WorldWideScience

Sample records for critical fluid extraction

  1. Near-critical and supercritical fluid extraction of polycyclic aromatic hydrocarbons from town gas soil

    International Nuclear Information System (INIS)

    Kocher, B.S.; Azzam, F.O.; Cutright, T.J.; Lee, S.

    1995-01-01

    The contamination of soil by hazardous and toxic organic pollutants is an ever-growing problem facing the global community. One particular family of contaminants that are of major importance are polycyclic aromatic hydrocarbons (PAHs). PAHs are the result of coal gasification and high-temperature processes. Sludges from these town gas operations were generally disposed of into unlined pits and left there for eventual biodegradation. However, the high levels of PAH contained in the pits prevented the occurrence of biodegradation. PAH contaminated soil is now considered hazardous and must be cleaned to environmentally acceptable standards. One method for the remediation is extraction with supercritical water. Water in or about its critical region exhibits enhanced solvating power toward most organic compounds. Contaminated soil containing 4% by mass of hydrocarbons was ultra-cleaned in a 300-cm 3 semicontinuous system to an environmentally acceptable standard of less than 200 ppm residual hydrocarbon concentration. The effects of subcritical or supercritical extraction, solvent temperature, pressure, and density have been studied, and the discerning characteristics of this type of fluid have been identified. The efficiencies of subcritical and supercritical extraction have been discussed from a process engineering standpoint

  2. A simple model for super critical fluid extraction of bio oils from biomass

    International Nuclear Information System (INIS)

    Patel, Rajesh N.; Bandyopadhyay, Santanu; Ganesh, Anuradda

    2011-01-01

    A simple mathematical model to characterize the supercritical extraction process has been proposed in this paper. This model is primarily based on two mass transfer mechanisms: solubility and diffusion. The model assumes two districts mode of extraction: initial constant rate extraction that is controlled by solubility and falling rate extraction that is controlled by diffusivity. Effects of extraction parameters such as pressure and temperature on the extraction of oil have also been studied. The proposed model, when compared with existing models, shows better agreement with the experimental results. The proposed model developed has been applied for both high initial oil content material (cashew nut shells) and low initial oil content material (black pepper).

  3. Critical fluid extraction of Juniperus virginiana L. and bioactivity of extracts against subterranean termites and wood-rot fungi.

    Science.gov (United States)

    F. J. Eller; Carol A. Clausen; Frederick Green; S.L. Taylor

    2010-01-01

    Eastern red cedar (Juniperus virginiana L.) is an abundant renewable resource and represents a vast potential source of valuable natural products that may serve as natural biocides. Both the wood and needles from J. virginiana were extracted using liquid carbon dioxide (L-CO2) as well as ethanol (EtOH) and the yields determined.Woodblocks were...

  4. using Supercritical Fluid Extraction

    African Journals Online (AJOL)

    Methods: Supercritical CO2 extraction technology was adopted in this experiment to study the process of extraction of volatile oil from Polygonatum odoratum while gas chromatograph-mass spectrometer ..... Saponin rich fractions from.

  5. Supercritical fluid extraction of uranium

    International Nuclear Information System (INIS)

    Kumar, Pradeep

    2017-01-01

    Uranium being strategic material, its separation and purification is of utmost importance in nuclear industry, for which solvent extraction is being employed. During solvent extraction significant quantity of radioactive liquid waste gets generated which is of environmental concern. In recent decades supercritical fluid extraction (SFE) has emerged as promising alternative to solvent extraction owing to its inherent advantage of reduction in liquid waste generation and simplification of process. In this paper a brief overview of research work carried out so far on SFE of uranium by BARC has been given

  6. Supercritical fluid carbon dioxide extraction of actinides

    International Nuclear Information System (INIS)

    Rao, Ankita; Tomar, B.S.

    2016-01-01

    Supercritical fluid extraction (SFE) is a process akin to liquid-liquid or solvent extraction where a Supercritical fluid (SCF) is contacted with a solid/ liquid matrix for the purpose of separating the component of interest from the original matrix. Carbon dioxide is a preferred choice as supercritical fluid (SCF) owing to its moderate critical parameter (P c = 7.38 MPa and T c = 304.1K) coupled with radiation and chemical stability, non toxic nature and low cost. Despite widespread applications for extraction of organic compounds and associated advantages especially liquid waste minimization, the SFE of metal ions was left unexplored for quite some time, as direct metal ion extraction is inefficient due charge neutralization requirement and weak solute-solvent interaction. Neutral SCF soluble metal-ligand complexation is imperative and SFE of actinides was reported only in 1994. Several studies have been carried out on SFE of uranium, thorium and plutonium from nitric acid medium employing different sets of ligands (organophosphorus, diketones, amides). Especially attractive is the possibility of direct dissolution and extraction of actinides employing ligand-acid adducts (like TBP.HNO 3 adduct) from solid matrices of different stages of nuclear fuel cycle viz. ores, spent nuclear fuels and radioactive wastes. Also, partitioning of actinides from fission products has been explored in spent nuclear fuel. These studies on supercritical fluid extraction of actinides indicate a more efficient and environmentally sustainable technology. (author)

  7. Supercritical fluid extraction of hops

    Directory of Open Access Journals (Sweden)

    ZORAN ZEKOVIC

    2007-01-01

    Full Text Available Five cultivars of hop were extracted by the method of supercritical fluid extraction using carbon dioxide (SFE–CO2 as extractant. The extraction (50 g of hop sample using a CO2 flow rate of 97.725 L/h was done in the two steps: 1. extraction at 150 bar and 40°C for 2.5 h (sample of series A was obtained and, after that, the same sample of hop was extracted in the second step: 2. extraction at 300 bar and 40 °C for 2.5 h (sample of series B was obtained. The Magnum cultivar was chosen for the investigation of the extraction kinetics. For the qualitative and quantitative analysis of the obtained hop extracts, the GC-MS method was used. Two of four themost common compounds of hop aroma (a-humulene and b-caryophyllene were detected in samples of series A. In addition, isomerized a-acids and a high content of b-acids were detected. The a-acids content in the samples of series B was the highest in the extract of the Magnum cultivar (it is a bitter variety of hop. The low contents of a-acids in all the other hop samples resulted in extracts with low a-acids content, i.e., that contents were under the prescribed a-acids content.

  8. CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES

    International Nuclear Information System (INIS)

    WITTEKIND WD

    2007-01-01

    This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% 239 Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: (sm b ullet)bare, (sm b ullet)1 inch of hydraulic fluid, or (sm b ullet)12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection

  9. Supercritical fluid extraction behaviour of polymer matrices

    International Nuclear Information System (INIS)

    Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2007-01-01

    Organic compounds present in polymeric matrices such as neoprene, surgical gloves and PVC were co-extracted during the removal of uranium using supercritical fluid extraction (SFE) technique. Hence SFE studies of these matrices were carried out to establish the extracted species using HPLC, IR and mass spectrometry techniques. The initial study indicated that uranium present in the extract could be purified from the co-extracted organic species. (author)

  10. Theoretical models for supercritical fluid extraction.

    Science.gov (United States)

    Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan

    2012-08-10

    For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Motile bacteria in a critical fluid mixture

    Science.gov (United States)

    Koumakis, Nick; Devailly, Clémence; Poon, Wilson C. K.

    2018-06-01

    We studied the swimming of Escherichia coli bacteria in the vicinity of the critical point in a solution of the nonionic surfactant C12E5 in buffer solution. In phase-contrast microscopy, each swimming cell produces a transient trail behind itself lasting several seconds. Comparing quantitative image analysis with simulations show that these trails are due to local phase reorganization triggered by differential adsorption. This contrasts with similar trails seen in bacteria swimming in liquid crystals, which are due to shear effects. We show how our trails are controlled, and use them to probe the structure and dynamics of critical fluctuations in the fluid medium.

  12. Application of supercritical fluid extraction in analytical science

    International Nuclear Information System (INIS)

    Kumar, Pradeep

    2015-01-01

    In the recent years, supercritical fluid extraction (SFE) has emerged as a promising alternative to conventional solvent extraction process owing to its potential to minimize the generation of the liquid volume and simplification of the extraction process.This technology is some times referred to as 'green technology' and 'clean technology'. Supercritical fluid extraction process assumes significance as it exhibits practical advantages such as enhanced extraction rate due to rapid mass transfer in supercritical fluid medium and change of solvent properties such as density by tuning pressure/temperature conditions. Supercritical fluids (SCF) offer faster, cleaner and efficient extraction owing to low viscosity, high density, low surface tension and better diffusivity properties. Higher diffusivity than liquids facilitates rapid mass transfer and faster completion of reaction. Due to low viscosity and surface tension, SCF can penetrate deep inside the material, extracting the component of interest. Liquid like solvating characteristics of SCFs enable dissolution of compounds whereas gas like diffusion characteristics provide conditions for high degree of extraction in shorter time duration. CO 2 has been widely employed as supercritical fluid owing to its moderate critical constants (Pc= 72.9 atm, Tc =304.3 K, ñ c = 0.47 g mL -1 ) and attractive properties such as being easily available, recyclable, non-toxic, chemically inert, non inflammable and radio-chemically stable. SCF finds application in variety of fields. In nuclear industry for separation and purification of actinides from liquids and solid matrices. In food industry, Decaffeination of coffee is done by SCF. Pharmaceutical industry, organic compounds can be extracted from plants by SC CO 2 avoiding liquid solvent usage. SCF may also be utilised for the production of fine powders. In polymer and plastics industries, examples of applications include the impregnation of medical material

  13. Critical discharge of fluids and gases

    International Nuclear Information System (INIS)

    Seewald, Michael

    2012-01-01

    The thermal hydraulic relations during discharge of fluids and gases are complex and a closed solution does not seem to be available. For the modeling of leakage accidents in nuclear power plants basic considerations are suitable for statements on the maximum mass flow, and thus the leak rate. The maximum mass flow is reached when the critical velocity is reached in the smallest cross section. This allows the appropriate design of safety systems for one-phase and two-phase flows. For German NPP simulators the hydrodynamics simulation program RELAP5-3D is used. The simulator center operates a 1:10 scale gas model of a two-loop PWR type reactor. The observable phenomena have occurred in nuclear power plants. The characteristics for a visualization of two-phase flows are not available in the simulation software and have to be added by correlations with experimental results. The realization of expectations on digital visualization techniques is discussed.

  14. Criticality safety of solvent extraction process

    International Nuclear Information System (INIS)

    Tachimori, Shoichi; Miyoshi, Yoshinori

    1987-01-01

    The article presents some comments on criticality safety of solvent extraction processes. When used as an extracting medium, tributyl phosphate extracts nitric acid and water, in addition to nitrates of U and Pu, into the organic phase. The amount of these chemical species extracted into the organic phase is dependent on and restricted by the concentrations of tributyl phosphate and other components. For criticality control, measures are taken to decrease the concentration of tributyl phosphate in the organic phase, in addition to control of the U and Pu concentrations in the feed water phase. It should be remembered that complexes of tributyl phosphate with nitrates of such metals as Pu(IV), Pu(VI), U(IV) and Th(IV) do not dissolve uniformly in the organic phase. In criticality calculation for solution-handling systems, U and Pu are generally assumed to have a valence of 6 and 4, respectively. In the reprocessing extraction process, however, U and Pu can have a valence of 4, and 3 and 6, respectively. The organic phase and aqueous phase contact in a counter-current flow. U and Pu will be accumulated if they are not brought out of the extraction system by this flow. (Nogami, K.)

  15. Fluid and Electrolyte Disturbances in Critically Ill Patients

    OpenAIRE

    Lee, Jay Wook

    2010-01-01

    Disturbances in fluid and electrolytes are among the most common clinical problems encountered in the intensive care unit (ICU). Recent studies have reported that fluid and electrolyte imbalances are associated with increased morbidity and mortality among critically ill patients. To provide optimal care, health care providers should be familiar with the principles and practice of fluid and electrolyte physiology and pathophysiology. Fluid resuscitation should be aimed at restoration of normal...

  16. Critical asymmetry in renormalization group theory for fluids.

    Science.gov (United States)

    Zhao, Wei; Wu, Liang; Wang, Long; Li, Liyan; Cai, Jun

    2013-06-21

    The renormalization-group (RG) approaches for fluids are employed to investigate critical asymmetry of vapour-liquid equilibrium (VLE) of fluids. Three different approaches based on RG theory for fluids are reviewed and compared. RG approaches are applied to various fluid systems: hard-core square-well fluids of variable ranges, hard-core Yukawa fluids, and square-well dimer fluids and modelling VLE of n-alkane molecules. Phase diagrams of simple model fluids and alkanes described by RG approaches are analyzed to assess the capability of describing the VLE critical asymmetry which is suggested in complete scaling theory. Results of thermodynamic properties obtained by RG theory for fluids agree with the simulation and experimental data. Coexistence diameters, which are smaller than the critical densities, are found in the RG descriptions of critical asymmetries of several fluids. Our calculation and analysis show that the approach coupling local free energy with White's RG iteration which aims to incorporate density fluctuations into free energy is not adequate for VLE critical asymmetry due to the inadequate order parameter and the local free energy functional used in the partition function.

  17. Critical fluid technology for the processing of lipid-related natural products

    Energy Technology Data Exchange (ETDEWEB)

    King, J.W. [Los Alamos National Lab., Supercritical Fluid Facility, Chemistry Div. NM (United States)

    2004-07-01

    In recent years, the technology envelope that embraces critical fluids can involve a wide range of conditions, different types of pure and modified fluids, as well as processing options involving extractions, fractionations or reactions. Technological development drivers continue to be environmentally and consumer-benign processing and/or products, however in recent years expansion of the use of sub- and supercritical fluids has been catalyzed by applications in such opportune fields as nutraceuticals, conversion of biomass (bio-refining), and the ability to modify natural products by reactions. The use of critical fluid technology is an important facet of any sustainable development program, particularly when utilized over a broad, interconnected application platform. In this overview presentation, concepts and applications of critical fluids from the author's research as well as the literature will be cited to support the above trends. A totally 'green' processing platform appears to be viable using carbon dioxide in the appropriate form, ethanol and water as intermediate co-solvents/reactants, and water from above its boiling point to supercritical conditions. These fluids can be combined in overall coupled unit processes, such as combining trans-esterification with hydrogenation, or glycero-lysis of lipid moieties with supercritical fluid fractionation. Such fluids also can exploited sequentially for bio-refining processes or the segregation of value-added products, but may require using coupled fluid or unit operations to obtain the targeted product composition or purity. Changing the reduced temperatures and/or pressures of critical fluids offers a plethora of opportunity, an excellent example being the relative critical fluid state of water. For example, sub-critical water slightly above its boiling point provides a unique medium that mimics polar organic solvents, and has been used even for the extraction of thermally labile solutes or

  18. Sustainable extraction of molecules for human food, cosmetic and pharmaceutical products: extraction in supercritical fluids

    International Nuclear Information System (INIS)

    Leone, GianPaolo; Ferri, Donatella

    2015-01-01

    Since several years, the ENEA Innovation Laboratory for Agro-Industrial, proposed activities of research and development of extraction processes with supercritical fluids (SFE, Supercritical Fluid Extraction), focusing on sustainability characteristics of the process. The technique, in fact, makes no use of organic solvents, has a low energy consumption and requires a lower number of process steps compared to conventional extractions. The process also responds to the requirements imposed by the legislation for human food, cosmetic and pharmaceutical extracts. [it

  19. Sustainable extraction of molecules for potable alcohol, cosmetics and pharmaceuticals: extraction in supercritical fluids

    International Nuclear Information System (INIS)

    Leone, Gian Paolo; Ferri, Donatella

    2015-01-01

    Since many years the Laboratory of Agro-Industrial Innovation (UTAGRI-INN) ENEA proposed research and development of extraction processes with supercritical fluids (SFE, Supercritical Fluid Extraction), aiming on the sustainability of the process characteristics. The technique, in fact, makes no use of organic solvents, It has reduced energy consumption and requires a number of process step lower than the extractions traditional. The process also responds to the requirements required by the regulations for food use, cosmetics and pharmaceutical extracts. [it

  20. Supercritical fluid extraction of positron-emitting radioisotopes from solid target matrices

    International Nuclear Information System (INIS)

    Schlyer, D.

    2000-01-01

    Supercritical fluids are attractive as media for both chemical reactions, as well as process extraction, since their physical properties can be manipulated by small changes in pressure and temperature near the critical point of the fluid. Such changes can result in drastic effects on density-dependent properties such as solubility, refractive index, dielectric constant, viscosity and diffusivity of the fluid. This suggests that pressure tuning of a pure supercritical fluid may be a useful means to manipulate chemical reactions on the basis of a thermodynamic solvent effect. It also means that the solvation properties of the fluid can be precisely controlled to enable selective component extraction from a matrix. In recent years there has been a growing interest in applying supercritical fluid extraction to the selective removal of trace metals from solid samples. Much of the work has been done on simple systems comprised of inert matrices such as silica or cellulose. Recently, this process as been expanded to environmental samples as well. However, very little is understood about the exact mechanism of the extraction process. Of course, the widespread application of this technology is highly dependent on the ability of scientists to model and predict accurate phase equilibria in complex systems. In this project, we plan to explore the feasibility of utilizing supercritical fluids as solvents for reaction and extraction of radioisotopes produced from solid enriched targets. The reason for this work is that many of these enriched target materials used for radioisotope production are expensive

  1. Supercritical fluid extraction of peach (Prunus persica) almond oil: process yield and extract composition.

    Science.gov (United States)

    Mezzomo, Natália; Mileo, Bruna R; Friedrich, Maria T; Martínez, Julian; Ferreira, Sandra R S

    2010-07-01

    Peach kernels are industrial residues from the peach processing, contain oil with important therapeutic properties and attractive nutritional aspects because of the high concentration of oleic and linoleic acids. The extraction method used to obtain natural compounds from raw matter is critical for product quality definition. Thus, the aim of this work was to compare peach almond extraction yields obtained by different procedures: soxhlet extractions (Sox) with different solvents; hydrodistillation (HD); ethanolic maceration (Mac) followed by fractionation with various solvents, and supercritical fluid extraction (SFE) at 30, 40 and 50 degrees C and at 100, 200 and 300bar, performed with pure CO(2) and with a co-solvent. The extracts were evaluated with respect to fatty acid composition (FAC), fractionated chemical profile (FCP) and total phenolic content (TPC). The Sox total yields were generally higher than those obtained by SFE. The crossover pressure for SFE was between 260 and 280bar. The FAC results show oleic and linoleic acids as main components, especially for Sox and SFE extracts. The FCP for samples obtained by Sox and Mac indicated the presence of benzaldehyde and benzyl alcohol, components responsible for almond flavor and with important industrial uses, whereas the SFE extracts present a high content of a possible flavonoid. The higher TPC values were obtained by Sox and Mac with ethanol. In general, the maximum pressure in SFE produced the highest yield, TPC and oleic acid content. The use of ethanol at 5% as co-solvent in SFE did not result in a significant effect on any evaluated parameter. The production of peach almond oil through all techniques is substantially adequate and SFE presented advantages, with respect to the quality of the extracts due to the high oleic acid content, as presented by some Sox samples. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Magnetic Partitioning Nanofluid for Rare Earth Extraction from Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, Bernard P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, Praveen K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Jian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nune, Satish K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-21

    Rare earth metals are critical materials in a wide variety of applications in generating and storing renewable energy and in designing more energy efficient devices. Extracting rare earth metals from geothermal brines is a very challenging problem due to the low concentrations of these elements and engineering challenges with traditional chemical separations methods involving packed sorbent beds or membranes that would impede large volumetric flow rates of geothermal fluids transitioning through the plant. We are demonstrating a simple and highly cost-effective nanofluid-based method for extracting rare earth metals from geothermal brines. Core-shell composite nanoparticles are produced that contain a magnetic iron oxide core surrounded by a shell made of silica or metal-organic framework (MOF) sorbent functionalized with chelating ligands selective for the rare earth elements. By introducing the nanoparticles at low concentration (≈0.05 wt%) into the geothermal brine after it passes through the plant heat exchanger, the brine is exposed to a very high concentration of chelating sites on the nanoparticles without need to pass through a large and costly traditional packed bed or membrane system where pressure drop and parasitic pumping power losses are significant issues. Instead, after a short residence time flowing with the brine, the particles are effectively separated out with an electromagnet and standard extraction methods are then applied to strip the rare earth metals from the nanoparticles, which are then recycled back to the geothermal plant. Recovery efficiency for the rare earths at ppm level has now been measured for both silica and MOF sorbents functionalized with a variety of chelating ligands. A detailed preliminary techno-economic performance analysis of extraction systems using both sorbents showed potential to generate a promising internal rate of return (IRR) up to 20%.

  3. Supercritical fluid extraction of uranium and neodymium nitrates

    International Nuclear Information System (INIS)

    Sujatha, K.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2011-01-01

    Supercritical fluid extraction (SFE) of uranyl nitrate and neodymium nitrate salts from a mixture was investigated in the present study using Sc-CO 2 modified with various ligands such as organophosphorous compounds, amides, and diketones. Preferential extraction of uranyl nitrate over neodymium nitrate was demonstrated using Sc-CO 2 modified with amide, di-(2ethylhexyl) isobutyramide (D2EHIBA). (author)

  4. Supercritical fluid extraction of reed (thypa)

    Energy Technology Data Exchange (ETDEWEB)

    Kucuk, M.; Genel, Y. [YYU Educational Faculty, Van (Turkey); Demir, H. [YYU Science and Art Faculty, Van (Turkey)

    2005-04-15

    Reed (typha) mill was converted to liquid products by using organic solvents (methanol, ethanol and acetone) with catalysts (% 10 NaOH and ZnCl{sub 2}) and without catalyst in an autoclave at temperatures of 533, 553, and 573 K. The liquid products were extracted by liquid-liquid extraction [DSA1] (benzene and diethyl ether). The yields from supercritical methanol, ethanol and acetone conversions were 36.2, 24.5, and 55.1%, respectively, at 573 K. In the catalytic runs with methanol and ethanol extracts were 46.3 and 35.5% (for NaOH catalyst) and 51.8 and 38.5% (for ZnCl{sub 2} catalyst) respectively, at 573 K. The yields from supercritical methanol were increased from 38.2 to 52.4% as the temperature was increased from 533 to 573 K in the catalytic run. (Author)

  5. Fluid and electrolyte disturbances in critically ill patients.

    Science.gov (United States)

    Lee, Jay Wook

    2010-12-01

    Disturbances in fluid and electrolytes are among the most common clinical problems encountered in the intensive care unit (ICU). Recent studies have reported that fluid and electrolyte imbalances are associated with increased morbidity and mortality among critically ill patients. To provide optimal care, health care providers should be familiar with the principles and practice of fluid and electrolyte physiology and pathophysiology. Fluid resuscitation should be aimed at restoration of normal hemodynamics and tissue perfusion. Early goal-directed therapy has been shown to be effective in patients with severe sepsis or septic shock. On the other hand, liberal fluid administration is associated with adverse outcomes such as prolonged stay in the ICU, higher cost of care, and increased mortality. Development of hyponatremia in critically ill patients is associated with disturbances in the renal mechanism of urinary dilution. Removal of nonosmotic stimuli for vasopressin secretion, judicious use of hypertonic saline, and close monitoring of plasma and urine electrolytes are essential components of therapy. Hypernatremia is associated with cellular dehydration and central nervous system damage. Water deficit should be corrected with hypotonic fluid, and ongoing water loss should be taken into account. Cardiac manifestations should be identified and treated before initiating stepwise diagnostic evaluation of dyskalemias. Divalent ion deficiencies such as hypocalcemia, hypomagnesemia and hypophosphatemia should be identified and corrected, since they are associated with increased adverse events among critically ill patients.

  6. Selective chelation and extraction of lanthanides and actinides with supercritical fluids

    International Nuclear Information System (INIS)

    Brauer, R.D.; Carleson, T.E.; Harrington, J.D.; Jean, F.; Jiang, H.; Lin, Y.; Wai, C.M.

    1994-01-01

    This report is made up of three independent papers: (1) Supercritical Fluid Extraction of Thorium and Uranium with Fluorinated Beta-Diketones and Tributyl Phosphate, (2) Supercritical Fluid Extraction of Lanthanides with Beta-Diketones and Mixed Ligands, and (3) A Group Contribution Method for Predicting the Solubility of Solid Organic Compounds in Supercritical Carbon Dioxide. Experimental data are presented demonstrating the successful extraction of thorium and uranium using fluorinated beta-diketones to form stable complexes that are extracted with supercritical carbon dioxide. The conditions for extracting the lanthanide ions from liquid and solid materials using supercritical carbon dioxide are presented. In addition, the Peng-Robison equation of state and thermodynamic equilibrium are used to predict the solubilities of organic solids in supercritical carbon dioxide from the sublimation pressure, critical properties, and a centric factor of the solid of interest

  7. Profile of student critical thinking ability on static fluid concept

    Science.gov (United States)

    Sulasih; Suparmi, A.; Sarwanto

    2017-11-01

    Critical thinking ability is an important part of educational goals. It has higher complex processes, such as analyzing, synthesizing and evaluating, drawing conclusion and reflection. This study is aimed to know the critical thinking ability of students in learning static fluids of senior high school students. This research uses the descriptive method which its instruments based on the indicator of critical thinking ability developed according to Ennis. The population of this research is XIth grade science class Public Senior High School, SMA N 1, Sambungmacan, Sragen, Central Java. The static fluid teaching material is delivered using Problem Based Learning Model through class experiment. The results of this study shows that the average student of XIth science class have high critical thinking skills, particularly in the ability of providing simple explanation, build basic skill, and provide advanced explanation, but they do not have high enough in ability of drawing conclusion and strategic and tactical components of critical thinking ability in the study of static fluid teaching material. The average of students critical thinking ability is 72.94, with 27,94% of students are in a low category and 72,22% of students in the high category of critical thinking ability.

  8. Weightless experiments to probe universality of fluid critical behavior

    Science.gov (United States)

    Lecoutre, C.; Guillaument, R.; Marre, S.; Garrabos, Y.; Beysens, D.; Hahn, I.

    2015-06-01

    Near the critical point of fluids, critical opalescence results in light attenuation, or turbidity increase, that can be used to probe the universality of critical behavior. Turbidity measurements in SF6 under weightlessness conditions on board the International Space Station are performed to appraise such behavior in terms of both temperature and density distances from the critical point. Data are obtained in a temperature range, far (1 K) from and extremely close (a few μ K ) to the phase transition, unattainable from previous experiments on Earth. Data are analyzed with renormalization-group matching classical-to-critical crossover models of the universal equation of state. It results that the data in the unexplored region, which is a minute deviant from the critical density value, still show adverse effects for testing the true asymptotic nature of the critical point phenomena.

  9. Selective chelation-supercritical fluid extraction of metal ions from waste materials

    International Nuclear Information System (INIS)

    Wai, C.N.; Laintz, K.E.; Yonker, C.R.

    1993-01-01

    The removal of toxic organics, metals, and radioisotopes from solids or liquids is a major concern in the treatment of industrial and nuclear wastes. For this reason, developing methods for selective separation of toxic metals and radioactive materials from solutions of complex matrix is an important problem in environmental research. Recent developments indicate supercritical fluids are good solvents for organic compounds. Many gases become supercritical fluids under moderate temperatures and pressures. For example, the critical temperature and pressure of carbon dioxide are 31 degrees C and 73 atm, respectively. The high diffusivity, low viscosity, and T-P dependence of solvent strength are some attractive properties of supercritical fluid extraction (SFE). Since CO 2 offers the additional benefits of stability and non-toxicity, the SFE technique avoids generation of organic liquid waste and exposure of personnel to toxic solvents. While direct extraction of metal ions by supercritical fluids is highly inefficient, these ions when complexed with organic ligands become quite soluble in supercritical fluids. Specific ligands can be used to achieve selective extraction of metal ions in this process. After SFE, the fluid phase can be depressurized for precipitation of the metal chelates and recycled. The ligand can also be regenerated for repeated use. The success of this selective chelation-supercritical fluid extraction (SC-SFE) process depends on a number of factors including the efficiencies of the selective chelating agents, solubilities of metal chelates in supercritical fluids, rate of extraction, ease of regeneration of the ligands, etc. In this report, the authors present recent results on the studies of the solubilities of metal chelates in supercritical CO 2 , experimental ions from aqueous solution, and the development of selective chelating agents (ionizable crown ethers) for the extraction of lanthanides and actinides

  10. Particle Formation by Supercritical Fluid Extraction and Expansion Process

    Directory of Open Access Journals (Sweden)

    Sujuan Pan

    2013-01-01

    Full Text Available Supercritical fluid extraction and expansion (SFEE patented technology combines the advantages of both supercritical fluid extraction (SFE and rapid expansion of supercritical solution (RESS with on-line coupling, which makes the nanoparticle formation feasible directly from matrix such as Chinese herbal medicine. Supercritical fluid extraction is a green separation technology, which has been developed for decades and widely applied in traditional Chinese medicines or natural active components. In this paper, a SFEE patented instrument was firstly built up and controlled by LABVIEW work stations. Stearic acid was used to verify the SFEE process at optimized condition; via adjusting the preexpansion pressure and temperature one can get different sizes of particles. Furthermore, stearic acid was purified during the SFEE process with HPLC-ELSD detecting device; purity of stearic acid increased by 19%, and the device can purify stearic acid.

  11. Bio-oil production from biomass via supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Durak, Halil, E-mail: halildurak@yyu.edu.tr [Yuzuncu Yıl University, Vocational School of Health Services, 65080, Van (Turkey)

    2016-04-18

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  12. Bio-oil production from biomass via supercritical fluid extraction

    International Nuclear Information System (INIS)

    Durak, Halil

    2016-01-01

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  13. [Study on condition for extraction of arctiin from fruits of Arctium lappa using supercritical fluid extraction].

    Science.gov (United States)

    Dong, Wen-hong; Liu, Ben

    2006-08-01

    To study the feasibility of supercritical fluid extraction (SFE) for arctiin from the fruits of Arctium lappa. The extracts were analyzed by HPLC, optimum extraction conditions were studied by orthogonal tests. The optimal extraction conditions were: pressure 40 MPa, temperature 70 degrees C, using methanol as modifier carrier at the rate of 0.55 mL x min(-1), static extraction time 5 min, dynamic extraction 30 min, flow rate of CO2 2 L x min(-1). SFE has the superiority of adjustable polarity, and has the ability of extracting arctiin.

  14. Comparison of extraction fluids used with contaminated soils

    International Nuclear Information System (INIS)

    Erickson, D.C.; White, E.; Loehr, R.C.

    1991-01-01

    Five separate solutions were evaluated for use as leaching fluids with soils containing petroleum refining waste residues. The extraction fluids were: (a) water, (b) dilute hydrochloric acid, (c) 0.05 molar EDTA, (d) acetate buffer and (e) a dilute sulfuric/nitric acid mixture. The soils were collected from former refinery land treatment sites which had been used to treat petroleum refining wastes. The extractions were performed using a rotary tumbler (30 RPM, 18 hours) and the resulting solutions were analyzed for polynuclear aromatic hydrocarbons (PAHs) and metals. Concentrations of the PAHs in each of the five solutions were near or below the analytical quantitation limits. Metal concentrations were highest in the HCL and EDTA extracts, although only a small fraction of the total available metal present in the soils was extracted by the solutions evaluated

  15. Fluid Therapy: Double-Edged Sword during Critical Care?

    Science.gov (United States)

    Benes, Jan; Kirov, Mikhail; Kuzkov, Vsevolod; Lainscak, Mitja; Molnar, Zsolt; Voga, Gorazd; Monnet, Xavier

    2015-01-01

    Fluid therapy is still the mainstay of acute care in patients with shock or cardiovascular compromise. However, our understanding of the critically ill pathophysiology has evolved significantly in recent years. The revelation of the glycocalyx layer and subsequent research has redefined the basics of fluids behavior in the circulation. Using less invasive hemodynamic monitoring tools enables us to assess the cardiovascular function in a dynamic perspective. This allows pinpointing even distinct changes induced by treatment, by postural changes, or by interorgan interactions in real time and enables individualized patient management. Regarding fluids as drugs of any other kind led to the need for precise indication, way of administration, and also assessment of side effects. We possess now the evidence that patient centered outcomes may be altered when incorrect time, dose, or type of fluids are administered. In this review, three major features of fluid therapy are discussed: the prediction of fluid responsiveness, potential harms induced by overzealous fluid administration, and finally the problem of protocol-led treatments and their timing.

  16. Supercritical Fluid Extraction of Plutonium and Americium from Soil

    International Nuclear Information System (INIS)

    Fox, R.V.; Mincher, B.J.

    2002-01-01

    Supercritical fluid extraction (SFE) of plutonium and americium from soil was successfully demonstrated using supercritical fluid carbon dioxide solvent augmented with organophosphorus and beta-diketone complexants. Spiked Idaho soils were chemically and radiologically characterized, then extracted with supercritical fluid carbon dioxide at 2,900 psi and 65 C containing varying concentrations of tributyl phosphate (TBP) and thenoyltrifluoroacetone (TTA). A single 45 minute SFE with 2.7 mol% TBP and 3.2 mol% TTA provided as much as 88% ± 6.0 extraction of americium and 69% ± 5.0 extraction of plutonium. Use of 5.3 mol% TBP with 6.8 mol% of the more acidic beta-diketone hexafluoroacetylacetone (HFA) provided 95% ± 3.0 extraction of americium and 83% ± 5.0 extraction of plutonium in a single 45 minute SFE at 3,750 psi and 95 C. Sequential chemical extraction techniques were used to chemically characterize soil partitioning of plutonium and americium in pre-SFE soil samples. Sequential chemical extraction techniques demonstrated that spiked plutonium resides primarily (76.6%) in the sesquioxide fraction with minor amounts being absorbed by the oxidizable fraction (10.6%) and residual fractions (12.8%). Post-SFE soils subjected to sequential chemical extraction characterization demonstrated that 97% of the oxidizable, 78% of the sesquioxide and 80% of the residual plutonium could be removed using SFE. These preliminary results show that SFE may be an effective solvent extraction technique for removal of actinide contaminants from soil

  17. 9 CFR 319.721 - Fluid extract of meat.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Fluid extract of meat. 319.721 Section... AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION DEFINITIONS AND STANDARDS OF IDENTITY OR COMPOSITION Meat Soups, Soup Mixes...

  18. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    Science.gov (United States)

    Smart, Neil G.; Wai, Chien M.; Lin, Yuehe; Kwang, Yak Hwa

    1998-01-01

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO.sub.2, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO.sub.2 and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process.

  19. Asymmetric fluid criticality. I. Scaling with pressure mixing.

    Science.gov (United States)

    Kim, Young C; Fisher, Michael E; Orkoulas, G

    2003-06-01

    The thermodynamic behavior of a fluid near a vapor-liquid and, hence, asymmetric critical point is discussed within a general "complete" scaling theory incorporating pressure mixing in the nonlinear scaling fields as well as corrections to scaling. This theory allows for a Yang-Yang anomaly in which mu(")(sigma)(T), the second temperature derivative of the chemical potential along the phase boundary, diverges like the specific heat when T-->T(c); it also generates a leading singular term, /t/(2beta), in the coexistence curve diameter, where t[triple bond](T-T(c))/T(c). The behavior of various special loci, such as the critical isochore, the critical isotherm, the k-inflection loci, on which chi((k))[triple bond]chi(rho,T)/rho(k) (with chi=rho(2)k(B)TK(T)) and C((k))(V)[triple bond]C(V)(rho,T)/rho(k) are maximal at fixed T, is carefully elucidated. These results are useful for analyzing simulations and experiments, since particular, nonuniversal values of k specify loci that approach the critical density most rapidly and reflect the pressure-mixing coefficient. Concrete illustrations are presented for the hard-core square-well fluid and for the restricted primitive model electrolyte. For comparison, a discussion of the classical (or Landau) theory is presented briefly and various interesting loci are determined explicitly and illustrated quantitatively for a van der Waals fluid.

  20. Remediation of flare pit soils using supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, V.; Guigard, S.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil Engineering

    2005-09-01

    A laboratory study was conducted to examine the ability of supercritical fluid extraction (SFE) to remove petroleum hydrocarbons (PHCs) from two flare pit soils in Alberta. SFE is a technology for remediation of contaminated soils. In order to determine the optimal extraction conditions and to understand the effects of pressure, temperature, supercritical carbon dioxide flow rate, soil type, and extraction time on the extraction efficiency of SFE, extractions were performed on two flare pit soils at various pressures and temperatures. Chemicals in the study included diesel oil, SAE 10-30W motor oil, n-decane, hexadecane, tetratriacontane and pentacontane. The best extraction conditions were defined as conditions that result in a treated soil with a PHC concentration that meets the regulatory guidelines of the Canadian Council of Ministers of the Environment in the Canada-wide standard for PHC is soil. The study results indicate that the efficiency of the SFE process is solvent-density dependent for the conditions studied. The highest extraction efficiency for both soils was obtained at conditions of 24.1 MPa and 40 degrees C. An increase in pressure at a fixed temperature led to an increase in the extraction efficiency while an increase in temperature at a fixed pressure led to a decrease in the extraction efficiency. The treated soils were observed to be lighter in colour, drier, and grainier than the soil prior to extraction. It was concluded that SFE is an effective method for remediating flare pit soils. 63 refs., 4 tabs., 5 figs.

  1. RED WINE EXTRACT OBTAINED BY MEMBRANE-BASED SUPERCRITICAL FLUID EXTRACTION: PRELIMINARY CHARACTERIZATION OF CHEMICAL PROPERTIES.

    Directory of Open Access Journals (Sweden)

    W. Silva

    Full Text Available ABSTRACT This study aims to obtain an extract from red wine by using membrane-based supercritical fluid extraction. This technique involves the use of porous membranes as contactors during the dense gas extraction process from liquid matrices. In this work, a Cabernet Sauvignon wine extract was obtained from supercritical fluid extraction using pressurized carbon dioxide as solvent and a hollow fiber contactor as extraction setup. The process was continuously conducted at pressures between 12 and 18 MPa and temperatures ranged from 30 to 50ºC. Meanwhile, flow rates of feed wine and supercritical CO2 varied from 0.1 to 0.5 mL min-1 and from 60 to 80 mL min-1 (NCPT, respectively. From extraction assays, the highest extraction percentage value obtained from the total amount of phenolic compounds was 14% in only one extraction step at 18MPa and 35ºC. A summarized chemical characterization of the obtained extract is reported in this work; one of the main compounds in this extract could be a low molecular weight organic acid with aromatic structure and methyl and carboxyl groups. Finally, this preliminary characterization of this extract shows a remarkable ORAC value equal to 101737 ± 5324 µmol Trolox equivalents (TE per 100 g of extract.

  2. towards a fluid and multiscalar governance of extractive resources

    African Journals Online (AJOL)

    RAYAN_

    out, for instance, the geopolitics of pipelines in Africa and its critical role in .... article develops an analysis of its fluid, multiscalar, and networked governance. .... the production and use of this raw material.18 Oil crises are then more significantly ...

  3. Supercritical fluid extraction of uranium and thorium employing dialkyl amides

    International Nuclear Information System (INIS)

    Rao, Ankita; Kumar, Pradeep

    2014-01-01

    Extraction and purification of actinides from different matrices is of utmost importance to the nuclear industry. In recent decades, supercritical fluid extraction (SFE) has emerged as a promising alternative to solvent extraction owing to its inherent potential of minimization of liquid waste generation. N,N-dialkyl aliphatic amides have been proposed to be an alternative to TBP in the reprocessing of spent nuclear fuel due to several attractive features like innocuous nature of degradation products (mainly carboxylic acids/ amines), possibility of complete incineration of the used extractant leading to reduction in volume of secondary waste. Also, physico-chemical properties of this class of extractants can be tuned by the judicious choice of alkyl groups. In the present work, N,N-dialkyl aliphatic amides with varying alkyl groups viz. N,N-dibutyl-2-ethylhexanamide (DBEHA), N,N-dibutyl-3,3-dimethylbutanamide (DBDMBA), N,N-dihexyloctanamide (DHOA), N,N-disecbutylpentamide (DBPA), N,N-dibutyloctanamide (DBOA), have been evaluated for supercritical fluid extraction (SFE) of uranium and thorium from nitric acid medium as well as tissue paper matrix. Amides were obtained from Department of Chemistry, Delhi University and were used as such. This fact could be exploited for separation of thorium and uranium

  4. Supercritical fluid extraction (SFE) and gas chromatographic (GC) analysis of products from irradiated foods containing fat

    International Nuclear Information System (INIS)

    Adam, S.T.

    1993-01-01

    Official analytical methods specify the use of organic liquid solvents which may be hazardous to human health. Non-toxic chlorinated fluorocarbons (CFC) which are still recommended for extracting soil samples are known to be detrimental to the stratospheric ozone layer and therefore subject to the ''FCKW-Halon-Verbots-Verordnung''. Therefore, alternative extraction methods using solvents in the supercritical state are currently being developed (Supercritical Fluid Extraction (SFE)). Their low viscosity and the high diffusivity of solutes in the fluids allow selective, efficient and timesaving extractions. Carbon dioxide (CO 2 ) is the fluid of choice in many applications because its critical parameters permit mild operating conditions. CO 2 of high purity is available at low cost, it is neither inflammable nor explosive, physiologically harmless and part of natural cycle processes. Furthermore, it is simply removed from the matrix without any residues left. The combination of SFE and sorptive collection of the extracted substances has been found to lead to high enrichment factors for the analytes. Distillative concentration and solid phase elution steps, required in the classical solvent extraction procedure, are no longer necessary. Loss of analytes occurring in cryogenic or solvent traps is completeley avoided. Plugging of the restrictor as a consequence of the Joule Thomson effect was not observed in the presented method. (orig./vhe)

  5. Optical Studies of Pure Fluids about Their Critical Points

    Science.gov (United States)

    Pang, Kian Tiong

    Three optical experiments were performed on pure fluids near their critical points. In the first two setups, CH_3F and H_2C:CF _2 were each tested in a temperature -controlled, prism-shaped cell and a thin parallel-windows cell. In the prism cell, a laser beam was additionally deflected by the fluid present. From the deflection data, the refractive index was related to the density to find the Lorentz-Lorenz function. Critical temperature (T _{c}), density, refractive index and electronic polarizability were found. In the second experiment, a critically-filled, thin parallel-windows cell was placed in one arm of a Mach-Zehnder interoferometer. Fluid density was monitored by changes in the fringe pattern with changing cell temperature. The aim was to improve on the precision of T_{c}: T_{c}{rm (CH}_3 F) = (44cdot9087 +/- 0cdot0002)C; T _{c}{rm(H}_2C:CF _2) = (29cdot7419 +/- 0cdot0001)C; and, to study the coexistence curve and diameter as close to T_{c} as possible. The critical behaviour was compared to the theoretical renormalization group calculations. The derived coefficients were tested against a proposed three-body interaction to explain the field-mixing term in the diameter near the critical point. It was found that H_2C:CF_2 behaved as predicted by such an interaction; CH _3F (and CHF_3) did not. The third experiment was a feasibility study to find out if (critical) isotherms could be measured optically in a setup which combined the prism and parallel-windows cells. The aim was to map isotherms in as wide a range of pressure and density as possible and to probe the critical region directly. Pressure was monitored by a precise digital pressure gauge. CH_3F and CHF _3 were tested in this system. It was found that at low densities, the calculated second and third virial coefficients agreed with reference values. However, the data around the critical point were not accurate enough for use to calculate the critical exponent, delta . The calculated value was

  6. Faraday instability in a near-critical fluid under weightlessness.

    Science.gov (United States)

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    Experiments on near-critical hydrogen have been conducted under magnetic compensation of gravity to investigate the Faraday instability that arises at the liquid-vapor interface under zero-gravity conditions. We investigated such instability in the absence of stabilizing gravity. Under such conditions, vibration orients the interface and can destabilize it. The experiments confirm the existence of Faraday waves and demonstrate a transition from a square to a line pattern close to the critical point. They also show a transition very close to the critical point from Faraday to periodic layering of the vapor-liquid interface perpendicular to vibration. It was seen that the Faraday wave instability is favored when the liquid-vapor density difference is large enough (fluid far from the critical point), whereas periodic layering predominates for small difference in the liquid and vapor densities (close to the critical point). It was observed for the Faraday wave instability that the wavelength of the instability decreases as one approaches the critical point. The experimental results demonstrate good agreement to the dispersion relation for zero gravity except for temperatures very close to the critical point where a transition from a square pattern to a line pattern is detected, similarly to what is observed under 1g conditions.

  7. Supercritical fluid extraction of selected pharmaceuticals from water and serum.

    Science.gov (United States)

    Simmons, B R; Stewart, J T

    1997-01-24

    Selected drugs from benzodiazepine, anabolic agent and non-steroidal anti-inflammatory drug (NSAID) therapeutic classes were extracted from water and serum using a supercritical CO2 mobile phase. The samples were extracted at a pump pressure of 329 MPa, an extraction chamber temperature of 45 degrees C, and a restrictor temperature of 60 degrees C. The static extraction time for all samples was 2.5 min and the dynamic extraction time ranged from 5 to 20 min. The analytes were collected in appropriate solvent traps and assayed by modified literature HPLC procedures. Analyte recoveries were calculated based on peak height measurements of extracted vs. unextracted analyte. The recovery of the benzodiazepines ranged from 80 to 98% in water and from 75 to 94% in serum. Anabolic drug recoveries from water and serum ranged from 67 to 100% and 70 to 100%, respectively. The NSAIDs were recovered from water in the 76 to 97% range and in the 76 to 100% range from serum. Accuracy, precision and endogenous peak interference, if any, were determined for blank and spiked serum extractions and compared with classical sample preparation techniques of liquid-liquid and solid-phase extraction reported in the literature. For the benzodiazepines, accuracy and precision for supercritical fluid extraction (SFE) ranged from 1.95 to 3.31 and 0.57 to 1.25%, respectively (n = 3). The SFE accuracy and precision data for the anabolic agents ranged from 4.03 to 7.84 and 0.66 to 2.78%, respectively (n = 3). The accuracy and precision data reported for the SFE of the NSAIDs ranged from 2.79 to 3.79 and 0.33 to 1.27%, respectively (n = 3). The precision of the SFE method from serum was shown to be comparable to the precision obtained with other classical preparation techniques.

  8. Asymmetric fluid criticality. II. Finite-size scaling for simulations.

    Science.gov (United States)

    Kim, Young C; Fisher, Michael E

    2003-10-01

    The vapor-liquid critical behavior of intrinsically asymmetric fluids is studied in finite systems of linear dimensions L focusing on periodic boundary conditions, as appropriate for simulations. The recently propounded "complete" thermodynamic (L--> infinity) scaling theory incorporating pressure mixing in the scaling fields as well as corrections to scaling [Phys. Rev. E 67, 061506 (2003)] is extended to finite L, initially in a grand canonical representation. The theory allows for a Yang-Yang anomaly in which, when L--> infinity, the second temperature derivative (d2musigma/dT2) of the chemical potential along the phase boundary musigmaT diverges when T-->Tc-. The finite-size behavior of various special critical loci in the temperature-density or (T,rho) plane, in particular, the k-inflection susceptibility loci and the Q-maximal loci--derived from QL(T,L) is identical with 2L/L where m is identical with rho-L--is carefully elucidated and shown to be of value in estimating Tc and rhoc. Concrete illustrations are presented for the hard-core square-well fluid and for the restricted primitive model electrolyte including an estimate of the correlation exponent nu that confirms Ising-type character. The treatment is extended to the canonical representation where further complications appear.

  9. Supercritical Fluid Extraction of Plant Flavors and Fragrances

    Directory of Open Access Journals (Sweden)

    Massimo E. Maffei

    2013-06-01

    Full Text Available Supercritical fluid extraction (SFE of plant material with solvents like CO2, propane, butane, or ethylene is a topic of growing interest. SFE allows the processing of plant material at low temperatures, hence limiting thermal degradation, and avoids the use of toxic solvents. Although today SFE is mainly used for decaffeination of coffee and tea as well as production of hop extracts on a large scale, there is also a growing interest in this extraction method for other industrial applications operating at different scales. In this review we update the literature data on SFE technology, with particular reference to flavors and fragrance, by comparing traditional extraction techniques of some industrial medicinal and aromatic crops with SFE. Moreover, we describe the biological activity of SFE extracts by describing their insecticidal, acaricidal, antimycotic, antimicrobial, cytotoxic and antioxidant properties. Finally, we discuss the process modelling, mass-transfer mechanisms, kinetics parameters and thermodynamic by giving an overview of SFE potential in the flavors and fragrances arena.

  10. Studies on supercritical fluid extraction of uranium from sodium diuranate

    International Nuclear Information System (INIS)

    Prabhat, Parimal; Vithal, G.K.; Rao, Ankita; Kumar, Pradeep; Tomar, B.S.

    2014-01-01

    Crude sodium diuranate (SDU) produced from phosphoric acid by solvent extraction process with di-2-ethyl hexyl phosphoric acid (D2EHPA) and tri-n-butyl phosphate(TBP) contains iron and other rare earth impurities along with uranium. For further use of this uranium for fuel fabrication and its subsequent use in nuclear reactors, it has to be purified up to nuclear grade ammonium diuranate (ADU) specifications. Conventionally crude SDU is being purified by dissolving it in nitric acid followed by solvent extraction process using TBP in diluent. Use of large amount of acid and organic solvents for industrial processes is an environmental concern. Nowadays there are efforts to minimize use of acid and organic solvents in industrial processes. Supercritical Fluid Extraction (SFE) of uranium from different matrices (solid as well as liquid) has been reported by several authors in recent years. Near complete extraction of uranium from UO 2 (powder, green pellet and sintered pellet) using TBP-HNO 3 adduct by SFE has been reported. We attempted to explore possibility to purify crude SDU to nuclear grade by SFE of uranium from crude SDU matrix and study the effect of different operational parameters, mode of extraction and complexation

  11. COMPARISONS OF SOXHLET EXTRACTION, PRESSURIZED LIQUID EXTRACTION, SUPERCRITICAL FLUID EXTRACTION, AND SUBCRITICAL WATER EXTRACTION FOR ENVIRONMENTAL SOLIDS: RECOVERY, SELECTIVITY, AND EFFECTS ON SAMPLE MATRIX. (R825394)

    Science.gov (United States)

    Extractions of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a former manufactured gas plant site were performed with a Soxhlet apparatus (18 h), by pressurized liquid extraction (PLE) (50 min at 100°C), supercritical fluid extraction (SFE) (1 h at 150°...

  12. Correlation of supercritical-fluid extraction recoveries with supercritical-fluid chromatographic retention data: A fundamental study

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1995-01-01

    The possibility of using supercritical-fluid chromatographic retention data for examining the effects of operational parameters, such as pressure and flow rate, on the extraction characteristics in supercritical-fluid extraction (SFE) was investigated. A model was derived for calculating the

  13. Obtaining of the antioxidants by supercritical fluid extraction

    Directory of Open Access Journals (Sweden)

    Babović Nada V.

    2011-01-01

    Full Text Available One of the important trends in the food industry today is demand for natural antioxidants from plant material. Synthetic antioxidants such as butylated hydroxytoluene (BHT, and butylated hydroxyanisole (BHA are now being replaced by the natural antioxidants because of theirs possible toxicity and as they may act as promoters of carcinogens. The natural antioxidants may show equivalent or higher antioxidant activity than the endogenous or the synthetic antioxidants. Thus, great effort is being devoted to the search for alternative and cheap sources of natural antioxidants, as well as to the development of efficient and selective extraction techniques. The supercritical fluid extraction (SFE with carbon dioxide is considered to be the most suitable method for producing natural antioxidants for the use in food industry. The supercritical extract does not contain residual organic solvents as in conventional extraction processes, which makes these products suitable for use in food, cosmetic and pharmaceutical industry. The recovery of antioxidants from plant sources involves many problematic aspects: choice of an adequate source (in terms of availability, cost, difference in phenolic content with variety and season; selection of the optimal recovery procedure (in terms of yield, simplicity, industrial application, cost; chemical analysis of extracts (for optimization purposes a fast colorimetric method is more preferable than a chromatographic one; evaluation of the antioxidant power (preferably by the different assay methods. The paper presents information about different operational methods for SFE of bioactive compounds from natural sources. It also includes the various reports on the antioxidant activity of the supercritical extracts from Lamiaceae herbs, in comparison with the activity of the synthetic antioxidants and the extracts from Lamiaceae herbs obtained by the conventional methods.

  14. Extraction of gold and silver from geothermal fluid

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.L.; Roberts, P.J. (Geothermal Research Center, Wairakei (New Zealand); Spectrum Resources Ltd., Auckland (New Zealand))

    1988-11-10

    This paper describes the results of five experiments of the extraction of gold and silver from hydrothermal fluids with a experimental vessel settled up at KA35 well at the Kawerau geothermal field in New Zealand. The experimental vessel was designed to absorb the fluids from orifice plate controlled to be low pressure and had a chamber having within many collecting plates. The first experiment is a fundamental one in which a mild steel was used as metal collector plate. The rates of deposition of gold and silver on the plate were estimated. The second experiment showed that the rate on deposition of gold on the mild steel plate was controlled by the flux rate of hydrothermal fluid. The third experiment showed that a mild steel seemed to be better for the collection plate of gold and silver than copper and aluminium. The fourth experiment clarified that the activated charcoal was not suitable for the collector plate for gold and silver. The fifth experiment showed that a mild steel was better for metal collector than activated charcoal. 1 ref., 4 figs.

  15. A study of fluid alkali metals in the critical region

    International Nuclear Information System (INIS)

    Balasubramanian, R.

    2006-01-01

    On the basis of the generalised van der Waals equation of state, Riedel's thermodynamic similarity parameter, a measure of the temperature dependence of vapour pressure in the critical region is determined for caesium, rubidium and potassium. This generalised equation differs from the known van der Waals equation of state by the modified expression for molecular pressure. The results of determination of Riedel's thermodynamic similarity parameter of caesium, rubidium and potassium are in good agreement with experimental data. Moreover, the given generalised van der Waals equation of state yields a better fit with experimental data on Riedel's thermodynamic similarity parameter for fluid alkali metals when compared with other correlations such as Van Ness and Abbott equation, Pitzer expansion, Pitzer acentric factor correlation, modified Rackett technique, Lee-Kesler vapour pressure relation and Clausius-Clayperon equation

  16. A study of fluid alkali metals in the critical region

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, R. [Department of Physics, Kongu Engineering College, Perundurai, Erode 638 052, Tamil Nadu (India)]. E-mail: drrbala@yahoo.com

    2006-05-31

    On the basis of the generalised van der Waals equation of state, Riedel's thermodynamic similarity parameter, a measure of the temperature dependence of vapour pressure in the critical region is determined for caesium, rubidium and potassium. This generalised equation differs from the known van der Waals equation of state by the modified expression for molecular pressure. The results of determination of Riedel's thermodynamic similarity parameter of caesium, rubidium and potassium are in good agreement with experimental data. Moreover, the given generalised van der Waals equation of state yields a better fit with experimental data on Riedel's thermodynamic similarity parameter for fluid alkali metals when compared with other correlations such as Van Ness and Abbott equation, Pitzer expansion, Pitzer acentric factor correlation, modified Rackett technique, Lee-Kesler vapour pressure relation and Clausius-Clayperon equation.

  17. Extraction of Plutonium From Spiked INEEL Soil Samples Using the Ligand-Assisted Supercritical Fluid Extraction (LA-SFE) Technique

    International Nuclear Information System (INIS)

    Fox, R.V.; Mincher, B.J.; Holmes, R.G.G.

    1999-01-01

    In order to investigate the effectiveness of ligand-assisted supercritical fluid extraction for the removal of transuranic contaminations from soils an Idaho National Engineering and Environmental Laboratory (INEEL) silty-clay soil sample was obtained from near the Radioactive Waste Management Complex area and subjected to three different chemical preparations before being spiked with plutonium. The spiked INEEL soil samples were subjected to a sequential aqueous extraction procedure to determine radionuclide portioning in each sample. Results from those extractions demonstrate that plutonium consistently partitioned into the residual fraction across all three INEEL soil preparations whereas americium partitioned 73% into the iron/manganese fraction for soil preparation A, with the balance partitioning into the residual fraction. Plutonium and americium were extracted from the INEEL soil samples using a ligand-assisted supercritical fluid extraction technique. Initial supercritical fluid extraction runs produced plutonium extraction technique. Initial supercritical fluid extraction runs produced plutonium extraction efficiencies ranging from 14% to 19%. After a second round wherein the initial extraction parameters were changed, the plutonium extraction efficiencies increased to 60% and as high as 80% with the americium level in the post-extracted soil samples dropping near to the detection limits. The third round of experiments are currently underway. These results demonstrate that the ligand-assisted supercritical fluid extraction technique can effectively extract plutonium from the spiked INEEL soil preparations

  18. Quality Parameters of Curcuma Longa L. Extracts by Supercritical Fluid Extraction (SFE) and Ultrasonic Assisted Extraction (UAE)

    International Nuclear Information System (INIS)

    Zaibunnisa Abdul Haiyee; Siti Hafsah Mohd Shah; Khudzir Ismail; Nooraain Hashim; Wan Iryani Wan Ismail

    2016-01-01

    Turmeric is one of the prominently use herbal plants due to its diverse beneficial effects especially in Indian medicine. The rhizome part of the turmeric contains valuable compounds which have been said to owe its antimicrobial effects, anti-cancer, anti-inflammatory and enhance wound healing. Due to its short-life span and perishable properties, the conversion of the rhizome into turmeric extract is desirable. Several methods have been used for extraction such as Soxhlet extraction and pressurized liquid extraction (PLE). However, these techniques are tedious, laborious, time consuming and involves the usage of toxic organic solvent, of which safeness of the end product is doubtful. In this study, a rapid, reliable and green extraction method of supercritical fluid extraction (SFE) and ultrasonic assisted extraction (UAE) were used. SFE without modifier has resulted in 0.0006 mg/ 100 g of curcuminoids concentration and 5.62 % of yield (dry weight basis). UAE using ethanol was able to produce significantly the highest yield (6.40 %, dry weight basis) and the highest curcuminoids concentration (0.1020 mg/ 100 g). However, SFE was able to produce extract that contain significantly higher major volatile compounds; tumerone, ar-turmerone and curlone. Therefore, this study proves that both extraction methods were able to produce high quality turmeric extract. (author)

  19. Critical properties of effective gauge theories for novel quantum fluids

    Energy Technology Data Exchange (ETDEWEB)

    Smoergrav, Eivind

    2005-07-01

    ;light vortices') loose co centricity with the vortices with large phase stiffness ('heavy vortices'), entering a liquid state. Paper 7: The phase diagram and critical properties of the N-component London superconductor are studied in zero and finite magnetic field. Direct and dual gauge field correlators for general N are given. The model with N = 3 exhibits three anomalies in the specific heat. We demonstrate the existence of two neutral 3D XY fixed points and one inverted charged 3D XY fixed point. In particular, for N = 2 we point out the possibility of two novel types of field induced phase transitions in ordered quantum fluids: 1) A phase transition from a superconductor to a superfluid or vice versa, driven by tuning an external magnetic field. This identifies the superconducting phase of liquid metallic hydrogen as a novel quantum fluid. 2) A phase transition corresponding to a quantum fluid analogue of sub-lattice melting, where a composite field induced Abrikosov vortex lattice is decomposed and disorders the phases of the constituent condensate with lowest bare phase stiffness. Both transitions belong to the 3D XY universality class. Paper 8: We study the phase structure of a 2-component superconductor in a high magnetic field. We identify a regime where first, at a certain temperature a field induced lattice of co centered vortices of both order parameters melts, causing the system to loose superconductivity (author)(tk)

  20. Supercritical fluid extraction: spectroscopic study of interactions comparison to solvent extraction

    International Nuclear Information System (INIS)

    Rustenholtz Farawila, A.

    2005-06-01

    Supercritical fluid carbon dioxide (SF-CO 2 ) was chosen to study Supercritical Fluid Extraction (SFE) of cesium and uranium. At first, crown ethers were considered as chelating agents for the SFE of cesium. The role of water and its interaction with crown ethers were especially studied using Fourier-Transform Infra-Red (FT-IR) spectroscopy in SF-CO 2 . A sandwich configuration between two crown ethers and a water molecule was observed in the SF-CO 2 phase for the first time. The equilibrium between the single and the bridge configurations was defined. The enthalpy of the hydrogen bond formation was also calculated. These results were then compared to the one in different mixtures of chloroform and carbon tetra-chloride using Nuclear Magnetic Resonance (NMR). To conclude this first part and in order to understand the whole picture of the recovery of cesium, I studied the role of water in the equilibrium between the cesium and the di-cyclo-hexano18-crown-6.In a second part, the supercritical fluid extraction of uranium was studied in SF-CO 2 . For this purpose, different complexes of Tributyl Phosphate (TBP), nitric acid and water were used as chelating and oxidizing agents. I first used FT-IR to study the TBP-water interaction in SF-CO 2 . These results were then compared to the one obtained with NMR in chloroform. NMR spectroscopy was also used to understand the TBP-nitric acid-water interaction first alone and then in chloroform. To conclude my research work, I succeeded to improve the efficiency of uranium extraction and stripping into water for a pilot-plant where enriched uranium is extracted from incinerated waste coming from nuclear fuel fabrication. TBP-nitric acid complexes were used in SF-CO 2 for the extraction of uranium from ash. (author)

  1. Supercritical fluid extraction: spectroscopic study of interactions comparison to solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Rustenholtz Farawila, A

    2005-06-15

    Supercritical fluid carbon dioxide (SF-CO{sub 2}) was chosen to study Supercritical Fluid Extraction (SFE) of cesium and uranium. At first, crown ethers were considered as chelating agents for the SFE of cesium. The role of water and its interaction with crown ethers were especially studied using Fourier-Transform Infra-Red (FT-IR) spectroscopy in SF-CO{sub 2}. A sandwich configuration between two crown ethers and a water molecule was observed in the SF-CO{sub 2} phase for the first time. The equilibrium between the single and the bridge configurations was defined. The enthalpy of the hydrogen bond formation was also calculated. These results were then compared to the one in different mixtures of chloroform and carbon tetra-chloride using Nuclear Magnetic Resonance (NMR). To conclude this first part and in order to understand the whole picture of the recovery of cesium, I studied the role of water in the equilibrium between the cesium and the di-cyclo-hexano18-crown-6.In a second part, the supercritical fluid extraction of uranium was studied in SF-CO{sub 2}. For this purpose, different complexes of Tributyl Phosphate (TBP), nitric acid and water were used as chelating and oxidizing agents. I first used FT-IR to study the TBP-water interaction in SF-CO{sub 2}. These results were then compared to the one obtained with NMR in chloroform. NMR spectroscopy was also used to understand the TBP-nitric acid-water interaction first alone and then in chloroform. To conclude my research work, I succeeded to improve the efficiency of uranium extraction and stripping into water for a pilot-plant where enriched uranium is extracted from incinerated waste coming from nuclear fuel fabrication. TBP-nitric acid complexes were used in SF-CO{sub 2} for the extraction of uranium from ash. (author)

  2. Determination of major aromatic constituents in vanilla using an on-line supercritical fluid extraction coupled with supercritical fluid chromatography.

    Science.gov (United States)

    Liang, Yanshan; Liu, Jiaqi; Zhong, Qisheng; Shen, Lingling; Yao, Jinting; Huang, Taohong; Zhou, Ting

    2018-04-01

    An on-line supercritical fluid extraction coupled with supercritical fluid chromatography method was developed for the determination of four major aromatic constituents in vanilla. The parameters of supercritical fluid extraction were systematically investigated using single factor optimization experiments and response surface methodology by a Box-Behnken design. The modifier ratio, split ratio, and the extraction temperature and pressure were the major parameters which have significant effects on the extraction. While the static extraction time, dynamic extraction time, and recycle time had little influence on the compounds with low polarity. Under the optimized conditions, the relative extraction efficiencies of all the constituents reached 89.0-95.1%. The limits of quantification were in the range of 1.123-4.747 μg. The limits of detection were in the range of 0.3368-1.424 μg. The recoveries of the four analytes were in the range of 76.1-88.9%. The relative standard deviations of intra- and interday precision ranged from 4.2 to 7.6%. Compared with other off-line methods, the present method obtained higher extraction yields for all four aromatic constituents. Finally, this method has been applied to the analysis of vanilla from different sources. On the basis of the results, the on-line supercritical fluid extraction-supercritical fluid chromatography method shows great promise in the analysis of aromatic constituents in natural products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effects of process parameters on peanut skins extract and CO2 diffusivity by supercritical fluid extraction

    Science.gov (United States)

    Putra, N. R.; Yian, L. N.; Nasir, H. M.; Idham, Z. Binti; Yunus, M. A. C.

    2018-03-01

    Peanut skins (Arachis hypogea) are an agricultural waste product which has received much attention because they contain high nutritional values and can be potentially utilized in difference industries. At present, only a few studies have been conducted to study the effects of parameters on the peanut skins oil extraction. Therefore, this study aimed to determine the best extraction condition in order to obtain the highest extract yield using supercritical carbon dioxide (SC-CO2) with co-solvent Ethanol as compared to Soxhlet extraction method. Diffusivity of carbon dioxide in supercritical fluid extraction was determined using Crank model. The mean particle size used in this study was 425 µm. The supercritical carbon dioxide was performed at temperature (40 – 70 °C), flow rate of co-solvent ethanol (0 - 7.5% Vethanol/Vtotal), and extraction pressure (10 – 30 MPa) were used in this studies. The results showed that the percentage of oil yields and effective diffusivity increase as the pressure, rate of co-solvent, and temperature increased.

  4. A fully continuous supercritical fluid extraction system for contaminated soil

    International Nuclear Information System (INIS)

    Ryan, M.; Stiver, W.H.

    2007-01-01

    Brownfield sites are contaminated sites in an urban setting. There are hundreds of thousands of such sites, where contaminants migrate to the atmosphere, seep into groundwater, runoff into surface water and enter the food chain through plant uptake and soil ingestion. The Sydney Tar Ponds alone contain more than a million tonnes of contaminated soils and sediments. Soil vapour extraction, incineration, bioremediation, solvent extraction and land filling are among the remediation techniques that have been developed for brownfield sites over the years. However, no single technology is ideally suited to all cases because of the diversity of contaminants and diversity of site characterization. This paper focused on supercritical fluid extraction (SFE) which is well suited to sites contaminated with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metal. A fully continuous laboratory-scale SFE process for a slurry-based system was designed and constructed to handle the supercritical carbon dioxide (SC-CO 2 ) and the soil slurry. The system continuously pumps carbon dioxide under supercritical conditions and soil slurry into a counter-current contacting column. The testing soil was Delhi loamy sand, spiked with 10 mg/g of naphthalene. The soil slurry ranged from 0.0028 g dry soil per g slurry to 0.072 g/g. The operating temperature was 43 degrees C and the operating pressure was 7.7 MPa. Near steady state, fully continuous flow was achieved with runs lasting up to 2 hours. The quantifiable recoveries of naphthalene from the soil slurry was demonstrated and the mass transfer coefficients for the system were quantified in order to provide the foundation to advance to a full-scale system and costing analysis. 14 refs., 1 tab., 3 figs

  5. A fully continuous supercritical fluid extraction system for contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, M.; Stiver, W.H. [Guelph Univ., ON (Canada). School of Engineering

    2007-04-15

    Brownfield sites are contaminated sites in an urban setting. There are hundreds of thousands of such sites, where contaminants migrate to the atmosphere, seep into groundwater, runoff into surface water and enter the food chain through plant uptake and soil ingestion. The Sydney Tar Ponds alone contain more than a million tonnes of contaminated soils and sediments. Soil vapour extraction, incineration, bioremediation, solvent extraction and land filling are among the remediation techniques that have been developed for brownfield sites over the years. However, no single technology is ideally suited to all cases because of the diversity of contaminants and diversity of site characterization. This paper focused on supercritical fluid extraction (SFE) which is well suited to sites contaminated with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metal. A fully continuous laboratory-scale SFE process for a slurry-based system was designed and constructed to handle the supercritical carbon dioxide (SC-CO{sub 2}) and the soil slurry. The system continuously pumps carbon dioxide under supercritical conditions and soil slurry into a counter-current contacting column. The testing soil was Delhi loamy sand, spiked with 10 mg/g of naphthalene. The soil slurry ranged from 0.0028 g dry soil per g slurry to 0.072 g/g. The operating temperature was 43 degrees C and the operating pressure was 7.7 MPa. Near steady state, fully continuous flow was achieved with runs lasting up to 2 hours. The quantifiable recoveries of naphthalene from the soil slurry was demonstrated and the mass transfer coefficients for the system were quantified in order to provide the foundation to advance to a full-scale system and costing analysis. 14 refs., 1 tab., 3 figs.

  6. Critical Evaluation of Validation Rules Automated Extraction from Data

    Directory of Open Access Journals (Sweden)

    David Pejcoch

    2014-10-01

    Full Text Available The goal of this article is to critically evaluate a possibility of automatic extraction of such kind of rules which could be later used within a Data Quality Management process for validation of records newly incoming to Information System. For practical demonstration the 4FT-Miner procedure implemented in LISpMiner System was chosen. A motivation for this task is the potential simplification of projects focused on Data Quality Management. Initially, this article is going to critically evaluate a possibility of fully automated extraction with the aim to identify strengths and weaknesses of this approach in comparison to its alternative, when at least some a priori knowledge is available. As a result of practical implementation, this article provides design of recommended process which would be used as a guideline for future projects. Also the question of how to store and maintain extracted rules and how to integrate them with existing tools supporting Data Quality Management is discussed

  7. Liquid-liquid extraction in flow analysis: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, Cristina I.C.; Santos, Joao L.M. [REQUIMTE, Servico de Quimica-Fisica, Faculdade de Farmacia, Universidade do Porto, R. Anibal Cunha, 164, 4099-030 Porto (Portugal); Lima, Jose L.F.C., E-mail: limajlfc@ff.up.pt [REQUIMTE, Servico de Quimica-Fisica, Faculdade de Farmacia, Universidade do Porto, R. Anibal Cunha, 164, 4099-030 Porto (Portugal); Zagatto, Elias A.G. [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, P.O. Box 96, Piracicaba 13400-970 (Brazil)

    2009-10-12

    Liquid-liquid extractions (LLE) are a common sample pre-treatment in many analytical applications. This review aims at providing a critical overview of the distinct automated continuous flow-based approaches that were developed for liquid-liquid extraction with the purpose of pre-concentration and/or separation of multiple analytes, such as ultra-trace metal and metalloid species, phenolic compounds, surfactants, pharmaceuticals, etc., hyphenated with many detection technique such as UV/vis spectrophotometry, atomic spectrometric detection systems and luminescent detectors, including distinct extraction strategies and applications like single and multiple extraction schemes, wetting film extraction, supported liquid membrane extraction, back extraction, closed-loop systems and the utilisation of zone sampling, chromatomembranes and iterative reversal techniques. The analytical performance of the developed flow-based LLE methods and the influence of flow manifold components such as the segmenter, extraction coil and phase separator, is emphasised and object of discussion. An overall presentation of each system components, selectivity, advantages and shortcomings is carried out and exemplified with selected applications.

  8. SUPERCRITICAL FLUID EXTRACTION OF POLYCYCLIC AROMATIC HYDROCARBON MIXTURES FROM CONTAMINATED SOILS

    Science.gov (United States)

    Highly contaminated (with PAHs) topsoils were extracted with supercritical CO2 to determine the feasibility and mechanism of supercritical fluid extraction (SFE). Effect of SCF density, temperature, cosolvent type and amount, and of slurrying the soil with water were ...

  9. Basil (Ocimum basilicum L. essential oil and extracts obtained by supercritical fluid extraction

    Directory of Open Access Journals (Sweden)

    Zeković Zoran P.

    2015-01-01

    Full Text Available The extracts obtained from sweet basil (Ocimum basilicum L. by hydrodistillation and supercritical fluid extraction (SFE were qualitative and quantitative analyzed by GC-MS and GC-FID. Essential oil (EO content of basil sample, determined by an official method, was 0.565% (V/w. The yields of basil obtained by SFE were from 0.719 to 1.483% (w/w, depending on the supercritical fluid (carbon dioxide density (from 0.378 to 0.929 g mL-1. The dominant compounds detected in all investigated samples (EO obtained by hydrodistillation and different SFE extracts were: linalool, as the major compound of basil EO (content from 10.14 to 49.79%, w/w, eugenol (from 3.74 to 9.78% and ä-cardinene (from 3.94 to 8.07%. The quantitative results of GC-MS from peak areas and by GC-FID using external standard method involving main standards, were compared and discussed. [Projekat Ministarstva nauke Republike Srbije, br. TR 31013

  10. Modifier free supercritical fluid extraction of uranium from sintered UO2, soil and ore samples

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Acharya, R.; Mohapatra, P.K.; Manchanda, V.K.

    2011-01-01

    Direct extraction of uranium from different samples viz. sintered UO 2 , soil and ores was carried out by modifier free supercritical fluid using tri-n-butyl phosphate-nitric acid (TBP-HNO 3 ) adduct as extractant. These studies showed that pre-equilibration with more concentrated nitric acid helps in better dissolution and extraction of uranium from sintered UO 2 samples. Modifier free supercritical fluid extraction appears attractive with respect to minimization of secondary wastes. This method resulted 80-100% extraction of uranium from different soil/ore samples. The results were confirmed by performing neutron activation analysis of original (before extraction) and residue (after extraction) samples. (author)

  11. Comparison of supercritical fluid extraction and Soxhlet extraction for the determination of PCBs in seaweed samples.

    Science.gov (United States)

    Punín Crespo, M O; Lage Yusty, M A

    2005-06-01

    The efficiency of supercritical fluid extraction for the determination of 12 polychlorinated biphenyls from algae samples is compared to Soxhlet extraction. Analytical detection limits for the individual congeners ranged from 0.62 microgl(-1) to 19 microgl(-1). Recovery was tested for both methods using standard addition procedure. At maximum spike level of concentration, the mean recoveries were not significantly different (P>0.05) of all PCBs studied, with the exception of PCBs 28, 52, 77 and 169. Method precision for Soxhlet extraction (yield comparable results, SFE offers the advantage of detecting all PCBs studied at lower concentrations, reducing extraction time, and reducing the amount of solvents needed. The optimized methods were applied to the analysis of three real seaweed samples, except for PCB101 the concentrations of all PCBs were low or below the detection limits. The levels of PCB101 found in sample 1 were 6.6+/-0.54 ng g(-1) d.w., in sample 2 the levels were 8.2+/-0.86 ng g(-1) d.w. and in sample 3 they were 7.7+/-0.08 ng g(-1) d.w.

  12. Vapor-liquid equilibrium and critical asymmetry of square well and short square well chain fluids.

    Science.gov (United States)

    Li, Liyan; Sun, Fangfang; Chen, Zhitong; Wang, Long; Cai, Jun

    2014-08-07

    The critical behavior of square well fluids with variable interaction ranges and of short square well chain fluids have been investigated by grand canonical ensemble Monte Carlo simulations. The critical temperatures and densities were estimated by a finite-size scaling analysis with the help of histogram reweighting technique. The vapor-liquid coexistence curve in the near-critical region was determined using hyper-parallel tempering Monte Carlo simulations. The simulation results for coexistence diameters show that the contribution of |t|(1-α) to the coexistence diameter dominates the singular behavior in all systems investigated. The contribution of |t|(2β) to the coexistence diameter is larger for the system with a smaller interaction range λ. While for short square well chain fluids, longer the chain length, larger the contribution of |t|(2β). The molecular configuration greatly influences the critical asymmetry: a short soft chain fluid shows weaker critical asymmetry than a stiff chain fluid with same chain length.

  13. Feasibility studies on supercritical fluid extraction of uranium from phosphoric acid

    International Nuclear Information System (INIS)

    Dubey, B.P.; Agarwal, A.K.

    2014-01-01

    Supercritical fluid extraction (SFE) is a promising novel technology for extraction of many materials. Work has been carried out worldwide on SFE of uranium from various matrices. However, there are no references indicating the R and D on uranium extraction from phosphoric acid using this technology. Heavy Water Board is involved in technology development for recovery of uranium from secondary source, hence it was considered prudent to investigate the technology of SFE for this purpose. Various experiments were carried out with both WPA (P 2 O 5 content 28%) and MGPA (P 2 O 5 content 54%) using bench scale facility available with one of the private party. Extraction experiments were carried out using several chelating agents including TBP, D2EHPA, D2EHPA+TBP/TOPO, TTA, TTA+TBP etc. Feasibility studies revealed the hydrodynamics of operation indicating liquid expansion by about three times during flow of super critical (SC) CO 2 . No flooding was observed when the extraction column filled 20% of its volume capacity, no carryover of entrained/extracted liquid with SC CO 2 with MGPA, material balance of inputs and outputs established i.e. 100% recovery of MGPA and chelating agent, No operational problems with raw MGPA (untreated). No significant extraction of impurities from phosphoric acid to SC CO 2 , 40℃ temperature and 160 bar pressure found ideal for extraction experiments since no other materials found extracted at these conditions and no apparent change/deterioration in PA and chelating agents. Experiments established feasibility of SCE with CO 2 , proper recovery of PA and chelating agents, no need for pretreatment/gunk removal from PA; however, extraction of uranium was found inadequate even though ORP of feed acid was boosted by H 2 O 2 addition. Investigations revealed that SCE column created reducing environment in phosphoric acid, which was not favourable for uranium extraction, which resulted in difficulty in extraction of Uranium. HWB has now designed

  14. A rapid supercritical fluid extraction method for the qualitative detection of 2-alkylcyclobutanones in gamma-irradiated fresh and sea water fish

    International Nuclear Information System (INIS)

    Tewfik, I.H.; Ismail, H.M.; Sumar, S.

    1999-01-01

    2-Alkylcyclobutanones are routinely used as chemical markers for irradiated foods containing lipids. However, current extraction procedures (soxhlet-Florisil chromatography) for the isolation of these markers involve a long and tedious clean-up regime prior to GC-MS identification. A simple and rapid method for the isolation of these markers using carbon dioxide as a super critical fluid is described for low lipid content fish samples (fresh and sea water) irradiated up to 8kGy. The presence of 2-dodecylcyclobutanone (2-DCB), a radiolytic marker, was confirmed in all irradiated fish samples at all doses. This was a clear indication that the fish samples had been irradiated and that both methods of isolation (florisil and supercritical fluid extraction) were capable of qualitatively extracting this marker. Supercritical fluid extraction is proposed as an alternative extraction procedure to the florisil chromatography method currently in use and has the added advantage of a considerably shorter extraction time

  15. Assessment of fluid-to-fluid modelling of critical heat flux in horizontal 37-element bundle flows

    International Nuclear Information System (INIS)

    Yang, S.K.

    2006-01-01

    Fluid-to-fluid modelling laws of critical heat flux (CHF) available in the literature were reviewed. The applicability of the fluid-to-fluid modelling laws was assessed using available data ranging from low to high mass fluxes in horizontal 37-element bundles simulating a CANDU fuel string. Correlations consisting of dimensionless similarity groups were derived using modelling fluid data (Freon-12) to predict water CHF data in horizontal 37-element bundles with uniform and non-uniform axial-heat flux distribution (AFD). The results showed that at mass fluxes higher than ∼4,000 kg/m 2 s (water equivalent value), the vertical fluid-to-fluid modelling laws of Ahmad (1973) and Katto (1979) predict water CHF in horizontal 37-element bundles with non-uniform AFD with average errors of 1.4% and 3.0% and RMS errors of 5.9% and 6.1%, respectively. The Francois and Berthoud (2003) fluid-to-fluid modelling law predicts CHF in non-uniformly heated 37-element bundles in the horizontal orientation with an average error of 0.6% and an RMS error of 10.4% over the available range of 2,000 to 6,200 kg/m 2 s. (author)

  16. Critical behavior of the dielectric constant in asymmetric fluids.

    Science.gov (United States)

    Bertrand, C E; Sengers, J V; Anisimov, M A

    2011-12-08

    By applying a thermodynamic theory that incorporates the concept of complete scaling, we derive the asymptotic temperature dependence of the critical behavior of the dielectric constant above the critical temperature along the critical isochore and below the critical temperature along the coexistence curve. The amplitudes of the singular terms in the temperature expansions are related to the changes of the critical temperature and the critical chemical potential upon the introduction of an electric field. The results of the thermodynamic theory are then compared with the critical behavior implied by the classical Clausius-Mossotti approximation. The Clausius-Mossotti approximation fails to account for any singular temperature dependence of the dielectric constant above the critical temperature. Below the critical temperature it produces an apparent asymmetric critical behavior with singular terms similar to those implied by the thermodynamic theory, but with significantly different coefficients. We conclude that the Clausius-Mossotti approximation only can account for the observed asymptotic critical behavior of the dielectric constant when the dependence of the critical temperature on the electric field is negligibly small. © 2011 American Chemical Society

  17. Application of supercritical and subcritical fluids for the extraction of hazardous materials from soil

    Directory of Open Access Journals (Sweden)

    Skorupan Dara

    2002-01-01

    Full Text Available Subcritical and supercritical extractions are novel, non destructive techniques which can be applied for the removal of hazardous compounds from contaminated soil without any changes of the soil composition and structure. The aim of the presented review paper is to give information on up-to day results of this method commonly applied by several institutions worldwide. Interest in the application of SC CO2 has been more expressed in the last two decades, which may be related to its favorable characteristics (non-toxic, non-flammable, increase diffusion into small pores, low viscosity under SC conditions, low price and others. However, interest in wet oxidation (WO and especially in SCWO (the application of water under supercritical conditions with air has also increased in the last few years. Interest in H2O as a SC fluid, as well as in extraction with water under subcritical conditions may also be related to specific characteristics and the enhanced rate of extraction. Moreover, the solubility of some specific compounds present in soil can be easily changed by adjusting the pressure and temperature of extraction. The high price of the units designed to operate safely at a pressure and temperature much higher than the a critical one of the applied fluids is the main reason why, at present, there is no more broader application of such techniques for the removal hazardous materials from contaminated soil. In the present paper, among many literature citations and their overall review, some specific details related to the development of specific analytical methods under SC conditions are also considered.

  18. Birch Bark Dry Extract by Supercritical Fluid Technology: Extract Characterisation and Use for Stabilisation of Semisolid Systems

    Directory of Open Access Journals (Sweden)

    Markus Armbruster

    2017-03-01

    Full Text Available Triterpene compounds like betulin, betulinic acid, erythrodiol, oleanolic acid and lupeol are known for many pharmacological effects. All these substances are found in the outer bark of birch. Apart from its pharmacological effects, birch bark extract can be used to stabilise semisolid systems. Normally, birch bark extract is produced for this purpose by extraction with organic solvents. Employing supercritical fluid technology, our aim was to develop a birch bark dry extract suitable for stabilisation of lipophilic gels with improved properties while avoiding the use of toxic solvents. With supercritical carbon dioxide, three different particle formation methods from supercritical solutions have been tested. First, particle deposition was performed from a supercritical solution in an expansion chamber. Second, the Rapid Expansion of Supercritical Solutions (RESS method was used for particle generation. Third, a modified RESS-procedure, forming the particles directly into the thereby gelated liquid, was developed. All three methods gave yields from 1% to 5.8%, depending on the techniques employed. The triterpene composition of the three extracts was comparable: all three gave more stable oleogels compared to the use of an extract obtained by organic solvent extraction. Characterizing the rheological behaviour of these gels, a faster gelling effect was seen together with a lower concentration of the extract required for the gel formation with the supercritical fluid (SCF-extracts. This confirms the superiority of the supercritical fluid produced extracts with regard to the oleogel forming properties.

  19. Rapid extraction of PCDD/Fs from soil and fly ash samples. Pressurized fluid extraction (PFE) and microwave-assisted extraction (MAE)

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, P.; Fabrellas, B. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain)

    2004-09-15

    The main reference extraction method in the analysis of polychlorinated dibenzop- dioxins and dibenzofurans (PCDD/Fs) is still the Soxhlet extraction. But it requires long extraction times (up to 24 hs), large volumes of hazardous organic solvents (100-300 ml) and its automation is limited. Pressurized Fluid Extraction (PFE) and Microwave-Assisted Extraction (MAE) are two relatively new extraction techniques that reduce the time and the volume of solvent required for extraction. However, very different PFE extraction conditions are found for the same enviromental matrices in the literature. MAE is not a extraction technique very applied for the analysis of PCDD/Fs yet, although it is used for the determination of other organic compounds, such as PCBs and PAHs. In this study, PFE and MAE extraction conditions were optimized to determine PCDDs y PCDFs in fly ash and soil/sediment samples. Conventional Soxhlet extraction with toluene was used to compare the extraction efficiency of both techniques.

  20. Extraction of uranium from simulated ore by the supercritical carbon dioxide fluid extraction method with nitric acid-TBP complex

    International Nuclear Information System (INIS)

    Dung, Le Thi Kim; Imai, Tomoki; Tomioka, Osamu; Nakashima, Mikio; Takahashi, Kuniaki; Meguro, Yoshihiro

    2006-01-01

    The supercritical fluid extraction (SFE) method using CO 2 as a medium with an extractant of HNO 3 -tri-n-butyl phosphate (TBP) complex was applied to extract uranium from several uranyl phosphate compounds and simulated uranium ores. An extraction method consisting of a static extraction process and a dynamic one was established, and the effects of the experimental conditions, such as pressure, temperature, and extraction time, on the extraction of uranium were ascertained. It was found that uranium could be efficiently extracted from both the uranyl phosphates and simulated ores by the SFE method using CO 2 . It was thus demonstrated that the SFE method using CO 2 is useful as a pretreatment method for the analysis of uranium in ores. (author)

  1. Solutions to criticality problems in a plutonium extraction plant

    International Nuclear Information System (INIS)

    Jouannaud, C.; Rodier, J.; Fruchard, Y.; Peyresblanques, H.; Papault, C.; Tabardel-Brian, R.

    1968-08-01

    There are two aspects to nuclear criticality safety: prevention of criticality and protection against the consequences of a possible accident: this report considers these two aspects in the case of the Marcoule Plutonium Extraction Plant. After briefly recalling the various techniques used for avoiding criticality (mass, geometry, concentration, poisoning), the authors describe their application in the plant and show in particular that, a rational use of a favorable geometry is a factor both for security and from an economic point of view. The authors then describe the inside organisation which makes it possible to obtain the necessary intrinsic safety standard right from the advance project stage, and to control the workshop safety during the operation of the plant. The second part of the report deals with the system of protection against the consequences of a possible accident: definition of a typical accident, fixing of the boundaries of a critical zone, safety alarm device, individual and collective dosimetry, evacuation plan and safety instructions. (authors) [fr

  2. Density Relaxation of Liquid-Vapor Critical Fluids Examined in Earth's Gravity

    Science.gov (United States)

    Wilkinson, R. Allen

    2000-01-01

    This work shows quantitatively the pronounced differences between the density equilibration of very compressible dense fluids in Earth's gravity and those in microgravity. The work was performed onsite at the NASA Glenn Research Center at Lewis Field and is complete. Full details are given in references 1 and 2. Liquid-vapor critical fluids (e.g., water) at their critical temperature and pressure, are very compressible. They collapse under their own weight in Earth's gravity, allowing only a thin meniscus-like layer with the critical pressure to survive. This critical layer, however, greatly slows down the equilibration process of the entire sample. A complicating feature is the buoyancy-driven slow flows of layers of heavier and lighter fluid. This work highlights the incomplete understanding of the hydrodynamics involved in these fluids.

  3. Supercritical Fluid Extraction of Seed Oil from Chinese Licorice ...

    African Journals Online (AJOL)

    NJD

    2005-12-17

    Dec 17, 2005 ... a Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Hexing Road 26, 150040, ... Carbon dioxide, the most commonly used supercritical fluid, has ... absorb the remaining water that the chloroform layer had.

  4. HPLC/MS identification of the polyphenols present in an extract of Myrtus communis L. obtained by supercritical fluid extraction

    Directory of Open Access Journals (Sweden)

    Paula Pereira

    2017-12-01

    Full Text Available In this work, we studied an extract obtained by supercritical fluid extraction (SFE using a simpler method of cosolvent (ethanol addition. Instead of using a liquid pump, which is the most common process, the ethanol was directly introduced in the extraction cell, immediately after loading the cell with the plant sample. it was our intent to investigate if this change would have any effect in the composition of the extract obtained. The experimental conditions used were: temperature 48° C, pressure 10 MPa, supercritical fluid (SCF flow rate 130.71dm3h-1 (0.238 kgh-1 and an ethanol volume of 104 cm3. The composition of the extract obtained was different from previous tests, and the compounds identified by HPLC-MS were quinic acid, quinic acid 3,5-di-O-gallate, quinic acid 3,4,5-galloyl, myricetin-galactoside gallate, quercetin-galactoside gallate, quercetin, and myricetin-galactosiderhamnoside.

  5. A parametric model for the global thermodynamic behavior of fluids in the critical region

    International Nuclear Information System (INIS)

    Luettmer-Strathmann, J.; Tang, S.; Sengers, J.V.

    1992-01-01

    The asymptotic thermodynamic behavior of fluids near the critical point is described by scaling laws with universal scaling functions that can be represented by parametric equations. In this paper, we derive a more general parametric model that incorporates the crossover from singular thermodynamic behavior near the critical point to regular classical thermodynamic behavior far away from the critical point. Using ethane as an example, we show that such a parametric crossover model yields an accurate representation of the thermodynamic properties of fluids in a large region around the critical point

  6. Steps of Supercritical Fluid Extraction of Natural Products and Their Characteristic Times

    OpenAIRE

    Sovová, H. (Helena)

    2012-01-01

    Kinetics of supercritical fluid extraction (SFE) from plants is variable due to different micro-structure of plants and their parts, different properties of extracted substances and solvents, and different flow patterns in the extractor. Variety of published mathematical models for SFE of natural products corresponds to this diversification. This study presents simplified equations of extraction curves in terms of characteristic times of four single extraction steps: internal diffusion, exter...

  7. Feasibility of ion-pair/supercritical fluid extraction of an ionic compound--pseudoephedrine hydrochloride.

    Science.gov (United States)

    Eckard, P R; Taylor, L T

    1997-02-01

    The supercritical fluid extraction (SFE) of an ionic compound, pseudoephedrine hydrochloride, from a spiked-sand surface was successfully demonstrated. The effect of carbon dioxide density (CO2), supercritical fluid composition (pure vs. methanol modified), and the addition of a commonly used reversed-phase liquid chromatographic ion-pairing reagent, 1-heptanesulfonic acid, sodium salt, on extraction efficiency was examined. The extraction recoveries of pseudoephedrine hydrochloride with the addition of the ion-pairing reagent from a spiked-sand surface were shown to be statistically greater than the extraction recoveries without the ion-pairing reagent with both pure and methanol-modified carbon dioxide.

  8. Super/Subcritical Fluid Extractions for Preparation of the Crystalline Titania

    Czech Academy of Sciences Publication Activity Database

    Matějová, Lenka; Cajthaml, Tomáš; Matěj, Z.; Benada, Oldřich; Klusoň, Petr; Šolcová, Olga

    2010-01-01

    Roč. 52, č. 2 (2010), s. 215-221 ISSN 0896-8446 R&D Projects: GA ČR GP104/09/P290; GA ČR GA104/09/0694 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z50200510 Keywords : titania * supercritical fluid extraction * pressurised fluid extraction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.986, year: 2010

  9. Association of Fluid Accumulation with Clinical Outcomes in Critically Ill Children with Severe Sepsis

    Science.gov (United States)

    Chen, Jiao; Li, Xiaozhong; Bai, Zhenjiang; Fang, Fang; Hua, Jun; Li, Ying; Pan, Jian; Wang, Jian; Feng, Xing; Li, Yanhong

    2016-01-01

    Objective To evaluate whether early and acquired daily fluid overload (FO), as well as fluctuations in fluid accumulation, were associated with adverse outcomes in critically ill children with severe sepsis. Methods This study enrolled 202 children in a pediatric intensive care unit (PICU) with severe sepsis. Early fluid overload was defined as ≥5% fluid accumulation occurring in the first 24 hours of PICU admission. The maximum daily fluid accumulation ≥5% occurring during the next 6 days in patients with at least 48 hours of PICU stay was defined as PICU-acquired daily fluid overload. The fluctuation in fluid accumulation was calculated as the difference between the maximum and the minimum daily fluid accumulation obtained during the first 7 days after admission. Results Of the 202 patients, 61 (30.2%) died during PICU stay. Among all patients, 41 (20.3%) experienced early fluid overload, including 9 with a FO ≥10%. Among patients with at least 48 hours of PICU stay (n = 154), 36 (23.4%) developed PICU-acquired daily fluid overload, including 2 with a FO ≥10%. Both early fluid overload (AOR = 1.20; 95% CI 1.08–1.33; P = 0.001; n = 202) and PICU-acquired daily fluid overload (AOR = 5.47 per log increase; 95% CI 1.15–25.96; P = 0.032; n = 154) were independent risk factors associated with mortality after adjusting for age, illness severity, etc. However, fluctuations in fluid accumulation were not associated with mortality after adjustment. Length of PICU stay increased with greater fluctuations in fluid accumulation in all patients with at least 48 hours of PICU stay (FO fluid overload achieved an area under-the-receiver-operating-characteristic curve of 0.74 (95% CI 0.65–0.82; P fluid overload were independently associated with PICU mortality in children with severe sepsis. PMID:27467522

  10. Ion-pair extraction of [3]histobadine from biological fluids

    International Nuclear Information System (INIS)

    Scasnar, V.

    1997-01-01

    A simple and specific radiometric assay was developed for determination of stobadine, a cardio protective drug, in the serum of experimental animals. It is based on a single extraction step of the radioactively labeled drug from serum into the benzene solution of dicarbolide of cobalt followed by the quantitation of the extracted radioactivity by using liquid scintillation counting. The extraction mechanism involves the ion-pair formation between the protonized molecule of stobadine and the hydrophobic, negatively charged molecule of dicarbollide of cobalt. The extraction of yield of stobadine from 1 ml of serum was 95% in the concentration range from 1 to 6000 ng/ml. The co extraction of metabolites was less than 5%. The assay was applied to determination of stobadine in serum of dogs and the data obtained were in good agreement with those obtained by high performance liquid chromatography. (author)

  11. Inferior vena cava collapsibility detects fluid responsiveness among spontaneously breathing critically-ill patients.

    Science.gov (United States)

    Corl, Keith A; George, Naomi R; Romanoff, Justin; Levinson, Andrew T; Chheng, Darin B; Merchant, Roland C; Levy, Mitchell M; Napoli, Anthony M

    2017-10-01

    Measurement of inferior vena cava collapsibility (cIVC) by point-of-care ultrasound (POCUS) has been proposed as a viable, non-invasive means of assessing fluid responsiveness. We aimed to determine the ability of cIVC to identify patients who will respond to additional intravenous fluid (IVF) administration among spontaneously breathing critically-ill patients. Prospective observational trial of spontaneously breathing critically-ill patients. cIVC was obtained 3cm caudal from the right atrium and IVC junction using POCUS. Fluid responsiveness was defined as a≥10% increase in cardiac index following a 500ml IVF bolus; measured using bioreactance (NICOM™, Cheetah Medical). cIVC was compared with fluid responsiveness and a cIVC optimal value was identified. Of the 124 participants, 49% were fluid responders. cIVC was able to detect fluid responsiveness: AUC=0.84 [0.76, 0.91]. The optimum cutoff point for cIVC was identified as 25% (LR+ 4.56 [2.72, 7.66], LR- 0.16 [0.08, 0.31]). A cIVC of 25% produced a lower misclassification rate (16.1%) for determining fluid responsiveness than the previous suggested cutoff values of 40% (34.7%). IVC collapsibility, as measured by POCUS, performs well in distinguishing fluid responders from non-responders, and may be used to guide IVF resuscitation among spontaneously breathing critically-ill patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Supercritical fluid extraction from spent coffee grounds and coffee husks: antioxidant activity and effect of operational variables on extract composition.

    Science.gov (United States)

    Andrade, Kátia S; Gonçalvez, Ricardo T; Maraschin, Marcelo; Ribeiro-do-Valle, Rosa Maria; Martínez, Julian; Ferreira, Sandra R S

    2012-01-15

    The present study describes the chemical composition and the antioxidant activity of spent coffee grounds and coffee husks extracts, obtained by supercritical fluid extraction (SFE) with CO(2) and with CO(2) and co-solvent. In order to evaluate the high pressure method in terms of process yield, extract composition and antioxidant activity, low pressure methods, such as ultrasound (UE) and soxhlet (SOX) with different organic solvents, were also applied to obtain the extracts. The conditions for the SFE were: temperatures of 313.15K, 323.15K and 333.15K and pressures from 100 bar to 300 bar. The SFE kinetics and the mathematical modeling of the overall extraction curves (OEC) were also investigated. The extracts obtained by LPE (low pressure extraction) with ethanol showed the best results for the global extraction yield (X(0)) when compared to SFE results. The best extraction yield was 15±2% for spent coffee grounds with ethanol and 3.1±04% for coffee husks. The antioxidant potential was evaluated by DPPH method, ABTS method and Folin-Ciocalteau method. The best antioxidant activity was showed by coffee husk extracts obtained by LPE. The quantification and the identification of the extracts were accomplished using HPLC analysis. The main compounds identified were caffeine and chlorogenic acid for the supercritical extracts from coffee husks. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction.

    Science.gov (United States)

    Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim

    2017-01-01

    The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%-61.85%) and oleic acid (1.64%-18.97%). Thymoquinone (0.72%-21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly ( P essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique.

  14. Supercritical fluid extraction of silicone oil from uranate microspheres prepared by sol-gel process

    International Nuclear Information System (INIS)

    Kumar, R.; Venkatakrishnan, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2005-01-01

    Supercritical fluid extraction of silicone oil from urania microspheres prepared through sol-gel route was investigated. The influence of pressure, temperature, and flow rate on the extraction efficiency was studied. Experimental conditions were optimised for the complete removal of silicone oil from urania microspheres. (author)

  15. The use of supercritical fluid extraction as a sample preparation technique for soils

    International Nuclear Information System (INIS)

    Levy, J.M.; Dolata, L.A.; Rosselli, A.C.; Ravey, R.M.

    1994-01-01

    Using off-line supercritical fluid extraction (SFE), polynuclear aromatic hydrocarbons (PAHs) were extracted at different levels from various soil and sediment matrices. Based upon GC/MS measurements a number of SFE operational parameters including pressure, temperature and flow rate, were optimized to yield the highest efficiencies with the best precision

  16. Modeling of the Kinetics of Supercritical Fluid Extraction of Lipids from Microalgae with Emphasis on Extract Desorption

    Directory of Open Access Journals (Sweden)

    Helena Sovová

    2016-05-01

    Full Text Available Microalgae contain valuable biologically active lipophilic substances such as omega-3 fatty acids and carotenoids. In contrast to the recovery of vegetable oils from seeds, where the extraction with supercritical CO2 is used as a mild and selective method, economically viable application of this method on similarly soluble oils from microalgae requires, in most cases, much higher pressure. This paper presents and verifies hypothesis that this difference is caused by high adsorption capacity of microalgae. Under the pressures usually applied in supercritical fluid extraction from plants, microalgae bind a large fraction of the extracted oil, while under extremely high CO2 pressures their adsorption capacity diminishes and the extraction rate depends on oil solubility in supercritical CO2. A mathematical model for the extraction from microalgae was derived and applied to literature data on the extraction kinetics in order to determine model parameters.

  17. Critical velocities in He II for independently varied superfluid and normal fluid velocities

    International Nuclear Information System (INIS)

    Baehr, M.L.

    1984-01-01

    Experiments were performed to measure the critical velocity in pure superflow and compare to the theoretical prediction; to measure the first critical velocity for independently varied superfluid and normal fluid velocities; and to investigate the propagation of the second critical velocity from the thermal counterflow line through the V/sub n/,-V/sub s/ quadrant. The experimental apparatus employed a thermal counterflow heater to adjust the normal fluid velocity, a fountain pump to vary the superfluid velocity, and a level sensing capacitor to measure the superfluid velocity. The results of the pure superfluid critical velocity measurements indicate that this velocity is temperature independent contrary to Schwarz's theory. It was found that the first critical velocity for independently varied V/sub n/ and V/sub s/ could be described by a linear function of V/sub n/ and was otherwise temperature independent. It was found that the second critical velocity could only be distinguished near the thermal counterflow line

  18. Supercritical Fluid Extraction (SFE) of uranium and thorium nitrates using carbon dioxide modified with phosphonates

    International Nuclear Information System (INIS)

    Pitchaiah, K.C.; Sujatha, K.; Brahmananda Rao, C.V.S.; Sivaraman, N.; Vasudeva Rao, P.R.

    2014-01-01

    Supercritical Fluid Extraction (SFE) has emerged as a powerful technique for the extraction of metal ions.The liquid like densities and gas like physical properties of supercritical fluids make them unique to act as special solvents. SFE based procedures were developed and demonstrated in our laboratory for the recovery of actinides from various matrices. In the present study, we have examined for the first time, the use of dialkylalkylphosphonates in supercritical carbon dioxide (Sc-CO 2 ) medium to study the extraction behavior of uranium and thorium nitrates. A series of phosphonates were synthesised by Michaelis-Becker reaction in our laboratory and employed for the SFE

  19. Studies on supercritical fluid extraction behaviour of uranium and thorium nitrates using amides

    International Nuclear Information System (INIS)

    Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2007-01-01

    Supercritical fluid extraction studies of uranyl nitrate and thorium nitrate in mixture were carried out using various amides such as N,N-di(2-ethylhexyl) isobutyramide (D2EHIBA),N,N-dihexyl octanamide (DHOA) and Diisooctyl Butanamide (DiOBA). These studies established a preferential extraction of uranium over thorium. Among the various amides studied, D2EHIBA offered the best rate of preferential extraction of uranium over thorium. (author)

  20. Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Stephen [SIMBOL Materials

    2014-04-30

    Executive Summary Simbol Materials studied various methods of extracting valuable minerals from geothermal brines in the Imperial Valley of California, focusing on the extraction of lithium, manganese, zinc and potassium. New methods were explored for managing the potential impact of silica fouling on mineral extraction equipment, and for converting silica management by-products into commercial products.` Studies at the laboratory and bench scale focused on manganese, zinc and potassium extraction and the conversion of silica management by-products into valuable commercial products. The processes for extracting lithium and producing lithium carbonate and lithium hydroxide products were developed at the laboratory scale and scaled up to pilot-scale. Several sorbents designed to extract lithium as lithium chloride from geothermal brine were developed at the laboratory scale and subsequently scaled-up for testing in the lithium extraction pilot plant. Lithium The results of the lithium studies generated the confidence for Simbol to scale its process to commercial operation. The key steps of the process were demonstrated during its development at pilot scale: 1. Silica management. 2. Lithium extraction. 3. Purification. 4. Concentration. 5. Conversion into lithium hydroxide and lithium carbonate products. Results show that greater than 95% of the lithium can be extracted from geothermal brine as lithium chloride, and that the chemical yield in converting lithium chloride to lithium hydroxide and lithium carbonate products is greater than 90%. The product purity produced from the process is consistent with battery grade lithium carbonate and lithium hydroxide. Manganese and zinc Processes for the extraction of zinc and manganese from geothermal brine were developed. It was shown that they could be converted into zinc metal and electrolytic manganese dioxide after purification. These processes were evaluated for their economic potential, and at the present time Simbol

  1. Supercritical fluid extraction of uranium from tissue paper matrix using organic extractants

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Bhattacharyya, A.; Pathak, P.N.; Mohapatra, P.K.; Manchanda, V.K.

    2009-01-01

    Direct extraction of dried uranyl nitrate from tissue paper matrix was carried out using supercritical carbon dioxide modified with methanol solutions of extractants such as tri-n-butyl phosphate (TBP) and di-n-hexyl octanamide (DHOA)). The effects of temperature, pressure, extractant and nitric acid concentration on the extraction of uranyl ion were investigated. (author)

  2. Towards a fluid and multiscalar governance of extractive resources ...

    African Journals Online (AJOL)

    Political geographies of oil investigate extractive value chains with an emphasis on governance and scales, analysing the role that territories and especially spatial networks play in these dynamics. While underlining the limits and gaps of territorial governance, as it is nowadays theorized and used in the academic literature, ...

  3. Supercritical Fluid Extraction of Seed Oil from Chinese Licorice ...

    African Journals Online (AJOL)

    CO2) extraction. The oil was analysed by GC-MS after methylation. Compounds were identified according to their mass spectra (EI, 70 eV) by comparison with authentic reference substances and literature data. Five fatty acids were identified, with ...

  4. Squalene Extraction by Supercritical Fluids from Traditionally Puffed Amaranthus hypochondriacus Seeds

    Directory of Open Access Journals (Sweden)

    Teresa Rosales-García

    2017-01-01

    Full Text Available Extraction of squalene, a potent natural antioxidant, from puffed A. hypochondriacus seeds was performed by supercritical fluid extraction (SCFE; besides, to have a blank for comparison, extraction was performed also by Soxhlet method using organic solvents (hexane. Chemical proximal composition and seed morphology were determined in raw, puffed, and SCFE-extracted seeds. Extracts were obtained with a 500 mL capacity commercial supercritical extractor and performed between 10 and 30 MPa at 313, 323, and 333 K under constant CO2 flow of 0.18 kg CO2/h during 8 h. The squalene content was determined and the fatty acids present in the extracts were identified by GC-MS. The extract obtained by SCFE from puffed amaranth seeds reached 460 ± 28.1 g/kg squalene in oily extract at 313 K/20 MPa.

  5. Selective Recovery of Critical Materials from Geothermal Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Halstenberg, Phillip W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Karamalidis, Athanasios [Anactisis, LLC, Pittsburgh, PA (United States); Noack, Clint [Anactisis, LLC, Pittsburgh, PA (United States)

    2018-03-08

    This project, funded by the DOE Small Business Voucher program, assisted the partner with the development of ion-imprinted adsorbents for the selective extraction of rare earth elements (REE) from geothermal brines. This effort seeks to utilize a currently untapped resource thus diversifying the U. S. REE market. The initial stage of the program focused on the adsorbent developed by partner and optimization of the adsorbent. The adsorbent was based upon an ion imprinted ligand that was copolymerized with a crosslinker to generate the REE selectivity. During this task, the adsorbents were irradiated via electron beam at the NEO Beam Electron Beam Crosslinking Facility (Mercury Plastics, Middlefield, OH) to induce further crosslinking. The irradiation crosslinked adsorbents exhibited no difference in the Fourier transform infrared spectroscopic (FTIR) analysis suggesting inefficiency in the crosslinking. In the later stage of the effort, a new method was proposed and studied at ORNL involving a new partnership between the partner and a commercial polymer vender. This resulted in a new material being developed which allows the partner to utilize a commercial support and integrate the synthesis into a production-ready product stream. This will enhance the route to commercialization for the partner resulting in a quicker market penetration for the product. The new adsorbent exhibits selectivity for REE over transition metals commonly found within geothermal brines. Further optimization is required for enhanced selectivity, capacity, and intra-lanthanide separations.

  6. Critical parameters of hard-core Yukawa fluids within the structural theory

    Science.gov (United States)

    Bahaa Khedr, M.; Osman, S. M.

    2012-10-01

    A purely statistical mechanical approach is proposed to account for the liquid-vapor critical point based on the mean density approximation (MDA) of the direct correlation function. The application to hard-core Yukawa (HCY) fluids facilitates the use of the series mean spherical approximation (SMSA). The location of the critical parameters for HCY fluid with variable intermolecular range is accurately calculated. Good agreement is observed with computer simulation results and with the inverse temperature expansion (ITE) predictions. The influence of the potential range on the critical parameters is demonstrated and the universality of the critical compressibility ratio is discussed. The behavior of the isochoric and isobaric heat capacities along the equilibrium line and the near vicinity of the critical point is discussed in details.

  7. Studies on supercritical fluid extraction of uranium and thorium from liquid and solid matrix

    International Nuclear Information System (INIS)

    Kumar, Pradeep; Pal, Ankita; Saxena, M.K.; Ramakumar, K.L.

    2006-05-01

    Supercritical fluid extraction (SFE) is being widely used in pharmaceutical and food industry. Because of its simplicity, ease of operation and more importantly the reduction in the analytical waste generation, this technique is being viewed as a potential application technique in nuclear industry also. CO 2 is employed as supercritical fluid (SCF) as it is easily recyclable, non-toxic, chemically inert, radiochemically stable and inexpensive. Radioanalytical chemistry section (Radiochemistry and Isotope group) has recently procured a supercritical fluid extraction/chromatography system. The present report describes the work carried out on the system. Detailed study on uranium and thorium extraction from highly acidic medium and tissue paper matrix has been carried out. Direct dissolution and extraction of uranium compounds employing SCF has been carried out. CO 2 was employed as supercritical fluid along with very small amount of Tri n-butyl phosphate (TBP) and Tri n-octyl phosphine oxide (TOPO) as co-solvents. The effect of various operating parameters like CO 2 flow rate, co-solvent percentage, temperature and pressure on extraction was investigated and parameters for maximum extraction were optimized. For comparison, the modes of extraction viz. static and dynamic and modes of complexation viz. in-situ and online were studied. Uranium extraction of ∼98% has been achieved from nitric acid medium employing TBP as co-solvent in 30 minutes extraction time, whereas with TOPO ∼99% uranium extraction could be achieved. Uranium from tissue paper matrix could be extracted upto the extent of 98% with TOPO as co-solvent whereas with TBP extraction of (66.83± 9.80)% was achievable. Direct dissolution of UO 2 , U 3 O 8 , U metal, U-Al alloy solids into SCF CO 2 was carried out employing TBP-HNO 3 complex and SFE of uranium was performed using TBP as co-solvent. UO 2 and U 3 O 8 solids could be dissolved within 20 minutes and extraction of ∼98% was achieved. For U

  8. Correction of compressor critical speed condition through fluid-film bearing optimization

    International Nuclear Information System (INIS)

    Spencer, J.W.; Obeid, V.E.

    1985-01-01

    A critical speed condition for an overhung centrifugal compressor was corrected through a relatively minor bearing modification. The resonant condition was evaluated analytically through rotor dynamic analyses (stability and forced response) which included fluid film bearing characterization and rotor model generation (experimentally evaluated by model analysis). The importance of adequate specification, inspection, and analytical characterization, of fluid film bearings are discussed. The effects of unbalance on the stability of plain journal bearings are also commented upon. 1 ref., 6 figs

  9. Recovery of environmental analytes from clays and soils by supercritical fluid extracting/gas chromatography

    International Nuclear Information System (INIS)

    Emery, A.P.; Chesler, S.N.; MacCrehan, W.A.

    1992-01-01

    This paper reports on Supercritical Fluid Extraction (SFE) which promises to provide rapid extractions of organic analytes from environmental sample types without the use of hazardous solvents. In addition, SFE protocols using commercial instrumentation can be automated lowering analysis costs. Because of these benefits, we are investigating SFE as an alternative to the solvent extraction (eg. Soxhlet and sonication) techniques required in many EPA test procedures. SFE, using non-polar carbon dioxide as well as more polar supercritical fluids, was used to determine n-alkane hydrocarbons and polynuclear aromatic hydrocarbons (PAHs) in solid samples. The extraction behavior of these analyte classes from environmentally-contaminated soil matrices and model soil and clay matrices was investigated using a SFE apparatus in which the extracted analytes were collected on a solid phase trap and then selectively eluted with a solvent. The SFE conditions for quantitative recovery of n-alkane hydrocarbons in diesel fuel from a series of clays and soils were determined using materials prepared at the 0.02% level with diesel fuel oil in order to simplify analyte collection and analysis after extraction. The effect of extraction parameters including temperature, fluid flow rate and modifier addition were investigated by monitoring the amount of diesel fuel extracted as a function of time

  10. Supercritical fluid extraction of 2-alkylcyclobutanones formed from triglycerides by irradiation

    International Nuclear Information System (INIS)

    Horvatovich, P.; Farkas, J.; Hasselmann, C.; Marchioni, E.

    1998-01-01

    Complete text of publication follows. Radiation processing is employed to improve the microbiological safety of foodstuffs, and at the same time to suit the 'minimal processing' principle. However adequate information for consumers to enable their free choices requires specific detection methods of irradiation processes. For this purpose one of the most suitable methods is the detection of 2-alkylcyclobutanones which are formed - according to the present knowledge - only by irradiation from the fatty acid part of triglycerides. For detection of these compounds a European Norm (EN 1785) has been established. The method consists of Sohxlet extraction of fatty acids from the food sample, separation of 2-alkylcyclobutanones from other fatty components with liquid chromatography on Florisil TM , and the GC-MS analysis of the appropriate fraction with single ion monitoring (SIM) monitoring of 98 and 112 ions. But this method has a relatively high detection limit (∼1 kGy), it is time consuming and needs costly and sophisticated apparates. To improve the detection of 2-alkylcyclobutanones we replaced the Sohxlet extraction step with a supercritical fluid extraction. We optimised trapping and extraction parameters. It was found that supercritical fluid extraction is more selective than Sohxlet extraction used in the standard protocol. The extract obtained by supercritical fluid extraction contains less quantity and number of detection-disturbing components. This work is the first step towards decreasing the detection limit which will be the derivatization of 2-alkylcyclobutanones with halogen-containing reagent, and detection of derivatives with electron-capture detector (ECD)

  11. Antioxidant effects of supercritical fluid garlic extracts in canned artichokes.

    Science.gov (United States)

    Bravi, E; Marconi, O; Sileoni, V; Rollo, M R; Perretti, G

    2016-10-01

    The effects of adding supercritical carbon dioxide extracts of garlic (at two different concentrations of allicin) on select chemical indices in extra-virgin olive oil used to canned artichokes were studied. Tests were performed after processing and over a storage period of 1 year. A sensorial test was also conducted on the canned artichokes to establish the impact on flavor (in particular perceptions of rancidity and garlic flavor). Acidity, peroxide levels and p -anisidine values were measured as quality analytical parameters. Radical scavenging activity was also evaluated using the DPPH assay. The samples containing supercritical garlic extracts were compared with several other formulations, including control sample (prepared by mixing artichokes with powdered chili pepper and fresh garlic), artichokes with only garlic or only chili pepper, and artichokes treated with the synthetic antioxidant BHT. The results suggested that the allicin extract may be superior, or at least comparable, with BHT in preserving canned artichokes as demonstrated by its positive effects on oxidative stability and sensory profile.

  12. On-line supercritical fluid extraction-supercritical fluid chromatography-mass spectrometry of polycyclic aromatic hydrocarbons in soil.

    Science.gov (United States)

    Wicker, A Paige; Carlton, Doug D; Tanaka, Kenichiro; Nishimura, Masayuki; Chen, Vivian; Ogura, Tairo; Hedgepeth, William; Schug, Kevin A

    2018-06-01

    On-line supercritical fluid extraction - supercritical fluid chromatography - mass spectrometry (SFE-SFC-MS) has been applied for the determination of polycyclic aromatic hydrocarbons (PAHs) in soil. The purpose of this study was to develop and validate the first on-line SFE-SFC-MS method for the quantification of PAHs in various types of soil. By coupling the sample extraction on-line with chromatography and detection, sample preparation is minimized, diminishing sample loss and contamination, and significantly decreasing the required extraction time. Parameters for on-line extraction coupled to chromatographic analysis were optimized. The method was validated for concentrations of 10-1500 ng of PAHs per gram of soil in Certified Reference Material (CRM) sediment, clay, and sand with R 2  ≥ 0.99. Limits of detection (LOD) were found in the range of 0.001-5 ng/g, and limits of quantification (LOQ) in the range of 5-15 ng/g. The method developed in this study can be effectively applied to the study of PAHs in the environment, and may lay the foundation for further applications of on-line SFE-SFC-MS. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. MEASUREMENT OF PYRETHROID RESIDUES IN ENVIRONMENTAL AND FOOD SAMPLES BY ENHANCED SOLVENT EXTRACTION/SUPERCRITICAL FLUID EXTRACTION COUPLED WITH GAS CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY

    Science.gov (United States)

    The abstract summarizes pyrethorid methods development research. It provides a summary of sample preparation and analytical techniques such as supercritical fluid extraction, enhance solvent extraction, gas chromatography and tandem mass spectrometry.

  14. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    International Nuclear Information System (INIS)

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-01-01

    A method is described for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs

  15. Application of FTA technology to extraction of sperm DNA from mixed body fluids containing semen.

    Science.gov (United States)

    Fujita, Yoshihiko; Kubo, Shin-ichi

    2006-01-01

    FTA technology is a novel method designed to simplify the collection, shipment, archiving and purification of nucleic acids from a wide variety of biological sources. In this study, we report a rapid and simple method of extracting DNA from sperm when body fluids mixed with semen were collected using FTA cards. After proteinase K digestion of the sperm and body fluid mixture, the washed pellet suspension as the sperm fraction and the concentrated supernatant as the epithelial cell fraction were respectively applied to FTA cards containing DTT. The FTA cards were dried, then directly added to a polymerase chain reaction (PCR) mix and processed by PCR. The time required from separation of the mixed fluid into sperm and epithelial origin DNA extractions was only about 2.5-3h. Furthermore, the procedure was extremely simple. It is considered that our designed DNA extraction procedure using an FTA card is available for application to routine work.

  16. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    Science.gov (United States)

    Wai, Chien M.; Smart, Neil G.; Lin, Yuehe

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent is described. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  17. Optimization of conditions for supercritical fluid extraction of flavonoids from hops (Humulus lupulus L.)*

    Science.gov (United States)

    He, Guo-qing; Xiong, Hao-ping; Chen, Qi-he; Ruan, Hui; Wang, Zhao-yue; Traoré, Lonseny

    2005-01-01

    Waste hops are good sources of flavonoids. Extraction of flavonoids from waste hops (SC-CO2 extracted hops) using supercritical fluids technology was investigated. Various temperatures, pressures and concentrations of ethanol (modifier) and the ratio (w/w) of solvent to material were tested in this study. The results of single factor and orthogonal experiments showed that at 50 °C, 25 MPa, the ratio of solvent to material (50%), ethanol concentration (80%) resulted in maximum extraction yield flavonoids (7.8 mg/g). HPLC-MS analysis of the extracts indicated that flavonoids obtained were xanthohumol, the principal prenylflavonoid in hops. PMID:16187413

  18. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction

    Directory of Open Access Journals (Sweden)

    Ghahramanloo KH

    2017-07-01

    Full Text Available Kourosh Hasanzadeh Ghahramanloo,1 Behnam Kamalidehghan,2 Hamid Akbari Javar,3 Riyanto Teguh Widodo,1 Keivan Majidzadeh,4 Mohamed Ibrahim Noordin1 1Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 2Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology (NIGEB, 3Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS, 4Breast Cancer Research Center (BCRC Academic Center for Education, Culture and Research, Tehran, Iran Abstract: The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%–61.85% and oleic acid (1.64%–18.97%. Thymoquinone (0.72%–21.03% was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly (P<0.05 higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique. Keywords: Nigella sativa L., essential oil extraction, supercritical fluid extraction, solvent extraction, fatty acid composition, thymoquinone, linoleic acid

  19. Association of Fluid Accumulation with Clinical Outcomes in Critically Ill Children with Severe Sepsis.

    Directory of Open Access Journals (Sweden)

    Jiao Chen

    Full Text Available To evaluate whether early and acquired daily fluid overload (FO, as well as fluctuations in fluid accumulation, were associated with adverse outcomes in critically ill children with severe sepsis.This study enrolled 202 children in a pediatric intensive care unit (PICU with severe sepsis. Early fluid overload was defined as ≥5% fluid accumulation occurring in the first 24 hours of PICU admission. The maximum daily fluid accumulation ≥5% occurring during the next 6 days in patients with at least 48 hours of PICU stay was defined as PICU-acquired daily fluid overload. The fluctuation in fluid accumulation was calculated as the difference between the maximum and the minimum daily fluid accumulation obtained during the first 7 days after admission.Of the 202 patients, 61 (30.2% died during PICU stay. Among all patients, 41 (20.3% experienced early fluid overload, including 9 with a FO ≥10%. Among patients with at least 48 hours of PICU stay (n = 154, 36 (23.4% developed PICU-acquired daily fluid overload, including 2 with a FO ≥10%. Both early fluid overload (AOR = 1.20; 95% CI 1.08-1.33; P = 0.001; n = 202 and PICU-acquired daily fluid overload (AOR = 5.47 per log increase; 95% CI 1.15-25.96; P = 0.032; n = 154 were independent risk factors associated with mortality after adjusting for age, illness severity, etc. However, fluctuations in fluid accumulation were not associated with mortality after adjustment. Length of PICU stay increased with greater fluctuations in fluid accumulation in all patients with at least 48 hours of PICU stay (FO <5%, 5%-10% vs. ≥10%: 4 [3-8], 7 [4-11] vs. 10 [6-16] days; P <0.001; n = 154 and in survivors (4 [3-8], 7 [5-11] vs. 10 [5-15] days; P <0.001; n = 121. Early fluid overload achieved an area under-the-receiver-operating-characteristic curve of 0.74 (95% CI 0.65-0.82; P <0.001; n = 202 for predicting mortality in patients with severe sepsis, with a sensitivity of 67.2% and a specificity of 80.1% at the

  20. Offline combination of pressurized fluid extraction and electron paramagnetic resonance spectroscopy for antioxidant activity of grape skin extracts assessment

    Czech Academy of Sciences Publication Activity Database

    Polovka, M.; Šťavíková, Lenka; Hohnová, Barbora; Karásek, Pavel; Roth, Michal

    2010-01-01

    Roč. 1217, č. 51 (2010), s. 7990-8000 ISSN 0021-9673 R&D Projects: GA ČR GA203/08/1536; GA MŠk LC06023 Institutional research plan: CEZ:AV0Z40310501 Keywords : pressurized fluid extraction * electron paramagnetic resonance spectroscopy * antioxidant activity Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.194, year: 2010

  1. Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources.

    Science.gov (United States)

    Akanda, Mohammed Jahurul Haque; Sarker, Mohammed Zaidul Islam; Ferdosh, Sahena; Manap, Mohd Yazid Abdul; Ab Rahman, Nik Norulaini Nik; Ab Kadir, Mohd Omar

    2012-02-10

    Supercritical fluid extraction (SFE), which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO₂ refers to supercritical fluid extraction (SFE) that uses carbon dioxide (CO₂) as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO₂) extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.

  2. Applications of Supercritical Fluid Extraction (SFE of Palm Oil and Oil from Natural Sources

    Directory of Open Access Journals (Sweden)

    Mohd Omar Ab Kadir

    2012-02-01

    Full Text Available Supercritical fluid extraction (SFE, which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO2 refers to supercritical fluid extraction (SFE that uses carbon dioxide (CO2 as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO2 extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.

  3. Effect of solvent type and ratio on betacyanins and antioxidant activity of extracts from Hylocereus polyrhizus flesh and peel by supercritical fluid extraction and solvent extraction.

    Science.gov (United States)

    Fathordoobady, Farahnaz; Mirhosseini, Hamed; Selamat, Jinap; Manap, Mohd Yazid Abd

    2016-07-01

    The main objective of the present study was to investigate the effect of solvent type and ratio as well as the extraction techniques (i.e. supercritical fluid extraction (SFE) and conventional solvent extraction) on betacyanins and antioxidant activity of the peel and fresh extract from the red pitaya (Hylocereus polyrhizus). The peel and flesh extracts obtained by SFE at 25MPa pressure and 10% EtOH/water (v/v) mixture as a co-solvent contained 24.58 and 91.27mg/100ml total betacyanin, respectively; while the most desirable solvent extraction process resulted in a relatively higher total betacyanin in the peel and flesh extracts (28.44 and 120.28mg/100ml, respectively). The major betacyanins identified in the pitaya peel and flesh extracts were betanin, isobetanin, phyllocactin, butyrylbetanin, isophyllocactin and iso-butyrylbetanin. The flesh extract had the stronger antioxidant activity than the peel extract when the higher proportion of ethanol to water (E/W) was applied for the extraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Characterization of Linum usitatissimum L. oil obtained from different extraction technique and in vitro antioxidant potential of supercritical fluid extract

    Science.gov (United States)

    Chauhan, Rishika; Chester, Karishma; Khan, Yasmeen; Tamboli, Ennus Tajuddin; Ahmad, Sayeed

    2015-01-01

    Aim: Present investigation was aimed to characterize the fixed oil of Linum usitatissimum L. using five different extraction methods: Supercritical fluid extraction (SFE), ultrasound-assistance, soxhlet extraction, solvent extraction, and three phase partitioning method. Materials and Methods: The SFE conditions (temperature, pressure, and volume of CO2) were optimized prior for better yield. The extracted oils were analyzed and compared for their physiochemical parameters, high performance thin layer chromatography (HPTLC), gas chromatography-mass spectrometry (GC-MS), and Fourier-transformed infrared spectroscopy (FT-IR) fingerprinting. Antioxidant activity was also determined using 1,1-diphenyl-2-picrylhydrazyl and superoxide scavenging method. Result: The main fatty acids were α-linolenic acid, linoleic acid, palmitic acid, and stearic acid as obtained by GC-MS. HPTLC analysis revealed the presence of similar major components in chromatograms. Similarly, the pattern of peaks, as obtained in FT-IR and GC-MS spectra of same oils by different extraction methods, were superimposable. Conclusion: Analysis reported that the fixed oil of L. usitatissimum L. is a good source of n-3 fatty acid with the significant antioxidant activity of oil obtained from SFE extraction method. PMID:26681884

  5. Characterization of Linum usitatissimum L. oil obtained from different extraction technique and in vitro antioxidant potential of supercritical fluid extract

    Directory of Open Access Journals (Sweden)

    Rishika Chauhan

    2015-01-01

    Full Text Available Aim: Present investigation was aimed to characterize the fixed oil of Linum usitatissimum L. using five different extraction methods: Supercritical fluid extraction (SFE, ultrasound-assistance, soxhlet extraction, solvent extraction, and three phase partitioning method. Materials and Methods: The SFE conditions (temperature, pressure, and volume of CO2 were optimized prior for better yield. The extracted oils were analyzed and compared for their physiochemical parameters, high performance thin layer chromatography (HPTLC, gas chromatography-mass spectrometry (GC-MS, and Fourier-transformed infrared spectroscopy (FT-IR fingerprinting. Antioxidant activity was also determined using 1,1-diphenyl-2-picrylhydrazyl and superoxide scavenging method. Result: The main fatty acids were α-linolenic acid, linoleic acid, palmitic acid, and stearic acid as obtained by GC-MS. HPTLC analysis revealed the presence of similar major components in chromatograms. Similarly, the pattern of peaks, as obtained in FT-IR and GC-MS spectra of same oils by different extraction methods, were superimposable. Conclusion: Analysis reported that the fixed oil of L. usitatissimum L. is a good source of n-3 fatty acid with the significant antioxidant activity of oil obtained from SFE extraction method.

  6. Optimization of microwave-assisted extraction and supercritical fluid extraction of carbamate pesticides in soil by experimental design methodology.

    Science.gov (United States)

    Sun, Lei; Lee, Hian Kee

    2003-10-03

    Orthogonal array design (OAD) was applied for the first time to optimize microwave-assisted extraction (MAE) and supercritical fluid extraction (SFE) conditions for the analysis of four carbamates (propoxur, propham, methiocarb, chlorpropham) from soil. The theory and methodology of a new OA16 (4(4)) matrix derived from a OA16 (2(15)) matrix were developed during the MAE optimization. An analysis of variance technique was employed as the data analysis strategy in this study. Determinations of analytes were completed using high-performance liquid chromatography (HPLC) with UV detection. Four carbamates were successfully extracted from soil with recoveries ranging from 85 to 105% with good reproducibility (approximately 4.9% RSD) under the optimum MAE conditions: 30 ml methanol, 80 degrees C extraction temperature, and 6-min microwave heating. An OA8 (2(7)) matrix was employed for the SFE optimization. The average recoveries and RSD of the analytes from spiked soil by SFE were 92 and 5.5%, respectively except for propham (66.3+/-7.9%), under the following conditions: heating for 30 min at 60 degrees C under supercritical CO2 at 300 kg/cm2 modified with 10% (v/v) methanol. The composition of the supercritical fluid was demonstrated to be a crucial factor in the extraction. The addition of a small volume (10%) of methanol to CO2 greatly enhanced the recoveries of carbamates. A comparison of MAE with SFE was also conducted. The results indicated that >85% average recoveries were obtained by both optimized extraction techniques, and slightly higher recoveries of three carbamates (propoxur, propham and methiocarb) were achieved using MAE. SFE showed slightly higher recovery for chlorpropham (93 vs. 87% for MAE). The effects of time-aged soil on the extraction of analytes were examined and the results obtained by both methods were also compared.

  7. Instrument for Solvent Extraction and Analysis (ISEE) of Organics from Regolith Simulant Using Supercritical Fluid Extraction and Chromatography

    Science.gov (United States)

    Franco, Carolina; Hintze, Paul E.

    2017-01-01

    ISEE is an instrument with the potential to perform extractions from regolith found on the surface of asteroids and planets, followed by characterization and quantitation of the extracts using supercritical fluid extraction (SFE) and chromatography (SFC). SFE is a developed technique proven to extract a wide range of organic compounds. SFC is similar to High Performance Liquid Chromatography (HPLC) but has the advantage of performing chiral separations without needing to derivatize the chiral compounds. CO2 will be the solvent for both stages as it is readily available in the Mars atmosphere. ISEE will capture CO2 from the environment, and use it for SFE and SFC. If successful, this would allow ISEE to perform analysis of organic compounds without using consumables. This paper will present results on a preliminary, proof-of-principle effort to use SFE and SFC to extract and analyze lunar regolith simulant spiked with organic compounds representing a range of organics that ISEE would expect to characterize. An optimization of variables for the extraction of the organics from the spiked regolith was successfully developed, using 138 bar pressure and 40 C temperature. The extraction flow rate was optimized at 2% SLPM with 30% methanol modifier. The extractions were successful with a value of 77.3+/- 0.9% of organics extracted. However, the recovery of organics after the extraction was very low with only 48.5+/-14.2%. Moreover, three columns were selected to analyze multiple samples at a time; two of them are Viridis HSS C18 SB and Torus DIOL, and the third column, specific for chiral separations, has not yet been selected yet.

  8. A Review of Critical Conditions for the Onset of Nonlinear Fluid Flow in Rock Fractures

    Directory of Open Access Journals (Sweden)

    Liyuan Yu

    2017-01-01

    Full Text Available Selecting appropriate governing equations for fluid flow in fractured rock masses is of special importance for estimating the permeability of rock fracture networks. When the flow velocity is small, the flow is in the linear regime and obeys the cubic law, whereas when the flow velocity is large, the flow is in the nonlinear regime and should be simulated by solving the complex Navier-Stokes equations. The critical conditions such as critical Reynolds number and critical hydraulic gradient are commonly defined in the previous works to quantify the onset of nonlinear fluid flow. This study reviews the simplifications of governing equations from the Navier-Stokes equations, Stokes equation, and Reynold equation to the cubic law and reviews the evolutions of critical Reynolds number and critical hydraulic gradient for fluid flow in rock fractures and fracture networks, considering the influences of shear displacement, normal stress and/or confining pressure, fracture surface roughness, aperture, and number of intersections. This review provides a reference for the engineers and hydrogeologists especially the beginners to thoroughly understand the nonlinear flow regimes/mechanisms within complex fractured rock masses.

  9. Supercritical fluid extraction of γ-Pyrones from Ammi visnaga L. fruits

    Directory of Open Access Journals (Sweden)

    Mokhtar Bishr

    2018-06-01

    Full Text Available Extraction with supercritical fluid technique has proved to be effective in many applications including extraction and separation of various active principals from medicinal plants. It was used due to its advantages especially safety, specificity, selectivity and ease of component recovery.Ammi visnaga, L. belongs to the family Apiaceae. The fruits are used specifically for the treatment of kidney stones depending on its γ-Pyrones (mainly khellin and visnagin [2]. The supercritical fluid extraction technique of khellin and visnagin was investigated and the operating conditions for their extraction were optimized. The effect of different pressure (150, 200, 300, 400 and 500 bars, temperature (35, 40, 45, 50 and 55 °C, and particle sizes of the raw material (0.5, 1, 1.4 mm and entire fruits on the extract yield was studied under dynamic conditions for extraction for a run time of 90 min. Optimum supercritical extraction condition was found to be 200 bars at 45 °C and optimum particle size was found to be 1.4 mm. The yield is yellowish white bitter powder and measures 1.74% w/w relative to the dried weight of the fruits containing 38.414% w/w average γ-Pyrones content of which 29.4%w/w khellin, and 9.014%w/w visnagin.The obtained extracts were analyzed by reversed phase HPLC. Keywords: Ammi visnaga fruits, γ-Pyrones (khellin and visnagin, Supercritical fluid extraction and HPLC

  10. Modeling the Supercritical Fluid Extraction of Essential Oils from Plant Materials

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2012-01-01

    Roč. 1250, SI (2012), s. 27-33 ISSN 0021-9673 R&D Projects: GA TA ČR TA01010578 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * essential oils * model for kinetics Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.612, year: 2012

  11. Steps of Supercritical Fluid Extraction of Natural Products and Their Characteristic Times

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2012-01-01

    Roč. 66, SI (2012), s. 73-79 ISSN 0896-8446 R&D Projects: GA MŠk 2B06049 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * vegetable oils * essential oils Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.732, year: 2012

  12. Broken-and-Intact Cell Model for Supercritical Fluid Extraction: Its Origin and Limits.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2017-01-01

    Roč. 129, SI (2017), s. 3-8 ISSN 0896-8446. [Iberoamerican Conference on Supercritical Fluids ProSCiba 2016 /4./. Vina del Mar, 28.03.2016-01.04.2016] Institutional support: RVO:67985858 Keywords : modelling * extraction kinetics * supercritical CO2 Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.991, year: 2016

  13. Preliminary analysis of proton magnetic resonance 1D spectra of cerebrospinal fluid and brain cancer extracts

    International Nuclear Information System (INIS)

    Toczylowska, B.; Jozwik, A.; Kierul, K.; Matysiak, Z.; Sidor, M.; Wojcik, J.

    1999-01-01

    In series of cerebrospinal fluid samples from 25 patients proton spectra of magnetic resonance were measured. The spectra were measured also for series of brain tumor tissue extracts received from another 25 patients. This paper presents an attempt to apply statistical methods of image recognition for spectra analysis of the two measured series

  14. Supercritical Fluid Extraction of Minor Components of Vegetable Oils: beta-Sitosterol

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena; Galushko, A.A.; Stateva, R.P.; Rochová, Kristina; Sajfrtová, Marie; Bártlová, Milena

    2010-01-01

    Roč. 101, č. 2 (2010), s. 201-209 ISSN 0260-8774 R&D Projects: GA MŠk 2B06024 Institutional research plan: CEZ:AV0Z40720504 Keywords : supercritical fluid extraction * sea buckthorn oil * beta-sitosterol Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.168, year: 2010

  15. A Novel Model for Multicomponent Supercritical Fluid Extraction and its Application to Ruta graveolens.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena; Sajfrtová, Marie; Stateva, R.P.

    2017-01-01

    Roč. 120, Part 1 (2017), s. 102-112 ISSN 0896-8446 R&D Projects: GA MŠk 2B06049 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * multicomponent equilibrium * kinetics Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.991, year: 2016

  16. Supercritical fluid extraction-capillary gas chromatography: on-line coupling with a programmed temperature vaporizer

    NARCIS (Netherlands)

    Houben, R.J.; Janssen, J.G.M.; Leclercq, P.A.; Rijks, J.A.; Cramers, C.A.M.G.

    1990-01-01

    A simple and versatile system is described for the on-line coupling of SFE to capillary GC. The interfacing consists of a programmed temperature vaporizer (PTV) injector. With this injector it is possible to combine solute trapping, elimination of a high flow of extraction fluid, and quantitative

  17. Investigation of parameters affecting the online combination of supercritical fluid extraction with capillary gas chromatography

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1996-01-01

    Two different injectors, a split/splitless injector and a programmed temperature vaporizer (PTV) injector were investigated as the interface in on-line supercritical fluid extraction (SFE)-capillary gas chromatography (cGC). The parameters affecting the chromatographic peak shapes as well as the

  18. Evaluation of various Crown ethers for the supercritical fluid extraction of uranium from nitric acid medium

    International Nuclear Information System (INIS)

    Kumar, Pradeep; Rao, Ankita; Ramakumar, K.L.

    2009-01-01

    Various crowns have been evaluated for supercritical fluid extraction of uranium from nitric acid medium employing HPFOA as counter ion. Uranium extraction efficiency was found to be influenced by cavity size of crown ether and nature of substituents. Complexation tendency of UO 2 2+ increases with increasing cavity size of crown ether. Electron withdrawing substituents decreased the extraction efficiency which could be attributed to decrease in the basicity of four oxygen atoms and hence their bonding ability. Whereas electron donating substituents increased the efficiency due to increases in basicity of oxygen atoms and hence in increase in bonding ability. (author)

  19. The effects of an annular fluid on the critical speed of a rotating shaft

    International Nuclear Information System (INIS)

    Guidez, J.; Axisa; Gibert; Girard; Fardeau.

    1981-11-01

    Prediction of vibrations of rotors when passing through the flexural critical velocities is important for industrial applications. Pumps of nuclear reactors are a typical example characterized by a rotor which rotates at relatively low speed in a dense fluid like water or sodium. In such configurations critical velocities and natural frequencies of the equivalent beam system may differ significantly, mainly because of fluids effects. A brief review of the physical mechanisms involved is presented and a numerical code: ROTOR, based on the finite element method, is described which allows for a linear analysis of rotors, taking into account also the non conservative forces associated with the gyroscopic and the fluid effects. Finally the practical importance of fluid is emphasized by some experimental results obtained on two pump-shaft models working in water. Results are discussed in relation with the code expectations. For completely immersed rotors the computed critical velocities are found to be in good agreement with the experimental values. However for partially immersed rotors further experimental and theoretical work is still needed

  20. An Analytical Model for Assessing Stability of Pre-Existing Faults in Caprock Caused by Fluid Injection and Extraction in a Reservoir

    Science.gov (United States)

    Wang, Lei; Bai, Bing; Li, Xiaochun; Liu, Mingze; Wu, Haiqing; Hu, Shaobin

    2016-07-01

    Induced seismicity and fault reactivation associated with fluid injection and depletion were reported in hydrocarbon, geothermal, and waste fluid injection fields worldwide. Here, we establish an analytical model to assess fault reactivation surrounding a reservoir during fluid injection and extraction that considers the stress concentrations at the fault tips and the effects of fault length. In this model, induced stress analysis in a full-space under the plane strain condition is implemented based on Eshelby's theory of inclusions in terms of a homogeneous, isotropic, and poroelastic medium. The stress intensity factor concept in linear elastic fracture mechanics is adopted as an instability criterion for pre-existing faults in surrounding rocks. To characterize the fault reactivation caused by fluid injection and extraction, we define a new index, the "fault reactivation factor" η, which can be interpreted as an index of fault stability in response to fluid pressure changes per unit within a reservoir resulting from injection or extraction. The critical fluid pressure change within a reservoir is also determined by the superposition principle using the in situ stress surrounding a fault. Our parameter sensitivity analyses show that the fault reactivation tendency is strongly sensitive to fault location, fault length, fault dip angle, and Poisson's ratio of the surrounding rock. Our case study demonstrates that the proposed model focuses on the mechanical behavior of the whole fault, unlike the conventional methodologies. The proposed method can be applied to engineering cases related to injection and depletion within a reservoir owing to its efficient computational codes implementation.

  1. Analysis of Critical Thinking Skills on The Topic of Static Fluid

    Science.gov (United States)

    Puspita, I.; Kaniawati, I.; Suwarma, I. R.

    2017-09-01

    This study aimed to know the critical thinking skills profil of senior high school students. This research using a descriptive study to analysis student test results of critical thinking skill of 40 students XI grade in one of the senior high school in Bogor District. The method used is survey research with sample determined by purposive sampling technique. The instrument used is test of critical thinking skill by 5 indicators on static fluid topics. Questions consist of 11 set. It is has been developed by researcher and validated by experts. The results showed students critical thinking skills are still low. Is almost every indicator of critical thinking skills only reaches less than 30%. 28% for elementary clarification, 10% for the basic for decisions/basic support, 6% for inference, 6% for advanced clarification, 4% for strategies and tactics.

  2. Comparison of supercritical fluid and Soxhlet extractions for the quantification of hydrocarbons from Euphorbia macroclada.

    Science.gov (United States)

    Ozcan, Adnan; Ozcan, Asiye Safa

    2004-10-08

    This study compares conventional Soxhlet extraction and analytical scale supercritical fluid extraction (SFE) for their yields in extracting of hydrocarbons from arid-land plant Euphorbia macroclada. The plant material was firstly sequentially extracted with supercritical carbon dioxide, modified with 10% methanol (v/v) in the optimum conditions that is a pressure of 400atm and a temperature of 50 degrees C and then it was sonicated in methylene chloride for an additional 4h. E. macroclada was secondly extracted by using a Soxhlet apparatus at 30 degrees C for 8h in methylene chloride. The validated SFE was then compared to the extraction yield of E. macroclada with a Soxhlet extraction by using the Student's t-test at the 95% confidence level. All of extracts were fractionated with silica-gel in a glass column to get better hydrocarbon yields. Thus, the highest hydrocarbons yield from E. macroclada was achieved with SFE (5.8%) when it compared with Soxhlet extractions (1.1%). Gas chromatography (GC) analysis was performed to determine the quantitative hydrocarbons from plant material. The greatest quantitative hydrocarbon recovery from GC was obtained by supercritical carbon dioxide extract (0.6mgg(-1)).

  3. A microfluidic sub-critical water extraction instrument

    Science.gov (United States)

    Sherrit, Stewart; Noell, Aaron C.; Fisher, Anita; Lee, Mike C.; Takano, Nobuyuki; Bao, Xiaoqi; Kutzer, Thomas C.; Grunthaner, Frank

    2017-11-01

    This article discusses a microfluidic subcritical water extraction (SCWE) chip for autonomous extraction of amino acids from astrobiologically interesting samples. The microfluidic instrument is composed of three major components. These include a mixing chamber where the soil sample is mixed and agitated with the solvent (water), a subcritical water extraction chamber where the sample is sealed with a freeze valve at the chip inlet after a vapor bubble is injected into the inlet channels to ensure the pressure in the chip is in equilibrium with the vapor pressure and the slurry is then heated to ≤200 °C in the SCWE chamber, and a filter or settling chamber where the slurry is pumped to after extraction. The extraction yield of the microfluidic SCWE chip process ranged from 50% compared to acid hydrolysis and 80%-100% compared to a benchtop microwave SCWE for low biomass samples.

  4. Quality of Cosmetic Argan Oil Extracted by Supercritical Fluid Extraction from Argania spinosa L.

    Directory of Open Access Journals (Sweden)

    Chouaa Taribak

    2013-01-01

    Full Text Available Argan oil has been extracted using supercritical CO2. The influence of the variables pressure (100, 200, 300, and 400 bar and temperature (35, 45, 55°C was investigated. The best extraction yields were achieved at a temperature of 45°C and a pressure of 400 bar. The argan oil extracts were characterized in terms of acid, peroxide and iodine values, total tocopherol, carotene, and fatty acids content. Significant compositional differences were not observed between the oil samples obtained using different pressures and temperatures. The antioxidant capacity of the argan oil samples was high in comparison to those of walnut, almond, hazelnut, and peanut oils and comparable to that of pistachio oil. The physicochemical parameters of the extracted oils obtained by SFE, Soxhlet, and traditional methods are comparable. The technique used for oil processing does not therefore markedly alter the quality of argan oil.

  5. The assessment of two-fluid models using critical flow data

    International Nuclear Information System (INIS)

    Shome, B.; Lahey, R.T. Jr.

    1992-01-01

    The behavior of two-phase flow is governed by the thermal-hydraulic transfers occurring across phasic interfaces. If correctly formulated, two-fluid models should yield all conceivable evolutions. Moreover, some experiments may be uniquely qualified for model assessment if they can isolate important closure models. This paper is primarily concerned with the possible assessment of the virtual mass force using air-water critical flow data, in which phase-change effects do not take place. The following conclusions can be drawn from this study: (1) The closure parameters, other than those for cirtual mass, were found to have an insignificant effect on critical flow. In contrast, the void fraction profile and the slip ratio were observed to be sensitive to the virtual mass model. (2) It appears that air-water critical flow experiments may be effectively used for the assessment of the virtual mass force used in two-fluid models. In fact, such experiments are unique in their ability to isolate the spatial gradients in a vm models. It is hoped that this study will help stimulate the conduct of further critical flow experiments for the assessment of two fluid models

  6. Supercritical fluid extraction of uranium and thorium from nitric acid medium using organophosphorous compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pitchaiah, K.C.; Sujatha, K.; Rao, C.V.S. Brahmmananda; Subramaniam, S.; Sivaraman, N.; Rao, P.R. Vasudeva [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Chemistry Group

    2015-06-01

    In recent years, Supercritical Fluid Extraction (SFE) technique has been widely used for the extraction of metal ions. In the present study, extraction of uranium from nitric acid medium was investigated using supercritical carbon dioxide (Sc-CO{sub 2}) containing various organophosphorous compounds such as trialkyl phosphates e.g. tri-iso-amyl phosphate (TiAP), tri-sec-butyl phosphate (TsBP) and tri-n-butyl phosphate (TBP), dialkylalkyl phosphonates, e.g. diamylamyl phosphonate (DAAP) and dibutyl butyl phosphonate (DBBP), dialkyl hydrogen phosphonates, e.g. dioctyl hydrogen phosphonate (DOHP), dioctylphosphineoxide (DOPO), trioctyl phosphine oxide (TOPO), n-octylphenyl N,N-diisobutyl carbamoylmethylphosphine oxide (CMPO) and di-2-ethyl-hexyl phosphoric acid (HDEHP). Some of these ligands have been investigated for the first time in the supercritical phase for the extraction of uranium. The extraction efficiency of uranium was studied with TiAP, DAAP and DBBP as a function of nitric acid concentration; the kinetics of the equilibration period (static extraction) and transportation of the metal complex (dynamic extraction) was investigated. The influence of pressure and temperature on the extraction behaviour of uranium with DAAP was studied from 4 N HNO{sub 3}. The extraction efficiency of uranium from 4 N nitric acid medium was found to increase in the order of phosphates < phosphonates < HDEHP < TOPO < CMPO. In the case of phosphates and phosphonates, the maximum extraction of uranium was found to be from 4 N HNO{sub 3} medium. The acidic extractants, HDEHP and DOHP showed relatively higher extraction at lower acidities. The relative extraction of uranium and thorium from their mixture was also examined using Sc-CO{sub 2} containing phosphates, phosphonates and TOPO. The ligand, TsBP provided better fractionation between uranium and thorium compared to trialkyl phosphates, dialkyl alkyl phosphonates and TOPO.

  7. Anidulafungin Pharmacokinetics in Ascites Fluid and Pleural Effusion of Critically Ill Patients.

    Science.gov (United States)

    Welte, R; Eller, P; Lorenz, I; Joannidis, M; Bellmann, R

    2018-04-01

    Anidulafungin concentrations were quantified with high-pressure liquid chromatography (HPLC) and UV detection of the ascites fluid and pleural effusion of 10 adult critically ill patients. Samples were collected from ascites fluid and from pleural drains or during paracentesis and thoracentesis, respectively. Anidulafungin levels in ascites fluid (0.12 to 0.99 μg/ml) and in pleural effusion (0.32 to 2.02 μg/ml) were below the simultaneous levels in plasma (1.04 to 7.70 and 2.48 to 13.36 μg/ml, respectively) and below the MIC values for several pathogenic Candida strains. Copyright © 2018 American Society for Microbiology.

  8. Critical adsorption profiles around a sphere and a cylinder in a fluid at criticality: Local functional theory

    Science.gov (United States)

    Yabunaka, Shunsuke; Onuki, Akira

    2017-09-01

    We study universal critical adsorption on a solid sphere and a solid cylinder in a fluid at bulk criticality, where preferential adsorption occurs. We use a local functional theory proposed by Fisher et al. [M. E. Fisher and P. G. de Gennes, C. R. Acad. Sci. Paris Ser. B 287, 207 (1978); M. E. Fisher and H. Au-Yang, Physica A 101, 255 (1980), 10.1016/0378-4371(80)90112-0]. We calculate the mean order parameter profile ψ (r ) , where r is the distance from the sphere center and the cylinder axis, respectively. The resultant differential equation for ψ (r ) is solved exactly around a sphere and numerically around a cylinder. A strong adsorption regime is realized except for very small surface field h1, where the surface order parameter ψ (a ) is determined by h1 and is independent of the radius a . If r considerably exceeds a , ψ (r ) decays as r-(1 +η ) for a sphere and r-(1 +η )/2 for a cylinder in three dimensions, where η is the critical exponent in the order parameter correlation at bulk criticality.

  9. Critical velocities in fluid-conveying single-walled carbon nanotubes embedded in an elastic foundation

    Science.gov (United States)

    Rao, Ch. K.; Rao, L. B.

    2017-07-01

    The problem of stability of fluid-conveying carbon nanotubes embedded in an elastic medium is investigated in this paper. A nonlocal continuum mechanics formulation, which takes the small length scale effects into consideration, is utilized to derive the governing fourth-order partial differential equations. The Fourier series method is used for the case of the pinned-pinned boundary condition of the tube. The Galerkin technique is utilized to find a solution of the governing equation for the case of the clamped-clamped boundary. Closed-form expressions for the critical flow velocity are obtained for different values of the Winkler and Pasternak foundation stiffness parameters. Moreover, new and interesting results are also reported for varying values of the nonlocal length parameter. It is observed that the nonlocal length parameter along with the Winkler and Pasternak foundation stiffness parameters exert considerable effects on the critical velocities of the fluid flow in nanotubes.

  10. Subcritical Fluid Extraction of Chinese Quince Seed: Optimization and Product Characterization.

    Science.gov (United States)

    Wang, Li; Wu, Min; Liu, Hua-Min; Ma, Yu-Xiang; Wang, Xue-De; Qin, Guang-Yong

    2017-03-25

    Chinese quince seed (CQS) is an underutilized oil source and a potential source of unsaturated fatty acids and α-tocopherol-rich oil. Subcritical fluid (SCF) extraction is executed at lower pressures and temperatures than the pressures and temperatures used in supercritical fluid extraction. However, no studies on the SCF extraction of CQS oil are reported. Therefore, the objective of this study was to evaluate the use of SCF for the extraction of CQS oil and to compare the use of SCF with the classical Soxhlet (CS) and supercritical CO₂ (SC-CO₂) extraction methods. Response surface methodology (RSM) was used to investigate the extraction conditions: temperature (45-65 °C), time (30-50 min), and solvent/solid ratio (5-15 mL/g). The optimization results showed that the highest yield (27.78%) was obtained at 56.18 °C, 40.20 min, and 12.57 mL/g. The oil extracted by SCF had a higher unsaturated fatty acid content (86.37%-86.75%), higher α-tocopherol content (576.0-847.6 mg/kg), lower acid value (3.97 mg/g), and lower peroxide value (0.02 meq O₂/kg) than extractions using CS and SC-CO 2 methods. The SCF-defatted meal of oilseed exhibited the highest nitrogen solubility index (49.64%) and protein dispersibility index (50.80%), demonstrating that SCF extraction was a promising and efficient technique as an alternative to CS and SC-CO 2 methods, as very mild operating conditions and an eco-friendly solvent can be used in the process with maximum preservation of the quality of the meal.

  11. Pressurized fluid extraction of essential oil from Lavandula hybrida using a modified supercritical fluid extractor and a central composite design for optimization.

    Science.gov (United States)

    Kamali, Hossein; Jalilvand, Mohammad Reza; Aminimoghadamfarouj, Noushin

    2012-06-01

    Essential oil components were extracted from lavandin (Lavandula hybrida) flowers using pressurized fluid extraction. A central composite design was used to optimize the effective extraction variables. The chemical composition of extracted samples was analyzed by a gas chromatograph-flame ionization detector column. For achieving 100% extraction yield, the temperature, pressure, extraction time, and the solvent flow rate were adjusted at 90.6°C, 63 bar, 30.4 min, and 0.2 mL/min, respectively. The results showed that pressurized fluid extraction is a practical technique for separation of constituents such as 1,8-cineole (8.1%), linalool (34.1%), linalyl acetate (30.5%), and camphor (7.3%) from lavandin to be applied in the food, fragrance, pharmaceutical, and natural biocides industries. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Automated finder for the critical condition on the linear stability of fluid motions

    International Nuclear Information System (INIS)

    Fujimura, Kaoru

    1990-03-01

    An automated finder routine for the critical condition on the linear stability of fluid motions is proposed. The Newton-Raphson method was utilized for an iteration to solve nonlinear eigenvalue problems appeared in the analysis. The routine was applied to linear stability problem of a free convection between vertical parallel plates with different non-uniform temperatures as well as a plane Poiseuille flow. An efficiency of the finder routine is demonstrated for several parameter sets, numerically. (author)

  13. Critical opalescence in fluids: 1.5-Scattering effects and the Landau-Placzek ratio

    OpenAIRE

    Sushko, M. Ya.

    2010-01-01

    We adduce new arguments for the significance of so-called 1.5- (or sesquialteral) molecular light scattering in one-component fluids. For this purpose, we analyze its effect on the Landau-Placzek ratio for the critical opalescence spectrum. The results obtained are used to reveal experimental data which can be interpreted as evidence for its existence and to evaluate both the relative magnitude and the sign of the 1.5-scattering contribution.

  14. Characterization of Arachis hypogaea L. oil obtained from different extraction techniques and in vitro antioxidant potential of supercritical fluid extraction extract

    Directory of Open Access Journals (Sweden)

    Rishika Chauhan

    2016-01-01

    Full Text Available Aim: The present investigation was aimed to characterize the fixed oil of Arachis hypogaea L. using five different extraction methods: Supercritical fluid extraction (SFE, ultrasound assistance extraction, soxhlet extraction, solvent extraction, and three phase partitioning method. Materials and Methods: The SFE conditions (temperature, pressure, and volume of CO 2 were optimized prior for better yield. The extracted oils were analyzed and compared for their physiochemical parameters, high-performance thin layer chromatography (HPTLC, gas chromatography-mass spectrometry (GC-MS, and Fourier transform infrared spectrometry (FT-IR fingerprinting. Anti-oxidant activity was also determined using DPPH and superoxide scavenging method. Results: The main fatty acids were oleic, linoleic, palmitic, and stearic acids as obtained by GC-MS. HPTLC analysis revealed the presence of similar major components in chromatograms. Similarly, the pattern of peaks as obtained in FT-IR and GC-MS spectra of same oils by different extraction methods was superimposable. Conclusion: Analysis reported that the fixed oil of A. hypogaea L. is a good source of unsaturated fatty acid, mainly n-6 and n-9 fatty acid with a significant antioxidant activity of oil obtained from SFE extraction method.

  15. Bioassay-guided supercritical fluid extraction of cyclooxygenase-2 inhibiting substances in Plantago major L.

    Science.gov (United States)

    Stenholm, A; Göransson, U; Bohlin, L

    2013-02-01

    Selective extraction of plant materials is advantageous for obtaining extracts enriched with desired constituents, thereby reducing the need for subsequent chromatography purification. Such compounds include three cyclooxygenase-2 (COX-2) inhibitory substances in Plantago major L. targeted in this investigation: α-linolenic acid (α-LNA) (18:3 ω-3) and the triterpenic acids ursolic acid and oleanolic acid. To investigate the scope for tuning the selectivity of supercritical fluid extraction (SFE) using bioassay guidance, and Soxhlet extraction with dichloromethane as solvent as a reference technique, to optimise yields of these substances. Extraction parameters were varied to optimise extracts' COX-2/COX-1 inhibitory effect ratios. The crude extracts were purified initially using a solid phase extraction (SPE) clean-up procedure and the target compounds were identified with GC-MS, LC-ESI-MS and LC-ESI-MS² using GC-FID for quantification. α-LNA was preferentially extracted in dynamic mode using unmodified carbon dioxide at 40°C and 172 bar, at a 0.04% (w/w) yield with a COX-2/COX-1 inhibitory effect ratio of 1.5. Ursolic and oleanolic acids were dynamically extracted at 0.25% and 0.06% yields, respectively, with no traces of (α-LNA) and a COX-2/COX-1-inhibitory effect ratio of 1.1 using 10% (v/v) ethanol as polar modifier at 75°C and 483 bar. The Soxhlet extracts had ursolic acid, oleanolic acid and αLNA yields up to 1.36%, 0.34% and 0.15%, respectively, with a COX-2/COX-1 inhibitory effect ratio of 1.2. The target substances can be extracted selectively by bioassay guided optimisation of SFE conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Bulk properties and near-critical behaviour of SiO2 fluid

    Science.gov (United States)

    Green, Eleanor C. R.; Artacho, Emilio; Connolly, James A. D.

    2018-06-01

    Rocky planets and satellites form through impact and accretion processes that often involve silicate fluids at extreme temperatures. First-principles molecular dynamics (FPMD) simulations have been used to investigate the bulk thermodynamic properties of SiO2 fluid at high temperatures (4000-6000 K) and low densities (500-2240 kg m-3), conditions which are relevant to protoplanetary disc condensation. Liquid SiO2 is highly networked at the upper end of this density range, but depolymerises with increasing temperature and volume, in a process characterised by the formation of oxygen-oxygen (Odbnd O) pairs. The onset of vaporisation is closely associated with the depolymerisation process, and is likely to be non-stoichiometric at high temperature, initiated via the exsolution of O2 molecules to leave a Si-enriched fluid. By 6000 K the simulated fluid is supercritical. A large anomaly in the constant-volume heat capacity occurs near the critical temperature. We present tabulated thermodynamic properties for silica fluid that reconcile observations from FPMD simulations with current knowledge of the SiO2 melting curve and experimental Hugoniot curves.

  17. Supercritical fluid extraction of phenolic compounds and antioxidants from grape (Vitis labrusca B.) seeds.

    Science.gov (United States)

    Ghafoor, Kashif; Al-Juhaimi, Fahad Y; Choi, Yong Hee

    2012-12-01

    Supercritical fluid extraction (SFE) technique was applied and optimized for temperature, CO₂ pressure and ethanol (modifier) concentration using orthogonal array design and response surface methodology for the extract yield, total phenols and antioxidants from grape (Vitis labrusca B.) seeds. Effects of extraction temperature and pressure were found to be significant for all these response variables in SFE process. Optimum SFE conditions (44 ~ 46 °C temperature and 153 ~ 161 bar CO₂ pressure) along with ethanol (extract yield (12.09 %), total phenols (2.41 mg GAE/ml) and antioxidants (7.08 mg AAE/ml), were used to obtain extracts from grape seeds. The predicted values matched well with the experimental values (12.32 % extract yield, 2.45 mg GAE/ml total phenols and 7.08 mg AAE/ml antioxidants) obtained at optimum SFE conditions. The antiradical assay showed that SFE extracts of grape seeds can scavenge more than 85 % of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The grape seeds extracts were also analyzed for hydroxybenzoic acids which included gallic acid (1.21 ~ 3.84 μg/ml), protocatechuic acid (3.57 ~ 11.78 μg/ml) and p-hydroxybenzoic acid (206.72 ~ 688.18 μg/ml).

  18. Optimization of co-solvent addition in supercritical fluid extraction of fat with carbon dioxide

    Directory of Open Access Journals (Sweden)

    Ivanov Dušica S.

    2011-01-01

    Full Text Available This investigation is concerned with supercritical fluid extraction (SFE using CO2, as an analytical technique for total fat extraction from food and feed samples. Its most significant advantages are safety, cleanness, and shorter extraction time. The main limitation of this technique includes the difficulty of extracting polar lipids due to the non-polar character of the solvent (CO2 used for the extraction. The influence of ethanol as a co-solvent on the SFE of mash pig feed was investigated in this paper. Total fat content was determined by SFE and Soxhlet method for ten commercially available mesh pig feeds. Yields of the fat extracted by both methods were plotted one against the other and compared. Statistically significant difference (p ≤ 0.05 has been found only between the total fat obtained by the Soxhlet extraction and SFE by pure CO2. Based on the mathematical model, maximum yield of the extracted fat is achieved at an ethanol addition of 0.67 ml/g of sample, when the other parameters are the same as recommended by the producer’s procedure.

  19. Supercritical fluid extraction of triterpenes and aliphatic hydrocarbons from olive tree derivatives

    Directory of Open Access Journals (Sweden)

    Aimen Issaoui

    2017-05-01

    Full Text Available Olive leaves and tree bark were extracted through supercritical fluid extraction (SFE and the chemical composition of the extracted mixture was determined by Gas Chromatography–Mass Spectrometry (GC–MS. Both samples contain a great number of triterpenes as squalene, which were used since 1997 as a main constituent of the flu vaccine (FLUAD, and the alpha-tocopherol the most biologically active form of vitamin E. We also underline the presence of many aliphatic compounds such nonacosane and heptacosane in low concentrations. The extractions were carried out at 313 and 333 K, at a pressure varying from 90 to 250 bars and using pure carbon dioxide in its supercritical phase. Therefore, their solubilities at equilibrium were numerically optimized via two assumptions and compared with the experimental values. Indeed, a good agreement between several results was shown.

  20. Standard Setting for the Extractive Industries: A Critical Examination

    Directory of Open Access Journals (Sweden)

    Corinne Cortese

    2007-09-01

    Full Text Available This study examines the players involved in the setting of an international accountingstandard for the extractive industries. Publicly available data is used to exposeconnections between key constituents involved in the process, to enhance understandingof how the international accounting standard setting process occurred, and to identifyfuture research possibilities.

  1. Ancient microbes from halite fluid inclusions: optimized surface sterilization and DNA extraction.

    Science.gov (United States)

    Sankaranarayanan, Krithivasan; Timofeeff, Michael N; Spathis, Rita; Lowenstein, Tim K; Lum, J Koji

    2011-01-01

    Fluid inclusions in evaporite minerals (halite, gypsum, etc.) potentially preserve genetic records of microbial diversity and changing environmental conditions of Earth's hydrosphere for nearly one billion years. Here we describe a robust protocol for surface sterilization and retrieval of DNA from fluid inclusions in halite that, unlike previously published methods, guarantees removal of potentially contaminating surface-bound DNA. The protocol involves microscopic visualization of cell structures, deliberate surface contamination followed by surface sterilization with acid and bleach washes, and DNA extraction using Amicon centrifugal filters. Methods were verified on halite crystals of four different ages from Saline Valley, California (modern, 36 ka, 64 ka, and 150 ka), with retrieval of algal and archaeal DNA, and characterization of the algal community using ITS1 sequences. The protocol we developed opens up new avenues for study of ancient microbial ecosystems in fluid inclusions, understanding microbial evolution across geological time, and investigating the antiquity of life on earth and other parts of the solar system.

  2. Broken-and-Intact Cell Model for Supercritical Fluid Extraction: Its Origin and Limits.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2017-01-01

    Roč. 129, SI (2017), s. 3-8 ISSN 0896-8446. [Iberoamerican Conference on Supercritical Fluid s ProSCiba 2016 /4./. Vina del Mar, 28.03.2016-01.04.2016] Institutional support: RVO:67985858 Keywords : modelling * extraction kinetics * supercritical CO2 Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.991, year: 2016

  3. Solute-matrix and Solute-Solute Interactions during Supercritical Fluid Extraction of Sea Buckthorn Leaves

    Czech Academy of Sciences Publication Activity Database

    Sajfrtová, Marie; Sovová, Helena

    2012-01-01

    Roč. 42, SI (2012), s. 1682-1691 E-ISSN 1877-7058. [International Congress of Chemical and Process Engineering CHISA 2012 and 15th Conference PRES 2012 /20./. Prague, 25.08.2012-29.08.2012] R&D Projects: GA TA ČR TA01010578 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * sea buckthom leaves * solute-solute interaction Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  4. Multivessel supercritical fluid extraction of food items in Total Diet Study.

    Science.gov (United States)

    Hopper, M L; King, J W; Johnson, J H; Serino, A A; Butler, R J

    1995-01-01

    An off-line, large capacity, multivessel supercritical fluid extractor (SFE) was designed and constructed for extraction of large samples. The extractor can simultaneously process 1-6 samples (15-25 g) by using supercritical carbon dioxide (SC-CO2), which is relatively nontoxic and nonflammable, as the solvent extraction medium. Lipid recoveries for the SFE system were comparable to those obtained by blending or Soxhlet extraction procedures. Extractions at 10,000 psi, 80 degrees C, expanded gaseous CO2 flow rates of 4-5 L/min (35 degrees C), and 1-3 h extraction times gave reproducible lipid recoveries for pork sausage (relative standard deviation [RSD], 1.32%), corn chips (RSD, 0.46%), cheddar cheese (RSD, 1.14%), and peanut butter (RSD, 0.44%). In addition, this SFE system gave reproducible recoveries (> 93%) for butter fortified with cis-chlordane and malathion at the 100 ppm and 0.1 ppm levels. Six portions each of cheddar cheese, saltine crackers, sandwich cookies, and ground hamburger also were simultaneously extracted with SC-CO2 and analyzed for incurred pesticide residues. Results obtained with this SFE system were reproducible and comparable with results from organic-solvent extraction procedures currently used in the Total Diet Study; therefore, use and disposal of large quantities of organic solvents can be eliminated.

  5. Supercritical Fluid Extraction of Lovastatin from the Wheat Bran Obtained after Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Ruchir C. Pansuriya

    2009-01-01

    Full Text Available The objective of the present work is to extract lovastatin with minimum impurity by using supercritical carbon dioxide (SC-CO2. A strain of Aspergillus terreus UV 1617 was used to produce lovastatin by solid-state fermentation (SSF on wheat bran as a solid substrate. Extraction of lovastatin and its hydroxy acid form was initially carried out using organic solvents. Among the different screened solvents, acetonitrile was found to be the most efficient. SC-CO2 was used for extraction of lovastatin from the dry fermented matter. The effect of supercritical extraction parameters such as the amount of an in situ pretreatment solvent, temperature, pressure, flow rate and contact time were investigated. The maximum recovery of lovastatin was obtained with 5 mL of methanol as an in situ pretreatment solvent for 1.5 g of solid matrix, flow rate of the supercritical solvent 2 L/min, temperature 50 °C, and contact time 155 min at a pressure 300 bar. The lovastatin extract obtained after optimizing the conditions of supercritical fluid extraction was found to have 5-fold more HPLC purity than the organic solvent extract.

  6. Supercritical Fluid Extraction of Quinones from Compost for Microbial Community Analysis

    Directory of Open Access Journals (Sweden)

    Ni Luh Gede Ratna Juliasih

    2015-01-01

    Full Text Available Supercritical fluid extraction (SFE was used to extract quinones from compost to monitor the microbial community dynamics during composting. The 0.3 g of dried compost was extracted using 3 mL min−1 of carbon dioxide (90% and methanol (10% at 45°C and 25 MPa for a 30 min extraction time. The extracted quinones were analysed using ultra performance liquid chromatography (UPLC with 0.3 mL min−1 of methanol mobile phase for a 50 min chromatographic run time. A comparable detected amount of quinones was obtained using the developed method and an organic solvent extraction method, being 36.06 μmol kg−1 and 34.54 μmol kg−1, respectively. Significantly low value of dissimilarity index (D between the two methods (0.05 indicated that the quinone profile obtained by both methods was considered identical. The developed method was then applied to determine the maturity of the compost by monitoring the change of quinone during composting. The UQ-9 and MK-7 were predominant quinones in the initial stage of composting. The diversity of quinone became more complex during the cooling and maturation stages. This study showed that SFE had successfully extracted quinones from a complex matrix with simplification and rapidity of the analysis that is beneficial for routine analysis.

  7. Mechanical Weakening during Fluid Injection in Critically Stressed Sandstones with Acoustic Monitoring

    Science.gov (United States)

    David, C.; Dautriat, J. D.; Sarout, J.; Macault, R.; Bertauld, D.

    2014-12-01

    Water weakening is a well-known phenomenon which can lead to subsidence during the production of hydrocarbon reservoirs. The example of the Ekofisk oil field in the North Sea has been well documented for years. In order to assess water weakening effects in reservoir rocks, previous studies have focused on changes in the failure envelopes derived from mechanical tests conducted on rocks saturated either with water or with inert fluids. However, little attention has been paid so far on the mechanical behaviour during the fluid injection stage, like in enhanced oil recovery operations. We studied the effect of fluid injection on the mechanical behaviour of Sherwood sandstone, a weakly-consolidated sandstone sampled at Ladram Bay in UK. In order to highlight possible weakening effects, water and inert oil have been injected into critically-loaded samples to assess their effect on strength and elastic properties and to derive the acoustic signature of the saturation front for each fluid. The specimens were instrumented with 16 ultrasonic P-wave transducers for both passive and active acoustic monitoring during fluid injection and loading. After conducting standard triaxial tests on three samples saturated with air, water and oil respectively, mechanical creep tests were conducted on dry samples loaded at 80% of the compressive strength of the dry rock. While these conditions are kept constant, a fluid is injected at the bottom end of the sample with a low back pressure (0.5 MPa) to minimize effective stress variations during injection. Both water and oil were used as the injected pore fluid in two experiments. As soon as the fluids start to flow into the samples, creep is taking place with a much higher strain rate for water injection compared to oil injection. A transition from secondary creep to tertiary creep is observed in the water injection test whereas in the oil injection test no significant creep acceleration is observed after one pore volume of oil was

  8. Experimental study and calculations of the near critical behavior of a synthetic fluid in nitrogen injection

    International Nuclear Information System (INIS)

    Coronado Parra, Carlos Alberto; Escobar Remolina, Juan Carlos M

    2005-01-01

    In recent years, the use of nitrogen has increased as gas injection to recover oil fluids near the critical point. The behavior of hydrocarbon mixture phases in the critical region shows very interesting complex phenomena when facing a recovery project with nitrogen. Therefore, it is important to have experimental information of the PVTx thermodynamic variable, often scarce, for this type of critical phenomena. This paper reports the experimental measures of the volumetric behavior and phases of synthetic fluid in a nitrogen injection process. The experiment was performed at laboratory scale, and it obtained variations on the saturation pressure, gas oil ratio, density and composition of the hydrocarbon phase when nitrogen was injected at molars of 10,20,30 and 40% on different volumetric portions of the mother sample. In addition, the data obtained experimentally was used to demonstrate the capacity of tune to compositional models. The data provided represents a valuable contribution to the understanding of phenomena associated with retrograde and near critical regions, as well as their use in tuning and developing more elaborate models such as Cubic Equations of State (EOS). It is worth highlighting the importance of this data in the potential processes of nitrogen, CO 2 , and lean gas injection, which require knowledge of the gas-oil ratio, saturation pressures, density and composition of the fluid in current production. The identification of the phenomena shown, represent a potential application to the modeling of displacements and maintaining the pressure in the improved recovery when scaling up the laboratory data to the field / reservoir conditions

  9. Critical phenomena and their effect on thermal energy storage in supercritical fluids

    International Nuclear Information System (INIS)

    Hobold, Gustavo M.; Da Silva, Alexandre K.

    2017-01-01

    Highlights: •High power thermal energy storage using supercritical fluids. •Influence of property variation on energy and power density. •Multi-fluid analysis and generalization for several storage temperatures. •Cost, heat transfer and energy density evaluation for high temperature storage. -- Abstract: Large-scale implementation of concentrated solar power plants requires energy storage systems if fossil sources are to be fully replaced. While several candidates have appeared, most still face major issues such as cost, limited energy density and material compatibility. The present paper explores the influence of property variation in the proximity of the critical point on thermal energy storage using supercritical fluids (sTES) from thermodynamic and heat transfer standpoints. Influence of thermodynamic operational parameters on energy density of isobaric and isochoric sTES and their optima is discussed, showing that the energy density results from a competition between average specific heat and loaded density. Moreover, sTES is shown to be applicable to virtually any storage temperature, depending only on the fluid’s critical point. Finally, a heat transfer and energy density comparison to other existing storage mechanisms is presented and supercritical water is shown to be competitive for high temperature thermal energy storage.

  10. Computational multi-fluid dynamics predictions of critical heat flux in boiling flow

    International Nuclear Information System (INIS)

    Mimouni, S.; Baudry, C.; Guingo, M.; Lavieville, J.; Merigoux, N.; Mechitoua, N.

    2016-01-01

    Highlights: • A new mechanistic model dedicated to DNB has been implemented in the Neptune_CFD code. • The model has been validated against 150 tests. • Neptune_CFD code is a CFD tool dedicated to boiling flows. - Abstract: Extensive efforts have been made in the last five decades to evaluate the boiling heat transfer coefficient and the critical heat flux in particular. Boiling crisis remains a major limiting phenomenon for the analysis of operation and safety of both nuclear reactors and conventional thermal power systems. As a consequence, models dedicated to boiling flows have being improved. For example, Reynolds Stress Transport Model, polydispersion and two-phase flow wall law have been recently implemented. In a previous work, we have evaluated computational fluid dynamics results against single-phase liquid water tests equipped with a mixing vane and against two-phase boiling cases. The objective of this paper is to propose a new mechanistic model in a computational multi-fluid dynamics tool leading to wall temperature excursion and onset of boiling crisis. Critical heat flux is calculated against 150 tests and the mean relative error between calculations and experimental values is equal to 8.3%. The model tested covers a large physics scope in terms of mass flux, pressure, quality and channel diameter. Water and R12 refrigerant fluid are considered. Furthermore, it was found that the sensitivity to the grid refinement was acceptable.

  11. Computational multi-fluid dynamics predictions of critical heat flux in boiling flow

    Energy Technology Data Exchange (ETDEWEB)

    Mimouni, S., E-mail: stephane.mimouni@edf.fr; Baudry, C.; Guingo, M.; Lavieville, J.; Merigoux, N.; Mechitoua, N.

    2016-04-01

    Highlights: • A new mechanistic model dedicated to DNB has been implemented in the Neptune-CFD code. • The model has been validated against 150 tests. • Neptune-CFD code is a CFD tool dedicated to boiling flows. - Abstract: Extensive efforts have been made in the last five decades to evaluate the boiling heat transfer coefficient and the critical heat flux in particular. Boiling crisis remains a major limiting phenomenon for the analysis of operation and safety of both nuclear reactors and conventional thermal power systems. As a consequence, models dedicated to boiling flows have being improved. For example, Reynolds Stress Transport Model, polydispersion and two-phase flow wall law have been recently implemented. In a previous work, we have evaluated computational fluid dynamics results against single-phase liquid water tests equipped with a mixing vane and against two-phase boiling cases. The objective of this paper is to propose a new mechanistic model in a computational multi-fluid dynamics tool leading to wall temperature excursion and onset of boiling crisis. Critical heat flux is calculated against 150 tests and the mean relative error between calculations and experimental values is equal to 8.3%. The model tested covers a large physics scope in terms of mass flux, pressure, quality and channel diameter. Water and R12 refrigerant fluid are considered. Furthermore, it was found that the sensitivity to the grid refinement was acceptable.

  12. A critical review of the data requirements for fluid flow models through fractured rock

    International Nuclear Information System (INIS)

    Priest, S.D.

    1986-01-01

    The report is a comprehensive critical review of the data requirements for ten models of fluid flow through fractured rock, developed in Europe and North America. The first part of the report contains a detailed review of rock discontinuities and how their important geometrical properties can be quantified. This is followed by a brief summary of the fundamental principles in the analysis of fluid flow through two-dimensional discontinuity networks and an explanation of a new approach to the incorporation of variability and uncertainty into geotechnical models. The report also contains a review of the geological and geotechnical properties of anhydrite and granite. Of the ten fluid flow models reviewed, only three offer a realistic fracture network model for which it is feasible to obtain the input data. Although some of the other models have some valuable or novel features, there is a tendency to concentrate on the simulation of contaminant transport processes, at the expense of providing a realistic fracture network model. Only two of the models reviewed, neither of them developed in Europe, have seriously addressed the problem of analysing fluid flow in three-dimensional networks. (author)

  13. Direct online extraction and determination by supercritical fluid extraction with chromatography and mass spectrometry of targeted carotenoids from red Habanero peppers (Capsicum chinense Jacq.).

    Science.gov (United States)

    Zoccali, Mariosimone; Giuffrida, Daniele; Dugo, Paola; Mondello, Luigi

    2017-10-01

    Recently, supercritical fluid chromatography coupled to mass spectrometry has gained attention as a fast and useful technology applied to the carotenoids analysis. However, no reports are available in the literature on the direct online extraction and determination by supercritical fluid extraction with chromatography and mass spectrometry. The aim of this research was the development of an online method coupling supercritical fluid extraction and supercritical fluid chromatography for a detailed targeted native carotenoids characterization in red habanero peppers. The online nature of the system, compared to offline approaches, improves run-to-run precision, enables the setting of batch-type applications, and reduces the risks of sample contamination. The extraction has been optimized using different temperatures, starting from 40°C up to 80°C. Multiple extractions, until depletion, were performed on the same sample to evaluate the extraction yield. The range of the first extraction yield, carried out at 80°C, which was the best extraction temperature, was 37.4-65.4%, with a %CV range of 2-12. Twenty-one targeted analytes were extracted and identified by the developed methodology in less than 17 min, including free, monoesters, and diesters carotenoids, in a very fast and efficient way. Quantification of the β-carotene was carried out by using the optimized conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Supercritical fluid extraction of lanthanides and actinides from solid materials with a fluorinated β-diketone

    International Nuclear Information System (INIS)

    Lin, Y.; Brauer, R.D.; Laintz, K.E.; Wai, C.M.

    1993-01-01

    Direct extraction of metal ions by supercritical carbon dioxide is highly inefficient because of the charge neutralization requirement and the weak solute-solvent interactions. One suggested approach of extracting metal ions by supercritical carbon dioxide is to convert the charged species into metal chelates using a chelating agent in the fluid phase. This paper describes a method of extracting lanthanide and uranyl ions from a solid material by supercritical carbon dioxide containing a fluorinated beta-diketone, 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedione(FOD). Potential applications of this SFE method for separating the f-block elements from environmental samples are discussed. 13 refs., 2 tabs

  15. Supercritical fluid extraction of volatile and non-volatile compounds from Schinus molle L.

    Directory of Open Access Journals (Sweden)

    M. S. T. Barroso

    2011-06-01

    Full Text Available Schinus molle L., also known as pepper tree, has been reported to have antimicrobial, antifungal, anti-inflammatory, antispasmodic, antipyretic, antitumoural and cicatrizing properties. This work studies supercritical fluid extraction (SFE to obtain volatile and non-volatile compounds from the aerial parts of Schinus molle L. and the influence of the process on the composition of the extracts. Experiments were performed in a pilot-scale extractor with a capacity of 1 L at pressures of 9, 10, 12, 15 and 20 MPa at 323.15 K. The volatile compounds were obtained by CO2 supercritical extraction with moderate pressure (9 MPa, whereas the non-volatile compounds were extracted at higher pressure (12 to 20 MPa. The analysis of the essential oil was carried out by GC-MS and the main compounds identified were sabinene, limonene, D-germacrene, bicyclogermacrene, and spathulenol. For the non-volatile extracts, the total phenolic content was determined by the Folin-Ciocalteau method. Moreover, one of the goals of this study was to compare the experimental data with the simulated yields predicted by a mathematical model based on mass transfer. The model used requires three adjustable parameters to predict the experimental extraction yield curves.

  16. Formation of clusters composed of C60 molecules via self-assembly in critical fluids

    International Nuclear Information System (INIS)

    Fukuda, Takahiro; Ishii, Koji; Kurosu, Shunji; Whitby, Raymond; Maekawa, Toru

    2007-01-01

    Fullerenes are promising candidates for intelligent, functional nanomaterials because of their unique mechanical, electronic and chemical properties. However, it is necessary to invent some efficient but relatively simple methods of producing structures composed of fullerenes for the development of nanomechatronic, nanoelectronic and biochemical devices and sensors. In this paper, we show that various structures such as straight fibres, networks formed by fibres, wide sheets and helical structures, which are composed of C 60 molecules, are created by placing C 60 -crystals in critical ethane, carbon dioxide and xenon even though C 60 molecules do not dissolve or disperse in the above fluids. It is supposed, judging by the intermolecular potentials between C 60 and C 60 , between C 60 and ethane, and between ethane and ethane, that C 60 -clusters grow with the assistance of solvent molecules, which are trapped between C 60 molecules under critical conditions. This room-temperature self-assembly cluster growth process in critical fluids may open up a new methodology of forming structures built up with fullerenes without the need for any ultra-fine processing technologies

  17. Apparent Solubility of Natural Products Extracted with Near-Critical Carbon Dioxide

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2012-01-01

    Roč. 3, 12A (2012), s. 958-965 ISSN 2156-8251 R&D Projects: GA TA ČR TA01010578 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * solubility * adsorption isotherm Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.scirp.org/journal/ajac/

  18. Determination of persistent organic pollutants in solid environmental samples using accelerated solvent extraction and supercritical fluid extraction. Exhaustive extraction and sorption/desorption studies of PCBs

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerklund, E.

    1998-10-01

    Human activity is constantly causing environmental problems due to production and release of numerous chemicals. A group of compounds of special concern is persistent organic pollutants (POP). These toxic, lipophilic chemicals have a high chemical and biological stability, and tend to accumulate in the lipid phase of living organisms. A major sink for POPs are sediments, and consequently these are important for the distribution of POPs in the aquatic environment. Traditionally, determination of POPs relay on exhaustive extraction using liquid extraction techniques (e.g. Soxhlet extraction developed in the late 19th century) followed by gas chromatographic analysis. Since liquid-solid extraction normally requires large volumes of organic solvents in combination with long extraction times and extract clean-up, there has been an increasing demand for improved technology. This should result in reduced organic solvent consumption and sample preparation time, at the same time improving the environment and cutting costs for POP monitoring. In this thesis two modern techniques with capability of fulfilling at least one of these goals have been investigated: (1) Supercritical Fluid Extraction (SFE), and (2) Accelerated Solvent Extraction (ASE). Polychlorinated biphenyls (PCBs) were chosen as model compounds in all experiments performed on environmental matrices, since they cover a relatively large range of physiochemical parameters. Important parameters influencing the overall extraction efficiency in ASE and SFE, are discussed and illustrated for a large number of sediments. It was demonstrated that, by careful consideration of the experimental parameters, both techniques are capable of replacing old methods such as Soxhlet extraction. ASE is somewhat faster than SFE, but the extracts generated in SFE are much cleaner and can be analyzed without sample clean-up. Consequently the overall sample preparation time may be substantially lower using SFE. However, ASE is important

  19. Muon radiolysis affected by density inhomogeneity in near-critical fluids.

    Science.gov (United States)

    Cormier, P J; Alcorn, C; Legate, G; Ghandi, K

    2014-04-01

    In this article we show the significant tunability of radiation chemistry in supercritical ethane and to a lesser extent in near critical CO2. The information was obtained by studies of muonium (Mu = μ(+)e(-)), which is formed by the thermalization of positive muons in different materials. The studies of the proportions of three fractions of muon polarization, PMu, diamagnetic PD and lost fraction, PL provided the information on radiolysis processes involved in muon thermalization. Our studies include three different supercritical fluids, water, ethane and carbon dioxide. A combination of mobile electrons and other radiolysis products such as (•)C2H5 contribute to interesting behavior at densities ∼40% above the critical point in ethane. In carbon dioxide, an increase in electron mobility contributes to the lost fraction. The hydrated electron in water is responsible for the lost fraction and decreases the muonium fraction.

  20. Field—Based Supercritical Fluid Extraction of Hydrocarbons at Industrially Contaminated Sites

    Directory of Open Access Journals (Sweden)

    Peggy Rigou

    2002-01-01

    Full Text Available Examination of organic pollutants in groundwaters should also consider the source of the pollution, which is often a solid matrix such as soil, landfill waste, or sediment. This premise should be viewed alongside the growing trend towards field-based characterisation of contaminated sites for reasons of speed and cost. Field-based methods for the extraction of organic compounds from solid samples are generally cumbersome, time consuming, or inefficient. This paper describes the development of a field-based supercritical fluid extraction (SFE system for the recovery of organic contaminants (benzene, toluene, ethylbenzene, and xylene and polynuclear aromatic hydrocarbons from soils. A simple, compact, and robust SFE system has been constructed and was found to offer the same extraction efficiency as a well-established laboratory SFE system. Extraction optimisation was statistically evaluated using a factorial analysis procedure. Under optimised conditions, the device yielded recovery efficiencies of >70% with RSD values of 4% against the standard EPA Soxhlet method, compared with a mean recovery efficiency of 48% for a commercially available field-extraction kit. The device will next be evaluated with real samples prior to field deployment.

  1. Extraction of Stevia rebaudiana bertoni sweetener glycosides by supercritical fluid methods.

    Directory of Open Access Journals (Sweden)

    Juan José Hinojosa-González

    2017-05-01

    Full Text Available Aim. The aim was to evaluate the supercritical carbon dioxide extraction method with and without the addition of co-solvent to the system (mixture water: ethanol to obtain the glycosides from leaves of Stevia rebaudiana Bertoni. Methods. A SFT-150 SFE / SFR model with CO2 as a fluid was used for the supercritical extraction. The variables studied were temperature, pressure, extraction time and the presence or absence of the co-solvent (water-ethanol mixture in a concentration of 70:30 v/v, incorporated in different proportions to determine the effect on yield. The amount of glycoside sweeteners was analyzed by High Performance Liquid Chromatography (HPLC. Results. The pressure was the factor that favored the extraction, which was selective in obtaining Rebaudioside A with yields no greater than 2%. The inclusion of the co-solvent achieved an increase in yield to values of 2.9% Conclusion. Supercritical CO2 individually and mixed with ethanol-water as a co-solvent was not efficient to extract Stevia rebaudiana stevioside sweeteners

  2. Simulating the phosphorus fluid-liquid phase transition up to the critical point

    International Nuclear Information System (INIS)

    Ghiringhelli, Luca M; Meijer, Evert Jan

    2007-01-01

    We report a Car-Parrinello molecular dynamics study of the temperature dependence of the fluid-liquid phase transition in phosphorous, involving the transformation of a molecular fluid phase into a network-like phase. We employed density-functional theory (DFT) with a gradient-corrected functional (B-LYP) to describe the electronic structure and interatomic interactions and performed simulations in a constant pressure ensemble. We spanned a temperature interval ranging from 2500 to 3500 K. With increasing temperature, we found that the structural conversion from the molecular P 4 fluid into the network liquid occurs at decreasing pressures, consistent with experimental observations. At lower temperatures the transition is characterized by a sudden increase of density in the sample. The magnitude of the density change decreases with increasing temperature and vanishes at 3500 K. In the temperature range 3100-3500 K we found signals of near- and super-criticality. We identified local structural changes that serve as seeds triggering the overall structural transition

  3. Online recovery of radiocesium from soil, tissue paper and plant samples by supercritical fluid extraction

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Mohapatra, P.K.

    2014-01-01

    The feasibility of recovery of radio-cesium from soil, tissue papers, and plant samples has been evaluated by supercritical fluid extraction (SFE) route employing calix(4)arene-mono(crown-6) (CC) dissolved in acetonitrile. These studies showed that quantitative recovery of 137 Cs from soil samples was difficult under the conditions of these studies. However, experiments performed on tissue papers (cellulose matrix) showed quantitative recovery of 137 Cs. On the other hand, 137 Cs recovery from plant samples varied between ∼50 % (for stems) and ∼67.2 % (for leaves) employing 1x10 -3 M CC + 4 M HNO 3 dissolved in acetonitrile. (author)

  4. Removal of plutonium from real time waste using supercritical fluid extraction

    International Nuclear Information System (INIS)

    Sujatha, K.; Sivaraman, N.; Kumar, R.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Supercritical fluid extraction (SFE) technique was carried out for the recovery of plutonium from cellulose waste matrix using supercritical carbon dioxide (SC-CO 2 ) modified with suitable ligands such as octylphenyl N,N-diisobutyl carbamoylmethyl phosphine oxide (φCMPO), tri-n-butyl phosphate (TBP), acetyl acetone, trifluoro acetyl acetone and theonyltrifluoroacetyl acetone (TTA). The maximum plutonium recovery was found to be 99.8% when SC-CO 2 modified with CMPO was employed. About 15mg of plutonium was recovered from waste. (author)

  5. Proposal of a critical test of the Navier-Stokes-Fourier paradigm for compressible fluid continua

    Science.gov (United States)

    Brenner, Howard

    2013-01-01

    A critical, albeit simple experimental and/or molecular-dynamic (MD) simulation test is proposed whose outcome would, in principle, establish the viability of the Navier-Stokes-Fourier (NSF) equations for compressible fluid continua. The latter equation set, despite its longevity as constituting the fundamental paradigm of continuum fluid mechanics, has recently been criticized on the basis of its failure to properly incorporate volume transport phenomena—as embodied in the proposed bivelocity paradigm [H. Brenner, Int. J. Eng. Sci.IJESAN0020-722510.1016/j.ijengsci.2012.01.006 54, 67 (2012)]—into its formulation. Were the experimental or simulation results found to accord, even only qualitatively, with bivelocity predictions, the temperature distribution in a gas-filled, thermodynamically and mechanically isolated circular cylinder undergoing steady rigid-body rotation in an inertial reference frame would not be uniform; rather, the temperature would be higher at the cylinder wall than along the axis of rotation. This radial temperature nonuniformity contrasts with the uniformity of the temperature predicted by the NSF paradigm for these same circumstances. Easily attainable rates of rotation in centrifuges and readily available tools for measuring the expected temperature differences render experimental execution of the proposed scheme straightforward in principle. As such, measurement—via experiment or MD simulation—of, say, the temperature difference ΔT between the gas at the wall and along the axis of rotation would provide quantitative tests of both the NSF and bivelocity hydrodynamic models, whose respective solutions for the stated set of circumstances are derived in this paper. Independently of the correctness of the bivelocity model, any temperature difference observed during the proposed experiment or simulation, irrespective of magnitude, would preclude the possibility of the NSF paradigm being correct for fluid continua, except for

  6. Proposal of a critical test of the Navier-Stokes-Fourier paradigm for compressible fluid continua.

    Science.gov (United States)

    Brenner, Howard

    2013-01-01

    A critical, albeit simple experimental and/or molecular-dynamic (MD) simulation test is proposed whose outcome would, in principle, establish the viability of the Navier-Stokes-Fourier (NSF) equations for compressible fluid continua. The latter equation set, despite its longevity as constituting the fundamental paradigm of continuum fluid mechanics, has recently been criticized on the basis of its failure to properly incorporate volume transport phenomena-as embodied in the proposed bivelocity paradigm [H. Brenner, Int. J. Eng. Sci. 54, 67 (2012)]-into its formulation. Were the experimental or simulation results found to accord, even only qualitatively, with bivelocity predictions, the temperature distribution in a gas-filled, thermodynamically and mechanically isolated circular cylinder undergoing steady rigid-body rotation in an inertial reference frame would not be uniform; rather, the temperature would be higher at the cylinder wall than along the axis of rotation. This radial temperature nonuniformity contrasts with the uniformity of the temperature predicted by the NSF paradigm for these same circumstances. Easily attainable rates of rotation in centrifuges and readily available tools for measuring the expected temperature differences render experimental execution of the proposed scheme straightforward in principle. As such, measurement-via experiment or MD simulation-of, say, the temperature difference ΔT between the gas at the wall and along the axis of rotation would provide quantitative tests of both the NSF and bivelocity hydrodynamic models, whose respective solutions for the stated set of circumstances are derived in this paper. Independently of the correctness of the bivelocity model, any temperature difference observed during the proposed experiment or simulation, irrespective of magnitude, would preclude the possibility of the NSF paradigm being correct for fluid continua, except for incompressible flows.

  7. Core-softened fluids, water-like anomalies, and the liquid-liquid critical points.

    Science.gov (United States)

    Salcedo, Evy; de Oliveira, Alan Barros; Barraz, Ney M; Chakravarty, Charusita; Barbosa, Marcia C

    2011-07-28

    Molecular dynamics simulations are used to examine the relationship between water-like anomalies and the liquid-liquid critical point in a family of model fluids with multi-Gaussian, core-softened pair interactions. The core-softened pair interactions have two length scales, such that the longer length scale associated with a shallow, attractive well is kept constant while the shorter length scale associated with the repulsive shoulder is varied from an inflection point to a minimum of progressively increasing depth. The maximum depth of the shoulder well is chosen so that the resulting potential reproduces the oxygen-oxygen radial distribution function of the ST4 model of water. As the shoulder well depth increases, the pressure required to form the high density liquid decreases and the temperature up to which the high-density liquid is stable increases, resulting in the shift of the liquid-liquid critical point to much lower pressures and higher temperatures. To understand the entropic effects associated with the changes in the interaction potential, the pair correlation entropy is computed to show that the excess entropy anomaly diminishes when the shoulder well depth increases. Excess entropy scaling of diffusivity in this class of fluids is demonstrated, showing that decreasing strength of the excess entropy anomaly with increasing shoulder depth results in the progressive loss of water-like thermodynamic, structural and transport anomalies. Instantaneous normal mode analysis was used to index the overall curvature distribution of the fluid and the fraction of imaginary frequency modes was shown to correlate well with the anomalous behavior of the diffusivity and the pair correlation entropy. The results suggest in the case of core-softened potentials, in addition to the presence of two length scales, energetic, and entropic effects associated with local minima and curvatures of the pair interaction play an important role in determining the presence of water

  8. Fatty acid composition and antioxidant activity of oils from two cultivars of Cantaloupe extracted by supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, M.; Mariod, A.; Bagalkotkar, G.; Ling, H. S

    2010-07-01

    The effect of supercritical fluid extraction (SFE) fractionation of three oil fractions (1st, 2nd, 3rd fraction) on the fatty acid composition and antioxidant activity of oils from two cultivars of cantaloupe were investigated. Rock melon oil (RMO) and Golden Langkawi oil (GLO) were extracted using SFE and the major fatty acids for both cultivars were linoleic, oleic, palmitic, and stearic acid. The SFA decreased from 15.78 to 14.14% in RMO 1st fraction, and MUFA decreased from 18.30 to 16.56% in RMO 2nd fraction, while PUFA increased from 65.9 to 69.30% in RMO 3rd fraction. On the other hand SFA decreased from 16.35 to 13.91% in GLO 1{sup s}t fraction, and MUFA decreased from 17.50 to 15.57% in GLO 2nd fraction, while PUFA increased from 66.15 to 70.52% in GLO 3rd fraction. The different fractions of the two oils showed high antioxidant activity in reducing the oxidation of {beta}-carotene in beta-carotene bleaching assay (BCB) and the quenching of 1,1-diphenyl-2-picrylhydrazyl (DPPH). (Author) 41 refs.

  9. Effect temperature of supercritical CO2 fluid extraction on phytochemical analysis and antioxidant activity of Zingiber officinale Roscoe

    Science.gov (United States)

    Sondari, Dewi; Irawadi, Tun Tedja; Setyaningsih, Dwi; Tursiloadi, Silvester

    2017-11-01

    Supercritical fluid extraction of Zingiber officinale Roscoe has been carried out at a pressure of 16 MPa, with temperatures between 20-40 °C, during extraction time of 6 hours and the flow rate of CO2 fluid 5.5 ml/min. The result of supercritical method was compared with the extraction maceration using a mixture of water and ethanol (70% v/v) for 24 hours. The main content in ginger that has a main role as an antioxidant is a gingerol compound that can help neutralize the damaging effects caused by free radicals in the body, as anti-coagulant, and inhibit the occurrence of blood clots. This study aims to determine the effect of temperature on chemical components contained in rough extract of Zingiber officinale Roscoe and its antioxidant activity, total phenol and total flavonoid content. To determine the chemical components contained in the crude extract of Zingiber officinale Roscoe extracted by supercritical fluid and maceration extraction, GC-MS analysis was performed. Meanwhile, the antioxidant activity of the extract was evaluated based on a 2.2-diphenyl-1-picrylhydrazyl (DPPH) free radical damping method. The results of the analysis show that the result of ginger extract by using the supercritical CO2 extraction method has high antioxidant activity than by using maceration method. The highest total phenol content and total flavonoids were obtained on ginger extraction using supercritical CO2 fluid extraction, indicating that phenol and flavonoid compounds contribute to antioxidant activity. Chromatographic analysis showed that the chemical profile of ginger extract containing oxygenated monoterpenes, monoterpene hydrocarbons, sesquiterpene hydrocarbons, oxygenated monoterpene gingerol and esters. In supercritical fluid extraction, the compounds that can be identified at a temperature of 20-40 °C contain 27 compounds, and 11 compounds from the result of maceration extract. The main component of Zingiber officinale Roscoe extracted using supercritical fluid

  10. Comparison study of moisture content, colour properties and essential oil compounds extracted by hydrodistillation and supercritical fluid extraction between stem and leaves of lemongrass (Cymbopogun citratus)

    Science.gov (United States)

    Kamaruddin, Shazlin; Mustapha, Wan Aida Wan; Haiyee, Zaibunnisa Abdul

    2018-04-01

    The objectives of this study were to compare the properties of moisture content, colour and essential oil compounds between stem and leaves of lemongrass (Cymbopogun citratus). The essential oil was extracted using two different methods which are hydrodistillation and supercritical fluid extraction (SFE). There was no significant difference of moisture content between stem and leaves of lemongrass. The lightness (L) and yellowness (+b) values of the stems were significantly higher (pleaves. The highest yield of essential oil was obtained by extraction using supercritical fluid extraction (SFE) in leaves (˜ 0.7%) by treatment at 1700psi and 50°C. The main compound of extracted essential oil was citral (geranial and neral).

  11. A Swellable Microneedle Patch to Rapidly Extract Skin Interstitial Fluid for Timely Metabolic Analysis.

    Science.gov (United States)

    Chang, Hao; Zheng, Mengjia; Yu, Xiaojun; Than, Aung; Seeni, Razina Z; Kang, Rongjie; Tian, Jingqi; Khanh, Duong Phan; Liu, Linbo; Chen, Peng; Xu, Chenjie

    2017-10-01

    Skin interstitial fluid (ISF) is an emerging source of biomarkers for disease diagnosis and prognosis. Microneedle (MN) patch has been identified as an ideal platform to extract ISF from the skin due to its pain-free and easy-to-administrated properties. However, long sampling time is still a serious problem which impedes timely metabolic analysis. In this study, a swellable MN patch that can rapidly extract ISF is developed. The MN patch is made of methacrylated hyaluronic acid (MeHA) and further crosslinked through UV irradiation. Owing to the supreme water affinity of MeHA, this MN patch can extract sufficient ISF in a short time without the assistance of extra devices, which remarkably facilitates timely metabolic analysis. Due to covalent crosslinked network, the MN patch maintains the structure integrity in the swelling hydrated state without leaving residues in skin after usage. More importantly, the extracted ISF metabolites can be efficiently recovered from MN patch by centrifugation for the subsequent offline analysis of metabolites such as glucose and cholesterol. Given the recent trend of easy-to-use point-of-care devices for personal healthcare monitoring, this study opens a new avenue for the development of MN-based microdevices for sampling ISF and minimally invasive metabolic detection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Supercritical Fluid Extraction of Eucalyptus globulus Bark—A Promising Approach for Triterpenoid Production

    Science.gov (United States)

    Domingues, Rui M. A.; Oliveira, Eduardo L. G.; Freire, Carmen S. R.; Couto, Ricardo M.; Simões, Pedro C.; Neto, Carlos P.; Silvestre, Armando J. D.; Silva, Carlos M.

    2012-01-01

    Eucalyptus bark contains significant amounts of triterpenoids with demonstrated bioactivity, namely triterpenic acids and their acetyl derivatives (ursolic, betulinic, oleanolic, betulonic, 3-acetylursolic, and 3-acetyloleanolic acids). In this work, the supercritical fluid extraction (SFE) of Eucalyptus globulus deciduous bark was carried out with pure and modified carbon dioxide to recover this fraction, and the results were compared with those obtained by Soxhlet extraction with dichloromethane. The effects of pressure (100–200 bar), co-solvent (ethanol) content (0, 5 and 8% wt), and multistep operation were studied in order to evaluate the applicability of SFE for their selective and efficient production. The individual extraction curves of the main families of compounds were measured, and the extracts analyzed by GC-MS. Results pointed out the influence of pressure and the important role played by the co-solvent. Ethanol can be used with advantage, since its effect is more important than increasing pressure by several tens of bar. At 160 bar and 40 °C, the introduction of 8% (wt) of ethanol greatly improves the yield of triterpenoids more than threefold. PMID:22837719

  13. Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge

    Directory of Open Access Journals (Sweden)

    Koichi Fujie

    2012-03-01

    Full Text Available Supercritical fluid extraction (SFE was used in the analysis of bacterial respiratory quinone (RQ, bacterial phospholipid fatty acid (PLFA, and archaeal phospholipid ether lipid (PLEL from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC. Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS. The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile.

  14. Critical assessment of extracellular polymeric substances extraction methods from mixed culture biomass

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Domingo Felez, Carlos; Mutlu, Ayten Gizem

    2013-01-01

    . This study presents a rigorous and critical assessment of existing physical and chemical EPS extraction methods applied to mixed-culture biomass samples (nitrifying, nitritation-anammox, and activated sludge biomass). A novel fluorescence-based method was developed and calibrated to quantify the lysis...... potential of different EPS extraction protocols. We concluded that commonly used methods to assess cell lysis (DNA concentrations or G6PDH activities in EPS extracts) do not correlate with cell viability. Furthermore, we discovered that the presence of certain chemicals in EPS extracts results in severe...... underestimation of protein and carbohydrate concentrations by using standard analytical methods. Keeping both maximum EPS extraction yields and minimal biomass lysis as criteria, it was identified a sonication-based extraction method as the best to determine and compare tightly-bound EPS fractions in different...

  15. Ancient microbes from halite fluid inclusions: optimized surface sterilization and DNA extraction.

    Directory of Open Access Journals (Sweden)

    Krithivasan Sankaranarayanan

    Full Text Available Fluid inclusions in evaporite minerals (halite, gypsum, etc. potentially preserve genetic records of microbial diversity and changing environmental conditions of Earth's hydrosphere for nearly one billion years. Here we describe a robust protocol for surface sterilization and retrieval of DNA from fluid inclusions in halite that, unlike previously published methods, guarantees removal of potentially contaminating surface-bound DNA. The protocol involves microscopic visualization of cell structures, deliberate surface contamination followed by surface sterilization with acid and bleach washes, and DNA extraction using Amicon centrifugal filters. Methods were verified on halite crystals of four different ages from Saline Valley, California (modern, 36 ka, 64 ka, and 150 ka, with retrieval of algal and archaeal DNA, and characterization of the algal community using ITS1 sequences. The protocol we developed opens up new avenues for study of ancient microbial ecosystems in fluid inclusions, understanding microbial evolution across geological time, and investigating the antiquity of life on earth and other parts of the solar system.

  16. Dynamic Stability Analysis and Critical Speed of Rotor supported by a Worn Fluid film Journal Bearings

    Directory of Open Access Journals (Sweden)

    Adnan naji jameel

    2016-03-01

    Full Text Available In this paper, the effect of wear in the fluid film journal bearings on the dynamic stability of rotor bearing system has been studied depending on the development of new analytical equations for motion, instability threshold speed and steady state harmonic response for rotor with offset disc supported by worn journal bearings. Finite element method had been used for modeling the rotor bearing system. The analytical model is verified by comparing its results with that obtained numerically for a rotor supported on the short bearings. The analytical and numerical results showed good agreement with about 8.5% percentage error in the value of critical speed and about 3.5% percentage error in the value of harmonic response. The results obtained show that the wear in journal bearing decrease the instability threshold speed by 2.5% for wear depth 0.02 mm and 12.5% for wear depth 0.04 mm as well as decrease critical speed by 4.2% and steady state harmonic response amplitude by 4.3% for wear depth 0.02 mm and decrease the critical speed by 7.1% and steady state harmonic response amplitude by 13.9% for wear depth 0.04 mm.

  17. Open critical area model and extraction algorithm based on the net flow-axis

    International Nuclear Information System (INIS)

    Wang Le; Wang Jun-Ping; Gao Yan-Hong; Xu Dan; Li Bo-Bo; Liu Shi-Gang

    2013-01-01

    In the integrated circuit manufacturing process, the critical area extraction is a bottleneck to the layout optimization and the integrated circuit yield estimation. In this paper, we study the problem that the missing material defects may result in the open circuit fault. Combining the mathematical morphology theory, we present a new computation model and a novel extraction algorithm for the open critical area based on the net flow-axis. Firstly, we find the net flow-axis for different nets. Then, the net flow-edges based on the net flow-axis are obtained. Finally, we can extract the open critical area by the mathematical morphology. Compared with the existing methods, the nets need not to divide into the horizontal nets and the vertical nets, and the experimental results show that our model and algorithm can accurately extract the size of the open critical area and obtain the location information of the open circuit critical area. (interdisciplinary physics and related areas of science and technology)

  18. Identification of Bioactivity, Volatile and Fatty Acid Profile in Supercritical Fluid Extracts of Mexican arnica

    Directory of Open Access Journals (Sweden)

    J. Saúl García-Pérez

    2016-09-01

    Full Text Available Supercritical fluid extraction (SFE is a sustainable technique used for the extraction of lipophilic metabolites such as pigments and fatty acids. Arnica plant is considered a potential candidate material with high antioxidant and antimicrobial activities. Therefore, in this study, a locally available Heterotheca inuloides, also known as Mexican arnica, was analyzed for the extraction of high-value compounds. Based on different pressure (P, temperature (T, and co-solvent (CoS, four treatments (T were prepared. A maximum 7.13% yield was recovered from T2 (T = 60 °C, P = 10 MPa, CoS = 8 g/min, followed by 6.69% from T4 (T = 60 °C, P = 30 MPa, CoS = 4 g/min. Some bioactive sesquiterpenoids such as 7-hydroxycadalene, caryophyllene and δ-cadinene were identified in the extracts by GC/MS. The fatty acid profile revealed that the main components were palmitic acid (C16:0, followed by linoleic acid (C18:2ω6c, α-linolenic acid (C18:3ω3 and stearic acid (C18:0 differing in percent yield per treatment. Antibacterial activities were determined by the agar diffusion method, indicating that all the treatments exerted strong antibacterial activity against S. aureus, C. albicans, and E. coli strains. The antioxidant capacity of the extracts was also measured by three in vitro assays, DPPH, TEAC and FRAP, using Trolox as a standard. Results showed high antioxidant capacity enabling pharmaceutical applications of Mexican arnica.

  19. DNA extraction methods for panbacterial and panfungal PCR detection in intraocular fluids.

    Science.gov (United States)

    Mazoteras, Paloma; Bispo, Paulo José Martins; Höfling-Lima, Ana Luisa; Casaroli-Marano, Ricardo P

    2015-07-01

    Three different methods of DNA extraction from intraocular fluids were compared with subsequent detection for bacterial and fungal DNA by universal PCR amplification. Three DNA extraction methods, from aqueous and vitreous humors, were evaluated to compare their relative efficiency. Bacterial (Gram positive and negative) and fungal strains were used in this study: Escherichia coli, Staphylococcus epidermidis and Candida albicans. The quality, quantification, and detection limit for DNA extraction and PCR amplification were analyzed. Validation procedures for 13 aqueous humor and 14 vitreous samples, from 20 patients with clinically suspected endophthalmitis were carried out. The column-based extraction method was the most time-effective, achieving DNA detection limits ≥10(2) and 10(3 )CFU/100 µL for bacteria and fungi, respectively. PCR amplification detected 100 fg, 1 pg and 10 pg of genomic DNA of E. coli, S. epidermidis and C. albicans respectively. PCR detected 90.0% of the causative agents from 27 intraocular samples collected from 20 patients with clinically suspected endophthalmitis, while standard microbiological techniques could detect only 60.0%. The most frequently found organisms were Streptococcus spp. in 38.9% (n = 7) of patients and Staphylococcus spp. found in 22.2% (n = 4). The column-based extraction method for very small inocula in small volume samples (50-100 µL) of aqueous and/or vitreous humors allowed PCR amplification in all samples with sufficient quality for subsequent sequencing and identification of the microorganism in the majority of them.

  20. Supercritical fluid extraction of ginger (Zingiber Officinale Var. Amarum) : Global yield and composition study

    Science.gov (United States)

    Fitriady, Muhammad Arifuddin; Sulaswatty, Anny; Agustian, Egi; Salahuddin, Aditama, Deska Prayoga Fauzi

    2017-11-01

    An experiment to observe the effect of temperature and time process in ginger rhizome-Supercritical Fluid Extraction (SFE) using CO2 as the solvent has been conducted. The ginger rhizome (Zingiber Officinale Var. Amarum) was washed, drained, sliced, sun-dried, and then stored in a sealed bag prior to usage. The temperature and time process variables are each 35, 40, 45°C and 2, 4, 6 hours respectively with the pressure variable are 3500, 4000, and 4500 psi. It is found that the highest yield (2.9%) was achieved using temperature of 40°C and pressure of 4500 psiwith the process time of 4 hours. However, using the curve-fitting method, it is suggested to use 42°C as the temperature and 5 hours, 7 minutes, and 30 seconds (5.125 Hours) as the time process to obtain the highest yield. The temperature changes will affect both solvent and vapor pressure of diluted compounds of the ginger which will influence the global yield and the composition of the extract. The three major components of the extract are curcumene, zingiberene, and β - sesquipellandrene,

  1. Supercritical fluid extraction of uranium for its purification from various yellow cake matrices

    International Nuclear Information System (INIS)

    Prabhat, Parimal; Rao, Ankita; Tomar, B.S.; Kumar, Pradeep

    2016-01-01

    Uranium is produced from different uranium ores as crude yellow cake of different chemical composition such as sodium diuranate (SDU), ammonium diuranate (ADU), magnesium diuranate (MDU), high temperature uranium peroxide (HTUP) etc. This depends on nature of ores and ore processing methods, availability of required facilities at processing site and other economic as well as environmental factors. These yellow cakes are further processed to produce pure uranium suitable for fuel fabrication facility by conventional solvent extraction process. Supercritical Fluid Extraction (SFE) is being developed as an alternate method for separation in nuclear fields due to its inherent potential to minimize liquid waste generation and process simplification. In present study, SFE of uranium from various yellowcake of different chemical composition has been carried out. Chemical parameter such as effect of TBP amount on SFE of uranium has been carried out and optimized at 2 ml for 200 mg SDU. Instrumental parameter such as temperature and pressure on SFE of uranium has been optimized at 323 K and 15.2 MPa. Extraction efficiency (%) achieved at optimized condition is 91.45 ± 0.2, 97.01 ± 0.75 and 96.72 ± 0.27 for SDU, MDU and HTUP respectively. Purity of uranium before SFE and after has been compared. Further studies is in progress for better understanding of chemical composition of matrix on SFE of uranium and improving purity of uranium separated from this route. (author)

  2. Phytochemical Characterization and Biological Evaluation of the Aqueous and Supercritical Fluid Extracts from Salvia sclareoides Brot

    Directory of Open Access Journals (Sweden)

    Batista Daniela

    2017-04-01

    Full Text Available Plants belonging to the genus Salvia (Lamiaceae are known to have a wide range of biological properties. In this work, extracts obtained from the aerial parts of Salvia sclareoides Brot. were evaluated to investigate their chemical composition, toxicity, bioactivity, and stability under in vitro gastrointestinal conditions. The composition of the supercritical fluid extract was determined by GC and GC-MS, while the identification of the infusion constituents was performed by HPLC-DAD and LC-MS. The in vitro cytotoxicity of both extracts (0-2 mg/mL was evaluated in Caco-2 cell lines by the MTT assay. The anti-inflammatory and anticholinesterase activities were determined through the inhibition of cyclooxygenase-1 and acetylcholinesterase enzymes, while β-carotene/linoleic acid bleaching test and the DPPH assays were used to evaluate the antioxidant activity. The infusion inhibited cyclooxygenase-1 (IC50 = 271.0 μg/mL, and acetylcholinesterase (IC50 = 487.7 μg/ mL enzymes, also demonstrated significant antioxidant properties, as evaluated by the DPPH (IC50 = 10.4 μg/mL and β-carotene/linoleic acid (IC50 = 30.0 μg/mL assays. No remarkable alterations in the composition or in the bioactivities of the infusion were observed after in vitro digestion, which supports the potential of S. sclareoides as a source of bioactive ingredients with neuroprotective, anti-inflammatory and antioxidant properties.

  3. Improved solid-phase extraction method for systematic toxicological analysis in biological fluids.

    Science.gov (United States)

    Soriano, T; Jurado, C; Menéndez, M; Repetto, M

    2001-03-01

    A method for the simultaneous qualitative and quantitative determination of drugs of abuse (opiates, cocaine, or amphetamines) and prescribed drugs (tricyclic antidepressants, phenotiazines, benzodiazepines, etc.) in biological fluids--blood, urine, bile, and gastric contents--was developed. This procedure involves solid-phase extraction with Bond-Elut Certify columns followed by analysis by gas chromatography-nitrogen-phosphorus detection (GC-NPD) and confirmation by gas chromatography-mass spectrometry (GC-MS), after derivatization, when necessary. Pretreatment was performed on all samples: sonication for 15 min plus enzymatic hydrolysis with beta-glucuronidase in urine. With respect to the internal standards, nalorphine and trihexylamine were used for basic substances, allobarbital for acidic drugs, and prazepam for benzodiazepines. Acidic and basic compounds were extracted from different aliquots of samples at different pH levels: 6-6.5 for the acidic and neutral and 8-8.5 for the basic and the benzodiazepines. Several areas of experimental design were considered in the process of method optimization. These included internal standards, pH, sonication, flow rate and washing solvents. It was found that systematic analysis could be reliably performed using optimized extraction conditions. The recovery rates for the compounds tested were always higher than 61.02%.

  4. Evaluation of supercritical fluid extraction/gas chromatography/matrix isolation-infrared spectrometry for analysis of organic compounds

    International Nuclear Information System (INIS)

    Bopari, A.S.; Bierma, D.R.; Applegate, D.V.

    1991-01-01

    Analysis of soil samples for organic compounds typically first requires Soxhlet extraction or sonication. These processes are time consuming and generate large amounts of waste solvent. Supercritical fluid extraction (SFE), which uses a supercritical fluid such as carbon dioxide, has recently been shown to extract organic compounds from soil samples in good yields. Moreover, SFE does not generate waste solvent and can be performed rapidly. Gas Chromatography/Matrix Isolation-Infrared Spectrometry (GC/MI-IR) has been used in our laboratories for determining organic compounds present in extracts from various matrices. The authors have interfaced an SFE extraction apparatus to GC/MI-IR instruments. In this paper the utility of SPE/GC/MI-IR instrumentation is discussed

  5. Light scattering studies of lower dimensional colloidal particle and critical fluid systems

    International Nuclear Information System (INIS)

    O'Sullivan, W.J.; Mockler, R.C.

    1984-09-01

    The authors have studied the response to compression of colloidal particle crystals in monolayers on the surface of water. The crystals deform elastically as the crystals are compressed in a Langmuir trough from a lattice spacing of ten microns to spacings less than two microns. A phase transition to a close packed triangular lattice phase occurs at very high densities, when the attractive van der Waals/steric interations between particles dominate. The authors have found that the aggregates formed, when a colloidal particle monolayer coagulates following switching off of the repulsive electric dipole-dipole interactions, show scale invariance with a fractal dimension consistent with the prediction of a theory of diffusion limited aggregation in two dimensions. The authors have made progress toward the development of a computer processed array detector-spectrometer to be used in studies of melting and crystallization of two dimensional colloidal particle films. Stable black bilipid membranes have been produced, both spherical and planar, with and without embedded microparticles. We have modified our heterodyne autocorrelation spectrometer, used for studies of the dynamic response of critical fluid films, to enable us to measure the intensity autocorrelation of light scattered at forward angles. Rayleigh linewidth data has been gathered from a 1.9 micron film of a 2,6-lutidine+water critical mixture, taken at a scattering angle of ten degrees. The preliminary results indicate that the film dynamical response remains that of an equivalent three dimensional system, in apparent disgreement with recent theoretical predictions of Calvo and Ferrell

  6. On the effects from the simultaneous occurrence of the critical Casimir and dispersion forces between conical colloid particle and a thick plate immersed in nonpolar critical fluid

    Directory of Open Access Journals (Sweden)

    Valchev Galin

    2018-01-01

    Full Text Available Here we study the interplay between the van der Waals (vdWF and critical Casimir forces (CCF, as well as the total force (TF between a conical colloid particle and a thick planar slab. We do that using general scaling arguments and mean-field type calculations utilizing the so-called “surface integration approach”, a generalization of the well known Derjaguin approximation. Its usage in the present research, requires knowledge on the forces between two parallel slabs, confining in between some fluctuating fluid medium characterized by its temperature T and chemical potential μ. The surfaces of the colloid particle and the slab are assumed coated by thin layers exerting strong preference to the liquid phase of a simple fluid, or one of the components of a binary mixture, modeled by strong adsorbing local surface potentials, ensuring the so-called (+,+ boundary conditions. On the other hand, the core region of the slab and the particle, influence the fluid by long-ranged competing dispersion potentials. We demonstrate that for a suitable set of colloid-fluid, slab-fluid, and fluid-fluid coupling parameters the competition between the effects due to the coatings and the core regions of the objects, result, when one changes T or μ, in sign change of the Casimir force (CF and the TF acting between the colloid and the slab. Such an effect can provide a strategy for solving problems with handling, feeding, trapping and fixing of microparts in nanotechnology.

  7. Casimir amplitudes and capillary condensation of near-critical fluids between parallel plates: renormalized local functional theory.

    Science.gov (United States)

    Okamoto, Ryuichi; Onuki, Akira

    2012-03-21

    We investigate the critical behavior of a near-critical fluid confined between two parallel plates in contact with a reservoir by calculating the order parameter profile and the Casimir amplitudes (for the force density and for the grand potential). Our results are applicable to one-component fluids and binary mixtures. We assume that the walls absorb one of the fluid components selectively for binary mixtures. We propose a renormalized local functional theory accounting for the fluctuation effects. Analysis is performed in the plane of the temperature T and the order parameter in the reservoir ψ(∞). Our theory is universal if the physical quantities are scaled appropriately. If the component favored by the walls is slightly poor in the reservoir, there appears a line of first-order phase transition of capillary condensation outside the bulk coexistence curve. The excess adsorption changes discontinuously between condensed and noncondensed states at the transition. With increasing T, the transition line ends at a capillary critical point T=T(c) (ca) slightly lower than the bulk critical temperature T(c) for the upper critical solution temperature. The Casimir amplitudes are larger than their critical point values by 10-100 times at off-critical compositions near the capillary condensation line. © 2012 American Institute of Physics

  8. Computational Fluid Dynamics Based Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  9. Determination of As concentration in earthworm coelomic fluid extracts by total-reflection X-ray fluorescence spectrometry

    Science.gov (United States)

    Allegretta, Ignazio; Porfido, Carlo; Panzarino, Onofrio; Fontanella, Maria Chiara; Beone, Gian Maria; Spagnuolo, Matteo; Terzano, Roberto

    2017-04-01

    Earthworms are often used as sentinel organisms to study As bioavailability in polluted soils. Arsenic in earthworms is mainly sequestrated in the coelomic fluids whose As content can therefore be used to asses As bioavalability. In this work, a method for determining As concentration in coelomic fluid extracts using total-reflection X-ray fluorescence spectrometry (TXRF) is presented. For this purpose coelomic fluid extracts from earthworms living in three polluted soils and one non-polluted (control) soil have been collected and analysed. A very simple sample preparation was implemented, consisting of a dilution of the extracts with polyvinyl alcohol (PVA) using a 1:8 ratio and dropwise deposition of the sample on the reflector. A detection limit of 0.2 μg/l and quantification limit of 0.6 μg/l was obtained in the diluted samples, corresponding to 2 μg/l and 6 μg/l in the coelomic fluid extracts, respectively. This allowed to quantify As concentration in coelomic fluids extracted from earthworms living in soils polluted with As at concentrations higher than 20 mg/kg (considered as a pollution threshold for agricultural soils). The TXRF method has been validated by comparison with As concentrations in standards and by analysing the same samples by ICP-MS, after acid digestion of the sample. The low limit of detection, the proven reliability of the method and the little sample preparation make TXRF a suitable, cost-efficient and "green" technique for the analysis of As in earthworm coelomic fluid extracts for bioavailability studies.

  10. Supercritical fluid extraction of meat lipids: an alternative approach to the identification of irradiated meats

    International Nuclear Information System (INIS)

    Hampson, J.W.; Jones, K.C.; Foglia, T.A.; Kohout, K.M.

    1996-01-01

    Ionizing radiation is currently under study as an alternative method for extending the shelf life of meats and meat products. Accordingly, methods are needed to determine if a meat or meat product has been exposed to ionizing radiation. In this study, a method is described for the isolation and analysis of volatile hydrocarbons formed in meat lipids after exposure to ionizing radiation. The method is based on supercritical fluid extraction of the hydrocarbons from meat lipids and subsequent identification and quantitation of individual hydrocarbons by gas chromatography (GC) with a mass selection detector (MSD). Supercritical carbon dioxide at 175 bar and 40°C extracted the hydrocarbon fraction from total meat lipids within 20 min. The presence of radiolytic hydrocarbons, as determined by GC/MSD, was then correlated to the degree of irradiation of the meat from 0 to 10 kGy. Besides being faster, this method has the advantage of reduced solvent consumption when compared to current methods for determining if a meat or meat product has been irradiated

  11. Sedative and hypnotic effects of supercritical carbon dioxide fluid extraction from Schisandra chinensis in mice

    Directory of Open Access Journals (Sweden)

    Hongyan Zhu

    2016-10-01

    Full Text Available Schisandra chinensis is a traditional Chinese medicine that has been used for treating insomnia and neurasthenia for centuries. Lignans, which are considered to be the bioactive components, are apt to be extracted by supercritical carbon dioxide. This study was conducted to investigate the sedative and hypnotic activities of the supercritical carbon dioxide fluid extraction of S. chinensis (SFES in mice and the possible mechanisms. SFES exhibited an obvious sedative effect on shortening the locomotor activity in mice in a dose-dependent (10–200 mg/kg manner. SFES (50 mg/kg, 100 mg/kg, and 200 mg/kg, intragstrically showed a strong hypnotic effect in synergy with pentobarbital in mouse sleep, and reversal of insomnia induced by caffeine, p-chlorophenylalanine and flumazenil by decreasing sleep latency, sleep recovery, and increasing sleeping time. In addition, it produced a synergistic effect with 5-hydroxytryptophan (2.5 mg/kg, intraperitoneally. The behavioral pharmacological results suggest that SFES has significant sedative and hypnotic activities, and the mechanisms might be relevant to the serotonergic and γ-aminobutyric acid (GABAergic system.

  12. Multicountry survey of emergency and critical care medicine physicians' fluid resuscitation practices for adult patients with early septic shock

    DEFF Research Database (Denmark)

    McIntyre, Lauralyn; Rowe, Brian H; Walsh, Timothy S

    2016-01-01

    and Ringer's solutions were the preferred crystalloid fluids used 'often' or 'always' in 53.1% (n=556) and 60.5% (n=632) of instances, respectively. However, emergency physicians indicated that they would use normal saline 'often' or 'always' in 83.9% (n=376) of instances, while critical care physicians said...

  13. Selective extraction of hydrocarbons, phosphonates and phosphonic acids from soils by successive supercritical fluid and pressurized liquid extractions.

    Science.gov (United States)

    Chaudot, X; Tambuté, A; Caude, M

    2000-01-14

    Hydrocarbons, dialkyl alkylphosphonates and alkyl alkylphosphonic acids are selectively extracted from spiked soils by successive implementation of supercritical carbon dioxide, supercritical methanol-modified carbon dioxide and pressurized water. More than 95% of hydrocarbons are extracted during the first step (pure supercritical carbon dioxide extraction) whereas no organophosphorus compound is evidenced in this first extract. A quantitative extraction of phosphonates is achieved during the second step (methanol-modified supercritical carbon dioxide extraction). Polar phosphonic acids are extracted during a third step (pressurized water extraction) and analyzed by gas chromatography under methylated derivatives (diazomethane derivatization). Global recoveries for these compounds are close to 80%, a loss of about 20% occurring during the derivatization process (co-evaporation with solvent). The developed selective extraction method was successfully applied to a soil sample during an international collaborative exercise.

  14. Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge

    Science.gov (United States)

    McCollom, Thomas M.; Seewald, Jeffrey S.; German, Christopher R.

    2015-05-01

    The possibility that deep-sea hydrothermal vents may contain organic compounds produced by abiotic synthesis or by microbial communities living deep beneath the surface has led to numerous studies of the organic composition of vent fluids. Most of these studies have focused on methane and other light hydrocarbons, while the possible occurrence of more complex organic compounds in the fluids has remained largely unstudied. To address this issue, the presence of higher molecular weight organic compounds in deep-sea hydrothermal fluids was assessed at three sites along the Mid-Atlantic Ridge that span a range of temperatures (51 to >360 °C), fluid compositions, and host-rock lithologies (mafic to ultramafic). Samples were obtained at several sites within the Lucky Strike, Rainbow, and Lost City hydrothermal fields. Three methods were employed to extract organic compounds for analysis, including liquid:liquid extraction, cold trapping on the walls of a coil of titanium tubing, and pumping fluids through cartridges filled with solid phase extraction (SPE) sorbents. The only samples to consistently yield high amounts of extractable organic compounds were the warm (51-91 °C), highly alkaline fluids from Lost City, which contained elevated concentrations of C8, C10, and C12n-alkanoic acids and, in some cases, trithiolane, hexadecanol, squalene, and cholesterol. Collectively, the C8-C12 acids can account for about 15% of the total dissolved organic carbon in the Lost City fluids. The even-carbon-number predominance of the alkanoic acids indicates a biological origin, but it is unclear whether these compounds are derived from microbial activity occurring within the hydrothermal chimney proximal to the site of fluid discharge or are transported from deeper within the system. Hydrothermal fluids from the Lucky Strike and Rainbow fields were characterized by an overall scarcity of extractable dissolved organic compounds. Trace amounts of aromatic hydrocarbons including

  15. Biot Critical Frequency Applied to Description of Failure and Yield of Highly Porous Chalk with Different Pore Fluids

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling; Fabricius, Ida Lykke

    2010-01-01

    Injection of water into chalk hydrocarbon reservoirs has led to mechanical yield and failure. Laboratory experiments on chalk samples correspondingly show that the mechanical properties of porous chalk depend on pore fluid and temperature. In case of water-saturated samples, the concentration...... is controlled by solid-fluid friction. The reference frequency is thus a measure of this friction, and we propose that the fluid effect on mechanical properties of chalk may be the result of liquid-solid friction. We reviewed 622 published experiments on mechanical properties of porous chalk. The data include...... chalk samples that were tested at temperatures from 20 °C to 130 °C with the following pore fluids: fresh water, synthetic seawater, glycol, and oil of varying viscosity. The critical frequency is calculated for each experiment. For each specimen, we calculate the thickness to the slipping plane outside...

  16. Predicting critical temperatures of ionic and non-ionic fluids from thermophysical data obtained near the melting point

    Science.gov (United States)

    Weiss, Volker C.

    2015-10-01

    In the correlation and prediction of thermophysical data of fluids based on a corresponding-states approach, the critical temperature Tc plays a central role. For some fluids, in particular ionic ones, however, the critical region is difficult or even impossible to access experimentally. For molten salts, Tc is on the order of 3000 K, which makes accurate measurements a challenging task. Room temperature ionic liquids (RTILs) decompose thermally between 400 K and 600 K due to their organic constituents; this range of temperatures is hundreds of degrees below recent estimates of their Tc. In both cases, reliable methods to deduce Tc based on extrapolations of experimental data recorded at much lower temperatures near the triple or melting points are needed and useful because the critical point influences the fluid's behavior in the entire liquid region. Here, we propose to employ the scaling approach leading to universal fluid behavior [Román et al., J. Chem. Phys. 123, 124512 (2005)] to derive a very simple expression that allows one to estimate Tc from the density of the liquid, the surface tension, or the enthalpy of vaporization measured in a very narrow range of low temperatures. We demonstrate the validity of the approach for simple and polar neutral fluids, for which Tc is known, and then use the methodology to obtain estimates of Tc for ionic fluids. When comparing these estimates to those reported in the literature, good agreement is found for RTILs, whereas the ones for the molten salts NaCl and KCl are lower than previous estimates by 10%. The coexistence curve for ionic fluids is found to be more adequately described by an effective exponent of βeff = 0.5 than by βeff = 0.33.

  17. Working memory and fluid intelligence are both identical to g?! Reanalyses and critical evaluation

    Directory of Open Access Journals (Sweden)

    GILLES E. GIGNAC

    2007-09-01

    Full Text Available In this investigation, two previously published confirmatory factor analytic studies that separately reported working memory and fluid intelligence higher-order loadings so large as to suggest isomor-phism with g were evaluated critically within the context of internal consistency reliability. Specifi-cally, based on two data analytic approaches, the previously reported higher-order loadings which suggested isomorphism with g were demonstrated to have been achieved via the substantial disattenua-tion effects observed within structural equation modeling, when the latent variable corresponding composite scores are associated with low levels of reliability. The two approaches were: (1 the obverse of the disattenuation procedure for imperfect reliability, and (2 the implied correlation between a corresponding phantom composite variable and a higher-order g factor. The results derived from the two approaches were found to correspond very closely. To allow for a more informative evaluation, researchers are encouraged to report the internal consistency reliabilities associated with the composite scores which correspond to their latent variables, as well as to report both the disattenuated and attenu-ated higher-order loadings within their multi-factor models.

  18. A critical review on the spray drying of fruit extract: effect of additives on physicochemical properties.

    Science.gov (United States)

    Krishnaiah, Duduku; Nithyanandam, Rajesh; Sarbatly, Rosalam

    2014-01-01

    Spray drying accomplishes drying while particles are suspended in the air and is one method in the family of suspended particle processing systems, along with fluid-bed drying, flash drying, spray granulation, spray agglomeration, spray reaction, spray cooling, and spray absorption. This drying process is unique because it involves both particle formation and drying. The present paper reviews spray drying of fruit extracts, such as acai, acerola pomace, gac, mango, orange, cactus pear, opuntia stricta fruit, watermelon, and durian, and the effects of additives on physicochemical properties such as antioxidant activity, total carotenoid content, lycopene and β-carotene content, hygroscopy, moisture content, volatile retention, stickiness, color, solubility, glass transition temperature, bulk density, rehydration, caking, appearance under electron microscopy, and X-ray powder diffraction. The literature clearly demonstrates that the effect of additives and encapsulation play a vital role in determining the physicochemical properties of fruit extract powder. The technical difficulties in spray drying of fruit extracts can be overcome by modifying the spray dryer design. It also reveals that spray drying is a novel technology for converting fruit extract into powder form.

  19. Immunomodulatory effects of supercritical fluid CO2 extracts from freeze-dried powder of Tenebrio molitor larvae (yellow mealworm

    Directory of Open Access Journals (Sweden)

    QingFeng TANG

    2016-01-01

    Full Text Available Abstract In order to take full advantage of Tenebrio molitor larvae (yellow mealworm resources, the supercritical CO2 fluid freeze-dried powder of T. molitor larvae (fdTML extraction on the immune systems of mice was carried out. The results about the effects of supercritical CO2 fluid fdTML extraction on carbon expurgation and phagocytosis of peritoneal macrophages experiments of mice indicated that the fdTML extraction enhanced observably carbon expurgatory index, phagocytic rate and phagocytic index. The fdTML extraction could stimulate response of delayed hypersensitivity. The proliferation of ConA-induced mitogenic reponse for spleen lymphocyte was also increased. The amount of hemolytic antibody in mice serum increased compared with those of the control group mice. The half of hemolysis values in serum of treated mice increased compared to the control group. Furthermore, serum NO content in all treatment groups was higher than that of the control group whereas acid phosphatase and alkaline phosphatase activity was only significantly higher relative to the control group. Our findings suggest that supercritical CO2 fluid the fdTML extraction has potential as a health food supplement.

  20. Construction of a supercritical fluid extraction (SFE equipment: validation using annatto and fennel and extract analysis by thin layer chromatography coupled to image

    Directory of Open Access Journals (Sweden)

    Júlio Cezar Flores JOHNER

    2016-01-01

    Full Text Available Abstract The present work describes setting up a laboratory unit for supercritical fluid extraction. In addition to its construction, a survey of cost was done to compare the cost of the homemade unit with that of commercial units. The equipment was validated using an extraction of annatto seeds’ oil, and the extraction and fractionation of fennel oil were used to validate the two separators; for both systems, the solvent was carbon dioxide. The chemical profiles of annatto and fennel extracts were assessed using thin layer chromatography; the images of the chromatographic plates were processed using the free ImageJ software. The cost survey showed that the homemade equipment has a very low cost (~US$ 16,000 compared to commercial equipment. The extraction curves of annatto were similar to those obtained in the literature (yield of 3.8% oil. The separators were validated, producing both a 2.5% fraction of fennel seed extract rich in essential oils and another extract fraction composed mainly of oleoresins. The ImageJ software proved to be a low-cost tool for obtaining an initial evaluation of the chemical profile of the extracts.

  1. Supercritical fluid extraction of grape seeds: extract chemical composition, antioxidant activity and inhibition of nitrite production in LPS-stimulated Raw 264.7 cells.

    Science.gov (United States)

    Pérez, Concepción; Ruiz del Castillo, María Luisa; Gil, Carmen; Blanch, Gracia Patricia; Flores, Gema

    2015-08-01

    Grape by-products are a rich source of bioactive compounds having broad medicinal properties, but are usually wasted from juice/wine processing industries. The present study investigates the use of supercritical fluid extraction (SFE) for obtaining an extract rich in bioactive compounds. First, some variables involved in the extraction were applied. SFE conditions were selected based on the oil mass yield, fatty acid profile and total phenolic composition. As a result, 40 °C and 300 bar were selected as operational conditions. The phenolic composition of the grape seed oil was determined using LC-DAD. The antioxidant activity was determined by ABTS and DPPH assays. For the anti-inflammatory activity the inhibition of nitrite production was assessed. The grape seed oil extracted was rich in phenolic compounds and fatty acids with significant antioxidant and anti-inflammatory activities. From these results, added economic value to this agroindustrial residue is proposed using environmentally friendly techniques.

  2. Supercritical fluid extraction and chromatographic analysis (HRGC-FID and HRGC-MS of Lupinus spp. alkaloids

    Directory of Open Access Journals (Sweden)

    Nossack Ana C.

    2000-01-01

    Full Text Available The alkaloid extracts from Lupinus spp., obtained by conventional methods (maceration/sonication - solid phase extraction; maceration/sonication - liquid-liquid extraction and SFE (supercritical fluid extraction using CO2 and modified CO2 (CO2/MeOH, CO2/EtOH, CO2/iPrOH and CO2/H2O were analysed by HRGC-FID (high resolution gas chromatography - flame ionization detector and HRGC-MS (high resolution gas chromatography - mass spectrometry. The HRGC-FID quantitative analyses were performed with an internal standard method for quantification of lupanine, multiflorine and a spartein-like alkaloid. HRGC-MS allowed identification of the chemical constituents (alkaloids and other compounds from these extracts.

  3. Comment on "Proposal of a critical test of the Navier-Stokes-Fourier paradigm for compressible fluid continua".

    Science.gov (United States)

    Felderhof, B U

    2013-08-01

    Recently, a critical test of the Navier-Stokes-Fourier equations for compressible fluid continua was proposed [H. Brenner, Phys. Rev. E 87, 013014 (2013)]. It was shown that the equations of bivelocity hydrodynamics imply that a compressible fluid in an isolated rotating circular cylinder attains a nonequilibrium steady state with a nonuniform temperature increasing radially with distance from the axis. We demonstrate that statistical mechanical arguments, involving Hamiltonian dynamics and ergodicity due to irregularity of the wall, lead instead to a thermal equilibrium state with uniform temperature. This is the situation to be expected in experiment.

  4. Developing novel one-step processes for obtaining food-grade O/W emulsions from pressurized fluid extracts: processes description, state of the art and perspectives

    Directory of Open Access Journals (Sweden)

    Diego Tresinari SANTOS

    2015-01-01

    Full Text Available AbstractIn this work, a novel on-line process for production of food-grade emulsions containing oily extracts, i.e. oil-in-water (O/W emulsions, in only one step is presented. This process has been called ESFE, Emulsions from Supercritical Fluid Extraction. With this process, emulsions containing supercritical fluid extracts can be obtained directly from plant materials. The aim in the conception of this process is to propose a new rapid way to obtain emulsions from supercritical fluid extracts. Nowadays the conventional emulsion formulation method is a two-step procedure, i.e. first supercritical fluid extraction for obtaining an extract; secondly emulsion formulation using another device. Other variation of the process was tested and successfully validated originating a new acronymed process: EPFE (Emulsions from Pressurized Fluid Extractions. Both processes exploit the supercritical CO2-essential oils miscibility, in addition, EPFE process exploits the emulsification properties of saponin-rich pressurized aqueous plant extracts. The feasibility of this latter process was demonstrated using Pfaffia glomerata roots as source of saponin-rich extract, water as extracting solvent and clove essential oil, directly extracted using supercritical CO2, as a model dispersed phase. In addition, examples of pressurized fluid-based coupled processes applied for adding value to food bioactive compounds developed in the past five years are reviewed.

  5. Antioxidant and toxicological evaluation of a Tamarindus indica L. leaf fluid extract.

    Science.gov (United States)

    Escalona-Arranz, J C; Perez-Rosés, R; Rodríguez-Amado, J; Morris-Quevedo, H J; Mwasi, L B; Cabrera-Sotomayor, O; Machado-García, R; Fong-Lórez, O; Alfonso-Castillo, A; Puente-Zapata, E

    2016-01-01

    In the scientific community, there is a growing interest in Tamarindus indica L. leaves, both as a valuable nutrient and as a functional food. This paper focuses on exploring its safety and antioxidant properties. A tamarind leaf fluid extract (TFE) wholly characterised was evaluated for its anti-DPPH activity (IC50 = 44.36 μg/mL) and its reducing power activity (IC50 = 60.87 μg/mL). TFE also exhibited a high ferrous ion-chelating capacity, with an estimated binding constant of 1.085 mol L(-1) while its influence over nitric oxide production in human leucocytes was irregular. At low concentrations, TFE stimulated NO output, but it significantly inhibited it when there was an increase in concentration. TFE was also classified as a non-toxic substance in two toxicity tests: the acute oral toxicity test and the oral mucous irritability test. Further toxicological assays are needed, although results so far suggest that TFE might become a functional dietary supplement.

  6. Variability of standard artificial soils: Physico-chemical properties and phenanthrene desorption measured by means of supercritical fluid extraction

    International Nuclear Information System (INIS)

    Bielská, Lucie; Hovorková, Ivana; Komprdová, Klára; Hofman, Jakub

    2012-01-01

    The study is focused on artificial soil which is supposed to be a standardized “soil like” medium. We compared physico-chemical properties and extractability of Phenanthrene from 25 artificial soils prepared according to OECD standardized procedures at different laboratories. A substantial range of soil properties was found, also for parameters which should be standardized because they have an important influence on the bioavailability of pollutants (e.g. total organic carbon ranged from 1.4 to 6.1%). The extractability of Phe was measured by supercritical fluid extraction (SFE) at harsh and mild conditions. Highly variable Phe extractability from different soils (3–89%) was observed. The extractability was strongly related (R 2 = 0.87) to total organic carbon content, 0.1–2 mm particle size, and humic/fulvic acid ratio in the following multiple regression model: SFE (%) = 1.35 * sand (%) − 0.77 * TOC (%)2 + 0.27 * HA/FA. - Highlights: ► We compared properties and extractability of Phe from 25 different artificial soils. ► Substantial range of soil properties was found, also for important parameters. ► Phe extractability was measured by supercritical fluid extraction (SFE) at 2 modes. ► Phe extractability was highly variable from different soils (3–89%). ► Extractability was strongly related to TOC, 0.1–2 mm particles, and HA/FA. - Significant variability in physico-chemical properties exists between artificial soils prepared at different laboratories and affects behavior of contaminants in these soils.

  7. Investigating the recording and accuracy of fluid balance monitoring in critically ill patients

    Directory of Open Access Journals (Sweden)

    Annette Diacon

    2014-11-01

    Full Text Available Background. The accurate assessment of fluid balance data collected during physical assessment as well as during monitoring and record-keeping forms an essential part of the baseline patient information that guides medical and nursing interventions aimed at achieving physiological stability in patients. An informal audit of 24-hour fluid balance records in a local intensive care unit (ICU showed that seven out of ten fluid balance calculations were incorrect.Objective. To identify and describe current clinical nursing practice in fluid balance monitoring and measurement accuracy in ICUs, conducted as part of a broader study in partial fulfilment of a Master of Nursing degree.Methods. A quantitative approach utilising a descriptive, exploratory study design was applied. An audit of 103 ICU records was conducted to establish the current practices and accuracy in recording of fluid balance monitoring. Data were collected using a purpose-designed tool based on relevant literature and practice experience. Results. Of the original recorded fluid balance calculations, 79% deviated by more than 50 mL from the audited calculations. Further­more, a significant relationship was shown between inaccurate fluid balance calculation and administration of diuretics (p=0.01. Conclusion. The majority of fluid balance records were incorrectly calculated.

  8. Electromembrane extraction as a rapid and selective miniaturized sample preparation technique for biological fluids

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Pedersen-Bjergaard, Stig; Seip, Knut Fredrik

    2015-01-01

    This special report discusses the sample preparation method electromembrane extraction, which was introduced in 2006 as a rapid and selective miniaturized extraction method. The extraction principle is based on isolation of charged analytes extracted from an aqueous sample, across a thin film....... Technical aspects of electromembrane extraction, important extraction parameters as well as a handful of examples of applications from different biological samples and bioanalytical areas are discussed in the paper....

  9. Critical exponents of a fluid mixture in the presence of isotope exchange: Isobutyric acid/D2O

    International Nuclear Information System (INIS)

    Gulari, E.; Chu, B.; Woermann, D.

    1980-01-01

    Experiments on phase diagrams and critical opalescence of a fluid mixture, isobutyric acid in D 2 O, indicate that the presence of isotope exchange reactions can change the critical behavior of such a system from that of a simple binary fluid mixture. Appreciable amounts of additional species due to isotope exchange distort the coexistence curve, shift the critical solution concentration y/sub c/ away from the concentration (y/sub I/*) where the maximal phase separation temperature T/sub p/,max occurs, and make the critical exponents γ and ν in the one-phase region (T>T/sub c/) different from those of the coexisting two-phase region (T 0 C differing from y/sub I/*=0.310 at T/sub p/,max=45.11 0 C. In the one-phase region, γ=1.25, ν=0.633, and xi 0 =3.13 A, in excellent agreement with γ=1.24 and ν=0.633 of simple fluid systems. However, in the coexisting two-phase region, the critical exponents appear to be renormalized with γ/sub x/ =1.39, ν/sub x/approx. =0.76, and xi 0 approx. =0.6 A. These results are in agreement with the renormalized critical exponents γ/sub x/=1.40 +- 0.02 and ν/sub x/ =0.73 +- 0.04 near the plait point of a ternary liquid mixture: ethanol--water--chloroform

  10. Optimisation of supercritical fluid extraction of polycyclic aromatic hydrocarbons and their nitrated derivatives adsorbed on highly sorptive diesel particulate matter

    International Nuclear Information System (INIS)

    Portet-Koltalo, F.; Oukebdane, K.; Dionnet, F.; Desbene, P.L.

    2009-01-01

    Supercritical fluid extraction (SFE) was performed to extract complex mixtures of polycyclic aromatic hydrocarbons (PAHs), nitrated derivatives (nitroPAHs) and heavy n-alkanes from spiked soot particulates that resulted from the incomplete combustion of diesel oils. This polluted material, resulting from combustion in a light diesel engine and collected at high temperature inside the particulate filter placed just after the engine, was particularly resistant to conventional extraction techniques, such as soxhlet extraction, and had an extraction behaviour that differed markedly from certified reference materials (SRM 1650). A factorial experimental design was performed, simultaneously modelling the influence of four SFE experimental factors on the recovery yields, i.e.: the temperature and the pressure of the supercritical fluid, the nature and the percentage of the organic modifier added to CO 2 (chloroform, tetrahydrofuran, methylene chloride), as a means to reach the optimal extraction yields for all the studied target pollutants. The results of modelling showed that the supercritical fluid pressure had to be kept at its maximum level (30 MPa) and the temperature had to be kept relatively low (75 o C). Under these operating conditions, adding 15% of methylene chloride to the CO 2 permitted quantitative extraction of not only light PAHs and their nitrated derivatives, but also heavy n-alkanes from the spiked soots. However, heavy polyaromatics were not quantitatively extracted from the refractory carbonaceous solid surface. As such, original organic modifiers were tested, including pyridine, which, as a strong electron donor cosolvent (15% into CO 2 ), was the most successful. The addition of diethylamine to pyridine, which enhanced the electron donor character of the cosolvent, even increased the extraction yields of the heaviest PAHs, leading to a quantitative extraction of all PAHs (more than 79%) from the diesel particulate matter, with detection limits

  11. Impacts of Extraction Methods in the Rapid Determination of Atrazine Residues in Foods using Supercritical Fluid Chromatography and Enzyme-Linked Immunosorbent Assay: Microwave Solvent vs. Supercritical Fluid Extractions

    Directory of Open Access Journals (Sweden)

    Mohamed H. El-Saeid

    2005-01-01

    Full Text Available It is an accepted fact that many food products that we eat today have the possibility of being contaminated by various chemicals used from planting to processing. These chemicals have been shown to cause illnesses for which some concerned government agencies have instituted regulatory mechanisms to minimize the risks and the effects on humans. It is for these concerns that reliable and accurate rapid determination techniques are needed to effect proper regulatory standards for the protection of people's nutritional health. This paper, therefore, reports the comparative evaluation of the extraction methods in the determination of atrazine (commonly used in agricultural as a herbicide residues in foods using supercritical fluid chromatography (SFC and enzyme-linked immunosorbent assay (ELISA techniques. Supercritical fluid extraction (SFE and microwave solvent extraction (MSE methods were used to test samples of frozen vegetables, fruit juice, and jam from local food markets in Houston. Results showed a high recovery percentage of atrazine residues using supercritical fluid coupled with ELISA and SFC than with MSE. Comparatively, however, atrazine was detected 90.9 and 54.5% using SFC and ELISA techniques, respectively. ELISA technique was, however, less time consuming, lower in cost, and more sensitive with low detection limit of atrazine residues than SFC technique.

  12. Extraction and isolation of dictamnine, obacunone and fraxinellone from Dictamnus dasycarpus Turcz. by supercritical fluid extraction and high-speed counter-current chromatography

    International Nuclear Information System (INIS)

    Wang, Daijie; Lin, Yunliang; Lin, Xiaojing; Geng, Yanling; Wang, Xiao; Zhang, Jinjie; Qiu, Jiying

    2012-01-01

    Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 degree C. Further separation and purification was established by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio). The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, 1H-NMR and 13 C-NMR. (author)

  13. Extraction and isolation of dictamnine, obacunone and fraxinellone from Dictamnus dasycarpus Turcz. by supercritical fluid extraction and high-speed counter-current chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daijie; Lin, Yunliang; Lin, Xiaojing; Geng, Yanling; Wang, Xiao, E-mail: wxjn1998@126.com [Process Control Research Center of TCM. Shandong Academy of Sciences. Shandong Analysis and Test Center (China); Zhang, Jinjie [College of Biosystems Engineering and Food Science, Zhejiang University (China); Qiu, Jiying [Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Science, Shandong (China)

    2012-07-01

    Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 degree C. Further separation and purification was established by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio). The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, 1H-NMR and {sup 13}C-NMR. (author)

  14. Extraction and isolation of dictamnine, obacunone and fraxinellone from Dictamnus dasycarpus Turcz. by supercritical fluid extraction and high-speed counter-current chromatography

    Directory of Open Access Journals (Sweden)

    Daijie Wang

    2012-01-01

    Full Text Available Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 ºC. Further separation and purification was established by high-speed counter-current chromatography (HSCCC with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio. The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, ¹H-NMR and 13C-NMR.

  15. Amniotic fluid and colostrum as potential diets in the critical care of preterm infants

    DEFF Research Database (Denmark)

    Støy, Ann Cathrine Findal; Viberg Østergaard, Mette; Torp Sangild, Per

    2015-01-01

    Amniotic fluid is the enteral “diet” of the developing fetus, while the first mammary gland secretion, colostrum, is the natural diet of the newborn mammal. Both diets contain nutrients but also growth factors, immune-modulating components, and antibacterial agents that support perinatal organ...... development, particularly of the gastrointestinal (GI) tract. Birth requires a sudden transition to nutrient uptake via the GI tract and exposure to microorganisms. Ingestion of amniotic fluid before birth and of colostrum just after birth helps to adapt GI functions and provides protection against...... and colostrum, and we describe how these fluids may have a therapeutic potential for GI conditions in some pediatric patients, particularly preterm infants. The composition of the two fluids varies widely among different species and the effects are likely highly species specific. Some effects may however...

  16. Critical evaluation and comparison of fluid distribution systems for industrial scale expanded bed adsorption chromatography columns

    DEFF Research Database (Denmark)

    Arpanaei, Ayyoob; Heebøll-Nielsen, Anders; Hubbuch, Jürgen

    2008-01-01

    distributor at large scale were apparent: dead zones were present which could not be removed by increasing rotation rates or flow rates, and such changes led to a deterioration in hydrodynamic properties. In contrast, during fluid introduction through a rotating distributor no dead zones were observed....... The results imply that further improvement in distributor design is needed and careful attention should be given to the trade off between turbulence and adequate fluid distribution....

  17. Supercritical Fluid Extraction and Ultra Performance Liquid Chromatography of Respiratory Quinones for Microbial Community Analysis in Environmental and Biological Samples

    OpenAIRE

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-01-01

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysi...

  18. Cytotoxic Activity of Kenaf Seed Oils from Supercritical Carbon Dioxide Fluid Extraction towards Human Colorectal Cancer (HT29) Cell Lines

    OpenAIRE

    Abd Ghafar, Siti Aisyah; Ismail, Maznah; Saiful Yazan, Latifah; Fakurazi, Sharida; Ismail, Norsharina; Chan, Kim Wei; Md Tahir, Paridah

    2013-01-01

    Kenaf (Hibiscus cannabinus) from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as ? -sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO) was from supercritical carbon dioxide extraction fluid (SFE) at 9 different permutations of parameters based on range of pressures from 200 to 600 bars...

  19. Maintenance fluid therapy and fluid creep impose more significant fluid, sodium, and chloride burdens than resuscitation fluids in critically ill patients: a retrospective study in a tertiary mixed ICU population.

    Science.gov (United States)

    Van Regenmortel, Niels; Verbrugghe, Walter; Roelant, Ella; Van den Wyngaert, Tim; Jorens, Philippe G

    2018-04-01

    Research on intravenous fluid therapy and its side effects, volume, sodium, and chloride overload, has focused almost exclusively on the resuscitation setting. We aimed to quantify all fluid sources in the ICU and assess fluid creep, the hidden and unintentional volume administered as a vehicle for medication or electrolytes. We precisely recorded the volume, sodium, and chloride burdens imposed by every fluid source administered to 14,654 patients during the cumulative 103,098 days they resided in our 45-bed tertiary ICU and simulated the impact of important strategic fluid choices on patients' chloride burdens. In septic patients, we assessed the impact of the different fluid sources on cumulative fluid balance, an established marker of morbidity. Maintenance and replacement fluids accounted for 24.7% of the mean daily total fluid volume, thereby far exceeding resuscitation fluids (6.5%) and were the most important sources of sodium and chloride. Fluid creep represented a striking 32.6% of the mean daily total fluid volume [median 645 mL (IQR 308-1039 mL)]. Chloride levels can be more effectively reduced by adopting a hypotonic maintenance strategy [a daily difference in chloride burden of 30.8 mmol (95% CI 30.5-31.1)] than a balanced resuscitation strategy [daily difference 3.0 mmol (95% CI 2.9-3.1)]. In septic patients, non-resuscitation fluids had a larger absolute impact on cumulative fluid balance than did resuscitation fluids. Inadvertent daily volume, sodium, and chloride loading should be avoided when prescribing maintenance fluids in view of the vast amounts of fluid creep. This is especially important when adopting an isotonic maintenance strategy.

  20. The uranium waste fluid processing examination by liquid and liquid extraction method using the emulsion flow method

    International Nuclear Information System (INIS)

    Kanda, Nobuhiro; Daiten, Masaki; Endo, Yuji; Yoshida, Hideaki; Mita, Yutaka; Naganawa, Hirochika; Nagano, Tetsushi; Yanase, Nobuyuki

    2015-03-01

    Spent centrifuges which had used for the development of the uranium enrichment technology are stored in the uranium enrichment facility located in Ningyo-toge Environmental Center, Japan Atomic Energy Agency (JAEA). Our technology of the centrifugal machine processing are supposed to separate the radioactive material adhered on surface of inner parts of centrifuges by the wet way decontamination method using the ultrasonic bath filled dilute sulfuric acid and water, and it is generated the neutralization sediment (sludge) by the processing of the radioactive waste fluid with the decontamination. JAEA had been considering the applicability of a streamlining and reduction of the processing of the sludge by decreases radioactive concentration including the sludge through the removes uranium from the radioactive waste fluid. As part of considerations, JAEA have been promoting technological developments of the uranium extraction separation using The Emulsion Flow Extraction Method (a theory propounded by JAEA-Nuclear Science and Engineering Center) in close coordination and cooperation between with JAEA-Nuclear Science and Engineering Center and Ningyo-toge Environmental Center from 2007 fiscal year. This report describes the outline of the application test using actual waste fluid of dilute sulfuric acid and water by developed the examination system introducing the emulsion flow extraction method. (author)

  1. Rapid Determination of Two Triterpenoid Acids in Chaenomelis Fructus Using Supercritical Fluid Extraction On-line Coupled with Supercritical Fluid Chromatography.

    Science.gov (United States)

    Zhang, Xiaotian; Ji, Feng; Li, Yueqi; He, Tian; Han, Ya; Wang, Daidong; Lin, Zongtao; Chen, Shizhong

    2018-01-01

    In this study, an on-line supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC) method was developed for the rapid determination of oleanoic acid and ursolic acid in Chaenomelis Fructus. After optimization of the conditions, the two triterpenoid acids was obtained by SFE using 20% methanol as a modifier at 35°C in 8 min. They were resolved on a Shim-pack UC-X Diol column (4.6 × 150 mm, 3 μm) in 14 min (0 - 10 min, 5 - 10%; 10 - 14 min, 10% methanol in CO 2 ) with a backpressure of 15 MPa at 40°C. The on-line SFE-SFC method could be completed within 40 min (10.79 mg/g dry plant, R s = 2.36), while the ultrasound-assisted extraction and HPLC method required at least 90 min (3.55 mg/g dry plant, R s = 1.92). This on-line SFE-SFC method is powerful to simplify the pre-processing and quantitative analysis of natural products.

  2. Critical heat flux near the critical pressure in heater rod bundle cooled by R-134A fluid: Effects of unheated rods and spacer grid

    International Nuclear Information System (INIS)

    Chun, Se-Y.; Shin, C.W.; Hong, S. D.; Moon, S. K.

    2007-01-01

    A supercritical-pressure light water reactor (SCWR) is currently investigated as the next generation nuclear reactors. The SCWR, which is operated above the thermodynamic critical point of water (647 K, 22.1 MPa), have advantages over conventional light water reactors in terms of thermal efficiency as well as in compactness and simplicity. Many experimental studies have been performed on heat transfer in the boiler tubes of supercritical fossil fire power plants (FPPs). However, the thermal-hydraulic conditions of the SCWR core are different from those of the FPP boiler. In the SCWR core, the heat transfer to the cooling water occurs on the outside surface of fuel rods in rod bundle with spacers. In addition, the experimental studies in which the critical heat flux (CHF) has been carefully measured near the critical pressure have never yet been carried out, as far as we know. Therefore, we have recently conducted the CHF experiments with a vertical 5x5 heater rod bundle cooled by R- 134a fluid. The purpose of this work is to find out some novel knowledge for the CHF near the critical pressure, based on more careful experiments. The outer diameter, heated length and rod pitch of the heater rods are 9.5, 2000 and 12.85 mm, respectively. The critical power has been measured in a range of the pressure of 2.474.03 MPa (the critical pressure of R-134a is 4.059 MPa), the mass flux 502000 kg/m 2 s, and the inlet subcooling 4084 kJ/kg. For the mass fluxes of not less than 550 kg/m 2 s, the critical power decreases monotonously up to the pressure of about 3.63.8 MPa with increasing pressure, and then fall sharply at about 3.83.9 MPa as if the values of the critical power converge on zero at the critical pressure. For the low mass fluxes of 50 to 250 kg/m 2 , the sharp decreasing trend of the critical power near the critical pressure is not observed. The CHF phenomenon near the critical pressure no longer leads to an inordinate increase in the heated wall temperature such as

  3. Critical heat flux experimental facility using Freon R-134a fluid

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Deok; Chung, C. H.; Kim, B. D. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    A CHF experimental loop using Freon R-134a as a working fluid has been designed and built to facilitate modeling of high pressure/temperature water CHF experiments. This loop was designed to operate at 4 MPa, 100 deg C with the maximum flow rate of 2.5 kg/s. The detailed technical specification and operating procedure of the loop are described together with comments on the performance and limitations of the loop. A series of CHF experiment was carried out in a vertical round tube and the fluid-to-fluid modeling techniques are applied for it's validity for the high temperature/pressure reactor conditions. The experimental range covered all the application ranges of CHF correlations developed for both PWR and PHWR. 28 refs., 9 figs., 5 tabs. (Author)

  4. Biot Critical Frequency Applied as Common Friction Factor for Chalk with Different Pore Fluids and Temperatures

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling; Fabricius, Ida Lykke

    2010-01-01

    Injection of water into chalk hydrocarbon reservoirs has lead to mechanical yield and failure. Laboratory experiments on chalk samples correspondingly show that the mechanical properties of porous chalk depend on pore fluid and temperature. Water has a significant softening effect on elastic...... and we propose that the fluid effect on mechanical properties of highly porous chalk may be the result of liquid‐solid friction. Applying a different strain or stress rate is influencing the rock strength and needs to be included. The resulting function is shown to relate to the material dependent...... and rate independent b-factor used when describing the time dependent mechanical properties of soft rock or soils. As a consequence it is then possible to further characterize the material constant from the porosity and permeability of the rock as well as from pore fluid density and viscosity which...

  5. Developing novel one-step processes for obtaining food-grade O/W emulsions from pressurized fluid extracts: processes description, state of the art and perspectives

    OpenAIRE

    SANTOS, Diego Tresinari; MEIRELES, Maria Angela de Almeida

    2015-01-01

    Abstract In this work, a novel on-line process for production of food-grade emulsions containing oily extracts, i.e. oil-in-water (O/W) emulsions, in only one step is presented. This process has been called ESFE, Emulsions from Supercritical Fluid Extraction. With this process, emulsions containing supercritical fluid extracts can be obtained directly from plant materials. The aim in the conception of this process is to propose a new rapid way to obtain emulsions from supercritical fluid extr...

  6. Near-critical density filling of the SF6 fluid cell for the ALI-R-DECLIC experiment in weightlessness

    Science.gov (United States)

    Lecoutre, C.; Marre, S.; Garrabos, Y.; Beysens, D.; Hahn, I.

    2018-05-01

    Analyses of ground-based experiments on near-critical fluids to precisely determine their density can be hampered by several effects, especially the density stratification of the sample, the liquid wetting behavior at the cell walls, and a possible singular curvature of the "rectilinear" diameter of the density coexisting curve. For the latter effect, theoretical efforts have been made to understand the amplitude and shape of the critical hook of the density diameter, which depart from predictions from the so-called ideal lattice-gas model of the uniaxial 3D-Ising universality class. In order to optimize the observation of these subtle effects on the position and shape of the liquid-vapor meniscus in the particular case of SF6, we have designed and filled a cell that is highly symmetrized with respect to any median plane of the total fluid volume. In such a viewed quasi-perfect symmetrical fluid volume, the precise detection of the meniscus position and shape for different orientations of the cell with respect to the Earth's gravity acceleration field becomes a sensitive probe to estimate the cell mean density filling and to test the singular diameter effects. After integration of this cell in the ALI-R insert, we take benefit of the high optical and thermal performances of the DECLIC Engineering Model. Here we present the sensitive imaging method providing the precise ground-based SF6 benchmark data. From these data analysis it is found that the temperature dependence of the meniscus position does not reflect the expected critical hook in the rectilinear density diameter. Therefore the off-density criticality of the cell is accurately estimated, before near future experiments using the same ALI-R insert in the DECLIC facility already on-board the International Space Station.

  7. Supercritical fluid extraction for the detection of 2-dodecylcyclobutanone in low dose irradiated plant foods

    NARCIS (Netherlands)

    Horvatovich, Peter; Miesch, Michel; Hasselmann, Claude; Marchioni, Eric

    2002-01-01

    Supercritical carbon dioxide extraction [152 bar (15,200 kPa), 80 degrees C, 4 ml min(-1), 60 min], performed on lipids (2 g) previously extracted from irradiated plant foods, allowed a selective extraction of 2-dodecylcyclobutanone and its further detection by gas chromatography-mass spectrometry

  8. Supercritical fluid extraction-gas chromatography of volatile organic compounds (VOC) from Tenax devices. Final report, November 1985-September 1986

    International Nuclear Information System (INIS)

    Wright, B.W.; Kopriva, A.J.; Smith, R.D.

    1987-11-01

    This report describes the development and evaluation of on-line supercritical-fluid extraction - gas-chromatography instrumentation and methodology for the analysis of volatile organic compounds (VOC) from adsorbent sampling devices. Supercritical fluid extraction offers potential advantages for the removal and transport of organic components from adsorbent matrices including rapid and efficient extraction at mild temperatures. Extraction at mild temperatures eliminates potential problems such as analyte decomposition that can be encountered with the high temperatures needed for thermal desorption analysis. Since a major objective of the study was to develop viable instrumentation and methodology, a relatively detailed description of the instrumentation design requirements and present limitations are discussed. The results of several series of methodology validation studies are also presented. These studies included recovery studies of model VOC spiked on three types of Tenax sampling devices including authentic actively pumped (VOST) and passive (EPA) devices. Replicate devices spiked in an exposure chamber were also subjected to parallel analyses using the new methodology and traditional thermal-desorption gas chromatography

  9. Fluid management in the intensive care unit: bioelectrical impedance vector analysis as a tool to assess hydration status and optimal fluid balance in critically ill patients.

    Science.gov (United States)

    Basso, Flavio; Berdin, Giovanna; Virzì, Grazia Maria; Mason, Giacomo; Piccinni, Pasquale; Day, Sonya; Cruz, Dinna N; Wjewodzka, Marzena; Giuliani, Anna; Brendolan, Alessandra; Ronco, Claudio

    2013-01-01

    Fluid balance disorders are a relevant risk factor for morbidity and mortality in critically ill patients. Volume assessment in the intensive care unit (ICU) is thus of great importance, but there are currently few methods to obtain an accurate and timely assessment of hydration status. Our aim was to evaluate the hydration status of ICU patients via bioelectric impedance vector analysis (BIVA) and to investigate the relationship between hydration and mortality. We evaluated 280 BIVA measurements of 64 patients performed daily in the 5 days following their ICU admission. The observation period ranged from a minimum of 72 h up to a maximum of 120 h. We observed the evolution of the hydration status during the ICU stay in this population, and analyzed the relationship between mean and maximum hydration reached and mortality--both in the ICU and at 60 days--using logistic regression. A state of overhydration was observed in the majority of patients (70%) on admission, which persisted during the ICU stay. Patients who required continuous renal replacement therapy (CRRT) were more likely to be overhydrated starting from the 2nd day of observation. Logistic regression showed a strong and significant correlation between mean/maximum hydration reached and mortality, both independently and correcting for severity of prognosis. Fluid overload measured by BIVA is a frequent condition in critically ill patients--whether or not they undergo CRRT--and a significant predictor of mortality. Hence, hydration status should be considered as an additional prognosticator in the clinical management of the critically ill patient. (i) On the day of ICU admittance, patients showed a marked tendency to overhydration (>70% of total). This tendency was more pronounced in patients on CRRT. (ii) Hyperhydration persisted during the ICU stay. Patients who underwent CRRT showed significantly higher hyperhydration from the 2nd day of hospitalization. (iii) Nonsurvivors showed worse hyperhydration

  10. Modeling of the Kinetics of Supercritical Fluid Extraction of Lipids from Microalgae with Emphasis on Extract Desorption.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena; Nobre, B.P.; Palavra, A.

    2016-01-01

    Roč. 9, č. 6 (2016), s. 423-441 ISSN 1996-1944 Grant - others:FCT(PT) UID/QUI/00100/2013; FCT(PT) SFRH/BPD/100283/2014 Institutional support: RVO:67985858 Keywords : microalgae * supercritical extraction * kinetics Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.654, year: 2016

  11. Field demonstration of an active reservoir pressure management through fluid injection and displaced fluid extractions at the Rock Springs Uplift, a priority geologic CO2 storage site for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zunsheng [Univ. of Wyoming, Laramie, WY (United States)

    2017-04-05

    This report provides the results from the project entitled Field Demonstration of Reservoir Pressure Management through Fluid Injection and Displaced Fluid Extraction at the Rock Springs Uplift, a Priority Geologic CO2 Storage Site for Wyoming (DE-FE0026159 for both original performance period (September 1, 2015 to August 31, 2016) and no-cost extension (September 1, 2016 to January 6, 2017)).

  12. Studies on In-situ Chelation/Supercritical Fluid Extraction of Lanthanides and Actinides Using a Radiotracer Technique

    International Nuclear Information System (INIS)

    Lin, Yuehe; Wu, Hong; Smart, Neil G.; Wai, Chien M.

    2001-01-01

    Radioisotope tracer techniques were used to study the process of in-situ chelation/supercritical fluid extraction(SFE) of La3+ and Lu3+ from solid matrix using mixed ligand hexafluoroacetylacetone (HFA) and tributylphosphate (TBP) as chelating agents. A lab-built SFE extactor was used in this study and the extractor design was optimized based on the experimental results. Quantitative recovery of La and Lu was achieved when the extrator design was optimized. Extraction of uranium from real world samples was also investigated to demonstrate the capability of this chelation/SFE technology for environmental remediation applications. A novel on-line back extraction technique for the recovery of metal ions and regeneration of ligands is also reported.

  13. Chemical kinetics and transport processes in supercritical fluid extraction of coal. Final report, August 10, 1990--December 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, B.J.; Smith, J.M.; Wang, M.; Zhang, C.J.

    1993-02-01

    The overall objective of this project was to study the supercritical fluid extraction of hydrocarbons from coal. Beyond the practical concern of deriving products from coal, the research has provided insights into the structure, properties, and reactivities of coal. Information on engineering fundamentals of coal thermolysis and extraction, including physical and chemical processes, is presented in this final report. To accomplish the goals of the project we developed continuous-flow experiments for fixed-bed samples of coal that allow two types of analysis of the extract: continuous spectrophotometric absorbance measurements of the lumped concentration of extract, and chromatographic determinations of molecular-weight distributions as a function of time. Thermolysis of coal yields a complex mixture of many extract products whose molecular-weight distribution (MWD) varies with time for continuous-flow, semibatch experiments. The flow reactor with a differential, fixed bed of coal particles contacted by supercritical t-butanol was employed to provide dynamic MWD data by means of HPLC gel permeation chromatography of the extract. The experimental results, time-dependent MWDs of extract molecules, were interpreted by a novel mathematical model based on continuous-mixture kinetics for thermal cleavage of chemical bonds in the coal network. The parameters for the MWDs of extractable groups in the coal and the rate constants for one- and two-fragment reaction are determined from the experimental data. The significant effect of temperature on the kinetics of the extraction was explained in terms of one- and two-fragment reactions in the coal.

  14. Critical Analysis of Underground Coal Gasification Models. Part II: Kinetic and Computational Fluid Dynamics Models

    Directory of Open Access Journals (Sweden)

    Alina Żogała

    2014-01-01

    Originality/value: This paper presents state of art in the field of coal gasification modeling using kinetic and computational fluid dynamics approach. The paper also presents own comparative analysis (concerned with mathematical formulation, input data and parameters, basic assumptions, obtained results etc. of the most important models of underground coal gasification.

  15. Extraction with supercritical gases

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, G M; Wilke, G; Stahl, E

    1980-01-01

    The contents of this book derives from a symposium on the 5th and 6th of June 1978 in the ''Haus der Technik'' in Essen. Contributions were made to separation with supercritical gases, fluid extraction of hops, spices and tobacco, physicochemical principles of extraction, phase equilibria and critical curves of binary ammonia-hydrocarbon mixtures, a quick method for the microanalytical evaluation of the dissolving power of supercritical gases, chromatography with supercritical fluids, the separation of nonvolatile substances by means of compressed gases in countercurrent processes, large-scale industrial plant for extraction with supercritical gases, development and design of plant for high-pressure extraction of natural products.

  16. Unstable Simple Volatiles and Gas Chromatography-Tandem Mass Spectrometry Analysis of Essential Oil from the Roots Bark of Oplopanax Horridus Extracted by Supercritical Fluid Extraction

    Directory of Open Access Journals (Sweden)

    Li Shao

    2014-11-01

    Full Text Available Volatile oil from the root bark of Oplopanax horridus is regarded to be responsible for the clinical uses of the title plant as a respiratory stimulant and expectorant. Therefore, a supercritical fluid extraction method was first employed to extract the volatile oil from the roots bark of O. horridus, which was subsequently analyzed by GC/MS. Forty-eight volatile compounds were identified by GC/MS analysis, including (S,E-nerolidol (52.5%, τ-cadinol (21.6% and S-falcarinol (3.6%. Accordingly, the volatile oil (100 g was subjected to chromatographic separation and purification. As a result, the three compounds, (E-nerolidol (2 g, τ-cadinol (62 mg and S-falcarinol (21 mg, were isolated and purified from the volatile oil, the structures of which were unambiguously elucidated by detailed spectroscopic analysis including 1D- and 2D-NMR techniques.

  17. Comparison of the Apoptotic Effects of Supercritical Fluid Extracts of Antrodia cinnamomea Mycelia on Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Hsiu-Man Lien

    2014-06-01

    Full Text Available Antrodia cinnamomea (AC has been widely used as a folk medicine in the prevention and treatment of liver diseases, such as hepatitis, hepatic fibrosis, and hepatocellular carcinoma. Previous studies have indicated that triterpenoids and benzenoids show selective cytotoxicity against human hepatoma cell lines. The aim of the study was to compare the triterpenoid content of extract and the extract-induced cytotoxicity in HepG2 cells from mycelia extracts of solid state cultured AC obtained by supercritical fluid extraction (SFE and the conventional solvent extraction method. SFE with CO2 mixed with a constant amount of ethanol co-solvent (10% of CO2 volume applied at different temperatures and pressures (40, 60 and 80 °C and, 20.7, 27.6 and 34.5 Mpa was also compared in the study. Although the extraction yield of triterpenoids (59.7 mg/g under the optimal extraction conditions of 34.5 MPa (5000 psi/60 °C (designated as sample S-5000-60 was equivalent to the extraction yield using conventional liquid solvent extraction with ethanol (ETOH-E at room temperature (60.33 mg/g, the cytotoxicity of the former against the proliferation of HepG2 cell line measured as the inhibition of 50% of cell growth activity (IC50 at dosages of 116.15, 57.82 and 43.96 µg/mL was superior to that of EtOH-E at 131.09, 80.04 and 48.30 µg/mL at 24, 48 and 72 h, respectively. Additionally, we further proved that the apoptotic effect of S-5000-60 presented a higher apoptosis ratio (21.5% than ETOH-E (10.5% according to annexin V-FITC and propidium iodide double staining assay results. The high affinity and selectivity of SFE on bioactive components resulted in a higher extraction efficiency than conventional solvent extraction. The chemical profile of the obtained extracts from solid state cultivated mycelium of AC was also determined by high-performance liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS/MS, whereby three benzenoids and four

  18. Non invasive adjustment of fluid status in critically ill patients on renal replacement therapy. Role of Electrical Cardiometry

    Directory of Open Access Journals (Sweden)

    Khaled Hamed Mahmoud

    2016-08-01

    Full Text Available Background: Electrical Cardiometry allows measurement of fluid status using thoracic fluid content (TFC, cardiac output, cardiac index, systemic vascular resistance index which could be ideal noninvasive hemodynamic monitoring for patients undergoing hemodialysis (HD. Objectives: Investigating the relation between changes in TFC and amount of fluid removal during HD session and to monitor hemodynamic parameters to avoid episodes of hemodynamic compromise during HD session. Methods: Thirty critically ill patients on HD were enrolled. Clinical assessment of volume overload and hemodynamics (BP, MAP, CVP, monitored by Electrical Cardiometry ICON® before HD and all through sessions. Results: Out of studied patients males represented 46.7% (n = 14 with mean age 48 ± 16 years. There was positive correlation between UF volume and TFC (r = 0.410, P = 0.025. Out of the 30 pts studied 18 pts (60% were hemodynamically stable vs 12 pts (40% that had hypotension represented by non responders group and had lower TFC compared to the hemodynamically stable group (26.45 kohm−1 vs 37.8 kohm−1 with P value of 0.004 indicating that they were hypovolemic. Out of the 30 pts studied 18 pts (60% weren’t congested vs 12 pts (40% remained persistently congested after accomplishing HD session with significantly higher TFC when compared to those who got rid of congestion (43.14 ± 9.9 kohm−1 vs 25.44 ± 5.5 kohm−1 with P value of 0.0001 indicating that they were still hypervolemic. Using analysis of ROC curve TFC at 25.34 kohm−1 was a significant predictor of hypotension with P value of 0.002, AUC 83.4%, sensitivity 67% and specificity 100%. Also TFC cutoff value predicting persistent congestion was 37.02 kohm−1 with P value of 0.0001, AUC 95.8%, sensitivity 83% and specificity 100%. Conclusion: Electrical Cardiometry is an evolving noninvasive tool for adjusting fluid status of critically ill patient on RRT using thoracic fluid

  19. AFM fluid delivery/liquid extraction surface sampling/electrostatic spray cantilever probe

    Science.gov (United States)

    Van Berkel, Gary J.

    2015-06-23

    An electrospray system comprises a liquid extraction surface sampling probe. The probe comprises a probe body having a liquid inlet and a liquid outlet, and having a liquid extraction tip. A solvent delivery conduit is provided for receiving solvent liquid from the liquid inlet and delivering the solvent liquid to the liquid extraction tip. An open liquid extraction channel extends across an exterior surface of the probe body from the liquid extraction tip to the liquid outlet. An electrospray emitter tip is in liquid communication with the liquid outlet of the liquid extraction surface sampling probe. A system for analyzing samples, a liquid junction surface sampling system, and a method of analyzing samples are also disclosed.

  20. Workshop on Critical Issues in Microgravity Fluids, Transport, and Reaction Processes in Advanced Human Support Technology

    Science.gov (United States)

    Chiaramonte, Francis P.; Joshi, Jitendra A.

    2004-01-01

    This workshop was designed to bring the experts from the Advanced Human Support Technologies communities together to identify the most pressing and fruitful areas of research where success hinges on collaborative research between the two communities. Thus an effort was made to bring together experts in both advanced human support technologies and microgravity fluids, transport and reaction processes. Expertise was drawn from academia, national laboratories, and the federal government. The intent was to bring about a thorough exchange of ideas and develop recommendations to address the significant open design and operation issues for human support systems that are affected by fluid physics, transport and reaction processes. This report provides a summary of key discussions, findings, and recommendations.

  1. Online recovery of radiocesium from soil, cellulose and plant samples by supercritical fluid extraction employing crown ethers and calix-crown derivatives as extractants

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Mohapatra, P.K.

    2014-01-01

    Two crown ethers (CEs) viz. dibenzo18crown6, and dibenzo12crown7 and three calix-crown derivatives viz. (octyloxy)calix[4]arene-mono-crown-6 (CMC), calix[4]arene-bis(o-benzocrown-6) (CBC), and calix[4]arene-bis(naphthocrown-6) (CNC) were evaluated for the recovery of 137 Cs from synthetic soil, cellulose (tissue paper), and plant samples by supercritical fluid extraction (SFE) route. CEs showed poor extraction of 137 Cs from soil matrix. SFE experiments using 1 × 10 -3 M solutions of CMC, CBC and CNC in acetonitrile at 3 M HNO 3 as modifiers displayed better extraction of 137 Cs, viz. 21(±2) % (CMC), 16.5(±3) % (CBC), and 4(±1) % (CNC). It was not possible to recover 137 Cs quantitatively from soil matrix. The inefficient extraction of 137 Cs from soil matrix was attributed to its incorporation into the interstitial sites. Experiments on tissue papers using CMC showed near quantitative 137 Cs recovery. On the other hand, recovery from plant samples varied between 50(±5) % (for stems) and 75(±5) % (for leaves). (author)

  2. Supercritical fluid extraction for the determination of optimum oil recovery conditions

    Energy Technology Data Exchange (ETDEWEB)

    Al-Marzouqi, Ali H.; Zekri, Abdulrazag Y.; Jobe, Baboucarr; Dowaidar, Ali [Chemical and Petroleum Engineering Department, U.A.E. University, P.O. Box: 17555, Al-Ain (United Arab Emirates)

    2007-01-15

    CO{sub 2} under supercritical (SC) conditions is a powerful solvent capable of extracting hydrocarbons from crude oil. The extraction capacity of CO{sub 2} is a function of pressure, temperature and composition of the crude oil. This paper presents the results of a laboratory study investigating the capacity of CO{sub 2} to extract hydrocarbons from an oil-saturated soil under a wide range of pressures and temperatures (80-120 bar for temperatures ranging from 40 to 60 C and 200-300 bar for temperatures varying from 100 to 140 C). The soil samples were collected from Sahel oil filed, which is near Bu Hasa oil field (Abu Dhabi, UAE) where the crude oil was obtained from. The extracted oil from the SC CO{sub 2} process and the residual oil remaining in the soil sample were analyzed by gas chromatography to shed more light on the extraction phenomenon. Extraction efficiency of CO{sub 2} increased with pressure and decreased with temperature. Moreover, the amount of extracted heavy fractions increased with pressure for all temperatures. On the other hand, the amount of extracted heavy hydrocarbons decreased with temperature for the low pressure range (80-120 bar) and remained the same for the pressure range of 250-300 bar. The maximum extraction efficiency of CO{sub 2} was 72.4%, which was obtained at the highest pressure (300 bar) and a temperature of 100 C. (author)

  3. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Gutiérrez-Gutiérrez, Silvia C.; Coulon, Frédéric; Jiang, Ying; Wagland, Stuart, E-mail: s.t.wagland@cranfield.ac.uk

    2015-08-15

    Highlights: • Samples from multiple core drills were obtained from 4× landfill sites in the UK. • Each sample analysed for rare earth elements, critical metals and valuable metals. • Two stage microwave digestion method ensuring high yield. • High quantities of copper and aluminium were observed in the soil layers of landfill. • Across 4× landfills aluminium and copper present has a value of around $400 million. - Abstract: Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58 ± 6 mg kg{sup −1} for REEs comprising 44 ± 8 mg kg{sup −1} for light REEs, 11 ± 2 mg kg{sup −1} for heavy REEs and 3 ± 1 mg kg{sup −1} for Scandium (Sc) and 3 ± 1.0 mg kg{sup −1} of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are

  4. Coupled Hydro-Mechanical Simulations of CO2 Storage Supported by Pressure Management Demonstrate Synergy Benefits from Simultaneous Formation Fluid Extraction

    Directory of Open Access Journals (Sweden)

    Kempka Thomas

    2015-04-01

    Full Text Available We assessed the synergetic benefits of simultaneous formation fluid extraction during CO2 injection for reservoir pressure management by coupled hydro-mechanical simulations at the prospective Vedsted storage site located in northern Denmark. Effectiveness of reservoir pressure management was investigated by simulation of CO2 storage without any fluid extraction as well as with 66% and 100% equivalent volume formation fluid extraction from four wells positioned for geothermal heat recovery. Simulation results demonstrate that a total pressure reduction of up to about 1.1 MPa can be achieved at the injection well. Furthermore, the areal pressure perturbation in the storage reservoir can be significantly decreased compared to the simulation scenario without any formation fluid extraction. Following a stress regime analysis, two stress regimes were considered in the coupled hydro-mechanical simulations indicating that the maximum ground surface uplift is about 0.24 m in the absence of any reservoir pressure management. However, a ground uplift mitigation of up to 37.3% (from 0.24 m to 0.15 m can be achieved at the injection well by 100% equivalent volume formation fluid extraction. Well-based adaptation of fluid extraction rates can support achieving zero displacements at the proposed formation fluid extraction wells located close to urban infrastructure. Since shear and tensile failure do not occur under both stress regimes for all investigated scenarios, it is concluded that a safe operation of CO2 injection with simultaneous formation fluid extraction for geothermal heat recovery can be implemented at the Vedsted site.

  5. Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction.

    Science.gov (United States)

    Murali Mohan, Arvind; Hartsock, Angela; Bibby, Kyle J; Hammack, Richard W; Vidic, Radisav D; Gregory, Kelvin B

    2013-11-19

    Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

  6. A comparative study of conventional and supercritical fluid extraction methods for the recovery of secondary metabolites from Syzygium campanulatum Korth#

    Science.gov (United States)

    Memon, Abdul Hakeem; Hamil, Mohammad Shahrul Ridzuan; Laghari, Madeeha; Rithwan, Fahim; Zhari, Salman; Saeed, Mohammed Ali Ahmed; Ismail, Zhari; Majid, Amin Malik Shah Abdul

    2016-01-01

    Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%‒84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%‒66.00%). PMID:27604860

  7. A comparative study of conventional and supercritical fluid extraction methods for the recovery of secondary metabolites from Syzygium campanulatum Korth.

    Science.gov (United States)

    Memon, Abdul Hakeem; Hamil, Mohammad Shahrul Ridzuan; Laghari, Madeeha; Rithwan, Fahim; Zhari, Salman; Saeed, Mohammed Ali Ahmed; Ismail, Zhari; Majid, Amin Malik Shah Abdul

    2016-09-01

    Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%‒84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%‒66.00%).

  8. Use of Immobilised Lipase from Candida antarctica in Supercritical Fluid Extraction of Borage (Borago officinalis L. Seed Oil

    Directory of Open Access Journals (Sweden)

    Egidijus Daukšas

    2008-01-01

    Full Text Available This study aims at the investigation of the possibilities to use immobilised lipase from Candida antarctica in supercritical fluid extraction (SFE of borage (Borago officinalis L. see doil. The first series of experiments was performed to measure the extract yields obtained with pure CO2 and with the added entrainer (ethanol. The yield increased more than twice after increasing the extraction pressure from 15 to 25 MPa. Further increase to 35 MPa was less effective. The effect of the entrainer was not significant in most cases. Palmitic (13.1–16.1 %, oleic (13.4–23.8 %, linoleic (33.8–48.4 % and linolenic (8.8–16.3 % acids were dominant in all extracted oils. Further experiments involved the use of enzyme. In this case the first extractor was loaded with ground borage seeds, the second one was filled with the enzyme. The total yield obtained at 15, 25 and 35 MPa was (8.8±0.2, (23.6±0.2 and (28.9±1.1 %, respectively. Thin layer chromatography (TLC of fatty acid ethyl esters showed that the content of esters was higher in the extract obtained in one extractor system at 15 MPa, compared to 35 MPa.

  9. Simultaneous analysis of nucleobases, nucleosides and ginsenosides in ginseng extracts using supercritical fluid chromatography coupled with single quadrupole mass spectrometry.

    Science.gov (United States)

    Huang, Yang; Zhang, Tingting; Zhao, Yumei; Zhou, Haibo; Tang, Guangyun; Fillet, Marianne; Crommen, Jacques; Jiang, Zhengjin

    2017-09-10

    Nucleobases, nucleosides and ginsenosides, which have a significant impact on the physiological activity of organisms, are reported to be the active components of ginseng, while they are less present in ginseng extracts. Few analytical methods have been developed so far to simultaneously analyze these three classes of compounds with different polarities present in ginseng extracts. In the present study, a simple and efficient analytical method was successfully developed for the simultaneous separation of 17 nucleobases, nucleosides and ginsenosides in ginseng extracts using supercritical fluid chromatography coupled with single quadrupole mass spectrometry (SFC-MS). The effect of various experimental factors on the separation performance, such as the column type, temperature and backpressure, the type of modifier and additive, and the concentration of make-up solvent were systematically investigated. Under the selected conditions, the developed method was successfully applied to the quality evaluation of 14 batches of ginseng extracts from different origins. The results obtained for the different batches indicate that this method could be employed for the quality assessment of ginseng extracts. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Solid-Phase Extraction Strategies to Surmount Body Fluid Sample Complexity in High-Throughput Mass Spectrometry-Based Proteomics

    Science.gov (United States)

    Bladergroen, Marco R.; van der Burgt, Yuri E. M.

    2015-01-01

    For large-scale and standardized applications in mass spectrometry- (MS-) based proteomics automation of each step is essential. Here we present high-throughput sample preparation solutions for balancing the speed of current MS-acquisitions and the time needed for analytical workup of body fluids. The discussed workflows reduce body fluid sample complexity and apply for both bottom-up proteomics experiments and top-down protein characterization approaches. Various sample preparation methods that involve solid-phase extraction (SPE) including affinity enrichment strategies have been automated. Obtained peptide and protein fractions can be mass analyzed by direct infusion into an electrospray ionization (ESI) source or by means of matrix-assisted laser desorption ionization (MALDI) without further need of time-consuming liquid chromatography (LC) separations. PMID:25692071

  11. Supercritical fluid extraction of hydrocarbons and 2-alkylcyclobutanones for the detection of irradiated foodstuffs

    NARCIS (Netherlands)

    Horvatovich, P; Miesch, M; Hasselmann, C; Marchioni, E

    2000-01-01

    Supercritical carbon dioxide can be used to carry out a selective and fast extraction (30 min) of volatile hydrocarbons and 2-alkylcyclobutanones contained in irradiated foods. After elimination of the traces of triglycerides still contained in the extracts on a silica column, the compounds were

  12. Supercritical fluid extraction of uranium and thorium using modifier free delivery of ligands

    International Nuclear Information System (INIS)

    Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2009-01-01

    The modifier free controlled delivery of octyl (phenyl)-N,N-diisobutylcarbamoylmethy phosphineoxide (CMPO) using supercritical carbon dioxide was established for the extraction of uranyl nitrate as well as uranyl nitrate sorbed on tissue paper matrix and the results were compared with modifier method. The preferential extraction of uranium over thorium was also demonstrated using di (2-ethylhexyl)isobutyramide (D2EHIBA). (author)

  13. High-throughput liquid chromatography for drug analysis in biological fluids: investigation of extraction column life.

    Science.gov (United States)

    Zeng, Wei; Fisher, Alison L; Musson, Donald G; Wang, Amy Qiu

    2004-07-05

    A novel method was developed and assessed to extend the lifetime of extraction columns of high-throughput liquid chromatography (HTLC) for bioanalysis of human plasma samples. In this method, a 15% acetic acid solution and 90% THF were respectively used as mobile phases to clean up the proteins in human plasma samples and residual lipids from the extraction and analytical columns. The 15% acetic acid solution weakens the interactions between proteins and the stationary phase of the extraction column and increases the protein solubility in the mobile phase. The 90% THF mobile phase prevents the accumulation of lipids and thus reduces the potential damage on the columns. Using this novel method, the extraction column lifetime has been extended to about 2000 direct plasma injections, and this is the first time that high concentration acetic acid and THF are used in HTLC for on-line cleanup and extraction column lifetime extension.

  14. Ion-pair extraction of [3H]stobadine from biological fluids

    International Nuclear Information System (INIS)

    Scasnar, V.

    1998-01-01

    A simple and specific radiometric assay was developed for the determination of stobadine, a cardioprotective drug, in the serum of experimental animals. The assay is based on a single extraction step of the radioactively labeled drug from serum into the benzene solution of dicarbolide of cobalt followed by quantitation of the extracted radioactivity by using liquid scintillation counting. The extraction mechanism involves the ion-pair formation between the protonized molecule of stobadine and the hydrophobic, negatively charged molecule of dicarbolide of cobalt. The extraction yield of stobadine from 1 ml of serum was 95% in the concentration range from 1 to 6000 ng/ml. The co-extraction of metabolites was less than 5%. The method was applied to the determination of stobadine in serum of dogs and the data obtained were in a good agreement with those obtained by high performance liquid chromatography. (author)

  15. Turbulent mixing of a critical fluid: The non-perturbative renormalization

    Directory of Open Access Journals (Sweden)

    M. Hnatič

    2018-01-01

    Full Text Available Non-perturbative Renormalization Group (NPRG technique is applied to a stochastical model of a non-conserved scalar order parameter near its critical point, subject to turbulent advection. The compressible advecting flow is modeled by a random Gaussian velocity field with zero mean and correlation function 〈υjυi〉∼(Pji⊥+αPji∥/kd+ζ. Depending on the relations between the parameters ζ, α and the space dimensionality d, the model reveals several types of scaling regimes. Some of them are well known (model A of equilibrium critical dynamics and linear passive scalar field advected by a random turbulent flow, but there is a new nonequilibrium regime (universality class associated with new nontrivial fixed points of the renormalization group equations. We have obtained the phase diagram (d, ζ of possible scaling regimes in the system. The physical point d=3, ζ=4/3 corresponding to three-dimensional fully developed Kolmogorov's turbulence, where critical fluctuations are irrelevant, is stable for α≲2.26. Otherwise, in the case of “strong compressibility” α≳2.26, the critical fluctuations of the order parameter become relevant for three-dimensional turbulence. Estimations of critical exponents for each scaling regime are presented.

  16. Supercritical fluid reverse micelle separation

    Science.gov (United States)

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  17. Separating the effects of repulsive and attractive forces on the phase diagram, interfacial, and critical properties of simple fluids.

    Science.gov (United States)

    Fuentes-Herrera, M; Moreno-Razo, J A; Guzmán, O; López-Lemus, J; Ibarra-Tandi, B

    2016-06-07

    Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.

  18. Off-line supercritical fluid extraction-capillary GC applications in environmental analysis

    NARCIS (Netherlands)

    David, F.; Verschuere, M.; Sandra, P.J.F.

    1992-01-01

    The successful application of supercrit. fluid extn. for environmental samples requires that the extn. for environmental samples requires that the extn. conditions detd. for spiked samples must be optimized in order to overcome the solute-matrix interactions that are responsible for lower recoveries

  19. Analytical modelling and extraction of the modal behaviour of a cantilever beam in fluid interaction

    Czech Academy of Sciences Publication Activity Database

    Gorman, D. G.; Trendafilova, I.; Mulholland, A.J.; Horáček, Jaromír

    2007-01-01

    Roč. 308, - (2007), s. 231-245 ISSN 0022-460X R&D Projects: GA AV ČR IAA200760613 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluid-structure interaction * vibroacoustic * vibrations Subject RIV: BI - Acoustics Impact factor: 1.024, year: 2007

  20. An experimental and analytical study of fluid flow and critical heat flux in PWR fuel elements

    International Nuclear Information System (INIS)

    Bowditch, F.H.; Mogford, D.J.

    1987-02-01

    This report describes experiments that have been carried out at the Winfrith Establishment of the United Kingdom Atomic Energy Authority to determine the critical heat flux characteristics of pressurized water reactor fuel elements over an unusually wide range of coolant flow conditions that are relevant to both normal and fault conditions of reactor operation. The experiments were carried out in the TITAN loop using an electrically heated bundle of 25 rods of 9.5 mm diameter on a 12.7 mm pitch fitted with plain grids in order to provide a generic base for code validation. The fully tabulated experimental data for critical heat flux, pressure drop and sub-channel mixing are encompassed by ranges of pressure between 20 and 160 Bar, coolant flow between 150 and 3600 Kg/m 2 s, and coolant inlet temperature between 150 and 320 0 C. The results of the experiments are compared with predicted data based upon several established critical heat flux correlations. It is concluded that the extrapolation of some correlations to conditions beyond their intended range of application can lead to dangerous over estimates of critical heat flux, but the Winfrith WSC-2 and the EPRI NP-2609 correlations perform well over the whole data range and correlate all data with RMS errors of 9% and 6% respectively. (author)

  1. 32 CFR 634.38 - Involuntary extraction of bodily fluids in traffic cases.

    Science.gov (United States)

    2010-07-01

    ... or in control of a vehicle while under the influence of an intoxicant. (i) A search authorization by... extractions. (4) All law enforcement and medical personnel will keep in mind the possibility that the...

  2. A new method based on supercritical fluid extraction for polyacetylenes and polyenes from Echinacea pallida (Nutt.) Nutt. roots.

    Science.gov (United States)

    Tacchini, Massimo; Spagnoletti, Antonella; Brighenti, Virginia; Prencipe, Francesco Pio; Benvenuti, Stefania; Sacchetti, Gianni; Pellati, Federica

    2017-11-30

    The genus Echinacea (Asteraceae) includes species traditionally used in phytotherapy. Among them, Echinacea pallida (Nutt.) Nutt. root extracts are characterized by a representative antiproliferative activity, due to the presence of acetylenic compounds. In this study, supercritical fluid extraction (SFE) was applied and compared with conventional Soxhlet extraction (SE) in order to obtain a bioactive extract highly rich in polyacetylenes and polyenes from E. pallida roots. The composition of the extracts was monitored by means of HPLC-UV/DAD and HPLC-ESI-MS n by using an Ascentis Express C 18 column (150mm×3.0mm I.D., 2.7μm, Supelco, Bellefonte, PA, USA) with a mobile phase composed of (A) water and (B) acetonitrile, under gradient elution. By keeping SFE time at the threshold of 1h (15min static and 45min dynamic for 1 cycle) with the oven temperature set at 40-45°C and 90bar of pressure, an overall extraction yield of 1.18-1.21% (w/w) was obtained, with a high selectivity for not oxidized lipophilic compounds. The biological activity of the extracts was evaluated against human non-small lung A549 and breast carcinoma MCF-7 cancer cell lines. The cytotoxic effect of the SFE extract was more pronounced towards the MCF-7 than the A549 cancer cells, with IC 50 values ranging from 21.01±2.89 to 31.11±2.l4μg/mL; cell viability was affected mainly between 24 and 48h of exposure. The results show the possibility of a new "green" approach to obtain extracts highly rich in genuine polyacetylenes and polyenes from E. pallida roots. The bioactivity evaluation confirmed the cytotoxicity of E. pallida extracts against the considered cancer cell lines, especially against MCF-7 cells, thus suggesting to represent a valuable tool for applicative purposes in cancer prevention. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Comparison of lactate and bicarbonate buffered haemofiltration fluids: use in critically ill patients.

    Science.gov (United States)

    Thomas, A N; Guy, J M; Kishen, R; Geraghty, I F; Bowles, B J; Vadgama, P

    1997-06-01

    To compare acid-base balance, lactate concentration, and haemodynamic and O2 transport variables during haemofiltration with replacement fluid containing 44.5 mmol/l Na+ lactate or 40 mmol/l Na+ HCO3- and 3 mmol/l lactic acid. A prospective, randomized trial. A multidisciplinary, adult intensive care unit in a university hospital. Forty acidotic patients who required haemofiltration, were dependent on mechanical ventilation, and had PA catheters in situ. During haemofiltration patients received lactate or bicarbonate replacement fluid at a mean rate of 1.7 l/h (SD 0.3). Arterial blood gases, plasma lactate, and haemodynamic and O2 transport variables were measured before and after 12 and 24 h haemofiltration. Ultrafiltrate was collected for lactate estimation. As means (SD). The net gain of lactate was 63 mmol/h (12 mmol) with Na+ lactate and 0 mmol/h (0.3 mmol) with Na+ HCO3-. There was a significant increase in pH and [lactate] in both groups, but [lactate] was higher in patients receiving lactate. Twenty-one patients survived to ICU discharge, these patients were significantly less acidotic after filtration (lactate group: 0 h: pH 7.23 (0.09), [lactate] 2.4 mmol/l (1.7); 12 h: pH 7.34 (0.09), [lactate] 4.7 mmol/l (2.4); 24 h: pH 7.36 (0.07), [lactate] 4.7 mmol (2.7). HCO3 group: 0 h: pH 7.23 (0.09), [lactate] 2.3 (1.3); 12 h: pH 7.32 (0.06), [lactate] 2.9 mmol/l (1.8); 24 h: pH 7.35 (0.08), [lactate] 2.8 mmol/l (2.0). Base deficit: survivors: 0 h: 9 mmol/l (4); 12 h: 2 mmol/l (3). Non-survivors: 0 h: 10 mmol/l (3); 12 h: 6 mmol/l (3)). Haemodynamic and O2 transport variables were not significantly affected by treatment group or outcome. The degree of correction of acidosis during the first 24 h of haemofiltration was determined by patients outcome but was not affected by the substitution of bicarbonate- for lactate-containing replacement fluids.

  4. Volatile and Nonvolatile Constituents and Antioxidant Capacity of Oleoresins in Three Taiwan Citrus Varieties as Determined by Supercritical Fluid Extraction

    Directory of Open Access Journals (Sweden)

    Min-Hung Chen

    2016-12-01

    Full Text Available As local varieties of citrus fruit in Taiwan, Ponkan (Citrus reticulata Blanco, Tankan (C. tankan Hayata, and Murcott (C. reticulate × C. sinensis face substantial competition on the market. In this study, we used carbon dioxide supercritical technology to extract oleoresin from the peels of the three citrus varieties, adding alcohol as a solvent assistant to enhance the extraction rate. The supercritical fluid extraction was fractionated with lower terpene compounds in order to improve the oxygenated amounts of the volatile resins. The contents of oleoresin from the three varieties of citrus peels were then analyzed with GC/MS in order to identify 33 volatile compounds. In addition, the analysis results indicated that the non-volatile oleoresin extracted from the samples contains polymethoxyflavones (86.2~259.5 mg/g, limonoids (111.7~406.2 mg/g, and phytosterols (686.1~1316.4 μg/g. The DPPH (1,1-Diphenyl-2-picrylhydrazyl, ABTS [2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid] scavenging and inhibition of lipid oxidation, which test the oleoresin from the three kinds of citrus, exhibited significant antioxidant capacity. The component polymethoxyflavones contributed the greatest share of the overall antioxidant capacity, while the limonoid and phytosterol components effectively coordinated with its effects.

  5. Supercritical fluid extraction and ultra performance liquid chromatography of respiratory quinones for microbial community analysis in environmental and biological samples.

    Science.gov (United States)

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-03-05

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA) detector was successfully applied to the simultaneous determination of ubiquinones (UQ) and menaquinones (MK) without tedious pretreatment. Supercritical carbon dioxide (scCO(2)) extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost) and biological samples (swine and Japanese quail feces).

  6. Supercritical Fluid Extraction and Ultra Performance Liquid Chromatography of Respiratory Quinones for Microbial Community Analysis in Environmental and Biological Samples

    Directory of Open Access Journals (Sweden)

    Koichi Fujie

    2012-03-01

    Full Text Available Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE and ultra performance liquid chromatography (UPLC method for the analysis of bacterial respiratory quinones (RQ in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA detector was successfully applied to the simultaneous determination of ubiquinones (UQ and menaquinones (MK without tedious pretreatment. Supercritical carbon dioxide (scCO2 extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost and biological samples (swine and Japanese quail feces.

  7. Analytical Methods for the Determination of Rosuvastatin in Pharmaceutical Formulations and Biological Fluids: A Critical Review.

    Science.gov (United States)

    Ângelo, Marilene Lopes; Moreira, Fernanda de Lima; Morais Ruela, André Luís; Santos, Ana Laura Araújo; Salgado, Hérida Regina Nunes; de Araújo, Magali Benjamim

    2018-07-04

    Rosuvastatin calcium (ROS), ( Figure 1 ) belongs to the "statins" group, which is the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor. This drug is indicated for dyslipidemias treatment and can help to decrease the level of "bad cholesterol" and can consequently reduce the development of atherosclerosis and the risk of heart diseases. ROS was developed by Astra-Zeneca and it was approved in 2003 by the FDA in the United States. In 2015, under the trade name Crestor®, it was the fourth largest selling drug in the United States with sales above $5 billion. This study presents a literature review of analytical methods for the quantification of ROS in pharmaceutical preparations and biological fluids. The major analytical methods described in this study for ROS were spectrophotometry, high-performance liquid chromatography (HPLC) coupled to ultraviolet (UV) detection, and tandem mass spectrometry (LC-MS/MS).

  8. Method and apparatus for dissociating metals from metal compounds extracted into supercritical fluids

    Science.gov (United States)

    Wai, Chien M.; Hunt, Fred H.; Smart, Neil G.; Lin, Yuehe

    2000-01-01

    A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.

  9. Chemical composition and antioxidant/antimicrobial activities in supercritical carbon dioxide fluid extract of Gloiopeltis tenax.

    Science.gov (United States)

    Zheng, Jiaojiao; Chen, Yicun; Yao, Fen; Chen, Weizhou; Shi, Ganggang

    2012-12-01

    Gloiopeltis tenax (G. tenax) is widely distributed along the Chinese coastal areas and is commonly used in the treatment of diarrhea and colitis. This study aimed at investigating the bioactivities of the volatile constituents in G. tenax. We extracted the essential constituents of G. tenax by supercritical carbon dioxide extraction (CO₂-SFE), then identified and analyzed the constituents by gas chromatography-mass spectrometry (GC-MS). In total, 30 components were identified in the G. tenax extract. The components showed remarkable antioxidant activity (radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH)), lipid peroxidation inhibition capacity (in a β-carotene/linoleic acid-coupled oxidation reaction), and hydroxyl radical-scavenging activity (by deoxyribose degradation by iron-dependent hydroxyl radical), compared to butylated hydroxytoluene. In microdilution assays, G. tenax extracts showed a moderate inhibitory effects on Staphyloccocus aureus (minimum inhibitory concentration (MIC) = 3.9 mg/mL), Enterococcus faecalis (7.8 mg/mL), Pseudomonas aeruginosa (15.6 mg/mL), and Escherichia coli (3.9 mg/mL). Antioxidant and antimicrobial activities of G. tenax were related to the active chemical composition. These results suggest that the CO₂-SFE extract from G. tenax has potential to be used as a natural antioxidant and antimicrobial agent in food processing.

  10. Chemical Composition and Antioxidant/Antimicrobial Activities in Supercritical Carbon Dioxide Fluid Extract of Gloiopeltis tenax

    Directory of Open Access Journals (Sweden)

    Jiaojiao Zheng

    2012-11-01

    Full Text Available Gloiopeltis tenax (G. tenax is widely distributed along the Chinese coastal areas and is commonly used in the treatment of diarrhea and colitis. This study aimed at investigating the bioactivities of the volatile constituents in G. tenax. We extracted the essential constituents of G. tenax by supercritical carbon dioxide extraction (CO2-SFE, then identified and analyzed the constituents by gas chromatography-mass spectrometry (GC-MS. In total, 30 components were identified in the G. tenax extract. The components showed remarkable antioxidant activity (radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH, lipid peroxidation inhibition capacity (in a β-carotene/linoleic acid-coupled oxidation reaction, and hydroxyl radical-scavenging activity (by deoxyribose degradation by iron-dependent hydroxyl radical, compared to butylated hydroxytoluene. In microdilution assays, G. tenax extracts showed a moderate inhibitory effects on Staphyloccocus aureus (minimum inhibitory concentration (MIC = 3.9 mg/mL, Enterococcus faecalis (7.8 mg/mL, Pseudomonas aeruginosa (15.6 mg/mL, and Escherichia coli (3.9 mg/mL. Antioxidant and antimicrobial activities of G. tenax were related to the active chemical composition. These results suggest that the CO2-SFE extract from G. tenax has potential to be used as a natural antioxidant and antimicrobial agent in food processing.

  11. MODELING OF SUPERCRITICAL FLUID EXTRACTION KINETIC OF FLAXSEED OIL BY DIFFUSION CONTROL METHOD

    Directory of Open Access Journals (Sweden)

    Emir Zafer HOŞGÜN

    2013-06-01

    Full Text Available In this study, Flaxseed oil was extracted by Supercritical Carbondioxide Extraction, and extractionkinetics was modelled using diffusion controlled method.The effect of process parameters, such as pressure (20, 35, 55 MPa, temperature (323 and 343 K, and CO2 flow rate (1 and 3 L CO2 /min on the extraction yield and effective diffusivity (De was investigated. The effective diffusion coefficient varied between 2.4 x10-12 and 10.8 x10-12 m2s-1 for the entire range of experiments and increased with the pressure and flow rate. The model fitted well theexperimental data (ADD varied between 2.35 and 7.48%.

  12. Supercritical fluid extraction and characterization of lipids from algae Scenedesmus obliquus

    Science.gov (United States)

    Choi, K. J.; Nakhost, Z.; Krukonis, V. J.; Karel, M.

    1987-01-01

    Lipids were extracted from a protein concentrate of green algae (Scenedesmus obliquus), using a one-step supercritical carbon dioxide extraction procedure in presence of ethanol as an entrainer, and were characterized. The compositions of neutral lipids, glycolipids, and phospholipids, separated into individual components by column, thin-layer, and gas-liquid chromatography procedures, are presented. Fatty acid composition patterns indicated that the major fatty acids were 16:0, 16:1, 16:2, 16:3, 16:4, 18:1, 18:2, and 18:3. The lipids of S. obliquus were found to contain relatively high concentrations of polyunsaturated fatty acids and essential fatty acids.

  13. Supercritical fluid extraction of soybean oil from the surface of spiked quartz sand - modelling study

    OpenAIRE

    Stela Jokić; B. Nagy; K. Aladić; B. Simándi

    2013-01-01

    The extraction of soybean oil from the surface of spiked quartz sand using supercritical CO2 was investigated. Sand as solid was used; it is not porous material so the internal diffusion does not exist, all the soluble material is in the surface of the particles. Sovová’s model has been used in order to obtain an analytical solution to develop the required extraction yield curves. The model simplifies when the internal diffusion can be neglected. The external mass transfer coefficient was det...

  14. Complete removal of uranyl nitrate from tissue matrix using supercritical fluid extraction

    International Nuclear Information System (INIS)

    Kumar, R.; Sivaraman, N.; Senthil Vadivu, E.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2003-01-01

    The removal of uranyl nitrate from tissue matrix has been studied with supercritical carbon dioxide modified with methanol alone as well as complexing reagents dissolved in methanol. A systematic study of various complexing agents led to the development of an extraction procedure for the quantitative recovery of uranium from tissue matrix with supercritical carbon dioxide modified with methanol containing small quantities of acetylacetone. The drying time and temperature employed in loading of uranyl nitrate onto tissue paper were found to influence the extraction efficiency significantly

  15. Literature survey of heat transfer and hydraulic resistance of water, carbon dioxide, helium and other fluids at supercritical and near-critical pressures

    Energy Technology Data Exchange (ETDEWEB)

    Pioro, I.L.; Duffey, R.B

    2003-04-01

    This survey consists of 430 references, including 269 Russian publications and 161 Western publications devoted to the problems of heat transfer and hydraulic resistance of a fluid at near-critical and supercritical pressures. The objective of the literature survey is to compile and summarize findings in the area of heat transfer and hydraulic resistance at supercritical pressures for various fluids for the last fifty years published in the open Russian and Western literature. The analysis of the publications showed that the majority of the papers were devoted to the heat transfer of fluids at near-critical and supercritical pressures flowing inside a circular tube. Three major working fluids are involved: water, carbon dioxide, and helium. The main objective of these studies was the development and design of supercritical steam generators for power stations (utilizing water as a working fluid) in the 1950s, 1960s, and 1970s. Carbon dioxide was usually used as the modeling fluid due to lower values of the critical parameters. Helium, and sometimes carbon dioxide, were considered as possible working fluids in some special designs of nuclear reactors. (author)

  16. Critical heat flux measurements in small-diameter tubes using R12 as model fluid

    International Nuclear Information System (INIS)

    Mueller-Menzel, T.

    1987-01-01

    Results of critical heat flux measurements are reported for vertical upflow of Refrigerant 12 at high mass fluxes and high pressures in small diameter tubes. The data are transformed into water data using a scaling law, which is verified by means of a new analysis. An error estimation includes the error of the scaling law. Special phenomena ('limiting quality', 'upstream boiling crisis') are explained by theoretical models. The applicability of existing correlations is checked and a new CHF-table for small diameter tubes is presented. With 41 figs., 12 tabs [de

  17. Extraction of conformal data in critical quantum spin chains using the Koo-Saleur formula

    Science.gov (United States)

    Milsted, Ashley; Vidal, Guifre

    2017-12-01

    We study the emergence of two-dimensional conformal symmetry in critical quantum spin chains on the finite circle. Our goal is to characterize the conformal field theory (CFT) describing the universality class of the corresponding quantum phase transition. As a means to this end, we propose and demonstrate automated procedures which, using only the lattice Hamiltonian H =∑jhj as an input, systematically identify the low-energy eigenstates corresponding to Virasoro primary and quasiprimary operators, and assign the remaining low-energy eigenstates to conformal towers. The energies and momenta of the primary operator states are needed to determine the primary operator scaling dimensions and conformal spins, an essential part of the conformal data that specifies the CFT. Our techniques use the action, on the low-energy eigenstates of H , of the Fourier modes Hn of the Hamiltonian density hj. The Hn were introduced as lattice representations of the Virasoro generators by Koo and Saleur [Nucl. Phys. B 426, 459 (1994), 10.1016/0550-3213(94)90018-3]. In this paper, we demonstrate that these operators can be used to extract conformal data in a nonintegrable quantum spin chain.

  18. Spectrophotometric Quantification of Toxicologically Relevant Concentrations of Chromium(VI in Cosmetic Pigments and Eyeshadow Using Synthetic Lachrymal Fluid Extraction

    Directory of Open Access Journals (Sweden)

    Sarah Wurster

    2012-01-01

    Full Text Available Chromium(VI salts are possible contaminants of the chromium(III pigments used as colorants in eyeshadow preparations. The use of products containing these contaminants poses acute risks for sensitization and contact allergies. Chromium(VI compounds are also classified as carcinogenic to humans (IARC group 1. An analytical method to analyse trace levels of chromium(VI in eyeshadow was developed in this study. The method is based on an extraction of the chromium(VI from the sample using a maximum extraction with alkali and additionally with synthetic lachrymal fluid to simulate physiological conditions. Following derivatization with 1,5-diphenylcarbazide, the extracted chromium(VI is then quantified by spectrophotometry (540 nm. Validation tests indicated a method standard deviation (inter- and intraday of 8.7% and a linear range up to 25 mg/kg. The average recovery was 107.9%, and the detection limit was 2.7 mg/kg. The applicability of the procedure was confirmed by the analysis of pigments and authentic eyeshadow matrices.

  19. High-throughput analysis of sulfatides in cerebrospinal fluid using automated extraction and UPLC-MS/MS.

    Science.gov (United States)

    Blomqvist, Maria; Borén, Jan; Zetterberg, Henrik; Blennow, Kaj; Månsson, Jan-Eric; Ståhlman, Marcus

    2017-07-01

    Sulfatides (STs) are a group of glycosphingolipids that are highly expressed in brain. Due to their importance for normal brain function and their potential involvement in neurological diseases, development of accurate and sensitive methods for their determination is needed. Here we describe a high-throughput oriented and quantitative method for the determination of STs in cerebrospinal fluid (CSF). The STs were extracted using a fully automated liquid/liquid extraction method and quantified using ultra-performance liquid chromatography coupled to tandem mass spectrometry. With the high sensitivity of the developed method, quantification of 20 ST species from only 100 μl of CSF was performed. Validation of the method showed that the STs were extracted with high recovery (90%) and could be determined with low inter- and intra-day variation. Our method was applied to a patient cohort of subjects with an Alzheimer's disease biomarker profile. Although the total ST levels were unaltered compared with an age-matched control group, we show that the ratio of hydroxylated/nonhydroxylated STs was increased in the patient cohort. In conclusion, we believe that the fast, sensitive, and accurate method described in this study is a powerful new tool for the determination of STs in clinical as well as preclinical settings. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  20. Supercritical fluid extraction of bi & multi-layer graphene sheets from graphite by using exfoliation technique

    Science.gov (United States)

    Xavier, Gauravi; Dave, Bhoomi; Khanna, Sakshum

    2018-05-01

    In recent times, researchers have turned to explore the possibility of using Supercritical Fluid (SCFs) system to penetrate into the inert-gaping of graphite and exfoliate it into a number of layer graphene sheets. The supercritical fluid holds excellent wetting surfaces with low interfacial tension and high diffusion coefficients. Although SCFs exfoliation approach looks promising to developed large scale & low-cost graphene sheet but has not received much attention. To arouse interest and reflection on this approach, this review is organized to summarize the recent progress in graphene production by SCF technology. Here we present the simplest route to obtained layers of graphene sheets by intercalating and exfoliating graphite using supercritical CO2 processing. The layers graphene nano-sheets were collected in dichloromethane (DCM) solution which prevents the restocking of sheets. The obtained graphene sheets show the desired characteristics and thus can be used in physical, chemical and biological sciences. Thus this method provides an effortless and eco-friendly approach for the synthesis of layers of graphene sheets.

  1. Physically based model for extracting dual permeability parameters using non-Newtonian fluids

    Science.gov (United States)

    Abou Najm, M. R.; Basset, C.; Stewart, R. D.; Hauswirth, S.

    2017-12-01

    Dual permeability models are effective for the assessment of flow and transport in structured soils with two dominant structures. The major challenge to those models remains in the ability to determine appropriate and unique parameters through affordable, simple, and non-destructive methods. This study investigates the use of water and a non-Newtonian fluid in saturated flow experiments to derive physically-based parameters required for improved flow predictions using dual permeability models. We assess the ability of these two fluids to accurately estimate the representative pore sizes in dual-domain soils, by determining the effective pore sizes of macropores and micropores. We developed two sub-models that solve for the effective macropore size assuming either cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and fissures) pore geometries, with the micropores assumed to be represented by a single effective radius. Furthermore, the model solves for the percent contribution to flow (wi) corresponding to the representative macro and micro pores. A user-friendly solver was developed to numerically solve the system of equations, given that relevant non-Newtonian viscosity models lack forms conducive to analytical integration. The proposed dual-permeability model is a unique attempt to derive physically based parameters capable of measuring dual hydraulic conductivities, and therefore may be useful in reducing parameter uncertainty and improving hydrologic model predictions.

  2. Supercritical Fluid Extraction of Lignans and Cinnamic Acid from Schizandra chinensis.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena; Opletal, L.; Bártlová, Milena; Sajfrtová, Marie; Křenková, M.

    2007-01-01

    Roč. 42, 1 (2007) , s. 88-95 ISSN 0896-8446 R&D Projects: GA ČR(CZ) GA203/01/0550; GA AV ČR IAA4072102; GA AV ČR KSK4040110 Institutional research plan: CEZ:AV0Z40720504 Keywords : supercritical extraction * solubility * lignans Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.189, year: 2007

  3. Light scattering studies of lower dimensional colloidal particle and critical fluid systems. Final progress report

    International Nuclear Information System (INIS)

    O'Sullivan, W.J.; Mockler, R.C.

    1985-08-01

    We have completed a program of small angle scattering Rayleigh linewidth measurements on thin films of a 2,6-lutidine + water mixture. No statistically significant departures from three dimensional dynamic response were seen, although the conditions set by the theory of Calvo and Ferrell were met. We have applied digital image processing to evaluate fractal scale invariance in two dimensional particle aggregates arising from the induced coagulation of colloidal particle monolayer crystals. Our system gives us the capability of calculating the pair correlation function for both small and very large (2 x 10 4 particles) particle clusters. We find evidence of an apparent crossover between kinetic clustering aggregation at small distances (about 20 particle diameters) to percolation or gel/sol transition-behavior at large distances. This is evident in both isolated clusters and in final state ''giant'' aggregates. We are carrying through a parallel program of computer calculations whose motivation is to assess the sensitivity of experimental measures of self similarity to cluster size and image resolution, and to generate efficient algorithms which can be applied to calculate fractal ''critical exponents'' other than the Hausdorff dimension. We have succeeded in measuring the surface tension of a water surface covered by a colloidal particle monolayer crystal, in both its repulsive-dipole and close-packed van der Waals phases

  4. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients

    OpenAIRE

    Uemura, Mei

    2017-01-01

    Background: Continuous glucose monitoring (CGM) is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC) monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET). Here we evaluated the accuracy of interstitial fluid glucose (IG) AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting h...

  5. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients

    OpenAIRE

    Mei Uemura; Yutaka Yano; Toshinari Suzuki; Taro Yasuma; Toshiyuki Sato; Aya Morimoto; Samiko Hosoya; Chihiro Suminaka; Hiromu Nakajima; Esteban C. Gabazza; Yoshiyuki Takei

    2017-01-01

    Background Continuous glucose monitoring (CGM) is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC) monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET). Here we evaluated the accuracy of interstitial fluid glucose (IG) AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting hy...

  6. Comparison of methods for miRNA extraction from plasma and quantitative recovery of RNA from plasma and cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Melissa A McAlexander

    2013-05-01

    Full Text Available Interest in extracellular RNA has intensified as evidence accumulates that these molecules may be useful as indicators of a wide variety of biological conditions. To establish specific extracellular RNA molecules as clinically relevant biomarkers, reproducible recovery from biological samples and reliable measurements of the isolated RNA are paramount. Towards these ends, careful and rigorous comparisons of technical procedures are needed at all steps from sample handling to RNA isolation to RNA measurement protocols. In the investigations described in this methods paper, RT-qPCR was used to examine the apparent recovery of specific endogenous miRNAs and a spiked-in synthetic RNA from blood plasma samples. RNA was isolated using several widely used RNA isolation kits, with or without the addition of glycogen as a carrier. Kits examined included total RNA isolation systems that have been commercially available for several years and commonly adapted for extraction of biofluid RNA, as well as more recently introduced biofluids-specific RNA methods. Our conclusions include the following: some RNA isolation methods appear to be superior to others for the recovery of RNA from biological fluids; addition of a carrier molecule seems to be beneficial for some but not all isolation methods; and partially or fully quantitative recovery of RNA is observed from increasing volumes of plasma and cerebrospinal fluid.

  7. Inverse supercritical fluid extraction as a sample preparation method for the analysis of the nanoparticle content in sunscreen agents.

    Science.gov (United States)

    Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; de Vries, Tjerk; Portugal-Cohen, Meital; Antonio, Diana C; Cascio, Claudia; Calzolai, Luigi; Gilliland, Douglas; de Mello, Andrew

    2016-04-01

    We demonstrate the use of inverse supercritical carbon dioxide (scCO2) extraction as a novel method of sample preparation for the analysis of complex nanoparticle-containing samples, in our case a model sunscreen agent with titanium dioxide nanoparticles. The sample was prepared for analysis in a simplified process using a lab scale supercritical fluid extraction system. The residual material was easily dispersed in an aqueous solution and analyzed by Asymmetrical Flow Field-Flow Fractionation (AF4) hyphenated with UV- and Multi-Angle Light Scattering detection. The obtained results allowed an unambiguous determination of the presence of nanoparticles within the sample, with almost no background from the matrix itself, and showed that the size distribution of the nanoparticles is essentially maintained. These results are especially relevant in view of recently introduced regulatory requirements concerning the labeling of nanoparticle-containing products. The novel sample preparation method is potentially applicable to commercial sunscreens or other emulsion-based cosmetic products and has important ecological advantages over currently used sample preparation techniques involving organic solvents. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Cytotoxic Activity of Kenaf Seed Oils from Supercritical Carbon Dioxide Fluid Extraction towards Human Colorectal Cancer (HT29 Cell Lines

    Directory of Open Access Journals (Sweden)

    Siti Aisyah Abd Ghafar

    2013-01-01

    Full Text Available Kenaf (Hibiscus cannabinus from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as β-sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO was from supercritical carbon dioxide extraction fluid (SFE at 9 different permutations of parameters based on range of pressures from 200 to 600 bars and temperature from 40 to 80°C. They were 200/40, 200/60, 200/80, 400/40, 400/60, 400/80, 600/40, 600/60, and 600/80. Extraction from 9 parameters of KSO-SFE was screened for cytotoxicity towards human colorectal cancer cell lines (HT29 and mouse embryonic fibroblast (NIH/3T3 cell lines using MTS assay. KSO-SFE at 600/40 showed the strongest cytotoxicity towards HT29 with IC50 of 200 µg/mL. The IC50 for NIH/3T3 was not detected even at highest concentration employed. Cell cycle analysis showed a significant increase in the accumulation of KSO-SFE-treated cells at sub-G1 phase, indicating the induction of apoptosis by KSO-SFE. Further apoptosis induction was confirmed by Annexin V/PI and AO/PI staining.

  9. Evaluation of peri-implant crevicular fluid prostaglandin E2 levels in augmented extraction sockets by different biomaterials.

    Science.gov (United States)

    Alkan, Eylem Ayhan; Tüter, Gülay; Parlar, Ateş; Yücel, Ayşegül; Kurtiş, Bülent

    2016-10-01

    This study compares peri-implant crevicular fluid (PICF) prostaglandin E 2 (PGE 2 ) levels, clinical parameters and implant stability quotient (ISQ) values around implants placed in augmented extraction sockets. The sockets (24 in total) were randomly augmented using either EMD or Bio-Oss Collagen. Implant placements were performed after three months of healing. ISQ readings were evaluated at three points: at the time of surgery, at the first month and at the third month. PICF was collected for PGE 2 evaluation after the first and the third months of implant surgery. After the first month, a higher level of PICF PGE 2 was observed in the EMD group than in the Bio-Oss Collagen group, and this increase was of statistical significance; however, at the third month there was no statistically significant difference in PICF PGE 2 levels between the two groups. For implants placed in EMD sites, ISQ values were statistically higher at the third month than at the first month, while no significant differences in ISQ value were detected between the first and third months in Bio-Oss Collagen sites. The results of this research suggest that both EMD and Bio-Oss Collagen are effective treatment modalities for stimulating the formation of new bone at extraction sites prior to implant surgery.

  10. Cytotoxic Activity of Kenaf Seed Oils from Supercritical Carbon Dioxide Fluid Extraction towards Human Colorectal Cancer (HT29) Cell Lines.

    Science.gov (United States)

    Abd Ghafar, Siti Aisyah; Ismail, Maznah; Saiful Yazan, Latifah; Fakurazi, Sharida; Ismail, Norsharina; Chan, Kim Wei; Md Tahir, Paridah

    2013-01-01

    Kenaf (Hibiscus cannabinus) from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as β -sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO) was from supercritical carbon dioxide extraction fluid (SFE) at 9 different permutations of parameters based on range of pressures from 200 to 600 bars and temperature from 40 to 80°C. They were 200/40, 200/60, 200/80, 400/40, 400/60, 400/80, 600/40, 600/60, and 600/80. Extraction from 9 parameters of KSO-SFE was screened for cytotoxicity towards human colorectal cancer cell lines (HT29) and mouse embryonic fibroblast (NIH/3T3) cell lines using MTS assay. KSO-SFE at 600/40 showed the strongest cytotoxicity towards HT29 with IC50 of 200 µg/mL. The IC50 for NIH/3T3 was not detected even at highest concentration employed. Cell cycle analysis showed a significant increase in the accumulation of KSO-SFE-treated cells at sub-G1 phase, indicating the induction of apoptosis by KSO-SFE. Further apoptosis induction was confirmed by Annexin V/PI and AO/PI staining.

  11. Minimally-invasive, microneedle-array extraction of interstitial fluid for comprehensive biomedical applications: transcriptomics, proteomics, metabolomics, exosome research, and biomarker identification.

    Science.gov (United States)

    Taylor, Robert M; Miller, Philip R; Ebrahimi, Parwana; Polsky, Ronen; Baca, Justin T

    2018-01-01

    Interstitial fluid (ISF) has recently garnered interest as a biological fluid that could be used as an alternate to blood for biomedical applications, diagnosis, and therapy. ISF extraction techniques are promising because they are less invasive and less painful than venipuncture. ISF is an alternative, incompletely characterized source of physiological data. Here, we describe a novel method of ISF extraction in rats, using microneedle arrays, which provides volumes of ISF that are sufficient for downstream analysis techniques such as proteomics, genomics, and extracellular vesicle purification and analysis. This method is potentially less invasive than previously reported techniques. The limited invasiveness and larger volumes of extracted ISF afforded by this microneedle-assisted ISF extraction method provide a technique that is less stressful and more humane to laboratory animals, while also allowing for a reduction in the numbers of animals needed to acquire sufficient volumes of ISF for biomedical analysis and application.

  12. Perspective: Differential dynamic microscopy extracts multi-scale activity in complex fluids and biological systems

    Science.gov (United States)

    Cerbino, Roberto; Cicuta, Pietro

    2017-09-01

    Differential dynamic microscopy (DDM) is a technique that exploits optical microscopy to obtain local, multi-scale quantitative information about dynamic samples, in most cases without user intervention. It is proving extremely useful in understanding dynamics in liquid suspensions, soft materials, cells, and tissues. In DDM, image sequences are analyzed via a combination of image differences and spatial Fourier transforms to obtain information equivalent to that obtained by means of light scattering techniques. Compared to light scattering, DDM offers obvious advantages, principally (a) simplicity of the setup; (b) possibility of removing static contributions along the optical path; (c) power of simultaneous different microscopy contrast mechanisms; and (d) flexibility of choosing an analysis region, analogous to a scattering volume. For many questions, DDM has also advantages compared to segmentation/tracking approaches and to correlation techniques like particle image velocimetry. The very straightforward DDM approach, originally demonstrated with bright field microscopy of aqueous colloids, has lately been used to probe a variety of other complex fluids and biological systems with many different imaging methods, including dark-field, differential interference contrast, wide-field, light-sheet, and confocal microscopy. The number of adopting groups is rapidly increasing and so are the applications. Here, we briefly recall the working principles of DDM, we highlight its advantages and limitations, we outline recent experimental breakthroughs, and we provide a perspective on future challenges and directions. DDM can become a standard primary tool in every laboratory equipped with a microscope, at the very least as a first bias-free automated evaluation of the dynamics in a system.

  13. Critical parameters in cost-effective alkaline extraction for high protein yield from leaves

    NARCIS (Netherlands)

    Zhang, C.; Sanders, J.P.M.; Bruins, M.E.

    2014-01-01

    Leaves are potential resources for feed or food, but their applications are limited due to a high proportion of insoluble protein and inefficient processing. To overcome these problems, parameters of alkaline extraction were evaluated using green tea residue (GTR). Protein extraction could be

  14. Measurement of polychlorinated biphenyls in solid waste such as transformer insulation paper by supercritical fluid extraction and gas chromatography electron capture detection.

    Science.gov (United States)

    Chikushi, Hiroaki; Fujii, Yuka; Toda, Kei

    2012-09-21

    In this work, a method for measuring polychlorinated biphenyls (PCBs) in contaminated solid waste was investigated. This waste includes paper that is used in electric transformers to insulate electric components. The PCBs in paper sample were extracted by supercritical fluid extraction and analyzed by gas chromatography-electron capture detection. The recoveries with this method (84-101%) were much higher than those with conventional water extraction (0.08-14%), and were comparable to those with conventional organic solvent extraction. Limit of detection was 0.0074 mg kg(-1) and measurable up to 2.5 mg kg(-1) for 0.5 g of paper sample. Data for real insulation paper by the proposed method agreed well with those by the conventional organic solvent extraction. Extraction from wood and concrete was also investigated and good performance was obtained as well as for paper samples. The supercritical fluid extraction is simpler, faster, and greener than conventional organic solvent extraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Utilization of mixed cellulolytic microbes from termite extract, elephant faecal solution and buffalo ruminal fluid to increase in vitro digestibility of King Grass

    Directory of Open Access Journals (Sweden)

    Agung Prabowo

    2007-06-01

    Full Text Available Cellulose is a compound of plant cell walls which is difficult to be degraded because it composed of glucose monomers linked by β-(1.4-bound. It will be hydrolysed by cellulase enzyme secreted by cellulolytic microbes. The effective digestion of cellulose needs high activity of cellulase enzyme. This research aims to increase in vitro king grass digestibility utilizing mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid. Twelve syringes contained gas test media were randomly divided into four treatments based on sources of microbe (SM, namely: S (SM: cattle ruminal fluid [S], RGK (SM: mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid [RGK], with composition 1 : 1 : 1, S-RGK (SM: S + RGK, with composition 1:1, and TM (without given treatment microbe. Digestibility was measured using gas test method. Average of gas production treatment of S-RGK (70.2 + 0.6 ml was higher and significantly different (P<0.01 compared to treatment of S (60.3 + 0.8 ml, RGK (40.8 + 2.3 ml, and TM (13.3 + 2.0 ml. Utilization of mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid (RGK that combined with microbes of cattle ruminal fluid (S could increase in vitro digestibility of king grass.

  16. Novel use of an ultrafiltration device as an alternative method for fluid removal in critically ill pediatric patients with cardiac disease: a case series

    Directory of Open Access Journals (Sweden)

    Sujata Chakravarti

    2016-06-01

    Full Text Available Fluid overload (FO is a common complication for pediatric patients in the intensive care unit. When conventional therapy fails, hemodialysis or peritoneal dialysis is classically used for fluid removal. Unfortunately, these therapies are often associated with cardiovascular or respiratory instability. Ultrafiltration, using devices such as the AquadexTM system (Baxter Healthcare, Deerfield, IL, USA, is an effective tool for fluid removal in adult patients with congestive heart failure. As compared to hemodialysis, ultrafiltration can be performed using smaller catheters, and the extracorporeal volume and minimal blood flow rates are lower. In addition, there is no associated abdominal distension as is seen in peritoneal dialysis. Consequently, ultrafiltration may be better tolerated in critically ill pediatric patients. We present three cases of challenging pediatric patients with FO in the setting of congenital heart disease in whom ultrafiltration using the AquadexTM system was successfully utilized for fluid removal while cardiorespiratory stability was maintained.

  17. Critical review of supercritical carbon dioxide extraction of selected oil seeds

    Directory of Open Access Journals (Sweden)

    Sovilj Milan N.

    2010-01-01

    Full Text Available Supercritical carbon dioxide extraction, as a relatively new separation technique, can be used as a very efficient process in the production of essential oils and oleoresins from many of plant materials. The extracts from these materials are a good basis for the new pharmaceutical products and ingredients in the functional foods. This paper deals with supercritical carbon dioxide extraction of selected oil seeds which are of little interest in classical extraction in the food industry. In this article the process parameters in the supercritical carbon dioxide extraction, such as pressure, temperature, solvent flow rate, diameter of gound materials, and moisture of oil seed were presented for the following seeds: almond fruits, borage seed, corn germ, grape seed, evening primrose, hazelnut, linseed, pumpkin seed, walnut, and wheat germ. The values of investigated parameters in supercritical extraction were: pressure from 100 to 600 bar, temperature from 10 to 70oC, diameter of grinding material from 0.16 to 2.0 mm, solvent flow used from 0.06 to 30.0 kg/h, amount of oil in the feed from 10.0 to 74.0%, and moisture of oil seed from 1.1 to 7.5%. The yield and quality of the extracts of all the oil seeds as well as the possibility of their application in the pharmaceutical and food, industries were analyzed.

  18. Pesticide residues in canned foods, fruits, and vegetables: the application of Supercritical Fluid Extraction and chromatographic techniques in the analysis.

    Science.gov (United States)

    El-Saeid, Mohamed H

    2003-12-11

    Multiple pesticide residues have been observed in some samples of canned foods, frozen vegetables, and fruit jam, which put the health of the consumers at risk of adverse effects. It is quite apparent that such a state of affairs calls for the need of more accurate, cost-effective, and rapid analytical techniques capable of detecting the minimum concentrations of the multiple pesticide residues. The aims of this paper were first, to determine the effectiveness of the use of Supercritical Fluid Extraction (SFE) and Supercritical Fluid Chromatography (SFC) techniques in the analysis of the levels of pesticide residues in canned foods, vegetables, and fruits; and second, to contribute to the promotion of consumer safety by excluding pesticide residue contamination from markets. Fifteen different types of imported canned and frozen fruits and vegetables samples obtained from the Houston local food markets were investigated. The major types of pesticides tested were pyrethroids, herbicides, fungicides, and carbamates. By using these techniques, the overall data showed 60.82% of the food samples had no detection of any pesticide residues under this investigation. On the other hand, 39.15% different food samples were contaminated by four different pyrethroid residues +/- RSD% ranging from 0.03 +/- 0.005 to 0.05 +/- 0.03 ppm, of which most of the pyrethroid residues were detected in frozen vegetables and strawberry jam. Herbicide residues in test samples ranged from 0.03 +/- 0.005 to 0.8 +/- 0.01 ppm. Five different fungicides, ranging from 0.05 +/- 0.02 to 0.8 +/- 0.1 ppm, were found in five different frozen vegetable samples. Carbamate residues were not detected in 60% of investigated food samples. It was concluded that SFE and SFC techniques were accurate, reliable, less time consuming, and cost effective in the analysis of imported canned foods, fruits, and vegetables and are recommended for the monitoring of pesticide contaminations.

  19. Pesticide Residues in Canned Foods, Fruits, and Vegetables: The Application of Supercritical Fluid Extraction and Chromatographic Techniques in the Analysis

    Directory of Open Access Journals (Sweden)

    Mohamed H. EL-Saeid

    2003-01-01

    Full Text Available Multiple pesticide residues have been observed in some samples of canned foods, frozen vegetables, and fruit jam, which put the health of the consumers at risk of adverse effects. It is quite apparent that such a state of affairs calls for the need of more accurate, cost-effective, and rapid analytical techniques capable of detecting the minimum concentrations of the multiple pesticide residues. The aims of this paper were first, to determine the effectiveness of the use of Supercritical Fluid Extraction (SFE and Supercritical Fluid Chromatography (SFC techniques in the analysis of the levels of pesticide residues in canned foods, vegetables, and fruits; and second, to contribute to the promotion of consumer safety by excluding pesticide residue contamination from markets. Fifteen different types of imported canned and frozen fruits and vegetables samples obtained from the Houston local food markets were investigated. The major types of pesticides tested were pyrethroids, herbicides, fungicides, and carbamates.By using these techniques, the overall data showed 60.82% of the food samples had no detection of any pesticide residues under this investigation. On the other hand, 39.15% different food samples were contaminated by four different pyrethroid residues ± RSD% ranging from 0.03 ± 0.005 to 0.05 ± 0.03 ppm, of which most of the pyrethroid residues were detected in frozen vegetables and strawberry jam. Herbicide residues in test samples ranged from 0.03 ± 0.005 to 0.8 ± 0.01 ppm. Five different fungicides, ranging from 0.05 ± 0.02 to 0.8 ±0.1 ppm, were found in five different frozen vegetable samples. Carbamate residues were not detected in 60% of investigated food samples. It was concluded that SFE and SFC techniques were accurate, reliable, less time consuming, and cost effective in the analysis of imported canned foods, fruits, and vegetables and are recommended for the monitoring of pesticide contaminations.

  20. Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free surrogate lung fluid

    Directory of Open Access Journals (Sweden)

    H. Shen

    2011-09-01

    Full Text Available Previous studies have suggested that the adverse health effects from ambient particulate matter (PM are linked to the formation of reactive oxygen species (ROS by PM in cardiopulmonary tissues. While hydroxyl radical (OH is the most reactive of the ROS species, there are few quantitative studies of OH generation from PM. Here we report on OH formation from PM collected at an urban (Fresno and rural (Westside site in the San Joaquin Valley (SJV of California. We quantified OH in PM extracts using a cell-free, phosphate-buffered saline (PBS solution with or without 50 μM ascorbate (Asc. The results show that generally the urban Fresno PM generates much more OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances OH formation from all the samples. Fine PM (PM2.5 generally makes more OH than the corresponding coarse PM (PMcf, i.e. with diameters of 2.5 to 10 μm normalized by air volume collected, while the coarse PM typically generates more OH normalized by PM mass. OH production by SJV PM is reduced on average by (97 ± 6 % when the transition metal chelator desferoxamine (DSF is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary OH, although high

  1. Restricted access magnetic materials prepared by dual surface modification for selective extraction of therapeutic drugs from biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yu; Wang Yuxia; Chen Lei [School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072 (China); Wan Qianhong, E-mail: qhwan@tju.edu.cn [School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072 (China)

    2012-02-15

    Magnetic porous particles with dual functionality have been prepared by a two-step procedure and evaluated as novel restricted access materials for extraction of therapeutic agents from biological fluids. The magnetic silica particles served as scaffolds were first modified with diol groups, which were then converted to octadecyl esters through reaction with stearoyl chloride. In the second step, the octadecyl esters on the exterior surface were hydrolyzed by the action of lipase to yield magnetic particles with hydrophobic reversed-phase ligands on the inner surface and biocompatible diol groups on the outer surface. The restricted access behavior of the resulting materials was confirmed by differential binding of small molecules such as methotrexate (MTX), leucovorin (LV) and folic acid (FA) relative to bovine serum albumin. While MTX, LV and FA were all bound to the magnetic particles with high affinity, the adsorption of the protein was markedly reduced due to size exclusion effect. The utility of the magnetic particles for sample preparation was tested in solid-phase extraction of MTX, LV and FA from spiked human serum and the effects of the SPE conditions on the recovery of the analytes were systematically studied. Moreover, the magnetic particle-based sample preparation procedure coupled with reversed-phase liquid chromatography analysis was validated in terms of specificity, linearity and reproducibility. The method was shown to be free from interference of endogenous compounds and linear over the concentration range of 0.5-10 {mu}g/mL for the three drugs studied. The limits of detection for the three drugs in serum were in the range of 0.160-0.302 {mu}g/mL. Reproducibility expressed as the RSD of the recovery for ten replicated extractions at three different concentrations was found to be less than 8.93%. With a unique combination of surface functionality with magnetic cores, the restricted access magnetic particles may be adapted in automated and high

  2. Restricted access magnetic materials prepared by dual surface modification for selective extraction of therapeutic drugs from biological fluids

    International Nuclear Information System (INIS)

    Wang Yu; Wang Yuxia; Chen Lei; Wan Qianhong

    2012-01-01

    Magnetic porous particles with dual functionality have been prepared by a two-step procedure and evaluated as novel restricted access materials for extraction of therapeutic agents from biological fluids. The magnetic silica particles served as scaffolds were first modified with diol groups, which were then converted to octadecyl esters through reaction with stearoyl chloride. In the second step, the octadecyl esters on the exterior surface were hydrolyzed by the action of lipase to yield magnetic particles with hydrophobic reversed-phase ligands on the inner surface and biocompatible diol groups on the outer surface. The restricted access behavior of the resulting materials was confirmed by differential binding of small molecules such as methotrexate (MTX), leucovorin (LV) and folic acid (FA) relative to bovine serum albumin. While MTX, LV and FA were all bound to the magnetic particles with high affinity, the adsorption of the protein was markedly reduced due to size exclusion effect. The utility of the magnetic particles for sample preparation was tested in solid-phase extraction of MTX, LV and FA from spiked human serum and the effects of the SPE conditions on the recovery of the analytes were systematically studied. Moreover, the magnetic particle-based sample preparation procedure coupled with reversed-phase liquid chromatography analysis was validated in terms of specificity, linearity and reproducibility. The method was shown to be free from interference of endogenous compounds and linear over the concentration range of 0.5-10 μg/mL for the three drugs studied. The limits of detection for the three drugs in serum were in the range of 0.160-0.302 μg/mL. Reproducibility expressed as the RSD of the recovery for ten replicated extractions at three different concentrations was found to be less than 8.93%. With a unique combination of surface functionality with magnetic cores, the restricted access magnetic particles may be adapted in automated and high

  3. Association of day 4 cumulative fluid balance with mortality in critically ill patients with influenza: A multicenter retrospective cohort study in Taiwan.

    Science.gov (United States)

    Chao, Wen-Cheng; Tseng, Chien-Hua; Chien, Ying-Chun; Sheu, Chau-Chyun; Tsai, Ming-Ju; Fang, Wen-Feng; Chen, Yu-Mu; Kao, Kuo-Chin; Hu, Han-Chung; Perng, Wann-Cherng; Yang, Kuang-Yao; Chen, Wei-Chih; Liang, Shinn-Jye; Wu, Chieh-Liang; Wang, Hao-Chien; Chan, Ming-Cheng

    2018-01-01

    Fluid balance is a fundamental management of patients with sepsis, and this study aimed to investigate the impact of cumulative fluid balance on critically ill patients with influenza admitted to an intensive care unit (ICU). This multicenter retrospective cohort study was conducted by the Taiwan Severe Influenza Research Consortium (TSIRC) which includes eight medical centers. Patients with virology-proven influenza infection admitted to ICUs between October 2015 and March 2016 were included for analysis. A total of 296 patients were enrolled (mean age: 61.4±15.6 years; 62.8% men), and 92.2% (273/296) of them required mechanical ventilation. In the survivors, the daily fluid balance was positive from day 1 to day 3, and then gradually became negative from day 4 to day 7, whereas daily fluid balance was continuously positive in the non-survivors. Using the cumulative fluid balance from day 1-4 as a cut-off point, we found that a negative cumulative day 1-4 fluid balance was associated with a lower 30-day mortality rate (log-rank test, P = 0.003). To evaluate the impact of shock on this association, we divided the patients into shock and non-shock groups. The positive correlation between negative day 1-4 fluid balance and mortality was significant in the non-shock group (log-rank test, P = 0.008), but not in the shock group (log-rank test, P = 0.396). In a multivariate Cox proportional hazard regression model adjusted for age, sex, cerebrovascular disease, and PaO2/FiO2, day 1-4 fluid balance was independently associated with a higher 30-day mortality rate (aHR 1.088, 95% CI: 1.007-1.174). A negative day 1-4 cumulative fluid balance was associated with a lower mortality rate in critically ill patients with influenza. Our findings indicate the critical role of conservative fluid strategy in the management of patients with complicated influenza.

  4. Association of day 4 cumulative fluid balance with mortality in critically ill patients with influenza: A multicenter retrospective cohort study in Taiwan

    Science.gov (United States)

    Chien, Ying-Chun; Sheu, Chau-Chyun; Tsai, Ming-Ju; Fang, Wen-Feng; Chen, Yu-Mu; Kao, Kuo-Chin; Hu, Han-Chung; Perng, Wann-Cherng; Yang, Kuang-Yao; Chen, Wei-Chih; Liang, Shinn-Jye; Wu, Chieh-Liang; Wang, Hao-Chien; Chan, Ming-Cheng

    2018-01-01

    Background Fluid balance is a fundamental management of patients with sepsis, and this study aimed to investigate the impact of cumulative fluid balance on critically ill patients with influenza admitted to an intensive care unit (ICU). Methods This multicenter retrospective cohort study was conducted by the Taiwan Severe Influenza Research Consortium (TSIRC) which includes eight medical centers. Patients with virology-proven influenza infection admitted to ICUs between October 2015 and March 2016 were included for analysis. Results A total of 296 patients were enrolled (mean age: 61.4±15.6 years; 62.8% men), and 92.2% (273/296) of them required mechanical ventilation. In the survivors, the daily fluid balance was positive from day 1 to day 3, and then gradually became negative from day 4 to day 7, whereas daily fluid balance was continuously positive in the non-survivors. Using the cumulative fluid balance from day 1–4 as a cut-off point, we found that a negative cumulative day 1–4 fluid balance was associated with a lower 30-day mortality rate (log-rank test, P = 0.003). To evaluate the impact of shock on this association, we divided the patients into shock and non-shock groups. The positive correlation between negative day 1–4 fluid balance and mortality was significant in the non-shock group (log-rank test, P = 0.008), but not in the shock group (log-rank test, P = 0.396). In a multivariate Cox proportional hazard regression model adjusted for age, sex, cerebrovascular disease, and PaO2/FiO2, day 1–4 fluid balance was independently associated with a higher 30-day mortality rate (aHR 1.088, 95% CI: 1.007–1.174). Conclusions A negative day 1–4 cumulative fluid balance was associated with a lower mortality rate in critically ill patients with influenza. Our findings indicate the critical role of conservative fluid strategy in the management of patients with complicated influenza. PMID:29315320

  5. Recovery of Oil with Unsaturated Fatty Acids and Polyphenols from Chaenomelessinensis (Thouin Koehne: Process Optimization of Pilot-Scale Subcritical Fluid Assisted Extraction

    Directory of Open Access Journals (Sweden)

    Zhenzhou Zhu

    2017-10-01

    Full Text Available The potential effects of three modern extraction technologies (cold-pressing, microwaves and subcritical fluids on the recovery of oil from Chaenomelessinensis (Thouin Koehne seeds have been evaluated and compared to those of conventional chemical extraction methods (Soxhlet extraction. This oil contains unsaturated fatty acids and polyphenols. Subcritical fluid extraction (SbFE provided the highest yield—25.79 g oil/100 g dry seeds—of the three methods. Moreover, the fatty acid composition in the oil samples was analysed using gas chromatography–mass spectrometry. This analysis showed that the percentages of monounsaturated (46.61%, and polyunsaturated fatty acids (42.14%, after applying SbFE were higher than those obtained by Soxhlet, cold-pressing or microwave-assisted extraction. In addition, the oil obtained under optimized SbFE conditions (35 min extraction at 35 °C with four extraction cycles, showed significant polyphenol (527.36 mg GAE/kg oil, and flavonoid (15.32 mg RE/kg oil, content, had a good appearance and was of high quality.

  6. Recovery of Oil with Unsaturated Fatty Acids and Polyphenols from Chaenomelessinensis (Thouin) Koehne: Process Optimization of Pilot-Scale Subcritical Fluid Assisted Extraction.

    Science.gov (United States)

    Zhu, Zhenzhou; Zhang, Rui; Zhan, Shaoying; He, Jingren; Barba, Francisco J; Cravotto, Giancarlo; Wu, Weizhong; Li, Shuyi

    2017-10-22

    The potential effects of three modern extraction technologies (cold-pressing, microwaves and subcritical fluids) on the recovery of oil from Chaenomelessinensis (Thouin) Koehne seeds have been evaluated and compared to those of conventional chemical extraction methods (Soxhlet extraction). This oil contains unsaturated fatty acids and polyphenols. Subcritical fluid extraction (SbFE) provided the highest yield-25.79 g oil/100 g dry seeds-of the three methods. Moreover, the fatty acid composition in the oil samples was analysed using gas chromatography-mass spectrometry. This analysis showed that the percentages of monounsaturated (46.61%), and polyunsaturated fatty acids (42.14%), after applying SbFE were higher than those obtained by Soxhlet, cold-pressing or microwave-assisted extraction. In addition, the oil obtained under optimized SbFE conditions (35 min extraction at 35 °C with four extraction cycles), showed significant polyphenol (527.36 mg GAE/kg oil), and flavonoid (15.32 mg RE/kg oil), content, had a good appearance and was of high quality.

  7. Magnetite nanoparticles coated with covalently immobilized ionic liquids as a sorbent for extraction of non-steroidal anti-inflammatory drugs from biological fluids

    International Nuclear Information System (INIS)

    Amiri, Maryam; Yadollah, Yamini; Safari, Meysam; Asiabi, Hamid

    2016-01-01

    Magnetic core-shell nanoparticles (mag-NPs) of type SiO_2-Fe_3O_4 were covalently modified with the ionic liquid dimethyl octadecyl[3-(trimethoxysilyl propyl)]ammonium chloride. The NPs were characterized via FTIR and scanning electron microscopy and evaluated with respect to the extraction of the nonsteroidal anti-inflammatory drugs (NSAIDs) tolmetin, indometacin and naproxen from blood samples. Supercritical fluid extraction was used to eliminate matrix effects before extraction with the mag-NPs. The effects of pH value of sample solution, amount of adsorbent, times of adsorption and desorption, salt effect, type and volume of suitable solvent for desorption were optimized. Under optimum conditions, magnetic solid phase extraction (MSPE) resulted in limits of detection that range between 0.1 and 0.3 μg L"−"1. In case of supercritical fluid extraction along with magnetic solid phase extraction (SFE- MSPE), the LODs ranged from 0.2 to 0.3 mg kg"−"1. The analytical ranges for all of the NSAIDs varied within 0.2–15 mg kg"-"1 and 0.1–250 μg L"−"1 in the SFE-MSPE and MSPE methods, respectively. The relative standard deviations for the extraction of the NSAIDs from blood samples via SFE-MSPE are <10.2%. (author)

  8. A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles

    International Nuclear Information System (INIS)

    Cavazzini, G.; Bari, S.; Pavesi, G.; Ardizzon, G.

    2017-01-01

    The present paper focuses on the thermodynamic optimization of a sub-critical ORC for heat source temperatures in the range between 80 and 150 °C. The most significant novelty of the optimization procedure is that the optimization algorithm was modified for this particular application in order to allow the swarm particles to dynamically choose the working fluid among a list of 37 candidates during their heuristic movement, by continuously and dynamically modifying the search domain of each particle iteration-by-iteration due to the different vapour saturation lines of the chosen working fluid. The significant amount of data obtained by the optimization procedure highlighted the dependency of the system efficiency on two main parameters: the Jakob number related to the optimized cycle (Ja_o_p_t) and the ratio between the critical temperature of the working fluid and the inlet heat source temperature. At closer inspection, a third new parameter Ω was identified, resulting from the combination of the previous two, whose minimization is correlated to the maximization of system efficiency. A procedure for the preliminary estimation of the optimal cycle allowing to estimate with good accuracy the Jakob number Ja_o_p_t and the corresponding value of Ω was also developed. - Highlights: • An PSO algorithm allowing for the dynamic choice of the working fluid is presented. • Thermodynamic optimizations for several heat source temperatures were carried out. • An effective parameter for choosing the best performing working fluids is presented.

  9. Isolation by pressurised fluid extraction (PFE) and identification using CPC and HPLC/ESI/MS of phenolic compounds from Brazilian cherry seeds (Eugenia uniflora L.).

    Science.gov (United States)

    Oliveira, Alessandra L; Destandau, Emilie; Fougère, Laëtitia; Lafosse, Michel

    2014-02-15

    Brazilian cherry seeds are a waste product from juice and frozen pulp production and, the seeds composition was investigated to valorize this by-product. Compounds separation was performed with ethanol by pressurised fluid extraction (PFE). Here we determine the effect of temperature (T), static time (ST), number of cycles (C), and flush volume (VF) on the yield, composition and total phenolic content (TPC) of the seed extracts. T, ST and their interaction positively influenced yield and TPC. Extracts were fractionated by high performance liquid chromatography (HPLC) and centrifugal partition chromatography (CPC). The collected fractions characterizations were made by electrospray ionisation mass spectrometry (ESI/MS) and high resolution mass spectrometry (HRMS) indicated the presence of ellagic acid pentoside and deoxyhexose, quercitrin and kaempferol pentoside. All of these compounds have antioxidant properties and normally are found in plant extracts. These results confirm that Brazilian cherry seed extract is a potentially valuable source of antioxidants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Essential oils (EOs), pressurized liquid extracts (PLE) and carbon dioxide supercritical fluid extracts (SFE-CO2) from Algerian Thymus munbyanus as valuable sources of antioxidants to be used on an industrial level.

    Science.gov (United States)

    Bendif, Hamdi; Adouni, Khaoula; Miara, Mohamed Djamel; Baranauskienė, Renata; Kraujalis, Paulius; Venskutonis, Petras Rimantas; Nabavi, Seyed Mohammad; Maggi, Filippo

    2018-09-15

    The aim of this study was to demonstrate the potential of extracts from Algerian Thymus munbyanus as a valuable source of antioxidants for use on an industrial level. To this end, a study was conducted on the composition and antioxidant activities of essential oils (EOs), pressurized liquid extracts (PLE) and supercritical fluid extracts (SFE-CO 2 ) obtained from Thymus munbyanus subsp. coloratus (TMC) and subsp. munbyanus (TMM). EOs and SFE-CO 2 extracts were analysed by GC-FID and GC×GC-TOFMS revealing significant differences. A successive extraction of the solid SFE-CO 2 residue by PLE extraction with solvents of increasing polarity such as acetone, ethanol and water, was carried out. The extracts were evaluated for total phenolic content by Folin-Ciocalteu assay, while the antioxidant power was assessed by DPPH, FRAP, and ORAC assays. SFE-CO 2 extracts were also analysed for their tocopherol content. The antioxidant activity of PLE extracts was found to be higher than that of SFE-CO 2 extracts, and this increased with solvent polarity (water > ethanol > acetone). Overall, these results support the use of T. munbyanus as a valuable source of substances to be used on an industrial level as preservative agents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Restricted access magnetic materials prepared by dual surface modification for selective extraction of therapeutic drugs from biological fluids

    Science.gov (United States)

    Wang, Yu; Wang, Yuxia; Chen, Lei; Wan, Qian-Hong

    2012-02-01

    Magnetic porous particles with dual functionality have been prepared by a two-step procedure and evaluated as novel restricted access materials for extraction of therapeutic agents from biological fluids. The magnetic silica particles served as scaffolds were first modified with diol groups, which were then converted to octadecyl esters through reaction with stearoyl chloride. In the second step, the octadecyl esters on the exterior surface were hydrolyzed by the action of lipase to yield magnetic particles with hydrophobic reversed-phase ligands on the inner surface and biocompatible diol groups on the outer surface. The restricted access behavior of the resulting materials was confirmed by differential binding of small molecules such as methotrexate (MTX), leucovorin (LV) and folic acid (FA) relative to bovine serum albumin. While MTX, LV and FA were all bound to the magnetic particles with high affinity, the adsorption of the protein was markedly reduced due to size exclusion effect. The utility of the magnetic particles for sample preparation was tested in solid-phase extraction of MTX, LV and FA from spiked human serum and the effects of the SPE conditions on the recovery of the analytes were systematically studied. Moreover, the magnetic particle-based sample preparation procedure coupled with reversed-phase liquid chromatography analysis was validated in terms of specificity, linearity and reproducibility. The method was shown to be free from interference of endogenous compounds and linear over the concentration range of 0.5-10 μg/mL for the three drugs studied. The limits of detection for the three drugs in serum were in the range of 0.160-0.302 μg/mL. Reproducibility expressed as the RSD of the recovery for ten replicated extractions at three different concentrations was found to be less than 8.93%. With a unique combination of surface functionality with magnetic cores, the restricted access magnetic particles may be adapted in automated and high

  12. A critical discussion of the extraction of the {rho} - parameter at high energy hadron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Nicolescu, B. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1996-12-31

    A new and general method is proposed for the extraction of the semi theoretical {rho}-parameter from the raw dN/dt data. By using this method it is shown that the exponential form of the hadron amplitude in the diffraction peak at high energy is doubtful and that the value {rho} = 0.135 {+-} 0.015, extracted from the very precise UA4/2 dN/dt data at {radical}s 541 GeV, is probably wrong. (author) 4 refs.

  13. Study on the possibility of supercritical fluid extraction for reprocessing of spent nuclear fuel from high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Duan Wuhua; Zhu Liyang; Zhu Yongjun; Xu Jingming

    2011-01-01

    International interest in high temperature gas-cooled reactor (HTGR) has been increasing in recent years. It is important to study on reprocessing of spent nuclear fuel from HTGR for recovery of nuclear resource and reduction of nuclear waste. Treatment of UO 2 pellets for preparing fuel elements of the 10 MW high temperature gas-cooled reactor (HTR-10) using supercritical fluid extraction was investigated. UO 2 pellets are difficult to be directly dissolved and extracted with TBP-HNO 3 complex in supercritical CO 2 (SC-CO 2 ), and the extraction efficiency is only about 7% under experimental conditions. UO 2 pellets are also difficult to be converted completely into nitrate with N 2 O 4 . When UO 2 pellets break spontaneously into U 3 O 8 powders with particle size below 100 μm under O 2 flow and 600degc, the extraction efficiency of U 3 O 8 powders with TBP-HNO 3 complex in SC-CO 2 can reach more than 98%. U 3 O 8 powders are easy to be completely converted into nitrate with N 2 O 4 . The extraction efficiency of the nitrate product with TBP in SC-CO 2 can reach more than 99%. So it has a potential prospect that application of supercritical fluid extraction in reprocessing of spent nuclear fuel from HTGR. (author)

  14. Preparative isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. using supercritical fluid extraction combined with consecutive high-speed countercurrent chromatography.

    Science.gov (United States)

    Yan, Rongwei; Shen, Jie; Liu, Xiaojing; Zou, Yong; Xu, Xinjun

    2018-05-01

    The objective of this study was to develop a consecutive preparation method for the isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. The process involved supercritical fluid extraction with CO 2 , solvent extraction, and two-step high-speed countercurrent chromatography. Pressure, temperature, and the volume of entrainer were optimized as 27 MPa, 52°C, and 60 mL by response surface methodology in supercritical fluid extraction with CO 2 , and the yield of the crude extracts was 7.91 g from 100 g of leaves. Subsequently, 80% methanol/water was used to extract and condense the three compounds from the crude extracts, and 4.23 g of methanol/water extracts was obtained. Then, a two-step high-speed countercurrent chromatography procedure was developed for the isolation of the three target compounds from methanol/water extracts, including conventional high-speed countercurrent chromatography for further enrichment and consecutive high-speed countercurrent chromatography for purification. The yield of concentrates from high-speed countercurrent chromatography was 2.50 g from 4.23 g of methanol/water extracts. Finally, the consecutive high-speed countercurrent chromatography produced 103.2 mg of hainanmurpanin, 244.7 mg of meranzin, and 255.4 mg of phebalosin with purities up to 97.66, 99.36, and 98.64%, respectively, from 900 mg of high-speed countercurrent chromatography concentrates in one run of three consecutive sample loadings without exchanging a solvent system. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Simple approach to approximate predictions of the vapor–liquid equilibrium curve near the critical point and its application to Lennard-Jones fluids

    International Nuclear Information System (INIS)

    Staśkiewicz, B.; Okrasiński, W.

    2012-01-01

    We propose a simple analytical form of the vapor–liquid equilibrium curve near the critical point for Lennard-Jones fluids. Coexistence densities curves and vapor pressure have been determined using the Van der Waals and Dieterici equation of state. In described method the Bernoulli differential equations, critical exponent theory and some type of Maxwell's criterion have been used. Presented approach has not yet been used to determine analytical form of phase curves as done in this Letter. Lennard-Jones fluids have been considered for analysis. Comparison with experimental data is done. The accuracy of the method is described. -- Highlights: ► We propose a new analytical way to determine the VLE curve. ► Simple, mathematically straightforward form of phase curves is presented. ► Comparison with experimental data is discussed. ► The accuracy of the method has been confirmed.

  16. Solutions to criticality problems in a plutonium extraction plant; Solutions apportees aux problemes de criticite d'une usine d'extraction du plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Jouannaud, C.; Rodier, J.; Fruchard, Y.; Peyresblanques, H.; Papault, C.; Tabardel-Brian, R. [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule, service d' extraction du plutonium, service de protection contre les radiations et d' assainissement radioactif

    1968-08-01

    There are two aspects to nuclear criticality safety: prevention of criticality and protection against the consequences of a possible accident: this report considers these two aspects in the case of the Marcoule Plutonium Extraction Plant. After briefly recalling the various techniques used for avoiding criticality (mass, geometry, concentration, poisoning), the authors describe their application in the plant and show in particular that, a rational use of a favorable geometry is a factor both for security and from an economic point of view. The authors then describe the inside organisation which makes it possible to obtain the necessary intrinsic safety standard right from the advance project stage, and to control the workshop safety during the operation of the plant. The second part of the report deals with the system of protection against the consequences of a possible accident: definition of a typical accident, fixing of the boundaries of a critical zone, safety alarm device, individual and collective dosimetry, evacuation plan and safety instructions. (authors) [French] La securite vis-a-vis des risques de criticite revet deux aspects: la prevention de la criticite et la protection contre les consequences d'un accident eventuel: le present rapport developpe ces deux aspects dans le cas de l'Usine d'Extraction du Plutonium de Marcoule. Apres avoir rappele les differentes techniques de prevention de la criticite (masse, geometrie, concentration, empoisonnement), les auteurs decrivent leur application a l'Usine et montrent notamment que l'utilisation rationnelle de la geometrie favorable est un double facteur de securite et d'economie. Les auteurs decrivent ensuite l'organisation interieure qui permet de realiser la securite intrinseque des le stade d'un avant projet et de controler la securite des ateliers au cours de la vie de l'Usine. La deuxieme partie du rapport est consacree au systeme de protection contre les

  17. Solutions to criticality problems in a plutonium extraction plant; Solutions apportees aux problemes de criticite d'une usine d'extraction du plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Jouannaud, C; Rodier, J; Fruchard, Y; Peyresblanques, H; Papault, C; Tabardel-Brian, R [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule, service d' extraction du plutonium, service de protection contre les radiations et d' assainissement radioactif

    1968-08-01

    There are two aspects to nuclear criticality safety: prevention of criticality and protection against the consequences of a possible accident: this report considers these two aspects in the case of the Marcoule Plutonium Extraction Plant. After briefly recalling the various techniques used for avoiding criticality (mass, geometry, concentration, poisoning), the authors describe their application in the plant and show in particular that, a rational use of a favorable geometry is a factor both for security and from an economic point of view. The authors then describe the inside organisation which makes it possible to obtain the necessary intrinsic safety standard right from the advance project stage, and to control the workshop safety during the operation of the plant. The second part of the report deals with the system of protection against the consequences of a possible accident: definition of a typical accident, fixing of the boundaries of a critical zone, safety alarm device, individual and collective dosimetry, evacuation plan and safety instructions. (authors) [French] La securite vis-a-vis des risques de criticite revet deux aspects: la prevention de la criticite et la protection contre les consequences d'un accident eventuel: le present rapport developpe ces deux aspects dans le cas de l'Usine d'Extraction du Plutonium de Marcoule. Apres avoir rappele les differentes techniques de prevention de la criticite (masse, geometrie, concentration, empoisonnement), les auteurs decrivent leur application a l'Usine et montrent notamment que l'utilisation rationnelle de la geometrie favorable est un double facteur de securite et d'economie. Les auteurs decrivent ensuite l'organisation interieure qui permet de realiser la securite intrinseque des le stade d'un avant projet et de controler la securite des ateliers au cours de la vie de l'Usine. La deuxieme partie du rapport est consacree au systeme de protection contre les consequences d'un accident eventuel: definition d

  18. Development of Nordic Standard for analysis of oil and fat in water based on supercritical fluid extraction. Preliminary study, part 2

    International Nuclear Information System (INIS)

    Jenssen, L.

    1994-06-01

    This report describes a preliminary study of a method of determining oil in water. The method is based on solid phase extraction and supercritical fluid extraction (SPE-SFE). The oil is extracted from the water by absorption to extraction disks from which it is then desorbed by supercritical carbon dioxide and detected by means of infrared spectrophotometry or gas chromatography. The results of the study will indicate if the method is suitable as a future substitute for the present Norwegian Standard, NS 9803 (Swedish Standard, SS 02 8145). The method has been validated using water samples with addition of real oil to 1-100 ppm. The accuracy is almost 70%, and the method has good repeatability and is linear in the 1-100 ppm range. 5 refs., 6 figs., 10 tabs

  19. Effects of Cooling Fluid Flow Rate on the Critical Heat Flux and Flow Stability in the Plate Fuel Type 2 MW TRIGA Reactor

    OpenAIRE

    H. P. Rahardjo; V. I. Sri Wardhani

    2017-01-01

    The conversion program of the 2 MW TRIGA reactor in Bandung consisted of the replacement of cylindrical fuel (produced by General Atomic) with plate fuel (produced by BATAN). The replacement led into the change of core cooling process from upward natural convection type to downward forced convection type, and resulted in different thermohydraulic safety criteria, such as critical heat flux (CHF) limit, boiling limit, and cooling fluid flow stability. In this paper, a thermohydraulic safety an...

  20. A galactic disk as a two-fluid system: Consequences for the critical stellar velocity dispersion and the formation of condensations in the gas

    International Nuclear Information System (INIS)

    Jog, C.J.; Solomon, P.M.

    1984-01-01

    We examine the consequences of treating a galactic disk as a two-fluid system for the stability of the entire disk and for the stability and form of the gas in the disk. We find that the existence of even a small fraction of the total disk surface density in a cold fluid (that is, the gas) makes it much harder to stabilize the entire two-fluid disk. (C/sub s/,min)/sub 2-f/, the critical stellar velocity dispersion for a two-fluid disk in an increasing function of μ/sub g//μ/sub s/, the gas fraction, and μ/sub t//kappa, where μ/sub g/, μ/sub s/, and μ/sub t/ are the gaseous, stellar, and total disk surface densities and kappa is the epicyclic frequency. In the Galaxy, we find that (C/sub s/,min)/sub 2-f/ as a function of R peaks when μ/sub t//kappa peaks-at galactocentric radii of Rapprox.5-7 kpc; two-fluid instabilities are most likely to occur in this region. This region is coincident with the peak in the molecular cloud distribution in the Galaxy. At the higher effective gas density resulting from the growth of a two-fluid instability, the gas may become unstble, even when originally the gas by itself is stable. The wavelength of a typical (induced) gas instability in the inner galaxy is approx.400 pc, and it contains approx.10 7 M/sub sun/ of interstellar matter; these instabilities may be identified with clusters of giant molecular clouds. We suggest that many of the spiral features seen in gas-rich spiral galaxies may be material arms or arm segments resulting from sheared two-fluid gravitational instabilities. The analysis presented here is applicable to any general disk galaxy consisting of stars and gas

  1. EXTRACT

    DEFF Research Database (Denmark)

    Pafilis, Evangelos; Buttigieg, Pier Luigi; Ferrell, Barbra

    2016-01-01

    The microbial and molecular ecology research communities have made substantial progress on developing standards for annotating samples with environment metadata. However, sample manual annotation is a highly labor intensive process and requires familiarity with the terminologies used. We have the...... and text-mining-assisted curation revealed that EXTRACT speeds up annotation by 15-25% and helps curators to detect terms that would otherwise have been missed.Database URL: https://extract.hcmr.gr/......., organism, tissue and disease terms. The evaluators in the BioCreative V Interactive Annotation Task found the system to be intuitive, useful, well documented and sufficiently accurate to be helpful in spotting relevant text passages and extracting organism and environment terms. Comparison of fully manual...

  2. Application of response surface methodology for the optimization of supercritical fluid extraction of essential oil from pomegranate (Punica granatum L.) peel.

    Science.gov (United States)

    Ara, Katayoun Mahdavi; Raofie, Farhad

    2016-07-01

    Essential oils and volatile components of pomegranate ( Punica granatum L.) peel of the Malas variety from Meybod, Iran, were extracted using supercritical fluid extraction (SFE) and hydro-distillation methods. The experimental parameters of SFE that is pressure, temperature, extraction time, and modifier (methanol) volume were optimized using a central composite design after a (2 4-1 ) fractional factorial design. Detailed chemical composition of the essential oils and volatile components obtained by hydro-distillation and optimum condition of the supercritical CO 2 extraction were analyzed by GC-MS, and seventy-three and forty-six compounds were identified according to their retention indices and mass spectra, respectively. The optimum SFE conditions were 350 atm pressure, 55 °C temperature, 30 min extraction time, and 150 µL methanol. Results showed that oleic acid, palmitic acid and (-)-Borneol were major compounds in both extracts. The optimum extraction yield was 1.18 % (w/w) for SFE and 0.21 % (v/w) for hydro-distillation.

  3. Resin purification from Dragons Blood by using sub critical solvent extraction method

    Science.gov (United States)

    Saifuddin; Nahar

    2018-04-01

    Jernang resin (dragon blood) is the world's most expensive sap. The resin obtained from jernang that grows only on the islands of Sumatra and Borneo. Jernang resin is in demand by the State of China, Hong Kong, and Singapore since they contain compounds that have the potential dracohordin as a medicinal ingredient in the biological and pharmacological activity such as antimicrobial, antiviral, antitumor and cytotoxic activity. The resin extracting process has conventionally been done by drizzly with maceration method as one way of processing jernang, which is done by people in Bireuen, Aceh. However, there are still significant obstacles, namely the quality of the yield that obtained lower than the jernang resin. The technological innovation carried out by forceful extraction process maceration by using methanol produced a yield that is higher than the extraction process maceration method carried out in Bireuen. Nevertheless, the use of methanol as a solvent would raise the production costs due to the price, which is relatively more expensive and non-environmentally friendly. To overcome the problem, this research proposed a process, which is known as subcritical solvent method. This process is cheap, and also abundant and environmentally friendly. The results show that the quality of jernang resins is better than the one that obtained by the processing group in Bireuen. The quality of the obtained jernang by maceration method is a class-A quality based on the quality specification requirements of jernang (SNI 1671: 2010) that has resin (b/b) 73%, water (w/w) of 6.8%, ash (w/b) 7%, impurity (w/w) 32%, the melting point of 88°C and red colours. While the two-stage treatment obtained a class between class-A and super quality, with the resin (b/b) 0.86%, water (w/w) of 6.5%, ash (w/w) of 2.8%, levels of impurities (w/w) of 9%, the melting point of 88 °C and dark-red colours.

  4. Sign change in the net force in sphere-plate and sphere-sphere systems immersed in nonpolar critical fluid due to the interplay between the critical Casimir and dispersion van der Waals forces.

    Science.gov (United States)

    Valchev, Galin; Dantchev, Daniel

    2017-08-01

    We study systems in which both long-ranged van der Waals and critical Casimir interactions are present. The latter arise as an effective force between bodies when immersed in a near-critical medium, say a nonpolar one-component fluid or a binary liquid mixture. They are due to the fact that the presence of the bodies modifies the order parameter profile of the medium between them as well as the spectrum of its allowed fluctuations. We study the interplay between these forces, as well as the total force (TF) between a spherical colloid particle and a thick planar slab and between two spherical colloid particles. We do that using general scaling arguments and mean-field-type calculations utilizing the Derjaguin and the surface integration approaches. They both are based on data of the forces between two parallel slabs separated at a distance L from each other, confining the fluctuating fluid medium characterized by its temperature T and chemical potential μ. The surfaces of the colloid particles and the slab are coated by thin layers exerting strong preference to the liquid phase of the fluid, or one of the components of the mixture, modeled by strong adsorbing local surface potentials, ensuring the so-called (+,+) boundary conditions. On the other hand, the core region of the slab and the particles influence the fluid by long-ranged competing dispersion potentials. We demonstrate that for a suitable set of colloids-fluid, slab-fluid, and fluid-fluid coupling parameters, the competition between the effects due to the coatings and the core regions of the objects involved result, when one changes T, μ, or L, in sign change of the Casimir force (CF) and the TF acting between the colloid and the slab, as well as between the colloids. This can be used for governing the behavior of objects, say colloidal particles, at small distances, say in colloid suspensions for preventing flocculation. It can also provide a strategy for solving problems with handling, feeding

  5. Sign change in the net force in sphere-plate and sphere-sphere systems immersed in nonpolar critical fluid due to the interplay between the critical Casimir and dispersion van der Waals forces

    Science.gov (United States)

    Valchev, Galin; Dantchev, Daniel

    2017-08-01

    We study systems in which both long-ranged van der Waals and critical Casimir interactions are present. The latter arise as an effective force between bodies when immersed in a near-critical medium, say a nonpolar one-component fluid or a binary liquid mixture. They are due to the fact that the presence of the bodies modifies the order parameter profile of the medium between them as well as the spectrum of its allowed fluctuations. We study the interplay between these forces, as well as the total force (TF) between a spherical colloid particle and a thick planar slab and between two spherical colloid particles. We do that using general scaling arguments and mean-field-type calculations utilizing the Derjaguin and the surface integration approaches. They both are based on data of the forces between two parallel slabs separated at a distance L from each other, confining the fluctuating fluid medium characterized by its temperature T and chemical potential μ . The surfaces of the colloid particles and the slab are coated by thin layers exerting strong preference to the liquid phase of the fluid, or one of the components of the mixture, modeled by strong adsorbing local surface potentials, ensuring the so-called (+,+) boundary conditions. On the other hand, the core region of the slab and the particles influence the fluid by long-ranged competing dispersion potentials. We demonstrate that for a suitable set of colloids-fluid, slab-fluid, and fluid-fluid coupling parameters, the competition between the effects due to the coatings and the core regions of the objects involved result, when one changes T , μ , or L , in sign change of the Casimir force (CF) and the TF acting between the colloid and the slab, as well as between the colloids. This can be used for governing the behavior of objects, say colloidal particles, at small distances, say in colloid suspensions for preventing flocculation. It can also provide a strategy for solving problems with handling, feeding

  6. The Effects of High Level Magnesium Dialysis/Substitution Fluid on Magnesium Homeostasis under Regional Citrate Anticoagulation in Critically Ill.

    Directory of Open Access Journals (Sweden)

    Mychajlo Zakharchenko

    Full Text Available The requirements for magnesium (Mg supplementation increase under regional citrate anticoagulation (RCA because citrate acts by chelation of bivalent cations within the blood circuit. The level of magnesium in commercially available fluids for continuous renal replacement therapy (CRRT may not be sufficient to prevent hypomagnesemia.Patients (n = 45 on CRRT (2,000 ml/h, blood flow (Qb 100 ml/min with RCA modality (4% trisodium citrate using calcium free fluid with 0.75 mmol/l of Mg with additional magnesium substitution were observed after switch to the calcium-free fluid with magnesium concentration of 1.50 mmol/l (n = 42 and no extra magnesium replenishment. All patients had renal indications for CRRT, were treated with the same devices, filters and the same postfilter ionized calcium endpoint (<0.4 mmol/l of prefilter citrate dosage. Under the high level Mg fluid the Qb, dosages of citrate and CRRT were consequently escalated in 9h steps to test various settings.Median balance of Mg was -0.91 (-1.18 to -0.53 mmol/h with Mg 0.75 mmol/l and 0.2 (0.06-0.35 mmol/h when fluid with Mg 1.50 mmol/l was used. It was close to zero (0.02 (-0.12-0.18 mmol/h with higher blood flow and dosage of citrate, increased again to 0.15 (-0.11-0.25 mmol/h with 3,000 ml/h of high magnesium containing fluid (p<0.001. The arterial levels of Mg were mildly increased after the change for high level magnesium containing fluid (p<0.01.Compared to ordinary dialysis fluid the mildly hypermagnesemic fluid provided even balances and adequate levels within ordinary configurations of CRRT with RCA and without a need for extra magnesium replenishment.ClinicalTrials.gov Identifier: NCT01361581.

  7. Critical evaluation of the effect of valerian extract on sleep structure and sleep quality.

    Science.gov (United States)

    Donath, F; Quispe, S; Diefenbach, K; Maurer, A; Fietze, I; Roots, I

    2000-03-01

    A carefully designed study assessed the short-term (single dose) and long-term (14 days with multiple dosage) effects of a valerian extract on both objective and subjective sleep parameters. The investigation was performed as a randomised, double-blind, placebo-controlled, cross-over study. Sixteen patients (4 male, 12 female) with previously established psychophysiological insomnia (ICSD-code 1.A.1.), and with a median age of 49 (range: 22 to 55), were included in the study. The main inclusion criteria were reported primary insomnia according to ICSD criteria, which was confirmed by polysomnographic recording, and the absence of acute diseases. During the study, the patients underwent 8 polysomnographic recordings: i.e., 2 recordings (baseline and study night) at each time point at which the short and long-term effects of placebo and valerian were tested. The target variable of the study was sleep efficiency. Other parameters describing objective sleep structure were the usual features of sleep-stage analysis, based on the rules of Rechtschaffen and Kales (1968), and the arousal index (scored according to ASDA criteria, 1992) as a sleep microstructure parameter. Subjective parameters such as sleep quality, morning feeling, daytime performance, subjectively perceived duration of sleep latency, and sleep period time were assessed by means of questionnaires. After a single dose of valerian, no effects on sleep structure and subjective sleep assessment were observed. After multiple-dose treatment, sleep efficiency showed a significant increase for both the placebo and the valerian condition in comparison with baseline polysomnography. We confirmed significant differences between valerian and placebo for parameters describing slow-wave sleep. In comparison with the placebo, slow-wave sleep latency was reduced after administration of valerian (21.3 vs. 13.5 min respectively, p<0.05). The SWS percentage of time in bed (TIB) was increased after long-term valerian

  8. Effect of Ginkgo biloba extract combined with prednisone on bronchoalveolar lavage fluid related cytokines in patients with IPF

    Directory of Open Access Journals (Sweden)

    Zhen-Chun Shi

    2016-09-01

    Full Text Available Objective: To explore the effect of Ginkgo biloba extract (EGb combined with prednisone on bronchoalveolar lavage fluid (BALF related cytokines in patients with idiopathic pulmonary fibrosis (IPF. Methods: A total of 60 patients with IPF who were admitted in our hospital from March, 2015 to March, 2016 were included in the study and randomized into the observation group and the control group with 30 cases in each group. The patients in the two groups were given oxygen inhalation, bronchodilator agents, phlegm dissipating and asthma relieving, anti-infection, and other supporting treatments. The patients in the control group were orally given prednisone (0.5 mg/kg•d, continuously for 4 weeks, then in a dose of 0.25 mg/kg•d, continuously for 8 weeks, and finally the dosage was reduced to 0.125 mg/kg•d. On this basis, the patients in the observation group were given additional EGb, ie. ginkgo leaf capsule, 1 g/time, 3 times/d, continuously for 12 weeks. The efficacy was evaluated after 12- week treatment. ELISA was used to detect the levels of TNF-毩, IL-4, IL-10, and IFN-γ in BALF. The radioimmunoassay was used to determine the levels of serum HA, ColⅢ, PCⅢ, and LN. The pulmonary function detector was used to measure TLC, VC, DLCO, and 6MWT. Results: After treatment, TNF-毩 level in the control group was significantly reduced when compared with before treatment (P0.05, while HA, ColⅢ, PCⅢ, and LN levels in the observation group were significantly reduced when compared with before treatment (P<0.05, and the difference between the two groups was statistically significant (P<0.05. After treatment, TLC, VC, DLCO, and 6MWT in the two groups were significantly improved when compared with before treatment (P<0.05, and the difference between the two groups was statistically significant (P<0.05. Conclusions: EGb combined with prednisone can effectively enhance the levels of TNF-毩, IL-4, IL-10, and IFN-γ in BALF in patients with IPF, and

  9. Investigating sub-2 μm particle stationary phase supercritical fluid chromatography coupled to mass spectrometry for chemical profiling of chamomile extracts.

    Science.gov (United States)

    Jones, Michael D; Avula, Bharathi; Wang, Yan-Hong; Lu, Lu; Zhao, Jianping; Avonto, Cristina; Isaac, Giorgis; Meeker, Larry; Yu, Kate; Legido-Quigley, Cristina; Smith, Norman; Khan, Ikhlas A

    2014-10-17

    Roman and German chamomile are widely used throughout the world. Chamomiles contain a wide variety of active constituents including sesquiterpene lactones. Various extraction techniques were performed on these two types of chamomile. A packed-column supercritical fluid chromatography-mass spectrometry method was designed for the identification of sesquiterpenes and other constituents from chamomile extracts with no derivatization step prior to analysis. Mass spectrometry detection was achieved by using electrospray ionization. All of the compounds of interest were separated within 15 min. The chamomile extracts were analyzed and compared for similarities and distinct differences. Multivariate statistical analysis including principal component analysis and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to differentiate between the chamomile samples. German chamomile samples confirmed the presence of cis- and trans-tonghaosu, chrysosplenols, apigenin diglucoside whereas Roman chamomile samples confirmed the presence of apigenin, nobilin, 1,10-epioxynobilin, and hydroxyisonobilin. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Preparative isolation and purification of capsaicin and dihydrocapsaicin from Capsici Fructus using supercritical fluid extraction combined with high speed countercurrent chromatography.

    Science.gov (United States)

    Yan, Rongwei; Zhao, Leilei; Tao, Junfei; Zou, Yong; Xu, Xinjun

    2018-05-01

    Supercritical fluid extraction with CO 2 (SFE-CO 2 ) was utilized for extraction of capsaicin (CA) and dihydrocapsaicin (DHCA) from Capsici Fructus, and then a two-step enrichment method for separating capsaicinoids from SFE-CO 2 extracts was developed. The process involved extraction with aqueous methanol and crystallization by alkali extraction and acid precipitation. Finally, a consecutive high-speed countercurrent chromatography (HSCCC) separation method was successfully applied in the purification of CA and DHCA from capsaicinoid crystal. The extraction pressure, extraction temperature and volume of co-solvent were optimized at 33 MPa, 41 °C and 75 mL, respectively, using response surface methodology; the extraction rates of CA and DHCA were about 93.18% and 93.49%, respectively. 407.43 mg capsaicinoid crystal was isolated from the SFE-CO 2 extracts obtained from 100 g capsicum powder by the two-step enrichment method. About 506 mg and 184 mg CA and DHCA with purities up to 98.31% and 96.68%, respectively, were obtained from 1 g capsaicinoid crystal in one HSCCC of three consecutive sample loadings without exchanging any solvent system. This method comprising SFE-CO 2 , a two-step enrichment and HSCCC was efficient, powerful and practical for the large-scale preparation of CA and DHCA from Capsici Fructus with high purity and high yield. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Magnetic micro-solid-phase extraction based on magnetite-MCM-41 with gas chromatography-mass spectrometry for the determination of antidepressant drugs in biological fluids.

    Science.gov (United States)

    Kamaruzaman, Sazlinda; Sanagi, Mohd Marsin; Yahaya, Noorfatimah; Wan Ibrahim, Wan Aini; Endud, Salasiah; Wan Ibrahim, Wan Nazihah

    2017-11-01

    A new facile magnetic micro-solid-phase extraction coupled to gas chromatography and mass spectrometry detection was developed for the extraction and determination of selected antidepressant drugs in biological fluids using magnetite-MCM-41 as adsorbent. The synthesized sorbent was characterized by several spectroscopic techniques. The maximum extraction efficiency for extraction of 500 μg/L antidepressant drugs from aqueous solution was obtained with 15 mg of magnetite-MCM-41 at pH 12. The analyte was desorbed using 100 μL of acetonitrile prior to gas chromatography determination. This method was rapid in which the adsorption procedure was completed in 60 s. Under the optimized conditions using 15 mL of antidepressant drugs sample, the calibration curve showed good linearity in the range of 0.05-500 μg/L (r 2  = 0.996-0.999). Good limits of detection (0.008-0.010 μg/L) were obtained for the analytes with good relative standard deviations of solid-phase extraction with gas chromatography and mass spectrometry is a convenient, fast, and economical method for the extraction and determination of amitriptyline and chlorpromazine in biological samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Criticality in the fabrication of ion extraction system for SST-1 neutral beam injector

    International Nuclear Information System (INIS)

    Jana, M.R.; Mattoo, S.K.

    2008-01-01

    based on positive ion source. The extraction system consists of three grids, each having extraction area of (width) 230 mm x (height) 480 mm and 774-shaped apertures of 8-mm diameter. To obtain horizontal focal length of 5.4 m and vertical of 7 m, each grid consists of two halves with 387 apertures. Two halves are inclined at an angle of 1.07 ± 0.01 o . For long pulse operation, active water cooling is provided by in-laid down of dense network of 22 wavy semicircular (r = 1.1 ± 0.05 mm) cooling channels in the space available between the apertures. The required flatness of the copper plate is 100 μm and positioning tolerance of aperture is ±60 μm. The measurement obtained after fabrication is compared with the specifications. It is pointed out that fabrication within set tolerance limit could be achieved only through process of fabrication and high-resolution measurements

  13. Osmotic Suppression of Positional Fluctuation of a Trapped Particle in a Near-Critical Binary Fluid Mixture in the Regime of the Gaussian Model

    Science.gov (United States)

    Fujitani, Youhei

    2017-11-01

    Suppose a spherical colloidal particle surrounded by a near-critical binary fluid mixture in the homogeneous phase. The particle surface usually preferentially attracts one component of the mixture, and the resultant concentration gradient, which causes the osmotic pressure, becomes significant in the ambient near-criticality. The concentration profile is deformed by the particle motion, and can generate a nonzero force exerted on the moving particle. This link was previously shown to slightly suppress the positional equal-time correlation of a particle trapped by a harmonic potential. This previous study presupposed a small fluctuation amplitude of a particle much larger than the correlation length, a weak preferential attraction, and the Gaussian model for the free-energy functional of the mixture. In the present study, we calculate the equal-time correlation without assuming the weak preferential attraction and show that the suppression becomes much more distinct in some range of the trap stiffness because of the increased induced mass. This suggests the possible experimental usage of a trapped particle as a probe for local environments of a near-critical binary fluid mixture.

  14. Nitrate conversion and supercritical fluid extraction of UO2-CeO2 solid solution prepared by an electrolytic reduction-coprecipitation method

    International Nuclear Information System (INIS)

    Zhu, L.Y.; Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J.

    2014-01-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N 2 O 4 into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO 2 -CeO 2 solid solution was prepared as a surrogate for a UO 2 -PuO 2 solid solution, and the recovery of U and Ce from the UO 2 -CeO 2 solid solution with liquid N 2 O 4 and supercritical CO 2 containing tri-n-butyl phosphate (TBP) was investigated. The UO 2 -CeO 2 solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N 2 O 4 . The XRD pattern of the nitrates was similar to that of UO 2 (NO 3 ) 2 . 3H 2 O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO 2 containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  15. The influence of different diffusion pattern to the sub- and super-critical fluid flow in brown coal

    Science.gov (United States)

    Peng, Peihuo

    2018-03-01

    Sub- and super-critical CO2 flowing in nanoscale pores are recently becoming of great interest due to that it is closely related to many engineering applications, such as geological burial and sequestration of carbon dioxide, Enhanced Coal Bed Methane recovery ( ECBM), super-critical CO2 fracturing and so on. Gas flow in nanopores cannot be described simply by the Darcy equation. Different diffusion pattern such as Fick diffusion, Knudsen diffusion, transitional diffusion and slip flow at the solid matrix separate the seepage behaviour from Darcy-type flow. According to the principle of different diffusion pattern, the flow of sub- and super-critical CO2 in brown coal was simulated by numerical method, and the results were compared with the experimental results to explore the contribution of different diffusion pattern and swelling effect in sub- and super-critical CO2 flow in nanoscale pores.

  16. Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: anti-inflammatory properties based on cytokine response on THP-1 macrophages.

    Science.gov (United States)

    Ocaña-Fuentes, A; Arranz-Gutiérrez, E; Señorans, F J; Reglero, G

    2010-06-01

    Two fractions (S1 and S2) of an oregano (Origanum vulgare) extract obtained by supercritical fluid extraction have been used to test anti-inflammatory effects on activated human THP-1 cells. The main compounds present in the supercritical extract fractions of oregano were trans-sabinene hydrate, thymol and carvacrol. Fractions toxicity was assessed using the mitochondrial-respiration-dependent 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) reduction method for several concentrations during 24 and 48 h of incubation. Concentrations higher than 30 microg/mL of both supercritical S1 and S2 oregano fractions caused a reduction in cell viability in a dose-dependent manner. Oxidized-LDLs (oxLDLs) activated THP-1 macrophages were used as cellular model of atherogenesis and the release/secretion of cytokines (TNT-alpha, IL-1beta, IL-6 and IL-10) and their respective mRNA expressions were quantified both in presence or absence of supercritical oregano extracts. The results showed a decrease in pro-inflammatory TNF-alpha, IL-1beta and IL-6 cytokines synthesis, as well as an increase in the production of anti-inflammatory cytokine IL-10. These results may suggest an anti-inflammatory effect of oregano extracts and their compounds in a cellular model of atherosclerosis. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Procedure for controlling the extraction of production fluid from a production well; Fremgangsmaate for aa styre uttrekking av produksjonsfluid fra en produksjonsbroenn

    Energy Technology Data Exchange (ETDEWEB)

    Curlett, H.B.

    1996-06-17

    Basic well drilling techniques have not changed throughout the years: a number of drill pipes connected into a drill column are rotated along with a drill bit in the ground formation. It has been difficult to obtain instant information on the local parameters during the drilling operation. Such information is required by the drilling operator for efficient operation. The present invention concerns controlling the extraction of production fluids from a production well, characterized by externally monitoring local well parameters by means of signals from sensors in the well. If the signals indicate that defined limiting values of one or more parameters have been exceeded, one or more of different fluids are pumped simultaneously and independently down individually assigned conduits to restore the parameters to within their normal ranges. 28 figs.

  18. Semi-automated set-up for exhaustive micro-electromembrane extractions of basic drugs from biological fluids

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Miloš; Seip, K. F.; Pedersen-Bjergaard, S.; Kubáň, Pavel

    2018-01-01

    Roč. 1005, APR (2018), s. 34-42 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GA16-09135S Institutional support: RVO:68081715 Keywords : electromembrane extraction * exhaustive extraction * automation Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.950, year: 2016

  19. Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design.

    Science.gov (United States)

    Patil, Ajit A; Sachin, Bhusari S; Wakte, Pravin S; Shinde, Devanand B

    2014-11-01

    The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E) on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels) in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method.

  20. Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design

    Directory of Open Access Journals (Sweden)

    Ajit A. Patil

    2014-11-01

    Full Text Available The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p < 0.05 effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method.

  1. Use of on-line supercritical fluid extraction-supercritical fluid chromatography/tandem mass spectrometry to analyze disease biomarkers in dried serum spots compared with serum analysis using liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Suzuki, Makoto; Nishiumi, Shin; Kobayashi, Takashi; Sakai, Arata; Iwata, Yosuke; Uchikata, Takato; Izumi, Yoshihiro; Azuma, Takeshi; Bamba, Takeshi; Yoshida, Masaru

    2017-05-30

    The analytical stability and throughput of biomarker assays based on dried serum spots (DSS) are strongly dependent on the extraction process and determination method. In the present study, an on-line system based on supercritical fluid extraction-supercritical fluid chromatography coupled with tandem mass spectrometry (SFE-SFC/MS/MS) was established for analyzing the levels of disease biomarkers in DSS. The chromatographic conditions were investigated using the ODS-EP, diol, and SIL-100A columns. Then, we optimized the SFE-SFC/MS/MS method using the diol column, focusing on candidate biomarkers of oral, colorectal, and pancreatic cancer that were identified using liquid chromatography (LC)/MS/MS. By using this system, four hydrophilic metabolites and 17 hydrophobic metabolites were simultaneously detected within 15 min. In an experiment involving clinical samples, PC 16:0-18:2/16:1-18:1 exhibited 93.8% sensitivity and 64.3% specificity, whereas PC 17:1-18:1/17:0-18:2 showed 81.3% sensitivity and 92.9% specificity for detecting oral cancer. In addition, assessments of the creatine levels demonstrated 92.3% sensitivity and 78.6% specificity for detecting colorectal cancer. The results of this study indicate that our method has great potential for clinical diagnosis and would be suitable for large-scale screening. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Study of simple super-critical fluids (CO2, C2D6) through neutron scattering, Raman spectroscopy and molecular dynamic simulations

    International Nuclear Information System (INIS)

    Longelin, St.

    2004-04-01

    Super-critical fluids are largely used in industrial sectors. However the knowledge of the physical phenomena in which they are involved stays insufficient because of their particular properties. A new model of adjusting molecular structures is proposed, this model has been validated through neutron scattering experiments with high momentum transfer on C 2 D 6 . The experimental representation of the critical universal function for C 2 D 6 and CO 2 has been obtained through the neutron echo spin and by relying on structure measurements made through neutron elastic scattering at small angles. Raman spectroscopy and molecular dynamics simulation have been used to feature structure and dynamics. Scattering as well as microscopic molecular density fluctuations have been analysed

  3. Study of critical free-area ratio during the snow-melting process on pavement using low-temperature heating fluids

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huajun [School of Energy and Environment Engineering, Hebei University of Technology, Tianjin 300401 (China); Chen, Zhihao [Faculty of Engineering, Yokohama National University, Hodogaya, Yokohama 240-8501 (Japan)

    2009-01-15

    Critical free-area ratio (CFR) is an interesting phenomenon during the snow-melting process on pavement using low-temperature heating fluids such as geothermal tail water and industrial waste water. This paper is performed to further investigate the mechanism of CFR and its influencing factors. A simplified theoretical model is presented to describe the heat and mass transfer process on pavement. Especially the variation of thermal properties and the capillary effect of snow layer are considered. Numerical computation shows that the above theoretical model is effective for the prediction of CFR during the snow-melting process. Furthermore, the mechanism of CFR is clarified in detail. CFR is independent of the layout of hydronic pipes, the fluid temperature, the idling time, and weather conditions. It is both the non-uniform temperature distribution and complicated porous structure of snow layer that lead to the occurrence of CFR. Besides, the influences of operation parameters including the fluid temperature, the idling time, the pipe spacing and buried depths on snow melting are analyzed, which are helpful for the next optimal design of snow-melting system. (author)

  4. Study of critical free-area ratio during the snow-melting process on pavement using low-temperature heating fluids

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huajun [School of Energy and Environment Engineering, Hebei University of Technology, Tianjin 300401 (China)], E-mail: huajunwang@126.com; Chen Zhihao [Faculty of Engineering, Yokohama National University, Hodogaya, Yokohama 240-8501 (Japan)

    2009-01-15

    Critical free-area ratio (CFR) is an interesting phenomenon during the snow-melting process on pavement using low-temperature heating fluids such as geothermal tail water and industrial waste water. This paper is performed to further investigate the mechanism of CFR and its influencing factors. A simplified theoretical model is presented to describe the heat and mass transfer process on pavement. Especially the variation of thermal properties and the capillary effect of snow layer are considered. Numerical computation shows that the above theoretical model is effective for the prediction of CFR during the snow-melting process. Furthermore, the mechanism of CFR is clarified in detail. CFR is independent of the layout of hydronic pipes, the fluid temperature, the idling time, and weather conditions. It is both the non-uniform temperature distribution and complicated porous structure of snow layer that lead to the occurrence of CFR. Besides, the influences of operation parameters including the fluid temperature, the idling time, the pipe spacing and buried depths on snow melting are analyzed, which are helpful for the next optimal design of snow-melting system.

  5. Study of critical free-area ratio during the snow-melting process on pavement using low-temperature heating fluids

    International Nuclear Information System (INIS)

    Wang Huajun; Chen Zhihao

    2009-01-01

    Critical free-area ratio (CFR) is an interesting phenomenon during the snow-melting process on pavement using low-temperature heating fluids such as geothermal tail water and industrial waste water. This paper is performed to further investigate the mechanism of CFR and its influencing factors. A simplified theoretical model is presented to describe the heat and mass transfer process on pavement. Especially the variation of thermal properties and the capillary effect of snow layer are considered. Numerical computation shows that the above theoretical model is effective for the prediction of CFR during the snow-melting process. Furthermore, the mechanism of CFR is clarified in detail. CFR is independent of the layout of hydronic pipes, the fluid temperature, the idling time, and weather conditions. It is both the non-uniform temperature distribution and complicated porous structure of snow layer that lead to the occurrence of CFR. Besides, the influences of operation parameters including the fluid temperature, the idling time, the pipe spacing and buried depths on snow melting are analyzed, which are helpful for the next optimal design of snow-melting system

  6. Sensitive, automatic method for the determination of diazepam and its five metabolites in human oral fluid by online solid-phase extraction and liquid chromatography with tandem mass spectrometry

    DEFF Research Database (Denmark)

    Jiang, Fengli; Rao, Yulan; Wang, Rong

    2016-01-01

    A novel and simple online solid-phase extraction liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous determination of diazepam and its five metabolites including nordazepam, oxazepam, temazepam, oxazepam glucuronide, and temazepam glucuronide...... in human oral fluid. Human oral fluid was obtained using the Salivette(®) collection device, and 100 μL of oral fluid samples were loaded onto HySphere Resin GP cartridge for extraction. Analytes were separated on a Waters Xterra C18 column and quantified by liquid chromatography with tandem mass...

  7. Rapid and simple pretreatment of human body fluids using electromembrane extraction across supported liquid membrane for capillary electrophoretic determination of lithium.

    Science.gov (United States)

    Strieglerová, Lenka; Kubáň, Pavel; Boček, Petr

    2011-05-01

    Electromembrane extraction was used for simultaneous sample cleanup and preconcentration of lithium from untreated human body fluids. The sample of a body fluid was diluted 100 times with 0.5 mM Tris solution and lithium was extracted by electromigration through a supported liquid membrane composed of 1-octanol into 100 mM acetic acid acceptor solution. Matrix compounds, such as proteins, red blood cells, and other high-molecular-weight compounds were efficiently retained on the supported liquid membrane. The liquid membrane was anchored in pores of a short segment of a polypropylene hollow fiber, which represented a low cost, single use, disposable extraction unit and was discarded after each use. Acceptor solutions were analyzed using capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4) D) and baseline separation of lithium was achieved in a background electrolyte solution consisting of 18 mM L-histidine and 40 mM acetic acid at pH 4.6. Repeatability of the electromembrane extraction-CE-C(4) D method was evaluated for the determination of lithium in standard solutions and real samples and was better than 0.6 and 8.2% for migration times and peak areas, respectively. The concentration limit of detection of 9 nM was achieved. The developed method was applied to the determination of lithium in urine, blood serum, blood plasma, and whole blood at both endogenous and therapeutic concentration levels. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Supercritical Fluid Extraction of Eucalyptus globulus Bark—A Promising Approach for Triterpenoid Production

    Directory of Open Access Journals (Sweden)

    Carlos M. Silva

    2012-06-01

    Full Text Available Eucalyptus bark contains significant amounts of triterpenoids with demonstrated bioactivity, namely triterpenic acids and their acetyl derivatives (ursolic, betulinic, oleanolic, betulonic, 3-acetylursolic, and 3-acetyloleanolic acids. In this work, the supercritical fluid extraction (SFE of Eucalyptus globulus deciduous bark was carried out with pure and modified carbon dioxide to recover this fraction, and the results were compared with those obtained by Soxhlet extraction with dichloromethane. The effects of pressure (100–200 bar, co-solvent (ethanol content (0, 5 and 8% wt, and multistep operation were studied in order to evaluate the applicability of SFE for their selective and efficient production. The individual extraction curves of the main families of compounds were measured, and the extracts analyzed by GC-MS. Results pointed out the influence of pressure and the important role played by the co-solvent. Ethanol can be used with advantage, since its effect is more important than increasing pressure by several tens of bar. At 160 bar and 40 °C, the introduction of 8% (wt of ethanol greatly improves the yield of triterpenoids more than threefold.

  9. Near-critical carbon dioxide extraction and liquid chromatography determination of UV filters in solid cosmetic samples: a green analytical procedure.

    Science.gov (United States)

    Salvador, Amparo; Chisvert, Alberto; Jaime, Maria-Angeles

    2005-11-01

    Near-critical carbon dioxide extraction of four UV filters used as sunscreens in lipsticks and makeup formulations is reported. Extraction parameters were optimized. Efficient recoveries were obtained after 15 min of dynamic extraction with a 80:20 CO2/ethanol mixture at 300 atm and 54 degrees C, using a 1.8 mL/min flow rate. Extracts were collected in ethanol, and appropriately diluted with ethanol and 1% acetic acid to obtain a 70:30 v/v ethanol/1% acetic acid solution. The four UV filters were determined by LC with gradient elution using ethanol/1% acetic acid as mobile phase. The accuracy of the analytical procedure was estimated by comparing the results with those obtained by methods based on classical extraction. The proposed method only requires the use of CO2, ethanol and acetic acid avoiding the use of more toxic organic solvents, thus it could be considered as both operator and environment friendly.

  10. Dissolvable layered double hydroxide as an efficient nanosorbent for centrifugeless air-agitated dispersive solid-phase extraction of potentially toxic metal ions from bio-fluid samples

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Maryam, E-mail: mrajabi@semnan.ac.ir; Arghavani-Beydokhti, Somayeh; Barfi, Behruz; Asghari, Alireza

    2017-03-08

    In the present work, a novel nanosorbent namely layered double hydroxides with 4-amino-5-hydroxyl-2,7-naphthalendisulfonic acid monosodium salt interlayer anion (Mg-Al-AHNDA-LDH) was synthesized and applied as a dissolvable nanosorbent in a centrifugeless ultrasound-enhanced air-agitated dispersive solid-phase extraction (USE-AA-D-SPE) method. This method was used for the separation and preconcentration of some metal ions including Cd{sup 2+}, Cr{sup 6+}, Pb{sup 2+}, Co{sup 2+}, and Ni{sup 2+} prior to their determination using the micro-sampling flame atomic absorption spectrometry (MS-FAAS) technique. The most interesting aspect of this nanosorbent is its immediate dissolvability at pH values lower than 4. This capability drastically eliminates the elution step, leading to a great improvement in the extraction efficiency and a decrease in the extraction time. Also in this method, the use of a syringe nanofilter eliminates the need for the centrifugation step, which is time-consuming and essentially causes the analysis to be off-line. Several effective parameters governing the extraction efficiency including the sample solution pH, amount of nanosorbent, eluent condition, number of air-agitation cycles, and sonication time were investigated and optimized. Under the optimized conditions, the good linear dynamic ranges of 2–70, 6–360, 7–725, 7–370, and 8–450 ng mL{sup −1} for the Cd{sup 2+}, Cr{sup 6+}, Pb{sup 2+}, Co{sup 2+}and Ni{sup 2+} ions, respectively, with the correlation of determinations (R{sup 2}s) higher than 0.997 were obtained. The limits of detection (LODs) were found to be 0.6, 1.7, 2.0, 2.1, and 2.4 for the Cd{sup 2+}, Cr{sup 6+}, Pb{sup 2+}, Co{sup 2+}, and Ni{sup 2+} ions, respectively. The intra-day and inter-day precisions (percent relative standard deviations (%RSDs) (n = 5)) were below 7.8%. The proposed method was also successfully applied for the extraction and determination of the target ions in different biological fluid

  11. Dissolvable layered double hydroxide as an efficient nanosorbent for centrifugeless air-agitated dispersive solid-phase extraction of potentially toxic metal ions from bio-fluid samples

    International Nuclear Information System (INIS)

    Rajabi, Maryam; Arghavani-Beydokhti, Somayeh; Barfi, Behruz; Asghari, Alireza

    2017-01-01

    In the present work, a novel nanosorbent namely layered double hydroxides with 4-amino-5-hydroxyl-2,7-naphthalendisulfonic acid monosodium salt interlayer anion (Mg-Al-AHNDA-LDH) was synthesized and applied as a dissolvable nanosorbent in a centrifugeless ultrasound-enhanced air-agitated dispersive solid-phase extraction (USE-AA-D-SPE) method. This method was used for the separation and preconcentration of some metal ions including Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ prior to their determination using the micro-sampling flame atomic absorption spectrometry (MS-FAAS) technique. The most interesting aspect of this nanosorbent is its immediate dissolvability at pH values lower than 4. This capability drastically eliminates the elution step, leading to a great improvement in the extraction efficiency and a decrease in the extraction time. Also in this method, the use of a syringe nanofilter eliminates the need for the centrifugation step, which is time-consuming and essentially causes the analysis to be off-line. Several effective parameters governing the extraction efficiency including the sample solution pH, amount of nanosorbent, eluent condition, number of air-agitation cycles, and sonication time were investigated and optimized. Under the optimized conditions, the good linear dynamic ranges of 2–70, 6–360, 7–725, 7–370, and 8–450 ng mL −1 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ and Ni 2+ ions, respectively, with the correlation of determinations (R 2 s) higher than 0.997 were obtained. The limits of detection (LODs) were found to be 0.6, 1.7, 2.0, 2.1, and 2.4 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ ions, respectively. The intra-day and inter-day precisions (percent relative standard deviations (%RSDs) (n = 5)) were below 7.8%. The proposed method was also successfully applied for the extraction and determination of the target ions in different biological fluid and tap water samples. - Highlights: • A novel centrifugeless dispersive

  12. Intraspecific variability of Holostylis reniformis: concentration of lignans, as determined by maceration and supercritical fluid extraction (SFE-CO{sub 2}), as a function of plant provenance and plant parts

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Gislaine F.; Pereira, Marcos D.P.; Lopes, Lucia M.X., E-mail: lopesxl@iq.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica; Silva, Tito da [Universidade Federal do Maranhao (UFMA), Imperatriz, MA (Brazil). Centro de Ciencias Sociais, Saude e Tecnologia; Rosa, Paulo de T. Vieira e; Barbosa, Fernanda P. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica; Messiano, Gisele B. [Instituto Federal de Sao Paulo, SP (Brazil); Krettli, Antoniana U. [Fundacao Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG (Brazil). Instituto Rene Rachou

    2014-04-15

    Maceration and supercritical fluid extraction were used to prepare extracts from parts of plants (Holostylis reniformis) collected in two different regions of Brazil. {sup 1}H NMR, HPLC-DAD-ESI/MS, HPLC-DAD, GC-MS, and chemometric techniques were used to analyse lignans in the extracts and showed that yields of SFE-CO{sub 2} were less than or equal to those of hexane maceration extracts. These analyses, in conjunction with the concentrations of aliphatic hydrocarbons, fatty acids and their methyl and ethyl derivatives in the extracts, also allowed the chemical composition of parts and provenance of the plant to be differentiated. (author)

  13. Intraspecific variability of Holostylis reniformis: concentration of lignans, as determined by maceration and supercritical fluid extraction (SFE-CO2), as a function of plant provenance and plant parts

    International Nuclear Information System (INIS)

    Martins, Gislaine F.; Pereira, Marcos D.P.; Lopes, Lucia M.X.; Krettli, Antoniana U.

    2014-01-01

    Maceration and supercritical fluid extraction were used to prepare extracts from parts of plants (Holostylis reniformis) collected in two different regions of Brazil. 1 H NMR, HPLC-DAD-ESI/MS, HPLC-DAD, GC-MS, and chemometric techniques were used to analyse lignans in the extracts and showed that yields of SFE-CO 2 were less than or equal to those of hexane maceration extracts. These analyses, in conjunction with the concentrations of aliphatic hydrocarbons, fatty acids and their methyl and ethyl derivatives in the extracts, also allowed the chemical composition of parts and provenance of the plant to be differentiated. (author)

  14. Supercritical Fluid Extract of Spent Coffee Grounds Attenuates Melanogenesis through Downregulation of the PKA, PI3K/Akt, and MAPK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Huey-Chun Huang

    2016-01-01

    Full Text Available The mode of action of spent coffee grounds supercritical fluid CO2 extract (SFE in melanogenesis has never been reported. In the study, the spent coffee grounds were extracted by the supercritical fluid CO2 extraction method; the chemical constituents of the SFE were investigated by gas chromatography-mass spectrometry (GC-MS. The effects of the SFE and its major fatty acid components on melanogenesis were evaluated by mushroom tyrosinase activity assay and determination of intracellular tyrosinase activity and melanin content. The expression level of melanogenesis-related proteins was analyzed by western blotting assay. The results revealed that the SFE of spent coffee grounds (1–10 mg/mL and its major fatty acids such as linoleic acid and oleic acid (6.25–50 μM effectively suppressed melanogenesis in the B16F10 murine melanoma cells. Furthermore, the SFE decreased the expression of melanocortin 1 receptor (MC1R, microphthalmia-associated transcription factor (MITF, tyrosinase, tyrosinase-related protein-1 (TRP-1, and tyrosinase-related protein-2 (TRP-2. The SFE also decreased the protein expression levels of p-JNK, p-p38, p-ERK, and p-CREB. Our results revealed that the SFE of spent coffee grounds attenuated melanogenesis in B16F10 cells by downregulation of protein kinase A (PKA, phosphatidylinositol-3-kinase (PI3K/Akt, and mitogen-activated protein kinases (MAPK signaling pathways, which may be due to linoleic acid and oleic acid.

  15. Nitrate conversion and supercritical fluid extraction of UO{sub 2}-CeO{sub 2} solid solution prepared by an electrolytic reduction-coprecipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L.Y. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology; China Institute of Atomic Energy, Beijing (China); Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2014-04-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N{sub 2}O{sub 4} into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO{sub 2}-CeO{sub 2} solid solution was prepared as a surrogate for a UO{sub 2}-PuO{sub 2} solid solution, and the recovery of U and Ce from the UO{sub 2}-CeO{sub 2} solid solution with liquid N{sub 2}O{sub 4} and supercritical CO{sub 2} containing tri-n-butyl phosphate (TBP) was investigated. The UO{sub 2}-CeO{sub 2} solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N{sub 2}O{sub 4}. The XRD pattern of the nitrates was similar to that of UO{sub 2}(NO{sub 3}){sub 2} . 3H{sub 2}O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO{sub 2} containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  16. Positive and negative feedback in the earthquake cycIe: the role of pore fluids on states of criticality in the crust

    Directory of Open Access Journals (Sweden)

    P. R. Sammonds

    1994-06-01

    Full Text Available Fluids exert a strong physical and chemical control on local processes of rock fracture and friction. For example they may accelerate fracture by stress corrosion reactions or the development of overpressure (a form of positive feedback, or retard fracture by time-dependent stress relaxation or dilatant hardening (negative feed-back, thereby introducing a variable degree of local force conservation into the process. In particular the valve action of dynamic faulting may be important in tuning the Earth to a metastable state of incipient failure on all scales over several cycles, similar to current models of Self-Organised Criticality (SOC as a paradigm for eartiquakes However laboratory results suggest that ordered fluctuations about this state may occur in a single cycle due to non conservative processes involving fluids which have the potential to be recognised, at least in the short term, in the scaling properties of earthquake statistics. Here we describe a 2-D cellular automaton which uses local rules of positive and negative feedback to model the effect of fluids on failure in a heterogeneous medium in a single earthquake cycle. The model successfully predicts the observed fractal distribution of fractures, with a negative correlation between the predicted seismic b-value and the local crack extension force G. Such a negative correlation is found in laboratory tests involving (a fluid-assisted crack growth in tension (b water-saturated compressional deformation, and (c in field results on an intermediate scale from hydraulic mining-induced seismicity all cases where G can be determined independently, and where the physical and chemical action of pore fluids is to varying degrees a controlled variable. For a finite local hardening mechanism (negative feedback, the model exhibits a systematic increase followed by a decrease in the seismic b-value as macroscopic failure is approached, similar to that found in water-saturated laboratory tests

  17. Electromembrane extraction of amino acids from body fluids followed by capillary electrophoresis with capacitively coupled contactless conductivity detection

    Czech Academy of Sciences Publication Activity Database

    Strieglerová, Lenka; Kubáň, Pavel; Boček, Petr

    2011-01-01

    Roč. 1218, č. 37 (2011), s. 6248-6255 ISSN 0021-9673 R&D Projects: GA ČR GAP206/10/1219 Institutional research plan: CEZ:AV0Z40310501 Keywords : electromembrane extraction * biological samples * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.531, year: 2011

  18. Generic solid phase extraction-liquid chromatography-tandem mass spectrometry method for fast determination of drugs in biological fluids

    NARCIS (Netherlands)

    Schellen, A.; Ooms, B.; Lagemaat, D. van de; Vreeken, R.; Dongen, W.D. van

    2003-01-01

    A generic method was developed for the fast determination of a wide range of drugs in serum or plasma. The methodology comprises generic solid-phase extraction, on-line coupled to gradient HPLC with tandem mass spectrometric detection (SPE-LC-MS/MS). The individual components of the SPE-LC-MS/MS

  19. Antioxidant Properties of Essential Oil Extracted from Pinus morrisonicola Hay Needles by Supercritical Fluid and Identification of Possible Active Compounds by GC/MS.

    Science.gov (United States)

    Cheng, Ming-Ching; Chang, Wen-Hua; Chen, Chih-Wei; Li, Wen-Wing; Tseng, Chin-Yin; Song, Tuzz-Ying

    2015-10-20

    Pine (Pinus morrisonicola Hay, PM) needles have been used as folk medicine for their antihypertension and lipid-lowering effects. As supercritical fluid extraction (SFE) is considered an ideal technique for the extraction of essential oil from plant materials, the present work investigated the optimal SFE conditions and the protective effects of different resulting fractions of PM needles on lipid peroxidation and foam cell production in macrophages. Nine PM needle extracts (PME1-9) were obtained in 1%-4% yields using different SFE conditions, of which PME1 had the lowest yield (1.1%) and PME3 the highest (3.9%). PME3 exhibited lower cytotoxic effects and stronger inhibition of lipid peroxidation and formation of foam cell in RAW 264.7 macrophages than those of other PME extracts. PME3-1 purified from PME3 by column and thin layer chromatography inhibited LDL oxidation more effectively than did PME3 in a cell-free system oxidized by Cu(2+). PME3-1 dose-dependently (25-100 μg/mL) decreased conjugated diene levels and foam cell formation induced by ox-LDL. GC/MS analyses revealed that 1-docosene, neophytadiene, and methyl abietate were increased 5.2-, 1.7- and 4.3-fold in PME3-1 relative to PME3. A new hydrocarbon compound, cedrane-8,13-diol, was identified in PME3-1. Overall, the present study demonstrates the optimal extraction conditions of SFE of PM and identifies the most potent antioxidant fractions and possible active compounds in PM.

  20. Liquid-liquid extraction of strongly protein bound BMS-299897 from human plasma and cerebrospinal fluid, followed by high-performance liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Xue, Y J; Pursley, Janice; Arnold, Mark

    2007-04-11

    BMS-299897 is a gamma-secretase inhibitor that is being developed for the treatment of Alzheimer's disease. Liquid-liquid extraction (LLE), chromatographic/tandem mass spectrometry (LC/MS/MS) methods have been developed and validated for the quantitation of BMS-299897 in human plasma and cerebrospinal fluid (CSF). Both methods utilized (13)C6-BMS-299897, the stable label isotope analog, as the internal standard. For the human plasma extraction method, two incubation steps were required after the addition of 5 mM ammonium acetate and the internal standard in acetonitrile to release the analyte bound to proteins prior to LLE with toluene. For the human CSF extraction method, after the addition of 0.5 N HCl and the internal standard, CSF samples were extracted with toluene and no incubation was required. The organic layers obtained from both extraction methods were removed and evaporated to dryness. The residues were reconstituted and injected into the LC/MS/MS system. Chromatographic separation was achieved isocratically on a MetaChem C18 Hypersil BDS column (2.0 mm x 50 mm, 3 microm). The mobile phase contained 10 mM ammonium acetate pH 5 and acetonitrile. Detection was by negative ion electrospray tandem mass spectrometry. The standard curves ranged from 1 to 1000 ng/ml for human plasma and 0.25-100 ng/ml for human CSF. Both standard curves were fitted to a 1/x weighted quadratic regression model. For both methods, the intra-assay precision was within 8.2% CV, the inter-assay precision was within 5.4% CV, and assay accuracy was within +/-7.4% of the nominal values. The validation and sample analysis results demonstrated that both methods had acceptable precision and accuracy across the calibration ranges.

  1. Antioxidant Properties of Essential Oil Extracted from Pinus morrisonicola Hay Needles by Supercritical Fluid and Identification of Possible Active Compounds by GC/MS

    Directory of Open Access Journals (Sweden)

    Ming-Ching Cheng

    2015-10-01

    Full Text Available Pine (Pinus morrisonicola Hay, PM needles have been used as folk medicine for their antihypertension and lipid-lowering effects. As supercritical fluid extraction (SFE is considered an ideal technique for the extraction of essential oil from plant materials, the present work investigated the optimal SFE conditions and the protective effects of different resulting fractions of PM needles on lipid peroxidation and foam cell production in macrophages. Nine PM needle extracts (PME1–9 were obtained in 1%–4% yields using different SFE conditions, of which PME1 had the lowest yield (1.1% and PME3 the highest (3.9%. PME3 exhibited lower cytotoxic effects and stronger inhibition of lipid peroxidation and formation of foam cell in RAW 264.7 macrophages than those of other PME extracts. PME3-1 purified from PME3 by column and thin layer chromatography inhibited LDL oxidation more effectively than did PME3 in a cell-free system oxidized by Cu2+. PME3-1 dose-dependently (25–100 μg/mL decreased conjugated diene levels and foam cell formation induced by ox-LDL. GC/MS analyses revealed that 1-docosene, neophytadiene, and methyl abietate were increased 5.2-, 1.7- and 4.3-fold in PME3-1 relative to PME3. A new hydrocarbon compound, cedrane-8,13-diol, was identified in PME3-1. Overall, the present study demonstrates the optimal extraction conditions of SFE of PM and identifies the most potent antioxidant fractions and possible active compounds in PM.

  2. OPTIMISATION OF SUPERCRITICAL FLUID EXTRACTION OF ASTAXANTHIN FROM PENAEUS MONODON WASTE USING ETHANOL-MODIFIED CARBON DIOXIDE

    Directory of Open Access Journals (Sweden)

    SHAZANA A. RADZALI

    2016-05-01

    Full Text Available Some studies demonstrated that astaxanthin surpasses the antioxidant benefits of beta-carotene, zeaxanthin, canthaxanthin, vitamin C, and vitamin E. Penaeus monodon (Tiger shrimp is one of the most valuable traded crustacean products in which astaxanthin can be found in its by-products. The extraction of thermolabile compound like carotenoids at lower temperatures through supercritical carbon dioxide (SC-CO2 can reduce the potential isomerization and degradation of the extraction product. In this study, astaxanthin had been extracted using SC-CO2 with 15% (v/v ethanol as an entrainer and the recovered astaxanthin was analyzed using High performance liquid chromatography (HPLC. A central composite design (CCD was employed to study the effect of three SC-CO2 parameters namely temperature (X1 from 40 to 80°C, pressure (X2 from 150 to 250 bar and extraction flow rate (X3 from 1 to 3 ml/min on the astaxanthin complex yield, (Y1 and free astaxanthin content, (Y2. The nonlinear regression equations were significantly (p0.9261, which had no indication of lack of fit. The results indicated that a combined set of values of temperature (56.88°C, pressure (215.68 bar and extraction flow rate (1.89 ml/min was predicted to provide the optimum region in terms of astaxanthin complex yield, (58.50 ± 2.62 µg/g and free astaxanthin content (12.20 ± 4.16 µg/g studied.

  3. Critical comparison of the on-line and off-line molecularly imprinted solid-phase extraction of patulin coupled with liquid chromatography.

    Science.gov (United States)

    Lhotská, Ivona; Holznerová, Anežka; Solich, Petr; Šatínský, Dalibor

    2017-12-01

    Reaching trace amounts of mycotoxin contamination requires sensitive and selective analytical tools for their determination. Improving the selectivity of sample pretreatment steps covering new and modern extraction techniques is one way to achieve it. Molecularly imprinted polymers as selective sorbent for extraction undoubtedly meet these criteria. The presented work is focused on the hyphenation of on-line molecularly imprinted solid-phase extraction with a chromatography system using a column-switching approach. Making a critical comparison with a simultaneously developed off-line extraction procedure, evaluation of pros and cons of each method, and determining the reliability of both methods on a real sample analysis were carried out. Both high-performance liquid chromatography methods, using off-line extraction on molecularly imprinted polymer and an on-line column-switching approach, were validated, and the validation results were compared against each other. Although automation leads to significant time savings, fewer human errors, and required no handling of toxic solvents, it reached worse detection limits (15 versus 6 μg/L), worse recovery values (68.3-123.5 versus 81.2-109.9%), and worse efficiency throughout the entire clean-up process in comparison with the off-line extraction method. The difficulties encountered, the compromises made during the optimization of on-line coupling and their critical evaluation are presented in detail. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Supercritical fluid extraction as an on-line clean-up technique for determination of riboflavin vitamins in food samples by capillary electrophoresis with fluorimetric detection.

    Science.gov (United States)

    Zougagh, Mohammed; Ríos, Angel

    2008-08-01

    An automatic method for the separation and determination of riboflavin (RF) vitamins (RF, flavin mononucleotide and flavin adenine dinucleotide) in food samples (chicken liver, tablet and powder milk) is proposed. The method is based on the on-line coupling of a supercritical fluid extractor (SFE) with a continuous flow-CE system with guided optical fiber fluorimetric detection (CF-CE-FD). The whole SFE-CF-CE-FD arrangement allowed the automatic treatment of food samples (clean-up of the sample followed by the extraction of the analytes), and the direct introduction of a small volume of the extracted plug to the CE-FD system for the determination of RF vitamins. Fluorescence detection introduced an appropriated sensitivity and contributed to avoid interferences of nonfluorescent polar compounds coming from the matrix samples in the extracted plug. Electrophoretic responses were linear within the 0.05-1 microg/g range, whereas the detection limits of RF vitamins were in the 0.036-0.042 microg/g range. The proposed arrangement opens up interesting prospects for the direct determination of polar analytes in complex samples with a good throughput and high level of automation.

  5. Characterisation of organic compounds in aerosol particles from a finnish forest by on-line coupled supercritical fluid extraction-liquid chromatography-gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shimmo, Masahiko; Jaentti, Jaana; Hartonen, Kari; Hyoetylaeinen, Tuulia; Riekkola, Marja-Liisa [Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki (Finland); Aalto, Pasi; Kulmala, Markku [Division of Atmospheric Sciences, Department of Physical Sciences, University of Helsinki, P.O. Box 64, 00014, Helsinki (Finland)

    2004-04-01

    During the European Union project Quantification of Aerosol Nucleation in the European Boundary Layer (QUEST), which began in spring 2003, atmospheric aerosol particles were collected in a Finnish Scots pine forest using a high-volume sampler. The organic compounds in the filter samples were then analysed by on-line coupled supercritical fluid extraction-liquid chromatography-gas chromatography-mass spectrometry (SFE-LC-GC-MS). The sample was first extracted by SFE. During LC the extracts were fractionated into three fractions according to polarity. The final separation was carried out by GC-MS. A fraction volume as high as 840 {mu}L was transferred to the GC, using the partial concurrent eluent evaporation technique. The same instrumentation, with an in-situ SFE derivatisation method, was used to analyse organic acids. Major compounds such as n-alkanes and PAH were analysed quantitatively. Their concentrations were lower than those usually observed in urban areas or in other forest areas in Europe. The wind direction was one of the most important factors affecting changes in the daily concentrations of these compounds. Scots pine needles were analysed with the same system to obtain reference data for identification of biogenic compounds in aerosol particles. Other organic compounds found in this study included hopanes, steranes, n-alkanals, n-alkan-2-ones, oxy-PAH, and alkyl-PAH; some biogenic products, including oxidation products of monoterpenes, were also identified. (orig.)

  6. A reactive transport modelling approach to assess the leaching potential of hydraulic fracturing fluids associated with coal seam gas extraction

    Science.gov (United States)

    Mallants, Dirk; Simunek, Jirka; Gerke, Kirill

    2015-04-01

    Coal Seam Gas production generates large volumes of "produced" water that may contain compounds originating from the use of hydraulic fracturing fluids. Such produced water also contains elevated concentrations of naturally occurring inorganic and organic compounds, and usually has a high salinity. Leaching of produced water from storage ponds may occur as a result of flooding or containment failure. Some produced water is used for irrigation of specific crops tolerant to elevated salt levels. These chemicals may potentially contaminate soil, shallow groundwater, and groundwater, as well as receiving surface waters. This paper presents an application of scenario modelling using the reactive transport model for variably-saturated media HP1 (coupled HYDRUS-1D and PHREEQC). We evaluate the fate of hydraulic fracturing chemicals and naturally occurring chemicals in soil as a result of unintentional release from storage ponds or when produced water from Coal Seam Gas operations is used in irrigation practices. We present a review of exposure pathways and relevant hydro-bio-geo-chemical processes, a collation of physico-chemical properties of organic/inorganic contaminants as input to a set of generic simulations of transport and attenuation in variably saturated soil profiles. We demonstrate the ability to model the coupled processes of flow and transport in soil of contaminants associated with hydraulic fracturing fluids and naturally occurring contaminants.

  7. Direct dissolution and supercritical fluid extraction of uranium from UO2 powder, granule, green pellet and sintered pellet

    International Nuclear Information System (INIS)

    Rao, Ankita; Kumar, Pradeep; Ramakumar, K.L.

    2009-01-01

    In the present work, direct dissolution and extraction of UO 2 from the solid rejects various stages of fuel fabrication viz. powder granules green pellet and, sintered pellet has been studied. Powder and granules could be easily dissolved in TBP-HNO 3 complex at 50 deg C., whereas in case of green and sintered pellets at elevated temperature at raised to 80 deg C in TBP-HNO 3 complex. With supercritical (SC) CO 2 alone the efficiency was ∼70%. But with SC CO 2 +2.5% TBP, the efficiency was ∼95% for powder and granules, and ∼60% for green and sintered pellets. Nearly complete extraction (∼99%) was achievable for SC CO 2 + 2.5 % TTA in all cases. The method has distinct advantage of elimination of acid usage and minimization of liquid waste generation. (author)

  8. Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species

    Czech Academy of Sciences Publication Activity Database

    Klejdus, B.; Kopecký, Jiří; Benešová, L.; Vacek, J.

    2009-01-01

    Roč. 1216, č. 5 (2009), s. 763-771 ISSN 0021-9673 R&D Projects: GA ČR GA525/07/0338 Grant - others:CZ(CZ) GP525/08/P540 Institutional research plan: CEZ:AV0Z50200510 Keywords : methanol * solid-phase extraction * phenolic compounds Subject RIV: EE - Microbiology, Virology Impact factor: 4.101, year: 2009

  9. Numerical prediction of critical heat flux in nuclear fuel rod bundles with advanced three-fluid multidimensional porous media based model

    International Nuclear Information System (INIS)

    Zoran Stosic; Vladimir Stevanovic

    2005-01-01

    Full text of publication follows: The modern design of nuclear fuel rod bundles for Boiling Water Reactors (BWRs) is characterised with increased number of rods in the bundle, introduced part-length fuel rods and a water channel positioned along the bundle asymmetrically in regard to the centre of the bundle cross section. Such design causes significant spatial differences of volumetric heat flux, steam void fraction distribution, mass flux rate and other thermal-hydraulic parameters important for efficient cooling of nuclear fuel rods during normal steady-state and transient conditions. The prediction of the Critical Heat Flux (CHF) under these complex thermal-hydraulic conditions is of the prime importance for the safe and economic BWR operation. An efficient numerical method for the CHF prediction is developed based on the porous medium concept and multi-fluid two-phase flow models. Fuel rod bundle is observed as a porous medium with a two-phase flow through it. Coolant flow from the bundle entrance to the exit is characterised with the subsequent change of one-phase and several two-phase flow patterns. One fluid (one-phase) model is used for the prediction of liquid heating up in the bundle entrance region. Two-fluid modelling approach is applied to the bubbly and churn-turbulent vapour and liquid flows. Three-fluid modelling approach is applied to the annular flow pattern: liquid film on the rods wall, steam flow and droplets entrained in the steam stream. Every fluid stream in applied multi-fluid models is described with the mass, momentum and energy balance equations. Closure laws for the prediction of interfacial transfer processes are stated with the special emphasis on the prediction of the steam-water interface drag force, through the interface drag coefficient, and droplets entrainment and deposition rates for three-fluid annular flow model. The model implies non-equilibrium thermal and flow conditions. A new mechanistic approach for the CHF prediction

  10. Supercritical fluid extraction (SFE) of ketamine metabolites from dried urine and on-line quantification by supercritical fluid chromatography and single mass detection (on-line SFE-SFC-MS).

    Science.gov (United States)

    Hofstetter, Robert; Fassauer, Georg M; Link, Andreas

    2018-02-15

    On-line solid-phase supercritical fluid extraction (SFE) and chromatography (SFC) coupled to mass spectrometry (MS) has been evaluated for its usefulness with respect to metabolic profiling and pharmacological investigations of ketamine in humans. The aim of this study was to develop and validate a rapid, highly selective and sensitive SFE-SFC-MS method for the quantification of ketamine and its metabolites in miniature amounts in human urine excluding liquid-liquid extraction (LLE). Several conditions were optimized systematically following the requirements of the European Medicines Agency: selectivity, carry-over, calibration curve parameters (LLOQ, range and linearity), within- and between-run accuracy and precision, dilution integrity, matrix effect, and stability. The method, which required a relatively small volume of human urine (20 μL per sample), was validated for pharmacologically and toxicologically relevant concentrations ranging from 25.0 to 1000 ng/mL (r 2  > 0.995). The lower limit of quantification (LLOQ) for all compounds was found to be as low as 0.5 ng. In addition, stability of analytes during removal of water from the urine samples using different conditions (filter paper or ISOLUTE® HM-N) was studied. In conclusion, the method developed in this study can be successfully applied to studies of ketamine metabolites in humans, and may pave the way for routine application of on-line SFE-SFC-MS in clinical investigations. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Determination of 18 beta-glycyrrhetinic acid in biological fluids from humans and rats by solid-phase extraction and high-performance liquid chromatography.

    Science.gov (United States)

    Hasler, F; Krapf, R; Brenneisen, R; Bourquin, D; Krähenbühl, S

    1993-10-22

    Methods have been developed and characterized allowing rapid isolation and quantification of 18 beta-glycyrrhetinic acid (GRA) in biological fluids from both humans and rats. Sample preparation includes extraction with urea-methanol for plasma samples, and solid-phase extraction (SPE) for urine and bile samples. Hydrolysis of GRA glucuronides in urine and bile was performed by treatment with beta-glucuronidase. MGRA, the 3-O-methyl derivative of GRA was synthesized as an internal standard resistant to hydrolysis. High-performance liquid chromatography (HPLC) was performed with an isocratic system using methanol-water-acetic acid (83:16.8:0.2, v/v/v) as solvent on a Lichrocart RP-18 column at 30 degrees C with ultraviolet detection. The methods allowed base line separation of GRA and MGRA from all biological fluids tested, with a detection limit of 0.15 mg/l. Validation of the methods included determination of recovery, accuracy and precision in plasma, bile and urine from humans and rats. The methods were further evaluated by investigating the pharmacokinetics of GRA in normal rats and in rats with a bile fistula. Following an intravenous dose of 10 mg/kg, the plasma concentration-time curve of GRA could be fitted to a one compartment model both in control and bile fistula rats. The elimination half life averaged 15.0 +/- 2.2 versus 16.8 +/- 2.4 min in control and bile fistula rats (difference not significant). Within 90 min following administration of GRA, urinary elimination of GRA and GRA glucuronides was less than 1% in both groups whereas biliary elimination averaged 51.3 +/- 3.1%. The results show that the methods developed allow pharmacokinetic studies of GRA in humans and rats.

  12. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients.

    Science.gov (United States)

    Uemura, Mei; Yano, Yutaka; Suzuki, Toshinari; Yasuma, Taro; Sato, Toshiyuki; Morimoto, Aya; Hosoya, Samiko; Suminaka, Chihiro; Nakajima, Hiromu; Gabazza, Esteban C; Takei, Yoshiyuki

    2017-08-01

    Continuous glucose monitoring (CGM) is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC) monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET). Here we evaluated the accuracy of interstitial fluid glucose (IG) AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting hyperglycemia using CGM data as a reference. Thirty-eight inpatients with diabetes undergoing CGM were enrolled. MIET comprised a pretreatment step using a plastic microneedle array and glucose accumulation step with a hydrogel patch, which was placed on two sites from 9:00 AM to 5:00 PM or from 10:00 PM to 6:00 AM. IG AUC was calculated by accumulated glucose extracted by hydrogel patches using sodium ion as standard. A significant correlation was observed between the predicted AUC by MIET and CGM in daytime (r=0.76) and nighttime (r=0.82). The optimal cutoff for the IG AUC value of MIET to predict hyperglycemia over 200 mg/dL measured by CGM for 8 hours was 1,067.3 mg·hr/dL with 88.2% sensitivity and 81.5% specificity. We showed that 8-hour IG AUC levels using MIET were valuable in estimating the blood glucose AUC without blood sampling. The results also supported the concept of using this technique for evaluating glucose excursion and for screening hyperglycemia during 8 hours in patients with diabetes at any time of day. Copyright © 2017 Korean Diabetes Association

  13. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Mei Uemura

    2017-07-01

    Full Text Available BackgroundContinuous glucose monitoring (CGM is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET. Here we evaluated the accuracy of interstitial fluid glucose (IG AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting hyperglycemia using CGM data as a reference.MethodsThirty-eight inpatients with diabetes undergoing CGM were enrolled. MIET comprised a pretreatment step using a plastic microneedle array and glucose accumulation step with a hydrogel patch, which was placed on two sites from 9:00 AM to 5:00 PM or from 10:00 PM to 6:00 AM. IG AUC was calculated by accumulated glucose extracted by hydrogel patches using sodium ion as standard. ResultsA significant correlation was observed between the predicted AUC by MIET and CGM in daytime (r=0.76 and nighttime (r=0.82. The optimal cutoff for the IG AUC value of MIET to predict hyperglycemia over 200 mg/dL measured by CGM for 8 hours was 1,067.3 mg·hr/dL with 88.2% sensitivity and 81.5% specificity.ConclusionWe showed that 8-hour IG AUC levels using MIET were valuable in estimating the blood glucose AUC without blood sampling. The results also supported the concept of using this technique for evaluating glucose excursion and for screening hyperglycemia during 8 hours in patients with diabetes at any time of day.

  14. Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE): Lunar Advanced Volatile Analysis (LAVA) Capillary Fluid Dynamic Restriction Effects on Gas Chromatography

    Science.gov (United States)

    Gonzalez, Marianne; Quinn, Jacqueline; Captain, Janine; Santiago-Bond, Josephine; Starr, Stanley

    2015-01-01

    The Resource Prospector (RP) mission with the Regolith and Environment Science and Oxygen Lunar Volatile Extraction (RESOLVE) payload aims to show the presence of water in lunar regolith, and establish a proving ground for NASAs mission to Mars. One of the analysis is performed by the Lunar Advanced Volatiles Analysis (LAVA) subsystem, which consists of a fluid network that facilitates the transport of volatile samples to a gas chromatograph and mass spectrometer (GC-MS) instrument. The understanding of fluid dynamics directed from the GC to the MS is important due to the influence of flow rates and pressures that affect the accuracy of and prevent the damage to the overall GC-MS instrument. The micro-scale capillary fluid network within the GC alone has various lengths and inner-diameters; therefore, determination of pressure differentials and flow rates are difficult to model computationally, with additional complexity from the vacuum conditions in space and lack of a lunar atmosphere. A series of tests were performed on an experimental set-up of the system where the inner diameters of the GC transfer line connecting to the MS were varied. The effect on chromatography readings were also studied by applying these lines onto a GC instrument. It was found that a smaller inner diameter transfer line resulted in a lower flow rate, as well as a lower pressure differential across the thermal conductivity detector (TCD) unit of the GC and a negligible pressure drop across the mock-up capillary column. The chromatography was affected with longer retention times and broader peak integrations. It was concluded that a 0.050 mm inner diameter line still proved most suitable for the systems flow rate preferences. In addition, it was evident that this small transfer line portrayed some expense to GC signal characteristics and the wait time for steady-state operation.

  15. Synthesis of high generation thermo-sensitive dendrimers for extraction of rivaroxaban from human fluid and pharmaceutic samples.

    Science.gov (United States)

    Parham, Negin; Panahi, Homayon Ahmad; Feizbakhsh, Alireza; Moniri, Elham

    2018-04-13

    In this present study, poly (N-isopropylacrylamide) as a thermo-sensitive agent was grafted onto magnetic nanoparticles, then ethylenediamine and methylmethacrylate were used to synthesize the first generation of poly amidoamine (PAMAM) dendrimers successively and the process continued alternatively until the ten generations of dendrimers. The synthesized nanocomposite was investigated using Fourier transform infrared spectrometry, thermalgravimetry analysis, X-ray diffractometry, elemental analysis and vibrating-sample magnetometer. The particle size and morphology were characterized using dynamic light scattering, field emission scanning electron microscopy and transmission electron microscopy. Batch experiments were conducted to investigate the parameters affecting adsorption and desorption of rivaroxaban by synthesized nanocomposite. The maximum sorption of rivaroxaban by the synthesized nanocomposite was obtained at pH of 8. The resulting grafted magnetic nanoparticle dendrimers were applied for extraction of rivaroxaban from biologic human liquids and medicinal samples. The specifications of rivaroxaban sorbed by a magnetic nanoparticle dendrimer showed good accessibility and high capacity of the active sites within the dendrimers. Urine and drug matrix extraction recoveries of more than 92.5 and 99.8 were obtained, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Stability Test of Partially Purified Bromelain from Pineapple (Ananas comosus (L.) Merr) Core Extract in Artificial Stomach Fluid

    Science.gov (United States)

    Setiasih, S.; Adimas, A. Ch. D.; Dzikria, V.; Hudiyono, S.

    2018-01-01

    This study aimed to isolate and purify bromelain from pineapple core (Ananascomosus (L.) Merr) accompanied by a stability test of its enzyme activity in artificial gastric juice. Purification steps start with fractionation by a precipitation method were carried out stepwise using several concentration of ammonium sulfate salt, followed by dialysis prosess and ion exchange chromatography on DEAE-cellulose column. Each step of purification produced an increasing specific activity in enzyme fraction, starting with crude extract, respectively: 0.276 U/mg; 14.591 U/mg; and 16.05 U/mg. Bromelain fraction with the highest level of purity was obtained in 50-80% ammonium sulphate fraction after dialyzed in the amount of 58.15 times compared to the crude extract. Further purification of the enzyme by DEAE-cellulose column produced bromelain which had a purity level 160-fold compared to crude enzyme. The result of bromelain stability test in artificial stomach juice by milk clotting units assay bromelain fraction have proteolytic activity in clotting milk substrate. Exposing bromelain fraction in artificial stomach juice which gave the highest core bromelain proteolytic activity was achieved at estimated volume of 0.4-0.5 mL. Exposure in a period of reaction time to artificial stomach juice that contained pepsin showed relatively stable proteolytic activity in the first 4 hours.

  17. Generic solid phase extraction-liquid chromatography-tandem mass spectrometry method for fast determination of drugs in biological fluids.

    Science.gov (United States)

    Schellen, Anniek; Ooms, Bert; van de Lagemaat, Dick; Vreeken, Rob; van Dongen, William D

    2003-05-25

    A generic method was developed for the fast determination of a wide range of drugs in serum or plasma. The methodology comprises generic solid-phase extraction, on-line coupled to gradient HPLC with tandem mass spectrometric detection (SPE-LC-MS/MS). The individual components of the SPE-LC-MS/MS system were optimized in an integrated approach to maximize the application range and minimize the method development time. The optimized generic SPE-LC-MS/MS protocol was evaluated for 11 drugs with different physicochemical properties. Good quantification for 10 out of 11 of the pharmaceuticals in serum or plasma could be readily achieved. The quantitative assays gave recoveries better than 95%, lower quantification limits of 0.2-2.0 ng/ml, acceptable precision and accuracy and good linearity over 2-4 orders of magnitude. Carry-over was determined to be in the range of 0.02-0.10%, without optimization.

  18. CHARACTERIZING SOIL/WATER SORPTION AND DESORPTION BEHAVIOR OF BTEX AND PAHS USING SELECTIVE SUPERCRITICAL FLUID EXTRACTION (SFE); TOPICAL

    International Nuclear Information System (INIS)

    Steve Hawthorne

    1998-01-01

    The first goal of the proposed study was to generate initial data to determine the ability of selective SFE behavior to mimic the soil/water sorption and desorption behavior of BTEX (benzene, toluene, and xylenes) and PAHs (polycyclic aromatic hydrocarbons).Samples generated by Professor Bill Rixey's column sorption studies (aged for 2 weeks to 8 months) and desorption studies (six weeks desorption of the aged soil columns with pure water) were extracted using sequentially-stronger SFE conditions to selectively remove different fractions of each BTEX and PAH component which range from loosely to tightly bound in the soil matrices. The selective SFE results parallel the sorption/desorption leaching behavior and mechanisms determined by Professor Rixey's investigations (under separate funding) using water desorption of soil columns previously aged with BTEX and PAHs. These results justify more intensive investigations of the use of selective SFE to mimic soil/water sorption and desorption of organic pollutants related to fossil fuels which will be performed under separate funding. The second goal of the study was to determine if selective SFE extraction behavior parallels the remediation behavior displayed by PAHs currently undergoing in-situ bioremediation at a manufactured gas plant (MGP) site. Based on soil analyses of several individual PAHs (as well as total PAHs) before remediation began, and after 147 days of remediation, selective SFE successfully mimicked remediation behavior. These results strongly support the use of selective SFE to predict remediation behavior of soils contaminated with PAHs, and are expected to provide a powerful and rapid analytical tool which will be useful for determining the remediation endpoints which are necessary for environmental protection. Based on the initial success found in the present study, additional investigations into the use of SFE for predicting and monitoring the remediation behavior of PAH-contaminated soils will be

  19. Measurement of glucose area under the curve using minimally invasive interstitial fluid extraction technology: evaluation of glucose monitoring concepts without blood sampling.

    Science.gov (United States)

    Sato, Toshiyuki; Okada, Seiki; Hagino, Kei; Asakura, Yoshihiro; Kikkawa, Yasuo; Kojima, Junko; Watanabe, Toshihiro; Maekawa, Yasunori; Isobe, Kazuki; Koike, Reona; Nakajima, Hiromu; Asano, Kaoru

    2011-12-01

    Monitoring postprandial hyperglycemia is crucial in treating diabetes, although its dynamics make accurate monitoring difficult. We developed a new technology for monitoring postprandial hyperglycemia using interstitial fluid (ISF) extraction technology without blood sampling. The glucose area under the curve (AUC) using this system was measured as accumulated ISF glucose (IG) with simultaneous calibration with sodium ions. The objective of this study was to evaluate this technological concept in healthy individuals. Minimally invasive ISF extraction technology (MIET) comprises two steps: pretreatment with microneedles and ISF accumulation over a specific time by contact with a solvent. The correlation between glucose and sodium ion levels using MIET was evaluated in 12 subjects with stable blood glucose (BG) levels during fasting. BG and IG time courses were evaluated in three subjects to confirm their relationship while BG was fluctuating. Furthermore, the accuracy of glucose AUC measurements by MIET was evaluated several hours after a meal in 30 subjects. A high correlation was observed between glucose and sodium ion levels when BG levels were stable (R=0.87), indicating that sodium ion is a good internal standard for calibration. The variation in IG and BG with MIET was similar, indicating that IG is an adequate substitute for BG. Finally, we showed a strong correlation (R=0.92) between IG-AUC and BG-AUC after a meal. These findings validate the adequacy of glucose AUC measurements using MIET. Monitoring glucose using MIET without blood sampling may be beneficial to patients with diabetes.

  20. Dissolvable layered double hydroxide as an efficient nanosorbent for centrifugeless air-agitated dispersive solid-phase extraction of potentially toxic metal ions from bio-fluid samples.

    Science.gov (United States)

    Rajabi, Maryam; Arghavani-Beydokhti, Somayeh; Barfi, Behruz; Asghari, Alireza

    2017-03-08

    In the present work, a novel nanosorbent namely layered double hydroxides with 4-amino-5-hydroxyl-2,7-naphthalendisulfonic acid monosodium salt interlayer anion (Mg-Al-AHNDA-LDH) was synthesized and applied as a dissolvable nanosorbent in a centrifugeless ultrasound-enhanced air-agitated dispersive solid-phase extraction (USE-AA-D-SPE) method. This method was used for the separation and preconcentration of some metal ions including Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ prior to their determination using the micro-sampling flame atomic absorption spectrometry (MS-FAAS) technique. The most interesting aspect of this nanosorbent is its immediate dissolvability at pH values lower than 4. This capability drastically eliminates the elution step, leading to a great improvement in the extraction efficiency and a decrease in the extraction time. Also in this method, the use of a syringe nanofilter eliminates the need for the centrifugation step, which is time-consuming and essentially causes the analysis to be off-line. Several effective parameters governing the extraction efficiency including the sample solution pH, amount of nanosorbent, eluent condition, number of air-agitation cycles, and sonication time were investigated and optimized. Under the optimized conditions, the good linear dynamic ranges of 2-70, 6-360, 7-725, 7-370, and 8-450 ng mL -1 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ and Ni 2+ ions, respectively, with the correlation of determinations (R 2 s) higher than 0.997 were obtained. The limits of detection (LODs) were found to be 0.6, 1.7, 2.0, 2.1, and 2.4 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ ions, respectively. The intra-day and inter-day precisions (percent relative standard deviations (%RSDs) (n = 5)) were below 7.8%. The proposed method was also successfully applied for the extraction and determination of the target ions in different biological fluid and tap water samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Controlled assembly of silver nano-fluid in Heliotropium crispum extract: A potent anti-biofilm and bactericidal formulation

    Science.gov (United States)

    Khan, Faria; Hashmi, Muhammad Uzair; Khalid, Nauman; Hayat, Muhammad Qasim; Ikram, Aamer; Janjua, Hussnain A.

    2016-11-01

    The study describes the optimized method for silver nanoparticle (AgNPs) synthesis using Heliotropium crispum (HC) plant extract. Optimization of physicochemical parameters resulted in stable and rapidly assembled AgNPs. FTIR results suggest presence of plant phytochemicals that helped in the reduction, stabilization and capping of AgNPs. The assembled Ag nano-composites displayed the peak surface plasmon resonance (SPR) around 428 nm. The presence of uniquely assembled Ag-biomolecule composites, cap and stabilize nanoparticles in aqueous plant suspension. Spherical, uniform-shaped AgNPs with low poly-dispersion and average particle size of 42 nm and was determined through dynamic light scattering (DLS) and scanning election microscopy (SEM) which present robust interaction with microbes. The study also evaluates the antimicrobial and anti-biofilm properties of biologically synthesized AgNPs on clinical isolates of MRSA, Pseudomonas aeruginosa and Acinetobacter baumannii. Minimum inhibitory concentration (0.5 mg mL-1) of nanoparticles that presented bactericidal effect was made through inhibition assays on bacterial strains. The concentration which presented potent bactericidal response was then evaluated through growth inhibition in liquid medium for anti-biofilm studies at 2.0 mg mL-1. HC-Ag nanoparticles mediated anti-biofilm effects on Pseudomonas aeruginosa was revealed through SEM. Complete breakdown of biofilm's extracellular polymeric substances resulted after incubation with AgNPs. Peptidoglycan cell wall destruction was also revealed on planktonic bacterial images after 24 h of incubation.

  2. Duration of wound fluid secretion from chronic venous leg ulcers is critical for interleukin-1α, interleukin-1β, interleukin-8 levels and fibroblast activation

    DEFF Research Database (Denmark)

    Zillmer, Rikke; Trøstrup, Hannah; Karlsmark, Tonny

    2011-01-01

    Wound fluid collected from chronic wounds may be used as a simple gauge of the processes taking place in the tissue. There is lack of information on the optimal conditions for wound fluid procurement. We have studied possible diurnal variations and duration of wound fluid accumulation using reten...

  3. MaquiBright™ standardized maqui berry extract significantly increases tear fluid production and ameliorates dry eye-related symptoms in a clinical pilot trial.

    Science.gov (United States)

    Hitoe, S; Tanaka, J; Shimoda, H

    2014-09-01

    Dry eye symptoms, resulting from insufficient tear fluid generation, represent a considerable burden for a largely underestimated number of people. We concluded from earlier pre-clinical investigations that the etiology of dry eyes encompasses oxidative stress burden to lachrymal glands and that antioxidant MaquiBright™ Aristotelia chilensis berry extract helps restore glandular activity. In this pilot trial we investigated 13 healthy volunteers with moderately dry eyes using Schirmer test, as well as a questionnaire which allows for estimating the impact of dry eyes on daily routines. Study participants were assigned to one of two groups, receiving MaquiBright™ at daily dosage of either 30 mg (N.=7) or 60 mg (N.=6) over a period of 60 days. Both groups presented with significantly (Peye dryness on daily routines was evaluated employing the "Dry Eye-related Quality of life Score" (DEQS), with values spanning from zero (impact) to a maximum score of 60. Participants had comparable baseline values of 41.0±7.7 (30 mg) and 40.2±6.3 (60 mg). With 30 mg treatment the score significantly decreased to 21.8±3.9 and 18.9±3.9, after 30 and 60 days, respectively. With 60 mg treatment the DEQS significantly decreased to 26.9±5.3 and 11.1±2.7, after 30 and 60 days, respectively. Blood was drawn for safety analyses (complete blood rheology and -chemistry) at all three investigative time points without negative findings. In conclusion, while daily supplementation with 30 mg MaquiBright™ is effective, the dosage of 60 significantly increased tear fluid volume at all investigative time points and decreased dry eye symptoms to almost a quarter from initial values after two months treatment.

  4. A critical evaluation of fasted state simulating gastric fluid (FaSSGF) that contains sodium lauryl sulfate and proposal of a modified recipe.

    Science.gov (United States)

    Aburub, Aktham; Risley, Donald S; Mishra, Dinesh

    2008-01-22

    The aim of this work is to evaluate one of the most commonly used fasted state simulating gastric fluids (FaSSGFs), which contains sodium lauryl sulfate (SLS) (FaSSGF(SLS)), and propose a more appropriate surfactant concentration. Surface tension studies clearly show that the critical micelle concentration (CMC) of SLS in the relevant media (a media whose pH and sodium chloride concentration are representative of physiological conditions) is significantly lower (p<0.05) than 8.67 mM, which is the SLS concentration in FaSSGF(SLS). The CMC of SLS in the relevant media was determined to be 1.75 mM. Based on this a modified recipe is proposed in which the concentration of SLS is sufficient to achieve a surface tension similar to that in vivo without causing artificial micellar solubilization. Solubility, intrinsic dissolution, and GastroPlus modeling studies are presented to support and give rationale for the modified recipe. In addition, a comparison between the modified recipe and other FaSSGFs reported in the literature is made.

  5. A rapid MCM-41 dispersive micro-solid phase extraction coupled with LC/MS/MS for quantification of ketoconazole and voriconazole in biological fluids.

    Science.gov (United States)

    Yahaya, Noorfatimah; Sanagi, Mohd Marsin; Abd Aziz, Noorizan; Wan Ibrahim, Wan Aini; Nur, Hadi; Loh, Saw Hong; Kamaruzaman, Sazlinda

    2017-02-01

    A rapid dispersive micro-solid phase extraction (D-μ-SPE) combined with LC/MS/MS method was developed and validated for the determination of ketoconazole and voriconazole in human urine and plasma samples. Synthesized mesoporous silica MCM-41 was used as sorbent in d-μ-SPE of the azole compounds from biological fluids. Important D-μ-SPE parameters, namely type desorption solvent, extraction time, sample pH, salt addition, desorption time, amount of sorbent and sample volume were optimized. Liquid chromatographic separations were carried out on a Zorbax SB-C 18 column (2.1 × 100 mm, 3.5 μm), using a mobile phase of acetonitrile-0.05% formic acid in 5 mm ammonium acetate buffer (70:30, v/v). A triple quadrupole mass spectrometer with positive ionization mode was used for the determination of target analytes. Under the optimized conditions, the calibration curves showed good linearity in the range of 0.1-10,000 μg/L with satisfactory limit of detection (≤0.06 μg/L) and limit of quantitation (≤0.3 μg/L). The proposed method also showed acceptable intra- and inter-day precisions for ketoconazole and voriconazole from urine and human plasma with RSD ≤16.5% and good relative recoveries in the range 84.3-114.8%. The MCM-41-D-μ-SPE method proved to be rapid and simple and requires a small volume of organic solvent (200 μL); thus it is advantageous for routine drug analysis. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Evaluation of full S1 gene sequencing of classical and variant infectious bronchitis viruses extracted from allantoic fluid and FTA cards.

    Science.gov (United States)

    Manswr, Basim; Ball, Christopher; Forrester, Anne; Chantrey, Julian; Ganapathy, Kannan

    2018-05-01

    Sequence variability in the S1 gene determines the genotype of infectious bronchitis virus (IBV) strains. A single RT-PCR assay was developed to amplify and sequence the full S1 gene for six classical and variant IBVs (M41, D274, 793B, IS/885/00, IS/1494/06 and Q1) enriched in allantoic fluid (AF) or the same AF but inoculated onto Flinders Technology Association (FTA) cards. Representative strains from each genotype were grown in SPF eggs and RNA was extracted from AF. Full S1 gene amplification was achieved using primer A and primer 22.51. Products were sequenced using primer A, 1050+, 1380+ and SX3+ to obtain short sequences covering the full gene. Following serial dilutions of AF, detection limits of the partial assay were higher than those of the full S1 gene. Partial S1 sequences exhibited higher than average nucleotide similarity percentages (79%; 352bp) compared to full S1 sequences (77%; 1,756bp), suggesting that full S1 analysis allows greater strain differentiation. For IBV detection from AF inoculated FTA cards, four serotypes were incubated for up to 21 days at three temperatures; 4 o C, 24 o C and 40 o C. RNA was extracted and tested with partial and full S1 protocols. Through partial sequencing, all IBVs were successfully detected at all sampling points and storage temperatures. In contrast, using full S1 sequencing was not possible to amplify the gene beyond 14 days or when stored at 40°C. Data presented shows that for full S1 sequencing, a substantial amount of RNA is needed. Field samples collected onto FTA cards are unlikely to yield such quantity or quality.

  7. Analysis of particulate polycyclic aromatic hydrocarbons by on-line coupled supercritical fluid extraction-liquid chromatography-gas chromatography-mass spectrometry

    Science.gov (United States)

    Shimmo, Masahiko; Adler, Heidi; Hyötyläinen, Tuulia; Hartonen, Kari; Kulmala, Markku; Riekkola, Marja-Liisa

    An on-line supercritical fluid extraction-liquid chromatography-gas chromatography-mass spectrometry (SFE-LC-GC-MS) method was developed for the analysis of the particulate polycyclic aromatic hydrocarbons (PAHs). The limits of detection of the system for the quantification standards were in the range of 0.25-0.57 ng, while the limits of determinations for filter samples varied from 0.02 to 0.04 ng m -3 (24 h sampling). The linearity was excellent from 5 to 300 ng ( R2>0.967). The analysis could be carried out in a closed system without tedious manual sample pretreatment and with no risk of errors by contamination or loss of the analytes. The results of the SFE-LC-GC-MS method were comparable with those for Soxhlet and shake-flask extractions with GC-MS. The new method was applied to the analysis of PAHs collected by high-volume filter in the Helsinki area to study the seasonal trend of the concentrations. The individual PAH concentrations varied from 0.015 to more than 1 ng m -3, while total PAH concentrations varied from 0.81 to 5.68 ng m -3. The concentrations were generally higher in winter than in summer. The mass percentage of the total PAHs in total suspended particulates ranged from 2.85×10 -3% in July to 15.0×10 -3% in December. Increased emissions in winter, meteorological conditions, and more serious artefacts during the sampling in summer season may explain the concentration profiles.

  8. Memory-enhancing effect of a supercritical carbon dioxide fluid extract of the needles of Abies koreana on scopolamine-induced amnesia in mice.

    Science.gov (United States)

    Kim, Kanghyun; Bu, Youngmin; Jeong, Seungil; Lim, Jongpil; Kwon, Youngan; Cha, Dong Seok; Kim, Jinmo; Jeon, Sora; Eun, Jaesoon; Jeon, Hoon

    2006-08-01

    Abies koreana Wilson (A. koreana) is a shrub or broadly pyramidal evergreen tree endemic in the mountainous regions of South Korea. We obtained the essential oil (EO) from alpine needle leaves of A. koreana by the supercritical fluid extraction (SFE) method. EO was analyzed by gas chromatography-mass spectrometry (GC-MS), and 68 compounds were identified constituting 95.66% of the oil. The major components were elemol (11.17%), terpinen-4-ol (9.77%), sabinene (8.86%), 10(15)-cadien-4-ol (7.16%), alpha-terpineol (6.13%), alpha-pinene (6.07%) and gamma-terpinene (4.71%). To investigate the memory-enhancing effects, we conducted a passive avoidance test using a scopolamine (1 mg/kg, ip)-induced amnesia mouse model. A peritoneal injection of EO from A. koreana (100 mg/kg) showed a memory enhancing effect of 72.7% compared with the control. These results suggest that EO of A. koreana may be a useful therapeutic agent against such amnesia-inducing diseases as Alzheimer and vascular dementia.

  9. Escalated regeneration in sciatic nerve crush injury by the combined therapy of human amniotic fluid mesenchymal stem cells and fermented soybean extracts, Natto.

    Science.gov (United States)

    Pan, Hung-Chuan; Yang, Dar-Yu; Ho, Shu-Peng; Sheu, Meei-Ling; Chen, Chung-Jung; Hwang, Shiaw-Min; Chang, Ming-Hong; Cheng, Fu-Chou

    2009-08-23

    Attenuation of inflammatory cell deposits and associated cytokines prevented the apoptosis of transplanted stem cells in a sciatic nerve crush injury model. Suppression of inflammatory cytokines by fermented soybean extracts (Natto) was also beneficial to nerve regeneration. In this study, the effect of Natto on transplanted human amniotic fluid mesenchymal stem cells (AFS) was evaluated. Peripheral nerve injury was induced in SD rats by crushing a sciatic nerve using a vessel clamp. Animals were categorized into four groups: Group I: no treatment; Group II: fed with Natto (16 mg/day for 7 consecutive days); Group III: AFS embedded in fibrin glue; Group IV: Combination of group II and III therapy. Transplanted AFS and Schwann cell apoptosis, inflammatory cell deposits and associated cytokines, motor function, and nerve regeneration were evaluated 7 or 28 days after injury. The deterioration of neurological function was attenuated by AFS, Natto, or the combined therapy. The combined therapy caused the most significantly beneficial effects. Administration of Natto suppressed the inflammatory responses and correlated with decreased AFS and Schwann cell apoptosis. The decreased AFS apoptosis was in line with neurological improvement such as expression of early regeneration marker of neurofilament and late markers of S-100 and decreased vacuole formation. Administration of either AFS, or Natto, or combined therapy augmented the nerve regeneration. In conclusion, administration of Natto may rescue the AFS and Schwann cells from apoptosis by suppressing the macrophage deposits, associated inflammatory cytokines, and fibrin deposits.

  10. Escalated regeneration in sciatic nerve crush injury by the combined therapy of human amniotic fluid mesenchymal stem cells and fermented soybean extracts, Natto

    Directory of Open Access Journals (Sweden)

    Pan Hung-Chuan

    2009-08-01

    Full Text Available Abstract Attenuation of inflammatory cell deposits and associated cytokines prevented the apoptosis of transplanted stem cells in a sciatic nerve crush injury model. Suppression of inflammatory cytokines by fermented soybean extracts (Natto was also beneficial to nerve regeneration. In this study, the effect of Natto on transplanted human amniotic fluid mesenchymal stem cells (AFS was evaluated. Peripheral nerve injury was induced in SD rats by crushing a sciatic nerve using a vessel clamp. Animals were categorized into four groups: Group I: no treatment; Group II: fed with Natto (16 mg/day for 7 consecutive days; Group III: AFS embedded in fibrin glue; Group IV: Combination of group II and III therapy. Transplanted AFS and Schwann cell apoptosis, inflammatory cell deposits and associated cytokines, motor function, and nerve regeneration were evaluated 7 or 28 days after injury. The deterioration of neurological function was attenuated by AFS, Natto, or the combined therapy. The combined therapy caused the most significantly beneficial effects. Administration of Natto suppressed the inflammatory responses and correlated with decreased AFS and Schwann cell apoptosis. The decreased AFS apoptosis was in line with neurological improvement such as expression of early regeneration marker of neurofilament and late markers of S-100 and decreased vacuole formation. Administration of either AFS, or Natto, or combined therapy augmented the nerve regeneration. In conclusion, administration of Natto may rescue the AFS and Schwann cells from apoptosis by suppressing the macrophage deposits, associated inflammatory cytokines, and fibrin deposits.

  11. Characterisation of dissolved organic compounds in hydrothermal fluids by stir bar sorptive extraction - gas chomatography - mass spectrometry. Case study: the Rainbow field (36°N, Mid-Atlantic Ridge

    Directory of Open Access Journals (Sweden)

    Konn Cecile

    2012-11-01

    Full Text Available Abstract The analysis of the dissolved organic fraction of hydrothermal fluids has been considered a real challenge due to sampling difficulties, complexity of the matrix, numerous interferences and the assumed ppb concentration levels. The present study shows, in a qualitative approach, that Stir Bar Sorptive Extraction (SBSE followed by Thermal Desorption – Gas Chromatography – Mass Spectrometry (TD-GC-MS is suitable for extraction of small sample volumes and detection of a wide range of volatile and semivolatile organic compounds dissolved in hydrothermal fluids. In a case study, the technique was successfully applied to fluids from the Rainbow ultramafic-hosted hydrothermal field located at 36°14’N on the Mid-Atlantic Ridge (MAR. We show that n-alkanes, mono- and poly- aromatic hydrocarbons as well as fatty acids can be easily identified and their retention times determined. Our results demonstrate the excellent repeatability of the method as well as the possibility of storing stir bars for at least three years without significant changes in the composition of the recovered organic matter. A preliminary comparative investigation of the organic composition of the Rainbow fluids showed the great potential of the method to be used for assessing intrafield variations and carrying out time series studies. All together our results demonstrate that SBSE-TD-GC-MS analyses of hydrothermal fluids will make important contributions to the understanding of geochemical processes, geomicrobiological interactions and formation of mineral deposits.

  12. Clinical Determinants of Target Non-Attainment of Linezolid in Plasma and Interstitial Space Fluid: A Pooled Population Pharmacokinetic Analysis with Focus on Critically Ill Patients.

    Science.gov (United States)

    Minichmayr, Iris K; Schaeftlein, André; Kuti, Joseph L; Zeitlinger, Markus; Kloft, Charlotte

    2017-06-01

    We aimed to assess linezolid pharmacokinetics in the plasma and interstitial space fluid (ISF) of patients with sepsis, diabetic foot infections or cystic fibrosis and healthy volunteers. The impacts of joint characteristics and disease on plasma and target-site exposure were to be identified together with the benefit of dose intensification in critically ill patients. Rich plasma (n = 1598) and ISF concentrations in subcutaneous adipose (n = 1430) and muscle tissue (n = 1089) measured by microdialysis were pooled from three clinical trials with 51 individuals receiving 600 mg of intravenous and oral linezolid. All data were analysed simultaneously by a population approach also considering methodological aspects of microdialysis. The impact of covariates on the attainment of the pharmacokinetic/pharmacodynamic targets, AUC/MIC = 100 (area under the concentration-time curve/minimum inhibitory concentration) and fT >MIC  = 99 % (time that unbound concentrations exceed the MIC), was assessed by deterministic and Monte Carlo simulations. A two-compartment pharmacokinetic model with nonlinear elimination and tissue distribution factors accounting for differences between plasma and ISF concentrations adequately predicted all measurements. Clearance (CL) was highest in septic patients (11.2 L/h vs. CL Healthy /CL Cystic fibrosis /CL Diabetic  = 7.67/6.87/6.35 L/h). Penetration into subcutaneous adipose ISF was lowest in diabetic patients (-34.9 % compared with healthy volunteers). Creatinine clearance and total body weight further impacted linezolid exposure. To achieve timely efficacious therapy, front-loaded dosing and continuous infusion seemed beneficial in septic patients. Our analysis suggests that after standard linezolid doses, particularly patients with sepsis and conserved renal function are at risk of not attaining pharmacokinetic/pharmacodynamic targets and would benefit from initial dose intensification.

  13. Métodos de extração e/ou concentração de compostos encontrados em fluidos biológicos para posterior determinação cromatográfica Methods of extraction and/or concentration of compounds found in biological fluids for subsequent chromatographic determination

    Directory of Open Access Journals (Sweden)

    Sonia C. N. Queiroz

    2001-02-01

    Full Text Available When organic compounds present in biological fluids are analysed by chromatographic methods, it is generally necessary to carry out a prior sample preparation due the high complexity of this type of sample, especially when the compounds to be determinated are found in very low concentrations. This article describes some of the principal methods for sample preparation in analyses of substances present in biological fluids. The methods include liquid-liquid extraction, solid phase extraction, supercritical fluid extraction and extraction using solid and liquid membranes. The advantages and disadvantages of these methods are discussed.

  14. Thermophysical properties of supercritical fluids and fluid mixtures

    International Nuclear Information System (INIS)

    Sengers, J.V.

    1989-08-01

    The purpose of the research is to extend the theory of critical phenomena in fluids and fluid mixtures to obtain scientifically based equations that include the crossover from the asymptotic singular behavior of the thermophysical properties close to the critical point to the regular behavior of these properties far away from the critical point

  15. Supercritical-Carbon Dioxide Fluid Extract from Chrysanthemum indicum Enhances Anti-Tumor Effect and Reduces Toxicity of Bleomycin in Tumor-Bearing Mice

    Directory of Open Access Journals (Sweden)

    Hong-Mei Yang

    2017-02-01

    Full Text Available Bleomycin (BLM, a family of anti-tumor drugs, was reported to exhibit severe side effects limiting its usage in clinical treatment. Therefore, finding adjuvants that enhance the anti-tumor effect and reduce the detrimental effect of BLM is a prerequisite. Chrysanthemum indicum, an edible flower, possesses abundant bioactivities; the supercritical-carbon dioxide fluid extract from flowers and buds of C. indicum (CISCFE have strong anti-inflammatory, anti-oxidant, and lung protective effects. However, the role of CISCFE combined with BLM treatment on tumor-bearing mice remains unclear. The present study aimed to investigate the potential synergistic effect and the underlying mechanism of CISCFE combined with BLM in the treatment of hepatoma 22 (H22 tumor-bearing mice. The results suggested that the oral administration of CISCFE combined with BLM could markedly prolong the life span, attenuate the BLM-induced pulmonary fibrosis, suppress the production of pro-inflammatory cytokines (interleukin-6, tumor necrosis factor-α, activities of myeloperoxidase, and malondiadehyde. Moreover, CISCFE combined with BLM promoted the ascites cell apoptosis, the activities of caspases 3 and 8, and up-regulated the protein expression of p53 and down-regulated the transforming growth factor-β1 by activating the gene expression of miR-29b. Taken together, these results indicated that CISCFE could enhance the anti-cancer activity of BLM and reduce the BLM-induced pulmonary injury in H22 tumor-bearing mice, rendering it as a potential adjuvant drug with chemotherapy after further investigation in the future.

  16. Applications of subcritical and supercritical water conditions for extraction, hydrolysis, gasification, and carbonization of biomass: a critical review

    Directory of Open Access Journals (Sweden)

    D. Lachos-Perez

    2017-06-01

    Full Text Available This review summarizes the recent essential aspects of subcritical and supercritical water technology applied tothe extraction, hydrolysis, carbonization, and gasification processes. These are clean and fast technologies which do not need pretreatment, require less reaction time, generate less corrosion and residues, do not usetoxic solvents, and reduce the synthesis of degradation byproducts. The equipment design, process parameters, and types of biomass used for subcritical and supercritical water process are presented. The benefits of catalysis to improve process efficiency are addressed. Bioactive compounds, reducing sugars, hydrogen, biodiesel, and hydrothermal char are the final products of subcritical and supercritical water processes. The present review also revisits advances of the research trends in the development of subcriticaland supercritical water process technologies.

  17. Mixing and Processing of Complex Biological Fluids

    National Research Council Canada - National Science Library

    Liepmann, Dorian

    2003-01-01

    ... of microfluidic control on the makeup and molecular structure of biological fluids. For this project, we focused on two critical fluids that are biologically significant and that are of critical importance to DoD...

  18. Supercritical fluid technology: concepts and pharmaceutical applications.

    Science.gov (United States)

    Deshpande, Praful Balavant; Kumar, G Aravind; Kumar, Averineni Ranjith; Shavi, Gopal Venkatesh; Karthik, Arumugam; Reddy, Meka Sreenivasa; Udupa, Nayanabhirama

    2011-01-01

    In light of environmental apprehension, supercritical fluid technology (SFT) exhibits excellent opportunities to accomplish key objectives in the drug delivery sector. Supercritical fluid extraction using carbon dioxide (CO(2)) has been recognized as a green technology. It is a clean and versatile solvent with gas-like diffusivity and liquid-like density in the supercritical phase, which has provided an excellent alternative to the use of chemical solvents. The present commentary provides an overview of different techniques using supercritical fluids and their future opportunity for the drug delivery industry. Some of the emerging applications of SFT in pharmaceuticals, such as particle design, drug solubilization, inclusion complex, polymer impregnation, polymorphism, drug extraction process, and analysis, are also covered in this review. The data collection methods are based on the recent literature related to drug delivery systems using SFT platforms. SFT has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This cutting-edge technology is growing predominantly to surrogate conventional unit operations in relevance to the pharmaceutical production process. Supercritical fluid technology has recently drawn attention in the field of pharmaceuticals. It is a distinct conception that utilizes the solvent properties of supercritical fluids above their critical temperature and pressure, where they exhibit both liquid-like and gas-like properties, which can enable many pharmaceutical applications. For example, the liquid-like properties provide benefits in extraction processes of organic solvents or impurities, drug solubilization, and polymer plasticization, and the gas-like features facilitate mass transfer processes. It has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This review is

  19. Avaliação do potencial antioxidante de extratos ativos de plantas obtidos por extração com fluido supercrítico Evaluation of the antioxidant potential of plant extracts obtained by supercritical fluid extraction

    Directory of Open Access Journals (Sweden)

    Oselys Rodriguez Justo

    2008-01-01

    Full Text Available The aim of this work was to evaluate the antioxidant properties of ginger and rosemary extracts, obtained by supercritical extraction. The extracts were characterized by HPLC, GC-MS, phenolic compounds content and antioxidant activity. The main active compounds were identified and high content of phenolic compounds was observed. The extracts presented high antioxidant activity against the free radicals ABTS•+ (350 and 200 mM Trolox/g, for ginger and rosemary, respectively and DPPH•+ (145 and 80 mM Trolox/g, for ginger and rosemary, respectively. These results suggested that the attained extracts are potential substitutes of synthetic antioxidants used in chemical, food and pharmaceutical industries.

  20. New Comment on Gibbs Density Surface of Fluid Argon: Revised Critical Parameters, L. V. Woodcock, Int. J. Thermophys. (2014) 35, 1770-1784

    Science.gov (United States)

    Umirzakov, I. H.

    2018-01-01

    The author comments on an article by Woodcock (Int J Thermophys 35:1770-1784, 2014), who investigates the idea of a critical line instead of a single critical point using the example of argon. In the introduction, Woodcock states that "The Van der Waals critical point does not comply with the Gibbs phase rule. Its existence is based upon a hypothesis rather than a thermodynamic definition". The present comment is a response to the statement by Woodcock. The comment mathematically demonstrates that a critical point is not only based on a hypothesis that is used to define values of two parameters of the Van der Waals equation of state. Instead, the author argues that a critical point is a direct consequence of the thermodynamic phase equilibrium conditions resulting in a single critical point. It is shown that the thermodynamic conditions result in the first and second partial derivatives of pressure with respect to volume at constant temperature at a critical point equal to zero which are usual conditions of an existence of a critical point.

  1. Measuring (1,3)-β-D-glucan in tracheal aspirate, bronchoalveolar lavage fluid, and serum for detection of suspected Candida pneumonia in immunocompromised and critically ill patients: a prospective observational study.

    Science.gov (United States)

    Su, Kang-Cheng; Chou, Kun-Ta; Hsiao, Yi-Han; Tseng, Ching-Min; Su, Vincent Yi-Fong; Lee, Yu-Chin; Perng, Diahn-Warng; Kou, Yu Ru

    2017-04-08

    While Candida pneumonia is life-threatening, biomarker measurements to early detect suspected Candida pneumonia are lacking. This study compared the diagnostic values of measuring levels of (1, 3)-β-D-glucan in endotracheal aspirate, bronchoalveolar lavage fluid, and serum to detect suspected Candida pneumonia in immunocompromised and critically ill patients. This prospective, observational study enrolled immunocompromised, critically ill, and ventilated patients with suspected fungal pneumonia in mixed intensive care units from November 2010 to October 2011. Patients with D-glucan confounding factors or other fungal infection were excluded. Endotracheal aspirate, bronchoalveolar lavage fluid and serum were collected from each patient to perform a fungal smear, culture, and D-glucan assay. After screening 166 patients, 31 patients completed the study and were categorized into non-Candida pneumonia/non-candidemia (n = 18), suspected Candida pneumonia (n = 9), and non-Candida pneumonia/candidemia groups (n = 4). D-glucan levels in endotracheal aspirate or bronchoalveolar lavage were highest in suspected Candida pneumonia, while the serum D-glucan level was highest in non-Candida pneumonia/candidemia. In all patients, the D-glucan value in endotracheal aspirate was positively correlated with that in bronchoalveolar lavage fluid. For the detection of suspected Candida pneumonia, the predictive performance (sensitivity/specificity/D-glucan cutoff [pg/ml]) of D-glucan in endotracheal aspirate and bronchoalveolar lavage fluid was 67%/82%/120 and 89%/86%/130, respectively, accounting for areas under the receiver operating characteristic curve of 0.833 and 0.939 (both P pneumonia in the absence of concurrent candidemia. D-glucan levels in both endotracheal aspirate and bronchoalveolar lavage, but not in serum, provide good diagnostic values to detect suspected Candida pneumonia and to serve as potential biomarkers for early detection in this patient population.

  2. Use of supercritical carbon dioxide extraction

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Masayuki (Niigata Univ., Faculty of Engineering, Niigata, (Japan))

    1989-09-25

    Supercritical fluid extraction is a novel diffusion and separation technique which exploits simultaneously the increase of vapor pressure and the difference of chemical affinities of fluids near the critical point. A solvent which is used as the supercritical fluid has the following features: the critical point exists in the position of relatively ease of handling, the solvent is applicable to the extraction of a physiological active substance of thermal instability. Carbon dioxide as the solvent is non-flammable, non-corrosive, non-toxic, cheap, and readily available of high purity. The results of studies on the use of supercritical carbon dioxide (SC-CO{sub 2}) as a solvent for natural products in the fermentation and food industries, were collected. SC-CO{sub 2} extraction are used in many fields, examples for the application are as follows: removal of organic solvents from antibiotics; extraction of vegetable oils contained in wheat germ oil, high quality mustard seeds, rice bran and so on; brewing of sake using rice and rice-koji; use as a non-aqueous medium for the synthesis of precursors of the Aspartame; and use in sterilization. 66 refs., 17 figs., 21 tabs.

  3. ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO2

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.

    2011-04-01

    ECO2M is a fluid property module for the TOUGH2 simulator (Version 2.0) that was designed for applications to geologic storage of CO{sub 2} in saline aquifers. It includes a comprehensive description of the thermodynamics and thermophysical properties of H{sub 2}O - NaCl - CO{sub 2} mixtures, that reproduces fluid properties largely within experimental error for temperature, pressure and salinity conditions in the range of 10 C {le} T {le} 110 C, P {le} 600 bar, and salinity from zero up to full halite saturation. The fluid property correlations used in ECO2M are identical to the earlier ECO2N fluid property package, but whereas ECO2N could represent only a single CO{sub 2}-rich phase, ECO2M can describe all possible phase conditions for brine-CO{sub 2} mixtures, including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO{sub 2}. This allows for seamless modeling of CO{sub 2} storage and leakage. Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO{sub 2}-rich) phase, as well as two-and three-phase mixtures of aqueous, liquid CO{sub 2} and gaseous CO{sub 2} phases. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. TOUGH2/ECO2M is upwardly compatible with ECO2N and accepts ECO2N-style inputs. This report gives technical specifications of ECO2M and includes instructions for preparing input data. Code applications are illustrated by means of several sample problems, including problems that had been previously solved with TOUGH2/ECO2N.

  4. Thermo-fluid-dynamics of natural convection around a heated vertical plate with a critical assessment of the standard similarity theory

    Science.gov (United States)

    Guha, Abhijit; Nayek, Subhajit

    2017-10-01

    A compulsory element of all textbooks on natural convection has been a detailed similarity analysis for laminar natural convection on a heated semi-infinite vertical plate and a routinely used boundary condition for such analysis is u = 0 at x = 0. The same boundary condition continues to be assumed in related theoretical analyses, even in recent publications. The present work examines the consequence of this long-held assumption, which appears to have never been questioned in the literature, on the fluid dynamics and heat transfer characteristics. The assessment has been made here by solving the Navier-Stokes equations numerically with two boundary conditions—one with constrained velocity at x = 0 to mimic the similarity analysis and the other with no such constraints simulating the case of a heated vertical plate in an infinite expanse of the quiescent fluid medium. It is found that the fluid flow field given by the similarity theory is drastically different from that given by the computational fluid dynamics (CFD) simulations with unconstrained velocity. This also reflects on the Nusselt number, the prediction of the CFD simulations with unconstrained velocity being quite close to the experimentally measured values at all Grashof and Prandtl numbers (this is the first time theoretically computed values of the average Nusselt number N u ¯ are found to be so close to the experimental values). The difference of the Nusselt number (Δ N u ¯ ) predicted by the similarity theory and that by the CFD simulations (as well as the measured values), both computed with a high degree of precision, can be very significant, particularly at low Grashof numbers and at Prandtl numbers far removed from unity. Computations show that within the range of investigations (104 ≤ GrL ≤ 108, 0.01 ≤ Pr ≤ 100), the maximum value of Δ N u ¯ may be of the order 50%. Thus, for quantitative predictions, the available theory (i.e., similarity analysis) can be rather inadequate. With

  5. Determinação de cumarina em extrato fluido e tintura de guaco por espectrofotometria derivada de primeira ordem Determination of coumarin in fluid extract and tinture of "guaco" by first derivative spectrophotometry

    Directory of Open Access Journals (Sweden)

    Adriana de Carvalho Osório

    2004-12-01

    Full Text Available O objetivo do trabalho foi desenvolver um método de doseamento de cumarina (1,2-benzopirano em extrato fluido e tintura de guaco (Mikania glomerata Sprengel. O método desenvolvido foi por espectrofotometria derivada de primeira ordem, que se mostrou preciso, exato, reprodutível e de fácil execução.The objective of this work was to develop a method for coumarin(1,2-benzopyran dosage in fluid extract and tinture of "guaco" (Mikania glomerata Sprengel. First derivative spectrophotometry was developed and proved to be accurate, exact, reprodutive and of easy execution.

  6. Determination of Gemfibrozil (Lipitor and Lopid in Water, Biological Fluids and Drug Matrix by Dispersive Liquid-Liquid micro Extraction (DLLME and Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Ghorbani A.

    2014-07-01

    Full Text Available In this study Dispersive liquid-liquid micro extraction (DLLME coupled with High performance liquid chromatography was applied for the determination of Gemfibrozil in water, drug`s matrix and biological liquids (human plasma and urine. In this method, the appropriate mixture of extraction solvent (200 μl chlorophorm and disperser solvent (1 ml methanol are injected rapidly into the aqueous sample (10.0 ml by syringe, cloudy solution is formed that consisted of fine particles of extraction solvent which is dispersed entirely into aqueous phase. The mixture was centrifuged and the extraction solvent is sedimented on the bottom of the conical test tube. 50 μl of the sedimented phase is puted in a vial and it`s solvent is evaporated. Then 1ml methanol injected to vial and 20 μL of it injected into the HPLC for separation and determination of Gemfibrozil. Some important parameters, such as kind of extraction and disperser solvent, volume of them, extraction time, pH and ionic strength of the aqueous feed solution were optimized. Under the optimum conditions, the enrichment factors and extraction recoveries were 10 and 93.64%. The linear range was (0.1-100.0 mgl-1, limit of detection was 12.3 mgl-1. The relative standard deviations (RSD for 2 mgl-1 of Gemfibrozil in water were 1.3%, (n=10.

  7. Solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, D.M.; Latimer, E.G.

    1988-01-05

    It is an object of this invention to provide for the demetallization and general upgrading of heavy oil via a solvent extracton process, and to improve the efficiency of solvent extraction operations. The yield and demetallization of product oil form heavy high-metal content oil is maximized by solvent extractions which employ either or all of the following techniques: premixing of a minor amount of the solvent with feed and using countercurrent flow for the remaining solvent; use of certain solvent/free ratios; use of segmental baffle tray extraction column internals and the proper extraction column residence time. The solvent premix/countercurrent flow feature of the invention substantially improves extractions where temperatures and pressures above the critical point of the solvent are used. By using this technique, a greater yield of extract oil can be obtained at the same metals content or a lower metals-containing extract oil product can be obtained at the same yield. Furthermore, the premixing of part of the solvent with the feed before countercurrent extraction gives high extract oil yields and high quality demetallization. The solvent/feed ratio features of the invention substanially lower the captial and operating costs for such processes while not suffering a loss in selectivity for metals rejection. The column internals and rsidence time features of the invention further improve the extractor metals rejection at a constant yield or allow for an increase in extract oil yield at a constant extract oil metals content. 13 figs., 3 tabs.

  8. Quantitative aspects of directly coupled supercritical fluid extraction-capillary gas chromatography with a conventional split/splitless injector as interface

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.

    1993-01-01

    The quant. aspects of online supercrit. fluid extn.-capillary gas chromatog. (SFE-GC) with a split/splitless injector as interface were studied. Special attention was paid to the discrimination behavior and the reproducibility of the split/splitless interface. A simple exptl. set-up is proposed that

  9. Molecularly imprinted polymer for the selective extraction of cocaine and its metabolites, benzoylecgonine and ecgonine methyl ester, from biological fluids before LC-MS analysis.

    Science.gov (United States)

    Thibert, Valérie; Legeay, Patrice; Chapuis-Hugon, Florence; Pichon, Valérie

    2014-02-15

    Considering the important complexity of biological samples, a molecularly imprinted polymer (MIP) was applied to the selective extraction of cocaine and its two main metabolites, benzoylecgonine and ecgonine methyl ester from biological samples. The MIP was imprinted with cocaine and it was synthesized in acetonitrile with methacrylic acid as a functional monomer and ethylene glycol dimethacrylate as a crosslinker. The selectivity of the MIP was first assessed for the three target analytes in acetonitrile with recoveries higher than 80% on the MIP and lower than 30% on the non-imprinted polymer (NIP). The MIP was then evaluated for the selective extraction of these targets from real aqueous media, i.e. serum and urine samples. The pH adjustment of the sample as well as the optimization of the washing step led to a very selective extraction of cocaine from these media. A LOQ of 0.5ng/mL was obtained for cocaine in urine. Concerning cocaine metabolites, benzoylecgonine and ecgonine methyl ester, they were first extracted from urine by liquid-liquid extraction and the resulting extract was purified on the MIP. The results obtained with the MIP as compared to the LLE alone showed the great potential of the MIP extraction for the clean-up of the biological matrix. This procedure was tested for the extraction of the analytes from urine samples, leading to a very selective protocol with LOQs of 0.09ng/mL, 0.4ng/mL and 1.1ng/mL for cocaine, benzolecgonine and ecgonine methyl ester respectively in urine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Hollow fiber-based liquid phase microextraction combined with high-performance liquid chromatography for extraction and determination of some antidepressant drugs in biological fluids.

    Science.gov (United States)

    Esrafili, Ali; Yamini, Yadollah; Shariati, Shahab

    2007-12-05

    The applicability of hollow fiber-based liquid phase microextraction (HF-LPME) was evaluated for the extraction and preconcentration of three antidepressant drugs (amitriptyline, imipramine and sertraline) prior to their determination by HPLC-UV. The target drugs were extracted from 11.0 mL of aqueous solution with pH 12.0 (source phase) into an organic extracting solvent (n-dodecane) impregnated in the pores of a hollow fiber and finally back extracted into 24 microL of aqueous solution located inside the lumen of the hollow fiber and adjusted to pH 2.1 using 0.1M of H3PO4 (receiving phase). The extraction was performed due to pH gradient between the inside and outside of the hollow fiber membrane. In order to obtain high extraction efficiency, the parameters affecting the HF-LPME including pH of the source and receiving phases, the type of organic phase, ionic strength and volume of the source phase, stirring rate and extraction time were studied and optimized. Under the optimized conditions, enrichment factors up to 300 were achieved and the relative standard deviation (R.S.D.%) of the method was in the range of 2-12%. The calibration curves were obtained in the range of 5-500 microg L(-1) with reasonable linearity (R2>0.998) and the limits of detection (LODs) ranged between 0.5 and 0.7 microg L(-1) (based on S/N=3). Finally, the applicability of the proposed method was evaluated by extraction and determination of the drugs in urine, plasma and tap water samples. The results indicated that hollow fiber microextraction method has excellent clean-up and high-preconcentration factor and can be served as a simple and sensitive method for monitoring of antidepressant drugs in the biological samples.

  11. Magnetocaloric effect and critical behavior in melt-extracted Gd{sub 60}Co{sub 15}Al{sub 25} microwires

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Dawei; Jiang, Sida; Chen, Dongming; Liu, Yanfen; Sun, Jianfei [School of Materials Science and Engineering, Harbin Institute of Technology (China); Shen, Hongxian [School of Materials Science and Engineering, Harbin Institute of Technology (China); Institute of Materials and Department of Physics, University of South Florida, Tampa, FL (United States); Liu, Jingshun [School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot (China); Phan, Manh-Huong [Institute of Materials and Department of Physics, University of South Florida, Tampa, FL (United States); Wang, Huan; Qin, Faxiang [Institute for Composites Science and Innovation (InCSI), College of Materials Science and Engineering, Zhejiang University, Hangzhou (China)

    2015-09-15

    High-quality Gd{sub 60}Co{sub 15}Al{sub 25} microwires with an average diameter of 40 μm were successfully fabricated by the melt-extraction method. The as-cast microwires undergo a second-order paramagnetic to ferromagnetic (PM-FM) transition at ∝100 K. Large values of the magnetic entropy change (-ΔS{sub M} ∝9.73 J kg{sup -1} K{sup -1}) and the refrigerant capacity (RC ∝732 J kg{sup -1}) are achieved for a field change of 5 T. A careful analysis of critical exponents near the PM-FM transition indicates the significant effects of structural disorder on the long-range ferromagnetic interaction and the magnetocaloric response of the microwires. The excellent magnetocaloric properties make the Gd{sub 60}Co{sub 15}Al{sub 25} microwires very promising for use in magnetic refrigerators operating in the liquid nitrogen temperature range. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Organic solvent-free air-assisted liquid-liquid microextraction for optimized extraction of illegal azo-based dyes and their main metabolite from spices, cosmetics and human bio-fluid samples in one step.

    Science.gov (United States)

    Barfi, Behruz; Asghari, Alireza; Rajabi, Maryam; Sabzalian, Sedigheh

    2015-08-15

    Air-assisted liquid-liquid microextraction (AALLME) has unique capabilities to develop as an organic solvent-free and one-step microextraction method, applying ionic-liquids as extraction solvent and avoiding centrifugation step. Herein, a novel and simple eco-friendly method, termed one-step air-assisted liquid-liquid microextraction (OS-AALLME), was developed to extract some illegal azo-based dyes (including Sudan I to IV, and Orange G) from food and cosmetic products. A series of experiments were investigated to achieve the most favorable conditions (including extraction solvent: 77μL of 1-Hexyl-3-methylimidazolium hexafluorophosphate; sample pH 6.3, without salt addition; and extraction cycles: 25 during 100s of sonication) using a central composite design strategy. Under these conditions, limits of detection, linear dynamic ranges, enrichment factors and consumptive indices were in the range of 3.9-84.8ngmL(-1), 0.013-3.1μgmL(-1), 33-39, and 0.13-0.15, respectively. The results showed that -as well as its simplicity, fastness, and use of no hazardous disperser and extraction solvents- OS-AALLME is an enough sensitive and efficient method for the extraction of these dyes from complex matrices. After optimization and validation, OS-AALLME was applied to estimate the concentration of 1-amino-2-naphthol in human bio-fluids as a main reductive metabolite of selected dyes. Levels of 1-amino-2-naphthol in plasma and urinary excretion suggested that this compound may be used as a new potential biomarker of these dyes in human body. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The fluid flow consequences of CO2 migration from 1000 to 600 metres upon passing the critical conditions of CO2

    NARCIS (Netherlands)

    Meer, L.G.H.; Hofstee, C.; Orlic, B.

    2009-01-01

    The minimum injection depth for the storage of CO2 is normally set at 800 metres. At and beyond this depth in the subsurface conditions exist where CO2 is in a so-called critical state. The supercritical CO2 has a viscosity comparable to that of a normal gas and a liquid-like density, Due to the

  14. Low-voltage electrically-enhanced microextraction as a novel technique for simultaneous extraction of acidic and basic drugs from biological fluids.

    Science.gov (United States)

    Seidi, Shahram; Yamini, Yadollah; Rezazadeh, Maryam; Esrafili, Ali

    2012-06-22

    In the present work, for the first time a new set-up was presented for simultaneous extraction of acidic and basic drugs using a recent novel electrically-enhanced microextraction technique, termed electromembrane extraction at low voltages followed by high performance liquid chromatography with ultraviolet detection. Nalmefene (NAL) as a basic drug and diclofenac (DIC) as an acidic drug were extracted from 24 mL aqueous sample solutions at neutral pH into 10 μL of each acidified (HCl 50 mM) and basic (NaOH 50 mM) acceptor solution, respectively. Supported liquid membranes including 2-nitrophenyl octyl ether containing 5% di-(2-ethylhexyl) phosphate and 1-octanol were used to ensure efficient extraction of NAL and DIC, respectively. Low voltage of 40 V was applied over the SLMs during 14 min extraction time. The influences of fundamental parameters affecting the transport of target drugs were optimized using experimental design. Under optimal conditions, NAL and DIC were extracted with extraction recoveries of 12.5 and 14.6, respectively, which corresponded to preconcentration factors of 300 and 350, respectively. The proposed technique provided good linearity with correlation coefficient values higher than 0.9956 over a concentration range of 8-500 μg L⁻¹ and 12-500 μg L⁻¹ for NAL and DIC, respectively. Limits of detection and quantifications, and intra-day precisions (n=3) were less than 4 μg L⁻¹, 12 μg L⁻¹, and 10.1%, respectively. Extraction and determination of NAL and DIC in human urine samples were successfully performed. In light of the data obtained in the present work, this new set-up for EME with low voltages has a future potential as a simple, selective, and fast sample preparation technique for simultaneous extraction and determination of acidic and basic drugs in different complicated matrices. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Modeling seismic stimulation: Enhanced non-aqueous fluid extraction from saturated porous media under pore-pressure pulsing at low frequencies

    Science.gov (United States)

    Lo, Wei-Cheng; Sposito, Garrison; Huang, Yu-Han

    2012-03-01

    Seismic stimulation, the application of low-frequency stress-pulsing to the boundary of a porous medium containing water and a non-aqueous fluid to enhance the removal of the latter, shows great promise for both contaminated groundwater remediation and enhanced oil recovery, but theory to elucidate the underlying mechanisms lag significantly behind the progress achieved in experimental research. We address this conceptual lacuna by formulating a boundary-value problem to describe pore-pressure pulsing at seismic frequencies that is based on the continuum theory of poroelasticity for an elastic porous medium permeated by two immiscible fluids. An exact analytical solution is presented that is applied numerically using elasticity parameters and hydraulic data relevant to recent proof-of-principle laboratory experiments investigating the stimulation-induced mobilization of trichloroethene (TCE) in water flowing through a compressed sand core. The numerical results indicated that significant stimulation-induced increases of the TCE concentration in effluent can be expected from pore-pressure pulsing in the frequency range of 25-100 Hz, which is in good agreement with what was observed in the laboratory experiments. Sensitivity analysis of our numerical results revealed that the TCE concentration in the effluent increases with the porous medium framework compressibility and the pulsing pressure. Increasing compressibility also leads to an optimal stimulation response at lower frequencies, whereas changing the pulsing pressure does not affect the optimal stimulation frequency. Within the context of our model, the dominant physical cause for enhancement of non-aqueous fluid mobility by seismic stimulation is the dilatory motion of the porous medium in which the solid and fluid phases undergo opposite displacements, resulting in stress-induced changes of the pore volume.

  16. Quantitative aspects of directly coupled supercritical fluid extraction-capillary gas chromatography with a conventional split/splitless injector as interface

    OpenAIRE

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.

    1993-01-01

    The quant. aspects of online supercrit. fluid extn.-capillary gas chromatog. (SFE-GC) with a split/splitless injector as interface were studied. Special attention was paid to the discrimination behavior and the reproducibility of the split/splitless interface. A simple exptl. set-up is proposed that allows accurate quantitation in online SFE-split GC. The results obtained in online SFE-GC compare favorably with those from conventional GC with split injection. Discrimination is absent when wor...

  17. Personalised fluid resuscitation in the ICU: still a fluid concept?

    Science.gov (United States)

    van Haren, Frank

    2017-12-28

    The administration of intravenous fluid to critically ill patients is one of the most common, but also one of the most fiercely debated, interventions in intensive care medicine. Even though many thousands of patients have been enrolled in large trials of alternative fluid strategies, consensus remains elusive and practice is widely variable. Critically ill patients are significantly heterogeneous, making a one size fits all approach unlikely to be successful.New data from basic, animal, and clinical research suggest that fluid resuscitation could be associated with significant harm. There are several important limitations and concerns regarding fluid bolus therapy as it is currently being used in clinical practice. These include, but are not limited to: the lack of an agreed definition; limited and short-lived physiological effects; no evidence of an effect on relevant patient outcomes; and the potential to contribute to fluid overload, specifically when fluid responsiveness is not assessed and when targets and safety limits are not used.Fluid administration in critically ill patients requires clinicians to integrate abnormal physiological parameters into a clinical decision-making model that also incorporates the likely diagnosis and the likely risk or benefit in the specific patient's context. Personalised fluid resuscitation requires careful attention to the mnemonic CIT TAIT: context, indication, targets, timing, amount of fluid, infusion strategy, and type of fluid.The research agenda should focus on experimental and clinical studies to: improve our understanding of the physiological effects of fluid infusion, e.g. on the glycocalyx; evaluate new types of fluids; evaluate novel fluid minimisation protocols; study the effects of a no-fluid strategy for selected patients and scenarios; and compare fluid therapy with other interventions. The adaptive platform trial design may provide us with the tools to evaluate these types of interventions in the intrinsically

  18. A Systematic Approach of Employing Quality by Design Principles: Risk Assessment and Design of Experiments to Demonstrate Process Understanding and Identify the Critical Process Parameters for Coating of the Ethylcellulose Pseudolatex Dispersion Using Non-Conventional Fluid Bed Process.

    Science.gov (United States)

    Kothari, Bhaveshkumar H; Fahmy, Raafat; Claycamp, H Gregg; Moore, Christine M V; Chatterjee, Sharmista; Hoag, Stephen W

    2017-05-01

    The goal of this study was to utilize risk assessment techniques and statistical design of experiments (DoE) to gain process understanding and to identify critical process parameters for the manufacture of controlled release multiparticulate beads using a novel disk-jet fluid bed technology. The material attributes and process parameters were systematically assessed using the Ishikawa fish bone diagram and failure mode and effect analysis (FMEA) risk assessment methods. The high risk attributes identified by the FMEA analysis were further explored using resolution V fractional factorial design. To gain an understanding of the processing parameters, a resolution V fractional factorial study was conducted. Using knowledge gained from the resolution V study, a resolution IV fractional factorial study was conducted; the purpose of this IV study was to identify the critical process parameters (CPP) that impact the critical quality attributes and understand the influence of these parameters on film formation. For both studies, the microclimate, atomization pressure, inlet air volume, product temperature (during spraying and curing), curing time, and percent solids in the coating solutions were studied. The responses evaluated were percent agglomeration, percent fines, percent yield, bead aspect ratio, median particle size diameter (d50), assay, and drug release rate. Pyrobuttons® were used to record real-time temperature and humidity changes in the fluid bed. The risk assessment methods and process analytical tools helped to understand the novel disk-jet technology and to systematically develop models of the coating process parameters like process efficiency and the extent of curing during the coating process.

  19. Critical Review on the Analytical Techniques for the Determination of the Oldest Statin-Atorvastatin-in Bulk, Pharmaceutical Formulations and Biological Fluids.

    Science.gov (United States)

    Kokilambigai, K S; Seetharaman, R; Lakshmi, K S

    2017-11-02

    Statins are a group of medicines that can help to lower the level of low-density lipoprotein (LDL) cholesterol "bad cholesterol" in the blood. Having a high level of LDL cholesterol is potentially dangerous, as it can lead to a hardening and narrowing of arteries (atherosclerosis) and cardiovascular disease (CVD), atorvastatin is one of the oldest member of the statin family and is used in the treatment of dyslipidemia and the prevention of CVD. Atorvastatin was first made in August 1985 and from 1996 to 2012 under the trade name Lipitor, atorvastatin became the world's best-selling drug. Numerous analytical methodologies are available for the quantification of atorvastatin and its content in pharmaceutical preparations and in biological fluids.

  20. Polypyrrole/magnetic nanoparticles composite as an efficient sorbent for dispersive micro-solid-phase extraction of antidepressant drugs from biological fluids.

    Science.gov (United States)

    Asgharinezhad, Ali Akbar; Karami, Sara; Ebrahimzadeh, Homeira; Shekari, Nafiseh; Jalilian, Niloofar

    2015-10-15

    In this study, polypyrrole/magnetic nanoparticles composites in the presence of two different dopants were synthesized with the aid of chemical oxidative polymerization process for dispersive-μ-solid phase extraction (D-μ-SPE). The synthesized magnetic sorbents were characterized by various techniques. The results exhibited that the nanocomposite modified by polypyrrole with sodium perchlorate as a dopant demonstrated higher extraction efficiency for citalopram (CIT) and sertraline (STR) as the model compounds. This nanosorbent in combination with high performance liquid chromatography-UV detection was applied for extraction, preconcentration and determination of CIT and STR in urine and plasma samples. The effect of various parameters on the extraction efficiency including: sample pH, amount of sorbent, sorption time, eluent and its volume, salt content, and elution time were investigated and optimized. The opted conditions were: sample pH, 9.0; sorbent dosage, 10mg; sorption time, 7 min; elution solvent and its volume, 0.06 mol L(-1) HCl in methanol, 120 μL; elution time, 2 min and without addition of salt to the sample. The calibration curves were linear in the concentration range of 1-800 μg L(-1). The limits of detection (LODs) were obtained in the range of 0.2-1.0 μg L(-1) for CIT and 0.3-0.7 μg L(-1) for STR, respectively. The percent of extraction recoveries and relative standard deviations (n=5) were in the range of 93.4-99, 4.8-8.4 for CIT and 94-98.4, 4.3-9.2 for STR, respectively. Finally, the applicability of the method was successfully confirmed by the extraction and determination of CIT and STR in human urine and plasma samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Extracting preseismic VLF-VHF electromagnetic signatures: A possible way in which the critical regime is reached as the earthquake approaches

    Science.gov (United States)

    Eftaxias, K.; Kapiris, P.; Karamanos, K.; Balasis, G.; Peratzakis, A.

    2005-12-01

    -regulating character and to a great degree the property of irreversibility, one of the important components of predictive capability. We address the role of the order of material heterogeneity on the transition from antipersistent to persistent behavior. We gratefully acknowledge financial support by the European Union Program EPEAEK/PYTHAGORAS 70/3/7357 P. Kapiris, K. Eftaxias and T. Chelidze, Electromagnetic Signature of Prefracture Criticality in Heterogeneous Media, Physical Review Letters, 92(6), 065702, 2004. P. Kapiris, J. Polygiannakis, X. Li, X. Yao and K. Eftaxias, Similarities in precursory features in seismic shocks and epileptic seizures, Europhysics Letters 69, 657-663, 2005. P. Kapiris, K. Nomicos, G. Antonopoulos, J. Polygiannakis, K. Karamanos, J. Kopanas, A. Zissos, A. Peratzakis and K. Eftaxias, Distinguished seismological and electromagnetic features of the impending global failure: did the 7/9/1999 M5.9 Athens earthquake come with a warning?, Earth Planets and Space, 57, 215-230, 2005 Y. Contoyiannis, P. Kapiris and K. Eftaxias, A Monitoring of a Pre-Seismic Phase from its Electromagnetic Precursors, Physical Review E, 71, 066123, 2005. K. Karamanos, A. Peratzakis, P. Kapiris, S. Nikolopoulos, J. Kopanas, and K. Eftaxias, Extracting preseismic electromagnetic signatures in terms of symbolic dynamics, Nonlinear Processes in Geophysics, (in press), 2005.

  2. Graphene-coated polystyrene-divinylbenzene dispersive solid-phase extraction coupled with supercritical fluid chromatography for the rapid determination of 10 allergenic disperse dyes in industrial wastewater samples.

    Science.gov (United States)

    Lou, Chaoyan; Wu, Can; Zhang, Kai; Guo, Dandan; Jiang, Lei; Lu, Yang; Zhu, Yan

    2018-05-18

    Allergenic disperse dyes are a group of environmental contaminants, which are toxic and mutagenic to human beings. In this work, a method of dispersive solid-phase extraction (d-SPE) using graphene-coated polystyrene-divinylbenzene (G@PS-DVB) microspheres coupled with supercritical fluid chromatography (SFC) was proposed for the rapid determination of 10 allergenic disperse dyes in industrial wastewater samples. G@PS-DVB microspheres were synthesized by coating graphene (G) sheets onto polystyrene-divinylbenzene (PS-DVB) polymers. Such novel sorbents were employed in d-SPE for the purification and concentration of allergenic disperse dyes in wastewater samples prior to the determination by SFC with UV detection. To achieve the maximum extraction efficiency for the target dyes, several parameters influencing d-SPE process such as sorbent dosage, extraction time, desorption conditions were investigated. SFC conditions including stationary phase, modifier composition and percentage, column temperature, backpressure and flow rate were optimized to well separate the allergenic disperse dyes. Under the optimum conditions, satisfactory linear relationship (R ≥ 0.9989) was observed with the concentration of dyes ranging from 0.02 to 10.0 μg/mL. The limits of detection (LOD, S/N = 3) for the ten dyes were in the range of 1.1-15.6 ng/mL. Recoveries for the spiked samples were between 89.1% and 99.7% with relative standard deviations (RSD) lower than 10.5% in all cases. The proposed method is time-saving, green, precise and repeatable for the analysis of the target dyes. Furthermore, the application of G@PS-DVB based d-SPE process can be potentially expanded to isolate and concentrate other aromatic compounds in various matrices and supercritical fluid chromatography methodology featuring rapidity, accuracy and green will be an ideal candidate for the analysis of these compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Rapid and simple pretreatment of human body fluids using electromembrane extraction across supported liquid membrane for capillary electrophoretic determination of lithium

    Czech Academy of Sciences Publication Activity Database

    Strieglerová, Lenka; Kubáň, Pavel; Boček, Petr

    2011-01-01

    Roč. 32, č. 10 (2011), s. 1182-1189 ISSN 0173-0835 R&D Projects: GA ČR GAP206/10/1219 Institutional research plan: CEZ:AV0Z40310501 Keywords : electromembrane extraction * biological samples * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.303, year: 2011

  4. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate (SDS)-coated nano-magnets for the spectrophotometric determination of Fingolomid in biological fluids

    Science.gov (United States)

    Azari, Zhila; Pourbasheer, Eslam; Beheshti, Abolghasem

    2016-01-01

    In this study, mixed hemimicelles solid-phase extraction (SPE) based on sodium dodecyl sulfate (SDS)-coated nano-magnets Fe3O4 was investigated as a novel method for the separation and determination of Fingolimod (FLM) in water, urine and plasma samples prior to spectrophotometeric determination. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS, satisfactory extraction recoveries can be produced. The main factors affecting the adsolubilization of analysts, such as pH, surfactant and adsorbent amounts, ionic strength, extraction time and desorption conditions were studied and optimized. Under the selected conditions, FLM has been quantitatively extracted. The accuracy of the method was evaluated by recovery measurements on spiked samples, and good recoveries of 96%, 95% and 88% were observed for water, urine and plasma respectively. Proper linear behaviors over the investigated concentration ranges of 2-26, 2-17 and 2-13 mg/L with good coefficients of determination, 0.998, 0.997 and 0.995 were achieved for water, urine and plasma samples, respectively. To the best of our knowledge, this is the first time that a mixed hemimicelles SPE method based on magnetic separation and nanoparticles has been used as a simple and sensitive method for monitoring of FLM in water and biological samples.

  5. SEMIAUTOMATED SOLID-PHASE EXTRACTION PROCEDURE FOR DRUG SCREENING IN BIOLOGICAL-FLUIDS USING THE ASPEC SYSTEM IN COMBINATION WITH CLEAN SCREEN DAU COLUMNS

    NARCIS (Netherlands)

    CHEN, XH; FRANKE, JP; ENSING, K; WIJSBEEK, J; DEZEEUW, RA

    1993-01-01

    The use of a semi-automated solid-phase extraction system (ASPEC) for the screening of drugs in plasma and urine on a single mixed-mode column (Clean Screen DAU) is described. The processes of column preconditioning, sample application, column wash, pH adjustment and elution of the drugs were

  6. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  7. Aqueous cutting fluid for machining fissionable materials

    Science.gov (United States)

    Duerksen, Walter K.; Googin, John M.; Napier, Jr., Bradley

    1984-01-01

    The present invention is directed to a cutting fluid for machining fissionable material. The cutting fluid is formed of glycol, water and boron compound in an adequate concentration for effective neutron attenuation so as to inhibit criticality incidents during machining.

  8. Thermophysical properties of supercritical fluids and fluid mixtures

    International Nuclear Information System (INIS)

    Sengers, J.V.

    1991-07-01

    This research is concerned with the development of a quantitative scientific description of the thermodynamic and transport properties of supercritical and subcritical fluids and fluid mixtures. It is known that the thermophysical properties of fluids and fluid mixtures asymptotically close to the critical point satisfy scaling laws with universal critical exponents and universal scaling functions. However, the range of validity of these asymptotic scaling laws is quite small. As a consequence, the impact of the modern theory of critical phenomena on chemical engineering has been limited. On the other hand, an a priori estimate of the range of temperatures and densities, where critical fluctuations become significant, can be made on the basis of the so-called Ginzburg criterion. A recent analysis of this criterion suggests that this range is actually quite large and for a fluid like carbon dioxide can easily extend to 100 degrees or so above the critical temperature. Hence, the use of traditional engineering equations like cubic equations is not scientifically justified in a very wide range of temperatures and densities around the critical point. We have therefore embarked on a scientific approach to deal with the global effects of critical fluctuations on the thermophysical properties of fluids and fluid mixtures. For this purpose it is not sufficient to consider the asymptotic critical fluctuations but we need to deal also with the nonasymptotic critical fluctuations. The goal is to develop scientifically based questions that account for the crossover of the thermophysical properties from their asymptotic singular behavior in the near vicinity of the critical point to their regular behavior very far away from the critical point

  9. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  10. Auraptene, a Major Compound of Supercritical Fluid Extract of Phalsak (Citrus Hassaku Hort ex Tanaka, Induces Apoptosis through the Suppression of mTOR Pathways in Human Gastric Cancer SNU-1 Cells

    Directory of Open Access Journals (Sweden)

    Jeong Yong Moon

    2015-01-01

    Full Text Available The supercritical extraction method is a widely used process to obtain volatile and nonvolatile compounds by avoiding thermal degradation and solvent residue in the extracts. In search of phytochemicals with potential therapeutic application in gastric cancer, the supercritical fluid extract (SFE of phalsak (Citrus hassaku Hort ex Tanaka fruits was analyzed by gas chromatography-mass spectrometry (GC-MS. Compositional analysis in comparison with the antiproliferative activities of peel and flesh suggested auraptene as the most prominent anticancer compound against gastric cancer cells. SNU-1 cells were the most susceptible to auraptene-induced toxicity among the tested gastric cancer cell lines. Auraptene induced the death of SNU-1 cells through apoptosis, as evidenced by the increased cell population in the sub-G1 phase, the appearance of fragmented nuclei, the proteolytic cleavage of caspase-3 and poly(ADP-ribose polymerase (PARP protein, and depolarization of the mitochondrial membrane. Interestingly, auraptene induces an increase in the phosphorylation of Akt, which is reminiscent of the effect of rapamycin, the mTOR inhibitor that triggers a negative feedback loop on Akt/mTOR pathway. Taken together, these findings provide valuable insights into the anticancer effects of the SFE of the phalsak peel by revealing that auraptene, the major compound of it, induced apoptosis in accompanied with the inhibition of mTOR in SNU-1 cells.

  11. Magnetic nanoparticles based dispersive micro-solid-phase extraction as a novel technique for coextraction of acidic and basic drugs from biological fluids and waste water.

    Science.gov (United States)

    Asgharinezhad, Ali Akbar; Mollazadeh, Narges; Ebrahimzadeh, Homeira; Mirbabaei, Fatemeh; Shekari, Nafiseh

    2014-04-18

    The coextraction of acidic and basic drugs from different samples is a considerable and disputable concept in sample preparation strategies. In this study, for the first time, simultaneous extraction of acidic and basic drugs with magnetic nanoparticles based dispersive micro-solid phase extraction followed by high performance liquid chromatography-ultraviolet detection was introduced. Cetyltrimethyl ammonium bromide-coated Fe3O4@decanoic acid as an efficient sorbent was successfully applied to adsorb diclofenac (DIC) as an acidic and diphenhydramine (DPH) as a basic model compound. First, appropriate amount of synthetic Fe3O4@decanoic acid nanoparticles was added to aqueous solution of drugs. After adjusting the pH of the solution, cetyltrimethyl ammonium bromide (CTAB) was added to the mixture being stirred at a constant rate. After the adsorption of drugs and decantation of supernatant with a magnetic field, the sorbent was eluted with methanol by fierce vortex. The parameters affecting the extraction efficiency were optimized and obtained as: pH of the sample=9, concentration of CTAB=0.2mmolL(-1), amount of sorbent=10mg, extraction time=5min, no salt addition to sample, type and volume of the eluent=50μL methanol, and desorption time=1min. Under the optimum conditions detection limits and linear dynamic ranges were achieved in the range of 1.8-3.0, 5-1500μgL(-1) for DPH and 1.5-3.5, 5-1500μgL(-1) for DIC, respectively. The percent of extraction recovery and relative standard deviations (n=5) were in the range of 47.3-60, 5.2-9.0 for DPH and 64-76.7, 5.1-5.8 for DIC, respectively. Ultimately, the applicability of the method was successfully confirmed by the extraction and determination of DIC and DPH in human urine, plasma and waste water samples in the range of microgram per liter and satisfactory results were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Volumetric velocimetry for fluid flows

    Science.gov (United States)

    Discetti, Stefano; Coletti, Filippo

    2018-04-01

    In recent years, several techniques have been introduced that are capable of extracting 3D three-component velocity fields in fluid flows. Fast-paced developments in both hardware and processing algorithms have generated a diverse set of methods, with a growing range of applications in flow diagnostics. This has been further enriched by the increasingly marked trend of hybridization, in which the differences between techniques are fading. In this review, we carry out a survey of the prominent methods, including optical techniques and approaches based on medical imaging. An overview of each is given with an example of an application from the literature, while focusing on their respective strengths and challenges. A framework for the evaluation of velocimetry performance in terms of dynamic spatial range is discussed, along with technological trends and emerging strategies to exploit 3D data. While critical challenges still exist, these observations highlight how volumetric techniques are transforming experimental fluid mechanics, and that the possibilities they offer have just begun to be explored.

  13. An UHPLC-MS/MS method for simultaneous quantification of human amyloid beta peptides Aβ1-38, Aβ1-40 and Aβ1-42 in cerebrospinal fluid using micro-elution solid phase extraction.

    Science.gov (United States)

    Lin, Ping-Ping; Chen, Wei-Li; Yuan, Fei; Sheng, Lei; Wu, Yu-Jia; Zhang, Wei-Wei; Li, Guo-Qing; Xu, Hong-Rong; Li, Xue-Ning

    2017-12-01

    Amyloid beta (Aβ) peptides in cerebrospinal fluid are extensively estimated for identification of Alzheimer's disease (AD) as diagnostic biomarkers. Unfortunately, their pervasive application is hampered by interference from Aβ propensity of self-aggregation, nonspecifically bind to surfaces and matrix proteins, and by lack of quantitive standardization. Here we report on an alternative Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous measurement of human amyloid beta peptides Aβ1-38, Aβ1-40 and Aβ1-42 in cerebrospinal fluid (CSF) using micro-elution solid phase extraction (SPE). Samples were pre-processing by the mixed-mode micro-elution solid phase extraction and quantification was performed in the positive ion multiple reaction monitoring (MRM) mode using electrospray ionization. The stable-isotope labeled Aβ peptides 15 N 51 - Aβ1-38, 15 N 53 - Aβ1-40 and 15 N 55 - Aβ1-42 peptides were used as internal standards. And the artificial cerebrospinal fluid (ACSF) containing 5% rat plasma was used as a surrogate matrix for calibration curves. The quality control (QC) samples at 0.25, 2 and 15ng/mL were prepared. A "linear" regression (1/x 2 weighting): y=ax+b was used to fit the calibration curves over the concentration range of 0.1-20ng/mL for all three peptides. Coefficient of variation (CV) of intra-batch and inter-batch assays were all less than 6.44% for Aβ1-38, 6.75% for Aβ1-40 and 10.74% for Aβ1-42. The precision values for all QC samples of three analytes met the acceptance criteria. Extract recoveries of Aβ1-38, Aβ1-40 and Aβ1-42 were all greater than 70.78%, both in low and high QC samples. The stability assessments showed that QC samples at both low and high levels could be stable for at least 24h at 4°C, 4h at room temperature and through three freeze-thaw cycles without sacrificing accuracy or precision. And no significant carryover effect was observed. This validated UHPLC

  14. Determination of thebaine in water samples, biological fluids, poppy capsule, and narcotic drugs, using electromembrane extraction followed by high-performance liquid chromatography analysis.

    Science.gov (United States)

    Seidi, Shahram; Yamini, Yadollah; Heydari, Akbar; Moradi, Morteza; Esrafili, Ali; Rezazadeh, Maryam

    2011-09-09

    Opium determination is of great importance from toxicological and pharmaceutical standpoints. In present work, electromembrane extraction (EME) coupled with high-performance liquid chromatography (HPLC) and ultraviolet (UV) detection was developed for determination of thebaine as a natural alkaloid, in different matrices containing water, urine, poppy capsule, street heroine, and codeine tablet. Thebaine migrated from 3 mL of sample solutions, through a thin layer of 2-nitrophenyl octyl ether (NPOE) immobilized in the pores of a porous hollow fiber, and into a 15 μL acidic aqueous acceptor solution present inside the lumen of the fiber. The variables of interest, such as chemical composition of the organic liquid membrane, stirring speed, extraction time and voltage, pH of donor and acceptor phases and salt effect in the EME process were optimized. Under optimal conditions, thebaine was effectively extracted from different matrices with recoveries in the range of 45-55%, which corresponded to preconcentration factors in the range of 90-110. Good linearity was achieved for calibration curves with a coefficient of estimation higher than 0.997. Detection limits and intra-day precision (n=3) were less than 15 μg L(-1) and 8.9%, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Fluid sampling tool

    Science.gov (United States)

    Garcia, A.R.; Johnston, R.G.; Martinez, R.K.

    1999-05-25

    A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.

  16. Fluid sampling tool

    Science.gov (United States)

    Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.

    1999-05-25

    A fluid sampling tool for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall.

  17. Electrochemistry in near-critical and supercritical fluids. 3. Studies of Br/sup -/, I/sup -/, and hydroquinone in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Flarsheim, W.J.; Tsou, Y.M.; Trachtenberg, I.; Johnston, K.P.; Bard, A.J.

    1986-07-31

    A new type of apparatus has been constructed for carrying out electrochemistry in near-critical and supercritical aqueous solutions. The following systems have been studied at a platinum electrode: H/sub 2/O/O/sub 2/, I/sup -//I/sub 2/, Br/sup -//Br/sub 2/, and hydroquinone/benzoquinone. The compact alumina flow cell can be heated or cooled quickly and can be recharged with fresh electrolyte solution while at high temperature and pressure. A large reduction in the potential required for the electrolysis of water was observed. Diffusivities have been measured for iodide ions and hydroquinone. General agreement with the Stokes-Einstein model was observed in the temperature range 25-375/sup 0/C.

  18. Comparison of mentha extracts obtained by different extraction methods

    Directory of Open Access Journals (Sweden)

    Milić Slavica

    2006-01-01

    Full Text Available The different methods of mentha extraction, such as steam distillation, extraction by methylene chloride (Soxhlet extraction and supercritical fluid extraction (SFE by carbon dioxide (CO J were investigated. SFE by CO, was performed at pressure of 100 bar and temperature of40°C. The extraction yield, as well as qualitative and quantitative composition of obtained extracts, determined by GC-MS method, were compared.

  19. The 24-hour skin hydration and barrier function effects of a hyaluronic 1%, glycerin 5%, and Centella asiatica stem cells extract moisturizing fluid: an intra-subject, randomized, assessor-blinded study.

    Science.gov (United States)

    Milani, Massimo; Sparavigna, Adele

    2017-01-01

    Moisturizing products are commonly used to improve hydration in skin dryness conditions. However, some topical hydrating products could have negative effects on skin barrier function. In addition, hydrating effects of moisturizers are not commonly evaluated up to 24 hours after a single application. Hyaluronic acid (HA) and glycerin are very well-known substances able to improve skin hydration. Centella asiatica extract (CAE) could exert lenitive, anti-inflammatory and reepithelialization actions. Furthermore, CAE could inhibit hyaluronidase enzyme activity, therefore prolonging the effect of HA. A fluid containing HA 1%, glycerin 5% and stem cells CAE has been recently developed (Jaluronius CS [JCS] fluid). To evaluate and compare the 24-hour effects of JCS fluid on skin hydration and on transepidermal water loss (TEWL) in healthy subjects in comparison with the control site. Twenty healthy women, mean age 40 years, were enrolled in an intra-subject (right vs left), randomized, assessor-blinded, controlled, 1-day trial. The primary end points were the skin hydration and TEWL, evaluated at the volar surface of the forearm and in standardized conditions (temperature- and humidity-controlled room: 23°C and 30% of humidity) using a corneometer and a vapometer device at baseline, 1, 8 and 24 hours after JCS fluid application. Measurements were performed by an operator blinded for the treatments. Skin hydration after 24 hours was significantly higher ( P =0.001; Mann-Whitney U test) in the JCS-treated area in comparison with the control site. JCS induced a significant ( P =0.0001) increase in skin hydration at each evaluation time (+59% after 1 hour, +48% after 8 hours and +29% after 24 hours) in comparison with both baseline ( P =0.0001) and non-treated control site ( P =0.001). TEWL after 24 hours was significantly lower ( P =0.049; Mann-Whitney U test) in the JCS-treated area in comparison with the control site (13±4 arbitrary units [AU] vs 16±6 AU). JCS fluid

  20. Purification of radioactive waste oil by a supercritical fluid

    International Nuclear Information System (INIS)

    Yoo, Jaeryong; Sung, Jinhyun; Park, Kwangheon; Kim, Hongdoo; Kim, Hakwon; Lim, Taeyoon; Yim, Sanghak; Yoon, Weonseob

    2006-01-01

    The radioactive waste oil from the nuclear industry is potentially hazardous due to its possibility to contaminate soil and underwater. Pollutants in waste oil are generally radioactive heavy metals or organo-metals. Radioactive waste oils are highly viscous fluids that are similar to used-motor oils. Several processes have been developed to regenerated used motor oil, such as acid clay treatment, chemical addition, vacuum distillation, thermal cracking and hydrofinishing. However, these technologies are difficult to apply to separating radioactive nuclides from radioactive waste oils. In recent years, our laboratory developed a membrane method for the regeneration of used motor oils. We applied supercritical Co2 (scCO2) as a viscosity reducing additive to waste oils at a lower process temperature in order to improve membrane permeability and thus the energy saving. However, the membrane cannot filter the contaminants in radioactive waste oil that are not particles, such as radioactive ions in impurity water in the oil. In this paper, we suggest a method extracting clean oil from the radioactive waste oil rather than filtering by a supercritical fluid. We selected R22, a refrigerant, as a solvent for extraction. R22 has a mild critical point - 96.1 .deg. and 49.9bar. Regeneration of waste oils by extracting clean oil using a supercritical fluid such as R22 is easy to handle and reduce secondary wastes. In this paper, we examine the feasibility of R22 in extracting clean oil from radioactive waste oils

  1. Fluids engineering

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Fluids engineering has played an important role in many applications, from ancient flood control to the design of high-speed compact turbomachinery. New applications of fluids engineering, such as in high-technology materials processing, biotechnology, and advanced combustion systems, have kept up unwaining interest in the subject. More accurate and sophisticated computational and measurement techniques are also constantly being developed and refined. On a more fundamental level, nonlinear dynamics and chaotic behavior of fluid flow are no longer an intellectual curiosity and fluid engineers are increasingly interested in finding practical applications for these emerging sciences. Applications of fluid technology to new areas, as well as the need to improve the design and to enhance the flexibility and reliability of flow-related machines and devices will continue to spur interest in fluids engineering. The objectives of the present seminar were: to exchange current information on arts, science, and technology of fluids engineering; to promote scientific cooperation between the fluids engineering communities of both nations, and to provide an opportunity for the participants and their colleagues to explore possible joint research programs in topics of high priority and mutual interest to both countries. The Seminar provided an excellent forum for reviewing the current state and future needs of fluids engineering for the two nations. With the Seminar ear-marking the first formal scientific exchange between Korea and the United States in the area of fluids engineering, the scope was deliberately left broad and general

  2. Effect of fluid flow, pH and tobacco extracts concentration as organic inhibitors to corrosion characteristics of AISI 1045 steel in 3.5% NaCl environment containing CO2 gas

    Science.gov (United States)

    Kurniawan, Budi Agung; Pratiwi, Vania Mitha; Ahmadi, Nafi'ul Fikri

    2018-04-01

    Corrosion become major problem in most industries. In the oil and gas company, corrosion occurs because of reaction between steel and chemical species inside crude oil. Crude oil or nature gas provide corrosive species, such as CO2, O2, H2S and so on. Fluid containing CO2 gas causes CO2 corrosion which attack steel as well as other corrosion phenomena. This CO2 corrosion commonly called as sweet environment and produce FeCO3 as corrosion products. Fluid flow factor in pipelines during the oil and gas transportation might increase the rate of corrosion itself. Inhibitor commonly use used as corrosion protection because its simplicity in usage. Nowadays, organic inhibitor become main issue in corrosion protection because of biodegradable, low cost, and environmental friendly. This research tried to use tobacco leaf extract as organic inhibitor to control corrosion in CO2 environment. The electrolyte solution used was 3.5% NaCl at pH 4 and pH 7. Weight loss test results showed that the lowest corrosion rate was reach at 132.5 ppm inhibitor, pH 7 and rotational speed of 150 rpm with corrosion rate of 0.091 mm/y. While at pH 4, the lowest corrosion rate was found at rotational speed of 150 rpm with inhibitor concentration of 265 ppm and corrosion rate of 0.327 mm/y. FTIR results indicate the presence of nicotine functional groups on the steel surface. However, based on corrosion rate, it is believed that corrosion occurs, and FeCO3 was soluble in electrolyte. Tobacco leaf extract inhibitors worked by a physisorption mechanism, where tobacco inhibitors formed thin layer on the steel surface.

  3. Detection of related substances in polyene phosphatidyl choline extracted from soybean and in its commercial capsule by comprehensive supercritical fluid chromatography with mass spectrometry compared with HPLC with evaporative light scattering detection.

    Science.gov (United States)

    Jiang, Qikun; Liu, Wanjun; Li, Xiaoting; Zhang, Tianhong; Wang, Yongjun; Liu, Xiaohong

    2016-01-01

    Supercritical fluid chromatography with tandem mass spectrometry was used to comprehensively profile polyene phosphatidyl choline (PPC) extracted from soybean. We achieved an efficient chromatographic analysis using a BEH-2EP column (3 × 100 mm(2) , 1.7 μm) with a mobile phase consisting of CO2 and a cosolvent in gradient combination at a flow rate of 1.0 mL/min. The cosolvent consisted of methanol, acetonitrile, and water (containing 10 mM ammonium acetate and 0.2% formic acid). The total single-run time was 7 min. We used this method to accurately detect ten different phospholipids (PLs) during extraction. The limits of quantification for phosphatidyl choline, lyso-phosphatidylcholine (LPC), phosphatidic acid (PA), sphingomyelin, phosphatidyl glycerol, phosphatidyl inositol (PI), cholesterol, cardiolipin, phosphatidyl serine, and phosphatidyl ethanolamine (PE) were 20.6, 19.52, 1.21, 2.38, 0.50, 2.28, 54.3, 0.60, 0.65, and 4.85 ng/mL, respectively. However, adopting the high-performance liquid chromatography with evaporative light scattering detection method issued by the China Food and Drug Administration, only PA, LPC, PE, PI, and PPC could be analyzed accurately, and the limits of quantification were 33.89, 60.5, 30.3, 10.9, and 61.79 μg/mL, respectively. The total single-run time was at the least 20 min. Consequently, the supercritical fluid chromatography with tandem mass spectrometry method was more suitable for the analysis of related PLs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ultrasound assisted dispersive micro solid-phase extraction of four tyrosine kinase inhibitors from serum and cerebrospinal fluid by using magnetic nanoparticles coated with nickel-doped silica as an adsorbent

    International Nuclear Information System (INIS)

    Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Shirkhanloo, Hamid; Rashidi, Alimorad

    2016-01-01

    Nanoparticles (NPs) consisting of a magnetic Fe 3 O 4 core and a nickel(II)-doped silica shell were prepared and are shown to be viable materials for selective magnetic extraction of trace quantities of the tyrosine kinase inhibitors (TKIs) imatinib, nilotinib, erlotinib and sunitinib. The NPs were characterized by scanning electron microscopy, transmission electron microscopy, DLS and XRD analysis, and the results revealed a uniform in size (with a typical diameter of 40 nm) and a core-shell structure. The magnetic nanoadsorbent displays good affinity of the TKIs, probably because of the affinity between the Ni(II) ions of the NPs with the nitrogen atoms in the TKIs. The magnetism of the NPs enables them to be quickly separated from serum and cerebrospinal fluid samples. Imidazole, with its higher affinity for Ni(II) than that of the TKIs, was used for desorption of the TKIs from the NPs prior to their quantification by HPLC with UV detection. The detection limits are as low as 200, 480, 130, and 250 ng·L -1 for imatinib, sunitinib, erlotinib, and nilotinib, respectively. The intra-day precisions (RSDs) were lower than 4.0 %. The method displays a wide linear range. It was applied to the determination of TKIs in (spiked) human serum and cerebrospinal fluid and gave recoveries in the range from 94.6 to 98.6 %. (author)

  5. Assay of 6-gingerol in CO2 supercritical fluid extracts of ginger and evaluation of its sustained release from a transdermal delivery system across rat skin.

    Science.gov (United States)

    Chen, Yan; Zhang, Cuiping; Zhang, Mei; Fu, Xiaobing

    2014-07-01

    Ginger has been widely used as healthy food condiment as well as traditional Chinese medicine since antiquity. Multiple potentials of ginger for treatment of various ailments have been revealed. However, the biological half-life of 6-gingerol (a principal pungent ingredient of ginger) is only 7.23 minutes while taken orally. Delivery of ginger compositions by routes other than oral have scarcely been reported. Therefore, we studied a noninvasive transdermal drug delivery system (TDDS) of ginger to bypass hepatic first pass metabolism, avoid gastrointestinal degradation and achieve long persistent release of effective compositions. After establishment of a HPLC analysis method of 6-gingerol, assays of 6-gingerol were performed to compare two kinds of ginger extracts. Then, the characteristics of transdermal delivery of 6-gingerol in TDDS were exhibited. The results showed that the contents of 6-gingerol in two kinds of ginger extracts were significantly different. The maximal delivery percentage of 6-gingerol across rat skin at 20 h was more than 40% in different TDDS formulations. TDDS may provide long-lasting delivery of ginger compounds.

  6. Supercritical fluid analytical methods

    International Nuclear Information System (INIS)

    Smith, R.D.; Kalinoski, H.T.; Wright, B.W.; Udseth, H.R.

    1988-01-01

    Supercritical fluids are providing the basis for new and improved methods across a range of analytical technologies. New methods are being developed to allow the detection and measurement of compounds that are incompatible with conventional analytical methodologies. Characterization of process and effluent streams for synfuel plants requires instruments capable of detecting and measuring high-molecular-weight compounds, polar compounds, or other materials that are generally difficult to analyze. The purpose of this program is to develop and apply new supercritical fluid techniques for extraction, separation, and analysis. These new technologies will be applied to previously intractable synfuel process materials and to complex mixtures resulting from their interaction with environmental and biological systems

  7. Buffer fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadzhanzade, A Kh; Dedusanko, G Ya; Dinaburg, L S; Markov, Yu M; Rasizade, Ya N; Rozov, V N; Sherstnev, N M

    1979-08-30

    A drilling fluid is suggested for separating the drilling and plugging fluids which contains as the base increased solution of polyacrylamide and additive. In order to increase the viscoelastic properties of the liquid with simultaneous decrease in the periods of its fabrication, the solution contains as an additive dry bentonite clay. In cases of the use of a buffer fluid under conditions of negative temperatures, it is necessary to add to it table salt or ethylene glycol.

  8. Simultaneous Screening and Quantification of 29 Drugs of Abuse in Oral Fluid by Solid-Phase Extraction and Ultraperformance LC-MS/MS

    DEFF Research Database (Denmark)

    Linnet, Kristian; Badawi, Nora; Simonsen, Kirsten W.

    2009-01-01

    performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) method for detection of 29 drugs and illicit compounds in OF. The drugs detected were opioids, amphetamines, cocaine, benzodiazepines, and {Delta}-9-tetrahydrocannabinol. Method: Solid-phase extraction was performed with a Gilson ASPEC XL......4 system equipped with Bond Elut Certify sample cartridges. OF samples (200 mg) diluted with 5 mL of ammonium acetate/methanol (vol/vol 90:10) buffer were applied to the columns and eluted with 3 mL of acetonitrile with aqueous ammonium hydroxide. Target drugs were quantified by use of a Waters...... of amphetamine, cocaine, codeine, {Delta}-9-tetrahydrocannabinol, tramadol, and zopiclone. Conclusions: The UPLC-MS/MS method makes it possible to detect all 29 analytes in 1 chromatographic run (15 min), including {Delta}-9-tetrahydrocannabinol and benzoylecgonine, which previously have been difficult...

  9. Solid-phase extraction based on hydrophilic interaction liquid chromatography with acetone as eluent for eliminating matrix effects in the analysis of biological fluids by LC-MS.

    Science.gov (United States)

    Van Damme, T; Lachová, M; Lynen, F; Szucs, R; Sandra, P

    2014-01-01

    Analysis of drugs and metabolites in biological matrices such as blood or plasma by LC-MS is routinely challenged by the presence of large quantities of competing molecules for ionization in soft ionization sources, such as proteins and phospholipids. While the former can easily be removed by protein precipitation, pre-analytical extraction of the latter is necessary because they show very high retention in reversed-phase LC resulting in long analysis times or in ion suppression effects when not eluted before the next runs. A novel HILIC-based SPE approach, making use of silica cartridges and of acetone as organic solvent, is introduced as a potent alternative to current commercial methods for phospholipid removal. The methodology was developed and tested for a broad polarity range of pharmaceutical solutes (log P from 0 to 6.6) and broad applicability can therefore be envisaged.

  10. Schroedinger fluid

    International Nuclear Information System (INIS)

    Kan, K.K.

    1983-01-01

    The relationship of nuclear internal flow and collective inertia, the difference of this flow from that of a classical fluid, and the approach of this flow to rigid flow in independent-particle model rotation are elucidated by reviewing the theory of Schroedinger fluid and its implications for collective vibration and rotation. (author)

  11. Growth kinetics in multicomponent fluids

    International Nuclear Information System (INIS)

    Chen, S.; Lookman, T.

    1995-01-01

    The hydrodynamic effects on the late-stage kinetics in spinodal decomposition of multicomponent fluids are examined using a lattice Boltzmann scheme with stochastic fluctuations in the fluid and at the interface. In two dimensions, the three- and four-component immiscible fluid mixture (with a 1024 2 lattice) behaves like an off-critical binary fluid with an estimated domain growth of t 0.4 +/= 0.03 rather than t 1/3 as previously estimated, showing the significant influence of hydrodynamics. In three dimensions (with a 256 3 lattice), we estimate the growth as t 0.96 +/= 0.05 for both critical and off-critical quenches, in agreement with phenomenological theory

  12. EXPERIMENTAL STUDY OF MAGNETIC FLUID SEAL

    Directory of Open Access Journals (Sweden)

    V. G. Bashtovoi

    2006-01-01

    Full Text Available Dependences of critical pressure drop, being held by magnetic fluid seal, on time in a static state and shaft rotation velocity in dynamics have been experimentally determined. The significant influence of particles’ redistribution in magnetic fluid on static parameters of magnetic fluid seal has been established.

  13. Development of a Front Tracking Method for Two-Phase Micromixing of Incompressible Viscous Fluids with Interfacial Tension in Solvent Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yijie [ORNL; Lim, Hyun-Kyung [ORNL; de Almeida, Valmor F [ORNL; Navamita, Ray [State University of New York, Stony Brook; Wang, Shuqiang [State University of New York, Stony Brook; Glimm, James G [ORNL; Li, Xiao-lin [State University of New York, Stony Brook; Jiao, Xiangmin [ORNL

    2012-06-01

    This progress report describes the development of a front tracking method for the solution of the governing equations of motion for two-phase micromixing of incompressible, viscous, liquid-liquid solvent extraction processes. The ability to compute the detailed local interfacial structure of the mixture allows characterization of the statistical properties of the two-phase mixture in terms of droplets, filaments, and other structures which emerge as a dispersed phase embedded into a continuous phase. Such a statistical picture provides the information needed for building a consistent coarsened model applicable to the entire mixing device. Coarsening is an undertaking for a future mathematical development and is outside the scope of the present work. We present here a method for accurate simulation of the micromixing dynamics of an aqueous and an organic phase exposed to intense centrifugal force and shearing stress. The onset of mixing is the result of the combination of the classical Rayleigh- Taylor and Kelvin-Helmholtz instabilities. A mixing environment that emulates a sector of the annular mixing zone of a centrifugal contactor is used for the mathematical domain. The domain is small enough to allow for resolution of the individual interfacial structures and large enough to allow for an analysis of their statistical distribution of sizes and shapes. A set of accurate algorithms for this application requires an advanced front tracking approach constrained by the incompressibility condition. This research is aimed at designing and implementing these algorithms. We demonstrate verification and convergence results for one-phase and unmixed, two-phase flows. In addition we report on preliminary results for mixed, two-phase flow for realistic operating flow parameters.

  14. Predicting diffusivities in dense fluid mixtures

    Directory of Open Access Journals (Sweden)

    C. DARIVA

    1999-09-01

    Full Text Available In this work the Enskog solution of the Boltzmann equation, as corrected by Speedy, together with the Weeks-Chandler-Andersen (WCA perturbation theory of liquids is employed in correlating and predicting self-diffusivities of dense fluids. Afterwards this theory is used to estimate mutual diffusion coefficients of solutes at infinite dilution in sub and supercritical solvents. We have also investigated the behavior of Fick diffusion coefficients in the proximity of a binary vapor-liquid critical point since this subject is of great interest for extraction purposes. The approach presented here, which makes use of a density and temperature dependent hard-sphere diameter, is shown to be excellent for predicting diffusivities in dense pure fluids and fluid mixtures. The calculations involved highly nonideal mixtures as well as systems with high molecular asymmetry. The predicted diffusivities are in good agreement with the experimental data for the pure and binary systems. The methodology proposed here makes only use of pure component information and density of mixtures. The simple algebraic relations are proposed without any binary adjustable parameters and can be readily used for estimating diffusivities in multicomponent mixtures.

  15. Protective effects of pulmonary epithelial lining fluid on oxidative stress and DNA single-strand breaks caused by ultrafine carbon black, ferrous sulphate and organic extract of diesel exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Hsiao-Chi [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Cheng, Yi-Ling; Lei, Yu-Chen [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Chang, Hui-Hsien [Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Cheng, Tsun-Jen, E-mail: tcheng@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

    2013-02-01

    Pulmonary epithelial lining fluid (ELF) is the first substance to make contact with inhaled particulate matter (PM) and interacts chemically with PM components. The objective of this study was to determine the role of ELF in oxidative stress, DNA damage and the production of proinflammatory cytokines following physicochemical exposure to PM. Ultrafine carbon black (ufCB, 15 nm; a model carbonaceous core), ferrous sulphate (FeSO{sub 4}; a model transition metal) and a diesel exhaust particle (DEP) extract (a model organic compound) were used to examine the acellular oxidative potential of synthetic ELF and non-ELF systems. We compared the effects of exposure to ufCB, FeSO{sub 4} and DEP extract on human alveolar epithelial Type II (A549) cells to determine the levels of oxidative stress, DNA single-strand breaks and interleukin-8 (IL-8) production in ELF and non-ELF systems. The effects of ufCB and FeSO{sub 4} on the acellular oxidative potential, cellular oxidative stress and DNA single-strand breakage were mitigated significantly by the addition of ELF, whereas there was no decrease following treatment with the DEP extract. There was no significant effect on IL-8 production following exposure to samples that were suspended in ELF/non-ELF systems. The results of the present study indicate that ELF plays an important role in the initial defence against PM in the pulmonary environment. Experimental components, such as ufCB and FeSO{sub 4}, induced the production of oxidative stress and led to DNA single-strand breaks, which were moderately prevented by the addition of ELF. These findings suggest that ELF plays a protective role against PM-driven oxidative stress and DNA damage. -- Highlights: ► To determine the role of ELF in ROS, DNA damage and IL-8 after exposure to PM. ► ufCB, FeSO{sub 4} and DEP extract were used to examine the protective effects of ELF. ► PM-driven oxidative stress and DNA single-strand breakage were mitigated by ELF. ► The findings

  16. The effect of DNA extraction methods on observed microbial communities from fibrous and liquid rumen fractions of dairy cows

    NARCIS (Netherlands)

    Vaidya, Jueeli D.; Bogert, van den Bartholomeus; Boekhorst, Jos; Saccenti, Edoardo; Plugge, Caroline M.; Smidt, Hauke

    2018-01-01

    DNA based methods have been widely used to study the complexity of the rumen microbiota, and it is well known that the method of DNA extraction is a critical step in enabling accurate assessment of this complexity. Rumen fluid (RF) and fibrous content (FC) fractions differ substantially in terms of

  17. Rheology of Active Fluids

    Science.gov (United States)

    Saintillan, David

    2018-01-01

    An active fluid denotes a viscous suspension of particles, cells, or macromolecules able to convert chemical energy into mechanical work by generating stresses on the microscale. By virtue of this internal energy conversion, these systems display unusual macroscopic rheological signatures, including a curious transition to an apparent superfluid-like state where internal activity exactly compensates viscous dissipation. These behaviors are unlike those of classical complex fluids and result from the coupling of particle configurations with both externally applied flows and internally generated fluid disturbances. Focusing on the well-studied example of a suspension of microswimmers, this review summarizes recent experiments, models, and simulations in this area and highlights the critical role played by the rheological response of these active materials in a multitude of phenomena, from the enhanced transport of passive suspended objects to the emergence of spontaneous flows and collective motion.

  18. Fluid dynamics

    CERN Document Server

    Bernard, Peter S

    2015-01-01

    This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.

  19. Critical points of DNA quantification by real-time PCR – effects of DNA extraction method and sample matrix on quantification of genetically modified organisms

    Directory of Open Access Journals (Sweden)

    Žel Jana

    2006-08-01

    Full Text Available Abstract Background Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available. Results Five commonly used DNA extraction techniques were compared and their suitability for quantitative analysis was assessed. The effect of sample matrix on nucleic acid quantification was assessed by comparing 4 maize and 4 soybean matrixes. In addition 205 maize and soybean samples from routine analysis were analyzed for PCR efficiency to assess variability of PCR performance within each sample matrix. Together with the amount of DNA needed for reliable quantification, PCR efficiency is the crucial parameter determining the reliability of quantitative results, therefore it was

  20. Critical points of DNA quantification by real-time PCR--effects of DNA extraction method and sample matrix on quantification of genetically modified organisms.

    Science.gov (United States)

    Cankar, Katarina; Stebih, Dejan; Dreo, Tanja; Zel, Jana; Gruden, Kristina

    2006-08-14

    Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs) quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available. Five commonly used DNA extraction techniques were compared and their suitability for quantitative analysis was assessed. The effect of sample matrix on nucleic acid quantification was assessed by comparing 4 maize and 4 soybean matrixes. In addition 205 maize and soybean samples from routine analysis were analyzed for PCR efficiency to assess variability of PCR performance within each sample matrix. Together with the amount of DNA needed for reliable quantification, PCR efficiency is the crucial parameter determining the reliability of quantitative results, therefore it was chosen as the primary criterion by which to

  1. Critical points of DNA quantification by real-time PCR – effects of DNA extraction method and sample matrix on quantification of genetically modified organisms

    Science.gov (United States)

    Cankar, Katarina; Štebih, Dejan; Dreo, Tanja; Žel, Jana; Gruden, Kristina

    2006-01-01

    Background Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs) quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available. Results Five commonly used DNA extraction techniques were compared and their suitability for quantitative analysis was assessed. The effect of sample matrix on nucleic acid quantification was assessed by comparing 4 maize and 4 soybean matrixes. In addition 205 maize and soybean samples from routine analysis were analyzed for PCR efficiency to assess variability of PCR performance within each sample matrix. Together with the amount of DNA needed for reliable quantification, PCR efficiency is the crucial parameter determining the reliability of quantitative results, therefore it was chosen as the primary

  2. Estudo dos métodos de extração de carotenóides em cenoura por fluido supercrítico (efs e convencional A study of the methods of carotenoid extraction in carrots using supercritical fluid extraction (sfe and conventional methods

    Directory of Open Access Journals (Sweden)

    Ellem Waleska Nascimento da Fonseca Contado

    2010-12-01

    Full Text Available A cenoura (Daucus carota L. , planta da família das umbelíferas, produz uma raiz aromática e comestível, sendo uma das hortaliças mais cultivadas no Brasil. Representa a principal fonte de origem vegetal em carotenóides pró-vitamínicos A, especialmente o á e o β-caroteno, sendo, também, uma grande fonte de fibra dietética, antioxidantes e minerais. Conduziu-se este trabalho, com o objetivo de avaliar dois processos de extração de β-caroteno, fluído super crítico (EFS e o convencional e analisar a composição centesimal da cenoura in natura. O teor de β-caroteno obtido pela extração por EFS e por convencional foi de 2.457 e 2.455 µg/100g, respectivamente. Os valores médios encontrados para a matéria-seca da cenoura foram de: matéria-seca = 8,9%; extrato etéreo = 0,29%; cinzas = 8,11%; fibra bruta = 14,57%, proteína bruta = 6,4%, extrato não nitrogenado = 6,3% e valor calórico = 27,7kcal. Conclui-se que a extração de carotenóides em cenoura pe