction were evaluated. Despite the very different types of the examined metals’ nature, microstructure, and hardening mechanisms, the rapid cryogenic cooling improves both the hardness and the wear resistance values. For all investigated metals rapid cryogenic cooling assisted with the frost layer produces the best results.

  8. Conceptual overview and preliminary risk assessment of cryogen use in deep underground mine production

    Science.gov (United States)

    Sivret, J.; Millar, D. L.; Lyle, G.

    2017-12-01

    This research conducts a formal risk assessment for cryogenic fueled equipment in underground environments. These include fans, load haul dump units, and trucks. The motivating advantage is zero-emissions production in the subsurface and simultaneous provision of cooling for ultra deep mine workings. The driving force of the engine is the expansion of the reboiled cryogen following flash evaporation using ambient temperature heat. The cold exhaust mixes with warm mine air and cools the latter further. The use of cryogens as ‘fuel’ leads to much increased fuel transport volumes and motivates special considerations for distribution infrastructure and process including: cryogenic storage, distribution, handling, and transfer systems. Detailed specification of parts and equipment, numerical modelling and preparation of design drawings are used to articulate the concept. The conceptual design process reveals new hazards and risks that the mining industry has not yet encountered, which may yet stymie execution. The major unwanted events include the potential for asphyxiation due to oxygen deficient atmospheres, or physical damage to workers due to exposure to sub-cooled liquids and cryogenic gases. The Global Minerals Industry Risk Management (GMIRM) framework incorporates WRAC and Bow-Tie techniques and is used to identify, assess and mitigate risks. These processes operate upon the competing conceptual designs to identify and eliminate high risk options and improve the safety of the lower risk designs.

  9. Using cryogenic exergy of liquefied natural gas for electricity production with the Stirling cycle

    International Nuclear Information System (INIS)

    Dong, Hui; Zhao, Liang; Zhang, Songyuan; Wang, Aihua; Cai, Jiuju

    2013-01-01

    Cryogenic generation is one of the most important ways to utilize cold energy during LNG (liquefied natural gas) regasification. This paper fundamentally investigates LNG cryogenic generation with the Stirling cycle method based on previous studies. A basic process of LNG cryogenic generation with the Stirling cycle was presented initially with seawater and LNG as heat source and heat sink. And its thermodynamic analysis was performed to verify the theoretical feasibility of the Stirling cycle method. The generating capacity, the exergy efficiency and the cold energy utilization efficiency of the basic process were also calculated. Subsequently, the influences of evaporation pressure on net work, equipment performance and comprehensive efficiency of cold energy utilization were discussed and the effect of LNG mass flow as well as the ambient temperature was also studied. Finally an improved process of LNG cryogenic generation with Stirling cycle method combined with an air liquefaction process is proposed as feasibility in improvements of the basic process. - Highlights: • We propose a basic process of LNG cryogenic generation with the Stirling cycle. • Seawater and LNG were applied as heat source and heat sink of the basic process. • The max generating capacity of the basic process is 51 kWh/tLNG. • The max cold energy utilization efficiency of the basic process is 0.56. • We also discussed some feasibilities of optimization of the basic cycle

  10. The Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  11. Cryogenic Milling of Titanium Powder

    Directory of Open Access Journals (Sweden)

    Jiří Kozlík

    2018-01-01

    Full Text Available Ti Grade 2 was prepared by cryogenic attritor milling in liquid nitrogen and liquid argon. Two types of milling balls were used—stainless steel balls and heavy tungsten carbide balls. The effect of processing parameters on particle size and morphology, contamination of powder and its microhardness was investigated. Milling in liquid nitrogen was not feasible due to excessive contamination by nitrogen. Minor reduction of particle size and significant alterations in particle morphology depended on type of milling balls and application of stearic acid as processing control agent. Heavily deformed ultra-fine grained (UFG internal microstructure of powder particles was observed by the method of “transmission Kikuchi diffraction”.

  12. Environmental Assessment for the Commercial Demonstration of the Low NOx Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Finney County, Kansas

    Energy Technology Data Exchange (ETDEWEB)

    n/a

    2003-03-11

    The U.S. Department of Energy (DOE) proposes to provide partial funding to the Sunflower Electric Power Corporation (Sunflower), to demonstrate the commercial application of Low-NO{sub x} Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve NO{sub x} emission reduction to the level of 0.15 to 0.22 pounds per million British thermal units (lb/MM Btu). The proposed project station is Sunflower's 360 MW coal-fired generation station, Holcomb Unit No. 1 (Holcomb Station). The station, fueled by coal from Wyoming's Powder River Basin, is located near Garden City, in Finney County, Kansas. The period of performance is expected to last approximately 2 years. The Holcomb Station, Sunflower LNB/SOFA integrated system would be modified in three distinct phases to demonstrate the synergistic effect of layering NO{sub x} control technologies. Once modified, the station would demonstrate that a unit equipped with an existing low-NO{sub x} burner system can be retrofitted with a new separated over-fire air (SOFA) system, coal flow measurement and control, and enhanced combustion monitoring to achieve about 45 percent reduction in nitrogen oxides (NO{sub x}) emissions. The proposed project would demonstrate a technology alternative to Selective Catalytic Reduction (SCR) systems. While SCR does generally achieve high reductions in NO{sub x} emissions (from about 0.8 lb/MM to 0.12 lb/MM Btu), it does so at higher capital and operating cost, requires the extensive use of critical construction labor, requires longer periods of unit outage for deployment, and generally requires longer periods of time to complete shakedown and full-scale operation. Cost of the proposed project technology would be on the order of 15-25 percent of that for SCR, with consequential benefits derived from reductions in construction manpower requirements and periods of power outages. This proposed technology demonstration would generally be applicable to boilers using opposed

  13. A Cryogenic Flow Sensor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on the success of the phase I effort, Advanced Technologies Group, Inc. proposes the development of a Cryogenic Flow Sensor (CFS) for determining mass flow of...

  14. Cryogenic Safety Rules and Guidelines at CERN

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    CERN defines and implements a Safety Policy that sets out the general principles governing safety at CERN. As an intergovernmental organisation, CERN further establishes its own Safety Rules as necessary for its proper functioning. In this process, it takes into account the laws and regulation of the Host States (France and Switzerland), EU regulations and directives, as well as international regulations, standards and directives. For the safety of cryogenic equipment, this is primarily covered by the Safety Regulation for Mechanical Equipment and the General Safety Instruction for Cryogenic Equipment. In addition, CERN has also developed Safety Guidelines to support the implementation of these safety rules, covering cryogenic equipment and oxygen deficiency hazard assessment and mitigation. An overview of the cryogenic safety rules and these safety guidelines will be presented.

  15. Cryogenic Insulation Standard Data and Methodologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of...

  16. Cryogenic MEMS Pressure Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A directly immersible cryogenic MEMS pressure sensor will be developed. Each silicon die will contain a vacuum-reference and a tent-like membrane. Offsetting thermal...

  17. Advanced Insulation Techniques for Cryogenic Tanks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The ability to store large amounts of cryogenic fluids for long durations has a profound effect on the success of many future space programs using these fluids for...

  18. Temperature Stratification in a Cryogenic Fuel Tank

    Data.gov (United States)

    National Aeronautics and Space Administration — A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It...

  19. A simple low-cost cryogenic controller

    International Nuclear Information System (INIS)

    Mitchell, I.V.; Bartram, C.P.

    1977-01-01

    A simple, inexpensive cryogenic temperature controller is described. Temperatures from 78 K to 300 K are maintained to 0.1 K. A novel feature, using a power transistor for the heating element, is discussed. (Auth.)

  20. Cryogenic Propellant Storage and Handling Efficiency Improvement

    Data.gov (United States)

    National Aeronautics and Space Administration — Stennis Space Center (SSC) is NASA’s top annual consumer of cryogenic propellants. Improvements in ground propellant system operations at SSC require having the...

  1. Cryogenic Cycling Behavior of Polymeric Composite Materials

    National Research Council Canada - National Science Library

    Seferis, James

    2002-01-01

    The basis of this research was an exploration of the fundamental phenomena that determine the response of fiber-reinforced composite materials to thermal cycling between cryogenic and ambient temperatures...

  2. Lightweight Inflatable Cryogenic Tank, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of an inflatable and lightweight polymer-fabric structured pressure vessel designed for the containment of cryogenic fluids....

  3. Status of the LBNF Cryogenic System

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, D. [Fermilab; Adamowski, M. [Fermilab; Bremer, J. [CERN; Delaney, M. [Fermilab; Diaz, A. [CERN; Doubnik, R. [Fermilab; Haaf, K. [Fermilab; Hentschel, S. [Fermilab; Norris, B. [Fermilab; Voirin, E. [Fermilab

    2017-01-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 ton of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the models of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.

  4. Status of the LBNF Cryogenic System

    CERN Document Server

    Montanari, D; Bremer, J; Delany, M; Diaz, A; Doubnik, R; Haaf, K; Henstchel, S; Norris, B; Voirin, E

    2017-01-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.

  5. Commercially Available Capacitors at Cryogenic Temperatures

    OpenAIRE

    Teyssandier, F.; Prêle, D.

    2010-01-01

    Commercially available capacitors are not specified for operation at 77 K or 4 K, and some devices showed a dramatic decrease of capacitance at cryogenic temperature. Furthermore, for voltage biasing of cryogenic low impedance sensors it is very important to know parasitic resistance. In this case, the parasitic Equivalent Series Resistance (ESR) of the capacitor used for the AC-biasing is a bottleneck of the voltage biasing. Involved in TES development and SQUID multiplexing, we have charact...

  6. Modified Apollo cryogenic oxygen tank design

    Science.gov (United States)

    Vanleuven, K.

    1971-01-01

    Assessment of the Apollo 13 mission indicated that some design changes to be incorporated into Apollo cryogenic oxygen storage tanks. These changes broadly fit into three categories. They were: (1) deletion of the fluid equilibration motors and redesign of heater assembly, (2) material changes for internal tank wiring and density sensor, and (3) the addition of a heater assembly temperature sensor. Development of a cryogenic oxygen tank incorporating these changes is presented.

  7. Academic Training: Introduction to cryogenic Engineering

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 5, 6, 7, 8 and 9 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 Introduction to cryogenic Engineering by G. Perinic - CERN-AT Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, huge detectors and accelerators. With the termination of the LHC, CERN will in fact become the world’s largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning. Monday 5.12.2005 Introduction: From History to Modern Refrigeration Cycles (Goran Perinic) Tuesday 6.12.2005 Refrigerants, Standard Cryostats, Cryogenic Des...

  8. Academic Training: Introduction to cryogenic Engineering

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 5, 6, 7, 8 and 9 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 Introduction to cryogenic Engineering by G. Perinic - CERN-AT Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning. From history to modern refrigeration cycles (1/5) Refrigerants, standard cryostats, cryogenic design (2/5) Heat transfer and insulation (3/5) Safety in cryoge...

  9. Preliminary results from a microvolume, dynamically heated analytical column for preconcentration and separation of simple gases prior to stable isotopic analysis

    Science.gov (United States)

    Panetta, Robert James; Seed, Mike

    2016-04-01

    Stable isotope applications that call for preconcentration (i.e., greenhouse gas measurements, small carbonate samples, etc.) universally call for cryogenic fluids such as liquid nitrogen, dry ice slurries, or expensive external recirculation chillers. This adds significant complexity, first and foremost in the requirements to store and handle such dangerous materials. A second layer of complexity is the instrument itself - with mechanisms to physically move either coolant around the trap, or move a trap in or out of the coolant. Not to mention design requirements for hardware that can safely isolate the fluid from other sensitive areas. In an effort to simplify the isotopic analysis of gases requiring preconcentration, we have developed a new separation technology, UltiTrapTM (patent pending), which leverage's the proprietary Advanced Purge & Trap (APT) Technology employed in elemental analysers from Elementar Analysensysteme GmbH products. UltiTrapTM has been specially developed as a micro volume, dynamically heated GC separation column. The introduction of solid-state cooling technology enables sub-zero temperatures without cryogenics or refrigerants, eliminates all moving parts, and increases analytical longevity due to no boiling losses of coolant . This new technology makes it possible for the system to be deployed as both a focussing device and as a gas separation device. Initial data on synthetic gas mixtures (CO2/CH4/N2O in air), and real-world applications including long-term room air and a comparison between carbonated waters of different origins show excellent agreement with previous technologies.

  10. Capture of krypton by cryogenic distillation

    International Nuclear Information System (INIS)

    Geens, L.; Goossens, W.R.A.; Marien, J.; Ooms, E.; Stevens, J.; Boons, J.; Hertschap, M.

    1986-01-01

    Radioactive krypton-85 is liberated into the off-gases during the reprocessing of spent nuclear fuel (chop and leach process). If its release to the atmosphere is to be restricted, it needs to be captured from those off-gases. With the financial support of the C.E.C., krypton recovery by cryogenic distillation in presence of oxygen was investigated. Both oxygen and ozone behaviour in the cryodistillation unit were observed. The ozone decay in the rectification column was studied in absence and in presence of a radiation source. Additionally a demonstration run with krypton-85 was performed. Experiments with different oxygen concentrations up to 21 % volume in the feed gas were carried out. The oxygen was enriched up to 85 % volume in a zone between the krypton layer and the entrance of the rectification column. No oxygen was found in the bottom product. On the other hand, ozone, when fed to the column, accumulates in the bottom product. The decay of ozone in this bottom liquid was measured in absence and in presence of a 500 Ci thulium-170 source. Without the radiation source, it took about 30 days to observe a decay from 0.9 % volume to 0.45 % volume. The decay rate decreased with decreasing ozone concentration. In presence of the 500 Ci thulium-170, a constant decay rate of 0.24 % volume per day was measured. Finally, a demonstration run with 100 Ci krypton-85 was performed in the cryodistillation unit, with air as feed gas. The krypton-85 was fed at a concentration of 30 mCi.h -1 until the total krypton inventory of the rectification column amounted to 40-45 Ci. The active run had a duration of 900 hours, during which no operational problems were encountered. 16 refs, 8 tables, 9 figs

  11. Experimental investigation on hydrogen cryogenic distillation equipped with package made by ICIT

    International Nuclear Information System (INIS)

    Bornea, A.; Zamfirache, M.; Stefan, L.; Stefanescu, I.; Preda, A.

    2015-01-01

    ICIT (Institute for Cryogenics and Isotopic Technologies) has used its experience in cryogenic water distillation process to propose a similar process for hydrogen distillation that can be used in detritiation technologies. This process relies on the same packages but a stainless filling is tested instead of the phosphorous bronze filling used for water distillation. This paper presents two types of packages developed for hydrogen distillation, both have a stainless filling but it differs in terms of density, exchange surface and specific volume. Performance data have been obtained on laboratory scale. In order to determine the characteristics of the package, the installation was operated in the total reflux mode, for different flow rate for the liquid. There were made several experiments considering different operating conditions. Samples extracted at the top and bottom of cryogenic distillation column allowed mathematical processing to determine the separation performance. The experiments show a better efficiency for the package whose exchange surface was higher and there were no relevant differences between both packages as the operating pressure of the cryogenic column was increasing. For a complete characterization of the packages, future experiments will be considered to determine performance at various velocities in the column and their correlation with the pressure in the column. We plan further experiments to separate tritium from the mixture of isotopes DT, having in view that our goal is to apply this results to a detritiation plant

  12. Future cryogenic switchgear technologies for superconducting power systems

    Science.gov (United States)

    Xu, C.; Saluja, R.; Damle, T.; Graber, L.

    2017-12-01

    This paper introduces cryogenic switchgear that is needed for protection and control purposes in future multi-terminal superconducting power systems. Implementation of cryogenic switchgear is expected to improve system reliability and minimize overall volume and weight, but such switchgear is not available yet. Design of cryogenic switchgear begins by referring to conventional circuit breakers, a brief review of state-of-the-art switchgear technologies is presented. Then, promising cryogenic interruption media are identified and analysed with respect to physical and dielectric properties. Finally, we propose several cryogenic circuit breaker designs for potential aerospace, marine and terrestrial applications. Actuation mechanism for cryogenic switchgear is also investigated.

  13. Device for delivering cryogen to rotary super-conducting winding of cryogen-cooled electrical machine

    International Nuclear Information System (INIS)

    Filippov, I.F.; Gorbunov, G.S.; Khutoretsky, G.M.; Popov, J.S.; Skachkov, J.V.; Vinokurov, A.A.

    1980-01-01

    A device is disclosed for delivering cryogen to a superconducting winding of a cryogen-cooled electrical machine comprising a pipe articulated along the axis of the electrical machine and intended to deliver cryogen. One end of said pipe is located in a rotary chamber which communicates through channels with the space of the electrical machine, and said space accommodating its superconducting winding. The said chamber accommodates a needle installed along the chamber axis, and the length of said needle is of sufficient length such that in the advanced position of said cryogen delivering pipe said needle reaches the end of the pipe. The layout of the electrical machine increases the reliability and effectiveness of the device for delivering cryogen to the superconducting winding, simplifies the design of the device and raises the efficiency of the electrical machine

  14. Spray-on polyvinyl alcohol separators and impact on power production in air-cathode microbial fuel cells with different solution conductivities

    KAUST Repository

    Hoskins, Daniel L.

    2014-11-01

    © 2014 Elsevier Ltd. Separators are used to protect cathodes from biofouling and to avoid electrode short-circuiting, but they can adversely affect microbial fuel cell (MFC) performance. A spray method was used to apply a polyvinyl alcohol (PVA) separator to the cathode. Power densities were unaffected by the PVA separator (339 ± 29 mW/m2), compared to a control lacking a separator in a low conductivity solution (1mS/cm) similar to wastewater. Power was reduced with separators in solutions typical of laboratory tests (7-13 mS/cm), compared to separatorless controls. The PVA separator produced more power in a separator assembly (SEA) configuration (444 ± 8 mW/m2) in the 1mS/cm solution, but power was reduced if a PVA or wipe separator was used in higher conductivity solutions with either Pt or activated carbon catalysts. Spray and cast PVA separators performed similarly, but the spray method is preferred as it was easier to apply and use.

  15. Cryogenic helium gas convection research

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1994-10-01

    This is a report prepared by a group interested in doing research in thermal convection using the large scale refrigeration facilities available at the SSC Laboratories (SSCL). The group preparing this report consists of Michael McAshan at SSCL, Robert Behringer at Duke University, Katepalli Sreenivasan at Yale University, Xiao-Zhong Wu at Northern Illinois University and Russell Donnelly at the University of Oregon, who served as Editor for this report. This study reports the research and development opportunities in such a project, the technical requirements and feasibility of its construction and operation, and the costs associated with the needed facilities and support activities. The facility will be a unique national resource for studies of high-Reynolds-number and high-Rayleigh-number and high Rayleigh number turbulence phenomena, and is one of the six items determined as suitable for potential funding through a screening of Expressions of Interest. The proposed facility is possible only because of the advanced cryogenic technology available at the SSCL. Typical scientific issues to be addressed in the facility will be discussed. It devolved during our study, that while the main experiment is still considered to be the thermal convection experiment discussed in our original Expression of Interest, there are now a very substantial set of other, important and fundamental experiments which can be done with the large cryostat proposed for the convection experiment. We believe the facility could provide several decades of front-line research in turbulence, and shall describe why this is so

  16. Cryogenic Deflashing for Rubber Products

    Directory of Open Access Journals (Sweden)

    Abhilash M.

    2018-01-01

    Full Text Available Deflashing is the process of removal of excess flashes from the rubber products. Initially deflashing was a manual operation where dozen of workers, seated at small work stations would take each part and trim the excess rubber off with scissors, knives or by grinding. Still the same method is employed in most of the rubber industry. The drawbacks of this method are demand inconsistent and repeatable quality. Work done by hand is often inconsistent. There are commercially available cryogenic deflashing machine but they are too expensive hence cost effectiveness is also a prime factor. The objective of this paper is to develop a technique, to identify the media through which the flashes can be removed easily and effectively. Based on the test results obtained from testing of five different types of media, ABCUT Steel media gave best results. The testing of the ABCUT Steel media on rubber samples like O-rings, grommet tail door, bottom bush etc. shows good results.

  17. Repeatability of Cryogenic Multilayer Insulation

    Science.gov (United States)

    Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.

    2017-12-01

    Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation (MLI) has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five Glenn Research Center (GRC) provided coupons with 25 layers was shown to be +/- 8.4% whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0%. A second group of 10 coupons has been fabricated by Yetispace and tested by Florida State University, the repeatability between coupons has been shown to be +/- 15-25%. Based on detailed statistical analysis, the data has been shown to be statistically significant.

  18. Mass Driver Two - Cryogenic module

    Science.gov (United States)

    Fine, K.; Williams, F.; Mongeau, P.; Kolm, H.

    1979-01-01

    The cryogenic module of Mass Driver Two comprises a 3.25 inch (82.55 mm) OD bucket with two 44 kilo-ampere-turn coils made with .028 inch (.71 mm) diam niobium-titanium multi-filamentary cable in a copper matrix, impregnated with lead alloy for thermal inertia, as well as the service station to refrigerate, energize and eject the bucket. The station is housed in a six inch flanged pyrex cross which connects to the four inch pyrex tube of the mass driver itself. The bucket is refrigerated by being forced against a copper braid cradle attached to the bottom of a liquid helium reservoir which protrudes into the cross from above. The bucket is energized inductively by turning off two superconducting coils which are also attached to the helium reservoir, and which have maintained the correct flux linkage through the bucket coils during their cool-down through the critical temperature. Once charging is completed, the clamping pressure is released and the bucket is injected into the mass driver by means of two normal-conductor pulse coils surrounding the horizontal branches of the cross.

  19. Cryogenic test of the 4 K / 2 K insert for the ARIEL e-Linac cryomodule

    Energy Technology Data Exchange (ETDEWEB)

    Laxdal, R. E.; Ma, Y.; Harmer, P.; Kishi, D.; Koveshnikov, A.; Muller, N.; Vrielink, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC (Canada); O' Brien, M. [University of British Columbia, Vancouver (Canada); Ahammed, M. [Variable Energy Cyclotron Center, Kolkata (India)

    2014-01-29

    The ARIEL project at TRIUMF requires a 50 MeV superconducting electron linac consisting of five nine cell 1.3 GHz cavities divided into three cryomodules with one, two and two cavities in each module respectively. LHe is distributed in parallel to each module at 4 K and at ∼1.2 bar. Each module has a cryogenic insert on board that receives the 4 K liquid and produces 2 K into a cavity phase separator. The module combines a 4 K phase separator, a plate and fin heat exchanger from DATE and a J-T valve expanding into the 2 K phase separator. The unit also supplies 4 K liquid to thermal intercepts in the module in siphon loops that return the vaporized liquid to the 4 K reservoir. For testing purposes the unit is outfitted with a dummy 2 K phase separator and thermal intercepts with variable heaters that mimic the final heat loads in order to test the cryogenic performance. The design of the 4 K / 2 K insert, the results of the cold tests and a summary of the test infrastructure including cryogenics services will be presented.

  20. FRIGOKLIMA `97. 2nd international trade fair for cryogenics and air conditioning, Prague, April 24-26, 1996; FRIGOKLIMA `96. 2. Internationale Fachmesse fuer Kaelte- und Klimatechnik 24.-26.4.1996 in Prag

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1996-08-01

    The conference demonstrated that the political tensions between Germany and Czechia, fortunately, have not born adversely on relations in the refrigeration engineering sector. The latter are characterized by growing agreement in matters of precautionary environmental protection, notwithstanding the still different speeds in the phasing-out of CFCs. But this time factor has limited importance for a transitory period only and will change as the new central and estern European democracies increasingly embrace free-economy principles. In the political and economic life of the Czech Republic, substantial progress has been made in this regard especially recently, to which the published economic figures and the consolidation of the international balance of payments testify. The course of a technical exhibition is a fair indicator of whether this positive impression holds true also of the sector of refrigeration and air conditioning engineering. (orig.) [Deutsch] Innerhalb der grossen internationalen Kaeltefamilie ist es vor allem fuer uns Deutsche im Verhaeltnis zu unserem europaeischen Nachbarn in Tschechien angenehm und dies auch erfahren zu duerfen, dass die `politische` Atmosphaere keinerlei Einfluss auf die `kaeltetechnisch` gepraegte Atmosphaere besitzt. Denn diese wird durch eine zunehmende Uebereinstimmung im Handeln bei der Umweltschutzvorsorge bestimmt, wenn auch die zeitlichen `Geschwindigkeiten` in der Effizienz des FCKW-Ausstiegs vorlaeufig noch differieren. Dieser Zeitfaktor hat jedoch nur noch voruebergehend eine begrenzte Bedeutung und wird von der Verankerung marktwirtschaftlicher Fundamente in den neuen zentral- und osteuropaeischen Demokratien beeinflusst. In der Tschechischen Republik ist man (Politik und Wirtschaft) gerade in juengerer Zeit hier weit vorangekommen, die veroeffentlichten Wirtschaftszahlen und die Festigung der internationalen Zahlungsbilanz legen hiervon Zeugnis ab. Ob dieser positive Eindruck auch fuer den Bereich der Kaelte

  1. Cryogenic systems for inertial fusion energy

    International Nuclear Information System (INIS)

    Chatain, D.; Perin, J.P.; Bonnay, P.; Bouleau, E.; Chichoux, M.; Communal, D.; Manzagol, J.; Viargues, F.; Brisset, D.; Lamaison, V.; Paquignon, G.

    2008-01-01

    The Low Temperatures Laboratory of CEA/Grenoble (France) is involved in the development of cryogenic systems for inertial fusion since a ten of years. A conceptual design for the cryogenic infrastructure of the Laser MegaJoule (LMJ) facility has been proposed. Several prototypes have been designed, built and tested like for example the 1500 bars cryo-compressor for the targets filling, the target positioner and the thermal shroud remover. The HIPER project will necessitate the development of such equipments. The main difference is that this time, the cryogenic targets are direct drive targets. The first phase of HIPER experiments is a single shot period. Based oil the experience gained the last years, not only by our laboratory but also by Omega and G.A teams, we could design the new HIPER equipments for this phase. Some experimental results obtained with the prototypes of the LMJ cryogenic system are given and a first conceptual design for the HIPER single shot cryogenic system is shown. (authors)

  2. Aerogel Blanket Insulation Materials for Cryogenic Applications

    Science.gov (United States)

    Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

    2009-01-01

    Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off

  3. 2017 German refrigeration and air conditioning meeting. Proceedings

    International Nuclear Information System (INIS)

    2017-01-01

    This year's lecture programme includes 117 presentations in the five working departments of DKV and 10 lectures at the special event ''Energy-efficient air conditioning in data centres''. The main topics in the respective departments were: (1) Cryogenics: Space applications; Cryogenic plants; Cryomedicine and cryobiology; Components, developments; Processes and plants; Valves, design. (2) Basics: Evaporation, material values; evaporation, condensation; absorption; adsorption, latent storage; cycle simulation. (3) Components: CO 2 plant engineering and components; refrigerants; process control, adsorption, sublimation and storage technology; refrigerating machine oils, heat exchangers and corrosion; components 4.0, sensors and control technology; simulation of plant processes. (4) Cold application: Application; Application / Natural Refrigerants; Mobile Applications Car; Mobile Applications; Supermarket / Efficiency; Optimization / Efficiency. (5) Air conditioning and heat pump applications: load shifting, smart home, flexibility; heat sources and industrial heat pumps; modelling, simulations; energy concepts heat pumps and photovoltaics; monitoring, evaluation; technology trends / working materials. Six papers are separately analyzed for this database. [de

  4. In-Space Cryogenic VOST Connect/Disconnect, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel cryogenic coupling will be designed and modeled. Intended for in-space use at cryogenic propellant depots, the coupling is based on patented Venturi-Offset...

  5. Manufacture of Novel Cryogenic Thermal Protection Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc (AMTI) responds to the NASA SBIR solicitation X8 "Space Cryogenic Systems" under subtopic X8.01, "Cryogenic Fluid Transfer and...

  6. Manufacture of Novel Cryogenic Thermal Protection Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc (AMTI) responds to the NASA SBIR solicitation X8 "Space Cryogenic Systems" under subtopic X8.01, "Cryogenic Fluid Transfer and...

  7. Low evaporation rate storage media for cryogenic liquids, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Considerable design work has been devoted to the development of cryogenic liquid storage containers. Containers which hold cryogenic liquids such as liquid nitrogen,...

  8. Advanced Sprayable Composite Coating for Cryogenic Insulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc (AMTI) responds to the NASA solicitation X10 "Cryogenic Propellant Storage and Transfer" under subtopic X.01 "Cryogenic Fluid...

  9. In-Space Cryogenic VOST Connect/Disconnect, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Two novel cryogenic couplings will be designed, fabricated and tested. Intended for in-space use at cryogenic propellant depots, the couplings are based on patented...

  10. A cryogenic slab CO laser

    International Nuclear Information System (INIS)

    Ionin, Andrei A; Kozlov, A Yu; Seleznev, L V; Sinitsyn, D V

    2009-01-01

    A compact capacitive transverse RF-discharge-pumped slab CO laser with cryogenically cooled electrodes, which operates both in the cw and repetitively pulsed regimes, is fabricated. The laser operation is studied in the free running multifrequency regime at the vibrational - rotational transitions of the fundamental (V + 1 → V) vibrational bands of the CO molecule in the spectral region from 5.1 to 5.4 μm. Optimal operation conditions (gas mixture composition and pressure, RF pump parameters) are determined. It is shown that only gas mixtures with a high content of oxygen (up to 20% with respect to the concentration of CO molecules) can be used as an active medium of this laser. It is demonstrated that repetitively pulsed pumping is more efficient compared to cw pumping. In this case, quasi-cw lasing regime can be obtained. The maximum average output power of ∼12 W was obtained for this laser operating on fundamental bands and its efficiency achieved ∼14 %. The frequency-selective operation regime of the slab RF-discharge-pumped CO laser was realised at ∼ 100 laser lines in the spectral region from 5.0 to 6.5 μm with the average output power of up to several tens of milliwatts in each line. Lasing at the transitions of the first vibrational overtone (V + 2 → V) of the CO molecule is obtained in the spectral region from 2.5 to 3.9 μm. The average output power of the overtone laser achieved 0.3 W. All the results were obtained without the forced gas mixture exchange in the discharge chamber. Under fixed experimental conditions, repetitively pulsed lasing (with fluctuations of the output characteristics no more than ±10 %) was stable for more than an hour. (lasers)

  11. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Corradin, Michael [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Anderson, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Muci, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Hassan, Yassin [Texas A & M Univ., College Station, TX (United States); Dominguez, A. [Texas A & M Univ., College Station, TX (United States); Tokuhiro, Akira [Univ. of Idaho, Moscow, ID (United States); Hamman, K. [Univ. of Idaho, Moscow, ID (United States)

    2014-10-15

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  12. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    International Nuclear Information System (INIS)

    Corradin, Michael; Dominguez, A.; Tokuhiro, Akira; Hamman, K.

    2014-01-01

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  13. Austrian Mirrors: Development of Ultra-Low-Loss Cryogenic Crystalline Coatings (DARPA)

    Science.gov (United States)

    2016-07-13

    DARPA 15.  SUBJECT TERMS fused silica to cryogenic-compatible AlGaAs-on-Si, high- reflectivity crystalline multilayers for cryo, fiber-optic...Manager for Lasers, Photonics, Microwaves Air Force Office of Scientific Research European Office of Aerospace R&D London, UK office: 44-(0)1895...driven by excess mechanical dissipation in high- reflectivity IBS-derived films, imposes a severe limit on the performance of state-of-the- art precision

  14. PENGGUNAAN BERBAGAI JENIS BAHAN PELINDUNG UNTUK MEMPERTAHANKAN VIABILITAS BAKTERI ASAM LAKTAT YANG DI ISOLASI DARI AIR SUSU IBU PADA PROSES PENGERINGAN BEKU [Utilization of various cryogenic agents during freeze drying to Maintain the viability of Lactic Acid Bacteria Isolated from breast milk

    Directory of Open Access Journals (Sweden)

    Ni Nyoman Puspawati1*

    2010-06-01

    Full Text Available Lactic acid bacteria are the most important bacteria having potential as probiotic. The objectives of the present study were to examine the growth of Lactic Acid Bacteria, identify the Lactic Acid Bacteria capable of surviving and evaluate the best cryogenic agents that protect the viability of Lactic Acid Bacteria during freeze drying. Four cryogenic agents, i.e. sucrose, lactose, skim milk and maltodextrin, were used in freeze drying of three species of Lactic Acid Bacteria, i.e. Pediococcus pentosaceus A16, Lactobacillus brevis A17 and Lactobacillus rhamnosus R21 isolated from breast milk. Evaluation included viability before and after freeze drying, survival of freeze dried culture in 0.5 % bile salt and low pH for 5 hours. The result showed that three of cryogenics, i.e. sucrose, lactose and skim milk improved the viability of freeze dried of all lactobacilli, except maltodextrin that did not give protection to L. rhamnosus R21. Evaluation on the survival of LAB in 0.5 % bile salt showed that cryogenic agents improved the survival rate of all Lactic Acid Bacteria during freeze drying. The cryogenic also improved the survival rate of LAB at low pH, with the best protection given by skim milk on L. rhamnosus R21.

  15. Cryogenic Thermometer Calibration Facility at CERN

    CERN Document Server

    Balle, C; Thermeau, J P

    1998-01-01

    A cryogenic thermometer calibration facility has been designed and is being commissioned in preparation for the very stringent requirements on the temperature control of the LHC superconducting magnets. The temperature is traceable in the 1.5 to 30 K range to standards maintained in a national metrological laboratory by using a set of Rhodium-Iron temperature sensors of metrological quality. The calibration facility is designed for calibrating simultaneously 60 industrial cryogenic thermometers in the 1.5 K to 300 K temperature range, a thermometer being a device that includes both a temperature sensor and the wires heat-intercept. The thermometers can be calibrated in good and degraded vacuum or immersed in the surrounding fluid and at different Joule self-heating conditions that match those imposed by signal conditioners used in large cryogenic machinery. The calibration facility can be operated in an automatic mode and all the control and safety routines are handled by a Programmable Logic Controller (PLC)...

  16. Technical presentation: BGM Cryogenic Engineering Limited

    CERN Multimedia

    Caroline Laignel - FI Department

    2006-01-01

    13 - 14 June 2006 TECHNICAL PRESENTATION BGM Cryogenic Engineering Limited 09:00 - 18:00, 60-2-016, Main Building. Presentation on BGM: 11:00 - 12:00, 60-2-016, Main Building. BGM Cryogenic Engineering Limited manufactures assemblies, sub-assemblies and machined components for the cryogenic technology sector. The primary markets served include superconducting magnets used in the healthcare sector (eg MRI body scanners), spectroscopy and NMR equipment for numerous R & D and technology applications, high vacuum applications and particle physics research. BGM has specialist assembly capability including stainless steel and aluminium welding, vacuum testing, electromechanical assembly and metal finishing. BGM offers a ‘one stop shop'facility to satisfy any customer requirement. Through our design partner we can offer a full design and modelling service, including 3D modelling and production of 2D drawings on your own borders. We can conduct heat load and force calculations and advise on the best...

  17. Physics of cryogenics an ultralow temperature phenomenon

    CERN Document Server

    Zohuri, Bahman

    2018-01-01

    Physics of Cryogenics: An Ultralow Temperature Phenomenon discusses the significant number of advances that have been made during the last few years in a variety of cryocoolers, such as Brayton, Joule-Thomson, Stirling, pulse tube, Gifford-McMahon and magnetic refrigerators. The book reviews various approaches taken to improve reliability, a major driving force for new research areas. The advantages and disadvantages of different cycles are compared, and the latest improvements in each of these cryocoolers is discussed. The book starts with the thermodynamic fundamentals, followed by the definition of cryogenic and the associated science behind low temperature phenomena and properties. This book is an ideal resource for scientists, engineers and graduate and senior undergraduate students who need a better understanding of the science of cryogenics and related thermodynamics.

  18. Cryogenics for Particle Accelerators and Detectors

    CERN Document Server

    Lebrun, P; Vandoni, Giovanna; Wagner, U

    2002-01-01

    Cryogenics has become a key ancillary technology of particle accelerators and detectors, contributing to their sustained development over the last fifty years. Conversely, this development has produced new challenges and markets for cryogenics, resulting in a fruitful symbiotic relation which materialized in significant technology transfer and technical progress. This began with the use of liquid hydrogen and deuterium in the targets and bubble chambers of the 1950s, 1960s and 1970s. It developed more recently with increasing amounts of liquefied noble gases - mainly argon, but also krypton and even today xenon - in calorimeters. In parallel with these applications, the availability of practical type II superconductors from the early 1960s triggered the use of superconductivity in large spectrometer magnets - mostly driven by considerations of energy savings - and the corresponding development of helium cryogenics. It is however the generalized application of superconductivity in particle accelerators - RF ac...

  19. Isotope separation

    International Nuclear Information System (INIS)

    Ravoire, Jean

    1978-11-01

    Separation of isotopes is treated in a general way, with special reference to the production of enriched uranium. Uses of separated isotopes are presented quickly. Then basic definitions and theoretical concepts are explained: isotopic effects, non statistical and statistical processes, reversible and irreversible processes, separation factor, enrichment, cascades, isotopic separative work, thermodynamics. Afterwards the main processes and productions are reviewed. Finally the economical and industrial aspects of uranium enrichment are resumed [fr

  20. 49 CFR 173.316 - Cryogenic liquids in cylinders.

    Science.gov (United States)

    2010-10-01

    ... filling density for hydrogen, cryogenic liquid is defined as the percent ratio of the weight of lading in... 49 Transportation 2 2010-10-01 2010-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in...

  1. Compact insert design for cryogenic pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, Salvador M.; Ledesma-Orozco, Elias Rigoberto; Espinosa-Loza, Francisco; Petitpas, Guillaume; Switzer, Vernon A.

    2017-06-14

    A pressure vessel apparatus for cryogenic capable storage of hydrogen or other cryogenic gases at high pressure includes an insert with a parallel inlet duct, a perpendicular inlet duct connected to the parallel inlet. The perpendicular inlet duct and the parallel inlet duct connect the interior cavity with the external components. The insert also includes a parallel outlet duct and a perpendicular outlet duct connected to the parallel outlet duct. The perpendicular outlet duct and the parallel outlet duct connect the interior cavity with the external components.

  2. Thermoelectric Module Performance in Cryogenic Temperature

    Science.gov (United States)

    Kambe, Mitsuru; Morita, Ryo; Omoto, Kazuyuki; Koji, Yasuhiro; Yoshida, Tatsuo; Noishiki, Koji

    Performance of thermoelectric (TE) modules for the TE power conversion system combined with open rack type LNG vaporizer (ORV) is discussed. Most of the conventional BiTe TE modules suffer sudden decrease of the power at cryogenic temperature as low as -160°C. This is called as Mayer-Marschall effect. Authors investigated the cause of this effect and found TE modules that could avoid such effect. Performance data of such TE modules obtained at the cryogenic thermoelectric (CTE) test rig which could realize temperature and fluid dynamic condition of the ORV is presented.

  3. Cryogenic system for liquid hydrogen polarimeter

    International Nuclear Information System (INIS)

    Kitami, T.; Chiba, M.; Hirabayashi, H.; Ishii, T.; Kato, S.

    1979-01-01

    A cryogenic system has been constructed for a liquid hydrogen polarimeter in order to measure polarization of high energy proton at the 1.3 GeV electron synchrotron of Institute for Nuclear Study, University of Tokyo. The system principally consists of a cryogenerator with a cryogenic transfer line, a liquid hydrogen cryostat, and a 14.5 l target container of thin aluminum alloy where liquid hydrogen is served for the experiment. The refrigeration capacity is about 54 W at 20.4 K without a target container. (author)

  4. Amplifier development for multiplexed cryogenic detectors

    Science.gov (United States)

    Kiviranta, Mikko

    2012-12-01

    We make some considerations on the question of driving the cable from the cryogenic stage of refrigerators to the room temperature, in the case of multiplexed detector array systems where a high total Shannon information capacity is required. We have constructed large SQUID arrays for the purpose, some of which exhibit lower than 5 × 10-8 Φ0 Hz-1/2 flux noise at 4.2 K and do not require magnetic shielding in a typical laboratory environment. The option of using class-D amplifiers to reduce the cryogenic heat load is briefly reviewed.

  5. Twenty sixth DAE safety and occupational health professionals meet: cryogenic safety, electrical safety and ergonomics at work place

    International Nuclear Information System (INIS)

    2009-01-01

    This conference gathered knowledge in safety and occupational health hazards in various fields of nuclear science and technology like radiations, high voltages, ultra-low temperature, ultra-high magnetic fields, electrical breakdown, fire, ergonomics and cryogenic safety at work place. Papers relevant to INIS database are indexed separately

  6. Performance of the JT-60SA cryogenic system under pulsed heat loads during acceptance tests

    Science.gov (United States)

    Hoa, C.; Bonne, F.; Roussel, P.; Lamaison, V.; Girard, S.; Fejoz, P.; Goncalves, R.; Vallet, J. C.; Legrand, J.; Fabre, Y.; Pudys, V.; Wanner, M.; Cardella, A.; Di Pietro, E.; Kamiya, K.; Natsume, K.; Ohtsu, K.; Oishi, M.; Honda, A.; Kashiwa, Y.; Kizu, K.

    2017-12-01

    The JT-60SA cryogenic system a superconducting tokamak currently under assembly at Naka, Japan. After one year of commissioning, the acceptance tests were successfully completed in October 2016 in close collaboration with Air Liquide Advanced Technologies (ALaT), the French atomic and alternative energies commission (CEA), Fusion for Energy (F4E) and the Quantum Radiological Science and Technology (QST). The cryogenic system has several cryogenic users at various temperatures: the superconducting magnets at 4.4 K, the current leads at 50 K, the thermal shields at 80 K and the divertor cryo-pumps at 3.7 K. The cryogenic system has an equivalent refrigeration power of about 9.5 kW at 4.5 K, with peak loads caused by the nuclear heating, the eddy currents in the structures and the AC losses in the magnets during cyclic plasma operation. The main results of the acceptance tests will be reported, with emphasis on the management of the challenging pulsed load operation using a liquid helium volume of 7 m3 as a thermal damper.

  7. Gravitational separation of major atmospheric components observed in the stratosphere over Syowa Station, Antarctica, Kiruna, Sweden and Sanriku, Japan.

    Directory of Open Access Journals (Sweden)

    Shigeyuki Ishidoya

    2010-12-01

    Full Text Available To investigate the gravitational separation of atmospheric components in the stratosphere, air samples collected using an aircraft during the Arctic Airborne Measurement Program 2002 (AAMP02 were analyzed for the O_2 N_2 ratios (δ(O_2 N_2, δ^N of N_2, δ^O of O_2 and Ar N_2 ratio (δ(Ar N_2. The relationship between observed stratospheric δ^N of N_2, δ^O of O_2 and δ(Ar N_2 over the Svalbard Islands and Barrow showed mass-dependent fractionation of atmospheric components in the stratosphere, which suggested that gravitational separation could be observable in the lowermost stratosphere inside the polar vortex. By examining the rates of change in δ(O_2 Nv and δ^C of CO_2 relative to the CO_2 concentration, such observed correlations were bound to be mainly attributable to upward propagation of their seasonal cycles produced in the troposphere and height-dependent air age as well as gravitational separation in the stratosphere. Air samples collected over Syowa Station, Antarctica, Kiruna, Sweden and Sanriku, Japan using balloon-borne cryogenic air samplers were analyzed for δ^N of Nv and δ^O of O_2. Strength of the gravitational separation was a function of latitude, showing the largest separation inside the polar vortex over Kiruna. It is suggested that information on increase of gravitational separation with height is useful in understanding the vertical transport of air masses in the stratosphere. By comparing the gravitational separations, mean age of air and N_2O concentration at two height intervals with N_2O concentrations > 125 ppb and < 45 ppb, the effect of descending air was found to be more significant over Kiruna than over Syowa Station and Sanriku. The variation in the gravitational separation with height is found to be weaker in the region with N_2O concentrations between 45 and 125 ppb than in other regions, which might suggest that vertical mixing of air occurred in this region.

  8. Cryogenic sub-system for the 56 MHz SRF storage cavity for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.; Than, R.; Orfin, P.; Lederle, D.; Tallerico, T.; Masi L.; Talty, P.; Zhang, Y.

    2011-03-28

    A 56 MHz Superconducting RF Storage Cavity is being constructed for the RHIC collider. This cavity is a quarter wave resonator that will be operated in a liquid helium bath at 4.4 K. The cavity requires an extremely quiet environment to maintain its operating frequency. The cavity, besides being engineered for a mechanically quiet system, also requires a quiet cryogenic system. The helium is taken from RHIC's main helium supply header at 3.5 atm, 5.3K at a phase separator tank. The boil-off is sent back to the RHIC refrigeration system to recover the cooling. To acoustically separate the RHIC helium supply and return lines, a condenser/boiler heat exchanger condenses the helium vapor generated in the RF cavity bath. A system description and operating parameters are given about the cryogen delivery system. The 56 MHz superconducting storage RF cavity project is making progress. The cryogenic system design is in its final stage. The helium supply lines have been tapped into the RHIC helium distribution lines. The plate-and-fin heat exchanger design is near completion and specification will be sent out for bid soon. The cold helium vapor heating system design will start soon as well. A booster compressor specification is underway. The first phase separator and transfer line design work is near completion and will be sent out for bid soon.

  9. CRYOGENIC AND VACUUM TECHNOLOGICAL ASPECTS OF THE LOW-ENERGY ELECTROSTATIC CRYOGENIC STORAGE RING

    International Nuclear Information System (INIS)

    Orlov, D. A.; Lange, M.; Froese, M.; Hahn, R. von; Grieser, M.; Mallinger, V.; Sieber, T.; Weber, T.; Wolf, A.; Rappaport, M.

    2008-01-01

    The cryogenic and vacuum concepts for the electrostatic Cryogenic ion Storage Ring (CSR), under construction at the Max-Planck-Institut fuer Kernphysik in Heidelberg, is presented. The ring will operate in a broad temperature range from 2 to 300 K and is required to be bakeable up to 600 K. Extremely high vacuum and low temperatures are necessary to achieve long lifetimes of the molecular ions stored in the ring so that the ions will have enough time to cool by radiation to their vibrational and rotational ground states. To test cryogenic and vacuum technological aspects of the CSR, a prototype is being built and will be connected to the commercial cryogenic refrigerator recently installed, including a specialized 2-K connection system. The first results and the status of current work with the prototype are also presented

  10. Centrifugal gas separator

    International Nuclear Information System (INIS)

    Sakurai, Mitsuo.

    1970-01-01

    A centrifugal gas separator of a highly endurable construction and with improved gas sealing qualities utilizes a cylincrical elastic bellows or similar system in cooperation with a system of dynamic pressure operable gas seals as means for removing separated gases from the interior of the rotor drum, collecting the separated gases in their respective separated gas chambers defined by the corresponding bellows and their supporting stationary wall members, gas seals and rotor end caps, and means for discharging to the exterior of the surrounding cylindrical wall member the gaseous components from their respective separated gas chambers. In the vicinity of the rotary drum motor is a mixed gas chamber and means for providing the gas mixture along a co-axial passage into the rotary drum chamber. Orifices are bored into the end caps of the rotary drum to direct the separated gases into the aforementioned separated gas chambers which, through the action of the gas seals, freely slide upon the rotating drum to collect and thereafter discharge the thus separated gases. Therefore, according to the present invention, helium gas used to prevent separated gas remixture is unnecessary and, furthermore, the gas seals and elastic bellows means provide an air-tight seal superior to that of the contact sealing system of the former art. (K.J. Owens)

  11. Real-gas effects 1: Simulation of ideal gas flow by cryogenic nitrogen and other selected gases

    Science.gov (United States)

    Hall, R. M.

    1980-01-01

    The thermodynamic properties of nitrogen gas do not thermodynamically approximate an ideal, diatomic gas at cryogenic temperatures. Choice of a suitable equation of state to model its behavior is discussed and the equation of Beattie and Bridgeman is selected as best meeting the needs for cryogenic wind tunnel use. The real gas behavior of nitrogen gas is compared to an ideal, diatomic gas for the following flow processes: isentropic expansion; normal shocks; boundary layers; and shock wave boundary layer interactions. The only differences in predicted pressure ratio between nitrogen and an ideal gas that may limit the minimum operating temperatures of transonic cryogenic wind tunnels seem to occur at total pressures approaching 9atmospheres and total temperatures 10 K below the corresponding saturation temperature, where the differences approach 1 percent for both isentropic expansions and normal shocks. Several alternative cryogenic test gases - air, helium, and hydrogen - are also analyzed. Differences in air from an ideal, diatomic gas are similar in magnitude to those of nitrogen. Differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. Helium and hydrogen do not approximate the compressible flow of an ideal, diatomic gas.

  12. Cryogenic refrigeration for cold neutron sources

    International Nuclear Information System (INIS)

    Gistau-Baguer, Guy

    1998-01-01

    Neutron moderation by means of a fluid at cryogenic temperature is a very interesting way to obtain cold neutrons. Today, a number of nuclear research reactors are using this technology. This paper deals with thermodynamics and technology which are used for cooling Cold Neutron Sources

  13. Cryogenic Heat Exchanger with Turbulent Flows

    Science.gov (United States)

    Amrit, Jay; Douay, Christelle; Dubois, Francis; Defresne, Gerard

    2012-01-01

    An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid-solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N[subscript 2] and He gases from room temperatures. We present first the experimental results of…

  14. Impact resistance cryogenic bunker fuel tanks

    NARCIS (Netherlands)

    Voormeeren, L.O.; Atli-Veltin, B.; Vredeveldt, A.W.

    2014-01-01

    The increasing use of liquefied natural gas (LNG) as bunker fuel in ships, calls for an elaborate study regarding the risks involved. One particular issue is the vulnerability of cryogenic LNG storage tanks with respect to impact loadings, such as ship collisions and dropped objects. This requires

  15. Cryogenic Liquid Fluctuations in a Motionless Tank

    Directory of Open Access Journals (Sweden)

    Min Vin Ai

    2014-01-01

    Full Text Available The article considers approximate numerical methods to determine own frequencies of cryogenic liquid fluctuations stratification of which changes under any law. The increasing use of cryogenic liquids, liquefied gas, superfluid solutions, and slush liquids in modern mechanical engineering define relevance of a perspective. Interest in the considered problem is also caused by the fact that in cryogenic liquid along with superficial waves there can be internal wave movements penetrating all thickness of liquid in a tank and therefore playing important role in many hydro-dynamic processes.This article considers problems of determining the own frequencies of cryogenic liquid fluctuations, partially filling cylindrical tank of any cross section. It is supposed that the change of the liquid particles density due to thermal stratification of entire liquid mass can proceed continuously under any law. To solve numerically a similar problem, a method of trigonometric series (MTS and a method of final elements (MFE were used. When using the MTS method the unknown solution and variable coefficients of the equation were presented in the form of trigonometric series. Further, after multiplication of series and the subsequent mathematical operations the frequency equation was obtained. Bubnov-Galyorkin's approach was used to obtain solutions by the MFE method. Reliability of received numerical results is confirmed by coincidence with frequency results calculated by analytical formulas of solutions of differential equations with constant frequency of buoyancy.

  16. Transient boiling crisis of cryogenic liquids

    NARCIS (Netherlands)

    Deev, [No Value; Kharitonov, VS; Kutsenko, KV; Lavrukhin, AA

    2004-01-01

    This paper introduces a new physical model of boiling crisis under rapid increase of power on the heated surface. The calculation of the time interval of the transition to film boiling in cryogenic liquids was carried out depending on heat flux and pressure. The obtained results are in good

  17. The Cryogenic Test Bed experiments: Cryogenic heat pipe flight experiment CRYOHP (STS-53). Cryogenic two phase flight experiment CRYOTP (STS-62). Cryogenic flexible diode flight experiment CRYOFD

    Science.gov (United States)

    Thienel, Lee; Stouffer, Chuck

    1995-01-01

    This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.

  18. Cryogenic testing of the TPC superconducting solenoid

    International Nuclear Information System (INIS)

    Green, M.A.; Smits, R.G.; Taylor, J.D.

    1983-06-01

    This report describes the results of a series of tests on the TPC superconducting magnet cryogenic system which occurred during the winter and spring of 1983. The tests occurred at interaction region 2 of the PEP colliding beam facility at the Stanford Linear Accelerator Center (SLAC). The TPC Magnet Cryogenic System which was tested includes the following major components: a remote helium compressor with a full flow liquid nitrogen purification station, 400 meters of high pressure supply and low pressure return lines; and locally a CTi Model 2800 refrigerator with two Sulzer gas bearing turbines, the TPC magnet control dewar, 70 meters of transfer lines, and the TPC thin superconducting solenoid magnet. In addition, there is a conditioner (liquid nitrogen heat exchangers and gas heaters) system for cooldown and warmup of the magnet. This report describes the local cryogenic system and describes the various steps in the cooldown and operation of the TPC magnet. The tests were successful in that they showed that the TPC magnet could be cooled down in 24 hours and the magnet could be operated on the refrigerator or a helium pump with adequate cooling margin. The tests identified problems with the cryogenic system and the 2800 refrigerator. Procedures for successful operation and quenching of the superconducting magnet were developed. 19 references

  19. Solid State Circuits for Cryogenic Operation

    Science.gov (United States)

    Petrac, D.; Spencer, R. L.

    1983-01-01

    Tests confirm operation of five commercial semiconductor devices at cryogenic temperatures. The five devices - one tunnel diode, one field-effect transistor, and three CMOS integrated circuits - all perform well in circuits immersed in liquid-helium bath. For some tests, bath temperature was reduced to 1,25K by pumping.

  20. Comparison of cryogenic low-pass filters

    Science.gov (United States)

    Thalmann, M.; Pernau, H.-F.; Strunk, C.; Scheer, E.; Pietsch, T.

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  1. Cryogenics Testbed Laboratory Flange Baseline Configuration

    Science.gov (United States)

    Acuna, Marie Lei Ysabel D.

    2013-01-01

    As an intern at Kennedy Space Center (KSC), I was involved in research for the Fluids and Propulsion Division of the NASA Engineering (NE) Directorate. I was immersed in the Integrated Ground Operations Demonstration Units (IGODU) project for the majority of my time at KSC, primarily with the Ground Operations Demonstration Unit Liquid Oxygen (GODU L02) branch of IGODU. This project was established to develop advancements in cryogenic systems as a part of KSC's Advanced Exploration Systems (AES) program. The vision of AES is to develop new approaches for human exploration, and operations in and beyond low Earth orbit. Advanced cryogenic systems are crucial to minimize the consumable losses of cryogenic propellants, develop higher performance launch vehicles, and decrease operations cost for future launch programs. During my internship, I conducted a flange torque tracking study that established a baseline configuration for the flanges in the Simulated Propellant Loading System (SPLS) at the KSC Cryogenics Test Laboratory (CTL) - the testing environment for GODU L02.

  2. Cryogenic carbonates in cave environments: A review

    Czech Academy of Sciences Publication Activity Database

    Žák, Karel; Onac, B. P.; Persoiu, A.

    2008-01-01

    Roč. 187, č. 1 (2008), s. 84-96 ISSN 1040-6182 Institutional research plan: CEZ:AV0Z30130516 Keywords : cryogenic cave carbonate * cave * Romania * stable Isotopes * isotope fractionation Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.482, year: 2008

  3. Testing the LHC magnet cryogenic systems

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    The magnets in the LHC will be cooled to 1.9 K (- 270.3°C). To keep this 27 km long machine at such a low temperatures requires one of the largest refrigeration systems in the world. These pictures show the cryogenics plant in the testing area.

  4. A separator

    Energy Technology Data Exchange (ETDEWEB)

    Prokopyuk, S.G.; Dyachenko, A.Ye.; Mukhametov, M.N.; Prokopov, O.I.

    1982-01-01

    A separator is proposed which contains separating slanted plates and baffle plates installed at a distance to them at an acute angle to them. To increase the effectiveness of separating a gas and liquid stream and the throughput through reducing the secondary carry away of the liquid drops and to reduce the hydraulic resistance, as well, openings are made in the plates. The horizontal projections of each opening from the lower and upper surfaces of the plate do not overlap each other.

  5. Cryogenics system: strategy to achieve nominal performance and reliable operation

    CERN Document Server

    Bremer, J; Casas, J; Claudet, S; Delikaris, D; Delruelle, N; Ferlin, G; Fluder, C; Perin, A; Perinic, G; Pezzetti, M; Pirotte, O; Tavian, L; Wagner, U

    2012-01-01

    During the LHC operation in 2010 and 2011, the cryogenic system has achieved an availability level fulfilling the overall requirement. To reach this level, the cryogenic system has profited like many other beam-dependent systems from the reduced beam parameters. Therefore, impacts of some failures occurred during the LHC operation were mitigated by using the overcapacity margin, the existing built-in redundancy in between adjacent sector cryogenic plants and the "cannibalization" of spares on two idle cryogenic plants. These two first years of operation were also crucial to identify the weaknesses of the present cryogenic maintenance plan and new issues like SEUs. After the LS1, nominal beam parameters are expected and the mitigated measures will be less effective or not applicable at all. Consequently, a consolidation plan to improve the MTBF and the MTTR of the LHC cryogenic system is under definition. Concerning shutdown periods, the present cryogenic sectorization imposes some restrictions in the type of ...

  6. Environmental monitoring for tritium at tritium separation facility

    International Nuclear Information System (INIS)

    Varlam, C.; Stefanescu, I.; Steflea, D.; Lazar, R.E.

    2001-01-01

    The Cryogenic Pilot is an experimental project in the nuclear energy national research program, which has the aim of developing technologies for tritium and deuterium separation by cryogenic distillation. The experimental installation is located 15 km near the highest city of the area and 1 km near Olt River. An important chemical activity is developed in the area and the Experimental Cryogenic Pilot's, almost the entire neighborhood are chemical plants. It is necessary to emphasize this aspect because the sewerage system is connected with the other three chemical plants from the neighborhood. This is the reason that we progressively established elements of an environmental monitoring program well in advance of tritium operation in order to determine baseline levels. The first step was the tritium level monitoring in environmental water and waste water of industrial activity from neighborhood. In this work, a low background liquid scintillation is used to determine tritium activity concentration according to ISO 9698/1998. We measured drinking water, precipitation, river water, underground water and waste water. The tritium level was between 10 TU and 27 TU that indicates there is no source of tritium contamination in the neighborhood of Cryogenic Pilot. In order to determine baseline levels we decide to monitories monthly each location. In this paper a standard method is presented which it is used for tritium determination in water sample, the precautions needed in order to achieve reliable results, and the evolution of tritium level in different location near the Experimental Pilot Tritium and Deuterium Cryogenic Separation.(author)

  7. The Effect of Deep Cryogenic Treatment on the Corrosion Behavior of Mg-7Y-1.5Nd Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Quantong Jiang

    2017-10-01

    Full Text Available The effect of quenching on the corrosion resistance of Mg-7Y-1.5Nd alloy was investigated. The as-cast alloy was homogenized at 535 °C for 24 h, followed by quenching in air, water, and liquid nitrogen. Then, all of the samples were peak-aged at 225 °C for 14 h. The microstructures were studied by scanning electron microscopy, energy-dispersive spectrometry, and X-ray diffraction. Corrosion behavior was analyzed by using weight loss rate and gas collection. Electrochemical characterizations revealed that the T4-deep cryogenic sample displayed the strongest corrosion resistance among all of the samples. A new square phase was discovered in the microstructure of the T6-deep cryogenic sample; this phase was hugely responsible for the corrosion property. Cryogenic treatment significantly improved the corrosion resistance of Mg-7Y-1.5Nd alloy.

  8. The method for on-site determination of trace concentrations of methyl mercaptan and dimethyl sulfide in air using a mobile mass spectrometer with atmospheric pressure chemical ionization, combined with a fast enrichment/separation system.

    Science.gov (United States)

    Kudryavtsev, Andrey S; Makas, Alexey L; Troshkov, Mikhail L; Grachev, Mikhail А; Pod'yachev, Sergey P

    2014-06-01

    A method for fast simultaneous on-site determination of methyl mercaptan and dimethyl sulfide in air was developed. The target compounds were actively collected on silica gel, followed by direct flash thermal desorption, fast separation on a short chromatographic column and detection by means of mass spectrometer with atmospheric pressure chemical ionization. During the sampling of ambient air, water vapor was removed with a Nafion selective membrane. A compact mass spectrometer prototype, which was designed earlier at Trofimuk Institute of Petroleum Geology and Geophysics, was used. The minimization of gas load of the atmospheric pressure ion source allowed reducing the power requirements and size of the vacuum system and increasing its ruggedness. The measurement cycle is about 3 min. Detection limits in a 0.6 L sample are 1 ppb for methyl mercaptan and 0.2 ppb for dimethyl sulfide. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Isotope separation

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1979-01-01

    A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)

  10. Control strategies for laser separation of carbon isotopes

    Indian Academy of Sciences (India)

    Unknown

    Herriott multipass refocusing (MPRF) optics in flow configuration with internal gas blowers for gas circulation during the laser irradiation, control valves, pressure and vacuum transducers etc. Product separator includes a home-made cryogenic distillation set up and a commercial preparative gas chromatograph (Toshniwal ...

  11. Gas-Surface Interactions in Cryogenic Whole Air Sampling.

    Science.gov (United States)

    1981-05-01

    pressure gauge and then through a wet test meter, where its volume is recorded as a function of time. The iodine solution produced in the bubbler is...suspected concentration of the iodine solution. Starch solution is used as an indicator, and is added when the bright yellow color of the solution begins to...NL .5MENEMmhIl h NONElhhmIhmhhhmmIh EhIIIiiim p2.2 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU Of STANDARDS 1963-A, APOL-TR4r~> 4 t M ~J. C cK 00

  12. Design of spiral fin type condenser for hydrogen cryogenic distillation column

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Nishi, Masataka; Yamanishi, Toshihiko

    2005-08-01

    The purpose of this paper is the proposal of new concept condenser for hydrogen cryogenic distillation column of Hydrogen Isotope Separation System (ISS) in a fusion reactor, and the establishment of numerical evaluation method of the hydrogen isotope inventory in the condenser. A large amount of hydrogen isotopes including high concentration of tritium, radioactive hydrogen isotope, has been handled in the cryogenic distillation column. Therefore, from the safety point of view, cryogenic coolant tube was commonly arranged to surround the condensed area to prevent the mixing of tritium into the coolant. This inevitable arrangement leads the difficulty in the minimization of the condenser. The scale of condenser has influence on the scale of the ISS and its earthquake-resistance. The spiral fin type condenser, which introduces fins inside it and in coolant tube to enhance heat exchange, is proposed as a new concept condenser for hydrogen cryogenic distillation column to miniaturize the condenser. The volume of spiral fin type condenser is estimated to become less than half of that of coil tube type condenser currently in use. Accordingly, it is found that the adoption of spiral fin type condenser realizes the significant miniaturization of the ISS. Moreover, the numerical evaluation method of the hydrogen isotope inventory in the condenser is proposed. The validity of this method was confirmed by the experimental data. The synthetic design of the condenser for the hydrogen cryogenic distillation column is achieved by the combination of the proposed new concept condenser with the numerical evaluation method of the hydrogen isotope inventory. (author)

  13. CENTRIFUGAL SEPARATORS

    Science.gov (United States)

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  14. Manufacturing and Installation of the Compound Cryogenic Distribution Line for the Large Hadron Collider

    CERN Document Server

    Riddone,, G; Bouillot, A; Brodzinski, K; Dupont, M; Fathallah, M; Fournel, JL; Gitton, E; Junker, S; Moussavi, H; Parente, C; Riddone, G

    2007-01-01

    The Large Hadron Collider (LHC) [1] currently under construction at CERN will make use of superconducting magnets operating in superfluid helium below 2 K. A compound cryogenic distribution line (QRL) will feed with helium at different temperatures and pressures the local elementary cooling loops in the cryomagnet strings. Low heat inleak to all temperature levels is essential for the overall LHC cryogenic performance. Following a competitive tendering, CERN adjudicated in 2001 the contract for the series line to Air Liquide (France). This paper recalls the main features of the technical specification and shows the project status. The basic choices and achievements for the industrialization phase of the series production are also presented, as well as the installation issues and status.

  15. Separated Shoulder

    Science.gov (United States)

    ... ligaments that hold your collarbone (clavicle) to your shoulder blade. In a mild separated shoulder, the ligaments might ... the ligaments that hold your collarbone to your shoulder blade. Risk factors Participating in contact sports, such as ...

  16. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1979-01-01

    Isotopic species in an isotopic mixture including a first species having a first isotope and a second species having a second isotope are separated by selectively exciting the first species in preference to the second species and then reacting the selectively excited first species with an additional preselected radiation, an electron or another chemical species so as to form a product having a mass different from the original species and separating the product from the balance of the mixture in a centrifugal separating device such as centrifuge or aerodynamic nozzle. In the centrifuge the isotopic mixture is passed into a rotor where it is irradiated through a window. Heavier and lighter components can be withdrawn. The irradiated mixture experiences a large centrifugal force and is separated in a deflection area into lighter and heavier components. (UK)

  17. Isotopic separation

    International Nuclear Information System (INIS)

    Castle, P.M.

    1979-01-01

    This invention relates to molecular and atomic isotope separation and is particularly applicable to the separation of 235 U from other uranium isotopes including 238 U. In the method described a desired isotope is separated mechanically from an atomic or molecular beam formed from an isotope mixture utilising the isotropic recoil momenta resulting from selective excitation of the desired isotope species by radiation, followed by ionization or dissociation by radiation or electron attachment. By forming a matrix of UF 6 molecules in HBr molecules so as to collapse the V 3 vibrational mode of the UF 6 molecule the 235 UF 6 molecules are selectively excited to promote reduction of UF 6 molecules containing 235 U and facilitate separation. (UK)

  18. Separations chemistry

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Results of studies on the photochemistry of aqueous Pu solutions and the stability of iodine in liquid and gaseous CO 2 are reported. Progress is reported in studies on: the preparation of macroporous bodies filled with oxides and sulfides to be used as adsorbents; the beneficiation of photographic wastes; the anion exchange adsorption of transition elements from thiosulfate solutions; advanced filtration applications of energy significance; high-resolution separations; and, the examination of the separation agents, octylphenylphosphoric acid (OPPA) and trihexyl phosphate (THP)

  19. Product separator

    International Nuclear Information System (INIS)

    Welsh, R.A.; Deurbrouck, A.W.

    1976-01-01

    A description is given of a secondary light sensitive photoelectric product separator for use with a primary product separator that concentrates a material so that it is visually distinguishable from adjacent materials. The concentrate separation is accomplished first by feeding the material onto a vibratory inclined surface with a liquid flow, such as a wet concentrating table. Vibrations generally perpendicular to the stream direction of flow cause the concentrate to separate from its mixture according to its color. When the concentrate and its surrounding stream reach the recovery end of the table, a detecting device notes the line of color demarcation and triggers a signal if it differs from a normal condition. If no difference is noted, nothing moves on the second separator. However, if a difference is detected in the constant monitoring of the color line's location, a product splitter and recovery unit normally positioned near the color line at the recovery end, moves to a new position. In this manner the selected separated concentrate is recovered at a maximum rate regardless of variations in the flow stream or other conditions present

  20. Physics Based Model for Cryogenic Chilldown and Loading. Part I: Algorithm

    Science.gov (United States)

    Luchinsky, Dmitry G.; Smelyanskiy, Vadim N.; Brown, Barbara

    2014-01-01

    We report the progress in the development of the physics based model for cryogenic chilldown and loading. The chilldown and loading is model as fully separated non-equilibrium two-phase flow of cryogenic fluid thermally coupled to the pipe walls. The solution follow closely nearly-implicit and semi-implicit algorithms developed for autonomous control of thermal-hydraulic systems developed by Idaho National Laboratory. A special attention is paid to the treatment of instabilities. The model is applied to the analysis of chilldown in rapid loading system developed at NASA-Kennedy Space Center. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The numerical predictions are in reasonable agreement with the experimental time traces. The obtained results pave the way to the development of autonomous loading operation on the ground and space.

  1. Cryogenic instrumentation of an SSC (superconducting super collider) magnet test stand

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, K.; Strait, J.; Kuchnir, M.; McInturff, A.

    1987-09-01

    This paper describes the system used to acquire cryogenic data for the testing of SSC magnets at the Fermilab Magnet Test Facility. An array of pressure transducers, resistance thermometers, vapor pressure thermometers, and signal conditioning circuits are used. Readings with time resolution appropriate for quench recording are obtained with a waveform digitizer and steady-state measurements are obtained with higher accuracy using a digital voltmeter. The waveform digitizer is clocked at a 400 Hz sampling rate and these readings are stored in local ring buffers. The system is modular and can be expanded to add more channels. The software for the acquisition, control, logging, and display of cryogenic data consist of two programs which run as separate tasks. These programs (as well as a third program which acquires quench and magnetic data) communicate and pass data using shared global resources. The acquired data are available for analysis via a nationwide DECnet network.

  2. Investigation of dynamic loads in a pipeline cooled by liquid cryogenic products

    International Nuclear Information System (INIS)

    Bulanov, A.B.; Irevli, V.S.; Simkhovich, S.L.

    1986-01-01

    This paper presents a mathematical model of the pressure increase that develops on feeding a cryogenic agent into a lengthy pipeline in the presence of a return valve. The physical model of the pressure increase caused by the filling of a lengthy pipeline is based on Steward's model, i.e., the boundary of phase separation between the fluid and vapor in determining the momentum of the fluid and vapor is supposedly plane, and the fluid is considered incompressible. The mathematical model that is developed satisfactorily describes the dynamic processes in the initial cooling stage of lengthy pipelines with a return valve at the outlet, and the assumptions made during its development are correct. The proposed method can be used to calculate the dynamic loads in pipelines of cryogenic systems in the initial stage of cooling

  3. Experimental study on friction and wear behaviour of amorphous carbon coatings for mechanical seals in cryogenic environment

    Science.gov (United States)

    Wang, Jianlei; Jia, Qian; Yuan, Xiaoyang; Wang, Shaopeng

    2012-10-01

    The service life and the reliability of contact mechanical seal are directly affected by the wear of seal pairs (rotor vs. stator), especially under the cryogenic environment in liquid rocket engine turbopumps. Because of the lower friction and wear rate, amorphous carbon (a-C) coatings are the promising protective coatings of the seal pairs for contact mechanical seal. In this paper, a-C coatings were deposited on 9Cr18 by pulsed DC magnetron sputtering. The tribological performances of the specimen were tested under three sealed fluid conditions (air, water and liquid nitrogen). The results show that the coatings could endure the cryogenic temperature while the friction coefficients decrease with the increased contact load. Under the same contact condition, the friction coefficient of the a-C coatings in liquid nitrogen is higher than that in water and that they are in air. The friction coefficients of the a-C coatings in liquid nitrogen range from 0.10 to 0.15. In the cryogenic environment, the coatings remain their low specific wear rates (0.9 × 10-6 to 1.8 × 10-6 mm3 N-1 m-1). The results provide an important reference for designing a water lubricated bearing or a contact mechanical seal under the cryogenic environment that is both reliable and has longevity.

  4. Cryogenic cooling for high power laser amplifiers

    Directory of Open Access Journals (Sweden)

    Perin J.P.

    2013-11-01

    Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  5. Cryogenic Insulation Standard Data and Methodologies Project

    Science.gov (United States)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam

    2015-01-01

    Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system

  6. Cryogenic performance of single polymer polypropylene composites

    Science.gov (United States)

    Atli-Veltin, Bilim

    2018-03-01

    The main objective of the experimental study detailed in this paper is to investigate the performance of fully recyclable, lightweight, low-cost, thermoplastic Polypropylene (PP) composite tapes at low temperatures. Coupons made of [±45] and [0/90] laminates are subjected to tensile and 3-point bending tests at room temperature as well as at -196 °C. In addition to that, cryogenic low velocity impact tests at 268 J and 777 J impact energies are performed on tubular structures. The results are indicating that the laminates made of PP tapes have sufficient ductility for cryogenic applications. Low velocity impact tests showed that the viscoelastic behavior of the material is preserved, even at such low temperatures and more than 72% of impact energy is absorbed by the material.

  7. Cryogenic fluid management (base R/T): Cryogenic fluid systems, Cryogenic Orbital Nitrogen Experiment (CONE), Cryogenic Orbital Hydrogen Experiment (COHE). (Transportation focused technology)

    Science.gov (United States)

    Symons, Pat

    1991-01-01

    The topics presented are covered in viewgraph form. The concluded remarks are: (1) advanced cryogenic fluid systems technology is enhancing or enabling to all known transportation scenarios for space exploration; (2) an integrated/coordinated program involving LeRC/MSFC has been formulated to address all known CFM needs - new needs should they develop, can be accommodated within available skills/facilities; (3) all required/experienced personnel and facilities are finally in place - data from initial ground-based experiments is being collected and analyzed - small scale STS experiments are nearing flight - program is beginning to yield significant results; (4) future proposed funding to primarily come from two sources; and (5) cryogenic fluid experimentation is essential to provide required technology and assure implementation in future NASA missions.

  8. Alignment Stage for a Cryogenic Dilatometer

    Science.gov (United States)

    Dudik, Matthew; Moore, Donald

    2005-01-01

    A three-degree-of-freedom alignment stage has been designed and built for use in a cryogenic dilatometer that is used to measure thermal strains. The alignment stage enables precise adjustments of the positions and orientations of optical components to be used in the measurements and, once adjustments have been completed, keeps the components precisely aligned during cryogenic-dilatometer operations that can last as long as several days. The alignment stage includes a case, a circular tilt/tip platform, and a variety of flexural couplings between the case and the platform, all machined from a single block of the low-thermal-expansion iron/nickel alloy Invar, in order to minimize effects of temperature gradients and to obtain couplings that are free of stiction and friction. There are three sets of flexural couplings clocked at equal angles of 120 degrees around the platform, constituting a three-point kinematic support system.

  9. Cryogenic in situ microcompression testing of Sn

    International Nuclear Information System (INIS)

    Lupinacci, A.; Kacher, J.; Eilenberg, A.; Shapiro, A.A.; Hosemann, P.; Minor, A.M.

    2014-01-01

    Characterizing plasticity mechanisms below the ductile-to-brittle transition temperature is traditionally difficult to accomplish in a systematic fashion. Here, we use a new experimental setup to perform in situ cryogenic mechanical testing of pure Sn micropillars at room temperature and at −142 °C. Subsequent electron microscopy characterization of the micropillars shows a clear difference in the deformation mechanisms at room temperature and at cryogenic temperatures. At room temperature, the Sn micropillars deformed through dislocation plasticity, while at −142 °C they exhibited both higher strength and deformation twinning. Two different orientations were tested, a symmetric (1 0 0) orientation and a non-symmetric (4 5 ¯ 1) orientation. The deformation mechanisms were found to be the same for both orientations

  10. Cryogenic 3-D Detectors for Solar Physics

    Science.gov (United States)

    Stern, R. A.

    2003-05-01

    Space and ground-based astronomy is currently undergoing a revolution in detector technology with the advent of cryogenic sensors operating in the sub-Kelvin temperature range. These detectors provide non-dispersive energy resolution at optical through gamma ray energies (e.g, E/Δ E ˜ 1500 at 6 keV), high time resolution (msec or better), and can be made into arrays using a combination of microlithography and multiplexing using SQUID amplifiers. The application of such ``3-D'' detector technology to solar physics could lead to significant advances in our understanding of magnetic reconnection in the Sun, including X-ray jet phenomena, and active region dynamics. In this talk, I will review some of the basic principles of cryogenic 3-D detectors, current astronomical applications, and their potential for future NASA solar physics Explorer-class missions. This work was supported in part by the Lockheed Martin Independent Research Program

  11. Optimum spacing between electrodes in an air-cathode single chamber microbial fuel cell with a low-cost polypropylene separator.

    Science.gov (United States)

    Kondaveeti, Sanath; Moon, Jung Mi; Min, Booki

    2017-12-01

    The performance of a single chamber microbial fuel cell (MFC) with a low-cost polypropylene separator was investigated at various electrode interspaces in a separator electrode assembly (SEA). The lag period was shortened (3.74-0.17 days) and voltage generation was enhanced (0.2-0.5 V) as electrode spacing was increased from 0 to 9 mm. Power density was increased from 220 to 370 mW/m 2 with increased spacing. The highest power density of 488 mW/m 2 was obtained in polarization analysis with 6 mm. The oxygen mass transfer coefficients with 0 mm (K o  = 3.69 × 10 -5  cm/s) electrode spacing were 3.8 times higher than with 9 mm (K o  = 0.96 × 10 -5  cm/s) spacing. Columbic efficiency (CE) was increased from 5 to 32% due to less oxygen diffusion with increase in electrode spacing, but on contrary the ohmic resistance (R oh ) was increased from 2 to 4 Ω. In a long-term operation (200 days), a gradual decrease in cathode potentials was observed in all electrode spacing as the main limiting factor of stable MFC performance.

  12. Cryogenic temperature measurement for large applications

    CERN Document Server

    Ylöstalo, J; Kyynäräinen, J; Niinikoski, T O; Voutilainen, R

    1996-01-01

    We have developed a resistance thermometry system for the acquisition, control and monitoring of temperature in large-scale cryogenic applications. The resistance of the sensor is converted to a voltage using a self-balancing AC bridge circuit featuring square-wave excitation currents down to 1 nA. The system is easily scalable and includes intelligent features to treat special situations such as magnet quenches differently from normal operation.

  13. High field conditioning of cryogenic RF cavities

    International Nuclear Information System (INIS)

    Cole, M.; Debiak, T.; Lom, C.; Shephard, W.; Sredniawski, J.

    1993-01-01

    Space-based and other related accelerators have conditioning and operation requirements that are not found in most machines. The use of cryogenic copper, relatively poor vacuum, and limited power storage and operating time put unusual demands on the high-field conditioning process and present some concerns. Two CW cryogenic engineering model open-quotes sparkerclose quotes cavities have been fabricated and tested to fairly high field levels. Tests included initial and repeated conditioning as well as sustained RF operations. The two cavities were an engineering model TDL and an engineering model RFQ. Both cavities operated at 425 MHz. The DTL was conditioned to 46 MV/m at 100% duty factor (CW) at cryogenic temperature. This corresponds to a gap voltage of 433 kV and a real estate accelerating gradient (energy gain/total cavity length) of 6.97 MV/m. The authors believe this to be record performance for cryo CW operation. During cryo pulsed operation, the same cavity reached 48 MV/m with 200 μsec pulses at 0.5% DF. The RFQ was conditioned to 30 MV/m CW at cryo, 85 kV gap voltage. During a brief period of cryo pulsed operation, the RFQ operated at 46 MV/m, or 125 kV gap voltage. Reconditioning experiments were performed on both cavities and no problems were encountered. It should be noted that the vacuum levels were not very stringent during these tests and no special cleanliness or handling procedures were followed. The results of these tests indicate that cavities can run CW without difficulty at cryogenic temperatures at normal conservative field levels. Higher field operation may well be possible, and if better vacuums are used and more attention is paid to cleanliness, much higher fields may be attainable

  14. Impact of the Cryogen Free Revolution on Neutron Scattering Laboratories

    Science.gov (United States)

    Kirichek, Oleg

    A global shortage of helium gas can seriously jeopardise the scientific programmes of neutron scattering laboratories due to the use of cryogenic sample environment in the majority of the neutron scattering experiments. Recently developed cryogen-free technology allows a significant reduction or even a complete elimination of liquid helium consumption. Here we review the impact of the cryogen-free revolution on cryogenic equipment used at large neutron facilities, such as cryostats, dilution refrigerators, superconducting magnets and other cryogenic systems. Particular attention is given to the newly developed superconducting magnets for neutron diffraction and spectroscopy experiments. Use of the cryogen-free approach, as well as cutting-edge superconducting magnet technology and advanced neutron optics allows researcher to achieve extraordinary performance in their experiments, opening up new opportunities in neutron scattering research.

  15. Safety Aspects of Big Cryogenic Systems Design

    Science.gov (United States)

    Chorowski, M.; Fydrych, J.; Poliński, J.

    2010-04-01

    Superconductivity and helium cryogenics are key technologies in the construction of large scientific instruments, like accelerators, fusion reactors or free electron lasers. Such cryogenic systems may contain more than hundred tons of helium, mostly in cold and high-density phases. In spite of the high reliability of the systems, accidental loss of the insulation vacuum, pipe rupture or rapid energy dissipation in the cold helium can not be overlooked. To avoid the danger of over-design pressure rise in the cryostats, they need to be equipped with a helium relief system. Such a system is comprised of safety valves, bursting disks and optionally cold or warm quench lines, collectors and storage tanks. Proper design of the helium safety relief system requires a good understanding of worst case scenarios. Such scenarios will be discussed, taking into account different possible failures of the cryogenic system. In any case it is necessary to estimate heat transfer through degraded vacuum superinsulation and mass flow through the valves and safety disks. Even if the design of the helium relief system does not foresee direct helium venting into the environment, an occasional emergency helium spill may happen. Helium propagation in the atmosphere and the origins of oxygen-deficiency hazards will be discussed.

  16. Properties of strain gages at cryogenic temperature

    International Nuclear Information System (INIS)

    Shibata, Nobuo; Fujiyoshi, Toshimitsu.

    1978-01-01

    At the time of developing superconduction generators, the stress measurement for rotor parts is required to grasp the safety and performance of the rotor at cryogenic temperature, which is cooled with liquid helium. In case of carrying out the stress measurement with strain gages, the problems are as follows. The strain gages and lead wires are exposed to cryogenic temperature from 4 to 10 K and strong magnetic field of about 3T, and subjected to high centrifugal acceleration of about 500G. In order to establish the techniques of the stress measurement under such conditions, the adhesives and damp-proof coatings for strain gages and strain gages themselves in Japan and foreign countries were examined on the properties at cryogenic temperature. As for the properties of strain gages, mainly the apparent strain owing to temperature change was investigated, and the change of the gage factors was studies only at liquid nitrogen temperature. The stress measurement with strain gages at low temperature had been studied in detail down to liquid nitrogen temperature concerning LNG tanks. The experimental apparatus, the samples, the testing methods and the test results of cooling tests on adhesives and damp-proof coatings, and the temperature characteristics of strain gages are reported. The usable adhesives and coatings were found, and correction by accurate temperature measurement is required for apparent strain. (Kako, I.)

  17. Relaxation phenomena in dense gas separation membranes

    NARCIS (Netherlands)

    Wessling, Matthias

    1993-01-01

    Solution-diffusion membranes are widely used for the separation of gaseous and liquid mixtures. The separation of air (O2/N2), landfill gas (CH4/CO2) and purge gas streams (NH3/H2) in the ammonia synthesis are examples for state-of-the-art membrane gas separation processes. For the separation of

  18. Eddy energy separator

    Energy Technology Data Exchange (ETDEWEB)

    Mukhutdinov, R.Kh.; Prokopov, O.I.

    1982-01-01

    An eddy energy separator is proposed which contains a chamber with nozzle input of compressed air and sleeves for cold and hot streams. In order to increase productivity, the chamber is cylindrical and the nozzle input is arranged along its axis. Coaxially to the input, there is an adaptor forming an annular channel with its end arranged in an angle to the axis of the chamber. The nozzle input and the adaptor are installed with the possibility of relative movement.

  19. PIP-II Cryogenic System and the evolution of Superfluid Helium Cryogenic Plant Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, Anindya [Fermilab; Rane, Tejas [Fermilab; Klebaner, Arkadiy [Fermilab

    2017-07-06

    The PIP-II cryogenic system consists of a Superfluid Helium Cryogenic Plant (SHCP) and a Cryogenic Distribution System (CDS) connecting the SHCP to the Superconducting (SC) Linac consisting of 25 cryomodules. The dynamic heat load of the SC cavities for continuous wave (CW) as well as pulsed mode of operation has been listed out. The static heat loads of the cavities along with the CDS have also been discussed. Simulation study has been carried out to compute the supercritical helium (SHe) flow requirements for each cryomodule. Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation have also been made. From the total computed heat load and pressure drop values in the CDS, the basic specifications for the SHCP, required for cooling the SC Linac, have evolved.

  20. PIP-II Cryogenic System and the evolution of Superfluid Helium Cryogenic Plant Specifications

    Science.gov (United States)

    Chakravarty, Anindya; Rane, Tejas; Klebaner, Arkadiy

    2017-12-01

    The PIP-II cryogenic system consists of a Superfluid Helium Cryogenic Plant (SHCP) and a Cryogenic Distribution System (CDS) connecting the SHCP to the Superconducting (SC) Linac consisting of 25 cryomodules. The dynamic heat load of the SC cavities for continuous wave (CW) as well as pulsed mode of operation are determined. The static heat loads of the cavities along with the CDS are discussed. The supercritical helium (SHe) flow requirements for each cryomodule are computed through simulation study. Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation are made. From the total computed heat load and pressure drop values in the CDS, the basic specifications for the SHCP, required for cooling the SC Linac, have evolved.

  1. Some General Principles in Cryogenic Design, Implementation, and Testing

    Science.gov (United States)

    Dipirro, Michael James

    2015-01-01

    Brief Course Description: In 2 hours only the most basic principles of cryogenics can be presented. I will concentrate on the differences between a room temperature thermal analysis and cryogenic thermal analysis, namely temperature dependent properties. I will talk about practical materials for thermal contact and isolation. I will finish by describing the verification process and instrumentation used that is unique to cryogenic (in general less than 100K) systems.

  2. Cryogenic Safety HSE Seminar | 21 - 23 September 2016

    CERN Multimedia

    2016-01-01

    With the LHC being the world’s largest superconducting installation, it’s not surprising that CERN is a world leader in cryogenic safety. On 21 and 22 September, over 100 experts in cryogenic safety will be coming to CERN to take part in CERN’s first Cryogenic Safety Seminar, which aims to stimulate collaboration and further the state of the art in this increasingly important field.  

  3. Texture comparison between cold rolled and cryogenically rolled pure copper

    OpenAIRE

    Lapeire, Linsey; Sidor, J; Lombardia, EM; Verbeken, Kim; De Graeve, Iris; Terryn, H; Kestens, Leo

    2015-01-01

    Nowadays, there is a considerable scientific interest in bulk ultrafine grained materials, due to their potential for superior mechanical properties. One of the possible formation methods of nano-grained materials is cryogenic rolling. The influence of rolling at cryogenic temperatures has been investigated. Significant differences in the textures and the microstructures can be observed between the cryogenically rolled copper and conventionally cold rolled copper, reduced to the same thickness.

  4. Passive Capillary Pumped Cryocooling System for Zero-Boil-Off Cryogen Storage Tanks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Significant cost and weight savings of a space mission can be achieved by improving the cryogenic storage technology. Added cryogen mass due to the cryogen boil-off,...

  5. Separable algebras

    CERN Document Server

    Ford, Timothy J

    2017-01-01

    This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.

  6. The Effects of Cryogenic Treatment on Cutting Tools

    Science.gov (United States)

    Kumar, Satish; Khedkar, Nitin K.; Jagtap, Bhushan; Singh, T. P.

    2017-08-01

    Enhancing the cutting tool life is important and economic factor to reduce the tooling as well as manufacturing cost. The tool life is improved considerably by 92 % after cryogenic treatment. The cryogenic treatment is a one-time permanent, sub-zero heat treatment that entirely changes cross-section of cutting tool. The cryogenic treatment is carried out with deep freezing of cutting tool materials to enhance physical and mechanical properties. The cryogenic treatment improves mechanical such as hardness, toughness and tribological properties such as wear resistance, coefficient of friction, surface finish, dimensional stability and stress relief. The deep cryogenic treatment is the most beneficial treatment applied on cutting tools. The cryogenic treatment is the most advanced heat treatment and popular to improve performance of the cutting tool. The optimization of cryogenic treatment variables is necessary to improve tool life. This study reviews the effects of cryogenic treatment on microstructure, tribological properties of tool steels and machining applications of cutting tool by investigating the surface and performing the surface characterization test like SEM. The economy of cutting tool can be achieved by deep cryogenic treatment.

  7. Highly Flexible and Extremely Durable Polyimide Cryogenic Insulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovative insulation would greatly enhance the usability of, and reduce the inherent losses associated with, cryogenic fuel delivery and storage...

  8. Wrapped-MLI: Thermal Insulation for Cryogenic Piping, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — New NASA vehicles (EDS, Orion, landers & orbiting fuel depots) need improved cryogenic propellant transfer & storage for long duration missions. Current...

  9. High Reliability Cryogenic Piezoelectric Valve Actuator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid valves are subject to harsh exposure and actuators to drive these valves require robust performance and high reliability. DSM's piezoelectric...

  10. Investigation of woven composites as potential cryogenic tank materials

    Science.gov (United States)

    Islam, Md. S.; Melendez-Soto, E.; Castellanos, A. G.; Prabhakar, P.

    2015-12-01

    In this paper, carbon fiber and Kevlar® fiber woven composites were investigated as potential cryogenic tank materials for storing liquid fuel in spacecraft or rocket. Towards that end, both carbon and Kevlar® fiber composites were manufactured and tested with and without cryogenic exposure. The focus was on the investigation of the influence of initial cryogenic exposure on the degradation of the composite. Tensile, flexural and inter laminar shear strength (ILSS) tests were conducted, which indicate that Kevlar® and carbon textile composites are potential candidates for use under cryogenic exposure.

  11. Isotope separation

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Morrey, J.R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated

  12. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.

    1981-01-01

    Method and apparatus for separating isotopes in an isotopic mixture of atoms or molecules by increasing the mass differential among isotopic species. The mixture containing a particular isotope is selectively irradiated so as to selectively excite the isotope. This preferentially excited species is then reacted rapidly with an additional preselected radiation, an electron or another chemical species so as to form a product containing the specific isotope, but having a mass different than the original species initially containing the particular isotope. The product and the remaining balance of the mixture is then caused to flow through a device which separates the product from the mixture based upon the increased mass differential

  13. Cryogenic Clamp-on Ultrasonic Flowmeters using Single Crystal Piezoelectric Transducers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Clamp-on ultrasound cryogenic flowmeters using single crystal piezoelectric transducers are proposed to enable reliable, accurate cryogenic instrumentation needs in...

  14. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    OpenAIRE

    Yuanyuan Qu; Feng Li; Hongcai Zhou; Mingwen Zhao

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculati...

  15. Cryogenic electrical properties of irradiated cyanate ester/epoxy insulation for fusion magnets

    Science.gov (United States)

    Li, X.; Wu, Z. X.; Li, J.; Xu, D.; Liu, H. M.; Huang, R. J.; Li, L. F.

    2017-12-01

    The insulation materials used in high field fusion magnets require excellent mechanical properties, high electrical breakdown strength, good thermal conductivity and high radiation tolerance. Previous investigations showed that cyanate ester/epoxy (CE/EP) insulation material, a candidate insulation for fusion magnets, can maintain good mechanical performance at cryogenic temperature after 10 MGy irradiation and has a much longer pot life than traditional epoxy insulation material. In order to quantify the electrical properties of the CE/EP insulation material at low temperature, a cryogenic electrical property testing system cooled by a G-M cryocooler was developed for this study. An insulation material with 40% cyanate ester and 60% epoxy was subjected to 60Co γ-ray irradiation in air at ambient temperature with a dose rate of 300 Gy/min, and total doses of 1 MGy, 5 MGy and 10 MGy. The electrical breakdown strength of this CE/EP insulation material was measured before and after irradiation. The results show that cryogenic temperature has a positive effect on the electrical breakdown strength of this composite, while the influence of 60Co γ–ray irradiation is not obvious at 6.1 K.

  16. AIR LIQUIDE livre au CERN le plus grand dispositif cryogénique du monde

    CERN Multimedia

    2006-01-01

    AIR LIQUIDE delivered to CERN the largest cryogenic device in the world, last point of a building site which lasted 22 months. The exceptional dimension of this device made of this project a real challenge. (1 page)

  17. Proceedings of the 26th International Cryogenic Engineering Conference - International Cryogenic Material Conference 2016

    Science.gov (United States)

    Datta, T. S.; Sharma, R. G.; Kar, S.

    2017-02-01

    International Conference ICEC 26 - ICMC 2016 was organized at New Delhi, India during March 7-11, 2016. Previous conference ICEC25-ICMC 2014 was held at the University of Twente, The Netherlands in July 2014. Next Conference ICEC 27- ICMC 2018 will be held at Oxford, UK during September 3-7, 2018 1. Introduction This is a biennial international conference on cryogenic engineering and cryogenics materials organized by the International Cryogenic Engineering Committee and the International Cryogenic Material Committee. For some years, the host country has been alternating between Europe and Asia. The present conference was held at the Manekshaw Convention Centre, New Delhi, India during March 7-11, 2016 and hosted jointly by the Indian Cryogenics Council (ICC) and the Inter-University Accelerator Centre (IUAC), New Delhi. Put all together as many as 547 persons participated in the conference. Out of these 218 were foreign delegates coming from 25 countries and the rest from India. 2. Inaugural Session & Course Lectures The pre conference short course lectures on “Cryocoolers” and “Superconducting Materials for Power Applications” were organized on 7th March. Cryocooler course was given jointly by Dr. Chao Wang from M/s. Cryomech, USA and Prof. Milind Atrey from IIT Bombay, India. The Course on Superconducting Materials was given by Prof. Venkat Selvamanickam from the University of Houston, USA. The conference was inaugurated in the morning of March 8th in a typical Indian tradition and in the presence of the Chief Guest, Dr. R Chidambaram (Principle Scientific Adviser to Govt. of India), Guest of Honour, Prof. H Devaraj (Vice Chairman University Grant Commission), Prof Marcel ter Brake ( Chair, ICEC Board), Prof. Wilfried Goldacker (Chair, ICMC board), Dr. D Kanjilal (Director IUAC), Dr R K Bhandari, (President, Indian Cryogenic Council ). Dr. T S Datta, Chair Local Organizing Committee coordinated the proceedings of the inaugural function. 3. Technical

  18. Isotope separation

    International Nuclear Information System (INIS)

    Coleman, G.H.; Bett, R.; Cuninghame, J.G.; Sims, H.

    1982-01-01

    In the separation of short-lived isotopes for medical usage, a solution containing sup(195m)Hg is contacted with vicinal dithiol cellulose which adsorbs and retains the sup(195m)Hg. sup(195m)Au is eluted from the vicinal dithiol cellulose by using a suitable elutant. The sup(195m)Au arises from the radioactive decay of the sup(195m)Hg. The preferred elutant is a solution containing CN - ion. (author)

  19. Gas separating

    Science.gov (United States)

    Gollan, Arye Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  20. The Cryogenic Distribution Line for the LHC Functional Specification and Conceptual Design

    CERN Document Server

    Erdt, W K; Trant, R

    1999-01-01

    The Large Hadron Collider (LHC) currently under construction at CERN will make use of superconducting magnets operating in superfluid helium below 2 K. The cryogenic distribution scheme for each of the eight sectors, individually served by a refrigeration plant, is based on a separate Cryogenic Distribution Line (QRL) feeding helium at different temperatures and pressures to the elementary cooling loops. The QRL comprises two supply headers and three return headers including a sub-atmospheric one. Low heat inleak to all temperature levels is essential for the overall LHC cryogenic performance. With an overall length of 25.6 km the QRL has a very critical cost-to-performance ratio. Therefore, following an in-house feasibility study, CERN adjudicated in autumn 1998 three industrial contracts in parallel for the supply of Pre-Series Test Cells (~ 112 m) of the QRL, which will be tested at CERN in 2000. Installation of the QRL for LHC is scheduled from 2002 to mid 2004. This paper will present the general layout,...

  1. Effect of Deep Cryogenic Treatment on Hardness and Wear Behavior of 5120 AISI Steel

    Directory of Open Access Journals (Sweden)

    S. Torkian

    2016-12-01

    Full Text Available In this paper the effect of deep cryogenic treatment time on microstructure and tribological behavior of AISI 5120 case hardennig steel is studied. The disk shape samples were carburized at 920 ◦C for 6 hours and air cooled; after austenitizing, the samples were quenched in oil.Then immediately after quenching and sanding, the sample were kept in liquid nitrogen for 1, 24, 30 and 48 h and then tempered at 200 ◦C for 2 hours. The wear test was done by ball on disk method using of WC ball at 80 and 110 N load. For characterization of carbides, the etchant solution of CuCl2 (5 gr+HCl (100 mL + ethanol (100 mL was used. The hardness of samples before and after of tempering was measured by vicers method at 300 N load.. The amount of retained austenite was measured by X Ray Diffraction method. For 1DCT and 24DCT samples it was about 8% and 4%; in the other samples, the retained austenite peal was so decreased that it was not visible. The result showed that the hardness increases by deep cryogenic treatment in all speciments. While wear resistance increases in 1DCT and 24DCT samples, it decreases for 30DCT and 48DCT samples in compare with Conventional heat treatment (CHT sample in both applied loads, such that , 48DCT sample has the least wear resistance. The cause of increament of hardness is due to reduction in amount of retained austenite as a result of deep cryogenic treatment and decreasing in wear resistance after 24 hour, is due to carbide growth and nonhemogenuse distribution in microstructure and then weakening of matrix. So the 24 hour deep cryogenic treatment was the best optimal for AISI 5120 steel.

  2. Cryogen spray cooling during laser tissue welding.

    Science.gov (United States)

    Fried, N M; Walsh, J T

    2000-03-01

    Cryogen cooling during laser tissue welding was explored as a means of reducing lateral thermal damage near the tissue surface and shortening operative time. Two centimetre long full-thickness incisions were made on the epilated backs of guinea pigs, in vivo. India ink was applied to the incision edges then clamps were used to appose the edges. A 4 mm diameter beam of 16 W, continuous-wave, 1.06 microm, Nd:YAG laser radiation was scanned over the incisions, producing approximately 100 ms pulses. There was a delay of 2 s between scans. The total irradiation time was varied from 1-2 min. Cryogen was delivered to the weld site through a solenoid valve in spurt durations of 20, 60 and 100 ms. The time between spurts was either 2 or 4 s, corresponding to one spurt every one or two laser scans. Histology and tensile strength measurements were used to evaluate laser welds. Total irradiation times were reduced from 10 min without surface cooling to under 1 min with surface cooling. The thermal denaturation profile showed less denaturation in the papillary dermis than in the mid-dermis. Welds created using optimized irradiation and cooling parameters had significantly higher tensile strengths (1.7 +/- 0.4 kg cm(-2)) than measured in the control studies without cryogen cooling (1.0 +/- 0.2 kg cm(-2)) (p laser welding results in increased weld strengths while reducing thermal damage and operative times. Long-term studies will be necessary to determine weld strengths and the amount of scarring during wound healing.

  3. Cryogenic Scan Mechanism for Fourier Transform Spectrometer

    Science.gov (United States)

    Brasunas, John C.; Francis, John L.

    2011-01-01

    A compact and lightweight mechanism has been developed to accurately move a Fourier transform spectrometer (FTS) scan mirror (a cube corner) in a near-linear fashion with near constant speed at cryogenic temperatures. This innovation includes a slide mechanism to restrict motion to one dimension, an actuator to drive the motion, and a linear velocity transducer (LVT) to measure the speed. The cube corner mirror is double-passed in one arm of the FTS; double-passing is required to compensate for optical beam shear resulting from tilting of the moving cube corner. The slide, actuator, and LVT are off-the-shelf components that are capable of cryogenic vacuum operation. The actuator drives the slide for the required travel of 2.5 cm. The LVT measures translation speed. A proportional feedback loop compares the LVT voltage with the set voltage (speed) to derive an error signal to drive the actuator and achieve near constant speed. When the end of the scan is reached, a personal computer reverses the set voltage. The actuator and LVT have no moving parts in contact, and have magnetic properties consistent with cryogenic operation. The unlubricated slide restricts motion to linear travel, using crossed roller bearings consistent with 100-million- stroke operation. The mechanism tilts several arc seconds during transport of the FTS mirror, which would compromise optical fringe efficiency when using a flat mirror. Consequently, a cube corner mirror is used, which converts a tilt into a shear. The sheared beam strikes (at normal incidence) a flat mirror at the end of the FTS arm with the moving mechanism, thereby returning upon itself and compensating for the shear

  4. Effect of tempering after cryogenic treatment of tungsten carbide ...

    Indian Academy of Sciences (India)

    Cryogenic treatment is a recent advancement in the field of machining to improve the properties of cutting tool materials. Tungsten carbide is the most commonly used cutting tool material in the industry and the technique can also be extended to it. Although the importance of tempering after cryogenic treatment has been ...

  5. Texture comparison between cold rolled and cryogenically rolled pure copper

    NARCIS (Netherlands)

    Lapeire, L.; Sidor, J.; Martinez Lombardia, E.; Verbeken, K.; De Graeve, I.; Terryn, H.A.; Kestens, L.A.I.

    2015-01-01

    Nowadays, there is a considerable scientific interest in bulk ultrafine grained materials, due to their potential for superior mechanical properties. One of the possible formation methods of nano-grained materials is cryogenic rolling. The influence of rolling at cryogenic temperatures has been

  6. Commissioning of cryogenic system for China Spallation Neutron Source

    Science.gov (United States)

    Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun

    2017-12-01

    China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.

  7. Thermography to Inspect Insulation of Large Cryogenic Tanks

    Science.gov (United States)

    Arens, Ellen; Youngquist, Robert

    2011-01-01

    Thermography has been used in the past to monitor active, large, cryogenic storage tanks. This approach proposes to use thermography to monitor new or refurbished tanks, prior to filling with cryogenic liquid, to look for insulation voids. Thermography may provide significant cost and schedule savings if voids can be detected early before a tank is returned to service.

  8. 49 CFR 173.319 - Cryogenic liquids in tank cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cryogenic liquids in tank cars. 173.319 Section... cars. (a) General requirements. (1) A tank car containing a flammable cryogenic liquid may not be shipped unless it was loaded by, or with the consent of, the owner of the tank car. (2) The amount of...

  9. Support assembly for cryogenically coolable low-noise choke waveguide

    Science.gov (United States)

    Mccrea, F. E. (Inventor)

    1980-01-01

    A compact cryogenically coolable choked waveguide for low-noise input coupling into a cryogenically cooled device, such as a maser or parametric amplifier, utilizes coaxial stainless steel support tubes surrounding the waveguide and connected in cascade to provide a folded low thermal conduction path. The edges of the tubes connected are welded.

  10. The cryogenic source of slow monochromatic positrons

    International Nuclear Information System (INIS)

    Meshkov, I.N.; Pavlov, V.N.; Sidorin, A.O.; Yakovenko, S.L.

    2008-01-01

    The cryogenic source of slow monochromatic positrons based on the 22 Na isotope has been designed and constructed at JINR. Positrons emitted from radioactive source 22 Na have a very broad energy spectrum up to 0.5 MeV. To generate monochromatic beam of slow positrons the solid neon is used as a moderator. The solid neon allows forming slow positron beam of the energy of 1.2 eV at the spectrum width of 1 eV. The efficiency of moderation is 1 % of total positron flux

  11. Properties of a nanodielectric cryogenic resin

    Energy Technology Data Exchange (ETDEWEB)

    Polyzos, Georgios [ORNL; Tuncer, Enis [ORNL; Sauers, Isidor [ORNL; More, Karren Leslie [ORNL

    2010-01-01

    Physical properties of a nanodielectric composed of in situ synthesized titanium dioxide (TiO{sub 2}) nanoparticles ({le} 5 nm in diameter) and a cryogenic resin are reported. The dielectric losses were reduced by a factor of 2 in the nanocomposite, indicating that the presence of small TiO{sub 2} nanoparticles restricted the mobility of the polymer chains. Dielectric breakdown data of the nanodielectric was distributed over a narrower range than that of the unfilled resin. The nanodielectric had 1.56 times higher 1% breakdown probability than the resin, yielding 0.64 times thinner insulation thickness for the same voltage level, which is beneficial in high voltage engineering.

  12. Linear beam raster for cryogenic targets

    Energy Technology Data Exchange (ETDEWEB)

    Yan, C; Sinkine, N; Wojcik, R

    2005-02-21

    Based on the H-bridge switch technique a linear beam raster system was developed in 2002. The system generates a rectangular raster pattern with highly uniform ({approx}95%) raster density distribution on cryogenic targets. The two raster frequencies are 24.96 and 25.08 kHz. The turning time at the vertex is 200 ns and the scan linearity is 98%. The beam-heating effect on the target is effectively eliminated. The new raster system allows the use of higher beam current toward 200 muA in many of the experimental proposals at end station Hall A and Hall C of the Jefferson lab.

  13. ngVLA Cryogenic Subsystem Concept

    Science.gov (United States)

    Wootten, Al; Urbain, Denis; Grammer, Wes; Durand, S.

    2018-01-01

    The VLA’s success over 35 years of operations stems in part from dramatically upgraded components over the years. The time has come to build a new array to lead the radio astronomical science into its next 40 years. To accomplish that, a next generation VLA (ngVLA) is envisioned to have 214 antennas with diameters of 18m. The core of the array will be centered at the current VLA location, but the arms will extend out to 1000km.The VLA cryogenic subsystem equipment and technology have remained virtually unchanged since the early 1980s. While adequate for a 27-antenna array, scaling the current system for an array of 214 antennas would be prohibitively expensive in terms of operating cost and maintenance. The overall goal is to limit operating cost to within three times the current level, despite having 8 times the number of antennas. To help realize this goal, broadband receivers and compact feeds will be utilized to reduce both the size and number of cryostats required. The current baseline front end concept calls for just two moderately-sized cryostats for the entire 1.2-116 GHz frequency range, as opposed to 8 in the VLA.For the ngVLA cryogenics, our objective is a well-optimized and efficient system that uses state-of-the-art technology to minimize per-antenna power consumption and maximize reliability. Application of modern technologies, such as variable-speed operation for the scroll compressors and cryocooler motor drives, allow the cooling capacity of the system to be dynamically matched to thermal loading in each cryostat. Significantly, power savings may be realized while the maintenance interval of the cryocoolers is also extended.Finally, a receiver designed to minimize thermal loading can produce savings directly translating to lower operating cost when variable-speed drives are used. Multi-layer insulation (MLI) on radiation shields and improved IR filters on feed windows can significantly reduce heat loading.Measurements done on existing cryogenic

  14. Thin Cryogenic X-ray Windows

    CERN Document Server

    Niinikoski, T O; Davenport, M; Elias, N; Aune, S; Franz, J

    2009-01-01

    We describe the construction and tests of cryogenic X-ray windows of 47 mm diameter made of 15 ìm thick polypropylene foil glued on a UHV flange and supported with a strongback mesh machined by electro-erosion. These hermetic windows of the solar axion telescope of the CAST experiment at CERN withstand the static and dynamic pressures of the buffer gas that are normally below 130 mbar, but may reach 1.2 bar when the magnet quenches. They were tested at 60 K up to 3.5 bar static pressure without permanent deformation.

  15. Renovation of the Sissi cryogenic system

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    SISSI (high current superconductor secondary ion source) involved a cryo-generator operating in a close circuit when the whole system was put in service in 1994. Since then the cryo-generator has proved to be insufficiently reliable. A new cryogenic system based on an external liquid helium supply has been designed. The helium transfer lines are surrounded by a shield at liquid nitrogen temperature and numerous layers of super-insulators in order to have minimum thermal losses. The installation was integrated to SISSI in summer 1998 and after the first operating period some improvements concerning the cooling procedure have to be considered. (A.C.)

  16. Cryogenic Vacuum Insulation for Vessels and Piping

    Science.gov (United States)

    Kogan, A.; Fesmire, J.; Johnson, W.; Minnick, J.

    2010-01-01

    Cryogenic vacuum insulation systems, with proper materials selection and execution, can offer the highest levels of thermal performance. Three areas of consideration are vital to achieve the optimum result: materials, representative test conditions, and engineering approach for the particular application. Deficiency in one of these three areas can prevent optimum performance and lead to severe inefficiency. Materials of interest include micro-fiberglass, multilayer insulation, and composite arrangements. Cylindrical liquid nitrogen boil-off calorimetry methods were used. The need for standard thermal conductivity data is addressed through baseline testing. Engineering analysis and design factors such as layer thickness, density, and practicality are also considered.

  17. Explosive Boiling of Superheated Cryogenic Liquids

    CERN Document Server

    Baidakov, V G

    2007-01-01

    The monograph is devoted to the description of the kinetics of spontaneous boiling of superheated liquefied gases and their solutions. Experimental results are given on the temperature of accessible superheating, the limits of tensile strength of liquids due to processes of cavitation and the rates of nucleation of classical and quantum liquids. The kinetics of evolution of the gas phase is studied in detail for solutions of cryogenic liquids and gas-saturated fluids. The properties of the critical clusters (bubbles of critical sizes) of the newly evolving gas phase are analyzed for initial st

  18. Eddy current losses at cryogenic temperatures

    International Nuclear Information System (INIS)

    Sokolovsky, V.; Meerovich, V.; Slonim, M.

    1993-01-01

    The present paper analyses effect of thermal processes on eddy-current losses in construction elements of cryogenic and superconducting devices. Maxwell's equations coupled with heat-conduction equation are solved with taking into account the dependence of resistivity, heat capacity and heat-transfer coefficient on temperature. Analysis of losses as a function of magnetic field, frequency and geometry factors is given for the case of thin strip in a uniform magnetic field. It is shown that losses calculated with taking into account the thermal processes may differ from those obtained at constant temperature

  19. Experimental investigation of droplet separation in a horizontal counter-current air/water stratified flow; Experimentelle Untersuchung der Tropfenabscheidung einer horizontalen, entgegengerichteten Wasser/Luft-Schichtenstroemung

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Stephan Gerhard

    2015-07-01

    A stratified counter-current two-phase gas/liquid flow can occur in various technical systems. In the past investigations have mainly been motivated by the possible occurrence of these flows in accident scenarios of nuclear light water-reactors and in numerous applications in process engineering. However, the precise forecast of flow parameters, is still challenging, for instance due to their strong dependency on the geometric boundary conditions. A new approach which uses CFD methods (Computational Fluid Dynamics) promises a better understanding of the flow phenomena and simultaneously a higher scalability of the findings. RANS methods (Reynolds Averaged Navier Stokes) are preferred in order to compute industrial processes and geometries. A very deep understanding of the flow behavior and equation systems based on real physics are necessary preconditions to develop the equation system for a reliable RANS approach with predictive power. Therefore, local highly resolved, experimental data is needed in order to provide and validate the required turbulence and phase interaction models. The central objective of this work is to provide the data needed for the code development for these unsteady, turbulent and three-dimensional flows. Experiments were carried out at the WENKA facility (Water Entrainment Channel Karlsruhe) at the Karlsruhe Institute of Technology (KIT). The work consists of a detailed description of the test-facility including a new bended channel, the measurement techniques and the experimental results. The characterization of the new channel was done by flow maps. A high-speed imaging study gives an impression of the occurring flow regimes, and different flow phenomena like droplet separation. The velocity distributions as well as various turbulence values were investigated by particle image velocimetry (PIV). In the liquid phase fluorescent tracer-particles were used to suppress optical reflections from the phase surface (fluorescent PIV, FPIV

  20. Particle separation

    International Nuclear Information System (INIS)

    Baker, C.A.

    1990-01-01

    Solid particles are separated from a liquid which also contains ferric hydroxide by subjecting the liquid to ultrasonic agitation from a transducer in order to break up the flocs so that they will pass with the liquid through a filter belt. The belt thus retains the solid particles without interference from the flocs. As shown the woven nylon belt collects rare radioactive solid particles from liquid and carries them under sensors. The belt is washed clean, with further ultrasonic agitation in a trough on its return run. (author)

  1. Isotope separation

    International Nuclear Information System (INIS)

    Rosevear, A.; Sims, H.E.

    1985-01-01

    sup(195m)Au for medical usage is separated from sup(195m)Hg in a solution containing ions of sup(195m)Hg by contacting the solution with an adsorbing agent to adsorb 195 Hgsup(H) thereon, followed by selective elution of sup(195m)Au generated by radioactive decay of the sup(195m)Hg. The adsorbing agent comprises a composite material in the form of an inert porous inorganic substrate (e.g. Kieselguhr),the pores of which are occupied by a hydrogel of a polysaccharide (e.g. agarose) carrying terminal thiol groups for binding Hgsup(H) ions. (author)

  2. Gas separating

    Science.gov (United States)

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  3. Isotope separation

    International Nuclear Information System (INIS)

    Coleman, J.H.; Marks, T.J.

    1981-01-01

    A process for separating uranium isotopes is described which includes: preparing a volatile compound U-T, in which U is a mixture of uranium isotopes and T is a chemical moiety containing at least one organic or deuterated borohydride group, and which exhibits for at least one isotopic species thereof a fundamental, overtone or combination vibrational absorption excitation energy level at a frequency between 900 and 1100 cm -1 ; and irradiating the compound in the vapour phase with energy emitted by a radiation source at a frequency between 900 and 1100 cm -1 (e.g. a CO 2 laser). (author)

  4. Cryogenic Fluid Management Technology for Moon and Mars Missions

    Science.gov (United States)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  5. Applications of non-cryogenic portable EDXRF systems in archaeometry

    International Nuclear Information System (INIS)

    Cesareo, R.; Castellano, A.; Dabrowski, A.

    1996-01-01

    In this paper the most relevant developments in the realisation of portable energy-dispersive X-ray fluorescence (EDXRF) equipments are discussed. In particular, the latest advances in non-cryogenic (Peltier cooled) X-ray detectors and miniaturised X-ray generators are shown. The energy resolution of the new detection systems is adequate to resolve the characteristic X-ray emission lines of contiguous elements. This small size and low power make the system ideal for portable instrumentation and have stimulated the development of small- and low-power X-ray generators which can be used for the excitation of fluorescence radiation in a broad energy range (5-40 keV). Finally, the use of EDXRF related to archaeometric research (pigments in ancient paintings and major elements in the metal alloys) is emphasised. Recent results obtained with new HgI 2 and silicon PIN detector systems combined with miniaturised highly stable air-cooled X-ray generators are described. (orig.)

  6. Cryogenic Characteristics of the ATLAS Barrel Toroid Superconducting Magnet

    CERN Document Server

    Pengo, R; Delruelle, N; Pezzetti, M; Pirotte, O; Passardi, Giorgio; Dudarev, A; ten Kate, H

    2008-01-01

    ATLAS, one of the experiments of the LHC accelerator under commissioning at CERN, is equipped with a large superconducting magnet the Barrel Toroid (BT) that has been tested at nominal current (20500 A). The BT is composed of eight race-track superconducting coils (each one weights about 45 tons) forming the biggest air core toroidal magnet ever built. By means of a large throughput centrifugal pump, a forced flow (about 10 liter/second at 4.5 K) provides the indirect cooling of the coils in parallel. The paper describes the results of the measurements carried out on the complete cryogenic system assembled in the ATLAS cavern situated 100 m below the ground level. The measurements include, among other ones, the static heat loads, i.e., with no or constant current in the magnet, and the dynamic ones, since additional heat losses are produced, during the current ramp-up or slow dump, by eddy currents induced on the coil casing.

  7. Energy deposited by neutrons and gamma rays in the cryogenic system of SISSI

    International Nuclear Information System (INIS)

    Baron, E.; Bianchi, L.; Dural, J.; Grunberg, C.; Joubert, A.

    1992-01-01

    SISSI (Source d'Ions Secondaires a Supraconducteurs Intenses) is a device intended for producing radioactive ion beams and ensuring their optimal transmission in the existing GANIL beam lines. Its ion-optical system consists of two cryogenic solenoids separated by a target, which produces secondary particles under the impact of intense heavy ion beams. Measurements were made by means of a calorimeter simulating the windings and traversed by the neutral particle fluxes produced by C, N, Ne and Ar beams hitting C and Ta targets; the results are presented and compared to approximate theoretical predictions. (R.P.) 4 refs.; 4 figs.; 4 tabs

  8. Design of cryogenic tanks for space vehicles shell structures analytical modeling

    Science.gov (United States)

    Copper, Charles; Mccarthy, K.; Pilkey, W. D.; Haviland, J. K.

    1991-01-01

    The initial objective was to study the use of superplastically formed corrugated hat section stringers and frames in place of integrally machined stringers over separate frames for the tanks of large launch vehicles subjected to high buckling loads. The ALS was used as an example. The objective of the follow-on project was to study methods of designing shell structures subjected to severe combinations of structural loads and thermal gradients, with emphasis on new combinations of structural arrangements and materials. Typical applications would be to fuselage sections of high speed civil transports and to cryogenic tanks on the National Aerospace Plane.

  9. Modelling and control of large cryogenic refrigerator

    International Nuclear Information System (INIS)

    Bonne, Francois

    2014-01-01

    This manuscript is concern with both the modeling and the derivation of control schemes for large cryogenic refrigerators. The particular case of those which are submitted to highly variable pulsed heat load is studied. A model of each object that normally compose a large cryo-refrigerator is proposed. The methodology to gather objects model into the model of a subsystem is presented. The manuscript also shows how to obtain a linear equivalent model of the subsystem. Based on the derived models, advances control scheme are proposed. Precisely, a linear quadratic controller for warm compression station working with both two and three pressures state is derived, and a predictive constrained one for the cold-box is obtained. The particularity of those control schemes is that they fit the computing and data storage capabilities of Programmable Logic Controllers (PLC) with are well used in industry. The open loop model prediction capability is assessed using experimental data. Developed control schemes are validated in simulation and experimentally on the 400W1.8K SBT's cryogenic test facility and on the CERN's LHC warm compression station. (author) [fr

  10. Cryogenic setup for trapped ion quantum computing.

    Science.gov (United States)

    Brandl, M F; van Mourik, M W; Postler, L; Nolf, A; Lakhmanskiy, K; Paiva, R R; Möller, S; Daniilidis, N; Häffner, H; Kaushal, V; Ruster, T; Warschburger, C; Kaufmann, H; Poschinger, U G; Schmidt-Kaler, F; Schindler, P; Monz, T; Blatt, R

    2016-11-01

    We report on the design of a cryogenic setup for trapped ion quantum computing containing a segmented surface electrode trap. The heat shield of our cryostat is designed to attenuate alternating magnetic field noise, resulting in 120 dB reduction of 50 Hz noise along the magnetic field axis. We combine this efficient magnetic shielding with high optical access required for single ion addressing as well as for efficient state detection by placing two lenses each with numerical aperture 0.23 inside the inner heat shield. The cryostat design incorporates vibration isolation to avoid decoherence of optical qubits due to the motion of the cryostat. We measure vibrations of the cryostat of less than ±20 nm over 2 s. In addition to the cryogenic apparatus, we describe the setup required for an operation with 40 Ca + and 88 Sr + ions. The instability of the laser manipulating the optical qubits in 40 Ca + is characterized by yielding a minimum of its Allan deviation of 2.4 ⋅ 10 -15 at 0.33 s. To evaluate the performance of the apparatus, we trapped 40 Ca + ions, obtaining a heating rate of 2.14(16) phonons/s and a Gaussian decay of the Ramsey contrast with a 1/e-time of 18.2(8) ms.

  11. Aerogel Beads as Cryogenic Thermal Insulation System

    Science.gov (United States)

    Fesmire, J. E.; Augustynowicz, S. D.; Rouanet, S.; Thompson, Karen (Technical Monitor)

    2001-01-01

    An investigation of the use of aerogel beads as thermal insulation for cryogenic applications was conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Steady-state liquid nitrogen boiloff methods were used to characterize the thermal performance of aerogel beads in comparison with conventional insulation products such as perlite powder and multilayer insulation (MLI). Aerogel beads produced by Cabot Corporation have a bulk density below 100 kilograms per cubic meter (kg/cubic m) and a mean particle diameter of 1 millimeter (mm). The apparent thermal conductivity values of the bulk material have been determined under steady-state conditions at boundary temperatures of approximately 293 and 77 kelvin (K) and at various cold vacuum pressures (CVP). Vacuum levels ranged from 10(exp -5) torr to 760 torr. All test articles were made in a cylindrical configuration with a typical insulation thickness of 25 mm. Temperature profiles through the thickness of the test specimens were also measured. The results showed the performance of the aerogel beads was significantly better than the conventional materials in both soft-vacuum (1 to 10 torr) and no-vacuum (760 torr) ranges. Opacified aerogel beads performed better than perlite powder under high-vacuum conditions. Further studies for material optimization and system application are in progress.

  12. High efficiency, variable geometry, centrifugal cryogenic pump

    International Nuclear Information System (INIS)

    Forsha, M.D.; Nichols, K.E.; Beale, C.A.

    1994-01-01

    A centrifugal cryogenic pump has been developed which has a basic design that is rugged and reliable with variable speed and variable geometry features that achieve high pump efficiency over a wide range of head-flow conditions. The pump uses a sealless design and rolling element bearings to achieve high reliability and the ruggedness to withstand liquid-vapor slugging. The pump can meet a wide range of variable head, off-design flow requirements and maintain design point efficiency by adjusting the pump speed. The pump also has features that allow the impeller and diffuser blade heights to be adjusted. The adjustable height blades were intended to enhance the pump efficiency when it is operating at constant head, off-design flow rates. For small pumps, the adjustable height blades are not recommended. For larger pumps, they could provide off-design efficiency improvements. This pump was developed for supercritical helium service, but the design is well suited to any cryogenic application where high efficiency is required over a wide range of head-flow conditions

  13. Narrow bandpass cryogenic filter for microwave measurements.

    Science.gov (United States)

    Ivanov, B I; Klimenko, D N; Sultanov, A N; Il'ichev, E; Meyer, H-G

    2013-05-01

    An ultra-wide stopband hairpin bandpass filter with integrated nonuniform transmission lines was designed and fabricated for highly sensitive measurements at cryogenic temperatures down to millikelvin and a frequency range of 10 Hz-10 GHz. The scattering matrices of the filter were characterized at T = 4.2 K. The filter provides a stopband from 10 Hz to 2.2 GHz and from 2.3 GHz to 10 GHz with more than 50 dB and 40 dB of amplitude suppression, respectively. The center frequency of the passband is f0 = 2.25 GHz with a bandwidth Δf = 80 MHz. The maximum insertion loss in the passband is 4 dB. The filter has a 50 Ω input and output impedance, SubMiniature version A connector termination, and significantly reduced form factor. The wide stopband frequency range and narrow passband in conjunction with small dimensions make the filter suitable to use it as a part of a high sensitive readout for superconducting quantum circuits, such as superconducting quantum bits and cryogenic parametric amplifiers.

  14. Cryogen free cryostat for neutron scattering experiments

    Science.gov (United States)

    Kirichek, O.; Down, R. B. E.; Manuel, P.; Keeping, J.; Bowden, Z. A.

    2014-12-01

    Most very low temperature (below 1K) experiments at advanced neutron facilities are based on dilution and 3He refrigerator inserts used with Orange cryostats, or similar systems. However recent increases in the cost of liquid helium caused by global helium supply problems, has raised significant concern about the affordability of such cryostats. Here we present the design and test results of a cryogen free top-loading cryostat with a standard KelvinoxVT® dilution refrigerator insert which provides sample environment for neutron scattering experiments in the temperature range 35 mK - 300 K. The dilution refrigerator insert operates in a continuous regime. The cooling time of the insert is similar to one operated in the Orange cryostat. The main performance criteria such as base temperature, cooling power, and circulation rate are compatible with the technical specification of a standard dilution refrigerator. In fact the system offers operating parameters very similar to those of an Orange cryostat, but without the complication of cryogens. The first scientific results obtained in ultra-low temperature neutron scattering experiment with this system are also going to be discussed.

  15. Neutron Detection with a Cryogenic Spectrometer

    CERN Document Server

    Bell, Z W; Cristy, S S; Lamberti, V E

    2003-01-01

    Cryogenic calorimeters are used for x-ray detection because of their exquisite energy resolution and have found application in x-ray astronomy, and the search for dark matter. These devices operate by detecting the heat pulse produced by ionization in an absorber cooled to temperatures below 1 K. Such temperatures are needed to lower the absorber's heat capacity to the point that the deposition of even a few eV results in a measurable temperature excursion. Typical absorbers for dark matter measurements are massive Si or Ge crystals, and, with Ge, have achieved a resolution of 650 eV at 10 keV. Chow, et al., report the measurement of the 60 keV emission from sup 2 sup 4 sup 1 Am with 230 eV resolution using a superconducting tin absorber. Cunningham, et al., also using a superconducting tin absorber, have recently reported a four-fold improvement over Chow. With such results being reported from the x- and gamma-ray world it is natural to examine the possibilities for cryogenic neutron spectroscopy. Such a det...

  16. Cryogenic refractive index of Heraeus homosil glass

    Science.gov (United States)

    Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.

    2017-08-01

    This paper reports measurements of the refractive index of Homosil (Heraeus) over the wavelength range of 0.34—3.16 μm and temperature range of 120—335 K. These measurements were performed by using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at the NASA's Goddard Space Flight Center. These measurements were in support of an integrated Structural-Thermal-Optical-Performance (STOP) model that was developed for a fieldwidened Michelson interferometer that is being built and tested for the High Spectral Resolution Lidar (HSRL) project at the NASA Langley Research Center (LaRC). The cryogenic refractive index measurements were required in order to account for the highly sensitive performance of the HSRL instrument to changes in refractive index with temperature, temperature gradients, thermal expansion, and deformation due to mounting stresses. A dense coverage of the absolute refractive index over the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dn/dT) and dispersion relation (dn/dλ) as a function of wavelength and temperature. Our measurements of Homosil will be compared with measurements of other glasses from the fused silica family studied in CHARMS as well as measurements reported elsewhere in the literature.

  17. Cryogenic Silicon Microstrip Detector Modules for LHC

    CERN Document Server

    Perea-Solano, B

    2004-01-01

    CERN is presently constructing the LHC, which will produce collisions of 7 TeV protons in 4 interaction points at a design luminosity of 1034 cm-2 s-1. The radiation dose resulting from the operation at high luminosity will cause a serious deterioration of the silicon tracker performance. The state-of-art silicon microstrip detectors can tolerate a fluence of about 3 1014 cm-2 of hadrons or charged leptons. This is insufficient, however, for long-term operation in the central parts of the LHC trackers, in particular after the possible luminosity upgrade of the LHC. By operating the detectors at cryogenic temperatures the radiation hardness can be improved by a factor 10. This work proposes a cryogenic microstrip detector module concept which has the features required for the microstrip trackers of the upgraded LHC experiments at CERN. The module can hold an edgeless sensor, being a good candidate for improved luminosity and total cross-section measurements in the ATLAS, CMS and TOTEM experiments. The design o...

  18. The DAΦNE cryogenic system

    International Nuclear Information System (INIS)

    Modena, M.

    1997-12-01

    The DAΦNE Project utilises superconductivity technology for a total of six superconducting magnets: the two Experiment magnets (KLOE and FINUDA) and the four Compensator Solenoid magnets needed to compensate the magnetic effect of the Experiment magnets on the electron and positron beams. This effect, on beams of 510 MeV (nominal DAΦNE Energy), is expected to be relevant, especially with the aim of achieving a very high luminosity, which is the main target of the Project. The KLOE superconducting magnet has two possible working positions: the first in the DAΦNE Hall, when the Experiment will be in operation, and the second one in the KLOE Assembly Hall. This second position is the first to be utilised for the KLOE magnet Acceptance Test and magnetic field mapping, prior to the mounting of all the experimental apparatus inside the magnet. This note intends to present the DAΦNE Cryogenic System and how the authors have converged to the definition of a common Cryogenic System compatible with all the six superconducting magnets

  19. Experimental investigation on charcoal adsorption for cryogenic pump application

    Science.gov (United States)

    Scannapiego, Matthieu; Day, Christian

    2017-12-01

    Fusion reactors are generating energy by nuclear fusion between deuterium and tritium. In order to evacuate the high gas throughputs from the plasma exhaust, large pumping speed systems are required. Within the European Fusion Programme, the Karlsruhe Institute of Technology (KIT) has taken the lead to design a three-stage cryogenic pump that can provide a separation function of hydrogen isotopes from the remaining gases; hence limiting the tritium inventory in the machine. A primary input parameter for the detailed design of a cryopump is the sticking coefficient between the gas and the pumping surface. For this purpose, the so-called TIMO open panel pump experiment was conducted in the TIMO-2 test facility at KIT in order to measure pumping speeds on an activated carbon surface cooled at temperatures between 6 K and 22 K, for various pure gases and gas mixtures, under fusion relevant gas flow conditions, and for two different geometrical pump configurations. The influences of the panel temperature, the gas throughput and the intake gas temperature on the pumping speed have been characterized, providing valuable qualitative results for the design of the three-stage cryopump. In a future work, supporting Monte Carlo simulations should allow for derivation of the sticking coefficients.

  20. Upgrade to the Cryogenic Hydrogen Gas Target Monitoring System

    Science.gov (United States)

    Slater, Michael; Tribble, Robert

    2013-10-01

    The cryogenic hydrogen gas target at Texas A&M is a vital component for creating a secondary radioactive beam that is then used in experiments in the Momentum Achromat Recoil Spectrometer (MARS). A stable beam from the K500 superconducting cyclotron enters the gas cell and some incident particles are transmuted by a nuclear reaction into a radioactive beam, which are separated from the primary beam and used in MARS experiments. The pressure in the target chamber is monitored so that a predictable isotope production rate can be assured. A ``black box'' received the analog pressure data and sent RS232 serial data through an outdated serial connection to an outdated Visual Basic 6 (VB6) program, which plotted the chamber pressure continuously. The black box has been upgraded to an Arduino UNO microcontroller [Atmel Inc.], which can receive the pressure data and output via USB to a computer. It has been programmed to also accept temperature data for future upgrade. A new computer program, with updated capabilities, has been written in Python. The software can send email alerts, create audible alarms through the Arduino, and plot pressure and temperature. The program has been designed to better fit the needs of the users. Funded by DOE and NSF-REU Program.

  1. Spherical Cryogenic Hydrogen Tank Preliminary Design Trade Studies

    Science.gov (United States)

    Arnold, Steven M.; Bednarcyk, Brett A.; Collier, Craig S.; Yarrington, Phillip W.

    2007-01-01

    A structural analysis, sizing optimization, and weight prediction study was performed by Collier Research Corporation and NASA Glenn on a spherical cryogenic hydrogen tank. The tank consisted of an inner and outer wall separated by a vacuum for thermal insulation purposes. HyperSizer (Collier Research and Development Corporation), a commercial automated structural analysis and sizing software package was used to design the lightest feasible tank for a given overall size and thermomechanical loading environment. Weight trade studies were completed for different panel concepts and metallic and composite material systems. Extensive failure analyses were performed for each combination of dimensional variables, materials, and layups to establish the structural integrity of tank designs. Detailed stress and strain fields were computed from operational temperature changes and pressure loads. The inner tank wall is sized by the resulting biaxial tensile stresses which cause it to be strength driven, and leads to an optimum panel concept that need not be stiffened. Conversely, the outer tank wall is sized by a biaxial compressive stress field, induced by the pressure differential between atmospheric pressure and the vacuum between the tanks, thereby causing the design to be stability driven and thus stiffened to prevent buckling. Induced thermal stresses become a major sizing driver when a composite or hybrid composite/metallic material systems are used for the inner tank wall for purposes such as liners to contain the fuel and reduce hydrogen permeation.

  2. Modeling Results For the ITER Cryogenic Fore Pump. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pfotenhauer, John M. [University of Wisconsin, Madison, WI (United States); Zhang, Dongsheng [University of Wisconsin, Madison, WI (United States)

    2014-03-31

    A numerical model characterizing the operation of a cryogenic fore-pump (CFP) for ITER has been developed at the University of Wisconsin – Madison during the period from March 15, 2011 through June 30, 2014. The purpose of the ITER-CFP is to separate hydrogen isotopes from helium gas, both making up the exhaust components from the ITER reactor. The model explicitly determines the amount of hydrogen that is captured by the supercritical-helium-cooled pump as a function of the inlet temperature of the supercritical helium, its flow rate, and the inlet conditions of the hydrogen gas flow. Furthermore the model computes the location and amount of hydrogen captured in the pump as a function of time. Throughout the model’s development, and as a calibration check for its results, it has been extensively compared with the measurements of a CFP prototype tested at Oak Ridge National Lab. The results of the model demonstrate that the quantity of captured hydrogen is very sensitive to the inlet temperature of the helium coolant on the outside of the cryopump. Furthermore, the model can be utilized to refine those tests, and suggests methods that could be incorporated in the testing to enhance the usefulness of the measured data.

  3. Isotope separation

    International Nuclear Information System (INIS)

    Bett, R.; Sims, H.E.; Cuninghame, J.G.

    1983-01-01

    sup(195m)Au is separated from sup(195m)Hg in a solution containing ions of sup(195m)Hg, wherein sup(195m)Au is generated by radioactive decay of the sup(195m)Hg, by contacting the solution with an adsorbing agent to adsorb the sup(195m)Hg as Hg ++ ions followed by elution of sup(195m)Au arising from said radioactive decay. The adsorbing agent is 3-thio-2-hydroxypropyl-ether-Sepharose (R.T.M.); sup(195m)Au may be prepared in this way in a medical isotope generator and is suitable for use in gamma-scan studies of heart action. (author)

  4. Polymeric Gas-Separation Membranes for Petroleum Refining

    Directory of Open Access Journals (Sweden)

    Yousef Alqaheem

    2017-01-01

    Full Text Available Polymeric gas-separation membranes were commercialized 30 years ago. The interest on these systems is increasing because of the simplicity of concept and low-energy consumption. In the refinery, gas separation is needed in many processes such as natural gas treatment, carbon dioxide capture, hydrogen purification, and hydrocarbons separations. In these processes, the membranes have proven to be a potential candidate to replace the current conventional methods of amine scrubbing, pressure swing adsorption, and cryogenic distillation. In this paper, applications of polymeric membranes in the refinery are discussed by reviewing current materials and commercialized units. Economical evaluation of these membranes in comparison to traditional processes is also indicated.

  5. Commissioning of the Cryogenic Plant for the Cryogenic Storage Ring (CSR) at Heidelberg

    CERN Document Server

    von Hahn, R; Grieser, M; Haberstroh, C; Kaiser, D; Lange, M; Laux, F; Menk, S; Orlov, D A; Repnow, R; Sieber, T; Quack, H; Varju, J; Wolf A

    2009-01-01

    At the Max-Planck-Institute for Nuclear Physics in Heidelberg a next generation electrostatic storage ring for low velocity atomic and molecular ion beams is under construction. In contrast to existing electrostatic storage rings, the Cryogenic Storage Ring CSR will be cooled down to temperatures below 2 K. Thus acting as a large cryopump it will provide long storage times and, in addition, open a new field of quantum state controlled molecular physics due to a low heat radiation background from space-like environment. A concept for cooling the storage ring has been developed and is presently tested by means of a linear trap as a prototype with a length of 1/10 of the planned ring. A commercial refrigerator with 21 W at 2 K has been successfully commissioned and was connected to the prototype. This paper presents the status of the cryogenic plant after the commissioning and one year of operation.

  6. Cold atoms in a cryogenic environment

    International Nuclear Information System (INIS)

    Haslinger, S.

    2011-01-01

    The idea of quantum information processing attracts increasingly interest, where a complex collection of quantum objects and quantum bits are employed to find the ideal building blocks for quantum information systems. Hybrid quantum systems are therefore promising objects as they countervail the particular drawbacks of single quantum objects. Based on superconducting resonator technology, microwave coplanar waveguides provide a well suited interconnection for photons and solid-state quantum bits (qubits), extensively investigated in recent years. Since a quantum memory is presently missing in those electrical accessible circuit cavity quantum devices, connecting the fast processing in a solid sate device to the exceptional long coherence times in atomic ensembles, the presented work is focused to establish the technological foundations for the hybridization of such quantum systems. The microwave photons stored in a superconducting high finesse microwave resonator are therefore an ideal connection between the atom and the solid state quantum world. In the last decade, the miniaturization and integration of quantum optics and atomic physics manipulation techniques on to a single chip was successfully established. Such atom chips are capable of detailed quantum manipulation of ultra-cold atoms and provide a versatile platform to combine the manipulation techniques from atomic physics with the capability of nano-fabrication. In recent years several experiments succeeded in realization of superconducting atom chips in cryogenic environments which opens the road for integrating super-conductive microwave resonators to magnetically couple an atomic ensemble to photons stored in the coplanar high finesse cavity. This thesis presents the concept, design and experimental setup of two approaches to establish an atomic ensemble of rubidium atoms inside a cryogenic environment, based on an Electron beam driven alkali metal atom source for loading a magneto optical trap in a

  7. ITER isotope separation system conceptual design description

    International Nuclear Information System (INIS)

    Busigin, A.; Sood, S.K.; Kveton, O.K.; Dinner, P.J.; Murdoch, D.K.; Leger, D.

    1989-05-01

    This paper presents integrated Isotope Separation System (ISS) designs for ITER based on requirements for plasma exhaust processing, neutral beam injection deuterium cleanup, pellet injector propellant detritiation, waste water detritiation, and breeding blanket detritiation. Specific ISS designs are developed for a machine with an aqueous lithium salt blanket (ALSB) and a machine with a solid ceramic breeding blanket (SBB). The differences in the ISS designs arising from the different blanket concepts are highlighted. It is found that the ISS designs for the two blanket concepts considered are very similar, with the only major difference being the requirements for an additional large water distillation column for ALSB water detritiation. The fact that the cryogenic distillation portions of the two ISS designs are almost identical, indicates that the cryogenic distillation cascade design is very flexible and can readily accommodate significant changes in processing requirements without requiring significant redesign. The front-end process for extraction of tritium from the ALSB is based on flash evaporation to separate the blanket water from the dissolved Li salt, with the tritiated water then being fed to the ISS for detritiation. This technology is considered to be relatively well understood in comparison to front-end processes for SBB detritiation. In the design of the cryogenic distillation portion of the ISS, it was found that the tritium inventory could be very large (> 600g) unless specific design measures were taken to reduce it. In the designs which are presented, the tritium inventory has been reduced to about 180g, which is less than the ITER single-failure release limit of 200g. Further design optimization and isolation of components is expected to reduce the inventory further

  8. Cryogenic system operating experience review for fusion applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1992-01-01

    This report presents a review of cryogenic system operating experiences, from particle accelerator, fusion experiment, space research, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of cryogenic component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with cryogenic systems are discussed, including ozone formation, effects of spills, and modeling spill behavior. This information should be useful to fusion system designers and safety analysts, such as the team working on the International Thermonuclear Experimental Reactor design

  9. Status of the Cryogenic System Commissioning at SNS

    CERN Document Server

    Casagrande, Fabio; Campisi, Isidoro E; Creel, Jonathan; Dixon, Kelly; Ganni, Venkatarao; Gurd, Pamela; Hatfield, Daniel; Howell, Matthew; Knudsen, Peter; Stout, Daniel; Strong, William

    2005-01-01

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 Watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning strategy and status will be presented.

  10. Cryogenic system operating experience review for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1992-01-01

    This report presents a review of cryogenic system operating experiences, from particle accelerator, fusion experiment, space research, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of cryogenic component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with cryogenic systems are discussed, including ozone formation, effects of spills, and modeling spill behavior. This information should be useful to fusion system designers and safety analysts, such as the team working on the International Thermonuclear Experimental Reactor design.

  11. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    Science.gov (United States)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  12. Pathway to cryogen free production of hyperpolarized Krypton-83 and Xenon-129.

    Directory of Open Access Journals (Sweden)

    Joseph S Six

    Full Text Available Hyperpolarized (hp (129Xe and hp (83Kr for magnetic resonance imaging (MRI are typically obtained through spin-exchange optical pumping (SEOP in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp (129Xe MRI cumbersome. For hp (83Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For (129Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized (129Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm(3/min. For hp (83Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm(3/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D(1 transition was observed and taken into account for the qualitative description of the SEOP process.

  13. COGENERATION IN AIR SEPARATION CRIOGENIC PLANTS

    OpenAIRE

    WALTER NOVELLO BASTOS

    1999-01-01

    Diante da crise energética e de mercado a Cogeração se apresenta oportuna tanto para a produção de energias elétrica e térmica quanto para a redução dos custos operacionais de produção de uma empresa. Um sistema de cogeração integrado e adaptado ao processo de uma Planta Criogênica de Separação de Ar, que tem a energia elétrica como insumo básico, pois o ar não tem custo, pode se mostrar viável, com considerável redução nos custos operacionais da planta. Um estudo termoeconômico, englob...

  14. Thermal conductivity of silver loaded conductive epoxy from cryogenic to ambient temperature and its application for precision cryogenic noise measurements

    Science.gov (United States)

    Amils, Ricardo I.; Gallego, Juan Daniel; Sebastián, José Luis; Muñoz, Sagrario; Martín, Agustín; Leuther, Arnulf

    2016-06-01

    The pressure to increase the sensitivity of instrumentation has pushed the use of cryogenic Low Noise Amplifier (LNA) technology into a growing number of fields. These areas range from radio astronomy and deep space communications to fundamental physics. In this context manufacturing for cryogenic environments requires a proper thermal knowledge of the materials to be able to achieve adequate design behavior. In this work, we present experimental measurements of the thermal conductivity of a silver filled conductive epoxy (EPO-TEK H20E) which is widely used in cryogenic electronics applications. The characterization has been made using a sample preparation which mimics the practical use of this adhesive in the fabrication of cryogenic devices. We apply the data obtained to a detailed analysis of the effects of the conductive epoxy in a monolithic thermal noise source used for high accuracy cryogenic microwave noise measurements. In this application the epoxy plays a fundamental role since its limited thermal conductivity allows heating the chip with relatively low power. To our knowledge, the cryogenic thermal conductivity data of this epoxy has not been reported before in the literature in the 4-300 K temperature range. A second non-conductive epoxy (Gray Scotch-Weld 2216 B/A), also widely used in cryogenic applications, has been measured in order to validate the method by comparing with previous published data.

  15. Progress report - Advanced cryogenic OTV engine technology

    Science.gov (United States)

    Schoenman, L.

    1985-01-01

    New technologies for space-based, reusable, throttleable, cryogenic orbit transfer propulsion are being evaluated. A variable-thrust (200 to 3000 lbF), 2000 psi chamber pressure, LO2/LH2 engine has been selected to demonstrate the 20-hour, 500-restart life goal, and a specific impulse in excess of 480 lbF-sec/lbM. The results of recent vehicle-engine integration analyses and the progress in design, fabrication, and testing are provided. Emphasis is placed on the following technology areas being investigated in support of the advanced engine design: LOX hydrostatic bearings; burn-resistant materials for high-pressure GOX turbines and valves; high surface-low flux annular combustion chambers for the dual propellant expander cycle; improved cooling approaches for high-pressure combustion chambers, new concepts in integrated controls; and engine health diagnostics.

  16. Rotary bayonets for cryogenic and vacuum service

    International Nuclear Information System (INIS)

    Rucinski, R.A.; Dixon, K.D.; Krasa, R.; Krempetz, K.J.; Mulholland, G.T.; Trotter, G.R.; Urbin, J.B.

    1993-07-01

    Rotary bayonets were designed, tested, and installed for liquid nitrogen, liquid argon, and vacuum service. This paper will present the design, testing, and service record for two sizes of vacuum jacketed cryogenic rotary bayonets and two sizes of vacuum service rotary bayonets. Materials used in construction provide electrical isolation across the bayonet joint. The joint permits 360 degrees of rotation between the male and female pipe sections while maintaining integrity of service. Assemblies using three such joints were built to allow end connection points to be translated through at least 1 meter of horizontal travel while kept in service. Vacuum jacketed sizes built in-house at Fermi National Accelerator Laboratory are 1-1/2 in. inner pipe size, 3 in. vacuum jacket, and 4 in. inner pipe size, 6 in. vacuum jacket The single wall vacuum service bayonets are in 4 in. and 6 in. pipe sizes. The bayonets have successfully been in active service for over one year

  17. The DARWIN breadboard cryogenic optical delay line

    Science.gov (United States)

    van den Dool, T. C.; Gielesen, W.; Kamphues, F.; Loix, N.; Kooijman, P. P.; de Vries, C.; van Weers, H.; Fleury, K.; Stockman, Y.; Velsink, G.; Benoit, J.; Poupinet, A.; Sève, F.

    2017-11-01

    TNO, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has designed a compact breadboard cryogenic delay line (figure 1) for use in future space interferometry missions. The work is performed under ESA contract 17.747/03 in preparation for the DARWIN mission. The breadboard (BB) delay line is representative of a flight mechanism. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a twomirror cat's eye. Magnetic bearings provide frictionless and wear free operation with zero-hysteresis. The design of the BB delay line has been completed. The development test program, including operation at 100 K has been completed. The verification test programme is currently being carried out and will include functional testing at 40 K.

  18. Cavitation in liquid cryogens. 2: Hydrofoil

    Science.gov (United States)

    Hord, J.

    1973-01-01

    Boundary layer principles, along with two-phase concepts, are used to improve existing correlative theory for developed cavity data. Details concerning cavity instrumentation, data analysis, correlative techniques, and experimental and theoretical aspects of a cavitating hydrofoil are given. Both desinent and thermodynamic data, using liquid hydrogen and liquid nitrogen, are reported. The thermodynamic data indicated that stable thermodynamic equilibrium exists throughout the vaporous cryogen cavities. The improved correlative formulas were used to evaluate these data. A new correlating parameter based on consideration of mass limiting two-phase flow flux across the cavity interface, is proposed. This correlating parameter appears attractive for future correlative and predictive applications. Agreement between theory and experiment is discussed, and directions for future analysis are suggested. The front half of the cavities, developed on the hydrofoil, may be considered as parabolically shaped.

  19. Cryogenic safety in helium cryostats at CERN

    Science.gov (United States)

    Parma, Vittorio; Leclercq, Yann

    2017-12-01

    Cryostats contain large cold surfaces, cryogenic fluids, and sometimes large stored energy (e.g. energized magnets), with the potential risk of sudden liberation of energy through thermodynamic transformations of the fluids, which can be uncontrolled and lead to a dangerous increase of pressure inside the cryostat envelopes. The consequence, in the case of a rupture of the envelopes, may be serious for personnel (injuries from deflagration, burns, and oxygen deficiency hazard) as well as for the equipment. Performing a thorough risk analysis is an essential step to identify and understand risk hazards that may cause a pressure increase and in order to assess consequences, define mitigation actions, and design adequate safety relief devices to limit pressure accordingly. Lessons learnt from real cases are essential for improving safety awareness for future projects. We cover in this paper our experience on cryostats at CERN and the design-for-safety rules in place.

  20. Thermal Performance Testing of Cryogenic Insulation Systems

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stan D.; Scholtens, Brekke E.

    2007-01-01

    Efficient methods for characterizing thermal performance of materials under cryogenic and vacuum conditions have been developed. These methods provide thermal conductivity data on materials under actual-use conditions and are complementary to established methods. The actual-use environment of full temperature difference in combination with vacuum-pressure is essential for understanding insulation system performance. Test articles include solids, foams, powders, layered blankets, composite panels, and other materials. Test methodology and apparatus design for several insulation test cryostats are discussed. The measurement principle is liquid nitrogen boil-off calorimetry. Heat flux capability ranges from approximately 0.5 to 500 watts per square meter; corresponding apparent thermal conductivity values range from below 0.01 up to about 60 mW/m- K. Example data for different insulation materials are also presented. Upon further standardization work, these patented insulation test cryostats can be available to industry for a wide range of practical applications.

  1. Helium Inventory Management For LHC Cryogenics

    CERN Document Server

    Pyarali, Maisam

    2017-01-01

    The LHC is a 26.7 km circumference ring lined with superconducting magnets that operate at 1.9 K. These magnets are used to control the trajectory of beams of protons traveling in opposite directions and collide them at various experimental sites across the LHC where their debris is analyzed. The focus of this paper is the cryogenic system that allows the magnets to operate in their superconducting states. It aims to highlight the operating principles of helium refrigeration and liquefaction, with and without nitrogen pre-cooling; discuss the various refrigerators and liquefiers used at CERN for both LHC and Non-LHC applications, with their liquefaction capacities and purposes; and finally to deliberate the management of the LHC inventory and how it contributes to the strategic decision CERN makes regarding the inventory management during the Year-End Technical Stop (YETS), Extended Year-End Technical Stop (EYETS) and long shutdowns.

  2. Stainless steels for cryogenic bolts and nuts

    International Nuclear Information System (INIS)

    Leroy, F.; Rabbe, P.; Odin, G.

    1975-01-01

    Stainless steel for cryogenic applications are generally austenitic steels which, under the effect of cold-drawing, can or cannot undergo a partial martensitic transformation according to their composition. It has been shown that very high ductility and endurance characteristics at low temperatures, together with very high yield strength and resistances values, can be attained with grades of nitrogenous steels of types Z2CN18-10N and Z3CMN18-8-6N. Optimum ductility values are obtained by employing to the best possible, the martensitic transformations which develop during cold-drawing. From the plotting of the rational traction curves, it is possible to analyse very simply the influence of the composition on the martensitic transformations [fr

  3. Initial performance of upgraded Tevatron cryogenic systems

    International Nuclear Information System (INIS)

    Norris, B.L.

    1996-09-01

    Fermilab began operating a re-designed satellite refrigerator systems in November 1993. Upgrades were installed to operate the Tevatron at a magnet temperature of 3.5 K, approximately 1K lower than the original design. Refrigerator upgrades included new valve boxes, larger reciprocating expanders, the installation of cold vapor compressors, new sub-atmospheric instrumentation and an entirely new distributed controls system. Cryogenic system reliability data for Colliding Physics Run 1B is presented emphasizing a failure analysis for each aspect of the upgrade. Comparison to data for Colliding Physics Run 1A (previous to upgrade) is presented to show the impact of a major system overhaul. New operational problems and their solutions are presented in detail

  4. Nuclear Cryogenic Propulsion Stage for Mars Exploration

    Science.gov (United States)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  5. Nuclear Cryogenic Propulsion Stage Affordable Development Strategy

    Science.gov (United States)

    Doughty, Glen E.; Gerrish, H. P.; Kenny, R. J.

    2014-01-01

    The development of nuclear power for space use in nuclear thermal propulsion (NTP) systems will involve significant expenditures of funds and require major technology development efforts. The development effort must be economically viable yet sufficient to validate the systems designed. Efforts are underway within the National Aeronautics and Space Administration's (NASA) Nuclear Cryogenic Propulsion Stage Project (NCPS) to study what a viable program would entail. The study will produce an integrated schedule, cost estimate and technology development plan. This will include the evaluation of various options for test facilities, types of testing and use of the engine, components, and technology developed. A "Human Rating" approach will also be developed and factored into the schedule, budget and technology development approach.

  6. Cryogenic magnet test facility for fair

    CERN Document Server

    Schroeder, C; Marzouki, F; Stafiniac, A; Floch, E; Schnizer, P; Moritz, G; Xiang, Y; Kauschke, M; Meier, J; Hess, G ,

    2009-01-01

    For testing fast-pulsed superconducting model and pre-series magnets for FAIR (Facility of Antiproton and Ion Research), a cryogenic magnet test facility was built up at GSI. The facility is able to cool either cold masses in a universal cryostat or complete magnets in their own cryo-module. It is possible to operate bath cooled, 2 phase cooled, and supercritical cooled magnets with a maximum current up to 11 kA and a ramp rate up to 14 kA/s. Measurements of magnet heat loss, with calorimetric and a V-I methods, are available, as are quench and magnetic field measurements. Design and functionality of the test facility will be described. Results of measurements with a supercritical cooled magnet and with a 2 phase cooled SIS100 model magnet will be shown.

  7. Cryogenic system for a superconducting spectrometer

    International Nuclear Information System (INIS)

    Porter, J.

    1983-03-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable, pool boiling design to provide a maximum particle bending field of 3 tesla. This paper describes the cryogenic facility including helium refrigeration, gas management, liquid nitrogen system, and the overall control strategy. The system normally operates with a 4 K heat load of 150 watts; the LN 2 circuits absorb an additional 4000 watts. 80K intercept control is by an LSI 11 computer. Total available refrigeration at 4K is 400 watts using reciprocating expanders at the 20K and 4K level. The minicomputer has the capability of optimizing overall utility input cost by varying operating points. A hybrid of pneumatic, analog, and digital control is successful in providing full time unattended operation. The 7m diameter magnet/cryostat assembly is rotatable through 180 degrees to provide a variety of spectrometer orientations

  8. Development of Large Cryogenic Semiconductor Detectors

    International Nuclear Information System (INIS)

    Mandic, Vuk

    2016-01-01

    This project aims at developing large cryogenic semiconductor detectors for applications in particle physics and more broadly. We have developed a 150 mm diameter, 43 mm thick, Si-based detector that measures ionization released in an interaction of a particle inside the silicon crystal of high purity, operated at 30 mK temperature. We demonstrated that such a detector can be used to measure recoil energies on the keV scale, and that its stable operation can be maintained indefinitely. Detectors of this type could therefore be used in the fields of direct dark matter searches, coherent neutrino scattering measurements, X-ray observations, as well as in broader applications such as homeland security.

  9. Analysis of Fluctuating Static Pressure Measurements in a Large High Reynolds Number Transonic Cryogenic Wind Tunnel. Ph.D. Thesis

    Science.gov (United States)

    Igoe, William B.

    1991-01-01

    Dynamic measurements of fluctuating static pressure levels were made using flush mounted high frequency response pressure transducers at eleven locations in the circuit of the National Transonic Facility (NTF) over the complete operating range of this wind tunnel. Measurements were made at test section Mach numbers from 0.2 to 1.2, at pressure from 1 to 8.6 atmospheres and at temperatures from ambient to -250 F, resulting in dynamic flow disturbance measurements at the highest Reynolds numbers available in a transonic ground test facility. Tests were also made independently at variable Mach number, variable Reynolds number, and variable drivepower, each time keeping the other two variables constant thus allowing for the first time, a distinct separation of these three important variables. A description of the NTF emphasizing its flow quality features, details on the calibration of the instrumentation, results of measurements with the test section slots covered, downstream choke, effects of liquid nitrogen injection and gaseous nitrogen venting, comparisons between air and nitrogen, isolation of the effects of Mach number, Reynolds number, and fan drive power, and identification of the sources of significant flow disturbances is included. The results indicate that primary sources of flow disturbance in the NTF may be edge-tones generated by test section sidewall re-entry flaps and the venting of nitrogen gas from the return leg of the tunnel circuit between turns 3 and 4 in the cryogenic mode of operation. The tests to isolate the effects of Mach number, Reynolds number, and drive power indicate that Mach number effects predominate. A comparison with other transonic wind tunnels shows that the NTF has low levels of test section fluctuating static pressure especially in the high subsonic Mach number range from 0.7 to 0.9.

  10. Field Testing of Cryogenic Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Sayre, Aaron [Sustainable Energy Solutions, LLC; Frankman, Dave [Sustainable Energy Solutions, LLC; Baxter, Andrew [Sustainable Energy Solutions, LLC; Stitt, Kyler [Sustainable Energy Solutions, LLC; Baxter, Larry [Sustainable Energy Solutions, LLC; Brigham Young Univ., Provo, UT (United States)

    2017-07-17

    Sustainable Energy Solutions has been developing Cryogenic Carbon Capture™ (CCC) since 2008. In that time two processes have been developed, the External Cooling Loop and Compressed Flue Gas Cryogenic Carbon Capture processes (CCC ECL™ and CCC CFG™ respectively). The CCC ECL™ process has been scaled up to a 1TPD CO2 system. In this process the flue gas is cooled by an external refrigerant loop. SES has tested CCC ECL™ on real flue gas slip streams from subbituminous coal, bituminous coal, biomass, natural gas, shredded tires, and municipal waste fuels at field sites that include utility power stations, heating plants, cement kilns, and pilot-scale research reactors. The CO2 concentrations from these tests ranged from 5 to 22% on a dry basis. CO2 capture ranged from 95-99+% during these tests. Several other condensable species were also captured including NO2, SO2 and PMxx at 95+%. NO was also captured at a modest rate. The CCC CFG™ process has been scaled up to a .25 ton per day system. This system has been tested on real flue gas streams including subbituminous coal, bituminous coal and natural gas at field sites that include utility power stations, heating plants, and pilot-scale research reactors. CO2 concentrations for these tests ranged from 5 to 15% on a dry basis. CO2 capture ranged from 95-99+% during these tests. Several other condensable species were also captured including NO2, SO2 and PMxx at 95+%. NO was also captured at 90+%. Hg capture was also verified and the resulting effluent from CCC CFG™ was below a 1ppt concentration. This paper will focus on discussion of the capabilities of CCC, the results of field testing and the future steps surrounding the development of this technology.

  11. The DIII-D cryogenic system upgrade

    International Nuclear Information System (INIS)

    Schaubel, K.M.; Laughon, G.J.; Campbell, G.L.; Langhorn, A.R.; Stevens, N.C.; Tupper, M.L.

    1993-10-01

    The original DIII-D cryogenic system was commissioned in 1981 and was used to cool the cryopanel arrays for three hydrogen neutral beam injectors. Since then, new demands for liquid helium have arisen including: a fourth neutral beam injector, ten superconducting magnets for the electron cyclotron heating gyrotrons, and more recently, the advanced diverter cryopump which resides inside the tokamak vacuum vessel. The original cryosystem could not meet these demands. Consequently, the cryosystem was upgraded in several phases to increase capacity, improve reliability, and reduce maintenance. The majority of the original system has been replaced with superior equipment. The capacity now exists to support present as well as future demands for liquid helium at DIII-D including a hydrogen pellet injector, which is being constructed by Oak Ridge National Laboratory. Upgrades to the cryosystem include: a recently commissioned 150 ell/hr helium liquefier, two 55 g/sec helium screw compressors, a fully automated 20-valve cryogen distribution box, a high efficiency helium wet expander, and the conversion of equipment from manual or pneumatic to programmable logic controller (PLC) control. The distribution box was designed and constructed for compactness due to limited space availability. Overall system efficiency was significantly improved by replacing the existing neutral beam reliquefier Joule-Thomson valve with a reciprocating wet expander. The implementation of a PLC-based automatic control system has resulted in increased efficiency and reliability. This paper will describe the cryosystem design with emphasis on newly added equipment. In addition, performance and operational experience will be discussed

  12. The DIII-D cryogenic system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Schaubel, K.M.; Laughon, G.J.; Campbell, G.L.; Langhorn, A.R.; Stevens, N.C.; Tupper, M.L.

    1993-10-01

    The original DIII-D cryogenic system was commissioned in 1981 and was used to cool the cryopanel arrays for three hydrogen neutral beam injectors. Since then, new demands for liquid helium have arisen including: a fourth neutral beam injector, ten superconducting magnets for the electron cyclotron heating gyrotrons, and more recently, the advanced diverter cryopump which resides inside the tokamak vacuum vessel. The original cryosystem could not meet these demands. Consequently, the cryosystem was upgraded in several phases to increase capacity, improve reliability, and reduce maintenance. The majority of the original system has been replaced with superior equipment. The capacity now exists to support present as well as future demands for liquid helium at DIII-D including a hydrogen pellet injector, which is being constructed by Oak Ridge National Laboratory. Upgrades to the cryosystem include: a recently commissioned 150 {ell}/hr helium liquefier, two 55 g/sec helium screw compressors, a fully automated 20-valve cryogen distribution box, a high efficiency helium wet expander, and the conversion of equipment from manual or pneumatic to programmable logic controller (PLC) control. The distribution box was designed and constructed for compactness due to limited space availability. Overall system efficiency was significantly improved by replacing the existing neutral beam reliquefier Joule-Thomson valve with a reciprocating wet expander. The implementation of a PLC-based automatic control system has resulted in increased efficiency and reliability. This paper will describe the cryosystem design with emphasis on newly added equipment. In addition, performance and operational experience will be discussed.

  13. Cryogenic Propellant Feed System Analytical Tool Development

    Science.gov (United States)

    Lusby, Brian S.; Miranda, Bruno M.; Collins, Jacob A.

    2011-01-01

    The Propulsion Systems Branch at NASA s Lyndon B. Johnson Space Center (JSC) has developed a parametric analytical tool to address the need to rapidly predict heat leak into propellant distribution lines based on insulation type, installation technique, line supports, penetrations, and instrumentation. The Propellant Feed System Analytical Tool (PFSAT) will also determine the optimum orifice diameter for an optional thermodynamic vent system (TVS) to counteract heat leak into the feed line and ensure temperature constraints at the end of the feed line are met. PFSAT was developed primarily using Fortran 90 code because of its number crunching power and the capability to directly access real fluid property subroutines in the Reference Fluid Thermodynamic and Transport Properties (REFPROP) Database developed by NIST. A Microsoft Excel front end user interface was implemented to provide convenient portability of PFSAT among a wide variety of potential users and its ability to utilize a user-friendly graphical user interface (GUI) developed in Visual Basic for Applications (VBA). The focus of PFSAT is on-orbit reaction control systems and orbital maneuvering systems, but it may be used to predict heat leak into ground-based transfer lines as well. PFSAT is expected to be used for rapid initial design of cryogenic propellant distribution lines and thermodynamic vent systems. Once validated, PFSAT will support concept trades for a variety of cryogenic fluid transfer systems on spacecraft, including planetary landers, transfer vehicles, and propellant depots, as well as surface-based transfer systems. The details of the development of PFSAT, its user interface, and the program structure will be presented.

  14. Fluid Dynamics with Cryogenic Fluid Transfer in Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During chilldown of cryogenic fluid tanks and lines, the interface between the liquid and vapor rapidly changes. Understanding these rapid changes is key...

  15. Cryogenic and Vacuum Compatible Metrology Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR project for NASA, Flexure Engineering of Greenbelt, MD will leverage the work we did in our current SBIR project entitled: Cryogenic Optical...

  16. Sprayable Thermal Insulation for Cryogenic Tanks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation addressed in this proposal is Sprayable Thermal Insulation for Cryogenic Tanks, or STICT. This novel system could be applied in either an automated or...

  17. ISO and EIGA standards for cryogenic vessels and accessories

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The EIGA/WG 6’s scope is cryogenic vessels and accessories, including their design, material compatibility, operational requirements and periodical inspection. The specific responsibilities include monitoring international standardization (ISO, CEN) and regulations (UN, TPED, PED...

  18. The European Graduate Course in Cryogenics hosted at CERN.

    CERN Multimedia

    Laurent Tavian

    2010-01-01

    The “liquid helium” week of the European Graduate Course in Cryogenics was held at CERN from 30 August to 3 September 2010. This course scheduled annually since 2008 is a common teaching project of the Universities of Technology of Dresden, Wroclaw and Trondheim. It is focused on liquid natural gas, hydrogen and helium cryogenics. Attending students were carefully selected, and will take an examination giving ECTS credits for their academic curriculum.   This year, as Wroclaw University of Technology was already heavily involved in organising the International Cryogenic Engineering Conference (ICEC), it requested that the “liquid helium” week to be exceptionally held at CERN. While this is certainly a good choice from the point of view of large cryogenic helium systems, with the large cryoplants cooling the Large Hadron Collider (LHC) and its experiments, CERN has only acted as host laboratory organizing the course classes and visits, and the teaching and i...

  19. Safety Management for the Cryogenic System of Superconducting RF System

    CERN Document Server

    Kao, Sheau-Ping; Hsiao, Feng-Zone; Wang, Jau-Ping

    2005-01-01

    The installation of the helium cryogenic system for the superconducting RF cavity and magnet were finished in the National Synchrotron Radiation Research Center (NSRRC) at the end of October 2002. The first phase of this program will be commissioned at the end of 2004. This was the first large scale cryogenic system in Taiwan. The major hazards to personnel are cryogenic burn and oxygen deficient. To avoid the injury of the operators and meet the requirements of local laws and regulations, some safety measures must be adopted. This paper will illustrate the methods of risk evaluation and the safety control programs taken at NSRRC to avoid and reduce the hazards from the cryogenic system of the superconducting RF cavity and magnet system.

  20. Small Scroll Pump for Cryogenic Liquids, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a compact, reliable, light weight, electrically driven pump capable of pumping cryogenic liquids, based on scroll pump technology. This pump will...

  1. Cryogenic heat treatment — a review of the current state

    Directory of Open Access Journals (Sweden)

    Kamran Amini

    2017-03-01

    Full Text Available The deep cryogenic heat treatment is an old and effective heat treatment, performed on steels and cast irons to improve the wear resistance and hardness. This process includes cooling down to the liquid nitrogen temperature, holding the samples at that temperature and heating at the room temperature. The benefits of this process are significant on the ferrous materials, but recently some studies focused on other nonferrous materials. This study attempts to clarify the different behavior of some materials subjected to the deep cryogenic heat treatment, as well as explaining the common theories about the effect of the cryogenic heat treatment on these materials. Results showed that polymers exhibit different behavior regarding to their crystallinity, however the magnesium alloys, titanium alloys and tungsten carbide show a noticeable improvement after the deep cryogenic heat treatment due to their crystal structure.

  2. Advanced Insulation Techniques for Cryogenic Tanks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The ability to store large amounts of cryogenic fluids for long durations has a profound effect on the success of many future space programs using these fluids for...

  3. Spinning-Scroll Pump for Cryogenic Feed System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is an efficient, compact, lightweight, reliable, electric-driven, cryogenic spinning scroll pump (CSSP) capable of pumping liquid methane or oxygen at...

  4. Temperature Sensing Solution for Cryogenic Space Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic systems, heavily used in rocket ground testing, space station operations, shuttle launch systems, etc, require a large number of temperature sensors for...

  5. Evaluation of Cryogenic Readout Electronics for ASTRO-F

    Science.gov (United States)

    Watabe, Toyoki; Hirao, Takanori; Shibai, Hiroshi; Kawada, Mitsunobu; Nagata, Hiroshi; Hibi, Yasunori; Noda, Manabu

    Cryogenic readout electronics have been developed for the far-infrared detectors onboard ASTRO-F, the first Japanese infrared astronomical satellite. This cryogenic readout circuit should be mounted near the detector array at the liquid helium temperature in order to achieve high sensitivity. We succeeded in developing the cryogenic p-MOS transistor by a standard Bi-CMOS process with a slight modification. By using the new p-MOS transistor, we have made several types of cryogenic electronics, (OP-AMP and CTIA), and evaluated their performances in the liquid helium temperature. The results are: 1. Open loop gain of OP-AMP ~300 2. Input equivalence noise ~3μV/Hz1/2 3. Power consumption ~10μW/ch More details will be shown on the poster.

  6. Advanced insulation Materials for Cryogenic Propellant Storage Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc (AMTI) responds to the Topic X9 entitled "Propulsion and Propellant Storage" under subtopic X9.01, "Long Term Cryogenic Propellant...

  7. Nanocoatings for Wicking of Low-Viscosity Cryogens Project

    Science.gov (United States)

    Fesmire, James E.

    2014-01-01

    The goal of this project is to develop smart, switchable materials systems for use in thermal management systems, including the evaluation of wicking nanocoatings for use in the transport and storage of cryogens.

  8. Dynamic Instability of Undamped Bellows Face Seals in Cryogenic Liquid

    National Research Council Canada - National Science Library

    Hudelson, John C

    1966-01-01

    .... The results of the tests indicated that dynamic instability will occur in undamped bellows face seals operating in a cryogenic environment and be of such a magnitude as to damage the sealing surface...

  9. High Effectiveness Heat Exchanger for Cryogenic Refrigerators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an innovative high performance cryogenic heat exchanger manufactured of titanium by photo-etching and diffusion bonding. This is a parallel plate design...

  10. Overview of the Long-Baseline Neutrino Facility cryogenic system

    CERN Document Server

    Montanari, David; Bremer, Johan; Delaney, Michael; Aurelien, Diaz; Doubnik, Roza; Haaf, Kevin; Hentschel, Steve; Norris, Barry; Voirin, Erik

    2017-01-01

    The Deep Underground Neutrino Experiment (DUNE) collaboration is developing a multi-kiloton Long-Baseline neutrino experiment that will be located one mile underground at the Sanford Underground Research Facility (SURF) in Lead, SD. In the present design, detectors will be located inside four cryostats filled with a total of 68,400 ton of ultrapure liquid argon, at the level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) is developing the conventional facilities and cryogenics infrastructure supporting this experiment. The cryogenics system is composed of several sub-systems: External/Infrastructure, Proximity, and Internal cryogenics. It will be engineered, manufactured, commissioned, and qualified by an international engineering team. This contribution highlights the main features of the LBNF cryogenic system. It presents its performance, functional requirements and modes of operations. It also details the status of the design, ...

  11. Long Term In-Space Cryogen Storage - Magnetic Isolation

    Data.gov (United States)

    National Aeronautics and Space Administration — A research activity is proposed to assess the feasibility of magnetic and/or quantum levitation techniques to hold cryogenic fluids in space for extended durations...

  12. Development of cryotribological theories & application to cryogenic devices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Yukikazu

    2001-03-12

    This is the final report of a research program on low-temperature friction and wear, primarily focused on development of cryotribological theories and application to cryogenic devices, particularly superconducting magnets.

  13. Sprayable Thermal Insulation for Cryogenic Tanks, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Sprayable Thermal Insulation for Cryogenic Tanks (STICT) is a thermal management system applied by either an automated or manual spraying process with less...

  14. Use of PROFIBUS for cryogenic instrumentation at XFEL

    Science.gov (United States)

    Boeckmann, T.; Bolte, J.; Bozhko, Y.; Clausen, M.; Escherich, K.; Korth, O.; Penning, J.; Rickens, H.; Schnautz, T.; Schoeneburg, B.; Zhirnov, A.

    2017-12-01

    The European X-ray Free Electron Laser (XFEL) is a research facility and since December 2016 under commissioning at DESY in Hamburg. The XFEL superconducting accelerator is 1.5 km long and contains 96 superconducting accelerator modules. The control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the XFEL cryogenic system consisting of the XFEL refrigerator, cryogenic distribution systems and the XFEL accelerator. The PROFIBUS fieldbus technology is the key technology of the cryogenic instrumentation and the link to the control system. More than 650 PROFIBUS nodes are implemented in the different parts of the XFEL cryogenic facilities. The presentation will give an overview of PROFIBUS installation in these facilities regarding engineering, possibilities of diagnostics, commissioning and the first operating experience.

  15. Testing Tensile and Shear Epoxy Strength at Cryogenic Temperatures

    Science.gov (United States)

    Alberts, S. J.; Doehne, C. J.; Johnson, W. L.

    2017-01-01

    This paper covers cryogenic, tensile testing and research completed on a number of epoxies used in cryogenic applications. Epoxies are used in many different applications; however, this research focused on the use of epoxy used to bond MLI standoffs to cryogenic storage tanks and the loads imparted to the tank through the MLI. To conduct testing, samples were made from bare stainless steel, aluminum and primed aluminum. Testing involved slowly cooling test samples with liquid nitrogen then applying gradually increasing tensile loads to the epoxy. The testing evaluated the strength and durability of epoxies at cryogenic temperatures and serves as a base for future testing. The results of the tests showed that some epoxies withstood the harsh conditions while others failed. The two epoxies yielding the best results were Masterbond EP29LPSP and Scotch Weld 2216. For all metal surfaces tested, both epoxies had zero failures for up to 11.81 kg of mass.

  16. Advanced Insulation Materials for Cryogenic Propellant Storage Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc responds to the NASA solicitation Topic X9 entitled "Propulsion and Propellant Storage" under subtopic X9-01, "Long Term Cryogenic...

  17. High-Speed Thermal Characterization of Cryogenic Flows, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development on a high-speed fiber optic sensor and readout system for cryogenic temperature measurements in liquid oxygen (LOX) and liquid...

  18. Bismuth alloy potting seals aluminum connector in cryogenic application

    Science.gov (United States)

    Flower, J. F.; Stafford, R. L.

    1966-01-01

    Bismuth alloy potting seals feedthrough electrical connector for instrumentation within a pressurized vessel filled with cryogenic liquids. The seal combines the transformation of high-bismuth content alloys with the thermal contraction of an external aluminum tube.

  19. Development and application of cryogenic radiometry with hard X-rays

    International Nuclear Information System (INIS)

    Gerlach, Martin

    2008-01-01

    To establish cryogenic radiometry with hard X-ray radiation for photon energies of up to 60 keV, a novel type of cavity absorber had to be developed for the cryogenic radiometer SYRES I, which is deployed by the Physikalisch-Technische Bundesanstalt (PTB) as primary standard detector at the electron storage ring BESSY II. This new type of cavity absorber allows for the complete absorption of hard X-ray radiation in combination with an appropriate sensitivity and an adequate time constant for the measurement of synchrotron radiation at BESSY II. As the process of fabrication of different types of absorbers is very time-consuming, the interaction of hard X-ray radiation with different absorber materials and geometries was studied intensively by using the Monte Carlo simulation code Geant4. The accuracy of the simulations was verified comparing them to scattering experiments performed at a wavelength shifter beamline at BESSY II with a calibrated energy dispersive detector. It was shown that Geant4 describes the photo-effect, including fluorescence as well as Compton- and Rayleigh scattering, with high accuracy. The simulations and experiments resulted in a cavity absorber with a gold base 550 μm in thickness and a cylindrical shell made of copper 90 μm in thickness to reduce losses caused by fluorescence and scattered radiation. Monochromatized synchrotron radiation of high spectral purity was then used to calibrate semiconductor photodiodes, which can be used as compact and inexpensive secondary standard detectors, against a cryogenic radiometer, covering the entire photon energy range of three beamlines from 50 eV to 60 keV with relative uncertainties of less than 0.5 %. Furthermore the spatial homogeneity of the spectral responsivity, the transmittance and the linearity of the photodiodes was investigated. Through a direct comparison of the free-air ionization chamber PK100, a primary detector standard of PTB used in dosimetry, and the cryogenic radiometer SYRES

  20. A Review of Function Allocation and En Route Separation Assurance

    Science.gov (United States)

    Lewis, Timothy A.; Aweiss, Arwa S.; Guerreiro, Nelson M.; Daiker, Ronald J.

    2016-01-01

    Today's air traffic control system has reached a limit to the number of aircraft that can be safely managed at the same time. This air traffic capacity bottleneck is a critical problem along the path to modernization for air transportation. The design of the next separation assurance system to address this problem is a cornerstone of air traffic management research today. This report reviews recent work by NASA and others in the areas of function allocation and en route separation assurance. This includes: separation assurance algorithms and technology prototypes; concepts of operations and designs for advanced separation assurance systems; and specific investigations into air-ground and human-automation function allocation.

  1. The integration of cryogenic cooling systems with superconducting electronic systems

    International Nuclear Information System (INIS)

    Green, Michael A.

    2003-01-01

    The need for cryogenic cooling has been critical issue that has kept superconducting electronic devices from reaching the market place. Even though the performance of the superconducting circuit is superior to silicon electronics, the requirement for cryogenic cooling has put the superconducting devices at a disadvantage. This report will talk about the various methods for refrigerating superconducting devices. Cryocooler types will be compared for vibration, efficiency, and cost. Some solutions to specific problems of integrating cryocoolers to superconducting devices are presented.

  2. Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garcia-Moreno, Olga; Fernandez, Adolfo; Khainakov, Sergei; Torrecillas, Ramon

    2010-01-01

    Five lithium aluminosilicate compositions of the LAS system have been synthesized and sintered. The coefficient of thermal expansion of the sintered samples has been studied down to cryogenic conditions. The data presented here under cryogenic conditions will be of value in the future design of new composite materials with very low thermal expansion values. The variation in thermal expansion properties with composition and sintering temperature was studied and is discussed in relation to composition and crystal structure.

  3. Computing the Thermodynamic State of a Cryogenic Fluid

    Science.gov (United States)

    Willen, G. Scott; Hanna, Gregory J.; Anderson, Kevin R.

    2005-01-01

    The Cryogenic Tank Analysis Program (CTAP) predicts the time-varying thermodynamic state of a cryogenic fluid in a tank or a Dewar flask. CTAP is designed to be compatible with EASY5x, which is a commercial software package that can be used to simulate a variety of processes and equipment systems. The mathematical model implemented in CTAP is a first-order differential equation for the pressure as a function of time.

  4. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1977-01-01

    A system for isotope separation or enrichment wherein molecules of a selected isotope type in a flow of molecules of plural isotope types are vibrationally excited and collided with a background gas to provide enhanced diffusivity for the molecules of the selected isotope type permitting their separate collection. The system typically is for the enrichment of uranium using a uranium hexafluoride gas in combination with a noble gas such as argon. The uranium hexafluoride molecules having a specific isotope of uranium are vibrationally excited by laser radiation. The vibrational energy is converted to a translation energy upon collision with a particle of the background gas and the added translation energy enhances the diffusivity of the selected hexafluoride molecules facilitating its condensation on collection surfaces provided for that purpose. This process is periodically interrupted and the cryogenic flow halted to permit evaporation of the collected molecules to provide a distinct, enriched flow

  5. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    International Nuclear Information System (INIS)

    Jadeja, K A; Bhatt, S B

    2012-01-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ∼ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  6. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    Science.gov (United States)

    Jadeja, K. A.; Bhatt, S. B.

    2012-11-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ~ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  7. Compatibilized Immiscible Polymer Blends for Gas Separations

    Science.gov (United States)

    Panapitiya, Nimanka; Wijenayake, Sumudu; Nguyen, Do; Karunaweera, Chamaal; Huang, Yu; Balkus, Kenneth; Musselman, Inga; Ferraris, John

    2016-01-01

    Membrane-based gas separation has attracted a great deal of attention recently due to the requirement for high purity gasses in industrial applications like fuel cells, and because of environment concerns, such as global warming. The current methods of cryogenic distillation and pressure swing adsorption are energy intensive and costly. Therefore, polymer membranes have emerged as a less energy intensive and cost effective candidate to separate gas mixtures. However, the use of polymeric membranes has a drawback known as the permeability-selectivity tradeoff. Many approaches have been used to overcome this limitation including the use of polymer blends. Polymer blending technology synergistically combines the favorable properties of different polymers like high gas permeability and high selectivity, which are difficult to attain with a single polymer. During polymer mixing, polymers tend to uncontrollably phase separate due to unfavorable thermodynamics, which limits the number of completely miscible polymer combinations for gas separations. Therefore, compatibilizers are used to control the phase separation and to obtain stable membrane morphologies, while improving the mechanical properties. In this review, we focus on immiscible polymer blends and the use of compatibilizers for gas separation applications. PMID:28773766

  8. Cryogenic 160-GHz MMIC Heterodyne Receiver Module

    Science.gov (United States)

    Samoska, Lorene A.; Soria, Mary M.; Owen, Heather R.; Dawson, Douglas E.; Kangaslahti, Pekka P.; Gaier, Todd C.; Voll, Patricia; Lau, Judy; Sieth, Matt; Church, Sarah

    2011-01-01

    A cryogenic 160-GHz MMIC heterodyne receiver module has demonstrated a system noise temperature of 100 K or less at 166 GHz. This module builds upon work previously described in Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation (NPO-47664), NASA Tech Briefs, Vol. 35, No. 8 (August 2011), p. 27. In the original module, the local oscillator signal was saturating the MMIC low-noise amplifiers (LNAs) with power. In order to suppress the local oscillator signal from reaching the MMIC LNAs, the W-band (75 110 GHz) signal had to be filtered out before reaching 140 170 GHz. A bandpass filter was developed to cover 120 170 GHz, using microstrip parallel-coupled lines to achieve the desired filter bandwidth, and ensure that the unwanted W-band local oscillator signal would be sufficiently suppressed. With the new bandpass filter, the entire receiver can work over the 140 180-GHz band, with a minimum system noise temperature of 460 K at 166 GHz. The module was tested cryogenically at 20 K ambient temperature, and it was found that the receiver had a noise temperature of 100 K over an 8-GHz bandwidth. The receiver module now includes a microstrip bandpass filter, which was designed to have a 3-dB bandwidth of approximately 120-170 GHz. The filter was fabricated on a 3-mil-thick alumina substrate. The filter design was based on a W-band filter design made at JPL and used in the QUIET (Q/U Imaging ExperimenT) radiometer modules. The W-band filter was scaled for a new center frequency of 150 GHz, and the microstrip segments were changed accordingly. Also, to decrease the bandwidth of the resulting scaled design, the center gaps between the microstrip lines were increased (by four micrometers in length) compared to the gaps near the edges. The use of the 150-GHz bandpass filter has enabled the receiver module to function well at room temperature. The system noise temperature was measured to be less than 600 K (at room temperature) from 154 to 168 GHz

  9. PREFACE: Advances in Cryogenic Engineering: Proceedings of the Cryogenic Engineering Conference (CEC) 2015

    Science.gov (United States)

    Kittel, Peter; Sumption, Michael

    2015-12-01

    The 2015 joint Cryogenic Engineering and International Cryogenic Materials Conferences were held from June 28 through July 2 at the JW Marriott Starr Pass Resort & Spa in Tucson, Arizona. As at past conferences, the international scope of these meetings was strongly maintained with 26 countries being represented by 561 attendees who gathered to enjoy the joint technical programs, industrial exhibits, special events, and natural beauty of the surrounding Sonoran Desert. The program for the joint conferences included a total of 363 presentations in the plenary, oral, and poster sessions. Four plenary talks gave in-depth discussions of the readiness of bulk superconductors for applications, the role of cryogenics in the development of the hydrogen bomb and vice versa, superconducting turboelectric aircraft propulsion and UPS's uses and plans for LNG fuel. Contributed papers covered a wide range of topics including large-scale and small-scale cryogenics, advances in superconductors and their applications. In total, 234 papers were submitted for publication of which 224 are published in these proceedings. The CEC/ICMC Cryo Industrial Expo displayed the products and services of 38 industrial exhibitors and provided a congenial venue for a reception and refreshments throughout the week as well as the conference poster sessions. Spectacular panoramic views of Saguaro National Park, the Sonoran Desert and the night time lights of Tucson set the stage for a memorable week in the American Southwest. Conference participants enjoyed scenic hikes and bike rides, exploring Old Town Tucson, hot and spicy southwestern cuisine, a nighttime lightning display and a hailstorm. Conference Chairs for 2015 were Peter Kittel, Consultant, for CEC and Michael Sumption from The Ohio State University, Materials Science Department for ICMC. Program Chairs were Jonathan Demko from the LeTourneau University for CEC and Timothy Haugan from AFRL/RQQM for ICMC, assisted by the CEC Program Vice Chair

  10. PREFACE: Advances in Cryogenic Engineering - Materials: Proceedings of the International Cryogenic Materials Conference (ICMC) 2015

    Science.gov (United States)

    Kittel, Peter; Sumption, Michael

    2015-12-01

    The 2015 joint Cryogenic Engineering and International Cryogenic Materials Conferences were held from June 28 through July 2 at the JW Marriott Starr Pass Resort & Spa in Tucson, Arizona. As at past conferences, the international scope of these meetings was strongly maintained with 26 countries being represented by 561 attendees who gathered to enjoy the joint technical programs, industrial exhibits, special events, and natural beauty of the surrounding Sonoran Desert. The program for the joint conferences included a total of 363 presentations in the plenary, oral, and poster sessions. Four plenary talks gave in-depth discussions of the readiness of bulk superconductors for applications, the role of cryogenics in the development of the hydrogen bomb and vice versa, superconducting turboelectric aircraft propulsion and UPS's uses and plans for LNG fuel. Contributed papers covered a wide range of topics including large-scale and small-scale cryogenics, advances in superconductors and their applications. In total, 234 papers were submitted for publication of which 224 are published in these proceedings. The CEC/ICMC Cryo Industrial Expo displayed the products and services of 38 industrial exhibitors and provided a congenial venue for a reception and refreshments throughout the week as well as the conference poster sessions. Spectacular panoramic views of Saguaro National Park, the Sonoran Desert and the night time lights of Tucson set the stage for a memorable week in the American Southwest. Conference participants enjoyed scenic hikes and bike rides, exploring Old Town Tucson, hot and spicy southwestern cuisine, a nighttime lightning display and a hailstorm. Conference Chairs for 2015 were Peter Kittel, Consultant, for CEC and Michael Sumption from The Ohio State University, Materials Science Department for ICMC. Program Chairs were Jonathan Demko from the LeTourneau University for CEC and Timothy Haugan from AFRL/RQQM for ICMC, assisted by the CEC Program Vice Chair

  11. Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites

    NARCIS (Netherlands)

    Bloch, E.D.; Queen, W.L.; Krishna, R.; Zadrozny, J. M.; Brown, C.M.; Long, J.R.

    2012-01-01

    The energy costs associated with large-scale industrial separation of light hydrocarbons by cryogenic distillation could potentially be lowered through development of selective solid adsorbents that operate at higher temperatures. Here, the metal-organic framework Fe2(dobdc) (dobdc4- :

  12. Submersible fans and pumps for cryogenic fluids

    International Nuclear Information System (INIS)

    Mark, J.W.

    1986-01-01

    Submersible electric motor driven fans of three sizes have been designed, built and operated at 21 0 K at the Stanford Linear Accelerator Center. The largest is a 100-mm diameter, 2 stage vaneaxial fan with a nominal capacity of 6 L/s at 2 m head. It is driven by a 4 pole, 3 phase induction motor that runs at 1750 rpm. The next smaller one is an 85-mm diameter centrifugal pump. It pumps 3 L/s at a head of 5 m. The third is a 75-mm single stage vaneaxial fan with a nominal capacity is 3 L/s at a head of 2 m. The 85-mm pump and the 75-mm fan are driven by 2 pole, 3 phase induction motors running at 3550 rpm. The motors were modified to operate submerged in the cryogenic fluid. The pumps have been operated in liquid hydrogen, liquid deuterium, and pressurized helium gas at 21 0 K. They can also operate with denser fluids such as liquid nitrogen, but rotational speed, capacity, and head will be reduced. They have been operated while submerged in liquid helium

  13. Effects of cryogenic irradiation on temperature sensors

    International Nuclear Information System (INIS)

    Courts, S.S.; Holmes, D.S.

    1996-01-01

    Several types of commercially available cryogenic temperature sensors were calibrated, irradiated at 4.2 K by a gamma or neutron source, and recalibrated in-situ to determine their suitability for thermometry in radiation environments. Comparisons were made between pre- and post-irradiation calibrations with the equivalent temperature shift calculated for each sensor at various temperature in the 4.2 K to 330 K range. Four post-irradiation calibrations were performed with annealing steps performed at 20 K, 80 K, and 330 K. Temperature sensors which were gamma irradiated were given a total dose of 10,000 Gy. Temperature sensors which were neutron irradiated were irradiated to a total fluence of 2 x 10 12 n/cm 2 . In general, for gamma radiation environments, diodes are unsuitable for use. Both carbon glass and germanium resistance sensors performed well at lower temperature, while platinum resistance sensors performed best above 30 K. Thin-film rhodium and Cernox trademark resistance sensors both performed well over the 4.2 K to 330 K range. Only thin-film rhodium and Cernox trademark resistance temperature sensors were neutron irradiated and they both performed well over the 4.2 K to 330 K range

  14. Cryogenics for the Large Hadron Collider

    CERN Document Server

    Lebrun, P

    2000-01-01

    The Large Hadron Collider (LHC), a 26.7 km circumference superconducting accelerator equipped with high-field magnets operating in superfluid helium below 1.9 K, has now fully entered construction at CERN, the European Laboratory for Particle Physics. The heart of the LHC cryogenic system is the quasi-isothermal magnet cooling scheme, in which flowing two-phase saturated superfluid helium removes the heat load from the 36000 ton cold mass, immersed in some 400 m/sup 3/ static pressurised superfluid helium. The LHC also makes use of supercritical helium for nonisothermal cooling of the beam screens which intercept most of the dynamic heat loads at higher temperature. Although not used in normal operation, liquid nitrogen will provide the source of refrigeration for precooling the machine. Refrigeration for the LHC is produced in eight large refrigerators, each with an equivalent capacity of about 18 kW at 4.5 K, completed by 1.8 K refrigeration units making use of several stages of hydrodynamic cold compressor...

  15. Cryogenics for the Large Hadron Collider

    CERN Document Server

    Lebrun, P

    1999-01-01

    The Large Hadron Collider (LHC), a 26.7 km circumference superconducting accelerator equipped with high-field magnets operating in superfluid helium below 1.9 K, has now fully entered construction at CERN, the European Laboratory for Particle Physics. The heart of the LHC cryogenic system is the quasi-isothermal magnet cooling scheme, in which flowing two-phase saturated superfluid helium removes the heat load from the 36'000 ton cold mass, immersed in some 400 m3 static pressurised superfluid helium. The LHC also makes use of supercritical helium for non-isothermal cooling of the beam screens which intercept most of the dynamic heat loads at higher temperature. Although not used in normal operation, liquid nitrogen will provide the source of refrigeration for precooling the machine. Refrigeration for the LHC is produced in eight large refrigerators, each with an equivalent capacity of about 18 kW at 4.5 K, completed by 1.8 K refrigeration units making use of several stages of hydrodynamic cold compressors. T...

  16. Minimizing Uncertainty in Cryogenic Surface Figure Measurement

    Science.gov (United States)

    Blake, Peter; Mink, Ronald G.; Chambers, John; Robinson, F. David; Content, David; Davila, Pamela

    2005-01-01

    A new facility at the Goddard Space Flight Center is designed to measure with unusual accuracy the surface figure of mirrors at cryogenic temperatures down to 12 K. The facility is currently configured for spherical mirrors with a radius of curvature (ROC) of 600 mm, and apertures of about 150 mm or less. The goals of the current experiment were to 1) Obtain the best possible estimate of test mirror surface figure, S(x,y) at 87 K and 20 K; 2) Obtain the best estimate of the cryo-change, Delta (x,y): the change in surface figure between room temperature and the two cryo-temperatures; and 3) Determine the uncertainty of these measurements, using the definitions and guidelines of the ISO Guide to the Expression of Uncertainty in Measurement. A silicon mirror was tested, and the cry-change from room temperature to 20K was found to be 3.7 nm rms, with a standard uncertainty of 0.23 nm in the rms statistic. Both the cryo-change figure and the uncertainty are among the lowest such figures yet published. This report describes the facilities, experimental methods, and uncertainty analysis of the measurements.

  17. Cryogenic controls for the TESLA test facility

    Science.gov (United States)

    Clausen, M.; Gerke, Chr.; Knopf, U.; Rettig, S.; Schoeneburg, B.

    1994-12-01

    The TESLA Test Facility (TTF) is designed to perform intensive testing of the superconducting cavities foreseen for the next generation of linear colliders. The cryogenic system is one part of this facility. The controls for this system will initially use the existing software and hardware to be able to cool down the first cavities fabricated in the TTF workshop. Later the control system will be modified to meet the current standards in process and accelerator controls. The hardware will be changed to use the VME system as the major platform. The operating system and the communication will be based on de-facto standards such as UNIX for the workstations and the front-end computers and TCP/IP for network communication. The application software (EPICS) will be part of a collaboration with several other institutes. The final goal is to port all the software to the POSIX standard and to use Object-Oriented tools wherever possible. The first part of this paper describes the migration from the existing control system to the future design. Special decisions on hardware and software solutions are highlighted. Nonproprietary field busses for remote process I/O are becoming usual for slow control. A suitable bus for our future basic I/O system had to be selected. Finally a new temperature monitor module working on the CAN-bus and its measurement procedure will be explained.

  18. Cryogenic atomic beam source at VEPP-3

    International Nuclear Information System (INIS)

    Isaeva, L. G.; Lazarenko, B. A.; Mishnev, S. I.; Nikolenko, D. M.; Popov, S. G.; Rachek, I. A.; Shestakov, Yu. V.; Toporkov, D. K.; Vesnovsky, D. K.; Zevakov, S. A.; Osipov, A. N.; Sidorov, A. A.; Stibunov, V. N.

    1998-01-01

    The experiment on elastic and inelastic scattering of 2 GeV electrons by internal polarized target is in progress at the VEPP-3 storage ring in Novosibirsk. It's carried out by Novosibirsk/St.-Petersburg/Tomsk/Argonne/Illinois/NIKHEF collaboration. A cryogenic Atomic Beam Source having five superconducting sextupoles is under manufacturing to feed by polarized deuterium atoms an internal storage cell target. All the magnets have been manufactured and tested. The magnetic poletip field up to 4.8 T was measured at the cylindrical magnets having 44 mm inner diameter while 3.1 T and 4.0 T were measured for the tapered magnets. The dissociation degree of about 90% has been achieved for a gas throughput 1 mbx1/sec. The expected flux of polarized deuterium atoms into the storage cell is 1.0x10 17 at/sec (in two substrates). The geometry of the magnetic system, results on the dissociation measurements, testing of the superconducting magnet and expected parameters of the target are presented

  19. Cryogenic atomic beam source at VEPP-3

    Science.gov (United States)

    Isaeva, L. G.; Lazarenko, B. A.; Mishnev, S. I.; Nikolenko, D. M.; Osipov, A. N.; Popov, S. G.; Rachek, I. A.; Shestakov, Yu. V.; Sidorov, A. A.; Stibunov, V. N.; Toporkov, D. K.; Vesnovsky, D. K.; Zevakov, S. A.

    1998-01-01

    The experiment on elastic and inelastic scattering of 2 GeV electrons by internal polarized target is in progress at the VEPP-3 storage ring in Novosibirsk. It's carried out by Novosibirsk/St.-Petersburg/Tomsk/Argonne/Illinois/NIKHEF collaboration. A cryogenic Atomic Beam Source having five superconducting sextupoles is under manufacturing to feed by polarized deuterium atoms an internal storage cell target. All the magnets have been manufactured and tested. The magnetic poletip field up to 4.8 T was measured at the cylindrical magnets having 44 mm inner diameter while 3.1 T and 4.0 T were measured for the tapered magnets. The dissociation degree of about 90% has been achieved for a gas throughput 1 mb×1/sec. The expected flux of polarized deuterium atoms into the storage cell is 1.0×1017 at/sec (in two substrates). The geometry of the magnetic system, results on the dissociation measurements, testing of the superconducting magnet and expected parameters of the target are presented.

  20. Overview on materials and technological developments for the LMJ cryogenic target assembly

    International Nuclear Information System (INIS)

    Reneaume, B.; Allegre, G.; Botrel, R.; Bourcier, H.; Bourdenet, R.; Breton, O.; Collier, R.; Dauteuil, C.; Durut, F.; Faivre, A.; Fleury, E.; Geoffray, I.; Geoffray, G.; Jeannot, L.; Jehanno, L.; Legaie, O.; Legay, G.; Meux, S.; Schunk, J.; Theobald, M.; Vasselin, C.; Perin, J.P.; Viargues, F.; Paquignon, G.

    2011-01-01

    The cryogenic target assemblies (CTAs) designed for Laser Megajoule (LMJ) experiments have many functions and have to meet severe specifications imposed by implosion physics, the CTA thermal environment, and the CTA interfaces with the Megajoule laser cryogenic target positioner. Therefore, CTA fabrication uses many challenging materials and requires several technological studies. During the last 2 years, many developments have enabled better collection of comprehensive data on target constitutive materials and improvements in the fabrication of the CTA base, hohlraum, and aluminum turret. Studies have been carried out (a) to better characterize thermal properties of materials allowing optimization of the thermal simulation of the hohlraum, (b) to improve the CTA base fabrication process in order optimize thermal studies of the LMJ experimental filling station (EFS), and (c) to determine coatings on the polyimide membrane that may limit the 300 K thermal effect on the micro-shell and increase the deuterium-tritium fuel lifetime. CTAs have been produced to evaluate fabrication knowledge, to characterize CTAs, to study air tightness, and to study filling and D 2 ice layering on the EFS. An overview of the results that have been obtained during the past 2 years is presented in this paper. (authors)

  1. Numerical investigation of potential stratification caused by a cryogenic helium spill inside a tunnel

    Science.gov (United States)

    Sinclair, Cameron; Malecha, Ziemowit; Jedrusyna, Artur

    2018-04-01

    The sudden release of cryogenic fluid into an accelerator tunnel can pose a significant health and safety risk. For this reason, it is important to evaluate the consequences of such a spill. Previous publications concentrated on either Oxygen Deficiency Hazard or the evaluation of mathematical models using experimental data. No studies to date have focussed on the influence of cryogen inlet conditions on flow development. In this paper, the stratification behaviour of low-temperature helium released into an air-filled accelerator tunnel is investigated for varying helium inlet diameters. A numerical model was constructed using the OpenFOAM Toolbox of a generalised 3D geometry, with similar hydraulic characteristics to the CERN and SLAC tunnels. This model has been validated against published experimental and numerical data. A dimensionless parameter, based on Bakke number, was then determined for the onset of stratification, taking into account the helium inlet diameter; a dimensionless parameter for the degree of stratification was also employed. The simulated flow behaviour is described in terms of these dimensionless parameters, as well as the temperature and oxygen concentration at various heights throughout the tunnel.

  2. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1979-01-01

    Vibrational excitation of molecules having components of a selected isotope type is used to produce a conversion from vibrational to translational excitation of the molecules by collision with the molecules of a heavy carrier gas. The resulting difference in translaton between the molecules of the selected isotope type and all other molecules of the same compound permits their separate collection. When applied to uranium enrichment, a subsonic cryogenic flow of molecules of uranium hexafluoride in combination with an argon carrier gas is directed through a cooled chamber that is illuminated by laser radiaton tuned to vibrationally excite the uranium hexafluoride molecules of a specific uranium isotope. The excited molecules collide with carrier gas molecules, causing a conversion of the excitation energy into a translation of the excited molecule, which results in a higher thermal energy or diffusivity than that of the other uranium hexafluoride molecules. The flowing molecules including the excited molecules directly enter a set of cryogenically cooled channels. The higher thermal velocity of the excited molecules increases the probability of their striking a collector surface. The molecules which strike this surface immediately condense. After a predetermined thickness of molecules is collected on the surface, the flow of uranium hexafluoride is interrupted and the chamber heated to the point of vaporization of the collected hexafluoride, permitting its removal. (LL)

  3. The cryogenics design of the SuperCDMS SNOLAB experiment

    Science.gov (United States)

    Hollister, M. I.; Bauer, D. A.; Dhuley, R. C.; Lukens, P.; Martin, L. D.; Ruschman, M. K.; Schmitt, R. L.; Tatkowski, G. L.

    2017-12-01

    The Super Cryogenic Dark Matter Search (SuperCDMS) experiment is a direct detection dark matter experiment intended for deployment to the SNOLAB underground facility in Ontario, Canada. With a payload of up to 186 germanium and silicon crystal detectors operating below 15 mK, the cryogenic architecture of the experiment is complex. Further, the requirement that the cryostat presents a low radioactive background to the detectors limits the materials and techniques available for construction, and heavily influences the design of the cryogenics system. The resulting thermal architecture is a closed cycle (no liquid cryogen) system, with stages at 50 and 4 K cooled with gas and fluid circulation systems and stages at 1 K, 250 mK and 15 mK cooled by the lower temperature stages of a large, cryogen-free dilution refrigerator. This paper describes the thermal design of the experiment, including details of the cooling systems, mechanical designs and expected performance of the system under operational conditions.

  4. Microminiature linear split Stirling cryogenic cooler for portable infrared imagers

    Science.gov (United States)

    Veprik, A.; Vilenchik, H.; Riabzev, S.; Pundak, N.

    2007-04-01

    Novel tactics employed in carrying out military and antiterrorist operations call for the development of a new generation of warfare, among which sophisticated portable infrared (IR) imagers for surveillance, reconnaissance, targeting and navigation play an important role. The superior performance of such imagers relies on novel optronic technologies and maintaining the infrared focal plane arrays at cryogenic temperatures using closed cycle refrigerators. Traditionally, rotary driven Stirling cryogenic engines are used for this purpose. As compared to their military off-theshelf linear rivals, they are lighter, more compact and normally consume less electrical power. Latest technological advances in industrial development of high-temperature (100K) infrared detectors initialized R&D activity towards developing microminiature cryogenic coolers, both of rotary and linear types. On this occasion, split linearly driven cryogenic coolers appear to be more suitable for the above applications. Their known advantages include flexibility in the system design, inherently longer life time, low vibration export and superior aural stealth. Moreover, recent progress in designing highly efficient "moving magnet" resonant linear drives and driving electronics enable further essential reduction of the cooler size, weight and power consumption. The authors report on the development and project status of a novel Ricor model K527 microminiature split Stirling linear cryogenic cooler designed especially for the portable infrared imagers.

  5. Novel design of an all-cryogenic RF pound circuit

    DEFF Research Database (Denmark)

    Basu, Ronni; Wang, R. T.; Dick, G. J.

    2005-01-01

    We report on the design, construction and test of a new all-cryogenic RF Pound circuit used to stabilize a 100 MHz VCXO. Here, all active and passive RF components used to accomplish the phase modulation and detect a PM to AM conversion have been installed into the cryogenic environment. In conju......We report on the design, construction and test of a new all-cryogenic RF Pound circuit used to stabilize a 100 MHz VCXO. Here, all active and passive RF components used to accomplish the phase modulation and detect a PM to AM conversion have been installed into the cryogenic environment....... In conjunction with a high-Q cryogenic sapphire resonator a Pound discriminator sensitivity of 0.1 mV/Hz was seen experimentally. Based on this sensitivity and the noise properties of the pre-amplifier of the Pound signal, we calculate a limit of the oscillator's Allan deviation as low as 4middot10-16/radictau...

  6. Computing Thermal Effects of Cavitation in Cryogenic Liquids

    Science.gov (United States)

    Hosangadi, Ashvin; Ahuja, Vineet; Dash, Sanford M.

    2005-01-01

    A computer program implements a numerical model of thermal effects of cavitation in cryogenic fluids. The model and program were developed for use in designing and predicting the performances of turbopumps for cryogenic fluids. Prior numerical models used for this purpose do not account for either the variability of properties of cryogenic fluids or the thermal effects (especially, evaporative cooling) involved in cavitation. It is important to account for both because in a cryogenic fluid, the thermal effects of cavitation are substantial, and the cavitation characteristics are altered by coupling between the variable fluid properties and the phase changes involved in cavitation. The present model accounts for both thermal effects and variability of properties by incorporating a generalized representation of the properties of cryogenic fluids into a generalized compressible-fluid formulation for a cavitating pump. The model has been extensively validated for liquid nitrogen and liquid hydrogen. Using the available data on the properties of these fluids, the model has been shown to predict accurate temperature-depression values.

  7. A word from the DG: A cryogenic success

    CERN Multimedia

    2007-01-01

    The beginning of this month saw the start of a new phase in the LHC project, with its first inauguration, for the LHC cryogenics. This was marked with a symposium in the Globe attended by 178 representatives of the industrial partners and research institutes involved. It also coincided with stable low-temperature operation of the cryogenic plant for sector 7-8, the first sector of the LHC to be cooled down. A look at the LHC web site (http://lhc.web.cern.ch/lhc/) shows this steady operation. The cryogenic system for the LHC is the largest and most complex ever built, involving many large devices on an industrial scale, where reliability is of paramount importance. The LHC’s energy of 7 TeV required a high magnetic field provided by niobium-titanium coils operating at 1.9 K. This is a new temperature regime for large-scale cryogenics, chosen to make use of the excellent heat-transfer properties of helium in its superfluid state. The final design for the LHC cryogenics had to incorporate both newly ordered ...

  8. SOFC and Gas Separation Membranes

    DEFF Research Database (Denmark)

    Hagen, Anke; Hendriksen, Peter Vang; Søgaard, Martin

    2009-01-01

    from air. Subsequent separation and sequestration of CO2 is therefore easier on a SOFC plant than on conventional power plants based on combustion. Oxide ion conducting materials may be used for gas separation purposes with close to 100 % selectivity. They typically work in the same temperature range...... as SOFCs. Such membranes can potentially be used in Oxyfuel processes as well as in IGCC (Integrated Gasification Combined Cycle) power plants for supply of process oxygen, which may reduce cost of carbon capture and storage as dilution of the flue gas with nitrogen is avoided. Both technologies are very...

  9. Potential of metal-organic frameworks for separation of xenon and krypton.

    Science.gov (United States)

    Banerjee, Debasis; Cairns, Amy J; Liu, Jian; Motkuri, Radha K; Nune, Satish K; Fernandez, Carlos A; Krishna, Rajamani; Strachan, Denis M; Thallapally, Praveen K

    2015-02-17

    CONSPECTUS: The total world energy demand is predicted to rise significantly over the next few decades, primarily driven by the continuous growth of the developing world. With rapid depletion of nonrenewable traditional fossil fuels, which currently account for almost 86% of the worldwide energy output, the search for viable alternative energy resources is becoming more important from a national security and economic development standpoint. Nuclear energy, an emission-free, high-energy-density source produced by means of controlled nuclear fission, is often considered as a clean, affordable alternative to fossil fuel. However, the successful installation of an efficient and economically viable industrial-scale process to properly sequester and mitigate the nuclear-fission-related, highly radioactive waste (e.g., used nuclear fuel (UNF)) is a prerequisite for any further development of nuclear energy in the near future. Reprocessing of UNF is often considered to be a logical way to minimize the volume of high-level radioactive waste, though the generation of volatile radionuclides during reprocessing raises a significant engineering challenge for its successful implementation. The volatile radionuclides include but are not limited to noble gases (predominately isotopes of Xe and Kr) and must be captured during the process to avoid being released into the environment. Currently, energy-intensive cryogenic distillation is the primary means to capture and separate radioactive noble gas isotopes during UNF reprocessing. A similar cryogenic process is implemented during commercial production of noble gases though removal from air. In light of their high commercial values, particularly in lighting and medical industries, and associated high production costs, alternate approaches for Xe/Kr capture and storage are of contemporary research interest. The proposed pathways for Xe/Kr removal and capture can essentially be divided in two categories: selective absorption by

  10. New Realization of Periodic Cycled Separation

    DEFF Research Database (Denmark)

    Toftegard, Bjarne; Clausen, Charlotte H.; Jørgensen, Sten B.

    2016-01-01

    A new realization of periodic cycled gas/liquid separation is presented. Separation factors and column efficiencies are compared for a column stripping ammonia from water with air, using three different sets of internals: conventional sieve trays, Sulzer BX gauze packings, and periodically cycled...... for columns with sieve trays....

  11. Continuous Arsine Detection Using a Peltier-Effect Cryogenic Trap To Selectively Trap Methylated Arsines.

    Science.gov (United States)

    Chen, Guoying; Lai, Bunhong; Mao, Xuefei; Chen, Tuanwei; Chen, Miaomiao

    2017-09-05

    Hydride generation (HG) is an effective technique that eliminates interfering matrix species and enables hydride separation. Arsenic speciation analysis can be fulfilled by cryogenic trapping (CT) based on boiling points of resulting arsines using liquid nitrogen (LN 2 ) as a coolant. In this work, LN 2 was replaced by the thermoelectric effect using a cryogenic trap that consisted of a polytetrafluoroethylene (PTFE) body sandwiched by two Peltier modules. After the trap was precooled, the arsines flew along a zigzag channel in the body and reached a sorbent bed of 0.2 g of 15% OV-3 on Chromosorb W-AW-DMCS imbedded near the exit of the trap. CH 3 AsH 2 and (CH 3 ) 2 AsH were trapped, while AsH 3 , that passed the trap unaffected, was detected by atomic fluorescence spectrometry. Continuous operation led to enhanced throughput. For inorganic As, the limit of detection (LOD) was 1.1 ng/g and recovery was 101.0 ± 1.1%. Monomethylarsonic acid and dimethylarsinic acid did not interfere with 0.2 ± 1.2% and -0.3 ± 0.5% recoveries, respectively.

  12. Water detritiation and cryogenic distillation processes for CANDU reactors and ITER

    International Nuclear Information System (INIS)

    Cristescu, Ion; Cristescu, Ioana Ruxandra

    2006-01-01

    Full text: Water detritiation based on isotopic exchange between the tritiated water and hydrogen/deuterium gas followed by cryogenic distillation of hydrogen isotopes are the separation processes implemented on large scale facilities for tritium removal and high purity recovery. Consequently, for CANDU reactors and the International Thermonuclear Experimental Reactor (ITER) the two processes have been developed specifically for the operation requirements and to minimize the impact on the environment. An overview of the tritiated water production during ITER operation and maintenance activities will be introduced and the impact of safety regulation requirements for processing and discharge limits into the environment will be highlighted. Similarities and differences in the configuration of detritiation processes, based on water-gas isotopic exchange and cryogenic distillation, for CANDU and ITER facilities will be introduced. Additionally, development of complementary techniques, i.e. Solid Polymer Electrolyte for tritiated water electrolysis as envisaged to be used in Water Detritiation System of ITER will be presented.The amount of tritium bred in ITER blanket modules is not enough to assure the self sustain of deuterium-tritium operation phase. Therefore an external tritium source is needed to provide the amount of tritium during the envisaged 20 years of operation of ITER machine with deuterium and tritium fuelling gas. The actually non military sources of tritium in the world are the CANDU reactors where tritium is a byproduct. A road map of ITER project will be presented and the time schedule of tritium shipment at Cadarache site will be introduced. (authors)

  13. Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications☆

    Science.gov (United States)

    Hughes-Riley, Theodore; Six, Joseph S.; Lilburn, David M.L.; Stupic, Karl F.; Dorkes, Alan C.; Shaw, Dominick E.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-01-01

    As an alternative to cryogenic gas handling, hyperpolarized (hp) gas mixtures were extracted directly from the spin exchange optical pumping (SEOP) process through expansion followed by compression to ambient pressure for biomedical MRI applications. The omission of cryogenic gas separation generally requires the usage of high xenon or krypton concentrations at low SEOP gas pressures to generate hp 129Xe or hp 83Kr with sufficient MR signal intensity for imaging applications. Two different extraction schemes for the hp gasses were explored with focus on the preservation of the nuclear spin polarization. It was found that an extraction scheme based on an inflatable, pressure controlled balloon is sufficient for hp 129Xe handling, while 83Kr can efficiently be extracted through a single cycle piston pump. The extraction methods were tested for ex vivo MRI applications with excised rat lungs. Precise mixing of the hp gases with oxygen, which may be of interest for potential in vivo applications, was accomplished during the extraction process using a piston pump. The 83Kr bulk gas phase T1 relaxation in the mixtures containing more than approximately 1% O2 was found to be slower than that of 129Xe in corresponding mixtures. The experimental setup also facilitated 129Xe T1 relaxation measurements as a function of O2 concentration within excised lungs. PMID:24135800

  14. A High Efficiency Cryocooler for In-Space Cryogenic Propellant Storage, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is considering multiple missions involving long-term cryogen storage in space. Liquid hydrogen and liquid oxygen are the typical cryogens as they provide the...

  15. LV-IMLI: Integrated MLI/Aeroshell for Cryogenic Launch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic propellants have the highest energy density of any rocket fuel, and are used in most NASA and commercial launch vehicles to power their ascent. Cryogenic...

  16. Innovative Ultra-High Efficiency Cryogenic Actuators for Rocket Test Facilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The SBIR Phase I project will develop advanced ultra-high efficiency cryogenic actuators for NASA cryogenic fluid transfer application. The actuator will have low...

  17. Laboratory facility for production of cryogenic targets for hot plasma experiments

    International Nuclear Information System (INIS)

    Sadowski, M.; Szydlowski, A.; Jakubowski, L.; Cwiek, E.

    1990-10-01

    Results of preliminary operational tests of the cryogenic stand designed for the production of small droplets of liquid hydrogen or deuterium are presented. Such cryogenic micro-targets are needed for nuclear and thermonuclear experiments. (author)

  18. A High Efficiency Cryocooler for In-Space Cryogenic Propellant Storage, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is considering multiple missions involving long-term cryogen storage in space. Liquid hydrogen and liquid oxygen are the typical cryogens as they provide the...

  19. Simulation calculations for a catalytic exchange/cryogenic distillation hydrogen isotope separation process

    International Nuclear Information System (INIS)

    Rodman, M.; Howard, D.W.

    1984-01-01

    Some of the aspects of the optimization and simulation calculations for the Moderator Detritiation Plant thay may be applicable to other processes are described. The FORTRAN optimization program and the CPES and PROCESS distillation calculation are covered

  20. Safety in Cryogenics – Safety device sizing

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The calculation is separated in three operations: o The estimation of the loads arriving on the component to protect, o The calculation of the mass flow to evacuate, o And the sizing of the safety device.